hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
80e527eafecf513622481ed24659be5b09078b98
29
py
Python
python-lib/automat/__init__.py
soccasys/automat-tests
9ab4cfbd79e362f49e2a352f1610d2786b8e2985
[ "BSD-3-Clause" ]
null
null
null
python-lib/automat/__init__.py
soccasys/automat-tests
9ab4cfbd79e362f49e2a352f1610d2786b8e2985
[ "BSD-3-Clause" ]
null
null
null
python-lib/automat/__init__.py
soccasys/automat-tests
9ab4cfbd79e362f49e2a352f1610d2786b8e2985
[ "BSD-3-Clause" ]
null
null
null
from automat.client import *
14.5
28
0.793103
8cfffd0ce80e018c1f55fe577f643b1ff43f7654
229
py
Python
applications/splitThePhoneNumbers.py
silvioedu/HackerRank-Regex-Practice
dc2f2719385626375eb719b38baf6315ff23cad4
[ "MIT" ]
null
null
null
applications/splitThePhoneNumbers.py
silvioedu/HackerRank-Regex-Practice
dc2f2719385626375eb719b38baf6315ff23cad4
[ "MIT" ]
null
null
null
applications/splitThePhoneNumbers.py
silvioedu/HackerRank-Regex-Practice
dc2f2719385626375eb719b38baf6315ff23cad4
[ "MIT" ]
null
null
null
import re if __name__ == '__main__': regex = r"\d+" for _ in range(int(input())): match = re.findall(regex, input()) print("CountryCode={},LocalAreaCode={},Number={}".format(match[0], match[1], match[2]))
32.714286
95
0.58952
a45eb10d1cdba0b74551aa0508b1943fddb1578a
30,414
py
Python
airflow/sensors/smart_sensor.py
npodewitz/airflow
511ea702d5f732582d018dad79754b54d5e53f9d
[ "Apache-2.0" ]
8,092
2016-04-27T20:32:29.000Z
2019-01-05T07:39:33.000Z
airflow/sensors/smart_sensor.py
npodewitz/airflow
511ea702d5f732582d018dad79754b54d5e53f9d
[ "Apache-2.0" ]
2,961
2016-05-05T07:16:16.000Z
2019-01-05T08:47:59.000Z
airflow/sensors/smart_sensor.py
npodewitz/airflow
511ea702d5f732582d018dad79754b54d5e53f9d
[ "Apache-2.0" ]
3,546
2016-05-04T20:33:16.000Z
2019-01-05T05:14:26.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import json import logging import traceback from logging.config import DictConfigurator # type: ignore from time import sleep from sqlalchemy import and_, or_, tuple_ from airflow.compat.functools import cached_property from airflow.exceptions import AirflowException, AirflowTaskTimeout from airflow.models import BaseOperator, DagRun, SensorInstance, SkipMixin, TaskInstance from airflow.settings import LOGGING_CLASS_PATH from airflow.stats import Stats from airflow.utils import helpers, timezone from airflow.utils.context import Context from airflow.utils.email import send_email from airflow.utils.log.logging_mixin import set_context from airflow.utils.module_loading import import_string from airflow.utils.net import get_hostname from airflow.utils.session import provide_session from airflow.utils.state import PokeState, State from airflow.utils.timeout import timeout config = import_string(LOGGING_CLASS_PATH) handler_config = config['handlers']['task'] try: formatter_config = config['formatters'][handler_config['formatter']] except Exception as err: formatter_config = None print(err) dictConfigurator = DictConfigurator(config) class SensorWork: """ This class stores a sensor work with decoded context value. It is only used inside of smart sensor. Create a sensor work based on sensor instance record. A sensor work object has the following attributes: `dag_id`: sensor_instance dag_id. `task_id`: sensor_instance task_id. `execution_date`: sensor_instance execution_date. `try_number`: sensor_instance try_number `poke_context`: Decoded poke_context for the sensor task. `execution_context`: Decoded execution_context. `hashcode`: This is the signature of poking job. `operator`: The sensor operator class. `op_classpath`: The sensor operator class path `encoded_poke_context`: The raw data from sensor_instance poke_context column. `log`: The sensor work logger which will mock the corresponding task instance log. :param si: The sensor_instance ORM object. """ def __init__(self, si): self.dag_id = si.dag_id self.task_id = si.task_id self.execution_date = si.execution_date self.try_number = si.try_number self.poke_context = json.loads(si.poke_context) if si.poke_context else {} self.execution_context = json.loads(si.execution_context) if si.execution_context else {} self.hashcode = si.hashcode self.start_date = si.start_date self.operator = si.operator self.op_classpath = si.op_classpath self.encoded_poke_context = si.poke_context self.si = si def __eq__(self, other): if not isinstance(other, SensorWork): return NotImplemented return ( self.dag_id == other.dag_id and self.task_id == other.task_id and self.execution_date == other.execution_date and self.try_number == other.try_number ) @staticmethod def create_new_task_handler(): """ Create task log handler for a sensor work. :return: log handler """ from airflow.utils.log.secrets_masker import _secrets_masker handler_config_copy = {k: handler_config[k] for k in handler_config} del handler_config_copy['filters'] formatter_config_copy = {k: formatter_config[k] for k in formatter_config} handler = dictConfigurator.configure_handler(handler_config_copy) formatter = dictConfigurator.configure_formatter(formatter_config_copy) handler.setFormatter(formatter) # We want to share the _global_ filterer instance, not create a new one handler.addFilter(_secrets_masker()) return handler @cached_property def log(self): """Return logger for a sensor instance object.""" # The created log_id is used inside of smart sensor as the key to fetch # the corresponding in memory log handler. si = self.si si.raw = False # Otherwise set_context will fail log_id = "-".join( [si.dag_id, si.task_id, si.execution_date.strftime("%Y_%m_%dT%H_%M_%S_%f"), str(si.try_number)] ) logger = logging.getLogger(f'airflow.task.{log_id}') if len(logger.handlers) == 0: handler = self.create_new_task_handler() logger.addHandler(handler) set_context(logger, si) line_break = "-" * 120 logger.info(line_break) logger.info( "Processing sensor task %s in smart sensor service on host: %s", self.ti_key, get_hostname() ) logger.info(line_break) return logger def close_sensor_logger(self): """Close log handler for a sensor work.""" for handler in self.log.handlers: try: handler.close() except Exception as e: print(e) @property def ti_key(self): """Key for the task instance that maps to the sensor work.""" return self.dag_id, self.task_id, self.execution_date @property def cache_key(self): """Key used to query in smart sensor for cached sensor work.""" return self.operator, self.encoded_poke_context class CachedPokeWork: """ Wrapper class for the poke work inside smart sensor. It saves the sensor_task used to poke and recent poke result state. state: poke state. sensor_task: The cached object for executing the poke function. last_poke_time: The latest time this cached work being called. to_flush: If we should flush the cached work. """ def __init__(self): self.state = None self.sensor_task = None self.last_poke_time = None self.to_flush = False def set_state(self, state): """ Set state for cached poke work. :param state: The sensor_instance state. """ self.state = state self.last_poke_time = timezone.utcnow() def clear_state(self): """Clear state for cached poke work.""" self.state = None def set_to_flush(self): """Mark this poke work to be popped from cached dict after current loop.""" self.to_flush = True def is_expired(self): """ The cached task object expires if there is no poke for 20 minutes. :return: Boolean """ return self.to_flush or (timezone.utcnow() - self.last_poke_time).total_seconds() > 1200 class SensorExceptionInfo: """ Hold sensor exception information and the type of exception. For possible transient infra failure, give the task more chance to retry before fail it. """ def __init__( self, exception_info, is_infra_failure=False, infra_failure_retry_window=datetime.timedelta(minutes=130), ): self._exception_info = exception_info self._is_infra_failure = is_infra_failure self._infra_failure_retry_window = infra_failure_retry_window self._infra_failure_timeout = None self.set_infra_failure_timeout() self.fail_current_run = self.should_fail_current_run() def set_latest_exception(self, exception_info, is_infra_failure=False): """ This function set the latest exception information for sensor exception. If the exception implies an infra failure, this function will check the recorded infra failure timeout which was set at the first infra failure exception arrives. There is a 6 hours window for retry without failing current run. :param exception_info: Details of the exception information. :param is_infra_failure: If current exception was caused by transient infra failure. There is a retry window _infra_failure_retry_window that the smart sensor will retry poke function without failing current task run. """ self._exception_info = exception_info self._is_infra_failure = is_infra_failure self.set_infra_failure_timeout() self.fail_current_run = self.should_fail_current_run() def set_infra_failure_timeout(self): """ Set the time point when the sensor should be failed if it kept getting infra failure. :return: """ # Only set the infra_failure_timeout if there is no existing one if not self._is_infra_failure: self._infra_failure_timeout = None elif self._infra_failure_timeout is None: self._infra_failure_timeout = timezone.utcnow() + self._infra_failure_retry_window def should_fail_current_run(self): """:return: Should the sensor fail""" return not self.is_infra_failure or timezone.utcnow() > self._infra_failure_timeout @property def exception_info(self): """:return: exception msg.""" return self._exception_info @property def is_infra_failure(self): """:return: If the exception is an infra failure""" return self._is_infra_failure def is_expired(self): """:return: If current exception need to be kept.""" if not self._is_infra_failure: return True return timezone.utcnow() > self._infra_failure_timeout + datetime.timedelta(minutes=30) class SmartSensorOperator(BaseOperator, SkipMixin): """ Smart sensor operators are derived from this class. Smart Sensor operators keep refresh a dictionary by visiting DB. Taking qualified active sensor tasks. Different from sensor operator, Smart sensor operators poke for all sensor tasks in the dictionary at a time interval. When a criteria is met or fail by time out, it update all sensor task state in task_instance table :param soft_fail: Set to true to mark the task as SKIPPED on failure :param poke_interval: Time in seconds that the job should wait in between each tries. :param smart_sensor_timeout: Time, in seconds before the internal sensor job times out if poke_timeout is not defined. :param shard_min: shard code lower bound (inclusive) :param shard_max: shard code upper bound (exclusive) :param poke_timeout: Time, in seconds before the task times out and fails. """ ui_color = '#e6f1f2' def __init__( self, poke_interval=180, smart_sensor_timeout=60 * 60 * 24 * 7, soft_fail=False, shard_min=0, shard_max=100000, poke_timeout=6.0, *args, **kwargs, ): super().__init__(*args, **kwargs) # super(SmartSensorOperator, self).__init__(*args, **kwargs) self.poke_interval = poke_interval self.soft_fail = soft_fail self.timeout = smart_sensor_timeout self._validate_input_values() self.hostname = "" self.sensor_works = [] self.cached_dedup_works = {} self.cached_sensor_exceptions = {} self.max_tis_per_query = 50 self.shard_min = shard_min self.shard_max = shard_max self.poke_timeout = poke_timeout def _validate_input_values(self): if not isinstance(self.poke_interval, (int, float)) or self.poke_interval < 0: raise AirflowException("The poke_interval must be a non-negative number") if not isinstance(self.timeout, (int, float)) or self.timeout < 0: raise AirflowException("The timeout must be a non-negative number") @provide_session def _load_sensor_works(self, session=None): """ Refresh sensor instances need to be handled by this operator. Create smart sensor internal object based on the information persisted in the sensor_instance table. """ SI = SensorInstance with Stats.timer() as timer: query = ( session.query(SI) .filter(SI.state == State.SENSING) .filter(SI.shardcode < self.shard_max, SI.shardcode >= self.shard_min) ) tis = query.all() self.log.info("Performance query %s tis, time: %.3f", len(tis), timer.duration) # Query without checking dagrun state might keep some failed dag_run tasks alive. # Join with DagRun table will be very slow based on the number of sensor tasks we # need to handle. We query all smart tasks in this operator # and expect scheduler correct the states in _change_state_for_tis_without_dagrun() sensor_works = [] for ti in tis: try: sensor_works.append(SensorWork(ti)) except Exception: self.log.exception("Exception at creating sensor work for ti %s", ti.key) self.log.info("%d tasks detected.", len(sensor_works)) new_sensor_works = [x for x in sensor_works if x not in self.sensor_works] self._update_ti_hostname(new_sensor_works) self.sensor_works = sensor_works @provide_session def _update_ti_hostname(self, sensor_works, session=None): """ Update task instance hostname for new sensor works. :param sensor_works: Smart sensor internal object for a sensor task. :param session: The sqlalchemy session. """ DR = DagRun TI = TaskInstance def update_ti_hostname_with_count(count, sensor_works): # Using or_ instead of in_ here to prevent from full table scan. if session.bind.dialect.name == 'mssql': ti_filter = or_( and_( TI.dag_id == ti_key.dag_id, TI.task_id == ti_key.task_id, DR.execution_date == ti_key.execution_date, ) for ti_key in sensor_works ) else: ti_keys = [(x.dag_id, x.task_id, x.execution_date) for x in sensor_works] ti_filter = or_( tuple_(TI.dag_id, TI.task_id, DR.execution_date) == ti_key for ti_key in ti_keys ) for ti in session.query(TI).join(TI.dag_run).filter(ti_filter): ti.hostname = self.hostname session.commit() return count + len(sensor_works) count = helpers.reduce_in_chunks( update_ti_hostname_with_count, sensor_works, 0, self.max_tis_per_query ) if count: self.log.info("Updated hostname on %s tis.", count) @provide_session def _mark_multi_state(self, operator, poke_hash, encoded_poke_context, state, session=None): """ Mark state for multiple tasks in the task_instance table to a new state if they have the same signature as the poke_hash. :param operator: The sensor's operator class name. :param poke_hash: The hash code generated from sensor's poke context. :param encoded_poke_context: The raw encoded poke_context. :param state: Set multiple sensor tasks to this state. :param session: The sqlalchemy session. """ def mark_state(ti, sensor_instance): ti.state = state sensor_instance.state = state if state in State.finished: ti.end_date = end_date ti.set_duration() SI = SensorInstance TI = TaskInstance count_marked = 0 query_result = [] try: query_result = ( session.query(TI, SI) .join( TI, and_( TI.dag_id == SI.dag_id, TI.task_id == SI.task_id, TI.execution_date == SI.execution_date, ), ) .filter(SI.state == State.SENSING) .filter(SI.hashcode == poke_hash) .filter(SI.operator == operator) .with_for_update() .all() ) end_date = timezone.utcnow() for ti, sensor_instance in query_result: if sensor_instance.poke_context != encoded_poke_context: continue ti.hostname = self.hostname if ti.state == State.SENSING: mark_state(ti=ti, sensor_instance=sensor_instance) count_marked += 1 else: # ti.state != State.SENSING sensor_instance.state = ti.state session.commit() except Exception: self.log.warning( "Exception _mark_multi_state in smart sensor for hashcode %s", str(poke_hash), # cast to str in advance for highlighting exc_info=True, ) self.log.info("Marked %s tasks out of %s to state %s", count_marked, len(query_result), state) @provide_session def _retry_or_fail_task(self, sensor_work, error, session=None): """ Change single task state for sensor task. For final state, set the end_date. Since smart sensor take care all retries in one process. Failed sensor tasks logically experienced all retries and the try_number should be set to max_tries. :param sensor_work: The sensor_work with exception. :param error: The error message for this sensor_work. :param session: The sqlalchemy session. """ def email_alert(task_instance, error_info): try: subject, html_content, _ = task_instance.get_email_subject_content(error_info) email = sensor_work.execution_context.get('email') send_email(email, subject, html_content) except Exception: sensor_work.log.warning("Exception alerting email.", exc_info=True) def handle_failure(sensor_work, ti): if sensor_work.execution_context.get('retries') and ti.try_number <= ti.max_tries: # retry ti.state = State.UP_FOR_RETRY if sensor_work.execution_context.get('email_on_retry') and sensor_work.execution_context.get( 'email' ): sensor_work.log.info("%s sending email alert for retry", sensor_work.ti_key) email_alert(ti, error) else: ti.state = State.FAILED if sensor_work.execution_context.get( 'email_on_failure' ) and sensor_work.execution_context.get('email'): sensor_work.log.info("%s sending email alert for failure", sensor_work.ti_key) email_alert(ti, error) try: dag_id, task_id, execution_date = sensor_work.ti_key TI = TaskInstance SI = SensorInstance sensor_instance = ( session.query(SI) .filter(SI.dag_id == dag_id, SI.task_id == task_id, SI.execution_date == execution_date) .with_for_update() .first() ) if sensor_instance.hashcode != sensor_work.hashcode: # Return without setting state return ti = ( session.query(TI) .filter(TI.dag_id == dag_id, TI.task_id == task_id, TI.execution_date == execution_date) .with_for_update() .first() ) if ti: if ti.state == State.SENSING: ti.hostname = self.hostname handle_failure(sensor_work, ti) sensor_instance.state = State.FAILED ti.end_date = timezone.utcnow() ti.set_duration() else: sensor_instance.state = ti.state session.merge(sensor_instance) session.merge(ti) session.commit() sensor_work.log.info( "Task %s got an error: %s. Set the state to failed. Exit.", str(sensor_work.ti_key), error ) sensor_work.close_sensor_logger() except AirflowException: sensor_work.log.warning("Exception on failing %s", sensor_work.ti_key, exc_info=True) def _check_and_handle_ti_timeout(self, sensor_work): """ Check if a sensor task in smart sensor is timeout. Could be either sensor operator timeout or general operator execution_timeout. :param sensor_work: SensorWork """ task_timeout = sensor_work.execution_context.get('timeout', self.timeout) task_execution_timeout = sensor_work.execution_context.get('execution_timeout') if task_execution_timeout: task_timeout = min(task_timeout, task_execution_timeout) if (timezone.utcnow() - sensor_work.start_date).total_seconds() > task_timeout: error = "Sensor Timeout" sensor_work.log.exception(error) self._retry_or_fail_task(sensor_work, error) def _handle_poke_exception(self, sensor_work): """ Fail task if accumulated exceptions exceeds retries. :param sensor_work: SensorWork """ sensor_exception = self.cached_sensor_exceptions.get(sensor_work.cache_key) error = sensor_exception.exception_info sensor_work.log.exception("Handling poke exception: %s", error) if sensor_exception.fail_current_run: if sensor_exception.is_infra_failure: sensor_work.log.exception( "Task %s failed by infra failure in smart sensor.", sensor_work.ti_key ) # There is a risk for sensor object cached in smart sensor keep throwing # exception and cause an infra failure. To make sure the sensor tasks after # retry will not fall into same object and have endless infra failure, # we mark the sensor task after an infra failure so that it can be popped # before next poke loop. cache_key = sensor_work.cache_key self.cached_dedup_works[cache_key].set_to_flush() else: sensor_work.log.exception("Task %s failed by exceptions.", sensor_work.ti_key) self._retry_or_fail_task(sensor_work, error) else: sensor_work.log.info("Exception detected, retrying without failing current run.") self._check_and_handle_ti_timeout(sensor_work) def _process_sensor_work_with_cached_state(self, sensor_work, state): if state == PokeState.LANDED: sensor_work.log.info("Task %s succeeded", str(sensor_work.ti_key)) sensor_work.close_sensor_logger() if state == PokeState.NOT_LANDED: # Handle timeout if connection valid but not landed yet self._check_and_handle_ti_timeout(sensor_work) elif state == PokeState.POKE_EXCEPTION: self._handle_poke_exception(sensor_work) def _execute_sensor_work(self, sensor_work): ti_key = sensor_work.ti_key log = sensor_work.log or self.log log.info("Sensing ti: %s", str(ti_key)) log.info("Poking with arguments: %s", sensor_work.encoded_poke_context) cache_key = sensor_work.cache_key if cache_key not in self.cached_dedup_works: # create an empty cached_work for a new cache_key self.cached_dedup_works[cache_key] = CachedPokeWork() cached_work = self.cached_dedup_works[cache_key] if cached_work.state is not None: # Have a valid cached state, don't poke twice in certain time interval self._process_sensor_work_with_cached_state(sensor_work, cached_work.state) return try: with timeout(seconds=self.poke_timeout): if self.poke(sensor_work): # Got a landed signal, mark all tasks waiting for this partition cached_work.set_state(PokeState.LANDED) self._mark_multi_state( sensor_work.operator, sensor_work.hashcode, sensor_work.encoded_poke_context, State.SUCCESS, ) log.info("Task %s succeeded", str(ti_key)) sensor_work.close_sensor_logger() else: # Not landed yet. Handle possible timeout cached_work.set_state(PokeState.NOT_LANDED) self._check_and_handle_ti_timeout(sensor_work) self.cached_sensor_exceptions.pop(cache_key, None) except Exception as e: # The retry_infra_failure decorator inside hive_hooks will raise exception with # is_infra_failure == True. Long poking timeout here is also considered an infra # failure. Other exceptions should fail. is_infra_failure = getattr(e, 'is_infra_failure', False) or isinstance(e, AirflowTaskTimeout) exception_info = traceback.format_exc() cached_work.set_state(PokeState.POKE_EXCEPTION) if cache_key in self.cached_sensor_exceptions: self.cached_sensor_exceptions[cache_key].set_latest_exception( exception_info, is_infra_failure=is_infra_failure ) else: self.cached_sensor_exceptions[cache_key] = SensorExceptionInfo( exception_info, is_infra_failure=is_infra_failure ) self._handle_poke_exception(sensor_work) def flush_cached_sensor_poke_results(self): """Flush outdated cached sensor states saved in previous loop.""" for key, cached_work in self.cached_dedup_works.copy().items(): if cached_work.is_expired(): self.cached_dedup_works.pop(key, None) else: cached_work.state = None for ti_key, sensor_exception in self.cached_sensor_exceptions.copy().items(): if sensor_exception.fail_current_run or sensor_exception.is_expired(): self.cached_sensor_exceptions.pop(ti_key, None) def poke(self, sensor_work): """ Function that the sensors defined while deriving this class should override. """ cached_work = self.cached_dedup_works[sensor_work.cache_key] if not cached_work.sensor_task: init_args = dict(list(sensor_work.poke_context.items()) + [('task_id', sensor_work.task_id)]) operator_class = import_string(sensor_work.op_classpath) cached_work.sensor_task = operator_class(**init_args) return cached_work.sensor_task.poke(sensor_work.poke_context) def _emit_loop_stats(self): try: count_poke = 0 count_poke_success = 0 count_poke_exception = 0 count_exception_failures = 0 count_infra_failure = 0 for cached_work in self.cached_dedup_works.values(): if cached_work.state is None: continue count_poke += 1 if cached_work.state == PokeState.LANDED: count_poke_success += 1 elif cached_work.state == PokeState.POKE_EXCEPTION: count_poke_exception += 1 for cached_exception in self.cached_sensor_exceptions.values(): if cached_exception.is_infra_failure and cached_exception.fail_current_run: count_infra_failure += 1 if cached_exception.fail_current_run: count_exception_failures += 1 Stats.gauge("smart_sensor_operator.poked_tasks", count_poke) Stats.gauge("smart_sensor_operator.poked_success", count_poke_success) Stats.gauge("smart_sensor_operator.poked_exception", count_poke_exception) Stats.gauge("smart_sensor_operator.exception_failures", count_exception_failures) Stats.gauge("smart_sensor_operator.infra_failures", count_infra_failure) except Exception: self.log.exception("Exception at getting loop stats %s") def execute(self, context: Context): started_at = timezone.utcnow() self.hostname = get_hostname() while True: poke_start_time = timezone.utcnow() self.flush_cached_sensor_poke_results() self._load_sensor_works() self.log.info("Loaded %s sensor_works", len(self.sensor_works)) Stats.gauge("smart_sensor_operator.loaded_tasks", len(self.sensor_works)) for sensor_work in self.sensor_works: self._execute_sensor_work(sensor_work) duration = (timezone.utcnow() - poke_start_time).total_seconds() self.log.info("Taking %s to execute %s tasks.", duration, len(self.sensor_works)) Stats.timing("smart_sensor_operator.loop_duration", duration) Stats.gauge("smart_sensor_operator.executed_tasks", len(self.sensor_works)) self._emit_loop_stats() if duration < self.poke_interval: sleep(self.poke_interval - duration) if (timezone.utcnow() - started_at).total_seconds() > self.timeout: self.log.info("Time is out for smart sensor.") return def on_kill(self): pass
40.177015
110
0.635102
6f820b9982903ee83c2d6ec98f30ce9e18207a92
60
py
Python
samt/__init__.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
1
2020-01-16T08:40:00.000Z
2020-01-16T08:40:00.000Z
samt/__init__.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
null
null
null
samt/__init__.py
Killerhaschen/marvin-telegram-bot
c65e890a00450ed6ed4312d93e259db0c080ef6d
[ "MIT" ]
1
2019-10-16T08:11:51.000Z
2019-10-16T08:11:51.000Z
from .samt import Bot, Answer, logger from .helper import *
20
37
0.75
0df08b31fff9b1421b7a7673466a6344a9eaa43b
1,563
py
Python
telethon/errors/__init__.py
fx2hero/Telethon
2c9d43d60027a0ae4bd37bb80cd5e1020b703cbc
[ "MIT" ]
141
2018-10-04T10:02:15.000Z
2022-03-18T08:47:01.000Z
telethon/errors/__init__.py
fx2hero/Telethon
2c9d43d60027a0ae4bd37bb80cd5e1020b703cbc
[ "MIT" ]
34
2018-10-04T08:28:01.000Z
2020-11-02T09:36:02.000Z
telethon/errors/__init__.py
fx2hero/Telethon
2c9d43d60027a0ae4bd37bb80cd5e1020b703cbc
[ "MIT" ]
110
2018-10-04T04:28:11.000Z
2022-03-22T05:49:02.000Z
""" This module holds all the base and automatically generated errors that the Telegram API has. See telethon_generator/errors.json for more. """ import re from .common import ( ReadCancelledError, TypeNotFoundError, InvalidChecksumError, InvalidBufferError, SecurityError, CdnFileTamperedError, AlreadyInConversationError, BadMessageError, MultiError ) # This imports the base errors too, as they're imported there from .rpcbaseerrors import * from .rpcerrorlist import * def rpc_message_to_error(rpc_error, request): """ Converts a Telegram's RPC Error to a Python error. :param rpc_error: the RpcError instance. :param request: the request that caused this error. :return: the RPCError as a Python exception that represents this error. """ # Try to get the error by direct look-up, otherwise regex cls = rpc_errors_dict.get(rpc_error.error_message, None) if cls: return cls(request=request) for msg_regex, cls in rpc_errors_re: m = re.match(msg_regex, rpc_error.error_message) if m: capture = int(m.group(1)) if m.groups() else None return cls(request=request, capture=capture) # Some errors are negative: # * -500 for "No workers running", # * -503 for "Timeout" # # We treat them as if they were positive, so -500 will be treated # as a `ServerError`, etc. cls = base_errors.get(abs(rpc_error.error_code), RPCError) return cls(request=request, message=rpc_error.error_message, code=rpc_error.error_code)
33.978261
75
0.707614
62a0b10e83ae58e938283a833f2ed37c407a04fb
48,330
py
Python
venv/Lib/site-packages/sklearn/preprocessing/tests/test_encoders.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/sklearn/preprocessing/tests/test_encoders.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
venv/Lib/site-packages/sklearn/preprocessing/tests/test_encoders.py
arnoyu-hub/COMP0016miemie
59af664dcf190eab4f93cefb8471908717415fea
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import re import numpy as np from scipy import sparse import pytest from sklearn.exceptions import NotFittedError from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import _convert_container from sklearn.utils import is_scalar_nan from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OrdinalEncoder def test_one_hot_encoder_sparse_dense(): # check that sparse and dense will give the same results X = np.array([[3, 2, 1], [0, 1, 1]]) enc_sparse = OneHotEncoder() enc_dense = OneHotEncoder(sparse=False) X_trans_sparse = enc_sparse.fit_transform(X) X_trans_dense = enc_dense.fit_transform(X) assert X_trans_sparse.shape == (2, 5) assert X_trans_dense.shape == (2, 5) assert sparse.issparse(X_trans_sparse) assert not sparse.issparse(X_trans_dense) # check outcome assert_array_equal( X_trans_sparse.toarray(), [[0.0, 1.0, 0.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0]] ) assert_array_equal(X_trans_sparse.toarray(), X_trans_dense) def test_one_hot_encoder_handle_unknown(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) X2 = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown="error") oh.fit(X) with pytest.raises(ValueError, match="Found unknown categories"): oh.transform(X2) # Test the ignore option, ignores unknown features (giving all 0's) oh = OneHotEncoder(handle_unknown="ignore") oh.fit(X) X2_passed = X2.copy() assert_array_equal( oh.transform(X2_passed).toarray(), np.array([[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]]), ) # ensure transformed data was not modified in place assert_allclose(X2, X2_passed) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown="42") with pytest.raises(ValueError, match="handle_unknown should be either"): oh.fit(X) def test_one_hot_encoder_not_fitted(): X = np.array([["a"], ["b"]]) enc = OneHotEncoder(categories=["a", "b"]) msg = ( "This OneHotEncoder instance is not fitted yet. " "Call 'fit' with appropriate arguments before using this " "estimator." ) with pytest.raises(NotFittedError, match=msg): enc.transform(X) def test_one_hot_encoder_handle_unknown_strings(): X = np.array(["11111111", "22", "333", "4444"]).reshape((-1, 1)) X2 = np.array(["55555", "22"]).reshape((-1, 1)) # Non Regression test for the issue #12470 # Test the ignore option, when categories are numpy string dtype # particularly when the known category strings are larger # than the unknown category strings oh = OneHotEncoder(handle_unknown="ignore") oh.fit(X) X2_passed = X2.copy() assert_array_equal( oh.transform(X2_passed).toarray(), np.array([[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]), ) # ensure transformed data was not modified in place assert_array_equal(X2, X2_passed) @pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64]) @pytest.mark.parametrize("input_dtype", [np.int32, np.float32, np.float64]) def test_one_hot_encoder_dtype(input_dtype, output_dtype): X = np.asarray([[0, 1]], dtype=input_dtype).T X_expected = np.asarray([[1, 0], [0, 1]], dtype=output_dtype) oh = OneHotEncoder(categories="auto", dtype=output_dtype) assert_array_equal(oh.fit_transform(X).toarray(), X_expected) assert_array_equal(oh.fit(X).transform(X).toarray(), X_expected) oh = OneHotEncoder(categories="auto", dtype=output_dtype, sparse=False) assert_array_equal(oh.fit_transform(X), X_expected) assert_array_equal(oh.fit(X).transform(X), X_expected) @pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64]) def test_one_hot_encoder_dtype_pandas(output_dtype): pd = pytest.importorskip("pandas") X_df = pd.DataFrame({"A": ["a", "b"], "B": [1, 2]}) X_expected = np.array([[1, 0, 1, 0], [0, 1, 0, 1]], dtype=output_dtype) oh = OneHotEncoder(dtype=output_dtype) assert_array_equal(oh.fit_transform(X_df).toarray(), X_expected) assert_array_equal(oh.fit(X_df).transform(X_df).toarray(), X_expected) oh = OneHotEncoder(dtype=output_dtype, sparse=False) assert_array_equal(oh.fit_transform(X_df), X_expected) assert_array_equal(oh.fit(X_df).transform(X_df), X_expected) # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_one_hot_encoder_feature_names(get_names): enc = OneHotEncoder() X = [ ["Male", 1, "girl", 2, 3], ["Female", 41, "girl", 1, 10], ["Male", 51, "boy", 12, 3], ["Male", 91, "girl", 21, 30], ] enc.fit(X) feature_names = getattr(enc, get_names)() if get_names == "get_feature_names": assert isinstance(feature_names, np.ndarray) assert_array_equal( [ "x0_Female", "x0_Male", "x1_1", "x1_41", "x1_51", "x1_91", "x2_boy", "x2_girl", "x3_1", "x3_2", "x3_12", "x3_21", "x4_3", "x4_10", "x4_30", ], feature_names, ) feature_names2 = enc.get_feature_names(["one", "two", "three", "four", "five"]) feature_names2 = getattr(enc, get_names)(["one", "two", "three", "four", "five"]) assert_array_equal( [ "one_Female", "one_Male", "two_1", "two_41", "two_51", "two_91", "three_boy", "three_girl", "four_1", "four_2", "four_12", "four_21", "five_3", "five_10", "five_30", ], feature_names2, ) with pytest.raises(ValueError, match="input_features should have length"): getattr(enc, get_names)(["one", "two"]) # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_one_hot_encoder_feature_names_unicode(get_names): enc = OneHotEncoder() X = np.array([["c❤t1", "dat2"]], dtype=object).T enc.fit(X) feature_names = getattr(enc, get_names)() assert_array_equal(["x0_c❤t1", "x0_dat2"], feature_names) feature_names = getattr(enc, get_names)(input_features=["n👍me"]) assert_array_equal(["n👍me_c❤t1", "n👍me_dat2"], feature_names) def test_one_hot_encoder_set_params(): X = np.array([[1, 2]]).T oh = OneHotEncoder() # set params on not yet fitted object oh.set_params(categories=[[0, 1, 2, 3]]) assert oh.get_params()["categories"] == [[0, 1, 2, 3]] assert oh.fit_transform(X).toarray().shape == (2, 4) # set params on already fitted object oh.set_params(categories=[[0, 1, 2, 3, 4]]) assert oh.fit_transform(X).toarray().shape == (2, 5) def check_categorical_onehot(X): enc = OneHotEncoder(categories="auto") Xtr1 = enc.fit_transform(X) enc = OneHotEncoder(categories="auto", sparse=False) Xtr2 = enc.fit_transform(X) assert_allclose(Xtr1.toarray(), Xtr2) assert sparse.isspmatrix_csr(Xtr1) return Xtr1.toarray() @pytest.mark.parametrize( "X", [ [["def", 1, 55], ["abc", 2, 55]], np.array([[10, 1, 55], [5, 2, 55]]), np.array([["b", "A", "cat"], ["a", "B", "cat"]], dtype=object), np.array([["b", 1, "cat"], ["a", np.nan, "cat"]], dtype=object), np.array([["b", 1, "cat"], ["a", float("nan"), "cat"]], dtype=object), np.array([[None, 1, "cat"], ["a", 2, "cat"]], dtype=object), np.array([[None, 1, None], ["a", np.nan, None]], dtype=object), np.array([[None, 1, None], ["a", float("nan"), None]], dtype=object), ], ids=[ "mixed", "numeric", "object", "mixed-nan", "mixed-float-nan", "mixed-None", "mixed-None-nan", "mixed-None-float-nan", ], ) def test_one_hot_encoder(X): Xtr = check_categorical_onehot(np.array(X)[:, [0]]) assert_allclose(Xtr, [[0, 1], [1, 0]]) Xtr = check_categorical_onehot(np.array(X)[:, [0, 1]]) assert_allclose(Xtr, [[0, 1, 1, 0], [1, 0, 0, 1]]) Xtr = OneHotEncoder(categories="auto").fit_transform(X) assert_allclose(Xtr.toarray(), [[0, 1, 1, 0, 1], [1, 0, 0, 1, 1]]) @pytest.mark.parametrize("sparse_", [False, True]) @pytest.mark.parametrize("drop", [None, "first"]) def test_one_hot_encoder_inverse(sparse_, drop): X = [["abc", 2, 55], ["def", 1, 55], ["abc", 3, 55]] enc = OneHotEncoder(sparse=sparse_, drop=drop) X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) assert_array_equal(enc.inverse_transform(X_tr), exp) X = [[2, 55], [1, 55], [3, 55]] enc = OneHotEncoder(sparse=sparse_, categories="auto", drop=drop) X_tr = enc.fit_transform(X) exp = np.array(X) assert_array_equal(enc.inverse_transform(X_tr), exp) if drop is None: # with unknown categories # drop is incompatible with handle_unknown=ignore X = [["abc", 2, 55], ["def", 1, 55], ["abc", 3, 55]] enc = OneHotEncoder( sparse=sparse_, handle_unknown="ignore", categories=[["abc", "def"], [1, 2], [54, 55, 56]], ) X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) exp[2, 1] = None assert_array_equal(enc.inverse_transform(X_tr), exp) # with an otherwise numerical output, still object if unknown X = [[2, 55], [1, 55], [3, 55]] enc = OneHotEncoder( sparse=sparse_, categories=[[1, 2], [54, 56]], handle_unknown="ignore" ) X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) exp[2, 0] = None exp[:, 1] = None assert_array_equal(enc.inverse_transform(X_tr), exp) # incorrect shape raises X_tr = np.array([[0, 1, 1], [1, 0, 1]]) msg = re.escape("Shape of the passed X data is not correct") with pytest.raises(ValueError, match=msg): enc.inverse_transform(X_tr) @pytest.mark.parametrize("sparse_", [False, True]) @pytest.mark.parametrize( "X, X_trans", [ ([[2, 55], [1, 55], [2, 55]], [[0, 1, 1], [0, 0, 0], [0, 1, 1]]), ( [["one", "a"], ["two", "a"], ["three", "b"], ["two", "a"]], [[0, 0, 0, 0, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0]], ), ], ) def test_one_hot_encoder_inverse_transform_raise_error_with_unknown( X, X_trans, sparse_ ): """Check that `inverse_transform` raise an error with unknown samples, no dropped feature, and `handle_unknow="error`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/14934 """ enc = OneHotEncoder(sparse=sparse_).fit(X) msg = ( r"Samples \[(\d )*\d\] can not be inverted when drop=None and " r"handle_unknown='error' because they contain all zeros" ) if sparse_: # emulate sparse data transform by a one-hot encoder sparse. X_trans = _convert_container(X_trans, "sparse") with pytest.raises(ValueError, match=msg): enc.inverse_transform(X_trans) def test_one_hot_encoder_inverse_if_binary(): X = np.array([["Male", 1], ["Female", 3], ["Female", 2]], dtype=object) ohe = OneHotEncoder(drop="if_binary", sparse=False) X_tr = ohe.fit_transform(X) assert_array_equal(ohe.inverse_transform(X_tr), X) # check that resetting drop option without refitting does not throw an error # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) @pytest.mark.parametrize("drop", ["if_binary", "first", None]) @pytest.mark.parametrize("reset_drop", ["if_binary", "first", None]) def test_one_hot_encoder_drop_reset(get_names, drop, reset_drop): X = np.array([["Male", 1], ["Female", 3], ["Female", 2]], dtype=object) ohe = OneHotEncoder(drop=drop, sparse=False) ohe.fit(X) X_tr = ohe.transform(X) feature_names = getattr(ohe, get_names)() ohe.set_params(drop=reset_drop) assert_array_equal(ohe.inverse_transform(X_tr), X) assert_allclose(ohe.transform(X), X_tr) assert_array_equal(getattr(ohe, get_names)(), feature_names) @pytest.mark.parametrize("method", ["fit", "fit_transform"]) @pytest.mark.parametrize("X", [[1, 2], np.array([3.0, 4.0])]) def test_X_is_not_1D(X, method): oh = OneHotEncoder() msg = "Expected 2D array, got 1D array instead" with pytest.raises(ValueError, match=msg): getattr(oh, method)(X) @pytest.mark.parametrize("method", ["fit", "fit_transform"]) def test_X_is_not_1D_pandas(method): pd = pytest.importorskip("pandas") X = pd.Series([6, 3, 4, 6]) oh = OneHotEncoder() msg = "Expected 2D array, got 1D array instead" with pytest.raises(ValueError, match=msg): getattr(oh, method)(X) @pytest.mark.parametrize( "X, cat_exp, cat_dtype", [ ([["abc", 55], ["def", 55]], [["abc", "def"], [55]], np.object_), (np.array([[1, 2], [3, 2]]), [[1, 3], [2]], np.integer), ( np.array([["A", "cat"], ["B", "cat"]], dtype=object), [["A", "B"], ["cat"]], np.object_, ), (np.array([["A", "cat"], ["B", "cat"]]), [["A", "B"], ["cat"]], np.str_), (np.array([[1, 2], [np.nan, 2]]), [[1, np.nan], [2]], np.float_), ( np.array([["A", np.nan], [None, np.nan]], dtype=object), [["A", None], [np.nan]], np.object_, ), ( np.array([["A", float("nan")], [None, float("nan")]], dtype=object), [["A", None], [float("nan")]], np.object_, ), ], ids=[ "mixed", "numeric", "object", "string", "missing-float", "missing-np.nan-object", "missing-float-nan-object", ], ) def test_one_hot_encoder_categories(X, cat_exp, cat_dtype): # order of categories should not depend on order of samples for Xi in [X, X[::-1]]: enc = OneHotEncoder(categories="auto") enc.fit(Xi) # assert enc.categories == 'auto' assert isinstance(enc.categories_, list) for res, exp in zip(enc.categories_, cat_exp): res_list = res.tolist() if is_scalar_nan(exp[-1]): assert is_scalar_nan(res_list[-1]) assert res_list[:-1] == exp[:-1] else: assert res.tolist() == exp assert np.issubdtype(res.dtype, cat_dtype) @pytest.mark.parametrize( "X, X2, cats, cat_dtype", [ ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [["a", "b", "c"]], np.object_, ), ( np.array([[1, 2]], dtype="int64").T, np.array([[1, 4]], dtype="int64").T, [[1, 2, 3]], np.int64, ), ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [np.array(["a", "b", "c"])], np.object_, ), ( np.array([[None, "a"]], dtype=object).T, np.array([[None, "b"]], dtype=object).T, [[None, "a", "z"]], object, ), ( np.array([["a", "b"]], dtype=object).T, np.array([["a", np.nan]], dtype=object).T, [["a", "b", "z"]], object, ), ( np.array([["a", None]], dtype=object).T, np.array([["a", np.nan]], dtype=object).T, [["a", None, "z"]], object, ), ( np.array([["a", np.nan]], dtype=object).T, np.array([["a", None]], dtype=object).T, [["a", np.nan, "z"]], object, ), ], ids=[ "object", "numeric", "object-string", "object-string-none", "object-string-nan", "object-None-and-nan", "object-nan-and-None", ], ) def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype): enc = OneHotEncoder(categories=cats) exp = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) assert_array_equal(enc.fit_transform(X).toarray(), exp) assert list(enc.categories[0]) == list(cats[0]) assert enc.categories_[0].tolist() == list(cats[0]) # manually specified categories should have same dtype as # the data when coerced from lists assert enc.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting enc = OneHotEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): enc.fit(X2) enc = OneHotEncoder(categories=cats, handle_unknown="ignore") exp = np.array([[1.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp) def test_one_hot_encoder_unsorted_categories(): X = np.array([["a", "b"]], dtype=object).T enc = OneHotEncoder(categories=[["b", "a", "c"]]) exp = np.array([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]) assert_array_equal(enc.fit(X).transform(X).toarray(), exp) assert_array_equal(enc.fit_transform(X).toarray(), exp) assert enc.categories_[0].tolist() == ["b", "a", "c"] assert np.issubdtype(enc.categories_[0].dtype, np.object_) # unsorted passed categories still raise for numerical values X = np.array([[1, 2]]).T enc = OneHotEncoder(categories=[[2, 1, 3]]) msg = "Unsorted categories are not supported" with pytest.raises(ValueError, match=msg): enc.fit_transform(X) # np.nan must be the last category in categories[0] to be considered sorted X = np.array([[1, 2, np.nan]]).T enc = OneHotEncoder(categories=[[1, np.nan, 2]]) with pytest.raises(ValueError, match=msg): enc.fit_transform(X) def test_one_hot_encoder_specified_categories_mixed_columns(): # multiple columns X = np.array([["a", "b"], [0, 2]], dtype=object).T enc = OneHotEncoder(categories=[["a", "b", "c"], [0, 1, 2]]) exp = np.array([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 1.0]]) assert_array_equal(enc.fit_transform(X).toarray(), exp) assert enc.categories_[0].tolist() == ["a", "b", "c"] assert np.issubdtype(enc.categories_[0].dtype, np.object_) assert enc.categories_[1].tolist() == [0, 1, 2] # integer categories but from object dtype data assert np.issubdtype(enc.categories_[1].dtype, np.object_) def test_one_hot_encoder_pandas(): pd = pytest.importorskip("pandas") X_df = pd.DataFrame({"A": ["a", "b"], "B": [1, 2]}) Xtr = check_categorical_onehot(X_df) assert_allclose(Xtr, [[1, 0, 1, 0], [0, 1, 0, 1]]) # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) @pytest.mark.parametrize( "drop, expected_names", [ ("first", ["x0_c", "x2_b"]), ("if_binary", ["x0_c", "x1_2", "x2_b"]), (["c", 2, "b"], ["x0_b", "x2_a"]), ], ids=["first", "binary", "manual"], ) def test_one_hot_encoder_feature_names_drop(get_names, drop, expected_names): X = [["c", 2, "a"], ["b", 2, "b"]] ohe = OneHotEncoder(drop=drop) ohe.fit(X) feature_names = getattr(ohe, get_names)() if get_names == "get_feature_names": assert isinstance(feature_names, np.ndarray) assert_array_equal(expected_names, feature_names) def test_one_hot_encoder_drop_equals_if_binary(): # Canonical case X = [[10, "yes"], [20, "no"], [30, "yes"]] expected = np.array( [[1.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 1.0]] ) expected_drop_idx = np.array([None, 0]) ohe = OneHotEncoder(drop="if_binary", sparse=False) result = ohe.fit_transform(X) assert_array_equal(ohe.drop_idx_, expected_drop_idx) assert_allclose(result, expected) # with only one cat, the behaviour is equivalent to drop=None X = [["true", "a"], ["false", "a"], ["false", "a"]] expected = np.array([[1.0, 1.0], [0.0, 1.0], [0.0, 1.0]]) expected_drop_idx = np.array([0, None]) ohe = OneHotEncoder(drop="if_binary", sparse=False) result = ohe.fit_transform(X) assert_array_equal(ohe.drop_idx_, expected_drop_idx) assert_allclose(result, expected) @pytest.mark.parametrize( "X", [ [["abc", 2, 55], ["def", 1, 55]], np.array([[10, 2, 55], [20, 1, 55]]), np.array([["a", "B", "cat"], ["b", "A", "cat"]], dtype=object), ], ids=["mixed", "numeric", "object"], ) def test_ordinal_encoder(X): enc = OrdinalEncoder() exp = np.array([[0, 1, 0], [1, 0, 0]], dtype="int64") assert_array_equal(enc.fit_transform(X), exp.astype("float64")) enc = OrdinalEncoder(dtype="int64") assert_array_equal(enc.fit_transform(X), exp) @pytest.mark.parametrize( "X, X2, cats, cat_dtype", [ ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [["a", "b", "c"]], np.object_, ), ( np.array([[1, 2]], dtype="int64").T, np.array([[1, 4]], dtype="int64").T, [[1, 2, 3]], np.int64, ), ( np.array([["a", "b"]], dtype=object).T, np.array([["a", "d"]], dtype=object).T, [np.array(["a", "b", "c"])], np.object_, ), ], ids=["object", "numeric", "object-string-cat"], ) def test_ordinal_encoder_specified_categories(X, X2, cats, cat_dtype): enc = OrdinalEncoder(categories=cats) exp = np.array([[0.0], [1.0]]) assert_array_equal(enc.fit_transform(X), exp) assert list(enc.categories[0]) == list(cats[0]) assert enc.categories_[0].tolist() == list(cats[0]) # manually specified categories should have same dtype as # the data when coerced from lists assert enc.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting enc = OrdinalEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): enc.fit(X2) def test_ordinal_encoder_inverse(): X = [["abc", 2, 55], ["def", 1, 55]] enc = OrdinalEncoder() X_tr = enc.fit_transform(X) exp = np.array(X, dtype=object) assert_array_equal(enc.inverse_transform(X_tr), exp) # incorrect shape raises X_tr = np.array([[0, 1, 1, 2], [1, 0, 1, 0]]) msg = re.escape("Shape of the passed X data is not correct") with pytest.raises(ValueError, match=msg): enc.inverse_transform(X_tr) def test_ordinal_encoder_handle_unknowns_string(): enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-2) X_fit = np.array([["a", "x"], ["b", "y"], ["c", "z"]], dtype=object) X_trans = np.array([["c", "xy"], ["bla", "y"], ["a", "x"]], dtype=object) enc.fit(X_fit) X_trans_enc = enc.transform(X_trans) exp = np.array([[2, -2], [-2, 1], [0, 0]], dtype="int64") assert_array_equal(X_trans_enc, exp) X_trans_inv = enc.inverse_transform(X_trans_enc) inv_exp = np.array([["c", None], [None, "y"], ["a", "x"]], dtype=object) assert_array_equal(X_trans_inv, inv_exp) @pytest.mark.parametrize("dtype", [float, int]) def test_ordinal_encoder_handle_unknowns_numeric(dtype): enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-999) X_fit = np.array([[1, 7], [2, 8], [3, 9]], dtype=dtype) X_trans = np.array([[3, 12], [23, 8], [1, 7]], dtype=dtype) enc.fit(X_fit) X_trans_enc = enc.transform(X_trans) exp = np.array([[2, -999], [-999, 1], [0, 0]], dtype="int64") assert_array_equal(X_trans_enc, exp) X_trans_inv = enc.inverse_transform(X_trans_enc) inv_exp = np.array([[3, None], [None, 8], [1, 7]], dtype=object) assert_array_equal(X_trans_inv, inv_exp) @pytest.mark.parametrize( "params, err_type, err_msg", [ ( {"handle_unknown": "use_encoded_value"}, TypeError, "unknown_value should be an integer or np.nan when handle_unknown " "is 'use_encoded_value', got None.", ), ( {"unknown_value": -2}, TypeError, "unknown_value should only be set when handle_unknown is " "'use_encoded_value', got -2.", ), ( {"handle_unknown": "use_encoded_value", "unknown_value": "bla"}, TypeError, "unknown_value should be an integer or np.nan when handle_unknown " "is 'use_encoded_value', got bla.", ), ( {"handle_unknown": "use_encoded_value", "unknown_value": 1}, ValueError, "The used value for unknown_value (1) is one of the values " "already used for encoding the seen categories.", ), ( {"handle_unknown": "ignore"}, ValueError, "handle_unknown should be either 'error' or 'use_encoded_value', " "got ignore.", ), ], ) def test_ordinal_encoder_handle_unknowns_raise(params, err_type, err_msg): # Check error message when validating input parameters X = np.array([["a", "x"], ["b", "y"]], dtype=object) encoder = OrdinalEncoder(**params) with pytest.raises(err_type, match=err_msg): encoder.fit(X) def test_ordinal_encoder_handle_unknowns_nan(): # Make sure unknown_value=np.nan properly works enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan) X_fit = np.array([[1], [2], [3]]) enc.fit(X_fit) X_trans = enc.transform([[1], [2], [4]]) assert_array_equal(X_trans, [[0], [1], [np.nan]]) def test_ordinal_encoder_handle_unknowns_nan_non_float_dtype(): # Make sure an error is raised when unknown_value=np.nan and the dtype # isn't a float dtype enc = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=np.nan, dtype=int ) X_fit = np.array([[1], [2], [3]]) with pytest.raises(ValueError, match="dtype parameter should be a float dtype"): enc.fit(X_fit) def test_ordinal_encoder_raise_categories_shape(): X = np.array([["Low", "Medium", "High", "Medium", "Low"]], dtype=object).T cats = ["Low", "Medium", "High"] enc = OrdinalEncoder(categories=cats) msg = "Shape mismatch: if categories is an array," with pytest.raises(ValueError, match=msg): enc.fit(X) def test_encoder_dtypes(): # check that dtypes are preserved when determining categories enc = OneHotEncoder(categories="auto") exp = np.array([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]], dtype="float64") for X in [ np.array([[1, 2], [3, 4]], dtype="int64"), np.array([[1, 2], [3, 4]], dtype="float64"), np.array([["a", "b"], ["c", "d"]]), # str dtype np.array([[b"a", b"b"], [b"c", b"d"]]), # bytes dtype np.array([[1, "a"], [3, "b"]], dtype="object"), ]: enc.fit(X) assert all([enc.categories_[i].dtype == X.dtype for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) X = [[1, 2], [3, 4]] enc.fit(X) assert all([np.issubdtype(enc.categories_[i].dtype, np.integer) for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) X = [[1, "a"], [3, "b"]] enc.fit(X) assert all([enc.categories_[i].dtype == "object" for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) def test_encoder_dtypes_pandas(): # check dtype (similar to test_categorical_encoder_dtypes for dataframes) pd = pytest.importorskip("pandas") enc = OneHotEncoder(categories="auto") exp = np.array( [[1.0, 0.0, 1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0, 0.0, 1.0]], dtype="float64", ) X = pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}, dtype="int64") enc.fit(X) assert all([enc.categories_[i].dtype == "int64" for i in range(2)]) assert_array_equal(enc.transform(X).toarray(), exp) X = pd.DataFrame({"A": [1, 2], "B": ["a", "b"], "C": [3.0, 4.0]}) X_type = [X["A"].dtype, X["B"].dtype, X["C"].dtype] enc.fit(X) assert all([enc.categories_[i].dtype == X_type[i] for i in range(3)]) assert_array_equal(enc.transform(X).toarray(), exp) def test_one_hot_encoder_warning(): enc = OneHotEncoder() X = [["Male", 1], ["Female", 3]] np.testing.assert_no_warnings(enc.fit_transform, X) @pytest.mark.parametrize("missing_value", [np.nan, None, float("nan")]) def test_one_hot_encoder_drop_manual(missing_value): cats_to_drop = ["def", 12, 3, 56, missing_value] enc = OneHotEncoder(drop=cats_to_drop) X = [ ["abc", 12, 2, 55, "a"], ["def", 12, 1, 55, "a"], ["def", 12, 3, 56, missing_value], ] trans = enc.fit_transform(X).toarray() exp = [[1, 0, 1, 1, 1], [0, 1, 0, 1, 1], [0, 0, 0, 0, 0]] assert_array_equal(trans, exp) assert enc.drop is cats_to_drop dropped_cats = [ cat[feature] for cat, feature in zip(enc.categories_, enc.drop_idx_) ] X_inv_trans = enc.inverse_transform(trans) X_array = np.array(X, dtype=object) # last value is np.nan if is_scalar_nan(cats_to_drop[-1]): assert_array_equal(dropped_cats[:-1], cats_to_drop[:-1]) assert is_scalar_nan(dropped_cats[-1]) assert is_scalar_nan(cats_to_drop[-1]) # do not include the last column which includes missing values assert_array_equal(X_array[:, :-1], X_inv_trans[:, :-1]) # check last column is the missing value assert_array_equal(X_array[-1, :-1], X_inv_trans[-1, :-1]) assert is_scalar_nan(X_array[-1, -1]) assert is_scalar_nan(X_inv_trans[-1, -1]) else: assert_array_equal(dropped_cats, cats_to_drop) assert_array_equal(X_array, X_inv_trans) @pytest.mark.parametrize( "X_fit, params, err_msg", [ ( [["Male"], ["Female"]], {"drop": "second"}, "Wrong input for parameter `drop`", ), ( [["abc", 2, 55], ["def", 1, 55], ["def", 3, 59]], {"drop": np.asarray("b", dtype=object)}, "Wrong input for parameter `drop`", ), ( [["abc", 2, 55], ["def", 1, 55], ["def", 3, 59]], {"drop": ["ghi", 3, 59]}, "The following categories were supposed", ), ], ) def test_one_hot_encoder_invalid_params(X_fit, params, err_msg): enc = OneHotEncoder(**params) with pytest.raises(ValueError, match=err_msg): enc.fit(X_fit) @pytest.mark.parametrize("drop", [["abc", 3], ["abc", 3, 41, "a"]]) def test_invalid_drop_length(drop): enc = OneHotEncoder(drop=drop) err_msg = "`drop` should have length equal to the number" with pytest.raises(ValueError, match=err_msg): enc.fit([["abc", 2, 55], ["def", 1, 55], ["def", 3, 59]]) @pytest.mark.parametrize("density", [True, False], ids=["sparse", "dense"]) @pytest.mark.parametrize("drop", ["first", ["a", 2, "b"]], ids=["first", "manual"]) def test_categories(density, drop): ohe_base = OneHotEncoder(sparse=density) ohe_test = OneHotEncoder(sparse=density, drop=drop) X = [["c", 1, "a"], ["a", 2, "b"]] ohe_base.fit(X) ohe_test.fit(X) assert_array_equal(ohe_base.categories_, ohe_test.categories_) if drop == "first": assert_array_equal(ohe_test.drop_idx_, 0) else: for drop_cat, drop_idx, cat_list in zip( drop, ohe_test.drop_idx_, ohe_test.categories_ ): assert cat_list[int(drop_idx)] == drop_cat assert isinstance(ohe_test.drop_idx_, np.ndarray) assert ohe_test.drop_idx_.dtype == object @pytest.mark.parametrize("Encoder", [OneHotEncoder, OrdinalEncoder]) def test_encoders_has_categorical_tags(Encoder): assert "categorical" in Encoder()._get_tags()["X_types"] # TODO: Remove in 1.2 when get_feature_names is removed def test_one_hot_encoder_get_feature_names_deprecated(): X = np.array([["cat", "dog"]], dtype=object).T enc = OneHotEncoder().fit(X) msg = "get_feature_names is deprecated in 1.0" with pytest.warns(FutureWarning, match=msg): enc.get_feature_names() # deliberately omit 'OS' as an invalid combo @pytest.mark.parametrize( "input_dtype, category_dtype", ["OO", "OU", "UO", "UU", "US", "SO", "SU", "SS"] ) @pytest.mark.parametrize("array_type", ["list", "array", "dataframe"]) def test_encoders_string_categories(input_dtype, category_dtype, array_type): """Check that encoding work with object, unicode, and byte string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/15616 https://github.com/scikit-learn/scikit-learn/issues/15726 https://github.com/scikit-learn/scikit-learn/issues/19677 """ X = np.array([["b"], ["a"]], dtype=input_dtype) categories = [np.array(["b", "a"], dtype=category_dtype)] ohe = OneHotEncoder(categories=categories, sparse=False).fit(X) X_test = _convert_container( [["a"], ["a"], ["b"], ["a"]], array_type, dtype=input_dtype ) X_trans = ohe.transform(X_test) expected = np.array([[0, 1], [0, 1], [1, 0], [0, 1]]) assert_allclose(X_trans, expected) oe = OrdinalEncoder(categories=categories).fit(X) X_trans = oe.transform(X_test) expected = np.array([[1], [1], [0], [1]]) assert_array_equal(X_trans, expected) # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) @pytest.mark.parametrize("missing_value", [np.nan, None]) def test_ohe_missing_values_get_feature_names(get_names, missing_value): # encoder with missing values with object dtypes X = np.array([["a", "b", missing_value, "a", missing_value]], dtype=object).T ohe = OneHotEncoder(sparse=False, handle_unknown="ignore").fit(X) names = getattr(ohe, get_names)() assert_array_equal(names, ["x0_a", "x0_b", f"x0_{missing_value}"]) def test_ohe_missing_value_support_pandas(): # check support for pandas with mixed dtypes and missing values pd = pytest.importorskip("pandas") df = pd.DataFrame( { "col1": ["dog", "cat", None, "cat"], "col2": np.array([3, 0, 4, np.nan], dtype=float), }, columns=["col1", "col2"], ) expected_df_trans = np.array( [ [0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1], ] ) Xtr = check_categorical_onehot(df) assert_allclose(Xtr, expected_df_trans) @pytest.mark.parametrize("pd_nan_type", ["pd.NA", "np.nan"]) def test_ohe_missing_value_support_pandas_categorical(pd_nan_type): # checks pandas dataframe with categorical features if pd_nan_type == "pd.NA": # pd.NA is in pandas 1.0 pd = pytest.importorskip("pandas", minversion="1.0") pd_missing_value = pd.NA else: # np.nan pd = pytest.importorskip("pandas") pd_missing_value = np.nan df = pd.DataFrame( { "col1": pd.Series(["c", "a", pd_missing_value, "b", "a"], dtype="category"), } ) expected_df_trans = np.array( [ [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], ] ) ohe = OneHotEncoder(sparse=False, handle_unknown="ignore") df_trans = ohe.fit_transform(df) assert_allclose(expected_df_trans, df_trans) assert len(ohe.categories_) == 1 assert_array_equal(ohe.categories_[0][:-1], ["a", "b", "c"]) assert np.isnan(ohe.categories_[0][-1]) def test_ohe_drop_first_handle_unknown_ignore_warns(): """Check drop='first' and handle_unknown='ignore' during transform.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder(drop="first", sparse=False, handle_unknown="ignore") X_trans = ohe.fit_transform(X) X_expected = np.array( [ [0, 0, 0], [1, 0, 1], [1, 1, 0], ] ) assert_allclose(X_trans, X_expected) # Both categories are unknown X_test = [["c", 3]] X_expected = np.array([[0, 0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0, 1\] during " "transform. These unknown categories will be encoded as all " "zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) # inverse_transform maps to None X_inv = ohe.inverse_transform(X_expected) assert_array_equal(X_inv, np.array([["a", 0]], dtype=object)) def test_ohe_drop_if_binary_handle_unknown_ignore_warns(): """Check drop='if_binary' and handle_unknown='ignore' during transform.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder(drop="if_binary", sparse=False, handle_unknown="ignore") X_trans = ohe.fit_transform(X) X_expected = np.array( [ [0, 1, 0, 0], [1, 0, 0, 1], [1, 0, 1, 0], ] ) assert_allclose(X_trans, X_expected) # Both categories are unknown X_test = [["c", 3]] X_expected = np.array([[0, 0, 0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0, 1\] during " "transform. These unknown categories will be encoded as all " "zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) # inverse_transform maps to None X_inv = ohe.inverse_transform(X_expected) assert_array_equal(X_inv, np.array([["a", None]], dtype=object)) def test_ohe_drop_first_explicit_categories(): """Check drop='first' and handle_unknown='ignore' during fit with categories passed in.""" X = [["a", 0], ["b", 2], ["b", 1]] ohe = OneHotEncoder( drop="first", sparse=False, handle_unknown="ignore", categories=[["b", "a"], [1, 2]], ) ohe.fit(X) X_test = [["c", 1]] X_expected = np.array([[0, 0]]) warn_msg = ( r"Found unknown categories in columns \[0\] during transform. " r"These unknown categories will be encoded as all zeros" ) with pytest.warns(UserWarning, match=warn_msg): X_trans = ohe.transform(X_test) assert_allclose(X_trans, X_expected) def test_ordinal_encoder_passthrough_missing_values_float_errors_dtype(): """Test ordinal encoder with nan passthrough fails when dtype=np.int32.""" X = np.array([[np.nan, 3.0, 1.0, 3.0]]).T oe = OrdinalEncoder(dtype=np.int32) msg = ( r"There are missing values in features \[0\]. For OrdinalEncoder " "to passthrough missing values, the dtype parameter must be a " "float" ) with pytest.raises(ValueError, match=msg): oe.fit(X) def test_ordinal_encoder_passthrough_missing_values_float(): """Test ordinal encoder with nan on float dtypes.""" X = np.array([[np.nan, 3.0, 1.0, 3.0]], dtype=np.float64).T oe = OrdinalEncoder().fit(X) assert len(oe.categories_) == 1 assert_allclose(oe.categories_[0], [1.0, 3.0, np.nan]) X_trans = oe.transform(X) assert_allclose(X_trans, [[np.nan], [1.0], [0.0], [1.0]]) X_inverse = oe.inverse_transform(X_trans) assert_allclose(X_inverse, X) @pytest.mark.parametrize("pd_nan_type", ["pd.NA", "np.nan"]) def test_ordinal_encoder_missing_value_support_pandas_categorical(pd_nan_type): """Check ordinal encoder is compatible with pandas.""" # checks pandas dataframe with categorical features if pd_nan_type == "pd.NA": # pd.NA is in pandas 1.0 pd = pytest.importorskip("pandas", minversion="1.0") pd_missing_value = pd.NA else: # np.nan pd = pytest.importorskip("pandas") pd_missing_value = np.nan df = pd.DataFrame( { "col1": pd.Series(["c", "a", pd_missing_value, "b", "a"], dtype="category"), } ) oe = OrdinalEncoder().fit(df) assert len(oe.categories_) == 1 assert_array_equal(oe.categories_[0][:3], ["a", "b", "c"]) assert np.isnan(oe.categories_[0][-1]) df_trans = oe.transform(df) assert_allclose(df_trans, [[2.0], [0.0], [np.nan], [1.0], [0.0]]) X_inverse = oe.inverse_transform(df_trans) assert X_inverse.shape == (5, 1) assert_array_equal(X_inverse[:2, 0], ["c", "a"]) assert_array_equal(X_inverse[3:, 0], ["b", "a"]) assert np.isnan(X_inverse[2, 0]) @pytest.mark.parametrize( "X, X2, cats, cat_dtype", [ ( ( np.array([["a", np.nan]], dtype=object).T, np.array([["a", "b"]], dtype=object).T, [np.array(["a", np.nan, "d"], dtype=object)], np.object_, ) ), ( ( np.array([["a", np.nan]], dtype=object).T, np.array([["a", "b"]], dtype=object).T, [np.array(["a", np.nan, "d"], dtype=object)], np.object_, ) ), ( ( np.array([[2.0, np.nan]], dtype=np.float64).T, np.array([[3.0]], dtype=np.float64).T, [np.array([2.0, 4.0, np.nan])], np.float64, ) ), ], ids=[ "object-None-missing-value", "object-nan-missing_value", "numeric-missing-value", ], ) def test_ordinal_encoder_specified_categories_missing_passthrough( X, X2, cats, cat_dtype ): """Test ordinal encoder for specified categories.""" oe = OrdinalEncoder(categories=cats) exp = np.array([[0.0], [np.nan]]) assert_array_equal(oe.fit_transform(X), exp) # manually specified categories should have same dtype as # the data when coerced from lists assert oe.categories_[0].dtype == cat_dtype # when specifying categories manually, unknown categories should already # raise when fitting oe = OrdinalEncoder(categories=cats) with pytest.raises(ValueError, match="Found unknown categories"): oe.fit(X2) @pytest.mark.parametrize( "X, expected_X_trans, X_test", [ ( np.array([[1.0, np.nan, 3.0]]).T, np.array([[0.0, np.nan, 1.0]]).T, np.array([[4.0]]), ), ( np.array([[1.0, 4.0, 3.0]]).T, np.array([[0.0, 2.0, 1.0]]).T, np.array([[np.nan]]), ), ( np.array([["c", np.nan, "b"]], dtype=object).T, np.array([[1.0, np.nan, 0.0]]).T, np.array([["d"]], dtype=object), ), ( np.array([["c", "a", "b"]], dtype=object).T, np.array([[2.0, 0.0, 1.0]]).T, np.array([[np.nan]], dtype=object), ), ], ) def test_ordinal_encoder_handle_missing_and_unknown(X, expected_X_trans, X_test): """Test the interaction between missing values and handle_unknown""" oe = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1) X_trans = oe.fit_transform(X) assert_allclose(X_trans, expected_X_trans) assert_allclose(oe.transform(X_test), [[-1.0]]) def test_ordinal_encoder_sparse(): """Check that we raise proper error with sparse input in OrdinalEncoder. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19878 """ X = np.array([[3, 2, 1], [0, 1, 1]]) X_sparse = sparse.csr_matrix(X) encoder = OrdinalEncoder() err_msg = "A sparse matrix was passed, but dense data is required" with pytest.raises(TypeError, match=err_msg): encoder.fit(X_sparse) with pytest.raises(TypeError, match=err_msg): encoder.fit_transform(X_sparse) X_trans = encoder.fit_transform(X) X_trans_sparse = sparse.csr_matrix(X_trans) with pytest.raises(TypeError, match=err_msg): encoder.inverse_transform(X_trans_sparse) def test_ordinal_encoder_fit_with_unseen_category(): """Check OrdinalEncoder.fit works with unseen category when `handle_unknown="use_encoded_value"`. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872 """ X = np.array([0, 0, 1, 0, 2, 5])[:, np.newaxis] oe = OrdinalEncoder( categories=[[-1, 0, 1]], handle_unknown="use_encoded_value", unknown_value=-999 ) oe.fit(X) oe = OrdinalEncoder(categories=[[-1, 0, 1]], handle_unknown="error") with pytest.raises(ValueError, match="Found unknown categories"): oe.fit(X) @pytest.mark.parametrize( "X_train", [ [["AA", "B"]], np.array([["AA", "B"]], dtype="O"), np.array([["AA", "B"]], dtype="U"), ], ) @pytest.mark.parametrize( "X_test", [ [["A", "B"]], np.array([["A", "B"]], dtype="O"), np.array([["A", "B"]], dtype="U"), ], ) def test_ordinal_encoder_handle_unknown_string_dtypes(X_train, X_test): """Checks that `OrdinalEncoder` transforms string dtypes. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19872 """ enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-9) enc.fit(X_train) X_trans = enc.transform(X_test) assert_allclose(X_trans, [[-9, 0]]) def test_ordinal_encoder_python_integer(): """Check that `OrdinalEncoder` accepts Python integers that are potentially larger than 64 bits. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/20721 """ X = np.array( [ 44253463435747313673, 9867966753463435747313673, 44253462342215747313673, 442534634357764313673, ] ).reshape(-1, 1) encoder = OrdinalEncoder().fit(X) assert_array_equal(encoder.categories_, np.sort(X, axis=0).T) X_trans = encoder.transform(X) assert_array_equal(X_trans, [[0], [3], [2], [1]])
34.769784
89
0.578605
4952e8e475178894137417b67fc87f8d5367cb6d
17,264
py
Python
onpolicy/envs/mpe/environment.py
LUMO666/Highway
05e1ad318bd14d405bd78d612e5706f7db2b3266
[ "MIT" ]
5
2021-06-15T05:06:10.000Z
2021-12-01T05:11:49.000Z
onpolicy/envs/mpe/environment.py
ReinholdM/on-policy
121044954756b5317230e30d47e409802991458b
[ "MIT" ]
null
null
null
onpolicy/envs/mpe/environment.py
ReinholdM/on-policy
121044954756b5317230e30d47e409802991458b
[ "MIT" ]
null
null
null
import gym from gym import spaces from gym.envs.registration import EnvSpec import numpy as np from .multi_discrete import MultiDiscrete # update bounds to center around agent cam_range = 2 # environment for all agents in the multiagent world # currently code assumes that no agents will be created/destroyed at runtime! class MultiAgentEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'] } def __init__(self, world, reset_callback=None, reward_callback=None, observation_callback=None, info_callback=None, done_callback=None, post_step_callback=None, shared_viewer=True, discrete_action=True): self.world = world self.world_length = self.world.world_length self.current_step = 0 self.agents = self.world.policy_agents # set required vectorized gym env property self.n = len(world.policy_agents) # scenario callbacks self.reset_callback = reset_callback self.reward_callback = reward_callback self.observation_callback = observation_callback self.info_callback = info_callback self.done_callback = done_callback self.post_step_callback = post_step_callback # environment parameters # self.discrete_action_space = True self.discrete_action_space = discrete_action # if true, action is a number 0...N, otherwise action is a one-hot N-dimensional vector self.discrete_action_input = False # if true, even the action is continuous, action will be performed discretely self.force_discrete_action = world.discrete_action if hasattr( world, 'discrete_action') else False # in this env, force_discrete_action == False��because world do not have discrete_action # if true, every agent has the same reward self.shared_reward = world.collaborative if hasattr( world, 'collaborative') else False #self.shared_reward = False self.time = 0 # configure spaces self.action_space = [] self.observation_space = [] self.share_observation_space = [] share_obs_dim = 0 for agent in self.agents: total_action_space = [] # physical action space if self.discrete_action_space: u_action_space = spaces.Discrete(world.dim_p * 2 + 1) else: u_action_space = spaces.Box( low=-agent.u_range, high=+agent.u_range, shape=(world.dim_p,), dtype=np.float32) # [-1,1] if agent.movable: total_action_space.append(u_action_space) # communication action space if self.discrete_action_space: c_action_space = spaces.Discrete(world.dim_c) else: c_action_space = spaces.Box(low=0.0, high=1.0, shape=( world.dim_c,), dtype=np.float32) # [0,1] #c_action_space = spaces.Discrete(world.dim_c) if not agent.silent: total_action_space.append(c_action_space) # total action space if len(total_action_space) > 1: # all action spaces are discrete, so simplify to MultiDiscrete action space if all([isinstance(act_space, spaces.Discrete) for act_space in total_action_space]): act_space = MultiDiscrete( [[0, act_space.n-1] for act_space in total_action_space]) else: act_space = spaces.Tuple(total_action_space) self.action_space.append(act_space) else: self.action_space.append(total_action_space[0]) # observation space obs_dim = len(observation_callback(agent, self.world)) share_obs_dim += obs_dim self.observation_space.append(spaces.Box( low=-np.inf, high=+np.inf, shape=(obs_dim,), dtype=np.float32)) # [-inf,inf] agent.action.c = np.zeros(self.world.dim_c) self.share_observation_space = [spaces.Box( low=-np.inf, high=+np.inf, shape=(share_obs_dim,), dtype=np.float32)] * self.n # rendering self.shared_viewer = shared_viewer if self.shared_viewer: self.viewers = [None] else: self.viewers = [None] * self.n self._reset_render() def seed(self, seed=None): if seed is None: np.random.seed(1) else: np.random.seed(seed) # step this is env.step() def step(self, action_n): self.current_step += 1 obs_n = [] reward_n = [] done_n = [] info_n = [] self.agents = self.world.policy_agents # set action for each agent for i, agent in enumerate(self.agents): self._set_action(action_n[i], agent, self.action_space[i]) # advance world state self.world.step() # core.step() # record observation for each agent for i, agent in enumerate(self.agents): obs_n.append(self._get_obs(agent)) reward_n.append([self._get_reward(agent)]) done_n.append(self._get_done(agent)) info = {'individual_reward': self._get_reward(agent)} env_info = self._get_info(agent) if 'fail' in env_info.keys(): info['fail'] = env_info['fail'] info_n.append(info) # all agents get total reward in cooperative case, if shared reward, all agents have the same reward, and reward is sum reward = np.sum(reward_n) if self.shared_reward: reward_n = [[reward]] * self.n if self.post_step_callback is not None: self.post_step_callback(self.world) return obs_n, reward_n, done_n, info_n def reset(self): self.current_step = 0 # reset world self.reset_callback(self.world) # reset renderer self._reset_render() # record observations for each agent obs_n = [] self.agents = self.world.policy_agents for agent in self.agents: obs_n.append(self._get_obs(agent)) return obs_n # get info used for benchmarking def _get_info(self, agent): if self.info_callback is None: return {} return self.info_callback(agent, self.world) # get observation for a particular agent def _get_obs(self, agent): if self.observation_callback is None: return np.zeros(0) return self.observation_callback(agent, self.world) # get dones for a particular agent # unused right now -- agents are allowed to go beyond the viewing screen def _get_done(self, agent): if self.done_callback is None: if self.current_step >= self.world_length: return True else: return False return self.done_callback(agent, self.world) # get reward for a particular agent def _get_reward(self, agent): if self.reward_callback is None: return 0.0 return self.reward_callback(agent, self.world) # set env action for a particular agent def _set_action(self, action, agent, action_space, time=None): agent.action.u = np.zeros(self.world.dim_p) agent.action.c = np.zeros(self.world.dim_c) # process action if isinstance(action_space, MultiDiscrete): act = [] size = action_space.high - action_space.low + 1 index = 0 for s in size: act.append(action[index:(index+s)]) index += s action = act else: action = [action] if agent.movable: # physical action if self.discrete_action_input: agent.action.u = np.zeros(self.world.dim_p) # process discrete action if action[0] == 1: agent.action.u[0] = -1.0 if action[0] == 2: agent.action.u[0] = +1.0 if action[0] == 3: agent.action.u[1] = -1.0 if action[0] == 4: agent.action.u[1] = +1.0 d = self.world.dim_p else: if self.discrete_action_space: agent.action.u[0] += action[0][1] - action[0][2] agent.action.u[1] += action[0][3] - action[0][4] d = 5 else: if self.force_discrete_action: p = np.argmax(action[0][0:self.world.dim_p]) action[0][:] = 0.0 action[0][p] = 1.0 agent.action.u = action[0][0:self.world.dim_p] d = self.world.dim_p sensitivity = 5.0 if agent.accel is not None: sensitivity = agent.accel agent.action.u *= sensitivity if (not agent.silent) and (not isinstance(action_space, MultiDiscrete)): action[0] = action[0][d:] else: action = action[1:] if not agent.silent: # communication action if self.discrete_action_input: agent.action.c = np.zeros(self.world.dim_c) agent.action.c[action[0]] = 1.0 else: agent.action.c = action[0] action = action[1:] # make sure we used all elements of action assert len(action) == 0 # reset rendering assets def _reset_render(self): self.render_geoms = None self.render_geoms_xform = None def render(self, mode='human', close=True): if close: # close any existic renderers for i, viewer in enumerate(self.viewers): if viewer is not None: viewer.close() self.viewers[i] = None return [] if mode == 'human': alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' message = '' for agent in self.world.agents: comm = [] for other in self.world.agents: if other is agent: continue if np.all(other.state.c == 0): word = '_' else: word = alphabet[np.argmax(other.state.c)] message += (other.name + ' to ' + agent.name + ': ' + word + ' ') print(message) for i in range(len(self.viewers)): # create viewers (if necessary) if self.viewers[i] is None: # import rendering only if we need it (and don't import for headless machines) #from gym.envs.classic_control import rendering from . import rendering self.viewers[i] = rendering.Viewer(700, 700) # create rendering geometry if self.render_geoms is None: # import rendering only if we need it (and don't import for headless machines) #from gym.envs.classic_control import rendering from . import rendering self.render_geoms = [] self.render_geoms_xform = [] self.comm_geoms = [] for entity in self.world.entities: geom = rendering.make_circle(entity.size) xform = rendering.Transform() entity_comm_geoms = [] if 'agent' in entity.name: geom.set_color(*entity.color, alpha=0.5) if not entity.silent: dim_c = self.world.dim_c # make circles to represent communication for ci in range(dim_c): comm = rendering.make_circle(entity.size / dim_c) comm.set_color(1, 1, 1) comm.add_attr(xform) offset = rendering.Transform() comm_size = (entity.size / dim_c) offset.set_translation(ci * comm_size * 2 - entity.size + comm_size, 0) comm.add_attr(offset) entity_comm_geoms.append(comm) else: geom.set_color(*entity.color) if entity.channel is not None: dim_c = self.world.dim_c # make circles to represent communication for ci in range(dim_c): comm = rendering.make_circle(entity.size / dim_c) comm.set_color(1, 1, 1) comm.add_attr(xform) offset = rendering.Transform() comm_size = (entity.size / dim_c) offset.set_translation(ci * comm_size * 2 - entity.size + comm_size, 0) comm.add_attr(offset) entity_comm_geoms.append(comm) geom.add_attr(xform) self.render_geoms.append(geom) self.render_geoms_xform.append(xform) self.comm_geoms.append(entity_comm_geoms) for wall in self.world.walls: corners = ((wall.axis_pos - 0.5 * wall.width, wall.endpoints[0]), (wall.axis_pos - 0.5 * wall.width, wall.endpoints[1]), (wall.axis_pos + 0.5 * wall.width, wall.endpoints[1]), (wall.axis_pos + 0.5 * wall.width, wall.endpoints[0])) if wall.orient == 'H': corners = tuple(c[::-1] for c in corners) geom = rendering.make_polygon(corners) if wall.hard: geom.set_color(*wall.color) else: geom.set_color(*wall.color, alpha=0.5) self.render_geoms.append(geom) # add geoms to viewer # for viewer in self.viewers: # viewer.geoms = [] # for geom in self.render_geoms: # viewer.add_geom(geom) for viewer in self.viewers: viewer.geoms = [] for geom in self.render_geoms: viewer.add_geom(geom) for entity_comm_geoms in self.comm_geoms: for geom in entity_comm_geoms: viewer.add_geom(geom) results = [] for i in range(len(self.viewers)): from . import rendering if self.shared_viewer: pos = np.zeros(self.world.dim_p) else: pos = self.agents[i].state.p_pos self.viewers[i].set_bounds( pos[0]-cam_range, pos[0]+cam_range, pos[1]-cam_range, pos[1]+cam_range) # update geometry positions for e, entity in enumerate(self.world.entities): self.render_geoms_xform[e].set_translation(*entity.state.p_pos) if 'agent' in entity.name: self.render_geoms[e].set_color(*entity.color, alpha=0.5) if not entity.silent: for ci in range(self.world.dim_c): color = 1 - entity.state.c[ci] self.comm_geoms[e][ci].set_color( color, color, color) else: self.render_geoms[e].set_color(*entity.color) if entity.channel is not None: for ci in range(self.world.dim_c): color = 1 - entity.channel[ci] self.comm_geoms[e][ci].set_color( color, color, color) # render to display or array results.append(self.viewers[i].render( return_rgb_array=mode == 'rgb_array')) return results # create receptor field locations in local coordinate frame def _make_receptor_locations(self, agent): receptor_type = 'polar' range_min = 0.05 * 2.0 range_max = 1.00 dx = [] # circular receptive field if receptor_type == 'polar': for angle in np.linspace(-np.pi, +np.pi, 8, endpoint=False): for distance in np.linspace(range_min, range_max, 3): dx.append( distance * np.array([np.cos(angle), np.sin(angle)])) # add origin dx.append(np.array([0.0, 0.0])) # grid receptive field if receptor_type == 'grid': for x in np.linspace(-range_max, +range_max, 5): for y in np.linspace(-range_max, +range_max, 5): dx.append(np.array([x, y])) return dx
40.055684
127
0.530178
768cf41dae9f5ab0c097a8fce414da43030768e4
941
py
Python
main.py
amitport/A2C
b9db1587656679bfadf8c409ceebbb7ac4034a22
[ "Apache-2.0" ]
181
2018-01-05T18:09:24.000Z
2022-03-27T06:16:56.000Z
main.py
yo-yrl/A2C
b9db1587656679bfadf8c409ceebbb7ac4034a22
[ "Apache-2.0" ]
14
2018-02-05T01:03:07.000Z
2021-03-19T09:32:50.000Z
main.py
yo-yrl/A2C
b9db1587656679bfadf8c409ceebbb7ac4034a22
[ "Apache-2.0" ]
49
2018-01-12T05:02:59.000Z
2022-03-05T05:07:18.000Z
import tensorflow as tf from utils.utils import create_experiment_dirs from utils.utils import parse_args from A2C import A2C def main(): # Parse the JSON arguments config_args = parse_args() tf.reset_default_graph() config = tf.ConfigProto(allow_soft_placement=True, intra_op_parallelism_threads=config_args.num_envs, inter_op_parallelism_threads=config_args.num_envs) config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Prepare Directories config_args.experiment_dir, config_args.summary_dir, config_args.checkpoint_dir, config_args.output_dir, config_args.test_dir = \ create_experiment_dirs(config_args.experiment_dir) a2c = A2C(sess, config_args) if config_args.to_train: a2c.train() if config_args.to_test: a2c.test(total_timesteps=10000000) if __name__ == '__main__': main()
28.515152
133
0.714134
89ffd0bd732422b99ce801096ba364f6454e1c03
15,208
py
Python
acq4/devices/MockClamp/MockClamp.py
campagnola/acq4
09699c07d8949950f6df149cf17892aaa3a37402
[ "MIT" ]
null
null
null
acq4/devices/MockClamp/MockClamp.py
campagnola/acq4
09699c07d8949950f6df149cf17892aaa3a37402
[ "MIT" ]
3
2016-03-29T15:32:27.000Z
2017-01-13T20:03:50.000Z
acq4/devices/MockClamp/MockClamp.py
campagnola/acq4
09699c07d8949950f6df149cf17892aaa3a37402
[ "MIT" ]
2
2016-08-27T17:22:07.000Z
2016-10-19T21:51:20.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function, with_statement import os import pyqtgraph.multiprocess as mp from acq4.devices.AxoPatch200 import CancelException from acq4.devices.DAQGeneric import DAQGeneric, DAQGenericTask, DAQGenericTaskGui from acq4.devices.PatchClamp import PatchClamp from pyqtgraph.WidgetGroup import WidgetGroup from acq4.util import Qt from acq4.util.Mutex import Mutex from acq4.util.debug import printExc Ui_MockClampDevGui = Qt.importTemplate('.devTemplate') ivModes = {'I=0': 'IC', 'VC': 'VC', 'IC': 'IC'} modeNames = ['VC', 'I=0', 'IC'] class MockClamp(PatchClamp): def __init__(self, dm, config, name): PatchClamp.__init__(self, dm, config, name) # Generate config to use for DAQ self.devLock = Mutex(Mutex.Recursive) daqConfig = { 'command': config['Command'], 'primary': config['ScaledSignal'], } self.holding = { 'VC': config.get('vcHolding', -0.05), 'IC': config.get('icHolding', 0.0) } self.mode = 'I=0' self.config = config # create a daq device under the hood self.daqDev = DAQGeneric(dm, daqConfig, '{}Daq'.format(name)) try: self.setHolding() except: printExc("Error while setting holding value:") # Start a remote process to run the simulation. self.process = mp.Process() rsys = self.process._import('sys') rsys._setProxyOptions(returnType='proxy') # need to access remote path by proxy, not by value rsys.path.append(os.path.abspath(os.path.dirname(__file__))) if config['simulator'] == 'builtin': self.simulator = self.process._import('hhSim') elif config['simulator'] == 'neuron': self.simulator = self.process._import('neuronSim') dm.declareInterface(name, ['clamp'], self) def createTask(self, cmd, parentTask): return MockClampTask(self, cmd, parentTask) def taskInterface(self, taskRunner): return MockClampTaskGui(self, taskRunner) def deviceInterface(self, win): return MockClampDevGui(self) def setHolding(self, mode=None, value=None, force=False): global ivModes with self.devLock: currentMode = self.getMode() if mode is None: mode = currentMode ivMode = ivModes[mode] ## determine vc/ic if value is None: value = self.holding[ivMode] else: self.holding[ivMode] = value if ivMode == ivModes[currentMode] or force: # gain = self.getCmdGain(mode) ## override the scale since getChanScale won't necessarily give the correct value ## (we may be about to switch modes) # DAQGeneric.setChanHolding(self, 'command', value, scale=gain) pass self.sigHoldingChanged.emit('primary', self.holding.copy()) def setChanHolding(self, chan, value=None): if chan == 'command': self.setHolding(value=value) else: self.daqDev.setChanHolding(self, chan, value) def getChanHolding(self, chan): if chan == 'command': return self.getHolding() else: return self.daqDev.getChanHolding(chan) def getHolding(self, mode=None): global ivModes with self.devLock: if mode is None: mode = self.getMode() ivMode = ivModes[mode] ## determine vc/ic return self.holding[ivMode] def getState(self): return { 'mode': self.getMode(), } def listModes(self): global modeNames return modeNames def setMode(self, mode): """Set the mode of the AxoPatch (by requesting user intervention). Takes care of switching holding levels in I=0 mode if needed.""" mode = mode.upper() startMode = self.getMode() if startMode == mode: return startIvMode = ivModes[startMode] ivMode = ivModes[mode] if (startIvMode == 'VC' and ivMode == 'IC') or (startIvMode == 'IC' and ivMode == 'VC'): ## switch to I=0 first # self.requestModeSwitch('I=0') self.mode = 'I=0' self.setHolding(ivMode, force=True) ## we're in I=0 mode now, so it's ok to force the holding value. ### TODO: ### If mode switches back the wrong direction, we need to reset the holding value and cancel. self.mode = ivMode self.sigStateChanged.emit(self.getState()) def getMode(self): return self.mode def getChanUnits(self, chan): global ivModes iv = ivModes[self.getMode()] if iv == 'VC': units = ['V', 'A'] else: units = ['A', 'V'] if chan == 'command': return units[0] elif chan == 'secondary': return units[0] elif chan == 'primary': return units[1] def readChannel(self, ch): pass def quit(self): # self.process.send(None) self.process.close() self.daqDev.quit() def getDAQName(self): """Return the DAQ name used by this device. (assumes there is only one DAQ for now)""" return self.config['Command']['device'] def autoPipetteOffset(self): """Automatically set the pipette offset. """ pass def autoBridgeBalance(self): """Automatically set the bridge balance. """ pass def autoCapComp(self): """Automatically configure capacitance compensation. """ pass class MockClampTask(DAQGenericTask): def __init__(self, dev, cmd, parentTask): ## make a few changes for compatibility with multiclamp if 'daqProtocol' not in cmd: cmd['daqProtocol'] = {} daqP = cmd['daqProtocol'] if 'command' in cmd: if 'holding' in cmd: daqP['command'] = {'command': cmd['command'], 'holding': cmd['holding']} else: daqP['command'] = {'command': cmd['command']} daqP['command']['lowLevelConf'] = {'mockFunc': self.write} cmd['daqProtocol']['primary'] = {'record': True, 'lowLevelConf': {'mockFunc': self.read}} DAQGenericTask.__init__(self, dev.daqDev, cmd['daqProtocol'], parentTask) self.cmd = cmd self.clampDev = dev modPath = os.path.abspath(os.path.split(__file__)[0]) def configure(self): ### Record initial state or set initial value ##if 'holding' in self.cmd: ## self.dev.setHolding(self.cmd['mode'], self.cmd['holding']) if 'mode' in self.cmd: self.clampDev.setMode(self.cmd['mode']) mode = self.clampDev.getMode() self.ampState = { 'mode': mode, 'primaryUnits': 'A' if mode == 'VC' else 'V', # copying multiclamp format here, but should eventually pick something more universal 'ClampParams': ({ 'BridgeBalResist': 0, 'BridgeBalEnable': True, } if mode == 'IC' else {}), } ### Do not configure daq until mode is set. Otherwise, holding values may be incorrect. DAQGenericTask.configure(self) def read(self): ## Called by DAQGeneric to simulate a read-from-DAQ res = self.job.result(timeout=30)._getValue() return res def write(self, data, dt): ## Called by DAQGeneric to simulate a write-to-DAQ self.job = self.clampDev.simulator.run({'data': data, 'dt': dt, 'mode': self.cmd['mode']}, _callSync='async') def isDone(self): ## check on neuron process # return self.process.poll() is not None return True def stop(self, abort=False): DAQGenericTask.stop(self, abort) def getResult(self): result = DAQGenericTask.getResult(self) result._info[-1]['startTime'] = next(iter(result._info[-1][self.clampDev.getDAQName()].values()))['startTime'] result._info[-1]['ClampState'] = self.ampState return result class MockClampTaskGui(DAQGenericTaskGui): def __init__(self, dev, taskRunner): DAQGenericTaskGui.__init__(self, dev.daqDev, taskRunner, ownUi=False) self.clampDev = dev self.layout = Qt.QGridLayout() self.layout.setContentsMargins(0, 0, 0, 0) self.setLayout(self.layout) self.splitter1 = Qt.QSplitter() self.splitter1.setOrientation(Qt.Qt.Horizontal) self.layout.addWidget(self.splitter1) self.splitter2 = Qt.QSplitter() self.splitter2.setOrientation(Qt.Qt.Vertical) self.modeCombo = Qt.QComboBox() self.splitter2.addWidget(self.modeCombo) self.modeCombo.addItems(self.clampDev.listModes()) self.splitter3 = Qt.QSplitter() self.splitter3.setOrientation(Qt.Qt.Vertical) (w1, p1) = self.createChannelWidget('primary') (w2, p2) = self.createChannelWidget('command') self.cmdWidget = w2 self.inputWidget = w1 self.cmdPlot = p2 self.inputPlot = p1 self.cmdWidget.setMeta('x', siPrefix=True, suffix='s', dec=True) self.cmdWidget.setMeta('y', siPrefix=True, dec=True) self.splitter1.addWidget(self.splitter2) self.splitter1.addWidget(self.splitter3) self.splitter2.addWidget(w1) self.splitter2.addWidget(w2) self.splitter3.addWidget(p1) self.splitter3.addWidget(p2) self.splitter1.setSizes([100, 500]) self.stateGroup = WidgetGroup([ (self.splitter1, 'splitter1'), (self.splitter2, 'splitter2'), (self.splitter3, 'splitter3'), ]) self.modeCombo.currentIndexChanged.connect(self.modeChanged) self.modeChanged() def saveState(self): """Return a dictionary representing the current state of the widget.""" state = {} state['daqState'] = DAQGenericTaskGui.saveState(self) state['mode'] = self.getMode() # state['holdingEnabled'] = self.ctrl.holdingCheck.isChecked() # state['holding'] = self.ctrl.holdingSpin.value() return state def restoreState(self, state): """Restore the state of the widget from a dictionary previously generated using saveState""" # print 'state: ', state # print 'DaqGeneric : ', dir(DAQGenericTaskGui) if 'mode' in state: self.modeCombo.setCurrentIndex(self.modeCombo.findText(state['mode'])) # self.ctrl.holdingCheck.setChecked(state['holdingEnabled']) # if state['holdingEnabled']: # self.ctrl.holdingSpin.setValue(state['holding']) if 'daqState' in state: return DAQGenericTaskGui.restoreState(self, state['daqState']) else: return None def generateTask(self, params=None): daqTask = DAQGenericTaskGui.generateTask(self, params) task = { 'mode': self.getMode(), 'daqProtocol': daqTask } return task def modeChanged(self): global ivModes ivm = ivModes[self.getMode()] w = self.cmdWidget if ivm == 'VC': scale = 1e-3 cmdUnits = 'V' inpUnits = 'A' else: scale = 1e-12 cmdUnits = 'A' inpUnits = 'V' self.inputWidget.setUnits(inpUnits) self.cmdWidget.setUnits(cmdUnits) self.cmdWidget.setMeta('y', minStep=scale, step=scale * 10, value=0.) self.inputPlot.setLabel('left', units=inpUnits) self.cmdPlot.setLabel('left', units=cmdUnits) # w.setScale(scale) # for s in w.getSpins(): # s.setOpts(minStep=scale) self.cmdWidget.updateHolding() def getMode(self): return str(self.modeCombo.currentText()) def sequenceChanged(self): self.sigSequenceChanged.emit(self.clampDev.name()) def getChanHolding(self, chan): if chan == 'command': return self.clampDev.getHolding(self.getMode()) else: raise Exception("Can't get holding value for channel %s" % chan) class MockClampDevGui(Qt.QWidget): def __init__(self, dev): Qt.QWidget.__init__(self) self.dev = dev self.ui = Ui_MockClampDevGui() self.ui.setupUi(self) self.ui.vcHoldingSpin.setOpts(step=1, minStep=1e-3, dec=True, suffix='V', siPrefix=True) self.ui.icHoldingSpin.setOpts(step=1, minStep=1e-12, dec=True, suffix='A', siPrefix=True) # self.ui.modeCombo.currentIndexChanged.connect(self.modeComboChanged) self.modeRadios = { 'VC': self.ui.vcModeRadio, 'IC': self.ui.icModeRadio, 'I=0': self.ui.i0ModeRadio, } self.updateStatus() for v in self.modeRadios.values(): v.toggled.connect(self.modeRadioChanged) self.ui.vcHoldingSpin.valueChanged.connect(self.vcHoldingChanged) self.ui.icHoldingSpin.valueChanged.connect(self.icHoldingChanged) self.dev.sigHoldingChanged.connect(self.devHoldingChanged) self.dev.sigStateChanged.connect(self.devStateChanged) def updateStatus(self): global modeNames mode = self.dev.getMode() if mode is None: return vcHold = self.dev.getHolding('VC') icHold = self.dev.getHolding('IC') self.modeRadios[mode].setChecked(True) # self.ui.modeCombo.setCurrentIndex(self.ui.modeCombo.findText(mode)) self.ui.vcHoldingSpin.setValue(vcHold) self.ui.icHoldingSpin.setValue(icHold) def devHoldingChanged(self, chan, hval): if isinstance(hval, dict): self.ui.vcHoldingSpin.blockSignals(True) self.ui.icHoldingSpin.blockSignals(True) self.ui.vcHoldingSpin.setValue(hval['VC']) self.ui.icHoldingSpin.setValue(hval['IC']) self.ui.vcHoldingSpin.blockSignals(False) self.ui.icHoldingSpin.blockSignals(False) def devStateChanged(self): mode = self.dev.getMode() for r in self.modeRadios.values(): r.blockSignals(True) # self.ui.modeCombo.blockSignals(True) # self.ui.modeCombo.setCurrentIndex(self.ui.modeCombo.findText(mode)) self.modeRadios[mode].setChecked(True) # self.ui.modeCombo.blockSignals(False) for r in self.modeRadios.values(): r.blockSignals(False) def vcHoldingChanged(self): self.dev.setHolding('VC', self.ui.vcHoldingSpin.value()) def icHoldingChanged(self): self.dev.setHolding('IC', self.ui.icHoldingSpin.value()) def modeRadioChanged(self, m): try: if not m: return for mode, r in self.modeRadios.items(): if r.isChecked(): self.dev.setMode(mode) except CancelException: self.updateStatus()
33.946429
139
0.598698
05709aae01fd4368494d31f610638b5fcc5ddad7
603
py
Python
app/__init__.py
nicholas-oduor/News-API
ee52f775b20816edd61667ab2a08db23977708f2
[ "MIT" ]
null
null
null
app/__init__.py
nicholas-oduor/News-API
ee52f775b20816edd61667ab2a08db23977708f2
[ "MIT" ]
null
null
null
app/__init__.py
nicholas-oduor/News-API
ee52f775b20816edd61667ab2a08db23977708f2
[ "MIT" ]
null
null
null
from flask import Flask from flask_bootstrap import Bootstrap from config import config_options bootstrap = Bootstrap() def create_app(config_name): app = Flask(__name__) # Creating the app configurations app.config.from_object(config_options[config_name]) # Initializing flask extensions bootstrap.init_app(app) # Will add the views and forms # Registering the blueprint from .main import main as main_blueprint app.register_blueprint(main_blueprint) # setting config from .request import configure_request configure_request(app) return app
22.333333
55
0.751244
81f0348c6f36bf839409016f641e8cf98edac51c
9,045
py
Python
pybamm/solvers/algebraic_solver.py
dion-w/PyBaMM
aeb9bcc82bb5dc3fba4fa045c4cad9d2d41b6359
[ "BSD-3-Clause" ]
1
2022-03-24T01:23:16.000Z
2022-03-24T01:23:16.000Z
pybamm/solvers/algebraic_solver.py
sxwangxiang/PyBaMM
23157aebce218444edc83b525dfb2c7fc8637598
[ "BSD-3-Clause" ]
null
null
null
pybamm/solvers/algebraic_solver.py
sxwangxiang/PyBaMM
23157aebce218444edc83b525dfb2c7fc8637598
[ "BSD-3-Clause" ]
null
null
null
# # Algebraic solver class # import casadi import pybamm import numpy as np from scipy import optimize from scipy.sparse import issparse class AlgebraicSolver(pybamm.BaseSolver): """Solve a discretised model which contains only (time independent) algebraic equations using a root finding algorithm. Uses scipy.optimize.root. Note: this solver could be extended for quasi-static models, or models in which the time derivative is manually discretised and results in a (possibly nonlinear) algebaric system at each time level. Parameters ---------- method : str, optional The method to use to solve the system (default is "lm"). If it starts with "lsq", least-squares minimization is used. The method for least-squares can be specified in the form "lsq_methodname" tol : float, optional The tolerance for the solver (default is 1e-6). extra_options : dict, optional Any options to pass to the rootfinder. Vary depending on which method is chosen. Please consult `SciPy documentation <https://tinyurl.com/ybr6cfqs>`_ for details. """ def __init__(self, method="lm", tol=1e-6, extra_options=None): super().__init__(method=method) self.tol = tol self.extra_options = extra_options or {} self.name = "Algebraic solver ({})".format(method) self.algebraic_solver = True pybamm.citations.register("Virtanen2020") @property def tol(self): return self._tol @tol.setter def tol(self, value): self._tol = value def _integrate(self, model, t_eval, inputs_dict=None): """ Calculate the solution of the algebraic equations through root-finding Parameters ---------- model : :class:`pybamm.BaseModel` The model whose solution to calculate. t_eval : :class:`numpy.array`, size (k,) The times at which to compute the solution inputs_dict : dict, optional Any input parameters to pass to the model when solving """ inputs_dict = inputs_dict or {} if model.convert_to_format == "casadi": inputs = casadi.vertcat(*[x for x in inputs_dict.values()]) else: inputs = inputs_dict y0 = model.y0 if isinstance(y0, casadi.DM): y0 = y0.full() y0 = y0.flatten() # The casadi algebraic solver can read rhs equations, but leaves them unchanged # i.e. the part of the solution vector that corresponds to the differential # equations will be equal to the initial condition provided. This allows this # solver to be used for initialising the DAE solvers # Split y0 into differential and algebraic if model.rhs == {}: len_rhs = 0 else: len_rhs = model.rhs_eval(t_eval[0], y0, inputs).shape[0] y0_diff, y0_alg = np.split(y0, [len_rhs]) test_result = model.algebraic_eval(0, y0, inputs) if isinstance(test_result, casadi.DM): def algebraic(t, y): result = model.algebraic_eval(t, y, inputs) return result.full().flatten() else: def algebraic(t, y): result = model.algebraic_eval(t, y, inputs) return result.flatten() y_alg = np.empty((len(y0_alg), len(t_eval))) timer = pybamm.Timer() integration_time = 0 for idx, t in enumerate(t_eval): def root_fun(y_alg): "Evaluates algebraic using y" y = np.concatenate([y0_diff, y_alg]) out = algebraic(t, y) pybamm.logger.debug( "Evaluating algebraic equations at t={}, L2-norm is {}".format( t * model.timescale_eval, np.linalg.norm(out) ) ) return out jac = model.jac_algebraic_eval if jac: if issparse(jac(t_eval[0], y0, inputs)): def jac_fn(y_alg): """ Evaluates jacobian using y0_diff (fixed) and y_alg (varying) """ y = np.concatenate([y0_diff, y_alg]) return jac(0, y, inputs)[:, len_rhs:].toarray() else: def jac_fn(y_alg): """ Evaluates jacobian using y0_diff (fixed) and y_alg (varying) """ y = np.concatenate([y0_diff, y_alg]) return jac(0, y, inputs)[:, len_rhs:] else: jac_fn = None itr = 0 maxiter = 2 success = False while not success: # Methods which use least-squares are specified as either "lsq", # which uses the default method, or with "lsq__methodname" if self.method.startswith("lsq"): if self.method == "lsq": method = "trf" else: method = self.method[5:] if jac_fn is None: jac_fn = "2-point" timer.reset() sol = optimize.least_squares( root_fun, y0_alg, method=method, ftol=self.tol, jac=jac_fn, bounds=model.bounds, **self.extra_options, ) integration_time += timer.time() # Methods which use minimize are specified as either "minimize", # which uses the default method, or with "minimize__methodname" elif self.method.startswith("minimize"): # Adapt the root function for minimize def root_norm(y): return np.sum(root_fun(y) ** 2) if jac_fn is None: jac_norm = None else: def jac_norm(y): return np.sum(2 * root_fun(y) * jac_fn(y), 0) if self.method == "minimize": method = None else: method = self.method[10:] extra_options = self.extra_options if np.any(model.bounds[0] != -np.inf) or np.any( model.bounds[1] != np.inf ): bounds = [ (lb, ub) for lb, ub in zip(model.bounds[0], model.bounds[1]) ] extra_options["bounds"] = bounds timer.reset() sol = optimize.minimize( root_norm, y0_alg, method=method, tol=self.tol, jac=jac_norm, **extra_options, ) integration_time += timer.time() else: timer.reset() sol = optimize.root( root_fun, y0_alg, method=self.method, tol=self.tol, jac=jac_fn, options=self.extra_options, ) integration_time += timer.time() if sol.success and np.all(abs(sol.fun) < self.tol): # update initial guess for the next iteration y0_alg = sol.x # update solution array y_alg[:, idx] = y0_alg success = True elif not sol.success: raise pybamm.SolverError( "Could not find acceptable solution: {}".format(sol.message) ) else: y0_alg = sol.x if itr > maxiter: raise pybamm.SolverError( "Could not find acceptable solution: solver terminated " "successfully, but maximum solution error " "({}) above tolerance ({})".format( np.max(abs(sol.fun)), self.tol ) ) itr += 1 # Concatenate differential part y_diff = np.r_[[y0_diff] * len(t_eval)].T y_sol = np.r_[y_diff, y_alg] # Return solution object (no events, so pass None to t_event, y_event) sol = pybamm.Solution(t_eval, y_sol, model, inputs_dict, termination="success") sol.integration_time = integration_time return sol
38.164557
88
0.487341
425c38c1b2293f035d02b0ea3a933f65fdd0c526
6,278
py
Python
train.py
orris27/nus_cs5242_project_group27
2aa5722e8d9d722ff1a3a37f36cb35c1ece481f8
[ "MIT" ]
null
null
null
train.py
orris27/nus_cs5242_project_group27
2aa5722e8d9d722ff1a3a37f36cb35c1ece481f8
[ "MIT" ]
null
null
null
train.py
orris27/nus_cs5242_project_group27
2aa5722e8d9d722ff1a3a37f36cb35c1ece481f8
[ "MIT" ]
null
null
null
import json import os import csv import numpy as np import misc.utils as utils import opts import torch import torch.optim as optim from torch.nn.utils import clip_grad_value_ from dataloader import VideoDataset from models import DecoderRNN, EncoderRNN, S2VTAttModel, S2VTModel from torch import nn from torch.utils.data import DataLoader def train(loader, model, crit, optimizer, lr_scheduler, opt, testloader): #object2idx = json.load(open('mydata/object1_object2.json', 'r')) #relationship2idx = json.load(open('mydata/relationship.json', 'r')) object2idx = json.load(open(opt['object1_object2_json'])) relationship2idx = json.load(open(opt['relationship_json'])) idx2object = {idx:obj for obj, idx in object2idx.items()} idx2relationship = {idx:rel for rel, idx in relationship2idx.items()} model.train() for epoch in range(opt["epochs"]): lr_scheduler.step() iteration = 0 # If start self crit training for data in loader: torch.cuda.synchronize() fc_feats = data['fc_feats'].cuda() labels = data['labels'].cuda() #masks = data['masks'].cuda() optimizer.zero_grad() seq_probs, _ = model(fc_feats, labels, 'train') loss = crit(seq_probs, labels) loss.backward() clip_grad_value_(model.parameters(), opt['grad_clip']) optimizer.step() train_loss = loss.item() torch.cuda.synchronize() iteration += 1 print("iter %d (epoch %d), train_loss = %.6f" % (iteration, epoch, train_loss)) if epoch % opt["save_checkpoint_every"] == 0: csvfile_digit_test = open(os.path.join(opt["checkpoint_path"], 'test_%d_digit.csv'%epoch), 'w', newline='') writer_digit_test = csv.DictWriter(csvfile_digit_test, fieldnames=['ID', 'label'], delimiter=',') writer_digit_test.writeheader() csvfile_word_test = open(os.path.join(opt["checkpoint_path"], 'test_%d_word.csv'%epoch), 'w', newline='') writer_word_test = csv.DictWriter(csvfile_word_test, fieldnames=['ID', 'label'], delimiter=',') writer_word_test.writeheader() model.eval() iteration_test = 0 for data in testloader: if iteration_test >= 1: assert False torch.cuda.synchronize() fc_feats = data['fc_feats'].cuda() with torch.no_grad(): seq_logprobs, preds5_list = model(fc_feats, None, 'test') torch.cuda.synchronize() iteration_test += 1 model.train() preds = torch.stack(preds5_list, 1) # (119, 3, 5) torch.cuda.synchronize() idx = 0 for vi in range(preds.shape[0]): for caption_id in range(preds.shape[1]): indices = preds[vi][caption_id].cpu().numpy() digits = ' '.join([str(elm) for elm in indices]) if caption_id == 1: # relationship words = ' '.join([idx2relationship[elm] for elm in indices]) else: # object words = ' '.join([idx2object[elm] for elm in indices]) writer_digit_test.writerow({'ID': idx, 'label': digits}) writer_word_test.writerow({'ID': idx, 'label': words}) idx += 1 csvfile_digit_test.close() csvfile_word_test.close() print('%d is saved successfully!!'%(epoch)) model_path = os.path.join(opt["checkpoint_path"], 'model_final.pth' ) torch.save(model.state_dict(), model_path) print("model saved to %s" % (model_path)) def main(opt): dataset = VideoDataset(opt, 'train') dataset_test = VideoDataset(opt, 'test') dataloader = DataLoader(dataset, batch_size=opt["batch_size"], shuffle=True) dataloader_test = DataLoader(dataset_test, batch_size=opt["batch_size"], shuffle=False) opt["obj_vocab_size"] = dataset.get_obj_vocab_size() opt["rel_vocab_size"] = dataset.get_rel_vocab_size() if opt["model"] == 'S2VTModel': model = S2VTModel( opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], opt['dim_vid'], rnn_cell=opt['rnn_type'], n_layers=opt['num_layers'], rnn_dropout_p=opt["rnn_dropout_p"]) elif opt["model"] == "S2VTAttModel": encoder = EncoderRNN( opt["dim_vid"], opt["dim_hidden"], bidirectional=opt["bidirectional"], input_dropout_p=opt["input_dropout_p"], rnn_cell=opt['rnn_type'], rnn_dropout_p=opt["rnn_dropout_p"]) decoder = DecoderRNN( opt["obj_vocab_size"], opt["rel_vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], input_dropout_p=opt["input_dropout_p"], rnn_cell=opt['rnn_type'], rnn_dropout_p=opt["rnn_dropout_p"], bidirectional=opt["bidirectional"]) model = S2VTAttModel(encoder, decoder) model = model.cuda() crit = utils.ObjRelCriterion() #rl_crit = utils.RewardCriterion() optimizer = optim.Adam( model.parameters(), lr=opt["learning_rate"], weight_decay=opt["weight_decay"]) exp_lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=opt["learning_rate_decay_every"], gamma=opt["learning_rate_decay_rate"]) train(dataloader, model, crit, optimizer, exp_lr_scheduler, opt, dataloader_test) if __name__ == '__main__': opt = opts.parse_opt() opt = vars(opt) if not os.path.isdir(opt["checkpoint_path"]): os.mkdir(opt["checkpoint_path"]) opt["checkpoint_path"] = os.path.join(opt["checkpoint_path"], '%s'%utils.get_timestamp()) os.makedirs(opt["checkpoint_path"], exist_ok=False) opt_json = os.path.join(opt["checkpoint_path"], 'opt_info.json') with open(opt_json, 'w') as f: json.dump(opt, f) print('save opt details to %s' % (opt_json)) main(opt)
37.369048
119
0.592386
83859ff6cd23ae768dfb7ad1de6da818f55659c7
1,558
py
Python
nipype/interfaces/camino/tests/test_auto_ComputeMeanDiffusivity.py
moloney/nipype
a7a9c85c79cb1412ba03406074f83200447ef50b
[ "Apache-2.0" ]
7
2017-02-17T08:54:26.000Z
2022-03-10T20:57:23.000Z
nipype/interfaces/camino/tests/test_auto_ComputeMeanDiffusivity.py
moloney/nipype
a7a9c85c79cb1412ba03406074f83200447ef50b
[ "Apache-2.0" ]
1
2016-04-25T15:07:09.000Z
2016-04-25T15:07:09.000Z
nipype/interfaces/camino/tests/test_auto_ComputeMeanDiffusivity.py
moloney/nipype
a7a9c85c79cb1412ba03406074f83200447ef50b
[ "Apache-2.0" ]
2
2017-09-23T16:22:00.000Z
2019-08-01T14:18:52.000Z
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..dti import ComputeMeanDiffusivity def test_ComputeMeanDiffusivity_inputs(): input_map = dict( args=dict(argstr='%s', ), environ=dict( nohash=True, usedefault=True, ), ignore_exception=dict( deprecated='1.0.0', nohash=True, usedefault=True, ), in_file=dict( argstr='< %s', mandatory=True, position=1, ), inputdatatype=dict(argstr='-inputdatatype %s', ), inputmodel=dict(argstr='-inputmodel %s', ), out_file=dict( argstr='> %s', genfile=True, position=-1, ), outputdatatype=dict(argstr='-outputdatatype %s', ), scheme_file=dict( argstr='%s', position=2, ), terminal_output=dict( deprecated='1.0.0', nohash=True, ), ) inputs = ComputeMeanDiffusivity.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_ComputeMeanDiffusivity_outputs(): output_map = dict(md=dict(), ) outputs = ComputeMeanDiffusivity.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
29.961538
67
0.56611
92b248bfaa9d8433be2c2db26b6344fff3a2bfc7
1,502
py
Python
docker/src/clawpack-5.3.1/pyclaw/development/DMPFOR/dmpfor_test.py
ian-r-rose/visualization
ed6d9fab95eb125e7340ab3fad3ed114ed3214af
[ "CC-BY-4.0" ]
11
2017-01-04T18:19:48.000Z
2021-02-21T01:46:33.000Z
docker/src/clawpack-5.3.1/pyclaw/development/DMPFOR/dmpfor_test.py
ian-r-rose/visualization
ed6d9fab95eb125e7340ab3fad3ed114ed3214af
[ "CC-BY-4.0" ]
8
2016-09-22T20:49:51.000Z
2019-09-06T23:28:13.000Z
docker/src/clawpack-5.3.1/pyclaw/development/DMPFOR/dmpfor_test.py
ian-r-rose/visualization
ed6d9fab95eb125e7340ab3fad3ed114ed3214af
[ "CC-BY-4.0" ]
13
2016-09-22T20:20:06.000Z
2020-07-13T14:48:32.000Z
from petsc4py import PETSc import numpy as np import DMPFOR global_nx =3 global_ny =2 dof=4 da = PETSc.DA().create(dim=2, dof=dof, sizes=[global_nx, global_ny], #periodic_type = PETSc.DA.PeriodicType.GHOSTED_XYZ, #stencil_type=self.STENCIL, #stencil_width=2, comm=PETSc.COMM_WORLD) gVec = da.createGlobalVector() lVec = da.createLocalVector() ranges = da.getRanges() nx_start = ranges[0][0] nx_end = ranges[0][1] ny_start = ranges[1][0] ny_end = ranges[1][1] nx = nx_end - nx_start ny = ny_end - ny_start q = np.empty((dof, nx, ny), order='F') for i in range(0,nx): for j in range(0,ny): for k in range(0,dof): q[k,i,j] = k+10*i+100*j gVec.array = q q = gVec.array.reshape((dof, nx, ny), order='F') print "da array from python" print q print "da array from fortran" DMPFOR.dmpfor(q,dof,nx,ny) print "da array from python after rolling axises using rollaxis" rolled_q_1 = np.rollaxis(q,0,3) rolled_q_1 = np.reshape(rolled_q_1,(nx,ny,dof),order='F') print rolled_q_1 print "da array from fortran after rolling axises using rollaxis" DMPFOR.dmpfor(rolled_q_1,nx,ny,dof) print "da array from python after rolling axises using element by element copy" rolled_q_2 = np.empty((nx,ny,dof),order='F') for i in range(0,nx): for j in range(0,ny): for k in range(0,dof): rolled_q_2[i,j,k] = q[k,i,j] print rolled_q_2 print "da array from fortran after rolling axises using element by element copy" DMPFOR.dmpfor(rolled_q_2,nx,ny,dof)
18.775
80
0.695739
89f4e19917d007b2e6a7fa7d129c98923f44ee4f
34,453
py
Python
other_layer/transferleraning_v4(mix7)/retrain.py
yuwei998/Deep_Transfer
41ebb3bb096f5fc417a900bd539650fd65189554
[ "MIT" ]
4
2018-07-31T01:49:14.000Z
2020-07-21T11:30:41.000Z
other_layer/transferleraning_v4(mix7)/retrain.py
yuwei998/Deep_Transfer
41ebb3bb096f5fc417a900bd539650fd65189554
[ "MIT" ]
null
null
null
other_layer/transferleraning_v4(mix7)/retrain.py
yuwei998/Deep_Transfer
41ebb3bb096f5fc417a900bd539650fd65189554
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from datetime import datetime import hashlib import os.path import random import re import struct import sys import tarfile import numpy as np from six.moves import urllib import tensorflow as tf from tensorflow.python.framework import graph_util from tensorflow.python.framework import tensor_shape from tensorflow.python.platform import gfile from tensorflow.python.util import compat import tensorflow.contrib.slim as slim FLAGS = None DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' BOTTLENECK_TENSOR_NAME = 'mixed_6/join:0' BATCH_SIZE=5 BOTTLENECK_TENSOR_SIZE=2048 #inceptionv3模型输出的shape BOTTLENECK_TENSOR_SHAPE = [None,17,17,768] MODEL_INPUT_WIDTH = 299 MODEL_INPUT_HEIGHT = 299 MODEL_INPUT_DEPTH = 3 JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0' RESIZED_INPUT_TENSOR_NAME = 'ResizeBilinear:0' MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M def create_image_lists(image_dir, testing_percentage, validation_percentage): if not gfile.Exists(image_dir): print("Image directory '" + image_dir + "' not found.") return None result = {} sub_dirs = [x[0] for x in gfile.Walk(image_dir)] # The root directory comes first, so skip it. is_root_dir = True for sub_dir in sub_dirs: if is_root_dir: is_root_dir = False continue extensions = ['jpg', 'jpeg', 'JPG', 'JPEG'] file_list = [] dir_name = os.path.basename(sub_dir) if dir_name == image_dir: continue print("Looking for images in '" + dir_name + "'") for extension in extensions: file_glob = os.path.join(image_dir, dir_name, '*.' + extension) file_list.extend(gfile.Glob(file_glob)) if not file_list: print('No files found') continue if len(file_list) < 20: print('WARNING: Folder has less than 20 images, which may cause issues.') elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS: print('WARNING: Folder {} has more than {} images. Some images will ' 'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS)) label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower()) training_images = [] testing_images = [] validation_images = [] for file_name in file_list: base_name = os.path.basename(file_name) hash_name = re.sub(r'_nohash_.*$', '', file_name) hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest() percentage_hash = ((int(hash_name_hashed, 16) % (MAX_NUM_IMAGES_PER_CLASS + 1)) * (100.0 / MAX_NUM_IMAGES_PER_CLASS)) if percentage_hash < validation_percentage: validation_images.append(base_name) elif percentage_hash < (testing_percentage + validation_percentage): testing_images.append(base_name) else: training_images.append(base_name) result[label_name] = { 'dir': dir_name, 'training': training_images, 'testing': testing_images, 'validation': validation_images, } return result def get_image_path(image_lists, label_name, index, image_dir, category): if label_name not in image_lists: tf.logging.fatal('Label does not exist %s.', label_name) label_lists = image_lists[label_name] if category not in label_lists: tf.logging.fatal('Category does not exist %s.', category) category_list = label_lists[category] if not category_list: tf.logging.fatal('Label %s has no images in the category %s.', label_name, category) mod_index = index % len(category_list) base_name = category_list[mod_index] sub_dir = label_lists['dir'] full_path = os.path.join(image_dir, sub_dir, base_name) return full_path def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category): return get_image_path(image_lists, label_name, index, bottleneck_dir, category) + '.txt' def create_inception_graph(): with tf.Session() as sess: model_filename = os.path.join( FLAGS.model_dir, 'classify_image_graph_def.pb') with gfile.FastGFile(model_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) bottleneck_tensor, jpeg_data_tensor, resized_input_tensor = ( tf.import_graph_def(graph_def, name='', return_elements=[ BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME, RESIZED_INPUT_TENSOR_NAME])) return sess.graph, bottleneck_tensor, jpeg_data_tensor, resized_input_tensor def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor): bottleneck_values = sess.run( bottleneck_tensor, {image_data_tensor: image_data}) # bottleneck_values = np.squeeze(bottleneck_values) #将bottleneck_values改为行向量以助于保存 num=bottleneck_values.shape[0]*bottleneck_values.shape[1]*bottleneck_values.shape[2]*bottleneck_values.shape[3] bottleneck_values=np.reshape(bottleneck_values,(num,)) return bottleneck_values #下载模型 def maybe_download_and_extract(): dest_directory = FLAGS.model_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory) def ensure_dir_exists(dir_name): if not os.path.exists(dir_name): os.makedirs(dir_name) def write_list_of_floats_to_file(list_of_floats , file_path): s = struct.pack('d' * BOTTLENECK_TENSOR_SIZE, *list_of_floats) with open(file_path, 'wb') as f: f.write(s) def read_list_of_floats_from_file(file_path): with open(file_path, 'rb') as f: s = struct.unpack('d' * BOTTLENECK_TENSOR_SIZE, f.read()) return list(s) bottleneck_path_2_bottleneck_values = {} def create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, bottleneck_tensor): print('Creating bottleneck at ' + bottleneck_path) image_path = get_image_path(image_lists, label_name, index, image_dir, category) if not gfile.Exists(image_path): tf.logging.fatal('File does not exist %s', image_path) image_data = gfile.FastGFile(image_path, 'rb').read() bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor) bottleneck_string = ','.join(str(x) for x in bottleneck_values) with open(bottleneck_path, 'w') as bottleneck_file: bottleneck_file.write(bottleneck_string) def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, bottleneck_tensor): label_lists = image_lists[label_name] sub_dir = label_lists['dir'] sub_dir_path = os.path.join(bottleneck_dir, sub_dir) ensure_dir_exists(sub_dir_path) bottleneck_path = get_bottleneck_path(image_lists, label_name, index, bottleneck_dir, category) if not os.path.exists(bottleneck_path): create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, bottleneck_tensor) with open(bottleneck_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() did_hit_error = False try: bottleneck_values = [float(x) for x in bottleneck_string.split(',')] #将读到的bottleneck_values转为tensor形式并去掉batch_size维度 bottleneck_values = np.squeeze(np.array(bottleneck_values).reshape((1,17,17,768))) except: print("Invalid float found, recreating bottleneck") did_hit_error = True if did_hit_error: create_bottleneck_file(bottleneck_path, image_lists, label_name, index, image_dir, category, sess, jpeg_data_tensor, bottleneck_tensor) with open(bottleneck_path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() # Allow exceptions to propagate here, since they shouldn't happen after a fresh creation bottleneck_values = [float(x) for x in bottleneck_string.split(',')] # 将读到的bottleneck_values转为tensor形式并去掉batch_size维度 bottleneck_values = np.squeeze(np.array(bottleneck_values).reshape((1,17, 17, 768))) return bottleneck_values def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir, jpeg_data_tensor, bottleneck_tensor): how_many_bottlenecks = 0 ensure_dir_exists(bottleneck_dir) for label_name, label_lists in image_lists.items(): for category in ['training', 'testing', 'validation']: category_list = label_lists[category] for index, unused_base_name in enumerate(category_list): get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category, bottleneck_dir, jpeg_data_tensor, bottleneck_tensor) how_many_bottlenecks += 1 if how_many_bottlenecks % 100 == 0: print(str(how_many_bottlenecks) + ' bottleneck files created.') def get_random_cached_bottlenecks(sess, image_lists, how_many, category, bottleneck_dir, image_dir, jpeg_data_tensor, bottleneck_tensor): class_count = len(image_lists.keys()) bottlenecks = [] ground_truths = [] filenames = [] if how_many >= 0: # Retrieve a random sample of bottlenecks. for unused_i in range(how_many): label_index = random.randrange(class_count) label_name = list(image_lists.keys())[label_index] image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1) image_name = get_image_path(image_lists, label_name, image_index, image_dir, category) bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, image_dir, category, bottleneck_dir, jpeg_data_tensor, bottleneck_tensor) ground_truth = np.zeros(class_count, dtype=np.float32) ground_truth[label_index] = 1.0 bottlenecks.append(bottleneck) ground_truths.append(ground_truth) filenames.append(image_name) else: # Retrieve all bottlenecks. for label_index, label_name in enumerate(image_lists.keys()): for image_index, image_name in enumerate( image_lists[label_name][category]): image_name = get_image_path(image_lists, label_name, image_index, image_dir, category) bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, image_dir, category, bottleneck_dir, jpeg_data_tensor, bottleneck_tensor) ground_truth = np.zeros(class_count, dtype=np.float32) ground_truth[label_index] = 1.0 bottlenecks.append(bottleneck) ground_truths.append(ground_truth) filenames.append(image_name) return bottlenecks, ground_truths, filenames def get_random_distorted_bottlenecks( sess, image_lists, how_many, category, image_dir, input_jpeg_tensor, distorted_image, resized_input_tensor, bottleneck_tensor): class_count = len(image_lists.keys()) bottlenecks = [] ground_truths = [] for unused_i in range(how_many): label_index = random.randrange(class_count) label_name = list(image_lists.keys())[label_index] image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1) image_path = get_image_path(image_lists, label_name, image_index, image_dir, category) if not gfile.Exists(image_path): tf.logging.fatal('File does not exist %s', image_path) jpeg_data = gfile.FastGFile(image_path, 'rb').read() # Note that we materialize the distorted_image_data as a numpy array before # sending running inference on the image. This involves 2 memory copies and # might be optimized in other implementations. distorted_image_data = sess.run(distorted_image, {input_jpeg_tensor: jpeg_data}) bottleneck = run_bottleneck_on_image(sess, distorted_image_data, resized_input_tensor, bottleneck_tensor) ground_truth = np.zeros(class_count, dtype=np.float32) ground_truth[label_index] = 1.0 bottlenecks.append(bottleneck) ground_truths.append(ground_truth) return bottlenecks, ground_truths def should_distort_images(flip_left_right, random_crop, random_scale, random_brightness): return (flip_left_right or (random_crop != 0) or (random_scale != 0) or (random_brightness != 0)) def add_input_distortions(flip_left_right, random_crop, random_scale, random_brightness): jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput') decoded_image = tf.image.decode_jpeg(jpeg_data, channels=MODEL_INPUT_DEPTH) decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32) decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0) margin_scale = 1.0 + (random_crop / 100.0) resize_scale = 1.0 + (random_scale / 100.0) margin_scale_value = tf.constant(margin_scale) resize_scale_value = tf.random_uniform(tensor_shape.scalar(), minval=1.0, maxval=resize_scale) scale_value = tf.multiply(margin_scale_value, resize_scale_value) precrop_width = tf.multiply(scale_value, MODEL_INPUT_WIDTH) precrop_height = tf.multiply(scale_value, MODEL_INPUT_HEIGHT) precrop_shape = tf.stack([precrop_height, precrop_width]) precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32) precropped_image = tf.image.resize_bilinear(decoded_image_4d, precrop_shape_as_int) precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0]) cropped_image = tf.random_crop(precropped_image_3d, [MODEL_INPUT_HEIGHT, MODEL_INPUT_WIDTH, MODEL_INPUT_DEPTH]) if flip_left_right: flipped_image = tf.image.random_flip_left_right(cropped_image) else: flipped_image = cropped_image brightness_min = 1.0 - (random_brightness / 100.0) brightness_max = 1.0 + (random_brightness / 100.0) brightness_value = tf.random_uniform(tensor_shape.scalar(), minval=brightness_min, maxval=brightness_max) brightened_image = tf.multiply(flipped_image, brightness_value) distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult') return jpeg_data, distort_result def variable_summaries(var): """Attach a lot of summaries to a Tensor (for TensorBoard visualization).""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor): with tf.name_scope('input'): bottleneck_input = tf.placeholder_with_default( bottleneck_tensor, shape=BOTTLENECK_TENSOR_SHAPE, name='BottleneckInputPlaceholder') ground_truth_input = tf.placeholder(tf.float32, [None, class_count], name='GroundTruthInput') #返回batch_size的大小 batch=tf.shape(bottleneck_input)[0] # Organizing the following ops as `final_training_ops` so they're easier # to see in TensorBoard net = bottleneck_input with tf.variable_scope('mix7'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 192, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0b_7x1') branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0c_1x7') branch_2 = slim.conv2d(branch_2, 192, [7, 1], scope='Conv2d_0d_7x1') branch_2 = slim.conv2d(branch_2, 192, [1, 7], scope='Conv2d_0e_1x7') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3',padding='SAME',stride=[1,1]) branch_3 = slim.conv2d(branch_3, 192, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) with tf.variable_scope('mix8'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, 320, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, 192, [1, 7], scope='Conv2d_0b_1x7') branch_1 = slim.conv2d(branch_1, 192, [7, 1], scope='Conv2d_0c_7x1') branch_1 = slim.conv2d(branch_1, 192, [3, 3], stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2]) with tf.variable_scope('mix9'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1,384, [3, 1], scope='Conv2d_0b_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net, 448, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d( branch_2, 384, [3, 3], scope='Conv2d_0b_3x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'), slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3',padding='SAME',stride=[1,1]) branch_3 = slim.conv2d( branch_3, 192, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) with tf.variable_scope('mix10'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, 320, [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1') branch_1 = tf.concat(axis=3, values=[ slim.conv2d(branch_1, 384, [1, 3], scope='Conv2d_0b_1x3'), slim.conv2d(branch_1, 384, [3, 1], scope='Conv2d_0c_3x1')]) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d(net,448, [1, 1], scope='Conv2d_0a_1x1') branch_2 = slim.conv2d( branch_2, 384, [3, 3], scope='Conv2d_0b_3x3') branch_2 = tf.concat(axis=3, values=[ slim.conv2d(branch_2, 384, [1, 3], scope='Conv2d_0c_1x3'), slim.conv2d(branch_2, 384, [3, 1], scope='Conv2d_0d_3x1')]) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='AvgPool_0a_3x3',padding='SAME',stride=[1,1]) branch_3 = slim.conv2d( branch_3, 192, [1, 1], scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[branch_0, branch_1, branch_2, branch_3]) with tf.name_scope('my_pool'): net=tf.nn.avg_pool(net,ksize=[1,8,8,1],strides=[1,1,1,1],padding='VALID') net=tf.reshape(net,[batch,2048]) with tf.name_scope('second_layer'): with tf.name_scope('weights'): layer_weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, class_count], stddev=0.001), name='final_weights') variable_summaries(layer_weights) with tf.name_scope('biases'): layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases') variable_summaries(layer_biases) with tf.name_scope('Wx_plus_b'): logits = tf.matmul(net, layer_weights) + layer_biases tf.summary.histogram('pre_activations', logits) final_tensor = tf.nn.softmax(logits, name=final_tensor_name) tf.summary.histogram('activations', final_tensor) with tf.name_scope('cross_entropy'): cross_entropy = tf.nn.softmax_cross_entropy_with_logits( labels=ground_truth_input, logits=logits) with tf.name_scope('total'): cross_entropy_mean = tf.reduce_mean(cross_entropy) tf.summary.scalar('cross_entropy', cross_entropy_mean) with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(FLAGS.learning_rate).minimize( cross_entropy_mean) return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input, final_tensor) def add_evaluation_step(result_tensor, ground_truth_tensor): with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): prediction = tf.argmax(result_tensor, 1) correct_prediction = tf.equal( prediction, tf.argmax(ground_truth_tensor, 1)) with tf.name_scope('accuracy'): evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('accuracy', evaluation_step) return evaluation_step, prediction def main(_): # Setup the directory we'll write summaries to for TensorBoard if tf.gfile.Exists(FLAGS.summaries_dir): tf.gfile.DeleteRecursively(FLAGS.summaries_dir) tf.gfile.MakeDirs(FLAGS.summaries_dir) # Set up the pre-trained graph. maybe_download_and_extract() graph, bottleneck_tensor, jpeg_data_tensor, resized_image_tensor = ( create_inception_graph()) # Look at the folder structure, and create lists of all the images. image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage, FLAGS.validation_percentage) class_count = len(image_lists.keys()) if class_count == 0: print('No valid folders of images found at ' + FLAGS.image_dir) return -1 if class_count == 1: print('Only one valid folder of images found at ' + FLAGS.image_dir + ' - multiple classes are needed for classification.') return -1 # See if the command-line flags mean we're applying any distortions. do_distort_images = should_distort_images( FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale, FLAGS.random_brightness) sess = tf.Session() if do_distort_images: # We will be applying distortions, so setup the operations we'll need. distorted_jpeg_data_tensor, distorted_image_tensor = add_input_distortions( FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale, FLAGS.random_brightness) else: # We'll make sure we've calculated the 'bottleneck' image summaries and # cached them on disk. cache_bottlenecks(sess, image_lists, FLAGS.image_dir, FLAGS.bottleneck_dir, jpeg_data_tensor, bottleneck_tensor) # Add the new layer that we'll be training. (train_step, cross_entropy, bottleneck_input, ground_truth_input, final_tensor) = add_final_training_ops(len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor) # Create the operations we need to evaluate the accuracy of our new layer. evaluation_step, prediction = add_evaluation_step( final_tensor, ground_truth_input) # Merge all the summaries and write them out to /tmp/retrain_logs (by default) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train', sess.graph) validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation') # Set up all our weights to their initial default values. init = tf.global_variables_initializer() sess.run(init) # Run the training for as many cycles as requested on the command line. for i in range(FLAGS.how_many_training_steps): # Get a batch of input bottleneck values, either calculated fresh every time # with distortions applied, or from the cache stored on disk. if do_distort_images: train_bottlenecks, train_ground_truth = get_random_distorted_bottlenecks( sess, image_lists, FLAGS.train_batch_size, 'training', FLAGS.image_dir, distorted_jpeg_data_tensor, distorted_image_tensor, resized_image_tensor, bottleneck_tensor) else: train_bottlenecks, train_ground_truth, _ = get_random_cached_bottlenecks( sess, image_lists, FLAGS.train_batch_size, 'training', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, bottleneck_tensor) # Feed the bottlenecks and ground truth into the graph, and run a training # step. Capture training summaries for TensorBoard with the `merged` op. train_summary, _ = sess.run([merged, train_step], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth}) train_writer.add_summary(train_summary, i) # Every so often, print out how well the graph is training. is_last_step = (i + 1 == FLAGS.how_many_training_steps) if (i % FLAGS.eval_step_interval) == 0 or is_last_step: train_accuracy, cross_entropy_value = sess.run( [evaluation_step, cross_entropy], feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth}) print('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i, train_accuracy * 100)) print('%s: Step %d: Cross entropy = %f' % (datetime.now(), i, cross_entropy_value)) validation_bottlenecks, validation_ground_truth, _ = ( get_random_cached_bottlenecks( sess, image_lists, FLAGS.validation_batch_size, 'validation', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, bottleneck_tensor)) # Run a validation step and capture training summaries for TensorBoard # with the `merged` op. validation_summary, validation_accuracy = sess.run( [merged, evaluation_step], feed_dict={bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth}) validation_writer.add_summary(validation_summary, i) print('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' % (datetime.now(), i, validation_accuracy * 100, len(validation_bottlenecks))) # We've completed all our training, so run a final test evaluation on # some new images we haven't used before. test_bottlenecks, test_ground_truth, test_filenames = ( get_random_cached_bottlenecks(sess, image_lists, FLAGS.test_batch_size, 'testing', FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor, bottleneck_tensor)) test_accuracy, predictions = sess.run( [evaluation_step, prediction], feed_dict={bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth}) print('Final test accuracy = %.1f%% (N=%d)' % ( test_accuracy * 100, len(test_bottlenecks))) if FLAGS.print_misclassified_test_images: print('=== MISCLASSIFIED TEST IMAGES ===') for i, test_filename in enumerate(test_filenames): if predictions[i] != test_ground_truth[i].argmax(): print('%70s %s' % (test_filename, list(image_lists.keys())[predictions[i]])) # Write out the trained graph and labels with the weights stored as constants. output_graph_def = graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), [FLAGS.final_tensor_name]) with gfile.FastGFile(FLAGS.output_graph, 'wb') as f: f.write(output_graph_def.SerializeToString()) with gfile.FastGFile(FLAGS.output_labels, 'w') as f: f.write('\n'.join(image_lists.keys()) + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--image_dir', type = str, default = './image200d', help='Path to folders of labeled images.' ) parser.add_argument( '--output_graph', type = str, default = './output_graph_new.pb', help = 'Where to save the trained graph.' ) parser.add_argument( '--output_labels', type = str, default='./output_labels_new.txt', help = 'Where to save the trained graph\'s labels.' ) parser.add_argument( '--summaries_dir', type = str, default = './retrain_logs', help = 'Where to save summary logs for TensorBoard.' ) parser.add_argument( '--how_many_training_steps', type = int, default = 15000, # 4000 help='How many training steps to run before ending.' ) parser.add_argument( '--learning_rate', type=float, default = 0.01, help='How large a learning rate to use when training.' ) parser.add_argument( '--testing_percentage', type = int, default = 10, help = 'What percentage of images to use as a test set.' ) parser.add_argument( '--validation_percentage', type = int, default = 10, help = 'What percentage of images to use as a validation set.' ) parser.add_argument( '--eval_step_interval', type = int, default = 10, help = 'How often to evaluate the training results.' ) parser.add_argument( '--train_batch_size', type = int, default = 5, help = 'How many images to train on at a time.' ) parser.add_argument( '--test_batch_size', type = int, default = -1, help = """\ How many images to test on. This test set is only used once, to evaluate the final accuracy of the model after training completes. A value of -1 causes the entire test set to be used, which leads to more stable results across runs.\ """ ) parser.add_argument( '--validation_batch_size', type = int, default = 5, help = """\ How many images to use in an evaluation batch. This validation set is used much more often than the test set, and is an early indicator of how accurate the model is during training. A value of -1 causes the entire validation set to be used, which leads to more stable results across training iterations, but may be slower on large training sets.\ """ ) parser.add_argument( '--print_misclassified_test_images', default = False, help = """\ Whether to print out a list of all misclassified test images.\ """, action='store_true' ) parser.add_argument( '--model_dir', type = str, default = './data/imagenet', help = """\ Path to classify_image_graph_def.pb, imagenet_synset_to_human_label_map.txt, and imagenet_2012_challenge_label_map_proto.pbtxt.\ """ ) parser.add_argument( '--bottleneck_dir', type=str, default = './data/bottleneck', help = 'Path to cache bottleneck layer values as files.' ) parser.add_argument( '--final_tensor_name', type = str, default = 'final_result', help = """\ The name of the output classification layer in the retrained graph.\ """ ) parser.add_argument( '--flip_left_right', default = False, help = """\ Whether to randomly flip half of the training images horizontally.\ """, action = 'store_true' ) parser.add_argument( '--random_crop', type = int, default = 0, help = """\ A percentage determining how much of a margin to randomly crop off the training images.\ """ ) parser.add_argument( '--random_scale', type = int, default = 0, help = """\ A percentage determining how much to randomly scale up the size of the training images by.\ """ ) parser.add_argument( '--random_brightness', type=int, default=0, help="""\ A percentage determining how much to randomly multiply the training image input pixels up or down by.\ """ ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
42.170135
139
0.660639
647f8525ea1cd51334edcc27015a7bf1913e7b9b
9,177
py
Python
fice_nike/agent_base.py
kenoss/FightingICE-nike
e8a38207481c20fc764271b5cc35b462caff5d49
[ "Apache-2.0" ]
null
null
null
fice_nike/agent_base.py
kenoss/FightingICE-nike
e8a38207481c20fc764271b5cc35b462caff5d49
[ "Apache-2.0" ]
null
null
null
fice_nike/agent_base.py
kenoss/FightingICE-nike
e8a38207481c20fc764271b5cc35b462caff5d49
[ "Apache-2.0" ]
null
null
null
# Camel case is necesarry... from .action import Action class AgentBase: THRESHOLD_FRAME_COUNT_FOR_THE_CASE_SIMULATOR_BROKEN = 30 def __init__(self, environment): self.environment = environment self.gateway = environment.gateway self._skill_flag_continue_count = 0 def close(self): pass def getInformation(self, frameData): # Getting the frame data of the current frame self.frameData = frameData self.cc.setFrameData(self.frameData, self.player) # please define this method when you use FightingICE version 3.20 or later def roundEnd(self, x, y, z): print(f"P1 HP: {x}") print(f"P2 HP: {y}") print(f"Cummrative Reward: {x - y}") # print(z) # please define this method when you use FightingICE version 4.00 or later def getScreenData(self, sd): pass def initialize(self, gameData, player): # Initializng the command center, the simulator and some other things self.inputKey = self.gateway.jvm.struct.Key() self.frameData = self.gateway.jvm.struct.FrameData() self.cc = self.gateway.jvm.aiinterface.CommandCenter() self.player = player self.gameData = gameData self.simulator = self.gameData.getSimulator() return 0 def input(self): # Return the input for the current frame return self.inputKey def policy(self, state): ''' Args: state: Frame data. See method `processing`. Returns: input_keys: [Action] or Action ''' raise NotImplementedError() # def sendCommand(self): # pass def processing(self): try: self._processing() except Exception as e: import sys import traceback print(traceback.format_exception(*sys.exc_info())) print(traceback.format_tb(e.__traceback__)) def _processing(self): # First we check whether we are at the end of the round if self.frameData.getEmptyFlag() or self.frameData.getRemainingFramesNumber() <= 0: self.isGameJustStarted = True return if not self.isGameJustStarted: # Simulate the delay and look ahead 2 frames. The simulator class exists already in FightingICE self.frameData = self.simulator.simulate(self.frameData, self.player, None, None, 17) # You can pass actions to the simulator by writing as follows: # actions = self.gateway.jvm.java.util.ArrayDeque() # actions.add(self.gateway.jvm.enumerate.Action.STAND_A) # self.frameData = self.simulator.simulate(self.frameData, self.player, actions, actions, 17) else: # If the game just started, no point on simulating self.isGameJustStarted = False self.cc.setFrameData(self.frameData, self.player) if self.cc.getSkillFlag(): self._skill_flag_continue_count += 1 # If there is a previous "command" still in execution, then keep doing it self.inputKey = self.cc.getSkillKey() # The case simulator seems to be broken. if self._skill_flag_continue_count >= self.THRESHOLD_FRAME_COUNT_FOR_THE_CASE_SIMULATOR_BROKEN: print('=' * 100) print('ERROR: self._skill_flag_continue_count >= self.THRESHOLD_FRAME_COUNT_FOR_THE_CASE_SIMULATOR_BROKEN') print('=' * 100) self.cc.skillCancel() else: self._skill_flag_continue_count = 0 # We empty the keys and cancel skill just in case # self.inputKey.empty() # self.cc.skillCancel() inputs = self.policy(self.frameData) if inputs is None: xs = [Action.NEUTRAL] elif type(inputs) is not list: assert inputs in Action xs = [inputs] else: xs = inputs command = ' '.join([x.value for x in xs]) print(command) self.cc.commandCall(command) # def processing(self): # # Just compute the input for the current frame # if self.frameData.getEmptyFlag() or self.frameData.getRemainingFramesNumber() <= 0: # self.isGameJustStarted = True # return # # Just spam kick # self.cc.setFrameData(self.frameData, self.player) # # distance = self.frameData.getDistanceX() # # my = self.frameData.getCharacter(self.player) # # energy = my.getEnergy() # # my_x = my.getX() # # my_state = my.getState() # # opp = self.frameData.getCharacter(not self.player) # # opp_x = opp.getX() # # opp_state = opp.getState() # # xDifference = my_x - opp_x # if self.cc.getSkillFlag(): # self.inputKey = self.cc.getSkillKey() # return # self.inputKey.empty() # self.cc.skillCancel() # a = self.policy(self.frameData) # dic = { # "↙": "1", "↓": "2", "↘": "3", # "←": "4", "→": "6", # "↖": "7", "↑": "8", "↗": "9" # } # if a is not None: # for k, v in dic.items(): # a = a.replace(k, v) # self.cc.commandCall(a) # else: # self.cc.commandCall("_") # # self.sendCommand() # This part is mandatory class Java: implements = ["aiinterface.AIInterface"] """ def processing(self): # First we check whether we are at the end of the round if self.frameData.getEmptyFlag() or self.frameData.getRemainingFramesNumber() <= 0: self.isGameJustStarted = True return if not self.isGameJustStarted: # Simulate the delay and look ahead 2 frames. The simulator class exists already in FightingICE self.frameData = self.simulator.simulate(self.frameData, self.player, None, None, 17) #You can pass actions to the simulator by writing as follows: #actions = self.gateway.jvm.java.util.ArrayDeque() #actions.add(self.gateway.jvm.enumerate.Action.STAND_A) #self.frameData = self.simulator.simulate(self.frameData, self.player, actions, actions, 17) else: # If the game just started, no point on simulating self.isGameJustStarted = False self.cc.setFrameData(self.frameData, self.player) distance = self.frameData.getDistanceX() my = self.frameData.getCharacter(self.player) energy = my.getEnergy() my_x = my.getX() my_state = my.getState() opp = self.frameData.getCharacter(not self.player) opp_x = opp.getX() opp_state = opp.getState() xDifference = my_x - opp_x if self.cc.getSkillFlag(): # If there is a previous "command" still in execution, then keep doing it self.inputKey = self.cc.getSkillKey() return # We empty the keys and cancel skill just in case self.inputKey.empty() self.cc.skillCancel() self.policy(my, opp, distance) self.sendCommand() """ """ def processing(self): # First we check whether we are at the end of the round if self.frameData.getEmptyFlag() or self.frameData.getRemainingFramesNumber() <= 0: self.isGameJustStarted = True return if not self.isGameJustStarted: # Simulate the delay and look ahead 2 frames. The simulator class exists already in FightingICE self.frameData = self.simulator.simulate(self.frameData, self.player, None, None, 17) #You can pass actions to the simulator by writing as follows: #actions = self.gateway.jvm.java.util.ArrayDeque() #actions.add(self.gateway.jvm.enumerate.Action.STAND_A) #self.frameData = self.simulator.simulate(self.frameData, self.player, actions, actions, 17) else: # If the game just started, no point on simulating self.isGameJustStarted = False self.cc.setFrameData(self.frameData, self.player) distance = self.frameData.getDistanceX() my = self.frameData.getCharacter(self.player) energy = my.getEnergy() my_x = my.getX() my_state = my.getState() opp = self.frameData.getCharacter(not self.player) opp_x = opp.getX() opp_state = opp.getState() xDifference = my_x - opp_x if self.cc.getSkillFlag(): self.inputKey = self.cc.getSkillKey() return self.inputKey.empty() self.cc.skillCancel() self.policy(my, opp, distance) self.sendCommand() """
37.610656
123
0.57546
fcb771fb539cc232cb8a9aa82cbaabf99615b2d4
6,154
py
Python
requests_ntlm2/requests_ntlm2.py
jkugler/requests-ntlm2
d5cc3a39b228fb2f3d95275101cfbff17aeb8e07
[ "ISC" ]
null
null
null
requests_ntlm2/requests_ntlm2.py
jkugler/requests-ntlm2
d5cc3a39b228fb2f3d95275101cfbff17aeb8e07
[ "ISC" ]
null
null
null
requests_ntlm2/requests_ntlm2.py
jkugler/requests-ntlm2
d5cc3a39b228fb2f3d95275101cfbff17aeb8e07
[ "ISC" ]
null
null
null
from requests.auth import AuthBase from .core import NtlmCompatibility, get_auth_type_from_header, get_cbt_data, get_ntlm_credentials from .dance import HttpNtlmContext class HttpNtlmAuth(AuthBase): """ HTTP NTLM Authentication Handler for Requests. """ def __init__( self, username, password, send_cbt=True, ntlm_compatibility=NtlmCompatibility.NTLMv2_DEFAULT, ntlm_strict_mode=False ): """Create an authentication handler for NTLM over HTTP. :param str username: Username in 'domain\\username' format :param str password: Password :param bool send_cbt: Will send the channel bindings over a HTTPS channel (Default: True) :param ntlm_compatibility: The Lan Manager Compatibility Level to use with the auth message :param ntlm_strict_mode: If False, tries to Type 2 (ie challenge response) NTLM message that does not conform to the NTLM spec """ self.username, self.password, self.domain = get_ntlm_credentials(username, password) if self.domain: self.domain = self.domain.upper() self.password = password self.send_cbt = send_cbt self.ntlm_compatibility = ntlm_compatibility self.ntlm_strict_mode = ntlm_strict_mode # This exposes the encrypt/decrypt methods used to encrypt and decrypt # messages sent after ntlm authentication. These methods are utilised # by libraries that call requests_ntlm to encrypt and decrypt the # messages sent after authentication self.session_security = None def retry_using_http_ntlm_auth( self, auth_header_field, auth_header, response, auth_type, args ): # Get the certificate of the server if using HTTPS for CBT cbt_data = None if self.send_cbt: cbt_data = get_cbt_data(response) # Attempt to authenticate using HTTP NTLM challenge/response if auth_header in response.request.headers: return response content_length = int( response.request.headers.get("Content-Length", "0"), base=10 ) if hasattr(response.request.body, "seek"): if content_length > 0: response.request.body.seek(-content_length, 1) else: response.request.body.seek(0, 0) # Consume content and release the original connection # to allow our new request to reuse the same one. response.content response.raw.release_conn() request = response.request.copy() ntlm_context = HttpNtlmContext( self.username, self.password, domain=self.domain, auth_type=auth_type, cbt_data=cbt_data, ntlm_compatibility=self.ntlm_compatibility, ntlm_strict_mode=self.ntlm_strict_mode ) request.headers[auth_header] = ntlm_context.get_negotiate_header() # A streaming response breaks authentication. # This can be fixed by not streaming this request, which is safe # because the returned response3 will still have stream=True set if # specified in args. In addition, we expect this request to give us a # challenge and not the real content, so the content will be short # anyway. args_nostream = dict(args, stream=False) response2 = response.connection.send(request, **args_nostream) # needed to make NTLM auth compatible with requests-2.3.0 # Consume content and release the original connection # to allow our new request to reuse the same one. response2.content response2.raw.release_conn() request = response2.request.copy() # this is important for some web applications that store # authentication-related info in cookies (it took a long time to # figure out) if response2.headers.get("set-cookie"): request.headers["Cookie"] = response2.headers.get("set-cookie") # get the challenge ntlm_context.set_challenge_from_header(response2.headers[auth_header_field]) # build response # Get the response based on the challenge message request.headers[auth_header] = ntlm_context.get_authenticate_header() response3 = response2.connection.send(request, **args) # Update the history. response3.history.append(response) response3.history.append(response2) # Get the session_security object created by ntlm-auth for signing and # sealing of messages self.session_security = ntlm_context.session_security return response3 def response_hook(self, r, **kwargs): """The actual hook handler.""" if r.status_code == 401: # Handle server auth. www_authenticate = r.headers.get("www-authenticate", "") auth_type = get_auth_type_from_header(www_authenticate) if auth_type is not None: return self.retry_using_http_ntlm_auth( "www-authenticate", "Authorization", r, auth_type, kwargs ) elif r.status_code == 407: # If we didn't have server auth, do proxy auth. proxy_authenticate = r.headers.get("proxy-authenticate", "") auth_type = get_auth_type_from_header(proxy_authenticate) if auth_type is not None: return self.retry_using_http_ntlm_auth( "proxy-authenticate", "Proxy-Authorization", r, auth_type, kwargs ) return r def __call__(self, r): # we must keep the connection because NTLM authenticates the # connection, not single requests r.headers["Connection"] = "Keep-Alive" r.register_hook("response", self.response_hook) return r def extract_username_and_password(self): if self.domain: return "{}\\{}".format(self.domain, self.username), self.password return self.username, self.password
38.949367
99
0.646246
0c1e1749f59edad319e9a16cb6bbe124b8d66541
4,034
py
Python
research/deeplab/core/nas_network_test.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
research/deeplab/core/nas_network_test.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
research/deeplab/core/nas_network_test.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
null
null
null
# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for resnet_v1_beta module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import slim as contrib_slim from tensorflow.contrib import training as contrib_training from deeplab.core import nas_genotypes from deeplab.core import nas_network arg_scope = contrib_framework.arg_scope slim = contrib_slim def create_test_input(batch, height, width, channels): """Creates test input tensor.""" if None in [batch, height, width, channels]: return tf.placeholder(tf.float32, (batch, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch, 1, 1, channels])) class NASNetworkTest(tf.test.TestCase): """Tests with complete small NAS networks.""" def _pnasnet(self, images, backbone, num_classes, is_training=True, output_stride=16, final_endpoint=None): """Build PNASNet model backbone.""" hparams = contrib_training.HParams( filter_scaling_rate=2.0, num_conv_filters=10, drop_path_keep_prob=1.0, total_training_steps=200000, ) if not is_training: hparams.set_hparam('drop_path_keep_prob', 1.0) cell = nas_genotypes.PNASCell(hparams.num_conv_filters, hparams.drop_path_keep_prob, len(backbone), hparams.total_training_steps) with arg_scope([slim.dropout, slim.batch_norm], is_training=is_training): return nas_network._build_nas_base( images, cell=cell, backbone=backbone, num_classes=num_classes, hparams=hparams, reuse=tf.AUTO_REUSE, scope='pnasnet_small', final_endpoint=final_endpoint) def testFullyConvolutionalEndpointShapes(self): num_classes = 10 backbone = [0, 0, 0, 1, 2, 1, 2, 2, 3, 3, 2, 1] inputs = create_test_input(None, 321, 321, 3) with slim.arg_scope(nas_network.nas_arg_scope()): _, end_points = self._pnasnet(inputs, backbone, num_classes) endpoint_to_shape = { 'Stem': [None, 81, 81, 128], 'Cell_0': [None, 81, 81, 50], 'Cell_1': [None, 81, 81, 50], 'Cell_2': [None, 81, 81, 50], 'Cell_3': [None, 41, 41, 100], 'Cell_4': [None, 21, 21, 200], 'Cell_5': [None, 41, 41, 100], 'Cell_6': [None, 21, 21, 200], 'Cell_7': [None, 21, 21, 200], 'Cell_8': [None, 11, 11, 400], 'Cell_9': [None, 11, 11, 400], 'Cell_10': [None, 21, 21, 200], 'Cell_11': [None, 41, 41, 100] } for endpoint, shape in endpoint_to_shape.items(): self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) if __name__ == '__main__': tf.test.main()
36.017857
81
0.602132
ccd4bd7ae371a3e8ef31161b4f230ef64a90a758
8,889
py
Python
vb_suite/timeseries.py
josericardo/pandas
fe9aa125c19ce2b22a0c4aabedd68b24df6cb98e
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
1
2019-05-21T21:07:03.000Z
2019-05-21T21:07:03.000Z
vb_suite/timeseries.py
josericardo/pandas
fe9aa125c19ce2b22a0c4aabedd68b24df6cb98e
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
vb_suite/timeseries.py
josericardo/pandas
fe9aa125c19ce2b22a0c4aabedd68b24df6cb98e
[ "PSF-2.0", "Apache-2.0", "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
from vbench.api import Benchmark from datetime import datetime common_setup = """from pandas_vb_common import * from datetime import timedelta N = 100000 try: rng = date_range('1/1/2000', periods=N, freq='min') except NameError: rng = DateRange('1/1/2000', periods=N, offset=datetools.Minute()) def date_range(start=None, end=None, periods=None, freq=None): return DateRange(start, end, periods=periods, offset=freq) if hasattr(Series, 'convert'): Series.resample = Series.convert ts = Series(np.random.randn(N), index=rng) """ #---------------------------------------------------------------------- # Lookup value in large time series, hash map population setup = common_setup + """ rng = date_range('1/1/2000', periods=1500000, freq='s') ts = Series(1, index=rng) """ stmt = "ts[ts.index[len(ts) // 2]]; ts.index._cleanup()" timeseries_large_lookup_value = Benchmark(stmt, setup, start_date=datetime(2012, 1, 1)) #---------------------------------------------------------------------- # Test slice minutely series timeseries_slice_minutely = Benchmark('ts[:10000]', common_setup) #---------------------------------------------------------------------- # Test conversion setup = common_setup + """ """ timeseries_1min_5min_ohlc = Benchmark( "ts[:10000].resample('5min', how='ohlc')", common_setup, start_date=datetime(2012, 5, 1)) timeseries_1min_5min_mean = Benchmark( "ts[:10000].resample('5min', how='mean')", common_setup, start_date=datetime(2012, 5, 1)) #---------------------------------------------------------------------- # Irregular alignment setup = common_setup + """ lindex = np.random.permutation(N)[:N // 2] rindex = np.random.permutation(N)[:N // 2] left = Series(ts.values.take(lindex), index=ts.index.take(lindex)) right = Series(ts.values.take(rindex), index=ts.index.take(rindex)) """ timeseries_add_irregular = Benchmark('left + right', setup) #---------------------------------------------------------------------- # Sort large irregular time series setup = common_setup + """ N = 100000 rng = date_range('1/1/2000', periods=N, freq='s') rng = rng.take(np.random.permutation(N)) ts = Series(np.random.randn(N), index=rng) """ timeseries_sort_index = Benchmark('ts.sort_index()', setup, start_date=datetime(2012, 4, 1)) #---------------------------------------------------------------------- # Shifting, add offset setup = common_setup + """ rng = date_range('1/1/2000', periods=10000, freq='T') """ datetimeindex_add_offset = Benchmark('rng + timedelta(minutes=2)', setup, start_date=datetime(2012, 4, 1)) setup = common_setup + """ N = 10000 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.random.randn(N), index=rng) dates = date_range('1/1/1990', periods=N * 10, freq='5s') """ timeseries_asof_single = Benchmark('ts.asof(dates[0])', setup, start_date=datetime(2012, 4, 27)) timeseries_asof = Benchmark('ts.asof(dates)', setup, start_date=datetime(2012, 4, 27)) setup = setup + 'ts[250:5000] = np.nan' timeseries_asof_nan = Benchmark('ts.asof(dates)', setup, start_date=datetime(2012, 4, 27)) #---------------------------------------------------------------------- # Time zone stuff setup = common_setup + """ rng = date_range('1/1/2000', '3/1/2000', tz='US/Eastern') """ timeseries_timestamp_tzinfo_cons = \ Benchmark('rng[0]', setup, start_date=datetime(2012, 5, 5)) #---------------------------------------------------------------------- # Resampling period setup = common_setup + """ rng = period_range('1/1/2000', '1/1/2001', freq='T') ts = Series(np.random.randn(len(rng)), index=rng) """ timeseries_period_downsample_mean = \ Benchmark("ts.resample('D', how='mean')", setup, start_date=datetime(2012, 4, 25)) setup = common_setup + """ rng = date_range('1/1/2000', '1/1/2001', freq='T') ts = Series(np.random.randn(len(rng)), index=rng) """ timeseries_timestamp_downsample_mean = \ Benchmark("ts.resample('D', how='mean')", setup, start_date=datetime(2012, 4, 25)) #---------------------------------------------------------------------- # to_datetime setup = common_setup + """ rng = date_range('1/1/2000', periods=20000, freq='h') strings = [x.strftime('%Y-%m-%d %H:%M:%S') for x in rng] """ timeseries_to_datetime_iso8601 = \ Benchmark('to_datetime(strings)', setup, start_date=datetime(2012, 7, 11)) setup = common_setup + """ rng = date_range('1/1/2000', periods=10000, freq='D') strings = Series(rng.year*10000+rng.month*100+rng.day,dtype=np.int64).apply(str) """ timeseries_to_datetime_YYYYMMDD = \ Benchmark('to_datetime(strings,format="%Y%m%d")', setup, start_date=datetime(2012, 7, 1)) # ---- infer_freq # infer_freq setup = common_setup + """ from pandas.tseries.frequencies import infer_freq rng = date_range('1/1/1700', freq='D', periods=100000) a = rng[:50000].append(rng[50002:]) """ timeseries_infer_freq = \ Benchmark('infer_freq(a)', setup, start_date=datetime(2012, 7, 1)) # setitem PeriodIndex setup = common_setup + """ rng = period_range('1/1/1990', freq='S', periods=20000) df = DataFrame(index=range(len(rng))) """ period_setitem = \ Benchmark("df['col'] = rng", setup, start_date=datetime(2012, 8, 1)) setup = common_setup + """ rng = date_range('1/1/2000 9:30', periods=10000, freq='S', tz='US/Eastern') """ datetimeindex_normalize = \ Benchmark('rng.normalize()', setup, start_date=datetime(2012, 9, 1)) setup = common_setup + """ from pandas.tseries.offsets import Second s1 = date_range('1/1/2000', periods=100, freq='S') curr = s1[-1] slst = [] for i in range(100): slst.append(curr + Second()), periods=100, freq='S') curr = slst[-1][-1] """ # dti_append_tz = \ # Benchmark('s1.append(slst)', setup, start_date=datetime(2012, 9, 1)) setup = common_setup + """ rng = date_range('1/1/2000', periods=1000, freq='H') df = DataFrame(np.random.randn(len(rng), 2), rng) """ dti_reset_index = \ Benchmark('df.reset_index()', setup, start_date=datetime(2012, 9, 1)) setup = common_setup + """ rng = date_range('1/1/2000', periods=1000, freq='H', tz='US/Eastern') df = DataFrame(np.random.randn(len(rng), 2), index=rng) """ dti_reset_index_tz = \ Benchmark('df.reset_index()', setup, start_date=datetime(2012, 9, 1)) setup = common_setup + """ rng = date_range('1/1/2000', periods=1000, freq='T') index = rng.repeat(10) """ datetimeindex_unique = Benchmark('index.unique()', setup, start_date=datetime(2012, 7, 1)) # tz_localize with infer argument. This is an attempt to emulate the results # of read_csv with duplicated data. Not passing infer_dst will fail setup = common_setup + """ dst_rng = date_range('10/29/2000 1:00:00', '10/29/2000 1:59:59', freq='S') index = date_range('10/29/2000', '10/29/2000 00:59:59', freq='S') index = index.append(dst_rng) index = index.append(dst_rng) index = index.append(date_range('10/29/2000 2:00:00', '10/29/2000 3:00:00', freq='S')) """ datetimeindex_infer_dst = \ Benchmark('index.tz_localize("US/Eastern", infer_dst=True)', setup, start_date=datetime(2013, 9, 30)) #---------------------------------------------------------------------- # Resampling: fast-path various functions setup = common_setup + """ rng = date_range('20130101',periods=100000,freq='50L') df = DataFrame(np.random.randn(100000,2),index=rng) """ dataframe_resample_mean_string = \ Benchmark("df.resample('1s', how='mean')", setup) dataframe_resample_mean_numpy = \ Benchmark("df.resample('1s', how=np.mean)", setup) dataframe_resample_min_string = \ Benchmark("df.resample('1s', how='min')", setup) dataframe_resample_min_numpy = \ Benchmark("df.resample('1s', how=np.min)", setup) dataframe_resample_max_string = \ Benchmark("df.resample('1s', how='max')", setup) dataframe_resample_max_numpy = \ Benchmark("df.resample('1s', how=np.max)", setup) #---------------------------------------------------------------------- # DatetimeConverter setup = common_setup + """ from pandas.tseries.converter import DatetimeConverter """ datetimeindex_converter = \ Benchmark('DatetimeConverter.convert(rng, None, None)', setup, start_date=datetime(2013, 1, 1)) # Adding custom business day setup = common_setup + """ import datetime as dt import pandas as pd date = dt.datetime(2011,1,1) cday = pd.offsets.CustomBusinessDay() """ timeseries_custom_bday_incr = \ Benchmark("date + cday",setup) # Increment by n timeseries_custom_bday_incr_n = \ Benchmark("date + 10 * cday",setup)
29.828859
80
0.598155
97348efc2664c26be58cbba88e5496b35ff1850b
180
py
Python
155A I_love_username.py
YasirAhmad-EccentriX/CodeForces
d004b4d1b52a360ac6c06870e0a237345771e32c
[ "MIT" ]
1
2021-01-29T16:30:09.000Z
2021-01-29T16:30:09.000Z
155A I_love_username.py
YasirAhmad-EccentriX/CodeForces
d004b4d1b52a360ac6c06870e0a237345771e32c
[ "MIT" ]
null
null
null
155A I_love_username.py
YasirAhmad-EccentriX/CodeForces
d004b4d1b52a360ac6c06870e0a237345771e32c
[ "MIT" ]
null
null
null
l=input() l=[int(i) for i in input().split()] max=min=l[0] c=0 for i in l: if i<min: min=i c+=1 elif i>max: max=i c+=1 print(c)
13.846154
36
0.422222
927bfa24e1d71afb6273413689d5949daa62d59c
9,490
py
Python
DPrepB-C/ska_sip/imageoperations/images/deconvolution.py
SKA-ScienceDataProcessor/SIP-DPrep
7b98bfa4d9f76c6f8bafcb97613e2533cc9426fd
[ "Apache-2.0" ]
1
2019-01-23T13:03:42.000Z
2019-01-23T13:03:42.000Z
DPrepB-C/ska_sip/imageoperations/images/deconvolution.py
SKA-ScienceDataProcessor/SIP-DPrep
7b98bfa4d9f76c6f8bafcb97613e2533cc9426fd
[ "Apache-2.0" ]
null
null
null
DPrepB-C/ska_sip/imageoperations/images/deconvolution.py
SKA-ScienceDataProcessor/SIP-DPrep
7b98bfa4d9f76c6f8bafcb97613e2533cc9426fd
[ "Apache-2.0" ]
null
null
null
"""deconvolution.py: A script for deconvolution of polarisation data.""" import numpy as np import logging LOG = logging.getLogger(__name__) from data_models.memory_data_models import Image from data_models.parameters import get_parameter from libs.image.operations import create_image_from_array from libs.image.cleaners import hogbom, overlapIndices from data_models.polarisation import PolarisationFrame def hogbom_complex(dirty_q, dirty_u, psf_q, psf_u, window, gain, thresh, niter, fracthresh): """Clean the point spread function from a dirty Q+iU image This uses the complex Hogbom CLEAN for polarised data (2016MNRAS.462.3483P) The starting-point for the code was the standard Hogbom clean algorithm available in ARL. Args: dirty_q (numpy array): The dirty Q Image, i.e., the Q Image to be deconvolved. dirty_u (numpy array): The dirty U Image, i.e., the U Image to be deconvolved. psf_q (numpy array): The point spread-function in Stokes Q. psf_u (numpy array): The point spread-function in Stokes U. window (float): Regions where clean components are allowed. If True, entire dirty Image is allowed. gain (float): The "loop gain", i.e., the fraction of the brightest pixel that is removed in each iteration. thresh (float): Cleaning stops when the maximum of the absolute deviation of the residual is less than this value. niter (int): Maximum number of components to make if the threshold `thresh` is not hit. fracthresh (float): The predefined fractional threshold at which to stop cleaning. Returns: comps.real: real clean component image. comps.imag: imaginary clean component image. res.real: real residual image. res.imag: imaginary residual image. """ assert 0.0 < gain < 2.0 assert niter > 0 # Form complex Q+iU from the polarisation data: dirty_complex = 1j*dirty_u dirty_complex += dirty_q LOG.info("hogbom_mod: Max abs in dirty image = %.6f" % np.max(np.abs(dirty_complex))) absolutethresh = max(thresh, fracthresh * np.absolute(dirty_complex).max()) LOG.info("hogbom_mod: Start of minor cycle") LOG.info("hogbom_mod: This minor cycle will stop at %d iterations or peak < %s" % \ (niter, absolutethresh)) comps = np.zeros(dirty_complex.shape, dtype='complex128') res = np.array(dirty_complex) assert np.all(psf_q == psf_u) pmax = psf_q.max() assert pmax > 0.0 LOG.info("hogbom: Max abs in dirty Image = %.6f" % np.absolute(res).max()) for i in range(niter): if window is not None: mx, my = np.unravel_index((np.absolute(res * window)).argmax(), dirty_complex.shape) else: mx, my = np.unravel_index((np.absolute(res)).argmax(), dirty_complex.shape) mval = res[mx, my] * gain / pmax comps[mx, my] += mval a1o, a2o = overlapIndices(dirty_complex, psf_q, mx, my) if niter < 10 or i % (niter // 10) == 0: LOG.info("hogbom: Minor cycle %d, peak %s at [%d, %d]" % (i, res[mx, my], mx, my)) res[a1o[0]:a1o[1], a1o[2]:a1o[3]] -= psf_q[a2o[0]:a2o[1], a2o[2]:a2o[3]] * mval if np.abs(res[mx, my]) < absolutethresh: LOG.info("hogbom: Stopped at iteration %d, peak %s at [%d, %d]" % \ (i, res[mx, my], mx, my)) break LOG.info("hogbom: End of minor cycle") return comps.real, comps.imag, res.real, res.imag def deconvolve_cube_complex(dirty: Image, psf: Image, **kwargs) -> (Image, Image): """ Clean using the complex Hogbom algorithm for polarised data (2016MNRAS.462.3483P) The algorithm available is: hogbom-complex: See: Pratley L. & Johnston-Hollitt M., (2016), MNRAS, 462, 3483. This code is based upon the deconvolve_cube code for standard Hogbom clean available in ARL. Args: dirty (numpy array): The dirty image, i.e., the image to be deconvolved. psf (numpy array): The point spread-function. window (float): Regions where clean components are allowed. If True, entire dirty Image is allowed. algorithm (str): Cleaning algorithm: 'hogbom-complex' only. gain (float): The "loop gain", i.e., the fraction of the brightest pixel that is removed in each iteration. threshold (float): Cleaning stops when the maximum of the absolute deviation of the residual is less than this value. niter (int): Maximum number of components to make if the threshold `thresh` is not hit. fractional_threshold (float): The predefined fractional threshold at which to stop cleaning. Returns: comp_image: clean component image. residual_image: residual image. """ assert isinstance(dirty, Image), "Type is %s" % (type(dirty)) assert isinstance(psf, Image), "Type is %s" % (type(psf)) window_shape = get_parameter(kwargs, 'window_shape', None) if window_shape == 'quarter': qx = dirty.shape[3] // 4 qy = dirty.shape[2] // 4 window = np.zeros_like(dirty.data) window[..., (qy + 1):3 * qy, (qx + 1):3 * qx] = 1.0 LOG.info('deconvolve_cube_complex: Cleaning inner quarter of each sky plane') else: window = None psf_support = get_parameter(kwargs, 'psf_support', None) if isinstance(psf_support, int): if (psf_support < psf.shape[2] // 2) and ((psf_support < psf.shape[3] // 2)): centre = [psf.shape[2] // 2, psf.shape[3] // 2] psf.data = psf.data[..., (centre[0] - psf_support):(centre[0] + psf_support), (centre[1] - psf_support):(centre[1] + psf_support)] LOG.info('deconvolve_cube_complex: PSF support = +/- %d pixels' % (psf_support)) algorithm = get_parameter(kwargs, 'algorithm', 'msclean') if algorithm == 'hogbom-complex': LOG.info("deconvolve_cube_complex: Hogbom-complex clean of each polarisation \ and channel separately") gain = get_parameter(kwargs, 'gain', 0.7) assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2" thresh = get_parameter(kwargs, 'threshold', 0.0) assert thresh >= 0.0 niter = get_parameter(kwargs, 'niter', 100) assert niter > 0 fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1) assert 0.0 <= fracthresh < 1.0 comp_array = np.zeros(dirty.data.shape) residual_array = np.zeros(dirty.data.shape) for channel in range(dirty.data.shape[0]): for pol in range(dirty.data.shape[1]): if pol == 0 or pol == 3: if psf.data[channel, pol, :, :].max(): LOG.info("deconvolve_cube_complex: Processing pol %d, channel %d" % \ (pol, channel)) if window is None: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], None, gain, thresh, niter, fracthresh) else: comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \ hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :], window[channel, pol, :, :], gain, thresh, niter, fracthresh) else: LOG.info("deconvolve_cube_complex: Skipping pol %d, channel %d" % \ (pol, channel)) if pol == 1: if psf.data[channel, 1:2, :, :].max(): LOG.info("deconvolve_cube_complex: Processing pol 1 and 2, channel %d" % \ (channel)) if window is None: comp_array[channel, 1, :, :], comp_array[channel, 2, :, :], residual_array[channel, 1, :, :], residual_array[channel, 2, :, :] = hogbom_complex(dirty.data[channel, 1, :, :], dirty.data[channel, 2, :, :], psf.data[channel, 1, :, :], psf.data[channel, 2, :, :], None, gain, thresh, niter, fracthresh) else: comp_array[channel, 1, :, :], comp_array[channel, 2, :, :], residual_array[channel, 1, :, :], residual_array[channel, 2, :, :] = hogbom_complex(dirty.data[channel, 1, :, :], dirty.data[channel, 2, :, :], psf.data[channel, 1, :, :], psf.data[channel, 2, :, :], window[channel, pol, :, :], gain, thresh, niter, fracthresh) else: LOG.info("deconvolve_cube_complex: Skipping pol 1 and 2, channel %d" % \ (channel)) if pol == 2: continue comp_image = create_image_from_array(comp_array, dirty.wcs, \ polarisation_frame=PolarisationFrame('stokesIQUV')) residual_image = create_image_from_array(residual_array, dirty.wcs, \ polarisation_frame=PolarisationFrame('stokesIQUV')) else: raise ValueError('deconvolve_cube_complex: Unknown algorithm %s' % algorithm) return comp_image, residual_image
52.142857
348
0.589252
d780829a1f5101333577a1ca9adcb960529213f1
595
py
Python
mathematics_dataset/util/__init__.py
PhysicsTeacher13/Mathematics_Dataset
7f13bf661e6f36d61542bf0360b27f31eb9efe20
[ "Apache-2.0" ]
1,577
2019-04-03T10:05:30.000Z
2022-03-29T17:56:14.000Z
mathematics_dataset/util/__init__.py
aliceheiman/mathematics_dataset
89a928868d832d47387f704d2122c71e530ec4aa
[ "Apache-2.0" ]
15
2019-04-03T18:55:03.000Z
2022-01-12T16:04:12.000Z
mathematics_dataset/util/__init__.py
LaudateCorpus1/mathematics_dataset
e91dba649b843597c14b9d84dfe92bff79b7d299
[ "Apache-2.0" ]
226
2019-04-03T13:28:36.000Z
2022-03-27T18:41:01.000Z
# Copyright 2018 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
42.5
74
0.766387
4e9156ffc791e3e2811aa46b95358606f0797154
5,000
py
Python
pyquil/api/tests/test_rewrite_arithmetic.py
dwillmer/pyquil
f9a8504d20729b79f07ec4730c93f4b84d6439eb
[ "Apache-2.0" ]
1
2021-11-30T21:03:15.000Z
2021-11-30T21:03:15.000Z
pyquil/api/tests/test_rewrite_arithmetic.py
dwillmer/pyquil
f9a8504d20729b79f07ec4730c93f4b84d6439eb
[ "Apache-2.0" ]
null
null
null
pyquil/api/tests/test_rewrite_arithmetic.py
dwillmer/pyquil
f9a8504d20729b79f07ec4730c93f4b84d6439eb
[ "Apache-2.0" ]
null
null
null
from pyquil.quil import Program from pyquil.quilatom import Qubit, Frame from pyquil.quilbase import DefFrame from pyquil.api._rewrite_arithmetic import rewrite_arithmetic from rpcq.messages import ( ParameterAref, ParameterSpec, RewriteArithmeticResponse, ) def test_rewrite_arithmetic_no_params(): prog = Program("X 0") response = rewrite_arithmetic(prog) assert response == RewriteArithmeticResponse(quil=Program("X 0").out()) def test_rewrite_arithmetic_simple_mref(): prog = Program("DECLARE theta REAL", "RZ(theta) 0") response = rewrite_arithmetic(prog) assert response == RewriteArithmeticResponse( original_memory_descriptors={"theta": ParameterSpec(length=1, type="REAL")}, quil=Program("DECLARE __P1 REAL[1]", "DECLARE theta REAL[1]", "RZ(__P1[0]) 0").out(), recalculation_table={ParameterAref(index=0, name="__P1"): "theta[0]/(2*pi)"}, ) def test_rewrite_arithmetic_duplicate_exprs(): prog = Program( "DECLARE theta REAL", "RZ(theta*1.5) 0", "RX(theta*1.5) 0", # this is not a native gate, but it is a protoquil program ) response = rewrite_arithmetic(prog) assert response == RewriteArithmeticResponse( original_memory_descriptors={"theta": ParameterSpec(length=1, type="REAL")}, recalculation_table={ParameterAref(index=0, name="__P1"): "theta[0]*1.5/(2*pi)"}, quil=Program( "DECLARE __P1 REAL[1]", "DECLARE theta REAL[1]", "RZ(__P1[0]) 0", "RX(__P1[0]) 0" ).out(), ) def test_rewrite_arithmetic_mixed(): prog = Program( "DECLARE theta REAL", "DECLARE beta REAL", "RZ(3 * theta) 0", "RZ(beta+theta) 0", ) response = rewrite_arithmetic(prog) assert response.original_memory_descriptors == { "theta": ParameterSpec(length=1, type="REAL"), "beta": ParameterSpec(length=1, type="REAL"), } assert response.recalculation_table == { ParameterAref(index=0, name="__P2"): "3*theta[0]/(2*pi)", ParameterAref(index=1, name="__P2"): "(beta[0] + theta[0])/(2*pi)", } assert ( response.quil == Program( "DECLARE __P2 REAL[2]", "DECLARE theta REAL[1]", "DECLARE beta REAL[1]", "RZ(__P2[0]) 0", "RZ(__P2[1]) 0", ).out() ) def test_rewrite_arithmetic_set_scale(): prog = Program("DECLARE theta REAL", 'SET-SCALE 0 "rf" 1.0', 'SET-SCALE 0 "rf" theta',) response = rewrite_arithmetic(prog) assert response == RewriteArithmeticResponse( original_memory_descriptors={"theta": ParameterSpec(length=1, type="REAL")}, recalculation_table={ParameterAref(index=0, name="__P1"): "theta[0]/8"}, quil=Program( "DECLARE __P1 REAL[1]", "DECLARE theta REAL[1]", 'SET-SCALE 0 "rf" 1.0', 'SET-SCALE 0 "rf" __P1[0]', ).out(), ) def test_rewrite_arithmetic_frequency(): fdefn0 = DefFrame(frame=Frame([Qubit(0)], "rf"), center_frequency=10.0, sample_rate=20.0,) fdefn1 = DefFrame(frame=Frame([Qubit(1)], "rf"), sample_rate=20.0,) prog = Program( fdefn0, fdefn1, "DECLARE theta REAL", 'SET-FREQUENCY 0 "rf" theta', 'SHIFT-FREQUENCY 0 "rf" theta', 'SET-FREQUENCY 1 "rf" theta', ) response = rewrite_arithmetic(prog) assert response == RewriteArithmeticResponse( original_memory_descriptors={"theta": ParameterSpec(length=1, type="REAL")}, recalculation_table={ ParameterAref(index=0, name="__P1"): "(theta[0] - 10.0)/20.0", ParameterAref(index=1, name="__P1"): "theta[0]/20.0", }, quil=Program( fdefn0, fdefn1, "DECLARE __P1 REAL[2]", "DECLARE theta REAL[1]", 'SET-FREQUENCY 0 "rf" __P1[0]', 'SHIFT-FREQUENCY 0 "rf" __P1[0]', 'SET-FREQUENCY 1 "rf" __P1[1]', ).out(), ) def test_rewrite_arithmetic_mixed_mutations(): fdefn = DefFrame(frame=Frame([Qubit(0)], "rf"), center_frequency=10.0, sample_rate=20.0,) prog = Program( fdefn, "DECLARE theta REAL", 'SET-FREQUENCY 0 "rf" theta', 'SET-PHASE 0 "rf" theta', 'SET-SCALE 0 "rf" theta', ) response = rewrite_arithmetic(prog) assert response == RewriteArithmeticResponse( original_memory_descriptors={"theta": ParameterSpec(length=1, type="REAL")}, recalculation_table={ ParameterAref(index=0, name="__P1"): "(theta[0] - 10.0)/20.0", ParameterAref(index=1, name="__P1"): "theta[0]/(2*pi)", ParameterAref(index=2, name="__P1"): "theta[0]/8", }, quil=Program( fdefn, "DECLARE __P1 REAL[3]", "DECLARE theta REAL[1]", 'SET-FREQUENCY 0 "rf" __P1[0]', 'SET-PHASE 0 "rf" __P1[1]', 'SET-SCALE 0 "rf" __P1[2]', ).out(), )
33.783784
94
0.5956
40b4cf17405e86a4ac753ac882c29f49e76565ab
417
py
Python
Python/WebDev/Django/Tutorial/blog/models.py
michaelg29/Programming
2544a742393c6d94e93879f70246ce17d0997011
[ "MIT" ]
2
2021-04-05T20:44:54.000Z
2022-01-13T05:25:11.000Z
Python/WebDev/Django/Tutorial/blog/models.py
michaelg29/Programming
2544a742393c6d94e93879f70246ce17d0997011
[ "MIT" ]
12
2020-02-17T05:19:01.000Z
2022-03-17T14:56:38.000Z
Python/WebDev/Django/Tutorial/blog/models.py
michaelg29/Programming
2544a742393c6d94e93879f70246ce17d0997011
[ "MIT" ]
1
2022-01-25T16:48:21.000Z
2022-01-25T16:48:21.000Z
from django.db import models from django.utils import timezone from django.contrib.auth.models import User class Post(models.Model): title = models.CharField(max_length=100) content = models.TextField() date_posted = models.DateTimeField(default=timezone.now) author = models.ForeignKey(User, on_delete=models.CASCADE) # if user deleted, delete post def __str__(self): return self.title
32.076923
93
0.7506
3b098121ab4d928e9c805659b286849202350960
5,820
py
Python
bin/train.py
koreyou/multidomain-sentiment
766afdb839483c38a141c8d1d60c6faa75bd2684
[ "CC0-1.0" ]
null
null
null
bin/train.py
koreyou/multidomain-sentiment
766afdb839483c38a141c8d1d60c6faa75bd2684
[ "CC0-1.0" ]
null
null
null
bin/train.py
koreyou/multidomain-sentiment
766afdb839483c38a141c8d1d60c6faa75bd2684
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import json import logging import os import chainer import dill # This is for joblib to use dill. Do NOT delete it. import click import six from chainer import training from chainer.training import extensions from joblib import Memory import multidomain_sentiment from multidomain_sentiment.dataset.blitzer import prepare_blitzer_data from multidomain_sentiment.training import SaveRestore, EarlyStoppingTrigger logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) @click.command() @click.argument('dataset', type=click.Path(exists=True)) @click.argument('word2vec', type=click.Path(exists=True)) @click.option('--epoch', '-e', type=int, default=15, help='Number of sweeps over the dataset to train') @click.option('--frequency', '-f', default=[1, 'epoch'], type=(int, click.Choice(['epoch', 'iteration'])), help='Frequency of taking a snapshot') @click.option('--gpu', '-g', type=int, default=-1, help='GPU ID (negative value indicates CPU)') @click.option('--out', '-o', default='result', help='Directory to output the result and temporaly file') @click.option('--model', default='cnn', type=click.Choice(["cnn", "rnn"])) @click.option('--batchsize', '-b', type=int, default=300, help='Number of images in each mini-batch') @click.option('--lr', type=float, default=0.001, help='Learning rate') @click.option('--fix_embedding', type=bool, default=False, help='Fix word embedding during training') @click.option('--resume', '-r', default='', help='Resume the training from snapshot') def run(dataset, word2vec, epoch, frequency, gpu, out, model, batchsize, lr, fix_embedding, resume): """ Train multi-domain user review classification using Blitzer et al.'s dataset (https://www.cs.jhu.edu/~mdredze/datasets/sentiment/) Please refer README.md for details. """ memory = Memory(cachedir=out, verbose=1) w2v, vocab, train_dataset, dev_dataset, _, label_dict, domain_dict = \ memory.cache(prepare_blitzer_data)(dataset, word2vec) if model == 'rnn': model = multidomain_sentiment.models.create_rnn_predictor( len(domain_dict), w2v.shape[0], w2v.shape[1], 300, len(label_dict), 2, 300, dropout_rnn=0.1, initialEmb=w2v, dropout_emb=0.1, fix_embedding=fix_embedding ) elif model == 'cnn': model = multidomain_sentiment.models.create_cnn_predictor( len(domain_dict), w2v.shape[0], w2v.shape[1], 300, len(label_dict), 300, dropout_fc=0.1, initialEmb=w2v, dropout_emb=0.1, fix_embedding=fix_embedding ) else: assert not "should not get here" classifier = multidomain_sentiment.models.MultiDomainClassifier( model, domain_dict=domain_dict) if gpu >= 0: # Make a specified GPU current chainer.cuda.get_device_from_id(gpu).use() classifier.to_gpu() # Copy the model to the GPU # Setup an optimizer optimizer = chainer.optimizers.Adam(alpha=lr) optimizer.setup(classifier) train_iter = chainer.iterators.SerialIterator(train_dataset, batchsize) # Set up a trainer updater = training.StandardUpdater( train_iter, optimizer, device=gpu, converter=multidomain_sentiment.training.convert) if dev_dataset is not None: stop_trigger = EarlyStoppingTrigger( monitor='validation/main/loss', max_trigger=(epoch, 'epoch')) trainer = training.Trainer(updater, stop_trigger, out=out) logger.info("train: {}, dev: {}".format( len(train_dataset), len(dev_dataset))) # Evaluate the model with the development dataset for each epoch dev_iter = chainer.iterators.SerialIterator( dev_dataset, batchsize, repeat=False, shuffle=False) evaluator = extensions.Evaluator( dev_iter, classifier, device=gpu, converter=multidomain_sentiment.training.convert) trainer.extend(evaluator, trigger=frequency) # This works together with EarlyStoppingTrigger to provide more reliable # early stopping trainer.extend( SaveRestore(), trigger=chainer.training.triggers.MinValueTrigger( 'validation/main/loss')) else: trainer = training.Trainer(updater, (epoch, 'epoch'), out=out) logger.info("train: {}".format(len(train_dataset))) # SaveRestore will save the snapshot when dev_dataset is available trainer.extend(extensions.snapshot(), trigger=frequency) logger.info("With labels: %s" % json.dumps(label_dict)) # Take a snapshot for each specified epoch if gpu < 0: # ParameterStatistics does not work with GPU as of chainer 2.x # https://github.com/chainer/chainer/issues/3027 trainer.extend(extensions.ParameterStatistics( model, trigger=(100, 'iteration')), priority=99) # Write a log of evaluation statistics for each iteration trainer.extend(extensions.LogReport(trigger=(1, 'iteration')), priority=98) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy']), trigger=frequency, priority=97) if resume: # Resume from a snapshot chainer.serializers.load_npz(resume, trainer) logger.info("Started training") trainer.run() # Save final model (without trainer) chainer.serializers.save_npz(os.path.join(out, 'trained_model'), model) with open(os.path.join(out, 'vocab.json'), 'w') as fout: json.dump(vocab, fout) if __name__ == '__main__': run()
40.137931
80
0.673883
a8e2a35e4a1aae11f736a4bc966684c90698fe90
414
py
Python
setup.py
knu2xs/arcgis-demographic-clustering
1cccd4b534c565321cf8d6ca6b68c41bccd74a62
[ "Apache-2.0" ]
null
null
null
setup.py
knu2xs/arcgis-demographic-clustering
1cccd4b534c565321cf8d6ca6b68c41bccd74a62
[ "Apache-2.0" ]
null
null
null
setup.py
knu2xs/arcgis-demographic-clustering
1cccd4b534c565321cf8d6ca6b68c41bccd74a62
[ "Apache-2.0" ]
null
null
null
from setuptools import find_packages, setup with open('README.md', 'r') as readme: long_description = readme.read() setup( name='arcgis_clustering', package_dir={"": "src"}, packages=find_packages('src'), version='0.0.0', description='Demographic clutering using ArcGIS Business Analyst data.', long_description=long_description, author='Joel McCune', license='Apache 2.0', )
25.875
76
0.693237
a0474ac8bb9b302c61d3f34f3986d4545d168782
2,004
py
Python
utils/framework.py
kosuke55/DeepDepthDenoising
b1e7b95ca2e03384005b0540f865ddc7066a3e93
[ "MIT" ]
1
2020-04-15T16:46:56.000Z
2020-04-15T16:46:56.000Z
utils/framework.py
panluDreamer/DeepDepthDenoising
a994f495cd90193c78c1824367ce1462ae52752f
[ "MIT" ]
null
null
null
utils/framework.py
panluDreamer/DeepDepthDenoising
a994f495cd90193c78c1824367ce1462ae52752f
[ "MIT" ]
null
null
null
import torch import datetime import numpy import random from .opt import * from .visualization import * def initialize(args): # create and init device print("{} | Torch Version: {}".format(datetime.datetime.now(), torch.__version__)) if args.seed > 0: print("Set to reproducibility mode with seed: {}".format(args.seed)) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) numpy.random.seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False random.seed(args.seed) gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0] device = torch.device("cuda:{}" .format(gpus[0]) if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else "cpu") print("Training {0} for {1} epochs using a batch size of {2} on {3}".format(args.name, args.epochs, args.batch_size, device)) # create visualizer visualizer = NullVisualizer() if args.visdom is None\ else VisdomVisualizer(args.name, args.visdom,\ count=4 if 4 <= args.batch_size else args.batch_size) if args.visdom is None: args.visdom_iters = 0 # create & init model model_params = { 'width': 640, 'height': 360, 'ndf': args.ndf, 'dilation': args.dilation, 'norm_type': args.normalization, 'upsample_type': args.upsample_type } return device, visualizer, model_params def init_optimizer(model, args): opt_params = OptimizerParameters(learning_rate=args.lr, momentum=args.momentum,\ momentum2=args.momentum2, epsilon=args.epsilon) optimizer = get_optimizer(args.optimizer, model.parameters(), opt_params) if args.opt_state is not None: opt_state = torch.load(args.opt_state) print("Loading previously saved optimizer state from {}".format(args.opt_state)) optimizer.load_state_dict(opt_state["optimizer_state_dict"]) return optimizer
40.897959
129
0.662675
6b7f95a2d4b1f51013bb067d31447975b02bd2ea
2,512
py
Python
alembic/versions/67c47a7c2029_add_unique_constraints_and_indices.py
hasadna/open-bus-stride-db
368ef4ca8b6916ad1a502b9445cd47e27aa778b4
[ "MIT" ]
null
null
null
alembic/versions/67c47a7c2029_add_unique_constraints_and_indices.py
hasadna/open-bus-stride-db
368ef4ca8b6916ad1a502b9445cd47e27aa778b4
[ "MIT" ]
2
2022-01-17T11:07:33.000Z
2022-03-18T08:17:48.000Z
alembic/versions/67c47a7c2029_add_unique_constraints_and_indices.py
hasadna/open-bus-stride-db
368ef4ca8b6916ad1a502b9445cd47e27aa778b4
[ "MIT" ]
null
null
null
"""add unique constraints and indices Revision ID: 67c47a7c2029 Revises: 366df3cd0db1 Create Date: 2021-11-07 17:14:06.435914+00:00 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '67c47a7c2029' down_revision = '366df3cd0db1' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_index('idx_route_journey_ref_vehicle_ref', 'siri_ride', ['siri_route_id', 'journey_ref', 'vehicle_ref'], unique=True) op.create_index('idx_ride_stop_order', 'siri_ride_stop', ['siri_ride_id', 'siri_stop_id', 'order'], unique=True) op.create_index('idx_operator_ref_line_ref', 'siri_route', ['operator_ref', 'line_ref'], unique=True) op.drop_index('ix_siri_snapshot_snapshot_id', table_name='siri_snapshot') op.create_index(op.f('ix_siri_snapshot_snapshot_id'), 'siri_snapshot', ['snapshot_id'], unique=True) op.drop_index('ix_siri_stop_code', table_name='siri_stop') op.create_index(op.f('ix_siri_stop_code'), 'siri_stop', ['code'], unique=True) op.create_index(op.f('ix_siri_vehicle_location_recorded_at_time'), 'siri_vehicle_location', ['recorded_at_time'], unique=False) op.create_index(op.f('ix_siri_vehicle_location_siri_ride_stop_id'), 'siri_vehicle_location', ['siri_ride_stop_id'], unique=False) op.create_index(op.f('ix_siri_vehicle_location_siri_snapshot_id'), 'siri_vehicle_location', ['siri_snapshot_id'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_siri_vehicle_location_siri_snapshot_id'), table_name='siri_vehicle_location') op.drop_index(op.f('ix_siri_vehicle_location_siri_ride_stop_id'), table_name='siri_vehicle_location') op.drop_index(op.f('ix_siri_vehicle_location_recorded_at_time'), table_name='siri_vehicle_location') op.drop_index(op.f('ix_siri_stop_code'), table_name='siri_stop') op.create_index('ix_siri_stop_code', 'siri_stop', ['code'], unique=False) op.drop_index(op.f('ix_siri_snapshot_snapshot_id'), table_name='siri_snapshot') op.create_index('ix_siri_snapshot_snapshot_id', 'siri_snapshot', ['snapshot_id'], unique=False) op.drop_index('idx_operator_ref_line_ref', table_name='siri_route') op.drop_index('idx_ride_stop_order', table_name='siri_ride_stop') op.drop_index('idx_route_journey_ref_vehicle_ref', table_name='siri_ride') # ### end Alembic commands ###
53.446809
133
0.761943
96f5cbda9d91e34242c631f749cd0a20e2da47c6
1,208
py
Python
Software/Backend/app/model/Usuario.py
davidsgv/Sistemas-Transaccionales
a26904742bd163461aca7e8039448441b4a98fb9
[ "MIT" ]
null
null
null
Software/Backend/app/model/Usuario.py
davidsgv/Sistemas-Transaccionales
a26904742bd163461aca7e8039448441b4a98fb9
[ "MIT" ]
null
null
null
Software/Backend/app/model/Usuario.py
davidsgv/Sistemas-Transaccionales
a26904742bd163461aca7e8039448441b4a98fb9
[ "MIT" ]
null
null
null
from app.model.Base import selectDB, insertBD from uuid import uuid4 from flask import request class ManejoUsuarios(): @staticmethod def IniciarSesion(correo, contrasena, navegador): #Verificar datos de usuario query = "EXEC dbo.spVerificarDatosUsuario @correo = '{}', @clave = '{}'".format(correo, contrasena) data = selectDB(query) results = recorrerDatos(data) if len(results) <= 0: return 0 #generar token token = uuid4() query = "EXEC dbo.spCrearSesion @correo = '{}', @navegador = '{}', @token = '{}'".format(correo,navegador, token) insertBD(query) return token def VerificarSesion(): try: token = request.json["token"] except: return False #verificar token de usuario query = "EXEC spVerificarSesionToken @token = '{}'".format(token) data = selectDB(query) results = recorrerDatos(data) if len(results) <= 0: return False return True def recorrerDatos(data): results = [] for row in data: results.append(row) return results
26.26087
121
0.572848
fdb6c1e04052045149030c71061aaa1b9e7e7506
5,704
py
Python
ParlAI/parlai/tasks/fvqa/agents.py
UmaTaru/run
be29e4d41a4de3dee27cd6796801bfe51382d294
[ "MIT" ]
163
2019-06-23T14:07:57.000Z
2022-02-25T23:06:07.000Z
ParlAI/parlai/tasks/fvqa/agents.py
UmaTaru/run
be29e4d41a4de3dee27cd6796801bfe51382d294
[ "MIT" ]
8
2019-07-24T12:41:31.000Z
2022-02-10T00:17:20.000Z
ParlAI/parlai/tasks/fvqa/agents.py
UmaTaru/run
be29e4d41a4de3dee27cd6796801bfe51382d294
[ "MIT" ]
31
2019-06-26T01:21:07.000Z
2021-09-06T17:23:24.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from parlai.core.agents import Teacher from parlai.core.image_featurizers import ImageLoader from parlai.core.metrics import Metrics from .build import build import json import random import os def _path(opt): build(opt) questions_path = os.path.join( opt['datapath'], 'FVQA', 'new_dataset_release', 'all_qs_dict_release.json' ) trainset_path = os.path.join(opt['datapath'], 'FVQA', 'Name_Lists') image_path = os.path.join( opt['datapath'], 'FVQA', 'new_dataset_release', 'images', '' ) return questions_path, trainset_path, image_path class SplitTeacher(Teacher): """FVQA Teacher, which loads the json VQA data and implements its own `act` method for interacting with student agent. Use "fvqa:split:X" to choose between splits 0-4 (inclusive), or just "fvqa" to use the default split (0). """ def __init__(self, opt, shared=None): super().__init__(opt) dt = opt['datatype'].split(':')[0] if dt not in ('train', 'test'): raise RuntimeError('Not valid datatype (only train/test).') task = opt.get('task', 'fvqa:split:0') task_num = 0 # default to train/split 0 split = task.split(':') if len(split) > 2: task_num = split[2] if task_num not in [str(i) for i in range(5)]: raise RuntimeError('Invalid train/test split ID (0-4 inclusive)') if not hasattr(self, 'factmetrics'): if shared and shared.get('factmetrics'): self.factmetrics = shared['factmetrics'] else: self.factmetrics = Metrics(opt) self.datatype = opt['datatype'] questions_path, trainset_path, self.image_path = _path(opt) if shared and 'ques' in shared: self.ques = shared['ques'] else: self._setup_data(questions_path, trainset_path, dt, task_num) self.len = len(self.ques) self.asked_question = False # for ordered data in batch mode (especially, for validation and # testing), each teacher in the batch gets a start index and a step # size so they all process disparate sets of the data self.step_size = opt.get('batchsize', 1) self.data_offset = opt.get('batchindex', 0) self.image_loader = ImageLoader(opt) self.reset() def num_examples(self): return self.len def num_episodes(self): return self.len def report(self): r = super().report() r['factmetrics'] = self.factmetrics.report() return r def reset(self): # Reset the dialog so that it is at the start of the epoch, # and all metrics are reset. super().reset() self.lastY = None self.episode_idx = self.data_offset - self.step_size self.epochDone = False def reset_metrics(self): super().reset_metrics() self.factmetrics.clear() def observe(self, observation): """Process observation for metrics.""" if self.lastY is not None: if self.asked_question: self.metrics.update(observation, self.lastY[0]) else: self.factmetrics.update(observation, self.lastY[1]) self.lastY = None return observation def act(self): if self.asked_question: self.asked_question = False action = {'text': 'Which fact supports this answer?', 'episode_done': True} if self.datatype.startswith('train'): action['labels'] = self.lastY[1] if ( self.datatype != 'train' and self.episode_idx + self.step_size >= self.num_episodes() ): self.epochDone = True return action if self.datatype == 'train': self.episode_idx = random.randrange(self.len) else: self.episode_idx = (self.episode_idx + self.step_size) % self.num_episodes() self.asked_question = True qa = self.ques[self.episode_idx] question = qa['question'] img_path = self.image_path + qa['img_file'] action = { 'image': self.image_loader.load(img_path), 'text': question, 'episode_done': False, } human_readable = qa['fact_surface'].replace('[', '').replace(']', '') self.lastY = [[qa['answer']], [human_readable]] if self.datatype.startswith('train'): action['labels'] = self.lastY[0] return action def share(self): shared = super().share() shared['factmetrics'] = self.factmetrics shared['ques'] = self.ques if hasattr(self, 'facts'): shared['facts'] = self.facts return shared def _setup_data(self, questions_path, trainset_path, datatype, task_num): print('loading: ' + questions_path) with open(questions_path) as questions_file: questions = json.load(questions_file) train_test_images = set() fn = os.path.join(trainset_path, '{}_list_{}.txt'.format(datatype, task_num)) with open(fn) as imageset: for line in imageset: train_test_images.add(line.strip()) self.ques = [ questions[k] for k in sorted(questions.keys()) if questions[k]['img_file'] in train_test_images ] class DefaultTeacher(SplitTeacher): pass
32.781609
88
0.596599
8b3ee71c2d5b8458d11f059bceb2555813acc48b
10,324
py
Python
glm-plotter/GLMparser.py
jdechalendar/glmplotter
e715d4c646d739d906f96db075b2995fcf02da72
[ "MIT" ]
6
2017-03-03T04:07:47.000Z
2020-08-24T13:44:19.000Z
glm-plotter/GLMparser.py
jdechalendar/glmplotter
e715d4c646d739d906f96db075b2995fcf02da72
[ "MIT" ]
4
2018-12-10T02:42:35.000Z
2019-07-20T19:22:02.000Z
glm-plotter/GLMparser.py
jdechalendar/glm-plotter
e715d4c646d739d906f96db075b2995fcf02da72
[ "MIT" ]
6
2016-08-25T17:16:25.000Z
2020-06-19T05:53:39.000Z
""" JAC - jdechalendar@stanford.edu """ import pandas as pd import re def readGLM(iFile, verb=0): """ Main function to parse GLM files Modified July 12, 2016 - the returned objs are now a list Use list comprehensions to extract list of objects of a given class """ with open(iFile) as f: lines = f.readlines() modules = set() objs = [] commands = [] iLine = -1 while True: iLine += 1 if iLine > len(lines)-1: break if lines[iLine].strip().startswith('object'): read_objs, iLine = readObj(iLine, lines) for obj in read_objs: objs.append(obj) if lines[iLine].startswith('module'): modules.add(lines[iLine][7:].split('{')[0].strip(';').strip()) if lines[iLine].startswith('#'): commands.append(lines[iLine]) if verb: classList = [obj['class'] for obj in objs] countClass = {x: classList.count(x) for x in classList} print('Objects classes: ' + str( [str(a[0]) + ': ' + str(a[1]) for a in zip( countClass.keys(), countClass.values())])) print('Modules: ' + str(modules)) # post processing step to make sure the parent fields are correct # this was added to deal with the old glm syntax # the startLine and name fields are always there # the name_oldGLM is optional startLines = [obj['startLine'] for obj in objs] names = [obj['name'] for obj in objs] names_oldGLM = [obj['name_oldGLM'] if 'name_oldGLM' in obj else '' for obj in objs] for obj in objs: if 'parent' in obj: if obj['parent'] not in names: if obj['parent'] in names_oldGLM: parentObjID = names_oldGLM.index(obj['parent']) obj['parent'] = objs[parentObjID]['name'] elif obj['parent'] in startLines: parentObjID = startLines.index(obj['parent']) obj['parent'] = objs[parentObjID]['name'] else: raise ValueError("Cannot find this child's parent!") return objs, modules, commands def readObj(startLine, lines, parent=''): """ Read an object or objects (note that they can be nested) In old GLM files, there can be an object identifier given after a colon in the opening statement, or no name. In order of preference, we choose as our name the name, the object identifier (name_oldGLM) and the line of the opening statement The startLine and name fields are always there, the name_oldGLM is optional """ obj = [dict()] iLine = startLine # remove leading/trailing whitespace and comments currLine = lines[iLine].split('//')[0].strip() if currLine.startswith('object'): objClass = currLine[len('object '):].split('{')[0].split(':') obj[0]['class'] = objClass[0].strip() obj[0]['startLine'] = str(iLine) # old syntax for glm files: # there can be an id for the object after a colon if len(objClass) > 1 and objClass[1].strip(): # consider this is the name for now. If there is a name later on it # will be overwritten obj[0]['name_oldGLM'] = objClass[1].strip() if len(parent) > 0: obj[0]['parent'] = parent while True: iLine += 1 # remove leading/trailing whitespace and comments currLine = lines[iLine].split('//')[0].strip() # ignore end of object / comment / opening bracket if (currLine.find('}') > -1 and not currLine.find('{') > -1): break # done parsing object if (len(currLine) == 0 or currLine == "{"): continue # done parsing line if currLine.startswith('object'): # Reading another object if 'name' in obj[0]: parent = obj[0]['name'] elif 'name_oldGLM' in obj[0]: parent=obj[0]['name_oldGLM'] else: parent=obj[0]['startLine'] child, iLine = readObj(iLine, lines, parent=parent) obj.extend(child) else: data = lines[iLine].split(';')[0].strip() # only take stuff before ';' tmp = re.split('''\t| (?=(?:[^'"]|'[^']*'|"[^"]*")*$)''', data) if len(tmp) > 0: if len(tmp) == 2: obj[0][tmp[0]] = tmp[1].strip('"') # tmp[0].lower().startswith('rated') # or tmp[0].lower().startswith('reconnect_time'): # second case means there can be a unit elif len(tmp) == 3: # we expect a unit obj[0][tmp[0]] = tmp[1:] else: print('Line %d - Not expected' % iLine) print(lines[iLine]) # Check the name field is set for all objects we parsed for a in obj: if 'name' not in a: if 'name_oldGLM' in a: a['name'] = a['name_oldGLM'] else: a['name'] = a['startLine'] return obj, iLine def readClock(lines, currLine): """ This function reads the clock in the GLM file """ while True: currLine += 1 if (lines[currLine].find('}') > -1 and not lines[currLine].find('{') > -1): break if lines[currLine].strip().startswith('timezone'): timezone = lines[currLine].strip().split( ';')[0].strip('timezone ').strip('"') if lines[currLine].strip().startswith('starttime'): tmp = lines[currLine].strip().split(';')[0].strip('starttime ') tmp = pd.to_datetime(tmp) starttime = tmp if lines[currLine].strip().startswith('stoptime'): tmp = lines[currLine].strip().split(';')[0].strip('stoptime ') tmp = pd.to_datetime(tmp) stoptime = tmp return timezone, starttime, stoptime def getObjs(objs, attr, val=''): """ one liner to get list of all the objects whose attribute attr has value val Example call: getObjs(objs, 'class', 'load') """ if val: return [obj for obj in objs if attr in obj and obj[attr] == val] else: return [obj for obj in objs if attr in obj] def getAieul(objs, name): parent = [obj for obj in objs if obj['name'] == name] if len(parent) == 0: parent = [ obj for obj in objs if 'name_oldGLM' in obj and obj['name_oldGLM'] == name] if len(parent) == 0: parent = [obj['parent'] for obj in objs if obj['startLine'] == name] if len(parent) != 1: raise ValueError('The name to object relation should be bijective!') if 'parent' in parent[0]: parent = getAieul(objs, parent[0]['parent']) return parent def createD3JSON(objs, fileNm_out=''): """ This function creates a json file that will be used for plotting the GLM objects by the D3 force algorithm We use hardcoded decisions of which links and nodes should be plotted See GLMtoJSON notebook to change this Inputs are the objs object from the readGLM function and a file to write the output to. If no file name is provided, returns the json string """ # define links I want to plot link_type = ['overhead_line', 'switch', 'underground_line', 'regulator', 'transformer', 'triplex_line', 'fuse'] link_objs = [obj for obj in objs if obj['class'] in link_type] links = list( zip([getAieul(objs, link['from'])[0]['name'] for link in link_objs], [getAieul(objs, link['to'])[0]['name'] for link in link_objs], [link['class'] for link in link_objs])) # define nodes I want to plot node_type = ['node', 'load', 'meter', 'triplex_meter', 'triplex_node'] parent_objs = [obj for obj in objs if 'parent' not in obj] node_objs = [obj for obj in parent_objs if obj['class'] in node_type] # children I want to plot child_type = ['diesel_dg', 'capacitor'] children = dict([(obj['parent'], obj['class']) for obj in objs if obj['class'] in child_type]) # find unique nodes unique_nodes = list( set([n1 for n1, n2, n3 in links] + [n2 for n1, n2, n3 in links] + [nd['name'] for nd in node_objs])) if len(unique_nodes) > len(node_objs): print('I had to add ' + str(len(unique_nodes) - len(node_objs)) + ' nodes to draw the links - something is off') classNm = [ next((obj['class'] for obj in node_objs if obj["name"] == nd), '') for nd in unique_nodes] child = [children[nd] if nd in children else '' for nd in unique_nodes] JSONstr = '' JSONstr += '{\n "nodes":[\n' if len(unique_nodes) > 0: for iNode in range(len(unique_nodes)-1): JSONstr = (JSONstr + ' {"name":"' + unique_nodes[iNode] + '","classNm":"'+str(classNm[iNode]) + '","child":"' + str(child[iNode])+'"},\n') JSONstr += (' {"name":"' + unique_nodes[len(unique_nodes)-1] + '","classNm":"' + str(classNm[len(unique_nodes)-1]) + '","child":"'+str(child[len(unique_nodes)-1])+'"}\n') JSONstr += ' ],\n "links":[\n' if len(links) > 0: for iLink in range(len(links)-1): JSONstr += (' {"source":' + str(unique_nodes.index(links[iLink][0])) + ',"target":' + str(unique_nodes.index(links[iLink][1])) + ',"linkType":"' + links[iLink][2] + '"},\n') JSONstr += (' {"source":' + str(unique_nodes.index(links[len(links)-1][0])) + ',"target":' + str(unique_nodes.index(links[len(links)-1][1])) + ',"linkType":"' + links[len(links)-1][2] + '"}\n') JSONstr += ' ]\n}' if fileNm_out: with open(fileNm_out, 'w') as f: f.write(JSONstr) JSONstr = '' # if we wrote to file, don't return it return JSONstr
39.555556
87
0.537389
eb697021280c40e8705ae0b0ff0b6471fb050e43
401
py
Python
backend/z_vent_30438/wsgi.py
crowdbotics-apps/z-vent-30438
d06342c9a6a8feb2f5a2c75c90c2b14d4ab59110
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/z_vent_30438/wsgi.py
crowdbotics-apps/z-vent-30438
d06342c9a6a8feb2f5a2c75c90c2b14d4ab59110
[ "FTL", "AML", "RSA-MD" ]
6
2021-09-14T01:39:57.000Z
2021-10-31T15:32:36.000Z
backend/z_vent_30438/wsgi.py
crowdbotics-apps/z-vent-30438
d06342c9a6a8feb2f5a2c75c90c2b14d4ab59110
[ "FTL", "AML", "RSA-MD" ]
null
null
null
""" WSGI config for z_vent_30438 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'z_vent_30438.settings') application = get_wsgi_application()
23.588235
78
0.790524
ac6655b69a0182b23cb4f11995ab808e3baf1f0e
4,411
py
Python
goodsorigin/views.py
caiwei-0627/GreaterWMS
db3d7b200343fd9eea07fa3fcdf33c4c9c37c4b4
[ "Apache-2.0" ]
3
2020-10-19T05:55:28.000Z
2020-11-12T03:55:06.000Z
goodsorigin/views.py
coolflywms/GreaterWMS
0509b8842bbd8cae9540b6f13f7b3cb6fa5a911c
[ "Apache-2.0" ]
1
2020-07-24T07:34:36.000Z
2020-07-24T07:34:36.000Z
goodsorigin/views.py
Singosgu/Elvis_WMS
e6911b7daae76be640ece8946104af24b6cf0fa6
[ "MIT" ]
4
2020-09-04T13:35:15.000Z
2020-10-16T15:10:38.000Z
from rest_framework import viewsets from .models import ListModel from . import serializers from utils.page import MyPageNumberPagination from rest_framework.filters import OrderingFilter from django_filters.rest_framework import DjangoFilterBackend from rest_framework.response import Response from .filter import Filter from rest_framework.exceptions import APIException class APIViewSet(viewsets.ModelViewSet): """ retrieve: Response a data list(get) list: Response a data list(all) create: Create a data line(post) delete: Delete a data line(delete) partial_update: Partial_update a data(patch:partial_update) update: Update a data(put:update) """ pagination_class = MyPageNumberPagination filter_backends = [DjangoFilterBackend, OrderingFilter, ] ordering_fields = ['id', "create_time", "update_time", ] filter_class = Filter def get_project(self): try: id = self.kwargs.get('pk') return id except: return None def get_queryset(self): id = self.get_project() if self.request.user: if id is None: return ListModel.objects.filter(openid=self.request.auth.openid, is_delete=False) else: return ListModel.objects.filter(openid=self.request.auth.openid, id=id, is_delete=False) else: return ListModel.objects.none() def get_serializer_class(self): if self.action in ['list', 'retrieve', 'destroy']: return serializers.GoodsoriginGetSerializer elif self.action in ['create']: return serializers.GoodsoriginPostSerializer elif self.action in ['update']: return serializers.GoodsoriginUpdateSerializer elif self.action in ['partial_update']: return serializers.GoodsoriginPartialUpdateSerializer else: return self.http_method_not_allowed(request=self.request) def create(self, request, *args, **kwargs): data = self.request.data data['openid'] = self.request.auth.openid if ListModel.objects.filter(openid=data['openid'], goods_origin=data['goods_origin'], is_delete=False).exists(): raise APIException({"detail": "Data exists"}) else: serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def update(self, request, pk): qs = self.get_object() if qs.openid != self.request.auth.openid: raise APIException({"detail": "Cannot update data which not yours"}) data = self.request.data if ListModel.objects.filter(openid=self.request.auth.openid,goods_origin=data['goods_origin'], is_delete=False).exists(): raise APIException({"detail": "Data exists"}) else: serializer = self.get_serializer(qs, data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def partial_update(self, request, pk): qs = self.get_object() if qs.openid != self.request.auth.openid: raise APIException({"detail": "Cannot partial_update data which not yours"}) else: data = self.request.data serializer = self.get_serializer(qs, data=data, partial=True) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def destroy(self, request, pk): qs = self.get_object() if qs.openid != self.request.auth.openid: raise APIException({"detail": "Cannot delete data which not yours"}) else: qs.is_delete = True qs.save() serializer = self.get_serializer(qs, many=False) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers)
39.035398
129
0.643845
bdc790faf745b81e8e0f4c0e50f296a38fbc9819
1,893
py
Python
examples/plot_scalar_example.py
stevegolton/toppra
846e2a7f5b87e0e1884b244b07d5fd661edcd9bd
[ "MIT" ]
342
2017-07-26T17:37:19.000Z
2022-03-28T19:50:27.000Z
examples/plot_scalar_example.py
stevegolton/toppra
846e2a7f5b87e0e1884b244b07d5fd661edcd9bd
[ "MIT" ]
151
2017-11-30T06:14:29.000Z
2022-03-29T02:06:08.000Z
examples/plot_scalar_example.py
stevegolton/toppra
846e2a7f5b87e0e1884b244b07d5fd661edcd9bd
[ "MIT" ]
134
2017-08-18T21:35:39.000Z
2022-03-25T03:43:08.000Z
""" Retime an one dimensional path =============================== """ ################################################################################ # Import necessary libraries. import toppra as ta import toppra.constraint as constraint import toppra.algorithm as algo import numpy as np import matplotlib.pyplot as plt ta.setup_logging("INFO") ################################################################################ # We now generate a simply path. When constructing a path, you must # "align" the waypoint properly yourself. For instance, if the # waypoints are [0, 1, 10] like in the above example, the path # position should be aligned like [0, 0.1, 1.0]. If this is not done, # the CubicSpline Interpolator might result undesirable oscillating # paths! waypts = [[0], [1], [10]] path = ta.SplineInterpolator([0, 0.1, 1.0], waypts) ################################################################################ # Setup the velocity and acceleration vlim = np.array([[-3, 3]]) alim = np.array([[-4, 4]]) pc_vel = constraint.JointVelocityConstraint(vlim) pc_acc = constraint.JointAccelerationConstraint( alim, discretization_scheme=constraint.DiscretizationType.Interpolation) ################################################################################ # Setup the problem instance and solve it. instance = algo.TOPPRA([pc_vel, pc_acc], path, solver_wrapper='seidel') jnt_traj = instance.compute_trajectory(0, 0) ################################################################################ # We can now visualize the result duration = jnt_traj.duration print("Found optimal trajectory with duration {:f} sec".format(duration)) ts = np.linspace(0, duration, 100) fig, axs = plt.subplots(3, 1, sharex=True) qs = jnt_traj.eval(ts) qds = jnt_traj.evald(ts) qdds = jnt_traj.evaldd(ts) axs[0].plot(ts, qs) axs[1].plot(ts, qds) axs[2].plot(ts, qdds) plt.show()
35.055556
80
0.570523
0463f9ce01c4566ca0abd0498408cb78e4fc78e9
5,101
py
Python
tests/applier/data_postgres_cdc_applier_inactive_applied_tables.py
albertteoh/data_pipeline
a99f1c7412375b3e9f4115108fcdde517b2e71a6
[ "Apache-2.0" ]
16
2017-10-31T21:43:26.000Z
2019-08-11T08:49:06.000Z
tests/applier/data_postgres_cdc_applier_inactive_applied_tables.py
albertteoh/data_pipeline
a99f1c7412375b3e9f4115108fcdde517b2e71a6
[ "Apache-2.0" ]
1
2017-11-01T06:25:56.000Z
2017-11-01T06:25:56.000Z
tests/applier/data_postgres_cdc_applier_inactive_applied_tables.py
albertteoh/data_pipeline
a99f1c7412375b3e9f4115108fcdde517b2e71a6
[ "Apache-2.0" ]
9
2017-10-30T05:23:15.000Z
2022-02-17T03:53:09.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import data_pipeline.constants.const as const from .data_common import TestCase, UPDATE_SSP_SQL tests=[ TestCase( description="Skip insert and apply update statements belonging to inactive tables each with end of batch", input_table_name="INACTIVE_TABLE", input_commit_statements=[ '', 'insert into "SYS"."INACTIVE_TABLE"("COMPNDPK_1","COMPNDPK_2","COMPNDPK_3","COMPNDPK_4","COMPNDPK_5","COL_TS_0","COL_V_1","COL_V_2","COL_V_3","COL_V_4","COL_N_5","COL_N_6","COL_N_7","COL_N_8","COL_N_9","COL_NAS_9") values (\'26\',\'26.1\',\'26.2\',\'26.3\',\'26.4\',TO_TIMESTAMP(\'2017-04-19 12:14:22\'),\'26_varchar_1\',\'26_varchar_2\',\'26_varchar_3\',\'26_varchar_4\',\'26.5\',\'26.6\',\'26.7\',\'26.8\',\'26.9\',\'This is a nasty string ??a??????????\')', '', '', 'update "SYS"."INACTIVE_TABLE" set "COL_V_2" = \'26.9\' where "COMPNDPK_1" = \'26\'', ''], input_record_types=[const.START_OF_BATCH, const.DATA, const.END_OF_BATCH, const.START_OF_BATCH, const.DATA, const.END_OF_BATCH], input_operation_codes=['', const.INSERT, '', '', const.UPDATE, ''], input_primary_key_fields="COMPNDPK_1", input_record_counts=[0, 0, 1, 0, 0, 1], input_commit_lsns=[0, 0, 0, 0, 0, 0], expect_sql_execute_called=[ None, None, None, None, None, None], expect_execute_called_times=[0, 0, 0, 0, 0, 0], expect_audit_db_execute_sql_called=[None, None, None, None, None, None], expect_commit_called_times=[0, 0, 0, 0, 0, 0], expect_insert_row_count=[0, 0, 0, 0, 0, 0], expect_update_row_count=[0, 0, 0, 0, 0, 0], expect_delete_row_count=[0, 0, 0, 0, 0, 0], expect_source_row_count=[0, 0, 0, 0, 0, 0], expect_batch_committed=[const.UNCOMMITTED, const.UNCOMMITTED, const.UNCOMMITTED, const.UNCOMMITTED, const.UNCOMMITTED, const.UNCOMMITTED,] ) , TestCase( description="Don't skip insert and apply update statements not belonging to inactive tables each with end of batch", input_table_name="CONNCT_CDC_PK5_COLS10", input_commit_statements=[ '', 'insert into "SYS"."CONNCT_CDC_PK5_COLS10"("COMPNDPK_1","COMPNDPK_2","COMPNDPK_3","COMPNDPK_4","COMPNDPK_5","COL_TS_0","COL_V_1","COL_V_2","COL_V_3","COL_V_4","COL_N_5","COL_N_6","COL_N_7","COL_N_8","COL_N_9","COL_NAS_9") values (\'26\',\'26.1\',\'26.2\',\'26.3\',\'26.4\',TO_TIMESTAMP(\'2017-04-19 12:14:22\'),\'26_varchar_1\',\'26_varchar_2\',\'26_varchar_3\',\'26_varchar_4\',\'26.5\',\'26.6\',\'26.7\',\'26.8\',\'26.9\',\'This is a nasty string ??a??????????\')', '', '', 'update "SYS"."CONNCT_CDC_PK5_COLS10" set "COL_V_2" = \'26.9\' where "COMPNDPK_1" = \'26\'', ''], input_record_types=[const.START_OF_BATCH, const.DATA, const.END_OF_BATCH, const.START_OF_BATCH, const.DATA, const.END_OF_BATCH], input_operation_codes=['', const.INSERT, '', '', const.UPDATE, ''], input_primary_key_fields="COMPNDPK_1", input_record_counts=[0, 0, 1, 0, 0, 1], input_commit_lsns=[0, 0, 0, 0, 0, 0], expect_sql_execute_called=[ None, "INSERT INTO ctl.CONNCT_CDC_PK5_COLS10 ( COL_NAS_9, COL_N_5, COL_N_6, COL_N_7, COL_N_8, COL_N_9, COL_TS_0, COL_V_1, COL_V_2, COL_V_3, COL_V_4, COMPNDPK_1, COMPNDPK_2, COMPNDPK_3, COMPNDPK_4, COMPNDPK_5 ) VALUES ( 'This is a nasty string ??a??????????', '26.5', '26.6', '26.7', '26.8', '26.9', '2017-04-19 12:14:22', '26_varchar_1', '26_varchar_2', '26_varchar_3', '26_varchar_4', '26', '26.1', '26.2', '26.3', '26.4' ); -- lsn: 0, offset: 1", None, None, "UPDATE ctl.CONNCT_CDC_PK5_COLS10 SET COL_V_2 = '26.9' WHERE COMPNDPK_1 = '26'; -- lsn: 0, offset: 1", None], expect_execute_called_times=[0, 1, 1, 1, 2, 2], expect_audit_db_execute_sql_called=[None, None, None, None, None, (UPDATE_SSP_SQL, ('CDCApply', 0, 'myprofile', 1, 'ctl', 'connct_cdc_pk5_cols10'))], expect_commit_called_times=[0, 0, 1, 1, 1, 2], expect_insert_row_count=[0, 1, 1, 1, 1, 1], expect_update_row_count=[0, 0, 0, 0, 1, 1], expect_delete_row_count=[0, 0, 0, 0, 0, 0], expect_source_row_count=[0, 1, 1, 1, 2, 2], expect_batch_committed=[const.UNCOMMITTED, const.UNCOMMITTED, const.COMMITTED, const.UNCOMMITTED, const.UNCOMMITTED, const.COMMITTED,] ) ]
56.677778
476
0.662223
d5c9c1544b8161150890e15486242a4e0a5dba41
314
py
Python
Chapter 15/setup.py
bpbpublications/Building-Smart-Robots-Using-ROS
62f473d0cc94966806c1b66f46e9fba812080338
[ "MIT" ]
null
null
null
Chapter 15/setup.py
bpbpublications/Building-Smart-Robots-Using-ROS
62f473d0cc94966806c1b66f46e9fba812080338
[ "MIT" ]
null
null
null
Chapter 15/setup.py
bpbpublications/Building-Smart-Robots-Using-ROS
62f473d0cc94966806c1b66f46e9fba812080338
[ "MIT" ]
null
null
null
## ! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD from distutils.core import setup from catkin_pkg.python_setup import generate_distutils_setup # fetch values from package.xml setup_args = generate_distutils_setup( packages=['object_detection'], package_dir={'': 'src'}) setup(**setup_args)
26.166667
61
0.770701
719e8a2e317b25455d76f9746824548d25aebbbb
5,804
py
Python
Code/convertor.py
Helvboy/Semester-Project
d1bd2349ff8833178eb6120fd99ad668eadb25e0
[ "Unlicense" ]
null
null
null
Code/convertor.py
Helvboy/Semester-Project
d1bd2349ff8833178eb6120fd99ad668eadb25e0
[ "Unlicense" ]
null
null
null
Code/convertor.py
Helvboy/Semester-Project
d1bd2349ff8833178eb6120fd99ad668eadb25e0
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon May 3 20:37:20 2021 @author: Eloi Schlegel """ import numpy as np def cloud_points_to_pixels(points, densities, resolution=0.1): """ Transform the a cloud points into a pixelized image N - number of points \n D - number of dimensions \n L - Length of the image \n H - Height of the image \n Ni - number of graduation on the scale for the i-Dimension, extrema included Parameters ---------- points : np.ndarray of float [NxD] - all the points of the cloud densities : np.ndarray of float [Nx1] - densities at each point resolution : float, optional The default is 0.1. Set the distance between 2 pixels Returns ------- pixels : np.ndarray of float [LxH] - array containing the densities of each points in the space """ N, D = points.shape minima = np.min(points,0) maxima = np.max(points,0) scales = [] #scale creation for each D-dimension for i in range(D): scales.append(np.arange(minima[i], maxima[i]+0.5*resolution, resolution) ) pixels = np.zeros(tuple([np.shape(scales[i])[0]for i in range(D)])) # keep the last assigned value ( should make a mean of the assigned values) for i in range(N): idxs = locate_points_on_scale(points[i], scales) pixels[tuple(idxs)] = densities[i] return pixels def locate_points_on_scale(pt, scales): """ Find the location of a point on a scale and give back the indexs of the nearest graduations from the point D - number of dimensions Ni - number of graduation on the scale for the i-Dimension, extrema included Parameters ---------- pt : np.ndarray of float [1xD] - coordinates of a point scales : list of np.ndarray of float [N1x1] .... [Ndx1] - scale of each dimension Returns ------- idxs : np.ndarray of int [Dx1] - index of where the point correspond """ D = len(pt) idxs = np.zeros(D).astype(int) for i in range(D): idxs[i] = np.argmin(abs(scales[i] - pt[i]) ) return idxs def voxels_to_cloud_points(elements, vertices): """ Transform the voxels into a cloud points in D-dimension. E - number of voxels \n V - number of vertices which define the voxel \n N - number of whole vertices \n D - number of dimensions Parameters ---------- elements : np.ndarray of int [ExV] - indices of the points which define an element vertices : np.ndarray of float [NxD] - coordinates of the vertices Returns ------- points : np.ndarray of float [NxD] - coordinates of each voxel center """ points = [] for idxs_vertices in elements: points = np.append( points, voxel_middle( vertices[idxs_vertices-1]) ) return points.reshape( -1, vertices.shape[1]) def voxel_middle( vertices): """ Calculate the coordinates of the middle of a voxel defined by N-vertices in D-dimension N - number of points \n D - number of dimensions Parameters ---------- vertices : np.ndarray of float [NxD] - vertices of the element Returns ------- coord : np.ndarray of float [Dx1] - coordinates of the center """ coord = np.mean(vertices, 0) return coord def format_convertor(coordinates, links): """ Convert the matrix with index of the points in a matrix with the coordinates of all the points. N - number of points D - number of dimensions P - number of links Parameters ---------- coordinates : np.ndarray of float [NxD] - coordinates of points links : np.ndarray of int [Px2] - indices of the end points of the path Returns ------- links_matrix : np.ndarray of float [NxD] - coordinates of the end points of the path """ nb_path = len(links) D = np.shape(coordinates)[1] links_coor = np.zeros((nb_path, D*2)) for i in range(nb_path): id_ps = links[i] links_coor[i,0:D] = coordinates[id_ps[0]] links_coor[i,D:] = coordinates[id_ps[1]] return links_coor def coord_2_id( pts, coordinates): """ Find the id of the point in the coordinates matrix ( for 2 points ) P is the number of points to manage N is the number of skeleton's points Parameters ---------- pts : np.ndarray of float [Px2] - coordinates of the points to evaluate coordinates : np.ndarray of float [Nx2] - coordinates of all the known points Returns ------- pt_id : np.ndarray of int [Px1] - indices of the points in the array coordinates """ pt_id = [] for i in range(len(pts)): #find the id of the node i temp1 = np.array(np.where(coordinates[1:,0] == pts[i,0])) temp2 = np.array(np.where(coordinates[1:,1] == pts[i,1])) for x in range( temp1.shape[1]): for y in range( temp2.shape[1]): if ( temp1[0,x] == temp2[0,y]): break if ( temp1[0,x] == temp2[0,y]): break #Import to add the "+1" to have the id and not the index pt_id = np.append(pt_id, temp1[0,x]+1 ) pt_id = np.asarray(pt_id) return pt_id.astype(int) if __name__ == '__main__': print('convertor executed')
25.795556
83
0.56306
7776b8a64df60f519435997d51ff89a7bdc6ba00
1,278
py
Python
test.py
TimSC/pgmap-query
02a274172ec651e41db89bffd7b11d1f91eb5488
[ "MIT" ]
2
2018-09-01T00:32:35.000Z
2019-03-24T15:10:41.000Z
test.py
TimSC/pgmap-query
02a274172ec651e41db89bffd7b11d1f91eb5488
[ "MIT" ]
5
2018-02-05T01:53:48.000Z
2019-05-12T20:22:14.000Z
test.py
TimSC/pgmap-query
02a274172ec651e41db89bffd7b11d1f91eb5488
[ "MIT" ]
1
2021-03-18T10:15:41.000Z
2021-03-18T10:15:41.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import print_function import pgmap import io import string def ReadConfig(fina): fi = open(fina, "rt") settings = {} for li in fi.readlines(): lisp = map(string.strip, li.split(":")) if len(lisp) < 2: continue settings[lisp[0]] = lisp[1] return settings if __name__=="__main__": settings = ReadConfig("config.cfg") p = pgmap.PgMap("dbname={} user={} password='{}' hostaddr={} port=5432".format( settings["dbname"], settings["dbuser"], settings["dbpass"], settings["dbhost"]), settings["dbtableprefix"], settings["dbtabletestprefix"]) print ("Connected to database", p.Ready()) t = p.GetTransaction(b"ACCESS SHARE") if 0: sio = io.BytesIO() #enc = pgmap.PyO5mEncode(sio) enc = pgmap.PyOsmXmlEncode(sio) print (t.MapQuery((-1.1473846,50.7360206,-0.9901428,50.8649113), 0, enc)) data = sio.getvalue() print (len(data), "bytes") if 1: osmData = pgmap.OsmData() objectIds = [1000594005591, 1000595178493, 1000594446551] t.GetObjectsById("node", pgmap.seti64(objectIds), osmData); print (len(osmData.nodes)) for i in range(len(osmData.nodes)): node = osmData.nodes[i] print (type(node)) print (node.objId, node.lat, node.lon) t.Commit()
25.058824
83
0.680751
7f212436c965591733004b7d0df70a2f3cb122f6
14,507
py
Python
actstream/tests.py
lincolnloop/django-activity-stream
b1b4884624fab982b35fbcbd28ed321d12e3d054
[ "BSD-3-Clause" ]
null
null
null
actstream/tests.py
lincolnloop/django-activity-stream
b1b4884624fab982b35fbcbd28ed321d12e3d054
[ "BSD-3-Clause" ]
null
null
null
actstream/tests.py
lincolnloop/django-activity-stream
b1b4884624fab982b35fbcbd28ed321d12e3d054
[ "BSD-3-Clause" ]
null
null
null
from random import choice from django.db import connection from django.db.models import get_model from django.test import TestCase from django.conf import settings from django.contrib.auth.models import User, AnonymousUser, Group from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.template.loader import Template, Context from actstream.models import Action, Follow, model_stream, user_stream,\ setup_generic_relations from actstream.actions import follow, unfollow from actstream.exceptions import ModelNotActionable from actstream.signals import action from actstream import settings as actstream_settings class LTE(int): def __new__(cls, n): obj = super(LTE, cls).__new__(cls, n) obj.n = n return obj def __eq__(self, other): return other <= self.n def __repr__(self): return "<= %s" % self.n class ActivityBaseTestCase(TestCase): actstream_models = () def setUp(self): self.old_MODELS = actstream_settings.MODELS actstream_settings.MODELS = {} for model in self.actstream_models: actstream_settings.MODELS[model.lower()] = \ get_model(*model.split('.')) setup_generic_relations() def tearDown(self): actstream_settings.MODELS = self.old_MODELS class ActivityTestCase(ActivityBaseTestCase): urls = 'actstream.urls' actstream_models = ('auth.User', 'auth.Group', 'sites.Site') def setUp(self): super(ActivityTestCase, self).setUp() self.group = Group.objects.create(name='CoolGroup') self.group2 = Group.objects.create(name='Nerds') self.user1 = User.objects.get_or_create(username='admin')[0] self.user1.set_password('admin') self.user1.is_superuser = self.user1.is_staff = True self.user1.save() self.user2 = User.objects.get_or_create(username='Two')[0] # User1 joins group self.user1.groups.add(self.group) action.send(self.user1, verb='joined', target=self.group) # User1 follows User2 follow(self.user1, self.user2) # User2 joins group self.user2.groups.add(self.group) action.send(self.user2, verb='joined', target=self.group) # User2 follows group follow(self.user2, self.group) # User2 follows the second group (not just as an actor). follow(self.user2, self.group2, actor_only=False) # User1 comments on group # Use a site object here and predict the "__unicode__ method output" action.send(self.user1, verb='commented on', target=self.group) self.comment = Site.objects.create( domain="admin: Sweet Group!...") # Group responds to comment action.send(self.group, verb='responded to', target=self.comment) def test_aauser1(self): self.assertEqual(map(unicode, self.user1.actor_actions.all()), [ u'admin commented on CoolGroup 0 minutes ago', u'admin started following Two 0 minutes ago', u'admin joined CoolGroup 0 minutes ago', ]) def test_user2(self): self.assertEqual(map(unicode, Action.objects.actor(self.user2)), [ u'Two started following Nerds 0 minutes ago', u'Two started following CoolGroup 0 minutes ago', u'Two joined CoolGroup 0 minutes ago', ]) def test_group(self): self.assertEqual(map(unicode, Action.objects.actor(self.group)), [u'CoolGroup responded to admin: Sweet Group!... 0 minutes ago']) def test_empty_follow_stream(self): unfollow(self.user1, self.user2) self.assert_(not user_stream(self.user1)) def test_stream(self): self.assertEqual(map(unicode, Action.objects.user(self.user1)), [ u'Two started following Nerds 0 minutes ago', u'Two started following CoolGroup 0 minutes ago', u'Two joined CoolGroup 0 minutes ago', ]) self.assertEqual(map(unicode, Action.objects.user(self.user2)), [ u'CoolGroup responded to admin: Sweet Group!... 0 minutes ago', u'Two started following Nerds 0 minutes ago', ]) def test_stream_stale_follows(self): """ Action.objects.user() should ignore Follow objects with stale actor references. """ self.user2.delete() self.assert_(not 'Two' in str(Action.objects.user(self.user1))) def test_rss(self): rss = self.client.get('/feed/').content self.assert_(rss.startswith('<?xml version="1.0" encoding="utf-8"?>\n' '<rss xmlns:atom="http://www.w3.org/2005/Atom" version="2.0">')) self.assert_(rss.find('Activity feed for your followed actors') > -1) def test_atom(self): atom = self.client.get('/feed/atom/').content self.assert_(atom.startswith('<?xml version="1.0" encoding="utf-8"?>\n' '<feed xmlns="http://www.w3.org/2005/Atom" xml:lang="%s">' % settings.LANGUAGE_CODE)) self.assert_(atom.find('Activity feed for your followed actors') > -1) def test_action_object(self): action.send(self.user1, verb='created comment', action_object=self.comment, target=self.group) created_action = Action.objects.get(verb='created comment') self.assertEqual(created_action.actor, self.user1) self.assertEqual(created_action.action_object, self.comment) self.assertEqual(created_action.target, self.group) self.assertEqual(unicode(created_action), u'admin created comment admin: Sweet Group!... on CoolGroup 0 ' 'minutes ago') def test_doesnt_generate_duplicate_follow_records(self): g = Group.objects.get_or_create(name='DupGroup')[0] s = User.objects.get_or_create(username='dupuser')[0] f1 = follow(s, g) self.assertTrue(f1 is not None, "Should have received a new follow " "record") self.assertTrue(isinstance(f1, Follow), "Returns a Follow object") self.assertEquals(1, Follow.objects.filter(user=s, object_id=g.pk, content_type=ContentType.objects.get_for_model(g)).count(), "Should only have 1 follow record here") f2 = follow(s, g) self.assertEquals(1, Follow.objects.filter(user=s, object_id=g.pk, content_type=ContentType.objects.get_for_model(g)).count(), "Should still only have 1 follow record here") self.assertTrue(f2 is not None, "Should have received a Follow object") self.assertTrue(isinstance(f2, Follow), "Returns a Follow object") self.assertEquals(f1, f2, "Should have received the same Follow " "object that I first submitted") def test_zzzz_no_orphaned_actions(self): actions = self.user1.actor_actions.count() self.user2.delete() self.assertEqual(actions, self.user1.actor_actions.count() + 1) def test_generic_relation_accessors(self): self.assertEqual(self.user2.actor_actions.count(), 3) self.assertEqual(self.user2.target_actions.count(), 1) self.assertEqual(self.user2.action_object_actions.count(), 0) def test_bad_actionable_model(self): self.assertRaises(ModelNotActionable, follow, self.user1, ContentType.objects.get_for_model(self.user1)) def test_hidden_action(self): action = self.user1.actor_actions.all()[0] action.public = False action.save() self.assert_(not action in self.user1.actor_actions.public()) def test_tag_follow_url(self): src = '{% load activity_tags %}{% follow_url user %}' output = Template(src).render(Context({'user': self.user1})) ct = ContentType.objects.get_for_model(User) self.assertEqual(output, '/follow/%s/%s/' % (ct.pk, self.user1.pk)) def test_model_actions_with_kwargs(self): """ Testing the model_actions method of the ActionManager by passing kwargs """ self.assertEqual(map(unicode, model_stream(self.user1, verb='commented on')), [ u'admin commented on CoolGroup 0 minutes ago', ]) def test_user_stream_with_kwargs(self): """ Testing the user method of the ActionManager by passing additional filters in kwargs """ self.assertEqual(map(unicode, Action.objects.user(self.user1, verb='joined')), [ u'Two joined CoolGroup 0 minutes ago', ]) def test_is_following_filter(self): src = '{% load activity_tags %}{% if user|is_following:group %}yup{% endif %}' self.assertEqual(Template(src).render(Context({ 'user': self.user2, 'group': self.group })), u'yup') self.assertEqual(Template(src).render(Context({ 'user': self.user1, 'group': self.group })), u'') class ZombieTest(ActivityBaseTestCase): actstream_models = ('auth.User',) human = 10 zombie = 1 def setUp(self): super(ZombieTest, self).setUp() settings.DEBUG = True player_generator = lambda n, count: [User.objects.create( username='%s%d' % (n, i)) for i in range(count)] self.humans = player_generator('human', self.human) self.zombies = player_generator('zombie', self.zombie) self.zombie_apocalypse() def tearDown(self): settings.DEBUG = False super(ZombieTest, self).tearDown() def zombie_apocalypse(self): humans = self.humans[:] zombies = self.zombies[:] while humans: for z in self.zombies: victim = choice(humans) humans.remove(victim) zombies.append(victim) action.send(z, verb='killed', target=victim) if not humans: break def check_query_count(self, queryset): ci = len(connection.queries) result = list([map(unicode, (x.actor, x.target, x.action_object)) for x in queryset]) self.assertTrue(len(connection.queries) - ci <= 4, 'Too many queries, got %d expected no more than 4' % len(connection.queries)) return result def test_query_count(self): queryset = model_stream(User) result = self.check_query_count(queryset) self.assertEqual(len(result), 10) def test_query_count_sliced(self): queryset = model_stream(User)[:5] result = self.check_query_count(queryset) self.assertEqual(len(result), 5) class GFKManagerTestCase(TestCase): def setUp(self): self.user_ct = ContentType.objects.get_for_model(User) self.group_ct = ContentType.objects.get_for_model(Group) self.group, _ = Group.objects.get_or_create(name='CoolGroup') self.user1, _ = User.objects.get_or_create(username='admin') self.user2, _ = User.objects.get_or_create(username='Two') self.user3, _ = User.objects.get_or_create(username='Three') self.user4, _ = User.objects.get_or_create(username='Four') Action.objects.get_or_create( actor_content_type=self.user_ct, actor_object_id=self.user1.id, verb='followed', target_content_type=self.user_ct, target_object_id=self.user2.id ) Action.objects.get_or_create( actor_content_type=self.user_ct, actor_object_id=self.user1.id, verb='followed', target_content_type=self.user_ct, target_object_id=self.user3.id ) Action.objects.get_or_create( actor_content_type=self.user_ct, actor_object_id=self.user1.id, verb='followed', target_content_type=self.user_ct, target_object_id=self.user4.id ) Action.objects.get_or_create( actor_content_type=self.user_ct, actor_object_id=self.user1.id, verb='joined', target_content_type=self.group_ct, target_object_id=self.group.id ) def test_fetch_generic_relations(self): # baseline without fetch_generic_relations _actions = Action.objects.filter(actor_content_type=self.user_ct, actor_object_id=self.user1.id) actions = lambda: _actions._clone() num_content_types = len(set(actions().values_list( 'target_content_type_id', flat=True))) n = actions().count() # compare to fetching only 1 generic relation self.assertNumQueries(LTE(n + 1), lambda: [a.target for a in actions()]) self.assertNumQueries(LTE(num_content_types + 2), lambda: [a.target for a in actions().fetch_generic_relations('target')]) action_targets = [(a.id, a.target) for a in actions()] action_targets_fetch_generic = [(a.id, a.target) for a in actions().fetch_generic_relations('target')] self.assertEqual(action_targets, action_targets_fetch_generic) # compare to fetching all generic relations num_content_types = len(set(sum(actions().values_list( 'actor_content_type_id', 'target_content_type_id'), ()))) self.assertNumQueries(LTE(2 * n + 1), lambda: [(a.actor, a.target) for a in actions()]) self.assertNumQueries(LTE(num_content_types + 2), lambda: [(a.actor, a.target) for a in actions().fetch_generic_relations()]) action_actor_targets = [(a.id, a.actor, a.target) for a in actions()] action_actor_targets_fetch_generic_all = [ (a.id, a.actor, a.target) for a in actions().fetch_generic_relations()] self.assertEqual(action_actor_targets, action_actor_targets_fetch_generic_all) # fetch only 1 generic relation, but access both gfks self.assertNumQueries(LTE(n + num_content_types + 2), lambda: [(a.actor, a.target) for a in actions().fetch_generic_relations('target')]) action_actor_targets_fetch_generic_target = [ (a.id, a.actor, a.target) for a in actions().fetch_generic_relations('target')] self.assertEqual(action_actor_targets, action_actor_targets_fetch_generic_target)
39.52861
88
0.636934
144e88c9c9e7499ac681e175f75900f7f928ce83
6,435
py
Python
src/kubernetes/client/models/v1alpha1_pod_preset_spec.py
MarletteFunding/aws-kube-codesuite
ab4e5ce45416b83bffb947ab8d234df5437f4fca
[ "Apache-2.0" ]
184
2017-12-20T21:50:06.000Z
2022-03-19T13:24:58.000Z
src/kubernetes/client/models/v1alpha1_pod_preset_spec.py
MarletteFunding/aws-kube-codesuite
ab4e5ce45416b83bffb947ab8d234df5437f4fca
[ "Apache-2.0" ]
15
2018-01-17T17:30:51.000Z
2021-12-16T14:25:09.000Z
src/kubernetes/client/models/v1alpha1_pod_preset_spec.py
MarletteFunding/aws-kube-codesuite
ab4e5ce45416b83bffb947ab8d234df5437f4fca
[ "Apache-2.0" ]
136
2018-01-09T22:52:06.000Z
2022-02-24T13:26:18.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.7.4 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class V1alpha1PodPresetSpec(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, env=None, env_from=None, selector=None, volume_mounts=None, volumes=None): """ V1alpha1PodPresetSpec - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'env': 'list[V1EnvVar]', 'env_from': 'list[V1EnvFromSource]', 'selector': 'V1LabelSelector', 'volume_mounts': 'list[V1VolumeMount]', 'volumes': 'list[V1Volume]' } self.attribute_map = { 'env': 'env', 'env_from': 'envFrom', 'selector': 'selector', 'volume_mounts': 'volumeMounts', 'volumes': 'volumes' } self._env = env self._env_from = env_from self._selector = selector self._volume_mounts = volume_mounts self._volumes = volumes @property def env(self): """ Gets the env of this V1alpha1PodPresetSpec. Env defines the collection of EnvVar to inject into containers. :return: The env of this V1alpha1PodPresetSpec. :rtype: list[V1EnvVar] """ return self._env @env.setter def env(self, env): """ Sets the env of this V1alpha1PodPresetSpec. Env defines the collection of EnvVar to inject into containers. :param env: The env of this V1alpha1PodPresetSpec. :type: list[V1EnvVar] """ self._env = env @property def env_from(self): """ Gets the env_from of this V1alpha1PodPresetSpec. EnvFrom defines the collection of EnvFromSource to inject into containers. :return: The env_from of this V1alpha1PodPresetSpec. :rtype: list[V1EnvFromSource] """ return self._env_from @env_from.setter def env_from(self, env_from): """ Sets the env_from of this V1alpha1PodPresetSpec. EnvFrom defines the collection of EnvFromSource to inject into containers. :param env_from: The env_from of this V1alpha1PodPresetSpec. :type: list[V1EnvFromSource] """ self._env_from = env_from @property def selector(self): """ Gets the selector of this V1alpha1PodPresetSpec. Selector is a label query over a set of resources, in this case pods. Required. :return: The selector of this V1alpha1PodPresetSpec. :rtype: V1LabelSelector """ return self._selector @selector.setter def selector(self, selector): """ Sets the selector of this V1alpha1PodPresetSpec. Selector is a label query over a set of resources, in this case pods. Required. :param selector: The selector of this V1alpha1PodPresetSpec. :type: V1LabelSelector """ self._selector = selector @property def volume_mounts(self): """ Gets the volume_mounts of this V1alpha1PodPresetSpec. VolumeMounts defines the collection of VolumeMount to inject into containers. :return: The volume_mounts of this V1alpha1PodPresetSpec. :rtype: list[V1VolumeMount] """ return self._volume_mounts @volume_mounts.setter def volume_mounts(self, volume_mounts): """ Sets the volume_mounts of this V1alpha1PodPresetSpec. VolumeMounts defines the collection of VolumeMount to inject into containers. :param volume_mounts: The volume_mounts of this V1alpha1PodPresetSpec. :type: list[V1VolumeMount] """ self._volume_mounts = volume_mounts @property def volumes(self): """ Gets the volumes of this V1alpha1PodPresetSpec. Volumes defines the collection of Volume to inject into the pod. :return: The volumes of this V1alpha1PodPresetSpec. :rtype: list[V1Volume] """ return self._volumes @volumes.setter def volumes(self, volumes): """ Sets the volumes of this V1alpha1PodPresetSpec. Volumes defines the collection of Volume to inject into the pod. :param volumes: The volumes of this V1alpha1PodPresetSpec. :type: list[V1Volume] """ self._volumes = volumes def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, V1alpha1PodPresetSpec): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
28.986486
105
0.591919
5be70be1f368fd47d6033ba61c4c6b57b87df8e1
1,248
py
Python
src/surveys18/tests/test_phone.py
wups101/alss-dev
6dde342e4de4f0d94df2769e83f6fefc79100daf
[ "MIT" ]
null
null
null
src/surveys18/tests/test_phone.py
wups101/alss-dev
6dde342e4de4f0d94df2769e83f6fefc79100daf
[ "MIT" ]
null
null
null
src/surveys18/tests/test_phone.py
wups101/alss-dev
6dde342e4de4f0d94df2769e83f6fefc79100daf
[ "MIT" ]
null
null
null
from django.test import TestCase from django.core.management import call_command from surveys18.models import Survey, Phone class ModelTestCase(TestCase): """ models: Phone, Survey reference models : data: phone.yaml, survey.yaml main: Phone associate survey, the one farmer has many phones. """ def setUp(self): # load fixtures call_command('loaddata', 'test/survey.yaml', verbosity=0) call_command('loaddata', 'test/phone.yaml', verbosity=0) def test_loaddata(self): survey_list = Survey.objects.all() self.assertEquals(len(survey_list), 3) phone_list = Phone.objects.all() self.assertEquals(len(phone_list), 3) def test_create_phone(self): survey_id = Survey.objects.get(id=3) phone_list_before_size = len(Phone.objects.all()) #new value Phone.objects.create(survey=survey_id, phone=22222222) phone_list_after_size = len(Phone.objects.all()) self.assertEquals(phone_list_after_size, phone_list_before_size+1) def test_survey_delete(self): Survey.objects.filter(id=1).delete() phone_list = Phone.objects.filter(survey__id=1) self.assertEquals(phone_list.count(), 0)
29.023256
74
0.680288
7aa22d7aaebbee0c3af1bc76393c2ea52f68638b
5,807
py
Python
src/python/ensembl/production/datafile/scraper/parsers/base.py
luca-drf/ensembl-production
8251026004d786f5a160584f3550227adc395cc1
[ "Apache-2.0" ]
null
null
null
src/python/ensembl/production/datafile/scraper/parsers/base.py
luca-drf/ensembl-production
8251026004d786f5a160584f3550227adc395cc1
[ "Apache-2.0" ]
null
null
null
src/python/ensembl/production/datafile/scraper/parsers/base.py
luca-drf/ensembl-production
8251026004d786f5a160584f3550227adc395cc1
[ "Apache-2.0" ]
null
null
null
# See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base File Parser for DataFile Scraper package""" from dataclasses import dataclass from datetime import datetime from pathlib import Path from typing import Dict, List, Tuple, Optional from urllib.parse import urljoin from ..utils import blake2bsum, make_release _FILE_COMPRESSIONS_MAP = {"gz": "gzip"} @dataclass class FileURL: url: str headers: Dict[str, str] @dataclass class Species: production_name: str division: str taxon_id: int species_taxon_id: int classifications: List[str] @dataclass class Release: ens: int eg: int date: str @dataclass class Assembly: default: str accession: str provider_name: str genome_id: int @dataclass class BaseOptMetadata: file_extension: Optional[str] @dataclass class BaseFileMetadata: file_type: str species: str ens_release: int @dataclass class FileMetadata: file_path: str file_set_id: Optional[int] file_format: str release: Release assembly: Assembly file_size: int file_last_modified: str blake2bsum: str urls: List[FileURL] species: Species optional_data: BaseOptMetadata @dataclass class Result: file_metadata: Optional[FileMetadata] errors: List[str] class FileParserError(ValueError): def __init__(self, message: str, errors: dict) -> None: super().__init__(message) self.errors = errors class BaseFileParser: def __init__(self, **options) -> None: self._options = options self._ftp_dirs = [ (Path(options.get("ftp_dir_ens", "")).resolve(), options.get("ftp_url_ens")), (Path(options.get("ftp_dir_eg", "")).resolve(), options.get("ftp_url_eg")), ] def parse_metadata(self, metadata: dict) -> Result: errors: List[str] = [] file_path = (Path(metadata["file_dir"]) / metadata["file_name"]).resolve() try: base_metadata = self.get_base_metadata(metadata) except ValueError as e: errors.append(f"Error parsing base metadata: {e}") try: optional_data = self.get_optional_metadata(metadata) except ValueError as e: errors.append(f"Error parsing optional metadata: {e}") if errors: errors.insert(0, f"Cannot parse {file_path}") return Result(None, errors) file_stats = file_path.stat() last_modified = ( datetime.fromtimestamp(file_stats.st_mtime).astimezone().isoformat() ) b2bsum_chunk_size = self._options.get("b2bsum_chunk_size") b2bsum = blake2bsum(file_path, b2bsum_chunk_size).hex() ftp_uri = self.get_ftp_uri(file_path) file_metadata = FileMetadata( file_path=str(file_path), file_set_id=metadata.get("file_set_id"), file_format=metadata["file_format"], release=Release( *make_release(int(metadata["ens_release"])), date=metadata["release_date"] ), assembly=Assembly( default=metadata["assembly_default"], accession=metadata["assembly_accession"], provider_name="", genome_id=metadata["genome_id"], ), file_size=file_stats.st_size, file_last_modified=last_modified, blake2bsum=b2bsum, urls=[FileURL(ftp_uri, {})], species=Species( production_name=base_metadata.species, division=metadata["division"], taxon_id=metadata["taxon_id"], species_taxon_id=metadata["species_taxon_id"], classifications=[metadata["division"]], ), optional_data=optional_data, ) result = Result(file_metadata, errors) return result def _ftp_paths(self, file_path: Path) -> Tuple[str, Optional[Path]]: for ftp_root_dir, ftp_root_uri in self._ftp_dirs: try: relative_path = file_path.relative_to(ftp_root_dir) return ftp_root_uri, relative_path except (ValueError, TypeError): pass return "", None def get_ftp_uri(self, file_path: Path) -> str: ftp_root_uri, relative_path = self._ftp_paths(file_path) if relative_path is not None: ftp_uri = urljoin(ftp_root_uri, str(relative_path)) return ftp_uri return "none" def get_base_metadata(self, metadata: dict) -> BaseFileMetadata: raise NotImplementedError( "Calling abstract method: BaseFileParser.get_base_metadata" ) def get_optional_metadata(self, metadata: dict) -> BaseOptMetadata: raise NotImplementedError( "Calling abstract method: BaseFileParser.get_optional_metadata" ) class FileParser(BaseFileParser): def get_base_metadata(self, metadata: dict) -> BaseFileMetadata: return BaseFileMetadata( file_type=metadata["file_format"].lower(), species=metadata["species"].lower(), ens_release=int(metadata["ens_release"]), )
31.053476
90
0.64715
c6caf9c84eb2f194be4efeebf8974f24b922ee30
565
py
Python
actor_critic.py
escribano89/tennis-maddpg
f7877bdb0a9f9e773b3d4a1d4847338b9cea9a8e
[ "MIT" ]
null
null
null
actor_critic.py
escribano89/tennis-maddpg
f7877bdb0a9f9e773b3d4a1d4847338b9cea9a8e
[ "MIT" ]
null
null
null
actor_critic.py
escribano89/tennis-maddpg
f7877bdb0a9f9e773b3d4a1d4847338b9cea9a8e
[ "MIT" ]
1
2020-12-20T19:07:42.000Z
2020-12-20T19:07:42.000Z
# -*- coding: utf-8 -*- from actor import Actor from critic import Critic from params import DEVICE class ActorCritic(): def __init__(self, n_agents, state_size, action_size, seed): critic_input_size = (state_size+action_size)*n_agents self.actor_regular = Actor(state_size, action_size, seed).to(DEVICE) self.actor_target = Actor(state_size, action_size, seed).to(DEVICE) self.critic_regular = Critic(critic_input_size, seed).to(DEVICE) self.critic_target = Critic(critic_input_size, seed).to(DEVICE)
37.666667
76
0.704425
0a1e93fae4f966a6c5026ee3e224d1fcac5d0c1b
747
py
Python
RIT33PYT/Codigo_1/DesignPattern/recordar.py
Sbastdia/Ejercicios-probables-examen
1074dcb08c5daf7bda0c0e9bbacb96c991895f32
[ "Apache-2.0" ]
null
null
null
RIT33PYT/Codigo_1/DesignPattern/recordar.py
Sbastdia/Ejercicios-probables-examen
1074dcb08c5daf7bda0c0e9bbacb96c991895f32
[ "Apache-2.0" ]
null
null
null
RIT33PYT/Codigo_1/DesignPattern/recordar.py
Sbastdia/Ejercicios-probables-examen
1074dcb08c5daf7bda0c0e9bbacb96c991895f32
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ Patrón de diseño Llamada """ __author__ = "Sébastien CHAZALLET" __copyright__ = "Copyright 2012" __credits__ = ["Sébastien CHAZALLET", "InsPyration.org", "Ediciones ENI"] __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Sébastien CHAZALLET" __email__ = "sebastien.chazallet@laposte.net" __status__ = "Production" def callback(): print('Función de llamada') def do(value, *args, callback): print('Action') if value > 0: callback() do(0, callback=callback) do(1, callback=callback) class A: def __init__(self, name): self.name = name def do(self, *args, callback): callback(self.name) class B: def print(self, name): print(name) a = A('Test') a.do(callback=B().print)
17.372093
73
0.690763
b0b5428493f6de53bbe201bdb2b321e0e7be21ed
54,969
py
Python
tinytag/tinytag.py
russpoutine/tinytag
2c03b0b4b15056feb7c8051fa39728bcd71be30d
[ "MIT" ]
null
null
null
tinytag/tinytag.py
russpoutine/tinytag
2c03b0b4b15056feb7c8051fa39728bcd71be30d
[ "MIT" ]
null
null
null
tinytag/tinytag.py
russpoutine/tinytag
2c03b0b4b15056feb7c8051fa39728bcd71be30d
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # tinytag - an audio meta info reader # Copyright (c) 2014-2018 Tom Wallroth # # Sources on github: # http://github.com/devsnd/tinytag/ # MIT License # Copyright (c) 2014-2019 Tom Wallroth # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function import json from collections import MutableMapping, OrderedDict import codecs from functools import reduce import struct import os import io import sys from io import BytesIO import re DEBUG = os.environ.get('DEBUG', False) # some of the parsers can print debug info class TinyTagException(LookupError): # inherit LookupError for backwards compat pass def _read(fh, nbytes): # helper function to check if we haven't reached EOF b = fh.read(nbytes) if len(b) < nbytes: raise TinyTagException('Unexpected end of file') return b def stderr(*args): sys.stderr.write('%s\n' % ' '.join(args)) sys.stderr.flush() def _bytes_to_int_le(b): fmt = {1: '<B', 2: '<H', 4: '<I', 8: '<Q'}.get(len(b)) return struct.unpack(fmt, b)[0] if fmt is not None else 0 def _bytes_to_int(b): return reduce(lambda accu, elem: (accu << 8) + elem, b, 0) class TinyTag(object): def __init__(self, filehandler, filesize, ignore_errors=False): if isinstance(filehandler, str): raise Exception('Use `TinyTag.get(filepath)` instead of `TinyTag(filepath)`') self._filehandler = filehandler self.filesize = filesize self.album = None self.albumartist = None self.artist = None self.audio_offset = None self.bitrate = None self.channels = None self.comment = None self.composer = None self.disc = None self.disc_total = None self.duration = None self.genre = None self.samplerate = None self.title = None self.track = None self.track_total = None self.year = None self._load_image = False self._image_data = None self._ignore_errors = ignore_errors def as_dict(self): return {k: v for k, v in self.__dict__.items() if not k.startswith('_')} @classmethod def is_supported(cls, filename): return cls._get_parser_for_filename(filename) is not None def get_image(self): return self._image_data @classmethod def _get_parser_for_filename(cls, filename): mapping = { (b'.mp3',): ID3, (b'.oga', b'.ogg', b'.opus'): Ogg, (b'.wav',): Wave, (b'.flac',): Flac, (b'.wma',): Wma, (b'.m4b', b'.m4a', b'.mp4'): MP4, } if not isinstance(filename, bytes): # convert filename to binary filename = filename.encode('ASCII', errors='ignore').lower() for ext, tagclass in mapping.items(): if filename.endswith(ext): return tagclass @classmethod def _get_parser_for_file_handle(cls, fh): # https://en.wikipedia.org/wiki/List_of_file_signatures magic_bytes_mapping = { b'^ID3': ID3, b'^\xff\xfb': ID3, b'^OggS': Ogg, b'^RIFF....WAVE': Wave, b'^fLaC': Flac, b'^\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C': Wma, b'....ftypM4A': MP4, # https://www.file-recovery.com/m4a-signature-format.htm } header = fh.peek(max(len(sig) for sig in magic_bytes_mapping)) for magic, parser in magic_bytes_mapping.items(): if re.match(magic, header): return parser @classmethod def get_parser_class(cls, filename, filehandle): if cls != TinyTag: # if `get` is invoked on TinyTag, find parser by ext return cls # otherwise use the class on which `get` was invoked parser_class = cls._get_parser_for_filename(filename) if parser_class is not None: return parser_class # try determining the file type by magic byte header parser_class = cls._get_parser_for_file_handle(filehandle) if parser_class is not None: return parser_class raise TinyTagException('No tag reader found to support filetype! ') @classmethod def get(cls, filename, tags=True, duration=True, image=False, ignore_errors=False): try: # cast pathlib.Path to str import pathlib if isinstance(filename, pathlib.Path): filename = str(filename.absolute()) except ImportError: pass else: filename = os.path.expanduser(filename) size = os.path.getsize(filename) if not size > 0: return TinyTag(None, 0) with io.open(filename, 'rb') as af: parser_class = cls.get_parser_class(filename, af) tag = parser_class(af, size, ignore_errors=ignore_errors) tag.load(tags=tags, duration=duration, image=image) return tag def __str__(self): return json.dumps(OrderedDict(sorted(self.as_dict().items()))) def __repr__(self): return str(self) def load(self, tags, duration, image=False): self._load_image = image if tags: self._parse_tag(self._filehandler) if duration: if tags: # rewind file if the tags were already parsed self._filehandler.seek(0) self._determine_duration(self._filehandler) def _set_field(self, fieldname, bytestring, transfunc=None): """convienience function to set fields of the tinytag by name. the payload (bytestring) can be changed using the transfunc""" if getattr(self, fieldname): # do not overwrite existing data return value = bytestring if transfunc is None else transfunc(bytestring) if DEBUG: stderr('Setting field "%s" to "%s"' % (fieldname, value)) if fieldname == 'genre': genre_id = 255 if value.isdigit(): # funky: id3v1 genre hidden in a id3v2 field genre_id = int(value) else: # funkier: the TCO may contain genres in parens, e.g. '(13)' genre_in_parens = re.match('^\\((\\d+)\\)$', value) if genre_in_parens: genre_id = int(genre_in_parens.group(1)) if 0 <= genre_id < len(ID3.ID3V1_GENRES): value = ID3.ID3V1_GENRES[genre_id] if fieldname in ("track", "disc"): if type(value).__name__ in ('str', 'unicode') and '/' in value: current, total = value.split('/')[:2] setattr(self, "%s_total" % fieldname, total) else: current = value setattr(self, fieldname, current) else: setattr(self, fieldname, value) def _determine_duration(self, fh): raise NotImplementedError() def _parse_tag(self, fh): raise NotImplementedError() def update(self, other): # update the values of this tag with the values from another tag for key in ['track', 'track_total', 'title', 'artist', 'album', 'albumartist', 'year', 'duration', 'genre', 'disc', 'disc_total', 'comment', 'composer']: if not getattr(self, key) and getattr(other, key): setattr(self, key, getattr(other, key)) @staticmethod def _unpad(s): # strings in mp3 and asf *may* be terminated with a zero byte at the end return s.replace('\x00', '') class MP4(TinyTag): # see: https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/Metadata/Metadata.html # and: https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/QTFFChap2/qtff2.html class Parser: # https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/Metadata/Metadata.html#//apple_ref/doc/uid/TP40000939-CH1-SW34 ATOM_DECODER_BY_TYPE = { 0: lambda x: x, # 'reserved', 1: lambda x: codecs.decode(x, 'utf-8', 'replace'), # UTF-8 2: lambda x: codecs.decode(x, 'utf-16', 'replace'), # UTF-16 3: lambda x: codecs.decode(x, 's/jis', 'replace'), # S/JIS # 16: duration in millis 13: lambda x: x, # JPEG 14: lambda x: x, # PNG 21: lambda x: struct.unpack('>b', x)[0], # BE Signed int 22: lambda x: struct.unpack('>B', x)[0], # BE Unsigned int 23: lambda x: struct.unpack('>f', x)[0], # BE Float32 24: lambda x: struct.unpack('>d', x)[0], # BE Float64 # 27: lambda x: x, # BMP # 28: lambda x: x, # QuickTime Metadata atom 65: lambda x: struct.unpack('b', x)[0], # 8-bit Signed int 66: lambda x: struct.unpack('>h', x)[0], # BE 16-bit Signed int 67: lambda x: struct.unpack('>i', x)[0], # BE 32-bit Signed int 74: lambda x: struct.unpack('>q', x)[0], # BE 64-bit Signed int 75: lambda x: struct.unpack('B', x)[0], # 8-bit Unsigned int 76: lambda x: struct.unpack('>H', x)[0], # BE 16-bit Unsigned int 77: lambda x: struct.unpack('>I', x)[0], # BE 32-bit Unsigned int 78: lambda x: struct.unpack('>Q', x)[0], # BE 64-bit Unsigned int } @classmethod def make_data_atom_parser(cls, fieldname): def parse_data_atom(data_atom): data_type = struct.unpack('>I', data_atom[:4])[0] conversion = cls.ATOM_DECODER_BY_TYPE.get(data_type) if conversion is None: stderr('Cannot convert data type: %s' % data_type) return {} # don't know how to convert data atom # skip header & null-bytes, convert rest return {fieldname: conversion(data_atom[8:])} return parse_data_atom @classmethod def make_number_parser(cls, fieldname1, fieldname2): def _(data_atom): number_data = data_atom[8:14] numbers = struct.unpack('>HHH', number_data) # for some reason the first number is always irrelevant. return {fieldname1: numbers[1], fieldname2: numbers[2]} return _ @classmethod def parse_id3v1_genre(cls, data_atom): # dunno why the genre is offset by -1 but that's how mutagen does it idx = struct.unpack('>H', data_atom[8:])[0] - 1 if idx < len(ID3.ID3V1_GENRES): return {'genre': ID3.ID3V1_GENRES[idx]} return {'genre': None} @classmethod def parse_audio_sample_entry(cls, data): # this atom also contains the esds atom: # https://ffmpeg.org/doxygen/0.6/mov_8c-source.html # http://xhelmboyx.tripod.com/formats/mp4-layout.txt datafh = BytesIO(data) datafh.seek(16, os.SEEK_CUR) # jump over version and flags channels = struct.unpack('>H', datafh.read(2))[0] datafh.seek(2, os.SEEK_CUR) # jump over bit_depth datafh.seek(2, os.SEEK_CUR) # jump over QT compr id & pkt size sr = struct.unpack('>I', datafh.read(4))[0] esds_atom_size = struct.unpack('>I', data[28:32])[0] esds_atom = BytesIO(data[36:36 + esds_atom_size]) # http://sasperger.tistory.com/103 esds_atom.seek(22, os.SEEK_CUR) # jump over most data... esds_atom.seek(4, os.SEEK_CUR) # jump over max bitrate avg_br = struct.unpack('>I', esds_atom.read(4))[0] / 1000.0 # kbit/s return {'channels': channels, 'samplerate': sr, 'bitrate': avg_br} @classmethod def parse_mvhd(cls, data): # http://stackoverflow.com/a/3639993/1191373 walker = BytesIO(data) version = struct.unpack('b', walker.read(1))[0] walker.seek(3, os.SEEK_CUR) # jump over flags if version == 0: # uses 32 bit integers for timestamps walker.seek(8, os.SEEK_CUR) # jump over create & mod times time_scale = struct.unpack('>I', walker.read(4))[0] duration = struct.unpack('>I', walker.read(4))[0] else: # version == 1: # uses 64 bit integers for timestamps walker.seek(16, os.SEEK_CUR) # jump over create & mod times time_scale = struct.unpack('>I', walker.read(4))[0] duration = struct.unpack('>q', walker.read(8))[0] return {'duration': float(duration) / time_scale} @classmethod def debug_atom(cls, data): stderr(data) # use this function to inspect atoms in an atom tree return {} # The parser tree: Each key is an atom name which is traversed if existing. # Leaves of the parser tree are callables which receive the atom data. # callables return {fieldname: value} which is updates the TinyTag. META_DATA_TREE = {b'moov': {b'udta': {b'meta': {b'ilst': { # see: http://atomicparsley.sourceforge.net/mpeg-4files.html b'\xa9alb': {b'data': Parser.make_data_atom_parser('album')}, b'\xa9ART': {b'data': Parser.make_data_atom_parser('artist')}, b'aART': {b'data': Parser.make_data_atom_parser('albumartist')}, # b'cpil': {b'data': Parser.make_data_atom_parser('compilation')}, b'\xa9cmt': {b'data': Parser.make_data_atom_parser('comment')}, b'disk': {b'data': Parser.make_number_parser('disc', 'disc_total')}, b'\xa9wrt': {b'data': Parser.make_data_atom_parser('composer')}, b'\xa9day': {b'data': Parser.make_data_atom_parser('year')}, b'\xa9gen': {b'data': Parser.make_data_atom_parser('genre')}, b'gnre': {b'data': Parser.parse_id3v1_genre}, b'\xa9nam': {b'data': Parser.make_data_atom_parser('title')}, b'trkn': {b'data': Parser.make_number_parser('track', 'track_total')}, }}}}} # see: https://developer.apple.com/library/mac/documentation/QuickTime/QTFF/QTFFChap3/qtff3.html AUDIO_DATA_TREE = { b'moov': { b'mvhd': Parser.parse_mvhd, b'trak': {b'mdia': {b"minf": {b"stbl": {b"stsd": {b'mp4a': Parser.parse_audio_sample_entry }}}}} } } IMAGE_DATA_TREE = {b'moov': {b'udta': {b'meta': {b'ilst': { b'covr': {b'data': Parser.make_data_atom_parser('_image_data')}, }}}}} VERSIONED_ATOMS = {b'meta', b'stsd'} # those have an extra 4 byte header FLAGGED_ATOMS = {b'stsd'} # these also have an extra 4 byte header def _determine_duration(self, fh): self._traverse_atoms(fh, path=self.AUDIO_DATA_TREE) def _parse_tag(self, fh): self._traverse_atoms(fh, path=self.META_DATA_TREE) if self._load_image: # A bit inefficient, we rewind the file self._filehandler.seek(0) # to parse it again for the image self._traverse_atoms(fh, path=self.IMAGE_DATA_TREE) def _traverse_atoms(self, fh, path, stop_pos=None, curr_path=None): header_size = 8 atom_header = fh.read(header_size) while len(atom_header) == header_size: atom_size = struct.unpack('>I', atom_header[:4])[0] - header_size atom_type = atom_header[4:] if curr_path is None: # keep track how we traversed in the tree curr_path = [atom_type] if atom_size <= 0: # empty atom, jump to next one atom_header = fh.read(header_size) continue if DEBUG: stderr('%s pos: %d atom: %s len: %d' % (' ' * 4 * len(curr_path), fh.tell() - header_size, atom_type, atom_size + header_size)) if atom_type in self.VERSIONED_ATOMS: # jump atom version for now fh.seek(4, os.SEEK_CUR) if atom_type in self.FLAGGED_ATOMS: # jump atom flags for now fh.seek(4, os.SEEK_CUR) sub_path = path.get(atom_type, None) # if the path leaf is a dict, traverse deeper into the tree: if issubclass(type(sub_path), MutableMapping): atom_end_pos = fh.tell() + atom_size self._traverse_atoms(fh, path=sub_path, stop_pos=atom_end_pos, curr_path=curr_path + [atom_type]) # if the path-leaf is a callable, call it on the atom data elif callable(sub_path): for fieldname, value in sub_path(fh.read(atom_size)).items(): if DEBUG: stderr(' ' * 4 * len(curr_path), 'FIELD: ', fieldname) if fieldname: self._set_field(fieldname, value) # if no action was specified using dict or callable, jump over atom else: fh.seek(atom_size, os.SEEK_CUR) # check if we have reached the end of this branch: if stop_pos and fh.tell() >= stop_pos: return # return to parent (next parent node in tree) atom_header = fh.read(header_size) # read next atom class ID3(TinyTag): FRAME_ID_TO_FIELD = { # Mapping from Frame ID to a field of the TinyTag 'COMM': 'comment', 'COM': 'comment', 'TRCK': 'track', 'TRK': 'track', 'TYER': 'year', 'TYE': 'year', 'TALB': 'album', 'TAL': 'album', 'TPE1': 'artist', 'TP1': 'artist', 'TIT2': 'title', 'TT2': 'title', 'TCON': 'genre', 'TCO': 'genre', 'TPOS': 'disc', 'TPE2': 'albumartist', 'TCOM': 'composer', } IMAGE_FRAME_IDS = {'APIC', 'PIC'} PARSABLE_FRAME_IDS = set(FRAME_ID_TO_FIELD.keys()).union(IMAGE_FRAME_IDS) _MAX_ESTIMATION_SEC = 30 _CBR_DETECTION_FRAME_COUNT = 5 _USE_XING_HEADER = True # much faster, but can be deactivated for testing ID3V1_GENRES = [ 'Blues', 'Classic Rock', 'Country', 'Dance', 'Disco', 'Funk', 'Grunge', 'Hip-Hop', 'Jazz', 'Metal', 'New Age', 'Oldies', 'Other', 'Pop', 'R&B', 'Rap', 'Reggae', 'Rock', 'Techno', 'Industrial', 'Alternative', 'Ska', 'Death Metal', 'Pranks', 'Soundtrack', 'Euro-Techno', 'Ambient', 'Trip-Hop', 'Vocal', 'Jazz+Funk', 'Fusion', 'Trance', 'Classical', 'Instrumental', 'Acid', 'House', 'Game', 'Sound Clip', 'Gospel', 'Noise', 'AlternRock', 'Bass', 'Soul', 'Punk', 'Space', 'Meditative', 'Instrumental Pop', 'Instrumental Rock', 'Ethnic', 'Gothic', 'Darkwave', 'Techno-Industrial', 'Electronic', 'Pop-Folk', 'Eurodance', 'Dream', 'Southern Rock', 'Comedy', 'Cult', 'Gangsta', 'Top 40', 'Christian Rap', 'Pop/Funk', 'Jungle', 'Native American', 'Cabaret', 'New Wave', 'Psychadelic', 'Rave', 'Showtunes', 'Trailer', 'Lo-Fi', 'Tribal', 'Acid Punk', 'Acid Jazz', 'Polka', 'Retro', 'Musical', 'Rock & Roll', 'Hard Rock', # Wimamp Extended Genres 'Folk', 'Folk-Rock', 'National Folk', 'Swing', 'Fast Fusion', 'Bebob', 'Latin', 'Revival', 'Celtic', 'Bluegrass', 'Avantgarde', 'Gothic Rock', 'Progressive Rock', 'Psychedelic Rock', 'Symphonic Rock', 'Slow Rock', 'Big Band', 'Chorus', 'Easy Listening', 'Acoustic', 'Humour', 'Speech', 'Chanson', 'Opera', 'Chamber Music', 'Sonata', 'Symphony', 'Booty Bass', 'Primus', 'Porn Groove', 'Satire', 'Slow Jam', 'Club', 'Tango', 'Samba', 'Folklore', 'Ballad', 'Power Ballad', 'Rhythmic Soul', 'Freestyle', 'Duet', 'Punk Rock', 'Drum Solo', 'A capella', 'Euro-House', 'Dance Hall', 'Goa', 'Drum & Bass', # according to https://de.wikipedia.org/wiki/Liste_der_ID3v1-Genres: 'Club-House', 'Hardcore Techno', 'Terror', 'Indie', 'BritPop', '', # don't use ethnic slur ("Negerpunk", WTF!) 'Polsk Punk', 'Beat', 'Christian Gangsta Rap', 'Heavy Metal', 'Black Metal', 'Contemporary Christian', 'Christian Rock', # WinAmp 1.91 'Merengue', 'Salsa', 'Thrash Metal', 'Anime', 'Jpop', 'Synthpop', # WinAmp 5.6 'Abstract', 'Art Rock', 'Baroque', 'Bhangra', 'Big Beat', 'Breakbeat', 'Chillout', 'Downtempo', 'Dub', 'EBM', 'Eclectic', 'Electro', 'Electroclash', 'Emo', 'Experimental', 'Garage', 'Illbient', 'Industro-Goth', 'Jam Band', 'Krautrock', 'Leftfield', 'Lounge', 'Math Rock', 'New Romantic', 'Nu-Breakz', 'Post-Punk', 'Post-Rock', 'Psytrance', 'Shoegaze', 'Space Rock', 'Trop Rock', 'World Music', 'Neoclassical', 'Audiobook', 'Audio Theatre', 'Neue Deutsche Welle', 'Podcast', 'Indie Rock', 'G-Funk', 'Dubstep', 'Garage Rock', 'Psybient', ] def __init__(self, filehandler, filesize, *args, **kwargs): TinyTag.__init__(self, filehandler, filesize, *args, **kwargs) # save position after the ID3 tag for duration mesurement speedup self._bytepos_after_id3v2 = 0 @classmethod def set_estimation_precision(cls, estimation_in_seconds): cls._MAX_ESTIMATION_SEC = estimation_in_seconds # see this page for the magic values used in mp3: # http://www.mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm samplerates = [ [11025, 12000, 8000], # MPEG 2.5 [], # reserved [22050, 24000, 16000], # MPEG 2 [44100, 48000, 32000], # MPEG 1 ] v1l1 = [0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 0] v1l2 = [0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 0] v1l3 = [0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 0] v2l1 = [0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 0] v2l2 = [0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0] v2l3 = v2l2 bitrate_by_version_by_layer = [ [None, v2l3, v2l2, v2l1], # MPEG Version 2.5 # note that the layers go None, # reserved # from 3 to 1 by design. [None, v2l3, v2l2, v2l1], # MPEG Version 2 # the first layer id is [None, v1l3, v1l2, v1l1], # MPEG Version 1 # reserved ] samples_per_frame = 1152 # the default frame size for mp3 channels_per_channel_mode = [ 2, # 00 Stereo 2, # 01 Joint stereo (Stereo) 2, # 10 Dual channel (2 mono channels) 1, # 11 Single channel (Mono) ] @staticmethod def _parse_xing_header(fh): # see: http://www.mp3-tech.org/programmer/sources/vbrheadersdk.zip fh.seek(4, os.SEEK_CUR) # read over Xing header header_flags = struct.unpack('>i', fh.read(4))[0] frames = byte_count = toc = vbr_scale = None if header_flags & 1: # FRAMES FLAG frames = struct.unpack('>i', fh.read(4))[0] if header_flags & 2: # BYTES FLAG byte_count = struct.unpack('>i', fh.read(4))[0] if header_flags & 4: # TOC FLAG toc = [struct.unpack('>i', fh.read(4))[0] for _ in range(100)] if header_flags & 8: # VBR SCALE FLAG vbr_scale = struct.unpack('>i', fh.read(4))[0] return frames, byte_count, toc, vbr_scale def _determine_duration(self, fh): max_estimation_frames = (ID3._MAX_ESTIMATION_SEC * 44100) // ID3.samples_per_frame frame_size_accu = 0 header_bytes = 4 frames = 0 # count frames for determining mp3 duration bitrate_accu = 0 # add up bitrates to find average bitrate to detect last_bitrates = [] # CBR mp3s (multiple frames with same bitrates) # seek to first position after id3 tag (speedup for large header) fh.seek(self._bytepos_after_id3v2) while True: # reading through garbage until 11 '1' sync-bits are found b = fh.peek(4) if len(b) < 4: break # EOF sync, conf, bitrate_freq, rest = struct.unpack('BBBB', b[0:4]) br_id = (bitrate_freq >> 4) & 0x0F # biterate id sr_id = (bitrate_freq >> 2) & 0x03 # sample rate id padding = 1 if bitrate_freq & 0x02 > 0 else 0 mpeg_id = (conf >> 3) & 0x03 layer_id = (conf >> 1) & 0x03 channel_mode = (rest >> 6) & 0x03 # check for eleven 1s, validate bitrate and sample rate if not b[:2] > b'\xFF\xE0' or br_id > 14 or br_id == 0 or sr_id == 3 or layer_id == 0 or mpeg_id == 1: idx = b.find(b'\xFF', 1) # invalid frame, find next sync header if idx == -1: idx = len(b) # not found: jump over the current peek buffer fh.seek(max(idx, 1), os.SEEK_CUR) continue try: self.channels = self.channels_per_channel_mode[channel_mode] frame_bitrate = ID3.bitrate_by_version_by_layer[mpeg_id][layer_id][br_id] self.samplerate = ID3.samplerates[mpeg_id][sr_id] except (IndexError, TypeError): raise TinyTagException('mp3 parsing failed') # There might be a xing header in the first frame that contains # all the info we need, otherwise parse multiple frames to find the # accurate average bitrate if frames == 0 and ID3._USE_XING_HEADER: xing_header_offset = b.find(b'Xing') if xing_header_offset != -1: fh.seek(xing_header_offset, os.SEEK_CUR) xframes, byte_count, toc, vbr_scale = ID3._parse_xing_header(fh) if xframes and xframes != 0 and byte_count: self.duration = xframes * ID3.samples_per_frame / float(self.samplerate) self.bitrate = int(byte_count * 8 / self.duration / 1000) self.audio_offset = fh.tell() return continue frames += 1 # it's most probably an mp3 frame bitrate_accu += frame_bitrate if frames == 1: self.audio_offset = fh.tell() if frames <= ID3._CBR_DETECTION_FRAME_COUNT: last_bitrates.append(frame_bitrate) fh.seek(4, os.SEEK_CUR) # jump over peeked bytes frame_length = (144000 * frame_bitrate) // self.samplerate + padding frame_size_accu += frame_length # if bitrate does not change over time its probably CBR is_cbr = (frames == ID3._CBR_DETECTION_FRAME_COUNT and len(set(last_bitrates)) == 1) if frames == max_estimation_frames or is_cbr: # try to estimate duration fh.seek(-128, 2) # jump to last byte (leaving out id3v1 tag) audio_stream_size = fh.tell() - self.audio_offset est_frame_count = audio_stream_size / (frame_size_accu / float(frames)) samples = est_frame_count * ID3.samples_per_frame self.duration = samples / float(self.samplerate) self.bitrate = int(bitrate_accu / frames) return if frame_length > 1: # jump over current frame body fh.seek(frame_length - header_bytes, os.SEEK_CUR) if self.samplerate: self.duration = frames * ID3.samples_per_frame / float(self.samplerate) def _parse_tag(self, fh): self._parse_id3v2(fh) attrs = ['track', 'track_total', 'title', 'artist', 'album', 'albumartist', 'year', 'genre'] has_all_tags = all(getattr(self, attr) for attr in attrs) if not has_all_tags and self.filesize > 128: fh.seek(-128, os.SEEK_END) # try parsing id3v1 in last 128 bytes self._parse_id3v1(fh) def _parse_id3v2(self, fh): # for info on the specs, see: http://id3.org/Developer%20Information header = struct.unpack('3sBBB4B', _read(fh, 10)) tag = codecs.decode(header[0], 'ISO-8859-1') # check if there is an ID3v2 tag at the beginning of the file if tag == 'ID3': major, rev = header[1:3] if DEBUG: stderr('Found id3 v2.%s' % major) # unsync = (header[3] & 0x80) > 0 extended = (header[3] & 0x40) > 0 # experimental = (header[3] & 0x20) > 0 # footer = (header[3] & 0x10) > 0 size = self._calc_size(header[4:8], 7) self._bytepos_after_id3v2 = size end_pos = fh.tell() + size parsed_size = 0 if extended: # just read over the extended header. size_bytes = struct.unpack('4B', _read(fh, 6)[0:4]) extd_size = self._calc_size(size_bytes, 7) fh.seek(extd_size - 6, os.SEEK_CUR) # jump over extended_header while parsed_size < size: frame_size = self._parse_frame(fh, id3version=major) if frame_size == 0: break parsed_size += frame_size fh.seek(end_pos, os.SEEK_SET) def _parse_id3v1(self, fh): if fh.read(3) == b'TAG': # check if this is an ID3 v1 tag def asciidecode(x): return self._unpad(codecs.decode(x, 'latin1')) fields = fh.read(30 + 30 + 30 + 4 + 30 + 1) self._set_field('title', fields[:30], transfunc=asciidecode) self._set_field('artist', fields[30:60], transfunc=asciidecode) self._set_field('album', fields[60:90], transfunc=asciidecode) self._set_field('year', fields[90:94], transfunc=asciidecode) comment = fields[94:124] if b'\x00\x00' < comment[-2:] < b'\x01\x00': self._set_field('track', str(ord(comment[-1:]))) comment = comment[:-2] self._set_field('comment', comment, transfunc=asciidecode) genre_id = ord(fields[124:125]) if genre_id < len(ID3.ID3V1_GENRES): self.genre = ID3.ID3V1_GENRES[genre_id] def _parse_frame(self, fh, id3version=False): # ID3v2.2 especially ugly. see: http://id3.org/id3v2-00 frame_header_size = 6 if id3version == 2 else 10 frame_size_bytes = 3 if id3version == 2 else 4 binformat = '3s3B' if id3version == 2 else '4s4B2B' bits_per_byte = 7 if id3version == 4 else 8 # only id3v2.4 is synchsafe frame_header_data = fh.read(frame_header_size) if len(frame_header_data) != frame_header_size: return 0 frame = struct.unpack(binformat, frame_header_data) frame_id = self._decode_string(frame[0]) frame_size = self._calc_size(frame[1:1+frame_size_bytes], bits_per_byte) if DEBUG: stderr('Found id3 Frame %s at %d-%d of %d' % (frame_id, fh.tell(), fh.tell() + frame_size, self.filesize)) if frame_size > 0: # flags = frame[1+frame_size_bytes:] # dont care about flags. if frame_id not in ID3.PARSABLE_FRAME_IDS: # jump over unparsable frames fh.seek(frame_size, os.SEEK_CUR) return frame_size content = fh.read(frame_size) fieldname = ID3.FRAME_ID_TO_FIELD.get(frame_id) if fieldname: self._set_field(fieldname, content, self._decode_string) elif frame_id in self.IMAGE_FRAME_IDS and self._load_image: # See section 4.14: http://id3.org/id3v2.4.0-frames if frame_id == 'PIC': # ID3 v2.2: desc_end_pos = content.index(b'\x00', 1) + 1 else: # ID3 v2.3+ mimetype_end_pos = content.index(b'\x00', 1) + 1 desc_start_pos = mimetype_end_pos + 1 # jump over picture type desc_end_pos = content.index(b'\x00', desc_start_pos) + 1 if content[desc_end_pos:desc_end_pos+1] == b'\x00': desc_end_pos += 1 # the description ends with 1 or 2 null bytes self._image_data = content[desc_end_pos:] return frame_size return 0 def _decode_string(self, bytestr): try: # it's not my fault, this is the spec. first_byte = bytestr[:1] if first_byte == b'\x00': # ISO-8859-1 bytestr = bytestr[1:] encoding = 'ISO-8859-1' elif first_byte == b'\x01': # UTF-16 with BOM bytestr = bytestr[1:] if bytestr[:5] == b'eng\xff\xfe': bytestr = bytestr[3:] # remove language (but leave BOM) if bytestr[:5] == b'eng\xfe\xff': bytestr = bytestr[3:] # remove language (but leave BOM) if bytestr[:4] == b'eng\x00': bytestr = bytestr[4:] # remove language if bytestr[:1] == b'\x00': bytestr = bytestr[1:] # strip optional additional null byte # read byte order mark to determine endianess encoding = 'UTF-16be' if bytestr[0:2] == b'\xfe\xff' else 'UTF-16le' # strip the bom and optional null bytes bytestr = bytestr[2:] if len(bytestr) % 2 == 0 else bytestr[2:-1] # remove ADDITIONAL EXTRA BOM :facepalm: if bytestr[:4] == b'\x00\x00\xff\xfe': bytestr = bytestr[4:] elif first_byte == b'\x02': # UTF-16LE # strip optional null byte, if byte count uneven bytestr = bytestr[1:-1] if len(bytestr) % 2 == 0 else bytestr[1:] encoding = 'UTF-16le' elif first_byte == b'\x03': # UTF-8 bytestr = bytestr[1:] encoding = 'UTF-8' else: bytestr = bytestr encoding = 'ISO-8859-1' # wild guess if bytestr[:4] == b'eng\x00': bytestr = bytestr[4:] # remove language errors = 'ignore' if self._ignore_errors else 'strict' return self._unpad(codecs.decode(bytestr, encoding, errors)) except UnicodeDecodeError: raise TinyTagException('Error decoding ID3 Tag!') def _calc_size(self, bytestr, bits_per_byte): # length of some mp3 header fields is described by 7 or 8-bit-bytes return reduce(lambda accu, elem: (accu << bits_per_byte) + elem, bytestr, 0) class Ogg(TinyTag): def __init__(self, filehandler, filesize, *args, **kwargs): TinyTag.__init__(self, filehandler, filesize, *args, **kwargs) self._tags_parsed = False self._max_samplenum = 0 # maximum sample position ever read def _determine_duration(self, fh): max_page_size = 65536 # https://xiph.org/ogg/doc/libogg/ogg_page.html if not self._tags_parsed: self._parse_tag(fh) # determine sample rate fh.seek(0) # and rewind to start if self.filesize > max_page_size: fh.seek(-max_page_size, 2) # go to last possible page position while True: b = fh.peek(4) if len(b) == 0: return # EOF if b[:4] == b'OggS': # look for an ogg header for _ in self._parse_pages(fh): pass # parse all remaining pages self.duration = self._max_samplenum / float(self.samplerate) else: idx = b.find(b'OggS') # try to find header in peeked data seekpos = idx if idx != -1 else len(b) - 3 fh.seek(max(seekpos, 1), os.SEEK_CUR) def _parse_tag(self, fh): page_start_pos = fh.tell() # set audio_offest later if its audio data for packet in self._parse_pages(fh): walker = BytesIO(packet) if packet[0:7] == b"\x01vorbis": (channels, self.samplerate, max_bitrate, bitrate, min_bitrate) = struct.unpack("<B4i", packet[11:28]) if not self.audio_offset: self.bitrate = bitrate / 1024.0 self.audio_offset = page_start_pos elif packet[0:7] == b"\x03vorbis": walker.seek(7, os.SEEK_CUR) # jump over header name self._parse_vorbis_comment(walker) elif packet[0:8] == b'OpusHead': # parse opus header # https://www.videolan.org/developers/vlc/modules/codec/opus_header.c # https://mf4.xiph.org/jenkins/view/opus/job/opusfile-unix/ws/doc/html/structOpusHead.html walker.seek(8, os.SEEK_CUR) # jump over header name (version, ch, _, sr, _, _) = struct.unpack("<BBHIHB", walker.read(11)) if (version & 0xF0) == 0: # only major version 0 supported self.channels = ch self.samplerate = 48000 # internally opus always uses 48khz elif packet[0:8] == b'OpusTags': # parse opus metadata: walker.seek(8, os.SEEK_CUR) # jump over header name self._parse_vorbis_comment(walker) else: break page_start_pos = fh.tell() def _parse_vorbis_comment(self, fh): # for the spec, see: http://xiph.org/vorbis/doc/v-comment.html # discnumber tag based on: https://en.wikipedia.org/wiki/Vorbis_comment # https://sno.phy.queensu.ca/~phil/exiftool/TagNames/Vorbis.html comment_type_to_attr_mapping = { 'album': 'album', 'albumartist': 'albumartist', 'title': 'title', 'artist': 'artist', 'date': 'year', 'tracknumber': 'track', 'discnumber': 'disc', 'genre': 'genre', 'description': 'comment', 'composer': 'composer', } vendor_length = struct.unpack('I', fh.read(4))[0] fh.seek(vendor_length, os.SEEK_CUR) # jump over vendor elements = struct.unpack('I', fh.read(4))[0] for i in range(elements): length = struct.unpack('I', fh.read(4))[0] try: keyvalpair = codecs.decode(fh.read(length), 'UTF-8') except UnicodeDecodeError: continue if '=' in keyvalpair: key, value = keyvalpair.split('=', 1) fieldname = comment_type_to_attr_mapping.get(key.lower()) if fieldname: self._set_field(fieldname, value) def _parse_pages(self, fh): # for the spec, see: https://wiki.xiph.org/Ogg previous_page = b'' # contains data from previous (continuing) pages header_data = fh.read(27) # read ogg page header while len(header_data) != 0: header = struct.unpack('<4sBBqIIiB', header_data) oggs, version, flags, pos, serial, pageseq, crc, segments = header self._max_samplenum = max(self._max_samplenum, pos) if oggs != b'OggS' or version != 0: raise TinyTagException('Not a valid ogg file!') segsizes = struct.unpack('B'*segments, fh.read(segments)) total = 0 for segsize in segsizes: # read all segments total += segsize if total < 255: # less than 255 bytes means end of page yield previous_page + fh.read(total) previous_page = b'' total = 0 if total != 0: if total % 255 == 0: previous_page += fh.read(total) else: yield previous_page + fh.read(total) previous_page = b'' header_data = fh.read(27) class Wave(TinyTag): # https://sno.phy.queensu.ca/~phil/exiftool/TagNames/RIFF.html riff_mapping = { b'INAM': 'title', b'TITL': 'title', b'IART': 'artist', b'ICMT': 'comment', b'ICRD': 'year', b'IGNR': 'genre', b'TRCK': 'track', b'PRT1': 'track', b'PRT2': 'track_number', b'YEAR': 'year', # riff format is lacking the composer field. } def __init__(self, filehandler, filesize, *args, **kwargs): TinyTag.__init__(self, filehandler, filesize, *args, **kwargs) self._duration_parsed = False def _determine_duration(self, fh): # see: https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ # and: https://en.wikipedia.org/wiki/WAV riff, size, fformat = struct.unpack('4sI4s', fh.read(12)) if riff != b'RIFF' or fformat != b'WAVE': raise TinyTagException('not a wave file!') bitdepth = 16 # assume 16bit depth (CD quality) chunk_header = fh.read(8) while len(chunk_header) == 8: subchunkid, subchunksize = struct.unpack('4sI', chunk_header) if subchunkid == b'fmt ': _, self.channels, self.samplerate = struct.unpack('HHI', fh.read(8)) _, _, bitdepth = struct.unpack('<IHH', fh.read(8)) self.bitrate = self.samplerate * self.channels * bitdepth / 1024.0 elif subchunkid == b'data': self.duration = float(subchunksize)/self.channels/self.samplerate/(bitdepth/8) self.audio_offest = fh.tell() - 8 # rewind to data header fh.seek(subchunksize, 1) elif subchunkid == b'LIST': is_info = fh.read(4) # check INFO header if is_info != b'INFO': # jump over non-INFO sections fh.seek(subchunksize - 4, os.SEEK_CUR) else: sub_fh = BytesIO(fh.read(subchunksize - 4)) field = sub_fh.read(4) while len(field) == 4: data_length = struct.unpack('I', sub_fh.read(4))[0] data = sub_fh.read(data_length).split(b'\x00', 1)[0] # strip zero-byte data = codecs.decode(data, 'utf-8') fieldname = self.riff_mapping.get(field) if fieldname: self._set_field(fieldname, data) field = sub_fh.read(4) elif subchunkid == b'id3 ' or subchunkid == b'ID3 ': id3 = ID3(fh, 0) id3._parse_id3v2(fh) self.update(id3) else: # some other chunk, just skip the data fh.seek(subchunksize, 1) chunk_header = fh.read(8) self._duration_parsed = True def _parse_tag(self, fh): if not self._duration_parsed: self._determine_duration(fh) # parse whole file to determine tags:( class Flac(TinyTag): METADATA_STREAMINFO = 0 METADATA_VORBIS_COMMENT = 4 def load(self, tags, duration, image=False): header = self._filehandler.peek(4) if header[:3] == b'ID3': # parse ID3 header if it exists id3 = ID3(self._filehandler, 0) id3._parse_id3v2(self._filehandler) self.update(id3) header = self._filehandler.peek(4) # after ID3 should be fLaC if header[:4] != b'fLaC': raise TinyTagException('Invalid flac header') self._filehandler.seek(4, os.SEEK_CUR) self._determine_duration(self._filehandler, skip_tags=not tags) def _determine_duration(self, fh, skip_tags=False): # for spec, see https://xiph.org/flac/ogg_mapping.html header_data = fh.read(4) while len(header_data): meta_header = struct.unpack('B3B', header_data) block_type = meta_header[0] & 0x7f is_last_block = meta_header[0] & 0x80 size = _bytes_to_int(meta_header[1:4]) # http://xiph.org/flac/format.html#metadata_block_streaminfo if block_type == Flac.METADATA_STREAMINFO: stream_info_header = fh.read(size) if len(stream_info_header) < 34: # invalid streaminfo return header = struct.unpack('HH3s3s8B16s', stream_info_header) # From the ciph documentation: # py | <bits> # ---------------------------------------------- # H | <16> The minimum block size (in samples) # H | <16> The maximum block size (in samples) # 3s | <24> The minimum frame size (in bytes) # 3s | <24> The maximum frame size (in bytes) # 8B | <20> Sample rate in Hz. # | <3> (number of channels)-1. # | <5> (bits per sample)-1. # | <36> Total samples in stream. # 16s| <128> MD5 signature # min_blk, max_blk, min_frm, max_frm = header[0:4] # min_frm = _bytes_to_int(struct.unpack('3B', min_frm)) # max_frm = _bytes_to_int(struct.unpack('3B', max_frm)) # channels--. bits total samples # |----- samplerate -----| |-||----| |---------~ ~----| # 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 # #---4---# #---5---# #---6---# #---7---# #--8-~ ~-12-# self.samplerate = _bytes_to_int(header[4:7]) >> 4 self.channels = ((header[6] >> 1) & 0x07) + 1 # bit_depth = ((header[6] & 1) << 4) + ((header[7] & 0xF0) >> 4) # bit_depth = (bit_depth + 1) total_sample_bytes = [(header[7] & 0x0F)] + list(header[8:12]) total_samples = _bytes_to_int(total_sample_bytes) self.duration = float(total_samples) / self.samplerate if self.duration > 0: self.bitrate = self.filesize / self.duration * 8 / 1024 elif block_type == Flac.METADATA_VORBIS_COMMENT and not skip_tags: oggtag = Ogg(fh, 0) oggtag._parse_vorbis_comment(fh) self.update(oggtag) elif block_type >= 127: return # invalid block type else: fh.seek(size, 1) # seek over this block if is_last_block: return header_data = fh.read(4) class Wma(TinyTag): ASF_CONTENT_DESCRIPTION_OBJECT = b'3&\xb2u\x8ef\xcf\x11\xa6\xd9\x00\xaa\x00b\xcel' ASF_EXTENDED_CONTENT_DESCRIPTION_OBJECT = b'@\xa4\xd0\xd2\x07\xe3\xd2\x11\x97\xf0\x00\xa0\xc9^\xa8P' STREAM_BITRATE_PROPERTIES_OBJECT = b'\xceu\xf8{\x8dF\xd1\x11\x8d\x82\x00`\x97\xc9\xa2\xb2' ASF_FILE_PROPERTY_OBJECT = b'\xa1\xdc\xab\x8cG\xa9\xcf\x11\x8e\xe4\x00\xc0\x0c Se' ASF_STREAM_PROPERTIES_OBJECT = b'\x91\x07\xdc\xb7\xb7\xa9\xcf\x11\x8e\xe6\x00\xc0\x0c Se' STREAM_TYPE_ASF_AUDIO_MEDIA = b'@\x9ei\xf8M[\xcf\x11\xa8\xfd\x00\x80_\\D+' # see: # http://web.archive.org/web/20131203084402/http://msdn.microsoft.com/en-us/library/bb643323.aspx # and (japanese, but none the less helpful) # http://uguisu.skr.jp/Windows/format_asf.html def __init__(self, filehandler, filesize, *args, **kwargs): TinyTag.__init__(self, filehandler, filesize, *args, **kwargs) self.__tag_parsed = False def _determine_duration(self, fh): if not self.__tag_parsed: self._parse_tag(fh) def read_blocks(self, fh, blocks): # blocks are a list(tuple('fieldname', byte_count, cast_int), ...) decoded = {} for block in blocks: val = fh.read(block[1]) if block[2]: val = _bytes_to_int_le(val) decoded[block[0]] = val return decoded def __bytes_to_guid(self, obj_id_bytes): return '-'.join([ hex(_bytes_to_int_le(obj_id_bytes[:-12]))[2:].zfill(6), hex(_bytes_to_int_le(obj_id_bytes[-12:-10]))[2:].zfill(4), hex(_bytes_to_int_le(obj_id_bytes[-10:-8]))[2:].zfill(4), hex(_bytes_to_int(obj_id_bytes[-8:-6]))[2:].zfill(4), hex(_bytes_to_int(obj_id_bytes[-6:]))[2:].zfill(12), ]) def __decode_string(self, bytestring): return self._unpad(codecs.decode(bytestring, 'utf-16')) def __decode_ext_desc(self, value_type, value): """ decode ASF_EXTENDED_CONTENT_DESCRIPTION_OBJECT values""" if value_type == 0: # Unicode string return self.__decode_string(value) elif value_type == 1: # BYTE array return value elif 1 < value_type < 6: # DWORD / QWORD / WORD return _bytes_to_int_le(value) def _parse_tag(self, fh): self.__tag_parsed = True guid = fh.read(16) # 128 bit GUID if guid != b'0&\xb2u\x8ef\xcf\x11\xa6\xd9\x00\xaa\x00b\xcel': return # not a valid ASF container! see: http://www.garykessler.net/library/file_sigs.html struct.unpack('Q', fh.read(8))[0] # size struct.unpack('I', fh.read(4))[0] # obj_count if fh.read(2) != b'\x01\x02': # http://web.archive.org/web/20131203084402/http://msdn.microsoft.com/en-us/library/bb643323.aspx#_Toc521913958 return # not a valid asf header! while True: object_id = fh.read(16) object_size = _bytes_to_int_le(fh.read(8)) if object_size == 0 or object_size > self.filesize: break # invalid object, stop parsing. if object_id == Wma.ASF_CONTENT_DESCRIPTION_OBJECT: len_blocks = self.read_blocks(fh, [ ('title_length', 2, True), ('author_length', 2, True), ('copyright_length', 2, True), ('description_length', 2, True), ('rating_length', 2, True), ]) data_blocks = self.read_blocks(fh, [ ('title', len_blocks['title_length'], False), ('artist', len_blocks['author_length'], False), ('', len_blocks['copyright_length'], True), ('comment', len_blocks['description_length'], False), ('', len_blocks['rating_length'], True), ]) for field_name, bytestring in data_blocks.items(): if field_name: self._set_field(field_name, bytestring, self.__decode_string) elif object_id == Wma.ASF_EXTENDED_CONTENT_DESCRIPTION_OBJECT: mapping = { 'WM/TrackNumber': 'track', 'WM/PartOfSet': 'disc', 'WM/Year': 'year', 'WM/AlbumArtist': 'albumartist', 'WM/Genre': 'genre', 'WM/AlbumTitle': 'album', 'WM/Composer': 'composer', } # see: http://web.archive.org/web/20131203084402/http://msdn.microsoft.com/en-us/library/bb643323.aspx#_Toc509555195 descriptor_count = _bytes_to_int_le(fh.read(2)) for _ in range(descriptor_count): name_len = _bytes_to_int_le(fh.read(2)) name = self.__decode_string(fh.read(name_len)) value_type = _bytes_to_int_le(fh.read(2)) value_len = _bytes_to_int_le(fh.read(2)) value = fh.read(value_len) field_name = mapping.get(name) if field_name: field_value = self.__decode_ext_desc(value_type, value) self._set_field(field_name, field_value) elif object_id == Wma.ASF_FILE_PROPERTY_OBJECT: blocks = self.read_blocks(fh, [ ('file_id', 16, False), ('file_size', 8, False), ('creation_date', 8, True), ('data_packets_count', 8, True), ('play_duration', 8, True), ('send_duration', 8, True), ('preroll', 8, True), ('flags', 4, False), ('minimum_data_packet_size', 4, True), ('maximum_data_packet_size', 4, True), ('maximum_bitrate', 4, False), ]) self.duration = blocks.get('play_duration') / float(10000000) elif object_id == Wma.ASF_STREAM_PROPERTIES_OBJECT: blocks = self.read_blocks(fh, [ ('stream_type', 16, False), ('error_correction_type', 16, False), ('time_offset', 8, True), ('type_specific_data_length', 4, True), ('error_correction_data_length', 4, True), ('flags', 2, True), ('reserved', 4, False) ]) already_read = 0 if blocks['stream_type'] == Wma.STREAM_TYPE_ASF_AUDIO_MEDIA: stream_info = self.read_blocks(fh, [ ('codec_id_format_tag', 2, True), ('number_of_channels', 2, True), ('samples_per_second', 4, True), ('avg_bytes_per_second', 4, True), ('block_alignment', 2, True), ('bits_per_sample', 2, True), ]) self.samplerate = stream_info['samples_per_second'] self.bitrate = stream_info['avg_bytes_per_second'] * 8 / float(1000) already_read = 16 fh.seek(blocks['type_specific_data_length'] - already_read, os.SEEK_CUR) fh.seek(blocks['error_correction_data_length'], os.SEEK_CUR) else: fh.seek(object_size - 24, os.SEEK_CUR) # read over onknown object ids
47.79913
143
0.563045
36b9b7cc4c139f1a3a4d25488217c2bcf4f3365f
4,898
py
Python
app/user/tests/test_user_api.py
carlos28d/recipe-app-api
1eb7e4958124f20c126211a22157fe9c6eed2ff2
[ "MIT" ]
null
null
null
app/user/tests/test_user_api.py
carlos28d/recipe-app-api
1eb7e4958124f20c126211a22157fe9c6eed2ff2
[ "MIT" ]
null
null
null
app/user/tests/test_user_api.py
carlos28d/recipe-app-api
1eb7e4958124f20c126211a22157fe9c6eed2ff2
[ "MIT" ]
null
null
null
from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status CREATE_USER_URL = reverse('user:create') TOKEN_URL = reverse('user:token') ME_URL = reverse('user:me') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUserApiTests(TestCase): """Test the users API (public)""" def setUp(self): self.client = APIClient() def test_create_valid_user_success(self): """Test creating user with valid payload is successful""" payload = { 'email': 'test@gmail.com', 'password': 'testpass', 'name': 'Test name' } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_201_CREATED) user = get_user_model().objects.get(**res.data) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', res.data) def test_user_exists(self): """Test creating a user that already exists fails""" payload = { 'email': 'test@gmail.com', 'password': 'pw', 'name': 'Test', } create_user(**payload) res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """Test that the password must be more than 5 characters""" payload = { 'email': 'test@gmail.com', 'password': 'pw', 'name': 'Test', } res = self.client.post(CREATE_USER_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) user_exists = get_user_model().objects.filter( email=payload['email'] ).exists() self.assertFalse(user_exists) def test_create_token_for_user(self): """Test that a token is created for the user""" payload = {'email': 'test@gmail.com', 'password': 'testpass'} create_user(**payload) res = self.client.post(TOKEN_URL, payload) self.assertIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_200_OK) def test_create_token_invalid_credentials(self): """Test that token is not created if invalid credentials are given""" create_user(email='test@gmail.com', password='testpass') payload = {'email': 'test@gmail.com', 'password': 'wrong'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_no_user(self): """Test that token is not created if user doesn't exist""" payload = {'email': 'test@gmail.com', 'password': ' testpass'} res = self.client.post(TOKEN_URL, payload) self.assertNotIn('token', res.data) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_create_token_missing_field(self): """Test that email and password are required""" res = self.client.post(TOKEN_URL, {'email': 'one', 'password': ''}) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_user_unauthorized(self): """Test that authentication is required for users""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateUserApuTests(TestCase): """Test API requests that require authentication""" def setUp(self): self.user = create_user( email='test@gmail.com', password='testpass', name='name' ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_retrieve_profile_success(self): """Test retrieving profile for logged in used""" res = self.client.get(ME_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, { 'name': self.user.name, 'email': self.user.email }) def test_post_me_not_allowed(self): """Test that POST is not allowed on the me url""" res = self.client.post(ME_URL, {}) self.assertEqual(res.status_code, status.HTTP_405_METHOD_NOT_ALLOWED) def test_update_user_profile(self): """Test updating the user profile for authenticated user""" payload = {'name': 'new name', 'password': 'newpassword123'} res = self.client.patch(ME_URL, payload) self.user.refresh_from_db() self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password'])) self.assertEqual(res.status_code, status.HTTP_200_OK)
34.492958
77
0.645978
1650e3e721c1c931a323dd61363042ea35b8ce27
2,005
py
Python
src/jk_jsoncfghelper2/jdef.py
jkpubsrc/python-module-jk-jsoncfghelper2
2c584c946db5d290525ff49f5c809cec14616247
[ "Apache-1.1" ]
null
null
null
src/jk_jsoncfghelper2/jdef.py
jkpubsrc/python-module-jk-jsoncfghelper2
2c584c946db5d290525ff49f5c809cec14616247
[ "Apache-1.1" ]
null
null
null
src/jk_jsoncfghelper2/jdef.py
jkpubsrc/python-module-jk-jsoncfghelper2
2c584c946db5d290525ff49f5c809cec14616247
[ "Apache-1.1" ]
null
null
null
from typing import Union class JDefStructure(object): def __init__(self, name:str, structure:Union[list,tuple]): assert isinstance(name, str) assert isinstance(structure, (list, tuple)) self.name = name self.structure = structure # #def cloneObject(self): # return JDefStructure(self.name, list(self.structure)) ## # class JDef(object): def __init__(self, name:str, dataType:Union[str,JDefStructure], required:bool = True, minValue = None, maxValue = None, allowedValues:Union[list,tuple] = None, minLength:int = None, maxLength:int = None, elementTypes:Union[list,tuple] = None, nullable:bool = False): assert isinstance(name, str) assert isinstance(dataType, (str, JDefStructure)) assert isinstance(required, bool) assert isinstance(nullable, bool) if minValue is not None: assert isinstance(minValue, (float, int)) if maxValue is not None: assert isinstance(maxValue, (float, int)) if allowedValues is not None: assert isinstance(allowedValues, (tuple, list)) if minLength is not None: assert isinstance(minLength, int) if maxLength is not None: assert isinstance(maxLength, int) if elementTypes is not None: assert isinstance(elementTypes, (tuple, list)) for item in elementTypes: assert isinstance(item, (str, JDefStructure)) self.name = name self.dataType = dataType self.required = required self.minValue = minValue self.maxValue = maxValue self.allowedValues = allowedValues self.minLength = minLength self.maxLength = maxLength self.elementTypes = elementTypes self.nullable = nullable # def __str__(self): return self.name + ":" + self.dataType # def __repr__(self): return self.name + ":" + self.dataType # #def cloneObject(self): # return JDef(self.name, # dataType, # minValue, # maxValue, # list(allowedValues) if allowedValues is not None else None, # minLength, # maxLength, # list(elementTypes) if elementTypes is not None else None # ) ## #
20.252525
86
0.710224
3f5ba386936e94191a349b3fa5b8a2079c7e585b
31,184
py
Python
pymatgen/analysis/adsorption.py
robertcdickson/pymatgen
fb65122a7c471b9ffd0d01f2341339fb1dee2af1
[ "MIT" ]
null
null
null
pymatgen/analysis/adsorption.py
robertcdickson/pymatgen
fb65122a7c471b9ffd0d01f2341339fb1dee2af1
[ "MIT" ]
null
null
null
pymatgen/analysis/adsorption.py
robertcdickson/pymatgen
fb65122a7c471b9ffd0d01f2341339fb1dee2af1
[ "MIT" ]
null
null
null
# Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module provides classes used to enumerate surface sites and to find adsorption sites on slabs """ import itertools import os import numpy as np from matplotlib import patches from matplotlib.path import Path from monty.serialization import loadfn from scipy.spatial import Delaunay from pymatgen import vis from pymatgen.core.structure import Structure from pymatgen.analysis.local_env import VoronoiNN from pymatgen.analysis.structure_matcher import StructureMatcher from pymatgen.core.operations import SymmOp from pymatgen.core.surface import generate_all_slabs from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.util.coord import in_coord_list_pbc __author__ = "Joseph Montoya" __copyright__ = "Copyright 2016, The Materials Project" __version__ = "0.1" __maintainer__ = "Joseph Montoya" __credits__ = "Richard Tran" __email__ = "montoyjh@lbl.gov" __status__ = "Development" __date__ = "December 2, 2015" class AdsorbateSiteFinder: """ This class finds adsorbate sites on slabs and generates adsorbate structures according to user-defined criteria. The algorithm for finding sites is essentially as follows: 1. Determine "surface sites" by finding those within a height threshold along the miller index of the highest site 2. Create a network of surface sites using the Delaunay triangulation of the surface sites 3. Assign on-top, bridge, and hollow adsorption sites at the nodes, edges, and face centers of the Del. Triangulation 4. Generate structures from a molecule positioned at these sites """ def __init__(self, slab, selective_dynamics=False, height=0.9, mi_vec=None): """ Create an AdsorbateSiteFinder object. Args: slab (Slab): slab object for which to find adsorbate sites selective_dynamics (bool): flag for whether to assign non-surface sites as fixed for selective dynamics height (float): height criteria for selection of surface sites mi_vec (3-D array-like): vector corresponding to the vector concurrent with the miller index, this enables use with slabs that have been reoriented, but the miller vector must be supplied manually """ # get surface normal from miller index if mi_vec: self.mvec = mi_vec else: self.mvec = get_mi_vec(slab) slab = self.assign_site_properties(slab, height) if selective_dynamics: slab = self.assign_selective_dynamics(slab) self.slab = slab @classmethod def from_bulk_and_miller( cls, structure, miller_index, min_slab_size=8.0, min_vacuum_size=10.0, max_normal_search=None, center_slab=True, selective_dynamics=False, undercoord_threshold=0.09, ): """ This method constructs the adsorbate site finder from a bulk structure and a miller index, which allows the surface sites to be determined from the difference in bulk and slab coordination, as opposed to the height threshold. Args: structure (Structure): structure from which slab input to the ASF is constructed miller_index (3-tuple or list): miller index to be used min_slab_size (float): min slab size for slab generation min_vacuum_size (float): min vacuum size for slab generation max_normal_search (int): max normal search for slab generation center_slab (bool): whether to center slab in slab generation selective dynamics (bool): whether to assign surface sites to selective dynamics undercoord_threshold (float): threshold of "undercoordation" to use for the assignment of surface sites. Default is 0.1, for which surface sites will be designated if they are 10% less coordinated than their bulk counterpart """ # TODO: for some reason this works poorly with primitive cells # may want to switch the coordination algorithm eventually vnn_bulk = VoronoiNN(tol=0.05) bulk_coords = [len(vnn_bulk.get_nn(structure, n)) for n in range(len(structure))] struct = structure.copy(site_properties={"bulk_coordinations": bulk_coords}) slabs = generate_all_slabs( struct, max_index=max(miller_index), min_slab_size=min_slab_size, min_vacuum_size=min_vacuum_size, max_normal_search=max_normal_search, center_slab=center_slab, ) slab_dict = {slab.miller_index: slab for slab in slabs} if miller_index not in slab_dict: raise ValueError("Miller index not in slab dict") this_slab = slab_dict[miller_index] vnn_surface = VoronoiNN(tol=0.05, allow_pathological=True) surf_props, undercoords = [], [] this_mi_vec = get_mi_vec(this_slab) mi_mags = [np.dot(this_mi_vec, site.coords) for site in this_slab] average_mi_mag = np.average(mi_mags) for n, site in enumerate(this_slab): bulk_coord = this_slab.site_properties["bulk_coordinations"][n] slab_coord = len(vnn_surface.get_nn(this_slab, n)) mi_mag = np.dot(this_mi_vec, site.coords) undercoord = (bulk_coord - slab_coord) / bulk_coord undercoords += [undercoord] if undercoord > undercoord_threshold and mi_mag > average_mi_mag: surf_props += ["surface"] else: surf_props += ["subsurface"] new_site_properties = { "surface_properties": surf_props, "undercoords": undercoords, } new_slab = this_slab.copy(site_properties=new_site_properties) return cls(new_slab, selective_dynamics) def find_surface_sites_by_height(self, slab, height=0.9, xy_tol=0.05): """ This method finds surface sites by determining which sites are within a threshold value in height from the topmost site in a list of sites Args: site_list (list): list of sites from which to select surface sites height (float): threshold in angstroms of distance from topmost site in slab along the slab c-vector to include in surface site determination xy_tol (float): if supplied, will remove any sites which are within a certain distance in the miller plane. Returns: list of sites selected to be within a threshold of the highest """ # Get projection of coordinates along the miller index m_projs = np.array([np.dot(site.coords, self.mvec) for site in slab.sites]) # Mask based on window threshold along the miller index. mask = (m_projs - np.amax(m_projs)) >= -height surf_sites = [slab.sites[n] for n in np.where(mask)[0]] if xy_tol: # sort surface sites by height surf_sites = [s for (h, s) in zip(m_projs[mask], surf_sites)] surf_sites.reverse() unique_sites, unique_perp_fracs = [], [] for site in surf_sites: this_perp = site.coords - np.dot(site.coords, self.mvec) this_perp_frac = slab.lattice.get_fractional_coords(this_perp) if not in_coord_list_pbc(unique_perp_fracs, this_perp_frac): unique_sites.append(site) unique_perp_fracs.append(this_perp_frac) surf_sites = unique_sites return surf_sites def assign_site_properties(self, slab, height=0.9): """ Assigns site properties. """ if "surface_properties" in slab.site_properties.keys(): return slab surf_sites = self.find_surface_sites_by_height(slab, height) surf_props = ["surface" if site in surf_sites else "subsurface" for site in slab.sites] return slab.copy(site_properties={"surface_properties": surf_props}) def get_extended_surface_mesh(self, repeat=(5, 5, 1)): """ Gets an extended surface mesh for to use for adsorption site finding by constructing supercell of surface sites Args: repeat (3-tuple): repeat for getting extended surface mesh """ surf_str = Structure.from_sites(self.surface_sites) surf_str.make_supercell(repeat) return surf_str @property def surface_sites(self): """ convenience method to return a list of surface sites """ return [site for site in self.slab.sites if site.properties["surface_properties"] == "surface"] def subsurface_sites(self): """ convenience method to return list of subsurface sites """ return [site for site in self.slab.sites if site.properties["surface_properties"] == "subsurface"] def find_adsorption_sites( self, distance=2.0, put_inside=True, symm_reduce=1e-2, near_reduce=1e-2, positions=["ontop", "bridge", "hollow"], no_obtuse_hollow=True, ): """ Finds surface sites according to the above algorithm. Returns a list of corresponding cartesian coordinates. Args: distance (float): distance from the coordinating ensemble of atoms along the miller index for the site (i. e. the distance from the slab itself) put_inside (bool): whether to put the site inside the cell symm_reduce (float): symm reduction threshold near_reduce (float): near reduction threshold positions (list): which positions to include in the site finding "ontop": sites on top of surface sites "bridge": sites at edges between surface sites in Delaunay triangulation of surface sites in the miller plane "hollow": sites at centers of Delaunay triangulation faces "subsurface": subsurface positions projected into miller plane no_obtuse_hollow (bool): flag to indicate whether to include obtuse triangular ensembles in hollow sites """ ads_sites = {k: [] for k in positions} if "ontop" in positions: ads_sites["ontop"] = [s.coords for s in self.surface_sites] if "subsurface" in positions: # Get highest site ref = self.slab.sites[np.argmax(self.slab.cart_coords[:, 2])] # Project diff between highest site and subs site into miller ss_sites = [ self.mvec * np.dot(ref.coords - s.coords, self.mvec) + s.coords for s in self.subsurface_sites() ] ads_sites["subsurface"] = ss_sites if "bridge" in positions or "hollow" in positions: mesh = self.get_extended_surface_mesh() sop = get_rot(self.slab) dt = Delaunay([sop.operate(m.coords)[:2] for m in mesh]) # TODO: refactor below to properly account for >3-fold for v in dt.simplices: if -1 not in v: dots = [] for i_corner, i_opp in zip(range(3), ((1, 2), (0, 2), (0, 1))): corner, opp = v[i_corner], [v[o] for o in i_opp] vecs = [mesh[d].coords - mesh[corner].coords for d in opp] vecs = [vec / np.linalg.norm(vec) for vec in vecs] dots.append(np.dot(*vecs)) # Add bridge sites at midpoints of edges of D. Tri if "bridge" in positions: ads_sites["bridge"].append(self.ensemble_center(mesh, opp)) # Prevent addition of hollow sites in obtuse triangles obtuse = no_obtuse_hollow and (np.array(dots) < 1e-5).any() # Add hollow sites at centers of D. Tri faces if "hollow" in positions and not obtuse: ads_sites["hollow"].append(self.ensemble_center(mesh, v)) for key, sites in ads_sites.items(): # Pare off outer sites for bridge/hollow if key in ["bridge", "hollow"]: frac_coords = [self.slab.lattice.get_fractional_coords(ads_site) for ads_site in sites] frac_coords = [ frac_coord for frac_coord in frac_coords if (frac_coord[0] > 1 and frac_coord[0] < 4 and frac_coord[1] > 1 and frac_coord[1] < 4) ] sites = [self.slab.lattice.get_cartesian_coords(frac_coord) for frac_coord in frac_coords] if near_reduce: sites = self.near_reduce(sites, threshold=near_reduce) if put_inside: sites = [put_coord_inside(self.slab.lattice, coord) for coord in sites] if symm_reduce: sites = self.symm_reduce(sites, threshold=symm_reduce) sites = [site + distance * self.mvec for site in sites] ads_sites[key] = sites ads_sites["all"] = sum(ads_sites.values(), []) return ads_sites def symm_reduce(self, coords_set, threshold=1e-6): """ Reduces the set of adsorbate sites by finding removing symmetrically equivalent duplicates Args: coords_set: coordinate set in cartesian coordinates threshold: tolerance for distance equivalence, used as input to in_coord_list_pbc for dupl. checking """ surf_sg = SpacegroupAnalyzer(self.slab, 0.1) symm_ops = surf_sg.get_symmetry_operations() unique_coords = [] # Convert to fractional coords_set = [self.slab.lattice.get_fractional_coords(coords) for coords in coords_set] for coords in coords_set: incoord = False for op in symm_ops: if in_coord_list_pbc(unique_coords, op.operate(coords), atol=threshold): incoord = True break if not incoord: unique_coords += [coords] # convert back to cartesian return [self.slab.lattice.get_cartesian_coords(coords) for coords in unique_coords] def near_reduce(self, coords_set, threshold=1e-4): """ Prunes coordinate set for coordinates that are within threshold Args: coords_set (Nx3 array-like): list or array of coordinates threshold (float): threshold value for distance """ unique_coords = [] coords_set = [self.slab.lattice.get_fractional_coords(coords) for coords in coords_set] for coord in coords_set: if not in_coord_list_pbc(unique_coords, coord, threshold): unique_coords += [coord] return [self.slab.lattice.get_cartesian_coords(coords) for coords in unique_coords] @classmethod def ensemble_center(cls, site_list, indices, cartesian=True): """ Finds the center of an ensemble of sites selected from a list of sites. Helper method for the find_adsorption_sites algorithm. Args: site_list (list of sites): list of sites indices (list of ints): list of ints from which to select sites from site list cartesian (bool): whether to get average fractional or cartesian coordinate """ if cartesian: return np.average([site_list[i].coords for i in indices], axis=0) return np.average([site_list[i].frac_coords for i in indices], axis=0) def add_adsorbate(self, molecule, ads_coord, repeat=None, translate=True, reorient=True): """ Adds an adsorbate at a particular coordinate. Adsorbate represented by a Molecule object and is translated to (0, 0, 0) if translate is True, or positioned relative to the input adsorbate coordinate if translate is False. Args: molecule (Molecule): molecule object representing the adsorbate ads_coord (array): coordinate of adsorbate position repeat (3-tuple or list): input for making a supercell of slab prior to placing the adsorbate translate (bool): flag on whether to translate the molecule so that its CoM is at the origin prior to adding it to the surface reorient (bool): flag on whether to reorient the molecule to have its z-axis concurrent with miller index """ molecule = molecule.copy() if translate: # Translate the molecule so that the center of mass of the atoms # that have the most negative z coordinate is at (0, 0, 0) front_atoms = molecule.copy() front_atoms._sites = [s for s in molecule.sites if s.coords[2] == min(s.coords[2] for s in molecule.sites)] x, y, z = front_atoms.center_of_mass molecule.translate_sites(vector=[-x, -y, -z]) if reorient: # Reorient the molecule along slab m_index sop = get_rot(self.slab) molecule.apply_operation(sop.inverse) struct = self.slab.copy() if repeat: struct.make_supercell(repeat) if "surface_properties" in struct.site_properties.keys(): molecule.add_site_property("surface_properties", ["adsorbate"] * molecule.num_sites) if "selective_dynamics" in struct.site_properties.keys(): molecule.add_site_property("selective_dynamics", [[True, True, True]] * molecule.num_sites) for site in molecule: struct.append( site.specie, ads_coord + site.coords, coords_are_cartesian=True, properties=site.properties, ) return struct @classmethod def assign_selective_dynamics(cls, slab): """ Helper function to assign selective dynamics site_properties based on surface, subsurface site properties Args: slab (Slab): slab for which to assign selective dynamics """ sd_list = [] sd_list = [ [False, False, False] if site.properties["surface_properties"] == "subsurface" else [True, True, True] for site in slab.sites ] new_sp = slab.site_properties new_sp["selective_dynamics"] = sd_list return slab.copy(site_properties=new_sp) def generate_adsorption_structures( self, molecule, repeat=None, min_lw=5.0, translate=True, reorient=True, find_args=None, ): """ Function that generates all adsorption structures for a given molecular adsorbate. Can take repeat argument or minimum length/width of precursor slab as an input Args: molecule (Molecule): molecule corresponding to adsorbate repeat (3-tuple or list): repeat argument for supercell generation min_lw (float): minimum length and width of the slab, only used if repeat is None translate (bool): flag on whether to translate the molecule so that its CoM is at the origin prior to adding it to the surface reorient (bool): flag on whether or not to reorient adsorbate along the miller index find_args (dict): dictionary of arguments to be passed to the call to self.find_adsorption_sites, e.g. {"distance":2.0} """ if repeat is None: xrep = np.ceil(min_lw / np.linalg.norm(self.slab.lattice.matrix[0])) yrep = np.ceil(min_lw / np.linalg.norm(self.slab.lattice.matrix[1])) repeat = [xrep, yrep, 1] structs = [] find_args = find_args or {} for coords in self.find_adsorption_sites(**find_args)["all"]: structs.append( self.add_adsorbate( molecule, coords, repeat=repeat, translate=translate, reorient=reorient, ) ) return structs def adsorb_both_surfaces( self, molecule, repeat=None, min_lw=5.0, translate=True, reorient=True, find_args=None, ): """ Function that generates all adsorption structures for a given molecular adsorbate on both surfaces of a slab. This is useful for calculating surface energy where both surfaces need to be equivalent or if we want to calculate nonpolar systems. Args: molecule (Molecule): molecule corresponding to adsorbate repeat (3-tuple or list): repeat argument for supercell generation min_lw (float): minimum length and width of the slab, only used if repeat is None reorient (bool): flag on whether or not to reorient adsorbate along the miller index find_args (dict): dictionary of arguments to be passed to the call to self.find_adsorption_sites, e.g. {"distance":2.0} """ # Get the adsorbed surfaces first find_args = find_args or {} adslabs = self.generate_adsorption_structures( molecule, repeat=repeat, min_lw=min_lw, translate=translate, reorient=reorient, find_args=find_args, ) new_adslabs = [] for adslab in adslabs: # Find the adsorbate sites and indices in each slab _, adsorbates, indices = False, [], [] for i, site in enumerate(adslab.sites): if site.surface_properties == "adsorbate": adsorbates.append(site) indices.append(i) # Start with the clean slab adslab.remove_sites(indices) slab = adslab.copy() # For each site, we add it back to the slab along with a # symmetrically equivalent position on the other side of # the slab using symmetry operations for adsorbate in adsorbates: p2 = adslab.get_symmetric_site(adsorbate.frac_coords) slab.append(adsorbate.specie, p2, properties={"surface_properties": "adsorbate"}) slab.append( adsorbate.specie, adsorbate.frac_coords, properties={"surface_properties": "adsorbate"}, ) new_adslabs.append(slab) return new_adslabs def generate_substitution_structures( self, atom, target_species=None, sub_both_sides=False, range_tol=1e-2, dist_from_surf=0, ): """ Function that performs substitution-type doping on the surface and returns all possible configurations where one dopant is substituted per surface. Can substitute one surface or both. Args: atom (str): atom corresponding to substitutional dopant sub_both_sides (bool): If true, substitute an equivalent site on the other surface target_species (list): List of specific species to substitute range_tol (float): Find viable substitution sites at a specific distance from the surface +- this tolerance dist_from_surf (float): Distance from the surface to find viable substitution sites, defaults to 0 to substitute at the surface """ target_species = target_species or [] # Get symmetrized structure in case we want to substitue both sides sym_slab = SpacegroupAnalyzer(self.slab).get_symmetrized_structure() # Define a function for substituting a site def substitute(site, i): slab = self.slab.copy() props = self.slab.site_properties if sub_both_sides: # Find an equivalent site on the other surface eq_indices = [indices for indices in sym_slab.equivalent_indices if i in indices][0] for ii in eq_indices: if f"{sym_slab[ii].frac_coords[2]:.6f}" != f"{site.frac_coords[2]:.6f}": props["surface_properties"][ii] = "substitute" slab.replace(ii, atom) break props["surface_properties"][i] = "substitute" slab.replace(i, atom) slab.add_site_property("surface_properties", props["surface_properties"]) return slab # Get all possible substitution sites substituted_slabs = [] # Sort sites so that we can define a range relative to the position of the # surface atoms, i.e. search for sites above (below) the bottom (top) surface sorted_sites = sorted(sym_slab, key=lambda site: site.frac_coords[2]) if sorted_sites[0].surface_properties == "surface": d = sorted_sites[0].frac_coords[2] + dist_from_surf else: d = sorted_sites[-1].frac_coords[2] - dist_from_surf for i, site in enumerate(sym_slab): if d - range_tol < site.frac_coords[2] < d + range_tol: if target_species and site.species_string in target_species: substituted_slabs.append(substitute(site, i)) elif not target_species: substituted_slabs.append(substitute(site, i)) matcher = StructureMatcher() return [s[0] for s in matcher.group_structures(substituted_slabs)] def get_mi_vec(slab): """ Convenience function which returns the unit vector aligned with the miller index. """ mvec = np.cross(slab.lattice.matrix[0], slab.lattice.matrix[1]) return mvec / np.linalg.norm(mvec) def get_rot(slab): """ Gets the transformation to rotate the z axis into the miller index """ new_z = get_mi_vec(slab) a, b, c = slab.lattice.matrix new_x = a / np.linalg.norm(a) new_y = np.cross(new_z, new_x) x, y, z = np.eye(3) rot_matrix = np.array([np.dot(*el) for el in itertools.product([x, y, z], [new_x, new_y, new_z])]).reshape(3, 3) rot_matrix = np.transpose(rot_matrix) sop = SymmOp.from_rotation_and_translation(rot_matrix) return sop def put_coord_inside(lattice, cart_coordinate): """ converts a cartesian coordinate such that it is inside the unit cell. """ fc = lattice.get_fractional_coords(cart_coordinate) return lattice.get_cartesian_coords([c - np.floor(c) for c in fc]) def reorient_z(structure): """ reorients a structure such that the z axis is concurrent with the normal to the A-B plane """ struct = structure.copy() sop = get_rot(struct) struct.apply_operation(sop) return struct # Get color dictionary colors = loadfn(os.path.join(os.path.dirname(vis.__file__), "ElementColorSchemes.yaml")) color_dict = {el: [j / 256.001 for j in colors["Jmol"][el]] for el in colors["Jmol"].keys()} def plot_slab( slab, ax, scale=0.8, repeat=5, window=1.5, draw_unit_cell=True, decay=0.2, adsorption_sites=True, inverse=False, ): """ Function that helps visualize the slab in a 2-D plot, for convenient viewing of output of AdsorbateSiteFinder. Args: slab (slab): Slab object to be visualized ax (axes): matplotlib axes with which to visualize scale (float): radius scaling for sites repeat (int): number of repeating unit cells to visualize window (float): window for setting the axes limits, is essentially a fraction of the unit cell limits draw_unit_cell (bool): flag indicating whether or not to draw cell decay (float): how the alpha-value decays along the z-axis inverse (bool): invert z axis to plot opposite surface """ orig_slab = slab.copy() slab = reorient_z(slab) orig_cell = slab.lattice.matrix.copy() if repeat: slab.make_supercell([repeat, repeat, 1]) coords = np.array(sorted(slab.cart_coords, key=lambda x: x[2])) sites = sorted(slab.sites, key=lambda x: x.coords[2]) alphas = 1 - decay * (np.max(coords[:, 2]) - coords[:, 2]) alphas = alphas.clip(min=0) corner = [0, 0, slab.lattice.get_fractional_coords(coords[-1])[-1]] corner = slab.lattice.get_cartesian_coords(corner)[:2] verts = orig_cell[:2, :2] lattsum = verts[0] + verts[1] # inverse coords, sites, alphas, to show other side of slab if inverse: alphas = np.array(reversed(alphas)) sites = list(reversed(sites)) coords = np.array(reversed(coords)) # Draw circles at sites and stack them accordingly for n, coord in enumerate(coords): r = sites[n].specie.atomic_radius * scale ax.add_patch(patches.Circle(coord[:2] - lattsum * (repeat // 2), r, color="w", zorder=2 * n)) color = color_dict[sites[n].species_string] ax.add_patch( patches.Circle( coord[:2] - lattsum * (repeat // 2), r, facecolor=color, alpha=alphas[n], edgecolor="k", lw=0.3, zorder=2 * n + 1, ) ) # Adsorption sites if adsorption_sites: asf = AdsorbateSiteFinder(orig_slab) if inverse: inverse_slab = orig_slab.copy() inverse_slab.make_supercell([1, 1, -1]) asf = AdsorbateSiteFinder(inverse_slab) ads_sites = asf.find_adsorption_sites()["all"] sop = get_rot(orig_slab) ads_sites = [sop.operate(ads_site)[:2].tolist() for ads_site in ads_sites] ax.plot(*zip(*ads_sites), color="k", marker="x", markersize=10, mew=1, linestyle="", zorder=10000) # Draw unit cell if draw_unit_cell: verts = np.insert(verts, 1, lattsum, axis=0).tolist() verts += [[0.0, 0.0]] verts = [[0.0, 0.0]] + verts codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] verts = [(np.array(vert) + corner).tolist() for vert in verts] path = Path(verts, codes) patch = patches.PathPatch(path, facecolor="none", lw=2, alpha=0.5, zorder=2 * n + 2) ax.add_patch(patch) ax.set_aspect("equal") center = corner + lattsum / 2.0 extent = np.max(lattsum) lim_array = [center - extent * window, center + extent * window] x_lim = [ele[0] for ele in lim_array] y_lim = [ele[1] for ele in lim_array] ax.set_xlim(x_lim) ax.set_ylim(y_lim) return ax
41.303311
119
0.614129
82fbe0bd2fb66507cf7c0660328063a4fdbe037b
12,166
py
Python
.github/scripts/test_trymerge.py
qqaatw/pytorch
44764f131b040a41a6dcf1304bb635c574bf5a3b
[ "Intel" ]
null
null
null
.github/scripts/test_trymerge.py
qqaatw/pytorch
44764f131b040a41a6dcf1304bb635c574bf5a3b
[ "Intel" ]
null
null
null
.github/scripts/test_trymerge.py
qqaatw/pytorch
44764f131b040a41a6dcf1304bb635c574bf5a3b
[ "Intel" ]
null
null
null
#!/usr/bin/env python3 # Tests implemented in this file are relying on GitHub GraphQL APIs # In order to avoid test flakiness, results of the queries # are cached in gql_mocks.json # PyTorch Lint workflow does not have GITHUB_TOKEN defined to avoid # flakiness, so if you are making changes to merge_rules or # GraphQL queries in trymerge.py, please make sure to delete `gql_mocks.json` # And re-run the test locally with ones PAT import json import os from hashlib import sha256 from trymerge import find_matching_merge_rule, gh_graphql, gh_get_team_members, GitHubPR, MergeRule, MandatoryChecksMissingError from gitutils import get_git_remote_name, get_git_repo_dir, GitRepo from typing import cast, Any, List, Optional from unittest import TestCase, main, mock from urllib.error import HTTPError def mocked_gh_graphql(query: str, **kwargs: Any) -> Any: gql_db_fname = os.path.join(os.path.dirname(__file__), "gql_mocks.json") def get_mocked_queries() -> Any: if not os.path.exists(gql_db_fname): return {} with open(gql_db_fname, encoding="utf-8") as f: return json.load(f) def save_mocked_queries(obj: Any) -> None: with open(gql_db_fname, encoding="utf-8", mode="w") as f: json.dump(obj, f, indent=2) f.write("\n") key = f"query_sha={sha256(query.encode('utf-8')).hexdigest()} " + " ".join([f"{k}={kwargs[k]}" for k in sorted(kwargs.keys())]) mocked_queries = get_mocked_queries() if key in mocked_queries: return mocked_queries[key] try: rc = gh_graphql(query, **kwargs) except HTTPError as err: if err.code == 401: err_msg = "If you are seeing this message during workflow run, please make sure to update gql_mocks.json" err_msg += f" locally, by deleting it and running {os.path.basename(__file__)} with " err_msg += " GitHub Personal Access Token passed via GITHUB_TOKEN environment variable" if os.getenv("GITHUB_TOKEN") is None: err_msg = "Failed to update cached GraphQL queries as GITHUB_TOKEN is not defined." + err_msg raise RuntimeError(err_msg) from err mocked_queries[key] = rc save_mocked_queries(mocked_queries) return rc def mock_parse_args(revert: bool = False, force: bool = False) -> Any: class Object(object): def __init__(self) -> None: self.revert = revert self.force = force self.pr_num = 76123 self.dry_run = True self.comment_id = 0 self.on_mandatory = False self.on_green = False self.reason = 'this is for testing' return Object() def mock_revert(repo: GitRepo, pr: GitHubPR, *, dry_run: bool = False, comment_id: Optional[int] = None, reason: Optional[str] = None) -> None: pass def mock_merge(pr_num: int, repo: GitRepo, dry_run: bool = False, force: bool = False, comment_id: Optional[int] = None, mandatory_only: bool = False, on_green: bool = False, timeout_minutes: int = 400, stale_pr_days: int = 3) -> None: pass def mock_gh_get_info() -> Any: return {"closed": False, "isCrossRepository": False} def mocked_read_merge_rules(repo: Optional[GitRepo], org: str, project: str) -> List[MergeRule]: mock_merge_rules = """ [ { "name": "mock with nonexistent check", "patterns": ["*"], "approved_by": [], "mandatory_checks_name": [ "Facebook CLA Check", "Lint", "nonexistent" ] } ] """ rc = json.loads(mock_merge_rules, object_hook=lambda x: MergeRule(**x)) return cast(List[MergeRule], rc) class TestGitHubPR(TestCase): @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_match_rules(self, mocked_gql: Any) -> None: "Tests that PR passes merge rules" pr = GitHubPR("pytorch", "pytorch", 77700) repo = GitRepo(get_git_repo_dir(), get_git_remote_name()) self.assertTrue(find_matching_merge_rule(pr, repo) is not None) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_lint_fails(self, mocked_gql: Any) -> None: "Tests that PR fails mandatory lint check" pr = GitHubPR("pytorch", "pytorch", 74649) repo = GitRepo(get_git_repo_dir(), get_git_remote_name()) self.assertRaises(RuntimeError, lambda: find_matching_merge_rule(pr, repo)) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_get_last_comment(self, mocked_gql: Any) -> None: "Tests that last comment can be fetched" pr = GitHubPR("pytorch", "pytorch", 71759) comment = pr.get_last_comment() self.assertEqual(comment.author_login, "github-actions") self.assertIsNone(comment.editor_login) self.assertTrue("You've committed this PR" in comment.body_text) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_get_author_null(self, mocked_gql: Any) -> None: """ Tests that PR author can be computed If reply contains NULL """ pr = GitHubPR("pytorch", "pytorch", 71759) author = pr.get_author() self.assertTrue(author is not None) self.assertTrue("@" in author) self.assertTrue(pr.get_diff_revision() is None) # PR with multiple contributors, but creator id is not among authors pr = GitHubPR("pytorch", "pytorch", 75095) self.assertEqual(pr.get_pr_creator_login(), "mruberry") author = pr.get_author() self.assertTrue(author is not None) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_large_diff(self, mocked_gql: Any) -> None: "Tests that PR with 100+ files can be fetched" pr = GitHubPR("pytorch", "pytorch", 73099) self.assertTrue(pr.get_changed_files_count() > 100) flist = pr.get_changed_files() self.assertEqual(len(flist), pr.get_changed_files_count()) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_internal_changes(self, mocked_gql: Any) -> None: "Tests that PR with internal changes is detected" pr = GitHubPR("pytorch", "pytorch", 73969) self.assertTrue(pr.has_internal_changes()) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_checksuites_pagination(self, mocked_gql: Any) -> None: "Tests that PR with lots of checksuits can be fetched" pr = GitHubPR("pytorch", "pytorch", 73811) self.assertGreater(len(pr.get_checkrun_conclusions()), 0) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_comments_pagination(self, mocked_gql: Any) -> None: "Tests that PR with 50+ comments can be fetched" pr = GitHubPR("pytorch", "pytorch", 31093) self.assertGreater(len(pr.get_comments()), 50) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_gql_complexity(self, mocked_gql: Any) -> None: "Fetch comments and conclusions for PR with 60 commits" # Previous version of GrapQL query used to cause HTTP/502 error # see https://gist.github.com/malfet/9b93bc7eeddeaf1d84546efc4f0c577f pr = GitHubPR("pytorch", "pytorch", 68111) self.assertGreater(len(pr.get_comments()), 20) self.assertGreater(len(pr.get_checkrun_conclusions()), 3) self.assertGreater(pr.get_commit_count(), 60) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_team_members(self, mocked_gql: Any) -> None: "Test fetching team members works" dev_infra_team = gh_get_team_members("pytorch", "pytorch-dev-infra") self.assertGreater(len(dev_infra_team), 2) with self.assertWarns(Warning): non_existing_team = gh_get_team_members("pytorch", "qwertyuiop") self.assertEqual(len(non_existing_team), 0) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_get_author_many_commits(self, mocked_gql: Any) -> None: """ Tests that authors for all commits can be fetched """ pr = GitHubPR("pytorch", "pytorch", 76118) authors = pr.get_authors() self.assertGreater(pr.get_commit_count(), 100) self.assertGreater(len(authors), 50) self.assertTrue("@" in pr.get_author()) @mock.patch('trymerge.read_merge_rules', side_effect=mocked_read_merge_rules) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_pending_status_check(self, mocked_gql: Any, mocked_read_merge_rules: Any) -> None: """ Tests that PR with nonexistent/pending status checks fails with the right reason. """ pr = GitHubPR("pytorch", "pytorch", 76118) repo = GitRepo(get_git_repo_dir(), get_git_remote_name()) self.assertRaisesRegex(MandatoryChecksMissingError, ".*are pending/not yet run.*", lambda: find_matching_merge_rule(pr, repo)) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_get_author_many_reviews(self, mocked_gql: Any) -> None: """ Tests that all reviews can be fetched """ pr = GitHubPR("pytorch", "pytorch", 76123) approved_by = pr.get_approved_by() self.assertGreater(len(approved_by), 0) assert pr._reviews is not None # to pacify mypy self.assertGreater(len(pr._reviews), 100) @mock.patch('trymerge.gh_graphql', side_effect=mocked_gh_graphql) def test_get_checkruns_many_runs(self, mocked_gql: Any) -> None: """ Tests that all checkruns can be fetched """ pr = GitHubPR("pytorch", "pytorch", 77700) conclusions = pr.get_checkrun_conclusions() self.assertTrue("linux-docs / build-docs (cpp)" in conclusions.keys()) @mock.patch('trymerge.gh_get_pr_info', return_value=mock_gh_get_info()) @mock.patch('trymerge.parse_args', return_value=mock_parse_args(True, False)) @mock.patch('trymerge.try_revert', side_effect=mock_revert) def test_main_revert(self, mock_revert: Any, mock_parse_args: Any, gh_get_pr_info: Any) -> None: import trymerge trymerge.main() mock_revert.assert_called_once() @mock.patch('trymerge.gh_get_pr_info', return_value=mock_gh_get_info()) @mock.patch('trymerge.parse_args', return_value=mock_parse_args(False, True)) @mock.patch('trymerge.merge', side_effect=mock_merge) def test_main_force(self, mock_merge: Any, mock_parse_args: Any, mock_gh_get_info: Any) -> None: import trymerge trymerge.main() mock_merge.assert_called_once_with(mock.ANY, mock.ANY, dry_run=mock.ANY, force=True, comment_id=mock.ANY, on_green=False, mandatory_only=False) @mock.patch('trymerge.gh_get_pr_info', return_value=mock_gh_get_info()) @mock.patch('trymerge.parse_args', return_value=mock_parse_args(False, False)) @mock.patch('trymerge.merge', side_effect=mock_merge) def test_main_merge(self, mock_merge: Any, mock_parse_args: Any, mock_gh_get_info: Any) -> None: import trymerge trymerge.main() mock_merge.assert_called_once_with(mock.ANY, mock.ANY, dry_run=mock.ANY, force=False, comment_id=mock.ANY, on_green=False, mandatory_only=False) if __name__ == "__main__": main()
44.564103
131
0.639076
99aa125dcdf38bb38c1de50f1b2555d6a156c473
5,521
py
Python
asposepdfcloud/models/annotations_info_response.py
kaferi/aspose-pdf-cloud-python
48f70742fec1e41644ec0b658db3f174ba845304
[ "MIT" ]
7
2018-06-11T17:44:44.000Z
2022-02-08T05:52:48.000Z
asposepdfcloud/models/annotations_info_response.py
kaferi/aspose-pdf-cloud-python
48f70742fec1e41644ec0b658db3f174ba845304
[ "MIT" ]
1
2021-03-20T22:16:15.000Z
2021-06-27T15:11:52.000Z
asposepdfcloud/models/annotations_info_response.py
kaferi/aspose-pdf-cloud-python
48f70742fec1e41644ec0b658db3f174ba845304
[ "MIT" ]
4
2018-04-18T19:41:12.000Z
2021-06-21T13:12:24.000Z
# coding: utf-8 """ Aspose.PDF Cloud API Reference Copyright (c) 2021 Aspose.PDF Cloud Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. OpenAPI spec version: 3.0 """ from pprint import pformat from six import iteritems import re class AnnotationsInfoResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'code': 'int', 'status': 'str', 'annotations': 'AnnotationsInfo' } attribute_map = { 'code': 'Code', 'status': 'Status', 'annotations': 'Annotations' } def __init__(self, code=None, status=None, annotations=None): """ AnnotationsInfoResponse - a model defined in Swagger """ self._code = None self._status = None self._annotations = None self.code = code if status is not None: self.status = status if annotations is not None: self.annotations = annotations @property def code(self): """ Gets the code of this AnnotationsInfoResponse. Response status code. :return: The code of this AnnotationsInfoResponse. :rtype: int """ return self._code @code.setter def code(self, code): """ Sets the code of this AnnotationsInfoResponse. Response status code. :param code: The code of this AnnotationsInfoResponse. :type: int """ if code is None: raise ValueError("Invalid value for `code`, must not be `None`") self._code = code @property def status(self): """ Gets the status of this AnnotationsInfoResponse. Response status. :return: The status of this AnnotationsInfoResponse. :rtype: str """ return self._status @status.setter def status(self, status): """ Sets the status of this AnnotationsInfoResponse. Response status. :param status: The status of this AnnotationsInfoResponse. :type: str """ self._status = status @property def annotations(self): """ Gets the annotations of this AnnotationsInfoResponse. Annotations info :return: The annotations of this AnnotationsInfoResponse. :rtype: AnnotationsInfo """ return self._annotations @annotations.setter def annotations(self, annotations): """ Sets the annotations of this AnnotationsInfoResponse. Annotations info :param annotations: The annotations of this AnnotationsInfoResponse. :type: AnnotationsInfo """ self._annotations = annotations def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, AnnotationsInfoResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
27.605
78
0.600978
0d283fc4b23dffb2a4c96b15af72fafe06cd3d69
564
py
Python
05 - Basics of lists, keyboard control/motion_implicit.py
PableraShow/python-exercises
e1648fd42f3009ec6fb1e2096852b6d399e91d5b
[ "MIT" ]
8
2018-10-01T17:35:57.000Z
2022-02-01T08:12:12.000Z
05 - Basics of lists, keyboard control/motion_implicit.py
PableraShow/python-exercises
e1648fd42f3009ec6fb1e2096852b6d399e91d5b
[ "MIT" ]
null
null
null
05 - Basics of lists, keyboard control/motion_implicit.py
PableraShow/python-exercises
e1648fd42f3009ec6fb1e2096852b6d399e91d5b
[ "MIT" ]
6
2018-07-22T19:15:21.000Z
2022-02-05T07:54:58.000Z
# Ball motion with an implicit timer import simplegui # Initialize globals WIDTH = 600 HEIGHT = 400 BALL_RADIUS = 20 ball_pos = [WIDTH / 2, HEIGHT / 2] vel = [0, 1] # pixels per update (1/60 seconds) # define event handlers def draw(canvas): # Update ball position ball_pos[0] += vel[0] ball_pos[1] += vel[1] # Draw ball canvas.draw_circle(ball_pos, BALL_RADIUS, 2, 'Red', 'White') # create frame frame = simplegui.create_frame('Motion', WIDTH, HEIGHT) # register event handlers frame.set_draw_handler(draw) # start frame frame.start()
18.8
64
0.693262
d6157dfb55b230dcfc9363cf23f59fea2f01b469
211
py
Python
etlaas_stream/infrastructure.py
etlaas/etlaas-stream
59f811807e0d639c8787c0676e39d5a8db20789f
[ "MIT" ]
null
null
null
etlaas_stream/infrastructure.py
etlaas/etlaas-stream
59f811807e0d639c8787c0676e39d5a8db20789f
[ "MIT" ]
null
null
null
etlaas_stream/infrastructure.py
etlaas/etlaas-stream
59f811807e0d639c8787c0676e39d5a8db20789f
[ "MIT" ]
null
null
null
import simplejson from typing import Any def default_loads(s: str) -> Any: return simplejson.loads(s, use_decimal=True) def default_dumps(d: Any) -> str: return simplejson.dumps(d, use_decimal=True)
19.181818
48
0.734597
445fd79bf777773a2998a18aa6714d8c7129f5c6
7,373
py
Python
DeblurGAN-tf/00-access/mode.py
NALLEIN/Ascend
dbe83758cc180b21c41661a1dfad399193a7851c
[ "Apache-2.0" ]
null
null
null
DeblurGAN-tf/00-access/mode.py
NALLEIN/Ascend
dbe83758cc180b21c41661a1dfad399193a7851c
[ "Apache-2.0" ]
null
null
null
DeblurGAN-tf/00-access/mode.py
NALLEIN/Ascend
dbe83758cc180b21c41661a1dfad399193a7851c
[ "Apache-2.0" ]
null
null
null
import os import tensorflow as tf from PIL import Image import numpy as np import time import util # from skimage.measure import compare_ssim as ssim import data def train(args, model, sess, saver): if args.fine_tuning : saver.restore(sess, args.pre_trained_model) print("saved model is loaded for fine-tuning!") print("model path is %s"%(args.pre_trained_model)) num_imgs = len(os.listdir(args.train_Sharp_path)) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(args.logdir,sess.graph) if args.test_with_train: f = open("valid_logs.txt", 'w') epoch = 0 step = num_imgs // args.batch_size if args.in_memory: blur_imgs = util.image_loader(args.train_Blur_path, args.load_X, args.load_Y) sharp_imgs = util.image_loader(args.train_Sharp_path, args.load_X, args.load_Y) # lr_hr_ds, n_data = data.load_train_dataset(args.train_Sharp_path, args.train_Blur_path, args.ext, args.batch_size) # next_element = lr_hr_ds.get_next() while epoch < args.max_epoch: random_index = np.random.permutation(len(blur_imgs)) for k in range(step): s_time = time.time() # blur_batch, sharp_batch = sess.run(next_element) blur_batch, sharp_batch = util.batch_gen(blur_imgs, sharp_imgs, args.patch_size, args.batch_size, random_index, k, args.augmentation) for t in range(args.critic_updates): _, D_loss = sess.run([model.D_train, model.D_loss], feed_dict = {model.blur : blur_batch, model.sharp : sharp_batch, model.epoch : epoch}) _, G_loss = sess.run([model.G_train, model.G_loss], feed_dict = {model.blur : blur_batch, model.sharp : sharp_batch, model.epoch : epoch}) e_time = time.time() if epoch % args.log_freq == 0: summary = sess.run(merged, feed_dict = {model.blur : blur_batch, model.sharp: sharp_batch}) train_writer.add_summary(summary, epoch) if args.test_with_train: test(args, model, sess, saver, f, epoch, loading = False) print("%d training epoch completed" % epoch) print("D_loss : %0.4f, \t G_loss : %0.4f"%(D_loss, G_loss)) print("Elpased time : %0.4f"%(e_time - s_time)) if ((epoch + 1) % args.model_save_freq ==0): saver.save(sess, './model/DeblurrGAN', global_step = epoch, write_meta_graph = False) epoch += 1 saver.save(sess, './model/DeblurrGAN_last', write_meta_graph = False) else: while epoch < args.max_epoch: sess.run(model.data_loader.init_op['tr_init']) for k in range(step): s_time = time.time() for t in range(args.critic_updates): _, D_loss = sess.run([model.D_train, model.D_loss], feed_dict = {model.epoch : epoch}) _, G_loss = sess.run([model.G_train, model.G_loss], feed_dict = {model.epoch : epoch}) e_time = time.time() if epoch % args.log_freq == 0: summary = sess.run(merged) train_writer.add_summary(summary, epoch) if args.test_with_train: test(args, model, sess, saver, f, epoch, loading = False) print("%d training epoch completed" % epoch) print("D_loss : %0.4f, \t G_loss : %0.4f"%(D_loss, G_loss)) print("Elpased time : %0.4f"%(e_time - s_time)) if ((epoch) % args.model_save_freq ==0): saver.save(sess, './model/DeblurrGAN', global_step = epoch, write_meta_graph = False) epoch += 1 saver.save(sess, './model/DeblurrGAN_last', global_step = epoch, write_meta_graph = False) if args.test_with_train: f.close() def test(args, model, sess, saver, file, step = -1, loading = False): if loading: saver.restore(sess, args.pre_trained_model) print("saved model is loaded for test!") print("model path is %s"%args.pre_trained_model) blur_img_name = sorted(os.listdir(args.test_Blur_path)) sharp_img_name = sorted(os.listdir(args.test_Sharp_path)) PSNR_list = [] ssim_list = [] if args.in_memory : blur_imgs = util.image_loader(args.test_Blur_path, args.load_X, args.load_Y, is_train = False) sharp_imgs = util.image_loader(args.test_Sharp_path, args.load_X, args.load_Y, is_train = False) for i, ele in enumerate(blur_imgs): blur = np.expand_dims(ele, axis = 0) sharp = np.expand_dims(sharp_imgs[i], axis = 0) output, psnr, ssim = sess.run([model.output, model.PSNR, model.ssim], feed_dict = {model.blur : blur, model.sharp : sharp}) if args.save_test_result: output = Image.fromarray(output[0]) split_name = blur_img_name[i].split('.') output.save(os.path.join(args.result_path, '%s_sharp.png'%(''.join(map(str, split_name[:-1]))))) PSNR_list.append(psnr) ssim_list.append(ssim) else: sess.run(model.data_loader.init_op['val_init']) for i in range(len(blur_img_name)): output, psnr, ssim = sess.run([model.output, model.PSNR, model.ssim]) if args.save_test_result: output = Image.fromarray(output[0]) split_name = blur_img_name[i].split('.') output.save(os.path.join(args.result_path, '%s_sharp.png'%(''.join(map(str, split_name[:-1]))))) PSNR_list.append(psnr) ssim_list.append(ssim) length = len(PSNR_list) mean_PSNR = sum(PSNR_list) / length mean_ssim = sum(ssim_list) / length if step == -1: file.write('PSNR : 0.4f SSIM : %0.4f'%(mean_PSNR, mean_ssim)) file.close() else : file.write("%d-epoch step PSNR : %0.4f SSIM : %0.4f \n"%(step, mean_PSNR, mean_ssim)) def test_only(args, model, sess, saver): saver.restore(sess,args.pre_trained_model) print("saved model is loaded for test only!") print("model path is %s"%args.pre_trained_model) blur_img_name = sorted(os.listdir(args.test_Blur_path)) if args.in_memory : blur_imgs = util.image_loader(args.test_Blur_path, args.load_X, args.load_Y, is_train = False) for i, ele in enumerate(blur_imgs): blur = np.expand_dims(ele, axis = 0) if args.chop_forward: output = util.recursive_forwarding(blur, args.chop_size, sess, model, args.chop_shave) output = Image.fromarray(output[0]) else: output = sess.run(model.output, feed_dict = {model.blur : blur}) output = Image.fromarray(output[0]) split_name = blur_img_name[i].split('.') output.save(os.path.join(args.result_path, '%s_sharp.png'%(''.join(map(str, split_name[:-1]))))) else: sess.run(model.data_loader.init_op['te_init']) for i in range(len(blur_img_name)): output = sess.run(model.output) output = Image.fromarray(output[0]) split_name = blur_img_name[i].split('.') output.save(os.path.join(args.result_path, '%s_sharp.png'%(''.join(map(str, split_name[:-1])))))
39.218085
158
0.606809
ef998d785a4046f92df56917e63bf9f47049b706
2,667
py
Python
awd/embedding_mul_test.py
nkcr/overlap-ml
58f55ae906f880b550f2fcf3fb56338678fd3d8f
[ "BSD-3-Clause" ]
3
2019-11-14T22:43:41.000Z
2021-04-15T03:59:57.000Z
awd/embedding_mul_test.py
nkcr/overlap-ml
58f55ae906f880b550f2fcf3fb56338678fd3d8f
[ "BSD-3-Clause" ]
7
2019-09-19T20:25:25.000Z
2022-02-10T00:31:46.000Z
awd/embedding_mul_test.py
nkcr/overlap-ml
58f55ae906f880b550f2fcf3fb56338678fd3d8f
[ "BSD-3-Clause" ]
1
2020-05-28T23:34:43.000Z
2020-05-28T23:34:43.000Z
import unittest import mock from mock import Mock import numpy as np from embedding_mul import EmbeddingMul import torch import argparse import logging """Simple test class for EmbeddingMul class Author: Noémien Kocher Date: Fall 2018 Run this class with `python3 embedding_mul_test.py` or `python3 unittest -m embedding_mul_test.py` """ class EmbeddingMulTest(unittest.TestCase): def test_forward(self): """Simple test using tensors""" emsize = 3 num_token = 4 emm = EmbeddingMul(num_token, 'cpu') # 0 1 2 # 3 4 5 # 6 7 8 # 9 10 11 weights = torch.tensor(range(emsize*num_token) ).view(num_token, emsize).float() input = torch.tensor( [[3.0, 2, 1], [0, 3, 2], [2, 2, 0]]) expected = torch.tensor([ [[9, 10, 11], [6, 7, 8], [3, 4, 5]], [[0, 1, 2], [9, 10, 11], [6, 7, 8]], [[6, 7, 8], [6, 7, 8], [0, 1, 2]] ]).float() result = emm(input, weights, -1) self.assertEqual(result.detach().numpy().tolist(), expected.numpy().tolist()) def test_forward2(self): """Test using the original embedding module from pytorch""" emsize = 3 num_token = 4 emm = EmbeddingMul(num_token, 'cpu') # 0 1 2 # 3 4 5 # 6 7 8 # 9 10 11 weights = torch.tensor(range(emsize*num_token) ).view(num_token, emsize).float() true_em = torch.nn.Embedding(num_token, emsize) true_em.weight.data = weights input = torch.tensor([[3.0, 2, 1], [0, 3, 2], [2, 2, 0]]) expected = true_em(input.long()).float() result = emm(input, weights, -1) self.assertEqual(result.detach().numpy().tolist(), expected.detach().numpy().tolist()) def test_forward_grad(self): num_tokens = 3 input = torch.tensor([[0, 1]]) weights = torch.tensor([[1.0, 2], [3, 4], [5, 6]]) emm = EmbeddingMul(num_tokens, 'cpu') emm._requires_grad = True X_hat = emm(input, weights, -1) W = torch.tensor([[2.0], [3]]) X_hhat = torch.mm(X_hat[0], W) y = torch.sum(X_hhat) y.backward() # Those results were computed by hand expected = torch.tensor([ [[8.0, 18.0, 28.0], [8.0, 18.0, 28.0]] ]) result = emm.last_oh.grad self.assertEqual(result.numpy().tolist(), expected.numpy().tolist()) if __name__ == "__main__": unittest.main()
28.37234
76
0.523435
3829dc5e6917458072ee981267b831a394fae049
11,975
py
Python
service/base.py
gregbugaj/TextGenerator
d92431bdce31914a108417f7b00ed80b8f994298
[ "MIT" ]
null
null
null
service/base.py
gregbugaj/TextGenerator
d92431bdce31914a108417f7b00ed80b8f994298
[ "MIT" ]
null
null
null
service/base.py
gregbugaj/TextGenerator
d92431bdce31914a108417f7b00ed80b8f994298
[ "MIT" ]
null
null
null
from lxml.etree import Element, SubElement, tostring from utils import log import shutil import json import os import cv2 import numpy as np def get_pic_dir(out_put_dir): img_dir = os.path.join(out_put_dir, "img") pic_dir = os.path.join(img_dir, "pic") return pic_dir def get_fragment_dir(out_put_dir): img_dir = os.path.join(out_put_dir, "img") fragment_dir = os.path.join(img_dir, "fragment") return fragment_dir def get_data_dir(out_put_dir): data_dir = os.path.join(out_put_dir, "data") return data_dir def get_label_data_dir(out_put_dir): label_data = os.path.join(out_put_dir, "label_data") return label_data def get_voc_data_dir(out_put_dir): voc_data = os.path.join(out_put_dir, "voc_data") return voc_data def get_lsvt_data_dir(out_put_dir): lsvt_data = os.path.join(out_put_dir, "lsvt_data") return lsvt_data def get_icidar_data_dir(out_put_dir): icdr_data = os.path.join(out_put_dir, "icdar_data") return icdr_data def get_mask_data_dir(out_put_dir): mask_data = os.path.join(out_put_dir, "mask_data") return mask_data def gen_all_pic(): """ Generate all pictures :return: """ from service import conf gen_count = conf['base']['count_per_process'] index = 0 while index < gen_count: log.info("-" * 20 + " generate new picture {index}/{gen_count}".format(index=index, gen_count=gen_count) + "-" * 20) dump_data = gen_pic() # Write label if dump_data: add_label_data(dump_data) # Write voc if conf['base']['gen_voc']: gen_voc(dump_data) # index += 1 if conf['base']['gen_lsvt']: gen_lsvt(dump_data) # index += 1 # if conf['base']['gen_icdar']: gen_icdar(dump_data) # index += 1 index += 1 def gen_pic(): from service import layout_provider layout = layout_provider.gen_next_layout() if not layout.is_empty(): dump_data = layout.dump() # layout.show(draw_rect=True) return dump_data else: log.info("-" * 10 + "layout is empty" + "-" * 10) return None def add_label_data(layout_data): """ Write label file :return: """ from service import conf out_put_dir = conf['provider']['layout']['out_put_dir'] label_data_dir = get_label_data_dir(out_put_dir=out_put_dir) os.makedirs(label_data_dir, exist_ok=True) label_file_path = os.path.join(label_data_dir, "label_{pid}.txt".format(pid=os.getpid())) fragment_dir = get_fragment_dir(out_put_dir) fragment_list = layout_data['fragment'] with open(label_file_path, 'a+') as f: for fragment in fragment_list: fragment_name = fragment['fragment_name'] fragment_img_src_path = os.path.join(fragment_dir, fragment_name) fragment_img_dst_path = os.path.join(label_data_dir, fragment_name) shutil.copy(fragment_img_src_path, fragment_img_dst_path) txt = fragment['data'] img_name = fragment['fragment_name'] line = img_name + "^" + txt + os.linesep f.write(line) log.info("gen label data success!") def gen_voc(layout_data): """ Generate voc data set :return: """ from service import conf out_put_dir = conf['provider']['layout']['out_put_dir'] voc_data_dir = get_voc_data_dir(out_put_dir=out_put_dir) voc_img_dir = os.path.join(voc_data_dir, "voc_img") voc_xml_dir = os.path.join(voc_data_dir, "voc_xml") os.makedirs(voc_img_dir, exist_ok=True) os.makedirs(voc_xml_dir, exist_ok=True) pic_dir = get_pic_dir(out_put_dir) pic_name = layout_data['pic_name'] pic_path = os.path.join(pic_dir, pic_name) pic_save_to_path = os.path.join(voc_img_dir, pic_name) # Copy picture shutil.copy(pic_path, pic_save_to_path) log.info("copy img success") # Generate label text _gen_voc(voc_xml_dir, data=layout_data) log.info("voc data gen success") def _gen_voc(save_dir, data, image_format='png'): w = data['width'] h = data['height'] node_root = Element('annotation') '''folder''' node_folder = SubElement(node_root, 'folder') node_folder.text = 'JPEGImages' '''filename''' node_filename = SubElement(node_root, 'filename') node_filename.text = data['pic_name'] '''source''' node_source = SubElement(node_root, 'source') node_database = SubElement(node_source, 'database') node_database.text = 'The VOC2007 Database' node_annotation = SubElement(node_source, 'annotation') node_annotation.text = 'PASCAL VOC2007' node_image = SubElement(node_source, 'image') node_image.text = 'flickr' '''size''' node_size = SubElement(node_root, 'size') node_width = SubElement(node_size, 'width') node_width.text = str(w) node_height = SubElement(node_size, 'height') node_height.text = str(h) node_depth = SubElement(node_size, 'depth') node_depth.text = '3' '''segmented''' node_segmented = SubElement(node_root, 'segmented') node_segmented.text = '0' '''object coord and label''' for i, fragment in enumerate(data['fragment']): node_object = SubElement(node_root, 'object') node_name = SubElement(node_object, 'name') node_name.text = fragment['orientation'][0] + "_text" node_truncated = SubElement(node_object, 'truncated') node_truncated.text = '0' node_difficult = SubElement(node_object, 'difficult') node_difficult.text = '0' node_bndbox = SubElement(node_object, 'bndbox') node_xmin = SubElement(node_bndbox, 'xmin') node_xmin.text = str(fragment['box'][0]) node_ymin = SubElement(node_bndbox, 'ymin') node_ymin.text = str(fragment['box'][1]) node_xmax = SubElement(node_bndbox, 'xmax') node_xmax.text = str(fragment['box'][2]) node_ymax = SubElement(node_bndbox, 'ymax') node_ymax.text = str(fragment['box'][3]) xml = tostring(node_root, pretty_print=True) # Format display, the newline of the newline save_xml = os.path.join(save_dir, data['pic_name'].replace(image_format, 'xml')) with open(save_xml, 'wb') as f: f.write(xml) def imwrite(path, img): try: print(path) cv2.imwrite(path, img) except Exception as ident: print(ident) def gen_icdar(layout_data): """ Generate ICDAR format :param layout_data: :return: """ # mask_img = Image.new('RGBA', self.bg_img.size, (255, 255, 255, 0)) # name = hashlib.sha1(mask_img.tobytes()).hexdigest() # pic_name = "pic_" + name + ".png" # pic_dir ='/tmp/pics2' # # convert from RGBA->RGB # background = Image.new('RGB', mask_img.size, (255,255,255)) # background.paste(mask_img, mask = mask_img.split()[3]) # inv_img = ImageOps.invert(background) # pic_path = os.path.join(pic_dir, pic_name) # with open(pic_path, 'wb') as f: # inv_img.save(f, "png") print ("Generating ICDAR dataformat") from service import conf out_put_dir = conf['provider']['layout']['out_put_dir'] icdr_data_dir = get_icidar_data_dir(out_put_dir=out_put_dir) icdar_data_img_dir = os.path.join(icdr_data_dir) os.makedirs(icdar_data_img_dir, exist_ok=True) pic_dir = get_pic_dir(out_put_dir) pic_name = layout_data['pic_name'] pic_path = os.path.join(pic_dir, pic_name) pic_save_to_path = os.path.join(icdar_data_img_dir, pic_name) # Copy picture # shutil.copy(pic_path, pic_save_to_path) im = cv2.imread(pic_path, cv2.IMREAD_GRAYSCALE) bin = cv2.threshold(im, 128, 255, cv2.THRESH_BINARY)[1] imwrite(pic_save_to_path, bin) log.info("copy img success") # Generate label text # _gen_icdar(layout_data) name = pic_name.split('.')[0] icidar_label_path = os.path.join(icdr_data_dir, "gt_{name}.txt".format(name=name)) log.info("ICIDAR data gen success") # _x0, _y0, _x1, _y1,_x2, _y2, _x3, _y3, txt fragment_list = layout_data['fragment'] with open(icidar_label_path, 'w') as f: for fragment in fragment_list: txt = fragment['data'] rotate_box = fragment['rotate_box'] char_boxes = fragment['char_boxes'] contour = np.array(char_boxes, dtype=np.int) # print('--' * 80) # print (rotate_box) # # print (char_boxes) # print('--' * 25) # for box in char_boxes: # print(box) min_x = np.amin(contour[:,:,0]) max_x = np.amax(contour[:,:,0]) min_y = np.amin(contour[:,:,1]) max_y = np.amax(contour[:,:,1]) w = max_x - min_x h = max_y - min_y _x0, _y0 = min_x, min_y _x1, _y1 = min_x, min_y+h _x2, _y2= min_x+w, min_y+h _x3, _y3= min_x+w, min_y print("{},{},{},{},{},{},{},{},{}".format(_x0, _y0, _x1, _y1, _x2, _y2, _x3, _y3, txt)) f.write("{},{},{},{},{},{},{},{},{}\n".format(_x0, _y0, _x1, _y1, _x2, _y2, _x3, _y3, txt)) continue # vmin = np.amin(char_boxes, axis=1) print('****') print("{},{},{},{} : {}, {}".format(min_x, max_x, min_y, max_y, w, h)) # mar = cv2.minAreaRect(contour) os.system.exit() # print (char_boxes) # print("txt = {txt} : {box}".format(txt=txt, box=box)) _x0, _y0 = rotate_box[0][0], rotate_box[0][1] _x1, _y1 = rotate_box[1][0], rotate_box[1][1] _x2, _y2 = rotate_box[2][0], rotate_box[2][1] _x3, _y3 = rotate_box[3][0], rotate_box[3][1] f.write("{},{},{},{},{},{},{},{},{}\n".format(_x0, _y0, _x1, _y1, _x2, _y2, _x3, _y3, txt)) def gen_lsvt(layout_data): """ :param layout_data: :return: """ from service import conf out_put_dir = conf['provider']['layout']['out_put_dir'] lsvt_data_dir = get_lsvt_data_dir(out_put_dir=out_put_dir) lsvt_data_img_dir = os.path.join(lsvt_data_dir, "train") os.makedirs(lsvt_data_img_dir, exist_ok=True) lsvt_json_path = os.path.join(lsvt_data_dir, "train_full_labels_{pid}.json".format(pid=os.getpid())) pic_dir = get_pic_dir(out_put_dir) pic_name = layout_data['pic_name'] pic_path = os.path.join(pic_dir, pic_name) pic_save_to_path = os.path.join(lsvt_data_img_dir, pic_name) # Copy picture shutil.copy(pic_path, pic_save_to_path) log.info("copy img success") # Generate label text _gen_lsvt(layout_data, lsvt_json_path) log.info("voc data gen success") def _gen_lsvt(layout_data, lsvt_json_path): """ :param layout_data: :param lsvt_json_path: :return: """ pic_name = layout_data['pic_name'] pic_name = pic_name.split('.')[0] fragment_list = layout_data['fragment'] print(lsvt_json_path) if not os.path.exists(lsvt_json_path): fp = open(lsvt_json_path, "w") fp.close() with open(lsvt_json_path, 'r') as f: text = f.read() if text == '': load_dict = dict() else: load_dict = json.loads(text) with open(lsvt_json_path, 'w') as f: lsvt_dict_list = list() for fragment in fragment_list: txt = fragment['data'] rotate_box = fragment['rotate_box'] char_boxes = fragment['char_boxes'] lsvt_info = dict(transcription=txt, points=rotate_box, char_boxes=char_boxes, illegibility=False) lsvt_dict_list.append(lsvt_info) load_dict.update({pic_name: lsvt_dict_list}) # f.seek(0) json.dump(load_dict, f)
32.808219
111
0.616868
9d09cd5f47132a0da099aaf61287672e2b6c2666
7,710
py
Python
tests/base.py
helobinvn/jenkins-job-builder
c1d6ba6fbb7de6f9a98b35cfc1b84dcb0260f486
[ "Apache-2.0" ]
null
null
null
tests/base.py
helobinvn/jenkins-job-builder
c1d6ba6fbb7de6f9a98b35cfc1b84dcb0260f486
[ "Apache-2.0" ]
5
2015-03-12T20:21:46.000Z
2015-11-30T15:56:42.000Z
tests/base.py
helobinvn/jenkins-job-builder
c1d6ba6fbb7de6f9a98b35cfc1b84dcb0260f486
[ "Apache-2.0" ]
4
2015-10-15T08:41:49.000Z
2019-01-04T07:22:36.000Z
#!/usr/bin/env python # # Joint copyright: # - Copyright 2012,2013 Wikimedia Foundation # - Copyright 2012,2013 Antoine "hashar" Musso # - Copyright 2013 Arnaud Fabre # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import codecs import logging import os import re import doctest import json import operator import testtools from testtools.content import text_content import xml.etree.ElementTree as XML from six.moves import configparser # This dance deals with the fact that we want unittest.mock if # we're on Python 3.4 and later, and non-stdlib mock otherwise. try: from unittest import mock except ImportError: import mock # noqa import jenkins_jobs.local_yaml as yaml from jenkins_jobs.builder import XmlJob, YamlParser from jenkins_jobs.modules import (project_flow, project_matrix, project_maven, project_multijob) def get_scenarios(fixtures_path, in_ext='yaml', out_ext='xml', plugins_info_ext='plugins_info.yaml'): """Returns a list of scenarios, each scenario being described by two parameters (yaml and xml filenames by default). - content of the fixture output file (aka expected) """ scenarios = [] files = [] for dirpath, dirs, fs in os.walk(fixtures_path): files.extend([os.path.join(dirpath, f) for f in fs]) input_files = [f for f in files if re.match(r'.*\.{0}$'.format(in_ext), f)] for input_filename in input_files: if input_filename.endswith(plugins_info_ext): continue output_candidate = re.sub(r'\.{0}$'.format(in_ext), '.{0}'.format(out_ext), input_filename) # Make sure the input file has a output counterpart if output_candidate not in files: raise Exception( "No {0} file named '{1}' to match {2} file '{3}'" .format(out_ext.upper(), output_candidate, in_ext.upper(), input_filename)) plugins_info_candidate = re.sub(r'\.{0}$'.format(in_ext), '.{0}'.format(plugins_info_ext), input_filename) if plugins_info_candidate not in files: plugins_info_candidate = None conf_candidate = re.sub(r'\.yaml$', '.conf', input_filename) # If present, add the configuration file if conf_candidate not in files: conf_candidate = None scenarios.append((input_filename, { 'in_filename': input_filename, 'out_filename': output_candidate, 'conf_filename': conf_candidate, 'plugins_info_filename': plugins_info_candidate, })) return scenarios class BaseTestCase(object): scenarios = [] fixtures_path = None # TestCase settings: maxDiff = None # always dump text difference longMessage = True # keep normal error message when providing our logging.basicConfig() def _read_utf8_content(self): # Read XML content, assuming it is unicode encoded xml_content = u"%s" % codecs.open(self.out_filename, 'r', 'utf-8').read() return xml_content def _read_yaml_content(self, filename): with open(filename, 'r') as yaml_file: yaml_content = yaml.load(yaml_file) return yaml_content def test_yaml_snippet(self): if not self.out_filename or not self.in_filename: return if self.conf_filename is not None: config = configparser.ConfigParser() config.readfp(open(self.conf_filename)) else: config = {} expected_xml = self._read_utf8_content() yaml_content = self._read_yaml_content(self.in_filename) project = None if ('project-type' in yaml_content): if (yaml_content['project-type'] == "maven"): project = project_maven.Maven(None) elif (yaml_content['project-type'] == "matrix"): project = project_matrix.Matrix(None) elif (yaml_content['project-type'] == "flow"): project = project_flow.Flow(None) elif (yaml_content['project-type'] == "multijob"): project = project_multijob.MultiJob(None) if project: xml_project = project.root_xml(yaml_content) else: xml_project = XML.Element('project') plugins_info = None if self.plugins_info_filename is not None: plugins_info = self._read_yaml_content(self.plugins_info_filename) self.addDetail("plugins-info-filename", text_content(self.plugins_info_filename)) self.addDetail("plugins-info", text_content(str(plugins_info))) parser = YamlParser(config, plugins_info) pub = self.klass(parser.registry) # Generate the XML tree directly with modules/general pub.gen_xml(parser, xml_project, yaml_content) # Prettify generated XML pretty_xml = XmlJob(xml_project, 'fixturejob').output().decode('utf-8') self.assertThat( pretty_xml, testtools.matchers.DocTestMatches(expected_xml, doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) ) class SingleJobTestCase(BaseTestCase): def test_yaml_snippet(self): expected_xml = self._read_utf8_content() if self.conf_filename: config = configparser.ConfigParser() config.readfp(open(self.conf_filename)) else: config = None parser = YamlParser(config) parser.parse(self.in_filename) # Generate the XML tree parser.expandYaml() parser.generateXML() parser.xml_jobs.sort(key=operator.attrgetter('name')) # Prettify generated XML pretty_xml = u"\n".join(job.output().decode('utf-8') for job in parser.xml_jobs) self.assertThat( pretty_xml, testtools.matchers.DocTestMatches(expected_xml, doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) ) class JsonTestCase(BaseTestCase): def test_yaml_snippet(self): expected_json = self._read_utf8_content() yaml_content = self._read_yaml_content(self.in_filename) pretty_json = json.dumps(yaml_content, indent=4, separators=(',', ': ')) self.assertThat( pretty_json, testtools.matchers.DocTestMatches(expected_json, doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) )
35.860465
79
0.594553
ebdaf83ab179b6d328e4d2fac28ff19df82d82fd
8,521
py
Python
concept_explanations/ipca.py
gunpowder78/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-13T21:48:52.000Z
2022-03-13T21:48:52.000Z
concept_explanations/ipca.py
gunpowder78/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
null
null
null
concept_explanations/ipca.py
gunpowder78/google-research
d41bbaca1eb9bfd980ec2b3fd201c3ddb4d1f2e5
[ "Apache-2.0" ]
1
2022-03-30T07:20:29.000Z
2022-03-30T07:20:29.000Z
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper file to run the discover concept algorithm in the toy dataset.""" # lint as: python3 from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from absl import app import keras from keras.activations import sigmoid import keras.backend as K from keras.layers import Input from keras.layers import Lambda from keras.layers import Layer from keras.models import Model from keras.optimizers import Adam from keras.optimizers import SGD import numpy as np from numpy import inf from numpy.random import seed from scipy.special import comb import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import set_random_seed seed(0) set_random_seed(0) # global variables init = keras.initializers.RandomUniform(minval=-0.5, maxval=0.5, seed=None) batch_size = 128 step = 200 min_weight_arr = [] min_index_arr = [] concept_arr = {} class Weight(Layer): """Simple Weight class.""" def __init__(self, dim, **kwargs): self.dim = dim super(Weight, self).__init__(**kwargs) def build(self, input_shape): # creates a trainable weight variable for this layer. self.kernel = self.add_weight( name='proj', shape=self.dim, initializer=init, trainable=True) super(Weight, self).build(input_shape) def call(self, x): return self.kernel def compute_output_shape(self, input_shape): return self.dim def reduce_var(x, axis=None, keepdims=False): """Returns variance of a tensor, alongside the specified axis.""" m = tf.reduce_mean(x, axis=axis, keep_dims=True) devs_squared = tf.square(x - m) return tf.reduce_mean(devs_squared, axis=axis, keep_dims=keepdims) def concept_loss(cov, cov0, i, n_concept, lmbd=5.): """Creates a concept loss based on reconstruction loss.""" def loss(y_true, y_pred): if i == 0: return tf.reduce_mean( tf.keras.backend.binary_crossentropy(y_true, y_pred)) else: return tf.reduce_mean( tf.keras.backend.binary_crossentropy(y_true, y_pred) ) + lmbd * K.mean(cov - np.eye(n_concept)) + lmbd * K.mean(cov0) return loss def concept_variance(cov, cov0, i, n_concept): """Creates a concept loss based on reconstruction variance.""" def loss(_, y_pred): if i == 0: return 1. * tf.reduce_mean(reduce_var(y_pred, axis=0)) else: return 1. * tf.reduce_mean(reduce_var(y_pred, axis=0)) + 10. * K.mean( cov - np.eye(n_concept)) + 10. * K.mean(cov0) return loss def ipca_model(concept_arraynew2, dense2, predict, f_train, y_train, f_val, y_val, n_concept, verbose=False, epochs=20, metric='binary_accuracy'): """Returns main function of ipca.""" pool1f_input = Input(shape=(f_train.shape[1],), name='pool1_input') cluster_input = K.variable(concept_arraynew2) proj_weight = Weight((f_train.shape[1], n_concept))(pool1f_input) proj_weight_n = Lambda(lambda x: K.l2_normalize(x, axis=0))(proj_weight) eye = K.eye(n_concept) * 1e-5 proj_recon_t = Lambda( lambda x: K.dot(x, tf.linalg.inv(K.dot(K.transpose(x), x) + eye)))( proj_weight) proj_recon = Lambda(lambda x: K.dot(K.dot(x[0], x[2]), K.transpose(x[1])))( [pool1f_input, proj_weight, proj_recon_t]) # proj_recon2 = Lambda(lambda x: x[0] - K.dot(K.dot(x[0],K.dot(x[1], # tf.linalg.inv(K.dot(K.transpose(x[1]), x[1]) + 1e-5 * K.eye(n_concept)))), # K.transpose(x[1])))([pool1f_input, proj_weight]) cov1 = Lambda(lambda x: K.mean(K.dot(x[0], x[1]), axis=1))( [cluster_input, proj_weight_n]) cov0 = Lambda(lambda x: x - K.mean(x, axis=0, keepdims=True))(cov1) cov0_abs = Lambda(lambda x: K.abs(K.l2_normalize(x, axis=0)))(cov0) cov0_abs_flat = Lambda(lambda x: K.reshape(x, (-1, n_concept)))(cov0_abs) cov = Lambda(lambda x: K.dot(K.transpose(x), x))(cov0_abs_flat) fc2_pr = dense2(proj_recon) softmax_pr = predict(fc2_pr) # fc2_pr2 = dense2(proj_recon2) # softmax_pr2 = predict(fc2_pr2) finetuned_model_pr = Model(inputs=pool1f_input, outputs=softmax_pr) # finetuned_model_pr2 = Model(inputs=pool1f_input, outputs=softmax_pr2) # finetuned_model_pr2.compile(loss= # concept_loss(cov,cov0_abs,0), # optimizer = sgd(lr=0.), # metrics=['binary_accuracy']) finetuned_model_pr.layers[-1].activation = sigmoid print(finetuned_model_pr.layers[-1].activation) finetuned_model_pr.layers[-1].trainable = False # finetuned_model_pr2.layers[-1].trainable = False finetuned_model_pr.layers[-2].trainable = False finetuned_model_pr.layers[-3].trainable = False # finetuned_model_pr2.layers[-2].trainable = False finetuned_model_pr.compile( loss=concept_loss(cov, cov0_abs, 0, n_concept), optimizer=Adam(lr=0.001), metrics=[metric]) # finetuned_model_pr2.compile( # loss=concept_variance(cov, cov0_abs, 0), # optimizer=SGD(lr=0.0), # metrics=['binary_accuracy']) if verbose: print(finetuned_model_pr.summary()) # finetuned_model_pr2.summary() finetuned_model_pr.fit( f_train, y_train, batch_size=50, epochs=epochs, validation_data=(f_val, y_val), verbose=verbose) finetuned_model_pr.layers[-1].trainable = False finetuned_model_pr.layers[-2].trainable = False finetuned_model_pr.layers[-3].trainable = False finetuned_model_pr.compile( loss=concept_loss(cov, cov0_abs, 1, n_concept), optimizer=Adam(lr=0.001), metrics=[metric]) return finetuned_model_pr # , finetuned_model_pr2 def ipca_model_shap(dense2, predict, n_concept, input_size, concept_matrix): """returns model that calculates of SHAP.""" pool1f_input = Input(shape=(input_size,), name='cluster1') concept_mask = Input(shape=(n_concept,), name='mask') proj_weight = Weight((input_size, n_concept))(pool1f_input) concept_mask_r = Lambda(lambda x: K.mean(x, axis=0, keepdims=True))( concept_mask) proj_weight_m = Lambda(lambda x: x[0] * x[1])([proj_weight, concept_mask_r]) eye = K.eye(n_concept) * 1e-10 proj_recon_t = Lambda( lambda x: K.dot(x, tf.linalg.inv(K.dot(K.transpose(x), x) + eye)))( proj_weight_m) proj_recon = Lambda(lambda x: K.dot(K.dot(x[0], x[2]), K.transpose(x[1])))( [pool1f_input, proj_weight_m, proj_recon_t]) fc2_pr = dense2(proj_recon) softmax_pr = predict(fc2_pr) finetuned_model_pr = Model( inputs=[pool1f_input, concept_mask], outputs=softmax_pr) finetuned_model_pr.compile( loss='categorical_crossentropy', optimizer=SGD(lr=0.000), metrics=['accuracy']) finetuned_model_pr.summary() finetuned_model_pr.layers[-7].set_weights([concept_matrix]) return finetuned_model_pr def get_acc(binary_sample, f_val, y_val_logit, shap_model, verbose=False): """Returns accuracy.""" acc = shap_model.evaluate( [f_val, np.tile(np.array(binary_sample), (f_val.shape[0], 1))], y_val_logit, verbose=verbose)[1] return acc def shap_kernel(n, k): """Returns kernel of shapley in KernelSHAP.""" return (n-1)*1.0/((n-k)*k*comb(n, k)) def get_shap(nc, f_val, y_val_logit, shap_model, full_acc, null_acc, n_concept): """Returns ConceptSHAP.""" inputs = list(itertools.product([0, 1], repeat=n_concept)) outputs = [(get_acc(k, f_val, y_val_logit, shap_model)-null_acc)/ (full_acc-null_acc) for k in inputs] kernel = [shap_kernel(nc, np.sum(ii)) for ii in inputs] x = np.array(inputs) y = np.array(outputs) k = np.array(kernel) k[k == inf] = 0 xkx = np.matmul(np.matmul(x.transpose(), np.diag(k)), x) xky = np.matmul(np.matmul(x.transpose(), np.diag(k)), y) expl = np.matmul(np.linalg.pinv(xkx), xky) return expl def main(_): return if __name__ == '__main__': app.run(main)
33.547244
80
0.685366
2acef4966fd3250fb27f4a4d7579d498d736a0aa
2,124
py
Python
osna/cli.py
tapilab/elevate-osna-starter
7cf11c302cbd210a21d633d966a612adc2fc81af
[ "MIT" ]
1
2019-07-24T17:02:59.000Z
2019-07-24T17:02:59.000Z
osna/cli.py
tapilab/elevate-osna-starter
7cf11c302cbd210a21d633d966a612adc2fc81af
[ "MIT" ]
2
2021-11-15T17:48:49.000Z
2022-02-10T00:37:43.000Z
osna/cli.py
tapilab/elevate-osna-starter
7cf11c302cbd210a21d633d966a612adc2fc81af
[ "MIT" ]
1
2019-08-02T15:10:21.000Z
2019-08-02T15:10:21.000Z
# -*- coding: utf-8 -*- """Console script for elevate_osna.""" import click import glob import pickle import sys import numpy as np import pandas as pd import re from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score, classification_report from . import credentials_path, clf_path @click.group() def main(args=None): """Console script for osna.""" return 0 @main.command('web') @click.option('-t', '--twitter-credentials', required=False, type=click.Path(exists=True), show_default=True, default=credentials_path, help='a json file of twitter tokens') @click.option('-p', '--port', required=False, default=5000, show_default=True, help='port of web server') def web(twitter_credentials, port): from .app import app app.run(host='0.0.0.0', debug=True, port=port) @main.command('stats') @click.argument('directory', type=click.Path(exists=True)) def stats(directory): """ Read all files in this directory and its subdirectories and print statistics. """ print('reading from %s' % directory) # use glob to iterate all files matching desired pattern (e.g., .json files). # recursively search subdirectories. @main.command('train') @click.argument('directory', type=click.Path(exists=True)) def train(directory): """ Train a classifier and save it. """ print('reading from %s' % directory) # (1) Read the data... # # (2) Create classifier and vectorizer. clf = LogisticRegression() # set best parameters vec = CountVectorizer() # set best parameters # (3) do cross-validation and print out validation metrics # (classification_report) # (4) Finally, train on ALL data one final time and # train... # save the classifier pickle.dump((clf, vec), open(clf_path, 'wb')) def make_features(df): ## Add your code to create features. pass if __name__ == "__main__": sys.exit(main()) # pragma: no cover
29.5
173
0.704802
05892971a4c5d642b6e1f03454772c86653f4a26
3,985
py
Python
social/backends/exacttarget.py
SeanHayes/python-social-auth
4d70b23eb603c1d9753a7982bd7b3bab7cf18d48
[ "BSD-3-Clause" ]
1
2016-02-06T03:08:09.000Z
2016-02-06T03:08:09.000Z
social/backends/exacttarget.py
SeanHayes/python-social-auth
4d70b23eb603c1d9753a7982bd7b3bab7cf18d48
[ "BSD-3-Clause" ]
null
null
null
social/backends/exacttarget.py
SeanHayes/python-social-auth
4d70b23eb603c1d9753a7982bd7b3bab7cf18d48
[ "BSD-3-Clause" ]
1
2016-09-02T13:08:22.000Z
2016-09-02T13:08:22.000Z
""" ExactTarget OAuth support. Support Authentication from IMH using JWT token and pre-shared key. Requires package pyjwt """ from datetime import timedelta, datetime import jwt from social.exceptions import AuthFailed, AuthCanceled from social.backends.oauth import BaseOAuth2 class ExactTargetOAuth2(BaseOAuth2): name = 'exacttarget' def get_user_details(self, response): """Use the email address of the user, suffixed by _et""" user = response.get('token', {})\ .get('request', {})\ .get('user', {}) if 'email' in user: user['username'] = user['email'] return user def get_user_id(self, details, response): """ Create a user ID from the ET user ID. Uses details rather than the default response, as only the token is available in response. details is much richer: { 'expiresIn': 1200, 'username': 'example@example.com', 'refreshToken': '1234567890abcdef', 'internalOauthToken': 'jwttoken.......', 'oauthToken': 'yetanothertoken', 'id': 123456, 'culture': 'en-US', 'timezone': { 'shortName': 'CST', 'offset': -6.0, 'dst': False, 'longName': '(GMT-06:00) Central Time (No Daylight Saving)' }, 'email': 'example@example.com' } """ return '{0}'.format(details.get('id')) def uses_redirect(self): return False def auth_url(self): return None def process_error(self, data): if data.get('error'): error = self.data.get('error_description') or self.data['error'] raise AuthFailed(self, error) def do_auth(self, token, *args, **kwargs): dummy, secret = self.get_key_and_secret() try: # Decode the token, using the Application Signature from settings decoded = jwt.decode(token, secret) except jwt.DecodeError: # Wrong signature, fail authentication raise AuthCanceled(self) kwargs.update({'response': {'token': decoded}, 'backend': self}) return self.strategy.authenticate(*args, **kwargs) def auth_complete(self, *args, **kwargs): """Completes login process, must return user instance""" token = self.data.get('jwt', {}) if not token: raise AuthFailed(self, 'Authentication Failed') return self.do_auth(token, *args, **kwargs) def extra_data(self, user, uid, response, details): """Load extra details from the JWT token""" data = { 'id': details.get('id'), 'email': details.get('email'), # OAuth token, for use with legacy SOAP API calls: # http://bit.ly/13pRHfo 'internalOauthToken': details.get('internalOauthToken'), # Token for use with the Application ClientID for the FUEL API 'oauthToken': details.get('oauthToken'), # If the token has expired, use the FUEL API to get a new token see # http://bit.ly/10v1K5l and http://bit.ly/11IbI6F - set legacy=1 'refreshToken': details.get('refreshToken'), } # The expiresIn value determines how long the tokens are valid for. # Take a bit off, then convert to an int timestamp expiresSeconds = details.get('expiresIn', 0) - 30 expires = datetime.utcnow() + timedelta(seconds=expiresSeconds) data['expires'] = (expires - datetime(1970, 1, 1)).total_seconds() if response.get('token'): token = response['token'] org = token.get('request', {}).get('organization') if org: data['stack'] = org.get('stackKey') data['enterpriseId'] = org.get('enterpriseId') return data
37.952381
79
0.568883
e58dd4cf2ae3188658bf2829ba425e9f5c51f8ab
1,001
py
Python
Projects/Online Workouts/w3resource/Tuple/program-1.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
1
2019-09-23T15:51:45.000Z
2019-09-23T15:51:45.000Z
Projects/Online Workouts/w3resource/Tuple/program-1.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
5
2021-02-08T20:47:19.000Z
2022-03-12T00:35:44.000Z
Projects/Online Workouts/w3resource/Tuple/program-1.py
ivenpoker/Python-Projects
2975e1bd687ec8dbcc7a4842c13466cb86292679
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 ############################################################################################ # # # Program purpose: Creates a tuple. # # Program Author : Happi Yvan <ivensteinpoker@gmail.com> # # Creation Date : December 13, 2019 # # # ############################################################################################ import random def create_tuple() -> tuple: return random.randint(0, 10), random.randint(0, 10) if __name__ == "__main__": temp_A = () # Create an empty tuple temp_B = tuple() # Create tuple with built-in print(f'Tuple A: {temp_A}\nTuple B: {temp_B}') print(f'Random tuple: {create_tuple()}')
45.5
92
0.317682
f077f05f5b4f71dcb8ebc94f6f32efe0cf096be1
8,066
py
Python
Lib/test/test_docxmlrpc.py
livioso/cpython
077061a7b24917aaf31057885c69919c5a553c88
[ "PSF-2.0" ]
854
2017-09-11T16:42:28.000Z
2022-03-27T14:17:09.000Z
Lib/test/test_docxmlrpc.py
livioso/cpython
077061a7b24917aaf31057885c69919c5a553c88
[ "PSF-2.0" ]
164
2017-09-24T20:40:32.000Z
2021-10-30T01:35:05.000Z
Lib/test/test_docxmlrpc.py
livioso/cpython
077061a7b24917aaf31057885c69919c5a553c88
[ "PSF-2.0" ]
73
2017-09-13T18:07:48.000Z
2022-03-17T13:02:29.000Z
from xmlrpc.server import DocXMLRPCServer import http.client import sys import threading from test import support import unittest def make_request_and_skipIf(condition, reason): # If we skip the test, we have to make a request because # the server created in setUp blocks expecting one to come in. if not condition: return lambda func: func def decorator(func): def make_request_and_skip(self): self.client.request("GET", "/") self.client.getresponse() raise unittest.SkipTest(reason) return make_request_and_skip return decorator def make_server(): serv = DocXMLRPCServer(("localhost", 0), logRequests=False) try: # Add some documentation serv.set_server_title("DocXMLRPCServer Test Documentation") serv.set_server_name("DocXMLRPCServer Test Docs") serv.set_server_documentation( "This is an XML-RPC server's documentation, but the server " "can be used by POSTing to /RPC2. Try self.add, too.") # Create and register classes and functions class TestClass(object): def test_method(self, arg): """Test method's docs. This method truly does very little.""" self.arg = arg serv.register_introspection_functions() serv.register_instance(TestClass()) def add(x, y): """Add two instances together. This follows PEP008, but has nothing to do with RFC1952. Case should matter: pEp008 and rFC1952. Things that start with http and ftp should be auto-linked, too: http://google.com. """ return x + y def annotation(x: int): """ Use function annotations. """ return x class ClassWithAnnotation: def method_annotation(self, x: bytes): return x.decode() serv.register_function(add) serv.register_function(lambda x, y: x-y) serv.register_function(annotation) serv.register_instance(ClassWithAnnotation()) return serv except: serv.server_close() raise class DocXMLRPCHTTPGETServer(unittest.TestCase): def setUp(self): # Enable server feedback DocXMLRPCServer._send_traceback_header = True self.serv = make_server() self.thread = threading.Thread(target=self.serv.serve_forever) self.thread.start() PORT = self.serv.server_address[1] self.client = http.client.HTTPConnection("localhost:%d" % PORT) def tearDown(self): self.client.close() # Disable server feedback DocXMLRPCServer._send_traceback_header = False self.serv.shutdown() self.thread.join() self.serv.server_close() def test_valid_get_response(self): self.client.request("GET", "/") response = self.client.getresponse() self.assertEqual(response.status, 200) self.assertEqual(response.getheader("Content-type"), "text/html") # Server raises an exception if we don't start to read the data response.read() def test_invalid_get_response(self): self.client.request("GET", "/spam") response = self.client.getresponse() self.assertEqual(response.status, 404) self.assertEqual(response.getheader("Content-type"), "text/plain") response.read() def test_lambda(self): """Test that lambda functionality stays the same. The output produced currently is, I suspect invalid because of the unencoded brackets in the HTML, "<lambda>". The subtraction lambda method is tested. """ self.client.request("GET", "/") response = self.client.getresponse() self.assertIn((b'<dl><dt><a name="-&lt;lambda&gt;"><strong>' b'&lt;lambda&gt;</strong></a>(x, y)</dt></dl>'), response.read()) @make_request_and_skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_autolinking(self): """Test that the server correctly automatically wraps references to PEPS and RFCs with links, and that it linkifies text starting with http or ftp protocol prefixes. The documentation for the "add" method contains the test material. """ self.client.request("GET", "/") response = self.client.getresponse().read() self.assertIn( (b'<dl><dt><a name="-add"><strong>add</strong></a>(x, y)</dt><dd>' b'<tt>Add&nbsp;two&nbsp;instances&nbsp;together.&nbsp;This&nbsp;' b'follows&nbsp;<a href="http://www.python.org/dev/peps/pep-0008/">' b'PEP008</a>,&nbsp;but&nbsp;has&nbsp;nothing<br>\nto&nbsp;do&nbsp;' b'with&nbsp;<a href="http://www.rfc-editor.org/rfc/rfc1952.txt">' b'RFC1952</a>.&nbsp;Case&nbsp;should&nbsp;matter:&nbsp;pEp008&nbsp;' b'and&nbsp;rFC1952.&nbsp;&nbsp;Things<br>\nthat&nbsp;start&nbsp;' b'with&nbsp;http&nbsp;and&nbsp;ftp&nbsp;should&nbsp;be&nbsp;' b'auto-linked,&nbsp;too:<br>\n<a href="http://google.com">' b'http://google.com</a>.</tt></dd></dl>'), response) @make_request_and_skipIf(sys.flags.optimize >= 2, "Docstrings are omitted with -O2 and above") def test_system_methods(self): """Test the presence of three consecutive system.* methods. This also tests their use of parameter type recognition and the systems related to that process. """ self.client.request("GET", "/") response = self.client.getresponse().read() self.assertIn( (b'<dl><dt><a name="-system.methodHelp"><strong>system.methodHelp' b'</strong></a>(method_name)</dt><dd><tt><a href="#-system.method' b'Help">system.methodHelp</a>(\'add\')&nbsp;=&gt;&nbsp;"Adds&nbsp;' b'two&nbsp;integers&nbsp;together"<br>\n&nbsp;<br>\nReturns&nbsp;a' b'&nbsp;string&nbsp;containing&nbsp;documentation&nbsp;for&nbsp;' b'the&nbsp;specified&nbsp;method.</tt></dd></dl>\n<dl><dt><a name' b'="-system.methodSignature"><strong>system.methodSignature</strong>' b'</a>(method_name)</dt><dd><tt><a href="#-system.methodSignature">' b'system.methodSignature</a>(\'add\')&nbsp;=&gt;&nbsp;[double,&nbsp;' b'int,&nbsp;int]<br>\n&nbsp;<br>\nReturns&nbsp;a&nbsp;list&nbsp;' b'describing&nbsp;the&nbsp;signature&nbsp;of&nbsp;the&nbsp;method.' b'&nbsp;In&nbsp;the<br>\nabove&nbsp;example,&nbsp;the&nbsp;add&nbsp;' b'method&nbsp;takes&nbsp;two&nbsp;integers&nbsp;as&nbsp;arguments' b'<br>\nand&nbsp;returns&nbsp;a&nbsp;double&nbsp;result.<br>\n&nbsp;' b'<br>\nThis&nbsp;server&nbsp;does&nbsp;NOT&nbsp;support&nbsp;system' b'.methodSignature.</tt></dd></dl>'), response) def test_autolink_dotted_methods(self): """Test that selfdot values are made strong automatically in the documentation.""" self.client.request("GET", "/") response = self.client.getresponse() self.assertIn(b"""Try&nbsp;self.<strong>add</strong>,&nbsp;too.""", response.read()) def test_annotations(self): """ Test that annotations works as expected """ self.client.request("GET", "/") response = self.client.getresponse() docstring = (b'' if sys.flags.optimize >= 2 else b'<dd><tt>Use&nbsp;function&nbsp;annotations.</tt></dd>') self.assertIn( (b'<dl><dt><a name="-annotation"><strong>annotation</strong></a>' b'(x: int)</dt>' + docstring + b'</dl>\n' b'<dl><dt><a name="-method_annotation"><strong>' b'method_annotation</strong></a>(x: bytes)</dt></dl>'), response.read()) if __name__ == '__main__': unittest.main()
40.532663
82
0.608976
8709bd76a3d888de0d87dc9379a2c2397c14ae37
10,250
py
Python
simfempy/examples/paraview/drivencavity.py
beckerrh/simfempy
10bf30f330d921bffaa8572bbd73286da5971905
[ "MIT" ]
null
null
null
simfempy/examples/paraview/drivencavity.py
beckerrh/simfempy
10bf30f330d921bffaa8572bbd73286da5971905
[ "MIT" ]
3
2018-12-18T16:36:52.000Z
2019-01-29T18:34:55.000Z
simfempy/examples/paraview/drivencavity.py
beckerrh/fempy
dd7214ea7f6d81a5200fcb4a91f07a5cd3322e9e
[ "MIT" ]
1
2021-06-09T15:49:51.000Z
2021-06-09T15:49:51.000Z
# state file generated using paraview version 5.9.1 #### import the simple module from the paraview from paraview.simple import * #### disable automatic camera reset on 'Show' paraview.simple._DisableFirstRenderCameraReset() # ---------------------------------------------------------------- # setup views used in the visualization # ---------------------------------------------------------------- # get the material library materialLibrary1 = GetMaterialLibrary() # Create a new 'Render View' renderView1 = CreateView('RenderView') renderView1.ViewSize = [2242, 1496] renderView1.AxesGrid = 'GridAxes3DActor' renderView1.CenterOfRotation = [0.5, 0.5, 0.5] renderView1.StereoType = 'Crystal Eyes' renderView1.CameraPosition = [-2.1802040995430074, -1.3689428935375778, 1.2209097503810526] renderView1.CameraFocalPoint = [0.4999999999999995, 0.500000000000001, 0.5000000000000009] renderView1.CameraViewUp = [0.10119623761043704, 0.22838002365876958, 0.9682984489748561] renderView1.CameraFocalDisk = 1.0 renderView1.CameraParallelScale = 0.8660254037844386 renderView1.BackEnd = 'OSPRay raycaster' renderView1.OSPRayMaterialLibrary = materialLibrary1 SetActiveView(None) # ---------------------------------------------------------------- # setup view layouts # ---------------------------------------------------------------- # create new layout object 'Layout #1' layout1 = CreateLayout(name='Layout #1') layout1.AssignView(0, renderView1) layout1.SetSize(2242, 1496) # ---------------------------------------------------------------- # restore active view SetActiveView(renderView1) # ---------------------------------------------------------------- # ---------------------------------------------------------------- # setup the data processing pipelines # ---------------------------------------------------------------- # create a new 'XML Unstructured Grid Reader' drivenCavity3dvtu = XMLUnstructuredGridReader(registrationName='drivenCavity3d.vtu', FileName=['/Users/becker/Programs/simfempy/drivenCavity3d.vtu']) drivenCavity3dvtu.CellArrayStatus = ['P'] drivenCavity3dvtu.PointArrayStatus = ['V_0', 'V_1', 'V_2'] drivenCavity3dvtu.TimeArray = 'None' # create a new 'Calculator' calculator1 = Calculator(registrationName='Calculator1', Input=drivenCavity3dvtu) calculator1.ResultArrayName = 'V' calculator1.Function = 'V_0*iHat+V_1*jHat+V_2*kHat' # create a new 'Slice' slice1 = Slice(registrationName='Slice1', Input=calculator1) slice1.SliceType = 'Plane' slice1.HyperTreeGridSlicer = 'Plane' slice1.SliceOffsetValues = [0.0] # init the 'Plane' selected for 'SliceType' slice1.SliceType.Origin = [0.5, 0.21791778158879116, 0.5] slice1.SliceType.Normal = [0.0, 1.0, 0.0] # init the 'Plane' selected for 'HyperTreeGridSlicer' slice1.HyperTreeGridSlicer.Origin = [0.5, 0.5, 0.5] # create a new 'Glyph' glyph1 = Glyph(registrationName='Glyph1', Input=slice1, GlyphType='Arrow') glyph1.OrientationArray = ['POINTS', 'V'] glyph1.ScaleArray = ['POINTS', 'V'] glyph1.ScaleFactor = 0.3 glyph1.GlyphTransform = 'Transform2' # ---------------------------------------------------------------- # setup the visualization in view 'renderView1' # ---------------------------------------------------------------- # show data from drivenCavity3dvtu drivenCavity3dvtuDisplay = Show(drivenCavity3dvtu, renderView1, 'UnstructuredGridRepresentation') # get color transfer function/color map for 'V_2' v_2LUT = GetColorTransferFunction('V_2') v_2LUT.RGBPoints = [-0.3055438635809993, 0.231373, 0.298039, 0.752941, -0.034780728504573255, 0.865003, 0.865003, 0.865003, 0.23598240657185277, 0.705882, 0.0156863, 0.14902] v_2LUT.ScalarRangeInitialized = 1.0 # get opacity transfer function/opacity map for 'V_2' v_2PWF = GetOpacityTransferFunction('V_2') v_2PWF.Points = [-0.3055438635809993, 0.0, 0.5, 0.0, 0.23598240657185277, 1.0, 0.5, 0.0] v_2PWF.ScalarRangeInitialized = 1 # trace defaults for the display properties. drivenCavity3dvtuDisplay.Representation = 'Outline' drivenCavity3dvtuDisplay.ColorArrayName = ['POINTS', 'V_2'] drivenCavity3dvtuDisplay.LookupTable = v_2LUT drivenCavity3dvtuDisplay.SelectTCoordArray = 'None' drivenCavity3dvtuDisplay.SelectNormalArray = 'None' drivenCavity3dvtuDisplay.SelectTangentArray = 'None' drivenCavity3dvtuDisplay.OSPRayScaleArray = 'V_0' drivenCavity3dvtuDisplay.OSPRayScaleFunction = 'PiecewiseFunction' drivenCavity3dvtuDisplay.SelectOrientationVectors = 'None' drivenCavity3dvtuDisplay.ScaleFactor = 0.1 drivenCavity3dvtuDisplay.SelectScaleArray = 'None' drivenCavity3dvtuDisplay.GlyphType = 'Arrow' drivenCavity3dvtuDisplay.GlyphTableIndexArray = 'None' drivenCavity3dvtuDisplay.GaussianRadius = 0.005 drivenCavity3dvtuDisplay.SetScaleArray = ['POINTS', 'V_0'] drivenCavity3dvtuDisplay.ScaleTransferFunction = 'PiecewiseFunction' drivenCavity3dvtuDisplay.OpacityArray = ['POINTS', 'V_0'] drivenCavity3dvtuDisplay.OpacityTransferFunction = 'PiecewiseFunction' drivenCavity3dvtuDisplay.DataAxesGrid = 'GridAxesRepresentation' drivenCavity3dvtuDisplay.PolarAxes = 'PolarAxesRepresentation' drivenCavity3dvtuDisplay.ScalarOpacityFunction = v_2PWF drivenCavity3dvtuDisplay.ScalarOpacityUnitDistance = 0.10413061241559457 drivenCavity3dvtuDisplay.OpacityArrayName = ['POINTS', 'V_0'] # init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' drivenCavity3dvtuDisplay.ScaleTransferFunction.Points = [-0.15607901124981832, 0.0, 0.5, 0.0, 1.2248496966186877, 1.0, 0.5, 0.0] # init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' drivenCavity3dvtuDisplay.OpacityTransferFunction.Points = [-0.15607901124981832, 0.0, 0.5, 0.0, 1.2248496966186877, 1.0, 0.5, 0.0] # show data from slice1 slice1Display = Show(slice1, renderView1, 'GeometryRepresentation') # get color transfer function/color map for 'P' pLUT = GetColorTransferFunction('P') pLUT.RGBPoints = [-0.25406850868022934, 0.231373, 0.298039, 0.752941, 0.011884899410226968, 0.865003, 0.865003, 0.865003, 0.2778383075006833, 0.705882, 0.0156863, 0.14902] pLUT.ScalarRangeInitialized = 1.0 # trace defaults for the display properties. slice1Display.Representation = 'Surface' slice1Display.ColorArrayName = ['CELLS', 'P'] slice1Display.LookupTable = pLUT slice1Display.SelectTCoordArray = 'None' slice1Display.SelectNormalArray = 'None' slice1Display.SelectTangentArray = 'None' slice1Display.OSPRayScaleArray = 'Result' slice1Display.OSPRayScaleFunction = 'PiecewiseFunction' slice1Display.SelectOrientationVectors = 'Result' slice1Display.ScaleFactor = 0.1 slice1Display.SelectScaleArray = 'None' slice1Display.GlyphType = 'Arrow' slice1Display.GlyphTableIndexArray = 'None' slice1Display.GaussianRadius = 0.005 slice1Display.SetScaleArray = ['POINTS', 'Result'] slice1Display.ScaleTransferFunction = 'PiecewiseFunction' slice1Display.OpacityArray = ['POINTS', 'Result'] slice1Display.OpacityTransferFunction = 'PiecewiseFunction' slice1Display.DataAxesGrid = 'GridAxesRepresentation' slice1Display.PolarAxes = 'PolarAxesRepresentation' # init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' slice1Display.ScaleTransferFunction.Points = [-0.12639338035797343, 0.0, 0.5, 0.0, 1.2172975418333962, 1.0, 0.5, 0.0] # init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' slice1Display.OpacityTransferFunction.Points = [-0.12639338035797343, 0.0, 0.5, 0.0, 1.2172975418333962, 1.0, 0.5, 0.0] # show data from glyph1 glyph1Display = Show(glyph1, renderView1, 'GeometryRepresentation') # trace defaults for the display properties. glyph1Display.Representation = 'Surface' glyph1Display.ColorArrayName = [None, ''] glyph1Display.SelectTCoordArray = 'None' glyph1Display.SelectNormalArray = 'None' glyph1Display.SelectTangentArray = 'None' glyph1Display.OSPRayScaleArray = 'Result' glyph1Display.OSPRayScaleFunction = 'PiecewiseFunction' glyph1Display.SelectOrientationVectors = 'Result' glyph1Display.ScaleFactor = 0.11089509502053262 glyph1Display.SelectScaleArray = 'None' glyph1Display.GlyphType = 'Arrow' glyph1Display.GlyphTableIndexArray = 'None' glyph1Display.GaussianRadius = 0.0055447547510266305 glyph1Display.SetScaleArray = ['POINTS', 'Result'] glyph1Display.ScaleTransferFunction = 'PiecewiseFunction' glyph1Display.OpacityArray = ['POINTS', 'Result'] glyph1Display.OpacityTransferFunction = 'PiecewiseFunction' glyph1Display.DataAxesGrid = 'GridAxesRepresentation' glyph1Display.PolarAxes = 'PolarAxesRepresentation' # init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' glyph1Display.ScaleTransferFunction.Points = [-0.13732019728357697, 0.0, 0.5, 0.0, 1.0630968654724513, 1.0, 0.5, 0.0] # init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' glyph1Display.OpacityTransferFunction.Points = [-0.13732019728357697, 0.0, 0.5, 0.0, 1.0630968654724513, 1.0, 0.5, 0.0] # setup the color legend parameters for each legend in this view # get color legend/bar for pLUT in view renderView1 pLUTColorBar = GetScalarBar(pLUT, renderView1) pLUTColorBar.Title = 'P' pLUTColorBar.ComponentTitle = '' # set color bar visibility pLUTColorBar.Visibility = 1 # get color legend/bar for v_2LUT in view renderView1 v_2LUTColorBar = GetScalarBar(v_2LUT, renderView1) v_2LUTColorBar.WindowLocation = 'UpperRightCorner' v_2LUTColorBar.Title = 'V_2' v_2LUTColorBar.ComponentTitle = '' # set color bar visibility v_2LUTColorBar.Visibility = 1 # show color legend drivenCavity3dvtuDisplay.SetScalarBarVisibility(renderView1, True) # show color legend slice1Display.SetScalarBarVisibility(renderView1, True) # ---------------------------------------------------------------- # setup color maps and opacity mapes used in the visualization # note: the Get..() functions create a new object, if needed # ---------------------------------------------------------------- # get opacity transfer function/opacity map for 'P' pPWF = GetOpacityTransferFunction('P') pPWF.Points = [-0.25406850868022934, 0.0, 0.5, 0.0, 0.2778383075006833, 1.0, 0.5, 0.0] pPWF.ScalarRangeInitialized = 1 # ---------------------------------------------------------------- # restore active source SetActiveSource(slice1) # ---------------------------------------------------------------- if __name__ == '__main__': # generate extracts SaveExtracts(ExtractsOutputDirectory='extracts')
43.067227
174
0.728488
4a2adf8d6fc8370552eacd2a76f036bd8f3b50d9
4,497
py
Python
indad/utils.py
theerawatramchuen/ind_knn_ad
44720394c69c796d531d32e9a757c8526eef45cb
[ "MIT" ]
75
2021-07-09T09:50:00.000Z
2022-03-31T11:05:34.000Z
indad/utils.py
theerawatramchuen/ind_knn_ad
44720394c69c796d531d32e9a757c8526eef45cb
[ "MIT" ]
24
2021-07-22T10:04:28.000Z
2022-03-11T00:07:30.000Z
indad/utils.py
theerawatramchuen/ind_knn_ad
44720394c69c796d531d32e9a757c8526eef45cb
[ "MIT" ]
28
2021-07-24T18:03:25.000Z
2022-02-09T10:41:39.000Z
import sys import yaml from tqdm import tqdm from datetime import datetime import torch from torch import tensor from torchvision import transforms from PIL import ImageFilter from sklearn import random_projection TQDM_PARAMS = { "file" : sys.stdout, "bar_format" : " {l_bar}{bar:10}{r_bar}{bar:-10b}", } def get_tqdm_params(): return TQDM_PARAMS class GaussianBlur: def __init__(self, radius : int = 4): self.radius = radius self.unload = transforms.ToPILImage() self.load = transforms.ToTensor() self.blur_kernel = ImageFilter.GaussianBlur(radius=4) def __call__(self, img): map_max = img.max() final_map = self.load( self.unload(img[0]/map_max).filter(self.blur_kernel) )*map_max return final_map def get_coreset_idx_randomp( z_lib : tensor, n : int = 1000, eps : float = 0.90, float16 : bool = True, force_cpu : bool = False, ) -> tensor: """Returns n coreset idx for given z_lib. Performance on AMD3700, 32GB RAM, RTX3080 (10GB): CPU: 40-60 it/s, GPU: 500+ it/s (float32), 1500+ it/s (float16) Args: z_lib: (n, d) tensor of patches. n: Number of patches to select. eps: Agression of the sparse random projection. float16: Cast all to float16, saves memory and is a bit faster (on GPU). force_cpu: Force cpu, useful in case of GPU OOM. Returns: coreset indices """ print(f" Fitting random projections. Start dim = {z_lib.shape}.") try: transformer = random_projection.SparseRandomProjection(eps=eps) z_lib = torch.tensor(transformer.fit_transform(z_lib)) print(f" DONE. Transformed dim = {z_lib.shape}.") except ValueError: print( " Error: could not project vectors. Please increase `eps`.") select_idx = 0 last_item = z_lib[select_idx:select_idx+1] coreset_idx = [torch.tensor(select_idx)] min_distances = torch.linalg.norm(z_lib-last_item, dim=1, keepdims=True) # The line below is not faster than linalg.norm, although i'm keeping it in for # future reference. # min_distances = torch.sum(torch.pow(z_lib-last_item, 2), dim=1, keepdims=True) if float16: last_item = last_item.half() z_lib = z_lib.half() min_distances = min_distances.half() if torch.cuda.is_available() and not force_cpu: last_item = last_item.to("cuda") z_lib = z_lib.to("cuda") min_distances = min_distances.to("cuda") for _ in tqdm(range(n-1), **TQDM_PARAMS): distances = torch.linalg.norm(z_lib-last_item, dim=1, keepdims=True) # broadcasting step # distances = torch.sum(torch.pow(z_lib-last_item, 2), dim=1, keepdims=True) # broadcasting step min_distances = torch.minimum(distances, min_distances) # iterative step select_idx = torch.argmax(min_distances) # selection step # bookkeeping last_item = z_lib[select_idx:select_idx+1] min_distances[select_idx] = 0 coreset_idx.append(select_idx.to("cpu")) return torch.stack(coreset_idx) def print_and_export_results(results : dict, method : str): """Writes results to .yaml and serialized results to .txt.""" print("\n ╭────────────────────────────╮") print( " │ Results summary │") print( " ┢━━━━━━━━━━━━━━━━━━━━━━━━━━━━┪") print( f" ┃ average image rocauc: {results['average image rocauc']:.2f} ┃") print( f" ┃ average pixel rocauc: {results['average pixel rocauc']:.2f} ┃") print( " ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n") # write timestamp = datetime.now().strftime("%d_%m_%Y_%H_%M_%S") name = f"{method}_{timestamp}" results_yaml_path = f"./results/{name}.yml" scoreboard_path = f"./results/{name}.txt" with open(results_yaml_path, "w") as outfile: yaml.safe_dump(results, outfile, default_flow_style=False) with open(scoreboard_path, "w") as outfile: outfile.write(serialize_results(results["per_class_results"])) print(f" Results written to {results_yaml_path}") def serialize_results(results : dict) -> str: """Serialize a results dict into something usable in markdown.""" n_first_col = 20 ans = [] for k, v in results.items(): s = k + " "*(n_first_col-len(k)) s = s + f"| {v[0]*100:.1f} | {v[1]*100:.1f} |" ans.append(s) return "\n".join(ans)
34.592308
104
0.624194
82939abff9d6594ebd4418defc5ed242f05ed765
9,660
py
Python
doc/source/conf.py
andrejmuhic/cvxpy
4877fe9e513cc0f9943d452740ccfb84552c2849
[ "ECL-2.0", "Apache-2.0" ]
1
2022-03-24T19:39:09.000Z
2022-03-24T19:39:09.000Z
doc/source/conf.py
Shulu-Chen/cvxpy
d156d1e6efb562470312aef3468ab938bab32e6e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
doc/source/conf.py
Shulu-Chen/cvxpy
d156d1e6efb562470312aef3468ab938bab32e6e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # CVXPY documentation build configuration file, created by # sphinx-quickstart on Mon Jan 27 20:47:07 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # To import CVXPY: sys.path.insert(0, os.path.abspath('../..')) # To import sphinx extensions we've put in the repository: sys.path.insert(0, os.path.abspath('../sphinxext')) sys.path.append('/home/docs/checkouts/readthedocs.org/user_builds/cvxpy/checkouts/1.0/cvxpy') __version__ = "1.1.5" # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon'] # To suppress autodoc/numpydoc warning. # http://stackoverflow.com/questions/12206334/sphinx-autosummary-toctree-contains-reference-to-nonexisting-document-warnings numpydoc_show_class_members = False # Since readthedocs.org has trouble compiling `cvxopt`, autodoc fails # whenever it tries to import a CVXPY module to document it. # The following code replaces the relevant cvxopt modules with # a dummy namespace, allowing autodoc to work. class Mocked(object): def __setattr__(self, name, value): self.__dict__[name] = value def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] else: return None MOCK_MODULES = ['cvxopt', 'cvxopt.base', 'cvxopt.misc'] sys.modules.update((mod_name, Mocked()) for mod_name in MOCK_MODULES) # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'CVXPY' copyright = u'2020, The CVXPY authors' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join(__version__.split('.')[:2]) # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. import alabaster table_styling_embed_css = False html_theme_path = [alabaster.get_path(), "../themes"] extensions += ['alabaster'] html_theme = 'cvxpy_alabaster' html_sidebars = { '**': [ 'about.html', 'navigation.html', 'searchbox.html', ] } # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'github_user': 'cvxgrp', 'github_repo': 'cvxpy', 'github_banner': True, 'github_type': 'star', 'travis_button': False, 'analytics_id': 'UA-50248335-1', } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = ['../themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'cvxpydoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'cvxpy.tex', u'CVXPY Documentation', u'Steven Diamond, Eric Chu, Stephen Boyd', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'cvxpy', u'CVXPY Documentation', [u'Steven Diamond, Eric Chu, Stephen Boyd'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'cvxpy', u'CVXPY Documentation', u'Steven Diamond, Eric Chu, Stephen Boyd', 'CVXPY', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
32.2
124
0.708075
5d25555d2c2e2bb724247d8455a9bf9cb28cff3c
1,777
py
Python
src/falconpy/_uber_default_preference.py
fcremer/falconpy
eb2b000f1a73553e355d7b685d2e1006a4975030
[ "Unlicense" ]
null
null
null
src/falconpy/_uber_default_preference.py
fcremer/falconpy
eb2b000f1a73553e355d7b685d2e1006a4975030
[ "Unlicense" ]
null
null
null
src/falconpy/_uber_default_preference.py
fcremer/falconpy
eb2b000f1a73553e355d7b685d2e1006a4975030
[ "Unlicense" ]
null
null
null
"""Internal constant library. _______ __ _______ __ __ __ | _ .----.-----.--.--.--.--| | _ | |_.----|__| |--.-----. |. 1___| _| _ | | | | _ | 1___| _| _| | <| -__| |. |___|__| |_____|________|_____|____ |____|__| |__|__|__|_____| |: 1 | |: 1 | |::.. . | CROWDSTRIKE FALCON |::.. . | FalconPy `-------' `-------' OAuth2 API - Customer SDK This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to <https://unlicense.org> """ PREFER_NONETYPE = [ "report_executions_download_get", "report_executions_download.get" ]
43.341463
71
0.676984
4cdc4d852d1ae917fd481a940803d7eed457dfec
2,010
py
Python
handyspark/sql/schema.py
FoundryAI/handyspark
bf23522eb0794cce8af2f036347b34df1a2c7b09
[ "MIT" ]
null
null
null
handyspark/sql/schema.py
FoundryAI/handyspark
bf23522eb0794cce8af2f036347b34df1a2c7b09
[ "MIT" ]
null
null
null
handyspark/sql/schema.py
FoundryAI/handyspark
bf23522eb0794cce8af2f036347b34df1a2c7b09
[ "MIT" ]
null
null
null
import numpy as np import datetime from operator import itemgetter from pyspark.sql.types import StructType _mapping = {str: 'string', bool: 'boolean', int: 'integer', float: 'float', datetime.date: 'date', datetime.datetime: 'timestamp', np.bool: 'boolean', np.int8: 'byte', np.int16: 'short', np.int32: 'integer', np.int64: 'long', np.float32: 'float', np.float64: 'double', np.ndarray: 'array', object: 'string', list: 'array', tuple: 'array', dict: 'map'} def generate_schema(columns, nullable_columns='all'): """ Parameters ---------- columns: dict of column names (keys) and types (values) nullables: list of nullable columns, optional, default is 'all' Returns ------- schema: StructType Spark DataFrame schema corresponding to Python/numpy types. """ columns = sorted(columns.items()) colnames = list(map(itemgetter(0), columns)) coltypes = list(map(itemgetter(1), columns)) invalid_types = [] new_types = [] keys = list(map(itemgetter(0), list(_mapping.items()))) for coltype in coltypes: if coltype not in keys: invalid_types.append(coltype) else: if coltype == np.dtype('O'): new_types.append(str) else: new_types.append(keys[keys.index(coltype)]) assert len(invalid_types) == 0, "Invalid type(s) specified: {}".format(str(invalid_types)) if nullable_columns == 'all': nullables = [True] * len(colnames) else: nullables = [col in nullable_columns for col in colnames] fields = [{"metadata": {}, "name": name, "nullable": nullable, "type": _mapping[typ]} for name, typ, nullable in zip(colnames, new_types, nullables)] return StructType.fromJson({"type": "struct", "fields": fields})
32.419355
94
0.569652
d07eabae2ff8c8a7b084ae3d6a7e7266d747e87b
489
py
Python
relational/scripts/tests/context.py
snspam/sn_spam
e0bb8e9c843e26e5f4be8a49a960ebf7a0d5bfd5
[ "MIT" ]
null
null
null
relational/scripts/tests/context.py
snspam/sn_spam
e0bb8e9c843e26e5f4be8a49a960ebf7a0d5bfd5
[ "MIT" ]
null
null
null
relational/scripts/tests/context.py
snspam/sn_spam
e0bb8e9c843e26e5f4be8a49a960ebf7a0d5bfd5
[ "MIT" ]
null
null
null
import os import sys one_level_up = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.insert(1, one_level_up) from app import config from app.tests import test_utils from relational.scripts import comments from relational.scripts import generator from relational.scripts import pred_builder from relational.scripts import psl from relational.scripts import relational from relational.scripts import tuffy from relational.scripts import mrf from analysis import util
30.5625
77
0.832311
bc7d7a40a19d7345bb6b03a4ae09743b23f5f28c
19,341
py
Python
selvbetjening/sadmin2/views/event.py
animekita/selvbetjening
fee63d178fbd5ce2976c04d3a4b2dde6d8691892
[ "MIT" ]
null
null
null
selvbetjening/sadmin2/views/event.py
animekita/selvbetjening
fee63d178fbd5ce2976c04d3a4b2dde6d8691892
[ "MIT" ]
3
2020-02-11T21:54:59.000Z
2021-06-10T17:35:21.000Z
selvbetjening/sadmin2/views/event.py
animekita/selvbetjening
fee63d178fbd5ce2976c04d3a4b2dde6d8691892
[ "MIT" ]
null
null
null
# coding=utf-8 from django.contrib.admin.util import NestedObjects from django.core.urlresolvers import reverse from django.forms.models import modelformset_factory from django.http.response import HttpResponseRedirect from django.shortcuts import render, get_object_or_404 from django.contrib import messages from django.utils.translation import ugettext as _ from django.db.models import Count from selvbetjening.businesslogic.events.decorators import suspend_automatic_attendee_price_updates from selvbetjening.core.members.models import UserLocation from django.db import router from selvbetjening.core.user.models import SUser from selvbetjening.core.events.options.dynamic_selections import SCOPE, dynamic_selections_formset_factory, dynamic_selections from selvbetjening.core.events.utils import sum_attendee_payment_status from selvbetjening.core.events.models import Event, Attend, AttendState, Payment, AttendeeComment from selvbetjening.core.events.signals import request_attendee_pks_signal, attendee_updated_signal from selvbetjening.sadmin2.forms import EventForm, AttendeeFormattingForm, PaymentForm, \ AttendeeCommentForm, attendee_selection_helper_factory, AttendeeCommentFormSet, ConfirmForm from selvbetjening.sadmin2.decorators import sadmin_prerequisites from selvbetjening.sadmin2 import menu from generic import generic_create_view, search_view from selvbetjening.sadmin2.graphs.timelines import AbsoluteTimeGraph, AgeTimeGraph from selvbetjening.sadmin2.graphs.units import AttendeeRegisteredUnit, AttendeePaidUnit, AttendeeCheckedInUnit,\ AttendeeRegisteredAgeUnit from selvbetjening.sadmin2.views.reports import insecure_reports_address @sadmin_prerequisites def event_overview(request, event_pk): event = get_object_or_404(Event, pk=event_pk) total = sum_attendee_payment_status(event.attendees) # returns a set of dictionaries with {'state': x, 'is_new': y, 'count': z} status = Attend.objects.filter(event=event).values('state', 'is_new').annotate(count=Count('pk')) status_flat = {} for item in status: status_flat['%s_new' % item['state'] if item['is_new'] else item['state']] = item['count'] for item in status: if item['is_new']: status_flat.setdefault(item['state'], 0) status_flat[item['state']] += item['count'] return render(request, 'sadmin2/event/overview.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'overview', 'event': event, 'total': total, 'status': status_flat }) @sadmin_prerequisites def event_attendees(request, event_pk): event = get_object_or_404(Event, pk=event_pk) columns = ('pk', 'user__username', 'user__first_name', 'user__last_name', 'user__email', 'user__street', 'user__postalcode', 'user__city') conditions = ('selection__option__pk', 'selection__suboption__pk', 'state', 'paid', 'price') related = ('comment',) queryset = event.attendees.select_related('user').all() context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'attendees', 'event': event } return search_view(request, queryset, 'sadmin2/event/attendees.html', 'sadmin2/event/attendees_inner.html', search_columns=columns, search_conditions=conditions, search_related=related, search_order='-pk', context=context) @sadmin_prerequisites def event_account(request, event_pk): event = get_object_or_404(Event, pk=event_pk) if request.method == 'POST': formatting_form = AttendeeFormattingForm(request.REQUEST, event=event, attendees=event.attendees) formatting_form.is_valid() else: formatting_form = AttendeeFormattingForm(event=event, attendees=event.attendees) attendees, line_groups, total, show_regular_attendees, show_irregular_attendees, attendee_filter_label = formatting_form.format() return render(request, 'sadmin2/event/account.html', { 'sadmin2_menu_main_active': 'event', 'sadmin2_breadcrumbs_active': 'event_account', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'account', 'event': event, 'attendees': attendees.order_by('user__username'), 'line_groups': line_groups, 'total': total, 'show_regular_attendees': show_regular_attendees, 'show_irregular_attendees': show_irregular_attendees, 'formatting_form': formatting_form, 'attendee_filter_label': attendee_filter_label }) @sadmin_prerequisites def event_settings(request, event_pk): event = get_object_or_404(Event, pk=event_pk) if request.method == 'POST': form = EventForm(request.POST, instance=event) if form.is_valid(): form.save() messages.add_message(request, messages.SUCCESS, _('Settings saved successfully')) else: form = EventForm(instance=event) return render(request, 'sadmin2/generic/form.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_settings', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'settings', 'event': event, 'form': form }) @sadmin_prerequisites def event_copy(request, event_pk): event = get_object_or_404(Event, pk=event_pk) if request.method == 'POST': form = ConfirmForm(request.POST) if form.is_valid(): messages.add_message(request, messages.SUCCESS, _('Event copied')) event.copy_and_mutate_self() return HttpResponseRedirect(reverse('sadmin2:event_settings', kwargs={'event_pk': event.pk})) else: form = ConfirmForm() return render(request, 'sadmin2/event/copy.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_copy', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'copy', 'event': event, 'form': form }) @sadmin_prerequisites def report_check_in(request, event_pk): event = get_object_or_404(Event, pk=event_pk) graph = AbsoluteTimeGraph(AbsoluteTimeGraph.SCOPE.hour, AttendeeCheckedInUnit('Checked-in', event), accumulative=True) return render(request, 'sadmin2/graphs/linegraph.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_report_check_in', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'reports', 'event': event, 'title': _('Check-in'), 'date_formatting': '%a %H:%M', 'graph': graph }) @sadmin_prerequisites def report_registration(request, event_pk): event = get_object_or_404(Event, pk=event_pk) graph = AbsoluteTimeGraph(AbsoluteTimeGraph.SCOPE.week, AttendeeRegisteredUnit('Registered', event), AttendeePaidUnit('Paid', event), accumulative=True) return render(request, 'sadmin2/graphs/linegraph.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_report_registration', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'reports', 'event': event, 'title': _('Registrations'), 'graph': graph }) @sadmin_prerequisites def report_age(request, event_pk): event = get_object_or_404(Event, pk=event_pk) graph = AgeTimeGraph(AbsoluteTimeGraph.SCOPE.year, AttendeeRegisteredAgeUnit('Users', event, event.startdate), today=event.startdate) return render(request, 'sadmin2/graphs/linegraph.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_report_age', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'reports', 'event': event, 'title': _('User age'), 'graph': graph }) @sadmin_prerequisites def report_address(request, event_pk): event = get_object_or_404(Event, pk=event_pk) context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_report_address', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'reports', 'event': event } return insecure_reports_address( request, UserLocation.objects.filter(user__attend__event=event), extra_context=context ) @sadmin_prerequisites def event_attendees_add(request, event_pk): event = get_object_or_404(Event, pk=event_pk) if request.method == 'POST': user = get_object_or_404(SUser, pk=int(request.POST.get('user_pk', 0))) Attend.objects.create(event=event, user=user) # TODO update this redirect to go directly to the attendee page when we have one messages.success(request, _('User %s added to event') % user.username) return HttpResponseRedirect(reverse('sadmin2:event_attendees', kwargs={'event_pk': event.pk})) queryset = SUser.objects.exclude(attend__event__pk=event.pk) columns = ('username', 'first_name', 'last_name', 'email') context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_add', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_event, 'sadmin2_menu_tab_active': 'attendees', 'event': event, } return search_view(request, queryset, 'sadmin2/event/attendees_add.html', 'sadmin2/event/attendees_add_inner.html', search_columns=columns, context=context ) @sadmin_prerequisites def event_attendee(request, event_pk, attendee_pk): event = get_object_or_404(Event, pk=event_pk) attendee = get_object_or_404(event.attendees, pk=attendee_pk) comments = attendee.comments.filter(check_in_announce=True) selections = dynamic_selections(SCOPE.VIEW_SYSTEM_INVOICE, attendee) if request.method == 'POST': action = request.POST.get('action', '') if action == 'to-state-waiting': attendee.state = AttendState.waiting attendee.save() if action == 'to-state-accepted': attendee.state = AttendState.accepted attendee.save() if action == 'to-state-attended': attendee.state = AttendState.attended attendee.save() if action == 'pay': Payment.objects.create( user=attendee.user, attendee=attendee, amount=attendee.unpaid, note='Manual payment', signee=request.user ) attendee_updated_signal.send(event_attendee, attendee=attendee) return HttpResponseRedirect(reverse('sadmin2:event_attendee', kwargs={'event_pk': event.pk, 'attendee_pk': attendee.pk})) return render(request, 'sadmin2/event/attendee.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_attendee', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_attendee, 'sadmin2_menu_tab_active': 'registration', 'event': event, 'attendee': attendee, 'comments': comments, 'selections': selections }) @sadmin_prerequisites def event_attendee_payments(request, event_pk, attendee_pk): event = get_object_or_404(Event, pk=event_pk) attendee = get_object_or_404(event.attendees, pk=attendee_pk) payment_keys = request_attendee_pks_signal.send(None, attendee=attendee) payments = attendee.payment_set.all() context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_attendee_payments', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_attendee, 'sadmin2_menu_tab_active': 'payments', 'event': event, 'attendee': attendee, 'payment_keys': payment_keys, 'payments': payments, } def save_callback(payment): payment.note = 'Manual payment' payment.signee = request.user payment.attendee = attendee payment.user = attendee.user payment.save() attendee_updated_signal.send(event_attendee_selections, attendee=attendee) return generic_create_view( request, PaymentForm, redirect_success_url=reverse('sadmin2:event_attendee_payments', kwargs={ 'event_pk': event.pk, 'attendee_pk': attendee.pk }), message_success=_('Payment registered'), instance_save_callback=save_callback, template='sadmin2/event/attendee_payments.html', context=context ) @sadmin_prerequisites def event_attendee_selections(request, event_pk, attendee_pk): event = get_object_or_404(Event, pk=event_pk) attendee = get_object_or_404(event.attendees, pk=attendee_pk) DynamicSelectionsFormSet = dynamic_selections_formset_factory( SCOPE.SADMIN, event, helper_factory=attendee_selection_helper_factory ) if request.method == 'POST': formset = DynamicSelectionsFormSet(request.POST, user=attendee.user, attendee=attendee) if formset.is_valid(): formset.save() messages.success(request, 'Saved selections') attendee_updated_signal.send(event_attendee_selections, attendee=attendee) return HttpResponseRedirect(reverse('sadmin2:event_attendee', kwargs={'event_pk': event.pk, 'attendee_pk': attendee.pk})) else: formset = DynamicSelectionsFormSet(user=attendee.user, attendee=attendee) return render(request, 'sadmin2/event/attendee_selections.html', { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_attendee_selections', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_attendee, 'sadmin2_menu_tab_active': 'selections', 'event': event, 'attendee': attendee, 'formset': formset }) @sadmin_prerequisites def event_attendee_notes(request, event_pk, attendee_pk): event = get_object_or_404(Event, pk=event_pk) attendee = get_object_or_404(event.attendees, pk=attendee_pk) if request.method == 'POST': formset = AttendeeCommentFormSet(request.POST, queryset=attendee.comments.all()) if formset.is_valid(): instances = formset.save(commit=False) for instance in instances: if instance.pk is None: instance.attendee = attendee instance.author = request.user instance.save() return HttpResponseRedirect(reverse('sadmin2:event_attendee_notes', kwargs={'event_pk': event.pk, 'attendee_pk': attendee.pk})) else: formset = AttendeeCommentFormSet(queryset=attendee.comments.all()) context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_attendee_notes', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_attendee, 'sadmin2_menu_tab_active': 'notes', 'event': event, 'attendee': attendee, 'comments': attendee.comments.all(), 'formset': formset } return render(request, 'sadmin2/event/attendee_notes.html', context) @sadmin_prerequisites def event_attendee_log(request, event_pk, attendee_pk): event = get_object_or_404(Event, pk=event_pk) attendee = get_object_or_404(event.attendees, pk=attendee_pk) context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_attendee_log', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_attendee, 'sadmin2_menu_tab_active': 'log', 'event': event, 'attendee': attendee, 'log': attendee.log.all().order_by('-id') } return render(request, 'sadmin2/event/attendee_log.html', context) def _get_deleted_objects(objs): """ Slightly simplified version of the function used in the standard admin """ if len(objs) == 0: return [] collector = NestedObjects(using=router.db_for_write(objs[0])) collector.collect(objs) def format_callback(obj): return '%s: %s' % (obj.__class__.__name__, unicode(obj)) return collector.nested(format_callback) @sadmin_prerequisites @suspend_automatic_attendee_price_updates def event_attendee_delete(request, event_pk, attendee_pk): event = get_object_or_404(Event, pk=event_pk) attendee = get_object_or_404(event.attendees, pk=attendee_pk) if request.method == 'POST': attendee.delete() messages.success(request, _('Attendee %s deleted' % attendee.user.username)) return HttpResponseRedirect(reverse('sadmin2:event_attendees', kwargs={'event_pk': event.pk})) context = { 'sadmin2_menu_main_active': 'events', 'sadmin2_breadcrumbs_active': 'event_attendees_attendee_delete', 'sadmin2_menu_tab': menu.sadmin2_menu_tab_attendee, 'sadmin2_menu_tab_active': 'delete', 'event': event, 'attendee': attendee, 'to_be_deleted': _get_deleted_objects([attendee]) } return render(request, 'sadmin2/event/attendee_delete.html', context )
34.414591
133
0.628664
96a17abf511133dd2ca08b4656825414b0dc1e0f
196
py
Python
django_priority_batch/__init__.py
dblenkus/django-priority-batch
8cc051b1196e90ef3ccc9d14d1ea277d46e31891
[ "Apache-2.0" ]
1
2018-10-16T10:56:53.000Z
2018-10-16T10:56:53.000Z
django_priority_batch/__init__.py
dblenkus/django-priority-batch
8cc051b1196e90ef3ccc9d14d1ea277d46e31891
[ "Apache-2.0" ]
3
2018-10-19T10:42:01.000Z
2018-10-21T10:14:56.000Z
django_priority_batch/__init__.py
dblenkus/django-priority-batch
8cc051b1196e90ef3ccc9d14d1ea277d46e31891
[ "Apache-2.0" ]
4
2018-10-19T08:03:48.000Z
2020-02-03T19:49:51.000Z
""".. Ignore pydocstyle D400. ===================== Django Priority Batch ===================== TODO. """ from .middleware import Middleware from .prioritized_batcher import PrioritizedBatcher
16.333333
51
0.612245
c7bb2e222aa18ee2953c568fe8b4f4e70356e922
36,671
py
Python
contentcuration/contentcuration/viewsets/contentnode.py
ozer550/studio
b69c625d223350b1b4a6909904ec4b44f80b211d
[ "MIT" ]
6
2016-02-02T12:49:54.000Z
2017-12-05T21:00:01.000Z
contentcuration/contentcuration/viewsets/contentnode.py
ozer550/studio
b69c625d223350b1b4a6909904ec4b44f80b211d
[ "MIT" ]
195
2015-05-19T20:37:51.000Z
2018-02-27T19:06:54.000Z
contentcuration/contentcuration/viewsets/contentnode.py
ozer550/studio
b69c625d223350b1b4a6909904ec4b44f80b211d
[ "MIT" ]
33
2015-05-06T19:19:09.000Z
2017-11-16T12:50:54.000Z
import json from functools import partial from functools import reduce from django.conf import settings from django.core.exceptions import ValidationError as DjangoValidationError from django.db import IntegrityError from django.db import models from django.db.models import Exists from django.db.models import F from django.db.models import IntegerField as DjangoIntegerField from django.db.models import OuterRef from django.db.models import Q from django.db.models import Subquery from django.db.models.functions import Cast from django.db.models.functions import Coalesce from django.http import Http404 from django.utils.timezone import now from django_cte import CTEQuerySet from django_filters.rest_framework import CharFilter from django_filters.rest_framework import UUIDFilter from le_utils.constants import content_kinds from le_utils.constants import exercises from le_utils.constants import roles from le_utils.constants.labels import accessibility_categories from le_utils.constants.labels import learning_activities from le_utils.constants.labels import levels from le_utils.constants.labels import needs from le_utils.constants.labels import resource_type from le_utils.constants.labels import subjects from rest_framework.decorators import action from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.serializers import BooleanField from rest_framework.serializers import CharField from rest_framework.serializers import ChoiceField from rest_framework.serializers import DictField from rest_framework.serializers import IntegerField from rest_framework.serializers import ValidationError from rest_framework.viewsets import ViewSet from contentcuration.constants import completion_criteria as completion_criteria_validator from contentcuration.db.models.expressions import IsNull from contentcuration.db.models.query import RIGHT_JOIN from contentcuration.db.models.query import With from contentcuration.db.models.query import WithValues from contentcuration.models import AssessmentItem from contentcuration.models import Channel from contentcuration.models import ContentNode from contentcuration.models import ContentTag from contentcuration.models import File from contentcuration.models import generate_storage_url from contentcuration.models import PrerequisiteContentRelationship from contentcuration.models import UUIDField from contentcuration.tasks import create_async_task from contentcuration.tasks import get_or_create_async_task from contentcuration.utils.nodes import calculate_resource_size from contentcuration.viewsets.base import BulkListSerializer from contentcuration.viewsets.base import BulkModelSerializer from contentcuration.viewsets.base import BulkUpdateMixin from contentcuration.viewsets.base import RequiredFilterSet from contentcuration.viewsets.base import ValuesViewset from contentcuration.viewsets.common import ChangeEventMixin from contentcuration.viewsets.common import DotPathValueMixin from contentcuration.viewsets.common import JSONFieldDictSerializer from contentcuration.viewsets.common import NotNullMapArrayAgg from contentcuration.viewsets.common import SQCount from contentcuration.viewsets.common import UserFilteredPrimaryKeyRelatedField from contentcuration.viewsets.common import UUIDInFilter from contentcuration.viewsets.sync.constants import CONTENTNODE from contentcuration.viewsets.sync.constants import CREATED from contentcuration.viewsets.sync.constants import DELETED from contentcuration.viewsets.sync.constants import TASK_ID from contentcuration.viewsets.sync.utils import generate_delete_event from contentcuration.viewsets.sync.utils import generate_update_event from contentcuration.viewsets.sync.utils import log_sync_exception channel_query = Channel.objects.filter(main_tree__tree_id=OuterRef("tree_id")) _valid_positions = {"first-child", "last-child", "left", "right"} class ContentNodeFilter(RequiredFilterSet): id__in = UUIDInFilter(field_name="id") root_id = UUIDFilter(method="filter_root_id") ancestors_of = UUIDFilter(method="filter_ancestors_of") parent__in = UUIDInFilter(field_name="parent") _node_id_channel_id___in = CharFilter(method="filter__node_id_channel_id") class Meta: model = ContentNode fields = ( "parent", "parent__in", "id__in", "kind", "root_id", "ancestors_of", "_node_id_channel_id___in", ) def filter_root_id(self, queryset, name, value): return queryset.filter( parent=Channel.objects.filter(pk=value).values_list( "main_tree__id", flat=True ) ) def filter_ancestors_of(self, queryset, name, value): """ See MPTTModel.get_ancestors() """ try: # Includes the target node in the query target_node = ContentNode.objects.get(pk=value) if target_node.is_root_node(): return queryset.filter(pk=value) return queryset.filter( tree_id=target_node.tree_id, lft__lte=target_node.lft, rght__gte=target_node.rght, ) except ContentNode.DoesNotExist: return queryset.none() def filter__node_id_channel_id(self, queryset, name, value): query = Q() values = value.split(",") num_pairs = len(values) // 2 for i in range(0, num_pairs): query |= Q(node_id=values[i * 2], channel_id=values[i * 2 + 1]) return queryset.filter(query) tags_values_cte_fields = { 'tag': models.CharField(), 'node_id': UUIDField() } def set_tags(tags_by_id): tag_tuples = [] tags_relations_to_delete = [] # put all tags into a tuple (tag_name, node_id) to send into SQL for target_node_id, tag_names in tags_by_id.items(): for tag_name, value in tag_names.items(): tag_tuples.append((tag_name, target_node_id)) # create CTE that holds the tag_tuples data values_cte = WithValues(tags_values_cte_fields, tag_tuples, name='values_cte') # create another CTE which will RIGHT join against the tag table, so we get all of our # tag_tuple data back, plus the tag_id if it exists. Ideally we wouldn't normally use a RIGHT # join, we would simply swap the tables and do a LEFT, but with the VALUES CTE # that isn't possible tags_qs = ( values_cte.join(ContentTag, tag_name=values_cte.col.tag, _join_type=RIGHT_JOIN) .annotate( tag=values_cte.col.tag, node_id=values_cte.col.node_id, tag_id=F('id'), ) .values('tag', 'node_id', 'tag_id') ) tags_cte = With(tags_qs, name='tags_cte') # the final query, we RIGHT join against the tag relation table so we get the tag_tuple back # again, plus the tag_id from the previous CTE, plus annotate a boolean of whether # the relation exists qs = ( tags_cte.join( CTEQuerySet(model=ContentNode.tags.through), contenttag_id=tags_cte.col.tag_id, contentnode_id=tags_cte.col.node_id, _join_type=RIGHT_JOIN ) .with_cte(values_cte) .with_cte(tags_cte) .annotate( tag_name=tags_cte.col.tag, node_id=tags_cte.col.node_id, tag_id=tags_cte.col.tag_id, has_relation=IsNull('contentnode_id', negate=True) ) .values('tag_name', 'node_id', 'tag_id', 'has_relation') ) created_tags = {} for result in qs: tag_name = result["tag_name"] node_id = result["node_id"] tag_id = result["tag_id"] has_relation = result["has_relation"] tags = tags_by_id[node_id] value = tags[tag_name] # tag wasn't found in the DB, but we're adding it to the node, so create it if not tag_id and value: # keep a cache of created tags during the session if tag_name in created_tags: tag_id = created_tags[tag_name] else: tag, _ = ContentTag.objects.get_or_create(tag_name=tag_name, channel_id=None) tag_id = tag.pk created_tags.update({tag_name: tag_id}) # if we're adding the tag but the relation didn't exist, create it now, otherwise # track the tag as one relation we should delete if value and not has_relation: ContentNode.tags.through.objects.get_or_create( contentnode_id=node_id, contenttag_id=tag_id ) elif not value and has_relation: tags_relations_to_delete.append( Q(contentnode_id=node_id, contenttag_id=tag_id) ) # delete tags if tags_relations_to_delete: ContentNode.tags.through.objects.filter( reduce(lambda x, y: x | y, tags_relations_to_delete) ).delete() class ContentNodeListSerializer(BulkListSerializer): def gather_tags(self, validated_data): tags_by_id = {} for obj in validated_data: try: tags = obj.pop("tags") except KeyError: pass else: if tags: tags_by_id[obj["id"]] = tags return tags_by_id def update(self, queryset, all_validated_data): tags = self.gather_tags(all_validated_data) modified = now() for data in all_validated_data: data["modified"] = modified all_objects = super(ContentNodeListSerializer, self).update( queryset, all_validated_data ) if tags: set_tags(tags) return all_objects class ThresholdField(CharField): def to_representation(self, value): return value def to_internal_value(self, data): data = super(ThresholdField, self).to_internal_value(data) try: data = int(data) except ValueError: pass return data class CompletionCriteriaSerializer(JSONFieldDictSerializer): threshold = ThresholdField(allow_null=True) model = CharField() learner_managed = BooleanField(required=False) def update(self, instance, validated_data): instance = super(CompletionCriteriaSerializer, self).update(instance, validated_data) try: completion_criteria_validator.validate(instance) except DjangoValidationError as e: raise ValidationError(e) return instance class ExtraFieldsOptionsSerializer(JSONFieldDictSerializer): modality = ChoiceField(choices=(("QUIZ", "Quiz"),), allow_null=True, required=False) completion_criteria = CompletionCriteriaSerializer(required=False) class ExtraFieldsSerializer(JSONFieldDictSerializer): mastery_model = ChoiceField( choices=exercises.MASTERY_MODELS, allow_null=True, required=False ) randomize = BooleanField() m = IntegerField(allow_null=True, required=False) n = IntegerField(allow_null=True, required=False) options = ExtraFieldsOptionsSerializer(required=False) class TagField(DotPathValueMixin, DictField): pass class MetadataLabelBooleanField(BooleanField): def bind(self, field_name, parent): # By default the bind method of the Field class sets the source_attrs to field_name.split("."). # As we have literal field names that include "." we need to override this behavior. # Otherwise it will attempt to set the source_attrs to a nested path, assuming that it is a source path, # not a materialized path. This probably means that it was a bad idea to use "." in the materialized path, # but alea iacta est. super(MetadataLabelBooleanField, self).bind(field_name, parent) self.source_attrs = [self.source] class MetadataLabelsField(JSONFieldDictSerializer): def __init__(self, choices, *args, **kwargs): self.choices = choices # Instantiate the superclass normally super().__init__(*args, **kwargs) def get_fields(self): fields = {} for label_id, label_name in self.choices: field = MetadataLabelBooleanField(required=False, label=label_name, allow_null=True) fields[label_id] = field return fields class ContentNodeSerializer(BulkModelSerializer): """ This is a write only serializer - we leverage it to do create and update operations, but read operations are handled by the Viewset. """ parent = UserFilteredPrimaryKeyRelatedField( queryset=ContentNode.objects.all(), required=False ) extra_fields = ExtraFieldsSerializer(required=False) tags = TagField(required=False) # Fields for metadata labels grade_levels = MetadataLabelsField(levels.choices, required=False) resource_types = MetadataLabelsField(resource_type.choices, required=False) learning_activities = MetadataLabelsField(learning_activities.choices, required=False) accessibility_labels = MetadataLabelsField(accessibility_categories.choices, required=False) categories = MetadataLabelsField(subjects.choices, required=False) learner_needs = MetadataLabelsField(needs.choices, required=False) dict_fields = [ "extra_fields", "grade_levels", "resource_types", "learning_activities", "accessibility_labels", "categories", "learner_needs", ] class Meta: model = ContentNode fields = ( "id", "title", "description", "kind", "language", "license", "license_description", "copyright_holder", "author", "role_visibility", "aggregator", "provider", "extra_fields", "thumbnail_encoding", "parent", "complete", "changed", "tags", "grade_levels", "resource_types", "learning_activities", "accessibility_labels", "categories", "learner_needs", "suggested_duration", ) list_serializer_class = ContentNodeListSerializer nested_writes = True def validate(self, data): tags = data.get("tags") if tags is not None: for tag in tags: if len(tag) > 30: raise ValidationError("tag is greater than 30 characters") return data def create(self, validated_data): # Creating a new node, by default put it in the orphanage on initial creation. if "parent" not in validated_data: validated_data["parent_id"] = settings.ORPHANAGE_ROOT_ID tags = None if "tags" in validated_data: tags = validated_data.pop("tags") instance = super(ContentNodeSerializer, self).create(validated_data) if tags: set_tags({instance.id: tags}) return instance def update(self, instance, validated_data): if "parent" in validated_data: raise ValidationError( {"parent": "This field should only be changed by a move operation"} ) for field in self.dict_fields: field_data = validated_data.pop(field, None) if field_data is not None: validated_data[field] = self.fields[field].update( getattr(instance, field), field_data ) if "tags" in validated_data: tags = validated_data.pop("tags") set_tags({instance.id: tags}) return super(ContentNodeSerializer, self).update(instance, validated_data) def retrieve_thumbail_src(item): """ Get either the encoding or the url to use as the <img> src attribute """ try: if item.get("thumbnail_encoding"): encoding = json.loads(item.get("thumbnail_encoding")) if encoding: return encoding.get("base64") except ValueError: pass if ( item["thumbnail_checksum"] is not None and item["thumbnail_extension"] is not None ): return generate_storage_url( "{}.{}".format(item["thumbnail_checksum"], item["thumbnail_extension"]) ) return None def get_title(item): # If it's the root, use the channel name (should be original channel name) return item["title"] if item["parent_id"] else item["original_channel_name"] class PrerequisitesUpdateHandler(ViewSet): """ Dummy viewset for handling create and delete changes for prerequisites """ def _get_values_from_change(self, change): return { "target_node_id": change["key"][0], "prerequisite_id": change["key"][1], } def _execute_changes(self, change_type, data): if data: if change_type == CREATED: PrerequisiteContentRelationship.objects.bulk_create( [PrerequisiteContentRelationship(**d) for d in data] ) elif change_type == DELETED: PrerequisiteContentRelationship.objects.filter( reduce(lambda x, y: x | y, map(lambda x: Q(**x), data)) ).delete() def _check_permissions(self, changes): # Filter the passed in contentondes, on both side of the relationship allowed_contentnodes = set( ContentNode.filter_edit_queryset( ContentNode.objects.all(), self.request.user ) .filter( id__in=list(map(lambda x: x["key"][0], changes)) + list(map(lambda x: x["key"][1], changes)) ) .values_list("id", flat=True) ) valid_changes = [] errors = [] for change in changes: if ( change["key"][0] in allowed_contentnodes and change["key"][1] in allowed_contentnodes ): valid_changes.append(change) else: change.update({"errors": ValidationError("Not found").detail}) errors.append(change) return valid_changes, errors def _check_valid(self, changes): # Don't allow prerequisites to be created across different trees # or on themselves valid_changes = [] errors = [] tree_id_lookup = { c["id"]: c["tree_id"] for c in ContentNode.objects.filter( id__in=list(map(lambda x: x["key"][0], changes)) + list(map(lambda x: x["key"][1], changes)) ).values("id", "tree_id") } # Do a lookup on existing prerequisite relationships in the opposite direction to the ones we are trying to set # Create a lookup string of prerequisite_id:target_node_id which we will compare against target_node_id:prerequisite_id existing_relationships_lookup = { "{}:{}".format(p["prerequisite_id"], p["target_node_id"]) for p in PrerequisiteContentRelationship.objects.filter( # First part of the key is the target_node_id and prerequisite_id the second, so we reverse them here reduce( lambda x, y: x | y, map( lambda x: Q( target_node_id=x["key"][1], prerequisite_id=x["key"][0] ), changes, ), ) ).values("target_node_id", "prerequisite_id") } for change in changes: if change["key"][0] == change["key"][1]: change.update( { "errors": ValidationError( "Prerequisite relationship cannot be self referential" ).detail } ) errors.append(change) elif tree_id_lookup[change["key"][0]] != tree_id_lookup[change["key"][1]]: change.update( { "errors": ValidationError( "Prerequisite relationship cannot cross trees" ).detail } ) errors.append(change) elif ( "{}:{}".format(change["key"][0], change["key"][1]) in existing_relationships_lookup ): change.update( { "errors": ValidationError( "Prerequisite relationship cannot be reciprocal" ).detail } ) errors.append(change) else: valid_changes.append(change) return valid_changes, errors def _handle_relationship_changes(self, changes): change_types = set(map(lambda x: x["type"], changes)) if len(change_types) > 1: raise TypeError("Mixed change types passed to change handler") change_type = tuple(change_types)[0] permissioned_changes, permission_errors = self._check_permissions(changes) if change_type == CREATED and permissioned_changes: # Only do validation on create operations and if there are any changes left to validate valid_changes, validation_errors = self._check_valid(permissioned_changes) errors = permission_errors + validation_errors else: # For delete operations, just check permissions, but let invalid # relationships be deleted valid_changes = permissioned_changes errors = permission_errors data = list(map(self._get_values_from_change, valid_changes)) # In Django 2.2 add ignore_conflicts to make this fool proof try: self._execute_changes(change_type, data) except IntegrityError as e: for change in valid_changes: change.update({"errors": str(e)}) errors.append(change) return errors or None, None def create_from_changes(self, changes): return self._handle_relationship_changes(changes) def delete_from_changes(self, changes): return self._handle_relationship_changes(changes) def dict_if_none(obj, field_name=None): return obj[field_name] if obj[field_name] else {} # Apply mixin first to override ValuesViewset class ContentNodeViewSet(BulkUpdateMixin, ChangeEventMixin, ValuesViewset): queryset = ContentNode.objects.all() serializer_class = ContentNodeSerializer permission_classes = [IsAuthenticated] filterset_class = ContentNodeFilter values = ( "id", "content_id", "title", "description", "author", "assessment_item_count", "provider", "aggregator", "content_tags", "role_visibility", "kind__kind", "language_id", "license_id", "license_description", "copyright_holder", "extra_fields", "node_id", "root_id", "channel_id", "original_source_node_id", "original_channel_id", "original_channel_name", "original_node_id", "original_parent_id", "total_count", "resource_count", "error_count", "has_updated_descendants", "has_new_descendants", "coach_count", "thumbnail_checksum", "thumbnail_extension", "thumbnail_encoding", "published", "modified", "has_children", "parent_id", "complete", "changed", "lft", "grade_levels", "resource_types", "learning_activities", "accessibility_labels", "categories", "learner_needs", "suggested_duration", ) field_map = { "language": "language_id", "license": "license_id", "tags": "content_tags", "kind": "kind__kind", "thumbnail_src": retrieve_thumbail_src, "title": get_title, "parent": "parent_id", "grade_levels": partial(dict_if_none, field_name="grade_levels"), "resource_types": partial(dict_if_none, field_name="resource_types"), "learning_activities": partial(dict_if_none, field_name="learning_activities"), "accessibility_labels": partial(dict_if_none, field_name="accessibility_labels"), "categories": partial(dict_if_none, field_name="categories"), "learner_needs": partial(dict_if_none, field_name="learner_needs"), } def _annotate_channel_id(self, queryset): return queryset.annotate( channel_id=Subquery(channel_query.values_list("id", flat=True)[:1]) ) def get_queryset(self): queryset = super(ContentNodeViewSet, self).get_queryset() return self._annotate_channel_id(queryset) def get_edit_queryset(self): queryset = super(ContentNodeViewSet, self).get_edit_queryset() return self._annotate_channel_id(queryset) @action(detail=True, methods=["get"]) def requisites(self, request, pk=None): if not pk: raise Http404 # Here we are fetching the entire prerequisite relationship tree # for the channel. It is possible that this could get very large, # and cause performance issues, and it may not need to be loaded # on every fetch. # However, in order to detect potential cyclic prerequisite chains, # we load the entire channel's prerequisite tree at once. # Do a filter just on the tree_id of the target node, as relationships # should not be cross channel, and are not meaningful if they are. prereq_table_entries = PrerequisiteContentRelationship.objects.filter( target_node__tree_id=Cast( ContentNode.objects.filter(pk=pk).values_list("tree_id", flat=True)[:1], output_field=DjangoIntegerField(), ) ).values("target_node_id", "prerequisite_id") return Response( list( map( lambda x: { "target_node": x["target_node_id"], "prerequisite": x["prerequisite_id"], }, prereq_table_entries, ) ), ) @action(detail=True, methods=["get"]) def size(self, request, pk=None): if not pk: raise Http404 task_info = None node = self.get_object() # currently we restrict triggering calculations through the API to the channel root node if not node.is_root_node(): raise Http404 # we don't force the calculation, so if the channel is large, it returns the cached size size, stale = calculate_resource_size(node=node, force=False) if stale: # When stale, that means the value is not up-to-date with modified files in the DB, # and the channel is significantly large, so we'll queue an async task for calculation. # We don't really need more than one queued async calculation task, so we use # get_or_create_async_task to ensure a task is queued, as well as return info about it task_args = dict(node_id=node.pk, channel_id=node.channel_id) task_info = get_or_create_async_task( "calculate-resource-size", self.request.user, **task_args ) changes = [] if task_info is not None: changes.append(self.create_task_event(task_info)) return Response({ "size": size, "stale": stale, "changes": changes }) def annotate_queryset(self, queryset): queryset = queryset.annotate(total_count=(F("rght") - F("lft") - 1) / 2) descendant_resources = ( ContentNode.objects.filter( tree_id=OuterRef("tree_id"), lft__gt=OuterRef("lft"), rght__lt=OuterRef("rght"), ) .exclude(kind_id=content_kinds.TOPIC) .values("id", "role_visibility", "changed") .order_by() ) all_descendants = ( ContentNode.objects.filter( tree_id=OuterRef("tree_id"), lft__gt=OuterRef("lft"), rght__lt=OuterRef("rght"), ) .values("id", "complete", "published") .order_by() ) # Get count of descendant nodes with errors descendant_errors = all_descendants.filter(complete=False) changed_descendants = descendant_resources.filter(changed=True) thumbnails = File.objects.filter( contentnode=OuterRef("id"), preset__thumbnail=True ) original_channel_name = Coalesce( Subquery( Channel.objects.filter(pk=OuterRef("original_channel_id")).values( "name" )[:1] ), Subquery( Channel.objects.filter(main_tree__tree_id=OuterRef("tree_id")).values( "name" )[:1] ), ) original_node = ContentNode.objects.filter( node_id=OuterRef("original_source_node_id") ).filter(node_id=F("original_source_node_id")) root_id = ContentNode.objects.filter( tree_id=OuterRef("tree_id"), parent__isnull=True ).values_list("id", flat=True)[:1] assessment_items = ( AssessmentItem.objects.filter(contentnode_id=OuterRef("id"), deleted=False) .values_list("assessment_id", flat=True) .distinct() ) queryset = queryset.annotate( resource_count=SQCount(descendant_resources, field="id"), coach_count=SQCount( descendant_resources.filter(role_visibility=roles.COACH), field="id", ), assessment_item_count=SQCount(assessment_items, field="assessment_id"), error_count=SQCount(descendant_errors, field="id"), has_updated_descendants=Exists( changed_descendants.filter(published=True).values("id") ), has_new_descendants=Exists( changed_descendants.filter(published=False).values("id") ), thumbnail_checksum=Subquery(thumbnails.values("checksum")[:1]), thumbnail_extension=Subquery( thumbnails.values("file_format__extension")[:1] ), original_channel_name=original_channel_name, original_parent_id=Subquery(original_node.values("parent_id")[:1]), has_children=Exists( ContentNode.objects.filter(parent=OuterRef("id")).values("pk") ), root_id=Subquery(root_id), ) queryset = queryset.annotate(content_tags=NotNullMapArrayAgg("tags__tag_name")) return queryset def validate_targeting_args(self, target, position): position = position or "last-child" if target is None: raise ValidationError("A target must be specified") try: target = self.get_edit_queryset().get(pk=target) except ContentNode.DoesNotExist: raise ValidationError("Target: {} does not exist".format(target)) except ValueError: raise ValidationError("Invalid target specified: {}".format(target)) if position not in _valid_positions: raise ValidationError( "Invalid position specified, must be one of {}".format( ", ".join(_valid_positions) ) ) return target, position def move_from_changes(self, changes): errors = [] changes_to_return = [] for move in changes: # Move change will have key, must also have target property # optionally can include the desired position. move_error, move_change = self.move( move["key"], target=move.get("target"), position=move.get("position") ) if move_error: move.update({"errors": [move_error]}) errors.append(move) if move_change: changes_to_return.append(move_change) return errors, changes_to_return def move(self, pk, target=None, position=None): try: contentnode = self.get_edit_queryset().get(pk=pk) except ContentNode.DoesNotExist: error = ValidationError("Specified node does not exist") return str(error), None try: target, position = self.validate_targeting_args(target, position) channel_id = target.channel_id task_args = { "user_id": self.request.user.id, "channel_id": channel_id, "node_id": contentnode.id, "target_id": target.id, "position": position, } task, task_info = create_async_task( "move-nodes", self.request.user, **task_args ) return ( None, None, ) except ValidationError as e: return str(e), None def copy_from_changes(self, changes): errors = [] changes_to_return = [] for copy in changes: # Copy change will have key, must also have other attributes, defined in `copy` # Just pass as keyword arguments here to let copy do the validation copy_errors, copy_changes = self.copy(copy["key"], **copy) if copy_errors: copy.update({"errors": copy_errors}) errors.append(copy) if copy_changes: changes_to_return.extend(copy_changes) return errors, changes_to_return def copy( self, pk, from_key=None, target=None, position=None, mods=None, excluded_descendants=None, **kwargs ): try: target, position = self.validate_targeting_args(target, position) except ValidationError as e: return str(e), None try: source = self.get_queryset().get(pk=from_key) except ContentNode.DoesNotExist: error = ValidationError("Copy source node does not exist") return str(error), [generate_delete_event(pk, CONTENTNODE)] # Affected channel for the copy is the target's channel channel_id = target.channel_id if ContentNode.objects.filter(pk=pk).exists(): error = ValidationError("Copy pk already exists") return str(error), None task_args = { "user_id": self.request.user.id, "channel_id": channel_id, "source_id": source.id, "target_id": target.id, "pk": pk, "mods": mods, "excluded_descendants": excluded_descendants, "position": position, } task, task_info = create_async_task( "duplicate-nodes", self.request.user, **task_args ) return ( None, [generate_update_event(pk, CONTENTNODE, {TASK_ID: task_info.task_id})], ) def delete_from_changes(self, changes): errors = [] changes_to_return = [] queryset = self.get_edit_queryset().order_by() for change in changes: try: instance = queryset.get(**dict(self.values_from_key(change["key"]))) task_args = { "user_id": self.request.user.id, "channel_id": instance.channel_id, "node_id": instance.id, } task, task_info = create_async_task( "delete-node", self.request.user, **task_args ) except ContentNode.DoesNotExist: # If the object already doesn't exist, as far as the user is concerned # job done! pass except Exception as e: log_sync_exception(e) change["errors"] = [str(e)] errors.append(change) return errors, changes_to_return
36.488557
127
0.6194
eebc522f722f37ea19f0e56f143d03a21d127824
449
py
Python
recursive_algorithms/Tower of Hanoi/Python/tower_of_hanoi.py
avi-pal/al-go-rithms
5167a20f1db7b366ff19f2962c1746a02e4f5067
[ "CC0-1.0" ]
1,253
2017-06-06T07:19:25.000Z
2022-03-30T17:07:58.000Z
recursive_algorithms/Tower of Hanoi/Python/tower_of_hanoi.py
rishabh99-rc/al-go-rithms
4df20d7ef7598fda4bc89101f9a99aac94cdd794
[ "CC0-1.0" ]
554
2017-09-29T18:56:01.000Z
2022-02-21T15:48:13.000Z
recursive_algorithms/Tower of Hanoi/Python/tower_of_hanoi.py
rishabh99-rc/al-go-rithms
4df20d7ef7598fda4bc89101f9a99aac94cdd794
[ "CC0-1.0" ]
2,226
2017-09-29T19:59:59.000Z
2022-03-25T08:59:55.000Z
# Recursive Python function to solve tower of hanoi def TowerOfHanoi(n , from_rod, to_rod, aux_rod): if n == 1: print("Move disk 1 from rod",from_rod,"to rod",to_rod) return TowerOfHanoi(n-1, from_rod, aux_rod, to_rod) print("Move disk",n,"from rod",from_rod,"to rod",to_rod) TowerOfHanoi(n-1, aux_rod, to_rod, from_rod) # Driver code n = 4 TowerOfHanoi(n, 'A', 'C', 'B') # A, C, B are the name of rods # Contributed By Harshit Agrawal
26.411765
57
0.697105
d39d713ace8cee7c4098547ecc240d4a3d346cb2
17,220
py
Python
automonkey/tcloud_update.py
wangshaoce/monkey_tcloud
124f2a06caad2aeabdd1d8254d3fa2765c264d8e
[ "MIT" ]
null
null
null
automonkey/tcloud_update.py
wangshaoce/monkey_tcloud
124f2a06caad2aeabdd1d8254d3fa2765c264d8e
[ "MIT" ]
null
null
null
automonkey/tcloud_update.py
wangshaoce/monkey_tcloud
124f2a06caad2aeabdd1d8254d3fa2765c264d8e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import json import logging import traceback from datetime import datetime import requests from .config import DefaultConfig logger = logging.getLogger(__name__) class TCloud(object): def __init__(self, task_id, device_id, monkey_id, tcloud_url, process=0): self.task_id = task_id self.monkey_id = monkey_id self.device_id = device_id self.tcloud_url = tcloud_url if tcloud_url is not None else DefaultConfig.TCLOUD_URL self.anr = 0 self.crash = 0 self.process = process # monkey update def on_get_app_version(self, version): if version is not None: self.update_monkey(app_version=version) def on_download_app(self, status): if status: download_app_status = 1 self.update_monkey(download_app_status=download_app_status) else: download_app_status = 2 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_monkey(download_app_status=download_app_status) def on_monkey_end(self, ): end_time = datetime.now().strftime('%Y-%m-%d-%H:%M:%S') self.update_monkey(process=100, end_time=end_time) def on_monkey_begin(self, jenkins_url): self.update_monkey(jenkins_url=jenkins_url) # task update def on_task_begin(self): process = 0 begin_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=process, begin_time=begin_time) def on_task_end(self, process, activity_count, activity_tested_count, activity_all, activity_tested, anr_count, crash_count, crash_rate, exception_count, exception_run_time, run_time): end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=process, end_time=end_time, activity_count=activity_count, anr_count=anr_count, activity_tested_count=activity_tested_count, activity_all=activity_all, crash_count=crash_count, activity_tested=activity_tested, crash_rate=crash_rate, exception_count=exception_count, exception_run_time=exception_run_time, run_time=run_time) def on_running_status(self, status, error_msg): self.update_task(running_error_reason=error_msg, running_status=status) def on_device_connect(self, status): if status: device_connect_status = 1 self.update_task(device_connect_status=device_connect_status) else: device_connect_status = 2 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, setup_install_app_status=0, setup_uninstall_app_status=0, start_app_status=0, login_app_status=0, teardown_uninstall_app_status=0, end_time=end_time, run_time=0, device_connect_status=device_connect_status, screen_lock_status=0) def on_screen_lock(self, status): if status: screen_lock_status = 1 self.update_task(screen_lock_status=screen_lock_status) else: screen_lock_status = 2 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, setup_install_app_status=0, setup_uninstall_app_status=0, start_app_status=0, login_app_status=0, teardown_uninstall_app_status=0, end_time=end_time, run_time=0, screen_lock_status=screen_lock_status) def on_setup_uninstall_app(self, status): if status: setup_uninstall_app_status = 1 self.update_task(setup_uninstall_app_status=setup_uninstall_app_status) else: setup_uninstall_app_status = 2 self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, setup_uninstall_app_status=setup_uninstall_app_status, start_app_status=0, login_app_status=0, teardown_uninstall_app_status=0, run_time=0) def on_setup_install_app(self, status): if status: setup_install_app_status = 1 self.update_task(setup_install_app_status=setup_install_app_status) else: setup_install_app_status = 2 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, setup_install_app_status=setup_install_app_status, start_app_status=0, login_app_status=0, teardown_uninstall_app_status=0, end_time=end_time, run_time=0) def on_start_app(self, status): if status: start_app_status = 1 self.update_task(start_app_status=start_app_status) else: start_app_status = 2 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, start_app_status=start_app_status, login_app_status=0, teardown_uninstall_app_status=0, end_time=end_time, run_time=0) def on_login_app(self, status): if status: login_app_status = 1 self.update_task(login_app_status=login_app_status) else: login_app_status = 2 end_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, login_app_status=login_app_status, teardown_uninstall_app_status=0, end_time=end_time, run_time=0) def on_teardown_uninstall_app(self, status): if status: teardown_uninstall_app_status = 1 self.update_task(teardown_uninstall_app_status=teardown_uninstall_app_status) else: teardown_uninstall_app_status = 2 end_time = datetime.now().strftime('%Y-%m-%d-%H:%M:%S') self.update_task(process=100, activity_count=0, activity_tested_count=0, activity_all='', activity_tested='', anr_count=0, crash_count=0, crash_rate=0, exception_count=0, exception_run_time=0, teardown_uninstall_app_status=teardown_uninstall_app_status, run_time=0) # on user cancel def on_user_cancel_task(self): self.update_task(current_stage=1000) # on user cancel success def on_user_cancel_stask_success(self): self.update_task(current_stage=1001) # on device_not connect on running def on_device_disconnect_on_running(self): self.update_task(current_stage=1002) # 当 anr crash process 发生改变时 上传 def on_anr_crash_changed(self, process, anr, crash): if self.anr != anr or self.crash != crash or self.process != process: self.anr = anr self.crash = crash self.process = process self.update_task(process=process, anr_count=anr, crash_count=crash) # upload errorlog def on_errorlog_upload(self, logs): for key in logs.keys(): log = logs.get(key) self.upload_log(int(self.monkey_id), int(self.task_id), log.get('error_type'), json.dumps(log.get('error_message')), log.get('error_count')) # upload report def on_report_upload(self, report_url, report_type): self.upload_report(int(self.monkey_id), int(self.task_id), report_url, report_type) def update_monkey(self, end_time=None, process=None, jenkins_url=None, status=None, app_version=None, begin_time=None, report_url=None, run_time=None, actual_run_time=None, download_app_status=None): try: logger.info('({}) update monkey'.format(self.device_id)) request_data_template = { "begin_time": begin_time, "process": process, "jenkins_url": jenkins_url, "status": status, "app_version": app_version, "report_url": report_url, "end_time": end_time, "run_time": run_time, "actual_run_time": actual_run_time, "download_app_status": download_app_status } request_data = {} for key in request_data_template.keys(): value = request_data_template.get(key) if value is not None: request_data[key] = value logger.info(request_data) request_url = '{}/v1/monkey/{}'.format(self.tcloud_url, self.monkey_id) response = requests.request(method='POST', url=request_url, json=request_data) if response.ok: logger.info(response.text) logger.info('({}) update monkey <{}> success'.format(self.device_id, self.monkey_id)) return True return False except Exception as e: logger.error(e) logger.error(traceback.format_exc()) return False def update_task(self, process=None, begin_time=None, activity_count=None, activity_tested_count=None, activity_all=None, activity_tested=None, anr_count=None, crash_count=None, crash_rate=None, exception_count=None, exception_run_time=None, setup_install_app_status=None, setup_uninstall_app_status=None, start_app_status=None, login_app_status=None, teardown_uninstall_app_status=None, end_time=None, run_time=None, device_connect_status=None, screen_lock_status=None, running_status=None, running_error_reason=None, current_stage=None): try: logger.info('({}) update task'.format(self.device_id)) request_data_template = { "begin_time": begin_time, "process": process, "activity_count": activity_count, "activity_tested_count": activity_tested_count, "activity_all": activity_all, "activity_tested": activity_tested, "anr_count": anr_count, "crash_count": crash_count, "crash_rate": crash_rate, "exception_count": exception_count, "exception_run_time": exception_run_time, "device_connect_status": device_connect_status, "screen_lock_status": screen_lock_status, "setup_install_app_status": setup_install_app_status, "setup_uninstall_app_status": setup_uninstall_app_status, "start_app_status": start_app_status, "login_app_status": login_app_status, "teardown_uninstall_app_status": teardown_uninstall_app_status, "end_time": end_time, "run_time": run_time, "running_status": running_status, "running_error_reason": running_error_reason, "current_stage": current_stage, } request_data = {} for key in request_data_template.keys(): value = request_data_template.get(key) if value is not None: request_data[key] = value logger.info(request_data) request_url = '{}/v1/monkey/devicestatus/{}'.format(self.tcloud_url, self.task_id) response = requests.request(method='POST', url=request_url, json=request_data) if response.ok: logger.info(response.text) logger.info('({}) update task <{}> success'.format(self.device_id, self.task_id)) return True return False except Exception as e: logger.error(e) logger.error(traceback.format_exc()) return False def upload_log(self, monkey_id=None, task_id=None, error_type=None, error_message=None, error_count=None): try: logger.info('({}) upload log'.format(self.device_id)) request_data_template = { 'monkey_id': monkey_id, 'task_id': task_id, 'error_type': error_type, 'error_message': error_message, 'error_count': error_count } request_data = {} for key in request_data_template.keys(): value = request_data_template.get(key) if value is not None: request_data[key] = value logger.info(request_data) request_url = '{}/v1/monkey/errorlog'.format(self.tcloud_url) response = requests.request(method='POST', url=request_url, json=request_data) if response.ok: logger.info(response.text) logger.info('({}) upload log success'.format(self.device_id)) return True return False except Exception as e: logger.error(e) traceback.print_exc() return False def upload_report(self, monkey_id=None, task_id=None, report_url=None, report_type=None): try: logger.info('({}) upload report'.format(self.device_id)) request_data_template = { 'monkey_id': monkey_id, 'task_id': task_id, 'report_url': report_url, 'report_type': report_type } request_data = {} for key in request_data_template.keys(): value = request_data_template.get(key) if value is not None: request_data[key] = value logger.info(request_data) request_url = '{}/v1/monkey/report'.format(self.tcloud_url) response = requests.request(method='POST', url=request_url, json=request_data) if response.ok: logger.info(response.text) logger.info('({}) upload report success'.format(self.device_id)) return True return False except Exception as e: logger.error(e) traceback.print_exc() return False def get_monkey_cancel_status(self, task_id): try: logger.info('({}) get monkey cancel status {}'.format(self.device_id, task_id)) request_url = '{}/v1/monkey/cancel?task_id={}'.format(self.tcloud_url, task_id) response = requests.request(method='GET', url=request_url) if response.ok: logger.info(response.json()) return response.json().get('data').get('cancel_status') except Exception as e: logger.error(e) logger.error(traceback.format_exc()) def using_monkey_device(self, serial): try: logger.info('using monkey device now!') request_data = { 'serial': serial } request_url = '{}/v1/monkey/device/using'.format(self.tcloud_url) response = requests.request(method='POST', url=request_url, json=request_data) if response.ok: logger.info(response.json()) return True except Exception as e: logger.error(e) logger.error(traceback.format_exc()) def release_monkey_device(self, serial): try: logger.info('release monkey device now!') request_data = { 'serial': serial } request_url = '{}/v1/monkey/device/release'.format(self.tcloud_url) response = requests.request(method='POST', url=request_url, json=request_data) if response.ok: logger.info(response.json()) return True except Exception as e: logger.error(e) logger.error(traceback.format_exc())
43.705584
119
0.602207
e0c0e13c95aec028b9ef0d984171f6799fdcf2b7
466
py
Python
env/lib/python3.8/site-packages/plotly/validators/layout/radialaxis/_visible.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/layout/radialaxis/_visible.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/layout/radialaxis/_visible.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class VisibleValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="visible", parent_name="layout.radialaxis", **kwargs ): super(VisibleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "info"), **kwargs )
31.066667
78
0.639485
6dd552b7d50c6adea3820073ded82f03a55d964c
2,210
py
Python
mne/tests/test_morph_map.py
stevemats/mne-python
47051833f21bb372d60afc3adbf4305648ac7f69
[ "BSD-3-Clause" ]
1
2022-02-19T08:13:49.000Z
2022-02-19T08:13:49.000Z
mne/tests/test_morph_map.py
LiFeng-SECUC/mne-python
732bb1f994e64e41a8e95dcc10dc98c22cac95c0
[ "BSD-3-Clause" ]
2
2018-10-29T09:09:34.000Z
2019-08-02T16:24:09.000Z
mne/tests/test_morph_map.py
LiFeng-SECUC/mne-python
732bb1f994e64e41a8e95dcc10dc98c22cac95c0
[ "BSD-3-Clause" ]
1
2021-07-22T17:57:33.000Z
2021-07-22T17:57:33.000Z
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD-3-Clause import os import os.path as op from shutil import copyfile import pytest import numpy as np from numpy.testing import assert_allclose from scipy import sparse from mne.datasets import testing from mne.utils import catch_logging, _record_warnings from mne import read_morph_map data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') @pytest.mark.slowtest @testing.requires_testing_data def test_make_morph_maps(tmp_path): """Test reading and creating morph maps.""" # make a new fake subjects_dir tempdir = str(tmp_path) for subject in ('sample', 'sample_ds', 'fsaverage_ds'): os.mkdir(op.join(tempdir, subject)) os.mkdir(op.join(tempdir, subject, 'surf')) regs = ('reg', 'left_right') if subject == 'fsaverage_ds' else ('reg',) for hemi in ['lh', 'rh']: for reg in regs: args = [subject, 'surf', hemi + '.sphere.' + reg] copyfile(op.join(subjects_dir, *args), op.join(tempdir, *args)) for subject_from, subject_to, xhemi in ( ('fsaverage_ds', 'sample_ds', False), ('fsaverage_ds', 'fsaverage_ds', True)): # trigger the creation of morph-maps dir and create the map with catch_logging() as log: mmap = read_morph_map(subject_from, subject_to, tempdir, xhemi=xhemi, verbose=True) log = log.getvalue() assert 'does not exist' in log assert 'Creating' in log mmap2 = read_morph_map(subject_from, subject_to, subjects_dir, xhemi=xhemi) assert len(mmap) == len(mmap2) for m1, m2 in zip(mmap, mmap2): # deal with sparse matrix stuff diff = (m1 - m2).data assert_allclose(diff, np.zeros_like(diff), atol=1e-3, rtol=0) # This will also trigger creation, but it's trivial with _record_warnings(): mmap = read_morph_map('sample', 'sample', subjects_dir=tempdir) for mm in mmap: assert (mm - sparse.eye(mm.shape[0], mm.shape[0])).sum() == 0
36.229508
79
0.628959
8eb1b1b80043e61fe090fe4fdc9c1ce7fdbbecad
408
py
Python
rental/migrations/0026_auto_20191206_1217.py
rjNemo/villafleurie
87e4674d5d7f26475b8debe300cbf4263dc18ebd
[ "MIT" ]
null
null
null
rental/migrations/0026_auto_20191206_1217.py
rjNemo/villafleurie
87e4674d5d7f26475b8debe300cbf4263dc18ebd
[ "MIT" ]
3
2020-03-06T18:45:44.000Z
2020-07-31T11:47:52.000Z
rental/migrations/0026_auto_20191206_1217.py
rjNemo/villafleurie
87e4674d5d7f26475b8debe300cbf4263dc18ebd
[ "MIT" ]
null
null
null
# Generated by Django 3.0 on 2019-12-06 12:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rental', '0025_auto_20191206_1215'), ] operations = [ migrations.AlterField( model_name='place', name='calendar', field=models.CharField(blank=True, max_length=350, null=True), ), ]
21.473684
74
0.607843
602c209f2e54793eb3d71c9cd40d0b11faf6a241
737
py
Python
project/machine_learning_model/model_predict.py
wanwanjiajia/adversarial_attacks_defense
d22dbfa7de5c6af901dbd2ed26e7eb079bd0c215
[ "BSD-2-Clause" ]
null
null
null
project/machine_learning_model/model_predict.py
wanwanjiajia/adversarial_attacks_defense
d22dbfa7de5c6af901dbd2ed26e7eb079bd0c215
[ "BSD-2-Clause" ]
null
null
null
project/machine_learning_model/model_predict.py
wanwanjiajia/adversarial_attacks_defense
d22dbfa7de5c6af901dbd2ed26e7eb079bd0c215
[ "BSD-2-Clause" ]
null
null
null
# _*_coding:utf-8 _*_ # @Time :2020/01/03 12:20 # @Author : Wanjia Zheng # @File :model_predict.py # @Software :PyCharm from sklearn.model_selection import cross_validate def model_predict(model, X_train_reduced, Y_train): scores = cross_validate(model, X_train_reduced, Y_train.ravel(), cv=10, scoring=['precision', 'f1', 'accuracy', 'recall'], return_train_score=False) auc = str(round(100 * scores['test_accuracy'].mean(), 2)) + "%" recall = str(round(100 * scores['test_recall'].mean(), 2)) + "%" f1 = str(round(100 * scores['test_f1'].mean(), 2)) + "%" precision = str(round(100 * scores['test_precision'].mean(), 2)) + "%" return auc, recall, f1, precision
32.043478
104
0.624152
d2da4cc3de17b7d9d98ae81089c7de186f7d3236
5,762
py
Python
tests/usecases/list_permissions_test.py
aneeq009/merou
7a87b43aaf64244932fa460842132a2d9329e704
[ "Apache-2.0" ]
58
2017-05-26T06:46:24.000Z
2022-03-25T20:55:51.000Z
tests/usecases/list_permissions_test.py
aneeq009/merou
7a87b43aaf64244932fa460842132a2d9329e704
[ "Apache-2.0" ]
74
2017-06-16T17:48:37.000Z
2022-03-28T23:09:54.000Z
tests/usecases/list_permissions_test.py
aneeq009/merou
7a87b43aaf64244932fa460842132a2d9329e704
[ "Apache-2.0" ]
43
2017-05-20T22:11:51.000Z
2022-03-25T00:24:56.000Z
from dataclasses import replace from datetime import datetime from time import time from typing import TYPE_CHECKING from grouper.constants import PERMISSION_CREATE from grouper.entities.pagination import ListPermissionsSortKey, PaginatedList, Pagination from grouper.entities.permission import Permission from grouper.usecases.list_permissions import ListPermissionsUI if TYPE_CHECKING: from tests.setup import SetupTest from typing import List class MockUI(ListPermissionsUI): def __init__(self, sort: bool = False) -> None: self.sort = sort def listed_permissions(self, permissions: PaginatedList[Permission], can_create: bool) -> None: if self.sort: self.permissions = replace(permissions, values=sorted(permissions.values)) else: self.permissions = permissions self.can_create = can_create def create_test_data(setup): # type: (SetupTest) -> List[Permission] """Sets up a very basic test graph and returns the permission objects. Be careful not to include milliseconds in the creation timestamps since this causes different behavior on SQLite (which preserves them) and MySQL (which drops them). """ early_date = datetime.utcfromtimestamp(1) now_minus_one_second = datetime.utcfromtimestamp(int(time() - 1)) now = datetime.utcfromtimestamp(int(time())) permissions = [ Permission( name="first-permission", description="first", created_on=now_minus_one_second, audited=False, enabled=True, ), Permission( name="audited-permission", description="", created_on=now, audited=True, enabled=True ), Permission( name="early-permission", description="is early", created_on=early_date, audited=False, enabled=True, ), ] with setup.transaction(): for permission in permissions: setup.create_permission( name=permission.name, description=permission.description, created_on=permission.created_on, audited=permission.audited, ) setup.create_permission("disabled", enabled=False) setup.create_user("gary@a.co") return permissions def test_simple_list_permissions(setup): # type: (SetupTest) -> None permissions = create_test_data(setup) mock_ui = MockUI(sort=True) usecase = setup.usecase_factory.create_list_permissions_usecase(mock_ui) usecase.simple_list_permissions() assert not mock_ui.can_create expected = PaginatedList(values=sorted(permissions), total=3, offset=0, limit=None) assert mock_ui.permissions == expected def test_list_permissions_pagination(setup): # type: (SetupTest) -> None permissions = create_test_data(setup) mock_ui = MockUI() usecase = setup.usecase_factory.create_list_permissions_usecase(mock_ui) # Sorted by name, limited to 2. pagination = Pagination( sort_key=ListPermissionsSortKey.NAME, reverse_sort=False, offset=0, limit=2 ) usecase.list_permissions("gary@a.co", pagination, audited_only=False) expected = PaginatedList(values=sorted(permissions)[:2], total=3, offset=0, limit=2) assert mock_ui.permissions == expected # Sorted by date, using offset, limit longer than remaining items. pagination = Pagination( sort_key=ListPermissionsSortKey.DATE, reverse_sort=False, offset=2, limit=10 ) usecase.list_permissions("gary@a.co", pagination, audited_only=False) expected_values = sorted(permissions, key=lambda p: p.created_on)[2:] expected = PaginatedList(values=expected_values, total=3, offset=2, limit=10) assert mock_ui.permissions == expected # Sorted by name, reversed, limit of one 1 and offset of 1. pagination = Pagination( sort_key=ListPermissionsSortKey.NAME, reverse_sort=True, offset=1, limit=1 ) usecase.list_permissions("gary@a.co", pagination, audited_only=False) expected_values = sorted(permissions, reverse=True)[1:2] expected = PaginatedList(values=expected_values, total=3, offset=1, limit=1) assert mock_ui.permissions == expected def test_list_permissions_audited_only(setup): # type: (SetupTest) -> None permissions = create_test_data(setup) mock_ui = MockUI() usecase = setup.usecase_factory.create_list_permissions_usecase(mock_ui) pagination = Pagination( sort_key=ListPermissionsSortKey.NAME, reverse_sort=False, offset=0, limit=None ) usecase.list_permissions("gary@a.co", pagination, audited_only=True) expected_values = [p for p in permissions if p.name == "audited-permission"] expected = PaginatedList(values=expected_values, total=1, offset=0, limit=None) assert mock_ui.permissions == expected def test_list_permissions_can_create(setup): # type: (SetupTest) -> None setup.create_permission(PERMISSION_CREATE) create_test_data(setup) mock_ui = MockUI() usecase = setup.usecase_factory.create_list_permissions_usecase(mock_ui) # User has no permissions. pagination = Pagination( sort_key=ListPermissionsSortKey.NAME, reverse_sort=False, offset=0, limit=None ) usecase.list_permissions("gary@a.co", pagination, audited_only=False) assert not mock_ui.can_create # If the user is added to a group with the right permission, can_create should be true. with setup.transaction(): setup.add_user_to_group("gary@a.co", "creators") setup.grant_permission_to_group(PERMISSION_CREATE, "*", "creators") usecase.list_permissions("gary@a.co", pagination, audited_only=False) assert mock_ui.can_create
38.932432
99
0.708608
078b16eab822167b11ee1375c530f09a25c35580
986
py
Python
gpypi/exc.py
tastuteche/g-pypi-py3
ea0fceb573415193993f2a03bd06a9fffa755892
[ "BSD-2-Clause-FreeBSD" ]
1
2015-03-02T02:20:43.000Z
2015-03-02T02:20:43.000Z
gpypi/exc.py
iElectric/g-pypi
48b1d83346fecbba4c3eb3a7f80d29ae9ca41ef8
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
gpypi/exc.py
iElectric/g-pypi
48b1d83346fecbba4c3eb3a7f80d29ae9ca41ef8
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Exceptions module ============================= """ class GPyPiException(Exception): """Core exception class, all exception inherit from this class.""" class GPyPiInvalidAtom(GPyPiException): """Raised when determining Portage Atom did not succeed.""" class GPyPiNoSetupFile(GPyPiException): """Raised if no setup.py was found.""" class GPyPiNoDistribution(GPyPiException): """Raised if unpacked directory could not be found.""" class GPyPiCouldNotUnpackEbuild(GPyPiException): """Raised if unpacking failed.""" class GPyPiInvalidParameter(GPyPiException): """Raised CLI parameter is not valid.""" class GPyPiCouldNotCreateEbuildPath(GPyPiException): """Raised when directory for an ebuild could not be created.""" class GPyPiOverlayDoesNotExist(GPyPiException): """""" class GPyPiConfigurationError(GPyPiException): """""" class GPyPiValidationError(GPyPiException): """"""
20.541667
70
0.700811
b56d2092b9905ad4e741a2b1c1355d3a376e0be9
1,763
py
Python
roles/openshift_health_checker/openshift_checks/etcd_traffic.py
Roscoe198/Ansible-Openshift
b874bef456852ef082a27dfec4f2d7d466702370
[ "Apache-2.0" ]
164
2015-07-29T17:35:04.000Z
2021-12-16T16:38:04.000Z
roles/openshift_health_checker/openshift_checks/etcd_traffic.py
Roscoe198/Ansible-Openshift
b874bef456852ef082a27dfec4f2d7d466702370
[ "Apache-2.0" ]
3,634
2015-06-09T13:49:15.000Z
2022-03-23T20:55:44.000Z
roles/openshift_health_checker/openshift_checks/etcd_traffic.py
Roscoe198/Ansible-Openshift
b874bef456852ef082a27dfec4f2d7d466702370
[ "Apache-2.0" ]
250
2015-06-08T19:53:11.000Z
2022-03-01T04:51:23.000Z
"""Check that scans journalctl for messages caused as a symptom of increased etcd traffic.""" from openshift_checks import OpenShiftCheck class EtcdTraffic(OpenShiftCheck): """Check if host is being affected by an increase in etcd traffic.""" name = "etcd_traffic" tags = ["health", "etcd"] def is_active(self): """Skip hosts that do not have etcd in their group names.""" group_names = self.get_var("group_names", default=[]) valid_group_names = "oo_etcd_to_config" in group_names version = self.get_major_minor_version(self.get_var("openshift_image_tag")) valid_version = version in ((3, 4), (3, 5)) return super(EtcdTraffic, self).is_active() and valid_group_names and valid_version def run(self): openshift_is_containerized = self.get_var("openshift_is_containerized") unit = "etcd_container" if openshift_is_containerized else "etcd" log_matchers = [{ "start_regexp": r"Starting Etcd Server", "regexp": r"etcd: sync duration of [^,]+, expected less than 1s", "unit": unit }] match = self.execute_module("search_journalctl", {"log_matchers": log_matchers}) if match.get("matched"): msg = ("Higher than normal etcd traffic detected.\n" "OpenShift 3.4 introduced an increase in etcd traffic.\n" "Upgrading to OpenShift 3.6 is recommended in order to fix this issue.\n" "Please refer to https://access.redhat.com/solutions/2916381 for more information.") return {"failed": True, "msg": msg} if match.get("failed"): return {"failed": True, "msg": "\n".join(match.get("errors"))} return {}
39.177778
103
0.636982
562a70c5b0d93d7ebc36844ed5d177bbfa375c54
292
py
Python
glosel/glosel/doctype/scheme_management_item/scheme_management_item.py
patilsangram/Glosel
12b00f7821e63056ef0e4e34e64f2906f927e273
[ "MIT" ]
null
null
null
glosel/glosel/doctype/scheme_management_item/scheme_management_item.py
patilsangram/Glosel
12b00f7821e63056ef0e4e34e64f2906f927e273
[ "MIT" ]
null
null
null
glosel/glosel/doctype/scheme_management_item/scheme_management_item.py
patilsangram/Glosel
12b00f7821e63056ef0e4e34e64f2906f927e273
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015, New Indictrans Technologies PVT LTD and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class SchemeManagementItem(Document): pass
26.545455
74
0.794521
5582b7d97200517901b0a025b0d58fcb97a3b3bc
192
py
Python
fastemplate/objects/user.py
htbrandao/fastemplate
239784538e1dd7ea8a6d5105cb9cb27b1d7f53cb
[ "MIT" ]
8
2021-07-28T13:18:02.000Z
2022-02-05T23:10:02.000Z
fastemplate/objects/user.py
htbrandao/fastemplate
239784538e1dd7ea8a6d5105cb9cb27b1d7f53cb
[ "MIT" ]
null
null
null
fastemplate/objects/user.py
htbrandao/fastemplate
239784538e1dd7ea8a6d5105cb9cb27b1d7f53cb
[ "MIT" ]
null
null
null
from dataclasses import dataclass @dataclass class User: """ Schema to represent a user when dealing with authentication. """ username: str full_name: str owner: bool
17.454545
64
0.682292
11e601abe0317adc8258604c8f9c2f89f9f2afb8
1,170
py
Python
sympy/utilities/tests/test_matchpy_connector.py
Nisarg-Chaudhari/sympy
c9dbb014993f6248be0a4a3d514545cbf7d4c1c1
[ "BSD-3-Clause" ]
null
null
null
sympy/utilities/tests/test_matchpy_connector.py
Nisarg-Chaudhari/sympy
c9dbb014993f6248be0a4a3d514545cbf7d4c1c1
[ "BSD-3-Clause" ]
null
null
null
sympy/utilities/tests/test_matchpy_connector.py
Nisarg-Chaudhari/sympy
c9dbb014993f6248be0a4a3d514545cbf7d4c1c1
[ "BSD-3-Clause" ]
null
null
null
from sympy import symbols from sympy.external import import_module from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar matchpy = import_module("matchpy") x, y, z = symbols("x y z") def _get_first_match(expr, pattern): from matchpy import ManyToOneMatcher, Pattern matcher = ManyToOneMatcher() matcher.add(Pattern(pattern)) return next(iter(matcher.match(expr))) def test_matchpy_connector(): if matchpy is None: return from multiset import Multiset from matchpy import Pattern, Substitution w_ = WildDot("w_") w__ = WildPlus("w__") w___ = WildStar("w___") expr = x + y pattern = x + w_ p, subst = _get_first_match(expr, pattern) assert p == Pattern(pattern) assert subst == Substitution({'w_': y}) expr = x + y + z pattern = x + w__ p, subst = _get_first_match(expr, pattern) assert p == Pattern(pattern) assert subst == Substitution({'w__': Multiset([y, z])}) expr = x + y + z pattern = x + y + z + w___ p, subst = _get_first_match(expr, pattern) assert p == Pattern(pattern) assert subst == Substitution({'w___': Multiset()})
25.434783
73
0.659829
23285da38c07efcc690eeed03f9fdff7659cd463
622
py
Python
var/spack/repos/builtin/packages/py-rdflib-jsonld/package.py
MatMaul/spack
46c56c163cd0b437c96492b0fa1f3d4bbc4fb492
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-rdflib-jsonld/package.py
MatMaul/spack
46c56c163cd0b437c96492b0fa1f3d4bbc4fb492
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-rdflib-jsonld/package.py
MatMaul/spack
46c56c163cd0b437c96492b0fa1f3d4bbc4fb492
[ "ECL-2.0", "Apache-2.0", "MIT" ]
null
null
null
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyRdflibJsonld(PythonPackage): """RDFLib plugin providing JSON-LD parsing and serialization.""" homepage = "https://github.com/RDFLib/rdflib-jsonld" url = "https://pypi.io/packages/source/r/rdflib-jsonld/rdflib-jsonld-0.4.0.tar.gz" version('0.4.0', '69097f57d302791a2959c07e110c47cf') depends_on('py-setuptools', type='build') depends_on('py-rdflib', type='run')
31.1
91
0.723473
d12f92fa7d7f5287242a896c1fa9406c7079ad3b
588
py
Python
deftools/printerator.py
tobias-fyi/deftools
3389ff2cc02fb36732d8f0bff71267cc5a6fd6ad
[ "MIT" ]
3
2020-02-06T16:35:11.000Z
2020-02-29T09:31:55.000Z
deftools/printerator.py
tobias-fyi/deftools
3389ff2cc02fb36732d8f0bff71267cc5a6fd6ad
[ "MIT" ]
82
2020-01-29T23:48:32.000Z
2021-09-08T02:09:30.000Z
deftools/printerator.py
tobias-fyi/deftools
3389ff2cc02fb36732d8f0bff71267cc5a6fd6ad
[ "MIT" ]
10
2020-02-20T16:59:19.000Z
2020-05-28T15:27:13.000Z
"""Generator-based script to build a dataset from a filesystem.""" import os class FileReader: """Base class for reading through a file system.""" def __init__(self, src, valid_exts=(".jpg", ".jpeg", ".png")): self.src = src self.valid_exts = valid_exts def file_printer(self): for filename in sorted(os.listdir(self.src)): yield filename def main(src): reader = FileReader(src) for f in reader.file_printer(): print(f) if __name__ == "__main__": main("/Users/Tobias/workshop/buildbox/forecut/assets_/images")
21.777778
66
0.641156
ad0a6c82f832c5a7fb241a2b9eed05ad1b0a6983
13,750
py
Python
var/spack/repos/builtin/packages/openblas/package.py
carlabguillen/spack
7070bb892f9bdb5cf9e76e0eecd64f6cc5f4695c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/openblas/package.py
carlabguillen/spack
7070bb892f9bdb5cf9e76e0eecd64f6cc5f4695c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
3
2022-03-09T09:15:39.000Z
2022-03-09T09:15:42.000Z
var/spack/repos/builtin/packages/openblas/package.py
carlabguillen/spack
7070bb892f9bdb5cf9e76e0eecd64f6cc5f4695c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1
2021-01-05T20:00:52.000Z
2021-01-05T20:00:52.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import re from spack import * from spack.package_test import compare_output_file, compile_c_and_execute class Openblas(MakefilePackage): """OpenBLAS: An optimized BLAS library""" homepage = 'https://www.openblas.net' url = 'https://github.com/xianyi/OpenBLAS/archive/v0.2.19.tar.gz' git = 'https://github.com/xianyi/OpenBLAS.git' version('develop', branch='develop') version('0.3.10', sha256='0484d275f87e9b8641ff2eecaa9df2830cbe276ac79ad80494822721de6e1693') version('0.3.9', sha256='17d4677264dfbc4433e97076220adc79b050e4f8a083ea3f853a53af253bc380') version('0.3.8', sha256='8f86ade36f0dbed9ac90eb62575137388359d97d8f93093b38abe166ad7ef3a8') version('0.3.7', sha256='bde136122cef3dd6efe2de1c6f65c10955bbb0cc01a520c2342f5287c28f9379') version('0.3.6', sha256='e64c8fe083832ffbc1459ab6c72f71d53afd3b36e8497c922a15a06b72e9002f') version('0.3.5', sha256='0950c14bd77c90a6427e26210d6dab422271bc86f9fc69126725833ecdaa0e85') version('0.3.4', sha256='4b4b4453251e9edb5f57465bf2b3cf67b19d811d50c8588cdf2ea1f201bb834f') version('0.3.3', sha256='49d88f4494ae780e3d7fa51769c00d982d7cdb73e696054ac3baa81d42f13bab') version('0.3.2', sha256='e8ba64f6b103c511ae13736100347deb7121ba9b41ba82052b1a018a65c0cb15') version('0.3.1', sha256='1f5e956f35f3acdd3c74516e955d797a320c2e0135e31d838cbdb3ea94d0eb33') version('0.3.0', sha256='cf51543709abe364d8ecfb5c09a2b533d2b725ea1a66f203509b21a8e9d8f1a1') version('0.2.20', sha256='5ef38b15d9c652985774869efd548b8e3e972e1e99475c673b25537ed7bcf394') version('0.2.19', sha256='9c40b5e4970f27c5f6911cb0a28aa26b6c83f17418b69f8e5a116bb983ca8557') version('0.2.18', sha256='7d9f8d4ea4a65ab68088f3bb557f03a7ac9cb5036ef2ba30546c3a28774a4112') version('0.2.17', sha256='0fe836dfee219ff4cadcc3567fb2223d9e0da5f60c7382711fb9e2c35ecf0dbf') version('0.2.16', sha256='766f350d0a4be614812d535cead8c816fc3ad3b9afcd93167ea5e4df9d61869b') version('0.2.15', sha256='73c40ace5978282224e5e122a41c8388c5a19e65a6f2329c2b7c0b61bacc9044') variant('ilp64', default=False, description='Force 64-bit Fortran native integers') variant('pic', default=True, description='Build position independent code') variant('shared', default=True, description='Build shared libraries') variant('consistent_fpcsr', default=False, description='Synchronize FP CSR between threads (x86/x86_64 only)') variant( 'threads', default='none', description='Multithreading support', values=('pthreads', 'openmp', 'none'), multi=False ) # virtual dependency provides('blas') provides('lapack') # OpenBLAS >=3.0 has an official way to disable internal parallel builds patch('make.patch', when='@0.2.16:0.2.20') # This patch is in a pull request to OpenBLAS that has not been handled # https://github.com/xianyi/OpenBLAS/pull/915 # UPD: the patch has been merged starting version 0.2.20 patch('openblas_icc.patch', when='@:0.2.19%intel') patch('openblas_icc_openmp.patch', when='@:0.2.20%intel@16.0:') patch('openblas_icc_fortran.patch', when='%intel@16.0:') patch('openblas_icc_fortran2.patch', when='%intel@18.0:') # See https://github.com/spack/spack/issues/15385 patch('lapack-0.3.9-xerbl.patch', when='@0.3.8:0.3.9 %intel') # Fixes compilation error on POWER8 with GCC 7 # https://github.com/xianyi/OpenBLAS/pull/1098 patch('power8.patch', when='@0.2.18:0.2.19 %gcc@7.1.0: target=power8') # Change file comments to work around clang 3.9 assembler bug # https://github.com/xianyi/OpenBLAS/pull/982 patch('openblas0.2.19.diff', when='@0.2.19') # Fix CMake export symbol error # https://github.com/xianyi/OpenBLAS/pull/1703 patch('openblas-0.3.2-cmake.patch', when='@0.3.1:0.3.2') # Disable experimental TLS code that lead to many threading issues # https://github.com/xianyi/OpenBLAS/issues/1735#issuecomment-422954465 # https://github.com/xianyi/OpenBLAS/issues/1761#issuecomment-421039174 # https://github.com/xianyi/OpenBLAS/pull/1765 patch('https://github.com/xianyi/OpenBLAS/commit/4d183e5567346f80f2ef97eb98f8601c47f8cb56.patch', sha256='714aea33692304a50bd0ccde42590c176c82ded4a8ac7f06e573dc8071929c33', when='@0.3.3') # Fix parallel build issues on filesystems # with missing sub-second timestamp resolution patch('https://github.com/xianyi/OpenBLAS/commit/79ea839b635d1fd84b6ce8a47e086f01d64198e6.patch', sha256='f1b066a4481a50678caeb7656bf3e6764f45619686ac465f257c8017a2dc1ff0', when='@0.3.0:0.3.3') # Fix https://github.com/xianyi/OpenBLAS/issues/2431 # Patch derived from https://github.com/xianyi/OpenBLAS/pull/2424 patch('openblas-0.3.8-darwin.patch', when='@0.3.8 platform=darwin') # Fix ICE in LLVM 9.0.0 https://github.com/xianyi/OpenBLAS/pull/2329 # Patch as in https://github.com/xianyi/OpenBLAS/pull/2597 patch('openblas_appleclang11.patch', when='@0.3.8:0.3.9 %apple-clang@11.0.3') # Add conditions to f_check to determine the Fujitsu compiler patch('openblas_fujitsu.patch', when='%fj') patch('openblas_fujitsu2.patch', when='@0.3.10 %fj') # See https://github.com/spack/spack/issues/3036 conflicts('%intel@16', when='@0.2.15:0.2.19') conflicts('+consistent_fpcsr', when='threads=none', msg='FPCSR consistency only applies to multithreading') conflicts('threads=openmp', when='%apple-clang', msg="Apple's clang does not support OpenMP") conflicts('threads=openmp @:0.2.19', when='%clang', msg='OpenBLAS @:0.2.19 does not support OpenMP with clang!') @property def parallel(self): # unclear whether setting `-j N` externally was supported before 0.3 return self.spec.version >= Version('0.3.0') @run_before('edit') def check_compilers(self): # As of 06/2016 there is no mechanism to specify that packages which # depends on Blas/Lapack need C or/and Fortran symbols. For now # require both. if self.compiler.fc is None: raise InstallError( 'OpenBLAS requires both C and Fortran compilers!' ) @staticmethod def _read_targets(target_file): """Parse a list of available targets from the OpenBLAS/TargetList.txt file. """ micros = [] re_target = re.compile(r'^[A-Z0-9_]+$') for line in target_file: match = re_target.match(line) if match is not None: micros.append(line.strip().lower()) return micros def _microarch_target_args(self): """Given a spack microarchitecture and a list of targets found in OpenBLAS' TargetList.txt, determine the best command-line arguments. """ # Read available openblas targets targetlist_name = join_path(self.stage.source_path, "TargetList.txt") if os.path.exists(targetlist_name): with open(targetlist_name) as f: available_targets = self._read_targets(f) else: available_targets = [] # Get our build microarchitecture microarch = self.spec.target # List of arguments returned by this function args = [] # List of available architectures, and possible aliases openblas_arch = set(['alpha', 'arm', 'ia64', 'mips', 'mips64', 'power', 'sparc', 'zarch']) openblas_arch_map = { 'amd64': 'x86_64', 'powerpc64': 'power', 'i386': 'x86', 'aarch64': 'arm64', } openblas_arch.update(openblas_arch_map.keys()) openblas_arch.update(openblas_arch_map.values()) # Add spack-only microarchitectures to list skylake = set(["skylake", "skylake_avx512"]) available_targets = set(available_targets) | skylake | openblas_arch # Find closest ancestor that is known to build in blas if microarch.name not in available_targets: for microarch in microarch.ancestors: if microarch.name in available_targets: break if self.version >= Version("0.3"): # 'ARCH' argument causes build errors in older OpenBLAS # see https://github.com/spack/spack/issues/15385 arch_name = microarch.family.name if arch_name in openblas_arch: # Apply possible spack->openblas arch name mapping arch_name = openblas_arch_map.get(arch_name, arch_name) args.append('ARCH=' + arch_name) if microarch.vendor == 'generic': # User requested a generic platform, or we couldn't find a good # match for the requested one. Allow OpenBLAS to determine # an optimized kernel at run time. args.append('DYNAMIC_ARCH=1') elif microarch.name in skylake: # Special case for renaming skylake family args.append('TARGET=SKYLAKEX') if microarch.name == "skylake": # Special case for disabling avx512 instructions args.append('NO_AVX512=1') else: args.append('TARGET=' + microarch.name.upper()) return args @property def make_defs(self): # Configure fails to pick up fortran from FC=/abs/path/to/fc, but # works fine with FC=/abs/path/to/gfortran. # When mixing compilers make sure that # $SPACK_ROOT/lib/spack/env/<compiler> have symlinks with reasonable # names and hack them inside lib/spack/spack/compilers/<compiler>.py make_defs = [ 'CC={0}'.format(spack_cc), 'FC={0}'.format(spack_fc), ] # force OpenBLAS to use externally defined parallel build if self.spec.version < Version('0.3'): make_defs.append('MAKE_NO_J=1') # flag defined by our make.patch else: make_defs.append('MAKE_NB_JOBS=0') # flag provided by OpenBLAS # Add target and architecture flags make_defs += self._microarch_target_args() if '~shared' in self.spec: if '+pic' in self.spec: make_defs.extend([ 'CFLAGS={0}'.format(self.compiler.cc_pic_flag), 'FFLAGS={0}'.format(self.compiler.f77_pic_flag) ]) make_defs += ['NO_SHARED=1'] # fix missing _dggsvd_ and _sggsvd_ if self.spec.satisfies('@0.2.16'): make_defs += ['BUILD_LAPACK_DEPRECATED=1'] # Add support for multithreading if self.spec.satisfies('threads=openmp'): make_defs += ['USE_OPENMP=1', 'USE_THREAD=1'] elif self.spec.satisfies('threads=pthreads'): make_defs += ['USE_OPENMP=0', 'USE_THREAD=1'] else: make_defs += ['USE_OPENMP=0', 'USE_THREAD=0'] # 64bit ints if '+ilp64' in self.spec: make_defs += ['INTERFACE64=1'] # Synchronize floating-point control and status register (FPCSR) # between threads (x86/x86_64 only). if '+consistent_fpcsr' in self.spec: make_defs += ['CONSISTENT_FPCSR=1'] # Prevent errors in `as` assembler from newer instructions if self.spec.satisfies('%gcc@:4.8.4'): make_defs.append('NO_AVX2=1') return make_defs @property def headers(self): # As in netlib-lapack, the only public headers for cblas and lapacke in # openblas are cblas.h and lapacke.h. The remaining headers are private # headers either included in one of these two headers, or included in # one of the source files implementing functions declared in these # headers. return find_headers(['cblas', 'lapacke'], self.prefix.include) @property def build_targets(self): targets = ['libs', 'netlib'] # Build shared if variant is set. if '+shared' in self.spec: targets += ['shared'] return self.make_defs + targets @run_after('build') @on_package_attributes(run_tests=True) def check_build(self): make('tests', *self.make_defs, parallel=False) @property def install_targets(self): make_args = [ 'install', 'PREFIX={0}'.format(self.prefix), ] return make_args + self.make_defs @run_after('install') @on_package_attributes(run_tests=True) def check_install(self): spec = self.spec # Openblas may pass its own test but still fail to compile Lapack # symbols. To make sure we get working Blas and Lapack, do a small # test. source_file = join_path(os.path.dirname(self.module.__file__), 'test_cblas_dgemm.c') blessed_file = join_path(os.path.dirname(self.module.__file__), 'test_cblas_dgemm.output') include_flags = spec['openblas'].headers.cpp_flags link_flags = spec['openblas'].libs.ld_flags if self.compiler.name == 'intel': link_flags += ' -lifcore' if self.spec.satisfies('threads=pthreads'): link_flags += ' -lpthread' if spec.satisfies('threads=openmp'): link_flags += ' -lpthread ' + self.compiler.openmp_flag output = compile_c_and_execute( source_file, [include_flags], link_flags.split() ) compare_output_file(output, blessed_file)
43.238994
116
0.655636
b42568f99316032f0a799faf900b09ad7a192e26
40
py
Python
tests/delete_deployment_test.py
BIX-Digital/mlflow-openshift
1909191503ec2071d6f1f4e79cd859e7d7ad15e2
[ "Apache-2.0" ]
4
2021-01-06T07:49:21.000Z
2021-11-30T13:49:50.000Z
tests/delete_deployment_test.py
pille321/mlflow-openshift
0450a9ca7ae25dcd462324c41cccc894d40b7be5
[ "Apache-2.0" ]
2
2021-02-27T10:10:27.000Z
2022-02-08T08:13:50.000Z
tests/delete_deployment_test.py
pille321/mlflow-openshift
0450a9ca7ae25dcd462324c41cccc894d40b7be5
[ "Apache-2.0" ]
1
2021-01-11T06:22:16.000Z
2021-01-11T06:22:16.000Z
# TODO: check if it is really gone pass
13.333333
34
0.725
5c5a5f32f22ff496dd984ad17aeb475bb6bc47ab
16,858
py
Python
src/cltk/phonology/syllabify.py
clemsciences/cltkv1
88bd45419e254f69c9467ce6b2543249c57d1503
[ "MIT" ]
2
2019-08-18T21:10:01.000Z
2020-05-05T09:19:40.000Z
src/cltk/phonology/syllabify.py
clemsciences/cltkv1
88bd45419e254f69c9467ce6b2543249c57d1503
[ "MIT" ]
62
2019-02-01T18:48:11.000Z
2020-08-19T17:52:53.000Z
src/cltk/phonology/syllabify.py
clemsciences/cltkv1
88bd45419e254f69c9467ce6b2543249c57d1503
[ "MIT" ]
8
2019-04-07T03:47:31.000Z
2020-07-01T07:02:59.000Z
import logging import unicodedata from collections import defaultdict from typing import List from cltk.core.exceptions import CLTKException from cltk.phonology.middle_english.syllabifier import Syllabifier as ME_Syllabifier from cltk.phonology.middle_high_german.syllabifier import Syllabifier as MHG_Syllabifier from cltk.phonology.old_english.syllabifier import Syllabifier as OE_Syllabifier from cltk.phonology.old_norse.syllabifier import hierarchy as old_norse_hierarchy from cltk.phonology.old_norse.syllabifier import ( ipa_hierarchy as ipa_old_norse_hierarchy, ) __author__ = [ "Eleftheria Chatziargyriou <ele.hatzy@gmail.com>", "Clément Besnier <clemsciences@aol.com>", ] __license__ = "MIT License. See LICENSE." LOG = logging.getLogger(__name__) LOG.addHandler(logging.NullHandler()) def get_onsets(text, vowels="aeiou", threshold=0.0002): """ Source: Resonances in Middle High German: New Methodologies in Prosody, 2017, C. L. Hench :param text: str list: text to be analysed :param vowels: str: valid vowels constituting the syllable :param threshold: minimum frequency count for valid onset, C. Hench noted that the algorithm produces the best result for an untagged wordset of MHG, when retaining onsets which appear in at least 0.02% of the words Let's test it on the opening lines of Nibelungenlied >>> text = ['uns', 'ist', 'in', 'alten', 'mæren', 'wunders', 'vil', 'geseit', 'von', 'helden', 'lobebæren', 'von', 'grôzer', 'arebeit', 'von', 'fröuden', 'hôchgezîten', 'von', 'weinen', 'und', 'von', 'klagen', 'von', 'küener', 'recken', 'strîten', 'muget', 'ir', 'nu', 'wunder', 'hœren', 'sagen'] >>> vowels = "aeiouæœôîöü" >>> get_onsets(text, vowels=vowels) ['lt', 'm', 'r', 'w', 'nd', 'v', 'g', 's', 'h', 'ld', 'l', 'b', 'gr', 'z', 'fr', 'd', 'chg', 't', 'n', 'kl', 'k', 'ck', 'str'] Of course, this is an insignificant sample, but we could try and see how modifying the threshold affects the returned onset: >>> get_onsets(text, threshold = 0.05, vowels=vowels) ['m', 'r', 'w', 'nd', 'v', 'g', 's', 'h', 'b', 'z', 't', 'n'] """ onset_dict = defaultdict(lambda: 0) n = len(text) for word in text: onset = "" candidates = [] for l in word: if l not in vowels: onset += l else: if onset != "": candidates.append(onset) onset = "" for c in candidates: onset_dict[c] += 1 return [onset for onset, i in onset_dict.items() if i / n > threshold] class Syllabifier: def __init__( self, low_vowels=None, mid_vowels=None, high_vowels=None, flaps=None, laterals=None, nasals=None, fricatives=None, plosives=None, language=None, break_geminants=False, variant=None, ): self.break_geminants = break_geminants self.invalid_onsets = [] self.invalid_ultima = [] if language == "enm": hierarchy = [[] for _ in range(len(set(ME_Syllabifier.values())))] for k in ME_Syllabifier: hierarchy[ME_Syllabifier[k] - 1].append(k) self.set_hierarchy(hierarchy) self.set_vowels(hierarchy[0]) self.invalid_ultima = ["a", "ae", "æ", "e", "ea", "eo", "i", "o", "u", "y"] elif language == "ang": hierarchy = [[] for _ in range(len(set(OE_Syllabifier.values())))] for k in OE_Syllabifier: hierarchy[OE_Syllabifier[k] - 1].append(k) self.set_hierarchy(hierarchy) self.set_vowels(hierarchy[0]) elif language == "gmh": hierarchy = [[] for _ in range(len(set(MHG_Syllabifier.values())))] for k in MHG_Syllabifier: hierarchy[MHG_Syllabifier[k] - 1].append(k) self.set_hierarchy(hierarchy) self.set_vowels(hierarchy[0]) elif language == "non": self.set_hierarchy(old_norse_hierarchy) self.set_vowels(old_norse_hierarchy[0]) elif language == "non" and variant == "ipa": self.set_hierarchy(ipa_old_norse_hierarchy) self.set_vowels(ipa_old_norse_hierarchy[0]) else: self.low_vowels = [] if low_vowels is None else low_vowels self.mid_vowels = [] if mid_vowels is None else mid_vowels self.high_vowels = [] if high_vowels is None else high_vowels self.vowels = self.low_vowels + self.mid_vowels + self.high_vowels self.flaps = [] if flaps is None else flaps self.laterals = [] if laterals is None else laterals self.nasals = [] if nasals is None else nasals self.fricatives = [] if fricatives is None else fricatives self.plosives = [] if plosives is None else plosives self.consonants = ( self.flaps + self.laterals + self.fricatives + self.plosives ) # Dictionary indicating sonority hierarchy self.hierarchy = {key: 0 for key in self.low_vowels} self.hierarchy.update({key: 1 for key in self.mid_vowels}) self.hierarchy.update({key: 2 for key in self.high_vowels}) self.hierarchy.update({key: 3 for key in self.flaps}) self.hierarchy.update({key: 4 for key in self.laterals}) self.hierarchy.update({key: 5 for key in self.nasals}) self.hierarchy.update({key: 6 for key in self.fricatives}) self.hierarchy.update({key: 7 for key in self.plosives}) def set_invalid_onsets(self, invalid_onsets): self.invalid_onsets = invalid_onsets def set_invalid_ultima(self, invalid_ultima): self.invalid_ultima = invalid_ultima def set_hierarchy(self, hierarchy): """ Sets an alternative sonority hierarchy, note that you will also need to specify the vowelset with the set_vowels, in order for the module to correctly identify each nucleus. The order of the phonemes defined is by decreased consonantality >>> s = Syllabifier() >>> s.set_hierarchy([['i', 'u'], ['e'], ['a'], ['r'], ['m', 'n'], ['f']]) >>> s.set_vowels(['i', 'u', 'e', 'a']) >>> s.syllabify('feminarum') ['fe', 'mi', 'na', 'rum'] """ self.hierarchy = dict([(k, i) for i, j in enumerate(hierarchy) for k in j]) def set_vowels(self, vowels): """ Define the vowel set of the syllabifier module >>> s = Syllabifier() >>> s.set_vowels(['i', 'u', 'e', 'a']) >>> s.vowels ['i', 'u', 'e', 'a'] """ self.vowels = vowels def syllabify(self, word, mode="SSP"): if mode == "SSP": return self.syllabify_ssp(word) def syllabify_ssp(self, word): """ Syllabifies a word according to the Sonority Sequencing Principle :param word: Word to be syllabified :return: List consisting of syllables First you need to define the matters of articulation >>> high_vowels = ['a'] >>> mid_vowels = ['e'] >>> low_vowels = ['i', 'u'] >>> flaps = ['r'] >>> nasals = ['m', 'n'] >>> fricatives = ['f'] >>> s = Syllabifier(high_vowels=high_vowels, mid_vowels=mid_vowels, low_vowels=low_vowels, flaps=flaps, nasals=nasals, fricatives=fricatives) >>> s.syllabify("feminarum") ['fe', 'mi', 'na', 'rum'] Not specifying your alphabet results in an error: >>> s.syllabify("foemina") Traceback (most recent call last): ... cltk.core.exceptions.CLTKException Additionally, you can utilize the language parameter: >>> s = Syllabifier(language='gmh') >>> s.syllabify('lobebæren') ['lo', 'be', 'bæ', 'ren'] >>> s = Syllabifier(language='enm') >>> s.syllabify("huntyng") ['hun', 'tyng'] >>> s = Syllabifier(language='ang') >>> s.syllabify("arcebiscop") ['ar', 'ce', 'bis', 'cop'] The break_geminants parameter ensures a breakpoint is placed between geminants: >>> geminant_s = Syllabifier(break_geminants=True) >>> hierarchy = [["a", "á", "æ", "e", "é", "i", "í", "o", "ǫ", "ø", "ö", "œ", "ó", "u", "ú", "y", "ý"], ["j"], ["m"], ["n"], ["p", "b", "d", "g", "t", "k"], ["c", "f", "s", "h", "v", "x", "þ", "ð"], ["r"], ["l"]] >>> geminant_s.set_hierarchy(hierarchy) >>> geminant_s.set_vowels(hierarchy[0]) >>> geminant_s.syllabify("ennitungl") ['en', 'ni', 'tungl'] """ # List indicating the syllable indices syllables = [] find_nucleus = True i = 0 try: # Replace each letter occurence with its corresponding number # indicating its position in the sonority hierarchy encoded = list(map(lambda x: self.hierarchy[x], word)) except KeyError: LOG.error( "The given string contains invalid characters. " "Make sure to define the mater of articulation for each phoneme." ) raise CLTKException while i < len(word) - 1: # Search for nucleus while word[i] not in self.vowels and i < len(word) - 1 and find_nucleus: i += 1 if find_nucleus is True: i += 1 if i >= len(word) - 1: break else: # If the break_geminants parameter is set to True, prioritize geminants if self.break_geminants and word[i - 1] == word[i]: syllables.append(i - 1) find_nucleus = True # If a cluster of three phonemes with the same values exist, break syllable elif encoded[i - 1] == encoded[i] == encoded[i + 1]: syllables.append(i) find_nucleus = True elif encoded[i] > encoded[i - 1] and encoded[i] > encoded[i + 1]: syllables.append(i) find_nucleus = True elif encoded[i] < encoded[i - 1] and encoded[i] < encoded[i + 1]: syllables.append(i) find_nucleus = True else: find_nucleus = False i += 1 for n, k in enumerate(syllables): word = word[: k + n + 1] + "." + word[k + n + 1 :] word = word.split(".") # Check if last syllable has a nucleus if sum([x in self.vowels for x in word[-1]]) == 0: word[-2] += word[-1] word = word[:-1] return self.onset_maximization(word) def onset_maximization(self, syllables): for i, syl in enumerate(syllables): if i != len(syllables) - 1: if ( syllables[i + 1][0] in self.vowels and syllables[i + 1][-1] not in self.vowels ): syllables[i + 1] = syllables[i][-1] + syllables[i + 1] syllables[i] = syllables[i][:-1] return self.legal_onsets(syllables) def legal_onsets(self, syllables): """ Filters syllable respecting the legality principle :param syllables: str list The method scans for invalid syllable onsets: >>> s = Syllabifier(["i", "u", "y"], ["o", "ø", "e"], ["a"], ["r"], ["l"], ["m", "n"], ["f", "v", "s", "h"], ["k", "g", "b", "p", "t", "d"]) >>> s.set_invalid_onsets(['lm']) >>> s.legal_onsets(['a', 'lma', 'tigr']) ['al', 'ma', 'tigr'] You can also define invalid syllable ultima: >>> s.set_invalid_ultima(['gr']) >>> s.legal_onsets(['al', 'ma', 'ti', 'gr']) ['al', 'ma', 'tigr'] """ vowels = self.vowels for i in range(1, len(syllables)): onset = "" for letter in syllables[i]: if letter in vowels: break onset += letter for j in range(len(onset)): # Check whether the given onset is valid if onset[j:] not in self.invalid_onsets: syllables[i - 1] += onset[:j] syllables[i] = syllables[i][j:] break # Check whether ultima is invalid if syllables[-1] in self.invalid_ultima: syllables[-2] += syllables[-1] syllables = syllables[:-1] return syllables def syllabify_ipa(self, word): """ Parses IPA string :param word: word to be syllabified """ word = word[1:-1] word = "".join( l for l in unicodedata.normalize("NFD", word) if unicodedata.category(l) != "Mn" ) return self.syllabify_ssp(word) def syllabify_phonemes(self, phonological_word): """ :param phonological_word: result of Transcriber().text_to_phonemes in cltk.phonology.utils :return: """ phoneme_lengths = [] l_transcribed_word = [] for phoneme in phonological_word: phoneme_lengths.append(len(phoneme.ipar)) l_transcribed_word.append(phoneme.ipar) transcribed_word = "".join(l_transcribed_word) transcribed_word = transcribed_word.replace("ː", "") syllabified_transcribed_word = self.syllabify_ssp(transcribed_word) syllabified_phonological_word = [] counter = 0 # number of IPA character processed for i, sts in enumerate(syllabified_transcribed_word): syllabified_phonological_word.append([]) syllable_len = len(sts) somme = 0 while somme < syllable_len: somme += phoneme_lengths[counter] syllabified_phonological_word[i].append(phonological_word[counter]) counter += 1 return syllabified_phonological_word class Syllable: """ A syllable has three main constituents: - onset - nucleus - coda Source: https://en.wikipedia.org/wiki/Syllable """ def __init__(self, text: str, vowels: List[str], consonants: List[str]): """ :param text: a syllable :param vowels: list of characters :param consonants: list of characters """ self.onset = [] self.nucleus = [] self.coda = [] self.text = text self.consonants = consonants self.vowels = vowels self._compute_syllable(text) def _compute_syllable(self, text): """ >>> sylla1 = Syllable("armr", ["a"], ["r", "m"]) >>> sylla1.onset [] >>> sylla1.nucleus ['a'] >>> sylla1.coda ['r', 'm', 'r'] >>> sylla2 = Syllable("gangr", ["a"], ["g", "n", "r"]) >>> sylla2.onset ['g'] >>> sylla2.nucleus ['a'] >>> sylla2.coda ['n', 'g', 'r'] >>> sylla3 = Syllable("aurr", ["a", "u"], ["r"]) >>> sylla3.nucleus ['a', 'u'] >>> sylla3.coda ['r', 'r'] :param text: a syllable :return: """ is_in_onset = True is_in_nucleus = False is_in_coda = False if len(text) > 0: for c in text: if is_in_onset and c in self.consonants: self.onset.append(c) elif is_in_onset and c in self.vowels: is_in_onset = False is_in_nucleus = True self.nucleus.append(c) elif is_in_nucleus and c in self.vowels: self.nucleus.append(c) elif is_in_nucleus and c in self.consonants: is_in_nucleus = False is_in_coda = True self.coda.append(c) elif is_in_coda and c in self.consonants: self.coda.append(c) elif is_in_coda and c in self.vowels: raise ValueError( "This is not a correct syllable " "(a vowel '{}' cannot be inserted in coda)".format(c) ) else: raise ValueError("{} is an unknown character".format(c)) if len(self.nucleus) == 0: raise ValueError("This is not a correct syllable") else: raise ValueError("A syllable can't be void") def __str__(self): return "".join(self.onset) + "".join(self.nucleus) + "".join(self.coda)
33.581673
300
0.541049
8c1d50425b9bf4df2bd89324c89706a11647b9df
168
py
Python
setup.py
fracek/cairo-dap
6df0c4e56ca613b24b33ad8851ee7b27f650a4d8
[ "Apache-2.0" ]
4
2021-05-13T08:17:23.000Z
2022-02-22T18:13:30.000Z
setup.py
fracek/cairo-dap
6df0c4e56ca613b24b33ad8851ee7b27f650a4d8
[ "Apache-2.0" ]
null
null
null
setup.py
fracek/cairo-dap
6df0c4e56ca613b24b33ad8851ee7b27f650a4d8
[ "Apache-2.0" ]
null
null
null
from setuptools import setup setup( name='cairo_dap', entry_points={ 'console_scripts': [ 'cairo-dap=cairo_dap.cli:main' ] } )
15.272727
42
0.559524
a7c078d0060928b15e5d2fa7606245c556e528ed
58,907
py
Python
superset/connectors/sqla/models.py
venter-zhu/incubator-superset
329e72885c20d3a36f70dbe2909c4665f51ec92f
[ "Apache-2.0" ]
1
2020-11-05T11:16:15.000Z
2020-11-05T11:16:15.000Z
superset/connectors/sqla/models.py
venter-zhu/incubator-superset
329e72885c20d3a36f70dbe2909c4665f51ec92f
[ "Apache-2.0" ]
38
2020-11-23T22:26:13.000Z
2022-02-17T07:39:23.000Z
superset/connectors/sqla/models.py
venter-zhu/incubator-superset
329e72885c20d3a36f70dbe2909c4665f51ec92f
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import logging from collections import defaultdict, OrderedDict from contextlib import closing from dataclasses import dataclass, field from datetime import datetime, timedelta from typing import Any, Dict, Hashable, List, NamedTuple, Optional, Tuple, Union import pandas as pd import sqlalchemy as sa import sqlparse from flask import escape, Markup from flask_appbuilder import Model from flask_babel import lazy_gettext as _ from jinja2.exceptions import TemplateError from sqlalchemy import ( and_, asc, Boolean, Column, DateTime, desc, Enum, ForeignKey, Integer, or_, select, String, Table, Text, ) from sqlalchemy.exc import CompileError from sqlalchemy.orm import backref, Query, relationship, RelationshipProperty, Session from sqlalchemy.orm.exc import NoResultFound from sqlalchemy.schema import UniqueConstraint from sqlalchemy.sql import column, ColumnElement, literal_column, table, text from sqlalchemy.sql.expression import Label, Select, TextAsFrom from sqlalchemy.types import TypeEngine from superset import app, db, is_feature_enabled, security_manager from superset.connectors.base.models import BaseColumn, BaseDatasource, BaseMetric from superset.constants import NULL_STRING from superset.db_engine_specs.base import TimestampExpression from superset.errors import ErrorLevel, SupersetError, SupersetErrorType from superset.exceptions import ( DatabaseNotFound, QueryObjectValidationError, SupersetSecurityException, ) from superset.jinja_context import ( BaseTemplateProcessor, ExtraCache, get_template_processor, ) from superset.models.annotations import Annotation from superset.models.core import Database from superset.models.helpers import AuditMixinNullable, QueryResult from superset.result_set import SupersetResultSet from superset.sql_parse import ParsedQuery from superset.typing import Metric, QueryObjectDict from superset.utils import core as utils, import_datasource config = app.config metadata = Model.metadata # pylint: disable=no-member logger = logging.getLogger(__name__) class SqlaQuery(NamedTuple): extra_cache_keys: List[Any] labels_expected: List[str] prequeries: List[str] sqla_query: Select class QueryStringExtended(NamedTuple): labels_expected: List[str] prequeries: List[str] sql: str @dataclass class MetadataResult: added: List[str] = field(default_factory=list) removed: List[str] = field(default_factory=list) modified: List[str] = field(default_factory=list) class AnnotationDatasource(BaseDatasource): """Dummy object so we can query annotations using 'Viz' objects just like regular datasources. """ cache_timeout = 0 changed_on = None type = "annotation" column_names = [ "created_on", "changed_on", "id", "start_dttm", "end_dttm", "layer_id", "short_descr", "long_descr", "json_metadata", "created_by_fk", "changed_by_fk", ] def query(self, query_obj: QueryObjectDict) -> QueryResult: error_message = None qry = db.session.query(Annotation) qry = qry.filter(Annotation.layer_id == query_obj["filter"][0]["val"]) if query_obj["from_dttm"]: qry = qry.filter(Annotation.start_dttm >= query_obj["from_dttm"]) if query_obj["to_dttm"]: qry = qry.filter(Annotation.end_dttm <= query_obj["to_dttm"]) status = utils.QueryStatus.SUCCESS try: df = pd.read_sql_query(qry.statement, db.engine) except Exception as ex: # pylint: disable=broad-except df = pd.DataFrame() status = utils.QueryStatus.FAILED logger.exception(ex) error_message = utils.error_msg_from_exception(ex) return QueryResult( status=status, df=df, duration=timedelta(0), query="", error_message=error_message, ) def get_query_str(self, query_obj: QueryObjectDict) -> str: raise NotImplementedError() def values_for_column(self, column_name: str, limit: int = 10000) -> List[Any]: raise NotImplementedError() class TableColumn(Model, BaseColumn): """ORM object for table columns, each table can have multiple columns""" __tablename__ = "table_columns" __table_args__ = (UniqueConstraint("table_id", "column_name"),) table_id = Column(Integer, ForeignKey("tables.id")) table = relationship( "SqlaTable", backref=backref("columns", cascade="all, delete-orphan"), foreign_keys=[table_id], ) is_dttm = Column(Boolean, default=False) expression = Column(Text) python_date_format = Column(String(255)) export_fields = [ "table_id", "column_name", "verbose_name", "is_dttm", "is_active", "type", "groupby", "filterable", "expression", "description", "python_date_format", ] update_from_object_fields = [s for s in export_fields if s not in ("table_id",)] export_parent = "table" @property def is_numeric(self) -> bool: """ Check if the column has a numeric datatype. """ db_engine_spec = self.table.database.db_engine_spec return db_engine_spec.is_db_column_type_match( self.type, utils.DbColumnType.NUMERIC ) @property def is_string(self) -> bool: """ Check if the column has a string datatype. """ db_engine_spec = self.table.database.db_engine_spec return db_engine_spec.is_db_column_type_match( self.type, utils.DbColumnType.STRING ) @property def is_temporal(self) -> bool: """ Check if the column has a temporal datatype. If column has been set as temporal/non-temporal (`is_dttm` is True or False respectively), return that value. This usually happens during initial metadata fetching or when a column is manually set as temporal (for this `python_date_format` needs to be set). """ if self.is_dttm is not None: return self.is_dttm db_engine_spec = self.table.database.db_engine_spec return db_engine_spec.is_db_column_type_match( self.type, utils.DbColumnType.TEMPORAL ) def get_sqla_col(self, label: Optional[str] = None) -> Column: label = label or self.column_name if self.expression: col = literal_column(self.expression) else: db_engine_spec = self.table.database.db_engine_spec type_ = db_engine_spec.get_sqla_column_type(self.type) col = column(self.column_name, type_=type_) col = self.table.make_sqla_column_compatible(col, label) return col @property def datasource(self) -> RelationshipProperty: return self.table def get_time_filter( self, start_dttm: DateTime, end_dttm: DateTime, time_range_endpoints: Optional[ Tuple[utils.TimeRangeEndpoint, utils.TimeRangeEndpoint] ], ) -> ColumnElement: col = self.get_sqla_col(label="__time") l = [] if start_dttm: l.append( col >= text(self.dttm_sql_literal(start_dttm, time_range_endpoints)) ) if end_dttm: if ( time_range_endpoints and time_range_endpoints[1] == utils.TimeRangeEndpoint.EXCLUSIVE ): l.append( col < text(self.dttm_sql_literal(end_dttm, time_range_endpoints)) ) else: l.append(col <= text(self.dttm_sql_literal(end_dttm, None))) return and_(*l) def get_timestamp_expression( self, time_grain: Optional[str], label: Optional[str] = None ) -> Union[TimestampExpression, Label]: """ Return a SQLAlchemy Core element representation of self to be used in a query. :param time_grain: Optional time grain, e.g. P1Y :param label: alias/label that column is expected to have :return: A TimeExpression object wrapped in a Label if supported by db """ label = label or utils.DTTM_ALIAS db_ = self.table.database pdf = self.python_date_format is_epoch = pdf in ("epoch_s", "epoch_ms") if not self.expression and not time_grain and not is_epoch: sqla_col = column(self.column_name, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label) if self.expression: col = literal_column(self.expression) else: col = column(self.column_name) time_expr = db_.db_engine_spec.get_timestamp_expr( col, pdf, time_grain, self.type ) return self.table.make_sqla_column_compatible(time_expr, label) @classmethod def import_obj(cls, i_column: "TableColumn") -> "TableColumn": def lookup_obj(lookup_column: TableColumn) -> TableColumn: return ( db.session.query(TableColumn) .filter( TableColumn.table_id == lookup_column.table_id, TableColumn.column_name == lookup_column.column_name, ) .first() ) return import_datasource.import_simple_obj(db.session, i_column, lookup_obj) def dttm_sql_literal( self, dttm: DateTime, time_range_endpoints: Optional[ Tuple[utils.TimeRangeEndpoint, utils.TimeRangeEndpoint] ], ) -> str: """Convert datetime object to a SQL expression string""" sql = ( self.table.database.db_engine_spec.convert_dttm(self.type, dttm) if self.type else None ) if sql: return sql tf = self.python_date_format # Fallback to the default format (if defined) only if the SIP-15 time range # endpoints, i.e., [start, end) are enabled. if not tf and time_range_endpoints == ( utils.TimeRangeEndpoint.INCLUSIVE, utils.TimeRangeEndpoint.EXCLUSIVE, ): tf = ( self.table.database.get_extra() .get("python_date_format_by_column_name", {}) .get(self.column_name) ) if tf: if tf in ["epoch_ms", "epoch_s"]: seconds_since_epoch = int(dttm.timestamp()) if tf == "epoch_s": return str(seconds_since_epoch) return str(seconds_since_epoch * 1000) return f"'{dttm.strftime(tf)}'" # TODO(john-bodley): SIP-15 will explicitly require a type conversion. return f"""'{dttm.strftime("%Y-%m-%d %H:%M:%S.%f")}'""" @property def data(self) -> Dict[str, Any]: attrs = ( "id", "column_name", "verbose_name", "description", "expression", "filterable", "groupby", "is_dttm", "type", "python_date_format", ) return {s: getattr(self, s) for s in attrs if hasattr(self, s)} class SqlMetric(Model, BaseMetric): """ORM object for metrics, each table can have multiple metrics""" __tablename__ = "sql_metrics" __table_args__ = (UniqueConstraint("table_id", "metric_name"),) table_id = Column(Integer, ForeignKey("tables.id")) table = relationship( "SqlaTable", backref=backref("metrics", cascade="all, delete-orphan"), foreign_keys=[table_id], ) expression = Column(Text, nullable=False) extra = Column(Text) export_fields = [ "metric_name", "verbose_name", "metric_type", "table_id", "expression", "description", "d3format", "extra", "warning_text", ] update_from_object_fields = list( [s for s in export_fields if s not in ("table_id",)] ) export_parent = "table" def get_sqla_col(self, label: Optional[str] = None) -> Column: label = label or self.metric_name sqla_col = literal_column(self.expression) return self.table.make_sqla_column_compatible(sqla_col, label) @property def perm(self) -> Optional[str]: return ( ("{parent_name}.[{obj.metric_name}](id:{obj.id})").format( obj=self, parent_name=self.table.full_name ) if self.table else None ) def get_perm(self) -> Optional[str]: return self.perm @classmethod def import_obj(cls, i_metric: "SqlMetric") -> "SqlMetric": def lookup_obj(lookup_metric: SqlMetric) -> SqlMetric: return ( db.session.query(SqlMetric) .filter( SqlMetric.table_id == lookup_metric.table_id, SqlMetric.metric_name == lookup_metric.metric_name, ) .first() ) return import_datasource.import_simple_obj(db.session, i_metric, lookup_obj) def get_extra_dict(self) -> Dict[str, Any]: try: return json.loads(self.extra) except (TypeError, json.JSONDecodeError): return {} @property def is_certified(self) -> bool: return bool(self.get_extra_dict().get("certification")) @property def certified_by(self) -> Optional[str]: return self.get_extra_dict().get("certification", {}).get("certified_by") @property def certification_details(self) -> Optional[str]: return self.get_extra_dict().get("certification", {}).get("details") @property def data(self) -> Dict[str, Any]: attrs = ("is_certified", "certified_by", "certification_details") attr_dict = {s: getattr(self, s) for s in attrs} attr_dict.update(super().data) return attr_dict sqlatable_user = Table( "sqlatable_user", metadata, Column("id", Integer, primary_key=True), Column("user_id", Integer, ForeignKey("ab_user.id")), Column("table_id", Integer, ForeignKey("tables.id")), ) class SqlaTable( # pylint: disable=too-many-public-methods,too-many-instance-attributes Model, BaseDatasource ): """An ORM object for SqlAlchemy table references""" type = "table" query_language = "sql" is_rls_supported = True metric_class = SqlMetric column_class = TableColumn owner_class = security_manager.user_model __tablename__ = "tables" __table_args__ = (UniqueConstraint("database_id", "table_name"),) table_name = Column(String(250), nullable=False) main_dttm_col = Column(String(250)) database_id = Column(Integer, ForeignKey("dbs.id"), nullable=False) fetch_values_predicate = Column(String(1000)) owners = relationship(owner_class, secondary=sqlatable_user, backref="tables") database = relationship( "Database", backref=backref("tables", cascade="all, delete-orphan"), foreign_keys=[database_id], ) schema = Column(String(255)) sql = Column(Text) is_sqllab_view = Column(Boolean, default=False) template_params = Column(Text) extra = Column(Text) baselink = "tablemodelview" export_fields = [ "table_name", "main_dttm_col", "description", "default_endpoint", "database_id", "offset", "cache_timeout", "schema", "sql", "params", "template_params", "filter_select_enabled", "fetch_values_predicate", "extra", ] update_from_object_fields = [f for f in export_fields if not f == "database_id"] export_parent = "database" export_children = ["metrics", "columns"] sqla_aggregations = { "COUNT_DISTINCT": lambda column_name: sa.func.COUNT(sa.distinct(column_name)), "COUNT": sa.func.COUNT, "SUM": sa.func.SUM, "AVG": sa.func.AVG, "MIN": sa.func.MIN, "MAX": sa.func.MAX, } def make_sqla_column_compatible( self, sqla_col: Column, label: Optional[str] = None ) -> Column: """Takes a sqlalchemy column object and adds label info if supported by engine. :param sqla_col: sqlalchemy column instance :param label: alias/label that column is expected to have :return: either a sql alchemy column or label instance if supported by engine """ label_expected = label or sqla_col.name db_engine_spec = self.database.db_engine_spec if db_engine_spec.allows_column_aliases: label = db_engine_spec.make_label_compatible(label_expected) sqla_col = sqla_col.label(label) sqla_col._df_label_expected = label_expected # pylint: disable=protected-access return sqla_col def __repr__(self) -> str: return self.name @property def changed_by_name(self) -> str: if not self.changed_by: return "" return str(self.changed_by) @property def changed_by_url(self) -> str: if not self.changed_by: return "" return f"/superset/profile/{self.changed_by.username}" @property def connection(self) -> str: return str(self.database) @property def description_markeddown(self) -> str: return utils.markdown(self.description) @property def datasource_name(self) -> str: return self.table_name @property def datasource_type(self) -> str: return self.type @property def database_name(self) -> str: return self.database.name @classmethod def get_datasource_by_name( cls, session: Session, datasource_name: str, schema: Optional[str], database_name: str, ) -> Optional["SqlaTable"]: schema = schema or None query = ( session.query(cls) .join(Database) .filter(cls.table_name == datasource_name) .filter(Database.database_name == database_name) ) # Handling schema being '' or None, which is easier to handle # in python than in the SQLA query in a multi-dialect way for tbl in query.all(): if schema == (tbl.schema or None): return tbl return None @property def link(self) -> Markup: name = escape(self.name) anchor = f'<a target="_blank" href="{self.explore_url}">{name}</a>' return Markup(anchor) def get_schema_perm(self) -> Optional[str]: """Returns schema permission if present, database one otherwise.""" return security_manager.get_schema_perm(self.database, self.schema) def get_perm(self) -> str: return f"[{self.database}].[{self.table_name}](id:{self.id})" @property def name(self) -> str: if not self.schema: return self.table_name return "{}.{}".format(self.schema, self.table_name) @property def full_name(self) -> str: return utils.get_datasource_full_name( self.database, self.table_name, schema=self.schema ) @property def dttm_cols(self) -> List[str]: l = [c.column_name for c in self.columns if c.is_dttm] if self.main_dttm_col and self.main_dttm_col not in l: l.append(self.main_dttm_col) return l @property def num_cols(self) -> List[str]: return [c.column_name for c in self.columns if c.is_numeric] @property def any_dttm_col(self) -> Optional[str]: cols = self.dttm_cols return cols[0] if cols else None @property def html(self) -> str: df = pd.DataFrame((c.column_name, c.type) for c in self.columns) df.columns = ["field", "type"] return df.to_html( index=False, classes=("dataframe table table-striped table-bordered " "table-condensed"), ) @property def sql_url(self) -> str: return self.database.sql_url + "?table_name=" + str(self.table_name) def external_metadata(self) -> List[Dict[str, str]]: db_engine_spec = self.database.db_engine_spec if self.sql: engine = self.database.get_sqla_engine(schema=self.schema) sql = self.get_template_processor().process_template(self.sql) parsed_query = ParsedQuery(sql) if not parsed_query.is_readonly(): raise SupersetSecurityException( SupersetError( error_type=SupersetErrorType.DATASOURCE_SECURITY_ACCESS_ERROR, message=_("Only `SELECT` statements are allowed"), level=ErrorLevel.ERROR, ) ) statements = parsed_query.get_statements() if len(statements) > 1: raise SupersetSecurityException( SupersetError( error_type=SupersetErrorType.DATASOURCE_SECURITY_ACCESS_ERROR, message=_("Only single queries supported"), level=ErrorLevel.ERROR, ) ) # TODO(villebro): refactor to use same code that's used by # sql_lab.py:execute_sql_statements with closing(engine.raw_connection()) as conn: with closing(conn.cursor()) as cursor: query = self.database.apply_limit_to_sql(statements[0]) db_engine_spec.execute(cursor, query) result = db_engine_spec.fetch_data(cursor, limit=1) result_set = SupersetResultSet( result, cursor.description, db_engine_spec ) cols = result_set.columns else: db_dialect = self.database.get_dialect() cols = self.database.get_columns( self.table_name, schema=self.schema or None ) for col in cols: try: if isinstance(col["type"], TypeEngine): col["type"] = db_engine_spec.column_datatype_to_string( col["type"], db_dialect ) except CompileError: col["type"] = "UNKNOWN" return cols @property def time_column_grains(self) -> Dict[str, Any]: return { "time_columns": self.dttm_cols, "time_grains": [grain.name for grain in self.database.grains()], } @property def select_star(self) -> Optional[str]: # show_cols and latest_partition set to false to avoid # the expensive cost of inspecting the DB return self.database.select_star( self.table_name, schema=self.schema, show_cols=False, latest_partition=False ) @property def data(self) -> Dict[str, Any]: data_ = super().data if self.type == "table": grains = self.database.grains() or [] if grains: grains = [(g.duration, g.name) for g in grains] data_["granularity_sqla"] = utils.choicify(self.dttm_cols) data_["time_grain_sqla"] = grains data_["main_dttm_col"] = self.main_dttm_col data_["fetch_values_predicate"] = self.fetch_values_predicate data_["template_params"] = self.template_params data_["is_sqllab_view"] = self.is_sqllab_view return data_ def values_for_column(self, column_name: str, limit: int = 10000) -> List[Any]: """Runs query against sqla to retrieve some sample values for the given column. """ cols = {col.column_name: col for col in self.columns} target_col = cols[column_name] tp = self.get_template_processor() qry = ( select([target_col.get_sqla_col()]) .select_from(self.get_from_clause(tp)) .distinct() ) if limit: qry = qry.limit(limit) if self.fetch_values_predicate: tp = self.get_template_processor() try: qry = qry.where(text(tp.process_template(self.fetch_values_predicate))) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in fetch values predicate: %(msg)s", msg=ex.message, ) ) engine = self.database.get_sqla_engine() sql = "{}".format(qry.compile(engine, compile_kwargs={"literal_binds": True})) sql = self.mutate_query_from_config(sql) df = pd.read_sql_query(sql=sql, con=engine) return df[column_name].to_list() def mutate_query_from_config(self, sql: str) -> str: """Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context""" sql_query_mutator = config["SQL_QUERY_MUTATOR"] if sql_query_mutator: username = utils.get_username() sql = sql_query_mutator(sql, username, security_manager, self.database) return sql def get_template_processor(self, **kwargs: Any) -> BaseTemplateProcessor: return get_template_processor(table=self, database=self.database, **kwargs) def get_query_str_extended(self, query_obj: QueryObjectDict) -> QueryStringExtended: sqlaq = self.get_sqla_query(**query_obj) sql = self.database.compile_sqla_query(sqlaq.sqla_query) logger.info(sql) sql = sqlparse.format(sql, reindent=True) sql = self.mutate_query_from_config(sql) return QueryStringExtended( labels_expected=sqlaq.labels_expected, sql=sql, prequeries=sqlaq.prequeries ) def get_query_str(self, query_obj: QueryObjectDict) -> str: query_str_ext = self.get_query_str_extended(query_obj) all_queries = query_str_ext.prequeries + [query_str_ext.sql] return ";\n\n".join(all_queries) + ";" def get_sqla_table(self) -> table: tbl = table(self.table_name) if self.schema: tbl.schema = self.schema return tbl def get_from_clause( self, template_processor: Optional[BaseTemplateProcessor] = None ) -> Union[table, TextAsFrom]: # Supporting arbitrary SQL statements in place of tables if self.sql: from_sql = self.sql if template_processor: try: from_sql = template_processor.process_template(from_sql) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in FROM clause: %(msg)s", msg=ex.message, ) ) from_sql = sqlparse.format(from_sql, strip_comments=True) if len(sqlparse.split(from_sql)) > 1: raise QueryObjectValidationError( _("Virtual dataset query cannot consist of multiple statements") ) parsed_query = ParsedQuery(from_sql) if not (parsed_query.is_unknown() or parsed_query.is_readonly()): raise QueryObjectValidationError( _("Virtual dataset query must be read-only") ) return TextAsFrom(sa.text(from_sql), []).alias("expr_qry") return self.get_sqla_table() def adhoc_metric_to_sqla( self, metric: Dict[str, Any], columns_by_name: Dict[str, Any] ) -> Optional[Column]: """ Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict columns_by_name: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column """ expression_type = metric.get("expressionType") label = utils.get_metric_name(metric) if expression_type == utils.AdhocMetricExpressionType.SIMPLE: column_name = metric["column"].get("column_name") table_column = columns_by_name.get(column_name) if table_column: sqla_column = table_column.get_sqla_col() else: sqla_column = column(column_name) sqla_metric = self.sqla_aggregations[metric["aggregate"]](sqla_column) elif expression_type == utils.AdhocMetricExpressionType.SQL: sqla_metric = literal_column(metric.get("sqlExpression")) else: return None return self.make_sqla_column_compatible(sqla_metric, label) def _get_sqla_row_level_filters( self, template_processor: BaseTemplateProcessor ) -> List[str]: """ Return the appropriate row level security filters for this table and the current user. :param BaseTemplateProcessor template_processor: The template processor to apply to the filters. :returns: A list of SQL clauses to be ANDed together. :rtype: List[str] """ filters_grouped: Dict[Union[int, str], List[str]] = defaultdict(list) try: for filter_ in security_manager.get_rls_filters(self): clause = text( f"({template_processor.process_template(filter_.clause)})" ) filters_grouped[filter_.group_key or filter_.id].append(clause) return [or_(*clauses) for clauses in filters_grouped.values()] except TemplateError as ex: raise QueryObjectValidationError( _("Error in jinja expression in RLS filters: %(msg)s", msg=ex.message,) ) def get_sqla_query( # pylint: disable=too-many-arguments,too-many-locals,too-many-branches,too-many-statements self, metrics: List[Metric], granularity: str, from_dttm: Optional[datetime], to_dttm: Optional[datetime], columns: Optional[List[str]] = None, groupby: Optional[List[str]] = None, filter: Optional[ # pylint: disable=redefined-builtin List[Dict[str, Any]] ] = None, is_timeseries: bool = True, timeseries_limit: int = 15, timeseries_limit_metric: Optional[Metric] = None, row_limit: Optional[int] = None, row_offset: Optional[int] = None, inner_from_dttm: Optional[datetime] = None, inner_to_dttm: Optional[datetime] = None, orderby: Optional[List[Tuple[ColumnElement, bool]]] = None, extras: Optional[Dict[str, Any]] = None, order_desc: bool = True, ) -> SqlaQuery: """Querying any sqla table from this common interface""" template_kwargs = { "from_dttm": from_dttm, "groupby": groupby, "metrics": metrics, "row_limit": row_limit, "row_offset": row_offset, "to_dttm": to_dttm, "filter": filter, "columns": {col.column_name: col for col in self.columns}, } is_sip_38 = is_feature_enabled("SIP_38_VIZ_REARCHITECTURE") template_kwargs.update(self.template_params_dict) extra_cache_keys: List[Any] = [] template_kwargs["extra_cache_keys"] = extra_cache_keys template_processor = self.get_template_processor(**template_kwargs) db_engine_spec = self.database.db_engine_spec prequeries: List[str] = [] orderby = orderby or [] # For backward compatibility if granularity not in self.dttm_cols: granularity = self.main_dttm_col # Database spec supports join-free timeslot grouping time_groupby_inline = db_engine_spec.time_groupby_inline columns_by_name: Dict[str, TableColumn] = { col.column_name: col for col in self.columns } metrics_by_name: Dict[str, SqlMetric] = {m.metric_name: m for m in self.metrics} if not granularity and is_timeseries: raise QueryObjectValidationError( _( "Datetime column not provided as part table configuration " "and is required by this type of chart" ) ) if ( not metrics and not columns and (is_sip_38 or (not is_sip_38 and not groupby)) ): raise QueryObjectValidationError(_("Empty query?")) metrics_exprs: List[ColumnElement] = [] for metric in metrics: if utils.is_adhoc_metric(metric): assert isinstance(metric, dict) metrics_exprs.append(self.adhoc_metric_to_sqla(metric, columns_by_name)) elif isinstance(metric, str) and metric in metrics_by_name: metrics_exprs.append(metrics_by_name[metric].get_sqla_col()) else: raise QueryObjectValidationError( _("Metric '%(metric)s' does not exist", metric=metric) ) if metrics_exprs: main_metric_expr = metrics_exprs[0] else: main_metric_expr, label = literal_column("COUNT(*)"), "ccount" main_metric_expr = self.make_sqla_column_compatible(main_metric_expr, label) select_exprs: List[Column] = [] groupby_exprs_sans_timestamp = OrderedDict() assert extras is not None if (is_sip_38 and metrics and columns) or (not is_sip_38 and groupby): # dedup columns while preserving order columns_ = columns if is_sip_38 else groupby assert columns_ groupby = list(dict.fromkeys(columns_)) select_exprs = [] for selected in groupby: # if groupby field/expr equals granularity field/expr if selected == granularity: time_grain = extras.get("time_grain_sqla") sqla_col = columns_by_name[selected] outer = sqla_col.get_timestamp_expression(time_grain, selected) # if groupby field equals a selected column elif selected in columns_by_name: outer = columns_by_name[selected].get_sqla_col() else: outer = literal_column(f"({selected})") outer = self.make_sqla_column_compatible(outer, selected) groupby_exprs_sans_timestamp[outer.name] = outer select_exprs.append(outer) elif columns: for selected in columns: select_exprs.append( columns_by_name[selected].get_sqla_col() if selected in columns_by_name else self.make_sqla_column_compatible(literal_column(selected)) ) metrics_exprs = [] time_range_endpoints = extras.get("time_range_endpoints") groupby_exprs_with_timestamp = OrderedDict(groupby_exprs_sans_timestamp.items()) if granularity: dttm_col = columns_by_name[granularity] time_grain = extras.get("time_grain_sqla") time_filters = [] if is_timeseries: timestamp = dttm_col.get_timestamp_expression(time_grain) select_exprs += [timestamp] groupby_exprs_with_timestamp[timestamp.name] = timestamp # Use main dttm column to support index with secondary dttm columns. if ( db_engine_spec.time_secondary_columns and self.main_dttm_col in self.dttm_cols and self.main_dttm_col != dttm_col.column_name ): time_filters.append( columns_by_name[self.main_dttm_col].get_time_filter( from_dttm, to_dttm, time_range_endpoints ) ) time_filters.append( dttm_col.get_time_filter(from_dttm, to_dttm, time_range_endpoints) ) select_exprs += metrics_exprs labels_expected = [ c._df_label_expected # pylint: disable=protected-access for c in select_exprs ] select_exprs = db_engine_spec.make_select_compatible( groupby_exprs_with_timestamp.values(), select_exprs ) qry = sa.select(select_exprs) tbl = self.get_from_clause(template_processor) if (is_sip_38 and metrics) or (not is_sip_38 and not columns): qry = qry.group_by(*groupby_exprs_with_timestamp.values()) where_clause_and = [] having_clause_and = [] for flt in filter: # type: ignore if not all([flt.get(s) for s in ["col", "op"]]): continue col = flt["col"] op = flt["op"].upper() col_obj = columns_by_name.get(col) if col_obj: is_list_target = op in ( utils.FilterOperator.IN.value, utils.FilterOperator.NOT_IN.value, ) eq = self.filter_values_handler( values=flt.get("val"), target_column_is_numeric=col_obj.is_numeric, is_list_target=is_list_target, ) if op in ( utils.FilterOperator.IN.value, utils.FilterOperator.NOT_IN.value, ): cond = col_obj.get_sqla_col().in_(eq) if isinstance(eq, str) and NULL_STRING in eq: cond = or_( cond, col_obj.get_sqla_col() # pylint: disable=singleton-comparison == None, ) if op == utils.FilterOperator.NOT_IN.value: cond = ~cond where_clause_and.append(cond) else: if col_obj.is_numeric: eq = utils.cast_to_num(flt["val"]) if op == utils.FilterOperator.EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() == eq) elif op == utils.FilterOperator.NOT_EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() != eq) elif op == utils.FilterOperator.GREATER_THAN.value: where_clause_and.append(col_obj.get_sqla_col() > eq) elif op == utils.FilterOperator.LESS_THAN.value: where_clause_and.append(col_obj.get_sqla_col() < eq) elif op == utils.FilterOperator.GREATER_THAN_OR_EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() >= eq) elif op == utils.FilterOperator.LESS_THAN_OR_EQUALS.value: where_clause_and.append(col_obj.get_sqla_col() <= eq) elif op == utils.FilterOperator.LIKE.value: where_clause_and.append(col_obj.get_sqla_col().like(eq)) elif op == utils.FilterOperator.IS_NULL.value: where_clause_and.append( col_obj.get_sqla_col() # pylint: disable=singleton-comparison == None ) elif op == utils.FilterOperator.IS_NOT_NULL.value: where_clause_and.append( col_obj.get_sqla_col() # pylint: disable=singleton-comparison != None ) else: raise QueryObjectValidationError( _("Invalid filter operation type: %(op)s", op=op) ) if is_feature_enabled("ROW_LEVEL_SECURITY"): where_clause_and += self._get_sqla_row_level_filters(template_processor) if extras: where = extras.get("where") if where: try: where = template_processor.process_template(where) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in WHERE clause: %(msg)s", msg=ex.message, ) ) where_clause_and += [sa.text("({})".format(where))] having = extras.get("having") if having: try: having = template_processor.process_template(having) except TemplateError as ex: raise QueryObjectValidationError( _( "Error in jinja expression in HAVING clause: %(msg)s", msg=ex.message, ) ) having_clause_and += [sa.text("({})".format(having))] if granularity: qry = qry.where(and_(*(time_filters + where_clause_and))) else: qry = qry.where(and_(*where_clause_and)) qry = qry.having(and_(*having_clause_and)) # To ensure correct handling of the ORDER BY labeling we need to reference the # metric instance if defined in the SELECT clause. metrics_exprs_by_label = { m._label: m for m in metrics_exprs # pylint: disable=protected-access } for col, ascending in orderby: direction = asc if ascending else desc if utils.is_adhoc_metric(col): col = self.adhoc_metric_to_sqla(col, columns_by_name) elif col in columns_by_name: col = columns_by_name[col].get_sqla_col() if isinstance(col, Label): label = col._label # pylint: disable=protected-access if label in metrics_exprs_by_label: col = metrics_exprs_by_label[label] qry = qry.order_by(direction(col)) if row_limit: qry = qry.limit(row_limit) if row_offset: qry = qry.offset(row_offset) if ( is_timeseries # pylint: disable=too-many-boolean-expressions and timeseries_limit and not time_groupby_inline and ((is_sip_38 and columns) or (not is_sip_38 and groupby)) ): if self.database.db_engine_spec.allows_joins: # some sql dialects require for order by expressions # to also be in the select clause -- others, e.g. vertica, # require a unique inner alias inner_main_metric_expr = self.make_sqla_column_compatible( main_metric_expr, "mme_inner__" ) inner_groupby_exprs = [] inner_select_exprs = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): inner = self.make_sqla_column_compatible(gby_obj, gby_name + "__") inner_groupby_exprs.append(inner) inner_select_exprs.append(inner) inner_select_exprs += [inner_main_metric_expr] subq = select(inner_select_exprs).select_from(tbl) inner_time_filter = dttm_col.get_time_filter( inner_from_dttm or from_dttm, inner_to_dttm or to_dttm, time_range_endpoints, ) subq = subq.where(and_(*(where_clause_and + [inner_time_filter]))) subq = subq.group_by(*inner_groupby_exprs) ob = inner_main_metric_expr if timeseries_limit_metric: ob = self._get_timeseries_orderby( timeseries_limit_metric, metrics_by_name, columns_by_name ) direction = desc if order_desc else asc subq = subq.order_by(direction(ob)) subq = subq.limit(timeseries_limit) on_clause = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): # in this case the column name, not the alias, needs to be # conditionally mutated, as it refers to the column alias in # the inner query col_name = db_engine_spec.make_label_compatible(gby_name + "__") on_clause.append(gby_obj == column(col_name)) tbl = tbl.join(subq.alias(), and_(*on_clause)) else: if timeseries_limit_metric: orderby = [ ( self._get_timeseries_orderby( timeseries_limit_metric, metrics_by_name, columns_by_name, ), False, ) ] # run prequery to get top groups prequery_obj = { "is_timeseries": False, "row_limit": timeseries_limit, "metrics": metrics, "granularity": granularity, "from_dttm": inner_from_dttm or from_dttm, "to_dttm": inner_to_dttm or to_dttm, "filter": filter, "orderby": orderby, "extras": extras, "columns": columns, "order_desc": True, } if not is_sip_38: prequery_obj["groupby"] = groupby result = self.query(prequery_obj) prequeries.append(result.query) dimensions = [ c for c in result.df.columns if c not in metrics and c in groupby_exprs_sans_timestamp ] top_groups = self._get_top_groups( result.df, dimensions, groupby_exprs_sans_timestamp ) qry = qry.where(top_groups) return SqlaQuery( extra_cache_keys=extra_cache_keys, labels_expected=labels_expected, sqla_query=qry.select_from(tbl), prequeries=prequeries, ) def _get_timeseries_orderby( self, timeseries_limit_metric: Metric, metrics_by_name: Dict[str, SqlMetric], columns_by_name: Dict[str, TableColumn], ) -> Optional[Column]: if utils.is_adhoc_metric(timeseries_limit_metric): assert isinstance(timeseries_limit_metric, dict) ob = self.adhoc_metric_to_sqla(timeseries_limit_metric, columns_by_name) elif ( isinstance(timeseries_limit_metric, str) and timeseries_limit_metric in metrics_by_name ): ob = metrics_by_name[timeseries_limit_metric].get_sqla_col() else: raise QueryObjectValidationError( _("Metric '%(metric)s' does not exist", metric=timeseries_limit_metric) ) return ob def _get_top_groups( # pylint: disable=no-self-use self, df: pd.DataFrame, dimensions: List[str], groupby_exprs: "OrderedDict[str, Any]", ) -> ColumnElement: groups = [] for _unused, row in df.iterrows(): group = [] for dimension in dimensions: group.append(groupby_exprs[dimension] == row[dimension]) groups.append(and_(*group)) return or_(*groups) def query(self, query_obj: QueryObjectDict) -> QueryResult: qry_start_dttm = datetime.now() query_str_ext = self.get_query_str_extended(query_obj) sql = query_str_ext.sql status = utils.QueryStatus.SUCCESS errors = None error_message = None def mutator(df: pd.DataFrame) -> None: """ Some engines change the case or generate bespoke column names, either by default or due to lack of support for aliasing. This function ensures that the column names in the DataFrame correspond to what is expected by the viz components. :param df: Original DataFrame returned by the engine """ labels_expected = query_str_ext.labels_expected if df is not None and not df.empty: if len(df.columns) != len(labels_expected): raise QueryObjectValidationError( f"For {sql}, df.columns: {df.columns}" f" differs from {labels_expected}" ) df.columns = labels_expected try: df = self.database.get_df(sql, self.schema, mutator) except Exception as ex: # pylint: disable=broad-except df = pd.DataFrame() status = utils.QueryStatus.FAILED logger.warning( "Query %s on schema %s failed", sql, self.schema, exc_info=True ) db_engine_spec = self.database.db_engine_spec errors = db_engine_spec.extract_errors(ex) error_message = utils.error_msg_from_exception(ex) return QueryResult( status=status, df=df, duration=datetime.now() - qry_start_dttm, query=sql, errors=errors, error_message=error_message, ) def get_sqla_table_object(self) -> Table: return self.database.get_table(self.table_name, schema=self.schema) def fetch_metadata(self, commit: bool = True) -> MetadataResult: """ Fetches the metadata for the table and merges it in :param commit: should the changes be committed or not. :return: Tuple with lists of added, removed and modified column names. """ new_columns = self.external_metadata() metrics = [] any_date_col = None db_engine_spec = self.database.db_engine_spec old_columns = db.session.query(TableColumn).filter(TableColumn.table == self) old_columns_by_name = {col.column_name: col for col in old_columns} results = MetadataResult( removed=[ col for col in old_columns_by_name if col not in {col["name"] for col in new_columns} ] ) # clear old columns before adding modified columns back self.columns = [] for col in new_columns: old_column = old_columns_by_name.get(col["name"], None) if not old_column: results.added.append(col["name"]) new_column = TableColumn( column_name=col["name"], type=col["type"], table=self ) new_column.is_dttm = new_column.is_temporal db_engine_spec.alter_new_orm_column(new_column) else: new_column = old_column if new_column.type != col["type"]: results.modified.append(col["name"]) new_column.type = col["type"] new_column.groupby = True new_column.filterable = True self.columns.append(new_column) if not any_date_col and new_column.is_temporal: any_date_col = col["name"] metrics.append( SqlMetric( metric_name="count", verbose_name="COUNT(*)", metric_type="count", expression="COUNT(*)", ) ) if not self.main_dttm_col: self.main_dttm_col = any_date_col self.add_missing_metrics(metrics) # Apply config supplied mutations. config["SQLA_TABLE_MUTATOR"](self) db.session.merge(self) if commit: db.session.commit() return results @classmethod def import_obj( cls, i_datasource: "SqlaTable", database_id: Optional[int] = None, import_time: Optional[int] = None, ) -> int: """Imports the datasource from the object to the database. Metrics and columns and datasource will be overrided if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. """ def lookup_sqlatable(table_: "SqlaTable") -> "SqlaTable": return ( db.session.query(SqlaTable) .join(Database) .filter( SqlaTable.table_name == table_.table_name, SqlaTable.schema == table_.schema, Database.id == table_.database_id, ) .first() ) def lookup_database(table_: SqlaTable) -> Database: try: return ( db.session.query(Database) .filter_by(database_name=table_.params_dict["database_name"]) .one() ) except NoResultFound: raise DatabaseNotFound( _( "Database '%(name)s' is not found", name=table_.params_dict["database_name"], ) ) return import_datasource.import_datasource( db.session, i_datasource, lookup_database, lookup_sqlatable, import_time, database_id, ) @classmethod def query_datasources_by_name( cls, session: Session, database: Database, datasource_name: str, schema: Optional[str] = None, ) -> List["SqlaTable"]: query = ( session.query(cls) .filter_by(database_id=database.id) .filter_by(table_name=datasource_name) ) if schema: query = query.filter_by(schema=schema) return query.all() @staticmethod def default_query(qry: Query) -> Query: return qry.filter_by(is_sqllab_view=False) def has_extra_cache_key_calls(self, query_obj: QueryObjectDict) -> bool: """ Detects the presence of calls to `ExtraCache` methods in items in query_obj that can be templated. If any are present, the query must be evaluated to extract additional keys for the cache key. This method is needed to avoid executing the template code unnecessarily, as it may contain expensive calls, e.g. to extract the latest partition of a database. :param query_obj: query object to analyze :return: True if there are call(s) to an `ExtraCache` method, False otherwise """ templatable_statements: List[str] = [] if self.sql: templatable_statements.append(self.sql) if self.fetch_values_predicate: templatable_statements.append(self.fetch_values_predicate) extras = query_obj.get("extras", {}) if "where" in extras: templatable_statements.append(extras["where"]) if "having" in extras: templatable_statements.append(extras["having"]) if is_feature_enabled("ROW_LEVEL_SECURITY") and self.is_rls_supported: templatable_statements += [ f.clause for f in security_manager.get_rls_filters(self) ] for statement in templatable_statements: if ExtraCache.regex.search(statement): return True return False def get_extra_cache_keys(self, query_obj: QueryObjectDict) -> List[Hashable]: """ The cache key of a SqlaTable needs to consider any keys added by the parent class and any keys added via `ExtraCache`. :param query_obj: query object to analyze :return: The extra cache keys """ extra_cache_keys = super().get_extra_cache_keys(query_obj) if self.has_extra_cache_key_calls(query_obj): sqla_query = self.get_sqla_query(**query_obj) extra_cache_keys += sqla_query.extra_cache_keys return extra_cache_keys sa.event.listen(SqlaTable, "after_insert", security_manager.set_perm) sa.event.listen(SqlaTable, "after_update", security_manager.set_perm) RLSFilterRoles = Table( "rls_filter_roles", metadata, Column("id", Integer, primary_key=True), Column("role_id", Integer, ForeignKey("ab_role.id"), nullable=False), Column("rls_filter_id", Integer, ForeignKey("row_level_security_filters.id")), ) RLSFilterTables = Table( "rls_filter_tables", metadata, Column("id", Integer, primary_key=True), Column("table_id", Integer, ForeignKey("tables.id")), Column("rls_filter_id", Integer, ForeignKey("row_level_security_filters.id")), ) class RowLevelSecurityFilter(Model, AuditMixinNullable): """ Custom where clauses attached to Tables and Roles. """ __tablename__ = "row_level_security_filters" id = Column(Integer, primary_key=True) filter_type = Column( Enum(*[filter_type.value for filter_type in utils.RowLevelSecurityFilterType]) ) group_key = Column(String(255), nullable=True) roles = relationship( security_manager.role_model, secondary=RLSFilterRoles, backref="row_level_security_filters", ) tables = relationship( SqlaTable, secondary=RLSFilterTables, backref="row_level_security_filters" ) clause = Column(Text, nullable=False)
37.353836
115
0.59122
b7a3746496724c9221bfa73a8eeda4576eadc965
5,253
py
Python
numpyro/_downloads/1290c9ac531016f80fb7c5656adffcb4/bnn.py
fehiepsi/website
7b0165deebc1379105d8b9d8051187f7d9914446
[ "MIT" ]
null
null
null
numpyro/_downloads/1290c9ac531016f80fb7c5656adffcb4/bnn.py
fehiepsi/website
7b0165deebc1379105d8b9d8051187f7d9914446
[ "MIT" ]
null
null
null
numpyro/_downloads/1290c9ac531016f80fb7c5656adffcb4/bnn.py
fehiepsi/website
7b0165deebc1379105d8b9d8051187f7d9914446
[ "MIT" ]
null
null
null
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 """ Bayesian Neural Network ======================= We demonstrate how to use NUTS to do inference on a simple (small) Bayesian neural network with two hidden layers. """ import argparse import os import time import matplotlib import matplotlib.pyplot as plt import numpy as np from jax import vmap import jax.numpy as jnp import jax.random as random import numpyro from numpyro import handlers import numpyro.distributions as dist from numpyro.infer import MCMC, NUTS matplotlib.use('Agg') # noqa: E402 # the non-linearity we use in our neural network def nonlin(x): return jnp.tanh(x) # a two-layer bayesian neural network with computational flow # given by D_X => D_H => D_H => D_Y where D_H is the number of # hidden units. (note we indicate tensor dimensions in the comments) def model(X, Y, D_H): D_X, D_Y = X.shape[1], 1 # sample first layer (we put unit normal priors on all weights) w1 = numpyro.sample("w1", dist.Normal(jnp.zeros((D_X, D_H)), jnp.ones((D_X, D_H)))) # D_X D_H z1 = nonlin(jnp.matmul(X, w1)) # N D_H <= first layer of activations # sample second layer w2 = numpyro.sample("w2", dist.Normal(jnp.zeros((D_H, D_H)), jnp.ones((D_H, D_H)))) # D_H D_H z2 = nonlin(jnp.matmul(z1, w2)) # N D_H <= second layer of activations # sample final layer of weights and neural network output w3 = numpyro.sample("w3", dist.Normal(jnp.zeros((D_H, D_Y)), jnp.ones((D_H, D_Y)))) # D_H D_Y z3 = jnp.matmul(z2, w3) # N D_Y <= output of the neural network # we put a prior on the observation noise prec_obs = numpyro.sample("prec_obs", dist.Gamma(3.0, 1.0)) sigma_obs = 1.0 / jnp.sqrt(prec_obs) # observe data numpyro.sample("Y", dist.Normal(z3, sigma_obs), obs=Y) # helper function for HMC inference def run_inference(model, args, rng_key, X, Y, D_H): start = time.time() kernel = NUTS(model) mcmc = MCMC(kernel, args.num_warmup, args.num_samples, num_chains=args.num_chains, progress_bar=False if "NUMPYRO_SPHINXBUILD" in os.environ else True) mcmc.run(rng_key, X, Y, D_H) mcmc.print_summary() print('\nMCMC elapsed time:', time.time() - start) return mcmc.get_samples() # helper function for prediction def predict(model, rng_key, samples, X, D_H): model = handlers.substitute(handlers.seed(model, rng_key), samples) # note that Y will be sampled in the model because we pass Y=None here model_trace = handlers.trace(model).get_trace(X=X, Y=None, D_H=D_H) return model_trace['Y']['value'] # create artificial regression dataset def get_data(N=50, D_X=3, sigma_obs=0.05, N_test=500): D_Y = 1 # create 1d outputs np.random.seed(0) X = jnp.linspace(-1, 1, N) X = jnp.power(X[:, np.newaxis], jnp.arange(D_X)) W = 0.5 * np.random.randn(D_X) Y = jnp.dot(X, W) + 0.5 * jnp.power(0.5 + X[:, 1], 2.0) * jnp.sin(4.0 * X[:, 1]) Y += sigma_obs * np.random.randn(N) Y = Y[:, np.newaxis] Y -= jnp.mean(Y) Y /= jnp.std(Y) assert X.shape == (N, D_X) assert Y.shape == (N, D_Y) X_test = jnp.linspace(-1.3, 1.3, N_test) X_test = jnp.power(X_test[:, np.newaxis], jnp.arange(D_X)) return X, Y, X_test def main(args): N, D_X, D_H = args.num_data, 3, args.num_hidden X, Y, X_test = get_data(N=N, D_X=D_X) # do inference rng_key, rng_key_predict = random.split(random.PRNGKey(0)) samples = run_inference(model, args, rng_key, X, Y, D_H) # predict Y_test at inputs X_test vmap_args = (samples, random.split(rng_key_predict, args.num_samples * args.num_chains)) predictions = vmap(lambda samples, rng_key: predict(model, rng_key, samples, X_test, D_H))(*vmap_args) predictions = predictions[..., 0] # compute mean prediction and confidence interval around median mean_prediction = jnp.mean(predictions, axis=0) percentiles = np.percentile(predictions, [5.0, 95.0], axis=0) # make plots fig, ax = plt.subplots(1, 1) # plot training data ax.plot(X[:, 1], Y[:, 0], 'kx') # plot 90% confidence level of predictions ax.fill_between(X_test[:, 1], percentiles[0, :], percentiles[1, :], color='lightblue') # plot mean prediction ax.plot(X_test[:, 1], mean_prediction, 'blue', ls='solid', lw=2.0) ax.set(xlabel="X", ylabel="Y", title="Mean predictions with 90% CI") plt.savefig('bnn_plot.pdf') plt.tight_layout() if __name__ == "__main__": assert numpyro.__version__.startswith('0.4.0') parser = argparse.ArgumentParser(description="Bayesian neural network example") parser.add_argument("-n", "--num-samples", nargs="?", default=2000, type=int) parser.add_argument("--num-warmup", nargs='?', default=1000, type=int) parser.add_argument("--num-chains", nargs='?', default=1, type=int) parser.add_argument("--num-data", nargs='?', default=100, type=int) parser.add_argument("--num-hidden", nargs='?', default=5, type=int) parser.add_argument("--device", default='cpu', type=str, help='use "cpu" or "gpu".') args = parser.parse_args() numpyro.set_platform(args.device) numpyro.set_host_device_count(args.num_chains) main(args)
34.333333
106
0.667238
c1f52524d1750111d36361ad53c7d81382167865
42,473
py
Python
workers/pull_request_worker/pull_request_worker/worker.py
ishagarg06/augur
2295d48288d243c9ac01bf54ba140ca756828929
[ "MIT" ]
null
null
null
workers/pull_request_worker/pull_request_worker/worker.py
ishagarg06/augur
2295d48288d243c9ac01bf54ba140ca756828929
[ "MIT" ]
null
null
null
workers/pull_request_worker/pull_request_worker/worker.py
ishagarg06/augur
2295d48288d243c9ac01bf54ba140ca756828929
[ "MIT" ]
null
null
null
import ast, json, logging, os, sys, time, traceback, requests from datetime import datetime from multiprocessing import Process, Queue from urllib.parse import urlparse import pandas as pd import sqlalchemy as s from sqlalchemy import MetaData from sqlalchemy.ext.automap import automap_base from workers.standard_methods import * from sqlalchemy.sql.expression import bindparam class GHPullRequestWorker: """ Worker that collects Pull Request related data from the Github API and stores it in our database. :param task: most recent task the broker added to the worker's queue :param config: holds info like api keys, descriptions, and database connection strings """ def __init__(self, config, task=None): self._task = task self._child = None self._queue = Queue() self._maintain_queue = Queue() self.working_on = None self.config = config LOG_FORMAT = '%(levelname)s:[%(name)s]: %(message)s' logging.basicConfig(filename='worker_{}.log'.format(self.config['id'].split('.')[len(self.config['id'].split('.')) - 1]), filemode='w', level=logging.INFO, format=LOG_FORMAT) logging.info('Worker (PID: {}) initializing...\n'.format(str(os.getpid()))) self.db = None self.table = None self.API_KEY = self.config['key'] self.tool_source = 'GitHub Pull Request Worker' self.tool_version = '0.0.1' # See __init__.py self.data_source = 'GitHub API' self.results_counter = 0 self.headers = {'Authorization': f'token {self.API_KEY}'} self.history_id = None self.finishing_task = True self.specs = { "id": self.config['id'], "location": self.config['location'], "qualifications": [ { "given": [['github_url']], "models":['pull_requests', 'pull_request_commits', 'pull_request_files'] } ], "config": [self.config] } self.DB_STR = 'postgresql://{}:{}@{}:{}/{}'.format( self.config['user'], self.config['password'], self.config['host'], self.config['port'], self.config['database'] ) #Database connections logging.info("Making database connections...\n") dbschema = 'augur_data' self.db = s.create_engine(self.DB_STR, poolclass = s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(dbschema)}) helper_schema = 'augur_operations' self.helper_db = s.create_engine(self.DB_STR, poolclass = s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(helper_schema)}) metadata = MetaData() helper_metadata = MetaData() metadata.reflect(self.db, only=['contributors', 'pull_requests', 'pull_request_assignees', 'pull_request_events', 'pull_request_labels', 'pull_request_message_ref', 'pull_request_meta', 'pull_request_repo', 'pull_request_reviewers', 'pull_request_teams', 'message', 'pull_request_commits', 'pull_request_files']) helper_metadata.reflect(self.helper_db, only=['worker_history', 'worker_job', 'worker_oauth']) Base = automap_base(metadata=metadata) HelperBase = automap_base(metadata=helper_metadata) Base.prepare() HelperBase.prepare() self.contributors_table = Base.classes.contributors.__table__ self.pull_requests_table = Base.classes.pull_requests.__table__ self.pull_request_assignees_table = Base.classes.pull_request_assignees.__table__ self.pull_request_events_table = Base.classes.pull_request_events.__table__ self.pull_request_labels_table = Base.classes.pull_request_labels.__table__ self.pull_request_message_ref_table = Base.classes.pull_request_message_ref.__table__ self.pull_request_meta_table = Base.classes.pull_request_meta.__table__ self.pull_request_repo_table = Base.classes.pull_request_repo.__table__ self.pull_request_reviewers_table = Base.classes.pull_request_reviewers.__table__ self.pull_request_teams_table = Base.classes.pull_request_teams.__table__ self.message_table = Base.classes.message.__table__ self.pull_request_commits_table = Base.classes.pull_request_commits.__table__ self.pull_request_files_table = Base.classes.pull_request_files.__table__ self.history_table = HelperBase.classes.worker_history.__table__ self.job_table = HelperBase.classes.worker_job.__table__ logging.info("Querying starting ids info...\n") # Increment so we are ready to insert the 'next one' of each of these most recent ids self.history_id = get_max_id(self, 'worker_history', 'history_id', operations_table=True) + 1 self.pr_id_inc = get_max_id(self, 'pull_requests', 'pull_request_id') self.cntrb_id_inc = get_max_id(self, 'contributors', 'cntrb_id') self.msg_id_inc = get_max_id(self, 'message', 'msg_id') self.pr_msg_ref_id_inc = get_max_id(self, 'pull_request_message_ref', 'pr_msg_ref_id') self.label_id_inc = get_max_id(self, 'pull_request_labels', 'pr_label_id') self.event_id_inc = get_max_id(self, 'pull_request_events', 'pr_event_id') self.reviewer_id_inc = get_max_id(self, 'pull_request_reviewers', 'pr_reviewer_map_id') self.assignee_id_inc = get_max_id(self, 'pull_request_assignees', 'pr_assignee_map_id') self.pr_meta_id_inc = get_max_id(self, 'pull_request_meta', 'pr_repo_meta_id') # Organize different api keys/oauths available init_oauths(self) # Send broker hello message connect_to_broker(self) # self.pull_requests_graphql({ # 'job_type': 'MAINTAIN', # 'models': ['pull_request_files'], # 'display_name': 'pull_request_files model for url: https://github.com/zephyrproject-rtos/actions_sandbox.git', # 'given': { # 'github_url': 'https://github.com/zephyrproject-rtos/actions_sandbox.git' # } # }, 25201) def update_config(self, config): """ Method to update config and set a default """ self.config = { "display_name": "", "description": "", "required": 1, "type": "string" } self.config.update(config) self.API_KEY = self.config['key'] @property def task(self): """ Property that is returned when the worker's current task is referenced """ return self._task @task.setter def task(self, value): """ entry point for the broker to add a task to the queue Adds this task to the queue, and calls method to process queue """ github_url = value['given']['github_url'] repo_url_SQL = s.sql.text(""" SELECT min(repo_id) as repo_id FROM repo WHERE repo_git = '{}' """.format(github_url)) rs = pd.read_sql(repo_url_SQL, self.db, params={}) try: repo_id = int(rs.iloc[0]['repo_id']) if value['job_type'] == "UPDATE" or value['job_type'] == "MAINTAIN": self._queue.put(value) if 'focused_task' in value: if value['focused_task'] == 1: self.finishing_task = True except Exception as e: logging.error(f"error: {e}, or that repo is not in our database: {value}\n") self._task = value self.run() def cancel(self): """ Delete/cancel current task """ self._task = None def run(self): """ Kicks off the processing of the queue if it is not already being processed Gets run whenever a new task is added """ logging.info("Running...\n") self._child = Process(target=self.collect, args=()) self._child.start() def collect(self): """ Function to process each entry in the worker's task queue Determines what action to take based off the message type """ while True: if not self._queue.empty(): message = self._queue.get() self.working_on = message['job_type'] else: break logging.info("Popped off message: {}\n".format(str(message))) if message['job_type'] == 'STOP': break if message['job_type'] != 'MAINTAIN' and message['job_type'] != 'UPDATE': raise ValueError('{} is not a recognized task type'.format(message['job_type'])) pass # Query all repos with repo url of given task repoUrlSQL = s.sql.text(""" SELECT min(repo_id) as repo_id FROM repo WHERE repo_git = '{}' """.format(message['given']['github_url'])) repo_id = int(pd.read_sql(repoUrlSQL, self.db, params={}).iloc[0]['repo_id']) try: if message['models'][0] == 'pull_requests': self.pull_requests_model(message, repo_id) elif message['models'][0] == 'pull_request_commits': self.pull_request_commits_model(message, repo_id) elif message['models'][0] == 'pull_request_files': self.pull_requests_graphql(message, repo_id) except Exception as e: register_task_failure(self, message, repo_id, e) pass def graphql_paginate(self, query, data_subjects, before_parameters=None): """ Paginate a GitHub GraphQL query backwards :param query: A string, holds the GraphQL query :rtype: A Pandas DataFrame, contains all data contained in the pages """ logging.info(f'Start paginate with params: \n{data_subjects} ' f'\n{before_parameters}') def all_items(dictionary): for key, value in dictionary.items(): if type(value) is dict: yield (key, value) yield from all_items(value) else: yield (key, value) if not before_parameters: before_parameters = {} for subject, _ in all_items(data_subjects): before_parameters[subject] = '' start_cursor = None has_previous_page = True base_url = 'https://api.github.com/graphql' tuples = [] def find_root_of_subject(data, key_subject): key_nest = None for subject, nest in data.items(): if key_subject in nest: key_nest = nest[key_subject] break elif type(nest) == dict: return find_root_of_subject(nest, key_subject) else: raise KeyError return key_nest for data_subject, nest in data_subjects.items(): logging.info(f'Beginning paginate process for field {data_subject} ' f'for query: {query}') page_count = 0 while has_previous_page: page_count += 1 num_attempts = 3 success = False for attempt in range(num_attempts): logging.info(f'Attempt #{attempt + 1} for hitting GraphQL endpoint ' f'page number {page_count}\n') response = requests.post(base_url, json={'query': query.format( **before_parameters)}, headers=self.headers) update_gh_rate_limit(self, response) try: data = response.json() except: data = json.loads(json.dumps(response.text)) if 'errors' in data: logging.info("Error!: {}".format(data['errors'])) if data['errors'][0]['type'] == 'RATE_LIMITED': update_gh_rate_limit(self, response) num_attempts -= 1 continue if 'data' in data: success = True root = find_root_of_subject(data, data_subject) page_info = root['pageInfo'] data = root['edges'] break else: logging.info("Request returned a non-data dict: {}\n".format(data)) if data['message'] == 'Not Found': logging.info("Github repo was not found or does not exist for endpoint: {}\n".format(base_url)) break if data['message'] == 'You have triggered an abuse detection mechanism. Please wait a few minutes before you try again.': num_attempts -= 1 update_gh_rate_limit(self, response, temporarily_disable=True) if data['message'] == 'Bad credentials': update_gh_rate_limit(self, response, bad_credentials=True) if not success: logging.info('GraphQL query failed: {}'.format(query)) continue before_parameters.update({ data_subject: ', before: \"{}\"'.format(page_info['startCursor']) }) has_previous_page = page_info['hasPreviousPage'] tuples += data logging.info(f'Paged through {page_count} pages and ' f'collected {len(tuples)} data points\n') if not nest: return tuples return tuples + self.graphql_paginate(query, data_subjects[subject], before_parameters=before_parameters) def pull_requests_graphql(self, task_info, repo_id): owner, repo = get_owner_repo(task_info['given']['github_url']) # query existing PRs and the respective url we will append the commits url to pr_number_sql = s.sql.text(""" SELECT DISTINCT pr_src_number as pr_src_number, pull_requests.pull_request_id FROM pull_requests--, pull_request_meta WHERE repo_id = {} """.format(repo_id)) pr_numbers = pd.read_sql(pr_number_sql, self.db, params={}) pr_file_rows = [] for index, pull_request in enumerate(pr_numbers.itertuples()): logging.info(f'Querying files for pull request #{index + 1} of {len(pr_numbers)}') query = """ {{ repository(owner:"%s", name:"%s"){{ pullRequest (number: %s) {{ """ % (owner, repo, pull_request.pr_src_number) + """ files (last: 100{files}) {{ pageInfo {{ hasPreviousPage hasNextPage endCursor startCursor }} edges {{ node {{ additions deletions path }} }} }} }} }} }} """ pr_file_rows += [{ 'pull_request_id': pull_request.pull_request_id, 'pr_file_additions': pr_file['node']['additions'] + 5, 'pr_file_deletions': pr_file['node']['deletions'], 'pr_file_path': pr_file['node']['path'], 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': 'GitHub API', } for pr_file in self.graphql_paginate(query, {'files': None})] # Get current table values table_values_sql = s.sql.text(""" SELECT pull_request_files.* FROM pull_request_files, pull_requests WHERE pull_request_files.pull_request_id = pull_requests.pull_request_id AND repo_id = :repo_id """) logging.info(f'Getting table values with the following PSQL query: \n{table_values_sql}\n') table_values = pd.read_sql(table_values_sql, self.db, params={'repo_id': repo_id}) # Compare queried values against table values for dupes/updates if len(pr_file_rows) > 0: table_columns = pr_file_rows[0].keys() else: logging.info(f'No rows need insertion for repo {repo_id}\n') register_task_completion(self, task_info, repo_id, 'pull_request_files') # Compare queried values against table values for dupes/updates pr_file_rows_df = pd.DataFrame(pr_file_rows) pr_file_rows_df = pr_file_rows_df.dropna(subset=['pull_request_id']) pr_file_rows_df['need_update'] = 0 dupe_columns = ['pull_request_id', 'pr_file_path'] update_columns = ['pr_file_additions', 'pr_file_deletions'] logging.info(f'{pr_file_rows_df}') logging.info(f'{table_values}') need_insertion = pr_file_rows_df.merge(table_values, suffixes=('','_table'), how='outer', indicator=True, on=dupe_columns).loc[ lambda x : x['_merge']=='left_only'][table_columns] need_updates = pr_file_rows_df.merge(table_values, on=dupe_columns, suffixes=('','_table'), how='inner',indicator=False)[table_columns].merge(table_values, on=update_columns, suffixes=('','_table'), how='outer',indicator=True ).loc[lambda x : x['_merge']=='left_only'][table_columns] need_updates['b_pull_request_id'] = need_updates['pull_request_id'] need_updates['b_pr_file_path'] = need_updates['pr_file_path'] pr_file_insert_rows = need_insertion.to_dict('records') pr_file_update_rows = need_updates.to_dict('records') logging.info(f'Repo id {repo_id} needs {len(need_insertion)} insertions and ' f'{len(need_updates)} updates.\n') if len(pr_file_update_rows) > 0: success = False while not success: try: self.db.execute( self.pull_request_files_table.update().where( self.pull_request_files_table.c.pull_request_id == bindparam('b_pull_request_id') and self.pull_request_files_table.c.pr_file_path == bindparam('b_pr_file_path')).values( pr_file_additions=bindparam('pr_file_additions'), pr_file_deletions=bindparam('pr_file_deletions')), pr_file_update_rows ) success = True except Exception as e: logging.info('error: {}'.format(e)) time.sleep(5) if len(pr_file_insert_rows) > 0: success = False while not success: try: self.db.execute( self.pull_request_files_table.insert(), pr_file_insert_rows ) success = True except Exception as e: logging.info('error: {}'.format(e)) time.sleep(5) register_task_completion(self, task_info, repo_id, 'pull_request_files') def pull_request_commits_model(self, task_info, repo_id): """ Queries the commits related to each pull request already inserted in the db """ # query existing PRs and the respective url we will append the commits url to pr_url_sql = s.sql.text(""" SELECT DISTINCT pr_url, pull_requests.pull_request_id FROM pull_requests--, pull_request_meta WHERE repo_id = {} """.format(repo_id)) urls = pd.read_sql(pr_url_sql, self.db, params={}) for pull_request in urls.itertuples(): # for each url of PRs we have inserted commits_url = pull_request.pr_url + '/commits?page={}' table = 'pull_request_commits' table_pkey = 'pr_cmt_id' duplicate_col_map = {'pr_cmt_sha': 'sha'} update_col_map = {} # Use helper paginate function to iterate the commits url and check for dupes pr_commits = paginate(self, commits_url, duplicate_col_map, update_col_map, table, table_pkey, where_clause="where pull_request_id = {}".format(pull_request.pull_request_id)) for pr_commit in pr_commits: # post-pagination, iterate results if pr_commit['flag'] == 'need_insertion': # if non-dupe pr_commit_row = { 'pull_request_id': pull_request.pull_request_id, 'pr_cmt_sha': pr_commit['sha'], 'pr_cmt_node_id': pr_commit['node_id'], 'pr_cmt_message': pr_commit['commit']['message'], # 'pr_cmt_comments_url': pr_commit['comments_url'], 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': 'GitHub API', } result = self.db.execute(self.pull_request_commits_table.insert().values(pr_commit_row)) logging.info(f"Inserted Pull Request Commit: {result.inserted_primary_key}\n") register_task_completion(self, task_info, repo_id, 'pull_request_commits') def pull_requests_model(self, entry_info, repo_id): """Pull Request data collection function. Query GitHub API for PhubRs. :param entry_info: A dictionary consisiting of 'git_url' and 'repo_id' :type entry_info: dict """ github_url = entry_info['given']['github_url'] logging.info('Beginning collection of Pull Requests...\n') logging.info(f'Repo ID: {repo_id}, Git URL: {github_url}\n') record_model_process(self, repo_id, 'pull_requests') owner, repo = self.get_owner_repo(github_url) url = (f'https://api.github.com/repos/{owner}/{repo}/pulls?state=all&' + 'direction=asc&per_page=100&page={}') # Get pull requests that we already have stored # Set pseudo key (something other than PK) to # check dupicates with table = 'pull_requests' table_pkey = 'pull_request_id' update_col_map = {'pr_src_state': 'state'} duplicate_col_map = {'pr_src_id': 'id'} #list to hold pull requests needing insertion prs = paginate(self, url, duplicate_col_map, update_col_map, table, table_pkey, where_clause='WHERE repo_id = {}'.format(repo_id), value_update_col_map={'pr_augur_contributor_id': float('nan')}) # Discover and remove duplicates before we start inserting logging.info("Count of pull requests needing update or insertion: " + str(len(prs)) + "\n") for pr_dict in prs: pr = { 'repo_id': repo_id, 'pr_url': pr_dict['url'], 'pr_src_id': pr_dict['id'], 'pr_src_node_id': None, 'pr_html_url': pr_dict['html_url'], 'pr_diff_url': pr_dict['diff_url'], 'pr_patch_url': pr_dict['patch_url'], 'pr_issue_url': pr_dict['issue_url'], 'pr_augur_issue_id': None, 'pr_src_number': pr_dict['number'], 'pr_src_state': pr_dict['state'], 'pr_src_locked': pr_dict['locked'], 'pr_src_title': pr_dict['title'], 'pr_augur_contributor_id': find_id_from_login(self, pr_dict['user']['login']), 'pr_body': pr_dict['body'], 'pr_created_at': pr_dict['created_at'], 'pr_updated_at': pr_dict['updated_at'], 'pr_closed_at': pr_dict['closed_at'], 'pr_merged_at': pr_dict['merged_at'], 'pr_merge_commit_sha': pr_dict['merge_commit_sha'], 'pr_teams': None, 'pr_milestone': pr_dict['milestone']['title'] if pr_dict['milestone'] else None, 'pr_commits_url': pr_dict['commits_url'], 'pr_review_comments_url': pr_dict['review_comments_url'], 'pr_review_comment_url': pr_dict['review_comment_url'], 'pr_comments_url': pr_dict['comments_url'], 'pr_statuses_url': pr_dict['statuses_url'], 'pr_meta_head_id': None, 'pr_meta_base_id': None, 'pr_src_issue_url': pr_dict['issue_url'], 'pr_src_comments_url': pr_dict['comments_url'], # NOTE: this seems redundant 'pr_src_review_comments_url': pr_dict['review_comments_url'], # this too 'pr_src_commits_url': pr_dict['commits_url'], # this one also seems redundant 'pr_src_statuses_url': pr_dict['statuses_url'], 'pr_src_author_association': pr_dict['author_association'], 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': 'GitHub API' } if pr_dict['flag'] == 'need_insertion': logging.info(f'PR {pr_dict["id"]} needs to be inserted\n') result = self.db.execute(self.pull_requests_table.insert().values(pr)) logging.info(f"Added Pull Request: {result.inserted_primary_key}") self.pr_id_inc = int(result.inserted_primary_key[0]) elif pr_dict['flag'] == 'need_update': result = self.db.execute(self.pull_requests_table.update().where( self.pull_requests_table.c.pr_src_id==pr_dict['id']).values(pr)) logging.info("Updated tuple in the pull_requests table with existing pr_src_id: {}".format( pr_dict['id'])) self.pr_id_inc = pr_dict['pkey'] else: logging.info("PR does not need to be inserted. Fetching its id from DB") pr_id_sql = s.sql.text(""" SELECT pull_request_id FROM pull_requests WHERE pr_src_id={} """.format(pr_dict['id'])) self.pr_id_inc = int(pd.read_sql(pr_id_sql, self.db).iloc[0]['pull_request_id']) self.query_labels(pr_dict['labels'], self.pr_id_inc) self.query_pr_events(owner, repo, pr_dict['number'], self.pr_id_inc) self.query_pr_comments(owner, repo, pr_dict['number'], self.pr_id_inc) self.query_reviewers(pr_dict['requested_reviewers'], self.pr_id_inc) self.query_pr_meta(pr_dict['head'], pr_dict['base'], self.pr_id_inc) logging.info(f"Inserted PR data for {owner}/{repo}") self.results_counter += 1 register_task_completion(self, entry_info, repo_id, 'pull_requests') def query_labels(self, labels, pr_id): logging.info('Querying PR Labels\n') if len(labels) == 0: logging.info('No new labels to add\n') return table = 'pull_request_labels' duplicate_col_map = {'pr_src_id': 'id'} update_col_map = {} table_pkey = 'pr_label_id' update_keys = list(update_col_map.keys()) if update_col_map else [] cols_query = list(duplicate_col_map.keys()) + update_keys + [table_pkey] pr_labels_table_values = get_table_values(self, cols_query, [table]) new_labels = assign_tuple_action(self, labels, pr_labels_table_values, update_col_map, duplicate_col_map, table_pkey) logging.info(f'Found {len(new_labels)} labels\n') for label_dict in new_labels: label = { 'pull_request_id': pr_id, 'pr_src_id': label_dict['id'], 'pr_src_node_id': label_dict['node_id'], 'pr_src_url': label_dict['url'], 'pr_src_description': label_dict['name'], 'pr_src_color': label_dict['color'], 'pr_src_default_bool': label_dict['default'], 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } if label_dict['flag'] == 'need_insertion': result = self.db.execute(self.pull_request_labels_table.insert().values(label)) logging.info(f"Added PR Label: {result.inserted_primary_key}\n") logging.info(f"Inserted PR Labels data for PR with id {pr_id}\n") self.results_counter += 1 self.label_id_inc = int(result.inserted_primary_key[0]) def query_pr_events(self, owner, repo, gh_pr_no, pr_id): logging.info('Querying PR Events\n') url = (f'https://api.github.com/repos/{owner}/{repo}/issues/{gh_pr_no}' + '/events?per_page=100&page={}') # Get pull request events that we already have stored # Set our duplicate and update column map keys (something other than PK) to # check dupicates/needed column updates with table = 'pull_request_events' table_pkey = 'pr_event_id' update_col_map = {} duplicate_col_map = {'issue_event_src_id': 'id'} #list to hold contributors needing insertion or update pr_events = paginate(self, url, duplicate_col_map, update_col_map, table, table_pkey) logging.info("Count of pull request events needing insertion: " + str(len(pr_events)) + "\n") for pr_event_dict in pr_events: if pr_event_dict['actor']: cntrb_id = find_id_from_login(self, pr_event_dict['actor']['login']) else: cntrb_id = 1 pr_event = { 'pull_request_id': pr_id, 'cntrb_id': cntrb_id, 'action': pr_event_dict['event'], 'action_commit_hash': None, 'created_at': pr_event_dict['created_at'], 'issue_event_src_id': pr_event_dict['id'], 'node_id': pr_event_dict['node_id'], 'node_url': pr_event_dict['url'], 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } result = self.db.execute(self.pull_request_events_table.insert().values(pr_event)) logging.info(f"Added PR Event: {result.inserted_primary_key}\n") self.results_counter += 1 self.event_id_inc = int(result.inserted_primary_key[0]) logging.info(f"Inserted PR Events data for PR with id {pr_id}\n") def query_reviewers(self, reviewers, pr_id): logging.info('Querying Reviewers') if reviewers is None or len(reviewers) == 0: logging.info('No reviewers to add') return table = 'pull_request_reviewers' duplicate_col_map = {'pr_reviewer_map_id': 'id'} update_col_map = {} table_pkey = 'pr_reviewer_map_id' update_keys = list(update_col_map.keys()) if update_col_map else [] cols_query = list(duplicate_col_map.keys()) + update_keys + [table_pkey] reviewers_table_values = get_table_values(self, cols_query, [table]) new_reviewers = assign_tuple_action(self, reviewers, reviewers_table_values, update_col_map, duplicate_col_map, table_pkey) for reviewers_dict in new_reviewers: if 'login' in reviewers_dict: cntrb_id = find_id_from_login(self, reviewers_dict['login']) else: cntrb_id = 1 reviewer = { 'pull_request_id': pr_id, 'cntrb_id': cntrb_id, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } if reviewers_dict['flag'] == 'need_insertion': result = self.db.execute(self.pull_request_reviewers_table.insert().values(reviewer)) logging.info(f"Added PR Reviewer {result.inserted_primary_key}") self.reviewer_id_inc = int(result.inserted_primary_key[0]) self.results_counter += 1 logging.info(f"Finished inserting PR Reviewer data for PR with id {pr_id}") def query_assignee(self, assignees, pr_id): logging.info('Querying Assignees') if assignees is None or len(assignees) == 0: logging.info('No assignees to add') return table = 'pull_request_assignees' duplicate_col_map = {'pr_assignee_map_id': 'id'} update_col_map = {} table_pkey = 'pr_assignee_map_id' update_keys = list(update_col_map.keys()) if update_col_map else [] cols_query = list(duplicate_col_map.keys()) + update_keys + [table_pkey] assignee_table_values = get_table_values(self, cols_query, [table]) assignees = assign_tuple_action(self, assignees, assignee_table_values, update_col_map, duplicate_col_map, table_pkey) for assignee_dict in assignees: if 'login' in assignee_dict: cntrb_id = find_id_from_login(self, assignee_dict['login']) else: cntrb_id = 1 assignee = { 'pull_request_id': pr_id, 'contrib_id': cntrb_id, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } if assignee_dict['flag'] == 'need_insertion': result = self.db.execute(self.pull_request_assignees_table.insert().values(assignee)) logging.info(f'Added PR Assignee {result.inserted_primary_key}') self.assignee_id_inc = int(result.inserted_primary_key[0]) self.results_counter += 1 logging.info(f'Finished inserting PR Assignee data for PR with id {pr_id}') def query_pr_meta(self, head, base, pr_id): logging.info('Querying PR Meta') table = 'pull_request_meta' duplicate_col_map = {'pr_sha': 'sha'} update_col_map = {} value_update_col_map = {'pr_src_meta_label': None} table_pkey = 'pr_repo_meta_id' update_keys = list(update_col_map.keys()) if update_col_map else [] update_keys += list(value_update_col_map.keys()) cols_query = list(duplicate_col_map.keys()) + update_keys + [table_pkey] meta_table_values = get_table_values(self, cols_query, [table]) pr_meta_dict = { 'head': assign_tuple_action(self, [head], meta_table_values, update_col_map, duplicate_col_map, table_pkey, value_update_col_map=value_update_col_map)[0], 'base': assign_tuple_action(self, [base], meta_table_values, update_col_map, duplicate_col_map, table_pkey, value_update_col_map=value_update_col_map)[0] } for pr_side, pr_meta_data in pr_meta_dict.items(): pr_meta = { 'pull_request_id': pr_id, 'pr_head_or_base': pr_side, 'pr_src_meta_label': pr_meta_data['label'], 'pr_src_meta_ref': pr_meta_data['ref'], 'pr_sha': pr_meta_data['sha'], 'cntrb_id': find_id_from_login(self, pr_meta_data['user']['login']) if pr_meta_data['user'] \ and 'login' in pr_meta_data['user'] else None, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } if pr_meta_data['flag'] == 'need_update': result = self.db.execute(self.pull_request_meta_table.update().where( self.pull_request_meta_table.c.pr_sha==pr_meta['pr_sha'] and self.pull_request_meta_table.c.pr_head_or_base==pr_side ).values(pr_meta)) logging.info("Updated tuple in the issues table with existing gh_issue_id: {}".format( issue_dict['id'])) self.issue_id_inc = issue_dict['pkey'] elif pr_meta_data['flag'] == 'need_insertion': result = self.db.execute(self.pull_request_meta_table.insert().values(pr_meta)) logging.info(f'Added PR Head {result.inserted_primary_key}') self.pr_meta_id_inc = int(result.inserted_primary_key[0]) self.results_counter += 1 else: pr_meta_id_sql = """ SELECT pr_repo_meta_id FROM pull_request_meta WHERE pr_sha='{}' """.format(pr_meta_data['sha']) self.pr_meta_id_inc = int(pd.read_sql(pr_meta_id_sql, self.db).iloc[0]['pr_repo_meta_id']) if pr_meta_data['repo']: self.query_pr_repo(pr_meta_data['repo'], pr_side, self.pr_meta_id_inc) else: logging.info('No new PR Head data to add') logging.info(f'Finished inserting PR Head & Base data for PR with id {pr_id}') def query_pr_comments(self, owner, repo, gh_pr_no, pr_id): logging.info('Querying PR Comments') url = (f'https://api.github.com/repos/{owner}/{repo}/issues/{gh_pr_no}' + '/comments?per_page=100&page={}') # Get pull request comments that we already have stored # Set our duplicate and update column map keys (something other than PK) to # check dupicates/needed column updates with table = 'pull_request_message_ref' table_pkey = 'pr_msg_ref_id' update_col_map = {} duplicate_col_map = {'pr_message_ref_src_comment_id': 'id'} #list to hold contributors needing insertion or update pr_messages = paginate(self, url, duplicate_col_map, update_col_map, table, table_pkey) logging.info("Count of pull request comments needing insertion: " + str(len(pr_messages)) + "\n") for pr_msg_dict in pr_messages: if pr_msg_dict['user'] and 'login' in pr_msg_dict['user']: cntrb_id = find_id_from_login(self, pr_msg_dict['user']['login']) else: cntrb_id = 1 msg = { 'rgls_id': None, 'msg_text': pr_msg_dict['body'], 'msg_timestamp': pr_msg_dict['created_at'], 'msg_sender_email': None, 'msg_header': None, 'pltfrm_id': '25150', 'cntrb_id': cntrb_id, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } result = self.db.execute(self.message_table.insert().values(msg)) logging.info(f'Added PR Comment {result.inserted_primary_key}') self.msg_id_inc = int(result.inserted_primary_key[0]) pr_msg_ref = { 'pull_request_id': pr_id, 'msg_id': self.msg_id_inc, 'pr_message_ref_src_comment_id': pr_msg_dict['id'], 'pr_message_ref_src_node_id': pr_msg_dict['node_id'], 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } result = self.db.execute( self.pull_request_message_ref_table.insert().values(pr_msg_ref) ) logging.info(f'Added PR Message Ref {result.inserted_primary_key}') self.pr_msg_ref_id_inc = int(result.inserted_primary_key[0]) self.results_counter += 1 logging.info(f'Finished adding PR Message data for PR with id {pr_id}') def query_pr_repo(self, pr_repo, pr_repo_type, pr_meta_id): logging.info(f'Querying PR {pr_repo_type} repo') table = 'pull_request_repo' duplicate_col_map = {'pr_src_repo_id': 'id'} update_col_map = {} table_pkey = 'pr_repo_id' update_keys = list(update_col_map.keys()) if update_col_map else [] cols_query = list(duplicate_col_map.keys()) + update_keys + [table_pkey] pr_repo_table_values = get_table_values(self, cols_query, [table]) new_pr_repo = assign_tuple_action(self, [pr_repo], pr_repo_table_values, update_col_map, duplicate_col_map, table_pkey)[0] if new_pr_repo['owner'] and 'login' in new_pr_repo['owner']: cntrb_id = find_id_from_login(self, new_pr_repo['owner']['login']) else: cntrb_id = 1 pr_repo = { 'pr_repo_meta_id': pr_meta_id, 'pr_repo_head_or_base': pr_repo_type, 'pr_src_repo_id': new_pr_repo['id'], # 'pr_src_node_id': new_pr_repo[0]['node_id'], 'pr_src_node_id': None, 'pr_repo_name': new_pr_repo['name'], 'pr_repo_full_name': new_pr_repo['full_name'], 'pr_repo_private_bool': new_pr_repo['private'], 'pr_cntrb_id': cntrb_id, 'tool_source': self.tool_source, 'tool_version': self.tool_version, 'data_source': self.data_source } if new_pr_repo['flag'] == 'need_insertion': result = self.db.execute(self.pull_request_repo_table.insert().values(pr_repo)) logging.info(f'Added PR {pr_repo_type} repo {result.inserted_primary_key}') self.results_counter += 1 logging.info(f'Finished adding PR {pr_repo_type} Repo data for PR with id {self.pr_id_inc}') def get_owner_repo(self, github_url): split = github_url.split('/') owner = split[-2] repo = split[-1] if '.git' in repo: repo = repo[:-4] return owner, repo
43.251527
182
0.582229
8e3fc2eb9bacb6a3359adbddbe61138706362f9d
16,923
py
Python
src/bdbdatastore/src/google/protobuf/descriptor.py
sprymak/typhoonae
fe31bcc7b21fc14f8aa97b36d66cd7671974543b
[ "Apache-2.0" ]
3
2015-12-23T14:26:05.000Z
2016-05-09T04:05:51.000Z
third_party/google/protobuf/descriptor.py
dewitt/webfingerclient-dclinton
c13990378c8b0516c84f8507664e0a6ab8eefac5
[ "Apache-2.0" ]
1
2016-12-15T12:24:46.000Z
2016-12-15T12:24:46.000Z
third_party/google/protobuf/descriptor.py
dewitt/webfingerclient-dclinton
c13990378c8b0516c84f8507664e0a6ab8eefac5
[ "Apache-2.0" ]
1
2018-12-02T10:36:08.000Z
2018-12-02T10:36:08.000Z
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # http://code.google.com/p/protobuf/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # TODO(robinson): We probably need to provide deep-copy methods for # descriptor types. When a FieldDescriptor is passed into # Descriptor.__init__(), we should make a deep copy and then set # containing_type on it. Alternatively, we could just get # rid of containing_type (iit's not needed for reflection.py, at least). # # TODO(robinson): Print method? # # TODO(robinson): Useful __repr__? """Descriptors essentially contain exactly the information found in a .proto file, in types that make this information accessible in Python. """ __author__ = 'robinson@google.com (Will Robinson)' class DescriptorBase(object): """Descriptors base class. This class is the base of all descriptor classes. It provides common options related functionaility. """ def __init__(self, options, options_class_name): """Initialize the descriptor given its options message and the name of the class of the options message. The name of the class is required in case the options message is None and has to be created. """ self._options = options self._options_class_name = options_class_name def GetOptions(self): """Retrieves descriptor options. This method returns the options set or creates the default options for the descriptor. """ if self._options: return self._options from google.protobuf import descriptor_pb2 try: options_class = getattr(descriptor_pb2, self._options_class_name) except AttributeError: raise RuntimeError('Unknown options class name %s!' % (self._options_class_name)) self._options = options_class() return self._options class Descriptor(DescriptorBase): """Descriptor for a protocol message type. A Descriptor instance has the following attributes: name: (str) Name of this protocol message type. full_name: (str) Fully-qualified name of this protocol message type, which will include protocol "package" name and the name of any enclosing types. filename: (str) Name of the .proto file containing this message. containing_type: (Descriptor) Reference to the descriptor of the type containing us, or None if we have no containing type. fields: (list of FieldDescriptors) Field descriptors for all fields in this type. fields_by_number: (dict int -> FieldDescriptor) Same FieldDescriptor objects as in |fields|, but indexed by "number" attribute in each FieldDescriptor. fields_by_name: (dict str -> FieldDescriptor) Same FieldDescriptor objects as in |fields|, but indexed by "name" attribute in each FieldDescriptor. nested_types: (list of Descriptors) Descriptor references for all protocol message types nested within this one. nested_types_by_name: (dict str -> Descriptor) Same Descriptor objects as in |nested_types|, but indexed by "name" attribute in each Descriptor. enum_types: (list of EnumDescriptors) EnumDescriptor references for all enums contained within this type. enum_types_by_name: (dict str ->EnumDescriptor) Same EnumDescriptor objects as in |enum_types|, but indexed by "name" attribute in each EnumDescriptor. enum_values_by_name: (dict str -> EnumValueDescriptor) Dict mapping from enum value name to EnumValueDescriptor for that value. extensions: (list of FieldDescriptor) All extensions defined directly within this message type (NOT within a nested type). extensions_by_name: (dict, string -> FieldDescriptor) Same FieldDescriptor objects as |extensions|, but indexed by "name" attribute of each FieldDescriptor. options: (descriptor_pb2.MessageOptions) Protocol message options or None to use default message options. """ def __init__(self, name, full_name, filename, containing_type, fields, nested_types, enum_types, extensions, options=None): """Arguments to __init__() are as described in the description of Descriptor fields above. """ super(Descriptor, self).__init__(options, 'MessageOptions') self.name = name self.full_name = full_name self.filename = filename self.containing_type = containing_type # We have fields in addition to fields_by_name and fields_by_number, # so that: # 1. Clients can index fields by "order in which they're listed." # 2. Clients can easily iterate over all fields with the terse # syntax: for f in descriptor.fields: ... self.fields = fields for field in self.fields: field.containing_type = self self.fields_by_number = dict((f.number, f) for f in fields) self.fields_by_name = dict((f.name, f) for f in fields) self.nested_types = nested_types self.nested_types_by_name = dict((t.name, t) for t in nested_types) self.enum_types = enum_types for enum_type in self.enum_types: enum_type.containing_type = self self.enum_types_by_name = dict((t.name, t) for t in enum_types) self.enum_values_by_name = dict( (v.name, v) for t in enum_types for v in t.values) self.extensions = extensions for extension in self.extensions: extension.extension_scope = self self.extensions_by_name = dict((f.name, f) for f in extensions) # TODO(robinson): We should have aggressive checking here, # for example: # * If you specify a repeated field, you should not be allowed # to specify a default value. # * [Other examples here as needed]. # # TODO(robinson): for this and other *Descriptor classes, we # might also want to lock things down aggressively (e.g., # prevent clients from setting the attributes). Having # stronger invariants here in general will reduce the number # of runtime checks we must do in reflection.py... class FieldDescriptor(DescriptorBase): """Descriptor for a single field in a .proto file. A FieldDescriptor instance has the following attriubtes: name: (str) Name of this field, exactly as it appears in .proto. full_name: (str) Name of this field, including containing scope. This is particularly relevant for extensions. index: (int) Dense, 0-indexed index giving the order that this field textually appears within its message in the .proto file. number: (int) Tag number declared for this field in the .proto file. type: (One of the TYPE_* constants below) Declared type. cpp_type: (One of the CPPTYPE_* constants below) C++ type used to represent this field. label: (One of the LABEL_* constants below) Tells whether this field is optional, required, or repeated. default_value: (Varies) Default value of this field. Only meaningful for non-repeated scalar fields. Repeated fields should always set this to [], and non-repeated composite fields should always set this to None. containing_type: (Descriptor) Descriptor of the protocol message type that contains this field. Set by the Descriptor constructor if we're passed into one. Somewhat confusingly, for extension fields, this is the descriptor of the EXTENDED message, not the descriptor of the message containing this field. (See is_extension and extension_scope below). message_type: (Descriptor) If a composite field, a descriptor of the message type contained in this field. Otherwise, this is None. enum_type: (EnumDescriptor) If this field contains an enum, a descriptor of that enum. Otherwise, this is None. is_extension: True iff this describes an extension field. extension_scope: (Descriptor) Only meaningful if is_extension is True. Gives the message that immediately contains this extension field. Will be None iff we're a top-level (file-level) extension field. options: (descriptor_pb2.FieldOptions) Protocol message field options or None to use default field options. """ # Must be consistent with C++ FieldDescriptor::Type enum in # descriptor.h. # # TODO(robinson): Find a way to eliminate this repetition. TYPE_DOUBLE = 1 TYPE_FLOAT = 2 TYPE_INT64 = 3 TYPE_UINT64 = 4 TYPE_INT32 = 5 TYPE_FIXED64 = 6 TYPE_FIXED32 = 7 TYPE_BOOL = 8 TYPE_STRING = 9 TYPE_GROUP = 10 TYPE_MESSAGE = 11 TYPE_BYTES = 12 TYPE_UINT32 = 13 TYPE_ENUM = 14 TYPE_SFIXED32 = 15 TYPE_SFIXED64 = 16 TYPE_SINT32 = 17 TYPE_SINT64 = 18 MAX_TYPE = 18 # Must be consistent with C++ FieldDescriptor::CppType enum in # descriptor.h. # # TODO(robinson): Find a way to eliminate this repetition. CPPTYPE_INT32 = 1 CPPTYPE_INT64 = 2 CPPTYPE_UINT32 = 3 CPPTYPE_UINT64 = 4 CPPTYPE_DOUBLE = 5 CPPTYPE_FLOAT = 6 CPPTYPE_BOOL = 7 CPPTYPE_ENUM = 8 CPPTYPE_STRING = 9 CPPTYPE_MESSAGE = 10 MAX_CPPTYPE = 10 # Must be consistent with C++ FieldDescriptor::Label enum in # descriptor.h. # # TODO(robinson): Find a way to eliminate this repetition. LABEL_OPTIONAL = 1 LABEL_REQUIRED = 2 LABEL_REPEATED = 3 MAX_LABEL = 3 def __init__(self, name, full_name, index, number, type, cpp_type, label, default_value, message_type, enum_type, containing_type, is_extension, extension_scope, options=None): """The arguments are as described in the description of FieldDescriptor attributes above. Note that containing_type may be None, and may be set later if necessary (to deal with circular references between message types, for example). Likewise for extension_scope. """ super(FieldDescriptor, self).__init__(options, 'FieldOptions') self.name = name self.full_name = full_name self.index = index self.number = number self.type = type self.cpp_type = cpp_type self.label = label self.default_value = default_value self.containing_type = containing_type self.message_type = message_type self.enum_type = enum_type self.is_extension = is_extension self.extension_scope = extension_scope class EnumDescriptor(DescriptorBase): """Descriptor for an enum defined in a .proto file. An EnumDescriptor instance has the following attributes: name: (str) Name of the enum type. full_name: (str) Full name of the type, including package name and any enclosing type(s). filename: (str) Name of the .proto file in which this appears. values: (list of EnumValueDescriptors) List of the values in this enum. values_by_name: (dict str -> EnumValueDescriptor) Same as |values|, but indexed by the "name" field of each EnumValueDescriptor. values_by_number: (dict int -> EnumValueDescriptor) Same as |values|, but indexed by the "number" field of each EnumValueDescriptor. containing_type: (Descriptor) Descriptor of the immediate containing type of this enum, or None if this is an enum defined at the top level in a .proto file. Set by Descriptor's constructor if we're passed into one. options: (descriptor_pb2.EnumOptions) Enum options message or None to use default enum options. """ def __init__(self, name, full_name, filename, values, containing_type=None, options=None): """Arguments are as described in the attribute description above.""" super(EnumDescriptor, self).__init__(options, 'EnumOptions') self.name = name self.full_name = full_name self.filename = filename self.values = values for value in self.values: value.type = self self.values_by_name = dict((v.name, v) for v in values) self.values_by_number = dict((v.number, v) for v in values) self.containing_type = containing_type class EnumValueDescriptor(DescriptorBase): """Descriptor for a single value within an enum. name: (str) Name of this value. index: (int) Dense, 0-indexed index giving the order that this value appears textually within its enum in the .proto file. number: (int) Actual number assigned to this enum value. type: (EnumDescriptor) EnumDescriptor to which this value belongs. Set by EnumDescriptor's constructor if we're passed into one. options: (descriptor_pb2.EnumValueOptions) Enum value options message or None to use default enum value options options. """ def __init__(self, name, index, number, type=None, options=None): """Arguments are as described in the attribute description above.""" super(EnumValueDescriptor, self).__init__(options, 'EnumValueOptions') self.name = name self.index = index self.number = number self.type = type class ServiceDescriptor(DescriptorBase): """Descriptor for a service. name: (str) Name of the service. full_name: (str) Full name of the service, including package name. index: (int) 0-indexed index giving the order that this services definition appears withing the .proto file. methods: (list of MethodDescriptor) List of methods provided by this service. options: (descriptor_pb2.ServiceOptions) Service options message or None to use default service options. """ def __init__(self, name, full_name, index, methods, options=None): super(ServiceDescriptor, self).__init__(options, 'ServiceOptions') self.name = name self.full_name = full_name self.index = index self.methods = methods # Set the containing service for each method in this service. for method in self.methods: method.containing_service = self def FindMethodByName(self, name): """Searches for the specified method, and returns its descriptor.""" for method in self.methods: if name == method.name: return method return None class MethodDescriptor(DescriptorBase): """Descriptor for a method in a service. name: (str) Name of the method within the service. full_name: (str) Full name of method. index: (int) 0-indexed index of the method inside the service. containing_service: (ServiceDescriptor) The service that contains this method. input_type: The descriptor of the message that this method accepts. output_type: The descriptor of the message that this method returns. options: (descriptor_pb2.MethodOptions) Method options message or None to use default method options. """ def __init__(self, name, full_name, index, containing_service, input_type, output_type, options=None): """The arguments are as described in the description of MethodDescriptor attributes above. Note that containing_service may be None, and may be set later if necessary. """ super(MethodDescriptor, self).__init__(options, 'MethodOptions') self.name = name self.full_name = full_name self.index = index self.containing_service = containing_service self.input_type = input_type self.output_type = output_type def _ParseOptions(message, string): """Parses serialized options. This helper function is used to parse serialized options in generated proto2 files. It must not be used outside proto2. """ message.ParseFromString(string) return message;
38.993088
80
0.715181
b7d185a1dfcdb88c8199b3e33c7778ff91a262a7
4,592
py
Python
preferences/views.py
jbbqqf/okapi
3db29ef1e15685fae304190bd176f75c4e367d03
[ "BSD-3-Clause" ]
null
null
null
preferences/views.py
jbbqqf/okapi
3db29ef1e15685fae304190bd176f75c4e367d03
[ "BSD-3-Clause" ]
null
null
null
preferences/views.py
jbbqqf/okapi
3db29ef1e15685fae304190bd176f75c4e367d03
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import IntegrityError from rest_framework import status from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet from rest_framework.mixins import ( ListModelMixin, RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin) from rest_framework.permissions import IsAuthenticated from rest_framework.decorators import ( authentication_classes, permission_classes) from rest_framework.authentication import ( TokenAuthentication, SessionAuthentication) from rest_framework.filters import DjangoFilterBackend, SearchFilter from preferences.filters import UserInterfaceFilter, UserPrefFilter from preferences.models import UserInterface, UserPref from preferences.serializers import UserInterfaceSerializer, UserPrefSerializer @authentication_classes((TokenAuthentication, SessionAuthentication,)) @permission_classes((IsAuthenticated,)) class UserInterfaceView(ListModelMixin, RetrieveModelMixin, GenericViewSet): """ === A list of all known user interfaces === Those objects are readonly API-wise. If you need to add your own entry, you should contact an admin. --- list: parameters: - name: search description: contain filter for name and comment paramType: query type: string retrieve: parameters: - name: search description: contain filter for name and comment paramType: query type: string """ queryset = UserInterface.objects.all() serializer_class = UserInterfaceSerializer filter_backends = (DjangoFilterBackend, SearchFilter,) search_fields = ('name', 'comment',) filter_class = UserInterfaceFilter @authentication_classes((TokenAuthentication, SessionAuthentication,)) @permission_classes((IsAuthenticated,)) class UserPrefView(ListModelMixin, RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin, GenericViewSet): """ === Allows a user to access his saved prefs === An authenticated user can only GET, POST or PATCH his own preferences. All users do not need to have custom preferences. You should create a new entry only for users who changed something from the default preferences. When retrieving user preferences, if you get nothing, you know this user has default preferences. A constraint prevents any user to have two different preferences for a given user interface. It means you filter entries by ui_id, you should always have only one entry. But BE CAREFUL : user interface ids are not guaranteed to be constant over time (if database is migrated for example), even if it won't happen often. A good practice when you manipulate user preferences if you want to be 100% sure of what you recieve is to filter your results both by id and user interface name. It should be tested by the interface, and if one fails you can just use default parameters instead of running the risk to use corrupted data. --- list: parameters: - name: search description: contain filter for ui's name and conf paramType: query type: string retrieve: parameters: - name: search description: contain filter for ui's name and conf paramType: query type: string """ serializer_class = UserPrefSerializer filter_backends = (DjangoFilterBackend, SearchFilter,) search_fields = ('ui__name', 'conf',) filter_class = UserPrefFilter def get_queryset(self): queryset = UserPref.objects.filter(user=self.request.user) return queryset def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) try: serializer.is_valid(raise_exception=True) self.perform_create(serializer) except IntegrityError: error = {'message': 'Duplicate entry for user {} and ui {}'.format( self.request.user, serializer.validated_data['ui'])} return Response(error, status=status.HTTP_400_BAD_REQUEST) return Response(serializer.data, status=status.HTTP_201_CREATED) def perform_create(self, serializer): """ You can only create preferences for your account. """ serializer.save(user=self.request.user)
34.787879
79
0.686847
eb124fe3c01c46356a4c028f455c7890eae636a5
16,954
py
Python
GBM/GBMSlidingwindows_V2/GBMslidingwindow_LabelT1window.py
joshlyman/TextureAnalysis
bfbedbd53f62396fdef383408089b37e5ab511d0
[ "MIT" ]
1
2020-07-06T01:47:49.000Z
2020-07-06T01:47:49.000Z
GBM/GBMSlidingwindows_V2/GBMslidingwindow_LabelT1window.py
kumarneeraj2005/TextureAnalysis
bfbedbd53f62396fdef383408089b37e5ab511d0
[ "MIT" ]
null
null
null
GBM/GBMSlidingwindows_V2/GBMslidingwindow_LabelT1window.py
kumarneeraj2005/TextureAnalysis
bfbedbd53f62396fdef383408089b37e5ab511d0
[ "MIT" ]
1
2020-06-22T08:26:10.000Z
2020-06-22T08:26:10.000Z
# 2nd version: GBM sliding window for all 6 contrast images and also # do T2 sliding windows: Label windows which are also belong to T1 windows # Recently update 0821: change the raw mean setting from 8*8 box normalization # to raw feature w/o any normalization # add PI and Necrosis are in another files: Add_PI_GBMSlidingwindow.py and Add_PI_Necro_GBMSlidingwindow.py import csv import os import xml.etree.ElementTree as ET import fnmatch import numpy import math import SimpleITK from mahotas.features.texture import haralick_labels from GLCM import GLCMFeatures from Gabor import ExtendGaborFeatures from LBP import ExtendLBPFeatures from GBM import GBMslidingWindowBoxMappingCoordinate rootDir = '/Users/yanzhexu/Desktop/Research/GBM/aCGH_whole_tumor_maps_for_Neuro-Onc_dataset' coorDir = '/Users/yanzhexu/Desktop/Research/GBM/18/patient_biopsy_coordinates_18.csv' mapDir = '/Users/yanzhexu/Desktop/Research/GBM/18/map between pt numbers and pt label letters.txt' outputDir = '/Users/yanzhexu/Desktop/Research/Sliding box GBM/MyAlgorithm_V2/addYlabel/GBM_SlidingWindow_TextureMap' def GrayScaleNormalization(imgArray, imgMax,imgMin): imgRange = imgMax - imgMin imgArray = (imgArray - imgMin) * (255.0 / imgRange) # transfer to closest int imgArray = numpy.rint(imgArray).astype(numpy.int16) return imgArray def Read2DImage(fileName, rotateAngle=0): rawImage = SimpleITK.ReadImage(fileName) imgArray = SimpleITK.GetArrayFromImage(rawImage) # Convert 3D Image to 2D if len(imgArray.shape) == 3: imgArray = imgArray[0, :, :] return imgArray # check if point is inside ROI boundary or outside boundary def point_inside_polygon(x,y,poly): n = len(poly) inside =False p1x,p1y = poly[0] for i in range(n+1): p2x,p2y = poly[i % n] if y > min(p1y,p2y): if y <= max(p1y,p2y): if x <= max(p1x,p2x): if p1y != p2y: xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x if p1x == p2x or x <= xinters: inside = not inside p1x,p1y = p2x,p2y return inside # check if box covers part of boundary def checkboxinout(testx, testy, xycoord): # check if box covers part of boundary b1 = point_inside_polygon(testx - 4, testy - 4, xycoord) b1h = point_inside_polygon(testx, testy - 4, xycoord) b2 = point_inside_polygon(testx - 4, testy + 4, xycoord) b2h = point_inside_polygon(testx - 4, testy, xycoord) b3 = point_inside_polygon(testx + 4, testy - 4, xycoord) b3h = point_inside_polygon(testx, testy + 4, xycoord) b4 = point_inside_polygon(testx + 4, testy + 4, xycoord) b4h = point_inside_polygon(testx + 4, testy, xycoord) if b1 != True or b1h != True or b2 != True or b2h != True or b3 != True or b3h != True or b4 != True or b4h != True: # False means one point of them is outside boundary, that means window is in boundary return False else: return True # get points inside ROI # biopsy: 3 conditions: 1. in boundary 2. off boundary but in rectangle box 3. off boundary and out of box def T2chooseinoutcoord(contourx1,contourx2,contoury1,contoury2,T1xycoord,T2xycoord,biopsycoordinatelist): print biopsycoordinatelist windowptlist = list() # for each point inside rectangle plot, check if each point inside boundary or outside boundary, inside: True, outside: False for testx in range(contourx1,contourx2+1): for testy in range(contoury1,contoury2+1): # check if point is inside T2 boundary or not T2inorout = point_inside_polygon(testx, testy, T2xycoord) if T2inorout == True: # check if point is inside T1 boundary or not T1inorout = point_inside_polygon(testx, testy, T1xycoord) windowptlist.append(list()) windowptlist[len(windowptlist)-1].append(testx) windowptlist[len(windowptlist)-1].append(testy) # False means in boundary, window is boundary window, 1: center pt of boundary window, 0: not boundary, inside boundary pt if checkboxinout(testx,testy,T2xycoord) == False: windowptlist[len(windowptlist) - 1].append(1) else: windowptlist[len(windowptlist) - 1].append(0) # 1: biopsy pt (inside), 0: not biopsy pt (inside) if [testx,testy] in biopsycoordinatelist: # remove from biopsy list biopsycoordinatelist.remove([testx, testy]) windowptlist[len(windowptlist) - 1].append(1) else: windowptlist[len(windowptlist) - 1].append(0) # 1: this window is also T1 window, 0: not belong to T1 if T1inorout == True: windowptlist[len(windowptlist)-1].append(1) else: windowptlist[len(windowptlist)-1].append(0) # if point is off boundary and in rectangle box, but in biopsy, then add this pt, and add 2: off boundary pt, and 1: biopsy pt, and 1: T1 window center pt elif [testx, testy] in biopsycoordinatelist: print 'biopsy in rectangle box:',[testx,testy] # if out of boundary but in rectangle box biopsycoordinatelist.remove([testx,testy]) T1inorout = point_inside_polygon(testx, testy, T1xycoord) windowptlist.append(list()) windowptlist[len(windowptlist) - 1].append(testx) windowptlist[len(windowptlist) - 1].append(testy) windowptlist[len(windowptlist) - 1].append(2) windowptlist[len(windowptlist) - 1].append(1) # 1: this window is also T1 window, 0: not belong to T1 if T1inorout == True: windowptlist[len(windowptlist) - 1].append(1) else: windowptlist[len(windowptlist) - 1].append(0) # if point is off boundary and out of rectangle box, add them all if len(biopsycoordinatelist)!=0: print 'rest biopsy:',biopsycoordinatelist for biopsyclist in biopsycoordinatelist: testx = biopsyclist[0] testy = biopsyclist[1] print 'biopsy out of rectangle box:', biopsyclist T1inorout = point_inside_polygon(testx, testy, T1xycoord) windowptlist.append(list()) windowptlist[len(windowptlist) - 1].append(testx) windowptlist[len(windowptlist) - 1].append(testy) windowptlist[len(windowptlist) - 1].append(2) windowptlist[len(windowptlist) - 1].append(1) # 1: this window is also T1 window, 0: not belong to T1 if T1inorout == True: windowptlist[len(windowptlist) - 1].append(1) else: windowptlist[len(windowptlist) - 1].append(0) return windowptlist # process boundary points coordinate from XML file def ParseXMLDrawROI(xmlfile): tree = ET.parse(xmlfile) root = tree.getroot() xcoordlist = list() ycoordlist = list() xycoordlist = list() for child in root.iter('string'): if not fnmatch.fnmatch(child.text,'*{*}*'): continue xcoords = str(child.text).split(',')[0] ycoords = str(child.text).split(',')[1] xc = float(xcoords.split('{')[1]) yc = float(ycoords.split('}')[0].replace(' ','')) xcoordlist.append(xc) ycoordlist.append(yc) xycoordlist.append(list()) xycoordlist[len(xycoordlist) - 1].append(xc) xycoordlist[len(xycoordlist) - 1].append(yc) xcoordlist.append(xcoordlist[0]) ycoordlist.append(ycoordlist[0]) # get x/y min/max in coords xmin = min(xcoordlist) ymin = min(ycoordlist) xmax = max(xcoordlist) ymax = max(ycoordlist) # ceil: get higher int # floor: get lower int xmin = int(math.floor(xmin)) xmax = int(math.ceil(xmax)) ymin = int(math.floor(ymin)) ymax = int(math.ceil(ymax)) return xmin,xmax,ymin,ymax,xycoordlist # get biopsy coordinates biopsycoordinatefile = GBMslidingWindowBoxMappingCoordinate.getCoordinatefiles(mapDir, coorDir) def genTextures(): GLCMAngleList = ['Avg'] featureTitle = ['Image Contrast', 'Image Filename','X', 'Y', 'Boundary (1) or not (inside: 0), (outside:2)', 'Biopsy(1) or not (0)','T1 window in T2 (1) or not (0)'] for GLCMAngle in GLCMAngleList: for featureName in haralick_labels[:-1]: featureTitle.append(featureName + '_' + GLCMAngle) LBPRadius = 1 LBPnPoints = 8 * LBPRadius LBPMethod = 'uniform' LBPFeatureList = [] for x in xrange(0, LBPnPoints + 1): LBPFeatureList.append('LBP_%02d' % x) LBPFeatureList.append('LBP_Other') featureTitle = featureTitle + LBPFeatureList Gaborsigma_range = (0.6,1.0) Gaborfreq_range = (0.1, 0.3, 0.5) kernel_bank = [] GaborFeatureList = ['Gabor_Mean', 'Gabor_Std'] for GaborSigma in Gaborsigma_range: for GaborFreq in Gaborfreq_range: for featureName in GaborFeatureList: featureTitle.append(featureName + '_' + str(GaborSigma) + '_' + str(GaborFreq)) Gaborkernel_bank = ExtendGaborFeatures.genKernelBank(Gaborsigma_range, Gaborfreq_range, kernel_bank) MeanStdfeaturelist = ['Raw_Mean','Raw_Std'] Ylabel = ['Ylabel'] featureTitle = featureTitle + MeanStdfeaturelist + Ylabel dicomnames = ['EPI', 'P', 'Q', 'RCBV', 'SPGRC', 'T2'] for texturemapfile in os.listdir(rootDir): if texturemapfile.startswith('.'): continue if texturemapfile.startswith('..'): continue print texturemapfile patientname = texturemapfile.split('_')[0] if fnmatch.fnmatch(patientname, "*FSL*"): newpatientname = patientname.replace("FSL", "") elif fnmatch.fnmatch(patientname, "*h*"): newpatientname = patientname.replace("h", "") else: newpatientname = patientname print newpatientname slicepathfile = os.path.join(rootDir, texturemapfile) for slicefile in os.listdir(slicepathfile): if slicefile.startswith('.'): continue if slicefile.startswith('..'): continue print slicefile slicenum = slicefile.replace('slice', '') slicenum = int(slicenum) dcmxmlfilepath = os.path.join(slicepathfile, slicefile) dcmfiledict = dict() for dcmfile in os.listdir(dcmxmlfilepath): if dcmfile.startswith('.'): continue if fnmatch.fnmatch(dcmfile, '*dcm*') is False: continue if fnmatch.fnmatch(dcmfile, '*precontrast*'): continue if fnmatch.fnmatch(dcmfile, '*C*SPGR*') or fnmatch.fnmatch(dcmfile, '*+C*T1*') or fnmatch.fnmatch(dcmfile,'*T1*+C*'): SPGRCfile = dcmfile dcmfiledict['SPGRC'] = SPGRCfile if fnmatch.fnmatch(dcmfile, '*T2*'): T2file = dcmfile dcmfiledict['T2'] = T2file if fnmatch.fnmatch(dcmfile, '*q*'): Qfile = dcmfile dcmfiledict['Q'] = Qfile if fnmatch.fnmatch(dcmfile, '*p*'): Pfile = dcmfile dcmfiledict['P'] = Pfile if fnmatch.fnmatch(dcmfile, '*rCBV*'): RCBVfile = dcmfile dcmfiledict['RCBV'] = RCBVfile if fnmatch.fnmatch(dcmfile, '*EPI*+C*') or fnmatch.fnmatch(dcmfile, '*+C*EPI*'): EPIfile = dcmfile dcmfiledict['EPI'] = EPIfile for xmlfile in os.listdir(dcmxmlfilepath): if not fnmatch.fnmatch(xmlfile, '*.xml'): continue if fnmatch.fnmatch(xmlfile, '*NECROSIS*') or fnmatch.fnmatch(xmlfile,'*necrosis*'): continue if fnmatch.fnmatch(xmlfile, '*C*SPGR*') or fnmatch.fnmatch(xmlfile, '*+C*T1*') or fnmatch.fnmatch( xmlfile, '*T1*+C*'): T1xmlfile = xmlfile if fnmatch.fnmatch(xmlfile, '*T2*'): T2xmlfile = xmlfile print '\n' T1xmlfilepath = os.path.join(dcmxmlfilepath, T1xmlfile) T2xmlfilepath = os.path.join(dcmxmlfilepath, T2xmlfile) # only process those slice which has biopsy (CG slice 37 does not have biopsy so it does not have sliding window textures) if slicenum not in biopsycoordinatefile[newpatientname]: continue else: biopsycoordinatelist = biopsycoordinatefile[newpatientname][slicenum] T1xmin, T1xmax, T1ymin, T1ymax, T1xycoord = ParseXMLDrawROI(T1xmlfilepath) T2xmin, T2xmax, T2ymin, T2ymax, T2xycoord = ParseXMLDrawROI(T2xmlfilepath) # check if coords inside boundary or outside boundary T2windowptlist = T2chooseinoutcoord(T2xmin, T2xmax, T2ymin, T2ymax, T1xycoord, T2xycoord, biopsycoordinatelist) # start to do T1 featuresOutFn = 'ROI_Texture_Map.csv' # start to do T2 T2featuresOutFn = newpatientname + '_' + slicefile + '_' + 'T2' + '_' + featuresOutFn featuresCSVFn = os.path.join(outputDir, T2featuresOutFn) with open(featuresCSVFn, 'wb') as featureCSVFile: featureWriter = csv.writer(featureCSVFile, dialect='excel') featureWriter.writerow(featureTitle) for eachdcm in dicomnames: print eachdcm dicomfile = dcmfiledict[eachdcm] dicomfilepath = os.path.join(dcmxmlfilepath, dicomfile) dicomImage = Read2DImage(dicomfilepath) for eachpt in T2windowptlist: meanstd = list() GLCM = list() LBP = list() Gabor = list() xcoord = int(eachpt[0]) ycoord = int(eachpt[1]) boundaryornot = int(eachpt[2]) biopsyornot = int(eachpt[3]) T1ornot = int(eachpt[4]) aFeature = [eachdcm, dicomfile, xcoord, ycoord, boundaryornot, biopsyornot,T1ornot] subImage = dicomImage[ycoord - 4:ycoord + 4, xcoord - 4:xcoord + 4] subImageGLCM = GrayScaleNormalization(subImage, subImage.max(), subImage.min()) Raw_mean = numpy.mean(subImage) Raw_std = numpy.std(subImage) meanstd.append(Raw_mean) meanstd.append(Raw_std) # GLCM glcmFeatures = GLCMFeatures.calcFeatures(subImageGLCM) for GLCMAngle in GLCMAngleList: for featureName in haralick_labels[:-1]: GLCM.append(glcmFeatures[GLCMAngle][featureName]) # LBP subimage subImageLBP = dicomImage[ycoord - 4 - LBPRadius:ycoord + 4 + LBPRadius, xcoord - 4 - LBPRadius: xcoord + 4 + LBPRadius] extendsubImageLBP = GrayScaleNormalization(subImageLBP, subImage.max(), subImage.min()) # need to use extended ROI LBPs = ExtendLBPFeatures.calcFeatures(extendsubImageLBP, LBPnPoints, LBPRadius, LBPMethod) for lbp in LBPs: LBP.append(lbp) # Gabor, width = 8 # use extended ROI GaborFeatures = ExtendGaborFeatures.calcFeatures(dicomImage, xcoord - 4, ycoord - 4, 8, 8, Gaborkernel_bank, subImage.max(), subImage.min()) for gaborfeature in GaborFeatures: for eachg in gaborfeature: Gabor.append(eachg) aFeature = aFeature + GLCM + LBP + Gabor + meanstd featureWriter.writerow(aFeature) genTextures()
36.776573
169
0.57538
e7061eb7d2c1926d914ec648246fb721e8d11e39
546
py
Python
image_library/db_setup.py
gustavoschaedler/cc-anchorloans
946387cc1966ebbff3c0b6e05aaf477e6572db16
[ "MIT" ]
null
null
null
image_library/db_setup.py
gustavoschaedler/cc-anchorloans
946387cc1966ebbff3c0b6e05aaf477e6572db16
[ "MIT" ]
4
2021-03-19T03:13:34.000Z
2022-01-13T01:34:26.000Z
image_library/db_setup.py
gustavoschaedler/cc-anchorloans
946387cc1966ebbff3c0b6e05aaf477e6572db16
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base engine = create_engine('sqlite:///site.db', convert_unicode=True) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Base.query = db_session.query_property() def init_db(): import image_library.models Base.metadata.create_all(bind=engine)
34.125
65
0.690476
029e3f99a84ae86365e7e55b32e3c14291ecf68d
4,918
py
Python
src/keycloak/admin/roles.py
Arhimed/python-keycloak-client
37f09681b7c1ea9265885e30ba138382978b031e
[ "MIT" ]
null
null
null
src/keycloak/admin/roles.py
Arhimed/python-keycloak-client
37f09681b7c1ea9265885e30ba138382978b031e
[ "MIT" ]
null
null
null
src/keycloak/admin/roles.py
Arhimed/python-keycloak-client
37f09681b7c1ea9265885e30ba138382978b031e
[ "MIT" ]
null
null
null
import json from collections import OrderedDict from keycloak.admin import KeycloakAdminCollection, KeycloakAdminBaseElement from keycloak.helpers import to_camel_case ROLE_KWARGS = [ 'description', 'id', 'client_role', 'composite', 'composites', 'container_id', 'scope_param_required' ] __all__ = ('Role', 'Roles', 'RealmRole', 'RealmRoles', 'ClientRole', 'ClientRoles',) class Roles(KeycloakAdminCollection): def create(self, name, **kwargs): """ Create new role http://www.keycloak.org/docs-api/3.4/rest-api/index.html #_roles_resource :param str name: Name for the role :param str description: (optional) :param str id: (optional) :param bool client_role: (optional) :param bool composite: (optional) :param object composites: (optional) :param str container_id: (optional) :param bool scope_param_required: (optional) """ payload = OrderedDict(name=name) for key in ROLE_KWARGS: if key in kwargs: payload[to_camel_case(key)] = kwargs[key] return self._admin.post( url=self._url_collection(), data=json.dumps(payload) ) def by_name(self, role_name): return Role(role_name=role_name, admin=self._admin) class Role(KeycloakAdminBaseElement): _role_name = None def __init__(self, role_name, *args, **kwargs): self._role_name = role_name super(Role, self).__init__(*args, **kwargs) def update(self, name, **kwargs): """ Update existing role. http://www.keycloak.org/docs-api/3.4/rest-api/index.html#_roles_resource :param str name: Name for the role :param str description: (optional) :param str id: (optional) :param bool client_role: (optional) :param bool composite: (optional) :param object composites: (optional) :param str container_id: (optional) :param bool scope_param_required: (optional) """ payload = OrderedDict(name=name) for key in ROLE_KWARGS: if key in kwargs: payload[to_camel_case(key)] = kwargs[key] return self._admin.put( url=self._admin.get_full_url(self.get_path_dyn('single')), data=json.dumps(payload) ) class RealmRole(Role): _realm_name = None _paths = { 'single': '/auth/admin/realms/{realm_name}/roles/{role_name}' } def __init__(self, realm_name, *args, **kwargs): self._realm_name = realm_name super(RealmRole, self).__init__(*args, **kwargs) # def __repr__(self): # return '<%s object realm="%s" role="%s">' % ( # self.__class__.__name__, self._realm_name, self._role_name) class RealmRoles(Roles): _realm_name = None _paths = { 'collection': '/auth/admin/realms/{realm_name}/roles' } _itemclass = RealmRole def __init__(self, realm_name, *args, **kwargs): self._realm_name = realm_name super(RealmRoles, self).__init__(*args, **kwargs) def by_name(self, role_name): return RealmRole(role_name=role_name, admin=self._admin, realm_name=self._realm_name) def _url_item_params(self, data): return dict( admin=self._admin, realm_name=self._realm_name, role_name=data['name'] ) class ClientRole(RealmRole): _client = None _paths = { 'single': '/auth/admin/realms/{realm_name}/clients/{client_id}/roles/{role_name}' } def __init__(self, client, *args, **kwargs): super(ClientRole, self).__init__(*args, **kwargs) from keycloak.admin.clients import Client if isinstance(client, Client): self._client = client else: self._client = Client(admin=self._admin, realm_name=self._realm_name, id=client) @property def _client_id(self): return self._client.id class ClientRoles(RealmRoles): _client = None _paths = { 'collection': '/auth/admin/realms/{realm_name}/clients/{client_id}/roles' } _itemclass = ClientRole def __init__(self, client, *args, **kwargs): super(ClientRoles, self).__init__(*args, **kwargs) from keycloak.admin.clients import Client if isinstance(client, Client): self._client = client else: self._client = Client(admin=self._admin, realm_name=self._realm_name, id=client) @property def _client_id(self): return self._client.id def by_name(self, role_name): return ClientRole(role_name=role_name, admin=self._admin, realm_name=self._realm_name, client=self._client) def _url_item_params(self, data): return dict( admin=self._admin, realm_name=self._realm_name, client=self._client, role_name=data['name'] )
28.929412
115
0.631151
15e922ac3d9089dc475cdba6468645bed6cfd50b
1,065
py
Python
official/nlp/projects/mobilebert/utils.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
1
2021-05-22T12:50:50.000Z
2021-05-22T12:50:50.000Z
official/nlp/projects/mobilebert/utils.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
official/nlp/projects/mobilebert/utils.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions.""" import numpy as np def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0): """Generate consistent fake integer input sequences.""" np.random.seed(seed) fake_input = [] for _ in range(batch_size): fake_input.append([]) for _ in range(seq_len): fake_input[-1].append(np.random.randint(0, vocab_size)) fake_input = np.asarray(fake_input) return fake_input
35.5
76
0.723005
ba422f0923a5b8928768a3df3097193dc0c47e92
63,539
py
Python
lib/spack/spack/test/cmd/ci.py
dialvarezs/spack
14d4203722daf3abd56a2b6c880214a1338e289f
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
lib/spack/spack/test/cmd/ci.py
dialvarezs/spack
14d4203722daf3abd56a2b6c880214a1338e289f
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
lib/spack/spack/test/cmd/ci.py
dialvarezs/spack
14d4203722daf3abd56a2b6c880214a1338e289f
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import filecmp import json import os import shutil import sys import pytest from jsonschema import ValidationError, validate from llnl.util.filesystem import mkdirp, working_dir import spack import spack.binary_distribution import spack.ci as ci import spack.compilers as compilers import spack.config import spack.environment as ev import spack.hash_types as ht import spack.main import spack.paths as spack_paths import spack.repo as repo import spack.util.gpg import spack.util.spack_yaml as syaml import spack.util.url as url_util from spack.schema.buildcache_spec import schema as specfile_schema from spack.schema.database_index import schema as db_idx_schema from spack.schema.gitlab_ci import schema as gitlab_ci_schema from spack.spec import CompilerSpec, Spec from spack.util.executable import which from spack.util.mock_package import MockPackageMultiRepo ci_cmd = spack.main.SpackCommand('ci') env_cmd = spack.main.SpackCommand('env') mirror_cmd = spack.main.SpackCommand('mirror') gpg_cmd = spack.main.SpackCommand('gpg') install_cmd = spack.main.SpackCommand('install') uninstall_cmd = spack.main.SpackCommand('uninstall') buildcache_cmd = spack.main.SpackCommand('buildcache') pytestmark = [pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows"), pytest.mark.maybeslow] @pytest.fixture() def ci_base_environment(working_env, tmpdir): os.environ['CI_PROJECT_DIR'] = tmpdir.strpath @pytest.fixture(scope='function') def mock_git_repo(tmpdir): """Create a mock git repo with two commits, the last one creating a .gitlab-ci.yml""" repo_path = tmpdir.join('mockspackrepo').strpath mkdirp(repo_path) git = which('git', required=True) with working_dir(repo_path): git('init') with open('README.md', 'w') as f: f.write('# Introduction') with open('.gitlab-ci.yml', 'w') as f: f.write(""" testjob: script: - echo "success" """) git('config', '--local', 'user.email', 'testing@spack.io') git('config', '--local', 'user.name', 'Spack Testing') # initial commit with README git('add', 'README.md') git('-c', 'commit.gpgsign=false', 'commit', '-m', 'initial commit') # second commit, adding a .gitlab-ci.yml git('add', '.gitlab-ci.yml') git('-c', 'commit.gpgsign=false', 'commit', '-m', 'add a .gitlab-ci.yml') yield repo_path def test_specs_staging(config): """Make sure we achieve the best possible staging for the following spec DAG:: a /| c b |\ e d |\ f g In this case, we would expect 'c', 'e', 'f', and 'g' to be in the first stage, and then 'd', 'b', and 'a' to be put in the next three stages, respectively. """ default = ('build', 'link') mock_repo = MockPackageMultiRepo() g = mock_repo.add_package('g', [], []) f = mock_repo.add_package('f', [], []) e = mock_repo.add_package('e', [], []) d = mock_repo.add_package('d', [f, g], [default, default]) c = mock_repo.add_package('c', [], []) b = mock_repo.add_package('b', [d, e], [default, default]) mock_repo.add_package('a', [b, c], [default, default]) with repo.use_repositories(mock_repo): spec_a = Spec('a') spec_a.concretize() spec_a_label = ci._spec_deps_key(spec_a) spec_b_label = ci._spec_deps_key(spec_a['b']) spec_c_label = ci._spec_deps_key(spec_a['c']) spec_d_label = ci._spec_deps_key(spec_a['d']) spec_e_label = ci._spec_deps_key(spec_a['e']) spec_f_label = ci._spec_deps_key(spec_a['f']) spec_g_label = ci._spec_deps_key(spec_a['g']) spec_labels, dependencies, stages = ci.stage_spec_jobs([spec_a]) assert (len(stages) == 4) assert (len(stages[0]) == 4) assert (spec_c_label in stages[0]) assert (spec_e_label in stages[0]) assert (spec_f_label in stages[0]) assert (spec_g_label in stages[0]) assert (len(stages[1]) == 1) assert (spec_d_label in stages[1]) assert (len(stages[2]) == 1) assert (spec_b_label in stages[2]) assert (len(stages[3]) == 1) assert (spec_a_label in stages[3]) def test_ci_generate_with_env(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment, mock_binary_index): """Make sure we can get a .gitlab-ci.yml from an environment file which has the gitlab-ci, cdash, and mirrors sections.""" mirror_url = 'https://my.fake.mirror' filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: definitions: - bootstrap: - cmake@3.4.3 - old-gcc-pkgs: - archive-files - callpath # specify ^openblas-with-lapack to ensure that builtin.mock repo flake8 # package (which can also provide lapack) is not chosen, as it violates # a package-level check which requires exactly one fetch strategy (this # is apparently not an issue for other tests that use it). - hypre@0.2.15 ^openblas-with-lapack specs: - matrix: - [$old-gcc-pkgs] mirrors: some-mirror: {0} gitlab-ci: bootstrap: - name: bootstrap compiler-agnostic: true mappings: - match: - arch=test-debian6-core2 runner-attributes: tags: - donotcare image: donotcare service-job-attributes: image: donotcare tags: [donotcare] cdash: build-group: Not important url: https://my.fake.cdash project: Not used site: Nothing """.format(mirror_url)) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) found_spec = False for ci_key in yaml_contents.keys(): if '(bootstrap)' in ci_key: found_spec = True assert('cmake' in ci_key) assert(found_spec) assert('stages' in yaml_contents) assert(len(yaml_contents['stages']) == 6) assert(yaml_contents['stages'][0] == 'stage-0') assert(yaml_contents['stages'][5] == 'stage-rebuild-index') assert('rebuild-index' in yaml_contents) rebuild_job = yaml_contents['rebuild-index'] expected = 'spack buildcache update-index --keys -d {0}'.format( mirror_url) assert(rebuild_job['script'][0] == expected) assert('variables' in yaml_contents) assert('SPACK_ARTIFACTS_ROOT' in yaml_contents['variables']) artifacts_root = yaml_contents['variables']['SPACK_ARTIFACTS_ROOT'] assert(artifacts_root == 'jobs_scratch_dir') def _validate_needs_graph(yaml_contents, needs_graph, artifacts): for job_name, job_def in yaml_contents.items(): for needs_def_name, needs_list in needs_graph.items(): if job_name.startswith(needs_def_name): # check job needs against the expected needs definition j_needs = job_def['needs'] assert all([job_needs['job'][:job_needs['job'].index('/')] in needs_list for job_needs in j_needs]) assert(all([nl in [n['job'][:n['job'].index('/')] for n in j_needs] for nl in needs_list])) assert all([job_needs['artifacts'] == artifacts for job_needs in j_needs]) break def test_ci_generate_bootstrap_gcc(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment): """Test that we can bootstrap a compiler and use it as the compiler for a spec in the environment""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: definitions: - bootstrap: - gcc@3.0 - gcc@2.0 specs: - dyninst%gcc@3.0 mirrors: some-mirror: https://my.fake.mirror gitlab-ci: bootstrap: - name: bootstrap compiler-agnostic: true mappings: - match: - arch=test-debian6-x86_64 runner-attributes: tags: - donotcare """) needs_graph = { '(bootstrap) conflict': [], '(bootstrap) gcc': [ '(bootstrap) conflict', ], '(specs) libelf': [ '(bootstrap) gcc', ], '(specs) libdwarf': [ '(bootstrap) gcc', '(specs) libelf', ], '(specs) dyninst': [ '(bootstrap) gcc', '(specs) libelf', '(specs) libdwarf', ], } with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) _validate_needs_graph(yaml_contents, needs_graph, False) def test_ci_generate_bootstrap_artifacts_buildcache(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment): """Test that we can bootstrap a compiler when artifacts buildcache is turned on""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: definitions: - bootstrap: - gcc@3.0 specs: - dyninst%gcc@3.0 mirrors: some-mirror: https://my.fake.mirror gitlab-ci: bootstrap: - name: bootstrap compiler-agnostic: true mappings: - match: - arch=test-debian6-x86_64 runner-attributes: tags: - donotcare enable-artifacts-buildcache: True """) needs_graph = { '(bootstrap) conflict': [], '(bootstrap) gcc': [ '(bootstrap) conflict', ], '(specs) libelf': [ '(bootstrap) gcc', '(bootstrap) conflict', ], '(specs) libdwarf': [ '(bootstrap) gcc', '(bootstrap) conflict', '(specs) libelf', ], '(specs) dyninst': [ '(bootstrap) gcc', '(bootstrap) conflict', '(specs) libelf', '(specs) libdwarf', ], } with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) _validate_needs_graph(yaml_contents, needs_graph, True) def test_ci_generate_with_env_missing_section(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment, mock_binary_index): """Make sure we get a reasonable message if we omit gitlab-ci section""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files mirrors: some-mirror: https://my.fake.mirror """) expect_out = 'Error: Environment yaml does not have "gitlab-ci" section' with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test'): output = ci_cmd('generate', fail_on_error=False, output=str) assert(expect_out in output) def test_ci_generate_with_cdash_token(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment, mock_binary_index): """Make sure we it doesn't break if we configure cdash""" os.environ.update({ 'SPACK_CDASH_AUTH_TOKEN': 'notreallyatokenbutshouldnotmatter', }) filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files mirrors: some-mirror: https://my.fake.mirror gitlab-ci: enable-artifacts-buildcache: True mappings: - match: - archive-files runner-attributes: tags: - donotcare image: donotcare cdash: build-group: Not important url: https://my.fake.cdash project: Not used site: Nothing """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test'): copy_to_file = str(tmpdir.join('backup-ci.yml')) output = ci_cmd('generate', '--copy-to', copy_to_file, output=str) # That fake token should still have resulted in being unable to # register build group with cdash, but the workload should # still have been generated. expect = 'Problem populating buildgroup' assert(expect in output) dir_contents = os.listdir(tmpdir.strpath) assert('backup-ci.yml' in dir_contents) orig_file = str(tmpdir.join('.gitlab-ci.yml')) assert(filecmp.cmp(orig_file, copy_to_file) is True) def test_ci_generate_with_custom_scripts(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment, mock_binary_index): """Test use of user-provided scripts""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files mirrors: some-mirror: https://my.fake.mirror gitlab-ci: mappings: - match: - archive-files runner-attributes: tags: - donotcare variables: ONE: plain-string-value TWO: ${INTERP_ON_BUILD} before_script: - mkdir /some/path - pushd /some/path - git clone ${SPACK_REPO} - cd spack - git checkout ${SPACK_REF} - popd script: - spack -d ci rebuild after_script: - rm -rf /some/path/spack """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): monkeypatch.setattr(spack.main, 'get_version', lambda: '0.15.3') ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) found_it = False assert('variables' in yaml_contents) global_vars = yaml_contents['variables'] assert('SPACK_VERSION' in global_vars) assert(global_vars['SPACK_VERSION'] == '0.15.3') assert('SPACK_CHECKOUT_VERSION' in global_vars) assert(global_vars['SPACK_CHECKOUT_VERSION'] == 'v0.15.3') for ci_key in yaml_contents.keys(): ci_obj = yaml_contents[ci_key] if 'archive-files' in ci_key: # Ensure we have variables, possibly interpolated assert('variables' in ci_obj) var_d = ci_obj['variables'] assert('ONE' in var_d) assert(var_d['ONE'] == 'plain-string-value') assert('TWO' in var_d) assert(var_d['TWO'] == '${INTERP_ON_BUILD}') # Ensure we have scripts verbatim assert('before_script' in ci_obj) before_script = ci_obj['before_script'] assert(before_script[0] == 'mkdir /some/path') assert(before_script[1] == 'pushd /some/path') assert(before_script[2] == 'git clone ${SPACK_REPO}') assert(before_script[3] == 'cd spack') assert(before_script[4] == 'git checkout ${SPACK_REF}') assert(before_script[5] == 'popd') assert('script' in ci_obj) assert(ci_obj['script'][0] == 'spack -d ci rebuild') assert('after_script' in ci_obj) after_script = ci_obj['after_script'][0] assert(after_script == 'rm -rf /some/path/spack') found_it = True assert(found_it) def test_ci_generate_pkg_with_deps(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment): """Test pipeline generation for a package w/ dependencies""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - flatten-deps mirrors: some-mirror: https://my.fake.mirror gitlab-ci: enable-artifacts-buildcache: True mappings: - match: - flatten-deps runner-attributes: tags: - donotcare - match: - dependency-install runner-attributes: tags: - donotcare """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) found = [] for ci_key in yaml_contents.keys(): ci_obj = yaml_contents[ci_key] if 'dependency-install' in ci_key: assert('stage' in ci_obj) assert(ci_obj['stage'] == 'stage-0') found.append('dependency-install') if 'flatten-deps' in ci_key: assert('stage' in ci_obj) assert(ci_obj['stage'] == 'stage-1') found.append('flatten-deps') assert('flatten-deps' in found) assert('dependency-install' in found) def test_ci_generate_for_pr_pipeline(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment): """Test that PR pipelines do not include a final stage job for rebuilding the mirror index, even if that job is specifically configured""" os.environ.update({ 'SPACK_PIPELINE_TYPE': 'spack_pull_request', 'SPACK_PR_BRANCH': 'fake-test-branch', }) filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - flatten-deps mirrors: some-mirror: https://my.fake.mirror gitlab-ci: enable-artifacts-buildcache: True mappings: - match: - flatten-deps runner-attributes: tags: - donotcare - match: - dependency-install runner-attributes: tags: - donotcare service-job-attributes: image: donotcare tags: [donotcare] rebuild-index: False """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): monkeypatch.setattr( ci, 'SPACK_PR_MIRRORS_ROOT_URL', r"file:///fake/mirror") monkeypatch.setattr( ci, 'SPACK_SHARED_PR_MIRROR_URL', r"file:///fake/mirror_two") ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) assert('rebuild-index' not in yaml_contents) assert('variables' in yaml_contents) pipeline_vars = yaml_contents['variables'] assert('SPACK_PIPELINE_TYPE' in pipeline_vars) assert(pipeline_vars['SPACK_PIPELINE_TYPE'] == 'spack_pull_request') def test_ci_generate_with_external_pkg(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment): """Make sure we do not generate jobs for external pkgs""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files - externaltest mirrors: some-mirror: https://my.fake.mirror gitlab-ci: mappings: - match: - archive-files - externaltest runner-attributes: tags: - donotcare image: donotcare """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): monkeypatch.setattr( ci, 'SPACK_PR_MIRRORS_ROOT_URL', r"file:///fake/mirror") monkeypatch.setattr( ci, 'SPACK_SHARED_PR_MIRROR_URL', r"file:///fake/mirror_two") ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: yaml_contents = syaml.load(f) # Check that the "externaltool" package was not erroneously staged assert not any('externaltool' in key for key in yaml_contents) @pytest.mark.xfail(reason='fails intermittently and covered by gitlab ci') def test_ci_rebuild(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, mock_gnupghome, mock_fetch, ci_base_environment, mock_binary_index): working_dir = tmpdir.join('working_dir') log_dir = os.path.join(working_dir.strpath, 'logs') repro_dir = os.path.join(working_dir.strpath, 'repro') env_dir = working_dir.join('concrete_env') mirror_dir = working_dir.join('mirror') mirror_url = 'file://{0}'.format(mirror_dir.strpath) broken_specs_path = os.path.join(working_dir.strpath, 'naughty-list') broken_specs_url = url_util.join('file://', broken_specs_path) temp_storage_url = 'file:///path/to/per/pipeline/storage' ci_job_url = 'https://some.domain/group/project/-/jobs/42' ci_pipeline_url = 'https://some.domain/group/project/-/pipelines/7' signing_key_dir = spack_paths.mock_gpg_keys_path signing_key_path = os.path.join(signing_key_dir, 'package-signing-key') with open(signing_key_path) as fd: signing_key = fd.read() spack_yaml_contents = """ spack: definitions: - packages: [archive-files] specs: - $packages mirrors: test-mirror: {0} gitlab-ci: broken-specs-url: {1} temporary-storage-url-prefix: {2} mappings: - match: - archive-files runner-attributes: tags: - donotcare image: donotcare cdash: build-group: Not important url: https://my.fake.cdash project: Not used site: Nothing """.format(mirror_url, broken_specs_url, temp_storage_url) filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write(spack_yaml_contents) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test') as env: with env.write_transaction(): env.concretize() env.write() if not os.path.exists(env_dir.strpath): os.makedirs(env_dir.strpath) shutil.copyfile(env.manifest_path, os.path.join(env_dir.strpath, 'spack.yaml')) shutil.copyfile(env.lock_path, os.path.join(env_dir.strpath, 'spack.lock')) root_spec_dag_hash = None for h, s in env.specs_by_hash.items(): if s.name == 'archive-files': root_spec_dag_hash = h assert root_spec_dag_hash def fake_cdash_register(build_name, base_url, project, site, track): return ('fakebuildid', 'fakestamp') monkeypatch.setattr(spack.cmd.ci, 'CI_REBUILD_INSTALL_BASE_ARGS', [ 'notcommand' ]) monkeypatch.setattr(spack.cmd.ci, 'INSTALL_FAIL_CODE', 127) with env_dir.as_cwd(): env_cmd('activate', '--without-view', '--sh', '-d', '.') # Create environment variables as gitlab would do it os.environ.update({ 'SPACK_ARTIFACTS_ROOT': working_dir.strpath, 'SPACK_JOB_LOG_DIR': log_dir, 'SPACK_JOB_REPRO_DIR': repro_dir, 'SPACK_LOCAL_MIRROR_DIR': mirror_dir.strpath, 'SPACK_CONCRETE_ENV_DIR': env_dir.strpath, 'CI_PIPELINE_ID': '7192', 'SPACK_SIGNING_KEY': signing_key, 'SPACK_ROOT_SPEC': root_spec_dag_hash, 'SPACK_JOB_SPEC_DAG_HASH': root_spec_dag_hash, 'SPACK_JOB_SPEC_PKG_NAME': 'archive-files', 'SPACK_COMPILER_ACTION': 'NONE', 'SPACK_CDASH_BUILD_NAME': '(specs) archive-files', 'SPACK_REMOTE_MIRROR_URL': mirror_url, 'SPACK_PIPELINE_TYPE': 'spack_protected_branch', 'CI_JOB_URL': ci_job_url, 'CI_PIPELINE_URL': ci_pipeline_url, }) ci_cmd('rebuild', fail_on_error=False) expected_repro_files = [ 'install.sh', 'root.json', 'archive-files.json', 'spack.yaml', 'spack.lock' ] repro_files = os.listdir(repro_dir) assert(all([f in repro_files for f in expected_repro_files])) install_script_path = os.path.join(repro_dir, 'install.sh') install_line = None with open(install_script_path) as fd: for line in fd: if line.startswith('"notcommand"'): install_line = line assert(install_line) def mystrip(s): return s.strip('"').rstrip('\n').rstrip('"') install_parts = [mystrip(s) for s in install_line.split(' ')] assert('--keep-stage' in install_parts) assert('--no-check-signature' not in install_parts) assert('--no-add' in install_parts) assert('-f' in install_parts) flag_index = install_parts.index('-f') assert('archive-files.json' in install_parts[flag_index + 1]) broken_spec_file = os.path.join(broken_specs_path, root_spec_dag_hash) with open(broken_spec_file) as fd: broken_spec_content = fd.read() assert(ci_job_url in broken_spec_content) assert(ci_pipeline_url) in broken_spec_content env_cmd('deactivate') def test_ci_nothing_to_rebuild(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, mock_fetch, ci_base_environment, mock_binary_index): working_dir = tmpdir.join('working_dir') mirror_dir = working_dir.join('mirror') mirror_url = 'file://{0}'.format(mirror_dir.strpath) spack_yaml_contents = """ spack: definitions: - packages: [archive-files] specs: - $packages mirrors: test-mirror: {0} gitlab-ci: enable-artifacts-buildcache: True mappings: - match: - archive-files runner-attributes: tags: - donotcare image: donotcare """.format(mirror_url) install_cmd('archive-files') buildcache_cmd('create', '-a', '-f', '-u', '--mirror-url', mirror_url, 'archive-files') filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write(spack_yaml_contents) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test') as env: env.concretize() root_spec_dag_hash = None for h, s in env.specs_by_hash.items(): if s.name == 'archive-files': root_spec_dag_hash = h # Create environment variables as gitlab would do it os.environ.update({ 'SPACK_ARTIFACTS_ROOT': working_dir.strpath, 'SPACK_JOB_LOG_DIR': 'log_dir', 'SPACK_JOB_REPRO_DIR': 'repro_dir', 'SPACK_LOCAL_MIRROR_DIR': mirror_dir.strpath, 'SPACK_CONCRETE_ENV_DIR': tmpdir.strpath, 'SPACK_ROOT_SPEC': root_spec_dag_hash, 'SPACK_JOB_SPEC_DAG_HASH': root_spec_dag_hash, 'SPACK_JOB_SPEC_PKG_NAME': 'archive-files', 'SPACK_COMPILER_ACTION': 'NONE', 'SPACK_REMOTE_MIRROR_URL': mirror_url, }) def fake_dl_method(spec, *args, **kwargs): print('fake download buildcache {0}'.format(spec.name)) monkeypatch.setattr( spack.binary_distribution, 'download_single_spec', fake_dl_method) ci_out = ci_cmd('rebuild', output=str) assert('No need to rebuild archive-files' in ci_out) assert('fake download buildcache archive-files' in ci_out) env_cmd('deactivate') @pytest.mark.disable_clean_stage_check def test_push_mirror_contents(tmpdir, mutable_mock_env_path, install_mockery_mutable_config, mock_packages, mock_fetch, mock_stage, mock_gnupghome, ci_base_environment, mock_binary_index): working_dir = tmpdir.join('working_dir') mirror_dir = working_dir.join('mirror') mirror_url = 'file://{0}'.format(mirror_dir.strpath) signing_key_dir = spack_paths.mock_gpg_keys_path signing_key_path = os.path.join(signing_key_dir, 'package-signing-key') with open(signing_key_path) as fd: signing_key = fd.read() ci.import_signing_key(signing_key) spack_yaml_contents = """ spack: definitions: - packages: [patchelf] specs: - $packages mirrors: test-mirror: {0} gitlab-ci: enable-artifacts-buildcache: True mappings: - match: - patchelf runner-attributes: tags: - donotcare image: donotcare service-job-attributes: tags: - nonbuildtag image: basicimage """.format(mirror_url) filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write(spack_yaml_contents) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test') as env: spec_map = ci.get_concrete_specs( env, 'patchelf', 'patchelf', 'FIND_ANY') concrete_spec = spec_map['patchelf'] spec_json = concrete_spec.to_json(hash=ht.dag_hash) json_path = str(tmpdir.join('spec.json')) with open(json_path, 'w') as ypfd: ypfd.write(spec_json) install_cmd('--keep-stage', json_path) # env, spec, json_path, mirror_url, build_id, sign_binaries ci.push_mirror_contents(env, json_path, mirror_url, True) buildcache_path = os.path.join(mirror_dir.strpath, 'build_cache') # Now test the --prune-dag (default) option of spack ci generate mirror_cmd('add', 'test-ci', mirror_url) outputfile_pruned = str(tmpdir.join('pruned_pipeline.yml')) ci_cmd('generate', '--output-file', outputfile_pruned) with open(outputfile_pruned) as f: contents = f.read() yaml_contents = syaml.load(contents) assert('no-specs-to-rebuild' in yaml_contents) # Make sure there are no other spec jobs or rebuild-index assert(len(yaml_contents.keys()) == 1) the_elt = yaml_contents['no-specs-to-rebuild'] assert('tags' in the_elt) assert('nonbuildtag' in the_elt['tags']) assert('image' in the_elt) assert(the_elt['image'] == 'basicimage') outputfile_not_pruned = str(tmpdir.join('unpruned_pipeline.yml')) ci_cmd('generate', '--no-prune-dag', '--output-file', outputfile_not_pruned) # Test the --no-prune-dag option of spack ci generate with open(outputfile_not_pruned) as f: contents = f.read() yaml_contents = syaml.load(contents) found_spec_job = False for ci_key in yaml_contents.keys(): if '(specs) patchelf' in ci_key: the_elt = yaml_contents[ci_key] assert('variables' in the_elt) job_vars = the_elt['variables'] assert('SPACK_SPEC_NEEDS_REBUILD' in job_vars) assert(job_vars['SPACK_SPEC_NEEDS_REBUILD'] == 'False') found_spec_job = True assert(found_spec_job) mirror_cmd('rm', 'test-ci') # Test generating buildcache index while we have bin mirror buildcache_cmd('update-index', '--mirror-url', mirror_url) index_path = os.path.join(buildcache_path, 'index.json') with open(index_path) as idx_fd: index_object = json.load(idx_fd) validate(index_object, db_idx_schema) # Now that index is regenerated, validate "buildcache list" output buildcache_list_output = buildcache_cmd('list', output=str) assert('patchelf' in buildcache_list_output) # Also test buildcache_spec schema bc_files_list = os.listdir(buildcache_path) for file_name in bc_files_list: if file_name.endswith('.spec.json.sig'): spec_json_path = os.path.join(buildcache_path, file_name) with open(spec_json_path) as json_fd: json_object = Spec.extract_json_from_clearsig(json_fd.read()) validate(json_object, specfile_schema) logs_dir = working_dir.join('logs_dir') if not os.path.exists(logs_dir.strpath): os.makedirs(logs_dir.strpath) ci.copy_stage_logs_to_artifacts(concrete_spec, logs_dir.strpath) logs_dir_list = os.listdir(logs_dir.strpath) assert('spack-build-out.txt' in logs_dir_list) # Also just make sure that if something goes wrong with the # stage logs copy, no exception is thrown ci.copy_stage_logs_to_artifacts(None, logs_dir.strpath) dl_dir = working_dir.join('download_dir') if not os.path.exists(dl_dir.strpath): os.makedirs(dl_dir.strpath) buildcache_cmd('download', '--spec-file', json_path, '--path', dl_dir.strpath) dl_dir_list = os.listdir(dl_dir.strpath) assert(len(dl_dir_list) == 2) def test_push_mirror_contents_exceptions(monkeypatch, capsys): def failing_access(*args, **kwargs): raise Exception('Error: Access Denied') monkeypatch.setattr(spack.ci, '_push_mirror_contents', failing_access) # Input doesn't matter, as wwe are faking exceptional output url = 'fakejunk' ci.push_mirror_contents(None, None, url, None) captured = capsys.readouterr() std_out = captured[0] expect_msg = 'Permission problem writing to {0}'.format(url) assert expect_msg in std_out def test_ci_generate_override_runner_attrs(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment): """Test that we get the behavior we want with respect to the provision of runner attributes like tags, variables, and scripts, both when we inherit them from the top level, as well as when we override one or more at the runner level""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - flatten-deps - a mirrors: some-mirror: https://my.fake.mirror gitlab-ci: tags: - toplevel variables: ONE: toplevelvarone TWO: toplevelvartwo before_script: - pre step one - pre step two script: - main step after_script: - post step one mappings: - match: - flatten-deps runner-attributes: tags: - specific-one variables: THREE: specificvarthree - match: - dependency-install - match: - a runner-attributes: tags: - specific-a - toplevel variables: ONE: specificvarone TWO: specificvartwo before_script: - custom pre step one script: - custom main step after_script: - custom post step one service-job-attributes: image: donotcare tags: [donotcare] """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): monkeypatch.setattr( spack.main, 'get_version', lambda: '0.15.3-416-12ad69eb1') monkeypatch.setattr( ci, 'SPACK_PR_MIRRORS_ROOT_URL', r"file:///fake/mirror") monkeypatch.setattr( ci, 'SPACK_SHARED_PR_MIRROR_URL', r"file:///fake/mirror_two") ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) assert('variables' in yaml_contents) global_vars = yaml_contents['variables'] assert('SPACK_VERSION' in global_vars) assert(global_vars['SPACK_VERSION'] == '0.15.3-416-12ad69eb1') assert('SPACK_CHECKOUT_VERSION' in global_vars) assert(global_vars['SPACK_CHECKOUT_VERSION'] == '12ad69eb1') for ci_key in yaml_contents.keys(): if '(specs) b' in ci_key: assert(False) if '(specs) a' in ci_key: # Make sure a's attributes override variables, and all the # scripts. Also, make sure the 'toplevel' tag doesn't # appear twice, but that a's specific extra tag does appear the_elt = yaml_contents[ci_key] assert(the_elt['variables']['ONE'] == 'specificvarone') assert(the_elt['variables']['TWO'] == 'specificvartwo') assert('THREE' not in the_elt['variables']) assert(len(the_elt['tags']) == 2) assert('specific-a' in the_elt['tags']) assert('toplevel' in the_elt['tags']) assert(len(the_elt['before_script']) == 1) assert(the_elt['before_script'][0] == 'custom pre step one') assert(len(the_elt['script']) == 1) assert(the_elt['script'][0] == 'custom main step') assert(len(the_elt['after_script']) == 1) assert(the_elt['after_script'][0] == 'custom post step one') if '(specs) dependency-install' in ci_key: # Since the dependency-install match omits any # runner-attributes, make sure it inherited all the # top-level attributes. the_elt = yaml_contents[ci_key] assert(the_elt['variables']['ONE'] == 'toplevelvarone') assert(the_elt['variables']['TWO'] == 'toplevelvartwo') assert('THREE' not in the_elt['variables']) assert(len(the_elt['tags']) == 1) assert(the_elt['tags'][0] == 'toplevel') assert(len(the_elt['before_script']) == 2) assert(the_elt['before_script'][0] == 'pre step one') assert(the_elt['before_script'][1] == 'pre step two') assert(len(the_elt['script']) == 1) assert(the_elt['script'][0] == 'main step') assert(len(the_elt['after_script']) == 1) assert(the_elt['after_script'][0] == 'post step one') if '(specs) flatten-deps' in ci_key: # The flatten-deps match specifies that we keep the two # top level variables, but add a third specifc one. It # also adds a custom tag which should be combined with # the top-level tag. the_elt = yaml_contents[ci_key] assert(the_elt['variables']['ONE'] == 'toplevelvarone') assert(the_elt['variables']['TWO'] == 'toplevelvartwo') assert(the_elt['variables']['THREE'] == 'specificvarthree') assert(len(the_elt['tags']) == 2) assert('specific-one' in the_elt['tags']) assert('toplevel' in the_elt['tags']) assert(len(the_elt['before_script']) == 2) assert(the_elt['before_script'][0] == 'pre step one') assert(the_elt['before_script'][1] == 'pre step two') assert(len(the_elt['script']) == 1) assert(the_elt['script'][0] == 'main step') assert(len(the_elt['after_script']) == 1) assert(the_elt['after_script'][0] == 'post step one') def test_ci_generate_with_workarounds(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment): """Make sure the post-processing cli workarounds do what they should""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - callpath%gcc@3.0 mirrors: some-mirror: https://my.fake.mirror gitlab-ci: mappings: - match: ['%gcc@3.0'] runner-attributes: tags: - donotcare image: donotcare enable-artifacts-buildcache: true """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): monkeypatch.setattr( ci, 'SPACK_PR_MIRRORS_ROOT_URL', r"file:///fake/mirror") monkeypatch.setattr( ci, 'SPACK_SHARED_PR_MIRROR_URL', r"file:///fake/mirror_two") ci_cmd('generate', '--output-file', outputfile, '--dependencies') with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) found_one = False for ci_key in yaml_contents.keys(): if ci_key.startswith('(specs) '): found_one = True job_obj = yaml_contents[ci_key] assert('needs' not in job_obj) assert('dependencies' in job_obj) assert(found_one is True) @pytest.mark.disable_clean_stage_check def test_ci_rebuild_index(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, mock_fetch, mock_stage): working_dir = tmpdir.join('working_dir') mirror_dir = working_dir.join('mirror') mirror_url = 'file://{0}'.format(mirror_dir.strpath) spack_yaml_contents = """ spack: specs: - callpath mirrors: test-mirror: {0} gitlab-ci: mappings: - match: - patchelf runner-attributes: tags: - donotcare image: donotcare """.format(mirror_url) filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write(spack_yaml_contents) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test') as env: spec_map = ci.get_concrete_specs( env, 'callpath', 'callpath', 'FIND_ANY') concrete_spec = spec_map['callpath'] spec_json = concrete_spec.to_json(hash=ht.dag_hash) json_path = str(tmpdir.join('spec.json')) with open(json_path, 'w') as ypfd: ypfd.write(spec_json) install_cmd('--keep-stage', '-f', json_path) buildcache_cmd('create', '-u', '-a', '-f', '--mirror-url', mirror_url, 'callpath') ci_cmd('rebuild-index') buildcache_path = os.path.join(mirror_dir.strpath, 'build_cache') index_path = os.path.join(buildcache_path, 'index.json') with open(index_path) as idx_fd: index_object = json.load(idx_fd) validate(index_object, db_idx_schema) def test_ci_generate_bootstrap_prune_dag( install_mockery_mutable_config, mock_packages, mock_fetch, mock_archive, mutable_config, monkeypatch, tmpdir, mutable_mock_env_path, ci_base_environment): """Test compiler bootstrapping with DAG pruning. Specifically, make sure that if we detect the bootstrapped compiler needs to be rebuilt, we ensure the spec we want to build with that compiler is scheduled for rebuild as well.""" # Create a temp mirror directory for buildcache usage mirror_dir = tmpdir.join('mirror_dir') mirror_url = 'file://{0}'.format(mirror_dir.strpath) # Install a compiler, because we want to put it in a buildcache install_cmd('gcc@10.1.0%gcc@4.5.0') # Put installed compiler in the buildcache buildcache_cmd('create', '-u', '-a', '-f', '-d', mirror_dir.strpath, 'gcc@10.1.0%gcc@4.5.0') # Now uninstall the compiler uninstall_cmd('-y', 'gcc@10.1.0%gcc@4.5.0') monkeypatch.setattr(spack.concretize.Concretizer, 'check_for_compiler_existence', False) spack.config.set('config:install_missing_compilers', True) assert CompilerSpec('gcc@10.1.0') not in compilers.all_compiler_specs() # Configure the mirror where we put that buildcache w/ the compiler mirror_cmd('add', 'test-mirror', mirror_url) install_cmd('--no-check-signature', 'a%gcc@10.1.0') # Put spec built with installed compiler in the buildcache buildcache_cmd('create', '-u', '-a', '-f', '-d', mirror_dir.strpath, 'a%gcc@10.1.0') # Now uninstall the spec uninstall_cmd('-y', 'a%gcc@10.1.0') filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: definitions: - bootstrap: - gcc@10.1.0%gcc@4.5.0 specs: - a%gcc@10.1.0 mirrors: atestm: {0} gitlab-ci: bootstrap: - name: bootstrap compiler-agnostic: true mappings: - match: - arch=test-debian6-x86_64 runner-attributes: tags: - donotcare - match: - arch=test-debian6-core2 runner-attributes: tags: - meh """.format(mirror_url)) # Without this monkeypatch, pipeline generation process would think that # nothing in the environment needs rebuilding. With the monkeypatch, the # process sees the compiler as needing a rebuild, which should then result # in the specs built with that compiler needing a rebuild too. def fake_get_mirrors_for_spec(spec=None, mirrors_to_check=None, index_only=False): if spec.name == 'gcc': return [] else: return [{ 'spec': spec, 'mirror_url': mirror_url, }] with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): monkeypatch.setattr( ci, 'SPACK_PR_MIRRORS_ROOT_URL', r"file:///fake/mirror") monkeypatch.setattr( ci, 'SPACK_SHARED_PR_MIRROR_URL', r"file:///fake/mirror_two") ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as of: yaml_contents = of.read() original_yaml_contents = syaml.load(yaml_contents) # without the monkeypatch, everything appears up to date and no # rebuild jobs are generated. assert(original_yaml_contents) assert('no-specs-to-rebuild' in original_yaml_contents) monkeypatch.setattr(spack.binary_distribution, 'get_mirrors_for_spec', fake_get_mirrors_for_spec) ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as of: yaml_contents = of.read() new_yaml_contents = syaml.load(yaml_contents) assert(new_yaml_contents) # This 'needs' graph reflects that even though specs 'a' and 'b' do # not otherwise need to be rebuilt (thanks to DAG pruning), they # both end up in the generated pipeline because the compiler they # depend on is bootstrapped, and *does* need to be rebuilt. needs_graph = { '(bootstrap) gcc': [], '(specs) b': [ '(bootstrap) gcc', ], '(specs) a': [ '(bootstrap) gcc', '(specs) b', ], } _validate_needs_graph(new_yaml_contents, needs_graph, False) def test_ci_get_stack_changed(mock_git_repo, monkeypatch): """Test that we can detect the change to .gitlab-ci.yml in a mock spack git repo.""" monkeypatch.setattr(spack.paths, 'prefix', mock_git_repo) assert ci.get_stack_changed('/no/such/env/path') is True def test_ci_generate_prune_untouched(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, ci_base_environment, monkeypatch): """Test pipeline generation with pruning works to eliminate specs that were not affected by a change""" os.environ.update({ 'SPACK_PRUNE_UNTOUCHED': 'TRUE', # enables pruning of untouched specs }) mirror_url = 'https://my.fake.mirror' filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files - callpath mirrors: some-mirror: {0} gitlab-ci: mappings: - match: - arch=test-debian6-core2 runner-attributes: tags: - donotcare image: donotcare """.format(mirror_url)) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) def fake_compute_affected(r1=None, r2=None): return ['libdwarf'] def fake_stack_changed(env_path, rev1='HEAD^', rev2='HEAD'): return False with ev.read('test'): monkeypatch.setattr( ci, 'compute_affected_packages', fake_compute_affected) monkeypatch.setattr( ci, 'get_stack_changed', fake_stack_changed) ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as f: contents = f.read() yaml_contents = syaml.load(contents) for ci_key in yaml_contents.keys(): if 'archive-files' in ci_key or 'mpich' in ci_key: print('Error: archive-files and mpich should have been pruned') assert(False) def test_ci_subcommands_without_mirror(tmpdir, mutable_mock_env_path, mock_packages, install_mockery, ci_base_environment, mock_binary_index): """Make sure we catch if there is not a mirror and report an error""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files gitlab-ci: mappings: - match: - archive-files runner-attributes: tags: - donotcare image: donotcare """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) with ev.read('test'): # Check the 'generate' subcommand output = ci_cmd('generate', '--output-file', outputfile, output=str, fail_on_error=False) ex = 'spack ci generate requires an env containing a mirror' assert(ex in output) # Also check the 'rebuild-index' subcommand output = ci_cmd('rebuild-index', output=str, fail_on_error=False) ex = 'spack ci rebuild-index requires an env containing a mirror' assert(ex in output) def test_ensure_only_one_temporary_storage(): """Make sure 'gitlab-ci' section of env does not allow specification of both 'enable-artifacts-buildcache' and 'temporary-storage-url-prefix'.""" gitlab_ci_template = """ gitlab-ci: {0} mappings: - match: - notcheckedhere runner-attributes: tags: - donotcare """ enable_artifacts = 'enable-artifacts-buildcache: True' temp_storage = 'temporary-storage-url-prefix: file:///temp/mirror' specify_both = """{0} {1} """.format(enable_artifacts, temp_storage) specify_neither = '' # User can specify "enable-artifacts-buildcache" (boolean) yaml_obj = syaml.load(gitlab_ci_template.format(enable_artifacts)) validate(yaml_obj, gitlab_ci_schema) # User can also specify "temporary-storage-url-prefix" (string) yaml_obj = syaml.load(gitlab_ci_template.format(temp_storage)) validate(yaml_obj, gitlab_ci_schema) # However, specifying both should fail to validate yaml_obj = syaml.load(gitlab_ci_template.format(specify_both)) with pytest.raises(ValidationError): validate(yaml_obj, gitlab_ci_schema) # Specifying neither should be fine too, as neither of these properties # should be required yaml_obj = syaml.load(gitlab_ci_template.format(specify_neither)) validate(yaml_obj, gitlab_ci_schema) def test_ci_generate_temp_storage_url(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment, mock_binary_index): """Verify correct behavior when using temporary-storage-url-prefix""" filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - archive-files mirrors: some-mirror: https://my.fake.mirror gitlab-ci: temporary-storage-url-prefix: file:///work/temp/mirror mappings: - match: - archive-files runner-attributes: tags: - donotcare image: donotcare """) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') outputfile = str(tmpdir.join('.gitlab-ci.yml')) monkeypatch.setattr( ci, 'SPACK_PR_MIRRORS_ROOT_URL', r"file:///fake/mirror") monkeypatch.setattr( ci, 'SPACK_SHARED_PR_MIRROR_URL', r"file:///fake/mirror_two") with ev.read('test'): ci_cmd('generate', '--output-file', outputfile) with open(outputfile) as of: pipeline_doc = syaml.load(of.read()) assert('cleanup' in pipeline_doc) cleanup_job = pipeline_doc['cleanup'] assert('script' in cleanup_job) cleanup_task = cleanup_job['script'][0] assert(cleanup_task.startswith('spack -d mirror destroy')) assert('stages' in pipeline_doc) stages = pipeline_doc['stages'] # Cleanup job should be 2nd to last, just before rebuild-index assert('stage' in cleanup_job) assert(cleanup_job['stage'] == stages[-2]) def test_ci_generate_read_broken_specs_url(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, ci_base_environment): """Verify that `broken-specs-url` works as intended""" spec_a = Spec('a') spec_a.concretize() a_dag_hash = spec_a.dag_hash() spec_flattendeps = Spec('flatten-deps') spec_flattendeps.concretize() flattendeps_dag_hash = spec_flattendeps.dag_hash() # Mark 'a' as broken (but not 'flatten-deps') broken_spec_a_path = str(tmpdir.join(a_dag_hash)) with open(broken_spec_a_path, 'w') as bsf: bsf.write('') broken_specs_url = 'file://{0}'.format(tmpdir.strpath) # Test that `spack ci generate` notices this broken spec and fails. filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write("""\ spack: specs: - flatten-deps - a mirrors: some-mirror: https://my.fake.mirror gitlab-ci: broken-specs-url: "{0}" mappings: - match: - a - flatten-deps - b - dependency-install runner-attributes: tags: - donotcare image: donotcare """.format(broken_specs_url)) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test'): # Check output of the 'generate' subcommand output = ci_cmd('generate', output=str, fail_on_error=False) assert('known to be broken' in output) ex = '({0})'.format(a_dag_hash) assert(ex in output) ex = '({0})'.format(flattendeps_dag_hash) assert(ex not in output) def test_ci_reproduce(tmpdir, mutable_mock_env_path, install_mockery, mock_packages, monkeypatch, last_two_git_commits, ci_base_environment, mock_binary_index): working_dir = tmpdir.join('repro_dir') image_name = 'org/image:tag' spack_yaml_contents = """ spack: definitions: - packages: [archive-files] specs: - $packages mirrors: test-mirror: file:///some/fake/mirror gitlab-ci: mappings: - match: - archive-files runner-attributes: tags: - donotcare image: {0} """.format(image_name) filename = str(tmpdir.join('spack.yaml')) with open(filename, 'w') as f: f.write(spack_yaml_contents) with tmpdir.as_cwd(): env_cmd('create', 'test', './spack.yaml') with ev.read('test') as env: with env.write_transaction(): env.concretize() env.write() if not os.path.exists(working_dir.strpath): os.makedirs(working_dir.strpath) shutil.copyfile(env.manifest_path, os.path.join(working_dir.strpath, 'spack.yaml')) shutil.copyfile(env.lock_path, os.path.join(working_dir.strpath, 'spack.lock')) root_spec = None job_spec = None for h, s in env.specs_by_hash.items(): if s.name == 'archive-files': root_spec = s job_spec = s job_spec_json_path = os.path.join( working_dir.strpath, 'archivefiles.json') with open(job_spec_json_path, 'w') as fd: fd.write(job_spec.to_json(hash=ht.dag_hash)) root_spec_json_path = os.path.join( working_dir.strpath, 'root.json') with open(root_spec_json_path, 'w') as fd: fd.write(root_spec.to_json(hash=ht.dag_hash)) artifacts_root = os.path.join(working_dir.strpath, 'scratch_dir') pipeline_path = os.path.join(artifacts_root, 'pipeline.yml') ci_cmd('generate', '--output-file', pipeline_path, '--artifacts-root', artifacts_root) job_name = ci.get_job_name( 'specs', False, job_spec, 'test-debian6-core2', None) repro_file = os.path.join(working_dir.strpath, 'repro.json') repro_details = { 'job_name': job_name, 'job_spec_json': 'archivefiles.json', 'root_spec_json': 'root.json', 'ci_project_dir': working_dir.strpath } with open(repro_file, 'w') as fd: fd.write(json.dumps(repro_details)) install_script = os.path.join(working_dir.strpath, 'install.sh') with open(install_script, 'w') as fd: fd.write('#!/bin/bash\n\n#fake install\nspack install blah\n') spack_info_file = os.path.join( working_dir.strpath, 'spack_info.txt') with open(spack_info_file, 'w') as fd: fd.write('\nMerge {0} into {1}\n\n'.format( last_two_git_commits[1], last_two_git_commits[0])) def fake_download_and_extract_artifacts(url, work_dir): pass monkeypatch.setattr(ci, 'download_and_extract_artifacts', fake_download_and_extract_artifacts) rep_out = ci_cmd('reproduce-build', 'https://some.domain/api/v1/projects/1/jobs/2/artifacts', '--working-dir', working_dir.strpath, output=str) expect_out = 'docker run --rm -v {0}:{0} -ti {1}'.format( working_dir.strpath, image_name) assert(expect_out in rep_out)
34.873216
85
0.571255
ed7c50de42e9efa1c42a0490890312e9e5f6cd20
1,983
py
Python
tests/test_read_simple_rmd.py
vmarceau/jupytext
799ea65b693a5f387fe37c9aebad463a97d1dd38
[ "MIT" ]
null
null
null
tests/test_read_simple_rmd.py
vmarceau/jupytext
799ea65b693a5f387fe37c9aebad463a97d1dd38
[ "MIT" ]
null
null
null
tests/test_read_simple_rmd.py
vmarceau/jupytext
799ea65b693a5f387fe37c9aebad463a97d1dd38
[ "MIT" ]
1
2021-07-02T17:49:27.000Z
2021-07-02T17:49:27.000Z
import re from jupytext.compare import compare import jupytext from .utils import skip_if_dict_is_not_ordered @skip_if_dict_is_not_ordered def test_read_mostly_py_rmd_file(rmd="""--- title: Simple file --- ```{python, echo=TRUE} import numpy as np x = np.arange(0, 2*math.pi, eps) ``` ```{python, echo=TRUE} x = np.arange(0,1,eps) y = np.abs(x)-.5 ``` ```{r} ls() ``` ```{r, results='asis', magic_args='-i x'} cat(stringi::stri_rand_lipsum(3), sep='\n\n') ``` """): nb = jupytext.reads(rmd, 'Rmd') assert nb.cells == [{'cell_type': 'raw', 'source': '---\ntitle: Simple file\n---', 'metadata': {}}, {'cell_type': 'code', 'metadata': {'hide_input': False}, 'execution_count': None, 'source': 'import numpy as np\n' 'x = np.arange(0, 2*math.pi, eps)', 'outputs': []}, {'cell_type': 'code', 'metadata': {'hide_input': False}, 'execution_count': None, 'source': 'x = np.arange(0,1,eps)\ny = np.abs(x)-.5', 'outputs': []}, {'cell_type': 'code', 'metadata': {}, 'execution_count': None, 'source': '%%R\nls()', 'outputs': []}, {'cell_type': 'code', 'metadata': {'results': "'asis'"}, 'execution_count': None, 'source': "%%R -i x\ncat(stringi::" "stri_rand_lipsum(3), sep='\n\n')", 'outputs': []}] rmd2 = jupytext.writes(nb, 'Rmd') rmd2 = re.sub(r'```{r ', '```{r, ', rmd2) rmd2 = re.sub(r'```{python ', '```{python, ', rmd2) compare(rmd, rmd2)
32.508197
78
0.415532
4ca3b4f6233000a51671fb1860b4423e15ccaf05
4,164
py
Python
dvc/cache.py
gyliu513/dvc
d932405ee148767c5dbbbc394d6cd414270bf8f0
[ "Apache-2.0" ]
1
2020-01-31T14:29:20.000Z
2020-01-31T14:29:20.000Z
dvc/cache.py
gyliu513/dvc
d932405ee148767c5dbbbc394d6cd414270bf8f0
[ "Apache-2.0" ]
null
null
null
dvc/cache.py
gyliu513/dvc
d932405ee148767c5dbbbc394d6cd414270bf8f0
[ "Apache-2.0" ]
null
null
null
"""Manages cache of a dvc repo.""" from __future__ import unicode_literals import os from collections import defaultdict from funcy import cached_property from dvc.utils.compat import builtin_str from dvc.config import Config class CacheConfig(object): def __init__(self, config): self.config = config def set_dir(self, dname, level=None): from dvc.remote.config import RemoteConfig configobj = self.config.get_configobj(level) path = RemoteConfig.resolve_path(dname, configobj.filename) self.config.set( Config.SECTION_CACHE, Config.SECTION_CACHE_DIR, path, level=level ) def _make_remote_property(name): """ The config file is stored in a way that allows you to have a cache for each remote. This is needed when specifying external outputs (as they require you to have an external cache location). Imagine a config file like the following: ['remote "dvc-storage"'] url = ssh://localhost/tmp ask_password = true [cache] ssh = dvc-storage This method creates a cached property, containing cache named `name`: self.config == {'ssh': 'dvc-storage'} self.ssh # a RemoteSSH instance """ def getter(self): from dvc.remote import Remote remote = self.config.get(name) if not remote: return None return Remote(self.repo, name=remote) getter.__name__ = builtin_str(name) return cached_property(getter) class Cache(object): """Class that manages cache locations of a dvc repo. Args: repo (dvc.repo.Repo): repo instance that this cache belongs to. """ CACHE_DIR = "cache" def __init__(self, repo): from dvc.remote import Remote self.repo = repo self.config = config = repo.config.config[Config.SECTION_CACHE] local = config.get(Config.SECTION_CACHE_LOCAL) if local: name = Config.SECTION_REMOTE_FMT.format(local) settings = repo.config.config[name] else: default_cache_dir = os.path.join(repo.dvc_dir, self.CACHE_DIR) cache_dir = config.get(Config.SECTION_CACHE_DIR, default_cache_dir) cache_type = config.get(Config.SECTION_CACHE_TYPE) protected = config.get(Config.SECTION_CACHE_PROTECTED) shared = config.get(Config.SECTION_CACHE_SHARED) settings = { Config.PRIVATE_CWD: config.get( Config.PRIVATE_CWD, repo.dvc_dir ), Config.SECTION_REMOTE_URL: cache_dir, Config.SECTION_CACHE_TYPE: cache_type, Config.SECTION_CACHE_PROTECTED: protected, Config.SECTION_CACHE_SHARED: shared, } self.local = Remote(repo, **settings) s3 = _make_remote_property(Config.SECTION_CACHE_S3) gs = _make_remote_property(Config.SECTION_CACHE_GS) ssh = _make_remote_property(Config.SECTION_CACHE_SSH) hdfs = _make_remote_property(Config.SECTION_CACHE_HDFS) azure = _make_remote_property(Config.SECTION_CACHE_AZURE) class NamedCache(object): def __init__(self): self._items = defaultdict(lambda: defaultdict(set)) self.external = defaultdict(set) @classmethod def make(cls, scheme, checksum, name): cache = cls() cache.add(scheme, checksum, name) return cache def __getitem__(self, key): return self._items[key] def add(self, scheme, checksum, name): self._items[scheme][checksum].add(name) def add_external(self, url, rev, path): self.external[url, rev].add(path) def update(self, cache, suffix=""): for scheme, src in cache._items.items(): dst = self._items[scheme] for checksum, names in src.items(): if suffix: dst[checksum].update(n + suffix for n in names) else: dst[checksum].update(names) for repo_pair, files in cache.external.items(): self.external[repo_pair].update(files)
29.742857
79
0.635927