hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
84f1ba58276b441ec0efba4e71b268d5818704a9
1,036
py
Python
Notlar/ahmetbaran/OOP_2_Encapsulation.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
Notlar/ahmetbaran/OOP_2_Encapsulation.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
Notlar/ahmetbaran/OOP_2_Encapsulation.py
ibrahimediz/ornekproje
c5ebeafc43a9c6d2aa639d0d95eedbce65991576
[ "Apache-2.0" ]
null
null
null
class A: def __init__(self,yetki): self.yetki = yetki self.__gizli = 2 # __gizli gizli # __gizli_ gizli # __gizli__ gizli değil obj1 = A(1) print(obj1.yetki) # print(obj1.__gizli) # AttributeError: 'A' object has no attribute '__gizli' class A: def __init__(self,yetki): self.yetki = yetki self.__gizli = 2 @property # asagidakiler fonksiyonun ismiyle ayni olmak zorunda def gizli(self): # getter if self.yetki == 1: return self.__gizli else: raise Exception("Yetki Hatası") @gizli.setter def gizli(self,param): if self.yetki == 1: if isinstance(param,int) and param in range(10): self.__gizli = param else: raise Exception("Değer Hatası") else: raise Exception("Yetki Hatası") @gizli.deleter def gizli(self): if self.yetki == 1: self.__gizli = -1*self.gizli else: raise Exception("Yetki Hatası")
26.564103
77
0.572394
49ebe786db926dc0ed7c1ea2d2ebc8822fe87825
2,572
py
Python
test/MSVC/hierarchical.py
jcassagnol-public/scons
8eaf585a893757e68c9e4a6e25d375021fa5eab7
[ "MIT" ]
1,403
2017-11-23T14:24:01.000Z
2022-03-30T20:59:39.000Z
test/MSVC/hierarchical.py
jcassagnol-public/scons
8eaf585a893757e68c9e4a6e25d375021fa5eab7
[ "MIT" ]
3,708
2017-11-27T13:47:12.000Z
2022-03-29T17:21:17.000Z
test/MSVC/hierarchical.py
jcassagnol-public/scons
8eaf585a893757e68c9e4a6e25d375021fa5eab7
[ "MIT" ]
281
2017-12-01T23:48:38.000Z
2022-03-31T15:25:44.000Z
#!/usr/bin/env python # # MIT License # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ Verify use of Visual Studio with a hierarchical build. """ import TestSCons test = TestSCons.TestSCons(match = TestSCons.match_re) test.skip_if_not_msvc() test.subdir('src', 'build', 'out') test.write('SConstruct', """ DefaultEnvironment(tools=[]) VariantDir('build', 'src', duplicate=0) SConscript('build/SConscript') """) test.write('src/SConscript',""" # TODO: this is order-dependent (putting 'mssdk' second or third breaks), # and ideally we shouldn't need to specify the tools= list anyway. env = Environment(tools=['mssdk', 'msvc', 'mslink']) env['PCH'] = File('StdAfx.pch') env['PDB'] = '#out/test.pdb' env['PCHSTOP'] = 'StdAfx.h' env.PCH('StdAfx.cpp') env.Program('#out/test.exe', 'test.cpp') """) test.write('src/test.cpp', ''' #include "StdAfx.h" int main(void) { return 1; } ''') test.write('src/StdAfx.h', ''' #include <windows.h> ''') test.write('src/StdAfx.cpp', ''' #include "StdAfx.h" ''') test.run(arguments='out', stderr=None) test.must_exist(test.workpath('out/test.pdb')) test.must_exist(test.workpath('build/StdAfx.pch')) test.must_exist(test.workpath('build/StdAfx.obj')) test.run(arguments='-c out') test.must_not_exist(test.workpath('out/test.pdb')) test.must_not_exist(test.workpath('build/StdAfx.pch')) test.must_not_exist(test.workpath('build/StdAfx.obj')) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
27.655914
74
0.729782
6a1223d96b629f7f36a99805a57127aa1d59f096
538
py
Python
web/manage.py
karlbishnu/NotZam
5b3ec35a383b56f38fe623cb228063d13c1d3d91
[ "MIT" ]
null
null
null
web/manage.py
karlbishnu/NotZam
5b3ec35a383b56f38fe623cb228063d13c1d3d91
[ "MIT" ]
1
2018-11-27T06:41:17.000Z
2018-11-27T06:41:17.000Z
web/manage.py
karlbishnu/NotZam
5b3ec35a383b56f38fe623cb228063d13c1d3d91
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'NotZam.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
33.625
73
0.685874
61efc2de0856dfcbefe21bc60eb9db2ddcccbdbe
43,056
py
Python
libs/Theano/theano/gof/destroyhandler.py
dendisuhubdy/attention-lvcsr
598d487c118e66875fdd625baa84ed29d283b800
[ "MIT" ]
295
2015-09-25T21:15:04.000Z
2022-01-13T01:16:18.000Z
libs/Theano/theano/gof/destroyhandler.py
shenshenzhanzhan/attention-lvcsr
598d487c118e66875fdd625baa84ed29d283b800
[ "MIT" ]
21
2015-10-28T19:06:32.000Z
2022-03-11T23:13:05.000Z
libs/Theano/theano/gof/destroyhandler.py
shenshenzhanzhan/attention-lvcsr
598d487c118e66875fdd625baa84ed29d283b800
[ "MIT" ]
114
2015-09-26T21:23:02.000Z
2021-11-19T02:36:41.000Z
""" Classes and functions for validating graphs that contain view and inplace operations. """ from collections import deque from six import iteritems import theano from . import toolbox from . import graph from theano.compat import OrderedDict from theano.misc.ordered_set import OrderedSet from .fg import InconsistencyError from six.moves.queue import Queue class ProtocolError(Exception): """ Raised when FunctionGraph calls DestroyHandler callbacks in an invalid way, for example, pruning or changing a node that has never been imported. """ pass def _contains_cycle(fgraph, orderings): """ Parameters ---------- fgraph The FunctionGraph to check for cycles. orderings Dictionary specifying extra dependencies besides those encoded in Variable.owner / Apply.inputs. If orderings[my_apply] == dependencies, then my_apply is an Apply instance, dependencies is a set of Apply instances, and every member of dependencies must be executed before my_apply. The dependencies are typically used to prevent inplace apply nodes from destroying their input before other apply nodes with the same input access it. Returns ------- bool True if the graph contains a cycle, False otherwise. """ # These are lists of Variable instances outputs = fgraph.outputs # this is hard-coded reimplementation of functions from graph.py # reason: go faster, prepare for port to C. # specifically, it could be replaced with a wrapper # around graph.io_toposort that returns True iff io_toposort raises # a ValueError containing the substring 'cycle'. # This implementation is optimized for the destroyhandler and runs # slightly faster than io_toposort. # this is performance-critical code. it is the largest single-function # bottleneck when compiling large graphs. assert isinstance(outputs, (tuple, list, deque)) # TODO: For more speed - use a defaultdict for the orderings # (defaultdict runs faster than dict in the case where the key # is not in the dictionary, at least in CPython) # IG: I tried converting parent_counts to use an id for the key, # so that the dict would do reference counting on its keys. # This caused a slowdown. # Separate benchmark tests showed that calling id is about # half as expensive as a dictionary access, and that the # dictionary also runs slower when storing ids than when # storing objects. # dict mapping an Apply or Variable instance to the number # of its parents (including parents imposed by orderings) # that haven't been visited yet parent_counts = {} # dict mapping an Apply or Variable instance to its children node_to_children = {} # visitable: A container holding all Variable and Apply instances # that can currently be visited according to the graph topology # (ie, whose parents have already been visited) # TODO: visitable is a fifo_queue. could this run faster if we # implement it as a stack rather than a deque? # TODO: visitable need not be a fifo_queue, any kind of container # that we can throw things into and take things out of quickly will # work. is there another kind of container that could run faster? # we don't care about the traversal order here as much as we do # in io_toposort because we aren't trying to generate an ordering # on the nodes visitable = deque() # IG: visitable could in principle be initialized to fgraph.inputs # + fgraph.orphans... if there were an fgraph.orphans structure. # I tried making one and maintaining it caused a huge slowdown. # This may be because I made it a list, so it would have a # deterministic iteration order, in hopes of using it to speed # up toposort as well. # I think since we need to scan through all variables and nodes # to make parent_counts anyway, it's cheap enough to always # detect orphans at cycle detection / toposort time # Pass through all the nodes to build visitable, parent_count, and # node_to_children for var in fgraph.variables: # this is faster than calling get_parents owner = var.owner # variables don't appear in orderings, so we don't need to worry # about that here if owner: # insert node in node_to_children[r] # (if r is not already in node_to_children, # intialize it to []) node_to_children.setdefault(owner, []).append(var) parent_counts[var] = 1 else: visitable.append(var) parent_counts[var] = 0 for a_n in fgraph.apply_nodes: parents = list(a_n.inputs) # This is faster than conditionally extending # IG: I tried using a shared empty_list = [] constructed # outside of the for loop to avoid constructing multiple # lists, but this was not any faster. parents.extend(orderings.get(a_n, [])) if parents: for parent in parents: # insert node in node_to_children[r] # (if r is not already in node_to_children, # intialize it to []) node_to_children.setdefault(parent, []).append(a_n) parent_counts[a_n] = len(parents) else: # an Apply with no inputs would be a weird case, but I'm # not sure we forbid it visitable.append(a_n) parent_counts[a_n] = 0 # at this point, # parent_counts.keys() == fgraph.apply_nodes + fgraph.variables # Now we actually check for cycles # As long as there are nodes that can be visited while respecting # the topology, we keep visiting nodes # If we run out of visitable nodes and we haven't visited all nodes, # then there was a cycle. It blocked the traversal because some # node couldn't be visited until one of its descendants had been # visited too. # This is a standard cycle detection algorithm. visited = 0 while visitable: # Since each node is inserted into the visitable queue exactly # once, it comes out of the queue exactly once # That means we can decrement its children's unvisited parent count # and increment the visited node count without double-counting node = visitable.popleft() visited += 1 for client in node_to_children.get(node, []): parent_counts[client] -= 1 # If all of a node's parents have been visited, # it may now be visited too if not parent_counts[client]: visitable.append(client) return visited != len(parent_counts) def _build_droot_impact(destroy_handler): droot = {} # destroyed view + nonview variables -> foundation impact = {} # destroyed nonview variable -> it + all views of it root_destroyer = {} # root -> destroyer apply for app in destroy_handler.destroyers: for output_idx, input_idx_list in app.op.destroy_map.items(): if len(input_idx_list) != 1: raise NotImplementedError() input_idx = input_idx_list[0] input = app.inputs[input_idx] # Find non-view variable which is ultimatly viewed by input. view_i = destroy_handler.view_i _r = input while _r is not None: r = _r _r = view_i.get(r) input_root = r if input_root in droot: raise InconsistencyError( "Multiple destroyers of %s" % input_root) droot[input_root] = input_root root_destroyer[input_root] = app # The code here add all the variables that are views of r into # an OrderedSet input_impact input_impact = OrderedSet() queue = Queue() queue.put(input_root) while not queue.empty(): v = queue.get() for n in destroy_handler.view_o.get(v, []): input_impact.add(n) queue.put(n) for v in input_impact: assert v not in droot droot[v] = input_root impact[input_root] = input_impact impact[input_root].add(input_root) return droot, impact, root_destroyer def fast_inplace_check(inputs): """ Return the variables in inputs that are posible candidate for as inputs of inplace operation. Parameters ---------- inputs : list Inputs Variable that you want to use as inplace destination. """ fgraph = inputs[0].fgraph Supervisor = theano.compile.function_module.Supervisor protected_inputs = [f.protected for f in fgraph._features if isinstance(f, Supervisor)] protected_inputs = sum(protected_inputs, []) # flatten the list protected_inputs.extend(fgraph.outputs) inputs = [i for i in inputs if not isinstance(i, graph.Constant) and not fgraph.destroyers(i) and i not in protected_inputs] return inputs if 0: # old, non-incremental version of the DestroyHandler class DestroyHandler(toolbox.Bookkeeper): """ The DestroyHandler class detects when a graph is impossible to evaluate because of aliasing and destructive operations. Several data structures are used to do this. When an Op uses its view_map property to declare that an output may be aliased to an input, then if that output is destroyed, the input is also considering to be destroyed. The view_maps of several Ops can feed into one another and form a directed graph. The consequence of destroying any variable in such a graph is that all variables in the graph must be considered to be destroyed, because they could all be refering to the same underlying storage. In the current implementation, that graph is a tree, and the root of that tree is called the foundation. The `droot` property of this class maps from every graph variable to its foundation. The `impact` property maps backward from the foundation to all of the variables that depend on it. When any variable is destroyed, this class marks the foundation of that variable as being destroyed, with the `root_destroyer` property. """ droot = {} """ destroyed view + nonview variables -> foundation. """ impact = {} """ destroyed nonview variable -> it + all views of it. """ root_destroyer = {} """ root -> destroyer apply. """ def __init__(self, do_imports_on_attach=True): self.fgraph = None self.do_imports_on_attach = do_imports_on_attach def on_attach(self, fgraph): """ When attaching to a new fgraph, check that 1) This DestroyHandler wasn't already attached to some fgraph (its data structures are only set up to serve one) 2) The FunctionGraph doesn't already have a DestroyHandler. This would result in it validating everything twice, causing compilation to be slower. TODO: WRITEME: what does this do besides the checks? """ # Do the checking # already_there = False if self.fgraph not in [None, fgraph]: raise Exception("A DestroyHandler instance can only serve" " one FunctionGraph. (Matthew 6:24)") for attr in ('destroyers', 'destroy_handler'): if hasattr(fgraph, attr): already_there = True if already_there: # FunctionGraph.attach_feature catches AlreadyThere # and cancels the attachment raise toolbox.AlreadyThere( "DestroyHandler feature is already present or in" " conflict with another plugin.") # end of checking # def get_destroyers_of(r): droot, impact, root_destroyer = self.refresh_droot_impact() try: return [root_destroyer[droot[r]]] except Exception: return [] fgraph.destroyers = get_destroyers_of fgraph.destroy_handler = self self.fgraph = fgraph self.destroyers = OrderedSet() # set of Apply instances with non-null destroy_map self.view_i = {} # variable -> variable used in calculation self.view_o = {} # variable -> set of variables that use this one as a direct input # clients: how many times does an apply use a given variable self.clients = {} # variable -> apply -> ninputs self.stale_droot = True # IG: It's unclear if this is meant to be included in deployed code. It looks like # it is unnecessary if FunctionGraph is working correctly, so I am commenting uses # of it (for speed) but leaving the commented code in place so it is easy to restore # for debugging purposes. # Note: is there anything like the C preprocessor for python? It would be useful to # just ifdef these things out # self.debug_all_apps = set() if self.do_imports_on_attach: toolbox.Bookkeeper.on_attach(self, fgraph) def refresh_droot_impact(self): if self.stale_droot: self.droot, self.impact, self.root_destroyer = _build_droot_impact(self) self.stale_droot = False return self.droot, self.impact, self.root_destroyer def on_detach(self, fgraph): if fgraph is not self.fgraph: raise Exception("detaching wrong fgraph", fgraph) del self.destroyers del self.view_i del self.view_o del self.clients del self.stale_droot assert self.fgraph.destroyer_handler is self delattr(self.fgraph, 'destroyers') delattr(self.fgraph, 'destroy_handler') self.fgraph = None def on_import(self, fgraph, app, reason): """ Add Apply instance to set which must be computed. """ # if app in self.debug_all_apps: raise ProtocolError("double import") # self.debug_all_apps.add(app) # print 'DH IMPORT', app, id(app), id(self), len(self.debug_all_apps) # If it's a destructive op, add it to our watch list if getattr(app.op, 'destroy_map', {}): self.destroyers.add(app) # add this symbol to the forward and backward maps for o_idx, i_idx_list in iteritems(getattr(app.op, 'view_map', {})): if len(i_idx_list) > 1: raise NotImplementedError( 'destroying this output invalidates multiple inputs', (app. op)) o = app.outputs[o_idx] i = app.inputs[i_idx_list[0]] self.view_i[o] = i self.view_o.setdefault(i, OrderedSet()).add(o) # update self.clients for i, input in enumerate(app.inputs): self.clients.setdefault(input, {}).setdefault(app, 0) self.clients[input][app] += 1 for i, output in enumerate(app.outputs): self.clients.setdefault(output, {}) self.stale_droot = True def on_prune(self, fgraph, app, reason): """ Remove Apply instance from set which must be computed. """ # if app not in self.debug_all_apps: raise ProtocolError("prune without import") # self.debug_all_apps.remove(app) # UPDATE self.clients for i, input in enumerate(OrderedSet(app.inputs)): del self.clients[input][app] if getattr(app.op, 'destroy_map', {}): self.destroyers.remove(app) # Note: leaving empty client dictionaries in the struct. # Why? It's a pain to remove them. I think they aren't doing any harm, they will be # deleted on_detach(). # UPDATE self.view_i, self.view_o for o_idx, i_idx_list in iteritems(getattr(app.op, 'view_map', {})): if len(i_idx_list) > 1: # destroying this output invalidates multiple inputs raise NotImplementedError() o = app.outputs[o_idx] i = app.inputs[i_idx_list[0]] del self.view_i[o] self.view_o[i].remove(o) if not self.view_o[i]: del self.view_o[i] self.stale_droot = True def on_change_input(self, fgraph, app, i, old_r, new_r, reason): """ app.inputs[i] changed from old_r to new_r. """ if app == 'output': # app == 'output' is special key that means FunctionGraph is redefining which nodes are being # considered 'outputs' of the graph. pass else: # if app not in self.debug_all_apps: raise ProtocolError("change without import") # UPDATE self.clients self.clients[old_r][app] -= 1 if self.clients[old_r][app] == 0: del self.clients[old_r][app] self.clients.setdefault(new_r, {}).setdefault(app, 0) self.clients[new_r][app] += 1 # UPDATE self.view_i, self.view_o for o_idx, i_idx_list in iteritems(getattr(app.op, 'view_map', {})): if len(i_idx_list) > 1: # destroying this output invalidates multiple inputs raise NotImplementedError() i_idx = i_idx_list[0] output = app.outputs[o_idx] if i_idx == i: if app.inputs[i_idx] is not new_r: raise ProtocolError("wrong new_r on change") self.view_i[output] = new_r self.view_o[old_r].remove(output) if not self.view_o[old_r]: del self.view_o[old_r] self.view_o.setdefault(new_r, OrderedSet()).add(output) self.stale_droot = True def validate(self, fgraph): """ Return None. Raise InconsistencyError when a) orderings() raises an error b) orderings cannot be topologically sorted. """ if self.destroyers: ords = self.orderings(fgraph) if _contains_cycle(fgraph, ords): raise InconsistencyError( "Dependency graph contains cycles") else: # James's Conjecture: # If there are no destructive ops, then there can be no cycles. pass return True def orderings(self, fgraph): """ Return orderings induced by destructive operations. Raise InconsistencyError when a) attempting to destroy indestructable variable, or b) attempting to destroy a value multiple times, or c) an Apply destroys (illegally) one of its own inputs by aliasing """ rval = OrderedDict() if self.destroyers: # BUILD DATA STRUCTURES # CHECK for multiple destructions during construction of variables droot, impact, __ignore = self.refresh_droot_impact() # check for destruction of constants illegal_destroy = [ r for r in droot if getattr(r.tag, 'indestructible', False) or isinstance(r, graph.Constant)] if illegal_destroy: # print 'destroying illegally' raise InconsistencyError( "Attempting to destroy indestructible variables: %s" % illegal_destroy) # add destroyed variable clients as computational dependencies for app in self.destroyers: # for each destroyed input... for output_idx, input_idx_list in iteritems(app.op.destroy_map): destroyed_idx = input_idx_list[0] destroyed_variable = app.inputs[destroyed_idx] root = droot[destroyed_variable] root_impact = impact[root] # we generally want to put all clients of things which depend on root # as pre-requisites of app. # But, app is itself one such client! # App will always be a client of the node we're destroying # (destroyed_variable, but the tricky thing is when it is also a client of # *another variable* viewing on the root. Generally this is illegal, (e.g., # add_inplace(x, x.T). In some special cases though, the in-place op will # actually be able to work properly with multiple destroyed inputs (e.g, # add_inplace(x, x). An Op that can still work in this case should declare # so via the 'destroyhandler_tolerate_same' attribute or # 'destroyhandler_tolerate_aliased' attribute. # # destroyhandler_tolerate_same should be a list of pairs of the form # [(idx0, idx1), (idx0, idx2), ...] # The first element of each pair is the input index of a destroyed # variable. # The second element of each pair is the index of a different input where # we will permit exactly the same variable to appear. # For example, add_inplace.tolerate_same might be [(0,1)] if the destroyed # input is also allowed to appear as the second argument. # # destroyhandler_tolerate_aliased is the same sort of list of # pairs. # op.destroyhandler_tolerate_aliased = [(idx0, idx1)] tells the # destroyhandler to IGNORE an aliasing between a destroyed # input idx0 and another input idx1. # This is generally a bad idea, but it is safe in some # cases, such as # - the op reads from the aliased idx1 before modifying idx0 # - the idx0 and idx1 are guaranteed not to overlap (e.g. # they are pointed at different rows of a matrix). # # CHECK FOR INPUT ALIASING # OPT: pre-compute this on import tolerate_same = getattr(app.op, 'destroyhandler_tolerate_same', []) assert isinstance(tolerate_same, list) tolerated = OrderedSet(idx1 for idx0, idx1 in tolerate_same if idx0 == destroyed_idx) tolerated.add(destroyed_idx) tolerate_aliased = getattr( app.op, 'destroyhandler_tolerate_aliased', []) assert isinstance(tolerate_aliased, list) ignored = OrderedSet(idx1 for idx0, idx1 in tolerate_aliased if idx0 == destroyed_idx) # print 'tolerated', tolerated # print 'ignored', ignored for i, input in enumerate(app.inputs): if i in ignored: continue if input in root_impact \ and (i not in tolerated or input is not destroyed_variable): raise InconsistencyError("Input aliasing: %s (%i, %i)" % (app, destroyed_idx, i)) # add the rule: app must be preceded by all other Apply instances that # depend on destroyed_input root_clients = OrderedSet() for r in root_impact: assert not [a for a, c in iteritems(self.clients[r]) if not c] root_clients.update([a for a, c in iteritems(self.clients[r]) if c]) root_clients.remove(app) if root_clients: rval[app] = root_clients return rval class DestroyHandler(toolbox.Bookkeeper): # noqa """ The DestroyHandler class detects when a graph is impossible to evaluate because of aliasing and destructive operations. Several data structures are used to do this. An Op can use its view_map property to declare that an output may be aliased to an input. If that output is destroyed, the input is also considered to be destroyed. The view_maps of several Ops can feed into one another and form a directed graph. The consequence of destroying any variable in such a graph is that all variables in the graph must be considered to be destroyed, because they could all be refering to the same underlying storage. In the current implementation, that graph is a tree, and the root of that tree is called the foundation. TODO: why "in the current implementation" ? is there another implementation planned? TODO: why is the graph a tree? isn't it possible that one variable could be aliased to many variables? for example, don't switch and ifelse have to do this? The original DestroyHandler (if 0'ed out above) computed several data structures from scratch each time it was asked to validate the graph. Because this happens potentially thousands of times and each graph to validate is extremely similar to the previous one, computing the data structures from scratch repeatedly was wasteful and resulted in high compile times for large graphs. This implementation computes the data structures once at initialization and then incrementally updates them. It is a work in progress. The following data structures have been converted to use the incremental strategy: <none> The following data structures remain to be converted: <unknown> """ pickle_rm_attr = ["destroyers"] def __init__(self, do_imports_on_attach=True): self.fgraph = None self.do_imports_on_attach = do_imports_on_attach """ Maps every variable in the graph to its "foundation" (deepest ancestor in view chain). TODO: change name to var_to_vroot. """ self.droot = OrderedDict() """ Maps a variable to all variables that are indirect or direct views of it (including itself) essentially the inverse of droot. TODO: do all variables appear in this dict, or only those that are foundations? TODO: do only destroyed variables go in here? one old docstring said so. TODO: rename to x_to_views after reverse engineering what x is """ self.impact = OrderedDict() """ If a var is destroyed, then this dict will map droot[var] to the apply node that destroyed var TODO: rename to vroot_to_destroyer """ self.root_destroyer = OrderedDict() def on_attach(self, fgraph): """ When attaching to a new fgraph, check that 1) This DestroyHandler wasn't already attached to some fgraph (its data structures are only set up to serve one). 2) The FunctionGraph doesn't already have a DestroyHandler. This would result in it validating everything twice, causing compilation to be slower. Give the FunctionGraph instance: 1) A new method "destroyers(var)" TODO: what does this do exactly? 2) A new attribute, "destroy_handler" TODO: WRITEME: what does this do besides the checks? """ # Do the checking # already_there = False if self.fgraph is fgraph: already_there = True if self.fgraph is not None: raise Exception( "A DestroyHandler instance can only serve one" " FunctionGraph. (Matthew 6:24)") for attr in ('destroyers', 'destroy_handler'): if hasattr(fgraph, attr): already_there = True if already_there: # FunctionGraph.attach_feature catches AlreadyThere and cancels the attachment raise toolbox.AlreadyThere( "DestroyHandler feature is already present" " or in conflict with another plugin.") # Annotate the FunctionGraph # self.unpickle(fgraph) fgraph.destroy_handler = self self.fgraph = fgraph self.destroyers = OrderedSet() # set of Apply instances with non-null destroy_map self.view_i = OrderedDict() # variable -> variable used in calculation self.view_o = OrderedDict() # variable -> set of variables that use this one as a direct input # clients: how many times does an apply use a given variable self.clients = OrderedDict() # variable -> apply -> ninputs self.stale_droot = True self.debug_all_apps = OrderedSet() if self.do_imports_on_attach: toolbox.Bookkeeper.on_attach(self, fgraph) def unpickle(self, fgraph): def get_destroyers_of(r): droot, impact, root_destroyer = self.refresh_droot_impact() try: return [root_destroyer[droot[r]]] except Exception: return [] fgraph.destroyers = get_destroyers_of def refresh_droot_impact(self): """ Makes sure self.droot, self.impact, and self.root_destroyer are up to date, and returns them (see docstrings for these properties above). """ if self.stale_droot: self.droot, self.impact, self.root_destroyer =\ _build_droot_impact(self) self.stale_droot = False return self.droot, self.impact, self.root_destroyer def on_detach(self, fgraph): if fgraph is not self.fgraph: raise Exception("detaching wrong fgraph", fgraph) del self.destroyers del self.view_i del self.view_o del self.clients del self.stale_droot assert self.fgraph.destroyer_handler is self delattr(self.fgraph, 'destroyers') delattr(self.fgraph, 'destroy_handler') self.fgraph = None def on_import(self, fgraph, app, reason): """ Add Apply instance to set which must be computed. """ if app in self.debug_all_apps: raise ProtocolError("double import") self.debug_all_apps.add(app) # print 'DH IMPORT', app, id(app), id(self), len(self.debug_all_apps) # If it's a destructive op, add it to our watch list if getattr(app.op, 'destroy_map', {}): self.destroyers.add(app) # add this symbol to the forward and backward maps for o_idx, i_idx_list in iteritems(getattr(app.op, 'view_map', {})): if len(i_idx_list) > 1: raise NotImplementedError( 'destroying this output invalidates multiple inputs', (app. op)) o = app.outputs[o_idx] i = app.inputs[i_idx_list[0]] self.view_i[o] = i self.view_o.setdefault(i, OrderedSet()).add(o) # update self.clients for i, input in enumerate(app.inputs): self.clients.setdefault(input, OrderedDict()).setdefault(app, 0) self.clients[input][app] += 1 for i, output in enumerate(app.outputs): self.clients.setdefault(output, OrderedDict()) self.stale_droot = True def on_prune(self, fgraph, app, reason): """ Remove Apply instance from set which must be computed. """ if app not in self.debug_all_apps: raise ProtocolError("prune without import") self.debug_all_apps.remove(app) # UPDATE self.clients for i, input in enumerate(OrderedSet(app.inputs)): del self.clients[input][app] if getattr(app.op, 'destroy_map', OrderedDict()): self.destroyers.remove(app) # Note: leaving empty client dictionaries in the struct. # Why? It's a pain to remove them. I think they aren't doing any harm, they will be # deleted on_detach(). # UPDATE self.view_i, self.view_o for o_idx, i_idx_list in iteritems(getattr(app.op, 'view_map', OrderedDict())): if len(i_idx_list) > 1: # destroying this output invalidates multiple inputs raise NotImplementedError() o = app.outputs[o_idx] i = app.inputs[i_idx_list[0]] del self.view_i[o] self.view_o[i].remove(o) if not self.view_o[i]: del self.view_o[i] self.stale_droot = True def on_change_input(self, fgraph, app, i, old_r, new_r, reason): """ app.inputs[i] changed from old_r to new_r. """ if app == 'output': # app == 'output' is special key that means FunctionGraph is redefining which nodes are being # considered 'outputs' of the graph. pass else: if app not in self.debug_all_apps: raise ProtocolError("change without import") # UPDATE self.clients self.clients[old_r][app] -= 1 if self.clients[old_r][app] == 0: del self.clients[old_r][app] self.clients.setdefault(new_r, OrderedDict()).setdefault(app, 0) self.clients[new_r][app] += 1 # UPDATE self.view_i, self.view_o for o_idx, i_idx_list in iteritems(getattr(app.op, 'view_map', OrderedDict())): if len(i_idx_list) > 1: # destroying this output invalidates multiple inputs raise NotImplementedError() i_idx = i_idx_list[0] output = app.outputs[o_idx] if i_idx == i: if app.inputs[i_idx] is not new_r: raise ProtocolError("wrong new_r on change") self.view_i[output] = new_r self.view_o[old_r].remove(output) if not self.view_o[old_r]: del self.view_o[old_r] self.view_o.setdefault(new_r, OrderedSet()).add(output) self.stale_droot = True def validate(self, fgraph): """ Return None. Raise InconsistencyError when a) orderings() raises an error b) orderings cannot be topologically sorted. """ if self.destroyers: ords = self.orderings(fgraph) if _contains_cycle(fgraph, ords): raise InconsistencyError("Dependency graph contains cycles") else: # James's Conjecture: # If there are no destructive ops, then there can be no cycles. # FB: This isn't always True. It can happend that # optimization introduce node that depend on itself. This # is very rare and should not happen in general. It will be # caught later. The error will be far from the source. But # doing this conjecture should speed up compilation most of # the time. The user should create such dependency except # if he mess too much with the internal. pass return True def orderings(self, fgraph): """ Return orderings induced by destructive operations. Raise InconsistencyError when a) attempting to destroy indestructable variable, or b) attempting to destroy a value multiple times, or c) an Apply destroys (illegally) one of its own inputs by aliasing """ rval = OrderedDict() if self.destroyers: # BUILD DATA STRUCTURES # CHECK for multiple destructions during construction of variables droot, impact, __ignore = self.refresh_droot_impact() # check for destruction of constants illegal_destroy = [r for r in droot if getattr(r.tag, 'indestructible', False) or isinstance(r, graph.Constant)] if illegal_destroy: raise InconsistencyError( "Attempting to destroy indestructible variables: %s" % illegal_destroy) # add destroyed variable clients as computational dependencies for app in self.destroyers: # for each destroyed input... for output_idx, input_idx_list in iteritems(app.op.destroy_map): destroyed_idx = input_idx_list[0] destroyed_variable = app.inputs[destroyed_idx] root = droot[destroyed_variable] root_impact = impact[root] # we generally want to put all clients of things which depend on root # as pre-requisites of app. # But, app is itself one such client! # App will always be a client of the node we're destroying # (destroyed_variable, but the tricky thing is when it is also a client of # *another variable* viewing on the root. Generally this is illegal, (e.g., # add_inplace(x, x.T). In some special cases though, the in-place op will # actually be able to work properly with multiple destroyed inputs (e.g, # add_inplace(x, x). An Op that can still work in this case should declare # so via the 'destroyhandler_tolerate_same' attribute or # 'destroyhandler_tolerate_aliased' attribute. # # destroyhandler_tolerate_same should be a list of pairs of the form # [(idx0, idx1), (idx0, idx2), ...] # The first element of each pair is the input index of a destroyed # variable. # The second element of each pair is the index of a different input where # we will permit exactly the same variable to appear. # For example, add_inplace.tolerate_same might be [(0,1)] if the destroyed # input is also allowed to appear as the second argument. # # destroyhandler_tolerate_aliased is the same sort of list of # pairs. # op.destroyhandler_tolerate_aliased = [(idx0, idx1)] tells the # destroyhandler to IGNORE an aliasing between a destroyed # input idx0 and another input idx1. # This is generally a bad idea, but it is safe in some # cases, such as # - the op reads from the aliased idx1 before modifying idx0 # - the idx0 and idx1 are guaranteed not to overlap (e.g. # they are pointed at different rows of a matrix). # # CHECK FOR INPUT ALIASING # OPT: pre-compute this on import tolerate_same = getattr(app.op, 'destroyhandler_tolerate_same', []) assert isinstance(tolerate_same, list) tolerated = OrderedSet(idx1 for idx0, idx1 in tolerate_same if idx0 == destroyed_idx) tolerated.add(destroyed_idx) tolerate_aliased = getattr( app.op, 'destroyhandler_tolerate_aliased', []) assert isinstance(tolerate_aliased, list) ignored = OrderedSet(idx1 for idx0, idx1 in tolerate_aliased if idx0 == destroyed_idx) # print 'tolerated', tolerated # print 'ignored', ignored for i, input in enumerate(app.inputs): if i in ignored: continue if input in root_impact \ and (i not in tolerated or input is not destroyed_variable): raise InconsistencyError("Input aliasing: %s (%i, %i)" % (app, destroyed_idx, i)) # add the rule: app must be preceded by all other Apply instances that # depend on destroyed_input root_clients = OrderedSet() for r in root_impact: assert not [a for a, c in self.clients[r].items() if not c] root_clients.update([a for a, c in self.clients[r].items() if c]) root_clients.remove(app) if root_clients: rval[app] = root_clients return rval
42.005854
109
0.571001
ac90c1ce33f0dc5fe69d17a9d10aa45508603969
955
py
Python
libnd4j/auto_vectorization/cython_setup.py
eric-erki/deeplearning4j
b9d462f66879e9315767b70190bd2ab31b9a3275
[ "Apache-2.0" ]
null
null
null
libnd4j/auto_vectorization/cython_setup.py
eric-erki/deeplearning4j
b9d462f66879e9315767b70190bd2ab31b9a3275
[ "Apache-2.0" ]
null
null
null
libnd4j/auto_vectorization/cython_setup.py
eric-erki/deeplearning4j
b9d462f66879e9315767b70190bd2ab31b9a3275
[ "Apache-2.0" ]
null
null
null
# /* ****************************************************************************** # * Copyright (c) 2021 Deeplearning4j Contributors # * # * This program and the accompanying materials are made available under the # * terms of the Apache License, Version 2.0 which is available at # * https://www.apache.org/licenses/LICENSE-2.0. # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # * License for the specific language governing permissions and limitations # * under the License. # * # * SPDX-License-Identifier: Apache-2.0 # ******************************************************************************/ from distutils.core import setup from Cython.Build import cythonize setup(ext_modules=cythonize("bigGzipJson.pyx", language_level="3"))
47.75
84
0.606283
48f2e4de851d53249c37a5389990dd64d992a6e1
857
py
Python
test/test_issue923.py
tonyfast/rdflib
e4fe0fdbd4de7e1183418f302315b51a14602e03
[ "BSD-3-Clause" ]
2
2021-02-06T17:36:05.000Z
2021-04-21T07:33:39.000Z
test/test_issue923.py
pragya16067/rdflib
6b5bd37ccc67bdec62d2e36d174eb7933b5020b2
[ "BSD-3-Clause" ]
2
2020-05-09T15:03:57.000Z
2020-05-30T10:51:40.000Z
test/test_issue923.py
pragya16067/rdflib
6b5bd37ccc67bdec62d2e36d174eb7933b5020b2
[ "BSD-3-Clause" ]
4
2020-05-08T08:36:19.000Z
2020-05-28T07:23:23.000Z
""" Issue 923: split charset off of Content-Type before looking up Result-parsing plugin. """ from io import StringIO from rdflib.query import Result RESULT_SOURCE = u"""\ { "head" : { "vars" : [ "subject", "predicate", "object", "context" ] }, "results" : { "bindings" : [ { "subject" : { "type" : "bnode", "value" : "service" }, "predicate" : { "type" : "uri", "value" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" }, "object" : { "type" : "uri", "value" : "http://www.w3.org/ns/sparql-service-description#Service" } }] } } """ def test_issue_923(): with StringIO(RESULT_SOURCE) as result_source: Result.parse( source=result_source, content_type="application/sparql-results+json;charset=utf-8", )
21.974359
85
0.546091
7afe0e0a22b822708018357bece0a9ad433352e3
51
py
Python
T03-24/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
2
2019-11-20T19:26:07.000Z
2019-11-22T00:42:23.000Z
T03-24/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
2
2019-11-28T05:21:24.000Z
2019-11-28T05:21:58.000Z
T03-24/program.py
maa76/SSof-Project1920
9b4ad9ac41a648c425fcfcd49cd52ff84e528bde
[ "MIT" ]
25
2019-11-27T01:40:56.000Z
2019-12-04T23:38:59.000Z
a = True while not True: a = get() execute(a)
10.2
16
0.568627
b98a548101877c860f426326cba159b7991da7b4
18,571
py
Python
pandas/tests/io/formats/style/test_html.py
gasparitiago/pandas
c4cce9b75b34179edf000314edf708768486fcbb
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/io/formats/style/test_html.py
gasparitiago/pandas
c4cce9b75b34179edf000314edf708768486fcbb
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/io/formats/style/test_html.py
gasparitiago/pandas
c4cce9b75b34179edf000314edf708768486fcbb
[ "BSD-3-Clause" ]
null
null
null
from textwrap import dedent import numpy as np import pytest from pandas import ( DataFrame, MultiIndex, option_context, ) jinja2 = pytest.importorskip("jinja2") from pandas.io.formats.style import Styler loader = jinja2.PackageLoader("pandas", "io/formats/templates") env = jinja2.Environment(loader=loader, trim_blocks=True) @pytest.fixture def styler(): return Styler(DataFrame([[2.61], [2.69]], index=["a", "b"], columns=["A"])) @pytest.fixture def styler_mi(): midx = MultiIndex.from_product([["a", "b"], ["c", "d"]]) return Styler(DataFrame(np.arange(16).reshape(4, 4), index=midx, columns=midx)) @pytest.fixture def tpl_style(): return env.get_template("html_style.tpl") @pytest.fixture def tpl_table(): return env.get_template("html_table.tpl") def test_html_template_extends_options(): # make sure if templates are edited tests are updated as are setup fixtures # to understand the dependency with open("pandas/io/formats/templates/html.tpl") as file: result = file.read() assert "{% include html_style_tpl %}" in result assert "{% include html_table_tpl %}" in result def test_exclude_styles(styler): result = styler.to_html(exclude_styles=True, doctype_html=True) expected = dedent( """\ <!DOCTYPE html> <html> <head> <meta charset="utf-8"> </head> <body> <table> <thead> <tr> <th >&nbsp;</th> <th >A</th> </tr> </thead> <tbody> <tr> <th >a</th> <td >2.610000</td> </tr> <tr> <th >b</th> <td >2.690000</td> </tr> </tbody> </table> </body> </html> """ ) assert result == expected def test_w3_html_format(styler): styler.set_uuid("").set_table_styles( [{"selector": "th", "props": "att2:v2;"}] ).applymap(lambda x: "att1:v1;").set_table_attributes( 'class="my-cls1" style="attr3:v3;"' ).set_td_classes( DataFrame(["my-cls2"], index=["a"], columns=["A"]) ).format( "{:.1f}" ).set_caption( "A comprehensive test" ) expected = dedent( """\ <style type="text/css"> #T_ th { att2: v2; } #T__row0_col0, #T__row1_col0 { att1: v1; } </style> <table id="T_" class="my-cls1" style="attr3:v3;"> <caption>A comprehensive test</caption> <thead> <tr> <th class="blank level0" >&nbsp;</th> <th id="T__level0_col0" class="col_heading level0 col0" >A</th> </tr> </thead> <tbody> <tr> <th id="T__level0_row0" class="row_heading level0 row0" >a</th> <td id="T__row0_col0" class="data row0 col0 my-cls2" >2.6</td> </tr> <tr> <th id="T__level0_row1" class="row_heading level0 row1" >b</th> <td id="T__row1_col0" class="data row1 col0" >2.7</td> </tr> </tbody> </table> """ ) assert expected == styler.to_html() def test_colspan_w3(): # GH 36223 df = DataFrame(data=[[1, 2]], columns=[["l0", "l0"], ["l1a", "l1b"]]) styler = Styler(df, uuid="_", cell_ids=False) assert '<th class="col_heading level0 col0" colspan="2">l0</th>' in styler.to_html() def test_rowspan_w3(): # GH 38533 df = DataFrame(data=[[1, 2]], index=[["l0", "l0"], ["l1a", "l1b"]]) styler = Styler(df, uuid="_", cell_ids=False) assert '<th class="row_heading level0 row0" rowspan="2">l0</th>' in styler.to_html() def test_styles(styler): styler.set_uuid("abc") styler.set_table_styles([{"selector": "td", "props": "color: red;"}]) result = styler.to_html(doctype_html=True) expected = dedent( """\ <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <style type="text/css"> #T_abc td { color: red; } </style> </head> <body> <table id="T_abc"> <thead> <tr> <th class="blank level0" >&nbsp;</th> <th id="T_abc_level0_col0" class="col_heading level0 col0" >A</th> </tr> </thead> <tbody> <tr> <th id="T_abc_level0_row0" class="row_heading level0 row0" >a</th> <td id="T_abc_row0_col0" class="data row0 col0" >2.610000</td> </tr> <tr> <th id="T_abc_level0_row1" class="row_heading level0 row1" >b</th> <td id="T_abc_row1_col0" class="data row1 col0" >2.690000</td> </tr> </tbody> </table> </body> </html> """ ) assert result == expected def test_doctype(styler): result = styler.to_html(doctype_html=False) assert "<html>" not in result assert "<body>" not in result assert "<!DOCTYPE html>" not in result assert "<head>" not in result def test_doctype_encoding(styler): with option_context("styler.render.encoding", "ASCII"): result = styler.to_html(doctype_html=True) assert '<meta charset="ASCII">' in result result = styler.to_html(doctype_html=True, encoding="ANSI") assert '<meta charset="ANSI">' in result def test_bold_headers_arg(styler): result = styler.to_html(bold_headers=True) assert "th {\n font-weight: bold;\n}" in result result = styler.to_html() assert "th {\n font-weight: bold;\n}" not in result def test_caption_arg(styler): result = styler.to_html(caption="foo bar") assert "<caption>foo bar</caption>" in result result = styler.to_html() assert "<caption>foo bar</caption>" not in result def test_block_names(tpl_style, tpl_table): # catch accidental removal of a block expected_style = { "before_style", "style", "table_styles", "before_cellstyle", "cellstyle", } expected_table = { "before_table", "table", "caption", "thead", "tbody", "after_table", "before_head_rows", "head_tr", "after_head_rows", "before_rows", "tr", "after_rows", } result1 = set(tpl_style.blocks) assert result1 == expected_style result2 = set(tpl_table.blocks) assert result2 == expected_table def test_from_custom_template_table(tmpdir): p = tmpdir.mkdir("tpl").join("myhtml_table.tpl") p.write( dedent( """\ {% extends "html_table.tpl" %} {% block table %} <h1>{{custom_title}}</h1> {{ super() }} {% endblock table %}""" ) ) result = Styler.from_custom_template(str(tmpdir.join("tpl")), "myhtml_table.tpl") assert issubclass(result, Styler) assert result.env is not Styler.env assert result.template_html_table is not Styler.template_html_table styler = result(DataFrame({"A": [1, 2]})) assert "<h1>My Title</h1>\n\n\n<table" in styler.to_html(custom_title="My Title") def test_from_custom_template_style(tmpdir): p = tmpdir.mkdir("tpl").join("myhtml_style.tpl") p.write( dedent( """\ {% extends "html_style.tpl" %} {% block style %} <link rel="stylesheet" href="mystyle.css"> {{ super() }} {% endblock style %}""" ) ) result = Styler.from_custom_template( str(tmpdir.join("tpl")), html_style="myhtml_style.tpl" ) assert issubclass(result, Styler) assert result.env is not Styler.env assert result.template_html_style is not Styler.template_html_style styler = result(DataFrame({"A": [1, 2]})) assert '<link rel="stylesheet" href="mystyle.css">\n\n<style' in styler.to_html() def test_caption_as_sequence(styler): styler.set_caption(("full cap", "short cap")) assert "<caption>full cap</caption>" in styler.to_html() @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("columns", [False, True]) @pytest.mark.parametrize("index_name", [True, False]) def test_sticky_basic(styler, index, columns, index_name): if index_name: styler.index.name = "some text" if index: styler.set_sticky(axis=0) if columns: styler.set_sticky(axis=1) left_css = ( "#T_ {0} {{\n position: sticky;\n background-color: white;\n" " left: 0px;\n z-index: {1};\n}}" ) top_css = ( "#T_ {0} {{\n position: sticky;\n background-color: white;\n" " top: {1}px;\n z-index: {2};\n{3}}}" ) res = styler.set_uuid("").to_html() # test index stickys over thead and tbody assert (left_css.format("thead tr th:nth-child(1)", "3 !important") in res) is index assert (left_css.format("tbody tr th:nth-child(1)", "1") in res) is index # test column stickys including if name row assert ( top_css.format("thead tr:nth-child(1) th", "0", "2", " height: 25px;\n") in res ) is (columns and index_name) assert ( top_css.format("thead tr:nth-child(2) th", "25", "2", " height: 25px;\n") in res ) is (columns and index_name) assert (top_css.format("thead tr:nth-child(1) th", "0", "2", "") in res) is ( columns and not index_name ) @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("columns", [False, True]) def test_sticky_mi(styler_mi, index, columns): if index: styler_mi.set_sticky(axis=0) if columns: styler_mi.set_sticky(axis=1) left_css = ( "#T_ {0} {{\n position: sticky;\n background-color: white;\n" " left: {1}px;\n min-width: 75px;\n max-width: 75px;\n z-index: {2};\n}}" ) top_css = ( "#T_ {0} {{\n position: sticky;\n background-color: white;\n" " top: {1}px;\n height: 25px;\n z-index: {2};\n}}" ) res = styler_mi.set_uuid("").to_html() # test the index stickys for thead and tbody over both levels assert ( left_css.format("thead tr th:nth-child(1)", "0", "3 !important") in res ) is index assert (left_css.format("tbody tr th.level0", "0", "1") in res) is index assert ( left_css.format("thead tr th:nth-child(2)", "75", "3 !important") in res ) is index assert (left_css.format("tbody tr th.level1", "75", "1") in res) is index # test the column stickys for each level row assert (top_css.format("thead tr:nth-child(1) th", "0", "2") in res) is columns assert (top_css.format("thead tr:nth-child(2) th", "25", "2") in res) is columns @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("columns", [False, True]) @pytest.mark.parametrize("levels", [[1], ["one"], "one"]) def test_sticky_levels(styler_mi, index, columns, levels): styler_mi.index.names, styler_mi.columns.names = ["zero", "one"], ["zero", "one"] if index: styler_mi.set_sticky(axis=0, levels=levels) if columns: styler_mi.set_sticky(axis=1, levels=levels) left_css = ( "#T_ {0} {{\n position: sticky;\n background-color: white;\n" " left: {1}px;\n min-width: 75px;\n max-width: 75px;\n z-index: {2};\n}}" ) top_css = ( "#T_ {0} {{\n position: sticky;\n background-color: white;\n" " top: {1}px;\n height: 25px;\n z-index: {2};\n}}" ) res = styler_mi.set_uuid("").to_html() # test no sticking of level0 assert "#T_ thead tr th:nth-child(1)" not in res assert "#T_ tbody tr th.level0" not in res assert "#T_ thead tr:nth-child(1) th" not in res # test sticking level1 assert ( left_css.format("thead tr th:nth-child(2)", "0", "3 !important") in res ) is index assert (left_css.format("tbody tr th.level1", "0", "1") in res) is index assert (top_css.format("thead tr:nth-child(2) th", "0", "2") in res) is columns def test_sticky_raises(styler): with pytest.raises(ValueError, match="No axis named bad for object type DataFrame"): styler.set_sticky(axis="bad") @pytest.mark.parametrize( "sparse_index, sparse_columns", [(True, True), (True, False), (False, True), (False, False)], ) def test_sparse_options(sparse_index, sparse_columns): cidx = MultiIndex.from_tuples([("Z", "a"), ("Z", "b"), ("Y", "c")]) ridx = MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "c")]) df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=ridx, columns=cidx) styler = df.style default_html = styler.to_html() # defaults under pd.options to (True , True) with option_context( "styler.sparse.index", sparse_index, "styler.sparse.columns", sparse_columns ): html1 = styler.to_html() assert (html1 == default_html) is (sparse_index and sparse_columns) html2 = styler.to_html(sparse_index=sparse_index, sparse_columns=sparse_columns) assert html1 == html2 @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("columns", [True, False]) def test_applymap_header_cell_ids(styler, index, columns): # GH 41893 func = lambda v: "attr: val;" styler.uuid, styler.cell_ids = "", False if index: styler.applymap_index(func, axis="index") if columns: styler.applymap_index(func, axis="columns") result = styler.to_html() # test no data cell ids assert '<td class="data row0 col0" >2.610000</td>' in result assert '<td class="data row1 col0" >2.690000</td>' in result # test index header ids where needed and css styles assert ( '<th id="T__level0_row0" class="row_heading level0 row0" >a</th>' in result ) is index assert ( '<th id="T__level0_row1" class="row_heading level0 row1" >b</th>' in result ) is index assert ("#T__level0_row0, #T__level0_row1 {\n attr: val;\n}" in result) is index # test column header ids where needed and css styles assert ( '<th id="T__level0_col0" class="col_heading level0 col0" >A</th>' in result ) is columns assert ("#T__level0_col0 {\n attr: val;\n}" in result) is columns @pytest.mark.parametrize("rows", [True, False]) @pytest.mark.parametrize("cols", [True, False]) def test_maximums(styler_mi, rows, cols): result = styler_mi.to_html( max_rows=2 if rows else None, max_columns=2 if cols else None, ) assert ">5</td>" in result # [[0,1], [4,5]] always visible assert (">8</td>" in result) is not rows # first trimmed vertical element assert (">2</td>" in result) is not cols # first trimmed horizontal element def test_replaced_css_class_names(styler_mi): css = { "row_heading": "ROWHEAD", # "col_heading": "COLHEAD", "index_name": "IDXNAME", # "col": "COL", "row": "ROW", # "col_trim": "COLTRIM", "row_trim": "ROWTRIM", "level": "LEVEL", "data": "DATA", "blank": "BLANK", } midx = MultiIndex.from_product([["a", "b"], ["c", "d"]]) styler_mi = Styler( DataFrame(np.arange(16).reshape(4, 4), index=midx, columns=midx), uuid_len=0, ).set_table_styles(css_class_names=css) styler_mi.index.names = ["n1", "n2"] styler_mi.hide_index(styler_mi.index[1:]) styler_mi.hide_columns(styler_mi.columns[1:]) styler_mi.applymap_index(lambda v: "color: red;", axis=0) styler_mi.applymap_index(lambda v: "color: green;", axis=1) styler_mi.applymap(lambda v: "color: blue;") expected = dedent( """\ <style type="text/css"> #T__ROW0_col0 { color: blue; } #T__LEVEL0_ROW0, #T__LEVEL1_ROW0 { color: red; } #T__LEVEL0_col0, #T__LEVEL1_col0 { color: green; } </style> <table id="T_"> <thead> <tr> <th class="BLANK" >&nbsp;</th> <th class="IDXNAME LEVEL0" >n1</th> <th id="T__LEVEL0_col0" class="col_heading LEVEL0 col0" >a</th> </tr> <tr> <th class="BLANK" >&nbsp;</th> <th class="IDXNAME LEVEL1" >n2</th> <th id="T__LEVEL1_col0" class="col_heading LEVEL1 col0" >c</th> </tr> <tr> <th class="IDXNAME LEVEL0" >n1</th> <th class="IDXNAME LEVEL1" >n2</th> <th class="BLANK col0" >&nbsp;</th> </tr> </thead> <tbody> <tr> <th id="T__LEVEL0_ROW0" class="ROWHEAD LEVEL0 ROW0" >a</th> <th id="T__LEVEL1_ROW0" class="ROWHEAD LEVEL1 ROW0" >c</th> <td id="T__ROW0_col0" class="DATA ROW0 col0" >0</td> </tr> <tr> </tr> <tr> </tr> <tr> </tr> </tbody> </table> """ ) result = styler_mi.to_html() assert result == expected def test_include_css_style_rules_only_for_visible_cells(styler_mi): # GH 43619 result = ( styler_mi.set_uuid("") .applymap(lambda v: "color: blue;") .hide_columns(styler_mi.data.columns[1:]) .hide_index(styler_mi.data.index[1:]) .to_html() ) expected_styles = dedent( """\ <style type="text/css"> #T__row0_col0 { color: blue; } </style> """ ) assert expected_styles in result def test_include_css_style_rules_only_for_visible_index_labels(styler_mi): # GH 43619 result = ( styler_mi.set_uuid("") .applymap_index(lambda v: "color: blue;", axis="index") .hide_columns(styler_mi.data.columns) .hide_index(styler_mi.data.index[1:]) .to_html() ) expected_styles = dedent( """\ <style type="text/css"> #T__level0_row0, #T__level1_row0 { color: blue; } </style> """ ) assert expected_styles in result def test_include_css_style_rules_only_for_visible_column_labels(styler_mi): # GH 43619 result = ( styler_mi.set_uuid("") .applymap_index(lambda v: "color: blue;", axis="columns") .hide_columns(styler_mi.data.columns[1:]) .hide_index(styler_mi.data.index) .to_html() ) expected_styles = dedent( """\ <style type="text/css"> #T__level0_col0, #T__level1_col0 { color: blue; } </style> """ ) assert expected_styles in result
30.544408
88
0.577029
5d4aa998e1af997675a5fd4ac6be020f32f71d33
25,252
py
Python
src/poke_env/environment/move.py
etafer/poke-env
2a96969ea1afb3f2576a6a8711a9a268b3ac8ee4
[ "MIT" ]
145
2019-11-01T22:38:02.000Z
2022-03-21T06:06:18.000Z
src/poke_env/environment/move.py
Benjamin-Etheredge/poke-env
30462cecd2e947ab6f0b06b0f2febbdde3918366
[ "MIT" ]
229
2019-11-11T09:51:45.000Z
2022-03-29T10:16:24.000Z
src/poke_env/environment/move.py
Benjamin-Etheredge/poke-env
30462cecd2e947ab6f0b06b0f2febbdde3918366
[ "MIT" ]
77
2019-11-11T09:17:18.000Z
2022-03-17T11:33:48.000Z
# -*- coding: utf-8 -*- from poke_env.data import MOVES, GEN_TO_MOVES from poke_env.environment.field import Field from poke_env.environment.move_category import MoveCategory from poke_env.environment.pokemon_type import PokemonType from poke_env.environment.status import Status from poke_env.environment.weather import Weather from poke_env.utils import to_id_str from functools import lru_cache from typing import Dict from typing import List from typing import Optional from typing import Set from typing import Tuple from typing import Union SPECIAL_MOVES: Dict _PROTECT_MOVES = { "protect", "detect", "endure", "spikyshield", "kingsshield", "banefulbunker", "obstruct", "maxguard", } _SIDE_PROTECT_MOVES = {"wideguard", "quickguard", "matblock"} _PROTECT_COUNTER_MOVES = _PROTECT_MOVES | _SIDE_PROTECT_MOVES class Move: _MISC_FLAGS = [ "onModifyMove", "onEffectiveness", "onHitField", "onAfterMoveSecondarySelf", "onHit", "onTry", "beforeTurnCallback", "onAfterMove", "onTryHit", "onTryMove", "hasCustomRecoil", "onMoveFail", "onPrepareHit", "onAfterHit", "onBasePower", "basePowerCallback", "damageCallback", "onTryHitSide", "beforeMoveCallback", ] _MOVES_DICT = GEN_TO_MOVES[8] __slots__ = "_id", "_current_pp", "_dynamaxed_move", "_is_empty", "_request_target" def __init__(self, move: str = "", move_id: Optional[str] = None): if move_id: self._id = move_id else: self._id: str = self.retrieve_id(move) self._current_pp = self.max_pp self._is_empty: bool = False self._dynamaxed_move = None self._request_target = None def __repr__(self) -> str: return f"{self._id} (Move object)" def use(self) -> None: self._current_pp -= 1 @staticmethod def is_id_z(id_) -> bool: if id_.startswith("z") and id_[1:] in MOVES: return True return "isZ" in MOVES[id_] @staticmethod def is_max_move(id_) -> bool: if id_.startswith("max"): return True elif MOVES[id_].get("isNonstandard", None) == "Gigantamax": return True elif MOVES[id_].get("isMax", None) is not None: return True return False @staticmethod @lru_cache(4096) def should_be_stored(move_id: str) -> bool: if move_id in SPECIAL_MOVES: return False if move_id not in MOVES: return False if Move.is_id_z(move_id): return False if Move.is_max_move(move_id): return False return True @property def accuracy(self) -> float: """ :return: The move's accuracy (0 to 1 scale). :rtype: float """ accuracy = self.entry["accuracy"] if accuracy is True: return 1.0 return accuracy / 100 @property def base_power(self) -> int: """ :return: The move's base power. :rtype: int """ return self.entry.get("basePower", 0) @property def boosts(self) -> Optional[Dict[str, float]]: """ :return: Boosts conferred to the target by using the move. :rtype: Optional[Dict[str, float]] """ return self.entry.get("boosts", None) @property def breaks_protect(self) -> bool: """ :return: Whether the move breaks proect-like defenses. :rtype: bool """ return self.entry.get("breaksProtect", False) @property def can_z_move(self) -> bool: """ :return: Wheter there exist a z-move version of this move. :rtype: bool """ return self.id not in SPECIAL_MOVES @property def category(self) -> MoveCategory: """ :return: The move category. :rtype: MoveCategory """ return MoveCategory[self.entry["category"].upper()] @property def crit_ratio(self) -> int: """ :return: The move's crit ratio. If the move is guaranteed to crit, returns 6. :rtype: """ if "critRatio" in self.entry: return int(self.entry["critRatio"]) elif "willCrit" in self.entry: return 6 return 0 @property def current_pp(self) -> int: """ :return: Remaining PP. :rtype: int """ return self._current_pp @property def damage(self) -> Union[int, str]: """ :return: The move's fix damages. Can be an int or 'level' for moves such as Seismic Toss. :rtype: Union[int, str] """ return self.entry.get("damage", 0) @property def deduced_target(self) -> Optional[str]: """ :return: Move deduced target, based on Move.target and showdown's request messages. :rtype: str, optional """ if self.id in SPECIAL_MOVES: return self.target elif self.request_target: return self.request_target elif self.target == "randomNormal": return self.request_target return self.target @property def defensive_category(self) -> MoveCategory: """ :return: Move's defender category. :rtype: MoveCategory """ if "defensiveCategory" in self.entry: return MoveCategory[self.entry["defensiveCategory"].upper()] return self.category @property def drain(self) -> float: """ :return: Ratio of HP of inflicted damages, between 0 and 1. :rtype: float """ if "drain" in self.entry: return self.entry["drain"][0] / self.entry["drain"][1] return 0.0 @property def dynamaxed(self): """ :return: The dynamaxed version of the move. :rtype: DynamaxMove """ if self._dynamaxed_move: return self._dynamaxed_move self._dynamaxed_move = DynamaxMove(self) return self._dynamaxed_move @property def entry(self) -> dict: """ Should not be used directly. :return: The data entry corresponding to the move :rtype: dict """ if self._id in self._MOVES_DICT: return self._MOVES_DICT[self._id] elif self._id.startswith("z") and self._id[1:] in self._MOVES_DICT: return self._MOVES_DICT[self._id[1:]] else: raise ValueError("Unknown move: %s" % self._id) @property def expected_hits(self) -> float: """ :return: Expected number of hits, between 1 and 5. Equal to n_hits if n_hits is constant. :rtype: float """ if self._id == "triplekick" or self._id == "tripleaxel": # Triple Kick and Triple Axel have an accuracy check for each hit, and also # rise in BP for each hit return 1 + 2 * 0.9 + 3 * 0.81 min_hits, max_hits = self.n_hit if min_hits == max_hits: return min_hits else: # It hits 2-5 times assert min_hits == 2 and max_hits == 5 return (2 + 3) / 3 + (4 + 5) / 6 @property def flags(self) -> Set[str]: """ This property is not well defined, and may be missing some information. If you need more information on some flag, please open an issue in the project. :return: Flags associated with this move. These can come from the data or be custom. :rtype: Set[str] """ flags = set(self.entry["flags"]) flags.update(set(self.entry.keys()).intersection(self._MISC_FLAGS)) return flags @property def force_switch(self) -> bool: """ :return: Whether this move forces switches. :rtype: bool """ return self.entry.get("forceSwitch", False) @property def heal(self) -> float: """ :return: Proportion of the user's HP recovered. :rtype: float """ if "heal" in self.entry: return self.entry["heal"][0] / self.entry["heal"][1] return 0.0 @property def id(self) -> str: """ :return: Move id. :rtype: str """ return self._id @property def ignore_ability(self) -> bool: """ :return: Whether the move ignore its target's ability. :rtype: bool """ return self.entry.get("ignoreAbility", False) @property def ignore_defensive(self) -> bool: """ :return: Whether the opponent's stat boosts are ignored. :rtype: bool """ return self.entry.get("ignoreDefensive", False) @property def ignore_evasion(self) -> bool: """ :return: Wheter the opponent's evasion is ignored. :rtype: bool """ return self.entry.get("ignoreEvasion", False) @property def ignore_immunity(self) -> Union[bool, Set[PokemonType]]: """ :return: Whether the opponent's immunity is ignored, or a list of ignored immunities. :rtype: bool or set of Types """ if "ignoreImmunity" in self.entry: if isinstance(self.entry["ignoreImmunity"], bool): return self.entry["ignoreImmunity"] else: return { PokemonType[t.upper().replace("'", "")] for t in self.entry["ignoreImmunity"].keys() } return False @property def is_empty(self) -> bool: """ :return: Whether the move is an empty move. :rtype: bool """ return self._is_empty @property def is_protect_counter(self) -> bool: """ :return: Wheter this move increments a mon's protect counter. :rtype: int """ return self._id in _PROTECT_COUNTER_MOVES @property def is_protect_move(self) -> bool: """ :return: Wheter this move is a protect-like move. :rtype: int """ return self._id in _PROTECT_MOVES @property def is_side_protect_move(self) -> bool: """ :return: Wheter this move is a side-protect move. :rtype: int """ return self._id in _SIDE_PROTECT_MOVES @property def is_z(self) -> bool: """ :return: Whether the move is a z move. :rtype: bool """ return Move.is_id_z(self.id) @property def max_pp(self) -> int: """ :return: The move's max pp. :rtype: int """ return self.entry["pp"] @property def n_hit(self) -> Tuple: """ :return: How many hits this move lands. Tuple of the form (min, max). :rtype: Tuple """ if "multihit" in self.entry: if isinstance(self.entry["multihit"], list): return tuple(self.entry["multihit"]) else: return self.entry["multihit"], self.entry["multihit"] return 1, 1 @property def no_pp_boosts(self) -> bool: """ :return: Whether the move uses PPs. :rtype: bool """ return "noPPBoosts" in self.entry @property def non_ghost_target(self) -> bool: """ :return: True for curse. :rtype: bool """ return "nonGhostTarget" in self.entry @property def priority(self) -> int: """ :return: Move priority. :rtype: int """ return self.entry["priority"] @property def pseudo_weather(self) -> str: """ :return: Pseudo-weather activated by this move. :rtype: str """ return self.entry.get("pseudoWeather", None) @property def recoil(self) -> float: """ :return: Proportion of the move's damage inflicted as recoil. :rtype: float """ if "recoil" in self.entry: return self.entry["recoil"][0] / self.entry["recoil"][1] elif "struggleRecoil" in self.entry: return 0.25 return 0.0 @property def request_target(self) -> Optional[str]: """ :return: Target information sent by showdown in a request message, if any. :rtype: str, optional """ return self._request_target @request_target.setter def request_target(self, request_target: Optional[str]) -> None: """ :param request_target: Target information received from showdown in a request message. "type request_target: str, optional """ self._request_target = request_target @staticmethod @lru_cache(maxsize=4096) def retrieve_id(move_name: str) -> str: """Retrieve the id of a move based on its full name. :param move_name: The string to convert into a move id. :type move_name: str :return: The corresponding move id. :rtype: str """ move_name = to_id_str(move_name) if move_name.startswith("return"): return "return" if move_name.startswith("frustration"): return "frustration" return move_name @property def secondary(self) -> List[dict]: """ :return: Secondary effects. At this point, the precise content of this property is not too clear. :rtype: Optional[Dict] """ if "secondary" in self.entry and self.entry["secondary"]: return [self.entry["secondary"]] elif "secondaries" in self.entry: return self.entry["secondaries"] return [] @property def self_boost(self) -> Optional[Dict[str, int]]: """ :return: Boosts applied to the move's user. :rtype: Dict[str, int] """ if "selfBoost" in self.entry: return self.entry["selfBoost"].get("boosts", None) elif "self" in self.entry and "boosts" in self.entry["self"]: return self.entry["self"]["boosts"] return None @property def self_destruct(self) -> Optional[str]: """ :return: Move's self destruct consequences. :rtype: Optional[str] """ return self.entry.get("selfdestruct", None) @property def self_switch(self) -> Union[str, bool]: """ :return: What kind of self swtich this move implies for the user. :rtype: Optional[str] """ return self.entry.get("selfSwitch", False) @property def side_condition(self) -> Optional[str]: """ :return: Side condition inflicted by the move. :rtype: Optional[str] """ return self.entry.get("sideCondition", None) @property def sleep_usable(self) -> bool: """ :return: Whether the move can be user by a sleeping pokemon. :rtype: bool """ return self.entry.get("sleepUsable", False) @property def slot_condition(self) -> Optional[str]: """ :return: Which slot condition is started by this move. :rtype: Optional[str] """ return self.entry.get("slotCondition", None) @property def stalling_move(self) -> bool: """ :return: Showdown classification of the move as a stalling move. :rtype: bool """ return self.entry.get("stallingMove", False) @property def status(self) -> Optional[Status]: """ :return: The status inflicted by the move. :rtype: Optional[Status] """ if "status" in self.entry: return Status[self.entry["status"].upper()] return None @property def steals_boosts(self) -> bool: """ :return: Whether the move steals its target's boosts. :rtype: bool """ return self.entry.get("stealsBoosts", False) @property def target(self) -> str: """ :return: Move target. Possible targets (copied from PS codebase): * adjacentAlly - Only relevant to Doubles or Triples, the move only targets an ally of the user. * adjacentAllyOrSelf - The move can target the user or its ally. * adjacentFoe - The move can target a foe, but not (in Triples) a distant foe. * all - The move targets the field or all Pokémon at once. * allAdjacent - The move is a spread move that also hits the user's ally. * allAdjacentFoes - The move is a spread move. * allies - The move affects all active Pokémon on the user's team. * allySide - The move adds a side condition on the user's side. * allyTeam - The move affects all unfainted Pokémon on the user's team. * any - The move can hit any other active Pokémon, not just those adjacent. * foeSide - The move adds a side condition on the foe's side. * normal - The move can hit one adjacent Pokémon of your choice. * randomNormal - The move targets an adjacent foe at random. * scripted - The move targets the foe that damaged the user. * self - The move affects the user of the move. :rtype: str """ return self.entry["target"] @property def terrain(self) -> Optional[Field]: """ :return: Terrain started by the move. :rtype: Optional[Field] """ terrain = self.entry.get("terrain", None) if terrain is not None: terrain = Field.from_showdown_message(terrain) return terrain @property def thaws_target(self) -> bool: """ :return: Whether the move thaws its target. :rtype: bool """ return self.entry.get("thawsTarget", False) @property def type(self) -> PokemonType: """ :return: Move type. :rtype: PokemonType """ return PokemonType[self.entry["type"].upper()] @property def use_target_offensive(self) -> bool: """ :return: Whether the move uses the target's offensive statistics. :rtype: bool """ return self.entry.get("useTargetOffensive", False) @property def volatile_status(self) -> Optional[str]: """ :return: Volatile status inflicted by the move. :rtype: Optional[str] """ return self.entry.get("volatileStatus", None) @property def weather(self) -> Optional[Weather]: """ :return: Weather started by the move. :rtype: Optional[Weather] """ if "weather" in self.entry: return Weather[self.entry["weather"].upper()] return None @property def z_move_boost(self) -> Optional[Dict[str, int]]: """ :return: Boosts associated with the z-move version of this move. :rtype: Dict[str, int] """ if "zMove" in self.entry and "boost" in self.entry["zMove"]: return self.entry["zMove"]["boost"] return None @property def z_move_effect(self) -> Optional[str]: """ :return: Effects associated with the z-move version of this move. :rtype: Optional[str] """ if "zMove" in self.entry and "effect" in self.entry["zMove"]: return self.entry["zMove"]["effect"] return None @property def z_move_power(self) -> int: """ :return: Base power of the z-move version of this move. :rtype: int """ if "zMove" in self.entry and "basePower" in self.entry["zMove"]: return self.entry["zMove"]["basePower"] elif self.category == MoveCategory.STATUS: return 0 base_power = self.base_power if self.n_hit != (1, 1): base_power *= 3 elif base_power <= 55: return 100 elif base_power <= 65: return 120 elif base_power <= 75: return 140 elif base_power <= 85: return 160 elif base_power <= 95: return 175 elif base_power <= 100: return 180 elif base_power <= 110: return 185 elif base_power <= 125: return 190 elif base_power <= 130: return 195 return 200 class EmptyMove(Move): def __init__(self, move_id): self._id: str = move_id self._is_empty: bool = True def __getattribute__(self, name): try: return super(Move, self).__getattribute__(name) except (AttributeError, TypeError, ValueError): return 0 class Gen4Move(Move): _MOVES_DICT = GEN_TO_MOVES[4] class Gen5Move(Move): _MOVES_DICT = GEN_TO_MOVES[5] class Gen6Move(Move): _MOVES_DICT = GEN_TO_MOVES[6] class Gen7Move(Move): _MOVES_DICT = GEN_TO_MOVES[7] class Gen8Move(Move): _MOVES_DICT = GEN_TO_MOVES[8] GEN_TO_MOVE_CLASS = {4: Gen4Move, 5: Gen5Move, 6: Gen6Move, 7: Gen7Move, 8: Gen8Move} SPECIAL_MOVES = {"struggle": Move("struggle"), "recharge": EmptyMove("recharge")} class DynamaxMove(Move): BOOSTS_MAP = { PokemonType.BUG: {"spa": -1}, PokemonType.DARK: {"spd": -1}, PokemonType.DRAGON: {"atk": -1}, PokemonType.GHOST: {"def": -1}, PokemonType.NORMAL: {"spe": -1}, } SELF_BOOSTS_MAP = { PokemonType.FIGHTING: {"atk": +1}, PokemonType.FLYING: {"spe": +1}, PokemonType.GROUND: {"spd": +1}, PokemonType.POISON: {"spa": +1}, PokemonType.STEEL: {"def": +1}, } TERRAIN_MAP = { PokemonType.ELECTRIC: Field.ELECTRIC_TERRAIN, PokemonType.FAIRY: Field.MISTY_TERRAIN, PokemonType.GRASS: Field.GRASSY_TERRAIN, PokemonType.PSYCHIC: Field.PSYCHIC_TERRAIN, } WEATHER_MAP = { PokemonType.FIRE: Weather.SUNNYDAY, PokemonType.ICE: Weather.HAIL, PokemonType.ROCK: Weather.SANDSTORM, PokemonType.WATER: Weather.RAINDANCE, } def __init__(self, parent: Move): self._parent: Move = parent def __getattr__(self, name): return getattr(self._parent, name) @property def accuracy(self): return 1 @property def base_power(self) -> int: if self.category != MoveCategory.STATUS: base_power = self._parent.base_power if self.type in {PokemonType.POISON, PokemonType.FIGHTING}: if base_power < 40: return 70 if base_power < 50: return 75 if base_power < 60: return 80 if base_power < 70: return 85 if base_power < 100: return 90 if base_power < 140: return 95 return 100 else: if base_power < 40: return 90 if base_power < 50: return 100 if base_power < 60: return 110 if base_power < 70: return 120 if base_power < 100: return 130 if base_power < 140: return 140 return 150 return 0 @property def boosts(self) -> Optional[Dict[str, float]]: if self.category != MoveCategory.STATUS: return self.BOOSTS_MAP.get(self.type, None) return None @property def breaks_protect(self): return False @property def crit_ratio(self): return 0 @property def damage(self): return 0 @property def defensive_category(self): return self.category @property def expected_hits(self): return 1 @property def force_switch(self): return False @property def heal(self): return 0 @property def is_protect_counter(self): return self.category == MoveCategory.STATUS @property def is_protect_move(self): return self.category == MoveCategory.STATUS @property def n_hit(self): return 1 @property def priority(self): return 0 @property def recoil(self): return 0 @property def self_boost(self) -> Optional[Dict[str, float]]: if self.category != MoveCategory.STATUS: return self.SELF_BOOSTS_MAP.get(self.type, None) return None @property def status(self): return None @property def terrain(self) -> Optional[Field]: if self.category != MoveCategory.STATUS: return self.TERRAIN_MAP.get(self.type, None) return None @property def weather(self) -> Optional[Weather]: if self.category != MoveCategory.STATUS: return self.WEATHER_MAP.get(self.type, None) return None
28.151616
87
0.561896
93e752bccc620675c309699f0bc5d503d9c962aa
131
py
Python
easylife/utils.py
JaniszM/easylife
37ce67f9a36de52a8118c1a98e9279c43e2b5061
[ "MIT" ]
1
2021-01-01T15:53:49.000Z
2021-01-01T15:53:49.000Z
easylife/utils.py
JaniszM/easylife
37ce67f9a36de52a8118c1a98e9279c43e2b5061
[ "MIT" ]
null
null
null
easylife/utils.py
JaniszM/easylife
37ce67f9a36de52a8118c1a98e9279c43e2b5061
[ "MIT" ]
null
null
null
# coding=utf-8 def convert_to_utf8(value): if isinstance(value, str): value = value.encode("utf-8") return value
16.375
37
0.641221
4348a8bcda43a6916174132cfb857845f3c4c712
48,560
py
Python
pysmt/formula.py
soarlab/pysmt
f9a5243657060d120158b68acfd15120979fee42
[ "Apache-2.0" ]
3
2021-03-22T00:11:48.000Z
2021-04-05T20:09:04.000Z
pysmt/formula.py
soarlab/pysmt
f9a5243657060d120158b68acfd15120979fee42
[ "Apache-2.0" ]
3
2020-01-07T05:14:01.000Z
2021-03-23T03:24:48.000Z
pysmt/formula.py
soarlab/pysmt
f9a5243657060d120158b68acfd15120979fee42
[ "Apache-2.0" ]
2
2019-12-18T18:09:02.000Z
2021-03-28T08:57:07.000Z
# # This file is part of pySMT. # # Copyright 2014 Andrea Micheli and Marco Gario # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """The FormulaManager is used to create formulae. All objects are memoized so that two syntactically equivalent formulae are represented by the same object. The FormulaManager provides many more constructors than the operators defined (operators.py). This is because many operators are rewritten, and therefore are only virtual. Common examples are GE, GT that are rewritten as LE and LT. Similarly, the operator Xor is rewritten using its definition. """ import sys if sys.version_info >= (3, 3): from collections.abc import Iterable else: from collections import Iterable from six.moves import xrange import pysmt.typing as types import pysmt.operators as op from pysmt.fnode import FNode, FNodeContent from pysmt.exceptions import UndefinedSymbolError, PysmtValueError,PysmtTypeError from pysmt.walkers.identitydag import IdentityDagWalker from pysmt.constants import Fraction from pysmt.constants import (is_pysmt_fraction, is_pysmt_integer, is_python_rational, is_python_integer, is_python_string, pysmt_fraction_from_rational, pysmt_integer_from_integer) class FormulaManager(object): """FormulaManager is responsible for the creation of all formulae.""" def __init__(self, env=None): self.env = env # Attributes for handling symbols and formulae self.formulae = {} self.symbols = {} self._fresh_guess = 0 # get_type() from TypeChecker will be initialized lazily self.get_type = None self._next_free_id = 1 self.int_constants = {} self.real_constants = {} self.string_constants = {} self.true_formula = self.create_node(node_type=op.BOOL_CONSTANT, args=tuple(), payload=True) self.false_formula = self.create_node(node_type=op.BOOL_CONSTANT, args=tuple(), payload=False) return def _do_type_check_real(self, formula): self.get_type(formula) def _do_type_check(self, formula): self.get_type = self.env.stc.get_type self._do_type_check = self._do_type_check_real return self._do_type_check(formula) def create_node(self, node_type, args, payload=None): content = FNodeContent(node_type, args, payload) if content in self.formulae: return self.formulae[content] else: n = FNode(content, self._next_free_id) self._next_free_id += 1 self.formulae[content] = n self._do_type_check(n) return n def _create_symbol(self, name, typename=types.BOOL): if len(name) == 0: raise PysmtValueError("Empty string is not a valid name") if not isinstance(typename, types.PySMTType): raise PysmtValueError("typename must be a PySMTType.") n = self.create_node(node_type=op.SYMBOL, args=tuple(), payload=(name, typename)) self.symbols[name] = n return n def new_fresh_symbol(self, typename, base="FV%d"): count = self._fresh_guess while (base % count) in self.symbols: count = count + 1 name = (base % count) self._fresh_guess = count + 1 v = self.Symbol(name, typename) assert v is not None return v def get_symbol(self, name): try: return self.symbols[name] except KeyError: raise UndefinedSymbolError(name) def get_all_symbols(self): return self.symbols.values() def get_or_create_symbol(self, name, typename): s = self.symbols.get(name, None) if s is None: return self._create_symbol(name, typename) if not s.symbol_type() == typename: raise PysmtTypeError("Trying to redefine symbol '%s' with a new type" ". Previous type was '%s' new type is '%s'" % (name, s.symbol_type(), typename)) return s # Node definitions start here def Symbol(self, name, typename=types.BOOL): return self.get_or_create_symbol(name, typename) def FreshSymbol(self, typename=types.BOOL, template=None): if template is None: return self.new_fresh_symbol(typename) return self.new_fresh_symbol(typename, template) def ForAll(self, variables, formula): """ Creates an expression of the form: Forall variables. formula(variables) Restrictions: - Formula must be of boolean type - Variables must be BOOL, REAL or INT """ if len(variables) == 0: return formula return self.create_node(node_type=op.FORALL, args=(formula,), payload=tuple(variables)) def Exists(self, variables, formula): """ Creates an expression of the form: Exists variables. formula(variables) Restrictions: - Formula must be of boolean type - Variables must be BOOL, REAL or INT """ if len(variables) == 0: return formula return self.create_node(node_type=op.EXISTS, args=(formula,), payload=tuple(variables)) def Function(self, vname, params): """Returns the function application of vname to params. Note: Applying a 0-arity function returns the function itself. """ if len(params) == 0: return vname assert len(params) == len(vname.symbol_type().param_types) return self.create_node(node_type=op.FUNCTION, args=tuple(params), payload=vname) def Not(self, formula): """ Creates an expression of the form: not formula Restriction: Formula must be of boolean type """ if formula.is_not(): return formula.arg(0) return self.create_node(node_type=op.NOT, args=(formula,)) def Implies(self, left, right): """ Creates an expression of the form: left -> right Restriction: Left and Right must be of boolean type """ return self.create_node(node_type=op.IMPLIES, args=(left, right)) def Iff(self, left, right): """ Creates an expression of the form: left <-> right Restriction: Left and Right must be of boolean type """ return self.create_node(node_type=op.IFF, args=(left, right)) def Minus(self, left, right): """ Creates an expression of the form: left - right Restriction: Left and Right must be both INT or REAL type """ return self.create_node(node_type=op.MINUS, args=(left, right)) def Times(self, *args): """ Creates a multiplication of terms This function has polimorphic n-arguments: - Times(a,b,c) - Times([a,b,c]) Restriction: - Arguments must be all of the same type - Arguments must be INT or REAL """ tuple_args = self._polymorph_args_to_tuple(args) if len(tuple_args) == 0: raise PysmtTypeError("Cannot create a Times without arguments.") if len(tuple_args) == 1: return tuple_args[0] else: return self.create_node(node_type=op.TIMES, args=tuple_args) def Pow(self, base, exponent): """ Creates the n-th power of the base. The exponent must be a constant. """ if not exponent.is_constant(): raise PysmtValueError("The exponent of POW must be a constant.", exponent) if base.is_constant(): val = base.constant_value() ** exponent.constant_value() if base.is_constant(types.REAL): return self.Real(val) else: assert base.is_constant(types.INT) return self.Int(val) return self.create_node(node_type=op.POW, args=(base, exponent)) def Div(self, left, right, reduce_const=True): """ Creates an expression of the form: left / right """ if reduce_const: if right.is_constant(types.REAL): # If right is a constant we rewrite as left * 1/right inverse = Fraction(1) / right.constant_value() return self.Times(left, self.Real(inverse)) elif right.is_constant(types.INT): raise NotImplementedError # This is a non-linear expression return self.create_node(node_type=op.DIV, args=(left, right)) def Equals(self, left, right): """ Creates an expression of the form: left = right For the boolean case use Iff """ return self.create_node(node_type=op.EQUALS, args=(left, right)) def NotEquals(self, left, right): """ Creates an expression of the form: left != right""" return self.Not(self.Equals(left, right)) def GE(self, left, right): """ Creates an expression of the form: left >= right Restriction: Left and Right must be both REAL or INT type """ return self.create_node(node_type=op.LE, args=(right, left)) def GT(self, left, right): """ Creates an expression of the form: left > right Restriction: Left and Right must be both REAL or INT type """ return self.create_node(node_type=op.LT, args=(right, left)) def LE(self, left, right): """ Creates an expression of the form: left <= right Restriction: Left and Right must be both REAL or INT type """ return self.create_node(node_type=op.LE, args=(left, right)) def LT(self, left, right): """ Creates an expression of the form: left < right Restriction: Left and Right must be both REAL or INT type """ return self.create_node(node_type=op.LT, args=(left, right)) def Ite(self, iff, left, right): """ Creates an expression of the form: if( iff ) then left else right Restriction: - Iff must be BOOL - Left and Right must be both of the same type """ return self.create_node(node_type=op.ITE, args=(iff, left, right)) def Real(self, value): """ Returns a Real-type constant of the given value. value can be: - A Fraction(n,d) - A tuple (n,d) - A long or int n - A float - (Optionally) a mpq or mpz object """ if value in self.real_constants: return self.real_constants[value] if is_pysmt_fraction(value): val = value elif type(value) == tuple: val = Fraction(value[0], value[1]) elif is_python_rational(value): val = pysmt_fraction_from_rational(value) else: raise PysmtTypeError("Invalid type in constant. The type was:" + \ str(type(value))) n = self.create_node(node_type=op.REAL_CONSTANT, args=tuple(), payload=val) self.real_constants[value] = n return n def Int(self, value): """Return a constant of type INT.""" if value in self.int_constants: return self.int_constants[value] if is_pysmt_integer(value): val = value elif is_python_integer(value): val = pysmt_integer_from_integer(value) else: raise PysmtTypeError("Invalid type in constant. The type was:" + \ str(type(value))) n = self.create_node(node_type=op.INT_CONSTANT, args=tuple(), payload=val) self.int_constants[value] = n return n def String(self, value): """Return a constant of type STRING.""" if value in self.string_constants: return self.string_constants[value] if is_python_string(value): n = self.create_node(node_type=op.STR_CONSTANT, args=tuple(), payload=value) self.string_constants[value] = n return n else: raise TypeError("Invalid type in constant. The type was:" + \ str(type(value))) def TRUE(self): """Return the boolean constant True.""" return self.true_formula def FALSE(self): """Return the boolean constant False.""" return self.false_formula def Bool(self, value): if type(value) != bool: raise PysmtTypeError("Expecting bool, got %s" % type(value)) if value: return self.true_formula else: return self.false_formula def And(self, *args): """ Returns a conjunction of terms. This function has polimorphic arguments: - And(a,b,c) - And([a,b,c]) Restriction: Arguments must be boolean """ tuple_args = self._polymorph_args_to_tuple(args) if len(tuple_args) == 0: return self.TRUE() elif len(tuple_args) == 1: return tuple_args[0] else: return self.create_node(node_type=op.AND, args=tuple_args) def Or(self, *args): """ Returns an disjunction of terms. This function has polimorphic n-arguments: - Or(a,b,c) - Or([a,b,c]) Restriction: Arguments must be boolean """ tuple_args = self._polymorph_args_to_tuple(args) if len(tuple_args) == 0: return self.FALSE() elif len(tuple_args) == 1: return tuple_args[0] else: return self.create_node(node_type=op.OR, args=tuple_args) def Plus(self, *args): """ Returns an sum of terms. This function has polimorphic n-arguments: - Plus(a,b,c) - Plus([a,b,c]) Restriction: - Arguments must be all of the same type - Arguments must be INT or REAL """ tuple_args = self._polymorph_args_to_tuple(args) if len(tuple_args) == 0: raise PysmtTypeError("Cannot create a Plus without arguments.") if len(tuple_args) == 1: return tuple_args[0] else: return self.create_node(node_type=op.PLUS, args=tuple_args) def ToReal(self, formula): """ Cast a formula to real type. """ t = self.env.stc.get_type(formula) if t == types.REAL: # Ignore casting of a Real return formula elif t == types.INT: if formula.is_int_constant(): return self.Real(formula.constant_value()) return self.create_node(node_type=op.TOREAL, args=(formula,)) else: raise PysmtTypeError("Argument is of type %s, but INT was " "expected!\n" % t) def RealToInt(self, formula): """ Cast a real formula to the int that is no more than the real. """ return self.create_node(node_type=op.REALTOINT, args=(formula,)) def Ceiling(self, formula): """ Cast a real formula to the int that is at least as large as the real. """ int_val = self.RealToInt(formula) cond = self.Equals(self.ToReal(int_val), formula) return self.Ite(cond, int_val, self.Plus(int_val, self.Int(1))) def Truncate(self, formula): """ Truncate a real formula to int. """ cond = self.GE(formula, self.Real(0)) return self.Ite(cond, self.RealToInt(formula), self.Ceiling(formula)) def AtMostOne(self, *args): """ At most one of the bool expressions can be true at anytime. This using a quadratic encoding: A -> !(B \/ C) B -> !(C) """ bool_exprs = self._polymorph_args_to_tuple(args) constraints = [] for (i, elem) in enumerate(bool_exprs[:-1], start=1): constraints.append(self.Implies(elem, self.Not(self.Or(bool_exprs[i:])))) return self.And(constraints) def ExactlyOne(self, *args): """ Encodes an exactly-one constraint on the boolean symbols. This using a quadratic encoding: A \/ B \/ C A -> !(B \/ C) B -> !(C) """ args = self._polymorph_args_to_tuple(args) return self.And(self.Or(*args), self.AtMostOne(*args)) def AllDifferent(self, *args): """ Encodes the 'all-different' constraint using two possible encodings. AllDifferent(x, y, z) := (x != y) & (x != z) & (y != z) """ exprs = self._polymorph_args_to_tuple(args) res = [] for i, a in enumerate(exprs): for b in exprs[i+1:]: res.append(self.Not(self.EqualsOrIff(a, b))) return self.And(res) def Xor(self, left, right): """Returns the xor of left and right: left XOR right """ return self.Not(self.Iff(left, right)) def Min(self, *args): """Returns the encoding of the minimum expression within args""" exprs = self._polymorph_args_to_tuple(args) assert len(exprs) > 0 if len(exprs) == 1: return exprs[0] elif len(exprs) == 2: a, b = exprs return self.Ite(self.LE(a, b), a, b) else: h = len(exprs) // 2 return self.Min(self.Min(exprs[0:h]), self.Min(exprs[h:])) def Max(self, *args): """Returns the encoding of the maximum expression within args""" exprs = self._polymorph_args_to_tuple(args) assert len(exprs) > 0 if len(exprs) == 1: return exprs[0] elif len(exprs) == 2: a, b = exprs return self.Ite(self.LE(a, b), b, a) else: h = len(exprs) // 2 return self.Max(self.Max(exprs[0:h]), self.Max(exprs[h:])) def EqualsOrIff(self, left, right): """Returns Equals() or Iff() depending on the type of the arguments. This can be used to deal with ambiguous cases where we might be dealing with both Theory and Boolean atoms. """ type_ = self.env.stc.get_type(left) if type_.is_bool_type(): return self.Iff(left, right) else: return self.Equals(left, right) # BitVectors def BV(self, value, width=None): """Return a constant of type BitVector. value can be either: - a string of 0s and 1s - a string starting with "#b" followed by a sequence of 0s and 1s - an integer number s.t. 0 <= value < 2**width In order to create the BV representation of a signed integer, the SBV() method shall be used. """ if type(value) is str: if value.startswith("#b"): str_width = len(value)-2 value = int(value[2:],2) elif all(v in ["0", "1"] for v in value): str_width = len(value) value = int(value, 2) else: raise PysmtValueError("Expecting binary value as string, got " \ "%s instead." % value) if width is not None and width != str_width: raise PysmtValueError("Specified width does not match string " \ "width (%d != %d)" % (width, str_width)) width = str_width if width is None: raise PysmtValueError("Need to specify a width for the constant") if is_pysmt_integer(value): _value = value elif is_python_integer(value): _value = pysmt_integer_from_integer(value) else: raise PysmtTypeError("Invalid type in constant. The type was: %s" \ % str(type(value))) if _value < 0: raise PysmtValueError("Cannot specify a negative value: %d" \ % _value) if _value >= 2**width: raise PysmtValueError("Cannot express %d in %d bits" \ % (_value, width)) return self.create_node(node_type=op.BV_CONSTANT, args=tuple(), payload=(_value, width)) def SBV(self, value, width=None): """Returns a constant of type BitVector interpreting the sign. If the specified value is an integer, it is converted in the 2-complement representation of the given number, otherwise the behavior is the same as BV(). """ if is_python_integer(value): if width is None: raise PysmtValueError("Need to specify a width for the constant") min_val = -(2**(width-1)) max_val = (2**(width-1)) - 1 if value < min_val: raise PysmtValueError("Cannot represent a value (%d) lower " \ "than %d in %d bits" % (value, min_val, width)) if value > max_val: raise PysmtValueError("Cannot represent a value (%d) greater " \ "than %d in %d bits" % (value, max_val, width)) if value >= 0: return self.BV(value, width) else: comp_value = (2**width) + value # value is negative! return self.BV(comp_value, width) else: return self.BV(value, width=width) def BVOne(self, width): """Returns the bit-vector representing the unsigned one.""" return self.BV(1, width=width) def BVZero(self, width): """Returns the bit-vector with all bits set to zero.""" return self.BV(0, width=width) def BVNot(self, formula): """Returns the bitvector Not(bv)""" return self.create_node(node_type=op.BV_NOT, args=(formula,), payload=(formula.bv_width(),)) def BVAnd(self, left, right): """Returns the Bit-wise AND of two bitvectors of the same size.""" return self.create_node(node_type=op.BV_AND, args=(left,right), payload=(left.bv_width(),)) def BVOr(self, left, right): """Returns the Bit-wise OR of two bitvectors of the same size.""" return self.create_node(node_type=op.BV_OR, args=(left,right), payload=(left.bv_width(),)) def BVXor(self, left, right): """Returns the Bit-wise XOR of two bitvectors of the same size.""" return self.create_node(node_type=op.BV_XOR, args=(left,right), payload=(left.bv_width(),)) def BVConcat(self, left, right): """Returns the Concatenation of the two BVs""" return self.create_node(node_type=op.BV_CONCAT, args=(left,right), payload=(left.bv_width()+right.bv_width(),)) def BVExtract(self, formula, start=0, end=None): """Returns the slice of formula from start to end (inclusive).""" if end is None: end = formula.bv_width()-1 assert is_python_integer(start) and is_python_integer(end) assert end >= start and start >= 0, "Start: %d ; End: %d" % (start,end) size = end-start+1 assert size <= formula.bv_width(), \ "Invalid size: start=%d, end=%d, width=%d" % \ (start, end, formula.bv_width()) return self.create_node(node_type=op.BV_EXTRACT, args=(formula,), payload=(size, start, end)) def BVULT(self, left, right): """Returns the formula left < right.""" return self.create_node(node_type=op.BV_ULT, args=(left, right)) def BVUGT(self, left, right): """Returns the formula left > right.""" return self.create_node(node_type=op.BV_ULT, args=(right, left)) def BVULE(self, left, right): """Returns the formula left <= right.""" return self.create_node(node_type=op.BV_ULE, args=(left, right)) def BVUGE(self, left, right): """Returns the formula left >= right.""" return self.create_node(node_type=op.BV_ULE, args=(right, left)) def BVNeg(self, formula): """Returns the arithmetic negation of the BV.""" return self.create_node(node_type=op.BV_NEG, args=(formula,), payload=(formula.bv_width(),)) def BVAdd(self, left, right): """Returns the sum of two BV.""" return self.create_node(node_type=op.BV_ADD, args=(left, right), payload=(left.bv_width(),)) def BVSub(self, left, right): """Returns the difference of two BV.""" return self.create_node(node_type=op.BV_SUB, args=(left, right), payload=(left.bv_width(),)) def BVMul(self, left, right): """Returns the product of two BV.""" return self.create_node(node_type=op.BV_MUL, args=(left, right), payload=(left.bv_width(),)) def BVUDiv(self, left, right): """Returns the division of the two BV.""" return self.create_node(node_type=op.BV_UDIV, args=(left, right), payload=(left.bv_width(),)) def BVURem(self, left, right): """Returns the reminder of the two BV.""" return self.create_node(node_type=op.BV_UREM, args=(left, right), payload=(left.bv_width(),)) def BVLShl(self, left, right): """Returns the logical left shift the BV.""" if is_python_integer(right): right = self.BV(right, left.bv_width()) return self.create_node(node_type=op.BV_LSHL, args=(left, right), payload=(left.bv_width(),)) def BVLShr(self, left, right): """Returns the logical right shift the BV.""" if is_python_integer(right): right = self.BV(right, left.bv_width()) return self.create_node(node_type=op.BV_LSHR, args=(left, right), payload=(left.bv_width(),)) def BVRol(self, formula, steps): """Returns the LEFT rotation of the BV by the number of steps.""" if not is_python_integer(steps): raise PysmtTypeError("BVRol: 'steps' should be an integer. Got %s" \ % steps) return self.create_node(node_type=op.BV_ROL, args=(formula,), payload=(formula.bv_width(), steps)) def BVRor(self, formula, steps): """Returns the RIGHT rotation of the BV by the number of steps.""" if not is_python_integer(steps): raise PysmtTypeError("BVRor: 'steps' should be an integer. Got %s" \ % steps) return self.create_node(node_type=op.BV_ROR, args=(formula,), payload=(formula.bv_width(), steps)) def BVZExt(self, formula, increase): """Returns the extension of the BV with 'increase' additional bits New bits are set to zero. """ if not is_python_integer(increase): raise PysmtTypeError("BVZext: 'increase' should be an integer. " "Got %s" % increase) return self.create_node(node_type=op.BV_ZEXT, args=(formula,), payload=(formula.bv_width()+increase, increase)) def BVSExt(self, formula, increase): """Returns the signed extension of the BV with 'increase' additional bits New bits are set according to the most-significant-bit. """ if not is_python_integer(increase): raise PysmtTypeError("BVSext: 'increase' should be an integer. " "Got %s" % increase) return self.create_node(node_type=op.BV_SEXT, args=(formula,), payload=(formula.bv_width()+increase, increase)) def BVSLT(self, left, right): """Returns the SIGNED LOWER-THAN comparison for BV.""" return self.create_node(node_type=op.BV_SLT, args=(left, right)) def BVSLE(self, left, right): """Returns the SIGNED LOWER-THAN-OR-EQUAL-TO comparison for BV.""" return self.create_node(node_type=op.BV_SLE, args=(left, right)) def BVComp(self, left, right): """Returns a BV of size 1 equal to 0 if left is equal to right, otherwise 1 is returned.""" return self.create_node(node_type=op.BV_COMP, args=(left, right), payload=(1,)) def BVSDiv(self, left, right): """Returns the SIGNED DIVISION of left by right""" return self.create_node(node_type=op.BV_SDIV, args=(left, right), payload=(left.bv_width(),)) def BVSRem(self, left, right): """Returns the SIGNED REMAINDER of left divided by right""" return self.create_node(node_type=op.BV_SREM, args=(left, right), payload=(left.bv_width(),)) def BVAShr(self, left, right): """Returns the RIGHT arithmetic rotation of the left BV by the number of steps specified by the right BV.""" if is_python_integer(right): right = self.BV(right, left.bv_width()) return self.create_node(node_type=op.BV_ASHR, args=(left, right), payload=(left.bv_width(),)) def BVNand(self, left, right): """Returns the NAND composition of left and right.""" return self.BVNot(self.BVAnd(left, right)) def BVNor(self, left, right): """Returns the NOR composition of left and right.""" return self.BVNot(self.BVOr(left, right)) def BVXnor(self, left, right): """Returns the XNOR composition of left and right.""" return self.BVOr(self.BVAnd(left, self.BVNot(right)), self.BVAnd(self.BVNot(left), right)) def BVSGT(self, left, right): """Returns the SIGNED GREATER-THAN comparison for BV.""" return self.BVSLT(right, left) def BVSGE(self, left, right): """Returns the SIGNED GREATER-THAN-OR-EQUAL-TO comparison for BV.""" return self.BVSLE(right, left) def BVSMod(self, left, right): """Returns the SIGNED MODULUS of left divided by right.""" # According to SMT-LIB standard (2015-06-23) BVSMod is defined as follows # http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV # # For all terms s,t of sort (_ BitVec m), where 0 < m, # (bvsmod s t) abbreviates # (let ((?msb_s ((_ extract |m-1| |m-1|) s)) # (?msb_t ((_ extract |m-1| |m-1|) t))) # (let ((abs_s (ite (= ?msb_s #b0) s (bvneg s))) # (abs_t (ite (= ?msb_t #b0) t (bvneg t)))) # (let ((u (bvurem abs_s abs_t))) # (ite (= u (_ bv0 m)) # u # (ite (and (= ?msb_s #b0) (= ?msb_t #b0)) # u # (ite (and (= ?msb_s #b1) (= ?msb_t #b0)) # (bvadd (bvneg u) t) # (ite (and (= ?msb_s #b0) (= ?msb_t #b1)) # (bvadd u t) # (bvneg u)))))))) m = left.bv_width() s = left t = right zero_1 = self.BV("#b0") one_1 = self.BV("#b1") msb_s = self.BVExtract(s, m-1, m-1) msb_t = self.BVExtract(t, m-1, m-1) abs_s = self.Ite(self.Equals(msb_s, zero_1), s, self.BVNeg(s)) abs_t = self.Ite(self.Equals(msb_t, zero_1), t, self.BVNeg(t)) u = self.BVURem(abs_s, abs_t) cond1 = self.Equals(u, self.BV(0, m)) cond2 = self.And(self.Equals(msb_s, zero_1), self.Equals(msb_t, zero_1)) cond3 = self.And(self.Equals(msb_s, one_1), self.Equals(msb_t, zero_1)) cond4 = self.And(self.Equals(msb_s, zero_1), self.Equals(msb_t, one_1)) case3 = self.BVAdd(self.BVNeg(u), t) case4 = self.BVAdd(u, t) case5 = self.BVNeg(u) return self.Ite(self.Or(cond1, cond2), u, self.Ite(cond3, case3, self.Ite(cond4, case4, case5))) def BVRepeat(self, formula, count=1): """Returns the concatenation of count copies of formula.""" res = formula for _ in xrange(count-1): res = self.BVConcat(res, formula) return res def StrLength(self, formula): """Returns the length of a formula resulting a String""" return self.create_node(node_type=op.STR_LENGTH, args=(formula,)) def StrConcat(self, *args): """Returns the concatenation of n Strings. s1, s2, ..., and sn are String terms. String concatenation takes at least 2 arguments. """ tuple_args = self._polymorph_args_to_tuple(args) if len(tuple_args) <= 1: raise TypeError("Cannot create a Str_Concat without arguments.") return self.create_node(node_type=op.STR_CONCAT, args=tuple_args) def StrContains(self, s, t): """Returns wether the String s contains the String t. s and t are String terms. """ return self.create_node(node_type=op.STR_CONTAINS, args=(s, t)) def StrIndexOf(self, s, t, i): """Returns the position of the first occurrence of t in s after the index i. s and t being a non empty strings and i a non-negative integer. It returns -1 if the value to search for never occurs. """ return self.create_node(node_type=op.STR_INDEXOF, args=(s, t, i)) def StrReplace(self, s, t1, t2): """Returns a new string where the first occurrence of t1 is replace by t2. where s, t1 and t2 are string terms, t1 is non-empty. """ return self.create_node(node_type=op.STR_REPLACE, args=(s, t1, t2)) def StrSubstr(self, s, i, j): """Returns a substring of s starting at i and ending at j+i. where s is a string term and i, j are integer terms. """ return self.create_node(node_type=op.STR_SUBSTR, args=(s, i, j)) def StrPrefixOf(self, s, t): """Returns whether the s is a prefix of the string t. where s and t are string terms. """ return self.create_node(node_type=op.STR_PREFIXOF, args=(s, t)) def StrSuffixOf(self, s, t): """Returns whether the string s is a suffix of the string t. where s and t are string terms. """ return self.create_node(node_type=op.STR_SUFFIXOF, args=(s, t)) def StrToInt(self, s): """Returns the corresponding natural number of s. If s does not represent a natural number, it returns -1. """ return self.create_node(node_type=op.STR_TO_INT, args=(s,)) def IntToStr(self, x): """Returns the corresponding String representing the natural number x. where x is an integer term. If x is not a natural number it returns the empty String. """ return self.create_node(node_type=op.INT_TO_STR, args=(x, )) def StrCharAt(self, s, i): """Returns a single character String at position i. s is a string term and i is an integer term. i is the position. """ return self.create_node(node_type=op.STR_CHARAT, args=(s, i)) def BVToNatural(self, formula): """Returns the Natural number represented by the BitVector. Given a BitVector of width m returns an integer between 0 and 2^m-1 """ return self.create_node(node_type=op.BV_TONATURAL, args=(formula,)) def Select(self, arr, idx): """Creates a node representing an array selection.""" return self.create_node(node_type=op.ARRAY_SELECT, args=(arr, idx)) def Store(self, arr, idx, val): """Creates a node representing an array update.""" return self.create_node(node_type=op.ARRAY_STORE, args=(arr, idx, val)) def Array(self, idx_type, default, assigned_values=None): """Creates a node representing an array having index type equal to idx_type, initialized with default values. If assigned_values is specified, then it must be a map from constants of type idx_type to values of the same type as default and the array is initialized correspondingly. """ if not isinstance(idx_type, types.PySMTType): raise PysmtTypeError("idx_type is not a valid type: '%s'" % idx_type) args = [default] if assigned_values: for k in sorted(assigned_values, key=id): if not k.is_constant(): raise PysmtValueError("Array initialization indexes must " "be constants") # It is useless to represent assignments equal to the default if assigned_values[k] != default: args.append(k) args.append(assigned_values[k]) return self.create_node(node_type=op.ARRAY_VALUE, args=tuple(args), payload=idx_type) def _Algebraic(self, val): """Returns the algebraic number val.""" return self.create_node(node_type=op.ALGEBRAIC_CONSTANT, args=tuple(), payload=val) # FixedPoint functions def UFXP(self, bv, fb): if type(fb) is FNode and (fb.node_type() is op.INT_CONSTANT or fb.node_type() is op.REAL_CONSTANT): fb = int(fb._content.payload) return self.create_node(node_type=op.UFXP_CONSTANT, args=(bv,), payload=(fb,)) def SFXP(self, bv, fb): if type(fb) is FNode and (fb.node_type() is op.INT_CONSTANT or fb.node_type() is op.REAL_CONSTANT): fb = int(fb._content.payload) return self.create_node(node_type=op.SFXP_CONSTANT, args=(bv,), payload=(fb,)) def TOSFXP(self, om, rm, src, tb, fb): if type(fb) is FNode and (fb.node_type() is op.INT_CONSTANT or fb.node_type() is op.REAL_CONSTANT): fb = int(fb._content.payload) if type(tb) is FNode and (tb.node_type() is op.INT_CONSTANT or tb.node_type() is op.REAL_CONSTANT): tb = int(tb._content.payload) return self.create_node(node_type=op.TO_SFXP, args=(om, rm, src), payload=(tb, fb)) def TOUFXP(self, om, rm, src, to_tb, to_fb): src_ty = self.env.stc.get_type(src) if type(to_fb) is FNode and (to_fb.node_type() is op.INT_CONSTANT or to_fb.node_type() is op.REAL_CONSTANT): to_fb = int(to_fb._content.payload) if type(to_tb) is FNode and (to_tb.node_type() is op.INT_CONSTANT or to_tb.node_type() is op.REAL_CONSTANT): to_tb = int(to_tb._content.payload) return self.create_node(node_type=op.TO_UFXP, args=(om, rm, src), payload=(to_tb, to_fb, src_ty._total_width, src_ty._frac_width)) def UFXPLT(self, left, right): """Returns the formula left < right.""" return self.create_node(node_type=op.UFXP_LT, args=(left, right)) def SFXPLT(self, left, right): """Returns the formula left < right.""" return self.create_node(node_type=op.SFXP_LT, args=(left, right)) def UFXPLE(self, left, right): """Returns the formula left <= right.""" return self.create_node(node_type=op.UFXP_LE, args=(left, right)) def SFXPLE(self, left, right): """Returns the formula left <= right.""" return self.create_node(node_type=op.SFXP_LE, args=(left, right)) def UFXPGT(self, left, right): """Returns the formula right < left.""" return self.create_node(node_type=op.UFXP_LT, args=(right, left)) def SFXPGT(self, left, right): """Returns the formula right < left.""" return self.create_node(node_type=op.SFXP_LT, args=(right, left)) def UFXPGE(self, left, right): """Returns the formula right <= left.""" return self.create_node(node_type=op.UFXP_LE, args=(right, left)) def SFXPGE(self, left, right): """Returns the formula right <= left.""" return self.create_node(node_type=op.SFXP_LE, args=(right, left)) def UFXPAdd(self, om, left, right): """Returns the sum of two unsigned fixed-points.""" return self.create_node(node_type=op.UFXP_ADD, args=(om, left, right)) def SFXPAdd(self, om, left, right): """Returns the addition of two signed fixed-points.""" return self.create_node(node_type=op.SFXP_ADD, args=(om, left, right)) def UFXPSub(self, om, left, right): """Returns the addition of two unsigned fixed-points.""" return self.create_node(node_type=op.UFXP_SUB, args=(om, left, right)) def SFXPSub(self, om, left, right): """Returns the subtraction of two signed fixed-points.""" return self.create_node(node_type=op.SFXP_SUB, args=(om, left, right)) def UFXPMul(self, om, rm, left, right): """Returns the multiplication of two unsigned fixed-points.""" return self.create_node(node_type=op.UFXP_MUL, args=(om, rm, left, right)) def SFXPMul(self, om, rm, left, right): """Returns the multiplication of two signed fixed-points.""" return self.create_node(node_type=op.SFXP_MUL, args=(om, rm, left, right)) def UFXPDiv(self, om, rm, left, right): """Returns the division of two unsigned fixed-points.""" return self.create_node(node_type=op.UFXP_DIV, args=(om, rm, left, right)) def SFXPDiv(self, om, rm, left, right): """Returns the division of two signed fixed-points.""" return self.create_node(node_type=op.SFXP_DIV, args=(om, rm, left, right)) def SFXPNeg(self, om, arg): """Returns the negation of a signed fixed-point number.""" ty = self.env.stc.get_type(arg) total_width = ty.total_width frac_width = ty.frac_width return self.SFXPSub(om, self.SFXP(self.SBV(0, total_width), frac_width), arg) def ST(self): return self.create_node(node_type=op.ST, args=()) def WP(self): return self.create_node(node_type=op.WP, args=()) def RU(self): return self.create_node(node_type=op.RU, args=()) def RD(self): return self.create_node(node_type=op.RD, args=()) # # Helper functions # def normalize(self, formula): """Returns the formula normalized to the current Formula Manager. This method is useful to contextualize a formula coming from another formula manager. E.g., f_a is defined with the FormulaManager a, and we want to obtain f_b that is the formula f_a expressed on the FormulaManager b : f_b = b.normalize(f_a) """ normalizer = FormulaContextualizer(self.env) return normalizer.walk(formula) def _polymorph_args_to_tuple(self, args): """ Helper function to return a tuple of arguments from args. This function is used to allow N-ary operators to express their arguments both as a list of arguments or as a tuple of arguments: e.g., And([a,b,c]) and And(a,b,c) are both valid, and they are converted into a tuple (a,b,c) """ if len(args) == 1 and isinstance(args[0], Iterable): args = args[0] return tuple(args) def __contains__(self, node): """Checks whether the given node belongs to this formula manager. This overloads the 'in' operator, making it possible to write: E.g., if x in formula_manager: ... """ if node._content in self.formulae: return self.formulae[node._content] == node else: return False #EOC FormulaManager class FormulaContextualizer(IdentityDagWalker): """Helper class to recreate a formula within a new environment.""" def __init__(self, env=None): IdentityDagWalker.__init__(self, env=env) self.type_normalize = self.env.type_manager.normalize def walk_symbol(self, formula, args, **kwargs): # Recreate the Symbol taking into account the type information ty = formula.symbol_type() newty = self.type_normalize(ty) return self.mgr.Symbol(formula.symbol_name(), newty) def walk_array_value(self, formula, args, **kwargs): # Recreate the ArrayValue taking into account the type information assign = dict(zip(args[1::2], args[2::2])) ty = self.type_normalize(formula.array_value_index_type()) return self.mgr.Array(ty, args[0], assign) def walk_function(self, formula, args, **kwargs): # We re-create the symbol name old_name = formula.function_name() new_name = self.walk_symbol(old_name, None) return self.mgr.Function(new_name, args)
38.026625
86
0.553089
c37772a0b88a5e2b9ea81e6276f1311b5b2623fa
21,306
py
Python
CL_version/in_silico_digestion/1_enzyme.py
ldascenzo/pytheas
1010bb082fa3db35db73b936195e00c76aaa4525
[ "MIT" ]
null
null
null
CL_version/in_silico_digestion/1_enzyme.py
ldascenzo/pytheas
1010bb082fa3db35db73b936195e00c76aaa4525
[ "MIT" ]
null
null
null
CL_version/in_silico_digestion/1_enzyme.py
ldascenzo/pytheas
1010bb082fa3db35db73b936195e00c76aaa4525
[ "MIT" ]
null
null
null
#!/usr/bin/python3 """ Last update: November 2021 Author: Luigi D'Ascenzo, PhD - The Scripps Research Institute, La Jolla (CA) Contact info: dascenzoluigi@gmail.com GitHub project repository: https://github.com/ldascenzo/pytheas ***DESCRIPTION*** First step of the Pytheas in silico digest library generation. Given RNA sequences(s) in fasta format are cleaved with a specific RNA endonuclease enzyme (or not if the user choses so). Additional parameters such as missed cleavages (up to 4), 3' and 5' chemistry [P, OH or cP] for the nucleolytic fragments and the whole RNA molecule are optional. If non-specific nucleoltic cleavage is requested, the values of minimum and maximum nucleolytic sequences length has to be specified. ***OPTIONS*** --RNA_sequences (REQUIRED) -> Input RNA sequence file(s) in fasta format. First string of the header for each sequence will be used as sequence id. NOTE: file names input without "=" nor comma. --enzyme (REQUIRED) -> RNA endonuclease selected for the digestion: options are in the following dictionary, where a * indicates the cleaving site {'A': ['C*', 'U*'], 'T1': ['G*'], 'U2': ['A*', 'G*'], 'Cus': ['C*A', 'C*G', 'C*U'], 'MC1': ['U*U', 'C*U', 'A*U'], 'MAZ': ['*ACA'], 'none': no cleavage, 'nonspecific': cleaves after every nucleotide, generating sequences of length specified by the nonspecific_ options, 'custom' : custom input cleavage file} --custom_enzyme (OPTIONAL) -> input file for custom cleavage, where all the cleavage sites are indicated one per line using the * for the cleaving point (e.g. C*A for cutting after a C and before A or G* for cutting after every G). Some IUPAC one letter code for nucleotides are supported, Y for pyrimidines (C or U), R for purines (A or G) and N for any nucleotide (A, C, G or U) --miss (OPTIONAL, DEFAULT = 0) -> number of possible consecutive missed cleavages (up to). --nonspecific_min_length (OPTIONAL, DEFAULT = 3) -> Maximum length for the nucleolytic fragments obtained if nonspecific cleavage is selected. --nonspecific_max_length (OPTIONAL, DEFAULT = 10) -> Maximum length for the nucleolytic fragments obtained if nonspecific cleavage is selected. --cleaved_fragments_5end_chem (OPTIONAL, DEFAULT='OH') -> 5' chemistry of the RNA nucleolytic fragments Possible choices=['OH', 'P']. NOTE: parameters input without "=" nor comma. --cleaved_fragments_3end_chem (OPTIONAL, DEFAULT='P') -> 3' chemistry of the RNA nucleolytic fragments Possible choices=['OH', 'P', 'cP']. NOTE: parameters input without "=" nor comma. --RNA_5end_chem (OPTIONAL, DEFAULT='P') -> 5' chemistry of the input RNA molecule(s) ['OH' or 'P']. NOTE: this refers to the whole RNA molecule and not to the nucleolytic fragments. Parameters input without "=" nor comma. --RNA_3end_chem (OPTIONAL, DEFAULT='OH') -> 3' chemistry of the input RNA molecule(s) ['OH' or 'P']. NOTE: this refers to the whole RNA molecule and not to the nucleolytic fragments. Parameters input without "=" nor comma. ***OUTPUT*** 1) output.1 file contains all the RNA nucleolytic fragments with info on their sequence, numbering referred to the input RNA sequence, number of missed cleavages and 3'/5'-end chemistry. 2) seq_output containing a compact version of the input RNA sequences, used for modification sites validation in later steps of the in silico digestion generation """ import argparse import os import re import sys from Bio import SeqIO # Initialize and define launch options parser = argparse.ArgumentParser(description='List of available options') parser.add_argument('--RNA_sequences', nargs='*', required=True, help='Input RNA sequence file(s). Please use fasta format and input the file names without ' '"=" after the option. First string of the header for each sequence will be used as id') parser.add_argument('--enzyme', choices=['A', 'T1', 'U2', 'none', 'nonspecific', 'Cus', 'MC1', 'MAZ', 'custom'], required=True, help='Nuclease enzyme used for digestion') parser.add_argument('--custom_enzyme', default=None, help='Input file with custom enzymatic cleavage sites') parser.add_argument('--miss', type=int, choices=[0, 1, 2, 3, 4], default=0, help='Number of possible consecutive miss cleavages to consider (Max 4), up to given value') parser.add_argument('--nonspecific_min_length', type=int, default=3, help='Minimum length for the oligos obtained from nonspecific cleavage. Default = 3') parser.add_argument('--nonspecific_max_length', type=int, default=10, help='Maximum length for the oligos obtained from nonspecific cleavage. Default = 10') parser.add_argument("--cleaved_fragments_5end_chem", nargs='*', default=['OH'], choices=['OH', 'P'], help="Set the 5' chemistry of the RNA fragments cleaved from the chosen endonuclease to be 'OH' or " "'P' . Input of values spaced without '=' nor commas (default = OH)") parser.add_argument("--cleaved_fragments_3end_chem", nargs='*', default=['P'], choices=['OH', 'P', 'cP'], help="Set the 3' chemistry of the RNA fragments cleaved from the chosen endonuclease to be 'OH', " "'P' or 'cP'. Input of values spaced without '=' nor commas (default = P)") parser.add_argument("--RNA_5end_chem", nargs='*', default=['P'], choices=['OH', 'P'], help="Set the 5' chemistry of the input RNA molecule(s) [options are 'OH' or 'P' ]. " "Note that this option refers to the whole RNA molecule and not to oligomers after digestion " "Input of values spaced without '=' nor commas (default = P)") parser.add_argument("--RNA_3end_chem", nargs='*', default=['OH'], choices=['OH', 'P', 'cP'], help="Set the 3' chemistry of the input RNA molecule(s) [options are 'OH', 'P' or 'cP']. " "Note that this option refers to the whole RNA molecule and not to oligomers after digestion " "Input of values spaced without '=' nor commas (default = OH)") args = parser.parse_args() def read_custom_enzyme(infile): """ Create a list of custom RNase cleaving sites from an input file """ outlist = [] with open(infile.rstrip(), 'r') as handle: for line in handle: if '*' in line and line[0] != '#': outlist.append(line.rstrip()) return outlist def enzyme_cut(): """ Define the dictionary of the standard RNase cleaving sites identified with a * """ return {'A': ['C*', 'U*'], 'T1': ['G*'], 'U2': ['A*', 'G*'], 'Cus': ['C*A', 'C*G', 'C*U'], 'MC1': ['U*U', 'C*U', 'A*U'], 'MAZ': ['*ACA'], 'none': []} def iupac_letter_codes_nts(): """ Dictionary with the one letter code symbols for RNA nucleotides From: https://www.megasoftware.net/web_help_7/rh_iupac_single_letter_codes.htm """ return {'A': 'A', 'C': 'C', 'G': 'G', 'U': 'U', 'Y': '[CU]', 'R': '[AG]', 'N': '[ACGU]'} def print_ReSites(id, sequence, enzyme): output_lines = [] global pattern_glob pattern_glob = [] if enzyme == 'none': sites = [] # Adding only one fragment in the case of no enzymatic digestion output_lines.append("{} {} {} {} {}\n".format(id, sequence, str(1), str(len(sequence)), str( 0))) else: sites = [] if enzyme == 'custom': if not args.custom_enzyme: print( "ERROR!! Select an input file with the custom cleaving sites") sys.exit(1) else: cleaving_sites = read_custom_enzyme(args.custom_enzyme) else: cleaving_sites = enzyme_cut()[enzyme] for cut in cleaving_sites: s = cut.split('*') if s[0] != '' and s[1] != '': nt1, nt2 = '', '' for letter in s[0]: nt1 += iupac_letter_codes_nts()[letter] for letter in s[1]: nt2 += iupac_letter_codes_nts()[letter] pattern = r"(?=({0}{1}))".format(nt1, nt2) pattern_glob.append(pattern) sites += [(str(m.start() + len(s[0]) - 1), pattern) for m in re.finditer(pattern, sequence)] else: if s[0] == '': nt = '' for letter in s[1]: nt += iupac_letter_codes_nts()[letter] if len(nt) == 1: pattern = r"(?!^)({0})".format(nt) else: pattern = r"(?!^)(?=({0}))".format(nt) pattern_glob.append(pattern) sites += [(str(m.start() - 1), pattern) for m in re.finditer(pattern, sequence)] if s[1] == '': nt = '' for letter in s[0]: nt += iupac_letter_codes_nts()[letter] if len(nt) == 1: pattern = r"({0})(?!$)".format(nt) else: pattern = r"(?=({0})(?!$))".format(nt) pattern_glob.append(pattern) sites += [(str(m.start() + len(s[0]) - 1), pattern) for m in re.finditer(pattern, sequence)] # Order the list of all the cleavage sites for the given enzyme sites.sort(key=lambda y: int(y[0])) if sites: # Dirty trick: manually adding the first fragment to the fragments list output_lines.append("{} {} {} {} {}\n".format(id, sequence[:int(sites[0][0]) + 1], str(1), str(int(sites[0][0]) + 1), str(0))) sites.append(str(len(sequence))) # Loop to add all the remaining fragments to the output list for start, end in zip(sites, sites[1:]): if type(end) == tuple: if sequence[int(start[0]) + 1:int(end[0]) + 1]: output_lines.append( "{} {} {} {} {} {}\n".format(id, sequence[int(start[0]) + 1:int(end[0]) + 1], str(int(start[0]) + 2), str(int(end[0]) + 1), str(0), start[1])) else: if sequence[int(start[0]) + 1:int(end) + 1]: output_lines.append( "{} {} {} {} {} {}\n".format(id, sequence[int(start[0]) + 1:int(end) + 1], str(int(start[0]) + 2), str(int(end)), str(0), start[1])) return output_lines def miss_1(input_list): """ Generate the fragments with 1 missed cleavage """ output_list = [] for x, y in zip(input_list, input_list[1:]): miss = 0 for pattern in pattern_glob: miss += len(re.findall(pattern, f"{x.split()[1]}{y.split()[1]}")) output_list.append( "{} {}{} {} {} {}\n".format(x.split()[0], x.split()[1], y.split()[1], x.split()[2], y.split()[3], miss)) return input_list + output_list def miss_2(input_list): """ Generate the fragments with 2 missed cleavages """ output_list = [] for x, y, z in zip(input_list, input_list[1:], input_list[2:]): if len(z.split()) == 6: miss = 0 for pattern in pattern_glob: miss += len(re.findall(pattern, f"{x.split()[1]}{y.split()[1]}{z.split()[1]}")) output_list.append( "{} {}{}{} {} {} {}\n".format(x.split()[0], x.split()[1], y.split()[1], z.split()[1], x.split()[2], z.split()[3], miss)) return input_list + output_list def miss_3(input_list): """ Generate the fragments with 3 missed cleavages """ output_list = [] for x, y, z, w in zip(input_list, input_list[1:], input_list[2:], input_list[3:]): if len(w.split()) == 6: miss = 0 for pattern in pattern_glob: miss += len(re.findall(pattern, f"{x.split()[1]}{y.split()[1]}{z.split()[1]}{w.split()[1]}")) output_list.append( "{} {}{}{}{} {} {} {}\n".format(x.split()[0], x.split()[1], y.split()[1], z.split()[1], w.split()[1], x.split()[2], w.split()[3], miss)) return input_list + output_list def miss_4(input_list): """ Generate the fragments with 4 missed cleavages """ output_list = [] for x, y, z, w, v in zip(input_list, input_list[1:], input_list[2:], input_list[3:], input_list[4:]): if len(v.split()) == 6: miss = 0 for pattern in pattern_glob: miss += len(re.findall(pattern, f"{x.split()[1]}{y.split()[1]}{z.split()[1]}{w.split()[1]}" f"{v.split()[1]}")) output_list.append( "{} {}{}{}{}{} {} {} {}\n".format(x.split()[0], x.split()[1], y.split()[1], z.split()[1], w.split()[1], v.split()[1], x.split()[2], v.split()[3], miss)) return input_list + output_list def clean_lines(input_list): output_list = [] for line in input_list: output_list.append(' '.join(line.split()[:5])) return output_list def nonspecific(rna_id, sequence, min_length, max_length): """ Compute all the fragment sequences in case of nonspecific cleavage, based on the info selected by the user on minimum and maximum length for the sequences generated from nonspecific cleavage """ output_sequences, seq_list = [], list(sequence) for i in range(min_length, max_length + 1): if i <= len(sequence): for position in range(0, len(sequence) - i + 1): seq_to_add = ''.join(seq_list[position:position + i]) output_sequences.append( "{} {} {} {} {}\n".format(rna_id, seq_to_add, position + 1, position + i, 0)) return output_sequences def generate_output(): """ Final output file generation with lines in the format: molecule sequence residue_start residue_end miss 5'end 3'end """ final_lines, seq_output, unique_ids = [], [], [] sequences_dictionary = {} # Loop through the fasta files given as input extracting the sequences for fasta_file in args.RNA_sequences: if fasta_file[0].isdigit() or fasta_file[0].isalpha(): with open(os.getcwd() + "/" + fasta_file.rstrip(), 'r') as handle: # Extract and process the input fasta sequences for seq in SeqIO.parse(handle, "fasta"): if seq.id in unique_ids: print( "ERROR!! The molecule id {} is used to identify multiple molecules. Please edit the " "molecules id in the fasta file to be uniques. Execution terminated without output".format( seq.id)) sys.exit(1) else: unique_ids.append(seq.id) sequence = str(seq.seq.ungap("-")) sequences_dictionary[str(seq.id)] = sequence seq_output.append(str(seq.id) + " " + sequence + "\n") # Append the nonspecific cleavage lines if args.enzyme == 'nonspecific': final_lines = final_lines + nonspecific(str(seq.id), sequence, args.nonspecific_min_length, args.nonspecific_max_length) # Append the missed cleavages lines based on the selected values else: if args.miss == 0: final_lines = final_lines + clean_lines(print_ReSites(str(seq.id), sequence, args.enzyme)) elif args.miss == 1: final_lines = final_lines + clean_lines(miss_1( print_ReSites(str(seq.id), sequence, args.enzyme))) elif args.miss == 2: final_lines = final_lines + clean_lines(miss_2( miss_1(print_ReSites(str(seq.id), sequence, args.enzyme)))) elif args.miss == 3: final_lines = final_lines + clean_lines(miss_3( miss_2(miss_1(print_ReSites(str(seq.id), sequence, args.enzyme))))) elif args.miss == 4: final_lines = final_lines + clean_lines(miss_4(miss_3( miss_2(miss_1(print_ReSites(str(seq.id), sequence, args.enzyme)))))) open(os.getcwd() + "/seq_output", 'w').writelines(seq_output) # Add the information about 3' and 5' chemistry to the cleaved fragments output_lines = [] for line in final_lines: output_lines.extend(assign_chemistry(line, sequences_dictionary)) return output_lines def assign_chemistry(fragment, sequences): """ Assign the 3' and 5' chemistry to the cleaved fragments based on the user-specific options """ values = fragment.split() outlines = [] # Add the 5' and 3' chemistry for the starting and ending nucleotides of each RNA sequence if values[2] == '1': for end5 in args.RNA_5end_chem: if int(values[3]) == len(sequences[values[0]]): for end3 in args.RNA_3end_chem: outlines.append("{} {} {}\n".format(fragment.rstrip(), end5, end3)) else: for end3 in args.cleaved_fragments_3end_chem: outlines.append("{} {} {}\n".format(fragment.rstrip(), end5, end3)) # Add the chemistry info for all the other sequences else: for end5 in args.cleaved_fragments_5end_chem: if int(values[3]) == len(sequences[values[0]]): for end3 in args.RNA_3end_chem: outlines.append("{} {} {}\n".format(fragment.rstrip(), end5, end3)) else: for end3 in args.cleaved_fragments_3end_chem: outlines.append("{} {} {}\n".format(fragment.rstrip(), end5, end3)) return outlines if __name__ == "__main__": """ Generate the output file output.1 """ cleavages = '' if args.enzyme == 'custom': if not args.custom_enzyme: print( "ERROR!! Select an input file with the custom cleaving sites") sys.exit(1) else: cleavages = f"#CLEAVING_SITES {','.join(read_custom_enzyme(args.custom_enzyme))}\n" # The header info differ based on the choice of nonspecific or specific cleavage if args.enzyme == 'nonspecific': starting_lines = ["#INPUT_SEQUENCE {}\n#ENZYME {}\n#NONSPECIFIC_MIN_LENGTH {}\n#NONSPECIFIC_MAX_LENGTH {}" "\n#CLEAVED_RNA_5'CHEMISTRY" " {}\n#CLEAVED_RNA_3'CHEMISTRY {}\n#RNA_5'CHEMISTRY {}\n#RNA_3'CHEMISTRY " "{}\n" "molecule sequence residue_start residue_end miss 5'end 3'end\n".format(os.path.basename( args.RNA_sequences[0]), args.enzyme, args.nonspecific_min_length, args.nonspecific_max_length, ','.join( args.cleaved_fragments_5end_chem), ','.join( args.cleaved_fragments_3end_chem), ','.join( args.RNA_5end_chem), ','.join( args.RNA_3end_chem))] else: starting_lines = ["#INPUT_SEQUENCE {}\n" "#ENZYME {}\n#MISSED_CLEAVAGES {}\n#CLEAVED_RNA_5'CHEMISTRY {}\n" "#CLEAVED_RNA_3'CHEMISTRY {}\n#RNA_5'CHEMISTRY {}\n#RNA_3'CHEMISTRY {}\n" "{}" "molecule sequence residue_start residue_end miss 5'end 3'end\n".format(os.path.basename( args.RNA_sequences[0]), args.enzyme, args.miss, ','.join( args.cleaved_fragments_5end_chem), ','.join( args.cleaved_fragments_3end_chem), ','.join( args.RNA_5end_chem), ','.join( args.RNA_3end_chem), cleavages)] open(os.getcwd() + "/output.1", 'w').writelines(starting_lines + list(set(generate_output()))) print("Done! Output file(s) -> output.1 seq_output")
47.241685
120
0.543837
a3f9ff9430b357d27a0d3ac3700f1b6af25cdea9
3,343
py
Python
QNetwork/qkd/qkd.py
SwamyDev/q_network
4f1866f8d06e4f206b4ada5e86396a4da26f28f7
[ "MIT" ]
null
null
null
QNetwork/qkd/qkd.py
SwamyDev/q_network
4f1866f8d06e4f206b4ada5e86396a4da26f28f7
[ "MIT" ]
null
null
null
QNetwork/qkd/qkd.py
SwamyDev/q_network
4f1866f8d06e4f206b4ada5e86396a4da26f28f7
[ "MIT" ]
2
2019-12-04T08:47:40.000Z
2021-07-22T16:22:27.000Z
import operator import random from abc import ABC, abstractmethod import math class QKDNode(ABC): def __init__(self, ca_channel, error): self.ca_channel = ca_channel self.error = error self.maximize_key_bits = False self._qstates = [] self._other_bases = [] self._test_set = set() self._mismatching_states = 0 def try_generate_key(self): """ Performs a quantum key distribution protocol to try to generate shared key between sender and receiver :return: An empty list [] if the protocol was unsuccessful (due to eaves dropping or noise) or An integer list (i.e.: [0, 1, 1]) of shared key """ self.share_q_states() if self.should_abort(): return [] return self.generate_key() @abstractmethod def share_q_states(self): pass @abstractmethod def should_abort(self): pass @abstractmethod def generate_key(self): pass def _send_q_states(self, amount): self.ca_channel.send(amount) def _share_bases(self): self._send_bases() self._receive_bases() def _send_bases(self): self.ca_channel.send([q.basis for q in self._qstates]) def _send_test_set(self): s = len(self._qstates) t = s // 2 self._test_set = set(random.sample(range(0, s), t)) self.ca_channel.send(list(self._test_set)) def _send_seed(self): m = len(self._qstates) - len(self._test_set) self._seed = self._gen_random_string(m) self.ca_channel.send(self._seed) def _send_ack(self): self.ca_channel.send_ack() def _receive_q_states(self): amount = self.ca_channel.receive()[0] self._measure_qstates(amount) @abstractmethod def _measure_qstates(self, amount): pass def _receive_bases(self): self._other_bases = self.ca_channel.receive() def _receive_seed(self): self._seed = self.ca_channel.receive() def _receive_test_set(self): self._test_set = set(self.ca_channel.receive()) def _receive_ack(self): self.ca_channel.receive_ack() @staticmethod def _gen_random_string(size, up_to=1): return [random.randint(0, up_to) for _ in range(size)] def _calculate_matching_error_of_values(self, lhs, rhs): t = len(lhs) self._mismatching_states = sum(a != b for a, b in zip(lhs, rhs)) return self._mismatching_states / t def _calc_privacy_amplification_of(self, indices): x = [self._qstates[i].value for i in indices] k = len(x) - self._mismatching_states if self.maximize_key_bits else 1 return self._extract_key(x, self._seed, k) @staticmethod def _extract_key(x, seed, k): chunk_size = math.floor(len(x) / k) if chunk_size == 0: raise ValueError("The requested key ({}) is too long for the raw key ({}).".format(k, len(x))) return [sum(map(operator.mul, xp, sp)) % 2 for xp, sp in zip(QKDNode._split_list(x, chunk_size), QKDNode._split_list(seed, chunk_size))] @staticmethod def _split_list(list, size): for i in range(0, len(list), size): yield list[i:i+size]
29.848214
110
0.619503
08b79e1077b46c3c9746815ef84806a8346ad9ad
219
py
Python
python/high-scores/high_scores.py
willdjames/exercism-praticas
8de2fc82459c3f9e5eaff20bad4ce7a760ba786e
[ "MIT" ]
null
null
null
python/high-scores/high_scores.py
willdjames/exercism-praticas
8de2fc82459c3f9e5eaff20bad4ce7a760ba786e
[ "MIT" ]
null
null
null
python/high-scores/high_scores.py
willdjames/exercism-praticas
8de2fc82459c3f9e5eaff20bad4ce7a760ba786e
[ "MIT" ]
null
null
null
def latest(scores): return personal_top_three(scores)[-1] def personal_best(scores): return personal_top_three(scores)[0] def personal_top_three(scores): scores.sort(reverse=True) return scores[0:3]
18.25
41
0.73516
2cdfdc79a5e95061d2fea1d2f8d869a6769ed8dc
3,139
py
Python
python/multicorn/pandasfdw.py
jbylund/Multicorn
47ca7c875913445ed40e03804066de1b03892814
[ "PostgreSQL" ]
null
null
null
python/multicorn/pandasfdw.py
jbylund/Multicorn
47ca7c875913445ed40e03804066de1b03892814
[ "PostgreSQL" ]
null
null
null
python/multicorn/pandasfdw.py
jbylund/Multicorn
47ca7c875913445ed40e03804066de1b03892814
[ "PostgreSQL" ]
null
null
null
import json import pandas as pd from multicorn import ForeignDataWrapper df = pd.DataFrame({ "number": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], "parity": ["even", "odd", "even", "odd", "even", "odd", "even", "odd", "even", "odd"] }) def fake_remote_pandas_endpoint(columns=None, aggs=None, group_clauses=None): if group_clauses is not None: return df.groupby(group_clauses, as_index=False).agg(aggs).to_dict('records') if aggs is not None: # Returns {"column_1": {"avg": x, "sum": y}, "column_2": {"min": z}, ..} return df.agg(aggs).to_dict() return df[columns].to_dict("records") _PG_TO_PANDAS_FUNC_MAP = { "min": "min", "max": "max", "sum": "sum", "avg": "average", "count": "count", } def _convert_aggs_arg(aggs): # Convert aggs in accordance with Pandas API: # {"column_1": ["avg", "sum"], "column_2": ["min"], ..} pandas_aggs = {} for agg_props in aggs.values(): function_name = _PG_TO_PANDAS_FUNC_MAP[agg_props["function"]] if agg_props["column"] not in pandas_aggs: pandas_aggs[agg_props["column"]] = [function_name] else: pandas_aggs[agg_props["column"]].append(function_name) return pandas_aggs class PandasFdw(ForeignDataWrapper): def can_pushdown_upperrel(self): return { "groupby_supported": True, "agg_functions": list(_PG_TO_PANDAS_FUNC_MAP) } def explain(self, quals, columns, aggs=None, group_clauses=None, verbose=False): return [ f"quals: {quals}", f"columns: {columns}", f"aggs: {json.dumps(aggs, indent=4)}", f"group_clauses: {group_clauses}" ] def execute(self, quals, columns, aggs=None, group_clauses=None): if group_clauses is not None: pandas_aggs = _convert_aggs_arg(aggs) for row in fake_remote_pandas_endpoint(columns, pandas_aggs, group_clauses): # Convert result back to Multicorn API: # {"column_1.avg": x, "column_1.sum": y, "column2": z, ...} result = {} for agg_name, agg_props in aggs.items(): function_name = _PG_TO_PANDAS_FUNC_MAP[agg_props["function"]] result[agg_name] = row[(agg_props["column"], function_name)] for group_clause in group_clauses: result[group_clause] = row[(group_clause, "")] yield result elif aggs is not None: pandas_aggs = _convert_aggs_arg(aggs) row = fake_remote_pandas_endpoint(columns, pandas_aggs) # Convert result back to Multicorn API: # {"column_1.avg": x, "column_1.sum": y, "column_2.min": z, ...} result = {} for agg_name, agg_props in aggs.items(): function_name = _PG_TO_PANDAS_FUNC_MAP[agg_props["function"]] result[agg_name] = row[agg_props["column"]][function_name] yield result else: for row in fake_remote_pandas_endpoint(columns): yield row return
35.269663
89
0.586811
08f667f696d50abad137529dcaa4beb274e5db9e
101
py
Python
tdfscrape-runner.py
bradsokol/tdf-scrape
87cc51eb3df3e953460e675b146ae1a5def36e38
[ "Apache-2.0" ]
null
null
null
tdfscrape-runner.py
bradsokol/tdf-scrape
87cc51eb3df3e953460e675b146ae1a5def36e38
[ "Apache-2.0" ]
null
null
null
tdfscrape-runner.py
bradsokol/tdf-scrape
87cc51eb3df3e953460e675b146ae1a5def36e38
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python from tdfscrape.tdfscrape import main if __name__ == '__main__': main()
12.625
36
0.683168
3b5840049dbc45b879e276f6012678236fe451d8
643
py
Python
core/bi/dictionaries/subscriberprofile.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
null
null
null
core/bi/dictionaries/subscriberprofile.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
null
null
null
core/bi/dictionaries/subscriberprofile.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------- # Interface Profile dictionary # ---------------------------------------------------------------------- # Copyright (C) 2007-2017 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # NOC modules from noc.core.clickhouse.dictionary import Dictionary from noc.core.clickhouse.fields import StringField class SubscriberProfile(Dictionary): class Meta(object): name = "subscriberprofile" layout = "flat" name = StringField() desription = StringField() glyph = StringField()
30.619048
72
0.479005
bf8eebcaefc930f871199f874ca7c15850f1a645
2,413
py
Python
qiskit_aqua/algorithms/components/optimizers/nlopts/crs.py
msoeken/aqua
af6a459621bcee90ed832a644ef9220644b84b03
[ "Apache-2.0" ]
null
null
null
qiskit_aqua/algorithms/components/optimizers/nlopts/crs.py
msoeken/aqua
af6a459621bcee90ed832a644ef9220644b84b03
[ "Apache-2.0" ]
null
null
null
qiskit_aqua/algorithms/components/optimizers/nlopts/crs.py
msoeken/aqua
af6a459621bcee90ed832a644ef9220644b84b03
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from qiskit_aqua.algorithms.components.optimizers import Optimizer from ._nloptimizer import minimize import logging try: import nlopt except ImportError: raise ImportWarning('nlopt cannot be imported') logger = logging.getLogger(__name__) class CRS(Optimizer): """Controlled Random Search (CRS) with local mutation NLopt global optimizer, derivative-free https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#controlled-random-search-crs-with-local-mutation """ CRS_CONFIGURATION = { 'name': 'CRS', 'description': 'GN_CRS2_LM Optimizer', 'input_schema': { '$schema': 'http://json-schema.org/schema#', 'id': 'crs_schema', 'type': 'object', 'properties': { 'max_evals': { 'type': 'integer', 'default': 1000 } }, 'additionalProperties': False }, 'support_level': { 'gradient': Optimizer.SupportLevel.ignored, 'bounds': Optimizer.SupportLevel.supported, 'initial_point': Optimizer.SupportLevel.required }, 'options': ['max_evals'], 'optimizer': ['global'] } def __init__(self, configuration=None): super().__init__(configuration or self.CRS_CONFIGURATION.copy()) def init_args(self): pass def optimize(self, num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None): super().optimize(num_vars, objective_function, gradient_function, variable_bounds, initial_point) return minimize(nlopt.GN_CRS2_LM, objective_function, variable_bounds, initial_point, **self._options)
32.608108
119
0.639039
c5045d6a3cba496ce6bca2e02606e1db070ca424
1,194
py
Python
21 _Software Testing Technology/suplerlists 2019.4.30/functional_tests.py
zhang99969/DailyLearning
949f94030d0b55c22bf65ba89001e0456c864c8c
[ "MIT" ]
3
2019-01-29T15:08:47.000Z
2019-07-04T06:18:52.000Z
21 _Software Testing Technology/suplerlists 2019.4.30/functional_tests.py
zhang99969/DailyLearning
949f94030d0b55c22bf65ba89001e0456c864c8c
[ "MIT" ]
5
2019-10-21T19:47:08.000Z
2021-06-10T21:32:39.000Z
21 _Software Testing Technology/suplerlists 2019.4.30/functional_tests.py
zhang99969/DailyLearning
949f94030d0b55c22bf65ba89001e0456c864c8c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Mar 13 14:47:06 2019 @author: 最 """ from selenium import webdriver browser = webdriver.Chrome() # Edith has heard about a cool new online to-do app. She goes # to check out its homepage browser.get('http://localhost:8000') # She notices the page title and header mention to-do lists assert 'To-Do' in browser.title, "Browser title was " + browser.title # She is invited to enter a to-do item straight away # She types "Buy peacock feathers" into a text box (Edith's hobby # is tying fly-fishing lures) # When she hits enter, the page updates, and now the page lists # "1: Buy peacock feathers" as an item in a to-do list # There is still a text box inviting her to add another item. She # enters "Use peacock feathers to make a fly" (Edith is very methodical) # The page updates again, and now shows both items on her list # Edith wonders whether the site will remember her list. Then she sees # that the site has generated a unique URL for her -- there is some # explanatory text to that effect. # She visits that URL - her to-do list is still there. # Satisfied, she goes back to sleep browser.quit()
31.421053
73
0.707705
2fcddd069e1e542f92bf5ce155f8059d19299802
806
py
Python
example/exampleproject/urls.py
terabitti/django-turbo-mixins
395710992b5c5704b1b0d3970838067987fe50cc
[ "MIT" ]
null
null
null
example/exampleproject/urls.py
terabitti/django-turbo-mixins
395710992b5c5704b1b0d3970838067987fe50cc
[ "MIT" ]
null
null
null
example/exampleproject/urls.py
terabitti/django-turbo-mixins
395710992b5c5704b1b0d3970838067987fe50cc
[ "MIT" ]
null
null
null
"""exampleproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path("admin/", admin.site.urls), path("", include("groceries.urls")), ]
35.043478
77
0.705955
1472bb7d8cdfead079fed5942a8f7342640d786e
1,197
py
Python
RecommenderSystem/exps/node2vec_exp.py
czx94/d2l
59eb899c157a772a2abe859e1aabdc5f103762dd
[ "MIT" ]
null
null
null
RecommenderSystem/exps/node2vec_exp.py
czx94/d2l
59eb899c157a772a2abe859e1aabdc5f103762dd
[ "MIT" ]
null
null
null
RecommenderSystem/exps/node2vec_exp.py
czx94/d2l
59eb899c157a772a2abe859e1aabdc5f103762dd
[ "MIT" ]
null
null
null
import os import sys sys.path.append(os.path.abspath(os.path.join(os.getcwd()))) import argparse import networkx from utils import eval_embedding, vis_embedding, create_logger from models import Node2Vec from configs import cfg def main(): parser = argparse.ArgumentParser("Node2vec training") parser.add_argument( "--config-file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() logger, log_path = create_logger(cfg) logger.info(cfg) graph = networkx.read_edgelist(cfg.DATA.GRAPH_PATH, create_using=networkx.DiGraph(), nodetype=None, data=[('weight', int)]) model = Node2Vec(graph, cfg, logger) model.train() embedding = model.get_embedding() eval_embedding(embedding, cfg.DATA.LABEL_PATH, logger) vis_embedding(embedding, cfg.DATA.LABEL_PATH, log_path) if __name__ == '__main__': main()
24.428571
127
0.680033
ace01d462613b9d6543b57f0e4f18b4d585fc27c
5,429
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_11_01/aio/operations_async/_load_balancer_network_interfaces_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_11_01/aio/operations_async/_load_balancer_network_interfaces_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_11_01/aio/operations_async/_load_balancer_network_interfaces_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class LoadBalancerNetworkInterfacesOperations: """LoadBalancerNetworkInterfacesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, load_balancer_name: str, **kwargs ) -> AsyncIterable["models.NetworkInterfaceListResult"]: """Gets associated load balancer network interfaces. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkInterfaceListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_11_01.models.NetworkInterfaceListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.NetworkInterfaceListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2019-11-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('NetworkInterfaceListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/networkInterfaces'} # type: ignore
47.622807
192
0.668816
325a3ae514def1afb662bb20c513434b9d6a3203
13,973
py
Python
Settings.py
Andols0/OoT-Randomizer
3ffbc5d8f698cdaddaa2469b2c3beb82377fbc45
[ "MIT" ]
null
null
null
Settings.py
Andols0/OoT-Randomizer
3ffbc5d8f698cdaddaa2469b2c3beb82377fbc45
[ "MIT" ]
1
2020-05-28T01:23:09.000Z
2020-05-28T01:23:09.000Z
Settings.py
Andols0/OoT-Randomizer
3ffbc5d8f698cdaddaa2469b2c3beb82377fbc45
[ "MIT" ]
null
null
null
import argparse import textwrap import string import re import hashlib import math import sys import json import logging from version import __version__ from Utils import random_choices, local_path from SettingsList import setting_infos, get_setting_info from Plandomizer import Distribution class ArgumentDefaultsHelpFormatter(argparse.RawTextHelpFormatter): def _get_help_string(self, action): return textwrap.dedent(action.help) # 32 characters letters = "ABCDEFGHJKLMNPQRSTUVWXYZ23456789" index_to_letter = { i: letters[i] for i in range(32) } letter_to_index = { v: k for k, v in index_to_letter.items() } def bit_string_to_text(bits): # pad the bits array to be multiple of 5 if len(bits) % 5 > 0: bits += [0] * (5 - len(bits) % 5) # convert to characters result = "" for i in range(0, len(bits), 5): chunk = bits[i:i + 5] value = 0 for b in range(5): value |= chunk[b] << b result += index_to_letter[value] return result def text_to_bit_string(text): bits = [] for c in text: index = letter_to_index[c] for b in range(5): bits += [ (index >> b) & 1 ] return bits # holds the particular choices for a run's settings class Settings: def get_settings_display(self): padding = 0 for setting in filter(lambda s: s.shared, setting_infos): padding = max( len(setting.name), padding ) padding += 2 output = '' for setting in filter(lambda s: s.shared, setting_infos): name = setting.name + ': ' + ' ' * (padding - len(setting.name)) if setting.type == list: val = ('\n' + (' ' * (padding + 2))).join(self.__dict__[setting.name]) else: val = str(self.__dict__[setting.name]) output += name + val + '\n' return output def get_settings_string(self): bits = [] for setting in filter(lambda s: s.shared and s.bitwidth > 0, setting_infos): value = self.__dict__[setting.name] i_bits = [] if setting.type == bool: i_bits = [ 1 if value else 0 ] if setting.type == str: try: index = setting.choice_list.index(value) except ValueError: index = setting.choice_list.index(setting.default) # https://stackoverflow.com/questions/10321978/integer-to-bitfield-as-a-list i_bits = [1 if digit=='1' else 0 for digit in bin(index)[2:]] i_bits.reverse() if setting.type == int: value = int(value) value = value - (setting.gui_params.get('min', 0)) value = int(value / (setting.gui_params.get('step', 1))) value = min(value, (setting.gui_params.get('max', value))) # https://stackoverflow.com/questions/10321978/integer-to-bitfield-as-a-list i_bits = [1 if digit=='1' else 0 for digit in bin(value)[2:]] i_bits.reverse() if setting.type == list: if len(value) > len(setting.choice_list) / 2: value = [item for item in setting.choice_list if item not in value] terminal = [1] * setting.bitwidth else: terminal = [0] * setting.bitwidth item_indexes = [] for item in value: try: item_indexes.append(setting.choice_list.index(item)) except ValueError: continue item_indexes.sort() for index in item_indexes: item_bits = [1 if digit=='1' else 0 for digit in bin(index+1)[2:]] item_bits.reverse() item_bits += [0] * ( setting.bitwidth - len(item_bits) ) i_bits.extend(item_bits) i_bits.extend(terminal) # pad it i_bits += [0] * ( setting.bitwidth - len(i_bits) ) bits += i_bits return bit_string_to_text(bits) def update_with_settings_string(self, text): bits = text_to_bit_string(text) for setting in filter(lambda s: s.shared and s.bitwidth > 0, setting_infos): cur_bits = bits[:setting.bitwidth] bits = bits[setting.bitwidth:] value = None if setting.type == bool: value = True if cur_bits[0] == 1 else False if setting.type == str: index = 0 for b in range(setting.bitwidth): index |= cur_bits[b] << b value = setting.choice_list[index] if setting.type == int: value = 0 for b in range(setting.bitwidth): value |= cur_bits[b] << b value = value * setting.gui_params.get('step', 1) value = value + setting.gui_params.get('min', 0) if setting.type == list: value = [] max_index = (1 << setting.bitwidth) - 1 while True: index = 0 for b in range(setting.bitwidth): index |= cur_bits[b] << b if index == 0: break if index == max_index: value = [item for item in setting.choice_list if item not in value] break value.append(setting.choice_list[index-1]) cur_bits = bits[:setting.bitwidth] bits = bits[setting.bitwidth:] self.__dict__[setting.name] = value self.settings_string = self.get_settings_string() self.numeric_seed = self.get_numeric_seed() def get_numeric_seed(self): # salt seed with the settings, and hash to get a numeric seed distribution = json.dumps(self.distribution.to_json(include_output=False), sort_keys=True) full_string = self.settings_string + distribution + __version__ + self.seed return int(hashlib.sha256(full_string.encode('utf-8')).hexdigest(), 16) def sanitize_seed(self): # leave only alphanumeric and some punctuation self.seed = re.sub(r'[^a-zA-Z0-9_-]', '', self.seed, re.UNICODE) def update_seed(self, seed): if seed is None or seed == '': # https://stackoverflow.com/questions/2257441/random-string-generation-with-upper-case-letters-and-digits-in-python self.seed = ''.join(random_choices(string.ascii_uppercase + string.digits, k=10)) else: self.seed = seed self.sanitize_seed() self.numeric_seed = self.get_numeric_seed() def update(self): self.settings_string = self.get_settings_string() self.numeric_seed = self.get_numeric_seed() def load_distribution(self): if self.enable_distribution_file: if self.distribution_file: try: self.distribution = Distribution.from_file(self, self.distribution_file) except FileNotFoundError: logging.getLogger('').warning("Distribution file not found at %s" % (self.distribution_file)) self.enable_distribution_file = False else: logging.getLogger('').warning("Plandomizer enabled, but no distribution file provided.") self.enable_distribution_file = False elif self.distribution_file: logging.getLogger('').warning("Distribution file provided, but using it not enabled. " "Did you mean to set enable_distribution_file?") else: self.distribution = Distribution(self) self.reset_distribution() self.numeric_seed = self.get_numeric_seed() def reset_distribution(self): self.distribution.reset() for location in self.disabled_locations: self.distribution.add_location(location, '#Junk') def check_dependency(self, setting_name, check_random=True): return self.get_dependency(setting_name, check_random) == None def get_dependency(self, setting_name, check_random=True): info = get_setting_info(setting_name) if check_random and 'randomize_key' in info.gui_params and self.__dict__[info.gui_params['randomize_key']]: return info.disabled_default elif info.dependency != None: return info.disabled_default if info.dependency(self) else None else: return None def remove_disabled(self): for info in setting_infos: if info.dependency != None: new_value = self.get_dependency(info.name) if new_value != None: self.__dict__[info.name] = new_value self._disabled.add(info.name) self.settings_string = self.get_settings_string() self.numeric_seed = self.get_numeric_seed() def resolve_random_settings(self, cosmetic, randomize_key=None): sorted_infos = list(setting_infos) sort_key = lambda info: 0 if info.dependency is None else 1 sorted_infos.sort(key=sort_key) randomize_keys_enabled = set() for info in sorted_infos: # only randomize cosmetics options or non-cosmetic if cosmetic == info.shared: continue if self.check_dependency(info.name, check_random=True): continue if 'randomize_key' not in info.gui_params: continue if randomize_key is not None and info.gui_params['randomize_key'] != randomize_key: continue if self.__dict__[info.gui_params['randomize_key']]: randomize_keys_enabled.add(info.gui_params['randomize_key']) choices, weights = zip(*info.gui_params['distribution']) self.__dict__[info.name] = random_choices(choices, weights=weights)[0] # Second pass to make sure disabled settings are set properly. # Stupid hack: disable randomize keys, then re-enable. for randomize_keys in randomize_keys_enabled: self.__dict__[randomize_keys] = False for info in sorted_infos: if cosmetic == info.shared: continue dependency = self.get_dependency(info.name, check_random=False) if dependency is None: continue self.__dict__[info.name] = dependency for randomize_keys in randomize_keys_enabled: self.__dict__[randomize_keys] = True # add the settings as fields, and calculate information based on them def __init__(self, settings_dict): self.__dict__.update(settings_dict) for info in setting_infos: if info.name not in self.__dict__: self.__dict__[info.name] = info.default if self.world_count < 1: self.world_count = 1 if self.world_count > 255: self.world_count = 255 self._disabled = set() self.settings_string = self.get_settings_string() self.distribution = Distribution(self) self.update_seed(self.seed) def to_json(self): return {setting.name: self.__dict__[setting.name] for setting in setting_infos if setting.shared and setting.name not in self._disabled} def to_json_cosmetics(self): return {setting.name: self.__dict__[setting.name] for setting in setting_infos if setting.cosmetic} # gets the randomizer settings, whether to open the gui, and the logger level from command line arguments def get_settings_from_command_line_args(): parser = argparse.ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('--gui', help='Launch the GUI', action='store_true') parser.add_argument('--loglevel', default='info', const='info', nargs='?', choices=['error', 'info', 'warning', 'debug'], help='Select level of logging for output.') parser.add_argument('--settings_string', help='Provide sharable settings using a settings string. This will override all flags that it specifies.') parser.add_argument('--convert_settings', help='Only convert the specified settings to a settings string. If a settings string is specified output the used settings instead.', action='store_true') parser.add_argument('--settings', help='Use the specified settings file to use for generation') parser.add_argument('--seed', help='Generate the specified seed.') parser.add_argument('--no_log', help='Suppresses the generation of a log file.', action='store_true') parser.add_argument('--output_settings', help='Always outputs a settings.json file even when spoiler is enabled.', action='store_true') args = parser.parse_args() if args.settings == '-': settings = Settings(json.loads(sys.stdin.read())) else: settingsFile = local_path(args.settings or 'settings.sav') try: with open(settingsFile) as f: settings = Settings(json.load(f)) except Exception as ex: if args.settings is None: settings = Settings({}) else: raise ex settings.output_settings = args.output_settings if args.settings_string is not None: settings.update_with_settings_string(args.settings_string) if args.seed is not None: settings.update_seed(args.seed) if args.convert_settings: if args.settings_string is not None: print(json.dumps(settings.to_json())) else: print(settings.get_settings_string()) sys.exit(0) return settings, args.gui, args.loglevel, args.no_log
39.030726
200
0.600229
cdd8502271c2b5a9ac55c43a0ea087bc44e8296a
5,139
py
Python
tests/integration/test_projects_using_isort.py
jdufresne/isort
3ddd965c018a65d0bccfbef9af70dab6224e981d
[ "MIT" ]
1,587
2020-08-24T03:07:20.000Z
2022-03-31T20:10:06.000Z
tests/integration/test_projects_using_isort.py
jdufresne/isort
3ddd965c018a65d0bccfbef9af70dab6224e981d
[ "MIT" ]
446
2020-08-24T04:59:41.000Z
2022-03-30T21:48:34.000Z
tests/integration/test_projects_using_isort.py
jdufresne/isort
3ddd965c018a65d0bccfbef9af70dab6224e981d
[ "MIT" ]
170
2020-08-25T15:09:46.000Z
2022-03-30T13:46:48.000Z
"""Tests projects that use isort to see if any differences are found between their current imports and what isort suggest on the develop branch. This is an important early warning signal of regressions. NOTE: If you use isort within a public repository, please feel empowered to add your project here! It is important to isort that as few regressions as possible are experienced by our users. Having your project tested here is the most sure way to keep those regressions form ever happening. """ from pathlib import Path from subprocess import check_call from typing import Sequence from isort.main import main def git_clone(repository_url: str, directory: Path): """Clones the given repository into the given directory path""" check_call(["git", "clone", "--depth", "1", repository_url, str(directory)]) def run_isort(arguments: Sequence[str]): """Runs isort in diff and check mode with the given arguments""" main(["--check-only", "--diff", *arguments]) def test_django(tmpdir): git_clone("https://github.com/django/django.git", tmpdir) run_isort( str(target_dir) for target_dir in (tmpdir / "django", tmpdir / "tests", tmpdir / "scripts") ) def test_plone(tmpdir): git_clone("https://github.com/plone/plone.app.multilingualindexes.git", tmpdir) run_isort([str(tmpdir / "src"), "--skip", "languagefallback.py"]) def test_pandas(tmpdir): # Need to limit extensions as isort has just made sorting pxd the default, and pandas # will have not picked it up yet # TODO: Remove below line as soon as these files are sorted on the mainline pandas project git_clone("https://github.com/pandas-dev/pandas.git", tmpdir) limit_extensions = ("--ext", "py", "--ext", "pyi", "--ext", "pyx") run_isort((str(tmpdir / "pandas"), "--skip", "__init__.py", *limit_extensions)) def test_fastapi(tmpdir): git_clone("https://github.com/tiangolo/fastapi.git", tmpdir) run_isort([str(tmpdir / "fastapi")]) def test_zulip(tmpdir): git_clone("https://github.com/zulip/zulip.git", tmpdir) run_isort((str(tmpdir), "--skip", "__init__.pyi")) def test_habitat_lab(tmpdir): git_clone("https://github.com/facebookresearch/habitat-lab.git", tmpdir) run_isort([str(tmpdir)]) def test_tmuxp(tmpdir): git_clone("https://github.com/tmux-python/tmuxp.git", tmpdir) run_isort( [ str(tmpdir), "--skip", "cli.py", "--skip", "test_workspacebuilder.py", "--skip", "test_cli.py", "--skip", "workspacebuilder.py", ] ) def test_websockets(tmpdir): git_clone("https://github.com/aaugustin/websockets.git", tmpdir) run_isort((str(tmpdir), "--skip", "example", "--skip", "docs", "--skip", "compliance")) def test_airflow(tmpdir): git_clone("https://github.com/apache/airflow.git", tmpdir) run_isort([str(tmpdir), "--skip-glob", "*/_vendor/*", "--skip", "tests"]) def test_typeshed(tmpdir): git_clone("https://github.com/python/typeshed.git", tmpdir) run_isort( ( str(tmpdir), "--skip", "tests", "--skip", "scripts", "--skip", f"{tmpdir}/third_party/2and3/yaml/__init__.pyi", "--skip", "builtins.pyi", "--skip", "ast.pyi", ) ) def test_pylint(tmpdir): git_clone("https://github.com/PyCQA/pylint.git", tmpdir) run_isort([str(tmpdir)]) def test_poetry(tmpdir): git_clone("https://github.com/python-poetry/poetry.git", tmpdir) run_isort((str(tmpdir), "--skip", "tests")) def test_hypothesis(tmpdir): git_clone("https://github.com/HypothesisWorks/hypothesis.git", tmpdir) run_isort( (str(tmpdir), "--skip", "tests", "--profile", "black", "--ca", "--project", "hypothesis") ) def test_pillow(tmpdir): git_clone("https://github.com/python-pillow/Pillow.git", tmpdir) run_isort((str(tmpdir), "--skip", "tests")) def test_attrs(tmpdir): git_clone("https://github.com/python-attrs/attrs.git", tmpdir) run_isort( ( str(tmpdir), "--skip", "tests", "--ext", "py", "--skip", "_compat.py", ) ) def test_datadog_integrations_core(tmpdir): git_clone("https://github.com/DataDog/integrations-core.git", tmpdir) run_isort([str(tmpdir), "--skip", "docs"]) def test_pyramid(tmpdir): git_clone("https://github.com/Pylons/pyramid.git", tmpdir) run_isort( str(target_dir) for target_dir in (tmpdir / "src" / "pyramid", tmpdir / "tests", tmpdir / "setup.py") ) def test_products_zopetree(tmpdir): git_clone("https://github.com/jugmac00/Products.ZopeTree.git", tmpdir) run_isort([str(tmpdir)]) def test_dobby(tmpdir): git_clone("https://github.com/rocketDuck/dobby.git", tmpdir) run_isort([str(tmpdir / "tests"), str(tmpdir / "src")]) def test_zope(tmpdir): git_clone("https://github.com/zopefoundation/Zope.git", tmpdir) run_isort([str(tmpdir)])
30.052632
99
0.633975
6be021deeb98a11d711efe58911ce4703d52e282
11,348
py
Python
test/functional/p2p_invalid_messages.py
VaderCoinProject/vadercoin
b513c794b014d40e5aad281dd1f54845c46d216c
[ "MIT" ]
null
null
null
test/functional/p2p_invalid_messages.py
VaderCoinProject/vadercoin
b513c794b014d40e5aad281dd1f54845c46d216c
[ "MIT" ]
null
null
null
test/functional/p2p_invalid_messages.py
VaderCoinProject/vadercoin
b513c794b014d40e5aad281dd1f54845c46d216c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2020 The Vadercoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test node responses to invalid network messages.""" import struct import time from test_framework.messages import ( CBlockHeader, CInv, MAX_HEADERS_RESULTS, MAX_INV_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH, msg_getdata, msg_headers, msg_inv, msg_ping, MSG_TX, msg_version, ser_string, ) from test_framework.p2p import ( P2PDataStore, P2PInterface, ) from test_framework.test_framework import VadercoinTestFramework from test_framework.util import ( assert_equal, hex_str_to_bytes, ) VALID_DATA_LIMIT = MAX_PROTOCOL_MESSAGE_LENGTH - 5 # Account for the 5-byte length prefix class msg_unrecognized: """Nonsensical message. Modeled after similar types in test_framework.messages.""" msgtype = b'badmsg\x01' def __init__(self, *, str_data): self.str_data = str_data.encode() if not isinstance(str_data, bytes) else str_data def serialize(self): return ser_string(self.str_data) def __repr__(self): return "{}(data={})".format(self.msgtype, self.str_data) class SenderOfAddrV2(P2PInterface): def wait_for_sendaddrv2(self): self.wait_until(lambda: 'sendaddrv2' in self.last_message) class InvalidMessagesTest(VadercoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.extra_args = [["-whitelist=addr@127.0.0.1"]] def run_test(self): self.test_buffer() self.test_duplicate_version_msg() self.test_magic_bytes() self.test_checksum() self.test_size() self.test_msgtype() self.test_addrv2_empty() self.test_addrv2_no_addresses() self.test_addrv2_too_long_address() self.test_addrv2_unrecognized_network() self.test_oversized_inv_msg() self.test_oversized_getdata_msg() self.test_oversized_headers_msg() self.test_resource_exhaustion() def test_buffer(self): self.log.info("Test message with header split across two buffers is received") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) # Create valid message msg = conn.build_message(msg_ping(nonce=12345)) cut_pos = 12 # Chosen at an arbitrary position within the header # Send message in two pieces before = self.nodes[0].getnettotals()['totalbytesrecv'] conn.send_raw_message(msg[:cut_pos]) # Wait until node has processed the first half of the message self.wait_until(lambda: self.nodes[0].getnettotals()['totalbytesrecv'] != before) middle = self.nodes[0].getnettotals()['totalbytesrecv'] # If this assert fails, we've hit an unlikely race # where the test framework sent a message in between the two halves assert_equal(middle, before + cut_pos) conn.send_raw_message(msg[cut_pos:]) conn.sync_with_ping(timeout=1) self.nodes[0].disconnect_p2ps() def test_duplicate_version_msg(self): self.log.info("Test duplicate version message is ignored") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) with self.nodes[0].assert_debug_log(['redundant version message from peer']): conn.send_and_ping(msg_version()) self.nodes[0].disconnect_p2ps() def test_magic_bytes(self): self.log.info("Test message with invalid magic bytes disconnects peer") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) with self.nodes[0].assert_debug_log(['Header error: Wrong MessageStart ffffffff received']): msg = conn.build_message(msg_unrecognized(str_data="d")) # modify magic bytes msg = b'\xff' * 4 + msg[4:] conn.send_raw_message(msg) conn.wait_for_disconnect(timeout=1) self.nodes[0].disconnect_p2ps() def test_checksum(self): self.log.info("Test message with invalid checksum logs an error") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) with self.nodes[0].assert_debug_log(['Header error: Wrong checksum (badmsg, 2 bytes), expected 78df0a04 was ffffffff']): msg = conn.build_message(msg_unrecognized(str_data="d")) # Checksum is after start bytes (4B), message type (12B), len (4B) cut_len = 4 + 12 + 4 # modify checksum msg = msg[:cut_len] + b'\xff' * 4 + msg[cut_len + 4:] conn.send_raw_message(msg) conn.sync_with_ping(timeout=1) # Check that traffic is accounted for (24 bytes header + 2 bytes payload) assert_equal(self.nodes[0].getpeerinfo()[0]['bytesrecv_per_msg']['*other*'], 26) self.nodes[0].disconnect_p2ps() def test_size(self): self.log.info("Test message with oversized payload disconnects peer") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) with self.nodes[0].assert_debug_log(['Header error: Size too large (badmsg, 33554433 bytes)']): msg = msg_unrecognized(str_data="d" * (VALID_DATA_LIMIT + 1)) msg = conn.build_message(msg) conn.send_raw_message(msg) conn.wait_for_disconnect(timeout=1) self.nodes[0].disconnect_p2ps() def test_msgtype(self): self.log.info("Test message with invalid message type logs an error") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) with self.nodes[0].assert_debug_log(['Header error: Invalid message type']): msg = msg_unrecognized(str_data="d") msg = conn.build_message(msg) # Modify msgtype msg = msg[:7] + b'\x00' + msg[7 + 1:] conn.send_raw_message(msg) conn.sync_with_ping(timeout=1) # Check that traffic is accounted for (24 bytes header + 2 bytes payload) assert_equal(self.nodes[0].getpeerinfo()[0]['bytesrecv_per_msg']['*other*'], 26) self.nodes[0].disconnect_p2ps() def test_addrv2(self, label, required_log_messages, raw_addrv2): node = self.nodes[0] conn = node.add_p2p_connection(SenderOfAddrV2()) # Make sure vadercoind signals support for ADDRv2, otherwise this test # will bombard an old node with messages it does not recognize which # will produce unexpected results. conn.wait_for_sendaddrv2() self.log.info('Test addrv2: ' + label) msg = msg_unrecognized(str_data=b'') msg.msgtype = b'addrv2' with node.assert_debug_log(required_log_messages): # override serialize() which would include the length of the data msg.serialize = lambda: raw_addrv2 conn.send_raw_message(conn.build_message(msg)) conn.sync_with_ping() node.disconnect_p2ps() def test_addrv2_empty(self): self.test_addrv2('empty', [ 'received: addrv2 (0 bytes)', 'ProcessMessages(addrv2, 0 bytes): Exception', 'end of data', ], b'') def test_addrv2_no_addresses(self): self.test_addrv2('no addresses', [ 'received: addrv2 (1 bytes)', ], hex_str_to_bytes('00')) def test_addrv2_too_long_address(self): self.test_addrv2('too long address', [ 'received: addrv2 (525 bytes)', 'ProcessMessages(addrv2, 525 bytes): Exception', 'Address too long: 513 > 512', ], hex_str_to_bytes( '01' + # number of entries '61bc6649' + # time, Fri Jan 9 02:54:25 UTC 2009 '00' + # service flags, COMPACTSIZE(NODE_NONE) '01' + # network type (IPv4) 'fd0102' + # address length (COMPACTSIZE(513)) 'ab' * 513 + # address '208d')) # port def test_addrv2_unrecognized_network(self): now_hex = struct.pack('<I', int(time.time())).hex() self.test_addrv2('unrecognized network', [ 'received: addrv2 (25 bytes)', 'IP 9.9.9.9 mapped', 'Added 1 addresses', ], hex_str_to_bytes( '02' + # number of entries # this should be ignored without impeding acceptance of subsequent ones now_hex + # time '01' + # service flags, COMPACTSIZE(NODE_NETWORK) '99' + # network type (unrecognized) '02' + # address length (COMPACTSIZE(2)) 'ab' * 2 + # address '208d' + # port # this should be added: now_hex + # time '01' + # service flags, COMPACTSIZE(NODE_NETWORK) '01' + # network type (IPv4) '04' + # address length (COMPACTSIZE(4)) '09' * 4 + # address '208d')) # port def test_oversized_msg(self, msg, size): msg_type = msg.msgtype.decode('ascii') self.log.info("Test {} message of size {} is logged as misbehaving".format(msg_type, size)) with self.nodes[0].assert_debug_log(['Misbehaving', '{} message size = {}'.format(msg_type, size)]): self.nodes[0].add_p2p_connection(P2PInterface()).send_and_ping(msg) self.nodes[0].disconnect_p2ps() def test_oversized_inv_msg(self): size = MAX_INV_SIZE + 1 self.test_oversized_msg(msg_inv([CInv(MSG_TX, 1)] * size), size) def test_oversized_getdata_msg(self): size = MAX_INV_SIZE + 1 self.test_oversized_msg(msg_getdata([CInv(MSG_TX, 1)] * size), size) def test_oversized_headers_msg(self): size = MAX_HEADERS_RESULTS + 1 self.test_oversized_msg(msg_headers([CBlockHeader()] * size), size) def test_resource_exhaustion(self): self.log.info("Test node stays up despite many large junk messages") conn = self.nodes[0].add_p2p_connection(P2PDataStore()) conn2 = self.nodes[0].add_p2p_connection(P2PDataStore()) msg_at_size = msg_unrecognized(str_data="b" * VALID_DATA_LIMIT) assert len(msg_at_size.serialize()) == MAX_PROTOCOL_MESSAGE_LENGTH self.log.info("(a) Send 80 messages, each of maximum valid data size (4MB)") for _ in range(80): conn.send_message(msg_at_size) # Check that, even though the node is being hammered by nonsense from one # connection, it can still service other peers in a timely way. self.log.info("(b) Check node still services peers in a timely way") for _ in range(20): conn2.sync_with_ping(timeout=2) self.log.info("(c) Wait for node to drop junk messages, while remaining connected") conn.sync_with_ping(timeout=400) # Despite being served up a bunch of nonsense, the peers should still be connected. assert conn.is_connected assert conn2.is_connected self.nodes[0].disconnect_p2ps() if __name__ == '__main__': InvalidMessagesTest().main()
40.528571
128
0.626895
43d623dba085ff8fa0c6a50c9ff32fdeff4a41b4
1,976
py
Python
code/lib/fitting.py
andim/paper-tcellimprint
e89605e51014fa3f347f96bab3d3d84c2b013a2f
[ "MIT" ]
2
2020-07-28T10:47:40.000Z
2021-11-14T20:07:21.000Z
code/lib/fitting.py
andim/paper-tcellimprint
e89605e51014fa3f347f96bab3d3d84c2b013a2f
[ "MIT" ]
null
null
null
code/lib/fitting.py
andim/paper-tcellimprint
e89605e51014fa3f347f96bab3d3d84c2b013a2f
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import scipy.optimize from .config import * def powerlaw(size=1, xmin=1.0, alpha=2.0): """ Draw examples from a discrete power-law. Uses an approximate transformation technique, see Eq. D6 in Clauset et al. arXiv 0706.1062v2 for details. """ r = np.random.rand(int(size)) return np.floor((xmin - 0.5)*(1.0-r)**(-1.0/(alpha-1.0)) + 0.5) def mle_alpha(c, cmin=1.0, continuitycorrection=True): """Maximum likelihood estimate of the power-law exponent. see Eq. B17 in Clauset et al. arXiv 0706.1062v2 """ c = np.asarray(c) c = c[c>=cmin] if continuitycorrection: return 1.0 + len(c)/np.sum(np.log(c/(cmin-0.5))) return 1.0 + len(c)/np.sum(np.log(c/cmin)) def discrete_loglikelihood(x, alpha, xmin): x = x[x>=xmin] n = len(x) return -n*np.log(scipy.special.zeta(alpha, xmin)) - alpha*np.sum(np.log(x)) def mle_alpha_discrete(c, cmin=1.0, **kwargs): """Maximum likelihood estimate of the power-law exponent for discrete data. Numerically maximizes the discrete loglikelihood. kwargs are passed to scipy.optimize.minimize_scalar. Default kwargs: bounds=[1.5, 4.5], method='bounded' """ optkwargs = dict(bounds=[1.5, 4.5], method='bounded') optkwargs.update(kwargs) c = np.asarray(c) c = c[c>=cmin] result = scipy.optimize.minimize_scalar(lambda alpha: -discrete_loglikelihood(c, alpha, cmin), **optkwargs) if not result.success: raise Exception('fitting failed') return result.x @np.vectorize def naive_percentage(t): naivefit = pd.read_csv(data_directory + 'naive_fit.csv', index_col=0, header=None) intercept, slope = float(naivefit.loc['intercept']), float(naivefit.loc['slope']) intercept_early, slope_early = float(naivefit.loc['intercept_early']), float(naivefit.loc['slope_early']) if t < 5: return intercept_early*np.exp(slope_early*t) return intercept*np.exp(slope*t)
35.285714
111
0.674595
68d4e3555174c23ca28c826baa7e80dc668ca84e
3,837
py
Python
distributed/d_collector/pipelines/flow.py
shield-h2020/collectors
cc0e3be030be946d9e4cd5c03e6ac675cc58d9d0
[ "Apache-2.0" ]
null
null
null
distributed/d_collector/pipelines/flow.py
shield-h2020/collectors
cc0e3be030be946d9e4cd5c03e6ac675cc58d9d0
[ "Apache-2.0" ]
null
null
null
distributed/d_collector/pipelines/flow.py
shield-h2020/collectors
cc0e3be030be946d9e4cd5c03e6ac675cc58d9d0
[ "Apache-2.0" ]
null
null
null
''' Methods that will be used to process and prepare netflow data, before being sent to Kafka cluster. ''' import logging import re import sys import tempfile from datetime import datetime from ..utils import popen COMMAND = 'nfdump -r {0} -o csv {1} > {2}' EPOCH = datetime(1970, 1, 1) def convert(netflow, tmpdir, opts='', prefix=None): ''' Convert `nfcapd` file to a comma-separated output format. :param netflow : Path of binary file. :param tmpdir : Path of local staging area. :param opts : A set of options for `nfdump` command. :param prefix : If `prefix` is specified, the file name will begin with that; otherwise, a default `prefix` is used. :returns : Path of CSV-converted file. :rtype : ``str`` :raises OSError: If an error occurs while executing the `nfdump` command. ''' logger = logging.getLogger('SHIELD.DC.PROCESS.FLOW') with tempfile.NamedTemporaryFile(prefix=prefix, dir=tmpdir, delete=False) as fp: command = COMMAND.format(netflow, opts, fp.name) popen(command, raises=True) return fp.name def prepare(csvfile, max_req_size): ''' Prepare text-formatted data for transmission through the Kafka cluster. This method takes a CSV file and groups it into segments, according to the pattern '%Y%m%d%h'. If the size of each segment is greater than the maximum size of a request, then divides each segment into smaller ones so that they can be transmitted. :param csvfile : Path of CSV-converted file; result of `convert` method. :param max_req_size: The maximum size of a request. :returns : A generator which yields the timestamp (in milliseconds) and a list of lines from the CSV-converted file. :rtype : :class:`types.GeneratorType` :raises IOError : If the given file has no any valid line. ''' msg_list = [] msg_size = segmentid = 0 logger = logging.getLogger('SHIELD.DC.PROCESS.FLOW') partition = timestamp = None pattern = re.compile('[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}') with open(csvfile, 'r') as fp: for line in fp: value = line.strip() if not value: continue match = pattern.search(value.split(',')[0]) if not match: continue size = sys.getsizeof(value) # .........................assume the first 13 characters of the `search` # result as the `partition`, e.g. '2018-03-20 09' if match.group()[:13] == partition and (msg_size + size) < max_req_size: msg_list.append(value) msg_size += size continue # .........................if the hour is different or the message size is # above the maximum, then yield existing list and continue with an empty one if timestamp: logger.debug('Yield segment-{0}: {1} lines, {2} bytes'.format(segmentid, len(msg_list), msg_size)) segmentid += 1 yield (int(timestamp.total_seconds() * 1000), msg_list) msg_list = [value] msg_size = size partition = match.group()[:13] timestamp = datetime.strptime(match.group(), '%Y-%m-%d %H:%M:%S') - EPOCH # .................................send the last lines from the file. The check of # `timestamp` is in case the file is empty and `timestamp` is still ``None`` if not timestamp: raise IOError('CSV-converted file has no valid lines.') logger.debug('Yield segment-{0}: {1} lines, {2} bytes'.format(segmentid, len(msg_list), msg_size)) yield (int(timestamp.total_seconds() * 1000), msg_list)
38.757576
88
0.597081
6831af1816c8543b9ce6249e514baab59ffdc2e8
4,015
py
Python
alipay/aop/api/request/KoubeiServindustryExercisePlanDeleteRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/request/KoubeiServindustryExercisePlanDeleteRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/request/KoubeiServindustryExercisePlanDeleteRequest.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.KoubeiServindustryExercisePlanDeleteModel import KoubeiServindustryExercisePlanDeleteModel class KoubeiServindustryExercisePlanDeleteRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, KoubeiServindustryExercisePlanDeleteModel): self._biz_content = value else: self._biz_content = KoubeiServindustryExercisePlanDeleteModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'koubei.servindustry.exercise.plan.delete' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
27.689655
148
0.648568
8018ff577238d94d12fa01209b3fb367d2e674b4
33,281
py
Python
networkx/drawing/layout.py
jonatanwestholm/networkx
4c5a033185f2fb2c692330bad7a7a47c95b3e5e5
[ "BSD-3-Clause" ]
null
null
null
networkx/drawing/layout.py
jonatanwestholm/networkx
4c5a033185f2fb2c692330bad7a7a47c95b3e5e5
[ "BSD-3-Clause" ]
null
null
null
networkx/drawing/layout.py
jonatanwestholm/networkx
4c5a033185f2fb2c692330bad7a7a47c95b3e5e5
[ "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2004-2019 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # Richard Penney <rwpenney@users.sourceforge.net> # Michael Fedell <mfedell@jpl.nasa.gov> # Valentino Constantinou <vconstan@jpl.nasa.gov> # All rights reserved. # BSD license. # # Authors: Aric Hagberg <aric.hagberg@gmail.com>, # Dan Schult <dschult@colgate.edu> """ ****** Layout ****** Node positioning algorithms for graph drawing. For `random_layout()` the possible resulting shape is a square of side [0, scale] (default: [0, 1]) Changing `center` shifts the layout by that amount. For the other layout routines, the extent is [center - scale, center + scale] (default: [-1, 1]). Warning: Most layout routines have only been tested in 2-dimensions. """ import networkx as nx from networkx.utils import random_state __all__ = ['bipartite_layout', 'circular_layout', 'kamada_kawai_layout', 'random_layout', 'rescale_layout', 'shell_layout', 'spring_layout', 'spectral_layout', 'planar_layout', 'fruchterman_reingold_layout', 'spiral_layout'] def _process_params(G, center, dim): # Some boilerplate code. import numpy as np if not isinstance(G, nx.Graph): empty_graph = nx.Graph() empty_graph.add_nodes_from(G) G = empty_graph if center is None: center = np.zeros(dim) else: center = np.asarray(center) if len(center) != dim: msg = "length of center coordinates must match dimension of layout" raise ValueError(msg) return G, center @random_state(3) def random_layout(G, center=None, dim=2, seed=None): """Position nodes uniformly at random in the unit square. For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0). NumPy (http://scipy.org) is required for this function. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. seed : int, RandomState instance or None optional (default=None) Set the random state for deterministic node layouts. If int, `seed` is the seed used by the random number generator, if numpy.random.RandomState instance, `seed` is the random number generator, if None, the random number generator is the RandomState instance used by numpy.random. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.lollipop_graph(4, 3) >>> pos = nx.random_layout(G) """ import numpy as np G, center = _process_params(G, center, dim) pos = seed.rand(len(G), dim) + center pos = pos.astype(np.float32) pos = dict(zip(G, pos)) return pos def circular_layout(G, scale=1, center=None, dim=2): # dim=2 only """Position nodes on a circle. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. If dim>2, the remaining dimensions are set to zero in the returned positions. If dim<2, a ValueError is raised. Returns ------- pos : dict A dictionary of positions keyed by node Raises ------- ValueError If dim < 2 Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.circular_layout(G) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. """ import numpy as np if dim < 2: raise ValueError('cannot handle dimensions < 2') G, center = _process_params(G, center, dim) paddims = max(0, (dim - 2)) if len(G) == 0: pos = {} elif len(G) == 1: pos = {nx.utils.arbitrary_element(G): center} else: # Discard the extra angle since it matches 0 radians. theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi theta = theta.astype(np.float32) pos = np.column_stack([np.cos(theta), np.sin(theta), np.zeros((len(G), paddims))]) pos = rescale_layout(pos, scale=scale) + center pos = dict(zip(G, pos)) return pos def shell_layout(G, nlist=None, scale=1, center=None, dim=2): """Position nodes in concentric circles. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. nlist : list of lists List of node lists for each shell. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout, currently only dim=2 is supported. Other dimension values result in a ValueError. Returns ------- pos : dict A dictionary of positions keyed by node Raises ------- ValueError If dim != 2 Examples -------- >>> G = nx.path_graph(4) >>> shells = [[0], [1, 2, 3]] >>> pos = nx.shell_layout(G, shells) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. """ import numpy as np if dim != 2: raise ValueError('can only handle 2 dimensions') G, center = _process_params(G, center, dim) if len(G) == 0: return {} if len(G) == 1: return {nx.utils.arbitrary_element(G): center} if nlist is None: # draw the whole graph in one shell nlist = [list(G)] if len(nlist[0]) == 1: # single node at center radius = 0.0 else: # else start at r=1 radius = 1.0 npos = {} for nodes in nlist: # Discard the extra angle since it matches 0 radians. theta = np.linspace(0, 1, len(nodes) + 1)[:-1] * 2 * np.pi theta = theta.astype(np.float32) pos = np.column_stack([np.cos(theta), np.sin(theta)]) if len(pos) > 1: pos = rescale_layout(pos, scale=scale * radius / len(nlist)) + center else: pos = np.array([(scale * radius + center[0], center[1])]) npos.update(zip(nodes, pos)) radius += 1.0 return npos def bipartite_layout(G, nodes, align='vertical', scale=1, center=None, aspect_ratio=4/3): """Position nodes in two straight lines. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. nodes : list or container Nodes in one node set of the bipartite graph. This set will be placed on left or top. align : string (default='vertical') The alignment of nodes. Vertical or horizontal. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. aspect_ratio : number (default=4/3): The ratio of the width to the height of the layout. Returns ------- pos : dict A dictionary of positions keyed by node. Examples -------- >>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123) >>> top = nx.bipartite.sets(G)[0] >>> pos = nx.bipartite_layout(G, top) Notes ----- This algorithm currently only works in two dimensions and does not try to minimize edge crossings. """ import numpy as np G, center = _process_params(G, center=center, dim=2) if len(G) == 0: return {} height = 1 width = aspect_ratio * height offset = (width/2, height/2) top = set(nodes) bottom = set(G) - top nodes = list(top) + list(bottom) if align == 'vertical': left_xs = np.repeat(0, len(top)) right_xs = np.repeat(width, len(bottom)) left_ys = np.linspace(0, height, len(top)) right_ys = np.linspace(0, height, len(bottom)) top_pos = np.column_stack([left_xs, left_ys]) - offset bottom_pos = np.column_stack([right_xs, right_ys]) - offset pos = np.concatenate([top_pos, bottom_pos]) pos = rescale_layout(pos, scale=scale) + center pos = dict(zip(nodes, pos)) return pos if align == 'horizontal': top_ys = np.repeat(height, len(top)) bottom_ys = np.repeat(0, len(bottom)) top_xs = np.linspace(0, width, len(top)) bottom_xs = np.linspace(0, width, len(bottom)) top_pos = np.column_stack([top_xs, top_ys]) - offset bottom_pos = np.column_stack([bottom_xs, bottom_ys]) - offset pos = np.concatenate([top_pos, bottom_pos]) pos = rescale_layout(pos, scale=scale) + center pos = dict(zip(nodes, pos)) return pos msg = 'align must be either vertical or horizontal.' raise ValueError(msg) @random_state(10) def fruchterman_reingold_layout(G, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, weight='weight', scale=1, center=None, dim=2, seed=None): """Position nodes using Fruchterman-Reingold force-directed algorithm. The algorithm simulates a force-directed representation of the network treating edges as springs holding nodes close, while treating nodes as repelling objects, sometimes called an anti-gravity force. Simulation continues until the positions are close to an equilibrium. There are some hard-coded values: minimal distance between nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away. During the simulation, `k` helps determine the distance between nodes, though `scale` and `center` determine the size and place after rescaling occurs at the end of the simulation. Fixing some nodes doesn't allow them to move in the simulation. It also turns off the rescaling feature at the simulation's end. In addition, setting `scale` to `None` turns off rescaling. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. k : float (default=None) Optimal distance between nodes. If None the distance is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther apart. pos : dict or None optional (default=None) Initial positions for nodes as a dictionary with node as keys and values as a coordinate list or tuple. If None, then use random initial positions. fixed : list or None optional (default=None) Nodes to keep fixed at initial position. ValueError raised if `fixed` specified and `pos` not. iterations : int optional (default=50) Maximum number of iterations taken threshold: float optional (default = 1e-4) Threshold for relative error in node position changes. The iteration stops if the error is below this threshold. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. scale : number or None (default: 1) Scale factor for positions. Not used unless `fixed is None`. If scale is None, no rescaling is performed. center : array-like or None Coordinate pair around which to center the layout. Not used unless `fixed is None`. dim : int Dimension of layout. seed : int, RandomState instance or None optional (default=None) Set the random state for deterministic node layouts. If int, `seed` is the seed used by the random number generator, if numpy.random.RandomState instance, `seed` is the random number generator, if None, the random number generator is the RandomState instance used by numpy.random. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.spring_layout(G) # The same using longer but equivalent function name >>> pos = nx.fruchterman_reingold_layout(G) """ import numpy as np G, center = _process_params(G, center, dim) if fixed is not None: if pos is None: raise ValueError('nodes are fixed without positions given') for node in fixed: if node not in pos: raise ValueError('nodes are fixed without positions given') nfixed = {node: i for i, node in enumerate(G)} fixed = np.asarray([nfixed[node] for node in fixed]) if pos is not None: # Determine size of existing domain to adjust initial positions dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup) if dom_size == 0: dom_size = 1 pos_arr = seed.rand(len(G), dim) * dom_size + center for i, n in enumerate(G): if n in pos: pos_arr[i] = np.asarray(pos[n]) else: pos_arr = None dom_size = 1 if len(G) == 0: return {} if len(G) == 1: return {nx.utils.arbitrary_element(G.nodes()): center} try: # Sparse matrix if len(G) < 500: # sparse solver for large graphs raise ValueError A = nx.to_scipy_sparse_matrix(G, weight=weight, dtype='f') if k is None and fixed is not None: # We must adjust k by domain size for layouts not near 1x1 nnodes, _ = A.shape k = dom_size / np.sqrt(nnodes) pos = _sparse_fruchterman_reingold(A, k, pos_arr, fixed, iterations, threshold, dim, seed) except: A = nx.to_numpy_array(G, weight=weight) if k is None and fixed is not None: # We must adjust k by domain size for layouts not near 1x1 nnodes, _ = A.shape k = dom_size / np.sqrt(nnodes) pos = _fruchterman_reingold(A, k, pos_arr, fixed, iterations, threshold, dim, seed) if fixed is None and scale is not None: pos = rescale_layout(pos, scale=scale) + center pos = dict(zip(G, pos)) return pos spring_layout = fruchterman_reingold_layout @random_state(7) def _fruchterman_reingold(A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None): # Position nodes in adjacency matrix A using Fruchterman-Reingold # Entry point for NetworkX graph is fruchterman_reingold_layout() import numpy as np try: nnodes, _ = A.shape except AttributeError: msg = "fruchterman_reingold() takes an adjacency matrix as input" raise nx.NetworkXError(msg) if pos is None: # random initial positions pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype) else: # make sure positions are of same type as matrix pos = pos.astype(A.dtype) # optimal distance between nodes if k is None: k = np.sqrt(1.0 / nnodes) # the initial "temperature" is about .1 of domain area (=1x1) # this is the largest step allowed in the dynamics. # We need to calculate this in case our fixed positions force our domain # to be much bigger than 1x1 t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1 # simple cooling scheme. # linearly step down by dt on each iteration so last iteration is size dt. dt = t / float(iterations + 1) delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype) # the inscrutable (but fast) version # this is still O(V^2) # could use multilevel methods to speed this up significantly for iteration in range(iterations): # matrix of difference between points delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :] # distance between points distance = np.linalg.norm(delta, axis=-1) # enforce minimum distance of 0.01 np.clip(distance, 0.01, None, out=distance) # displacement "force" displacement = np.einsum('ijk,ij->ik', delta, (k * k / distance**2 - A * distance / k)) # update positions length = np.linalg.norm(displacement, axis=-1) length = np.where(length < 0.01, 0.1, length) delta_pos = np.einsum('ij,i->ij', displacement, t / length) if fixed is not None: # don't change positions of fixed nodes delta_pos[fixed] = 0.0 pos += delta_pos # cool temperature t -= dt err = np.linalg.norm(delta_pos) / nnodes if err < threshold: break return pos @random_state(7) def _sparse_fruchterman_reingold(A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None): # Position nodes in adjacency matrix A using Fruchterman-Reingold # Entry point for NetworkX graph is fruchterman_reingold_layout() # Sparse version import numpy as np try: nnodes, _ = A.shape except AttributeError: msg = "fruchterman_reingold() takes an adjacency matrix as input" raise nx.NetworkXError(msg) try: from scipy.sparse import spdiags, coo_matrix except ImportError: msg = "_sparse_fruchterman_reingold() scipy numpy: http://scipy.org/ " raise ImportError(msg) # make sure we have a LIst of Lists representation try: A = A.tolil() except: A = (coo_matrix(A)).tolil() if pos is None: # random initial positions pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype) else: # make sure positions are of same type as matrix pos = pos.astype(A.dtype) # no fixed nodes if fixed is None: fixed = [] # optimal distance between nodes if k is None: k = np.sqrt(1.0 / nnodes) # the initial "temperature" is about .1 of domain area (=1x1) # this is the largest step allowed in the dynamics. t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1 # simple cooling scheme. # linearly step down by dt on each iteration so last iteration is size dt. dt = t / float(iterations + 1) displacement = np.zeros((dim, nnodes)) for iteration in range(iterations): displacement *= 0 # loop over rows for i in range(A.shape[0]): if i in fixed: continue # difference between this row's node position and all others delta = (pos[i] - pos).T # distance between points distance = np.sqrt((delta**2).sum(axis=0)) # enforce minimum distance of 0.01 distance = np.where(distance < 0.01, 0.01, distance) # the adjacency matrix row Ai = np.asarray(A.getrowview(i).toarray()) # displacement "force" displacement[:, i] +=\ (delta * (k * k / distance**2 - Ai * distance / k)).sum(axis=1) # update positions length = np.sqrt((displacement**2).sum(axis=0)) length = np.where(length < 0.01, 0.1, length) delta_pos = (displacement * t / length).T pos += delta_pos # cool temperature t -= dt err = np.linalg.norm(delta_pos) / nnodes if err < threshold: break return pos def kamada_kawai_layout(G, dist=None, pos=None, weight='weight', scale=1, center=None, dim=2): """Position nodes using Kamada-Kawai path-length cost-function. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. dist : float (default=None) A two-level dictionary of optimal distances between nodes, indexed by source and destination node. If None, the distance is computed using shortest_path_length(). pos : dict or None optional (default=None) Initial positions for nodes as a dictionary with node as keys and values as a coordinate list or tuple. If None, then use circular_layout() for dim >= 2 and a linear layout for dim == 1. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.kamada_kawai_layout(G) """ import numpy as np G, center = _process_params(G, center, dim) nNodes = len(G) if dist is None: dist = dict(nx.shortest_path_length(G, weight=weight)) dist_mtx = 1e6 * np.ones((nNodes, nNodes)) for row, nr in enumerate(G): if nr not in dist: continue rdist = dist[nr] for col, nc in enumerate(G): if nc not in rdist: continue dist_mtx[row][col] = rdist[nc] if pos is None: if dim >= 2: pos = circular_layout(G, dim=dim) else: pos = {n: pt for n, pt in zip(G, np.linspace(0, 1, len(G)))} pos_arr = np.array([pos[n] for n in G]) pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim) pos = rescale_layout(pos, scale=scale) + center return dict(zip(G, pos)) def _kamada_kawai_solve(dist_mtx, pos_arr, dim): # Anneal node locations based on the Kamada-Kawai cost-function, # using the supplied matrix of preferred inter-node distances, # and starting locations. import numpy as np from scipy.optimize import minimize meanwt = 1e-3 costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), meanwt, dim) optresult = minimize(_kamada_kawai_costfn, pos_arr.ravel(), method='L-BFGS-B', args=costargs, jac=True) return optresult.x.reshape((-1, dim)) def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim): # Cost-function and gradient for Kamada-Kawai layout algorithm nNodes = invdist.shape[0] pos_arr = pos_vec.reshape((nNodes, dim)) delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :] nodesep = np.linalg.norm(delta, axis=-1) direction = np.einsum('ijk,ij->ijk', delta, 1 / (nodesep + np.eye(nNodes) * 1e-3)) offset = nodesep * invdist - 1.0 offset[np.diag_indices(nNodes)] = 0 cost = 0.5 * np.sum(offset ** 2) grad = (np.einsum('ij,ij,ijk->ik', invdist, offset, direction) - np.einsum('ij,ij,ijk->jk', invdist, offset, direction)) # Additional parabolic term to encourage mean position to be near origin: sumpos = np.sum(pos_arr, axis=0) cost += 0.5 * meanweight * np.sum(sumpos ** 2) grad += meanweight * sumpos return (cost, grad.ravel()) def spectral_layout(G, weight='weight', scale=1, center=None, dim=2): """Position nodes using the eigenvectors of the graph Laplacian. Using the unnormalized Laplacion, the layout shows possible clusters of nodes which are an approximation of the ratio cut. If dim is the number of dimensions then the positions are the entries of the dim eigenvectors corresponding to the ascending eigenvalues starting from the second one. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. Returns ------- pos : dict A dictionary of positions keyed by node Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.spectral_layout(G) Notes ----- Directed graphs will be considered as undirected graphs when positioning the nodes. For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK). """ # handle some special cases that break the eigensolvers import numpy as np G, center = _process_params(G, center, dim) if len(G) <= 2: if len(G) == 0: pos = np.array([]) elif len(G) == 1: pos = np.array([center]) else: pos = np.array([np.zeros(dim), np.array(center) * 2.0]) return dict(zip(G, pos)) try: # Sparse matrix if len(G) < 500: # dense solver is faster for small graphs raise ValueError A = nx.to_scipy_sparse_matrix(G, weight=weight, dtype='d') # Symmetrize directed graphs if G.is_directed(): A = A + np.transpose(A) pos = _sparse_spectral(A, dim) except (ImportError, ValueError): # Dense matrix A = nx.to_numpy_array(G, weight=weight) # Symmetrize directed graphs if G.is_directed(): A += A.T pos = _spectral(A, dim) pos = rescale_layout(pos, scale=scale) + center pos = dict(zip(G, pos)) return pos def _spectral(A, dim=2): # Input adjacency matrix A # Uses dense eigenvalue solver from numpy import numpy as np try: nnodes, _ = A.shape except AttributeError: msg = "spectral() takes an adjacency matrix as input" raise nx.NetworkXError(msg) # form Laplacian matrix where D is diagonal of degrees D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1) L = D - A eigenvalues, eigenvectors = np.linalg.eig(L) # sort and keep smallest nonzero index = np.argsort(eigenvalues)[1:dim + 1] # 0 index is zero eigenvalue return np.real(eigenvectors[:, index]) def _sparse_spectral(A, dim=2): # Input adjacency matrix A # Uses sparse eigenvalue solver from scipy # Could use multilevel methods here, see Koren "On spectral graph drawing" import numpy as np from scipy.sparse import spdiags from scipy.sparse.linalg.eigen import eigsh try: nnodes, _ = A.shape except AttributeError: msg = "sparse_spectral() takes an adjacency matrix as input" raise nx.NetworkXError(msg) # form Laplacian matrix data = np.asarray(A.sum(axis=1).T) D = spdiags(data, 0, nnodes, nnodes) L = D - A k = dim + 1 # number of Lanczos vectors for ARPACK solver.What is the right scaling? ncv = max(2 * k + 1, int(np.sqrt(nnodes))) # return smallest k eigenvalues and eigenvectors eigenvalues, eigenvectors = eigsh(L, k, which='SM', ncv=ncv) index = np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue return np.real(eigenvectors[:, index]) def planar_layout(G, scale=1, center=None, dim=2): """Position nodes without edge intersections. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. If G is of type PlanarEmbedding, the positions are selected accordingly. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. If G is of type nx.PlanarEmbedding, the positions are selected accordingly. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout. Returns ------- pos : dict A dictionary of positions keyed by node Raises ------ nx.NetworkXException If G is not planar Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.planar_layout(G) """ import numpy as np if dim != 2: raise ValueError('can only handle 2 dimensions') G, center = _process_params(G, center, dim) if len(G) == 0: return {} if isinstance(G, nx.PlanarEmbedding): embedding = G else: is_planar, embedding = nx.check_planarity(G) if not is_planar: raise nx.NetworkXException("G is not planar.") pos = nx.combinatorial_embedding_to_pos(embedding) node_list = list(embedding) pos = np.row_stack((pos[x] for x in node_list)) pos = pos.astype(np.float64) pos = rescale_layout(pos, scale=scale) + center return dict(zip(node_list, pos)) def spiral_layout(G, scale=1, center=None, dim=2, resolution=0.35, equidistant=False): """Position nodes in a spiral layout. Parameters ---------- G : NetworkX graph or list of nodes A position will be assigned to every node in G. scale : number (default: 1) Scale factor for positions. center : array-like or None Coordinate pair around which to center the layout. dim : int Dimension of layout, currently only dim=2 is supported. Other dimension values result in a ValueError. resolution : float The compactness of the spiral layout returned. Lower values result in more compressed spiral layouts. equidistant : bool If True, nodes will be plotted equidistant from each other. Returns ------- pos : dict A dictionary of positions keyed by node Raises ------- ValueError If dim != 2 Examples -------- >>> G = nx.path_graph(4) >>> pos = nx.spiral_layout(G) Notes ----- This algorithm currently only works in two dimensions. """ import numpy as np if dim != 2: raise ValueError('can only handle 2 dimensions') G, center = _process_params(G, center, dim) if len(G) == 0: return {} if len(G) == 1: return {nx.utils.arbitrary_element(G): center} pos = [] if equidistant: chord = 1 step = 0.5 theta = resolution for _ in range(len(G)): r = step * theta theta += chord / r pos.append([np.cos(theta) * r, np.sin(theta) * r]) else: # set the starting angle and step step = 1 angle = 0.0 dist = 0.0 # set the radius for the spiral to the number of nodes in the graph radius = len(G) while dist * np.hypot(np.cos(angle), np.sin(angle)) < radius: pos.append([dist * np.cos(angle), dist * np.sin(angle)]) dist += step angle += resolution pos = rescale_layout(np.array(pos), scale=scale) + center pos = dict(zip(G, pos)) return pos def rescale_layout(pos, scale=1): """Returns scaled position array to (-scale, scale) in all axes. The function acts on NumPy arrays which hold position information. Each position is one row of the array. The dimension of the space equals the number of columns. Each coordinate in one column. To rescale, the mean (center) is subtracted from each axis separately. Then all values are scaled so that the largest magnitude value from all axes equals `scale` (thus, the aspect ratio is preserved). The resulting NumPy Array is returned (order of rows unchanged). Parameters ---------- pos : numpy array positions to be scaled. Each row is a position. scale : number (default: 1) The size of the resulting extent in all directions. Returns ------- pos : numpy array scaled positions. Each row is a position. """ # Find max length over all dimensions lim = 0 # max coordinate for all axes for i in range(pos.shape[1]): pos[:, i] -= pos[:, i].mean() lim = max(abs(pos[:, i]).max(), lim) # rescale to (-scale, scale) in all directions, preserves aspect if lim > 0: for i in range(pos.shape[1]): pos[:, i] *= scale / lim return pos
31.045709
81
0.602145
0c72d3290927fd4508a029a422fb224801e2abb6
2,167
py
Python
basic/list2.py
mushfeqr/google-python3-exercises
1c05f823ddd8c1e09e6010560321cc42fce095d2
[ "Apache-2.0" ]
null
null
null
basic/list2.py
mushfeqr/google-python3-exercises
1c05f823ddd8c1e09e6010560321cc42fce095d2
[ "Apache-2.0" ]
null
null
null
basic/list2.py
mushfeqr/google-python3-exercises
1c05f823ddd8c1e09e6010560321cc42fce095d2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python -tt # Copyright 2010 Google Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # Google's Python Class # http://code.google.com/edu/languages/google-python-class/ # Additional basic list exercises # D. Given a list of numbers, return a list where # all adjacent == elements have been reduced to a single element, # so [1, 2, 2, 3] returns [1, 2, 3]. You may create a new list or # modify the passed in list. def remove_adjacent(nums): # +++your code here+++ return # E. Given two lists sorted in increasing order, create and return a merged # list of all the elements in sorted order. You may modify the passed in lists. # Ideally, the solution should work in "linear" time, making a single # pass of both lists. def linear_merge(list1, list2): # +++your code here+++ return # Note: the solution above is kind of cute, but unforunately list.pop(0) # is not constant time with the standard python list implementation, so # the above is not strictly linear time. # An alternate approach uses pop(-1) to remove the endmost elements # from each list, building a solution list which is backwards. # Then use reversed() to put the result back in the correct order. That # solution works in linear time, but is more ugly. # Simple provided test() function used in main() to print # what each function returns vs. what it's supposed to return. def test(got, expected): if got == expected: prefix = ' OK ' else: prefix = ' X ' print('{} got: {} expected: {}'.format(prefix, repr(got), repr(expected))) # Calls the above functions with interesting inputs. def main(): print('remove_adjacent') test(remove_adjacent([1, 2, 2, 3]), [1, 2, 3]) test(remove_adjacent([2, 2, 3, 3, 3]), [2, 3]) test(remove_adjacent([]), []) print print('linear_merge') test(linear_merge(['aa', 'xx', 'zz'], ['bb', 'cc']), ['aa', 'bb', 'cc', 'xx', 'zz']) test(linear_merge(['aa', 'xx'], ['bb', 'cc', 'zz']), ['aa', 'bb', 'cc', 'xx', 'zz']) test(linear_merge(['aa', 'aa'], ['aa', 'bb', 'bb']), ['aa', 'aa', 'aa', 'bb', 'bb']) if __name__ == '__main__': main()
32.833333
79
0.661744
77f367240ea2a8296d77b53becca5edffe47db13
3,177
py
Python
src/alocacao/camada_servicos/handlers.py
ralphribeiro/APWP-T2
1ed5552a32ae9320eadbbd0489c2082a6f8750a8
[ "MIT" ]
null
null
null
src/alocacao/camada_servicos/handlers.py
ralphribeiro/APWP-T2
1ed5552a32ae9320eadbbd0489c2082a6f8750a8
[ "MIT" ]
null
null
null
src/alocacao/camada_servicos/handlers.py
ralphribeiro/APWP-T2
1ed5552a32ae9320eadbbd0489c2082a6f8750a8
[ "MIT" ]
null
null
null
from dataclasses import asdict from alocacao.adapters import notifications from alocacao.aplicacao import redis_eventpublisher from alocacao.camada_servicos import unit_of_work from alocacao.dominio import modelo, eventos, comandos class SkuInvalido(Exception): ... def adiciona_lote( comando: comandos.CriarLote, uow: unit_of_work.AbstractUOW ): with uow: produto = uow.produtos.get(sku=comando.sku) if produto is None: produto = modelo.Produto(comando.sku, lotes=[]) uow.produtos.add(produto) produto.lotes.append(modelo.Lote( comando.ref, comando.sku, comando.qtd, comando.eta )) uow.commit() def alocar( comando: comandos.Alocar, uow: unit_of_work.AbstractUOW ) -> str: linha = modelo.LinhaPedido(comando.pedido_id, comando.sku, comando.qtd) with uow: produto = uow.produtos.get(sku=comando.sku) if produto is None: raise SkuInvalido(f'Sku inválido {comando.sku}') ref_lote = produto.alocar(linha) uow.commit() return ref_lote def realocar( evento: eventos.Desalocado, uow: unit_of_work.SQLAlchemyUOW ): with uow: produto = uow.produtos.get(sku=evento.sku) produto.eventos.append(comandos.Alocar(**asdict(evento))) uow.commit() def altera_qtd_lote( comando: comandos.AlterarQuantidadeLote, uow: unit_of_work.AbstractUOW ): with uow: produto = uow.produtos.get_by_ref(comando.ref) produto.altera_qtd_lote(comando.ref, comando.qtd_nova) uow.commit() def envia_notificacao_sem_estoque( evento: eventos.SemEstoque, notifications: notifications.AbstractNotifications ): notifications.send( 'estoque@apwp-t2.com', f'Fora de estoque para {evento.sku}' ) def publica_evento_alocado( evento: eventos.Alocado ): redis_eventpublisher.publish('linha_alocada', evento) def adiciona_alocacao_ao_modelo_de_leitura( evento: eventos.Alocado, uow: unit_of_work.SQLAlchemyUOW ): with uow: uow.session.execute( 'INSERT INTO alocacoes_view (pedido_id, sku, ref_lote) ' 'VALUES (:pedido_id, :sku, :ref_lote)', dict( pedido_id=evento.pedido_id, sku=evento.sku, ref_lote=evento.ref_lote ) ) uow.commit() def remove_alocacao_do_modelo_de_leitura( evento: eventos.Desalocado, uow: unit_of_work.SQLAlchemyUOW ): with uow: uow.session.execute( 'DELETE FROM alocacoes_view ' 'WHERE pedido_id=:pedido_id AND sku=:sku', dict(pedido_id=evento.pedido_id, sku=evento.sku) ) uow.commit() EVENT_HANDLERS = { eventos.SemEstoque: [envia_notificacao_sem_estoque], eventos.Alocado: [ publica_evento_alocado, adiciona_alocacao_ao_modelo_de_leitura ], eventos.Desalocado: [ remove_alocacao_do_modelo_de_leitura, realocar ], } COMMAND_HANDLERS = { comandos.CriarLote: adiciona_lote, comandos.Alocar: alocar, comandos.AlterarQuantidadeLote: altera_qtd_lote }
25.416
75
0.665093
3fffdd15f4afb89a483e022651a57857f3527241
9,882
py
Python
crazyflie-clients-python/src/cfclient/ui/dialogs/bootloader.py
manikamakam/swarm
3d3f4692f1969e0973fa8929660a8d0da53cafa7
[ "MIT" ]
null
null
null
crazyflie-clients-python/src/cfclient/ui/dialogs/bootloader.py
manikamakam/swarm
3d3f4692f1969e0973fa8929660a8d0da53cafa7
[ "MIT" ]
null
null
null
crazyflie-clients-python/src/cfclient/ui/dialogs/bootloader.py
manikamakam/swarm
3d3f4692f1969e0973fa8929660a8d0da53cafa7
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # || ____ _ __ # +------+ / __ )(_) /_______________ _____ ___ # | 0xBC | / __ / / __/ ___/ ___/ __ `/_ / / _ \ # +------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ # || || /_____/_/\__/\___/_/ \__,_/ /___/\___/ # # Copyright (C) 2011-2013 Bitcraze AB # # Crazyflie Nano Quadcopter Client # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ The bootloader dialog is used to update the Crazyflie firmware and to read/write the configuration block in the Crazyflie flash. """ from cflib.bootloader import Bootloader import logging from PyQt5 import QtWidgets, uic from PyQt5.QtCore import pyqtSlot, pyqtSignal, QThread import cfclient __author__ = 'Bitcraze AB' __all__ = ['BootloaderDialog'] logger = logging.getLogger(__name__) service_dialog_class = uic.loadUiType(cfclient.module_path + "/ui/dialogs/bootloader.ui")[0] class UIState: DISCONNECTED = 0 CONNECTING = 5 CONNECT_FAILED = 1 COLD_CONNECT = 2 FLASHING = 3 RESET = 4 class BootloaderDialog(QtWidgets.QWidget, service_dialog_class): """Tab for update the Crazyflie firmware and for reading/writing the config block in flash""" def __init__(self, helper, *args): super(BootloaderDialog, self).__init__(*args) self.setupUi(self) self.tabName = "Service" self.menuName = "Service" # self.tabWidget = tabWidget self.helper = helper # self.cf = crazyflie self.clt = CrazyloadThread() # Connecting GUI signals (a pity to do that manually...) self.imagePathBrowseButton.clicked.connect(self.pathBrowse) self.programButton.clicked.connect(self.programAction) self.verifyButton.clicked.connect(self.verifyAction) self.coldBootButton.clicked.connect(self.initiateColdboot) self.resetButton.clicked.connect(self.resetCopter) self._cancel_bootloading.clicked.connect(self.close) # connecting other signals self.clt.programmed.connect(self.programDone) self.clt.verified.connect(self.verifyDone) self.clt.statusChanged.connect(self.statusUpdate) # self.clt.updateBootloaderStatusSignal.connect( # self.updateBootloaderStatus) self.clt.connectingSignal.connect( lambda: self.setUiState(UIState.CONNECTING)) self.clt.connectedSignal.connect( lambda: self.setUiState(UIState.COLD_CONNECT)) self.clt.failed_signal.connect(lambda m: self._ui_connection_fail(m)) self.clt.disconnectedSignal.connect( lambda: self.setUiState(UIState.DISCONNECTED)) self.clt.start() def _ui_connection_fail(self, message): self.setStatusLabel(message) self.coldBootButton.setEnabled(True) def setUiState(self, state): if (state == UIState.DISCONNECTED): self.resetButton.setEnabled(False) self.programButton.setEnabled(False) self.setStatusLabel("Not connected") self.coldBootButton.setEnabled(True) self.progressBar.setTextVisible(False) self.progressBar.setValue(0) self.statusLabel.setText('Status: <b>IDLE</b>') self.imagePathLine.setText("") elif (state == UIState.CONNECTING): self.resetButton.setEnabled(False) self.programButton.setEnabled(False) self.setStatusLabel("Trying to connect cold bootloader, restart " "the Crazyflie to connect") self.coldBootButton.setEnabled(False) elif (state == UIState.CONNECT_FAILED): self.setStatusLabel("Connecting to bootloader failed") self.coldBootButton.setEnabled(True) elif (state == UIState.COLD_CONNECT): self.resetButton.setEnabled(True) self.programButton.setEnabled(True) self.setStatusLabel("Connected to bootloader") self.coldBootButton.setEnabled(False) elif (state == UIState.RESET): self.setStatusLabel("Resetting to firmware, disconnected") self.resetButton.setEnabled(False) self.programButton.setEnabled(False) self.coldBootButton.setEnabled(False) self.imagePathLine.setText("") def setStatusLabel(self, text): self.connectionStatus.setText("Status: <b>%s</b>" % text) def connected(self): self.setUiState(UIState.COLD_CONNECT) def connectionFailed(self): self.setUiState(UIState.CONNECT_FAILED) def resetCopter(self): self.clt.resetCopterSignal.emit() self.setUiState(UIState.RESET) def updateConfig(self, channel, speed, rollTrim, pitchTrim): self.rollTrim.setValue(rollTrim) self.pitchTrim.setValue(pitchTrim) self.radioChannel.setValue(channel) self.radioSpeed.setCurrentIndex(speed) def closeEvent(self, event): self.setUiState(UIState.RESET) self.clt.resetCopterSignal.emit() @pyqtSlot() def pathBrowse(self): filename = "" # Fix for crash in X on Ubuntu 14.04 filename, _ = QtWidgets.QFileDialog.getOpenFileName() if filename != "": self.imagePathLine.setText(filename) pass @pyqtSlot() def programAction(self): # self.setStatusLabel("Initiate programming") self.resetButton.setEnabled(False) self.programButton.setEnabled(False) self.imagePathBrowseButton.setEnabled(False) if self.imagePathLine.text() != "": self.clt.program.emit(self.imagePathLine.text(), self.verifyCheckBox.isChecked()) else: msgBox = QtWidgets.QMessageBox() msgBox.setText("Please choose an image file to program.") msgBox.exec_() @pyqtSlot() def verifyAction(self): self.statusLabel.setText('Status: <b>Initiate verification</b>') pass @pyqtSlot(bool) def programDone(self, success): if success: self.statusLabel.setText('Status: <b>Programing complete!</b>') else: self.statusLabel.setText('Status: <b>Programing failed!</b>') self.resetButton.setEnabled(True) self.programButton.setEnabled(True) self.imagePathBrowseButton.setEnabled(True) @pyqtSlot() def verifyDone(self): self.statusLabel.setText('Status: <b>Verification complete</b>') pass @pyqtSlot(str, int) def statusUpdate(self, status, progress): logger.debug("Status: [%s] | %d", status, progress) self.statusLabel.setText('Status: <b>' + status + '</b>') if progress >= 0: self.progressBar.setValue(progress) def initiateColdboot(self): self.clt.initiateColdBootSignal.emit("radio://0/100") # No run method specified here as the default run implementation is running the # event loop which is what we want class CrazyloadThread(QThread): # Input signals declaration (not sure it should be used like that...) program = pyqtSignal(str, bool) verify = pyqtSignal() initiateColdBootSignal = pyqtSignal(str) resetCopterSignal = pyqtSignal() writeConfigSignal = pyqtSignal(int, int, float, float) # Output signals declaration programmed = pyqtSignal(bool) verified = pyqtSignal() statusChanged = pyqtSignal(str, int) connectedSignal = pyqtSignal() connectingSignal = pyqtSignal() failed_signal = pyqtSignal(str) disconnectedSignal = pyqtSignal() updateConfigSignal = pyqtSignal(int, int, float, float) updateCpuIdSignal = pyqtSignal(str) radioSpeedPos = 2 def __init__(self): super(CrazyloadThread, self).__init__() self._bl = Bootloader() self._bl.progress_cb = self.statusChanged.emit # Make sure that the signals are handled by this thread event loop self.moveToThread(self) self.program.connect(self.programAction) self.initiateColdBootSignal.connect(self.initiateColdBoot) self.resetCopterSignal.connect(self.resetCopter) def __del__(self): self.quit() self.wait() def initiateColdBoot(self, linkURI): self.connectingSignal.emit() try: success = self._bl.start_bootloader(warm_boot=False) if not success: self.failed_signal.emit("Could not connect to bootloader") else: self.connectedSignal.emit() except Exception as e: self.failed_signal.emit("{}".format(e)) def programAction(self, filename, verify): targets = {} if str(filename).endswith("bin"): targets["stm32"] = ("fw",) try: self._bl.flash(str(filename), targets) self.programmed.emit(True) except Exception: self.programmed.emit(False) def resetCopter(self): try: self._bl.reset_to_firmware() except Exception: pass self._bl.close() self.disconnectedSignal.emit()
35.042553
79
0.646934
8a1af016c186610e90c65276ce4189d4c966f42d
286
py
Python
ex016.py
thaisouza30/Exercicios-Python3-Curso-em-Video
ec9ccf57fae7bd86ec7a80efb1df779dd2128154
[ "Apache-2.0" ]
1
2021-02-01T17:22:11.000Z
2021-02-01T17:22:11.000Z
ex016.py
thaisouza30/Exercicios-Python3-Curso-em-Video
ec9ccf57fae7bd86ec7a80efb1df779dd2128154
[ "Apache-2.0" ]
null
null
null
ex016.py
thaisouza30/Exercicios-Python3-Curso-em-Video
ec9ccf57fae7bd86ec7a80efb1df779dd2128154
[ "Apache-2.0" ]
null
null
null
'''from math import trunc num = float(input('Digite um número')) print('O valor digitado foi {} e sua porção inteira é {}'.format(num, trunc(num)))''' num = float(input('Digite um valor:')) print('O valor digitado foi {} e a sua porção inteira é {}'.format(num, int(num)))
28.6
86
0.646853
344ae179c251286e00d5eaaf7d6127ca538a7817
1,914
py
Python
test/acceptance/e2e/install_product/steps.py
flopezag/fiware-sdc
44bacb77f252276fbf4ba5260218a1883319508f
[ "Apache-2.0" ]
null
null
null
test/acceptance/e2e/install_product/steps.py
flopezag/fiware-sdc
44bacb77f252276fbf4ba5260218a1883319508f
[ "Apache-2.0" ]
null
null
null
test/acceptance/e2e/install_product/steps.py
flopezag/fiware-sdc
44bacb77f252276fbf4ba5260218a1883319508f
[ "Apache-2.0" ]
null
null
null
__author__ = 'jfernandez' """ Imports all steps already defined and implemented in 'install_product' feature """ from component.install_product.features.install_product import * from commons.utils import wait_for_software_installed, generate_content_installed_by_product from commons.fabric_utils import execute_content_in_file @step(u'a installed product with name "([^"]*)" and release "([^"]*)"') def installed_product(step, product_name, product_version): a_created_product_with_name_group1(step, product_name, product_version) i_install_the_product_in_the_vm(step) the_task_is_performed(step) @step(u'the task is performed') def the_task_is_performed(step): the_task_has_finished_with_status_group1(step, TASK_STATUS_VALUE_SUCCESS) @step(u'the product is installed') def the_product_is_installed(step): world.file_name = PRODUCT_FILE_NAME_FORMAT.format(product_name=world.product_name, product_version=world.product_version, installator=world.cm_tool) assert_true(wait_for_software_installed(status_to_be_finished=True, file_name=world.file_name), "ERROR: SOFTWARE IS NOT INSTALLED") @step(u'the product with attributes is installed') def the_product_with_attributes_is_installed(step): the_product_is_installed(step) for attribute in world.instance_attributes: assert_true(execute_content_in_file(world.file_name, generate_content_installed_by_product(world.product_name, world.product_version, world.instance_attributes)), "Attribute value not found in product installed [{}]".format(attribute[VALUE]))
43.5
110
0.667712
16161b9809017d4aca716bb3ab9f7f5f7e2d53f0
32,807
py
Python
venv/lib/python3.6/site-packages/ansible_collections/cisco/ios/plugins/modules/ios_prefix_lists.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/cisco/ios/plugins/modules/ios_prefix_lists.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/cisco/ios/plugins/modules/ios_prefix_lists.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2021 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """ The module file for cisco.ios_prefix_lists """ from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = """ module: ios_prefix_lists short_description: Prefix Lists resource module description: - This module configures and manages the attributes of prefix list on Cisco IOS. version_added: 2.2.0 author: Sumit Jaiswal (@justjais) notes: - Tested against Cisco IOSv Version 15.2 on VIRL - This module works with connection C(network_cli). See U(https://docs.ansible.com/ansible/latest/network/user_guide/platform_ios.html) options: config: description: A list of configurations for Prefix lists. type: list elements: dict suboptions: afi: description: - The Address Family Indicator (AFI) for the prefix list. type: str choices: ['ipv4', 'ipv6'] prefix_lists: description: List of Prefix-lists. type: list elements: dict suboptions: name: description: Name of a prefix-list type: str description: description: Prefix-list specific description type: str entries: description: Prefix-lists supported params. type: list elements: dict suboptions: action: description: Specify packets to be rejected or forwarded type: str choices: ['deny', 'permit'] sequence: description: sequence number of an entry type: int description: description: - Prefix-list specific description - Description param at entries level is DEPRECATED - New Description is introduced at prefix_lists level, please use the Description param defined at prefix_lists level instead of Description param at entries level, as at this level description option will get removed in a future release. type: str prefix: description: - IPv4 prefix <network>/<length>, e.g., A.B.C.D/nn - IPv6 prefix <network>/<length>, e.g., X:X:X:X::X/<0-128> type: str ge: description: Minimum prefix length to be matched type: int le: description: Maximum prefix length to be matched type: int running_config: description: - This option is used only with state I(parsed). - The value of this option should be the output received from the IOS device by executing the command B(sh bgp). - The state I(parsed) reads the configuration from C(running_config) option and transforms it into Ansible structured data as per the resource module's argspec and the value is then returned in the I(parsed) key within the result. type: str state: description: - The state the configuration should be left in - The states I(merged) is the default state which merges the want and have config, but for Prefix-List module as the IOS platform doesn't allow update of Prefix-List over an pre-existing Prefix-List, same way Prefix-Lists resource module will error out for respective scenario and only addition of new Prefix-List over new sequence will be allowed with merge state. - The states I(rendered), I(gathered) and I(parsed) does not perform any change on the device. - The state I(rendered) will transform the configuration in C(config) option to platform specific CLI commands which will be returned in the I(rendered) key within the result. For state I(rendered) active connection to remote host is not required. - The state I(gathered) will fetch the running configuration from device and transform it into structured data in the format as per the resource module argspec and the value is returned in the I(gathered) key within the result. - The state I(parsed) reads the configuration from C(running_config) option and transforms it into JSON format as per the resource module parameters and the value is returned in the I(parsed) key within the result. The value of C(running_config) option should be the same format as the output of command I(sh running-config | section ^ip prefix-list|^ipv6 prefix-list) executed on device. For state I(parsed) active connection to remote host is not required. type: str choices: - merged - replaced - overridden - deleted - gathered - parsed - rendered default: merged """ EXAMPLES = """ # Using deleted by Name # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Delete provided Prefix lists config by Prefix name cisco.ios.ios_prefix_lists: config: - afi: ipv4 prefix_lists: - name: 10 - name: test_prefix state: deleted # Commands Fired: # --------------- # # "commands": [ # "no ip prefix-list 10", # "no ip prefix-list test_prefix" # ] # After state: # ------------- # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 # Using deleted by AFI # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Delete provided Prefix lists config by AFI cisco.ios.ios_prefix_lists: config: - afi: ipv4 state: deleted # Commands Fired: # --------------- # # "commands": [ # "no ip prefix-list test", # "no ip prefix-list 10", # "no ip prefix-list test_prefix" # ] # After state: # ------------- # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 # Using deleted without any config passed (NOTE: This will delete all Prefix lists configuration from device) # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Delete all Prefix lists config cisco.ios.ios_prefix_lists: state: deleted # Commands Fired: # --------------- # # "commands": [ # "no ip prefix-list test", # "no ip prefix-list 10", # "no ip prefix-list test_prefix", # "no ipv6 prefix-list test_ipv6" # ] # After state: # ------------- # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # router-ios# # Using merged # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ipv6 prefix-list test_ipv6 description this is ipv6 # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Merge provided Prefix lists configuration cisco.ios.ios_prefix_lists: config: - afi: ipv6 prefix_lists: - name: test_ipv6 description: this is ipv6 merge test entries: - action: deny prefix: 2001:DB8:0:4::/64 ge: 80 le: 100 sequence: 10 state: merged # After state: # ------------- # # Play Execution fails, with error: # Cannot update existing sequence 10 of Prefix Lists test_ipv6 with state merged. # Please use state replaced or overridden. # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ipv6 prefix-list test_ipv6 description this is ipv6 # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Merge provided Prefix lists configuration cisco.ios.ios_prefix_lists: config: - afi: ipv4 prefix_lists: - name: 10 description: this is new merge test entries: - action: deny prefix: 1.0.0.0/8 le: 15 sequence: 5 - action: deny prefix: 35.0.0.0/8 ge: 10 sequence: 10 - action: deny prefix: 12.0.0.0/8 ge: 15 sequence: 15 - action: deny prefix: 14.0.0.0/8 ge: 20 le: 21 sequence: 20 - name: test description: this is merge test entries: - action: deny prefix: 12.0.0.0/8 ge: 15 sequence: 50 - name: test_prefix description: this is for prefix-list entries: - action: deny prefix: 35.0.0.0/8 ge: 10 le: 15 sequence: 5 - action: deny prefix: 35.0.0.0/8 ge: 20 sequence: 10 - afi: ipv6 prefix_lists: - name: test_ipv6 description: this is ipv6 merge test entries: - action: deny prefix: 2001:DB8:0:4::/64 ge: 80 le: 100 sequence: 20 state: merged # Commands Fired: # --------------- # # "commands": [ # "ip prefix-list test description this is merge test", # "ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15", # "ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15", # "ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10", # "ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15", # "ip prefix-list 10 description this is new merge test", # "ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21", # "ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20", # "ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15", # "ip prefix-list test_prefix description this is for prefix-list", # "ipv6 prefix-list test_ipv6 seq 20 deny 2001:DB8:0:4::/64 ge 80 le 100", # "ipv6 prefix-list test_ipv6 description this is ipv6 merge test" # ] # After state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is new merge test # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is merge test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 merge test # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 le 100 # Using overridden # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Override provided Prefix lists configuration cisco.ios.ios_prefix_lists: config: - afi: ipv4 prefix_lists: - name: 10 description: this is override test entries: - action: deny prefix: 12.0.0.0/8 ge: 15 sequence: 15 - action: deny prefix: 14.0.0.0/8 ge: 20 le: 21 sequence: 20 - name: test_override description: this is override test entries: - action: deny prefix: 35.0.0.0/8 ge: 20 sequence: 10 - afi: ipv6 prefix_lists: - name: test_ipv6 description: this is ipv6 override test entries: - action: deny prefix: 2001:DB8:0:4::/64 ge: 80 le: 100 sequence: 10 state: overridden # Commands Fired: # --------------- # # "commands": [ # "no ip prefix-list test", # "no ip prefix-list test_prefix", # "ip prefix-list 10 description this is override test", # "no ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10", # "no ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15", # "ip prefix-list test_override seq 10 deny 35.0.0.0/8 ge 20", # "ip prefix-list test_override description this is override test", # "no ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80", # "ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 le 100", # "ipv6 prefix-list test_ipv6 description this is ipv6 override test" # ] # After state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is override test # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test_override description this is override test # ip prefix-list test_override seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 override test # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 le 100 # Using replaced # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Replaced provided Prefix lists configuration cisco.ios.ios_prefix_lists: config: - afi: ipv4 prefix_lists: - name: 10 description: this is replace test entries: - action: deny prefix: 12.0.0.0/8 ge: 15 sequence: 15 - action: deny prefix: 14.0.0.0/8 ge: 20 le: 21 sequence: 20 - name: test_replace description: this is replace test entries: - action: deny prefix: 35.0.0.0/8 ge: 20 sequence: 10 - afi: ipv6 prefix_lists: - name: test_ipv6 description: this is ipv6 replace test entries: - action: deny prefix: 2001:DB8:0:4::/64 ge: 80 le: 100 sequence: 10 state: replaced # Commands Fired: # --------------- # "commands": [ # "ip prefix-list 10 description this is replace test", # "no ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10", # "no ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15", # "ip prefix-list test_replace seq 10 deny 35.0.0.0/8 ge 20", # "ip prefix-list test_replace description this is replace test", # "no ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80", # "ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 le 100", # "ipv6 prefix-list test_ipv6 description this is ipv6 replace test" # ] # After state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is replace test # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ip prefix-list test_replace description this is replace test # ip prefix-list test_replace seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 replace test # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 le 100 # Using Gathered # Before state: # ------------- # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Gather Prefix lists provided configurations cisco.ios.ios_prefix_lists: config: state: gathered # Module Execution Result: # ------------------------ # # "gathered": [ # { # "afi": "ipv4", # "prefix_lists": [ # { # "description": "this is test description" # "entries": [ # { # "action": "deny", # "le": 15, # "prefix": "1.0.0.0/8", # "sequence": 5 # }, # { # "action": "deny", # "ge": 10, # "prefix": "35.0.0.0/8", # "sequence": 10 # }, # { # "action": "deny", # "ge": 15, # "prefix": "12.0.0.0/8", # "sequence": 15 # }, # { # "action": "deny", # "ge": 20, # "le": 21, # "prefix": "14.0.0.0/8", # "sequence": 20 # } # ], # "name": "10" # }, # { # "description": "this is test" # "entries": [ # { # "action": "deny", # "ge": 15, # "prefix": "12.0.0.0/8", # "sequence": 50 # } # ], # "name": "test" # }, # { # "description": "this is for prefix-list" # "entries": [ # { # "action": "deny", # "ge": 10, # "le": 15, # "prefix": "35.0.0.0/8", # "sequence": 5 # }, # { # "action": "deny", # "ge": 20, # "prefix": "35.0.0.0/8", # "sequence": 10 # } # ], # "name": "test_prefix" # } # ] # }, # { # "afi": "ipv6", # "prefix_lists": [ # { # "description": "this is ipv6 prefix-list" # "entries": [ # { # "action": "deny", # "ge": 80, # "prefix": "2001:DB8:0:4::/64", # "sequence": 10 # } # ], # "name": "test_ipv6" # } # ] # } # ] # After state: # ------------ # # router-ios#sh running-config | section ^ip prefix-list|^ipv6 prefix-list # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 # Using Rendered - name: Render the commands for provided configuration cisco.ios.ios_prefix_lists: config: - afi: ipv4 prefix_lists: - name: 10 description: this is new merge test entries: - action: deny prefix: 1.0.0.0/8 le: 15 sequence: 5 - action: deny prefix: 35.0.0.0/8 ge: 10 sequence: 10 - action: deny prefix: 12.0.0.0/8 ge: 15 sequence: 15 - action: deny prefix: 14.0.0.0/8 ge: 20 le: 21 sequence: 20 - name: test description: this is merge test entries: - action: deny prefix: 12.0.0.0/8 ge: 15 sequence: 50 - name: test_prefix description: this is for prefix-list entries: - action: deny prefix: 35.0.0.0/8 ge: 10 le: 15 sequence: 5 - action: deny prefix: 35.0.0.0/8 ge: 20 sequence: 10 - afi: ipv6 prefix_lists: - name: test_ipv6 description: this is ipv6 merge test entries: - action: deny prefix: 2001:DB8:0:4::/64 ge: 80 le: 100 sequence: 10 state: rendered # Module Execution Result: # ------------------------ # # "rendered": [ # "ip prefix-list test description this is test", # "ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15", # "ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15", # "ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10", # "ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15", # "ip prefix-list 10 description this is test description", # "ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21", # "ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20", # "ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15", # "ip prefix-list test_prefix description this is for prefix-list", # "ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 l2 100", # "ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list" # ] # Using Parsed # File: parsed.cfg # ---------------- # # ip prefix-list 10 description this is test description # ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15 # ip prefix-list 10 seq 10 deny 35.0.0.0/8 ge 10 # ip prefix-list 10 seq 15 deny 12.0.0.0/8 ge 15 # ip prefix-list 10 seq 20 deny 14.0.0.0/8 ge 20 le 21 # ip prefix-list test description this is test # ip prefix-list test seq 50 deny 12.0.0.0/8 ge 15 # ip prefix-list test_prefix description this is for prefix-list # ip prefix-list test_prefix seq 5 deny 35.0.0.0/8 ge 10 le 15 # ip prefix-list test_prefix seq 10 deny 35.0.0.0/8 ge 20 # ipv6 prefix-list test_ipv6 description this is ipv6 prefix-list # ipv6 prefix-list test_ipv6 seq 10 deny 2001:DB8:0:4::/64 ge 80 - name: Parse the provided configuration with the existing running configuration cisco.ios.ios_prefix_lists: running_config: "{{ lookup('file', 'parsed.cfg') }}" state: parsed # Module Execution Result: # ------------------------ # # "parsed": [ # { # "afi": "ipv4", # "prefix_lists": [ # { # "description": "this is test description" # "entries": [ # { # "action": "deny", # "le": 15, # "prefix": "1.0.0.0/8", # "sequence": 5 # }, # { # "action": "deny", # "ge": 10, # "prefix": "35.0.0.0/8", # "sequence": 10 # }, # { # "action": "deny", # "ge": 15, # "prefix": "12.0.0.0/8", # "sequence": 15 # }, # { # "action": "deny", # "ge": 20, # "le": 21, # "prefix": "14.0.0.0/8", # "sequence": 20 # } # ], # "name": "10" # }, # { # "description": "this is test" # "entries": [ # { # "action": "deny", # "ge": 15, # "prefix": "12.0.0.0/8", # "sequence": 50 # } # ], # "name": "test" # }, # { # "description": "this is for prefix-list" # "entries": [ # { # "action": "deny", # "ge": 10, # "le": 15, # "prefix": "35.0.0.0/8", # "sequence": 5 # }, # { # "action": "deny", # "ge": 20, # "prefix": "35.0.0.0/8", # "sequence": 10 # } # ], # "name": "test_prefix" # } # ] # }, # { # "afi": "ipv6", # "prefix_lists": [ # { # "description": "this is ipv6 prefix-list" # "entries": [ # { # "action": "deny", # "ge": 80, # "prefix": "2001:DB8:0:4::/64", # "sequence": 10 # } # ], # "name": "test_ipv6" # } # ] # } # ] """ RETURN = """ before: description: The configuration prior to the model invocation. returned: always sample: > The configuration returned will always be in the same format of the parameters above. type: list after: description: The resulting configuration model invocation. returned: when changed sample: > The configuration returned will always be in the same format of the parameters above. type: list commands: description: The set of commands pushed to the remote device. returned: always type: list sample: ['ip prefix-list 10 description this is test description', 'ip prefix-list 10 seq 5 deny 1.0.0.0/8 le 15'] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.cisco.ios.plugins.module_utils.network.ios.argspec.prefix_lists.prefix_lists import ( Prefix_listsArgs, ) from ansible_collections.cisco.ios.plugins.module_utils.network.ios.config.prefix_lists.prefix_lists import ( Prefix_lists, ) def main(): """ Main entry point for module execution :returns: the result form module invocation """ module = AnsibleModule( argument_spec=Prefix_listsArgs.argument_spec, mutually_exclusive=[["config", "running_config"]], required_if=[ ["state", "merged", ["config"]], ["state", "replaced", ["config"]], ["state", "overridden", ["config"]], ["state", "rendered", ["config"]], ["state", "parsed", ["running_config"]], ], supports_check_mode=True, ) result = Prefix_lists(module).execute_module() module.exit_json(**result) if __name__ == "__main__": main()
35.621064
116
0.531563
00c6a6c9fe1c03a0f1587f3acbd988ea90a6d088
2,657
py
Python
preprocess.py
yoojungsun0/multi_emotional_tacotron
8440fdbbe902d0d254c5291d4146743ac7bd5446
[ "MIT" ]
3
2019-12-02T00:39:35.000Z
2020-05-12T14:01:49.000Z
preprocess.py
yoojungsun0/multi_emotional_tacotron
8440fdbbe902d0d254c5291d4146743ac7bd5446
[ "MIT" ]
2
2020-03-24T17:55:12.000Z
2020-03-31T10:23:45.000Z
preprocess.py
yoojungsun0/multi-emotional-tacotron
8440fdbbe902d0d254c5291d4146743ac7bd5446
[ "MIT" ]
1
2020-06-09T03:24:11.000Z
2020-06-09T03:24:11.000Z
# coding: utf-8 """ python preprocess.py --num_workers 10 --name son --in_dir .\datasets\son --out_dir .\data\son python preprocess.py --num_workers 10 --name moon --in_dir .\datasets\moon --out_dir .\data\moon ==> out_dir에 'audio', 'mel', 'linear', 'time_steps', 'mel_frames', 'text', 'tokens', 'loss_coeff'를 묶은 npz파일이 생성된다. """ import argparse import os from multiprocessing import cpu_count from tqdm import tqdm import importlib from hparams import hparams, hparams_debug_string import warnings warnings.simplefilter(action='ignore', category=FutureWarning) def preprocess(mod, in_dir, out_root,num_workers): os.makedirs(out_dir, exist_ok=True) metadata = mod.build_from_path(hparams, in_dir, out_dir,num_workers=num_workers, tqdm=tqdm) write_metadata(metadata, out_dir) def write_metadata(metadata, out_dir): with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f: for m in metadata: f.write('|'.join([str(x) for x in m]) + '\n') mel_frames = sum([int(m[4]) for m in metadata]) timesteps = sum([int(m[3]) for m in metadata]) sr = hparams.sample_rate hours = timesteps / sr / 3600 print('Write {} utterances, {} mel frames, {} audio timesteps, ({:.2f} hours)'.format(len(metadata), mel_frames, timesteps, hours)) print('Max input length (text chars): {}'.format(max(len(m[5]) for m in metadata))) print('Max mel frames length: {}'.format(max(int(m[4]) for m in metadata))) print('Max audio timesteps length: {}'.format(max(m[3] for m in metadata))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--name', type=str, default=None) parser.add_argument('--in_dir', type=str, default=None) parser.add_argument('--out_dir', type=str, default=None) parser.add_argument('--num_workers', type=str, default=None) parser.add_argument('--hparams', type=str, default=None) args = parser.parse_args() if args.hparams is not None: hparams.parse(args.hparams) print(hparams_debug_string()) name = args.name in_dir = args.in_dir out_dir = args.out_dir num_workers = args.num_workers num_workers = cpu_count() if num_workers is None else int(num_workers) # cpu_count() = process 갯수 print("Sampling frequency: {}".format(hparams.sample_rate)) assert name in ["cmu_arctic", "ljspeech", "son", "moon","angry","fear","happy","neutral","sad","surprise","YAF_angry","YAF_disgust","YAF_fear","YAF_happy","YAF_neutral","YAF_pleasant_surprised","YAF_sad"] mod = importlib.import_module('datasets.{}'.format(name)) preprocess(mod, in_dir, out_dir, num_workers)
42.854839
208
0.693263
031d3aa4c3fac8d5b517e9bfdc3071dcbbbb4d55
11,544
py
Python
inference.py
rbli-john/VisTR
f49b4a2773cbbd2502e21c879fc3ad8e832f6296
[ "Apache-2.0" ]
null
null
null
inference.py
rbli-john/VisTR
f49b4a2773cbbd2502e21c879fc3ad8e832f6296
[ "Apache-2.0" ]
null
null
null
inference.py
rbli-john/VisTR
f49b4a2773cbbd2502e21c879fc3ad8e832f6296
[ "Apache-2.0" ]
null
null
null
''' Inference code for VisTR Modified from DETR (https://github.com/facebookresearch/detr) ''' import argparse import datetime import json import random import time from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, DistributedSampler import datasets import util.misc as utils from datasets import build_dataset, get_coco_api_from_dataset from engine import evaluate, train_one_epoch from models import build_model import torchvision.transforms as T import matplotlib.pyplot as plt import os from PIL import Image import math import torch.nn.functional as F import json from scipy.optimize import linear_sum_assignment import pycocotools.mask as mask_util def get_args_parser(): parser = argparse.ArgumentParser('Set transformer detector', add_help=False) parser.add_argument('--lr', default=1e-4, type=float) parser.add_argument('--lr_backbone', default=1e-5, type=float) parser.add_argument('--batch_size', default=2, type=int) parser.add_argument('--weight_decay', default=1e-4, type=float) parser.add_argument('--epochs', default=150, type=int) parser.add_argument('--lr_drop', default=100, type=int) parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm') # Model parameters parser.add_argument('--model_path', type=str, default=None, help="Path to the model weights.") # * Backbone parser.add_argument('--backbone', default='resnet101', type=str, help="Name of the convolutional backbone to use") parser.add_argument('--dilation', action='store_true', help="If true, we replace stride with dilation in the last convolutional block (DC5)") parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'), help="Type of positional embedding to use on top of the image features") # * Transformer parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer") parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer") parser.add_argument('--dim_feedforward', default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks") parser.add_argument('--hidden_dim', default=384, type=int, help="Size of the embeddings (dimension of the transformer)") parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer") parser.add_argument('--nheads', default=8, type=int, help="Number of attention heads inside the transformer's attentions") parser.add_argument('--num_frames', default=36, type=int, help="Number of frames") parser.add_argument('--num_ins', default=10, type=int, help="Number of instances") parser.add_argument('--num_queries', default=360, type=int, help="Number of query slots") parser.add_argument('--pre_norm', action='store_true') # * Segmentation parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided") # Loss parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false', help="Disables auxiliary decoding losses (loss at each layer)") # * Matcher parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost") parser.add_argument('--set_cost_bbox', default=5, type=float, help="L1 box coefficient in the matching cost") parser.add_argument('--set_cost_giou', default=2, type=float, help="giou box coefficient in the matching cost") # * Loss coefficients parser.add_argument('--mask_loss_coef', default=1, type=float) parser.add_argument('--dice_loss_coef', default=1, type=float) parser.add_argument('--bbox_loss_coef', default=5, type=float) parser.add_argument('--giou_loss_coef', default=2, type=float) parser.add_argument('--eos_coef', default=0.1, type=float, help="Relative classification weight of the no-object class") # dataset parameters parser.add_argument('--img_path', default='data/ytvos/valid/JPEGImages/') parser.add_argument('--ann_path', default='data/ytvos/annotations/instances_val_sub.json') parser.add_argument('--save_path', default='results.json') parser.add_argument('--dataset_file', default='ytvos') parser.add_argument('--coco_path', type=str) parser.add_argument('--coco_panoptic_path', type=str) parser.add_argument('--remove_difficult', action='store_true') parser.add_argument('--output_dir', default='output_ytvos', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=42, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') #parser.add_argument('--eval', action='store_true') parser.add_argument('--eval', action='store_false') parser.add_argument('--num_workers', default=0, type=int) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser CLASSES=['person','giant_panda','lizard','parrot','skateboard','sedan','ape', 'dog','snake','monkey','hand','rabbit','duck','cat','cow','fish', 'train','horse','turtle','bear','motorbike','giraffe','leopard', 'fox','deer','owl','surfboard','airplane','truck','zebra','tiger', 'elephant','snowboard','boat','shark','mouse','frog','eagle','earless_seal', 'tennis_racket'] COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], [0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000], [0.700, 0.300, 0.600]] transform = T.Compose([ T.Resize(300), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # for output bounding box post-processing def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b.cpu() * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def main(args): # Test start_time = time.time() device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) num_frames = args.num_frames num_ins = args.num_ins with torch.no_grad(): model, criterion, postprocessors = build_model(args) model.to(device) state_dict = torch.load(args.model_path)['model'] model.load_state_dict(state_dict) folder = args.img_path videos = json.load(open(args.ann_path,'rb'))['videos'] vis_num = len(videos) # Test process_start_time = time.time() inference_time_acc = 0.0 frame_count = 0 vis_num = 10 result = [] for i in range(vis_num): print("Process video: ",i) id_ = videos[i]['id'] length = videos[i]['length'] file_names = videos[i]['file_names'] clip_num = math.ceil(length/num_frames) img_set=[] if length<num_frames: clip_names = file_names*(math.ceil(num_frames/length)) clip_names = clip_names[:num_frames] else: clip_names = file_names[:num_frames] if len(clip_names)==0: continue if len(clip_names)<num_frames: clip_names.extend(file_names[:num_frames-len(clip_names)]) for k in range(num_frames): im = Image.open(os.path.join(folder,clip_names[k])) img_set.append(transform(im).unsqueeze(0).cuda()) img=torch.cat(img_set,0) # Test frame_count += len(img_set) inference_start_time = time.time() # inference time is calculated for this operation outputs = model(img) inference_time_acc += time.time() - inference_start_time # end of model inference logits, boxes, masks = outputs['pred_logits'].softmax(-1)[0,:,:-1], outputs['pred_boxes'][0], outputs['pred_masks'][0] pred_masks =F.interpolate(masks.reshape(num_frames,num_ins,masks.shape[-2],masks.shape[-1]),(im.size[1],im.size[0]),mode="bilinear").sigmoid().cpu().detach().numpy()>0.5 pred_logits = logits.reshape(num_frames,num_ins,logits.shape[-1]).cpu().detach().numpy() pred_masks = pred_masks[:length] pred_logits = pred_logits[:length] pred_scores = np.max(pred_logits,axis=-1) pred_logits = np.argmax(pred_logits,axis=-1) for m in range(num_ins): if pred_masks[:,m].max()==0: continue score = pred_scores[:,m].mean() #category_id = pred_logits[:,m][pred_scores[:,m].argmax()] category_id = np.argmax(np.bincount(pred_logits[:,m])) instance = {'video_id':id_, 'score':float(score), 'category_id':int(category_id)} segmentation = [] for n in range(length): if pred_scores[n,m]<0.001: segmentation.append(None) else: mask = (pred_masks[n,m]).astype(np.uint8) rle = mask_util.encode(np.array(mask[:,:,np.newaxis], order='F'))[0] rle["counts"] = rle["counts"].decode("utf-8") segmentation.append(rle) instance['segmentations'] = segmentation result.append(instance) # Test print('Inference time: ', inference_time_acc) print('Frame count: ', frame_count) print('Inference time per frame: ', inference_time_acc / frame_count) print('Process time (include image read, copy to cuda, but not model build): ', time.time() - process_start_time) with open(args.save_path, 'w', encoding='utf-8') as f: json.dump(result,f) # Test print('Total runtime (model build + inference + image read + copy to cuda ...): ', time.time() - start_time) if __name__ == '__main__': parser = argparse.ArgumentParser('VisTR inference script', parents=[get_args_parser()]) args = parser.parse_args() main(args)
43.727273
181
0.615731
5ec383f21b463750485cbd3190ff312add2248d5
141
py
Python
src/tentaclio_gs/__main__.py
octoenergy/tentaclio-gs
cb4e6d8c61b7ef64a5b41fa5d3b8c857c12ae945
[ "MIT" ]
null
null
null
src/tentaclio_gs/__main__.py
octoenergy/tentaclio-gs
cb4e6d8c61b7ef64a5b41fa5d3b8c857c12ae945
[ "MIT" ]
null
null
null
src/tentaclio_gs/__main__.py
octoenergy/tentaclio-gs
cb4e6d8c61b7ef64a5b41fa5d3b8c857c12ae945
[ "MIT" ]
1
2022-01-14T00:33:18.000Z
2022-01-14T00:33:18.000Z
# Helper cli to encode urls. from tentaclio.__main__ import main if __name__ == "__main__": main(prog_name="python -m tentaclio-gs")
15.666667
44
0.716312
b47cce4ceaeb6d6f280059f708ff8cb6b0dfd18c
777
py
Python
ezotv/schemas/minecraft_form_schema.py
marcsello/ezotv-frontend
405c440a567e8a0f1577f10d45385f3171398afe
[ "CC0-1.0" ]
null
null
null
ezotv/schemas/minecraft_form_schema.py
marcsello/ezotv-frontend
405c440a567e8a0f1577f10d45385f3171398afe
[ "CC0-1.0" ]
7
2020-01-23T00:50:39.000Z
2020-04-18T20:34:40.000Z
ezotv/schemas/minecraft_form_schema.py
marcsello/ezotv-frontend
405c440a567e8a0f1577f10d45385f3171398afe
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 from marshmallow import Schema, fields, validates_schema, ValidationError, pre_load, validates, RAISE from marshmallow.validate import Regexp, Length class MinecraftFormSchema(Schema): minecraft_name = fields.Str(required=True, validate=[Length(min=3, max=16), Regexp("^[A-Za-z0-9_]*$")]) password = fields.Str(required=True, validate=Length(min=6)) password_verify = fields.Str(load_only=True, required=True, validate=Length(min=6)) submit = fields.Str(load_only=True, required=False, allow_none=True) @validates_schema def validate_password(self, data, **kwargs): if data["password"] != data["password_verify"]: raise ValidationError("Passwords do not match!") class Meta: unknown = RAISE
35.318182
107
0.715573
ccb55ad8d96015715d4174d24b9da926cbfbffbf
878
py
Python
config.py
wtq2255/free_proxy_pool
c6ac0b3fbf4ab4c0da53eb6372ecf2187f635c17
[ "MIT" ]
1
2018-01-24T10:47:52.000Z
2018-01-24T10:47:52.000Z
config.py
wtq2255/free_proxy_pool
c6ac0b3fbf4ab4c0da53eb6372ecf2187f635c17
[ "MIT" ]
null
null
null
config.py
wtq2255/free_proxy_pool
c6ac0b3fbf4ab4c0da53eb6372ecf2187f635c17
[ "MIT" ]
null
null
null
import configparser conf=configparser.ConfigParser() conf.read('./proxy.conf') def get_redis(name): redis_conf = conf.get('redis', name) t1, t2 = redis_conf.strip().split(':')[-2:] password, host = t1.strip().split('@') port, db = t2.strip().split('/') return {'host': host, 'port': int(port), 'password': password or None, 'db': int(db)} def get_proxy_url(name=None): if name is None: return list(zip(*conf.items('proxy_url')))[1] else: if conf.has_option('proxy_url', name): return conf.get('proxy_url', name) else: return None def get_check(option=None): if option is None: return dict(conf.items('check')) else: if conf.has_option('check', option): return conf.get('check', option) else: return None
25.085714
53
0.56492
7fda18c78f0939ab624b76eaa142fde7a5409e8d
19,434
py
Python
daemon/core/nodes/interface.py
ruohonej/core
31e6839ac5a9a5e2b1d8840e32b9ad1f5b2606a1
[ "BSD-2-Clause" ]
1
2022-02-12T06:34:49.000Z
2022-02-12T06:34:49.000Z
daemon/core/nodes/interface.py
kestasjk/core
31e6839ac5a9a5e2b1d8840e32b9ad1f5b2606a1
[ "BSD-2-Clause" ]
null
null
null
daemon/core/nodes/interface.py
kestasjk/core
31e6839ac5a9a5e2b1d8840e32b9ad1f5b2606a1
[ "BSD-2-Clause" ]
null
null
null
""" virtual ethernet classes that implement the interfaces available under Linux. """ import logging import time from pathlib import Path from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple import netaddr from core import utils from core.emulator.data import LinkOptions from core.emulator.enumerations import TransportType from core.errors import CoreCommandError, CoreError from core.nodes.netclient import LinuxNetClient, get_net_client logger = logging.getLogger(__name__) if TYPE_CHECKING: from core.emulator.distributed import DistributedServer from core.emulator.session import Session from core.nodes.base import CoreNetworkBase, CoreNode DEFAULT_MTU: int = 1500 class CoreInterface: """ Base class for network interfaces. """ def __init__( self, session: "Session", name: str, localname: str, mtu: int = DEFAULT_MTU, server: "DistributedServer" = None, node: "CoreNode" = None, ) -> None: """ Creates a CoreInterface instance. :param session: core session instance :param name: interface name :param localname: interface local name :param mtu: mtu value :param server: remote server node will run on, default is None for localhost :param node: node for interface """ if len(name) >= 16: raise CoreError(f"interface name ({name}) too long, max 16") if len(localname) >= 16: raise CoreError(f"interface local name ({localname}) too long, max 16") self.session: "Session" = session self.node: Optional["CoreNode"] = node self.name: str = name self.localname: str = localname self.up: bool = False self.mtu: int = mtu self.net: Optional[CoreNetworkBase] = None self.othernet: Optional[CoreNetworkBase] = None self._params: Dict[str, float] = {} self.ip4s: List[netaddr.IPNetwork] = [] self.ip6s: List[netaddr.IPNetwork] = [] self.mac: Optional[netaddr.EUI] = None # placeholder position hook self.poshook: Callable[[CoreInterface], None] = lambda x: None # used with EMANE self.transport_type: TransportType = TransportType.VIRTUAL # id of interface for node self.node_id: Optional[int] = None # id of interface for network self.net_id: Optional[int] = None # id used to find flow data self.flow_id: Optional[int] = None self.server: Optional["DistributedServer"] = server self.net_client: LinuxNetClient = get_net_client( self.session.use_ovs(), self.host_cmd ) self.control: bool = False def host_cmd( self, args: str, env: Dict[str, str] = None, cwd: Path = None, wait: bool = True, shell: bool = False, ) -> str: """ Runs a command on the host system or distributed server. :param args: command to run :param env: environment to run command with :param cwd: directory to run command in :param wait: True to wait for status, False otherwise :param shell: True to use shell, False otherwise :return: combined stdout and stderr :raises CoreCommandError: when a non-zero exit status occurs """ if self.server is None: return utils.cmd(args, env, cwd, wait, shell) else: return self.server.remote_cmd(args, env, cwd, wait) def startup(self) -> None: """ Startup method for the interface. :return: nothing """ pass def shutdown(self) -> None: """ Shutdown method for the interface. :return: nothing """ pass def attachnet(self, net: "CoreNetworkBase") -> None: """ Attach network. :param net: network to attach :return: nothing """ if self.net: self.detachnet() self.net = None net.attach(self) self.net = net def detachnet(self) -> None: """ Detach from a network. :return: nothing """ if self.net is not None: self.net.detach(self) def add_ip(self, ip: str) -> None: """ Add ip address in the format "10.0.0.1/24". :param ip: ip address to add :return: nothing :raises CoreError: when ip address provided is invalid """ try: ip = netaddr.IPNetwork(ip) address = str(ip.ip) if netaddr.valid_ipv4(address): self.ip4s.append(ip) else: self.ip6s.append(ip) except netaddr.AddrFormatError as e: raise CoreError(f"adding invalid address {ip}: {e}") def remove_ip(self, ip: str) -> None: """ Remove ip address in the format "10.0.0.1/24". :param ip: ip address to delete :return: nothing :raises CoreError: when ip address provided is invalid """ try: ip = netaddr.IPNetwork(ip) address = str(ip.ip) if netaddr.valid_ipv4(address): self.ip4s.remove(ip) else: self.ip6s.remove(ip) except (netaddr.AddrFormatError, ValueError) as e: raise CoreError(f"deleting invalid address {ip}: {e}") def get_ip4(self) -> Optional[netaddr.IPNetwork]: """ Looks for the first ip4 address. :return: ip4 address, None otherwise """ return next(iter(self.ip4s), None) def get_ip6(self) -> Optional[netaddr.IPNetwork]: """ Looks for the first ip6 address. :return: ip6 address, None otherwise """ return next(iter(self.ip6s), None) def ips(self) -> List[netaddr.IPNetwork]: """ Retrieve a list of all ip4 and ip6 addresses combined. :return: ip4 and ip6 addresses """ return self.ip4s + self.ip6s def set_mac(self, mac: Optional[str]) -> None: """ Set mac address. :param mac: mac address to set, None for random mac :return: nothing :raises CoreError: when there is an invalid mac address """ if mac is None: self.mac = mac else: try: self.mac = netaddr.EUI(mac, dialect=netaddr.mac_unix_expanded) except netaddr.AddrFormatError as e: raise CoreError(f"invalid mac address({mac}): {e}") def getparam(self, key: str) -> float: """ Retrieve a parameter from the, or None if the parameter does not exist. :param key: parameter to get value for :return: parameter value """ return self._params.get(key) def get_link_options(self, unidirectional: int) -> LinkOptions: """ Get currently set params as link options. :param unidirectional: unidirectional setting :return: link options """ delay = self.getparam("delay") if delay is not None: delay = int(delay) bandwidth = self.getparam("bw") if bandwidth is not None: bandwidth = int(bandwidth) dup = self.getparam("duplicate") if dup is not None: dup = int(dup) jitter = self.getparam("jitter") if jitter is not None: jitter = int(jitter) buffer = self.getparam("buffer") if buffer is not None: buffer = int(buffer) return LinkOptions( delay=delay, bandwidth=bandwidth, dup=dup, jitter=jitter, loss=self.getparam("loss"), buffer=buffer, unidirectional=unidirectional, ) def getparams(self) -> List[Tuple[str, float]]: """ Return (key, value) pairs for parameters. """ parameters = [] for k in sorted(self._params.keys()): parameters.append((k, self._params[k])) return parameters def setparam(self, key: str, value: float) -> bool: """ Set a parameter value, returns True if the parameter has changed. :param key: parameter name to set :param value: parameter value :return: True if parameter changed, False otherwise """ # treat None and 0 as unchanged values logger.debug("setting param: %s - %s", key, value) if value is None or value < 0: return False current_value = self._params.get(key) if current_value is not None and current_value == value: return False self._params[key] = value return True def swapparams(self, name: str) -> None: """ Swap out parameters dict for name. If name does not exist, intialize it. This is for supporting separate upstream/downstream parameters when two layer-2 nodes are linked together. :param name: name of parameter to swap :return: nothing """ tmp = self._params if not hasattr(self, name): setattr(self, name, {}) self._params = getattr(self, name) setattr(self, name, tmp) def setposition(self) -> None: """ Dispatch position hook handler when possible. :return: nothing """ if self.poshook and self.node: self.poshook(self) def __lt__(self, other: "CoreInterface") -> bool: """ Used for comparisons of this object. :param other: other interface :return: true if less than, false otherwise """ return id(self) < id(other) def is_raw(self) -> bool: """ Used to determine if this interface is considered a raw interface. :return: True if raw interface, False otherwise """ return self.transport_type == TransportType.RAW def is_virtual(self) -> bool: """ Used to determine if this interface is considered a virtual interface. :return: True if virtual interface, False otherwise """ return self.transport_type == TransportType.VIRTUAL class Veth(CoreInterface): """ Provides virtual ethernet functionality for core nodes. """ def adopt_node(self, iface_id: int, name: str, start: bool) -> None: """ Adopt this interface to the provided node, configuring and associating with the node as needed. :param iface_id: interface id for node :param name: name of interface fo rnode :param start: True to start interface, False otherwise :return: nothing """ if start: self.startup() self.net_client.device_ns(self.name, str(self.node.pid)) self.node.node_net_client.checksums_off(self.name) self.flow_id = self.node.node_net_client.get_ifindex(self.name) logger.debug("interface flow index: %s - %s", self.name, self.flow_id) mac = self.node.node_net_client.get_mac(self.name) logger.debug("interface mac: %s - %s", self.name, mac) self.set_mac(mac) self.node.node_net_client.device_name(self.name, name) self.name = name try: self.node.add_iface(self, iface_id) except CoreError as e: self.shutdown() raise e def startup(self) -> None: """ Interface startup logic. :return: nothing :raises CoreCommandError: when there is a command exception """ self.net_client.create_veth(self.localname, self.name) if self.mtu > 0: self.net_client.set_mtu(self.name, self.mtu) self.net_client.set_mtu(self.localname, self.mtu) self.net_client.device_up(self.localname) self.up = True def shutdown(self) -> None: """ Interface shutdown logic. :return: nothing """ if not self.up: return if self.node: try: self.node.node_net_client.device_flush(self.name) except CoreCommandError: pass if self.localname: try: self.net_client.delete_device(self.localname) except CoreCommandError: pass self.up = False class TunTap(CoreInterface): """ TUN/TAP virtual device in TAP mode """ def startup(self) -> None: """ Startup logic for a tunnel tap. :return: nothing """ # TODO: more sophisticated TAP creation here # Debian does not support -p (tap) option, RedHat does. # For now, this is disabled to allow the TAP to be created by another # system (e.g. EMANE"s emanetransportd) # check_call(["tunctl", "-t", self.name]) # self.install() self.up = True def shutdown(self) -> None: """ Shutdown functionality for a tunnel tap. :return: nothing """ if not self.up: return try: self.node.node_net_client.device_flush(self.name) except CoreCommandError: logger.exception("error shutting down tunnel tap") self.up = False def waitfor( self, func: Callable[[], int], attempts: int = 10, maxretrydelay: float = 0.25 ) -> bool: """ Wait for func() to return zero with exponential backoff. :param func: function to wait for a result of zero :param attempts: number of attempts to wait for a zero result :param maxretrydelay: maximum retry delay :return: True if wait succeeded, False otherwise """ delay = 0.01 result = False for i in range(1, attempts + 1): r = func() if r == 0: result = True break msg = f"attempt {i} failed with nonzero exit status {r}" if i < attempts + 1: msg += ", retrying..." logger.info(msg) time.sleep(delay) delay += delay if delay > maxretrydelay: delay = maxretrydelay else: msg += ", giving up" logger.info(msg) return result def waitfordevicelocal(self) -> None: """ Check for presence of a local device - tap device may not appear right away waits :return: wait for device local response """ logger.debug("waiting for device local: %s", self.localname) def localdevexists(): try: self.net_client.device_show(self.localname) return 0 except CoreCommandError: return 1 self.waitfor(localdevexists) def waitfordevicenode(self) -> None: """ Check for presence of a node device - tap device may not appear right away waits. :return: nothing """ logger.debug("waiting for device node: %s", self.name) def nodedevexists(): try: self.node.node_net_client.device_show(self.name) return 0 except CoreCommandError: return 1 count = 0 while True: result = self.waitfor(nodedevexists) if result: break # TODO: emane specific code # check if this is an EMANE interface; if so, continue # waiting if EMANE is still running should_retry = count < 5 is_emane = self.session.emane.is_emane_net(self.net) is_emane_running = self.session.emane.emanerunning(self.node) if all([should_retry, is_emane, is_emane_running]): count += 1 else: raise RuntimeError("node device failed to exist") def install(self) -> None: """ Install this TAP into its namespace. This is not done from the startup() method but called at a later time when a userspace program (running on the host) has had a chance to open the socket end of the TAP. :return: nothing :raises CoreCommandError: when there is a command exception """ self.waitfordevicelocal() netns = str(self.node.pid) self.net_client.device_ns(self.localname, netns) self.node.node_net_client.device_name(self.localname, self.name) self.node.node_net_client.device_up(self.name) def set_ips(self) -> None: """ Set interface ip addresses. :return: nothing """ self.waitfordevicenode() for ip in self.ips(): self.node.node_net_client.create_address(self.name, str(ip)) class GreTap(CoreInterface): """ GRE TAP device for tunneling between emulation servers. Uses the "gretap" tunnel device type from Linux which is a GRE device having a MAC address. The MAC address is required for bridging. """ def __init__( self, session: "Session", remoteip: str, key: int = None, node: "CoreNode" = None, mtu: int = DEFAULT_MTU, _id: int = None, localip: str = None, ttl: int = 255, server: "DistributedServer" = None, ) -> None: """ Creates a GreTap instance. :param session: core session instance :param remoteip: remote address :param key: gre tap key :param node: related core node :param mtu: interface mtu :param _id: object id :param localip: local address :param ttl: ttl value :param server: remote server node will run on, default is None for localhost :raises CoreCommandError: when there is a command exception """ if _id is None: _id = ((id(self) >> 16) ^ (id(self) & 0xFFFF)) & 0xFFFF self.id: int = _id sessionid = session.short_session_id() localname = f"gt.{self.id}.{sessionid}" name = f"{localname}p" super().__init__(session, name, localname, mtu, server, node) self.transport_type: TransportType = TransportType.RAW self.remote_ip: str = remoteip self.ttl: int = ttl self.key: Optional[int] = key self.local_ip: Optional[str] = localip def startup(self) -> None: """ Startup logic for a GreTap. :return: nothing """ self.net_client.create_gretap( self.localname, self.remote_ip, self.local_ip, self.ttl, self.key ) if self.mtu > 0: self.net_client.set_mtu(self.localname, self.mtu) self.net_client.device_up(self.localname) self.up = True def shutdown(self) -> None: """ Shutdown logic for a GreTap. :return: nothing """ if self.localname: try: self.net_client.device_down(self.localname) self.net_client.delete_device(self.localname) except CoreCommandError: logger.exception("error during shutdown") self.localname = None
31.194222
89
0.572605
d4762f5fa375e4386805e9026e40b062b34d8858
4,933
py
Python
config/settings.py
ozknightwalker/Djongo-tutorial
6d1d86c133924a09da2832d6125966cedeff6365
[ "MIT" ]
null
null
null
config/settings.py
ozknightwalker/Djongo-tutorial
6d1d86c133924a09da2832d6125966cedeff6365
[ "MIT" ]
null
null
null
config/settings.py
ozknightwalker/Djongo-tutorial
6d1d86c133924a09da2832d6125966cedeff6365
[ "MIT" ]
null
null
null
""" Django settings for DjongoTutorial project. Generated by 'django-admin startproject' using Django 3.2.6. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-a_+k(o5w_axl+o)q39iok01&#8_$+(*%zs$fxosi+7d4h%kzsd' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # third-party applications "rest_framework", "drf_yasg", "channels", # custom apps "apps.core", "apps.cards", "apps.public_chat", "apps.api", ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } # } DATABASES = { 'default': { 'ENGINE': 'djongo', 'CLIENT': { 'host': os.environ.get("DATABASE_HOST", "mongodb"), 'port': int(os.environ.get("DATABASE_PORT", "27017")) }, 'NAME': os.environ.get("DATABASE_NAME", "djongo-tutorial-database") } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' AUTH_USER_MODEL = 'auth.User' # SALT FOR ENCODING/DECODING HASH KEYS HASHID_FIELD_SALT = SECRET_KEY HASHID_FIELD_ALLOW_INT_LOOKUP = True # REDIS CONFIG REDIS_HOSTNAME = os.environ.get("REDIS_HOSTNAME", "redis") REDIS_READ_HOSTNAME = os.environ.get( "REDIS_READ_HOSTNAME", REDIS_HOSTNAME ) REDIS_PORT = os.environ.get("REDIS_PORT", "6379") REDIS_CACHE_DB = os.environ.get("REDIS_CACHE_DB", "0") REDIS_BROKER_DB = os.environ.get("REDIS_BROKER_DB", "1") REDIS_ADDRESS = f"redis://{REDIS_HOSTNAME}:{REDIS_PORT}" REDIS_READ_ADDRESS = f"redis://{REDIS_READ_HOSTNAME}:{REDIS_PORT}" # CACHES CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": f"{REDIS_ADDRESS}/{REDIS_CACHE_DB}", "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", }, "KEY_PREFIX": "rota_oeste", }, } # Cache time to live is 15 minutes. CACHE_TTL = 60 * 15 # Channel CHANNEL_LAYERS = { "default": { "BACKEND": "channels_redis.core.RedisChannelLayer", "CONFIG": { "hosts": [(REDIS_HOSTNAME, REDIS_PORT)], }, }, } ASGI_APPLICATION = "config.routing.application"
25.040609
91
0.676667
a393c4035205cbf06f4ccf8da870b0fb5f480b4b
7,289
py
Python
setup.py
Midiquin/mypy
a8f06c8651a4dd9b97f4989df70791b57a14e7f6
[ "PSF-2.0" ]
null
null
null
setup.py
Midiquin/mypy
a8f06c8651a4dd9b97f4989df70791b57a14e7f6
[ "PSF-2.0" ]
null
null
null
setup.py
Midiquin/mypy
a8f06c8651a4dd9b97f4989df70791b57a14e7f6
[ "PSF-2.0" ]
null
null
null
#!/usr/bin/env python import glob import os import os.path import sys if sys.version_info < (3, 5, 0): sys.stderr.write("ERROR: You need Python 3.5 or later to use mypy.\n") exit(1) # we'll import stuff from the source tree, let's ensure is on the sys path sys.path.insert(0, os.path.dirname(os.path.realpath(__file__))) # This requires setuptools when building; setuptools is not needed # when installing from a wheel file (though it is still neeeded for # alternative forms of installing, as suggested by README.md). from setuptools import setup from setuptools.command.build_py import build_py from mypy.version import __version__ as version from mypy import git git.verify_git_integrity_or_abort(".") description = 'Optional static typing for Python' long_description = ''' Mypy -- Optional Static Typing for Python ========================================= Add type annotations to your Python programs, and use mypy to type check them. Mypy is essentially a Python linter on steroids, and it can catch many programming errors by analyzing your program, without actually having to run it. Mypy has a powerful type system with features such as type inference, gradual typing, generics and union types. '''.lstrip() def find_package_data(base, globs, root='mypy'): """Find all interesting data files, for setup(package_data=) Arguments: root: The directory to search in. globs: A list of glob patterns to accept files. """ rv_dirs = [root for root, dirs, files in os.walk(base)] rv = [] for rv_dir in rv_dirs: files = [] for pat in globs: files += glob.glob(os.path.join(rv_dir, pat)) if not files: continue rv.extend([os.path.relpath(f, root) for f in files]) return rv class CustomPythonBuild(build_py): def pin_version(self): path = os.path.join(self.build_lib, 'mypy') self.mkpath(path) with open(os.path.join(path, 'version.py'), 'w') as stream: stream.write('__version__ = "{}"\n'.format(version)) def run(self): self.execute(self.pin_version, ()) build_py.run(self) cmdclass = {'build_py': CustomPythonBuild} package_data = ['py.typed'] package_data += find_package_data(os.path.join('mypy', 'typeshed'), ['*.py', '*.pyi']) package_data += find_package_data(os.path.join('mypy', 'xml'), ['*.xsd', '*.xslt', '*.css']) USE_MYPYC = False # To compile with mypyc, a mypyc checkout must be present on the PYTHONPATH if len(sys.argv) > 1 and sys.argv[1] == '--use-mypyc': sys.argv.pop(1) USE_MYPYC = True if os.getenv('MYPY_USE_MYPYC', None) == '1': USE_MYPYC = True if USE_MYPYC: MYPYC_BLACKLIST = tuple(os.path.join('mypy', x) for x in ( # Need to be runnable as scripts '__main__.py', 'sitepkgs.py', os.path.join('dmypy', '__main__.py'), # Uses __getattr__/__setattr__ 'split_namespace.py', # Lies to mypy about code reachability 'bogus_type.py', # We don't populate __file__ properly at the top level or something? # Also I think there would be problems with how we generate version.py. 'version.py', # Written by someone who doesn't know how to deal with mypyc 'stubtest.py', )) + ( # Don't want to grab this accidentally os.path.join('mypyc', 'lib-rt', 'setup.py'), ) everything = ( [os.path.join('mypy', x) for x in find_package_data('mypy', ['*.py'])] + [os.path.join('mypyc', x) for x in find_package_data('mypyc', ['*.py'], root='mypyc')]) # Start with all the .py files all_real_pys = [x for x in everything if not x.startswith(os.path.join('mypy', 'typeshed') + os.sep)] # Strip out anything in our blacklist mypyc_targets = [x for x in all_real_pys if x not in MYPYC_BLACKLIST] # Strip out any test code mypyc_targets = [x for x in mypyc_targets if not x.startswith((os.path.join('mypy', 'test') + os.sep, os.path.join('mypyc', 'test') + os.sep, os.path.join('mypyc', 'test-data') + os.sep, ))] # ... and add back in the one test module we need mypyc_targets.append(os.path.join('mypy', 'test', 'visitors.py')) # The targets come out of file system apis in an unspecified # order. Sort them so that the mypyc output is deterministic. mypyc_targets.sort() use_other_mypyc = os.getenv('ALTERNATE_MYPYC_PATH', None) if use_other_mypyc: # This bit is super unfortunate: we want to use a different # mypy/mypyc version, but we've already imported parts, so we # remove the modules that we've imported already, which will # let the right versions be imported by mypyc. del sys.modules['mypy'] del sys.modules['mypy.version'] del sys.modules['mypy.git'] sys.path.insert(0, use_other_mypyc) from mypyc.build import mypycify opt_level = os.getenv('MYPYC_OPT_LEVEL', '3') force_multifile = os.getenv('MYPYC_MULTI_FILE', '') == '1' ext_modules = mypycify( mypyc_targets + ['--config-file=mypy_bootstrap.ini'], opt_level=opt_level, # Use multi-file compliation mode on windows because without it # our Appveyor builds run out of memory sometimes. multi_file=sys.platform == 'win32' or force_multifile, ) else: ext_modules = [] classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Software Development', ] setup(name='mypy', version=version, description=description, long_description=long_description, author='Jukka Lehtosalo', author_email='jukka.lehtosalo@iki.fi', url='http://www.mypy-lang.org/', license='MIT License', py_modules=[], ext_modules=ext_modules, packages=[ 'mypy', 'mypy.test', 'mypy.server', 'mypy.plugins', 'mypy.dmypy', 'mypyc', 'mypyc.test', ], package_data={'mypy': package_data}, scripts=['scripts/mypyc'], entry_points={'console_scripts': ['mypy=mypy.__main__:console_entry', 'stubgen=mypy.stubgen:main', 'stubtest=mypy.stubtest:main', 'dmypy=mypy.dmypy.client:console_entry', ]}, classifiers=classifiers, cmdclass=cmdclass, # When changing this, also update mypy-requirements.txt. install_requires=['typed_ast >= 1.4.0, < 1.5.0', 'typing_extensions>=3.7.4', 'mypy_extensions >= 0.4.3, < 0.5.0', ], # Same here. extras_require={'dmypy': 'psutil >= 4.0'}, python_requires=">=3.5", include_package_data=True, )
35.906404
95
0.613802
458eaf9e961d3542af8e1be562ae3b60ca4b4a50
24,077
py
Python
azure-mgmt-network/azure/mgmt/network/v2017_11_01/operations/route_tables_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-network/azure/mgmt/network/v2017_11_01/operations/route_tables_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-network/azure/mgmt/network/v2017_11_01/operations/route_tables_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class RouteTablesOperations(object): """RouteTablesOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2017-11-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2017-11-01" self.config = config def _delete_initial( self, resource_group_name, route_table_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, route_table_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} def get( self, resource_group_name, route_table_name, expand=None, custom_headers=None, raw=False, **operation_config): """Gets the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param expand: Expands referenced resources. :type expand: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: RouteTable or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2017_11_01.models.RouteTable or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('RouteTable', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} def _create_or_update_initial( self, resource_group_name, route_table_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'RouteTable') # Construct and send request request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('RouteTable', response) if response.status_code == 201: deserialized = self._deserialize('RouteTable', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, route_table_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Create or updates a route table in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to the create or update route table operation. :type parameters: ~azure.mgmt.network.v2017_11_01.models.RouteTable :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns RouteTable or ClientRawResponse<RouteTable> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2017_11_01.models.RouteTable] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2017_11_01.models.RouteTable]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('RouteTable', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} def _update_tags_initial( self, resource_group_name, route_table_name, tags=None, custom_headers=None, raw=False, **operation_config): parameters = models.TagsObject(tags=tags) # Construct URL url = self.update_tags.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'TagsObject') # Construct and send request request = self._client.patch(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('RouteTable', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def update_tags( self, resource_group_name, route_table_name, tags=None, custom_headers=None, raw=False, polling=True, **operation_config): """Updates a route table tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param tags: Resource tags. :type tags: dict[str, str] :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns RouteTable or ClientRawResponse<RouteTable> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2017_11_01.models.RouteTable] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2017_11_01.models.RouteTable]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._update_tags_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, tags=tags, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('RouteTable', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} def list( self, resource_group_name, custom_headers=None, raw=False, **operation_config): """Gets all route tables in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of RouteTable :rtype: ~azure.mgmt.network.v2017_11_01.models.RouteTablePaged[~azure.mgmt.network.v2017_11_01.models.RouteTable] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.RouteTablePaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.RouteTablePaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables'} def list_all( self, custom_headers=None, raw=False, **operation_config): """Gets all route tables in a subscription. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of RouteTable :rtype: ~azure.mgmt.network.v2017_11_01.models.RouteTablePaged[~azure.mgmt.network.v2017_11_01.models.RouteTable] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_all.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.RouteTablePaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.RouteTablePaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/routeTables'}
46.124521
166
0.666985
06dd7d847c62c64f89bb2eebc7956d42fd7fe066
238
py
Python
db.py
ahmednafies/fastapi-alembic
bffa049aa97872516efda2f883263c3a1e505ec2
[ "MIT" ]
1
2021-06-11T10:52:57.000Z
2021-06-11T10:52:57.000Z
db.py
ahmednafies/fastapi-alembic
bffa049aa97872516efda2f883263c3a1e505ec2
[ "MIT" ]
null
null
null
db.py
ahmednafies/fastapi-alembic
bffa049aa97872516efda2f883263c3a1e505ec2
[ "MIT" ]
2
2021-06-20T17:08:27.000Z
2021-07-16T00:52:50.000Z
from fastapi_databases import FastAPIDatabases import os from dotenv import load_dotenv BASE_DIR = os.path.dirname(os.path.abspath(__file__)) load_dotenv(os.path.join(BASE_DIR, ".env")) db = FastAPIDatabases(os.environ["DATABASE_URL"])
26.444444
53
0.802521
2bfacd8bb0c7236c4c995497d65096a3d7d19dc8
2,155
py
Python
tests/test_services/test_service_basics.py
aris-bb/sphinxcontrib-needs
975815c21241fc1f5a58d8cf5504eb76ab95f73f
[ "MIT" ]
1
2022-03-24T08:55:28.000Z
2022-03-24T08:55:28.000Z
tests/test_services/test_service_basics.py
aris-bb/sphinxcontrib-needs
975815c21241fc1f5a58d8cf5504eb76ab95f73f
[ "MIT" ]
null
null
null
tests/test_services/test_service_basics.py
aris-bb/sphinxcontrib-needs
975815c21241fc1f5a58d8cf5504eb76ab95f73f
[ "MIT" ]
null
null
null
from pathlib import Path import pytest from sphinxcontrib.needs.services.base import BaseService from sphinxcontrib.needs.services.manager import ServiceManager class TestService(BaseService): options = ["custom_option", "exists"] def __init__(self, app, name, config, **kwargs): self.custom_option = config.get("custom_option", False) super().__init__() def request(self, options): data = [ { "title": "service_test_title", "id": "TEST_001", "exists": options.get("exists", "False"), "not_exists": options.get("not_exists", "False"), "custom_option": self.custom_option, # 'content': 'test_content' } ] return data def debug(self, options): debug_data = { "request": { "url": "http://dummy.company.com/my/service", "user": "my_user", }, "answer": {"status_code": 200, "body": {"item_amount": 2, "items": ["item_1", "item_2"]}}, } return debug_data class NoDebugService(BaseService): options = [] def __init__(self, app, name, config, **kwargs): super().__init__() def request(self, options): return [] @pytest.mark.parametrize("test_app", [{"buildername": "html", "srcdir": "doc_test/service_doc"}], indirect=True) def test_service_creation(test_app): app = test_app app.build() assert isinstance(app.needs_services, ServiceManager) manager = app.needs_services service = manager.get("testservice") assert hasattr(service, "custom_option") assert service.custom_option html = Path(app.outdir, "index.html").read_text() assert "service_test_title" in html assert "TEST_001" in html assert "custom_option_True" in html assert "exists_True" in html assert "not_exists" not in html # Debug mode checks # JS got not executed, so we can not test for generated HTML nodes. assert "http://dummy.company.com/my/service" in html assert '"items": ["item_1", "item_2"]' in html
26.9375
112
0.607889
f08e256ec8b252c9572fccebd7af70efc403151b
62
py
Python
Trial.py
ShuhaoZQGG/Python-Very-Beginner-to-Very-Intermediate
cfad98b1c1c175761d3a68861438562f7d410cb0
[ "MIT" ]
null
null
null
Trial.py
ShuhaoZQGG/Python-Very-Beginner-to-Very-Intermediate
cfad98b1c1c175761d3a68861438562f7d410cb0
[ "MIT" ]
null
null
null
Trial.py
ShuhaoZQGG/Python-Very-Beginner-to-Very-Intermediate
cfad98b1c1c175761d3a68861438562f7d410cb0
[ "MIT" ]
null
null
null
myset = {-124,12,51,32,-1000} print(myset.pop()) print(myset)
15.5
29
0.66129
9e5e3072f3b818019b509416bcca42514e33b707
2,851
py
Python
server/languages/python/module/LanguageModuleImp.py
adamrehn/language-toolbox
f86c39784b2a6952719afdd7c3769a6a6b5f2630
[ "MIT" ]
2
2018-12-18T07:53:06.000Z
2020-02-28T11:13:21.000Z
server/languages/python/module/LanguageModuleImp.py
adamrehn/language-toolbox
f86c39784b2a6952719afdd7c3769a6a6b5f2630
[ "MIT" ]
null
null
null
server/languages/python/module/LanguageModuleImp.py
adamrehn/language-toolbox
f86c39784b2a6952719afdd7c3769a6a6b5f2630
[ "MIT" ]
null
null
null
from . import common_pb2 as common_messages from . import language_pb2 as language_messages from . import language_pb2_grpc as service from os import path from os.path import abspath, dirname, join from .AstTransformer import AstTransformer from .Utility import Utility import ast, json, sys # Retrieve the enum values for the list of processing capabilities CAPABILITIES = dict(common_messages.Capabilities.items()) class LanguageModuleImp(service.LanguageModuleServicer): def __init__(self): # Read our I/O matching and unit test template code scriptDir = dirname(abspath(__file__)) dataDir = join(scriptDir, 'data') self.ioHarness = Utility.readFile(join(dataDir, 'IOMatchingHarness.py')) self.testHarness = Utility.readFile(join(dataDir, 'UnitTestHarness.py')) self.testCaseTemplate = Utility.readFile(join(dataDir, 'TestCaseTemplate.py')) def GetCapabilities(self, request, context): return common_messages.LanguageCapabilities( language = 'python', capabilities = CAPABILITIES['GENERATE_ASTS'] | CAPABILITIES['IO_MATCHING'] | CAPABILITIES['UNIT_TESTING'] ) def GetSandboxDetails(self, request, context): return language_messages.SandboxDetails( image = 'adamrehn/language-toolbox-sandbox-python', command = ['bash', '-c', 'cat > /tmp/temp.py && python3 /tmp/temp.py'] ) def GenerateAst(self, request, context): parsed = ast.parse(request.source) transform = AstTransformer() transformed = transform.visit(parsed) return common_messages.GenerateAstResponse(ast=json.dumps(transformed)) def CodegenIOCapture(self, request, context): # Inject the source code and stdin data into our template code combinedCode = self.ioHarness.replace('$$__USER_CODE__$$', request.source + '\n\n' + request.invocation) combinedCode = combinedCode.replace('$$__STDIN_DATA__$$', request.stdin.replace("'''", "\\'\\'\\'")) return language_messages.CodegenIOCaptureResponse(error="", data=combinedCode.encode('utf-8')) def CodegenUnitTests(self, request, context): # Iterate over each unit test and generate the source code for its test cases testCaseCode = '' for test in request.tests: testCaseCode += '_______unitTestResultVectors.append({"result": []})\n' testCaseCode += test.setup + '\n' for case in test.cases: testCaseCode += case.setup + '\n' testCaseCode += self.testCaseTemplate.replace('$$__INVOCATION__$$', '{}({})'.format(test.invocation, ','.join(case.inputs))) testCaseCode += case.teardown + '\n' testCaseCode += test.teardown + '\n' # Inject the generated code into our template code combinedCode = self.testHarness.replace('$$__USER_CODE__$$', request.source) combinedCode = combinedCode.replace('$$__TEST_CASE_CODE__$$', testCaseCode) return language_messages.CodegenUnitTestsResponse(error="", data=combinedCode.encode('utf-8'))
42.552239
128
0.744651
51cc019b08ec4ee19a0bdf1b81d018c81dfe4717
2,393
py
Python
batch_pipeline/infra/sagemaker_pipeline_stack.py
brightsparc/amazon-sagemaker-drift-detection
020d34d17ba2c987d2831260b1690dbf96432e6b
[ "MIT-0" ]
1
2021-08-31T23:14:35.000Z
2021-08-31T23:14:35.000Z
batch_pipeline/infra/sagemaker_pipeline_stack.py
brightsparc/amazon-sagemaker-drift-detection
020d34d17ba2c987d2831260b1690dbf96432e6b
[ "MIT-0" ]
null
null
null
batch_pipeline/infra/sagemaker_pipeline_stack.py
brightsparc/amazon-sagemaker-drift-detection
020d34d17ba2c987d2831260b1690dbf96432e6b
[ "MIT-0" ]
1
2021-08-31T04:16:54.000Z
2021-08-31T04:16:54.000Z
from aws_cdk import ( core, aws_cloudwatch as cloudwatch, aws_iam as iam, aws_lambda as lambda_, aws_sagemaker as sagemaker, ) import logging from batch_config import DriftConfig logger = logging.getLogger(__name__) # Create a SageMaker Pipeline resource with a given pipeline_definition # see: https://docs.aws.amazon.com/cdk/api/latest/python/aws_cdk.aws_sagemaker/CfnPipeline.html class SageMakerPipelineStack(core.Stack): def __init__( self, scope: core.Construct, construct_id: str, pipeline_name: str, pipeline_description: str, pipeline_definition_bucket: str, pipeline_definition_key: str, sagemaker_role_arn: str, tags: list, drift_config: DriftConfig, **kwargs, ) -> None: super().__init__(scope, construct_id, **kwargs) sagemaker.CfnPipeline( self, "Pipeline", pipeline_name=pipeline_name, pipeline_description=pipeline_description, pipeline_definition={ "PipelineDefinitionS3Location": { "Bucket": pipeline_definition_bucket, "Key": pipeline_definition_key, } }, role_arn=sagemaker_role_arn, tags=tags, ) if drift_config is not None: # Create a CW alarm (which will be picked up by build pipeline) alarm_name = f"sagemaker-{pipeline_name}-threshold" cloudwatch.CfnAlarm( self, "DriftAlarm", alarm_name=alarm_name, alarm_description=f"Batch Drift Threshold", metric_name=drift_config.metric_name, threshold=drift_config.metric_threshold, namespace="aws/sagemaker/ModelBuildingPipeline/data-metrics", comparison_operator=drift_config.comparison_operator, dimensions=[ cloudwatch.CfnAlarm.DimensionProperty( name="PipelineName", value=pipeline_name ), ], evaluation_periods=drift_config.evaluation_periods, period=drift_config.period, datapoints_to_alarm=drift_config.datapoints_to_alarm, statistic=drift_config.statistic, )
33.704225
95
0.600084
68d4da14187bb08c949fb547323380162eb2141e
12,181
py
Python
src/eval/lfw.py
longchr123/insightface-analysis
c6c0313e880497c037b55182297954e7c0a8c101
[ "MIT" ]
null
null
null
src/eval/lfw.py
longchr123/insightface-analysis
c6c0313e880497c037b55182297954e7c0a8c101
[ "MIT" ]
null
null
null
src/eval/lfw.py
longchr123/insightface-analysis
c6c0313e880497c037b55182297954e7c0a8c101
[ "MIT" ]
null
null
null
"""Helper for evaluation on the Labeled Faces in the Wild dataset """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from scipy import misc from sklearn.model_selection import KFold from scipy import interpolate import sklearn from sklearn.decomposition import PCA import mxnet as mx from mxnet import ndarray as nd def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, pca=0): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) # print('pca', pca) if pca == 0: diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # print('train_set', train_set) # print('test_set', test_set) if pca > 0: print('doing pca on', fold_idx) embed1_train = embeddings1[train_set] embed2_train = embeddings2[train_set] _embed_train = np.concatenate((embed1_train, embed2_train), axis=0) # print(_embed_train.shape) pca_model = PCA(n_components=pca) pca_model.fit(_embed_train) embed1 = pca_model.transform(embeddings1) embed2 = pca_model.transform(embeddings2) embed1 = sklearn.preprocessing.normalize(embed1) embed2 = sklearn.preprocessing.normalize(embed2) # print(embed1.shape, embed2.shape) diff = np.subtract(embed1, embed2) dist = np.sum(np.square(diff), 1) # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy(threshold, dist[test_set], actual_issame[ test_set]) _, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) return tpr, fpr, accuracy def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) acc = float(tp + tn) / dist.size return tpr, fpr, acc def calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): _, far_train[threshold_idx] = calculate_val_far(threshold, dist[train_set], actual_issame[train_set]) if np.max(far_train) >= far_target: f = interpolate.interp1d(far_train, thresholds, kind='slinear') threshold = f(far_target) else: threshold = 0.0 val[fold_idx], far[fold_idx] = calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) return val_mean, val_std, far_mean def calculate_val_far(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) n_same = np.sum(actual_issame) n_diff = np.sum(np.logical_not(actual_issame)) val = float(true_accept) / float(n_same) far = float(false_accept) / float(n_diff) return val, far def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0): # Calculate evaluation metrics thresholds = np.arange(0, 4, 0.01) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy = calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds, pca=pca) thresholds = np.arange(0, 4, 0.001) val, val_std, far = calculate_val(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), 1e-3, nrof_folds=nrof_folds) return tpr, fpr, accuracy, val, val_std, far def get_paths(lfw_dir, pairs, file_ext): """pairs中,Andrea_Bowen 43 13 表示同一个人,Alley_Mills 31 Bobbie_Eakes 34 表示不同人""" nrof_skipped_pairs = 0 path_list = [] issame_list = [] for pair in pairs: if len(pair) == 3: path0 = os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1]) + '.' + file_ext) path1 = os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[2]) + '.' + file_ext) issame = True elif len(pair) == 4: path0 = os.path.join(lfw_dir, pair[0], pair[0] + '_' + '%04d' % int(pair[1]) + '.' + file_ext) path1 = os.path.join(lfw_dir, pair[2], pair[2] + '_' + '%04d' % int(pair[3]) + '.' + file_ext) issame = False if os.path.exists(path0) and os.path.exists(path1): # Only add the pair if both paths exist # 向后加数据,path_list是一维数据 path_list += (path0, path1) issame_list.append(issame) else: print('not exists', path0, path1) nrof_skipped_pairs += 1 if nrof_skipped_pairs > 0: print('Skipped %d image pairs' % nrof_skipped_pairs) return path_list, issame_list def read_pairs(pairs_filename): pairs = [] with open(pairs_filename, 'r') as f: for line in f.readlines()[1:]: pair = line.strip().split() pairs.append(pair) return np.array(pairs) def load_dataset(lfw_dir, image_size): lfw_pairs = read_pairs(os.path.join(lfw_dir, 'pairs.txt')) lfw_paths, issame_list = get_paths(lfw_dir, lfw_pairs, 'jpg') lfw_data_list = [] for flip in [0, 1]: lfw_data = nd.empty((len(lfw_paths), 3, image_size[0], image_size[1])) lfw_data_list.append(lfw_data) i = 0 for path in lfw_paths: with open(path, 'rb') as fin: _bin = fin.read() img = mx.image.imdecode(_bin) img = nd.transpose(img, axes=(2, 0, 1)) for flip in [0, 1]: if flip == 1: img = mx.ndarray.flip(data=img, axis=2) lfw_data_list[flip][i][:] = img i += 1 if i % 1000 == 0: print('loading lfw', i) print(lfw_data_list[0].shape) print(lfw_data_list[1].shape) return (lfw_data_list, issame_list) def test(lfw_set, mx_model, batch_size): print('testing lfw..') lfw_data_list = lfw_set[0] issame_list = lfw_set[1] model = mx_model embeddings_list = [] for i in range(len(lfw_data_list)): lfw_data = lfw_data_list[i] embeddings = None ba = 0 while ba < lfw_data.shape[0]: bb = min(ba + batch_size, lfw_data.shape[0]) _data = nd.slice_axis(lfw_data, axis=0, begin=ba, end=bb) _label = nd.ones((bb - ba,)) # print(_data.shape, _label.shape) db = mx.io.DataBatch(data=(_data,), label=(_label,)) model.forward(db, is_train=False) net_out = model.get_outputs() # _arg, _aux = model.get_params() # __arg = {} # for k,v in _arg.iteritems(): # __arg[k] = v.as_in_context(_ctx) # _arg = __arg # _arg["data"] = _data.as_in_context(_ctx) # _arg["softmax_label"] = _label.as_in_context(_ctx) # for k,v in _arg.iteritems(): # print(k,v.context) # exe = sym.bind(_ctx, _arg ,args_grad=None, grad_req="null", aux_states=_aux) # exe.forward(is_train=False) # net_out = exe.outputs _embeddings = net_out[0].asnumpy() # print(_embeddings.shape) if embeddings is None: embeddings = np.zeros((lfw_data.shape[0], _embeddings.shape[1])) embeddings[ba:bb, :] = _embeddings ba = bb embeddings_list.append(embeddings) _xnorm = 0.0 _xnorm_cnt = 0 for embed in embeddings_list: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) # print(_em.shape, _norm) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt embeddings = embeddings_list[0].copy() embeddings = sklearn.preprocessing.normalize(embeddings) _, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=10) acc1, std1 = np.mean(accuracy), np.std(accuracy) # print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far)) # embeddings = np.concatenate(embeddings_list, axis=1) embeddings = embeddings_list[0] + embeddings_list[1] embeddings = sklearn.preprocessing.normalize(embeddings) print(embeddings.shape) _, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=10) acc2, std2 = np.mean(accuracy), np.std(accuracy) return acc1, std1, acc2, std2, _xnorm, embeddings_list
42.295139
117
0.628684
02d683bb77fcf3d544db0af5d4d5b22ba318e5ac
9,098
py
Python
src/gt4sd/algorithms/conditional_generation/paccmann_rl/core.py
hhhsu0825/gt4sd-core
4a1fe9da58d2f33bba2fba64604427e037ad7a46
[ "MIT" ]
1
2022-02-22T02:06:10.000Z
2022-02-22T02:06:10.000Z
src/gt4sd/algorithms/conditional_generation/paccmann_rl/core.py
hhhsu0825/gt4sd-core
4a1fe9da58d2f33bba2fba64604427e037ad7a46
[ "MIT" ]
12
2022-02-21T12:59:24.000Z
2022-02-22T12:25:49.000Z
src/gt4sd/algorithms/conditional_generation/paccmann_rl/core.py
hhhsu0825/gt4sd-core
4a1fe9da58d2f33bba2fba64604427e037ad7a46
[ "MIT" ]
null
null
null
"""PaccMann\\ :superscript:`RL` Algorithm. PaccMann\\ :superscript:`RL` generation is conditioned via reinforcement learning. """ import logging from dataclasses import field from typing import Any, Callable, ClassVar, Dict, Iterable, Optional, TypeVar from typing_extensions import Protocol, runtime_checkable from ....domains.materials import Omics, Protein, SmallMolecule from ....exceptions import InvalidItem from ...core import AlgorithmConfiguration, GeneratorAlgorithm from ...registry import ApplicationsRegistry from .implementation import ( ConditionalGenerator, ProteinSequenceConditionalGenerator, TranscriptomicConditionalGenerator, ) logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) T = TypeVar("T", Protein, Omics) S = TypeVar("S", bound=SmallMolecule) Targeted = Callable[[T], Iterable[Any]] class PaccMannRL(GeneratorAlgorithm[S, T]): """PaccMann\\ :superscript:`RL` Algorithm.""" def __init__( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ): """Instantiate PaccMannRL ready to generate items. Args: configuration: domain and application specification defining parameters, types and validations. target: a target for which to generate items. Example: An example for generating small molecules (SMILES) with high affinity for a target protein:: affinity_config = PaccMannRLProteinBasedGenerator() target = "MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTT" paccmann_affinity = PaccMannRL(configuration=affinity_config, target=target) items = list(paccmann_affinity.sample(10)) print(items) """ configuration = self.validate_configuration(configuration) # TODO there might also be a validation/check on the target input super().__init__( configuration=configuration, # type:ignore target=target, # type:ignore ) def get_generator( self, configuration: AlgorithmConfiguration[S, T], target: Optional[T], ) -> Targeted[T]: """Get the function to sample batches via PaccMannRL's ConditionalGenerator. Args: configuration: helps to set up specific application of PaccMannRL. target: context or condition for the generation. Returns: callable with target generating a batch of items. """ logger.info("ensure artifacts for the application are present.") self.local_artifacts = configuration.ensure_artifacts() implementation: ConditionalGenerator = configuration.get_conditional_generator( # type: ignore self.local_artifacts ) return implementation.generate_batch def validate_configuration( self, configuration: AlgorithmConfiguration[S, T] ) -> AlgorithmConfiguration[S, T]: @runtime_checkable class AnyPaccMannRLConfiguration(Protocol): """Protocol for PaccMannRL configurations.""" def get_conditional_generator( self, resources_path: str ) -> ConditionalGenerator: ... def validate_item(self, item: Any) -> S: ... # TODO raise InvalidAlgorithmConfiguration assert isinstance(configuration, AnyPaccMannRLConfiguration) assert isinstance(configuration, AlgorithmConfiguration) return configuration @ApplicationsRegistry.register_algorithm_application(PaccMannRL) class PaccMannRLProteinBasedGenerator(AlgorithmConfiguration[SmallMolecule, Protein]): """ Configuration to generate compounds with high affinity to a target protein. Implementation from the paper: https://doi.org/10.1088/2632-2153/abe808. """ algorithm_type: ClassVar[str] = "conditional_generation" domain: ClassVar[str] = "materials" algorithm_version: str = "v0" batch_size: int = field( default=32, metadata=dict(description="Batch size used for the generative model sampling."), ) temperature: float = field( default=1.4, metadata=dict( description="Temperature parameter for the softmax sampling in decoding." ), ) generated_length: int = field( default=100, metadata=dict( description="Maximum length in tokens of the generated molcules (relates to the SMILES length)." ), ) def get_target_description(self) -> Dict[str, str]: """Get description of the target for generation. Returns: target description. """ return { "title": "Target protein sequence", "description": "AA sequence of the protein target to generate non-toxic ligands against.", "type": "string", } def get_conditional_generator( self, resources_path: str ) -> ProteinSequenceConditionalGenerator: """Instantiate the actual generator implementation. Args: resources_path: local path to model files. Returns: instance with :meth:`generate_batch<gt4sd.algorithms.conditional_generation.paccmann_rl.implementation.ConditionalGenerator.generate_batch>` method for targeted generation. """ return ProteinSequenceConditionalGenerator( resources_path=resources_path, temperature=self.temperature, generated_length=self.generated_length, samples_per_protein=self.batch_size, ) def validate_item(self, item: str) -> SmallMolecule: """Check that item is a valid SMILES. Args: item: a generated item that is possibly not valid. Raises: InvalidItem: in case the item can not be validated. Returns: the validated SMILES. """ ( molecules, _, ) = ProteinSequenceConditionalGenerator.validate_molecules([item]) if molecules[0] is None: raise InvalidItem( title="InvalidSMILES", detail=f'rdkit.Chem.MolFromSmiles returned None for "{item}"', ) return SmallMolecule(item) @ApplicationsRegistry.register_algorithm_application(PaccMannRL) class PaccMannRLOmicBasedGenerator(AlgorithmConfiguration[SmallMolecule, Omics]): """ Configuration to generate compounds with low IC50 for a target omics profile. Implementation from the paper: https://doi.org/10.1016/j.isci.2021.102269. """ algorithm_type: ClassVar[str] = "conditional_generation" domain: ClassVar[str] = "materials" algorithm_version: str = "v0" batch_size: int = field( default=32, metadata=dict(description="Batch size used for the generative model sampling."), ) temperature: float = field( default=1.4, metadata=dict( description="Temperature parameter for the softmax sampling in decoding." ), ) generated_length: int = field( default=100, metadata=dict( description="Maximum length in tokens of the generated molcules (relates to the SMILES length)." ), ) def get_target_description(self) -> Dict[str, str]: """Get description of the target for generation. Returns: target description. """ return { "title": "Gene expression profile", "description": "A gene expression profile to generate effective molecules against.", "type": "list", } def get_conditional_generator( self, resources_path: str ) -> TranscriptomicConditionalGenerator: """Instantiate the actual generator implementation. Args: resources_path: local path to model files. Returns: instance with :meth:`generate_batch<gt4sd.algorithms.conditional_generation.paccmann_rl.implementation.ConditionalGenerator.generate_batch>` method for targeted generation. """ return TranscriptomicConditionalGenerator( resources_path=resources_path, temperature=self.temperature, generated_length=self.generated_length, samples_per_profile=self.batch_size, ) def validate_item(self, item: str) -> SmallMolecule: """Check that item is a valid SMILES. Args: item: a generated item that is possibly not valid. Raises: InvalidItem: in case the item can not be validated. Returns: the validated SMILES. """ ( molecules, _, ) = TranscriptomicConditionalGenerator.validate_molecules([item]) if molecules[0] is None: raise InvalidItem( title="InvalidSMILES", detail=f'rdkit.Chem.MolFromSmiles returned None for "{item}"', ) return SmallMolecule(item)
33.696296
184
0.647725
370e849fb95c18bce260bb8c2811cb9a62936083
1,659
py
Python
spyware/screenloggerv2.py
binarioGH/minihacktools
664e72ccc54089baa3b4d2ddc28bdcddbfdd1833
[ "MIT" ]
null
null
null
spyware/screenloggerv2.py
binarioGH/minihacktools
664e72ccc54089baa3b4d2ddc28bdcddbfdd1833
[ "MIT" ]
null
null
null
spyware/screenloggerv2.py
binarioGH/minihacktools
664e72ccc54089baa3b4d2ddc28bdcddbfdd1833
[ "MIT" ]
null
null
null
#-*-coding: utf-8-*- from socket import * from os import popen, getcwd, chdir from getpass import getuser from pyautogui import screenshot from threading import * from datetime import date from time import sleep class Bd(): def __init__(self, ip = "127.0.0.1", port = 5000): sock = socket(AF_INET, SOCK_STREAM) sock.bind(("127.0.0.1", 5000)) sock.listen(1) self.conn, addr = sock.accept() t = int() d = "C:\\Users\\{}\\Pictures\\".format(getuser()) self.check = False while True: cmd = self.conn.recv(1024).decode() if cmd[:2] == "cd": try: chdir(cmd[3:]) except: pass finally: self.conn.send("{}".format(getcwd()).encode()) elif cmd == "sass": self.check = True f = Thread(target=self.photo,args=(t, d,)) f.daemon = True f.start() elif cmd[:6] == "setdir": try: d = cmd[7:] except Exception as e: self.conn.send("{}".format(e).encode()) else: self.conn.send("Variable declarada correctamente.".encode()) elif cmd[:7] =="settime": try: t = int(cmd[8:]) except Exception as e: self.conn.send("{}".format(e).encode()) else: self.conn.send("Variable declarada correctamente".encode()) elif cmd == "stopss": self.check = False else: out = popen(cmd).read() self.conn.send(out.encode()) def photo(self, time, dr): chdir(dr) count = 1 while True: if self.check == False: self.conn.send("Se han detenido las capturas de pantalla.".encode()) break ss = screenshot() ss.save("{}-{}.png".format(date.today(),count)) count += 1 sleep(time) if __name__ == '__main__': main = Bd()
21.828947
72
0.601567
c3a95581e9831f5cb6554c1ce51f783811b1f71a
364
py
Python
ARC/arc101-arc150/arc109/b/main.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
2
2020-06-12T09:54:23.000Z
2021-05-04T01:34:07.000Z
ARC/arc101-arc150/arc109/b/main.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
961
2020-06-23T07:26:22.000Z
2022-03-31T21:34:52.000Z
ARC/arc101-arc150/arc109/b/main.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- def main(): import sys input = sys.stdin.readline n = int(input()) low = 1 high = n + 1 while (high - low) > 1: mid = (high + low) // 2 if mid * (mid + 1) <= 2 * (n + 1): low = mid else: high = mid print(n - low + 1) if __name__ == "__main__": main()
14
42
0.414835
58af8afeb8e652ae0b0280d30b9f2e511c87650b
980
py
Python
src/cost_volume.py
hmarechal/gcnet_stereo
80f681ec6a52638c38f039d6117ee9475e55d7db
[ "MIT" ]
5
2018-05-18T22:13:36.000Z
2019-05-07T10:04:34.000Z
src/cost_volume.py
hmarechal/gcnet_stereo
80f681ec6a52638c38f039d6117ee9475e55d7db
[ "MIT" ]
null
null
null
src/cost_volume.py
hmarechal/gcnet_stereo
80f681ec6a52638c38f039d6117ee9475e55d7db
[ "MIT" ]
5
2018-04-02T09:00:34.000Z
2018-11-23T14:34:45.000Z
from keras import backend as K # from keras.layers.core import Lambda # from keras.layers.core import Reshape def _concat_features(lf, states): b,f,h,w = lf.get_shape().as_list() rf = states[0] rfs = rf[:, :, :, :-1] disp_rfs = K.spatial_2d_padding(rfs, padding=((0, 0), (1, 0)), data_format='channels_first') concat = K.concatenate([lf, rf], axis=2) output = K.reshape(concat, (-1, 2*f, h, w)) return output, [disp_rfs] def cost_volume(inputs, dmax): left_feature = inputs[0] right_feature = inputs[1] left_feature = K.expand_dims(left_feature, axis=1) left_feature = K.repeat_elements(left_feature, dmax, axis=1) l,o,n = K.rnn(_concat_features, inputs=left_feature, initial_states=[right_feature], unroll=True) return K.permute_dimensions(o, (0, 2, 1, 3, 4)) # class CostVolumeBuilder(): # @classmethod # def get_layer(cls, D): # return Lambda(cost_volume, arguments = {'d':D/2})
36.296296
102
0.64898
584ca853b2bfa3bd9fae0c8d96e74d7354882492
2,958
py
Python
my_classes/ScopesClosuresAndDecorators/.history/Decoraators2_20210716232429.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
my_classes/ScopesClosuresAndDecorators/.history/Decoraators2_20210716232429.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
my_classes/ScopesClosuresAndDecorators/.history/Decoraators2_20210716232429.py
minefarmer/deep-Dive-1
b0675b853180c5b5781888266ea63a3793b8d855
[ "Unlicense" ]
null
null
null
""" Decorator Parametors In the previous ideos we saw some built-in decorators that can handle some arguments: @wraps(fn) @lru_cache(maxsize=256) <\ def inner(): def factorial(n): \ ... ... \>function call This should look quite differient grom the decorators we have been creating and using: @timed <----------- no function call def Fibonacci(n): ... """ from symbol import parameters from time import perf_counter from unittest import result def timed(fn): from time import perf_counter def inner(*arhs, **kwarrgs): total_elapse = 0 for i in range(10): # hardcoded value 10 # need to pass as a parameter start = perf_counter() result = fn(*args, **kwargs) total_elapsed += (perf_counter() - start) avg_elapsed = total_elapsed / 10 print(avg_elapsed) return result return inner """ @timed def my_func(): or my_func = timed(my_func) ... On e Approach to passing (line 24) as a parameter / < extra parameter def timed(fn, reps): from time import perf_counter def inner(*args, **kwargs): total_elapsed = 0 / free variable for i in range(reps): < start = perf_counter() result = fn(*ars, **kwargs) total_elapsed += (perf_counter() - start) avg_elapsed = total_elapsed / reps print(avg_elapsed) return result return inner my_func = timed(my_func, 10) # Rethinking the solution @timed def my_func(): my_func = timed solution(my_func) ... So, timed is a function that returns that inner closure that contains our original function In order for this to work as intended: @timed(10) def my_func(): ... dec = timed(10) # will need to return our original timed decorator when called dec = timed(10) # timed(10) returns a decorator @dec def my_func(): ... # Nested closures to the rescue! def timed(fn): # Timed is basically a decorator == it only takes a single parameter from time import perf_counter def inner(*args, **kwargs): total_elapsed = 0 / free variable bound to reps in outer for i in range(reps): < start = perf_counter() result = fn(*ars, **kwargs) total_elapsed += (perf_counter() - start) avg_elapsed = total_elapsed / reps print(avg_elapsed) return result return inner return timed # cslling outer(n) returns our originsl decorator withrepd det to n (free variable) my_func = outer(10)(my_func) or @outer(10) def my_func(): ... # Decorator Factories The outer function is not itseld a decorator """
25.282051
103
0.576065
880b13e328ec7a153cb10072b8dd9fe017c14a72
8,584
py
Python
python/tests/test_nessie_cli.py
naren-dremio/nessie
fad41d58ba8d32a77b60cf4eed6fc62816a8ee28
[ "Apache-2.0" ]
null
null
null
python/tests/test_nessie_cli.py
naren-dremio/nessie
fad41d58ba8d32a77b60cf4eed6fc62816a8ee28
[ "Apache-2.0" ]
null
null
null
python/tests/test_nessie_cli.py
naren-dremio/nessie
fad41d58ba8d32a77b60cf4eed6fc62816a8ee28
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `pynessie` package.""" import itertools import os from pathlib import Path from typing import List from typing import Optional import confuse import pytest import simplejson from click.testing import CliRunner from click.testing import Result from pynessie import __version__ from pynessie import cli from pynessie.model import Branch from pynessie.model import ContentsSchema from pynessie.model import EntrySchema from pynessie.model import IcebergTable from pynessie.model import ReferenceSchema def _run(runner: CliRunner, args: List[str], input: Optional[str] = None, ret_val: int = 0) -> Result: result = runner.invoke(cli.cli, args, input=input) assert result.exit_code == ret_val return result @pytest.mark.vcr def test_command_line_interface() -> None: """Test the CLI.""" runner = CliRunner() result = _run(runner, list()) assert "Usage: cli" in result.output help_result = _run(runner, ["--help"]) assert "Usage: cli" in help_result.output help_result = _run(runner, ["--version"]) assert __version__ in help_result.output help_result = _run(runner, ["--json", "branch", "-l"]) references = ReferenceSchema().loads(help_result.output, many=True) assert len(references) == 1 assert references[0].name == "main" assert isinstance(references[0], Branch) assert references[0].hash_ == "2e1cfa82b035c26cbbbdae632cea070514eb8b773f616aaeaf668e2f0be8f10d" def test_config_options() -> None: """Ensure config cli option is consistent.""" runner = CliRunner() result = _run(runner, ["config"]) assert "Usage: cli" in result.output vars = ["--add x", "--get x", "--list", "--unset x"] for i in itertools.permutations(vars, 2): result = _run(runner, ["config"] + [*i[0].split(" "), *i[1].split(" ")], ret_val=2) assert "Error: Illegal usage: " in result.output _run(runner, ["config", "x", "--add", "x"]) def test_set_unset() -> None: """Test config set/unset/list.""" runner = CliRunner() _run(runner, ["config", "--add", "test.data", "123", "--type", "int"]) result = _run(runner, ["config", "test.data", "--type", "int"]) assert result.output == "123\n" _run(runner, ["config", "--unset", "test.data"]) result = _run(runner, ["config", "--list"]) assert "123" not in result.output @pytest.mark.vcr def test_remote() -> None: """Test setting and viewing remote.""" runner = CliRunner() _run(runner, ["remote", "add", "http://test.url"]) _run(runner, ["remote", "add", "http://localhost:19120/api/v1"]) result = _run(runner, ["--json", "remote", "show"]) assert "main" in result.output _run(runner, ["remote", "set-head", "dev"]) result = _run(runner, ["config", "default_branch"]) assert result.output == "dev\n" _run(runner, ["remote", "set-head", "dev", "-d"]) result = _run(runner, ["config", "default_branch"], ret_val=1) assert result.output == "" assert isinstance(result.exception, confuse.exceptions.ConfigTypeError) _run(runner, ["remote", "set-head", "main"]) @pytest.mark.vcr def test_log() -> None: """Test log and log filtering.""" runner = CliRunner() result = _run(runner, ["--json", "log"]) logs = simplejson.loads(result.output) assert len(logs) == 0 _run( runner, [ "contents", "--set", "foo.bar", "--ref", "main", "-m", "test_message", "-c", "2e1cfa82b035c26cbbbdae632cea070514eb8b773f616aaeaf668e2f0be8f10d", ], input=ContentsSchema().dumps(IcebergTable("/a/b/c")), ) result = _run(runner, ["--json", "contents", "foo.bar"]) tables = ContentsSchema().loads(result.output, many=True) assert len(tables) == 1 assert tables[0] == IcebergTable("/a/b/c") result = _run(runner, ["--json", "log"]) logs = simplejson.loads(result.output) assert len(logs) == 1 result = _run(runner, ["--json", "log", logs[0]["hash"]]) logs = simplejson.loads(result.output) assert len(logs) == 1 result = _run(runner, ["--json", "contents", "--list"]) entries = EntrySchema().loads(result.output, many=True) assert len(entries) == 1 _run(runner, ["--json", "contents", "--delete", "foo.bar", "--ref", "main", "-m", "delete_message", "-c", logs[0]["hash"]]) result = _run(runner, ["--json", "log"]) logs = simplejson.loads(result.output) assert len(logs) == 2 result = _run(runner, ["--json", "log", "{}..{}".format(logs[0]["hash"], logs[1]["hash"])]) logs = simplejson.loads(result.output) assert len(logs) == 1 @pytest.mark.vcr def test_ref() -> None: """Test create and assign refs.""" runner = CliRunner() result = _run(runner, ["--json", "branch"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 1 _run(runner, ["branch", "dev"]) result = _run(runner, ["--json", "branch"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 2 _run(runner, ["branch", "etl", "main"]) result = _run(runner, ["--json", "branch"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 3 _run(runner, ["branch", "-d", "etl"]) _run(runner, ["branch", "-d", "dev"]) result = _run(runner, ["--json", "branch"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 1 @pytest.mark.vcr def test_tag() -> None: """Test create and assign refs.""" runner = CliRunner() result = _run(runner, ["--json", "tag"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 0 _run(runner, ["tag", "dev", "main"]) result = _run(runner, ["--json", "tag"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 1 _run(runner, ["tag", "etl", "main"]) result = _run(runner, ["--json", "tag"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 2 _run(runner, ["tag", "-d", "etl"]) _run(runner, ["tag", "-d", "dev"]) result = _run(runner, ["--json", "tag"]) references = ReferenceSchema().loads(result.output, many=True) assert len(references) == 0 _run(runner, ["tag", "v1.0"], ret_val=1) @pytest.mark.vcr def test_assign() -> None: """Test assign operation.""" runner = CliRunner() _run(runner, ["branch", "dev"]) _run( runner, [ "contents", "--set", "foo.bar", "--ref", "dev", "-m", "test_message", "-c", "2e1cfa82b035c26cbbbdae632cea070514eb8b773f616aaeaf668e2f0be8f10d", ], input=ContentsSchema().dumps(IcebergTable("/a/b/c")), ) _run(runner, ["branch", "main", "dev", "--force"]) result = _run(runner, ["--json", "branch"]) branches = ReferenceSchema().loads(result.output, many=True) refs = {i.name: i.hash_ for i in branches} assert refs["main"] == refs["dev"] _run(runner, ["tag", "v1.0", "main"]) result = _run(runner, ["--json", "tag"]) tags = {i.name: i.hash_ for i in ReferenceSchema().loads(result.output, many=True)} assert tags["v1.0"] == refs["main"] _run(runner, ["tag", "v1.0", "dev", "--force"]) result = _run(runner, ["--json", "tag"]) tags = {i.name: i.hash_ for i in ReferenceSchema().loads(result.output, many=True)} assert tags["v1.0"] == refs["dev"] _run(runner, ["branch", "dev", "--delete"]) _run(runner, ["tag", "v1.0", "--delete"]) result = _run(runner, ["--json", "log"]) logs = simplejson.loads(result.output) _run(runner, ["--json", "contents", "--delete", "foo.bar", "--ref", "main", "-m", "delete_message", "-c", logs[0]["hash"]]) @pytest.mark.doc def test_all_help_options() -> None: """Write out all help options to std out.""" runner = CliRunner() args = ["", "config", "branch", "tag", "remote", "log", "merge", "cherry-pick", "contents"] for i in args: result = _run(runner, [x for x in [i] if x] + ["--help"]) cwd = os.getcwd() with open(Path(Path(cwd), "docs", "{}.rst".format(i if i else "main")), "w") as f: f.write(".. code-block:: bash\n\n\t") for line in result.output.split("\n"): f.write(line + "\n\t") f.write("\n\n")
36.683761
127
0.597274
178389d5858a94260cabec9a1b2e7e8ebbba8488
5,574
py
Python
qa/rpc-tests/rpcbind_test.py
mirzaei-ce/linux-shiabit
1c0e7371d1bb41e3efe20add0819d4e5050a3a0f
[ "MIT" ]
null
null
null
qa/rpc-tests/rpcbind_test.py
mirzaei-ce/linux-shiabit
1c0e7371d1bb41e3efe20add0819d4e5050a3a0f
[ "MIT" ]
null
null
null
qa/rpc-tests/rpcbind_test.py
mirzaei-ce/linux-shiabit
1c0e7371d1bb41e3efe20add0819d4e5050a3a0f
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Test for -rpcbind, as well as -rpcallowip and -rpcconnect # TODO extend this test from the test framework (like all other tests) import tempfile import traceback from test_framework.util import * from test_framework.netutil import * def run_bind_test(tmpdir, allow_ips, connect_to, addresses, expected): ''' Start a node with requested rpcallowip and rpcbind parameters, then try to connect, and check if the set of bound addresses matches the expected set. ''' expected = [(addr_to_hex(addr), port) for (addr, port) in expected] base_args = ['-disablewallet', '-nolisten'] if allow_ips: base_args += ['-rpcallowip=' + x for x in allow_ips] binds = ['-rpcbind='+addr for addr in addresses] nodes = start_nodes(1, tmpdir, [base_args + binds], connect_to) try: pid = shiabitd_processes[0].pid assert_equal(set(get_bind_addrs(pid)), set(expected)) finally: stop_nodes(nodes) wait_shiabitds() def run_allowip_test(tmpdir, allow_ips, rpchost, rpcport): ''' Start a node with rpcwallow IP, and request getinfo at a non-localhost IP. ''' base_args = ['-disablewallet', '-nolisten'] + ['-rpcallowip='+x for x in allow_ips] nodes = start_nodes(1, tmpdir, [base_args]) try: # connect to node through non-loopback interface url = "http://rt:rt@%s:%d" % (rpchost, rpcport,) node = get_rpc_proxy(url, 1) node.getinfo() finally: node = None # make sure connection will be garbage collected and closed stop_nodes(nodes) wait_shiabitds() def run_test(tmpdir): assert(sys.platform == 'linux2') # due to OS-specific network stats queries, this test works only on Linux # find the first non-loopback interface for testing non_loopback_ip = None for name,ip in all_interfaces(): if ip != '127.0.0.1': non_loopback_ip = ip break if non_loopback_ip is None: assert(not 'This test requires at least one non-loopback IPv4 interface') print("Using interface %s for testing" % non_loopback_ip) defaultport = rpc_port(0) # check default without rpcallowip (IPv4 and IPv6 localhost) run_bind_test(tmpdir, None, '127.0.0.1', [], [('127.0.0.1', defaultport), ('::1', defaultport)]) # check default with rpcallowip (IPv6 any) run_bind_test(tmpdir, ['127.0.0.1'], '127.0.0.1', [], [('::0', defaultport)]) # check only IPv4 localhost (explicit) run_bind_test(tmpdir, ['127.0.0.1'], '127.0.0.1', ['127.0.0.1'], [('127.0.0.1', defaultport)]) # check only IPv4 localhost (explicit) with alternative port run_bind_test(tmpdir, ['127.0.0.1'], '127.0.0.1:32171', ['127.0.0.1:32171'], [('127.0.0.1', 32171)]) # check only IPv4 localhost (explicit) with multiple alternative ports on same host run_bind_test(tmpdir, ['127.0.0.1'], '127.0.0.1:32171', ['127.0.0.1:32171', '127.0.0.1:32172'], [('127.0.0.1', 32171), ('127.0.0.1', 32172)]) # check only IPv6 localhost (explicit) run_bind_test(tmpdir, ['[::1]'], '[::1]', ['[::1]'], [('::1', defaultport)]) # check both IPv4 and IPv6 localhost (explicit) run_bind_test(tmpdir, ['127.0.0.1'], '127.0.0.1', ['127.0.0.1', '[::1]'], [('127.0.0.1', defaultport), ('::1', defaultport)]) # check only non-loopback interface run_bind_test(tmpdir, [non_loopback_ip], non_loopback_ip, [non_loopback_ip], [(non_loopback_ip, defaultport)]) # Check that with invalid rpcallowip, we are denied run_allowip_test(tmpdir, [non_loopback_ip], non_loopback_ip, defaultport) try: run_allowip_test(tmpdir, ['1.1.1.1'], non_loopback_ip, defaultport) assert(not 'Connection not denied by rpcallowip as expected') except ValueError: pass def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave shiabitds and test.* datadir on exit or error") parser.add_option("--srcdir", dest="srcdir", default="../../src", help="Source directory containing shiabitd/shiabit-cli (default: %default%)") parser.add_option("--tmpdir", dest="tmpdir", default=tempfile.mkdtemp(prefix="test"), help="Root directory for datadirs") (options, args) = parser.parse_args() os.environ['PATH'] = options.srcdir+":"+os.environ['PATH'] check_json_precision() success = False nodes = [] try: print("Initializing test directory "+options.tmpdir) if not os.path.isdir(options.tmpdir): os.makedirs(options.tmpdir) initialize_chain(options.tmpdir) run_test(options.tmpdir) success = True except AssertionError as e: print("Assertion failed: "+e.message) except Exception as e: print("Unexpected exception caught during testing: "+str(e)) traceback.print_tb(sys.exc_info()[2]) if not options.nocleanup: print("Cleaning up") wait_shiabitds() shutil.rmtree(options.tmpdir) if success: print("Tests successful") sys.exit(0) else: print("Failed") sys.exit(1) if __name__ == '__main__': main()
37.662162
110
0.640653
0c38f70383286f3b0e6acc05acd2389d156cdf4d
3,286
py
Python
run_new.py
kdarnell/injection-sim-python
fa018de562989a207590c2628443b878bd0ed753
[ "MIT" ]
null
null
null
run_new.py
kdarnell/injection-sim-python
fa018de562989a207590c2628443b878bd0ed753
[ "MIT" ]
null
null
null
run_new.py
kdarnell/injection-sim-python
fa018de562989a207590c2628443b878bd0ed753
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import flashalgorithm as fc import numpy as np import pickle import pdb comp_list = ('water', 'methane', 'ethane', 'propane') phase_list = ('aqueous', 'vapor', 'lhc', 's1', 's2') P = 70 # bar T = 273.15 + 6 # Kelvin flash_full = fc.FlashController(components=comp_list, phases=phase_list) water_fracs = [0.4, 0.6, 0.92, 0.96] hc_fracs = np.linspace(0, 1, 30) c1_frac, c2_frac, c3_frac = np.meshgrid(hc_fracs, hc_fracs, hc_fracs) z_all = list() for water in water_fracs: for hcs in zip(c1_frac.flatten(), c2_frac.flatten(), c3_frac.flatten()): if sum(hcs) > 0.0: mod_hcs = [x / sum(hcs) * (1.0 - water) for x in hcs] z = np.asarray([water] + mod_hcs) z_all.append(z / np.sum(z)) z_use = np.unique(np.asarray(z_all), axis=0) def emptycomp_hash(z): hashed = sum([2**ii for ii, x in enumerate(z) if x == 0.0]) return hashed np.take(z_use,np.random.permutation(z_use.shape[0]),axis=0,out=z_use) flash_dict = {0: flash_full} all_output = list() out_file = 'c1toc3_flashtable_70bar6C_pt_new1.pkl' K_use = [] for ii, z in enumerate(z_use): comp_hash = emptycomp_hash(z) new_comps, new_z = zip(*[ (comp, z_) for comp, z_ in zip(comp_list, z) if z_ != 0.0 ]) if comp_hash not in flash_dict.keys(): flash_dict.update({comp_hash: fc.FlashController( components=new_comps, phases=phase_list)}) flash_use = flash_dict[comp_hash] new_z = np.asarray(new_z) try: output = flash_use.main_handler( compobjs=flash_use.compobjs, z=new_z, T=T, P=P, initialize=False) if output[-1] > 1e-6: output = flash_use.main_handler( compobjs=flash_use.compobjs, z=new_z, T=T, P=P, initialize=True) if output[-1] > 1e-6: output = flash_use.main_handler( compobjs=flash_use.compobjs, z=new_z, T=T, P=P, initialize=True, incipient_calc=True) except: try: output = flash_use.main_handler( compobjs=flash_use.compobjs, z=new_z, T=T, P=P, initialize=True, incipient_calc=False) if output[-1] > 1e-6: output = flash_use.main_handler( compobjs=flash_use.compobjs, z=new_z, T=T, P=P, initialize=True, incipient_calc=True) except: output = [] all_output.append([ii, z, new_comps, new_z, output]) if np.mod(ii, 20) == 0: #pdb.set_trace() print('{0:3.3f} % complete!'.format(float(ii) * 100 / len(z_use))) with open(out_file, 'wb') as f: pickle.dump(all_output, f) with open(out_file, 'wb') as f: pickle.dump(all_output, f)
30.425926
76
0.506086
33f621e85f116a0cc71456be34809b20fbefd5d3
2,121
py
Python
ssrm_test/test_jupyter_notebooks.py
michaellindon/ssrm
c44f5382471a2c2ddea4bf597072304745af8578
[ "Apache-2.0" ]
null
null
null
ssrm_test/test_jupyter_notebooks.py
michaellindon/ssrm
c44f5382471a2c2ddea4bf597072304745af8578
[ "Apache-2.0" ]
null
null
null
ssrm_test/test_jupyter_notebooks.py
michaellindon/ssrm
c44f5382471a2c2ddea4bf597072304745af8578
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Optimizely Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import shutil from typing import Any, Union import papermill as pm import pytest JUPYTER_NOTEBOOK_DIR: Union[bytes, str] = os.path.join(os.getcwd(), "notebooks") INCLUDED_NOTEBOOK_GLOB = os.path.join(JUPYTER_NOTEBOOK_DIR, "*.ipynb") JUPYTER_NOTEBOOK_TESTING_OUTPUT_DIR: Union[bytes, str] = os.path.join( os.getcwd(), "ssrm_test", "jupyter_notebook_testing_output" ) @pytest.fixture def generate_papermill_output_dir(tmpdir_factory: object) -> object: """Ensures directory exists for output notebooks. This is one of the required parameters for papermill.execute_notebook() """ try: os.makedirs(JUPYTER_NOTEBOOK_TESTING_OUTPUT_DIR, exist_ok=True) yield JUPYTER_NOTEBOOK_TESTING_OUTPUT_DIR # Teardown: delete testing output dir. shutil.rmtree(JUPYTER_NOTEBOOK_TESTING_OUTPUT_DIR) except OSError as err: raise err def test_all_jupyter_notebook(generate_papermill_output_dir, caplog): caplog.set_level("INFO", logger="papermill") for notebook_file_path in glob.glob(INCLUDED_NOTEBOOK_GLOB): this_notebook_file_name: Union[Union[bytes, str], Any] = os.path.basename( notebook_file_path ) output_file_path = os.path.join( generate_papermill_output_dir, this_notebook_file_name ) pm.execute_notebook( notebook_file_path, output_file_path, cwd=JUPYTER_NOTEBOOK_DIR, log_output=True, )
35.35
82
0.715229
1f3bd09f6c85450790f98bdaaade06cc9533d84c
27,174
py
Python
GenerateHeaders.py
Sixshaman/VulkanGenericStructures
1ca19402f33ec55acc5adfc57f42809337877bd9
[ "MIT" ]
null
null
null
GenerateHeaders.py
Sixshaman/VulkanGenericStructures
1ca19402f33ec55acc5adfc57f42809337877bd9
[ "MIT" ]
null
null
null
GenerateHeaders.py
Sixshaman/VulkanGenericStructures
1ca19402f33ec55acc5adfc57f42809337877bd9
[ "MIT" ]
null
null
null
# MIT License # # Copyright (c) 2020 Sixshaman # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import urllib.request import re from bs4 import BeautifulSoup header_license = """\ /******************************************************************************** MIT License Copyright (c) 2020 Sixshaman Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ********************************************************************************/ """ header_start_h = """\ #ifndef VULKAN_GENERIC_STRUCTURES_H #define VULKAN_GENERIC_STRUCTURES_H #include <vulkan/vulkan.h> #include <vector> #include <unordered_map> #include <cassert> namespace vgs { using VulkanStructureType = VkStructureType; template<typename VkStruct> constexpr VulkanStructureType ValidStructureType = VK_STRUCTURE_TYPE_MAX_ENUM; """ header_start_hpp = """\ #ifndef VULKAN_GENERIC_STRUCTURES_HPP #define VULKAN_GENERIC_STRUCTURES_HPP #include <vulkan/vulkan.hpp> #include <vector> #include <unordered_map> #include <cassert> namespace vgs { using VulkanStructureType = vk::StructureType; template<typename VkStruct> constexpr VulkanStructureType ValidStructureType = VkStruct::structureType; """ header_stype_init_h = """\ inline void InitSType(void* ptr, ptrdiff_t offset, VulkanStructureType value) { memcpy((std::byte*)ptr + offset, &value, sizeof(VulkanStructureType)); } """ header_stype_init_hpp = """\ inline void InitSType(void* ptr, ptrdiff_t offset, VulkanStructureType value) { } """ header_end = """\ //========================================================================================================================== //Base interface for StructureBlob(owning type-erased structure) and GenericStructureView(non-owning type-erased structure) class GenericStructBase { protected: GenericStructBase(); GenericStructBase(std::byte* data, size_t dataSize, ptrdiff_t pNextOffset, ptrdiff_t sTypeOffset); ~GenericStructBase(); public: template<typename Struct> Struct& GetDataAs(); std::byte* GetStructureData() const; size_t GetStructureSize() const; ptrdiff_t GetPNextOffset() const; void* GetPNext() const; ptrdiff_t GetSTypeOffset() const; VulkanStructureType GetSType() const; protected: std::byte* StructureData; size_t StructureSize; ptrdiff_t PNextPointerOffset; ptrdiff_t STypeOffset; }; inline GenericStructBase::GenericStructBase(): StructureData(nullptr), StructureSize(0), PNextPointerOffset(0), STypeOffset(0) { } inline GenericStructBase::GenericStructBase(std::byte* data, size_t dataSize, ptrdiff_t pNextOffset, ptrdiff_t sTypeOffset): StructureData(data), StructureSize(dataSize), PNextPointerOffset(pNextOffset), STypeOffset(sTypeOffset) { } inline GenericStructBase::~GenericStructBase() { } template<typename Struct> inline Struct& GenericStructBase::GetDataAs() { assert(GetStructureSize() == sizeof(Struct)); assert(StructureData != nullptr); Struct* structureData = reinterpret_cast<Struct*>(StructureData); return *structureData; } inline std::byte* GenericStructBase::GetStructureData() const { assert(GetStructureSize() != 0); return StructureData; } inline size_t GenericStructBase::GetStructureSize() const { return StructureSize; } inline ptrdiff_t GenericStructBase::GetPNextOffset() const { return PNextPointerOffset; } inline void* GenericStructBase::GetPNext() const { assert(PNextPointerOffset + sizeof(void*) <= GetStructureSize()); void* pNext = nullptr; memcpy(&pNext, StructureData + PNextPointerOffset, sizeof(void*)); return pNext; } inline ptrdiff_t GenericStructBase::GetSTypeOffset() const { return STypeOffset; } inline VulkanStructureType GenericStructBase::GetSType() const { assert(STypeOffset + sizeof(VulkanStructureType) <= GetStructureSize()); VulkanStructureType sType; memcpy(&sType, StructureData + STypeOffset, sizeof(VulkanStructureType)); return sType; } //========================================================================================================================== //Non-owning version of a generic structure class GenericStruct: public GenericStructBase { public: template<typename Struct> GenericStruct(Struct& structure); //The copy constructor should be template-specialized, because <const GenericStructureView&> can be passed as a <Struct&> template<> GenericStruct(const GenericStruct& right); GenericStruct& operator=(const GenericStruct& right); }; template<typename Struct> inline GenericStruct::GenericStruct(Struct& structure): GenericStructBase(reinterpret_cast<std::byte*>(&structure), sizeof(Struct), offsetof(Struct, pNext), offsetof(Struct, sType)) { } template<> inline GenericStruct::GenericStruct(const GenericStruct& right): GenericStructBase(right.StructureData, right.StructureSize, right.PNextPointerOffset, right.STypeOffset) { } inline GenericStruct& GenericStruct::operator=(const GenericStruct& right) { StructureData = right.StructureData; StructureSize = right.StructureSize; STypeOffset = right.STypeOffset; PNextPointerOffset = right.PNextPointerOffset; return *this; } //Creates a GenericStruct and automatically fills in sType (a side effect which is undesireable in constructors) template<typename Struct> inline GenericStruct TransmuteTypeToSType(Struct& structure) { InitSType(&structure, offsetof(Struct, sType), ValidStructureType<Struct>); return GenericStruct(structure); } //========================================================================================================================== //Owning version of a generic structure class StructureBlob: public GenericStructBase { public: StructureBlob(); StructureBlob(const StructureBlob& right); StructureBlob& operator=(const StructureBlob& right); template<typename Struct> StructureBlob(const Struct& structure); private: std::vector<std::byte> StructureBlobData; }; inline StructureBlob::StructureBlob() { PNextPointerOffset = 0; STypeOffset = 0; StructureData = nullptr; StructureSize = 0; } template<typename Struct> inline StructureBlob::StructureBlob(const Struct& structure) { static_assert(std::is_trivially_destructible<Struct>::value, "Structure blob contents must be trivially destructible"); PNextPointerOffset = offsetof(Struct, pNext); STypeOffset = offsetof(Struct, sType); StructureBlobData.resize(sizeof(Struct)); memcpy(StructureBlobData.data(), &structure, sizeof(Struct)); StructureData = StructureBlobData.data(); StructureSize = StructureBlobData.size(); //Init sType and set pNext to null VulkanStructureType structureType = ValidStructureType<Struct>; InitSType(StructureBlobData.data(), STypeOffset, structureType); void* nullPNext = nullptr; memcpy(StructureBlobData.data() + PNextPointerOffset, &nullPNext, sizeof(void*)); } inline StructureBlob::StructureBlob(const StructureBlob& right) { *this = right; } inline StructureBlob& StructureBlob::operator=(const StructureBlob& right) { StructureBlobData.assign(right.StructureBlobData.begin(), right.StructureBlobData.end()); StructureData = StructureBlobData.data(); StructureSize = StructureBlobData.size(); STypeOffset = right.STypeOffset; PNextPointerOffset = right.PNextPointerOffset; assert(PNextPointerOffset + sizeof(void*) <= StructureBlobData.size()); //Zero out PNext memset(StructureBlobData.data() + PNextPointerOffset, 0, sizeof(void*)); return *this; } //========================================================================================================================== //Base class for a generic structure chain, hiding chain link type info template<typename HeadType> class GenericStructureChainBase { protected: GenericStructureChainBase(); ~GenericStructureChainBase(); public: HeadType& GetChainHead(); template<typename Struct> Struct& GetChainLinkDataAs(); public: GenericStructureChainBase(const GenericStructureChainBase& rhs) = delete; GenericStructureChainBase& operator=(const GenericStructureChainBase& rhs) = delete; protected: std::vector<std::byte*> StructureDataPointers; std::vector<ptrdiff_t> PNextPointerOffsets; std::vector<ptrdiff_t> STypeOffsets; std::unordered_map<VulkanStructureType, size_t> StructureDataIndices; }; template<typename HeadType> inline GenericStructureChainBase<HeadType>::GenericStructureChainBase() { } template<typename HeadType> inline GenericStructureChainBase<HeadType>::~GenericStructureChainBase() { } template<typename HeadType> inline HeadType& GenericStructureChainBase<HeadType>::GetChainHead() { assert(StructureDataPointers.size() > 0); assert(StructureDataPointers[0] != nullptr); HeadType* head = reinterpret_cast<HeadType*>(StructureDataPointers[0]); return *head; } template<typename HeadType> template<typename Struct> inline Struct& GenericStructureChainBase<HeadType>::GetChainLinkDataAs() { Struct* structPtr = reinterpret_cast<Struct*>(StructureDataPointers[StructureDataIndices.at(ValidStructureType<Struct>)]); return *structPtr; } //========================================================================================================================== //Generic structure chain, non-owning version template<typename HeadType> class GenericStructureChain: public GenericStructureChainBase<HeadType> { using GenericStructureChainBase<HeadType>::StructureDataPointers; using GenericStructureChainBase<HeadType>::STypeOffsets; using GenericStructureChainBase<HeadType>::PNextPointerOffsets; using GenericStructureChainBase<HeadType>::StructureDataIndices; public: GenericStructureChain(); GenericStructureChain(HeadType& head); ~GenericStructureChain(); //Clears everything EXCEPT head void Clear(); template<typename Struct> void AppendToChain(Struct& next); void AppendToChainGeneric(GenericStructBase& nextBlobData); public: GenericStructureChain(const GenericStructureChain& rhs) = delete; GenericStructureChain& operator=(const GenericStructureChain& rhs) = delete; private: void AppendDataToChain(void* dataPtr, size_t sTypeOffset, size_t pNextOffset, VulkanStructureType sType); protected: HeadType HeadData; }; template<typename HeadType> inline GenericStructureChain<HeadType>::GenericStructureChain() { //Init HeadData's sType and pNext InitSType(&HeadData, offsetof(HeadData, sType), ValidStructureType<HeadType>); HeadData.pNext = nullptr; StructureDataPointers.push_back(reinterpret_cast<std::byte*>(&HeadData)); STypeOffsets.push_back(offsetof(HeadType, sType)); PNextPointerOffsets.push_back(offsetof(HeadType, pNext)); StructureDataIndices[ValidStructureType<HeadType>] = 0; } template<typename HeadType> inline GenericStructureChain<HeadType>::GenericStructureChain(HeadType& head) { HeadData = head; InitSType(&HeadData, offsetof(HeadData, sType), ValidStructureType<HeadType>); HeadData.pNext = nullptr; //Head is always the first pointer StructureDataPointers.push_back(reinterpret_cast<std::byte*>(&HeadData)); STypeOffsets.push_back(offsetof(HeadType, sType)); PNextPointerOffsets.push_back(offsetof(HeadType, pNext)); StructureDataIndices[ValidStructureType<HeadType>] = 0; } template<typename HeadType> inline GenericStructureChain<HeadType>::~GenericStructureChain() { } template<typename HeadType> inline void GenericStructureChain<HeadType>::Clear() { //Just reset the pointers StructureDataPointers.clear(); PNextPointerOffsets.clear(); StructureDataIndices.clear(); HeadData.pNext = nullptr; StructureDataPointers.push_back(&HeadData); STypeOffsets.push_back(offsetof(HeadType, sType)); PNextPointerOffsets.push_back(offsetof(HeadType, pNext)); StructureDataIndices[ValidStructureType<HeadType>] = 0; } template<typename HeadType> template<typename Struct> inline void GenericStructureChain<HeadType>::AppendToChain(Struct& next) { AppendDataToChain(&next, offsetof(Struct, sType), offsetof(Struct, pNext), ValidStructureType<Struct>); } template<typename HeadType> inline void GenericStructureChain<HeadType>::AppendToChainGeneric(GenericStructBase& nextBlobData) { AppendDataToChain(nextBlobData.GetStructureData(), nextBlobData.GetSTypeOffset(), nextBlobData.GetPNextOffset(), nextBlobData.GetSType()); } template<typename HeadType> inline void GenericStructureChain<HeadType>::AppendDataToChain(void* dataPtr, size_t sTypeOffset, size_t pNextOffset, VulkanStructureType sType) { std::byte* prevLastStruct = StructureDataPointers.back(); ptrdiff_t prevPNextOffset = PNextPointerOffsets.back(); StructureDataPointers.push_back(reinterpret_cast<std::byte*>(dataPtr)); STypeOffsets.push_back(sTypeOffset); PNextPointerOffsets.push_back(pNextOffset); std::byte* currLastStructPtr = StructureDataPointers.back(); InitSType(dataPtr, sTypeOffset, sType); //Set sType of the current struct memcpy(prevLastStruct + prevPNextOffset, &currLastStructPtr, sizeof(std::byte*)); //Set pNext pointer of the previous struct StructureDataIndices[sType] = StructureDataPointers.size() - 1; } //========================================================================================================================== //Generic structure chain, owning version template<typename HeadType> class StructureChainBlob: public GenericStructureChainBase<HeadType> { using GenericStructureChainBase<HeadType>::StructureDataPointers; using GenericStructureChainBase<HeadType>::STypeOffsets; using GenericStructureChainBase<HeadType>::PNextPointerOffsets; using GenericStructureChainBase<HeadType>::StructureDataIndices; public: StructureChainBlob(); StructureChainBlob(const HeadType& head); ~StructureChainBlob(); //Clears everything EXCEPT head void Clear(); template<typename Struct> void AppendToChain(const Struct& next); void AppendToChainGeneric(const GenericStructBase& nextBlobData); public: StructureChainBlob(const StructureChainBlob& rhs) = delete; StructureChainBlob& operator=(const StructureChainBlob& rhs) = delete; private: void AppendDataToBlob(const std::byte* data, size_t dataSize, const void* dataPNext, ptrdiff_t dataSTypeOffset, ptrdiff_t dataPNextOffset, VulkanStructureType sType); private: std::vector<std::byte> StructureChainBlobData; }; template<typename HeadType> inline StructureChainBlob<HeadType>::StructureChainBlob() { static_assert(std::is_trivially_destructible<HeadType>::value, "All members of the structure chain blob must be trivially destructible"); //Store head in the blob StructureChainBlobData.resize(sizeof(HeadType)); HeadType head; InitSType(&head, offsetof(HeadType, sType), ValidStructureType<HeadType>); head.pNext = nullptr; memcpy(StructureChainBlobData.data(), &head, sizeof(HeadType)); StructureDataPointers.push_back(StructureChainBlobData.data()); STypeOffsets.push_back(offsetof(HeadType, sType)); PNextPointerOffsets.push_back(offsetof(HeadType, pNext)); StructureDataIndices[ValidStructureType<HeadType>] = 0; } template<typename HeadType> inline StructureChainBlob<HeadType>::StructureChainBlob(const HeadType& head) { static_assert(std::is_trivially_destructible<HeadType>::value, "All members of the structure chain blob must be trivially destructible"); //Store head in the blob StructureChainBlobData.resize(sizeof(HeadType)); memcpy(StructureChainBlobData.data(), &head, sizeof(HeadType)); StructureDataPointers.push_back(StructureChainBlobData.data()); STypeOffsets.push_back(offsetof(HeadType, sType)); PNextPointerOffsets.push_back(offsetof(HeadType, pNext)); VulkanStructureType headSType = ValidStructureType<HeadType>; void* headPNext = nullptr; InitSType(StructureDataPointers.back(), STypeOffsets.back(), headSType); memcpy(StructureDataPointers.back() + PNextPointerOffsets.back(), &headPNext, sizeof(void*)); StructureDataIndices[ValidStructureType<HeadType>] = 0; } template<typename HeadType> inline StructureChainBlob<HeadType>::~StructureChainBlob() { } template<typename HeadType> inline void StructureChainBlob<HeadType>::Clear() { //Save the head HeadType& headData = GenericStructureChainBase<HeadType>::GetChainHead(); std::vector<std::byte> oldHead(sizeof(HeadType)); memcpy(oldHead.data(), &headData, sizeof(HeadType)); //Clear everything StructureChainBlobData.clear(); StructureDataPointers.clear(); STypeOffsets.clear(); PNextPointerOffsets.clear(); StructureDataIndices.clear(); //Reinit StructureChainBlobData.resize(sizeof(HeadType)); memcpy(StructureChainBlobData.data(), oldHead.data(), sizeof(HeadType)); StructureDataPointers.push_back(StructureChainBlobData.data()); STypeOffsets.push_back(offsetof(HeadType, sType)); PNextPointerOffsets.push_back(offsetof(HeadType, pNext)); StructureDataIndices[ValidStructureType<HeadType>] = 0; } template<typename HeadType> template<typename Struct> inline void StructureChainBlob<HeadType>::AppendToChain(const Struct& next) { static_assert(std::is_trivially_destructible<Struct>::value, "All members of the structure chain blob must be trivially destructible"); AppendDataToBlob((const std::byte*)(&next), sizeof(Struct), next.pNext, offsetof(Struct, sType), offsetof(Struct, pNext), ValidStructureType<Struct>); } template<typename HeadType> inline void StructureChainBlob<HeadType>::AppendToChainGeneric(const GenericStructBase& nextBlobData) { AppendDataToBlob(nextBlobData.GetStructureData(), nextBlobData.GetStructureSize(), nextBlobData.GetPNext(), nextBlobData.GetSTypeOffset(), nextBlobData.GetPNextOffset(), nextBlobData.GetSType()); } template<typename HeadType> inline void StructureChainBlob<HeadType>::AppendDataToBlob(const std::byte* data, size_t dataSize, const void* dataPNext, ptrdiff_t dataSTypeOffset, ptrdiff_t dataPNextOffset, VulkanStructureType sType) { size_t prevDataSize = StructureChainBlobData.size(); size_t nextDataOffset = prevDataSize; //Copy all current structures to the new chain, and append new structure std::vector<std::byte> newStructureChainData(prevDataSize + dataSize); memcpy(newStructureChainData.data(), StructureChainBlobData.data(), prevDataSize); memcpy(newStructureChainData.data() + prevDataSize, data, dataSize); //Initialize sType InitSType(newStructureChainData.data() + prevDataSize, dataSTypeOffset, sType); //Rebuild StructureDataPointers std::vector<ptrdiff_t> structureDataOffsets(StructureDataPointers.size()); for(size_t i = 0; i < StructureDataPointers.size(); i++) { structureDataOffsets[i] = (StructureDataPointers[i] - &StructureChainBlobData[0]); } StructureDataPointers.clear(); for(size_t i = 0; i < structureDataOffsets.size(); i++) { StructureDataPointers.push_back(newStructureChainData.data() + structureDataOffsets[i]); } StructureDataPointers.push_back(newStructureChainData.data() + nextDataOffset); STypeOffsets.push_back(dataSTypeOffset); PNextPointerOffsets.push_back(dataPNextOffset); //Invalidate pNext pointers for(size_t i = 0; i < PNextPointerOffsets.size() - 1; i++) { void** currPPNext = (void**)(StructureDataPointers[i] + PNextPointerOffsets[i]); memcpy(currPPNext, &StructureDataPointers[i + 1], sizeof(void*)); } //Invalidate the last pNext pointer with the provided one std::byte* pLastStruct = StructureDataPointers.back(); memcpy(pLastStruct + dataPNextOffset, &dataPNext, sizeof(void*)); //Only use move semantics, because copy semantics will make pNext pointers invalid once again StructureChainBlobData = std::move(newStructureChainData); //Make sure all pNext point to inside of StructureChainBlobData. The last pointer can point to whatever the user specified for(size_t i = 0; i < PNextPointerOffsets.size() - 1; i++) { void* pNextPointer = nullptr; memcpy(&pNextPointer, StructureDataPointers[i] + PNextPointerOffsets[i], sizeof(void*)); //Init the pointer data assert(pNextPointer >= &StructureChainBlobData[0] && pNextPointer < (&StructureChainBlobData[0] + StructureChainBlobData.size())); //Move semantics should never break pNext pointers, they should always point to inside the blob } StructureDataIndices[sType] = StructureDataPointers.size() - 1; } } #endif """ def open_vk_spec(url): with urllib.request.urlopen(url) as response: spec_data = response.read() return spec_data.decode("utf8") def parse_stypes(spec_contents): spec_soup = BeautifulSoup(spec_contents, features="xml") spec_platform_defines = {} spec_platforms_block = spec_soup.find("platforms") if spec_platforms_block is not None: spec_platform_tags = spec_platforms_block.find_all("platform") for platform_tag in spec_platform_tags: spec_platform_defines[platform_tag["name"]] = platform_tag["protect"] spec_struct_extensions = {} extension_define_names = {} extension_blocks = spec_soup.find_all("extension") for extension_block in extension_blocks: extension_name = extension_block["name"] extension_define_tag = extension_block.find("enum", {"value": re.compile(".*" + extension_name +".*")}) if extension_define_tag is None: continue extension_define_name = extension_define_tag["name"] if extension_define_name is None: continue extension_define_names[extension_name] = extension_define_name extension_require_blocks = extension_block.find_all("require") for extension_require_block in extension_require_blocks: extension_types = [] extension_type_tags = extension_require_block.find_all("type") for type_tag in extension_type_tags: extension_defined_type = type_tag["name"] if extension_defined_type is not None: extension_types.append(extension_defined_type) extension_platform = "" if "platform" in extension_block.attrs: extension_platform = extension_block["platform"] extension_platform_define = "" if extension_platform in spec_platform_defines: extension_platform_define = spec_platform_defines[extension_platform] extension_names = [extension_name] if "extension" in extension_require_block.attrs: extension_names.append(extension_require_block["extension"]) for extension_type in extension_types: spec_struct_extensions[extension_type] = (extension_name, extension_names, extension_platform_define) stypes = [] struct_blocks = spec_soup.find_all("type", {"category": "struct"}) for struct_block in struct_blocks: struct_type = struct_block["name"] #Find only structs that have <member> tag with "values" attibute struct_stype_member_tags = [member_tag for member_tag in struct_block.find_all("member") if "values" in member_tag.attrs] if len(struct_stype_member_tags) == 0: continue stype = "" for member_tag in struct_stype_member_tags: name_tag = member_tag.find("name") if name_tag is not None and name_tag.string == "sType": stype = member_tag["values"] break extension_defines = [] platform_define = "" if struct_type in spec_struct_extensions: struct_requires = spec_struct_extensions[struct_type] extension_defines = [extension_define_names[extension_name] for extension_name in struct_requires[1]] platform_define = struct_requires[2] stypes.append((struct_type, stype, extension_defines, platform_define)) stypes = sorted(stypes, key=lambda struct_data: struct_data[2]) stypes = sorted(stypes, key=lambda struct_data: struct_data[3]) return stypes def compile_cpp_header_h(stypes): cpp_data = "" cpp_data += header_license cpp_data += header_start_h current_extension_defines = [] current_platform_define = "" tab_level = "" for stype in stypes: if current_extension_defines != stype[2] or current_platform_define != stype[3]: if len(current_extension_defines) != 0 or current_platform_define != "": cpp_data += "#endif\n" tab_level = "" if len(stype[2]) != 0 or stype[3] != "": tab_level = "\t" cpp_data += "\n#if " if len(stype[2]) != 0: cpp_data += "defined(" + stype[2][0] + ")" for extra_extension_define in stype[2][1:]: cpp_data += " && defined(" + extra_extension_define + ")" if stype[3] != "": cpp_data += " && " if stype[3] != "": cpp_data += "defined(" + stype[3] + ")" current_extension_defines = stype[2] current_platform_define = stype[3] cpp_data += "\n" cpp_data += tab_level + "template<>\n" cpp_data += tab_level + "constexpr VulkanStructureType ValidStructureType<" + stype[0] + "> = " + stype[1] + ";\n" if len(current_extension_defines) != 0 or current_platform_define != "": cpp_data += "#endif\n\n" cpp_data += header_stype_init_h cpp_data += header_end return cpp_data def compile_cpp_header_hpp(stypes): cpp_data = "" cpp_data += header_license cpp_data += header_start_hpp cpp_data += header_stype_init_hpp cpp_data += header_end return cpp_data def save_file(contents, filename): with open(filename, "w", encoding="utf-8") as out_file: out_file.write(contents) if __name__ == "__main__": spec_text = open_vk_spec("https://raw.githubusercontent.com/KhronosGroup/Vulkan-Docs/main/xml/vk.xml") #Get it directly from the master branch stypes = parse_stypes(spec_text) cpp_header_data_h = compile_cpp_header_h(stypes) cpp_header_data_hpp = compile_cpp_header_hpp(stypes) save_file(cpp_header_data_h, "./Include/VulkanGenericStructures.h") save_file(cpp_header_data_hpp, "./Include/VulkanGenericStructures.hpp")
32.35
228
0.756054
437db912a5ae4233926d281fb4dfb9b977565497
9,601
py
Python
authorship_unmasking/features/feature_sets.py
torond/unmasking
247f3510a43ca9cafca54a72eab885521c259232
[ "Apache-2.0" ]
5
2020-03-02T10:39:07.000Z
2021-08-31T21:06:37.000Z
authorship_unmasking/features/feature_sets.py
torond/unmasking
247f3510a43ca9cafca54a72eab885521c259232
[ "Apache-2.0" ]
2
2019-06-27T10:56:11.000Z
2021-05-22T12:51:07.000Z
authorship_unmasking/features/feature_sets.py
torond/unmasking
247f3510a43ca9cafca54a72eab885521c259232
[ "Apache-2.0" ]
3
2021-04-03T12:01:16.000Z
2021-10-01T16:15:02.000Z
# Copyright (C) 2017-2019 Janek Bevendorff, Webis Group # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from authorship_unmasking.conf.interfaces import instance_property, instance_list_property from authorship_unmasking.features.interfaces import ChunkSampler, FeatureSet from authorship_unmasking.input.interfaces import SamplePair, Tokenizer from authorship_unmasking.input.tokenizers import WordTokenizer, CharNgramTokenizer, DisjunctCharNgramTokenizer from authorship_unmasking.util.util import lru_cache from copy import deepcopy import numpy from math import ceil from nltk import FreqDist from typing import List, Iterable class MetaFeatureSet(FeatureSet): """ Feature set combining features of several feature sets into a single feature vector of the given length. Vector lengths of sub feature are according to the configured sub feature proportions. """ def __init__(self, pair: SamplePair = None, sampler: ChunkSampler = None): super().__init__(pair, sampler) self._sub_features = [] # type: List[FeatureSet] self._sub_feature_proportions = [] # type: List[int] def add_sub_feature(self, feature: FeatureSet): """ Add an individual sub feature. :param feature: feature set to add """ self._sub_features.append(feature) @instance_list_property(delegate_args=True) def sub_features(self) -> List[FeatureSet]: """ Get sub features. """ return self._sub_features @sub_features.setter def sub_features(self, features: List[FeatureSet]): """ Set sub features. """ self._sub_features = features @property def feature_proportions(self) -> List[int]: """ Get sub feature proportions. """ return self._sub_feature_proportions @feature_proportions.setter def feature_proportions(self, proportions: List[int]): """ Set sub feature proportions. """ self._sub_feature_proportions = proportions def _get_features(self, n, func) -> Iterable[numpy.ndarray]: sum_weights = sum(self._sub_feature_proportions) proportions = numpy.concatenate((self._sub_feature_proportions, numpy.ones(len(self._sub_features) - len(self._sub_feature_proportions)))) proportions = [ceil(n * w / sum_weights) for w in proportions] return numpy.concatenate([list(getattr(f, func)(proportions[i])) for i, f in enumerate(self._sub_features)], axis=1) def get_features_absolute(self, n: int) -> Iterable[numpy.ndarray]: return self._get_features(n, "get_features_absolute") def get_features_relative(self, n: int) -> Iterable[numpy.ndarray]: return self._get_features(n, "get_features_relative") class MultiChunkFeatureSet(MetaFeatureSet): """ Meta feature set to be used with chunks generated by a :class::MultiChunker. The number of sub features of this FeatureSet has to be the same as the number of sub chunks of the MultiChunker. """ def __init__(self, pair: SamplePair = None, sampler: ChunkSampler = None): super().__init__(pair, sampler) self._sub_features_initialized = False def _get_features(self, n, func) -> Iterable[numpy.ndarray]: if not self._sub_features_initialized: for i, feature in enumerate(self._sub_features): if len(self._sub_features) != len(self.pair.chunks_a[i]) != len(self.pair.chunks_b[i]): raise ValueError("Number of sub chunks needs to be the same as number of sub features.") new_pair = deepcopy(self.pair) new_pair.pair_id = self.pair.pair_id new_chunks_a = [c[i] for c in new_pair.chunks_a] new_chunks_b = [c[i] for c in new_pair.chunks_b] new_pair.replace_chunks(new_chunks_a, new_chunks_b) feature.pair = new_pair self._sub_features_initialized = True return super()._get_features(n, func) class CachedAvgTokenCountFeatureSet(FeatureSet): """ Generic feature set which uses the average frequency counts per chunk of the tokens generated by a specified tokenizer and caches them in memory. By default, the cache size is limited to 2000 chunks. """ def __init__(self, pair: SamplePair = None, sampler: ChunkSampler = None, chunk_tokenizer: Tokenizer = None): """ :param pair: pair of chunked texts :param sampler: :class:`ChunkSampler` for sampling chunks from ``pair`` :param chunk_tokenizer: tokenizer for tokenizing chunks """ super().__init__(pair, sampler) self._chunk_tokenizer = chunk_tokenizer self._is_prepared = False self.__freq_a = None self.__freq_b = None self._chunks = [] @instance_property def chunk_tokenizer(self) -> Tokenizer: return self._chunk_tokenizer @chunk_tokenizer.setter def chunk_tokenizer(self, tokenizer): self._chunk_tokenizer = tokenizer @FeatureSet.pair.setter def pair(self, pair): self._pair = pair self._chunks = [] self._is_prepared = False def _prepare(self): if self._is_prepared: return freq_dist_a = FreqDist() for a in self._pair.chunks_a: freq_dist_a.update(self._tokenize(a)) freq_dist_b = FreqDist() for b in self._pair.chunks_b: freq_dist_b.update(self._tokenize(b)) self._avg_freq_dist = FreqDist() n_a = freq_dist_a.N() n_b = freq_dist_b.N() for a in freq_dist_a: self._avg_freq_dist[a] = (freq_dist_a[a] / n_a + freq_dist_b[a] / n_b) / 2.0 for b in freq_dist_b: if self._avg_freq_dist[b] != 0.0: continue self._avg_freq_dist[b] = (freq_dist_a[b] / n_a + freq_dist_b[b] / n_b) / 2.0 self._chunks = self._sampler.generate_chunk_pairs(self._pair) self.__freq_a = None self.__freq_b = None self._is_prepared = True def get_features_absolute(self, n: int) -> Iterable[numpy.ndarray]: self._prepare() top_n_words = numpy.array([w for (w, f) in self._avg_freq_dist.most_common(n)]) num_top_words = len(top_n_words) for c in self._chunks: vec = numpy.zeros(2 * n) self.__freq_a = FreqDist(self._tokenize(c[0])) for i in range(0, n): if i >= num_top_words: break vec[i] = self.__freq_a[top_n_words[i]] self.__freq_b = FreqDist(self._tokenize(c[1])) for i in range(n, 2 * n): if i >= num_top_words + n: break vec[i] = self.__freq_b[top_n_words[i - n]] yield vec def get_features_relative(self, n: int) -> Iterable[numpy.ndarray]: features = self.get_features_absolute(n) for vec in features: n_a = self.__freq_a.N() for i in range(0, n): vec[i] /= n_a n_b = self.__freq_b.N() for i in range(n, 2 * n): vec[i] /= n_b yield vec @lru_cache(maxsize=200) def _tokenize(self, text) -> List[str]: return list(self._chunk_tokenizer.tokenize(text)) class AvgWordFreqFeatureSet(CachedAvgTokenCountFeatureSet): """ Feature set using the average frequencies of the n most frequent words in both input chunk sets. """ def __init__(self, pair: SamplePair = None, sampler: ChunkSampler = None): super().__init__(pair, sampler, WordTokenizer()) class AvgCharNgramFreqFeatureSet(CachedAvgTokenCountFeatureSet): """ Feature set using the average frequencies of the k most frequent character n-grams in both input chunk sets. Default n-gram order is 3. """ def __init__(self, pair: SamplePair = None, sampler: ChunkSampler = None): self.__tokenizer = CharNgramTokenizer(3) super().__init__(pair, sampler, self.__tokenizer) @property def order(self) -> int: """ Get n-gram order. """ return self.__tokenizer.order @order.setter def order(self, ngram_order: int): """ Set n-gram order. """ self.__tokenizer.order = ngram_order class AvgDisjunctCharNgramFreqFeatureSet(CachedAvgTokenCountFeatureSet): """ Feature set using the average frequencies of the k most frequent character n-grams in both input chunk sets. Default n-gram order is 3. """ def __init__(self, pair: SamplePair = None, sampler: ChunkSampler = None): self.__tokenizer = DisjunctCharNgramTokenizer(3) super().__init__(pair, sampler, self.__tokenizer) @property def order(self) -> int: """ Get n-gram order. """ return self.__tokenizer.order @order.setter def order(self, ngram_order: int): """ Set n-gram order. """ self.__tokenizer.order = ngram_order
35.297794
114
0.64962
c1de1ae660665c2bac52cb29fbace23b5ff843c0
7,749
py
Python
openGaussBase/testcase/SECURITY/ENCRYPTED/Opengauss_Function_Security_SM3_Case0048.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/SECURITY/ENCRYPTED/Opengauss_Function_Security_SM3_Case0048.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/SECURITY/ENCRYPTED/Opengauss_Function_Security_SM3_Case0048.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : security_sm3 Case Name : 创建用户时加密算法MD5,认证方式sm3,非初始用户正确的密码通过JDBC连接数据库 Description : 1.修改password_encryption_type=0 2.pg_hba.conf文件中修改认证方式sm3 3.非初始用户正确的密码通过JDBC登录数据库 Expect : 1-2.参数设置成功 3.数据库连接失败 History : """ import os import unittest from yat.test import Node from yat.test import macro from testcase.utils.Common import Common from testcase.utils.CommonSH import CommonSH from testcase.utils.Logger import Logger class Security(unittest.TestCase): def setUp(self): self.logger = Logger() self.logger.info('--Opengauss_Function_Security_sm3_Case0048 start--') self.userNode = Node('PrimaryDbUser') self.primary_root = Node('PrimaryRoot') self.DB_ENV_PATH = macro.DB_ENV_PATH self.DB_INSTANCE_PATH = macro.DB_INSTANCE_PATH self.sh_primy = CommonSH('PrimaryDbUser') self.common = Common() self.user = 'u_security_sm3_0048' self.targetpath = "/home/jdbc_test" self.properties = os.path.join(self.targetpath, "jdbc_connect.conf") self.java_name = "jdbc_drop_schema_case0001" self.script_name = 'bcprov-jdk15on-1.68' self.config = os.path.join(self.DB_INSTANCE_PATH, 'pg_hba.conf') self.confignew = os.path.join(self.DB_INSTANCE_PATH, 'pg_hba_bak.conf') self.logger.info('--------获取参数默认值--------') self.default_msg_list = '' check_default = 'show password_encryption_type;' default_msg = self.sh_primy.execut_db_sql(check_default) self.logger.info(default_msg) self.default_msg_list = default_msg.splitlines()[2].strip() self.logger.info(self.default_msg_list) self.logger.info('--------备份白名单文件---------') cp_cmd = f"cp {self.config} {self.confignew}" self.userNode.sh(cp_cmd).result() def test_encrypted(self): text = '---step1:修改password_encryption_type=0;expect:成功---' self.logger.info(text) exe_cmd1 = f'source {self.DB_ENV_PATH};' \ f'gs_guc reload -D {self.DB_INSTANCE_PATH} -c ' \ '"password_encryption_type=0"' msg1 = self.userNode.sh(exe_cmd1).result() self.logger.info(msg1) check_cmd = 'show password_encryption_type;' check_msg = self.sh_primy.execut_db_sql(check_cmd) self.logger.info(check_msg) self.common.equal_sql_mdg(check_msg, 'password_encryption_type', '0', '(1 row)', flag='1') text = '---step2:pg_hba.conf文件中增加认证方式为md5;expect:成功---' self.logger.info(text) exe_cmd2 = f'grep "IPv4 local connections:" {self.config}' msg2 = self.userNode.sh(exe_cmd2).result() self.logger.info(msg2) insert_messages = f"host {self.userNode.db_name} {self.user} " \ f"{self.userNode.db_host}/32 sm3" exe_cmd3 = f'sed -i "/{msg2}/a\{insert_messages}" {self.config}' self.logger.info(exe_cmd3) msg3 = self.userNode.sh(exe_cmd3).result() self.logger.info(msg3) restart_cmd = f'source {macro.DB_ENV_PATH};' \ f'gs_ctl restart -D {macro.DB_INSTANCE_PATH} -M primary' restart_msg = self.userNode.sh(restart_cmd).result() self.logger.info(restart_msg) text = '---step3:创建用户1;expect:成功---' self.logger.info(text) sql_cmd4 = f'create user {self.user} with password \'' \ f'{macro.COMMON_PASSWD}\';' msg4 = self.sh_primy.execut_db_sql(sql_cmd4) self.logger.info(msg4) self.assertIn('CREATE ROLE', msg4, '执行失败:' + text) text = '---step4.1:写入配置文件,用户1设置正确的密码;expect:成功---' self.logger.info(text) self.common.scp_file(self.primary_root, f"{self.java_name}.java", self.targetpath) self.common.scp_file(self.primary_root, f"{self.script_name}.jar", self.targetpath) result = self.primary_root.sh( f"touch {self.properties}").result() self.logger.info(result) config = f'echo "password={macro.COMMON_PASSWD}"> {self.properties}' self.primary_root.sh(config) config = f'echo "port={self.userNode.db_port}">> ' \ f'{self.properties}' self.primary_root.sh(config) config = f'echo "hostname={self.userNode.db_host}">> ' \ f'{self.properties}' self.primary_root.sh(config) config = f'echo "user={self.user}">> {self.properties}' self.primary_root.sh(config) config = f'echo "dbname={self.userNode.db_name}">> ' \ f'{self.properties}' self.primary_root.sh(config) config = f'cat {self.properties}' result = self.primary_root.sh(config).result() assert1 = "password=" in result and "port=" in result and \ "hostname=" in result and "user=" in result and \ "dbname=" in result self.assertTrue(assert1, '执行失败:' + text) text = '---step4.1:编译java脚本;expect:成功---' self.logger.info(text) scp_cmd = self.primary_root.scp_put(macro.JDBC_PATH, f"{self.targetpath}/postgresql.jar") self.logger.info(scp_cmd) cmd = f"javac -encoding utf-8 -cp " \ f"{os.path.join(self.targetpath, 'postgresql.jar')} " \ f"{os.path.join(self.targetpath, f'{self.java_name}.java')}" self.logger.info(cmd) result = self.primary_root.sh(cmd).result() self.logger.info(result) text = '---step4.2:运行java脚本,数据库连接成功;expect:成功---' self.logger.info(text) cmd = f"java -cp {os.path.join(self.targetpath, 'postgresql.jar')}:" \ f"{os.path.join(self.targetpath, f'{self.script_name}.jar')}:" \ f"{self.targetpath} {self.java_name} -F" \ f" {self.properties}" result = self.primary_root.sh(cmd).result() self.logger.info(result) self.assertIn('连接失败', result, '执行失败:' + text) def tearDown(self): self.logger.info('-------1.恢复配置文件中的信息------') check_cmd = f'if [ -f {self.config} ];then mv {self.confignew} ' \ f'{self.config};rm -rf {self.targetpath};fi' self.logger.info(check_cmd) self.primary_root.sh(check_cmd).result() restart_cmd = f'source {macro.DB_ENV_PATH};' \ f'gs_ctl restart -D {macro.DB_INSTANCE_PATH} -M primary' restart_msg = self.userNode.sh(restart_cmd).result() self.logger.info(restart_msg) self.logger.info('-------2.恢复加密方式配置------') exe_cmd2 = f'source {self.DB_ENV_PATH};' \ f'gs_guc reload -D {self.DB_INSTANCE_PATH} -c ' \ f'"password_encryption_type={self.default_msg_list}"' msg2 = self.userNode.sh(exe_cmd2).result() self.logger.info(msg2) sql_cmd3 = 'show password_encryption_type;' msg3 = self.sh_primy.execut_db_sql(sql_cmd3) self.logger.info(msg3) self.logger.info('-------3.删除用户-------') sql_cmd4 = f'drop user {self.user}' msg4 = self.sh_primy.execut_db_sql(sql_cmd4) self.logger.info(msg4) self.logger.info('--Opengauss_Function_Security_sm3_Case0048 finish--')
45.052326
84
0.623048
c4a6fc5dcfbae868a35b2a748dbf49a03120974f
5,852
py
Python
p3_collab_compet/main.py
guillecg/drlnd
b2d8fda6b90efbf1ca9b5ad98a504debb59a10ef
[ "MIT" ]
null
null
null
p3_collab_compet/main.py
guillecg/drlnd
b2d8fda6b90efbf1ca9b5ad98a504debb59a10ef
[ "MIT" ]
null
null
null
p3_collab_compet/main.py
guillecg/drlnd
b2d8fda6b90efbf1ca9b5ad98a504debb59a10ef
[ "MIT" ]
null
null
null
import datetime from pathlib import Path import numpy as np import torch from collections import deque import matplotlib.pyplot as plt from unityagents import UnityEnvironment from p3_collab_compet.agents.agent_ddpg import AgentDDPG SEED = 42 SCORE_TARGET = 0.5 SCORE_WINDOW = 100 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Set seeds torch.manual_seed(SEED) np.random.seed(SEED) # create folder architecture PROJECT = 'p3_collab_compet' START_TIME = datetime.datetime.now().strftime('%m-%d-%Y_%Hh%Mm') EXPERIMENT_FOLDER = f'{PROJECT}/experiments/{START_TIME}' Path(EXPERIMENT_FOLDER).mkdir(parents=True, exist_ok=False) if __name__ == '__main__': env_path = f'{PROJECT}/Tennis_Linux/Tennis.x86_64' env = UnityEnvironment(file_name=env_path) # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] # reset the environment env_info = env.reset(train_mode=True)[brain_name] # number of agents num_agents = len(env_info.agents) print('Number of agents:', num_agents) # size of each action action_size = brain.vector_action_space_size print('Size of each action:', action_size) # examine the state space states = env_info.vector_observations state_size = states.shape[1] print( 'There are {} agents. Each observes a state with length: {}' .format(states.shape[0], state_size) ) print('The state for the first agent looks like:', states[0]) # define the agent agent = AgentDDPG( state_size=state_size, action_size=action_size, hyperparams=dict(), device=DEVICE, seed=SEED ) # training hyperparameters n_episodes = 500 # maximum number of training episodes max_t = 1000 # maximum number of timesteps per episode gamma = 0.95 gamma_rate = 0.01 gamma_scale = 1.0 - gamma_rate gamma_final = 0.99 tau = 0.01 tau_rate = 0.001 tau_scale = 1.0 - tau_rate tau_final = 0.001 noise_factor = 1.0 noise_scale = 1.0 scores = [] # scores for each episode scores_window = deque(maxlen=SCORE_WINDOW) # last 100 scores scores_window_means = [] # average max scores for each episode # training loop for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] # reset the environment states = env_info.vector_observations # get the current stat agent.reset() # initialize agents score = np.zeros(num_agents) # initialize scores for t in range(max_t): actions = agent.select_action(states) # get the action from the agent env_info = env.step(actions)[brain_name] # send the action to the environment next_states = env_info.vector_observations # get the next state rewards = env_info.rewards # get the reward dones = env_info.local_done # see if episode has finished # save experience tuple (of each agent) into replay buffer for i_agent in range(0, num_agents): experience = ( states[i_agent], actions[i_agent], rewards[i_agent], next_states[i_agent], dones[i_agent] ) agent.memory.add(data=experience) states = next_states # roll over states to next time step score += rewards # update the scores # Train each agent agent.learn_batch(timestep=t, gamma=gamma, tau=tau) if np.any(dones): break # Increase gamma discount factor up to gamma_final. gamma = gamma_final - gamma_scale * (gamma_final - gamma) tau = tau_final - tau_scale * (tau_final - tau) noise_scale *= noise_factor # By problem definition, the score is the max of both agents score = np.max(score) scores.append(score) scores_window.append(score) window_score_mean = np.mean(scores_window) # save mean of window scores scores_window_means.append(window_score_mean) print( '\rEpisode {}\tEpisode total score: {:.2f}\tWindow Score: {:.2f}' .format(i_episode, score, window_score_mean), end="" ) if i_episode % 100 == 0: print( '\rEpisode {}\tWindow Score: {:.2f}' .format(i_episode, window_score_mean) ) if window_score_mean >= SCORE_TARGET: print( '\nEnvironment solved in {:d} episodes!\tWindow Score: {:.2f}' .format(i_episode, window_score_mean) ) print(f'Saving weights into {EXPERIMENT_FOLDER} folder...') torch.save( agent.actor_local.state_dict(), f'{EXPERIMENT_FOLDER}/weights_actor_episode_{i_episode}.pth' ) torch.save( agent.critic_local.state_dict(), f'{EXPERIMENT_FOLDER}/weights_critic_episode_{i_episode}.pth' ) break # plot the scores fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(1, len(scores) + 1), scores, label='Episode scores') plt.plot(np.arange(1, len(scores) + 1), scores_window_means, label='Window mean') plt.legend() plt.ylabel('Score') plt.xlabel('Episode #') plt.show() # save figure to file print(f'Saving figure into {EXPERIMENT_FOLDER} folder...') fig.savefig(f'{EXPERIMENT_FOLDER}/scores.png') # close the environment env.close()
31.462366
92
0.605605
ea603057790d51b912276c59fb205d40a1c85044
356
py
Python
_common/helper/tests/test_wrappers.py
terratenney/aws-tools
d8ca07d56d812deb819b039752b94a0f1b9e6eb2
[ "MIT" ]
8
2020-12-27T18:44:17.000Z
2022-03-10T22:20:28.000Z
_common/helper/tests/test_wrappers.py
terratenney/aws-tools
d8ca07d56d812deb819b039752b94a0f1b9e6eb2
[ "MIT" ]
28
2020-08-30T02:57:03.000Z
2021-05-12T09:13:15.000Z
_common/helper/tests/test_wrappers.py
kyhau/arki
b5d6b160ef0780032f231362158dd9dd892f4e8e
[ "MIT" ]
8
2020-09-03T19:00:13.000Z
2022-03-31T05:31:35.000Z
import logging from helper.wrappers import init_wrapper @init_wrapper def process(*args, **kwargs): logging.debug("At function process()") assert kwargs.get("data") == [1, 2, 3] return 12345 def test_init_wrapper_succeeded(): assert process(data=[1, 2, 3]) == 12345 def test_init_wrapper_failed(): assert process(data=[1, 2]) == 1
20.941176
43
0.688202
2c343f8c0bedec1a417a6c18e4510afce6dcefd4
1,265
py
Python
passgen.py
linuxg33k76/passgen
6af46b1ab6cc3af2b083f6e85618ab16fc06bb52
[ "MIT" ]
null
null
null
passgen.py
linuxg33k76/passgen
6af46b1ab6cc3af2b083f6e85618ab16fc06bb52
[ "MIT" ]
null
null
null
passgen.py
linuxg33k76/passgen
6af46b1ab6cc3af2b083f6e85618ab16fc06bb52
[ "MIT" ]
null
null
null
#!/bin/env python3 ''' CLI Password Generator By Ben Calvert Date: 6/1/2021 ''' import random # Get user input on length def get_input(): while True: x = input('Please enter length of password: ') try: if int(x) and int(x) > 0: return int(x) except: print('Invalid Input; Try again!') def main(): # Set Constants UPPER = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' LOWER = 'abcdeefghijklmnopqrstuvwxyz' NUMBER = '0123456789' SYMBOLS = '!@#$%&*.?' # Combine all Constants all_values = UPPER + LOWER + NUMBER + SYMBOLS # Get password length from the user; pass length of all available characters password_length = get_input() # Find a random sample and generate password of specified length - values can repeat password_array = [] for i in range(password_length): # Creates an array of one value value = random.sample(all_values,1) # Add value of array above to a new array password_array.append(value[0]) # make the array a string password = ''.join([str(character) for character in password_array]) # Print generated password print('\n\t' + password + '\n') if __name__ == '__main__': main()
22.589286
88
0.624506
182b02b14e9481648c89c72560c5df711327246f
38,958
py
Python
sdk/python/pulumi_aws/sagemaker/flow_definition.py
rapzo/pulumi-aws
390a098221315d98a54ba97d1559e750dc3053b7
[ "ECL-2.0", "Apache-2.0" ]
260
2018-06-18T14:57:00.000Z
2022-03-29T11:41:03.000Z
sdk/python/pulumi_aws/sagemaker/flow_definition.py
rapzo/pulumi-aws
390a098221315d98a54ba97d1559e750dc3053b7
[ "ECL-2.0", "Apache-2.0" ]
1,154
2018-06-19T20:38:20.000Z
2022-03-31T19:48:16.000Z
sdk/python/pulumi_aws/sagemaker/flow_definition.py
rapzo/pulumi-aws
390a098221315d98a54ba97d1559e750dc3053b7
[ "ECL-2.0", "Apache-2.0" ]
115
2018-06-28T03:20:27.000Z
2022-03-29T11:41:06.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['FlowDefinitionArgs', 'FlowDefinition'] @pulumi.input_type class FlowDefinitionArgs: def __init__(__self__, *, flow_definition_name: pulumi.Input[str], human_loop_config: pulumi.Input['FlowDefinitionHumanLoopConfigArgs'], output_config: pulumi.Input['FlowDefinitionOutputConfigArgs'], role_arn: pulumi.Input[str], human_loop_activation_config: Optional[pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs']] = None, human_loop_request_source: Optional[pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs']] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a FlowDefinition resource. :param pulumi.Input[str] flow_definition_name: The name of your flow definition. :param pulumi.Input['FlowDefinitionHumanLoopConfigArgs'] human_loop_config: An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. :param pulumi.Input['FlowDefinitionOutputConfigArgs'] output_config: An object containing information about where the human review results will be uploaded. See Output Config details below. :param pulumi.Input[str] role_arn: The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. :param pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs'] human_loop_activation_config: An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. :param pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs'] human_loop_request_source: Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ pulumi.set(__self__, "flow_definition_name", flow_definition_name) pulumi.set(__self__, "human_loop_config", human_loop_config) pulumi.set(__self__, "output_config", output_config) pulumi.set(__self__, "role_arn", role_arn) if human_loop_activation_config is not None: pulumi.set(__self__, "human_loop_activation_config", human_loop_activation_config) if human_loop_request_source is not None: pulumi.set(__self__, "human_loop_request_source", human_loop_request_source) if tags is not None: pulumi.set(__self__, "tags", tags) if tags_all is not None: pulumi.set(__self__, "tags_all", tags_all) @property @pulumi.getter(name="flowDefinitionName") def flow_definition_name(self) -> pulumi.Input[str]: """ The name of your flow definition. """ return pulumi.get(self, "flow_definition_name") @flow_definition_name.setter def flow_definition_name(self, value: pulumi.Input[str]): pulumi.set(self, "flow_definition_name", value) @property @pulumi.getter(name="humanLoopConfig") def human_loop_config(self) -> pulumi.Input['FlowDefinitionHumanLoopConfigArgs']: """ An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. """ return pulumi.get(self, "human_loop_config") @human_loop_config.setter def human_loop_config(self, value: pulumi.Input['FlowDefinitionHumanLoopConfigArgs']): pulumi.set(self, "human_loop_config", value) @property @pulumi.getter(name="outputConfig") def output_config(self) -> pulumi.Input['FlowDefinitionOutputConfigArgs']: """ An object containing information about where the human review results will be uploaded. See Output Config details below. """ return pulumi.get(self, "output_config") @output_config.setter def output_config(self, value: pulumi.Input['FlowDefinitionOutputConfigArgs']): pulumi.set(self, "output_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @property @pulumi.getter(name="humanLoopActivationConfig") def human_loop_activation_config(self) -> Optional[pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs']]: """ An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. """ return pulumi.get(self, "human_loop_activation_config") @human_loop_activation_config.setter def human_loop_activation_config(self, value: Optional[pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs']]): pulumi.set(self, "human_loop_activation_config", value) @property @pulumi.getter(name="humanLoopRequestSource") def human_loop_request_source(self) -> Optional[pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs']]: """ Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. """ return pulumi.get(self, "human_loop_request_source") @human_loop_request_source.setter def human_loop_request_source(self, value: Optional[pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs']]): pulumi.set(self, "human_loop_request_source", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tagsAll") def tags_all(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ return pulumi.get(self, "tags_all") @tags_all.setter def tags_all(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags_all", value) @pulumi.input_type class _FlowDefinitionState: def __init__(__self__, *, arn: Optional[pulumi.Input[str]] = None, flow_definition_name: Optional[pulumi.Input[str]] = None, human_loop_activation_config: Optional[pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs']] = None, human_loop_config: Optional[pulumi.Input['FlowDefinitionHumanLoopConfigArgs']] = None, human_loop_request_source: Optional[pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs']] = None, output_config: Optional[pulumi.Input['FlowDefinitionOutputConfigArgs']] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ Input properties used for looking up and filtering FlowDefinition resources. :param pulumi.Input[str] arn: The Amazon Resource Name (ARN) assigned by AWS to this Flow Definition. :param pulumi.Input[str] flow_definition_name: The name of your flow definition. :param pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs'] human_loop_activation_config: An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. :param pulumi.Input['FlowDefinitionHumanLoopConfigArgs'] human_loop_config: An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. :param pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs'] human_loop_request_source: Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. :param pulumi.Input['FlowDefinitionOutputConfigArgs'] output_config: An object containing information about where the human review results will be uploaded. See Output Config details below. :param pulumi.Input[str] role_arn: The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ if arn is not None: pulumi.set(__self__, "arn", arn) if flow_definition_name is not None: pulumi.set(__self__, "flow_definition_name", flow_definition_name) if human_loop_activation_config is not None: pulumi.set(__self__, "human_loop_activation_config", human_loop_activation_config) if human_loop_config is not None: pulumi.set(__self__, "human_loop_config", human_loop_config) if human_loop_request_source is not None: pulumi.set(__self__, "human_loop_request_source", human_loop_request_source) if output_config is not None: pulumi.set(__self__, "output_config", output_config) if role_arn is not None: pulumi.set(__self__, "role_arn", role_arn) if tags is not None: pulumi.set(__self__, "tags", tags) if tags_all is not None: pulumi.set(__self__, "tags_all", tags_all) @property @pulumi.getter def arn(self) -> Optional[pulumi.Input[str]]: """ The Amazon Resource Name (ARN) assigned by AWS to this Flow Definition. """ return pulumi.get(self, "arn") @arn.setter def arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "arn", value) @property @pulumi.getter(name="flowDefinitionName") def flow_definition_name(self) -> Optional[pulumi.Input[str]]: """ The name of your flow definition. """ return pulumi.get(self, "flow_definition_name") @flow_definition_name.setter def flow_definition_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "flow_definition_name", value) @property @pulumi.getter(name="humanLoopActivationConfig") def human_loop_activation_config(self) -> Optional[pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs']]: """ An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. """ return pulumi.get(self, "human_loop_activation_config") @human_loop_activation_config.setter def human_loop_activation_config(self, value: Optional[pulumi.Input['FlowDefinitionHumanLoopActivationConfigArgs']]): pulumi.set(self, "human_loop_activation_config", value) @property @pulumi.getter(name="humanLoopConfig") def human_loop_config(self) -> Optional[pulumi.Input['FlowDefinitionHumanLoopConfigArgs']]: """ An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. """ return pulumi.get(self, "human_loop_config") @human_loop_config.setter def human_loop_config(self, value: Optional[pulumi.Input['FlowDefinitionHumanLoopConfigArgs']]): pulumi.set(self, "human_loop_config", value) @property @pulumi.getter(name="humanLoopRequestSource") def human_loop_request_source(self) -> Optional[pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs']]: """ Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. """ return pulumi.get(self, "human_loop_request_source") @human_loop_request_source.setter def human_loop_request_source(self, value: Optional[pulumi.Input['FlowDefinitionHumanLoopRequestSourceArgs']]): pulumi.set(self, "human_loop_request_source", value) @property @pulumi.getter(name="outputConfig") def output_config(self) -> Optional[pulumi.Input['FlowDefinitionOutputConfigArgs']]: """ An object containing information about where the human review results will be uploaded. See Output Config details below. """ return pulumi.get(self, "output_config") @output_config.setter def output_config(self, value: Optional[pulumi.Input['FlowDefinitionOutputConfigArgs']]): pulumi.set(self, "output_config", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[pulumi.Input[str]]: """ The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tagsAll") def tags_all(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ return pulumi.get(self, "tags_all") @tags_all.setter def tags_all(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags_all", value) class FlowDefinition(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, flow_definition_name: Optional[pulumi.Input[str]] = None, human_loop_activation_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopActivationConfigArgs']]] = None, human_loop_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopConfigArgs']]] = None, human_loop_request_source: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopRequestSourceArgs']]] = None, output_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionOutputConfigArgs']]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): """ Provides a Sagemaker Flow Definition resource. ## Example Usage ### Basic Usage ```python import pulumi import pulumi_aws as aws example = aws.sagemaker.FlowDefinition("example", flow_definition_name="example", role_arn=aws_iam_role["example"]["arn"], human_loop_config=aws.sagemaker.FlowDefinitionHumanLoopConfigArgs( human_task_ui_arn=aws_sagemaker_human_task_ui["example"]["arn"], task_availability_lifetime_in_seconds=1, task_count=1, task_description="example", task_title="example", workteam_arn=aws_sagemaker_workteam["example"]["arn"], ), output_config=aws.sagemaker.FlowDefinitionOutputConfigArgs( s3_output_path=f"s3://{aws_s3_bucket['example']['bucket']}/", )) ``` ### Public Workteam Usage ```python import pulumi import pulumi_aws as aws example = aws.sagemaker.FlowDefinition("example", flow_definition_name="example", role_arn=aws_iam_role["example"]["arn"], human_loop_config=aws.sagemaker.FlowDefinitionHumanLoopConfigArgs( human_task_ui_arn=aws_sagemaker_human_task_ui["example"]["arn"], task_availability_lifetime_in_seconds=1, task_count=1, task_description="example", task_title="example", workteam_arn=f"arn:aws:sagemaker:{data['aws_region']['current']['name']}:394669845002:workteam/public-crowd/default", public_workforce_task_price=aws.sagemaker.FlowDefinitionHumanLoopConfigPublicWorkforceTaskPriceArgs( amount_in_usd=aws.sagemaker.FlowDefinitionHumanLoopConfigPublicWorkforceTaskPriceAmountInUsdArgs( cents=1, tenth_fractions_of_a_cent=2, ), ), ), output_config=aws.sagemaker.FlowDefinitionOutputConfigArgs( s3_output_path=f"s3://{aws_s3_bucket['example']['bucket']}/", )) ``` ### Human Loop Activation Config Usage ```python import pulumi import pulumi_aws as aws example = aws.sagemaker.FlowDefinition("example", flow_definition_name="example", role_arn=aws_iam_role["example"]["arn"], human_loop_config=aws.sagemaker.FlowDefinitionHumanLoopConfigArgs( human_task_ui_arn=aws_sagemaker_human_task_ui["example"]["arn"], task_availability_lifetime_in_seconds=1, task_count=1, task_description="example", task_title="example", workteam_arn=aws_sagemaker_workteam["example"]["arn"], ), human_loop_request_source=aws.sagemaker.FlowDefinitionHumanLoopRequestSourceArgs( aws_managed_human_loop_request_source="AWS/Textract/AnalyzeDocument/Forms/V1", ), human_loop_activation_config=aws.sagemaker.FlowDefinitionHumanLoopActivationConfigArgs( human_loop_activation_conditions_config=aws.sagemaker.FlowDefinitionHumanLoopActivationConfigHumanLoopActivationConditionsConfigArgs( human_loop_activation_conditions=\"\"\" { "Conditions": [ { "ConditionType": "Sampling", "ConditionParameters": { "RandomSamplingPercentage": 5 } } ] } \"\"\", ), ), output_config=aws.sagemaker.FlowDefinitionOutputConfigArgs( s3_output_path=f"s3://{aws_s3_bucket['example']['bucket']}/", )) ``` ## Import Sagemaker Flow Definitions can be imported using the `flow_definition_name`, e.g. ```sh $ pulumi import aws:sagemaker/flowDefinition:FlowDefinition example example ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] flow_definition_name: The name of your flow definition. :param pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopActivationConfigArgs']] human_loop_activation_config: An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. :param pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopConfigArgs']] human_loop_config: An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. :param pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopRequestSourceArgs']] human_loop_request_source: Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. :param pulumi.Input[pulumi.InputType['FlowDefinitionOutputConfigArgs']] output_config: An object containing information about where the human review results will be uploaded. See Output Config details below. :param pulumi.Input[str] role_arn: The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ ... @overload def __init__(__self__, resource_name: str, args: FlowDefinitionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a Sagemaker Flow Definition resource. ## Example Usage ### Basic Usage ```python import pulumi import pulumi_aws as aws example = aws.sagemaker.FlowDefinition("example", flow_definition_name="example", role_arn=aws_iam_role["example"]["arn"], human_loop_config=aws.sagemaker.FlowDefinitionHumanLoopConfigArgs( human_task_ui_arn=aws_sagemaker_human_task_ui["example"]["arn"], task_availability_lifetime_in_seconds=1, task_count=1, task_description="example", task_title="example", workteam_arn=aws_sagemaker_workteam["example"]["arn"], ), output_config=aws.sagemaker.FlowDefinitionOutputConfigArgs( s3_output_path=f"s3://{aws_s3_bucket['example']['bucket']}/", )) ``` ### Public Workteam Usage ```python import pulumi import pulumi_aws as aws example = aws.sagemaker.FlowDefinition("example", flow_definition_name="example", role_arn=aws_iam_role["example"]["arn"], human_loop_config=aws.sagemaker.FlowDefinitionHumanLoopConfigArgs( human_task_ui_arn=aws_sagemaker_human_task_ui["example"]["arn"], task_availability_lifetime_in_seconds=1, task_count=1, task_description="example", task_title="example", workteam_arn=f"arn:aws:sagemaker:{data['aws_region']['current']['name']}:394669845002:workteam/public-crowd/default", public_workforce_task_price=aws.sagemaker.FlowDefinitionHumanLoopConfigPublicWorkforceTaskPriceArgs( amount_in_usd=aws.sagemaker.FlowDefinitionHumanLoopConfigPublicWorkforceTaskPriceAmountInUsdArgs( cents=1, tenth_fractions_of_a_cent=2, ), ), ), output_config=aws.sagemaker.FlowDefinitionOutputConfigArgs( s3_output_path=f"s3://{aws_s3_bucket['example']['bucket']}/", )) ``` ### Human Loop Activation Config Usage ```python import pulumi import pulumi_aws as aws example = aws.sagemaker.FlowDefinition("example", flow_definition_name="example", role_arn=aws_iam_role["example"]["arn"], human_loop_config=aws.sagemaker.FlowDefinitionHumanLoopConfigArgs( human_task_ui_arn=aws_sagemaker_human_task_ui["example"]["arn"], task_availability_lifetime_in_seconds=1, task_count=1, task_description="example", task_title="example", workteam_arn=aws_sagemaker_workteam["example"]["arn"], ), human_loop_request_source=aws.sagemaker.FlowDefinitionHumanLoopRequestSourceArgs( aws_managed_human_loop_request_source="AWS/Textract/AnalyzeDocument/Forms/V1", ), human_loop_activation_config=aws.sagemaker.FlowDefinitionHumanLoopActivationConfigArgs( human_loop_activation_conditions_config=aws.sagemaker.FlowDefinitionHumanLoopActivationConfigHumanLoopActivationConditionsConfigArgs( human_loop_activation_conditions=\"\"\" { "Conditions": [ { "ConditionType": "Sampling", "ConditionParameters": { "RandomSamplingPercentage": 5 } } ] } \"\"\", ), ), output_config=aws.sagemaker.FlowDefinitionOutputConfigArgs( s3_output_path=f"s3://{aws_s3_bucket['example']['bucket']}/", )) ``` ## Import Sagemaker Flow Definitions can be imported using the `flow_definition_name`, e.g. ```sh $ pulumi import aws:sagemaker/flowDefinition:FlowDefinition example example ``` :param str resource_name: The name of the resource. :param FlowDefinitionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(FlowDefinitionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, flow_definition_name: Optional[pulumi.Input[str]] = None, human_loop_activation_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopActivationConfigArgs']]] = None, human_loop_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopConfigArgs']]] = None, human_loop_request_source: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopRequestSourceArgs']]] = None, output_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionOutputConfigArgs']]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = FlowDefinitionArgs.__new__(FlowDefinitionArgs) if flow_definition_name is None and not opts.urn: raise TypeError("Missing required property 'flow_definition_name'") __props__.__dict__["flow_definition_name"] = flow_definition_name __props__.__dict__["human_loop_activation_config"] = human_loop_activation_config if human_loop_config is None and not opts.urn: raise TypeError("Missing required property 'human_loop_config'") __props__.__dict__["human_loop_config"] = human_loop_config __props__.__dict__["human_loop_request_source"] = human_loop_request_source if output_config is None and not opts.urn: raise TypeError("Missing required property 'output_config'") __props__.__dict__["output_config"] = output_config if role_arn is None and not opts.urn: raise TypeError("Missing required property 'role_arn'") __props__.__dict__["role_arn"] = role_arn __props__.__dict__["tags"] = tags __props__.__dict__["tags_all"] = tags_all __props__.__dict__["arn"] = None super(FlowDefinition, __self__).__init__( 'aws:sagemaker/flowDefinition:FlowDefinition', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, flow_definition_name: Optional[pulumi.Input[str]] = None, human_loop_activation_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopActivationConfigArgs']]] = None, human_loop_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopConfigArgs']]] = None, human_loop_request_source: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopRequestSourceArgs']]] = None, output_config: Optional[pulumi.Input[pulumi.InputType['FlowDefinitionOutputConfigArgs']]] = None, role_arn: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tags_all: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None) -> 'FlowDefinition': """ Get an existing FlowDefinition resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: The Amazon Resource Name (ARN) assigned by AWS to this Flow Definition. :param pulumi.Input[str] flow_definition_name: The name of your flow definition. :param pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopActivationConfigArgs']] human_loop_activation_config: An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. :param pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopConfigArgs']] human_loop_config: An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. :param pulumi.Input[pulumi.InputType['FlowDefinitionHumanLoopRequestSourceArgs']] human_loop_request_source: Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. :param pulumi.Input[pulumi.InputType['FlowDefinitionOutputConfigArgs']] output_config: An object containing information about where the human review results will be uploaded. See Output Config details below. :param pulumi.Input[str] role_arn: The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags_all: A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _FlowDefinitionState.__new__(_FlowDefinitionState) __props__.__dict__["arn"] = arn __props__.__dict__["flow_definition_name"] = flow_definition_name __props__.__dict__["human_loop_activation_config"] = human_loop_activation_config __props__.__dict__["human_loop_config"] = human_loop_config __props__.__dict__["human_loop_request_source"] = human_loop_request_source __props__.__dict__["output_config"] = output_config __props__.__dict__["role_arn"] = role_arn __props__.__dict__["tags"] = tags __props__.__dict__["tags_all"] = tags_all return FlowDefinition(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ The Amazon Resource Name (ARN) assigned by AWS to this Flow Definition. """ return pulumi.get(self, "arn") @property @pulumi.getter(name="flowDefinitionName") def flow_definition_name(self) -> pulumi.Output[str]: """ The name of your flow definition. """ return pulumi.get(self, "flow_definition_name") @property @pulumi.getter(name="humanLoopActivationConfig") def human_loop_activation_config(self) -> pulumi.Output[Optional['outputs.FlowDefinitionHumanLoopActivationConfig']]: """ An object containing information about the events that trigger a human workflow. See Human Loop Activation Config details below. """ return pulumi.get(self, "human_loop_activation_config") @property @pulumi.getter(name="humanLoopConfig") def human_loop_config(self) -> pulumi.Output['outputs.FlowDefinitionHumanLoopConfig']: """ An object containing information about the tasks the human reviewers will perform. See Human Loop Config details below. """ return pulumi.get(self, "human_loop_config") @property @pulumi.getter(name="humanLoopRequestSource") def human_loop_request_source(self) -> pulumi.Output[Optional['outputs.FlowDefinitionHumanLoopRequestSource']]: """ Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source. See Human Loop Request Source details below. """ return pulumi.get(self, "human_loop_request_source") @property @pulumi.getter(name="outputConfig") def output_config(self) -> pulumi.Output['outputs.FlowDefinitionOutputConfig']: """ An object containing information about where the human review results will be uploaded. See Output Config details below. """ return pulumi.get(self, "output_config") @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Output[str]: """ The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. """ return pulumi.get(self, "role_arn") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A map of tags to assign to the resource. If configured with a provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block) present, tags with matching keys will overwrite those defined at the provider-level. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tagsAll") def tags_all(self) -> pulumi.Output[Mapping[str, str]]: """ A map of tags assigned to the resource, including those inherited from the provider [`default_tags` configuration block](https://www.terraform.io/docs/providers/aws/index.html#default_tags-configuration-block). """ return pulumi.get(self, "tags_all")
55.259574
348
0.686252
a39e1904b8eeb1d7214e8498ece1b591e435802b
22,656
py
Python
scripts/train_rl.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
120
2019-04-22T04:45:28.000Z
2022-03-23T01:53:17.000Z
scripts/train_rl.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
14
2019-06-12T08:21:21.000Z
2021-08-25T15:36:58.000Z
scripts/train_rl.py
joel99/midlevel-reps
f0b4a4d8ccf09a0488cd18af24723172aff99446
[ "MIT" ]
19
2019-06-19T07:00:36.000Z
2022-03-24T07:18:30.000Z
# train_rl.py # Authors: Sasha Sax (1,3), Bradley Emi (2), Jeffrey Zhang (1) -- UC Berkeley, FAIR, Stanford VL # Desc: Train or test an agent using PPO. # Usage: # python -m scripts.train_rl DIRECTORY_TO_SAVE_RESULTS run_training with uuid=EXP_UUID [CFG1 ...] [cfg.SUB_CFG1.PROPERTY1 ...] # Notes: # (i) must be run from parent directory (top-level of git) # (ii) currently, a visdom instance MUST be used or the script will fail. Defaults to localhost. import sys import shutil import copy import glob from gym import logger from gym import spaces import gym import logging import numpy as np import os import pprint import random import runpy import sacred import subprocess import time import torch import torchvision.utils from evkit.env.wrappers import ProcessObservationWrapper from evkit.env import EnvFactory from evkit.models.architectures import AtariNet, TaskonomyFeaturesOnlyNet from evkit.models.taskonomy_network import TaskonomyNetwork from evkit.models.actor_critic_module import NaivelyRecurrentACModule from evkit.preprocess.transforms import rescale_centercrop_resize, rescale, grayscale_rescale, cross_modal_transform, identity_transform, rescale_centercrop_resize_collated, map_pool_collated, map_pool, taskonomy_features_transform, image_to_input_collated, taskonomy_multi_features_transform from evkit.preprocess.baseline_transforms import blind, pixels_as_state from evkit.preprocess import TransformFactory import evkit.rl.algo from evkit.rl.policy import Policy, PolicyWithBase, BackoutPolicy from evkit.rl.storage import RolloutSensorDictStorage, RolloutSensorDictReplayBuffer, StackedSensorDictStorage from evkit.saving.checkpoints import checkpoint_name, save_checkpoint, last_archived_run from evkit.saving.observers import FileStorageObserverWithExUuid from evkit.utils.misc import Bunch, cfg_to_md, compute_weight_norm, is_interactive, remove_whitespace, update_dict_deepcopy import evkit.utils.logging from evkit.utils.random import set_seed import tnt.torchnet as tnt # Set up experiment using SACRED ex = sacred.Experiment(name="RL Training", interactive=is_interactive()) LOG_DIR = sys.argv[1].strip() sys.argv.pop(1) runpy.run_module('configs.core', init_globals=globals()) runpy.run_module('configs.image_architectures', init_globals=globals()) runpy.run_module('configs.habitat', init_globals=globals()) runpy.run_module('configs.gibson', init_globals=globals()) runpy.run_module('configs.doom', init_globals=globals()) logging.basicConfig(level=logging.DEBUG, format='%(message)s') logger = logging.getLogger() def log_input_images(obs_unpacked, mlog, num_stack, key_names=['map'], meter_name='debug/input_images', step_num=0): # Plots the observations from the first process stacked = [] for key_name in key_names: if key_name not in obs_unpacked: logger.debug(key_name, "not found") continue obs = obs_unpacked[key_name][0] obs = (obs + 1.0) / 2.0 obs_chunked = list(torch.chunk(obs, num_stack, dim=0)) key_stacked = torchvision.utils.make_grid(obs_chunked, nrow=num_stack, padding=2) stacked.append(key_stacked) stacked = torch.cat(stacked, dim=1) mlog.update_meter(stacked, meters={meter_name}) mlog.reset_meter(step_num, meterlist={meter_name}) @ex.main def run_training(cfg, uuid): try: logger.info("Running with configuration:\n" + pprint.pformat(cfg)) torch.set_num_threads(1) set_seed(cfg['training']['seed']) # get new output_dir name (use for checkpoints) old_log_dir = cfg['saving']['log_dir'] changed_log_dir = False existing_log_paths = [] if os.path.exists(old_log_dir) and cfg['saving']['autofix_log_dir']: LOG_DIR, existing_log_paths = evkit.utils.logging.unused_dir_name(old_log_dir) os.makedirs(LOG_DIR, exist_ok=False) cfg['saving']['log_dir'] = LOG_DIR cfg['saving']['results_log_file'] = os.path.join(LOG_DIR, 'result_log.pkl') cfg['saving']['reward_log_file'] = os.path.join(LOG_DIR, 'rewards.pkl') cfg['saving']['visdom_log_file'] = os.path.join(LOG_DIR, 'visdom_logs.json') changed_log_dir = True # Load checkpoint, config, agent agent = None if cfg['training']['resumable']: if cfg['saving']['checkpoint']: prev_run_path = cfg['saving']['checkpoint'] ckpt_fpath = os.path.join(prev_run_path, 'checkpoints', 'ckpt-latest.dat') if cfg['saving']['checkpoint_configs']: # update configs with values from ckpt prev_run_metadata_paths = [ os.path.join(prev_run_path, f) for f in os.listdir(prev_run_path) if f.endswith('metadata')] prev_run_config_path = os.path.join(prev_run_metadata_paths[0], 'config.json') with open(prev_run_config_path) as f: config = json.load(f) # keys are ['cfg', 'uuid', 'seed'] cfg = update_dict_deepcopy(cfg, config['cfg']) uuid = config['uuid'] logger.warning("Reusing config from {}".format(prev_run_config_path)) if ckpt_fpath is not None and os.path.exists(ckpt_fpath): checkpoint_obj = torch.load(ckpt_fpath) start_epoch = checkpoint_obj['epoch'] logger.info("Loaded learner (epoch {}) from {}".format(start_epoch, ckpt_fpath)) agent = checkpoint_obj['agent'] actor_critic = agent.actor_critic else: logger.warning("No checkpoint found at {}".format(ckpt_fpath)) # Make environment simulator, scenario = cfg['env']['env_name'].split('_') if cfg['env']['transform_fn_pre_aggregation'] is None: cfg['env']['transform_fn_pre_aggregation'] = "None" envs = EnvFactory.vectorized( cfg['env']['env_name'], cfg['training']['seed'], cfg['env']['num_processes'], cfg['saving']['log_dir'], cfg['env']['add_timestep'], env_specific_kwargs = cfg['env']['env_specific_kwargs'], num_val_processes = cfg['env']['num_val_processes'], preprocessing_fn = eval(cfg['env']['transform_fn_pre_aggregation']), addl_repeat_count = cfg['env']['additional_repeat_count'], sensors = cfg['env']['sensors'], vis_interval = cfg['saving']['vis_interval'], visdom_server = cfg['saving']['visdom_server'], visdom_port = cfg['saving']['visdom_port'], visdom_log_file = cfg['saving']['visdom_log_file'], visdom_name = uuid) if 'transform_fn_post_aggregation' in cfg['env'] and cfg['env']['transform_fn_post_aggregation'] is not None: transform, space = eval(cfg['env']['transform_fn_post_aggregation'])(envs.observation_space) envs = ProcessObservationWrapper(envs, transform, space) is_habitat_env = (simulator == 'Habitat') action_space = envs.action_space observation_space = envs.observation_space retained_obs_shape = { k: v.shape for k, v in observation_space.spaces.items() if k in cfg['env']['sensors']} logger.info(f"Action space: {action_space}") logger.info(f"Observation space: {observation_space}") logger.info("Retaining: {}".format(set(observation_space.spaces.keys()).intersection(cfg['env']['sensors'].keys()))) # Finish setting up the agent if agent == None: perception_model = eval(cfg['learner']['perception_network'])( cfg['learner']['num_stack'], **cfg['learner']['perception_network_kwargs']) base = NaivelyRecurrentACModule( perception_unit=perception_model, use_gru=cfg['learner']['recurrent_policy'], internal_state_size=cfg['learner']['internal_state_size']) actor_critic = PolicyWithBase( base, action_space, num_stack=cfg['learner']['num_stack'], takeover=None) if cfg['learner']['use_replay']: agent = evkit.rl.algo.PPOReplay(actor_critic, cfg['learner']['clip_param'], cfg['learner']['ppo_epoch'], cfg['learner']['num_mini_batch'], cfg['learner']['value_loss_coef'], cfg['learner']['entropy_coef'], cfg['learner']['on_policy_epoch'], cfg['learner']['off_policy_epoch'], lr=cfg['learner']['lr'], eps=cfg['learner']['eps'], max_grad_norm=cfg['learner']['max_grad_norm']) else: agent = evkit.rl.algo.PPO(actor_critic, cfg['learner']['clip_param'], cfg['learner']['ppo_epoch'], cfg['learner']['num_mini_batch'], cfg['learner']['value_loss_coef'], cfg['learner']['entropy_coef'], lr=cfg['learner']['lr'], eps=cfg['learner']['eps'], max_grad_norm=cfg['learner']['max_grad_norm']) start_epoch = 0 # Machinery for storing rollouts num_train_processes = cfg['env']['num_processes'] - cfg['env']['num_val_processes'] num_val_processes = cfg['env']['num_val_processes'] assert cfg['env']['num_val_processes'] < cfg['env']['num_processes'], "Can't train without some training processes!" current_obs = StackedSensorDictStorage(cfg['env']['num_processes'], cfg['learner']['num_stack'], retained_obs_shape) current_train_obs = StackedSensorDictStorage(num_train_processes, cfg['learner']['num_stack'], retained_obs_shape) logger.debug(f'Stacked obs shape {current_obs.obs_shape}') if cfg['learner']['use_replay']: rollouts = RolloutSensorDictReplayBuffer( cfg['learner']['num_steps'], num_train_processes, current_obs.obs_shape, action_space, cfg['learner']['internal_state_size'], actor_critic, cfg['learner']['use_gae'], cfg['learner']['gamma'], cfg['learner']['tau'], cfg['learner']['replay_buffer_size']) else: rollouts = RolloutSensorDictStorage( cfg['learner']['num_steps'], num_train_processes, current_obs.obs_shape, action_space, cfg['learner']['internal_state_size']) # Set up logging if cfg['saving']['logging_type'] == 'visdom': mlog = tnt.logger.VisdomMeterLogger( title=uuid, env=uuid, server=cfg['saving']['visdom_server'], port=cfg['saving']['visdom_port'], log_to_filename=cfg['saving']['visdom_log_file']) elif cfg['saving']['logging_type'] == 'tensorboard': mlog = tnt.logger.TensorboardMeterLogger( env=uuid, log_dir=cfg['saving']['log_dir'], plotstylecombined=True) else: raise NotImplementedError("Unknown logger type: ({cfg['saving']['logging_type']})") # Add metrics and logging to TB/Visdom loggable_metrics = ['metrics/rewards', 'diagnostics/dist_perplexity', 'diagnostics/lengths', 'diagnostics/max_importance_weight', 'diagnostics/value', 'losses/action_loss', 'losses/dist_entropy', 'losses/value_loss'] core_metrics = ['metrics/rewards', 'diagnostics/lengths'] debug_metrics = ['debug/input_images'] if 'habitat' in cfg['env']['env_name'].lower(): for metric in ['metrics/spl', 'metrics/success']: loggable_metrics.append(metric) core_metrics.append(metric) for meter in loggable_metrics: mlog.add_meter(meter, tnt.meter.ValueSummaryMeter()) for debug_meter in debug_metrics: mlog.add_meter(debug_meter, tnt.meter.SingletonMeter(), ptype='image') mlog.add_meter('config', tnt.meter.SingletonMeter(), ptype='text') mlog.update_meter(cfg_to_md(cfg, uuid), meters={'config'}, phase='train') # File loggers flog = tnt.logger.FileLogger(cfg['saving']['results_log_file'], overwrite=True) reward_only_flog = tnt.logger.FileLogger(cfg['saving']['reward_log_file'], overwrite=True) # replay data to mlog, move metadata file if changed_log_dir: evkit.utils.logging.replay_logs(existing_log_paths, mlog) evkit.utils.logging.move_metadata_file(old_log_dir, cfg['saving']['log_dir'], uuid) ########## # LEARN! # ########## if cfg['training']['cuda']: current_train_obs = current_train_obs.cuda() current_obs = current_obs.cuda() rollouts.cuda() actor_critic.cuda() # These variables are used to compute average rewards for all processes. episode_rewards = torch.zeros([cfg['env']['num_processes'], 1]) episode_lengths = torch.zeros([cfg['env']['num_processes'], 1]) # First observation obs = envs.reset() current_obs.insert(obs) mask_done = torch.FloatTensor([[0.0] for _ in range(cfg['env']['num_processes'])]).pin_memory() states = torch.zeros(cfg['env']['num_processes'], cfg['learner']['internal_state_size']).pin_memory() # Main loop start_time = time.time() num_updates = int(cfg['training']['num_frames']) // ( cfg['learner']['num_steps'] * cfg['env']['num_processes'] ) logger.info(f"Running until num updates == {num_updates}") for j in range(start_epoch, num_updates, 1): for step in range(cfg['learner']['num_steps']): obs_unpacked = {k: current_obs.peek()[k].peek() for k in current_obs.peek()} if j == start_epoch and step < 10: log_input_images(obs_unpacked, mlog, num_stack=cfg['learner']['num_stack'], key_names=['rgb_filled', 'map'], meter_name='debug/input_images', step_num=step) # Sample actions with torch.no_grad(): value, action, action_log_prob, states = actor_critic.act( obs_unpacked, states.cuda(), mask_done.cuda()) cpu_actions = list(action.squeeze(1).cpu().numpy()) obs, reward, done, info = envs.step(cpu_actions) reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float() # Handle terminated episodes; logging values and computing the "done" mask episode_rewards += reward episode_lengths += (1 + cfg['env']['additional_repeat_count']) mask_done = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done]) for i, (r, l, done_) in enumerate(zip(episode_rewards, episode_lengths, done)): # Logging loop if done_: phase = 'train' if i < num_train_processes else 'val' mlog.update_meter(r, meters={'metrics/rewards'}, phase=phase) mlog.update_meter(l, meters={'diagnostics/lengths'}, phase=phase) if 'habitat' in cfg['env']['env_name'].lower(): mlog.update_meter(info[i]["spl"], meters={'metrics/spl'}, phase=phase) mlog.update_meter(np.ceil(info[i]["spl"]), meters={'metrics/success'}, phase=phase) episode_rewards *= mask_done episode_lengths *= mask_done # Insert the new observation into RolloutStorage if cfg['training']['cuda']: mask_done = mask_done.cuda() for k in obs: if k in current_train_obs.sensor_names: current_train_obs[k].insert(obs[k][:num_train_processes], mask_done[:num_train_processes]) current_obs.insert(obs, mask_done) rollouts.insert(current_train_obs.peek(), states[:num_train_processes], action[:num_train_processes], action_log_prob[:num_train_processes], value[:num_train_processes], reward[:num_train_processes], mask_done[:num_train_processes]) mlog.update_meter(value[:num_train_processes].mean().item(), meters={'diagnostics/value'}, phase='train') # Training update if not cfg['learner']['test']: if not cfg['learner']['use_replay']: # Moderate compute saving optimization (if no replay buffer): # Estimate future-discounted returns only once with torch.no_grad(): next_value = actor_critic.get_value(rollouts.observations.at(-1), rollouts.states[-1], rollouts.masks[-1]).detach() rollouts.compute_returns(next_value, cfg['learner']['use_gae'], cfg['learner']['gamma'], cfg['learner']['tau']) value_loss, action_loss, dist_entropy, max_importance_weight, info = agent.update(rollouts) rollouts.after_update() # For the next iter: initial obs <- current observation # Update meters with latest training info mlog.update_meter(dist_entropy, meters={'losses/dist_entropy'}) mlog.update_meter(np.exp(dist_entropy), meters={'diagnostics/dist_perplexity'}) mlog.update_meter(value_loss, meters={'losses/value_loss'}) mlog.update_meter(action_loss, meters={'losses/action_loss'}) mlog.update_meter(max_importance_weight, meters={'diagnostics/max_importance_weight'}) # Main logging if (j) % cfg['saving']['log_interval'] == 0: n_steps_since_logging = cfg['saving']['log_interval'] * num_train_processes * cfg['learner']['num_steps'] total_num_steps = (j + 1) * num_train_processes * cfg['learner']['num_steps'] logger.info("Update {}, num timesteps {}, FPS {}".format( j + 1, total_num_steps, int(n_steps_since_logging / (time.time() - start_time)) )) for metric in core_metrics: # Log to stdout for mode in ['train', 'val']: if metric in core_metrics or mode == 'train': mlog.print_meter(mode, total_num_steps, meterlist={metric}) for mode in ['train', 'val']: # Log to files results = mlog.peek_meter(phase=mode) reward_only_flog.log(mode, {metric: results[metric] for metric in core_metrics}) if mode == 'train': results['step_num'] = j + 1 flog.log('all_results', results) mlog.reset_meter(total_num_steps, mode=mode) start_time = time.time() # Save checkpoint if j % cfg['saving']['save_interval'] == 0: save_dir_absolute = os.path.join(cfg['saving']['log_dir'], cfg['saving']['save_dir']) save_checkpoint( { 'agent': agent, 'epoch': j }, save_dir_absolute, j) # Clean up (either after ending normally or early [e.g. from a KeyboardInterrupt]) finally: try: if isinstance(envs, list): [env.close() for env in envs] else: envs.close() logger.info("Killed envs.") except UnboundLocalError: logger.info("No envs to kill!") if is_interactive() and __name__ == '__main__': assert LOG_DIR, 'log dir cannot be empty' os.makedirs(LOG_DIR, exist_ok=True) subprocess.call("rm -rf {}/*".format(LOG_DIR), shell=True) ex.observers.append(FileStorageObserverWithExUuid.create(LOG_DIR)) ex.run_commandline( 'run_config with \ uuid="gibson_random" \ cfg.env.num_processes=1\ '.format()) elif __name__ == '__main__': assert LOG_DIR, 'log dir cannot be empty' os.makedirs(LOG_DIR, exist_ok=True) subprocess.call("rm -rf {}/*".format(LOG_DIR), shell=True) ex.observers.append(FileStorageObserverWithExUuid.create(LOG_DIR)) try: ex.run_commandline() except FileNotFoundError as e: logger.error(f'File not found! Are you trying to test an experiment with the uuid: {e}?') raise e else: logger.info(__name__)
53.687204
292
0.561441
78ffc8df031b65a3c88707db240e56f67bfff2d0
979
py
Python
scraper/storage_spiders/aothun24hvn.py
chongiadung/choinho
d2a216fe7a5064d73cdee3e928a7beef7f511fd1
[ "MIT" ]
null
null
null
scraper/storage_spiders/aothun24hvn.py
chongiadung/choinho
d2a216fe7a5064d73cdee3e928a7beef7f511fd1
[ "MIT" ]
10
2020-02-11T23:34:28.000Z
2022-03-11T23:16:12.000Z
scraper/storage_spiders/aothun24hvn.py
chongiadung/choinho
d2a216fe7a5064d73cdee3e928a7beef7f511fd1
[ "MIT" ]
3
2018-08-05T14:54:25.000Z
2021-06-07T01:49:59.000Z
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//span[@id='ctl00_MainContent_ProductDetail1_lblProductName']", 'price' : "//span[@class='price color_red']", 'category' : "", 'description' : "//div[@id='content']/div[@class='content_ct']/div/span", 'images' : "//img[@id='ctl00_MainContent_ProductDetail1_imgPro']/@src", 'canonical' : "", 'base_url' : "", 'brand' : "", 'in_stock' : "", 'guarantee' : "", 'promotion' : "" } name = 'aothun24h.vn' allowed_domains = ['aothun24h.vn'] start_urls = ['http://aothun24h.vn'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [''] rules = [ Rule(LinkExtractor(allow=['/chi-tiet-san-pham/']), 'parse_item'), Rule(LinkExtractor(allow=['/san-pham/']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
32.633333
77
0.640449
6c6c15b177918a6ddf8234e579d02cd1547b5b8f
3,363
py
Python
pepper_snp/modules/python/DataStorePredict.py
Samteymoori/pepper
734d226de47a855952e3b58145c1fcfbe221d3b4
[ "MIT" ]
null
null
null
pepper_snp/modules/python/DataStorePredict.py
Samteymoori/pepper
734d226de47a855952e3b58145c1fcfbe221d3b4
[ "MIT" ]
null
null
null
pepper_snp/modules/python/DataStorePredict.py
Samteymoori/pepper
734d226de47a855952e3b58145c1fcfbe221d3b4
[ "MIT" ]
null
null
null
import h5py import yaml import numpy as np class DataStore(object): """Class to read/write to a FRIDAY's file""" _prediction_path_ = 'predictions' _groups_ = ('position', 'index', 'bases', 'rles') def __init__(self, filename, mode='r'): self.filename = filename self.mode = mode self._sample_keys = set() self.file_handler = h5py.File(self.filename, self.mode) self._meta = None def __exit__(self, *args): if self.mode != 'r' and self._meta is not None: self._write_metadata(self.meta) self.file_handler.close() def _write_metadata(self, data): """Save a data structure to file within a yml str.""" for group, d in data.items(): if group in self.file_handler: del self.file_handler[group] self.file_handler[group] = yaml.dump(d) def _load_metadata(self, groups=None): """Load meta data""" if groups is None: groups = self._groups_ return {g: yaml.load(self.file_handler[g][()]) for g in groups if g in self.file_handler} @property def meta(self): if self._meta is None: self._meta = self._load_metadata() return self._meta def update_meta(self, meta): """Update metadata""" self._meta = self.meta self._meta.update(meta) def write_prediction(self, contig, contig_start, contig_end, chunk_id, position, index, predicted_bases, ref_seq): chunk_name_prefix = str(contig) + "-" + str(contig_start.item()) + "-" + str(contig_end.item()) chunk_name_suffix = str(chunk_id.item()) name = contig + chunk_name_prefix + chunk_name_suffix if 'predictions' not in self.meta: self.meta['predictions'] = set() if 'predictions_contig' not in self.meta: self.meta['predictions_contig'] = set() if chunk_name_prefix not in self.meta['predictions_contig']: self.meta['predictions_contig'].add(chunk_name_prefix) self.file_handler['{}/{}/{}/{}'.format(self._prediction_path_, contig, chunk_name_prefix, 'contig_start')] \ = contig_start.item() self.file_handler['{}/{}/{}/{}'.format(self._prediction_path_, contig, chunk_name_prefix, 'contig_end')] \ = contig_end.item() if name not in self.meta['predictions']: self.meta['predictions'].add(name) self.file_handler['{}/{}/{}/{}/{}'.format(self._prediction_path_, contig, chunk_name_prefix, chunk_name_suffix, 'position')] = np.array(position, dtype=np.int32) self.file_handler['{}/{}/{}/{}/{}'.format(self._prediction_path_, contig, chunk_name_prefix, chunk_name_suffix, 'index')] = np.array(index, dtype=np.int32) # self.file_handler['{}/{}/{}/{}/{}'.format(self._prediction_path_, contig, chunk_name_prefix, # chunk_name_suffix, 'ref_seq')] = np.array(ref_seq, dtype=np.uint8) self.file_handler['{}/{}/{}/{}/{}'.format(self._prediction_path_, contig, chunk_name_prefix, chunk_name_suffix, 'bases')] = predicted_bases.astype(np.int32)
42.56962
122
0.585787
20fcfc2a1f3b6aef0b88a0a2600ea6daecfdcb4c
4,980
py
Python
mitmproxy/addons/serverplayback.py
00cool/project-X
a76988a07311a6e9706197d1ca5c7c5961cfaf9a
[ "MIT" ]
null
null
null
mitmproxy/addons/serverplayback.py
00cool/project-X
a76988a07311a6e9706197d1ca5c7c5961cfaf9a
[ "MIT" ]
1
2021-05-11T20:51:11.000Z
2021-05-11T20:51:11.000Z
mitmproxy/addons/serverplayback.py
00cool/project-X
a76988a07311a6e9706197d1ca5c7c5961cfaf9a
[ "MIT" ]
null
null
null
import hashlib import urllib import typing from typing import Any # noqa from typing import List # noqa from mitmproxy import ctx from mitmproxy import flow from mitmproxy import exceptions from mitmproxy import io from mitmproxy import command import mitmproxy.types class ServerPlayback: def __init__(self): self.flowmap = {} self.stop = False self.final_flow = None self.configured = False @command.command("replay.server") def load_flows(self, flows: typing.Sequence[flow.Flow]) -> None: """ Replay server responses from flows. """ self.flowmap = {} for i in flows: if i.response: # type: ignore l = self.flowmap.setdefault(self._hash(i), []) l.append(i) ctx.master.addons.trigger("update", []) @command.command("replay.server.file") def load_file(self, path: mitmproxy.types.Path) -> None: try: flows = io.read_flows_from_paths([path]) except exceptions.FlowReadException as e: raise exceptions.CommandError(str(e)) self.load_flows(flows) @command.command("replay.server.stop") def clear(self) -> None: """ Stop server replay. """ self.flowmap = {} ctx.master.addons.trigger("update", []) def count(self): return sum([len(i) for i in self.flowmap.values()]) def _hash(self, flow): """ Calculates a loose hash of the flow request. """ r = flow.request _, _, path, _, query, _ = urllib.parse.urlparse(r.url) queriesArray = urllib.parse.parse_qsl(query, keep_blank_values=True) key = [str(r.port), str(r.scheme), str(r.method), str(path)] # type: List[Any] if not ctx.options.server_replay_ignore_content: if ctx.options.server_replay_ignore_payload_params and r.multipart_form: key.extend( (k, v) for k, v in r.multipart_form.items(multi=True) if k.decode(errors="replace") not in ctx.options.server_replay_ignore_payload_params ) elif ctx.options.server_replay_ignore_payload_params and r.urlencoded_form: key.extend( (k, v) for k, v in r.urlencoded_form.items(multi=True) if k not in ctx.options.server_replay_ignore_payload_params ) else: key.append(str(r.raw_content)) if not ctx.options.server_replay_ignore_host: key.append(r.host) filtered = [] ignore_params = ctx.options.server_replay_ignore_params or [] for p in queriesArray: if p[0] not in ignore_params: filtered.append(p) for p in filtered: key.append(p[0]) key.append(p[1]) if ctx.options.server_replay_use_headers: headers = [] for i in ctx.options.server_replay_use_headers: v = r.headers.get(i) headers.append((i, v)) key.append(headers) return hashlib.sha256( repr(key).encode("utf8", "surrogateescape") ).digest() def next_flow(self, request): """ Returns the next flow object, or None if no matching flow was found. """ hsh = self._hash(request) if hsh in self.flowmap: if ctx.options.server_replay_nopop: return self.flowmap[hsh][0] else: ret = self.flowmap[hsh].pop(0) if not self.flowmap[hsh]: del self.flowmap[hsh] return ret def configure(self, updated): if not self.configured and ctx.options.server_replay: self.configured = True try: flows = io.read_flows_from_paths(ctx.options.server_replay) except exceptions.FlowReadException as e: raise exceptions.OptionsError(str(e)) self.load_flows(flows) def tick(self): if self.stop and not self.final_flow.live: ctx.master.addons.trigger("processing_complete") def request(self, f): if self.flowmap: rflow = self.next_flow(f) if rflow: response = rflow.response.copy() response.is_replay = True if ctx.options.refresh_server_playback: response.refresh() f.response = response if not self.flowmap: self.final_flow = f self.stop = True elif ctx.options.replay_kill_extra: ctx.log.warn( "server_playback: killed non-replay request {}".format( f.request.url ) ) f.reply.kill()
33.648649
104
0.554618
0a2e706551d61595debabb4ac0707dcd03e52f61
2,741
py
Python
api/python/quilt3/imports.py
fiskus/quilt
a5945a111a3065ecd23e64d069aa67e42492c5f2
[ "Apache-2.0" ]
null
null
null
api/python/quilt3/imports.py
fiskus/quilt
a5945a111a3065ecd23e64d069aa67e42492c5f2
[ "Apache-2.0" ]
null
null
null
api/python/quilt3/imports.py
fiskus/quilt
a5945a111a3065ecd23e64d069aa67e42492c5f2
[ "Apache-2.0" ]
null
null
null
"""Implementation of the Python Quilt data package loader.""" from importlib.machinery import ModuleSpec import sys from quilt3 import Package from .backends import get_package_registry MODULE_PATH = [] class DataPackageImporter: """ Data package module loader. Executes package import code and adds the package to the module cache. """ @classmethod def create_module(cls, spec): # pylint: disable=unused-argument """ Module creator. Returning None causes Python to use the default module creator. """ return None @classmethod def exec_module(cls, module): """ Module executor. """ name_parts = module.__name__.split('.') if module.__name__ == 'quilt3.data': # __path__ must be set even if the package is virtual. Since __path__ will be # scanned by all other finders preceding this one in sys.meta_path order, make sure # it points to someplace lacking importable objects module.__path__ = MODULE_PATH return module elif len(name_parts) == 3: # e.g. module.__name__ == quilt3.data.foo namespace = name_parts[2] # we do not know the name the user will ask for, so populate all valid names registry = get_package_registry() for pkg in registry.list_packages(): pkg_user, pkg_name = pkg.split('/') if pkg_user == namespace: module.__dict__[pkg_name] = Package._browse(pkg, registry=registry) module.__path__ = MODULE_PATH return module else: assert False # pylint: disable=too-few-public-methods class DataPackageFinder: """ Data package module loader finder. This class sits on `sys.meta_path` and returns the loader it knows for a given path, if it knows a compatible loader. """ @classmethod def find_spec(cls, fullname, path=None, target=None): # pylint: disable=unused-argument """ This functions is what gets executed by the loader. """ # an implementation for subpackage imports exists, but this has significant # consistency issues. For now let's avoid, but you can see the full code at # https://github.com/ResidentMario/package-autorelaod/blob/master/loader.py name_parts = fullname.split('.') if name_parts[:2] != ['quilt3', 'data'] or len(name_parts) > 3: return None else: return ModuleSpec(fullname, DataPackageImporter()) def start_data_package_loader(): """ Adds the data package loader to the module loaders. """ sys.meta_path.append(DataPackageFinder())
33.426829
95
0.639548
27a865939eb4c676aeb0638fd80ef8d72fab8217
32,263
py
Python
mailpile/mail_source/__init__.py
pall-valmundsson/Mailpile
6f2544860f64e53f4231358f3f63669b5f1134ed
[ "Apache-2.0" ]
null
null
null
mailpile/mail_source/__init__.py
pall-valmundsson/Mailpile
6f2544860f64e53f4231358f3f63669b5f1134ed
[ "Apache-2.0" ]
null
null
null
mailpile/mail_source/__init__.py
pall-valmundsson/Mailpile
6f2544860f64e53f4231358f3f63669b5f1134ed
[ "Apache-2.0" ]
null
null
null
import os import random import re import thread import threading import traceback import time import mailpile.util from mailpile.eventlog import Event from mailpile.i18n import gettext as _ from mailpile.i18n import ngettext as _n from mailpile.mailboxes import * from mailpile.mailutils import FormatMbxId from mailpile.util import * __all__ = ['mbox', 'maildir', 'imap'] class BaseMailSource(threading.Thread): """ MailSources take care of managing a group of mailboxes, synchronizing the source with Mailpile's local metadata and/or caches. """ DEFAULT_JITTER = 15 # Fudge factor to tame thundering herds SAVE_STATE_INTERVAL = 3600 # How frequently we pickle our state INTERNAL_ERROR_SLEEP = 900 # Pause time on error, in seconds RESCAN_BATCH_SIZE = 250 # Index at most this many new e-mails at once MAX_MAILBOXES = 100 # Max number of mailboxes we add MAX_PATHS = 5000 # Abort if asked to scan too many directories # This is a helper for the events. __classname__ = 'mailpile.mail_source.BaseMailSource' def __init__(self, session, my_config): threading.Thread.__init__(self) self.daemon = mailpile.util.TESTING self._lock = MSrcRLock() self.my_config = my_config self.name = my_config.name self.session = session self.alive = None self.event = None self.jitter = self.DEFAULT_JITTER self._state = 'Idle' self._sleeping = None self._interrupt = None self._rescanning = False self._rescan_waiters = [] self._loop_count = 0 self._last_rescan_count = 0 self._last_rescan_completed = False self._last_rescan_failed = False self._last_saved = time.time() # Saving right away would be silly def __str__(self): rv = ': '.join([threading.Thread.__str__(self), self._state]) if self._sleeping > 0: rv += '(%s)' % self._sleeping return rv def _pfn(self): return 'mail-source.%s' % self.my_config._key def _load_state(self): with self._lock: config, my_config = self.session.config, self.my_config events = list(config.event_log.incomplete(source=self, data_id=my_config._key)) if events: self.event = events[0] else: self.event = config.event_log.log( source=self, flags=Event.RUNNING, message=_('Starting up'), data={'id': my_config._key}) if 'counters' not in self.event.data: self.event.data['counters'] = {} for c in ('copied_messages', 'indexed_messages', 'unknown_policies'): if c not in self.event.data['counters']: self.event.data['counters'][c] = 0 def _save_state(self): self.session.config.event_log.log_event(self.event) def _save_config(self): self.session.config.save_worker.add_unique_task( self.session, 'Save config', self.session.config.save) def _log_status(self, message): self.event.message = message self.session.config.event_log.log_event(self.event) self.session.ui.mark(message) if 'sources' in self.session.config.sys.debug: self.session.ui.debug('%s: %s' % (self, message)) def open(self): """Open mailboxes or connect to the remote mail source.""" raise NotImplemented('Please override open in %s' % self) def close(self): """Close mailboxes or disconnect from the remote mail source.""" raise NotImplemented('Please override open in %s' % self) def _has_mailbox_changed(self, mbx, state): """For the default sync_mail routine, report if mailbox changed.""" raise NotImplemented('Please override _has_mailbox_changed in %s' % self) def _mark_mailbox_rescanned(self, mbx, state): """For the default sync_mail routine, note mailbox was rescanned.""" raise NotImplemented('Please override _mark_mailbox_rescanned in %s' % self) def _path(self, mbx): if mbx.path.startswith('@'): return self.session.config.sys.mailbox[mbx.path[1:]] else: return mbx.path def _check_interrupt(self, clear=True): if mailpile.util.QUITTING or self._interrupt: if clear: self._log_status(_('Interrupted: %s') % (self._interrupt or _('Quitting'))) self._interrupt = None return True else: return False def _sorted_mailboxes(self): mailboxes = self.my_config.mailbox.values() mailboxes.sort(key=lambda m: ('inbox' in m.name.lower() and 1 or 2, 'sent' in m.name.lower() and 1 or 2, m.name)) return mailboxes def sync_mail(self): """Iterates through all the mailboxes and scans if necessary.""" config = self.session.config self._last_rescan_count = rescanned = errors = 0 self._last_rescan_completed = True self._last_rescan_failed = False self._interrupt = None batch = self.RESCAN_BATCH_SIZE errors = rescanned = 0 ostate = self._state for mbx_cfg in self._sorted_mailboxes(): try: with self._lock: mbx_key = FormatMbxId(mbx_cfg._key) path = self._path(mbx_cfg) if (path in ('/dev/null', '', None) or mbx_cfg.policy in ('ignore', 'unknown')): continue # Generally speaking, we only rescan if a mailbox looks like # it has changed. However, 1/50th of the time we take a look # anyway just in case looks are deceiving. state = {} if batch > 0 and (self._has_mailbox_changed(mbx_cfg, state) or random.randint(0, 50) == 10): self._state = 'Waiting... (rescan)' if self._check_interrupt(clear=False): self._last_rescan_completed = False break count = self.rescan_mailbox(mbx_key, mbx_cfg, path, stop_after=batch) if count >= 0: self.event.data['counters' ]['indexed_messages'] += count batch -= count complete = ((count == 0 or batch > 0) and not self._interrupt and not mailpile.util.QUITTING) if complete: rescanned += 1 # If there was a copy, check if it completed if not self.event.data.get('copying', {'complete': True} ).get('complete'): complete = False # If there was a rescan, check if it completed if not self.event.data.get('rescan', {'complete': True} ).get('complete'): complete = False # OK, everything looks complete, mark it! if complete: self._mark_mailbox_rescanned(mbx_cfg, state) else: self._last_rescan_completed = False else: self._last_rescan_failed = True self._last_rescan_completed = False errors += 1 except (NoSuchMailboxError, IOError, OSError): self._last_rescan_failed = True errors += 1 except: self._last_rescan_failed = True self._log_status(_('Internal error')) raise self._state = 'Waiting... (disco)' discovered = 0 if not self._check_interrupt(): discovered = self.discover_mailboxes() status = [] if discovered > 0: status.append(_('Discovered %d mailboxes') % discovered) if discovered < 1 or rescanned > 0: status.append(_('Rescanned %d mailboxes') % rescanned) if errors: status.append(_('Failed to rescan %d') % errors) self._log_status(', '.join(status)) self._last_rescan_count = rescanned self._state = ostate return rescanned def _jitter(self, seconds): return seconds + random.randint(0, self.jitter) def _sleep(self, seconds): if self._sleeping != 0: self._sleeping = seconds while (self.alive and self._sleeping > 0 and not mailpile.util.QUITTING): time.sleep(min(1, self._sleeping)) self._sleeping -= 1 self._sleeping = None play_nice_with_threads() return (self.alive and not mailpile.util.QUITTING) def _existing_mailboxes(self): return set(self.session.config.sys.mailbox + [mbx_cfg.local for mbx_cfg in self.my_config.mailbox.values() if mbx_cfg.local]) def _update_unknown_state(self): have_unknown = 0 for mailbox in self.my_config.mailbox.values(): if mailbox.policy == 'unknown': have_unknown += 1 self.event.data['counters']['unknown_policies'] = have_unknown self.event.data['have_unknown'] = (have_unknown > 0) def discover_mailboxes(self, paths=None): config = self.session.config self._log_status(_('Checking for new mailboxes')) ostate, self._state = self._state, 'Discovery' try: existing = self._existing_mailboxes() max_mailboxes = self.MAX_MAILBOXES - len(existing) adding = [] paths = (paths or self.my_config.discovery.paths)[:] while paths: raw_fn = paths.pop(0) fn = os.path.normpath(os.path.expanduser(raw_fn)) fn = os.path.abspath(fn) if not os.path.exists(fn): continue if (raw_fn not in existing and fn not in existing and fn not in adding): if self.is_mailbox(fn): adding.append(fn) if len(adding) > max_mailboxes: break if os.path.isdir(fn): try: for f in [f for f in os.listdir(fn) if f not in ('.', '..')]: nfn = os.path.join(fn, f) if (len(paths) <= self.MAX_PATHS and os.path.isdir(nfn)): paths.append(nfn) elif self.is_mailbox(nfn): paths.append(nfn) except OSError: pass if len(adding) > max_mailboxes: break new = {} for path in adding: new[config.sys.mailbox.append(path)] = path for mailbox_idx in new.keys(): mbx_cfg = self.take_over_mailbox(mailbox_idx, save=False) if mbx_cfg.policy != 'unknown': del new[mailbox_idx] if adding: self._save_config() return len(adding) finally: self._state = ostate def take_over_mailbox(self, mailbox_idx, save=True): config = self.session.config disco_cfg = self.my_config.discovery # Stayin' alive! Stayin' alive! with self._lock: mailbox_idx = FormatMbxId(mailbox_idx) self.my_config.mailbox[mailbox_idx] = { 'path': '@%s' % mailbox_idx, 'policy': disco_cfg.policy, 'process_new': disco_cfg.process_new, } mbx_cfg = self.my_config.mailbox[mailbox_idx] mbx_cfg.apply_tags.extend(disco_cfg.apply_tags) mbx_cfg.name = self._mailbox_name(self._path(mbx_cfg)) if disco_cfg.guess_tags: self._guess_tags(mbx_cfg) self._create_primary_tag(mbx_cfg, save=False) self._create_local_mailbox(mbx_cfg, save=False) if save: self._save_config() return mbx_cfg def _guess_tags(self, mbx_cfg): if not mbx_cfg.name: return name = mbx_cfg.name.lower() tags = set(mbx_cfg.apply_tags) for tagtype in ('inbox', 'drafts', 'sent', 'spam'): for tag in self.session.config.get_tags(type=tagtype): if (tag.name.lower() in name or _(tag.name).lower() in name): tags.add(tag._key) mbx_cfg.apply_tags = sorted(list(tags)) def _mailbox_name(self, path): return path.split('/')[-1] def _create_local_mailbox(self, mbx_cfg, save=True): config = self.session.config disco_cfg = self.my_config.discovery if mbx_cfg.local and mbx_cfg.local != '!CREATE': if not os.path.exists(mbx_cfg.local): config.flush_mbox_cache(self.session) path, wervd = config.create_local_mailstore(self.session, name=mbx_cfg.local) wervd.is_local = mbx_cfg._key mbx_cfg.local = path if save: self._save_config() elif mbx_cfg.local == '!CREATE' or disco_cfg.local_copy: config.flush_mbox_cache(self.session) path, wervd = config.create_local_mailstore(self.session) wervd.is_local = mbx_cfg._key mbx_cfg.local = path if save: self._save_config() return mbx_cfg def _create_parent_tag(self, save=True): disco_cfg = self.my_config.discovery if disco_cfg.parent_tag: if disco_cfg.parent_tag == '!CREATE': name = (self.my_config.name or (self.my_config.username or '').split('@')[-1] or (disco_cfg.paths and os.path.basename(disco_cfg.paths[0])) or self.my_config._key) if len(name) < 4: name = _('Mail: %s') % name disco_cfg.parent_tag = name disco_cfg.parent_tag = self._create_tag(disco_cfg.parent_tag, use_existing=False, label=False, icon='icon-mailsource', unique=False) if save: self._save_config() return disco_cfg.parent_tag else: return None def _create_primary_tag(self, mbx_cfg, save=True): config = self.session.config if mbx_cfg.primary_tag and (mbx_cfg.primary_tag in config.tags): return # Stayin' alive! Stayin' alive! disco_cfg = self.my_config.discovery if not disco_cfg.create_tag: return # Make sure we have a parent tag, as that maybe useful when creating # tag names or the primary tag itself. parent = self._create_parent_tag(save=False) # We configure the primary_tag with a name, if it doesn't have # one already. if not mbx_cfg.primary_tag: mbx_cfg.primary_tag = self._create_tag_name(self._path(mbx_cfg)) # If we have a policy for this mailbox, we really go and create # tags. The gap here allows the user to edit the primary_tag # proposal before changing the policy from 'unknown'. if mbx_cfg.policy != 'unknown': try: with_icon, as_label = None, True if mbx_cfg.apply_tags: # Hmm. Is this too clever? Rationale: if we are always # applying other tags automatically, then we don't need to # make the primary tag a label, that's just clutter. Yes? as_label = False # Furthermore, when displaying this tag, it makes sense # to use the icon from the other tag we're applying to. # these messages. Maybe. try: with_icon = config.tags[mbx_cfg.apply_tags[0]].icon except (KeyError, ValueError): pass mbx_cfg.primary_tag = self._create_tag(mbx_cfg.primary_tag, use_existing=False, label=as_label, icon=with_icon, unique=False, parent=parent) except (ValueError, IndexError): self.session.ui.debug(traceback.format_exc()) if save: self._save_config() BORING_FOLDER_RE = re.compile('(?i)^(home|mail|data|user\S*|[^a-z]+)$') def _path_to_tagname(self, path): # -> tag name """This converts a path to a tag name.""" path = path.replace('/.', '/') parts = ('/' in path) and path.split('/') or path.split('\\') parts = [p for p in parts if not re.match(self.BORING_FOLDER_RE, p)] tagname = parts.pop(-1).split('.')[0] # if self.my_config.name: # tagname = '%s/%s' % (self.my_config.name, tagname) return CleanText(tagname.replace('_', ' '), banned=CleanText.NONALNUM + '{}[]').clean def _unique_tag_name(self, tagname): # -> unused tag name """This makes sure a tagname really is unused""" tagnameN, count = tagname, 2 while self.session.config.get_tags(tagnameN): tagnameN = '%s (%s)' % (tagname, count) count += 1 return tagnameN def _create_tag_name(self, path): # -> unique tag name """Convert a path to a unique tag name.""" return self._unique_tag_name(self._path_to_tagname(path)) def _create_tag(self, tag_name_or_id, use_existing=True, unique=False, label=True, icon=None, parent=None): # -> tag ID if tag_name_or_id in self.session.config.tags: # Short circuit if this is a tag ID for an existing tag return tag_name_or_id else: tag_name = tag_name_or_id tags = self.session.config.get_tags(tag_name) if tags and unique: raise ValueError('Tag name is not unique!') elif len(tags) == 1 and use_existing: tag_id = tags[0]._key elif len(tags) > 1: raise ValueError('Tag name matches multiple tags!') else: from mailpile.plugins.tags import AddTag, Slugify bogus_name = 'New-Tag-%s' % len(str(self.session.config)) AddTag(self.session, arg=[bogus_name]).run(save=False) tags = self.session.config.get_tags(bogus_name) if tags: tags[0].slug = Slugify(tag_name, self.session.config.tags) tags[0].name = tag_name tags[0].label = label if icon: tags[0].icon = icon if parent: tags[0].parent = parent tag_id = tags[0]._key else: raise ValueError('Failed to create tag?') return tag_id def interrupt_rescan(self, reason): self._interrupt = reason or _('Aborted') if self._rescanning: self.session.config.index.interrupt = reason def _process_new(self, msg, msg_ts, keywords, snippet): return ProcessNew(self.session, msg, msg_ts, keywords, snippet) def _copy_new_messages(self, mbx_key, mbx_cfg, stop_after=-1, scan_args=None): session, config = self.session, self.session.config self.event.data['copying'] = progress = { 'running': True, 'mailbox_id': mbx_key, 'copied_messages': 0, 'copied_bytes': 0, 'complete': False } scan_args = scan_args or {} count = 0 try: with self._lock: src = config.open_mailbox(session, mbx_key, prefer_local=False) loc = config.open_mailbox(session, mbx_key, prefer_local=True) if src == loc: return count # Perform housekeeping on the source_map, to make sure it does # not grow without bounds or misrepresent things. gone = [] src_keys = set(src.keys()) loc_keys = set(loc.keys()) for key, val in loc.source_map.iteritems(): if (val not in loc_keys) or (key not in src_keys): gone.append(key) for key in gone: del loc.source_map[key] # Figure out what actually needs to be downloaded, log it keys = sorted(src_keys - set(loc.source_map.keys())) progress.update({ 'total': len(src_keys), 'total_local': len(loc_keys), 'uncopied': len(keys), 'batch_size': stop_after if (stop_after > 0) else len(keys) }) # Go download! for key in reversed(keys): if self._check_interrupt(clear=False): progress['interrupted'] = True return count play_nice_with_threads() session.ui.mark(_('Copying message: %s') % key) progress['copying_src_id'] = key data = src.get_bytes(key) loc_key = loc.add_from_source(key, data) self.event.data['counters']['copied_messages'] += 1 del progress['copying_src_id'] progress['copied_messages'] += 1 progress['copied_bytes'] += len(data) progress['uncopied'] -= 1 # This forks off a scan job to index the message config.index.scan_one_message( session, mbx_key, loc, loc_key, wait=False, msg_data=data, **scan_args) stop_after -= 1 if stop_after == 0: progress['stopped'] = True return count progress['complete'] = True except IOError: # These just abort the download/read, which we're going to just # take in stride for now. progress['ioerror'] = True except: progress['raised'] = True raise finally: progress['running'] = False return count def rescan_mailbox(self, mbx_key, mbx_cfg, path, stop_after=None): session, config = self.session, self.session.config with self._lock: if self._rescanning: return -1 self._rescanning = True mailboxes = len(self.my_config.mailbox) try: ostate, self._state = self._state, 'Rescan(%s, %s)' % (mbx_key, stop_after) with self._lock: apply_tags = mbx_cfg.apply_tags[:] parent = self._create_parent_tag(save=True) if parent: tid = config.get_tag_id(parent) if tid: apply_tags.append(tid) self._create_primary_tag(mbx_cfg) if mbx_cfg.primary_tag: tid = config.get_tag_id(mbx_cfg.primary_tag) if tid: apply_tags.append(tid) scan_mailbox_args = { 'process_new': (mbx_cfg.process_new and self._process_new or False), 'apply_tags': (apply_tags or []), 'stop_after': stop_after, 'event': self.event } count = 0 if mbx_cfg.local or self.my_config.discovery.local_copy: # Note: We copy fewer messages than the batch allows for, # because we might have been aborted on an earlier run and # the rescan may need to catch up. We also start with smaller # batch sizes, because folks are impatient. self._create_local_mailbox(mbx_cfg) max_copy = min(self._loop_count * 10, int(1 + stop_after / (mailboxes + 1))) self._log_status(_('Copying mail: %s (max=%d)' ) % (path, max_copy)) count += self._copy_new_messages(mbx_key, mbx_cfg, stop_after=max_copy, scan_args=scan_mailbox_args) # Wait for background message scans to complete... config.scan_worker.do(session, 'Wait', lambda: 1) play_nice_with_threads() self._log_status(_('Rescanning: %s') % path) if 'rescans' in self.event.data: self.event.data['rescans'][:-mailboxes] = [] return count + config.index.scan_mailbox(session, mbx_key, mbx_cfg.local or path, config.open_mailbox, **scan_mailbox_args) except ValueError: session.ui.debug(traceback.format_exc()) return -1 finally: self._state = ostate self._rescanning = False def open_mailbox(self, mbx_id, fn): # This allows mail sources to override the default mailbox # opening mechanism. Returning false respectfully declines. return None def is_mailbox(self, fn): return False def run(self): with self.session.config.index_check: self.alive = True self._load_state() self.event.flags = Event.RUNNING _original_session = self.session def sleeptime(): if self._last_rescan_completed or self._last_rescan_failed: return self.my_config.interval else: return 1 self._loop_count = 0 while self._loop_count == 0 or self._sleep(self._jitter(sleeptime())): self._loop_count += 1 if not self.my_config.enabled: break self.name = self.my_config.name # In case the config changes self._update_unknown_state() if not self.session.config.index: continue waiters, self._rescan_waiters = self._rescan_waiters, [] for b, e, s in waiters: try: b.release() except thread.error: pass if s: self.session = s try: if 'traceback' in self.event.data: del self.event.data['traceback'] if self.open(): self.sync_mail() else: self._log_conn_errors() next_save_time = self._last_saved + self.SAVE_STATE_INTERVAL if self.alive and time.time() >= next_save_time: self._save_state() if not self.my_config.keepalive: self.close() elif (self._last_rescan_completed and not self.my_config.keepalive): self.close() except: self.event.data['traceback'] = traceback.format_exc() self.session.ui.debug(self.event.data['traceback']) self._log_status(_('Internal error! Sleeping...')) self._sleep(self.INTERNAL_ERROR_SLEEP) finally: for b, e, s in waiters: try: e.release() except thread.error: pass self.session = _original_session self._update_unknown_state() self._save_state() # self.event.flags = Event.COMPLETE self._log_status(_('Shut down')) def _log_conn_errors(self): if 'connection' in self.event.data: cinfo = self.event.data['connection'] if not cinfo.get('live'): err_msg = cinfo.get('error', [None, None])[1] if err_msg: self._log_status(err_msg) def wake_up(self, after=0): self._sleeping = after def rescan_now(self, session=None, started_callback=None): begin, end = MSrcLock(), MSrcLock() for l in (begin, end): l.acquire() try: self._rescan_waiters.append((begin, end, session)) self.wake_up() while not begin.acquire(False): time.sleep(1) if mailpile.util.QUITTING: return self._last_rescan_count if started_callback: started_callback() while not end.acquire(False): time.sleep(1) if mailpile.util.QUITTING: return self._last_rescan_count return self._last_rescan_count except KeyboardInterrupt: self.interrupt_rescan(_('User aborted')) raise finally: for l in (begin, end): try: l.release() except thread.error: pass def quit(self, join=False): self.interrupt_rescan(_('Shut down')) self.alive = False self.wake_up() if join: self.join() def ProcessNew(session, msg, msg_ts, keywords, snippet): if 'r' in msg.get('status', '').lower(): return False keywords.update(['%s:in' % tag._key for tag in session.config.get_tags(type='unread')]) return True def MailSource(session, my_config): # FIXME: check the plugin and instanciate the right kind of mail source # for this config section. if my_config.protocol in ('mbox',): from mailpile.mail_source.mbox import MboxMailSource return MboxMailSource(session, my_config) elif my_config.protocol in ('maildir',): from mailpile.mail_source.maildir import MaildirMailSource return MaildirMailSource(session, my_config) elif my_config.protocol in ('imap', 'imap_ssl'): from mailpile.mail_source.imap import ImapMailSource return ImapMailSource(session, my_config) elif my_config.protocol in ('pop3', 'pop3_ssl'): from mailpile.mail_source.pop3 import Pop3MailSource return Pop3MailSource(session, my_config) raise ValueError(_('Unknown mail source protocol: %s' ) % my_config.protocol)
39.880099
79
0.521092
0fbb13876697fecd10ae9e9f60284cba938814dd
14,048
py
Python
src/logplot/logging_plotting.py
shartoo/merlin-tf-slim
4c7d48d5f634273dd51d2e29562d3ed1195d9151
[ "Apache-2.0" ]
null
null
null
src/logplot/logging_plotting.py
shartoo/merlin-tf-slim
4c7d48d5f634273dd51d2e29562d3ed1195d9151
[ "Apache-2.0" ]
null
null
null
src/logplot/logging_plotting.py
shartoo/merlin-tf-slim
4c7d48d5f634273dd51d2e29562d3ed1195d9151
[ "Apache-2.0" ]
null
null
null
################################################################################ # The Neural Network (NN) based Speech Synthesis System # https://svn.ecdf.ed.ac.uk/repo/inf/dnn_tts/ # # Centre for Speech Technology Research # University of Edinburgh, UK # Copyright (c) 2014-2015 # All Rights Reserved. # # The system as a whole and most of the files in it are distributed # under the following copyright and conditions # # Permission is hereby granted, free of charge, to use and distribute # this software and its documentation without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of this work, and to # permit persons to whom this work is furnished to do so, subject to # the following conditions: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # - The authors' names may not be used to endorse or promote products derived # from this software without specific prior written permission. # # THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK # DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING # ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT # SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE # FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN # AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, # ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF # THIS SOFTWARE. ################################################################################ # NOTES # still to consider: pygal, for HTML5 SVG plotting # this module provides the base classes that we specialise here import logging # as logging import os import string # for plotting import matplotlib # should make this user-configurable - TO DO later # this line has to come before the import of matplotlib.pyplot matplotlib.use('PDF') import matplotlib.pyplot as plt import pylab # matplotlib needs to be passed numpy arrays import numpy # for sorting tuples from operator import itemgetter # TO DO - this needs to be attached to the logging module so that it's available via config options # class PlotHandler(logging.FileHandler): # """A handler for saving plots to disk""" # def __init__(self,filename): # logging.FileHandler.__init__(self,filename, mode='a', encoding=None, delay=False) class PlotWithData(object): # a generic plot object that contains both the underlying data and the plot itself # this class needs to be subclassed for each specialised type of plot that we want # the underlying data for the plot - a dictionary of data series # each series is a list of data points of arbitrary type (e.g., tuples, arrays, ..) data = None # the plot generated from these data plot = None def __init__(self, name): # clear the data series self.data = {} def add_data_point(self, series_name, data_point): # if there is no data series with this name yet, create an empty one if series_name not in self.data: self.data[series_name] = [] # append this data point (e.g., it might be a tuple (x,y) ) # don't worry about data type or sorting - that is not our concern here self.data[series_name].append(data_point) def sort_and_validate(self): # only applied if the data points are tuples, such as (x,y) values # TO DO: first check that each series is a list of tuples, and that they have the same number of elements # this method checks that all data series # 1. have the same length # 2. are sorted in ascending order of x # 3. have identical values in their x series # there has to be at least one data series try: assert len(self.data) > 0 except AssertionError: logger.critical('No data series found in plot') raise # check lengths are consistent, sort, then check x values are identical l = -1 reference_x = None # print "starting with self.data=",self.data for series_name, data_points in self.data.items(): if l > 0: assert l == len(data_points) else: l = len(data_points) # sort by ascending x value data_points.sort(key=itemgetter(0)) if reference_x: assert reference_x == [seq[0] for seq in data_points] else: # extract a list of just the x values reference_x = [seq[0] for seq in data_points] # print "ending with self.data=",self.data def generate_plot(self, **kwargs): logger = logging.getLogger("plotting") logger.error('Cannot generate a plot from abstract class: PlotWithData') # raise an exception here? class MultipleSeriesPlot(PlotWithData): def generate_plot(self, filename, title='', xlabel='', ylabel='', xlim=None, ylim=None): logger = logging.getLogger("plotting") logger.debug('MultipleSeriesPlot.generate_plot') # a plot with one or more time series sharing a common x axis: # e.g., the training error and the validation error plotted against epochs # sort the data series and make sure they are consistent self.sort_and_validate() # if there is a plot already in existence, we will clear it and re-use it; # this avoids creating extraneous figures which will stay in memory # (even if we are no longer referencing them) if self.plot: self.plot.clf() else: # create a plot self.plot = plt.figure() splt = self.plot.add_subplot(1, 1, 1) splt.set_title(title) splt.set_xlabel(xlabel) splt.set_ylabel(ylabel) if xlim: pylab.xlim(xlim) if ylim: pylab.ylim(ylim) for series_name, data_points in self.data.items(): xpoints = numpy.asarray([seq[0] for seq in data_points]) ypoints = numpy.asarray([seq[1] for seq in data_points]) line, = splt.plot(xpoints, ypoints, '-', linewidth=2) logger.debug('set_label for %s' % series_name) line.set_label(series_name) splt.legend() # TO DO - better filename configuration for plots self.plot.savefig(filename) class SingleWeightMatrixPlot(PlotWithData): def generate_plot(self, filename, title='', xlabel='', ylabel=''): data_keys = list(self.data.keys()) key_num = len(data_keys) self.plot = plt.figure() if key_num == 1: splt = self.plot.add_subplot(1, 1, 1) im_data = splt.imshow(numpy.flipud(self.data[data_keys[0]][0]), origin='lower') splt.set_xlabel(xlabel) splt.set_ylabel(ylabel) splt.set_title(title) else: ## still plotting multiple image in one figure still has problem. the visualization is not good logger.error('no supported yet') self.plot.colorbar(im_data) self.plot.savefig(filename) # , bbox_inches='tight' # class MultipleLinesPlot(PlotWithData): # def generate_plot(self, filename, title='', xlabel='', ylabel=''): class LoggerPlotter(logging.getLoggerClass()): """Based on the built-in logging class, with added capabilities including plotting""" # a dictionary to store all generated plots # keys are plot names # values are plots = {} # where the plots will be saved - a directory plot_path = '/tmp' # default location def __init__(self, name): # initialise the logging parent class # (should really use 'super' here I think, but that fails - perhaps because the built in logger class is not derived from 'object' ?) logging.Logger.__init__(self, name) def set_plot_path(self, path): self.plot_path = path def remove_all_plots(self): self.plots = {} def create_plot(self, plot_name, plot_object): self.plots[plot_name] = plot_object(plot_name) def add_plot_point(self, plot_name, series_name, data_point): # add a data point to a named plot if plot_name not in self.plots: self.plots[plot_name] = PlotWithData(plot_name) self.plots[plot_name].add_data_point(series_name, data_point) def save_plot(self, plot_name, **kwargs): logger = logging.getLogger("plotting") if plot_name not in self.plots: logger.warn('Tried to generate a plot called %s that does not exist' % plot_name) # raise an exception here? else: # # the filename to save to is known by the handler, which needs to be assigned to this logger # # look at the handlers attached to this logger instance # ph=None # for h in self.handlers: # # we want an instance of a PlotHandler - we'll take the first one we find # # (behaviour will be unpredictable if there is more than one handler of this type) # if isinstance(h,PlotHandler): # ph=h # break # if ph: # TO DO - need to be sure of safe file names if not os.path.isdir(self.plot_path): os.makedirs(self.plot_path) filename = self.plot_path + "/" + string.replace(plot_name, " ", "_") + ".pdf" logger.info('Generating a plot in file %s' % filename) self.plots[plot_name].generate_plot(filename, **kwargs) # else: # logger.warn('No handler of type PlotHandler is attached to this logger - cannot save plots') class ColouredFormatter(logging.Formatter): # colourising formatter adapted from an answer to this question on Stack Overflow # http://stackoverflow.com/questions/384076/how-can-i-color-python-logging-output BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = list(range(8)) COLOURS = { 'DEBUG': BLUE, 'INFO': GREEN, 'WARNING': YELLOW, 'ERROR': RED, 'CRITICAL': MAGENTA } max_level_name_width = '8' # terminal escape sequences RESET_SEQ = "\033[0m" COLOUR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" def format(self, record): if record.levelname in self.COLOURS: # pad to fixed width - currently hardwired, should make this dynamic # maximum width of level names, which is the 8 characters of "CRITICAL" fixed_width_levelname = '{0:8s}'.format(record.levelname) record.name = '{0:8s}'.format(record.name) # The background is set with 40 plus the number of the color, and the foreground with 30 record.levelname = self.COLOUR_SEQ % ( 30 + self.COLOURS[record.levelname]) + fixed_width_levelname + self.RESET_SEQ return logging.Formatter.format(self, record) def factory(fmt, datefmt): default = logging.Formatter(fmt, datefmt) return ColouredFormatter(default) if __name__ == '__main__': # some simple tests # tell the built-in logger module to use our custom class when instantiating any new logger logging.setLoggerClass(LoggerPlotter) logger = logging.getLogger("test_logger") logger.setLevel(logging.DEBUG) # a console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = ColouredFormatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) print("testing the logging code") logger.debug('A DEBUG message') logger.info('A INFO message') logger.warning('A WARN message') logger.error('A ERROR message') logger.critical('A CRITICAL message') plotlogger = logging.getLogger("plotting") plotlogger.setLevel(logging.DEBUG) # handler for plotting logger - will write only to console plotlogger.addHandler(ch) # # need a handler which will control where to save plots # ph = PlotHandler("/tmp/plot_test/testing.pdf") # logger.addHandler(ph) print("testing the plotting code") # the first argument is just a key for referring to this plot within the code # the second argument says what kind of plot we will be making plotlogger.set_plot_path("./tmp") logger.create_plot('test plot', MultipleTimeSeriesPlot) plotlogger.add_plot_point('test plot', 'validation', (1, 4)) plotlogger.add_plot_point('test plot', 'validation', (3, 2)) plotlogger.add_plot_point('test plot', 'validation', (2, 3)) plotlogger.add_plot_point('test plot', 'validation', (4, 3)) plotlogger.add_plot_point('test plot', 'training', (1, 3)) plotlogger.add_plot_point('test plot', 'training', (3, 1)) plotlogger.add_plot_point('test plot', 'training', (2, 2)) plotlogger.add_plot_point('test plot', 'training', (4, 4)) plotlogger.save_plot('test plot', title='Training and validation error', xlabel='epochs', ylabel='error') weights = [[1, 2, 3, 3], [1, 1, 2, 1], [2, 1, 2, 2]] logger.create_plot('activation weight', SingleWeightMatrixPlot) plotlogger.add_plot_point('activation weight', 'weight1', weights) plotlogger.add_plot_point('activation weight', 'weight2', weights) plotlogger.add_plot_point('activation weight', 'weight3', weights) plotlogger.save_plot('activation weight', title='weight', xlabel='dimension', ylabel='dimension')
38.80663
141
0.648206
3fb8331d39fca6a3bddae2b0f547188a36990a53
1,803
py
Python
tests/python/unittest/test_tir_transform_lower_init_block.py
Exhorder6/tvm
7e3f068373937c0ae08d58f67b84030a027db1c9
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
90
2019-01-26T00:38:49.000Z
2022-03-11T23:12:34.000Z
tests/python/unittest/test_tir_transform_lower_init_block.py
were/tvm
7f567264ae1bc1e4bc24a2eeb5b18425997dce22
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
91
2019-02-27T00:17:01.000Z
2022-02-21T18:08:21.000Z
tests/python/unittest/test_tir_transform_lower_init_block.py
were/tvm
7f567264ae1bc1e4bc24a2eeb5b18425997dce22
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
41
2019-01-28T14:37:03.000Z
2022-03-31T03:58:57.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import tir from tvm.script import ty @tvm.script.tir class WithInit: def main(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, [64, 64, 64]) B = tir.match_buffer(b, [64]) with tir.block([64, tir.reduce_axis(0, 64), tir.reduce_axis(32, 64)]) as [i, j, k]: with tir.init(): B[i] = tir.float32(0) B[i] += A[i, j, k] @tvm.script.tir class WithBranch: def main(a: ty.handle, b: ty.handle) -> None: A = tir.match_buffer(a, [64, 64, 64]) B = tir.match_buffer(b, [64]) with tir.block([64, tir.reduce_axis(0, 64), tir.reduce_axis(32, 64)]) as [i, j, k]: if (j == 0) and (k == 32): B[i] = tir.float32(0) B[i] += A[i, j, k] def test_lower_reduction(): origin_mod = WithInit() mod = tvm.tir.transform.LowerInitBlock()(origin_mod) tvm.ir.assert_structural_equal(mod, WithBranch(), True) if __name__ == "__main__": test_lower_reduction()
33.388889
91
0.654465
195649c9b52da4f073b5e5a64fa15c287070de25
447
py
Python
bookoutlet_service/tasks.py
tmtaybah/bookoutlet_service
a1f2b42d07e2efdcd014319d1469a6dd9b77c1bb
[ "MIT" ]
null
null
null
bookoutlet_service/tasks.py
tmtaybah/bookoutlet_service
a1f2b42d07e2efdcd014319d1469a6dd9b77c1bb
[ "MIT" ]
6
2021-02-08T20:30:37.000Z
2022-03-11T23:43:41.000Z
bookoutlet_service/tasks.py
tmtaybah/bookoutlet_service
a1f2b42d07e2efdcd014319d1469a6dd9b77c1bb
[ "MIT" ]
null
null
null
from celery import Celery def make_celery(app): celery = Celery( app.import_name, backend=app.config["CELERY_BACKEND"], broker=app.config["CELERY_BROKER_URL"], ) celery.conf.update(app.config) class ContextTask(celery.Task): def __call__(self, *args, **kwargs): with app.app_context(): return self.run(*args, **kwargs) celery.Task = ContextTask return celery
23.526316
48
0.619687
efc15a3a27fea20ff5972fc4df32d3df4114ac88
7,582
py
Python
pineboolib/application/qsatypes/date.py
Aulla/pineboo
3ad6412d365a6ad65c3bb2bdc03f5798d7c37004
[ "MIT" ]
2
2017-12-10T23:06:16.000Z
2017-12-10T23:06:23.000Z
pineboolib/application/qsatypes/date.py
Aulla/pineboo
3ad6412d365a6ad65c3bb2bdc03f5798d7c37004
[ "MIT" ]
36
2017-11-05T21:13:47.000Z
2020-08-26T15:56:15.000Z
pineboolib/application/qsatypes/date.py
Aulla/pineboo
3ad6412d365a6ad65c3bb2bdc03f5798d7c37004
[ "MIT" ]
8
2017-11-05T15:56:31.000Z
2019-04-25T16:32:28.000Z
""" Module for Date type. """ from typing import Union, Optional, Any from PyQt6 import QtCore # type: ignore[import] from pineboolib.application.utils.date_conversion import date_dma_to_amd class Date(object): """ Case que gestiona un objeto tipo Date. """ date_: "QtCore.QDate" time_: "QtCore.QTime" def __init__(self, *args: Union["Date", QtCore.QDate, str, QtCore.QTime, int]) -> None: """Create new Date object.""" super(Date, self).__init__() if not args: self.date_ = QtCore.QDate.currentDate() self.time_ = QtCore.QTime.currentTime() elif len(args) <= 2: date_ = args[0] format_ = args[1] if len(args) == 2 else "yyyy-MM-dd" if not isinstance(format_, str): raise ValueError("format must be string") self.time_ = QtCore.QTime(0, 0) if isinstance(date_, str): if len(date_) == 10: tmp = date_.split("-") if len(tmp[2]) == 4: date_amd = date_dma_to_amd(date_) if date_amd is None: raise ValueError("Date %s is invalid" % date_) date_ = date_amd self.date_ = QtCore.QDate.fromString(date_, format_) else: self.date_ = QtCore.QDate.fromString(date_[0:10], format_) self.time_ = QtCore.QTime.fromString(date_[11:], "hh:mm:ss") elif isinstance(date_, Date): self.date_ = date_.date_ self.time_ = date_.time_ elif isinstance(date_, QtCore.QDate): self.date_ = date_ elif isinstance(date_, (float, int)): date_time = QtCore.QDateTime() date_time.setMSecsSinceEpoch(int(date_)) self.date_ = date_time.date() self.time_ = date_time.time() else: raise ValueError("Unexpected type %s" % type(date_)) if not self.time_: self.time_ = QtCore.QTime(0, 0) else: year, month, day = args[0], args[1], args[2] if not isinstance(year, int) or not isinstance(month, int) or not isinstance(day, int): raise ValueError("Expected year, month, day as integers") self.date_ = QtCore.QDate(year, month, day) self.time_ = QtCore.QTime(0, 0) def toString(self, pattern: Optional[str] = None) -> str: """ Return string with date & time data. @return cadena de texto con los datos de fecha y hora """ if not pattern: pattern = "yyyy-MM-ddT%s" % self.time_.toString("hh:mm:ss") return self.date_.toString(pattern) def getTime(self) -> int: """Get integer representing date & time.""" return int(self.date_.toString("yyyyMMdd%s" % self.time_.toString("hhmmss"))) def getYear(self) -> int: """ Return year from date. @return año """ return self.date_.year() def setYear(self, year: Union[str, int]) -> "Date": """ Set year into current date. @param yyyy. Año a setear """ self.date_ = QtCore.QDate.fromString(self.date_.toString("%s-MM-dd" % year), "yyyy-MM-dd") return self def getMonth(self) -> int: """ Get month as a number from current date. @return mes """ return self.date_.month() def setMonth(self, month: Union[str, int]) -> "Date": """ Set month into current date. @param mm. Mes a setear """ month = str(month) if len(month) < 2: month = "0%s" % month self.date_ = QtCore.QDate.fromString( self.date_.toString("yyyy-%s-dd" % month), "yyyy-MM-dd" ) return self def getDay(self) -> int: """ Get day from current date. @return día """ return self.date_.day() def setDay(self, day: Union[str, int]) -> "Date": """ Set given day. @param dd. Dia a setear """ day = str(day) if len(day) < 2: day = "0%s" % day self.date_ = QtCore.QDate.fromString(self.date_.toString("yyyy-MM-%s" % day), "yyyy-MM-dd") return self def getHours(self) -> int: """ Get Hour from Date. @return horas """ return self.time_.hour() def getMinutes(self) -> int: """ Get Minutes from Date. @return minutos """ return self.time_.minute() def getSeconds(self) -> int: """ Get Seconds from Date. @return segundos """ return self.time_.second() def getMilliseconds(self) -> int: """ Get Milliseconds from Date. @return milisegundos """ return self.time_.msec() getDate = getDay # setDate = setDay def setDate(self, date: Any) -> "Date": """ Set Date from any format. @param date. Fecha a setear """ year_ = self.date_.toString("yyyy") month_ = self.date_.toString("MM") day_ = str(date) if len(day_) == 1: day_ = "0" + day_ str_ = "%s-%s-%s" % (year_, month_, day_) self.date_ = QtCore.QDate.fromString(str_, "yyyy-MM-dd") return self def addDays(self, days: int) -> "Date": """ Return result of adding a particular amount of days to current date. @param d. Dias a sumar (o restar) a la fecha dada @return nueva fecha calculada """ return Date(self.date_.addDays(days).toString("yyyy-MM-dd")) def addMonths(self, months: int) -> "Date": """ Return result of adding given number of months to this date. @param m. Meses a sumar (o restar) a la fecha dada @return nueva fecha calculada """ return Date(self.date_.addMonths(months).toString("yyyy-MM-dd")) def addYears(self, years: int) -> "Date": """ Return result of adding given number of years to this date. @param y. Años a sumar (o restar) a la fecha dada @return nueva fecha calculada """ return Date(self.date_.addYears(years).toString("yyyy-MM-dd")) @classmethod def parse(cls, value: str) -> "Date": """Parse a ISO string into a date.""" return Date(value, "yyyy-MM-dd") def __str__(self) -> str: """Support for str().""" return self.toString() def __repr__(self) -> str: """Support for str().""" return self.toString() def __lt__(self, other: Union[str, "Date"]) -> bool: """Support for comparisons.""" return str(self) < str(other) def __le__(self, other: Union[str, "Date"]) -> bool: """Support for comparisons.""" return str(self) <= str(other) def __ge__(self, other: Union[str, "Date"]) -> bool: """Support for comparisons.""" return str(self) >= str(other) def __gt__(self, other: Union[str, "Date"]) -> bool: """Support for comparisons.""" return str(self) > str(other) def __eq__(self, other: Any) -> bool: """Support for comparisons.""" return str(other) == str(self) def __ne__(self, other: Any) -> bool: """Support for comparisons.""" return not self.__eq__(other)
28.828897
99
0.533369
b6620d3c76714b844c3efee2c49bbf54692694af
7,535
py
Python
Indicators/fisher_multi_pack_dw.py
Desil-sketch/Indicators-for-Jesse
ffe33a217002ea3034696fe38acfa72611d52b4f
[ "MIT" ]
1
2021-12-08T06:34:48.000Z
2021-12-08T06:34:48.000Z
Indicators/fisher_multi_pack_dw.py
Desil-sketch/Indicators-for-Jesse
ffe33a217002ea3034696fe38acfa72611d52b4f
[ "MIT" ]
null
null
null
Indicators/fisher_multi_pack_dw.py
Desil-sketch/Indicators-for-Jesse
ffe33a217002ea3034696fe38acfa72611d52b4f
[ "MIT" ]
1
2021-11-04T17:40:19.000Z
2021-11-04T17:40:19.000Z
from jesse.helpers import get_candle_source, slice_candles, np_shift, same_length import numpy as np from numba import njit,jit import talib from typing import Union from jesse.helpers import get_config from collections import namedtuple from numpy.lib.stride_tricks import as_strided FISHMULT = namedtuple('FISHMULT',['osc', 'basiscolor', 'barcolor']) ''' https://www.tradingview.com/script/hXp5irRI-Fisher-Multi-Pack-DW/#chart-view-comments no compression, thresholds, or cmean ''' def fishmulti(candles: np.ndarray, per: int= 13,smooth:bool=False,smper:int=1,otype:str="Fisher Transform",alpha:float=0.1, hth:float=0.95,lth:float=-0.95, source_type: str = "close", sequential: bool = False ) -> FISHMULT: candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) if otype == "Fisher Transform": highval = same_length(candles,max_rolling1(source,per)) lowval = same_length(candles,min_rolling1(source,per)) fisher = fish(source,source,per,highval,lowval) osc1 = fisher elif otype == "Inverse Fisher RSI": ifrsi = ifish_rsi(source,source,per,candles,alpha) osc1 = ifrsi elif otype == "Inverse Fisher Stochastic": candles_high = candles[:, 3] candles_low = candles[:, 4] hh = talib.MAX(candles_high, per) ll = talib.MIN(candles_low, per) stoch1 = 100 * (source - ll) / (hh - ll) STOCH = same_length(candles,stoch1) ifstoch = ifish_stoch(source,source,per,candles,alpha,STOCH) osc1 = ifstoch else: rollwin = talib.SMA(source,per) CCI = pine_cci(source,per,rollwin) ifcci = ifish_cci(source,source,per,candles,alpha,CCI) osc1 = ifcci osc2 = pine_ema(source,osc1,smper) if smooth else pine_ema(source,osc1,1) osc = osc2 basiscolor, barcolor = barcolor1(source,osc,hth,lth) if sequential: return FISHMULT(osc,basiscolor,barcolor) else: return FISHMULT(osc[-1],basiscolor[-1],barcolor[-1]) @njit def barcolor1(source,osc,hth,lth): barcolor = np.full_like(source,0) basiscolor = np.full_like(source,0) for i in range(source.shape[0]): if (osc[i] > 0) and (osc[i] >= osc[i-1]) and (osc[i] >= hth): barcolor[i] = 2 elif (osc[i] >0) and (osc[i] > osc[i-1]) and (osc[i] < hth): barcolor[i] = 1.5 elif (osc[i] > 0) and (osc[i] <osc[i-1]): barcolor[i] = 1 elif (osc[i] < 0) and (osc[i] <= osc[i-1]) and (osc[i] <= lth): barcolor[i] = -2 elif (osc[i] <0) and (osc[i] < osc[i-1]) and (osc[i] > lth): barcolor[i] = -1.5 elif (osc[i] <0) and (osc[i] > osc[i-1]): barcolor[i] = -1 else: barcolor[i] = 0 if osc[i] > 0: basiscolor[i] = 1 elif osc[i] < 0: basiscolor[i] = -1 else: basiscolor[i] = 0 return basiscolor, barcolor @njit def pine_cci(source,per,rollwin): mamean = np.full_like(source,0) cci = np.full_like(source,0) dev = np.full_like(source,0) for i in range(source.shape[0]): sum1 = 0.0 val = 0.0 for j in range(per): val = source[i-j] sum1 = sum1 + np.abs(val - rollwin[i]) dev[i] = sum1/per cci[i] = (source[i] - rollwin[i]) / (0.015 * dev[i]) return cci @njit def pine_rsi(source,length): u = np.full_like(source, 0) d = np.full_like(source, 0) rs = np.full_like(source, 0) res = np.full_like(source, 0) alpha = 1 / length sumation1 = np.full_like(source, 1) sumation2 = np.full_like(source, 1) for i in range(source.shape[0]): u[i] = np.maximum((source[i] - source[i-1]),0) d[i] = np.maximum((source[i-1] - source[i]), 0) sumation1[i] = alpha * u[i] + (1 - alpha) * (sumation1[i-1]) sumation2[i] = alpha * d[i] + (1 - alpha) * (sumation2[i-1]) rs[i] = sumation1[i]/sumation2[i] res[i] = 100 - 100 / ( 1 + rs[i]) return res @jit(nopython=True, error_model="numpy") def fish(source,x,t,highval,lowval): val1 = np.full_like(source,0) val2 = np.full_like(source,0) fish = np.full_like(source,0) for i in range(t,source.shape[0]): # val1[i-1] = 0 if np.isnan(val1[i-1]) else val1[i-1] val1[i] = 0.66 * ((x[i] - lowval[i])/np.maximum((highval[i] - lowval[i]),0.001)-0.5) + 0.67*val1[i-1] if val1[i] > 0.99: val2[i] = 0.999 elif val1[i] < -0.99: val2[i] = -0.999 else: val2[i] = val1[i] fish[i] = 0.5 * np.log((1+val2[i])/np.maximum(1-val2[i],0.001)) + 0.5*fish[i-1] return fish @njit def ifish_rsi(source,x,t,candles,alpha): val = np.full_like(source,0) rsi = np.full_like(source,0) wval1 = np.full_like(source,0.0) wval2 = np.full_like(source,0.0) ifish = np.full_like(source,0) for i in range(source.shape[0]): rsi = pine_rsi(x,t) val[i] = alpha*(rsi[i]-50) wval1 = pine_wma(source,val,t) wval2 = np.concatenate((np.full((candles.shape[0] - wval1.shape[0]), np.nan), wval1)) ifish[i] = (np.exp(2*wval2[i]) - 1)/(np.exp(2*wval2[i])+1) return ifish @njit def ifish_stoch(source,x,t,candles,alpha,stoch): val = np.full_like(source,0) wval1 = np.full_like(source,0.0) wval2 = np.full_like(source,0.0) ifish = np.full_like(source,0) for i in range(source.shape[0]): val[i] = alpha*(stoch[i]-50) wval1 = pine_wma(source,val,t) wval2 = np.concatenate((np.full((candles.shape[0] - wval1.shape[0]), np.nan), wval1)) ifish[i] = (np.exp(2*wval2[i]) - 1)/(np.exp(2*wval2[i])+1) return ifish @njit def ifish_cci(source,x,t,candles,alpha,CCI): val = np.full_like(source,0) wval1 = np.full_like(source,0.0) wval2 = np.full_like(source,0.0) ifish = np.full_like(source,0) for i in range(source.shape[0]): val[i] = alpha*(CCI[i]) wval1 = pine_wma(source,val,t) wval2 = np.concatenate((np.full((candles.shape[0] - wval1.shape[0]), np.nan), wval1)) ifish[i] = (np.exp(2*wval2[i]) - 1)/(np.exp(2*wval2[i])+1) return ifish @njit def pine_wma(source1,source2,length): res = np.full_like(source1,length) for i in range(source1.shape[0]): weight = 0.0 norm = 0.0 sum1 = 0.0 for j in range(length): weight = (length - j)*length norm = norm + weight sum1 = sum1 + source2[i-j] * weight res[i] = sum1/norm return res @njit def pine_ema(source1, source2, length): alpha = 2 / (length + 1) sum1 = np.full_like(source1,0) for i in range(10,source1.shape[0]): sum1[i-1] = 0 if np.isnan(sum1[i-1]) else sum1[i-1] sum1[i] = alpha * source2[i] + (1 - alpha) * sum1[i-1] return sum1 def max_rolling1(a, window,axis =1): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) rolling = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) return np.max(rolling,axis=axis) def min_rolling1(a, window,axis =1): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) rolling = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) return np.min(rolling,axis=axis)
37.118227
227
0.583809
484b2c44321272bf21c278413f4e47597e29f872
4,627
py
Python
AlGDock/Aux_func.py
xinliu0609/AlGDock
0795a9cfea690e1d287b8eb2be5ed8586f61b2d3
[ "MIT" ]
null
null
null
AlGDock/Aux_func.py
xinliu0609/AlGDock
0795a9cfea690e1d287b8eb2be5ed8586f61b2d3
[ "MIT" ]
null
null
null
AlGDock/Aux_func.py
xinliu0609/AlGDock
0795a9cfea690e1d287b8eb2be5ed8586f61b2d3
[ "MIT" ]
null
null
null
import os #Miscellaneous operating system interfaces from os.path import abspath from os.path import exists from os.path import isfile from os.path import join import cPickle as pickle import gzip import copy import time import numpy as np import MMTK import MMTK.Units from MMTK.ParticleProperties import Configuration import Scientific from Scientific_vector import Vector # @UnresolvedImport import AlGDock as a import pymbar.timeseries ######################## # Auxilliary functions # ######################## def random_rotate(): """ Return a random rotation matrix """ u = np.random.uniform(size=3) # Random quaternion q = np.array([np.sqrt(1-u[0])*np.sin(2*np.pi*u[1]), np.sqrt(1-u[0])*np.cos(2*np.pi*u[1]), np.sqrt(u[0])*np.sin(2*np.pi*u[2]), np.sqrt(u[0])*np.cos(2*np.pi*u[2])]) # Convert the quaternion into a rotation matrix rotMat = np.array([[q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3], 2*q[1]*q[2] - 2*q[0]*q[3], 2*q[1]*q[3] + 2*q[0]*q[2]], [2*q[1]*q[2] + 2*q[0]*q[3], q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3], 2*q[2]*q[3] - 2*q[0]*q[1]], [2*q[1]*q[3] - 2*q[0]*q[2], 2*q[2]*q[3] + 2*q[0]*q[1], q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]]]) return rotMat # def choice(N, weights=None): # """ # Weighted random number selection of N values # """ # weights /= np.sum(weights) # cumweights = np.cumsum(weights) # beginIndicies = np.zeros(N, dtype=int) # randVals = np.random.uniform(size=N) # # for (bI_idx,randVal) in zip(range(N),randVals): # beginIndicies[bI_idx] = sum(cumweights < randVal) # beginIndicies.sort() # return beginIndicies def merge_dictionaries(dicts, required_consistency=[], print_inconsistent=False): """ Merges a list of dictionaries, giving priority to items in descending order. Items in the required_consistency list must be consistent with one another. """ merged = {} for a in range(len(dicts)): # Loop over all dictionaries, # giving priority to the first if not isinstance(dicts[a],dict): continue for key in dicts[a].keys(): if dicts[a][key] is None: if not key in merged.keys(): merged[key] = None elif isinstance(dicts[a][key],dict): merged[key] = merge_dictionaries( [dicts[n][key] for n in range(len(dicts)) if key in dicts[n].keys()], required_consistency=required_consistency) else: # Check for consistency with other dictionaries for b in (range(a) + range(a+1,len(dicts))): if isinstance(dicts[b],dict) and (key in dicts[b].keys()) and (dicts[b][key] is not None): if (isinstance(dicts[b][key],np.ndarray)): inconsistent_items = (dicts[b][key]!=dicts[a][key]).any() else: inconsistent_items = (dicts[b][key]!=dicts[a][key]) if inconsistent_items: if print_inconsistent: print 'Dictionary items are inconsistent:' print dicts[a][key] print dicts[b][key] if key in required_consistency: raise Exception('Items must be consistent!') merged[key] = dicts[a][key] return merged def convert_dictionary_relpath(d, relpath_o=None, relpath_n=None): """ Converts all file names in a dictionary from one relative path to another. If relpath_o is None, nothing is joined to the original path. If relpath_n is None, an absolute path is used. """ converted = {} for key in d.keys(): if d[key] is None: pass elif isinstance(d[key],dict): converted[key] = convert_dictionary_relpath(d[key], relpath_o = relpath_o, relpath_n = relpath_n) elif isinstance(d[key],str): if relpath_o is not None: p = abspath(join(relpath_o,d[key])) else: p = abspath(d[key]) if exists(p): # Only save file names for existent paths if relpath_n is not None: converted[key] = os.path.relpath(p,relpath_n) else: converted[key] = p return converted def HMStime(s): """ Given the time in seconds, an appropriately formatted string. """ if s<60.: return '%.3f s'%s elif s<3600.: return '%d:%.3f'%(int(s/60%60),s%60) else: return '%d:%d:%.3f'%(int(s/3600),int(s/60%60),s%60) class NullDevice(): """ A device to suppress output """ def write(self, s): pass
31.910345
100
0.582019
57e54155587215186454f9b781d8f9aa07fd3127
5,386
py
Python
venv/Lib/site-packages/PySide2/examples/widgets/layouts/flowlayout.py
TEDxVienna/continuum
85cefbc274fc59e2059c313bc0d3b9b93a34ba6d
[ "MIT" ]
null
null
null
venv/Lib/site-packages/PySide2/examples/widgets/layouts/flowlayout.py
TEDxVienna/continuum
85cefbc274fc59e2059c313bc0d3b9b93a34ba6d
[ "MIT" ]
null
null
null
venv/Lib/site-packages/PySide2/examples/widgets/layouts/flowlayout.py
TEDxVienna/continuum
85cefbc274fc59e2059c313bc0d3b9b93a34ba6d
[ "MIT" ]
null
null
null
############################################################################ ## ## Copyright (C) 2013 Riverbank Computing Limited. ## Copyright (C) 2016 The Qt Company Ltd. ## Contact: http://www.qt.io/licensing/ ## ## This file is part of the Qt for Python examples of the Qt Toolkit. ## ## $QT_BEGIN_LICENSE:BSD$ ## You may use this file under the terms of the BSD license as follows: ## ## "Redistribution and use in source and binary forms, with or without ## modification, are permitted provided that the following conditions are ## met: ## * Redistributions of source code must retain the above copyright ## notice, this list of conditions and the following disclaimer. ## * Redistributions in binary form must reproduce the above copyright ## notice, this list of conditions and the following disclaimer in ## the documentation and/or other materials provided with the ## distribution. ## * Neither the name of The Qt Company Ltd nor the names of its ## contributors may be used to endorse or promote products derived ## from this software without specific prior written permission. ## ## ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ## "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT ## LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ## A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT ## OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE." ## ## $QT_END_LICENSE$ ## ############################################################################# """PySide2 port of the widgets/layouts/flowlayout example from Qt v5.x""" from PySide2 import QtCore, QtGui, QtWidgets class Window(QtWidgets.QWidget): def __init__(self): super(Window, self).__init__() flowLayout = FlowLayout() flowLayout.addWidget(QtWidgets.QPushButton("Short")) flowLayout.addWidget(QtWidgets.QPushButton("Longer")) flowLayout.addWidget(QtWidgets.QPushButton("Different text")) flowLayout.addWidget(QtWidgets.QPushButton("More text")) flowLayout.addWidget(QtWidgets.QPushButton("Even longer button text")) self.setLayout(flowLayout) self.setWindowTitle("Flow Layout") class FlowLayout(QtWidgets.QLayout): def __init__(self, parent=None, margin=0, spacing=-1): super(FlowLayout, self).__init__(parent) if parent is not None: self.setMargin(margin) self.setSpacing(spacing) self.itemList = [] def __del__(self): item = self.takeAt(0) while item: item = self.takeAt(0) def addItem(self, item): self.itemList.append(item) def count(self): return len(self.itemList) def itemAt(self, index): if index >= 0 and index < len(self.itemList): return self.itemList[index] return None def takeAt(self, index): if index >= 0 and index < len(self.itemList): return self.itemList.pop(index) return None def expandingDirections(self): return QtCore.Qt.Orientations(QtCore.Qt.Orientation(0)) def hasHeightForWidth(self): return True def heightForWidth(self, width): height = self.doLayout(QtCore.QRect(0, 0, width, 0), True) return height def setGeometry(self, rect): super(FlowLayout, self).setGeometry(rect) self.doLayout(rect, False) def sizeHint(self): return self.minimumSize() def minimumSize(self): size = QtCore.QSize() for item in self.itemList: size = size.expandedTo(item.minimumSize()) size += QtCore.QSize(2 * self.contentsMargins().top(), 2 * self.contentsMargins().top()) return size def doLayout(self, rect, testOnly): x = rect.x() y = rect.y() lineHeight = 0 for item in self.itemList: wid = item.widget() spaceX = self.spacing() + wid.style().layoutSpacing(QtWidgets.QSizePolicy.PushButton, QtWidgets.QSizePolicy.PushButton, QtCore.Qt.Horizontal) spaceY = self.spacing() + wid.style().layoutSpacing(QtWidgets.QSizePolicy.PushButton, QtWidgets.QSizePolicy.PushButton, QtCore.Qt.Vertical) nextX = x + item.sizeHint().width() + spaceX if nextX - spaceX > rect.right() and lineHeight > 0: x = rect.x() y = y + lineHeight + spaceY nextX = x + item.sizeHint().width() + spaceX lineHeight = 0 if not testOnly: item.setGeometry(QtCore.QRect(QtCore.QPoint(x, y), item.sizeHint())) x = nextX lineHeight = max(lineHeight, item.sizeHint().height()) return y + lineHeight - rect.y() if __name__ == '__main__': import sys app = QtWidgets.QApplication(sys.argv) mainWin = Window() mainWin.show() sys.exit(app.exec_())
34.525641
153
0.644077
99f2e5520656f5514b4e62a0faf7bb104b052dc9
4,458
py
Python
python/dgl/nn/pytorch/conv/ginconv.py
joshcarty/dgl
4464b9734c1061bd84325a54883c5046031def37
[ "Apache-2.0" ]
4
2018-12-25T14:59:08.000Z
2021-07-02T12:36:40.000Z
python/dgl/nn/pytorch/conv/ginconv.py
xyanAI/dgl
36daf66f6216bad4d30651311bcb87aa45dd33d5
[ "Apache-2.0" ]
1
2019-02-06T02:02:41.000Z
2019-02-06T20:22:32.000Z
python/dgl/nn/pytorch/conv/ginconv.py
xyanAI/dgl
36daf66f6216bad4d30651311bcb87aa45dd33d5
[ "Apache-2.0" ]
4
2020-12-26T10:39:36.000Z
2020-12-26T12:38:52.000Z
"""Torch Module for Graph Isomorphism Network layer""" # pylint: disable= no-member, arguments-differ, invalid-name import torch as th from torch import nn from .... import function as fn from ....utils import expand_as_pair class GINConv(nn.Module): r""" Description ----------- Graph Isomorphism Network layer from paper `How Powerful are Graph Neural Networks? <https://arxiv.org/pdf/1810.00826.pdf>`__. .. math:: h_i^{(l+1)} = f_\Theta \left((1 + \epsilon) h_i^{l} + \mathrm{aggregate}\left(\left\{h_j^{l}, j\in\mathcal{N}(i) \right\}\right)\right) Parameters ---------- apply_func : callable activation function/layer or None If not None, apply this function to the updated node feature, the :math:`f_\Theta` in the formula. aggregator_type : str Aggregator type to use (``sum``, ``max`` or ``mean``). init_eps : float, optional Initial :math:`\epsilon` value, default: ``0``. learn_eps : bool, optional If True, :math:`\epsilon` will be a learnable parameter. Default: ``False``. Example ------- >>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import GINConv >>> >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = th.ones(6, 10) >>> lin = th.nn.Linear(10, 10) >>> conv = GINConv(lin, 'max') >>> res = conv(g, feat) >>> res tensor([[-0.4821, 0.0207, -0.7665, 0.5721, -0.4682, -0.2134, -0.5236, 1.2855, 0.8843, -0.8764], [-0.4821, 0.0207, -0.7665, 0.5721, -0.4682, -0.2134, -0.5236, 1.2855, 0.8843, -0.8764], [-0.4821, 0.0207, -0.7665, 0.5721, -0.4682, -0.2134, -0.5236, 1.2855, 0.8843, -0.8764], [-0.4821, 0.0207, -0.7665, 0.5721, -0.4682, -0.2134, -0.5236, 1.2855, 0.8843, -0.8764], [-0.4821, 0.0207, -0.7665, 0.5721, -0.4682, -0.2134, -0.5236, 1.2855, 0.8843, -0.8764], [-0.1804, 0.0758, -0.5159, 0.3569, -0.1408, -0.1395, -0.2387, 0.7773, 0.5266, -0.4465]], grad_fn=<AddmmBackward>) """ def __init__(self, apply_func, aggregator_type, init_eps=0, learn_eps=False): super(GINConv, self).__init__() self.apply_func = apply_func self._aggregator_type = aggregator_type if aggregator_type == 'sum': self._reducer = fn.sum elif aggregator_type == 'max': self._reducer = fn.max elif aggregator_type == 'mean': self._reducer = fn.mean else: raise KeyError('Aggregator type {} not recognized.'.format(aggregator_type)) # to specify whether eps is trainable or not. if learn_eps: self.eps = th.nn.Parameter(th.FloatTensor([init_eps])) else: self.register_buffer('eps', th.FloatTensor([init_eps])) def forward(self, graph, feat): r""" Description ----------- Compute Graph Isomorphism Network layer. Parameters ---------- graph : DGLGraph The graph. feat : torch.Tensor or pair of torch.Tensor If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where :math:`D_{in}` is size of input feature, :math:`N` is the number of nodes. If a pair of torch.Tensor is given, the pair must contain two tensors of shape :math:`(N_{in}, D_{in})` and :math:`(N_{out}, D_{in})`. If ``apply_func`` is not None, :math:`D_{in}` should fit the input dimensionality requirement of ``apply_func``. Returns ------- torch.Tensor The output feature of shape :math:`(N, D_{out})` where :math:`D_{out}` is the output dimensionality of ``apply_func``. If ``apply_func`` is None, :math:`D_{out}` should be the same as input dimensionality. """ with graph.local_scope(): feat_src, feat_dst = expand_as_pair(feat, graph) graph.srcdata['h'] = feat_src graph.update_all(fn.copy_u('h', 'm'), self._reducer('m', 'neigh')) rst = (1 + self.eps) * feat_dst + graph.dstdata['neigh'] if self.apply_func is not None: rst = self.apply_func(rst) return rst
37.779661
92
0.545312
b2bbd2807283aec2250532eb252310eddd714bb7
24,585
py
Python
pyFileFixity/lib/reedsolomon/tests/test_creedsolo.py
lrq3000/rfigc
a68021a506fee1aabea6b2fb88e685de347d900f
[ "MIT" ]
82
2015-03-20T18:43:37.000Z
2022-03-05T13:23:12.000Z
pyFileFixity/lib/reedsolomon/tests/test_creedsolo.py
lrq3000/rfigc
a68021a506fee1aabea6b2fb88e685de347d900f
[ "MIT" ]
9
2015-12-05T17:32:14.000Z
2021-06-11T15:51:38.000Z
pyFileFixity/lib/reedsolomon/tests/test_creedsolo.py
hadi-f90/pyFileFixity
2cb3dd6225a6b062a98fa2d61c4a0a29d8010428
[ "MIT" ]
10
2015-12-13T18:51:44.000Z
2022-02-21T10:50:28.000Z
# To use this script easily (starting with Python 2.7), just cd to the parent folder and type the following command: # python -m unittest discover tests from __future__ import print_function import unittest import sys from random import sample import itertools try: from itertools import izip except ImportError: #python3.x izip = zip # Skip this whole module test if running under PyPy (incompatible with Cython) try: import __pypy__ # Empty test unit to show the reason of skipping class TestMissingDependency(unittest.TestCase): @unittest.skip('Missing dependency - Cython is incompatible with PyPy') def test_fail(): pass # Else we're not under PyPy, we can run the test except ImportError: __pypy__ = None from creedsolo import * try: bytearray except NameError: from creedsolo import bytearray try: # compatibility with Python 3+ xrange except NameError: xrange = range class cTestReedSolomon(unittest.TestCase): def test_simple(self): rs = RSCodec(10) msg = bytearray("hello world " * 10, "latin1") enc = rs.encode(msg) dec = rs.decode(enc) self.assertEqual(dec, msg) def test_correction(self): rs = RSCodec(10) msg = bytearray("hello world " * 10, "latin1") enc = rs.encode(msg) self.assertEqual(rs.decode(enc), msg) for i in [27, -3, -9, 7, 0]: enc[i] = 99 self.assertEqual(rs.decode(enc), msg) enc[82] = 99 self.assertRaises(ReedSolomonError, rs.decode, enc) def test_long(self): rs = RSCodec(10) msg = bytearray("a" * 10000, "latin1") enc = rs.encode(msg) dec = rs.decode(enc) self.assertEqual(dec, msg) enc[177] = 99 enc[2212] = 88 dec2 = rs.decode(enc) self.assertEqual(dec2, msg) def test_prim_fcr_basic(self): nn = 30 kk = 18 tt = nn - kk rs = RSCodec(tt, fcr=120, prim=0x187) hexencmsg = '00faa123555555c000000354064432c02800fe97c434e1ff5365' \ 'cf8fafe4' strf = str if sys.version_info[0] >= 3 else unicode encmsg = bytearray.fromhex(strf(hexencmsg)) decmsg = encmsg[:kk] tem = rs.encode(decmsg) self.assertEqual(encmsg, tem, msg="encoded does not match expected") tdm = rs.decode(tem) self.assertEqual(tdm, decmsg, msg="decoded does not match original") tem1 = bytearray(tem) # clone a copy # encoding and decoding intact message seem OK, so test errors numerrs = tt >> 1 # inject tt/2 errors (expected to recover fully) for i in sample(range(nn), numerrs): # inject errors in random places tem1[i] ^= 0xff # flip all 8 bits tdm = rs.decode(tem1) self.assertEqual(tdm, decmsg, msg="decoded with errors does not match original") tem1 = bytearray(tem) # clone another copy numerrs += 1 # inject tt/2 + 1 errors (expected to fail and detect it) for i in sample(range(nn), numerrs): # inject errors in random places tem1[i] ^= 0xff # flip all 8 bits # if this fails, it means excessive errors not detected self.assertRaises(ReedSolomonError, rs.decode, tem1) def test_prim_fcr_long(self): nn = 48 kk = 34 tt = nn - kk rs = RSCodec(tt, fcr=120, prim=0x187) hexencmsg = '08faa123555555c000000354064432c0280e1b4d090cfc04887400' \ '000003500000000e1985ff9c6b33066ca9f43d12e8' strf = str if sys.version_info[0] >= 3 else unicode encmsg = bytearray.fromhex(strf(hexencmsg)) decmsg = encmsg[:kk] tem = rs.encode(decmsg) self.assertEqual(encmsg, tem, msg="encoded does not match expected") tdm = rs.decode(tem) self.assertEqual(tdm, decmsg, msg="decoded does not match original") tem1 = bytearray(tem) numerrs = tt >> 1 for i in sample(range(nn), numerrs): tem1[i] ^= 0xff tdm = rs.decode(tem1) self.assertEqual(tdm, decmsg, msg="decoded with errors does not match original") tem1 = bytearray(tem) numerrs += 1 for i in sample(range(nn), numerrs): tem1[i] ^= 0xff self.assertRaises(ReedSolomonError, rs.decode, tem1) def test_generator_poly(self): '''Test if generator poly finder is working correctly and if the all generators poly finder does output the same result''' n = 11 k = 3 # Base 2 test fcr = 120 generator = 2 prim = 0x11d init_tables(generator=generator, prim=prim) g = rs_generator_poly_all(n, fcr=fcr, generator=generator) self.assertEqual( list(g[n-k]) , list(rs_generator_poly(n-k,fcr=fcr, generator=generator)) ) self.assertEqual( list(g[n-k]) , [1, 106, 9, 105, 86, 5, 166, 76, 9] ) # Base 3 test fcr = 0 generator = 3 prim = 0x11b init_tables(generator=generator, prim=prim) g = rs_generator_poly_all(n, fcr=fcr, generator=generator) self.assertEqual( list(g[n-k]) , list(rs_generator_poly(n-k,fcr=fcr, generator=generator)) ) self.assertEqual( list(g[n-k]) , [1, 128, 13, 69, 36, 145, 199, 165, 30] ) def test_prime_poly_build(self): '''Try if the prime polynomials finder works correctly for different GFs (ie, GF(2^6) to GF(2^10)) and with different generators''' params = {"count": 7, "c_exp": [6, 7, 7, 8, 8, 9, 10], "generator": [2, 2, 3, 2, 3, 2, 2], "expected": [ [67, 91, 97, 103, 109, 115], [131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253], [131, 137, 143, 145, 157, 167, 171, 185, 191, 193, 203, 211, 213, 229, 239, 241, 247, 253], [285, 299, 301, 333, 351, 355, 357, 361, 369, 391, 397, 425, 451, 463, 487, 501], [283, 313, 319, 333, 351, 355, 357, 361, 375, 397, 415, 419, 425, 451, 501, 505], [529, 539, 545, 557, 563, 601, 607, 617, 623, 631, 637, 647, 661, 675, 677, 687, 695, 701, 719, 721, 731, 757, 761, 787, 789, 799, 803, 817, 827, 847, 859, 865, 875, 877, 883, 895, 901, 911, 949, 953, 967, 971, 973, 981, 985, 995, 1001, 1019], [1033, 1051, 1063, 1069, 1125, 1135, 1153, 1163, 1221, 1239, 1255, 1267, 1279, 1293, 1305, 1315, 1329, 1341, 1347, 1367, 1387, 1413, 1423, 1431, 1441, 1479, 1509, 1527, 1531, 1555, 1557, 1573, 1591, 1603, 1615, 1627, 1657, 1663, 1673, 1717, 1729, 1747, 1759, 1789, 1815, 1821, 1825, 1849, 1863, 1869, 1877, 1881, 1891, 1917, 1933, 1939, 1969, 2011, 2035, 2041] ] } for i in xrange(params['count']): self.assertEqual( find_prime_polys(generator=params['generator'][i], c_exp=params['c_exp'][i]) , params["expected"][i] ) def test_init_tables(self): '''Try if the look up table generator (galois field generator) works correctly for different parameters''' params = [ [0x11d, 2, 8], [0x11b, 3, 8], [0xfd, 3, 7] ] expected = [[[0, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172, 115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24, 227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149, 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108, 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95, 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175], [1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168, 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168, 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142]], [[0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3, 100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193, 125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120, 101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142, 150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56, 102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16, 126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186, 43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87, 175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232, 44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160, 127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183, 204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157, 151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209, 83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171, 68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165, 103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7], [1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53, 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170, 229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49, 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205, 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136, 131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154, 181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163, 254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160, 251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65, 195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117, 159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128, 155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84, 252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202, 69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14, 18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23, 57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53, 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170, 229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49, 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205, 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136, 131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154, 181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163, 254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160, 251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65, 195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117, 159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128, 155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84, 252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202, 69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14, 18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23, 57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246]], [[0, 0, 7, 1, 14, 2, 8, 56, 21, 57, 9, 90, 15, 31, 63, 3, 28, 4, 64, 67, 16, 112, 97, 32, 22, 47, 38, 58, 70, 91, 10, 108, 35, 109, 11, 87, 71, 79, 74, 92, 23, 82, 119, 48, 104, 59, 39, 100, 29, 19, 54, 5, 45, 68, 65, 95, 77, 33, 98, 117, 17, 43, 115, 113, 42, 114, 116, 76, 18, 53, 94, 44, 78, 73, 86, 34, 81, 118, 99, 103, 30, 62, 89, 20, 126, 6, 55, 13, 111, 96, 66, 27, 46, 37, 107, 69, 36, 106, 26, 110, 61, 88, 12, 125, 52, 93, 75, 41, 72, 85, 102, 80, 84, 101, 40, 51, 105, 25, 124, 60, 24, 123, 50, 83, 122, 49, 120, 121], [1, 3, 5, 15, 17, 51, 85, 2, 6, 10, 30, 34, 102, 87, 4, 12, 20, 60, 68, 49, 83, 8, 24, 40, 120, 117, 98, 91, 16, 48, 80, 13, 23, 57, 75, 32, 96, 93, 26, 46, 114, 107, 64, 61, 71, 52, 92, 25, 43, 125, 122, 115, 104, 69, 50, 86, 7, 9, 27, 45, 119, 100, 81, 14, 18, 54, 90, 19, 53, 95, 28, 36, 108, 73, 38, 106, 67, 56, 72, 37, 111, 76, 41, 123, 112, 109, 74, 35, 101, 82, 11, 29, 39, 105, 70, 55, 89, 22, 58, 78, 47, 113, 110, 79, 44, 116, 97, 94, 31, 33, 99, 88, 21, 63, 65, 62, 66, 59, 77, 42, 126, 127, 124, 121, 118, 103, 84, 1, 3, 5, 15, 17, 51, 85, 2, 6, 10, 30, 34, 102, 87, 4, 12, 20, 60, 68, 49, 83, 8, 24, 40, 120, 117, 98, 91, 16, 48, 80, 13, 23, 57, 75, 32, 96, 93, 26, 46, 114, 107, 64, 61, 71, 52, 92, 25, 43, 125, 122, 115, 104, 69, 50, 86, 7, 9, 27, 45, 119, 100, 81, 14, 18, 54, 90, 19, 53, 95, 28, 36, 108, 73, 38, 106, 67, 56, 72, 37, 111, 76, 41, 123, 112, 109, 74, 35, 101, 82, 11, 29, 39, 105, 70, 55, 89, 22, 58, 78, 47, 113, 110, 79, 44, 116, 97, 94, 31, 33, 99, 88, 21, 63, 65, 62, 66, 59, 77, 42, 126, 127, 124, 121, 118, 103, 84]]] for i in xrange(len(params)): p = params[i] expected_log_t, expected_exp_t = expected[i] log_t, exp_t = init_tables(prim=p[0], generator=p[1], c_exp=p[2]) self.assertEqual( list(log_t) , expected_log_t ) self.assertEqual( list(exp_t) , expected_exp_t ) class cTestGFArithmetics(unittest.TestCase): '''Test Galois Field arithmetics''' def test_multiply_nolut(self): '''Try to multiply without look-up tables (necessary to build the look-up tables!)''' a = 30 b = 19 generator=2 prim=0x11d # Compare the LUT multiplication and noLUT init_tables(prim=prim, generator=generator) self.assertEqual(gf_mul(a, b), gf_mult_noLUT(a, b, prim=prim)) # More Galois Field multiplications self.assertEqual( gf_mult_noLUT(5, 6, prim=0x11b, field_charac_full=256) , 30 ) self.assertEqual( gf_mult_noLUT(3, 125, prim=0x11b, field_charac_full=256) , 135 ) self.assertEqual( gf_mult_noLUT(2, 200, prim=0x11d, field_charac_full=256) , 141 ) self.assertEqual( gf_mult_noLUT_slow(2, 200, prim=0x11d) , 141 ) # Multiplications in GF(2^7) self.assertEqual( gf_mult_noLUT(3, 125, prim=0xfd, field_charac_full=128) , 122 ) # Multiplications outside of the finite field (we revert to standard integer multiplications just to see if it works) self.assertEqual( gf_mult_noLUT(3, 125, prim=0, carryless=False) , 375 ) self.assertEqual( gf_mult_noLUT_slow(4, 125, prim=0) , 500 ) # the second method, just to check that everything's alright class cTestRSCodecUniversalCrossValidation(unittest.TestCase): '''Ultimate set of tests of a full set of different parameters for encoding and decoding. If this passes, the codec is universal and can correctly interface with any other RS codec!''' def test_main(self): def cartesian_product_dict_items(dicts): return (dict(izip(dicts, x)) for x in itertools.product(*dicts.values())) debugg = False # if one or more tests don't pass, you can enable this flag to True to get verbose output to debug orig_mes = bytearray("hello world", "latin1") n = len(orig_mes)*2 k = len(orig_mes) nsym = n-k istart = 0 params = {"count": 5, "fcr": [120, 0, 1, 1, 1], "prim": [0x187, 0x11d, 0x11b, 0xfd, 0xfd], "generator": [2, 2, 3, 3, 2], "c_exponent": [8, 8, 8, 7, 7], } cases = { "errmode": [1, 2, 3, 4], "erratasnb_errorsnb_onlyeras": [[8, 3, False], [6, 5, False], [5, 5, False], [11, 0, True], [11, 0, False], [0,0, False]], # errata number (errors+erasures), erasures number and only_erasures: the last item is the value for only_erasures (True/False) } ############################$ results_br = [] results_rs = [] it = 0 for p in xrange(params["count"]): fcr = params["fcr"][p] prim = params["prim"][p] generator = params["generator"][p] c_exponent = params["c_exponent"][p] for case in cartesian_product_dict_items(cases): errmode = case["errmode"] erratanb = case["erratasnb_errorsnb_onlyeras"][0] errnb = case["erratasnb_errorsnb_onlyeras"][1] only_erasures = case["erratasnb_errorsnb_onlyeras"][2] it += 1 if debugg: print("it ", it) print("param", p) print(case) # REEDSOLO # Init the RS codec init_tables(generator=generator, prim=prim, c_exp=c_exponent) g = rs_generator_poly_all(n, fcr=fcr, generator=generator) # Encode the message rmesecc = rs_encode_msg(orig_mes, n-k, gen=g[n-k]) rmesecc_orig = rmesecc[:] # make a copy of the original message to check later if fully corrected (because the syndrome may be wrong sometimes) # Tamper the message if erratanb > 0: if errmode == 1: sl = slice(istart, istart+erratanb) elif errmode == 2: sl = slice(-istart-erratanb-(n-k), -(n-k)) elif errmode == 3: sl = slice(-istart-erratanb-1, -1) elif errmode == 4: sl = slice(-istart-erratanb, None) if debugg: print("Removed slice:", list(rmesecc[sl]), rmesecc[sl]) rmesecc[sl] = [0] * erratanb # Generate the erasures positions (if any) erase_pos = [x for x in xrange(len(rmesecc)) if rmesecc[x] == 0] if errnb > 0: erase_pos = erase_pos[:-errnb] # remove the errors positions (must not be known by definition) if debugg: print("erase_pos", erase_pos) print("coef_pos", [len(rmesecc) - 1 - pos for pos in erase_pos]) print("Errata total: ", erratanb-errnb + errnb*2, " -- Correctable? ", (erratanb-errnb + errnb*2 <= nsym)) # Decoding the corrupted codeword # -- Forney syndrome method try: rmes, recc = rs_correct_msg(rmesecc, n-k, fcr=fcr, generator=generator, erase_pos=erase_pos, only_erasures=only_erasures) results_br.append( rs_check(rmes + recc, n-k, fcr=fcr, generator=generator) ) # check if correct by syndrome analysis (can be wrong) results_br.append( rmesecc_orig == (rmes+recc) ) # check if correct by comparing to the original message (always correct) if debugg and not rs_check(rmes + recc, n-k, fcr=fcr, generator=generator) or not (rmesecc_orig == (rmes+recc)): raise ReedSolomonError("False!!!!!") except ReedSolomonError as exc: results_br.append(False) results_br.append(False) if debugg: print("====") print("ERROR! Details:") print("param", p) print(case) print(erase_pos) print("original_msg", rmesecc_orig) print("tampered_msg", rmesecc) print("decoded_msg", rmes+recc) print("checks: ", rs_check(rmes + recc, n-k, fcr=fcr, generator=generator), rmesecc_orig == (rmes+recc)) print("====") raise exc # -- Without Forney syndrome method try: mes, ecc = rs_correct_msg_nofsynd(rmesecc, n-k, fcr=fcr, generator=generator, erase_pos=erase_pos, only_erasures=only_erasures) results_br.append( rs_check(rmes + recc, n-k, fcr=fcr, generator=generator) ) results_br.append( rmesecc_orig == (rmes+recc) ) except ReedSolomonError as exc: results_br.append(False) results_br.append(False) if debugg: print("-----") self.assertTrue(results_br.count(True) == len(results_br)) if __name__ == "__main__": unittest.main()
75.183486
8,627
0.537116
56f9860d9c2ec3b22735c1efd0b5755482676a33
430
py
Python
cats/urls.py
bmuha1/companion_cats
9e1141757c7d67c1e4bf3fd3bbe706e4d27fef7b
[ "MIT" ]
1
2020-05-22T23:52:08.000Z
2020-05-22T23:52:08.000Z
cats/urls.py
bmuha1/companion_cats
9e1141757c7d67c1e4bf3fd3bbe706e4d27fef7b
[ "MIT" ]
5
2021-03-30T12:50:19.000Z
2021-09-22T18:40:59.000Z
cats/urls.py
bmuha1/companion_cats
9e1141757c7d67c1e4bf3fd3bbe706e4d27fef7b
[ "MIT" ]
null
null
null
from django.urls import path, re_path from . import views urlpatterns = [ path('', views.home, name='cats-home'), path('about/', views.about, name='cats-about'), path('all/', views.all, name='cats-all'), path('find/', views.find, name='cats-find'), path('cat/<int:cat_id>', views.cat, name='cats-cat'), # path('random/', views.random, name='cats-random'), # path('add/', views.add, name='cats-add') ]
33.076923
57
0.616279
32ee8f20b62034f8860a9ea28dd0333dd429df43
3,594
py
Python
HW4-3/ACAgent_play.py
b05611038/MLDS_2019SPRING
0591a1a6f461da0a02b9e1b83f37ad3579f36f4d
[ "MIT" ]
3
2019-06-20T06:47:30.000Z
2021-11-05T03:16:37.000Z
HW4-3/ACAgent_play.py
b05611038/MLDS_2019SPRING
0591a1a6f461da0a02b9e1b83f37ad3579f36f4d
[ "MIT" ]
null
null
null
HW4-3/ACAgent_play.py
b05611038/MLDS_2019SPRING
0591a1a6f461da0a02b9e1b83f37ad3579f36f4d
[ "MIT" ]
null
null
null
import time import argparse from lib.utils import * from lib.trainer import ACTrainer def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def construct_observation_preprocess_dict(args): preprocess_dict = {} preprocess_dict['slice_scoreboard'] = args[0] preprocess_dict['gray_scale'] = args[1] preprocess_dict['minus_observation'] = args[2] return preprocess_dict def construct_reward_preprocess_dict(args): preprocess_dict = {} preprocess_dict['time_decay'] = args[0] preprocess_dict['normalized'] = args[1] return preprocess_dict def init_parser(main): parser = argparse.ArgumentParser() parser.add_argument('model_type', type = str, help = 'One model can choose. [baseline]') parser.add_argument('model_name', type = str, help = 'Model name of the model.') parser.add_argument('Algorithm', type = str, help = 'Implemented Policy gradient base algorithm. [A2C_l1 ..., check README.md ]') parser.add_argument('device', type = int, help = 'device choosing for training. [-1 is cpu]') parser.add_argument('--optimizer', type = str, default = 'Adam', help = 'The optimizer you can choose.') parser.add_argument('--iterations', type = int, default = 10000, help = 'How many episode to train your policy net.') parser.add_argument('--episode_size', type = int, default = 4, help = 'How many games to play in an episode.') parser.add_argument('--batch_size', type = int, default = 128, help = 'batch_size using in dataloader argument.') parser.add_argument('--checkpoint', type = int, default = 1000, help = 'The interval of saving a model checkpoint.') parser.add_argument('--env', type = str, default = 'Pong-v0', help = 'The game that you want actor-critic agent to play.') parser.add_argument('--slice_scoreboard', type = str2bool, default = True, help = 'Method of image preprocess, if true, the scoreboard part of image would not feed into model.') parser.add_argument('--gray_scale', type = str2bool, default = True, help = 'Method of image preprocess, if true, the input image would from RGB -> Gray scale.') parser.add_argument('--minus_observation', type = str2bool, default = True, help = 'Method of image preprocess, if true, input image would become the last state - now state.') parser.add_argument('--reward_normalize', type = str2bool, default = True, help = 'Method of reward process, if true, reward would be normalize by batch.') parser.add_argument('--decay_by_time', type = str2bool, default = True, help = 'Method of reward process, if true, reward would decay by time step.') opt = parser.parse_args() print(opt) return opt if __name__ == '__main__': start_time = time.time() opt = init_parser(__name__) observation_dict = construct_observation_preprocess_dict([opt.slice_scoreboard, opt.gray_scale, opt.minus_observation]) reward_dict = construct_reward_preprocess_dict([opt.decay_by_time, opt.reward_normalize]) trainer = ACTrainer(opt.model_type, opt.model_name, observation_dict, reward_dict, opt.device, optimizer = opt.optimizer, policy = opt.Algorithm, env = opt.env) trainer.play(opt.iterations, opt.episode_size, opt.batch_size, opt.checkpoint) trainer.save_config(opt) print('All process done, cause %s seconds.' % (time.time() - start_time))
48.567568
133
0.692543
703ee35d427936dc86bacf26b0b8254a9e4bffd7
25,886
py
Python
python/GafferRenderManTest/InteractiveRenderManRenderTest.py
dboogert/gaffer
d2ce0eb7134a33ceee375d0a3676129a9bdcfbc6
[ "BSD-3-Clause" ]
null
null
null
python/GafferRenderManTest/InteractiveRenderManRenderTest.py
dboogert/gaffer
d2ce0eb7134a33ceee375d0a3676129a9bdcfbc6
[ "BSD-3-Clause" ]
null
null
null
python/GafferRenderManTest/InteractiveRenderManRenderTest.py
dboogert/gaffer
d2ce0eb7134a33ceee375d0a3676129a9bdcfbc6
[ "BSD-3-Clause" ]
null
null
null
########################################################################## # # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import time import os import IECore import Gaffer import GafferImage import GafferScene import GafferRenderMan import GafferRenderManTest class InteractiveRenderManRenderTest( GafferRenderManTest.RenderManTestCase ) : def __colorAtUV( self, image, uv ) : e = IECore.ImagePrimitiveEvaluator( image ) r = e.createResult() e.pointAtUV( uv, r ) return IECore.Color3f( r.floatPrimVar( image["R"] ), r.floatPrimVar( image["G"] ), r.floatPrimVar( image["B"] ), ) def testLights( self ) : s = Gaffer.ScriptNode() s["l"] = GafferRenderMan.RenderManLight() s["l"].loadShader( "pointlight" ) s["l"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 1, 0.5, 0.25 ) ) s["l"]["transform"]["translate"]["z"].setValue( 1 ) s["p"] = GafferScene.Plane() s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["l"]["out"] ) s["g"]["in1"].setInput( s["p"]["out"] ) s["g"]["in2"].setInput( s["c"]["out"] ) s["s"] = GafferRenderMan.RenderManShader() s["s"].loadShader( "matte" ) s["a"] = GafferScene.ShaderAssignment() s["a"]["in"].setInput( s["g"]["out"] ) s["a"]["shader"].setInput( s["s"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["a"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[0], IECore.Color3f( 1, 0.5, 0.25 ) ) # adjust a parameter, give it time to update, and check the output s["l"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 0.25, 0.5, 1 ) ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[2], IECore.Color3f( 0.25, 0.5, 1 ) ) # pause it, adjust a parameter, wait, and check that nothing changed s["r"]["state"].setValue( s["r"].State.Paused ) s["l"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 1, 0.5, 0.25 ) ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[2], IECore.Color3f( 0.25, 0.5, 1 ) ) # unpause it, wait, and check that the update happened s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[0], IECore.Color3f( 1, 0.5, 0.25 ) ) # turn off light updates, adjust a parameter, wait, and check nothing happened s["r"]["updateLights"].setValue( False ) s["l"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 0.25, 0.5, 1 ) ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[0], IECore.Color3f( 1, 0.5, 0.25 ) ) # turn light updates back on and check that it updates s["r"]["updateLights"].setValue( True ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[2], IECore.Color3f( 0.25, 0.5, 1 ) ) # stop the render, tweak a parameter and check that nothing happened s["r"]["state"].setValue( s["r"].State.Stopped ) s["l"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 1, 0.5, 0.25 ) ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[2], IECore.Color3f( 0.25, 0.5, 1 ) ) def testShaders( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["p"]["transform"]["translate"].setValue( IECore.V3f( -0.1, -0.1, 0 ) ) s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["l"] = GafferRenderMan.RenderManLight() s["l"].loadShader( "ambientlight" ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["p"]["out"] ) s["g"]["in1"].setInput( s["c"]["out"] ) s["g"]["in2"].setInput( s["l"]["out"] ) s["s"] = GafferRenderMan.RenderManShader() s["s"].loadShader( "checker" ) s["s"]["parameters"]["blackcolor"].setValue( IECore.Color3f( 1, 0.5, 0.25 ) ) s["s"]["parameters"]["Ka"].setValue( 1 ) s["s"]["parameters"]["frequency"].setValue( 1 ) s["a"] = GafferScene.ShaderAssignment() s["a"]["in"].setInput( s["g"]["out"] ) s["a"]["shader"].setInput( s["s"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["a"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c, IECore.Color3f( 1, 0.5, 0.25 ) ) # adjust a shader parameter, wait, and check that it changed s["s"]["parameters"]["blackcolor"].setValue( IECore.Color3f( 1, 1, 1 ) ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c, IECore.Color3f( 1 ) ) # turn off shader updates, do the same, and check that it hasn't changed s["r"]["updateShaders"].setValue( False ) s["s"]["parameters"]["blackcolor"].setValue( IECore.Color3f( 0.5 ) ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c, IECore.Color3f( 1 ) ) # turn shader updates back on, and check that it updates s["r"]["updateShaders"].setValue( True ) time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c, IECore.Color3f( 0.5 ) ) def testScopesDontLeak( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["p"]["transform"]["translate"].setValue( IECore.V3f( -0.6, -0.1, 0 ) ) s["p1"] = GafferScene.Plane() s["p1"]["transform"]["translate"].setValue( IECore.V3f( 0.6, 0.1, 0 ) ) s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 2 ) s["l"] = GafferRenderMan.RenderManLight() s["l"].loadShader( "ambientlight" ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["p"]["out"] ) s["g"]["in1"].setInput( s["p1"]["out"] ) s["g"]["in2"].setInput( s["c"]["out"] ) s["g"]["in3"].setInput( s["l"]["out"] ) s["s"] = GafferRenderMan.RenderManShader() s["s"].loadShader( "checker" ) s["s"]["parameters"]["blackcolor"].setValue( IECore.Color3f( 1, 0, 0 ) ) s["s"]["parameters"]["Ka"].setValue( 1 ) s["s"]["parameters"]["frequency"].setValue( 1 ) s["f"] = GafferScene.PathFilter() s["f"]["paths"].setValue( IECore.StringVectorData( [ "/group/plane" ] ) ) s["a"] = GafferScene.ShaderAssignment() s["a"]["in"].setInput( s["g"]["out"] ) s["a"]["shader"].setInput( s["s"]["out"] ) s["a"]["filter"].setInput( s["f"]["match"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlanes", } ) ) s["d"]["in"].setInput( s["a"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["options"]["renderResolution"]["value"].setValue( IECore.V2i( 512 ) ) s["o"]["options"]["renderResolution"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output. # we should have a red plane on the left, and a facing ratio # shaded plane on the right, because we attached no shader to the # second plane. s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlanes" ), IECore.V2f( 0.25, 0.5 ), ) self.assertEqual( c, IECore.Color3f( 1, 0, 0 ) ) c1 = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlanes" ), IECore.V2f( 0.75, 0.5 ), ) self.assertTrue( c1[0] > 0.9 ) self.assertEqual( c1[0], c1[1] ) self.assertEqual( c1[0], c1[2] ) # adjust a shader parameter, wait, and check that the plane # on the left changed. check that the plane on the right didn't # change at all. s["s"]["parameters"]["blackcolor"].setValue( IECore.Color3f( 0, 1, 0 ) ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlanes" ), IECore.V2f( 0.25, 0.5 ), ) self.assertEqual( c, IECore.Color3f( 0, 1, 0 ) ) c1 = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlanes" ), IECore.V2f( 0.75, 0.5 ), ) self.assertTrue( c1[0] > 0.9 ) self.assertEqual( c1[0], c1[1] ) self.assertEqual( c1[0], c1[2] ) def testContext( self ): s = Gaffer.ScriptNode() r = GafferRenderMan.InteractiveRenderManRender() self.assertNotEqual( r.getContext(), None ) self.failIf( r.getContext().isSame( s.context() ) ) s["r"] = r self.failUnless( r.getContext().isSame( s.context() ) ) s.removeChild( r ) self.failIf( r.getContext().isSame( s.context() ) ) def testAddLight( self ) : s = Gaffer.ScriptNode() s["l"] = GafferRenderMan.RenderManLight() s["l"].loadShader( "pointlight" ) s["l"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 1, 0, 0 ) ) s["l"]["transform"]["translate"]["z"].setValue( 1 ) s["p"] = GafferScene.Plane() s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["l"]["out"] ) s["g"]["in1"].setInput( s["p"]["out"] ) s["g"]["in2"].setInput( s["c"]["out"] ) s["s"] = GafferRenderMan.RenderManShader() s["s"].loadShader( "matte" ) s["a"] = GafferScene.ShaderAssignment() s["a"]["in"].setInput( s["g"]["out"] ) s["a"]["shader"].setInput( s["s"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["a"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[0], IECore.Color3f( 1, 0, 0 ) ) # add a light s["l2"] = GafferRenderMan.RenderManLight() s["l2"].loadShader( "pointlight" ) s["l2"]["parameters"]["lightcolor"].setValue( IECore.Color3f( 0, 1, 0 ) ) s["l2"]["transform"]["translate"]["z"].setValue( 1 ) s["g"]["in3"].setInput( s["l2"]["out"] ) # give it time to update, and check the output time.sleep( 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c / c[0], IECore.Color3f( 1, 1, 0 ) ) def testRemoveLight( self ) : s = Gaffer.ScriptNode() s["l"] = GafferRenderMan.RenderManLight() s["l"].loadShader( "pointlight" ) s["l"]["transform"]["translate"]["z"].setValue( 1 ) s["p"] = GafferScene.Plane() s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["l"]["out"] ) s["g"]["in1"].setInput( s["p"]["out"] ) s["g"]["in2"].setInput( s["c"]["out"] ) s["s"] = GafferRenderMan.RenderManShader() s["s"].loadShader( "matte" ) s["a"] = GafferScene.ShaderAssignment() s["a"]["in"].setInput( s["g"]["out"] ) s["a"]["shader"].setInput( s["s"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["a"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertNotEqual( c[0], 0.0 ) # remove the light by disabling it s["l"]["enabled"].setValue( False ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c[0], 0.0 ) # enable it again s["l"]["enabled"].setValue( True ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertNotEqual( c[0], 0.0 ) def testHideLight( self ) : s = Gaffer.ScriptNode() s["l"] = GafferRenderMan.RenderManLight() s["l"].loadShader( "pointlight" ) s["l"]["transform"]["translate"]["z"].setValue( 1 ) s["v"] = GafferScene.StandardAttributes() s["v"]["attributes"]["visibility"]["enabled"].setValue( True ) s["v"]["in"].setInput( s["l"]["out"] ) s["p"] = GafferScene.Plane() s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["v"]["out"] ) s["g"]["in1"].setInput( s["p"]["out"] ) s["g"]["in2"].setInput( s["c"]["out"] ) s["s"] = GafferRenderMan.RenderManShader() s["s"].loadShader( "matte" ) s["a"] = GafferScene.ShaderAssignment() s["a"]["in"].setInput( s["g"]["out"] ) s["a"]["shader"].setInput( s["s"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["a"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertNotEqual( c[0], 0.0 ) # remove the light by hiding it s["v"]["attributes"]["visibility"]["value"].setValue( False ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertEqual( c[0], 0.0 ) # put the light back by showing it s["v"]["attributes"]["visibility"]["value"].setValue( True ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertNotEqual( c[0], 0.0 ) def testRenderingDuringScriptDeletion( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["p"]["out"] ) s["g"]["in1"].setInput( s["c"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "driverType" : "ClientDisplayDriver", "displayHost" : "localhost", "displayPort" : "1559", "remoteDisplayType" : "GafferImage::GafferDisplayDriver", "quantize" : IECore.IntVectorData( [ 0, 0, 0, 0 ] ), } ) ) s["d"]["in"].setInput( s["g"]["out"] ) s["m"] = GafferImage.Display() # connect a python function to the Display node image and data # received signals. this emulates what the UI does. def __displayCallback( plug ) : pass c = ( s["m"].imageReceivedSignal().connect( __displayCallback ), s["m"].dataReceivedSignal().connect( __displayCallback ), ) s["o"] = GafferScene.StandardOptions() s["o"]["in"].setInput( s["d"]["out"] ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["options"]["renderCamera"]["value"].setValue( "/group/plane" ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 1 ) # delete the script while the render is still progressing. when # this occurs, deletion of the render node will be triggered, which # will in turn stop the render. this may flush data to the display, # in which case it will emit its data and image received signals # on a separate thread. if we're still holding the gil on the main # thread when this happens, we'll get a deadlock. del s def testMoveCamera( self ) : s = Gaffer.ScriptNode() s["p"] = GafferScene.Plane() s["c"] = GafferScene.Camera() s["c"]["transform"]["translate"]["z"].setValue( 1 ) s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["p"]["out"] ) s["g"]["in1"].setInput( s["c"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["g"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertAlmostEqual( c[1], 1, delta = 0.001 ) # move the camera so it can't see the plane, and check the output s["c"]["transform"]["translate"]["x"].setValue( 2 ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertAlmostEqual( c[0], 0 ) # move the camera back and recheck s["c"]["transform"]["translate"]["x"].setValue( 0 ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertAlmostEqual( c[1], 1, delta = 0.001 ) def testMoveCoordinateSystem( self ) : shader = self.compileShader( os.path.dirname( __file__ ) + "/shaders/coordSysDot.sl" ) s = Gaffer.ScriptNode() s["plane"] = GafferScene.Plane() s["shader"] = GafferRenderMan.RenderManShader() s["shader"].loadShader( shader ) s["shader"]["parameters"]["coordSys"].setValue( "/group/coordinateSystem" ) s["shaderAssignment"] = GafferScene.ShaderAssignment() s["shaderAssignment"]["in"].setInput( s["plane"]["out"] ) s["shaderAssignment"]["shader"].setInput( s["shader"]["out"] ) s["camera"] = GafferScene.Camera() s["camera"]["transform"]["translate"]["z"].setValue( 1 ) s["coordSys"] = GafferScene.CoordinateSystem() s["g"] = GafferScene.Group() s["g"]["in"].setInput( s["shaderAssignment"]["out"] ) s["g"]["in1"].setInput( s["camera"]["out"] ) s["g"]["in2"].setInput( s["coordSys"]["out"] ) s["d"] = GafferScene.Displays() s["d"].addDisplay( "beauty", IECore.Display( "test", "ieDisplay", "rgba", { "quantize" : IECore.FloatVectorData( [ 0, 0, 0, 0 ] ), "driverType" : "ImageDisplayDriver", "handle" : "myLovelyPlane", } ) ) s["d"]["in"].setInput( s["g"]["out"] ) s["o"] = GafferScene.StandardOptions() s["o"]["options"]["renderCamera"]["value"].setValue( "/group/camera" ) s["o"]["options"]["renderCamera"]["enabled"].setValue( True ) s["o"]["in"].setInput( s["d"]["out"] ) s["r"] = GafferRenderMan.InteractiveRenderManRender() s["r"]["in"].setInput( s["o"]["out"] ) # start a render, give it time to finish, and check the output s["r"]["state"].setValue( s["r"].State.Running ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.5 ), ) self.assertAlmostEqual( c[1], 1, delta = 0.001 ) # move the coordinate system, and check the output s["coordSys"]["transform"]["translate"]["x"].setValue( 0.1 ) time.sleep( 2 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.6, 0.5 ), ) self.assertAlmostEqual( c[0], 1 ) c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), IECore.V2f( 0.6, 0.7 ), ) self.assertAlmostEqual( c[0], 0 ) # scale the coordinate system to cover everything, and check again s["coordSys"]["transform"]["scale"].setValue( IECore.V3f( 100 ) ) time.sleep( 2 ) for p in [ IECore.V2f( 0.5 ), IECore.V2f( 0.1 ), IECore.V2f( 0.9 ), ] : c = self.__colorAtUV( IECore.ImageDisplayDriver.storedImage( "myLovelyPlane" ), p, ) self.assertAlmostEqual( c[0], 1, delta = 0.001 ) if __name__ == "__main__": unittest.main()
28.826281
88
0.601792
60eafdc2219ed8c18cbf6702cdd2feefe764ddf2
32,766
py
Python
src/prefect/agent/kubernetes/agent.py
jackdesert/prefect
8ff23d50b5488a0bf7eea19ed7ee5fe660819640
[ "Apache-2.0" ]
null
null
null
src/prefect/agent/kubernetes/agent.py
jackdesert/prefect
8ff23d50b5488a0bf7eea19ed7ee5fe660819640
[ "Apache-2.0" ]
null
null
null
src/prefect/agent/kubernetes/agent.py
jackdesert/prefect
8ff23d50b5488a0bf7eea19ed7ee5fe660819640
[ "Apache-2.0" ]
null
null
null
import os import time import uuid from typing import Iterable, List, Any import json import yaml import prefect from prefect import config from prefect.agent import Agent from prefect.engine.state import Failed from prefect.run_configs import KubernetesRun from prefect.utilities.agent import get_flow_image, get_flow_run_command from prefect.utilities.filesystems import read_bytes_from_path from prefect.utilities.graphql import GraphQLResult DEFAULT_JOB_TEMPLATE_PATH = os.path.join(os.path.dirname(__file__), "job_template.yaml") def _get_or_create(d: dict, key: str, val: Any = None) -> Any: """Get a (possibly nested) field from a dict, creating intermediate values if needed.""" if val is None: val = {} path = key.split(".") for k in path[:-1]: d = d.setdefault(k, {}) return d.setdefault(path[-1], val) class KubernetesAgent(Agent): """ Agent which deploys flow runs as Kubernetes jobs. Currently this is required to either run on a k8s cluster or on a local machine where the kube_config is pointing at the desired cluster. Information on using the Kubernetes Agent can be found at https://docs.prefect.io/orchestration/agents/kubernetes.html Environment variables may be set on the agent to be provided to each flow run's job: ``` prefect agent kubernetes start --env MY_SECRET_KEY=secret --env OTHER_VAR=$OTHER_VAR ``` These can also be used to control the k8s job spec that describes the flow run jobs. For example, to set the k8s secret used to pull images from a non-public registry: ``` prefect agent kubernetes start --env IMAGE_PULL_SECRETS=my-img-pull-secret ``` For details on the available environment variables for customizing the job spec, see `help(KubernetesAgent.generate_job_spec_from_environment)`. Specifying a namespace for the agent will create flow run jobs in that namespace: ``` prefect agent kubernetes start --namespace dev ``` Args: - agent_config_id (str, optional): An optional agent configuration ID that can be used to set configuration based on an agent from a backend API. If set all configuration values will be pulled from backend agent configuration. - namespace (str, optional): A Kubernetes namespace to create jobs in. Defaults to the environment variable `NAMESPACE` or `default`. - job_template_path (str, optional): A path to a job template file to use instead of the default. - name (str, optional): An optional name to give this agent. Can also be set through the environment variable `PREFECT__CLOUD__AGENT__NAME`. Defaults to "agent" - labels (List[str], optional): a list of labels, which are arbitrary string identifiers used by Prefect Agents when polling for work - env_vars (dict, optional): a dictionary of environment variables and values that will be set on each flow run that this agent submits for execution and in the agent's own environment - max_polls (int, optional): maximum number of times the agent will poll Prefect Cloud for flow runs; defaults to infinite - agent_address (str, optional): Address to serve internal API at. Currently this is just health checks for use by an orchestration layer. Leave blank for no API server (default). - no_cloud_logs (bool, optional): Disable logging to a Prefect backend for this agent and all deployed flow runs - volume_mounts (list, optional): A list of volumeMounts to mount when a job is run. The volumeMounts in the list should be specified as dicts i.e `[{"name": "my-vol", "mountPath": "/mnt/my-mount"}]` - volumes (list, optional): A list of volumes to make available to be mounted when a job is run. The volumes in the list should be specified as nested dicts. i.e `[{"name": "my-vol", "csi": {"driver": "secrets-store.csi.k8s.io"}}]` """ def __init__( self, agent_config_id: str = None, namespace: str = None, job_template_path: str = None, name: str = None, labels: Iterable[str] = None, env_vars: dict = None, max_polls: int = None, agent_address: str = None, no_cloud_logs: bool = False, volume_mounts: List[dict] = None, volumes: List[dict] = None, ) -> None: super().__init__( agent_config_id=agent_config_id, name=name, labels=labels, env_vars=env_vars, max_polls=max_polls, agent_address=agent_address, no_cloud_logs=no_cloud_logs, ) self.namespace = namespace or os.getenv("NAMESPACE", "default") self.job_template_path = job_template_path or DEFAULT_JOB_TEMPLATE_PATH self.volume_mounts = volume_mounts self.volumes = volumes from kubernetes import client, config try: self.logger.debug("Loading incluster configuration") config.load_incluster_config() except config.config_exception.ConfigException as exc: self.logger.warning( "{} Using out of cluster configuration option.".format(exc) ) self.logger.debug("Loading out of cluster configuration") config.load_kube_config() self.batch_client = client.BatchV1Api() self.core_client = client.CoreV1Api() self.k8s_client = client self.logger.debug(f"Namespace: {self.namespace}") def manage_jobs(self) -> None: """ This function checks if jobs are `Failed` or `Succeeded` and if they are then the jobs are deleted from the namespace. If one of the job's pods happen to run into image pulling errors then the flow run is failed and the job is still deleted. """ self.logger.debug( "Retrieving information of jobs that are currently in the cluster..." ) more = True _continue = "" while more: try: jobs = self.batch_client.list_namespaced_job( namespace=self.namespace, label_selector="prefect.io/identifier", limit=20, _continue=_continue, ) _continue = jobs.metadata._continue more = bool(_continue) for job in jobs.items: delete_job = job.status.failed or job.status.succeeded job_name = job.metadata.name flow_run_id = job.metadata.labels.get("prefect.io/flow_run_id") # Check for pods that are stuck with image pull errors if not delete_job: pods = self.core_client.list_namespaced_pod( namespace=self.namespace, label_selector="prefect.io/identifier={}".format( job.metadata.labels.get("prefect.io/identifier") ), ) for pod in pods.items: if pod.status.container_statuses: for container_status in pod.status.container_statuses: waiting = container_status.state.waiting if waiting and ( waiting.reason == "ErrImagePull" or waiting.reason == "ImagePullBackOff" ): self.logger.debug( f"Failing flow run {flow_run_id} due to pod {waiting.reason}" ) self.client.set_flow_run_state( flow_run_id=flow_run_id, state=Failed( message="Kubernetes Error: {}".format( container_status.state.waiting.message ) ), ) delete_job = True break # Report failed pods if job.status.failed: pods = self.core_client.list_namespaced_pod( namespace=self.namespace, label_selector="prefect.io/identifier={}".format( job.metadata.labels.get("prefect.io/identifier") ), ) failed_pods = [] for pod in pods.items: if pod.status.phase != "Failed": continue # Format pod failure error message failed_pods.append(pod.metadata.name) pod_status_logs = [f"Pod {pod.metadata.name} failed."] for status in pod.status.container_statuses: state = ( "running" if status.state.running else "waiting" if status.state.waiting else "terminated" if status.state.terminated else "Not Found" ) pod_status_logs.append( f"\tContainer '{status.name}' state: {state}" ) if status.state.terminated: pod_status_logs.append( f"\t\tExit Code:: {status.state.terminated.exit_code}" ) if status.state.terminated.message: pod_status_logs.append( f"\t\tMessage: {status.state.terminated.message}" ) if status.state.terminated.reason: pod_status_logs.append( f"\t\tReason: {status.state.terminated.reason}" ) if status.state.terminated.signal: pod_status_logs.append( f"\t\tSignal: {status.state.terminated.signal}" ) # Send pod failure information to flow run logs self.client.write_run_logs( [ dict( flow_run_id=flow_run_id, name=self.name, message="\n".join(pod_status_logs), level="ERROR", ) ] ) # If there are failed pods and the run is not finished, fail the run if ( failed_pods and not self.client.get_flow_run_state( flow_run_id ).is_finished() ): self.logger.debug( f"Failing flow run {flow_run_id} due to the failed pods {failed_pods}" ) self.client.set_flow_run_state( flow_run_id=flow_run_id, state=Failed( message="Kubernetes Error: pods {} failed for this job".format( failed_pods ) ), ) # Delete job if it is successful or failed if delete_job: self.logger.debug(f"Deleting job {job_name}") try: self.batch_client.delete_namespaced_job( name=job_name, namespace=self.namespace, body=self.k8s_client.V1DeleteOptions( propagation_policy="Foreground" ), ) except self.k8s_client.rest.ApiException as exc: if exc.status != 404: self.logger.error( f"{exc.status} error attempting to delete job {job_name}" ) except self.k8s_client.rest.ApiException as exc: if exc.status == 410: self.logger.debug("Refreshing job listing token...") _continue = "" continue else: self.logger.debug(exc) def heartbeat(self) -> None: """ Check status of jobs created by this agent, delete completed jobs and failed containers. """ try: self.manage_jobs() except Exception: self.logger.error("Error while managing existing k8s jobs", exc_info=True) super().heartbeat() def deploy_flow(self, flow_run: GraphQLResult) -> str: """ Deploy flow runs on to a k8s cluster as jobs Args: - flow_run (GraphQLResult): A GraphQLResult flow run object Returns: - str: Information about the deployment """ import urllib3.exceptions self.logger.info("Deploying flow run {}".format(flow_run.id)) # type: ignore job_spec = self.generate_job_spec(flow_run=flow_run) job_name = job_spec["metadata"]["name"] self.logger.debug("Creating namespaced job {}".format(job_name)) attempts = 3 while True: try: self.batch_client.create_namespaced_job( namespace=self.namespace, body=job_spec ) break except self.k8s_client.rest.ApiException as exc: if exc.status == 409: # object already exists, previous submission was successful # even though it errored break raise except urllib3.exceptions.HTTPError: attempts -= 1 if attempts == 0: raise self.logger.warning( "Error submitting job %s, retrying...", job_name, exc_info=True ) time.sleep(1) self.logger.debug("Job {} created".format(job_name)) return "Job {}".format(job_name) def generate_job_spec(self, flow_run: GraphQLResult) -> dict: """Generate a k8s job spec for a flow run Args: - flow_run (GraphQLResult): A flow run object Returns: - dict: a dictionary representation of a k8s job for flow execution """ run_config = self._get_run_config(flow_run, KubernetesRun) assert run_config is None or isinstance(run_config, KubernetesRun) # mypy if run_config is not None: return self.generate_job_spec_from_run_config(flow_run, run_config) else: return self.generate_job_spec_from_environment(flow_run) def generate_job_spec_from_environment( self, flow_run: GraphQLResult, image: str = None ) -> dict: """ Populate a k8s job spec. This spec defines a k8s job that handles executing a flow. This method runs each time the agent receives a flow to run. That job spec can optionally be customized by setting the following environment variables on the agent. - `NAMESPACE`: the k8s namespace the job will run in, defaults to `"default"` - `JOB_MEM_REQUEST`: memory requested, for example, `256Mi` for 256 MB. If this environment variable is not set, the cluster's defaults will be used. - `JOB_MEM_LIMIT`: memory limit, for example, `512Mi` For 512 MB. If this environment variable is not set, the cluster's defaults will be used. - `JOB_CPU_REQUEST`: CPU requested, defaults to `"100m"` - `JOB_CPU_LIMIT`: CPU limit, defaults to `"100m"` - `IMAGE_PULL_POLICY`: policy for pulling images. Defaults to `"IfNotPresent"`. - `IMAGE_PULL_SECRETS`: name of an existing k8s secret that can be used to pull images. This is necessary if your flow uses an image that is in a non-public container registry, such as Amazon ECR, or in a public registry that requires authentication to avoid hitting rate limits. To specify multiple image pull secrets, provide a comma-delimited string with no spaces, like `"some-secret,other-secret"`. - `SERVICE_ACCOUNT_NAME`: name of a service account to run the job as. By default, none is specified. - `YAML_TEMPLATE`: a path to where the YAML template should be loaded from. defaults to the embedded `job_spec.yaml`. Args: - flow_run (GraphQLResult): A flow run object - image (str, optional): The full name of an image to use for the job Returns: - dict: a dictionary representation of a k8s job for flow execution """ identifier = str(uuid.uuid4())[:8] yaml_path = os.getenv( "YAML_TEMPLATE", os.path.join(os.path.dirname(__file__), "job_spec.yaml") ) with open(yaml_path, "r") as job_file: job = yaml.safe_load(job_file) job_name = "prefect-job-{}".format(identifier) # Populate job metadata for identification k8s_labels = { "prefect.io/identifier": identifier, "prefect.io/flow_run_id": flow_run.id, # type: ignore "prefect.io/flow_id": flow_run.flow.id, # type: ignore } job["metadata"]["name"] = job_name job["metadata"]["labels"].update(**k8s_labels) job["spec"]["template"]["metadata"]["labels"].update(**k8s_labels) # Use provided image for job if image is None: image = get_flow_image(flow_run=flow_run) job["spec"]["template"]["spec"]["containers"][0]["image"] = image self.logger.debug("Using image {} for job".format(image)) # Datermine flow run command job["spec"]["template"]["spec"]["containers"][0]["args"] = [ get_flow_run_command(flow_run) ] # Populate environment variables for flow run execution env = job["spec"]["template"]["spec"]["containers"][0]["env"] env[0]["value"] = config.cloud.api or "https://api.prefect.io" env[1]["value"] = config.cloud.agent.auth_token env[2]["value"] = flow_run.id # type: ignore env[3]["value"] = flow_run.flow.id # type: ignore env[4]["value"] = os.getenv("NAMESPACE", "default") env[5]["value"] = str(self.labels) env[6]["value"] = str(self.log_to_cloud).lower() env[7]["value"] = config.logging.level # append all user provided values for key, value in self.env_vars.items(): env.append(dict(name=key, value=value)) # Use image pull secrets if provided image_pull_secrets = os.getenv("IMAGE_PULL_SECRETS") if image_pull_secrets: secrets = image_pull_secrets.split(",") for idx, secret_name in enumerate(secrets): # this check preserves behavior from previous releases, # where prefect would only overwrite the first entry in # imagePullSecrets if idx == 0: job["spec"]["template"]["spec"]["imagePullSecrets"][0] = { "name": secret_name } else: job["spec"]["template"]["spec"]["imagePullSecrets"].append( {"name": secret_name} ) else: del job["spec"]["template"]["spec"]["imagePullSecrets"] # Set resource requirements if provided resources = job["spec"]["template"]["spec"]["containers"][0]["resources"] if os.getenv("JOB_MEM_REQUEST"): resources["requests"]["memory"] = os.getenv("JOB_MEM_REQUEST") if os.getenv("JOB_MEM_LIMIT"): resources["limits"]["memory"] = os.getenv("JOB_MEM_LIMIT") if os.getenv("JOB_CPU_REQUEST"): resources["requests"]["cpu"] = os.getenv("JOB_CPU_REQUEST") if os.getenv("JOB_CPU_LIMIT"): resources["limits"]["cpu"] = os.getenv("JOB_CPU_LIMIT") if self.volume_mounts: job["spec"]["template"]["spec"]["containers"][0][ "volumeMounts" ] = self.volume_mounts else: del job["spec"]["template"]["spec"]["containers"][0]["volumeMounts"] if self.volumes: job["spec"]["template"]["spec"]["volumes"] = self.volumes else: del job["spec"]["template"]["spec"]["volumes"] if os.getenv("IMAGE_PULL_POLICY"): job["spec"]["template"]["spec"]["containers"][0][ "imagePullPolicy" ] = os.getenv("IMAGE_PULL_POLICY") if os.getenv("SERVICE_ACCOUNT_NAME"): job["spec"]["template"]["spec"]["serviceAccountName"] = os.getenv( "SERVICE_ACCOUNT_NAME" ) return job def generate_job_spec_from_run_config( self, flow_run: GraphQLResult, run_config: KubernetesRun ) -> dict: """Generate a k8s job spec for a flow run. Args: - flow_run (GraphQLResult): A flow run object - run_config (KubernetesRun): The flow run's run_config Returns: - dict: a dictionary representation of a k8s job for flow execution """ if run_config.job_template: job = run_config.job_template else: job_template_path = run_config.job_template_path or self.job_template_path self.logger.debug("Loading job template from %r", job_template_path) template_bytes = read_bytes_from_path(job_template_path) job = yaml.safe_load(template_bytes) identifier = uuid.uuid4().hex[:8] job_name = f"prefect-job-{identifier}" # Populate job metadata for identification k8s_labels = { "prefect.io/identifier": identifier, "prefect.io/flow_run_id": flow_run.id, # type: ignore "prefect.io/flow_id": flow_run.flow.id, # type: ignore } _get_or_create(job, "metadata.labels") _get_or_create(job, "spec.template.metadata.labels") job["metadata"]["name"] = job_name job["metadata"]["labels"].update(**k8s_labels) job["spec"]["template"]["metadata"]["labels"].update(**k8s_labels) # Get the first container, which is used for the prefect job containers = _get_or_create(job, "spec.template.spec.containers", []) if not containers: containers.append({}) container = containers[0] # Set container image container["image"] = image = get_flow_image(flow_run) # Set flow run command container["args"] = [get_flow_run_command(flow_run)] # Populate environment variables from the following sources, # with precedence: # - Values required for flow execution, hardcoded below # - Values set on the KubernetesRun object # - Values set using the `--env` CLI flag on the agent # - Values in the job template env = self.env_vars.copy() if run_config.env: env.update(run_config.env) env.update( { "PREFECT__CLOUD__API": config.cloud.api, "PREFECT__CLOUD__AUTH_TOKEN": config.cloud.agent.auth_token, "PREFECT__CLOUD__USE_LOCAL_SECRETS": "false", "PREFECT__CONTEXT__FLOW_RUN_ID": flow_run.id, "PREFECT__CONTEXT__FLOW_ID": flow_run.flow.id, "PREFECT__CONTEXT__IMAGE": image, "PREFECT__LOGGING__LOG_TO_CLOUD": str(self.log_to_cloud).lower(), "PREFECT__ENGINE__FLOW_RUNNER__DEFAULT_CLASS": "prefect.engine.cloud.CloudFlowRunner", "PREFECT__ENGINE__TASK_RUNNER__DEFAULT_CLASS": "prefect.engine.cloud.CloudTaskRunner", } ) container_env = [{"name": k, "value": v} for k, v in env.items()] for entry in container.get("env", []): if entry["name"] not in env: container_env.append(entry) container["env"] = container_env # Set resource requirements if provided _get_or_create(container, "resources.requests") _get_or_create(container, "resources.limits") resources = container["resources"] if run_config.memory_request: resources["requests"]["memory"] = run_config.memory_request if run_config.memory_limit: resources["limits"]["memory"] = run_config.memory_limit if run_config.cpu_request: resources["requests"]["cpu"] = run_config.cpu_request if run_config.cpu_limit: resources["limits"]["cpu"] = run_config.cpu_limit return job @staticmethod def generate_deployment_yaml( token: str = None, api: str = None, namespace: str = None, image_pull_secrets: str = None, resource_manager_enabled: bool = False, rbac: bool = False, latest: bool = False, mem_request: str = None, mem_limit: str = None, cpu_request: str = None, cpu_limit: str = None, image_pull_policy: str = None, service_account_name: str = None, labels: Iterable[str] = None, env_vars: dict = None, backend: str = None, ) -> str: """ Generate and output an installable YAML spec for the agent. Args: - token (str, optional): A `RUNNER` token to give the agent - api (str, optional): A URL pointing to the Prefect API. Defaults to `https://api.prefect.io` - namespace (str, optional): The namespace to create Prefect jobs in. Defaults to `default` - image_pull_secrets (str, optional): The name of an image pull secret to use for Prefect jobs - resource_manager_enabled (bool, optional): Whether to include the resource manager as part of the YAML. Defaults to `False` - rbac (bool, optional): Whether to include default RBAC configuration as part of the YAML. Defaults to `False` - latest (bool, optional): Whether to use the `latest` Prefect image. Defaults to `False` - mem_request (str, optional): Requested memory for Prefect init job. - mem_limit (str, optional): Limit memory for Prefect init job. - cpu_request (str, optional): Requested CPU for Prefect init job. - cpu_limit (str, optional): Limit CPU for Prefect init job. - image_pull_policy (str, optional): imagePullPolicy to use for Prefect init job. Job defaults to `IfNotPresent`. - service_account_name (str, optional): Name of a service account to use for Prefect init job. Job defaults to using `default` service account. - labels (List[str], optional): a list of labels, which are arbitrary string identifiers used by Prefect Agents when polling for work - env_vars (dict, optional): additional environment variables to attach to all jobs created by this agent and to set in the agent's own environment - backend (str, optional): toggle which backend to use for this agent. Defaults to backend currently set in config. Returns: - str: A string representation of the generated YAML """ # Use defaults if not provided token = token or "" api = api or "https://api.prefect.io" namespace = namespace or "default" labels = labels or [] mem_request = mem_request or "" mem_limit = mem_limit or "" cpu_request = cpu_request or "" cpu_limit = cpu_limit or "" image_pull_policy = image_pull_policy or "" service_account_name = service_account_name or "" backend = backend or config.backend version = prefect.__version__.split("+") image_version = ( "latest" if len(version) > 1 or latest else (version[0] + "-python3.6") ) with open( os.path.join(os.path.dirname(__file__), "deployment.yaml"), "r" ) as deployment_file: deployment = yaml.safe_load(deployment_file) agent_env = deployment["spec"]["template"]["spec"]["containers"][0]["env"] # Populate env vars agent_env[0]["value"] = token agent_env[1]["value"] = api agent_env[2]["value"] = namespace agent_env[3]["value"] = image_pull_secrets or "" agent_env[4]["value"] = str(labels) agent_env[11]["value"] = backend # Populate job resource env vars agent_env[5]["value"] = mem_request agent_env[6]["value"] = mem_limit agent_env[7]["value"] = cpu_request agent_env[8]["value"] = cpu_limit agent_env[9]["value"] = image_pull_policy agent_env[10]["value"] = service_account_name if env_vars: agent_env.append( { "name": "PREFECT__CLOUD__AGENT__ENV_VARS", "value": json.dumps(env_vars), } ) # Use local prefect version for image deployment["spec"]["template"]["spec"]["containers"][0][ "image" ] = "prefecthq/prefect:{}".format(image_version) # Populate resource manager if requested if resource_manager_enabled: resource_manager_env = deployment["spec"]["template"]["spec"]["containers"][ 1 ]["env"] resource_manager_env[0]["value"] = token resource_manager_env[1]["value"] = api resource_manager_env[3]["value"] = namespace # Use local prefect version for image deployment["spec"]["template"]["spec"]["containers"][1][ "image" ] = "prefecthq/prefect:{}".format(image_version) else: del deployment["spec"]["template"]["spec"]["containers"][1] # Populate image pull secrets if provided if image_pull_secrets: agent_env = deployment["spec"]["template"]["spec"]["imagePullSecrets"][0][ "name" ] = image_pull_secrets else: del deployment["spec"]["template"]["spec"]["imagePullSecrets"] # Load RBAC if specified rbac_yaml = [] if rbac: with open( os.path.join(os.path.dirname(__file__), "rbac.yaml"), "r" ) as rbac_file: rbac_generator = yaml.safe_load_all(rbac_file) for document in rbac_generator: document["metadata"]["namespace"] = namespace rbac_yaml.append(document) output_yaml = [deployment] output_yaml.extend(rbac_yaml) return yaml.safe_dump_all(output_yaml, explicit_start=True) if __name__ == "__main__": KubernetesAgent().start()
43.922252
105
0.545993
978788facb610507b3568ad240bfc3ea895c3525
765
py
Python
tests/test_handlers.py
thedyrn/aio-vkbot
7f6187eafb5fdc9dab8fcc36172a273fad6ce1ab
[ "MIT" ]
2
2020-02-06T18:06:56.000Z
2021-02-20T23:03:09.000Z
tests/test_handlers.py
thedyrn/aio-vkbot
7f6187eafb5fdc9dab8fcc36172a273fad6ce1ab
[ "MIT" ]
null
null
null
tests/test_handlers.py
thedyrn/aio-vkbot
7f6187eafb5fdc9dab8fcc36172a273fad6ce1ab
[ "MIT" ]
null
null
null
import pytest from unittest.mock import Mock from aiobot import Handler, MessageHandler, CommandHandler, VkEventType, Update @pytest.fixture def update_from_dict(raw_new_message_update): return Update.from_dict(raw_new_message_update) def test_handler(update_from_dict): mocked_callback = Mock() h = Handler(mocked_callback, VkEventType.MESSAGE_NEW) assert h.check_update(update_from_dict) h.handle_update(update_from_dict, Mock()) assert mocked_callback.called def test_message_handler(update_from_dict): mocked_callback = Mock() h = MessageHandler(mocked_callback) assert h.check_update(update_from_dict) h.handle_update(update_from_dict, Mock()) assert mocked_callback.called # TODO CommandHandler добавить
28.333333
79
0.789542
896cf9d927032462cc82aeae4962fa287bbf6cd2
7,973
py
Python
autodiff/fmin_sgd.py
gwtaylor/pyautodiff
7973e26f1c233570ed4bb10d08634ec7378e2152
[ "BSD-3-Clause" ]
59
2015-02-03T20:50:59.000Z
2020-05-26T05:38:54.000Z
autodiff/fmin_sgd.py
gwtaylor/pyautodiff
7973e26f1c233570ed4bb10d08634ec7378e2152
[ "BSD-3-Clause" ]
3
2015-05-10T06:22:45.000Z
2016-12-06T02:20:58.000Z
autodiff/fmin_sgd.py
gwtaylor/pyautodiff
7973e26f1c233570ed4bb10d08634ec7378e2152
[ "BSD-3-Clause" ]
11
2015-04-15T16:52:09.000Z
2017-06-28T12:10:39.000Z
""" Function minimization drivers based on stochastic gradient descent (SGD). """ import gc import logging import sys import time import numpy as np import theano from .context import Context from .utils import flat_from_doc, doc_from_flat from .utils import post_collect logger = logging.getLogger(__name__) info = logger.info warn = logger.warn raise NotImplementedError( 'fmin_sgd is a legacy file not supported in the current version of ' 'PyAutoDiff (yet!)') class FMinSGD(object): """ An iterator implementing the stochastic gradient descent algorithm. On each iteration, this function increments each of self.current_args by `-step_size` times its gradient gradient wrt `fn`, and returns the current [stochastic] calculation of `fn`. """ def __init__(self, fn, args, streams, step_size, loops=1, step_size_backoff=0.25, theano_mode=None, theano_device=None, rseed=12345, floatX='float64', ): """ fn - a callable taking *(args + (stream[i],)) args - the arguments of fn, which this function will search stream - a dictionary of iterables (i.e. struct of arrays) These must all have the same length, and FMinSGD will iterate through them jointly, passing the i'th element of each sequence to `fn` to get a gradient estimate. step_size - a multiplier on the negative gradient used for search - a float will be used for all args - a tuple of floats will use each float for each arg - a tuple of ndarrays will use each ndarray for each arg - floats and ndarrays can both be used in a tuple here theano_mode - (API leak) how to compile the underlying theano function. theano_device - (API leak) optional string to force cpu/gpu execution """ self.rng = np.random.RandomState(rseed) self.step_size_backoff = step_size_backoff ctxt = Context(device=theano_device, floatX=floatX) s_streams0 = {} # -- symbolic element dictionary streams0 = {} # -- non-symbolic first element dictionary _len = sys.maxint s_stream_idx = ctxt.shared(np.asarray(0), name='stream_idx') s_idxs = ctxt.shared(self.rng.randint(2, size=3), name='idxs') s_idx = s_idxs[s_stream_idx] for key, stream in streams.items(): stream0 = stream[0] s_stream = ctxt.shared(stream, borrow=True) s_stream_i = s_stream[s_idx] assert s_stream_i.dtype == str(stream0.dtype) if hasattr(stream, 'shape'): # -- if stream is a tensor, then all elements have same size # so bake stream0's size into the function. ctxt.shadow(stream0, s_stream_i.reshape(stream0.shape)) else: raise NotImplementedError('non ndarray stream', stream) streams0[key] = stream0 s_streams0[key] = s_stream_i _len = min(_len, len(stream)) # -- pass params as args, streams as kwawrgs cost = ctxt.call(fn, args, streams0) flat_args = flat_from_doc(args) s_args = [ctxt.svars[id(w)] for w in flat_args] s_cost = ctxt.svars[id(cost)] # -- if step_size is a scalar, expand it out to match the args try: float(step_size) step_size = (step_size,) * len(args) except TypeError: pass s_step_sizes = [ctxt.shared(np.asarray(step)) for step in step_size] if len(s_step_sizes) != len(args): raise ValueError('len of step_size tuple must match len of args') s_costs = ctxt.shared(np.zeros(3, dtype=s_cost.dtype), name='costs') del ctxt gc.collect() #theano.printing.debugprint(s_cost) g_args = theano.tensor.grad(s_cost, s_args, disconnected_inputs='warn', ) # -- shared var into which we will write stream entries updates = [(a, a - theano.tensor.cast(s_step, a.dtype) * g) for s_step, a, g, in zip(s_step_sizes, s_args, g_args)] updates += [(s_stream_idx, s_stream_idx + 1)] updates += [(s_costs, theano.tensor.inc_subtensor(s_costs[s_stream_idx], s_cost))] update_fn = theano.function([], [], updates=updates, mode=theano_mode, #profile=1, ) # theano.printing.debugprint(update_fn) self.args = args self.loops = loops self.streams = streams self.s_args = s_args self.s_cost = s_cost self.g_args = g_args self.s_streams0 = s_streams0 self.update_fn = update_fn self._len = _len self.s_step_sizes = s_step_sizes self.s_stream_idx = s_stream_idx self.s_costs = s_costs self.s_idxs = s_idxs self.ii = 0 self.cost_history = [] def __iter__(self): return self def nextN(self, N, force=False): # Theano's cvm has a really low-overhead direct call # interface, which does not permit argument-passing. # so we set up all the indexes we want to use in shared # variables, and the s_stream_idx iterates over our list # of randomly chosen indexes, and fills in the costs into # self.s_costs. fn = self.update_fn.fn if force: _N = N else: _N = min(N, int(self._len * self.loops) - self.ii) if _N <= 0: return [] idxs = self.rng.randint(self._len, size=_N) self.s_stream_idx.set_value(0) self.s_idxs.set_value( idxs, borrow=True) self.s_costs.set_value( np.zeros(_N, dtype=self.s_costs.dtype), borrow=True) args_backup = [a.get_value() for a in self.s_args] try: # when using the cvm, there is a special calling form # that uses an internal for-loop fn(n_calls=_N) except TypeError: for i in xrange(_N): fn() rval = self.s_costs.get_value() if np.isfinite(rval[-1]): self.cost_history.append(np.mean(rval)) else: info('decreasing step sizes by %f' % self.step_size_backoff) [s_step.set_value(s_step.get_value() * self.step_size_backoff) for s_step in self.s_step_sizes] [s_a.set_value(a, borrow=True) for s_a, a in zip(self.s_args, args_backup)] if len(self.cost_history) > 3: if not (self.cost_history[-1] <= self.cost_history[-3]): info('decreasing step sizes by %f' % self.step_size_backoff) [s_step.set_value(s_step.get_value() * self.step_size_backoff) for s_step in self.s_step_sizes] self.ii += len(rval) return rval def next(self, N=None): rval = self.nextN(1) if rval: return rval[0] else: raise StopIteration() @property def current_args(self): vals = [a.get_value() for a in self.s_args] rval, pos = doc_from_flat(self.args, vals, 0) assert pos == len(vals) return rval @post_collect def fmin_sgd(*args, **kwargs): """ See FMinSGD for documentation. This function creates that object, exhausts the iterator, and then returns the final self.current_args values. """ print_interval = kwargs.pop('print_interval', sys.maxint) obj = FMinSGD(*args, **kwargs) while True: t = time.time() vals = obj.nextN(print_interval) if len(vals): print 'Value', np.mean(vals), 'time', (time.time() - t) else: break return obj.current_args
34.515152
78
0.590117
458e61de53a9538b87cceba1e398ab89f3eaa18f
5,130
py
Python
tf_agents/environments/suite_gym.py
Bhaney44/agents
e5fd5b19ba86fbc5980c9f8e173ce959f8b7bb45
[ "Apache-2.0" ]
4
2020-06-25T00:47:40.000Z
2021-07-07T15:07:59.000Z
tf_agents/environments/suite_gym.py
Bhaney44/agents
e5fd5b19ba86fbc5980c9f8e173ce959f8b7bb45
[ "Apache-2.0" ]
null
null
null
tf_agents/environments/suite_gym.py
Bhaney44/agents
e5fd5b19ba86fbc5980c9f8e173ce959f8b7bb45
[ "Apache-2.0" ]
1
2020-08-18T13:32:15.000Z
2020-08-18T13:32:15.000Z
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Suite for loading Gym Environments. Note we use gym.spec(env_id).make() on gym envs to avoid getting a TimeLimit wrapper on the environment. OpenAI's TimeLimit wrappers terminate episodes without indicating if the failure is due to the time limit, or due to negative agent behaviour. This prevents us from setting the appropriate discount value for the final step of an episode. To prevent that we extract the step limit from the environment specs and utilize our TimeLimit wrapper. """ import gym from tf_agents.environments import gym_wrapper from tf_agents.environments import wrappers import gin.tf @gin.configurable def load(environment_name, discount=1.0, max_episode_steps=None, gym_env_wrappers=(), env_wrappers=(), spec_dtype_map=None): """Loads the selected environment and wraps it with the specified wrappers. Note that by default a TimeLimit wrapper is used to limit episode lengths to the default benchmarks defined by the registered environments. Args: environment_name: Name for the environment to load. discount: Discount to use for the environment. max_episode_steps: If None the max_episode_steps will be set to the default step limit defined in the environment's spec. No limit is applied if set to 0 or if there is no timestep_limit set in the environment's spec. gym_env_wrappers: Iterable with references to wrapper classes to use directly on the gym environment. env_wrappers: Iterable with references to wrapper classes to use on the gym_wrapped environment. spec_dtype_map: A dict that maps gym specs to tf dtypes to use as the default dtype for the tensors. An easy way how to configure a custom mapping through Gin is to define a gin-configurable function that returns desired mapping and call it in your Gin congif file, for example: `suite_gym.load.spec_dtype_map = @get_custom_mapping()`. Returns: A PyEnvironment instance. """ gym_spec = gym.spec(environment_name) gym_env = gym_spec.make() if max_episode_steps is None and gym_spec.timestep_limit is not None: max_episode_steps = gym_spec.max_episode_steps return wrap_env( gym_env, discount=discount, max_episode_steps=max_episode_steps, gym_env_wrappers=gym_env_wrappers, env_wrappers=env_wrappers, spec_dtype_map=spec_dtype_map) @gin.configurable def wrap_env(gym_env, discount=1.0, max_episode_steps=None, gym_env_wrappers=(), time_limit_wrapper=wrappers.TimeLimit, env_wrappers=(), spec_dtype_map=None, auto_reset=True): """Wraps given gym environment with TF Agent's GymWrapper. Note that by default a TimeLimit wrapper is used to limit episode lengths to the default benchmarks defined by the registered environments. Args: gym_env: An instance of OpenAI gym environment. discount: Discount to use for the environment. max_episode_steps: If None the max_episode_steps will be set to the default step limit defined in the environment's spec. No limit is applied if set to 0 or if there is no timestep_limit set in the environment's spec. gym_env_wrappers: Iterable with references to wrapper classes to use directly on the gym environment. time_limit_wrapper: Wrapper that accepts (env, max_episode_steps) params to enforce a TimeLimit. Usuaully this should be left as the default, wrappers.TimeLimit. env_wrappers: Iterable with references to wrapper classes to use on the gym_wrapped environment. spec_dtype_map: A dict that maps gym specs to tf dtypes to use as the default dtype for the tensors. An easy way how to configure a custom mapping through Gin is to define a gin-configurable function that returns desired mapping and call it in your Gin config file, for example: `suite_gym.load.spec_dtype_map = @get_custom_mapping()`. auto_reset: If True (default), reset the environment automatically after a terminal state is reached. Returns: A PyEnvironment instance. """ for wrapper in gym_env_wrappers: gym_env = wrapper(gym_env) env = gym_wrapper.GymWrapper( gym_env, discount=discount, spec_dtype_map=spec_dtype_map, auto_reset=auto_reset, ) if max_episode_steps > 0: env = time_limit_wrapper(env, max_episode_steps) for wrapper in env_wrappers: env = wrapper(env) return env
38.571429
79
0.738986
9089e46f122a23df12aa3d9a0cf8e111de603b55
566
py
Python
2020/Day17/tests.py
dh256/adventofcode
428eec13f4cbf153333a0e359bcff23070ef6d27
[ "MIT" ]
null
null
null
2020/Day17/tests.py
dh256/adventofcode
428eec13f4cbf153333a0e359bcff23070ef6d27
[ "MIT" ]
null
null
null
2020/Day17/tests.py
dh256/adventofcode
428eec13f4cbf153333a0e359bcff23070ef6d27
[ "MIT" ]
null
null
null
import pytest from Cubes import Cubes, Cubes2 test_data = [('test1.txt',1,11),('test1.txt',2,21),('test1.txt',6,112)] test_data2 = [('test1.txt',1,29),('test1.txt',6,848)] # Part 1 @pytest.mark.parametrize('file_name,cycles,result',test_data) def test_simulate_cycles(file_name, cycles, result): cubes = Cubes(file_name) assert cubes.cycle(cycles) == result # Part 2 @pytest.mark.parametrize('file_name,cycles,result',test_data2) def test_simulate_cycles2(file_name, cycles, result): cubes = Cubes2(file_name) assert cubes.cycle(cycles) == result
31.444444
71
0.726148
fc068434ed8a0441d232c4e1fc0b38004e099159
3,566
py
Python
tools/drive_down.py
jacke121/HRNet-Facial-Landmark-Detection
6d29324ce8bf203518bb8e92d1df919145a7063c
[ "MIT" ]
null
null
null
tools/drive_down.py
jacke121/HRNet-Facial-Landmark-Detection
6d29324ce8bf203518bb8e92d1df919145a7063c
[ "MIT" ]
null
null
null
tools/drive_down.py
jacke121/HRNet-Facial-Landmark-Detection
6d29324ce8bf203518bb8e92d1df919145a7063c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from requests import Session from base64 import b64encode import aiofiles import asyncio import aiohttp import os class OneDrive: """ Downloads shared file/folder to localhost with persisted structure. params: `str:url`: url to the shared one drive folder or file `str:path`: local filesystem path methods: `download() -> None`: fire async download of all files found in URL """ def __init__(self, url=None, path=None): if not (url and path): raise ValueError("URL to shared resource or path to download is missing.") self.url = url self.path = path self.prefix = "https://api.onedrive.com/v1.0/shares/" self.suffix = "/root?expand=children" self.session = Session() self.session.headers.update( { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36" } ) def _token(self, url): return "u!" + b64encode(url.encode()).decode() def _traverse_url(self, url, name=""): """ Traverse the folder tree and store leaf urls with filenames """ r = self.session.get(f"{self.prefix}{self._token(url)}{self.suffix}").json() name = name + os.sep + r["name"] # shared file if not r["children"]: file = {} file["name"] = name.lstrip(os.sep) file["url"] = r["@content.downloadUrl"] self.to_download.append(file) print(f"Found {file['name']}") # shared folder for child in r["children"]: if "folder" in child: self._traverse_url(child["webUrl"], name) if "file" in child: file = {} file["name"] = (name + os.sep + child["name"]).lstrip(os.sep) file["url"] = child["@content.downloadUrl"] self.to_download.append(file) print(f"Found {file['name']}") async def _download_file(self, file, session): async with session.get(file["url"], timeout=None) as r: filename = os.path.join(self.path, file["name"]) os.makedirs(os.path.dirname(filename), exist_ok=True) async with aiofiles.open(filename, "wb") as f: async for chunk in r.content.iter_chunked(1024 * 16): if chunk: await f.write(chunk) self.downloaded += 1 progress = int(self.downloaded / len(self.to_download) * 100) print(f"Download progress: {progress}%") async def _downloader(self): async with aiohttp.ClientSession() as session: await asyncio.wait( [self._download_file(file, session) for file in self.to_download] ) def download(self): print("Traversing public folder\n") self.to_download = [] self.downloaded = 0 self._traverse_url(self.url) print("\nStarting async download\n") asyncio.get_event_loop().run_until_complete(self._downloader()) # path could be relative to current working directory of script # or absolute (e.g. C:\\Users\\Username\\Desktop, /home/username/Desktop) folder = OneDrive(url="https://1drv.ms/u/s!Aus8VCZ_C_33cMkPimlmClRvmpw", path="Desktop") folder = OneDrive(url="https://1drv.ms/u/s!AiWjZ1LamlxzdmYbSkHpPYhI8Ms", path=r"D:\project\face\HRNet-Facial-Landmark-Detection") # fire download folder.download()
34.621359
129
0.593943
f8761cd71502a0f3d88b93dcb63b418003b13263
4,244
py
Python
sdk/core/azure-core/azure/core/tracing/context.py
jiasli/azure-sdk-for-python
f700299c45cea44064d5156f2bfe3664284f6da4
[ "MIT" ]
null
null
null
sdk/core/azure-core/azure/core/tracing/context.py
jiasli/azure-sdk-for-python
f700299c45cea44064d5156f2bfe3664284f6da4
[ "MIT" ]
null
null
null
sdk/core/azure-core/azure/core/tracing/context.py
jiasli/azure-sdk-for-python
f700299c45cea44064d5156f2bfe3664284f6da4
[ "MIT" ]
null
null
null
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ """The context for the azure.core.tracing. Holds global variables in a thread and async safe way.""" import threading from azure.core.settings import settings try: from typing import TYPE_CHECKING except ImportError: TYPE_CHECKING = False if TYPE_CHECKING: from typing import Any, Callable from typing_extensions import Protocol else: Protocol = object try: import contextvars except ImportError: contextvars = None class ContextProtocol(Protocol): """ Implements set and get variables in a thread safe way. """ def __init__(self, name, default): # type: (string, Any) -> None pass def clear(self): # type: () -> None """Reset the value to the default value""" pass def get(self): # type: () -> Any """Get the stored value.""" pass def set(self, value): # type: (Any) -> None """Set the value in the context.""" pass class _AsyncContext(object): """ Uses contextvars to set and get variables globally in a thread safe way. """ def __init__(self, name, default): self.name = name self.contextvar = contextvars.ContextVar(name) self.default = default if callable(default) else (lambda: default) def clear(self): # type: () -> None """Reset the value to the default value""" self.contextvar.set(self.default()) def get(self): # type: () -> Any """Get the stored value.""" try: return self.contextvar.get() except LookupError: value = self.default() self.set(value) return value def set(self, value): # type: (Any) -> None """Set the value in the context.""" self.contextvar.set(value) class _ThreadLocalContext(object): """ Uses thread local storage to set and get variables globally in a thread safe way. """ _thread_local = threading.local() def __init__(self, name, default): # type: (str, Any) -> None self.name = name self.default = default if callable(default) else (lambda: default) def clear(self): # type: () -> None """Reset the value to the default value""" setattr(self._thread_local, self.name, self.default()) def get(self): # type: () -> Any """Get the stored value.""" try: return getattr(self._thread_local, self.name) except AttributeError: value = self.default() self.set(value) return value def set(self, value): # type: (Any) -> None """Set the value in the context.""" setattr(self._thread_local, self.name, value) class TracingContext(object): def __init__(self): # type: () -> None context_class = _AsyncContext if contextvars else _ThreadLocalContext self.current_span = context_class("current_span", None) def with_current_context(self, func): # type: (Callable[[Any], Any]) -> Any """ Passes the current spans to the new context the function will be run in. :param func: The function that will be run in the new context :return: The target the pass in instead of the function """ wrapped_span = tracing_context.current_span.get() wrapper_class = settings.tracing_implementation() if wrapper_class is not None: current_impl_span = wrapper_class.get_current_span() current_impl_tracer = wrapper_class.get_current_tracer() def call_with_current_context(*args, **kwargs): if wrapper_class is not None: wrapper_class.set_current_span(current_impl_span) wrapper_class.set_current_tracer(current_impl_tracer) current_span = wrapped_span or wrapper_class(current_impl_span) self.current_span.set(current_span) return func(*args, **kwargs) return call_with_current_context tracing_context = TracingContext()
29.268966
100
0.604147
36f0a43c5b8ceebcc1d995c30a228f020a92105d
343
py
Python
setup.py
zackchase/beermind
695fd1b2f6d376b6dd9f70ba2cd2c13e5efb9c47
[ "MIT" ]
3
2016-12-15T11:54:33.000Z
2017-06-08T21:10:58.000Z
setup.py
zackchase/beermind
695fd1b2f6d376b6dd9f70ba2cd2c13e5efb9c47
[ "MIT" ]
null
null
null
setup.py
zackchase/beermind
695fd1b2f6d376b6dd9f70ba2cd2c13e5efb9c47
[ "MIT" ]
2
2017-10-13T18:34:36.000Z
2020-01-25T03:46:31.000Z
from setuptools import setup, find_packages setup( name = "deepx", version = "0.0.0", author = "Zachary Chase Lipton, Sharad Vikram", author_email = "sharad.vikram@gmail.com", license = "MIT", keywords = "theano", packages=find_packages(include=[ 'deepx', 'dataset', ]), classifiers=[ ], )
20.176471
51
0.597668
b79995b85c0787995083e8174fdd7e29eeab464c
43,523
py
Python
sympy/assumptions/ask.py
darknight009/sympy
618193720b862a41aa295d474793cc12e4de2927
[ "BSD-3-Clause" ]
1
2017-04-27T15:45:41.000Z
2017-04-27T15:45:41.000Z
sympy/assumptions/ask.py
darknight009/sympy
618193720b862a41aa295d474793cc12e4de2927
[ "BSD-3-Clause" ]
1
2015-11-01T17:20:32.000Z
2015-11-01T17:20:32.000Z
sympy/assumptions/ask.py
darknight009/sympy
618193720b862a41aa295d474793cc12e4de2927
[ "BSD-3-Clause" ]
1
2018-10-22T09:17:11.000Z
2018-10-22T09:17:11.000Z
"""Module for querying SymPy objects about assumptions.""" from __future__ import print_function, division from sympy.core import sympify from sympy.core.cache import cacheit from sympy.core.relational import Relational from sympy.logic.boolalg import (to_cnf, And, Not, Or, Implies, Equivalent, BooleanFunction, BooleanAtom) from sympy.logic.inference import satisfiable from sympy.assumptions.assume import (global_assumptions, Predicate, AppliedPredicate) from sympy.core.decorators import deprecated from sympy.utilities.decorator import memoize_property # Deprecated predicates should be added to this list deprecated_predicates = [ 'bounded', 'infinity', 'infinitesimal' ] # Memoization storage for predicates predicate_storage = {} predicate_memo = memoize_property(predicate_storage) # Memoization is necessary for the properties of AssumptionKeys to # ensure that only one object of Predicate objects are created. # This is because assumption handlers are registered on those objects. class AssumptionKeys(object): """ This class contains all the supported keys by ``ask``. """ @predicate_memo def hermitian(self): """ Hermitian predicate. ``ask(Q.hermitian(x))`` is true iff ``x`` belongs to the set of Hermitian operators. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples return Predicate('hermitian') @predicate_memo def antihermitian(self): """ Antihermitian predicate. ``Q.antihermitian(x)`` is true iff ``x`` belongs to the field of antihermitian operators, i.e., operators in the form ``x*I``, where ``x`` is Hermitian. References ========== .. [1] http://mathworld.wolfram.com/HermitianOperator.html """ # TODO: Add examples return Predicate('antihermitian') @predicate_memo def real(self): r""" Real number predicate. ``Q.real(x)`` is true iff ``x`` is a real number, i.e., it is in the interval `(-\infty, \infty)`. Note that, in particular the infinities are not real. Use ``Q.extended_real`` if you want to consider those as well. A few important facts about reals: - Every real number is positive, negative, or zero. Furthermore, because these sets are pairwise disjoint, each real number is exactly one of those three. - Every real number is also complex. - Every real number is finite. - Every real number is either rational or irrational. - Every real number is either algebraic or transcendental. - The facts ``Q.negative``, ``Q.zero``, ``Q.positive``, ``Q.nonnegative``, ``Q.nonpositive``, ``Q.nonzero``, ``Q.integer``, ``Q.rational``, and ``Q.irrational`` all imply ``Q.real``, as do all facts that imply those facts. - The facts ``Q.algebraic``, and ``Q.transcendental`` do not imply ``Q.real``; they imply ``Q.complex``. An algebraic or transcendental number may or may not be real. - The "non" facts (i.e., ``Q.nonnegative``, ``Q.nonzero``, ``Q.nonpositive`` and ``Q.noninteger``) are not equivalent to not the fact, but rather, not the fact *and* ``Q.real``. For example, ``Q.nonnegative`` means ``~Q.negative & Q.real``. So for example, ``I`` is not nonnegative, nonzero, or nonpositive. Examples ======== >>> from sympy import Q, ask, symbols >>> x = symbols('x') >>> ask(Q.real(x), Q.positive(x)) True >>> ask(Q.real(0)) True References ========== .. [1] https://en.wikipedia.org/wiki/Real_number """ return Predicate('real') @predicate_memo def extended_real(self): r""" Extended real predicate. ``Q.extended_real(x)`` is true iff ``x`` is a real number or `\{-\infty, \infty\}`. See documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import ask, Q, oo, I >>> ask(Q.extended_real(1)) True >>> ask(Q.extended_real(I)) False >>> ask(Q.extended_real(oo)) True """ return Predicate('extended_real') @predicate_memo def imaginary(self): """ Imaginary number predicate. ``Q.imaginary(x)`` is true iff ``x`` can be written as a real number multiplied by the imaginary unit ``I``. Please note that ``0`` is not considered to be an imaginary number. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.imaginary(3*I)) True >>> ask(Q.imaginary(2 + 3*I)) False >>> ask(Q.imaginary(0)) False References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_number """ return Predicate('imaginary') @predicate_memo def complex(self): """ Complex number predicate. ``Q.complex(x)`` is true iff ``x`` belongs to the set of complex numbers. Note that every complex number is finite. Examples ======== >>> from sympy import Q, Symbol, ask, I, oo >>> x = Symbol('x') >>> ask(Q.complex(0)) True >>> ask(Q.complex(2 + 3*I)) True >>> ask(Q.complex(oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Complex_number """ return Predicate('complex') @predicate_memo def algebraic(self): r""" Algebraic number predicate. ``Q.algebraic(x)`` is true iff ``x`` belongs to the set of algebraic numbers. ``x`` is algebraic if there is some polynomial in ``p(x)\in \mathbb\{Q\}[x]`` such that ``p(x) = 0``. Examples ======== >>> from sympy import ask, Q, sqrt, I, pi >>> ask(Q.algebraic(sqrt(2))) True >>> ask(Q.algebraic(I)) True >>> ask(Q.algebraic(pi)) False References ========== .. [1] http://en.wikipedia.org/wiki/Algebraic_number """ return Predicate('algebraic') @predicate_memo def transcendental(self): """ Transcedental number predicate. ``Q.transcendental(x)`` is true iff ``x`` belongs to the set of transcendental numbers. A transcendental number is a real or complex number that is not algebraic. """ # TODO: Add examples return Predicate('transcendental') @predicate_memo def integer(self): """ Integer predicate. ``Q.integer(x)`` is true iff ``x`` belongs to the set of integer numbers. Examples ======== >>> from sympy import Q, ask, S >>> ask(Q.integer(5)) True >>> ask(Q.integer(S(1)/2)) False References ========== .. [1] https://en.wikipedia.org/wiki/Integer """ return Predicate('integer') @predicate_memo def rational(self): """ Rational number predicate. ``Q.rational(x)`` is true iff ``x`` belongs to the set of rational numbers. Examples ======== >>> from sympy import ask, Q, pi, S >>> ask(Q.rational(0)) True >>> ask(Q.rational(S(1)/2)) True >>> ask(Q.rational(pi)) False References ========== https://en.wikipedia.org/wiki/Rational_number """ return Predicate('rational') @predicate_memo def irrational(self): """ Irrational number predicate. ``Q.irrational(x)`` is true iff ``x`` is any real number that cannot be expressed as a ratio of integers. Examples ======== >>> from sympy import ask, Q, pi, S, I >>> ask(Q.irrational(0)) False >>> ask(Q.irrational(S(1)/2)) False >>> ask(Q.irrational(pi)) True >>> ask(Q.irrational(I)) False References ========== .. [1] https://en.wikipedia.org/wiki/Irrational_number """ return Predicate('irrational') @predicate_memo def finite(self): """ Finite predicate. ``Q.finite(x)`` is true if ``x`` is neither an infinity nor a ``NaN``. In other words, ``ask(Q.finite(x))`` is true for all ``x`` having a bounded absolute value. Examples ======== >>> from sympy import Q, ask, Symbol, S, oo, I >>> x = Symbol('x') >>> ask(Q.finite(S.NaN)) False >>> ask(Q.finite(oo)) False >>> ask(Q.finite(1)) True >>> ask(Q.finite(2 + 3*I)) True References ========== .. [1] https://en.wikipedia.org/wiki/Finite """ return Predicate('finite') @predicate_memo @deprecated(useinstead="finite", issue=9425, deprecated_since_version="1.0") def bounded(self): """ See documentation of ``Q.finite``. """ return Predicate('finite') @predicate_memo def infinite(self): """ Infinite number predicate. ``Q.infinite(x)`` is true iff the absolute value of ``x`` is infinity. """ # TODO: Add examples return Predicate('infinite') @predicate_memo @deprecated(useinstead="infinite", issue=9426, deprecated_since_version="1.0") def infinity(self): """ See documentation of ``Q.infinite``. """ return Predicate('infinite') @predicate_memo @deprecated(useinstead="zero", issue=9675, deprecated_since_version="1.0") def infinitesimal(self): """ See documentation of ``Q.zero``. """ return Predicate('zero') @predicate_memo def positive(self): r""" Positive real number predicate. ``Q.positive(x)`` is true iff ``x`` is real and `x > 0`, that is if ``x`` is in the interval `(0, \infty)`. In particular, infinity is not positive. A few important facts about positive numbers: - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.positive(x), Q.real(x) & ~Q.negative(x) & ~Q.zero(x)) True >>> ask(Q.positive(1)) True >>> ask(Q.nonpositive(I)) False >>> ask(~Q.positive(I)) True """ return Predicate('positive') @predicate_memo def negative(self): r""" Negative number predicate. ``Q.negative(x)`` is true iff ``x`` is a real number and :math:`x < 0`, that is, it is in the interval :math:`(-\infty, 0)`. Note in particular that negative infinity is not negative. A few important facts about negative numbers: - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I >>> x = symbols('x') >>> ask(Q.negative(x), Q.real(x) & ~Q.positive(x) & ~Q.zero(x)) True >>> ask(Q.negative(-1)) True >>> ask(Q.nonnegative(I)) False >>> ask(~Q.negative(I)) True """ return Predicate('negative') @predicate_memo def zero(self): """ Zero number predicate. ``ask(Q.zero(x))`` is true iff the value of ``x`` is zero. Examples ======== >>> from sympy import ask, Q, oo, symbols >>> x, y = symbols('x, y') >>> ask(Q.zero(0)) True >>> ask(Q.zero(1/oo)) True >>> ask(Q.zero(0*oo)) False >>> ask(Q.zero(1)) False >>> ask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) True """ return Predicate('zero') @predicate_memo def nonzero(self): """ Nonzero real number predicate. ``ask(Q.nonzero(x))`` is true iff ``x`` is real and ``x`` is not zero. Note in particular that ``Q.nonzero(x)`` is false if ``x`` is not real. Use ``~Q.zero(x)`` if you want the negation of being zero without any real assumptions. A few important facts about nonzero numbers: - ``Q.nonzero`` is logically equivalent to ``Q.positive | Q.negative``. - See the documentation of ``Q.real`` for more information about related facts. Examples ======== >>> from sympy import Q, ask, symbols, I, oo >>> x = symbols('x') >>> print(ask(Q.nonzero(x), ~Q.zero(x))) None >>> ask(Q.nonzero(x), Q.positive(x)) True >>> ask(Q.nonzero(x), Q.zero(x)) False >>> ask(Q.nonzero(0)) False >>> ask(Q.nonzero(I)) False >>> ask(~Q.zero(I)) True >>> ask(Q.nonzero(oo)) #doctest: +SKIP False """ return Predicate('nonzero') @predicate_memo def nonpositive(self): """ Nonpositive real number predicate. ``ask(Q.nonpositive(x))`` is true iff ``x`` belongs to the set of negative numbers including zero. - Note that ``Q.nonpositive`` and ``~Q.positive`` are *not* the same thing. ``~Q.positive(x)`` simply means that ``x`` is not positive, whereas ``Q.nonpositive(x)`` means that ``x`` is real and not positive, i.e., ``Q.nonpositive(x)`` is logically equivalent to `Q.negative(x) | Q.zero(x)``. So for example, ``~Q.positive(I)`` is true, whereas ``Q.nonpositive(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonpositive(-1)) True >>> ask(Q.nonpositive(0)) True >>> ask(Q.nonpositive(1)) False >>> ask(Q.nonpositive(I)) False >>> ask(Q.nonpositive(-I)) False """ return Predicate('nonpositive') @predicate_memo def nonnegative(self): """ Nonnegative real number predicate. ``ask(Q.nonnegative(x))`` is true iff ``x`` belongs to the set of positive numbers including zero. - Note that ``Q.nonnegative`` and ``~Q.negative`` are *not* the same thing. ``~Q.negative(x)`` simply means that ``x`` is not negative, whereas ``Q.nonnegative(x)`` means that ``x`` is real and not negative, i.e., ``Q.nonnegative(x)`` is logically equivalent to ``Q.zero(x) | Q.positive(x)``. So for example, ``~Q.negative(I)`` is true, whereas ``Q.nonnegative(I)`` is false. Examples ======== >>> from sympy import Q, ask, I >>> ask(Q.nonnegative(1)) True >>> ask(Q.nonnegative(0)) True >>> ask(Q.nonnegative(-1)) False >>> ask(Q.nonnegative(I)) False >>> ask(Q.nonnegative(-I)) False """ return Predicate('nonnegative') @predicate_memo def even(self): """ Even number predicate. ``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even integers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.even(0)) True >>> ask(Q.even(2)) True >>> ask(Q.even(3)) False >>> ask(Q.even(pi)) False """ return Predicate('even') @predicate_memo def odd(self): """ Odd number predicate. ``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers. Examples ======== >>> from sympy import Q, ask, pi >>> ask(Q.odd(0)) False >>> ask(Q.odd(2)) False >>> ask(Q.odd(3)) True >>> ask(Q.odd(pi)) False """ return Predicate('odd') @predicate_memo def prime(self): """ Prime number predicate. ``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater than 1 that has no positive divisors other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.prime(0)) False >>> ask(Q.prime(1)) False >>> ask(Q.prime(2)) True >>> ask(Q.prime(20)) False >>> ask(Q.prime(-3)) False """ return Predicate('prime') @predicate_memo def composite(self): """ Composite number predicate. ``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has at least one positive divisor other than ``1`` and the number itself. Examples ======== >>> from sympy import Q, ask >>> ask(Q.composite(0)) False >>> ask(Q.composite(1)) False >>> ask(Q.composite(2)) False >>> ask(Q.composite(20)) True """ return Predicate('composite') @predicate_memo def commutative(self): """ Commutative predicate. ``ask(Q.commutative(x))`` is true iff ``x`` commutes with any other object with respect to multiplication operation. """ # TODO: Add examples return Predicate('commutative') @predicate_memo def is_true(self): """ Generic predicate. ``ask(Q.is_true(x))`` is true iff ``x`` is true. This only makes sense if ``x`` is a predicate. Examples ======== >>> from sympy import ask, Q, symbols >>> x = symbols('x') >>> ask(Q.is_true(True)) True """ return Predicate('is_true') @predicate_memo def symmetric(self): """ Symmetric matrix predicate. ``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to its transpose. Every square diagonal matrix is a symmetric matrix. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) True >>> ask(Q.symmetric(Y)) False References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_matrix """ # TODO: Add handlers to make these keys work with # actual matrices and add more examples in the docstring. return Predicate('symmetric') @predicate_memo def invertible(self): """ Invertible matrix predicate. ``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. A square matrix is called invertible only if its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.invertible(X*Y), Q.invertible(X)) False >>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) True >>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Invertible_matrix """ return Predicate('invertible') @predicate_memo def orthogonal(self): """ Orthogonal matrix predicate. ``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. A square matrix ``M`` is an orthogonal matrix if it satisfies ``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of ``M`` and ``I`` is an identity matrix. Note that an orthogonal matrix is necessarily invertible. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.orthogonal(Y)) False >>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) True >>> ask(Q.orthogonal(Identity(3))) True >>> ask(Q.invertible(X), Q.orthogonal(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix """ return Predicate('orthogonal') @predicate_memo def unitary(self): """ Unitary matrix predicate. ``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. Unitary matrix is an analogue to orthogonal matrix. A square matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` where :math:``M^T`` is the conjugate transpose matrix of ``M``. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.unitary(Y)) False >>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) True >>> ask(Q.unitary(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_matrix """ return Predicate('unitary') @predicate_memo def positive_definite(self): r""" Positive definite matrix predicate. If ``M`` is a :math:``n \times n`` symmetric real matrix, it is said to be positive definite if :math:`Z^TMZ` is positive for every non-zero column vector ``Z`` of ``n`` real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('Y', 2, 3) >>> Z = MatrixSymbol('Z', 2, 2) >>> ask(Q.positive_definite(Y)) False >>> ask(Q.positive_definite(Identity(3))) True >>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & ... Q.positive_definite(Z)) True References ========== .. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix """ return Predicate('positive_definite') @predicate_memo def upper_triangular(self): """ Upper triangular matrix predicate. A matrix ``M`` is called upper triangular matrix if :math:`M_{ij}=0` for :math:`i<j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.upper_triangular(Identity(3))) True >>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/UpperTriangularMatrix.html """ return Predicate('upper_triangular') @predicate_memo def lower_triangular(self): """ Lower triangular matrix predicate. A matrix ``M`` is called lower triangular matrix if :math:`a_{ij}=0` for :math:`i>j`. Examples ======== >>> from sympy import Q, ask, ZeroMatrix, Identity >>> ask(Q.lower_triangular(Identity(3))) True >>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) True References ========== .. [1] http://mathworld.wolfram.com/LowerTriangularMatrix.html """ return Predicate('lower_triangular') @predicate_memo def diagonal(self): """ Diagonal matrix predicate. ``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.diagonal(ZeroMatrix(3, 3))) True >>> ask(Q.diagonal(X), Q.lower_triangular(X) & ... Q.upper_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Diagonal_matrix """ return Predicate('diagonal') @predicate_memo def fullrank(self): """ Fullrank matrix predicate. ``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. A matrix is full rank if all rows and columns of the matrix are linearly independent. A square matrix is full rank iff its determinant is nonzero. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> ask(Q.fullrank(X.T), Q.fullrank(X)) True >>> ask(Q.fullrank(ZeroMatrix(3, 3))) False >>> ask(Q.fullrank(Identity(3))) True """ return Predicate('fullrank') @predicate_memo def square(self): """ Square matrix predicate. ``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix is a matrix with the same number of rows and columns. Examples ======== >>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity >>> X = MatrixSymbol('X', 2, 2) >>> Y = MatrixSymbol('X', 2, 3) >>> ask(Q.square(X)) True >>> ask(Q.square(Y)) False >>> ask(Q.square(ZeroMatrix(3, 3))) True >>> ask(Q.square(Identity(3))) True References ========== .. [1] https://en.wikipedia.org/wiki/Square_matrix """ return Predicate('square') @predicate_memo def integer_elements(self): """ Integer elements matrix predicate. ``Q.integer_elements(x)`` is true iff all the elements of ``x`` are integers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) True """ return Predicate('integer_elements') @predicate_memo def real_elements(self): """ Real elements matrix predicate. ``Q.real_elements(x)`` is true iff all the elements of ``x`` are real numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.real(X[1, 2]), Q.real_elements(X)) True """ return Predicate('real_elements') @predicate_memo def complex_elements(self): """ Complex elements matrix predicate. ``Q.complex_elements(x)`` is true iff all the elements of ``x`` are complex numbers. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) True >>> ask(Q.complex_elements(X), Q.integer_elements(X)) True """ return Predicate('complex_elements') @predicate_memo def singular(self): """ Singular matrix predicate. A matrix is singular iff the value of its determinant is 0. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.singular(X), Q.invertible(X)) False >>> ask(Q.singular(X), ~Q.invertible(X)) True References ========== .. [1] http://mathworld.wolfram.com/SingularMatrix.html """ return Predicate('singular') @predicate_memo def normal(self): """ Normal matrix predicate. A matrix is normal if it commutes with its conjugate transpose. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.normal(X), Q.unitary(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Normal_matrix """ return Predicate('normal') @predicate_memo def triangular(self): """ Triangular matrix predicate. ``Q.triangular(X)`` is true if ``X`` is one that is either lower triangular or upper triangular. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.upper_triangular(X)) True >>> ask(Q.triangular(X), Q.lower_triangular(X)) True References ========== .. [1] https://en.wikipedia.org/wiki/Triangular_matrix """ return Predicate('triangular') @predicate_memo def unit_triangular(self): """ Unit triangular matrix predicate. A unit triangular matrix is a triangular matrix with 1s on the diagonal. Examples ======== >>> from sympy import Q, ask, MatrixSymbol >>> X = MatrixSymbol('X', 4, 4) >>> ask(Q.triangular(X), Q.unit_triangular(X)) True """ return Predicate('unit_triangular') Q = AssumptionKeys() def _extract_facts(expr, symbol, check_reversed_rel=True): """ Helper for ask(). Extracts the facts relevant to the symbol from an assumption. Returns None if there is nothing to extract. """ if isinstance(symbol, Relational): if check_reversed_rel: rev = _extract_facts(expr, symbol.reversed, False) if rev is not None: return rev if isinstance(expr, bool): return if not expr.has(symbol): return if isinstance(expr, AppliedPredicate): if expr.arg == symbol: return expr.func else: return if isinstance(expr, Not) and expr.args[0].func in (And, Or): cls = Or if expr.args[0] == And else And expr = cls(*[~arg for arg in expr.args[0].args]) args = [_extract_facts(arg, symbol) for arg in expr.args] if isinstance(expr, And): args = [x for x in args if x is not None] if args: return expr.func(*args) if args and all(x != None for x in args): return expr.func(*args) def ask(proposition, assumptions=True, context=global_assumptions): """ Method for inferring properties about objects. **Syntax** * ask(proposition) * ask(proposition, assumptions) where ``proposition`` is any boolean expression Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False **Remarks** Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), Q.is_true(x > 0)) # doctest: +SKIP It is however a work in progress. """ from sympy.assumptions.satask import satask if not isinstance(proposition, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("proposition must be a valid logical expression") if not isinstance(assumptions, (BooleanFunction, AppliedPredicate, bool, BooleanAtom)): raise TypeError("assumptions must be a valid logical expression") if isinstance(proposition, AppliedPredicate): key, expr = proposition.func, sympify(proposition.arg) else: key, expr = Q.is_true, sympify(proposition) assumptions = And(assumptions, And(*context)) assumptions = to_cnf(assumptions) local_facts = _extract_facts(assumptions, expr) known_facts_cnf = get_known_facts_cnf() known_facts_dict = get_known_facts_dict() if local_facts and satisfiable(And(local_facts, known_facts_cnf)) is False: raise ValueError("inconsistent assumptions %s" % assumptions) # direct resolution method, no logic res = key(expr)._eval_ask(assumptions) if res is not None: return bool(res) if local_facts is None: return satask(proposition, assumptions=assumptions, context=context) # See if there's a straight-forward conclusion we can make for the inference if local_facts.is_Atom: if key in known_facts_dict[local_facts]: return True if Not(key) in known_facts_dict[local_facts]: return False elif (local_facts.func is And and all(k in known_facts_dict for k in local_facts.args)): for assum in local_facts.args: if assum.is_Atom: if key in known_facts_dict[assum]: return True if Not(key) in known_facts_dict[assum]: return False elif assum.func is Not and assum.args[0].is_Atom: if key in known_facts_dict[assum]: return False if Not(key) in known_facts_dict[assum]: return True elif (isinstance(key, Predicate) and local_facts.func is Not and local_facts.args[0].is_Atom): if local_facts.args[0] in known_facts_dict[key]: return False # Failing all else, we do a full logical inference res = ask_full_inference(key, local_facts, known_facts_cnf) if res is None: return satask(proposition, assumptions=assumptions, context=context) return res def ask_full_inference(proposition, assumptions, known_facts_cnf): """ Method for inferring properties about objects. """ if not satisfiable(And(known_facts_cnf, assumptions, proposition)): return False if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): return True return None def register_handler(key, handler): """ Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler:: >>> from sympy.assumptions import register_handler, ask, Q >>> from sympy.assumptions.handlers import AskHandler >>> class MersenneHandler(AskHandler): ... # Mersenne numbers are in the form 2**n + 1, n integer ... @staticmethod ... def Integer(expr, assumptions): ... from sympy import log ... return ask(Q.integer(log(expr + 1, 2))) >>> register_handler('mersenne', MersenneHandler) >>> ask(Q.mersenne(7)) True """ if type(key) is Predicate: key = key.name try: getattr(Q, key).add_handler(handler) except AttributeError: setattr(Q, key, Predicate(key, handlers=[handler])) def remove_handler(key, handler): """Removes a handler from the ask system. Same syntax as register_handler""" if type(key) is Predicate: key = key.name getattr(Q, key).remove_handler(handler) def single_fact_lookup(known_facts_keys, known_facts_cnf): # Compute the quick lookup for single facts mapping = {} for key in known_facts_keys: mapping[key] = {key} for other_key in known_facts_keys: if other_key != key: if ask_full_inference(other_key, key, known_facts_cnf): mapping[key].add(other_key) return mapping def compute_known_facts(known_facts, known_facts_keys): """Compute the various forms of knowledge compilation used by the assumptions system. This function is typically applied to the results of the ``get_known_facts`` and ``get_known_facts_keys`` functions defined at the bottom of this file. """ from textwrap import dedent, wrap fact_string = dedent('''\ """ The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And, Not, Or from sympy.assumptions.ask import Q # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( %s ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { %s } ''') # Compute the known facts in CNF form for logical inference LINE = ",\n " HANG = ' '*8 cnf = to_cnf(known_facts) c = LINE.join([str(a) for a in cnf.args]) mapping = single_fact_lookup(known_facts_keys, cnf) items = sorted(mapping.items(), key=str) keys = [str(i[0]) for i in items] values = ['set(%s)' % sorted(i[1], key=str) for i in items] m = LINE.join(['\n'.join( wrap("%s: %s" % (k, v), subsequent_indent=HANG, break_long_words=False)) for k, v in zip(keys, values)]) + ',' return fact_string % (c, m) # handlers tells us what ask handler we should use # for a particular key _val_template = 'sympy.assumptions.handlers.%s' _handlers = [ ("antihermitian", "sets.AskAntiHermitianHandler"), ("finite", "calculus.AskFiniteHandler"), ("commutative", "AskCommutativeHandler"), ("complex", "sets.AskComplexHandler"), ("composite", "ntheory.AskCompositeHandler"), ("even", "ntheory.AskEvenHandler"), ("extended_real", "sets.AskExtendedRealHandler"), ("hermitian", "sets.AskHermitianHandler"), ("imaginary", "sets.AskImaginaryHandler"), ("integer", "sets.AskIntegerHandler"), ("irrational", "sets.AskIrrationalHandler"), ("rational", "sets.AskRationalHandler"), ("negative", "order.AskNegativeHandler"), ("nonzero", "order.AskNonZeroHandler"), ("nonpositive", "order.AskNonPositiveHandler"), ("nonnegative", "order.AskNonNegativeHandler"), ("zero", "order.AskZeroHandler"), ("positive", "order.AskPositiveHandler"), ("prime", "ntheory.AskPrimeHandler"), ("real", "sets.AskRealHandler"), ("odd", "ntheory.AskOddHandler"), ("algebraic", "sets.AskAlgebraicHandler"), ("is_true", "common.TautologicalHandler"), ("symmetric", "matrices.AskSymmetricHandler"), ("invertible", "matrices.AskInvertibleHandler"), ("orthogonal", "matrices.AskOrthogonalHandler"), ("unitary", "matrices.AskUnitaryHandler"), ("positive_definite", "matrices.AskPositiveDefiniteHandler"), ("upper_triangular", "matrices.AskUpperTriangularHandler"), ("lower_triangular", "matrices.AskLowerTriangularHandler"), ("diagonal", "matrices.AskDiagonalHandler"), ("fullrank", "matrices.AskFullRankHandler"), ("square", "matrices.AskSquareHandler"), ("integer_elements", "matrices.AskIntegerElementsHandler"), ("real_elements", "matrices.AskRealElementsHandler"), ("complex_elements", "matrices.AskComplexElementsHandler"), ] for name, value in _handlers: register_handler(name, _val_template % value) @cacheit def get_known_facts_keys(): return [ getattr(Q, attr) for attr in Q.__class__.__dict__ if not (attr.startswith('__') or attr in deprecated_predicates)] @cacheit def get_known_facts(): return And( Implies(Q.infinite, ~Q.finite), Implies(Q.real, Q.complex), Implies(Q.real, Q.hermitian), Equivalent(Q.extended_real, Q.real | Q.infinite), Equivalent(Q.even | Q.odd, Q.integer), Implies(Q.even, ~Q.odd), Equivalent(Q.prime, Q.integer & Q.positive & ~Q.composite), Implies(Q.integer, Q.rational), Implies(Q.rational, Q.algebraic), Implies(Q.algebraic, Q.complex), Equivalent(Q.transcendental | Q.algebraic, Q.complex), Implies(Q.transcendental, ~Q.algebraic), Implies(Q.imaginary, Q.complex & ~Q.real), Implies(Q.imaginary, Q.antihermitian), Implies(Q.antihermitian, ~Q.hermitian), Equivalent(Q.irrational | Q.rational, Q.real), Implies(Q.irrational, ~Q.rational), Implies(Q.zero, Q.even), Equivalent(Q.real, Q.negative | Q.zero | Q.positive), Implies(Q.zero, ~Q.negative & ~Q.positive), Implies(Q.negative, ~Q.positive), Equivalent(Q.nonnegative, Q.zero | Q.positive), Equivalent(Q.nonpositive, Q.zero | Q.negative), Equivalent(Q.nonzero, Q.negative | Q.positive), Implies(Q.orthogonal, Q.positive_definite), Implies(Q.orthogonal, Q.unitary), Implies(Q.unitary & Q.real, Q.orthogonal), Implies(Q.unitary, Q.normal), Implies(Q.unitary, Q.invertible), Implies(Q.normal, Q.square), Implies(Q.diagonal, Q.normal), Implies(Q.positive_definite, Q.invertible), Implies(Q.diagonal, Q.upper_triangular), Implies(Q.diagonal, Q.lower_triangular), Implies(Q.lower_triangular, Q.triangular), Implies(Q.upper_triangular, Q.triangular), Implies(Q.triangular, Q.upper_triangular | Q.lower_triangular), Implies(Q.upper_triangular & Q.lower_triangular, Q.diagonal), Implies(Q.diagonal, Q.symmetric), Implies(Q.unit_triangular, Q.triangular), Implies(Q.invertible, Q.fullrank), Implies(Q.invertible, Q.square), Implies(Q.symmetric, Q.square), Implies(Q.fullrank & Q.square, Q.invertible), Equivalent(Q.invertible, ~Q.singular), Implies(Q.integer_elements, Q.real_elements), Implies(Q.real_elements, Q.complex_elements), ) from sympy.assumptions.ask_generated import ( get_known_facts_dict, get_known_facts_cnf)
28.446405
91
0.557039
14b776ff88ac69dbffe34ddd9d6ea4bdc4f4b1ee
1,479
py
Python
scripts/plot_europe.py
MaxNoe/soak19
76ebffe8290118a7bb0a927d87a66e6664c0b4c8
[ "MIT" ]
1
2020-11-24T19:07:55.000Z
2020-11-24T19:07:55.000Z
scripts/plot_europe.py
maxnoe/soak19
76ebffe8290118a7bb0a927d87a66e6664c0b4c8
[ "MIT" ]
null
null
null
scripts/plot_europe.py
maxnoe/soak19
76ebffe8290118a7bb0a927d87a66e6664c0b4c8
[ "MIT" ]
null
null
null
import xarray import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap, DivergingNorm import numpy as np dataset = xarray.open_dataset('data/ETOPO1_Ice_g_gdal.grd') shape = tuple(dataset.dimension.values[::-1]) z = dataset.z.values.reshape(shape) lon1 = -22 lon2 = 45 lat1 = 30 lat2 = 75 idx2 = int(-lat1 / 180 * shape[0]) + shape[0] // 2 idx1 = int(-lat2 / 180 * shape[0]) + shape[0] // 2 idx3 = int(lon1 / 360 * shape[1]) + shape[1] // 2 idx4 = int(lon2 / 360 * shape[1]) + shape[1] // 2 print(idx1, idx2, idx3, idx4) z = z[idx1:idx2, idx3:idx4] print(z.min(), z.max()) fig = plt.figure(constrained_layout=True) ax = fig.add_subplot(1, 1, 1) ax.set_axis_off() img = plt.imshow( z, cmap='jet', vmin=-5e3, vmax=5e3, # extent=[-180, 180, -90, 90] ) img.set_rasterized(True) fig.colorbar(img) fig.savefig('build/plots/europe_jet.pdf') colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256)) colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256)) all_colors = np.vstack((colors_undersea, colors_land)) terrain_map = LinearSegmentedColormap.from_list('terrain_map', all_colors) divnorm = DivergingNorm(vmin=-5e3, vcenter=0, vmax=5e3) fig = plt.figure(constrained_layout=True) ax = fig.add_subplot(1, 1, 1) ax.set_axis_off() img = plt.imshow( z, cmap=terrain_map, norm=divnorm, # extent=[-180, 180, -90, 90] ) img.set_rasterized(True) fig.colorbar(img) fig.savefig('build/plots/europe_divnorm.pdf')
23.109375
74
0.691007
e781a9572985e96058c6f383e5e8534ff2647249
1,648
py
Python
setup.py
INNOVINATI/microwler
958430d1804f4c29e07bfdd8dccab369d5bbda3e
[ "MIT" ]
11
2021-01-12T14:45:12.000Z
2022-02-09T02:09:00.000Z
setup.py
INNOVINATI/microwler
958430d1804f4c29e07bfdd8dccab369d5bbda3e
[ "MIT" ]
null
null
null
setup.py
INNOVINATI/microwler
958430d1804f4c29e07bfdd8dccab369d5bbda3e
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages import pathlib here = pathlib.Path(__file__).parent.resolve() long_description = (here / 'README.md').read_text(encoding='utf-8') setup( name='microwler', version='0.1.8', description='A micro-framework for asynchronous deep crawls and web scraping written in Python', long_description=long_description, long_description_content_type='text/markdown', url='https://innovinati.github.io/microwler/', author='Maximilian Wolf', author_email='maximilian.wolf@innovinati.com', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Framework :: AsyncIO', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3 :: Only', ], packages=['microwler', 'microwler.cli', 'microwler.web'], include_package_data=True, python_requires='>=3.7, <4', install_requires=[ 'aiohttp', 'lxml', 'diskcache', 'prettytable', 'quart', 'random-user-agent', 'html-text', 'completely', 'click', 'parsel', 'chardet', 'quart-cors', 'aiodns' ], entry_points=''' [console_scripts] microwler=microwler.cli.cmd:show_help new=microwler.cli.cmd:add_project crawler=microwler.cli.cmd:crawler serve=microwler.cli.cmd:start_server ''', project_urls={ 'Issues': 'https://github.com/INNOVINATI/microwler/issues', 'Source': 'https://github.com/INNOVINATI/microwler/', }, )
35.06383
100
0.649879
60fdfddd8a4d0bfd39fdce4f9733537cba69ac06
824
py
Python
src/extractors/featurecombiner.py
safdark/advanced-lane-lines
27edcc444ac532e84749d667fc579970d2059aff
[ "Apache-2.0" ]
null
null
null
src/extractors/featurecombiner.py
safdark/advanced-lane-lines
27edcc444ac532e84749d667fc579970d2059aff
[ "Apache-2.0" ]
6
2017-01-01T12:12:57.000Z
2017-01-06T03:40:49.000Z
src/extractors/featurecombiner.py
safdark/advanced-lane-lines
27edcc444ac532e84749d667fc579970d2059aff
[ "Apache-2.0" ]
null
null
null
''' Created on Jan 14, 2017 @author: safdar ''' import numpy as np from sklearn.preprocessing.data import StandardScaler class FeatureCombiner(object): def __init__(self, extractors): self.__extractors__ = extractors def extract(self, image): featurelist = [] for extractor in self.__extractors__: feature = extractor.extract(image) assert feature is not None, "Feature obtained from {} was none".format(extractor.__class__.__name__) featurelist.append(feature) features = np.concatenate(tuple(featurelist)) scaled_features = StandardScaler().fit_transform(features.reshape(-1,1)) #scaled_features = scaled_features.reshape(1, -1) scaled_features = scaled_features.ravel() return scaled_features
32.96
112
0.675971
a74c32c0ee5f1bd8755fe2e955590d6c96a833ba
5,203
py
Python
adv_lib/attacks/fast_adaptive_boundary/projections.py
Daulbaev/adversarial-library
6f979a511ad78908374cd55855a9e2c5a874be7d
[ "BSD-3-Clause" ]
55
2020-11-25T10:47:48.000Z
2022-03-21T12:11:31.000Z
adv_lib/attacks/fast_adaptive_boundary/projections.py
Daulbaev/adversarial-library
6f979a511ad78908374cd55855a9e2c5a874be7d
[ "BSD-3-Clause" ]
4
2021-03-10T19:25:31.000Z
2021-08-06T00:10:49.000Z
adv_lib/attacks/fast_adaptive_boundary/projections.py
Daulbaev/adversarial-library
6f979a511ad78908374cd55855a9e2c5a874be7d
[ "BSD-3-Clause" ]
8
2020-11-26T08:42:04.000Z
2022-01-13T02:55:47.000Z
import math import torch from torch import Tensor from torch.nn import functional as F def projection_l1(points_to_project: Tensor, w_hyperplane: Tensor, b_hyperplane: Tensor) -> Tensor: device = points_to_project.device t, w, b = points_to_project, w_hyperplane.clone(), b_hyperplane c = (w * t).sum(1) - b ind2 = 2 * (c >= 0) - 1 w.mul_(ind2.unsqueeze(1)) c.mul_(ind2) r = (1 / w).abs().clamp_max(1e12) indr = torch.argsort(r, dim=1) indr_rev = torch.argsort(indr) c6 = (w < 0).float() d = (-t + c6) * (w != 0).float() ds = torch.min(-w * t, w * (1 - t)).gather(1, indr) ds2 = torch.cat((c.unsqueeze(-1), ds), 1) s = torch.cumsum(ds2, dim=1) c2 = s[:, -1] < 0 lb = torch.zeros(c2.sum(), device=device) ub = torch.full_like(lb, s.shape[1]) nitermax = math.ceil(math.log2(w.shape[1])) s_ = s[c2] for counter in range(nitermax): counter4 = torch.floor((lb + ub) / 2) counter2 = counter4.long().unsqueeze(1) c3 = s_.gather(1, counter2).squeeze(1) > 0 lb = torch.where(c3, counter4, lb) ub = torch.where(c3, ub, counter4) lb2 = lb.long() if c2.any(): indr = indr[c2].gather(1, lb2.unsqueeze(1)).squeeze(1) u = torch.arange(0, w.shape[0], device=device).unsqueeze(1) u2 = torch.arange(0, w.shape[1], device=device, dtype=torch.float).unsqueeze(0) alpha = -s[c2, lb2] / w[c2, indr] c5 = u2 < lb.unsqueeze(-1) u3 = c5[u[:c5.shape[0]], indr_rev[c2]] d[c2] = d[c2] * u3.float() d[c2, indr] = alpha return d * (w.abs() > 1e-8).float() def projection_l2(points_to_project: Tensor, w_hyperplane: Tensor, b_hyperplane: Tensor) -> Tensor: device = points_to_project.device t, w, b = points_to_project, w_hyperplane.clone(), b_hyperplane c = (w * t).sum(1) - b ind2 = 2 * (c >= 0) - 1 w.mul_(ind2.unsqueeze(1)) c.mul_(ind2) r = torch.max(t / w, (t - 1) / w).clamp(min=-1e12, max=1e12) r.masked_fill_(w.abs() < 1e-8, 1e12) r[r == -1e12] *= -1 rs, indr = torch.sort(r, dim=1) rs2 = F.pad(rs[:, 1:], (0, 1)) rs.masked_fill_(rs == 1e12, 0) rs2.masked_fill_(rs2 == 1e12, 0) w3s = (w ** 2).gather(1, indr) w5 = w3s.sum(dim=1, keepdim=True) ws = w5 - torch.cumsum(w3s, dim=1) d = -(r * w) d.mul_((w.abs() > 1e-8).float()) s = torch.cat((-w5 * rs[:, 0:1], torch.cumsum((-rs2 + rs) * ws, dim=1) - w5 * rs[:, 0:1]), 1) c4 = s[:, 0] + c < 0 c3 = (d * w).sum(dim=1) + c > 0 c2 = ~(c4 | c3) lb = torch.zeros(c2.sum(), device=device) ub = torch.full_like(lb, w.shape[1] - 1) nitermax = math.ceil(math.log2(w.shape[1])) s_, c_ = s[c2], c[c2] for counter in range(nitermax): counter4 = torch.floor((lb + ub) / 2) counter2 = counter4.long().unsqueeze(1) c3 = s_.gather(1, counter2).squeeze(1) + c_ > 0 lb = torch.where(c3, counter4, lb) ub = torch.where(c3, ub, counter4) lb = lb.long() if c4.any(): alpha = c[c4] / w5[c4].squeeze(-1) d[c4] = -alpha.unsqueeze(-1) * w[c4] if c2.any(): alpha = (s[c2, lb] + c[c2]) / ws[c2, lb] + rs[c2, lb] alpha[ws[c2, lb] == 0] = 0 c5 = (alpha.unsqueeze(-1) > r[c2]).float() d[c2] = d[c2] * c5 - alpha.unsqueeze(-1) * w[c2] * (1 - c5) return d * (w.abs() > 1e-8).float() def projection_linf(points_to_project: Tensor, w_hyperplane: Tensor, b_hyperplane: Tensor) -> Tensor: device = points_to_project.device t, w, b = points_to_project, w_hyperplane.clone(), b_hyperplane.clone() sign = 2 * ((w * t).sum(1) - b >= 0) - 1 w.mul_(sign.unsqueeze(1)) b.mul_(sign) a = (w < 0).float() d = (a - t) * (w != 0).float() p = a - t * (2 * a - 1) indp = torch.argsort(p, dim=1) b = b - (w * t).sum(1) b0 = (w * d).sum(1) indp2 = indp.flip((1,)) ws = w.gather(1, indp2) bs2 = - ws * d.gather(1, indp2) s = torch.cumsum(ws.abs(), dim=1) sb = torch.cumsum(bs2, dim=1) + b0.unsqueeze(1) b2 = sb[:, -1] - s[:, -1] * p.gather(1, indp[:, 0:1]).squeeze(1) c_l = b - b2 > 0 c2 = (b - b0 > 0) & (~c_l) lb = torch.zeros(c2.sum(), device=device) ub = torch.full_like(lb, w.shape[1] - 1) nitermax = math.ceil(math.log2(w.shape[1])) indp_, sb_, s_, p_, b_ = indp[c2], sb[c2], s[c2], p[c2], b[c2] for counter in range(nitermax): counter4 = torch.floor((lb + ub) / 2) counter2 = counter4.long().unsqueeze(1) indcurr = indp_.gather(1, indp_.size(1) - 1 - counter2) b2 = (sb_.gather(1, counter2) - s_.gather(1, counter2) * p_.gather(1, indcurr)).squeeze(1) c = b_ - b2 > 0 lb = torch.where(c, counter4, lb) ub = torch.where(c, ub, counter4) lb = lb.long() if c_l.any(): lmbd_opt = torch.clamp_min((b[c_l] - sb[c_l, -1]) / (-s[c_l, -1]), min=0).unsqueeze(-1) d[c_l] = (2 * a[c_l] - 1) * lmbd_opt lmbd_opt = torch.clamp_min((b[c2] - sb[c2, lb]) / (-s[c2, lb]), min=0).unsqueeze(-1) d[c2] = torch.min(lmbd_opt, d[c2]) * a[c2] + torch.max(-lmbd_opt, d[c2]) * (1 - a[c2]) return d * (w != 0).float()
31.72561
101
0.540265
86530cd49650d8b0ce33c2bc39be5879d637445f
6,639
py
Python
ocr/utils/beam_search.py
vee51/Hand
eae25f189e7561d5b386511e11de2b9cec29b7a5
[ "Apache-2.0" ]
435
2019-03-16T21:45:56.000Z
2022-03-25T09:14:22.000Z
ocr/utils/beam_search.py
freedom9393/handwritten-text-recognition-for-apache-mxnet
bf7b6297747c794046665c682d04a153aaec20dd
[ "Apache-2.0" ]
60
2019-03-19T05:53:40.000Z
2022-03-31T12:27:48.000Z
ocr/utils/beam_search.py
freedom9393/handwritten-text-recognition-for-apache-mxnet
bf7b6297747c794046665c682d04a153aaec20dd
[ "Apache-2.0" ]
220
2019-03-17T10:06:06.000Z
2022-03-15T14:13:39.000Z
# From https://github.com/githubharald/CTCDecoder # #MIT License #Copyright (c) 2018 Harald Scheidl #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. from __future__ import division from __future__ import print_function import numpy as np class BeamEntry: "information about one single beam at specific time-step" def __init__(self): self.prTotal = 0 # blank and non-blank self.prNonBlank = 0 # non-blank self.prBlank = 0 # blank self.prText = 1 # LM score self.lmApplied = False # flag if LM was already applied to this beam self.labeling = () # beam-labeling class BeamState: "information about the beams at specific time-step" def __init__(self): self.entries = {} def norm(self): "length-normalise LM score" for (k, _) in self.entries.items(): labelingLen = len(self.entries[k].labeling) self.entries[k].prText = self.entries[k].prText ** (1.0 / (labelingLen if labelingLen else 1.0)) def sort(self): "return beam-labelings, sorted by probability" beams = [v for (_, v) in self.entries.items()] sortedBeams = sorted(beams, reverse=True, key=lambda x: x.prTotal*x.prText) return [x.labeling for x in sortedBeams] def applyLM(parentBeam, childBeam, classes, lm): "calculate LM score of child beam by taking score from parent beam and bigram probability of last two chars" if lm and not childBeam.lmApplied: c1 = classes[parentBeam.labeling[-1] if parentBeam.labeling else classes.index(' ')] # first char c2 = classes[childBeam.labeling[-1]] # second char lmFactor = 0.01 # influence of language model bigramProb = lm.getCharBigram(c1, c2) ** lmFactor # probability of seeing first and second char next to each other childBeam.prText = parentBeam.prText * bigramProb # probability of char sequence childBeam.lmApplied = True # only apply LM once per beam entry def addBeam(beamState, labeling): "add beam if it does not yet exist" if labeling not in beamState.entries: beamState.entries[labeling] = BeamEntry() def ctcBeamSearch(mat, classes, lm, beamWidth): "beam search as described by the paper of Hwang et al. and the paper of Graves et al." blankIdx = len(classes) maxT, maxC = mat.shape # initialise beam state last = BeamState() labeling = () last.entries[labeling] = BeamEntry() last.entries[labeling].prBlank = 1 last.entries[labeling].prTotal = 1 # go over all time-steps for t in range(maxT): curr = BeamState() # get beam-labelings of best beams bestLabelings = last.sort()[0:beamWidth] # go over best beams for labeling in bestLabelings: # probability of paths ending with a non-blank prNonBlank = 0 # in case of non-empty beam if labeling: # probability of paths with repeated last char at the end try: prNonBlank = last.entries[labeling].prNonBlank * mat[t, labeling[-1]] except FloatingPointError: prNonBlank = 0 # probability of paths ending with a blank prBlank = (last.entries[labeling].prTotal) * mat[t, blankIdx] # add beam at current time-step if needed addBeam(curr, labeling) # fill in data curr.entries[labeling].labeling = labeling curr.entries[labeling].prNonBlank += prNonBlank curr.entries[labeling].prBlank += prBlank curr.entries[labeling].prTotal += prBlank + prNonBlank curr.entries[labeling].prText = last.entries[labeling].prText # beam-labeling not changed, therefore also LM score unchanged from curr.entries[labeling].lmApplied = True # LM already applied at previous time-step for this beam-labeling # extend current beam-labeling for c in range(maxC - 1): # add new char to current beam-labeling newLabeling = labeling + (c,) # if new labeling contains duplicate char at the end, only consider paths ending with a blank if labeling and labeling[-1] == c: prNonBlank = mat[t, c] * last.entries[labeling].prBlank else: prNonBlank = mat[t, c] * last.entries[labeling].prTotal # add beam at current time-step if needed addBeam(curr, newLabeling) # fill in data curr.entries[newLabeling].labeling = newLabeling curr.entries[newLabeling].prNonBlank += prNonBlank curr.entries[newLabeling].prTotal += prNonBlank # apply LM applyLM(curr.entries[labeling], curr.entries[newLabeling], classes, lm) # set new beam state last = curr # normalise LM scores according to beam-labeling-length last.norm() # sort by probability bestLabelings = last.sort()[:beamWidth] # get most probable labeling output = [] for bestLabeling in bestLabelings: # map labels to chars res = '' for l in bestLabeling: res += classes[l] output.append(res) return output def testBeamSearch(): "test decoder" classes = 'ab' mat = np.array([[0.4, 0, 0.6], [0.4, 0, 0.6]]) print('Test beam search') expected = 'a' actual = ctcBeamSearch(mat, classes, None) print('Expected: "' + expected + '"') print('Actual: "' + actual + '"') print('OK' if expected == actual else 'ERROR') if __name__ == '__main__': testBeamSearch()
39.052941
141
0.654918
9aef3969df6b62774222adcb30e4ed59bff176bc
769
py
Python
src/oci/waas/__init__.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/waas/__init__.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/waas/__init__.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from __future__ import absolute_import from .redirect_client import RedirectClient from .redirect_client_composite_operations import RedirectClientCompositeOperations from .waas_client import WaasClient from .waas_client_composite_operations import WaasClientCompositeOperations from . import models __all__ = ["RedirectClient", "RedirectClientCompositeOperations", "WaasClient", "WaasClientCompositeOperations", "models"]
51.266667
245
0.819246
8cc87ba0bfc6f7f8f86e491bb96b9e67e7bf9db1
621
py
Python
app/distribution_check.py
AloneGu/wifi_analyse_demo
904bfcd5392735004edc15623985e5c04293aec4
[ "Apache-2.0" ]
null
null
null
app/distribution_check.py
AloneGu/wifi_analyse_demo
904bfcd5392735004edc15623985e5c04293aec4
[ "Apache-2.0" ]
null
null
null
app/distribution_check.py
AloneGu/wifi_analyse_demo
904bfcd5392735004edc15623985e5c04293aec4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import pandas as pd from manuf import MacParser VENDOR_DATA = './app/static/wifi_data/vendor_data' WIFI_DATA = './app/static/wifi_data/t1.csv' SS_THRES = -100 def get_wifi_data(): vendor_checker = MacParser(VENDOR_DATA) df = pd.read_csv(WIFI_DATA, usecols=[0, 3, 6], header=None) df.columns = ['timestamp', 'mac_address', 'signal_strength'] df = df[df.signal_strength > SS_THRES] df['vendor'] = map(vendor_checker.get_manuf, df['mac_address'].values) s = df.groupby('vendor').size().sort_values(ascending=False)[:6] # get series return list(s.index),list(s.values)
34.5
82
0.695652