hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
f5e56f9248eb4754689742e2d033991059fb377b
4,475
py
Python
alipay/aop/api/domain/AlipayMarketingCampaignDiscountBudgetCreateModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayMarketingCampaignDiscountBudgetCreateModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayMarketingCampaignDiscountBudgetCreateModel.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class AlipayMarketingCampaignDiscountBudgetCreateModel(object): def __init__(self): self._biz_from = None self._fund_type = None self._gmt_end = None self._name = None self._out_biz_no = None self._out_budget_no = None self._publisher_logon_id = None self._total_amount = None @property def biz_from(self): return self._biz_from @biz_from.setter def biz_from(self, value): self._biz_from = value @property def fund_type(self): return self._fund_type @fund_type.setter def fund_type(self, value): self._fund_type = value @property def gmt_end(self): return self._gmt_end @gmt_end.setter def gmt_end(self, value): self._gmt_end = value @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def out_biz_no(self): return self._out_biz_no @out_biz_no.setter def out_biz_no(self, value): self._out_biz_no = value @property def out_budget_no(self): return self._out_budget_no @out_budget_no.setter def out_budget_no(self, value): self._out_budget_no = value @property def publisher_logon_id(self): return self._publisher_logon_id @publisher_logon_id.setter def publisher_logon_id(self, value): self._publisher_logon_id = value @property def total_amount(self): return self._total_amount @total_amount.setter def total_amount(self, value): self._total_amount = value def to_alipay_dict(self): params = dict() if self.biz_from: if hasattr(self.biz_from, 'to_alipay_dict'): params['biz_from'] = self.biz_from.to_alipay_dict() else: params['biz_from'] = self.biz_from if self.fund_type: if hasattr(self.fund_type, 'to_alipay_dict'): params['fund_type'] = self.fund_type.to_alipay_dict() else: params['fund_type'] = self.fund_type if self.gmt_end: if hasattr(self.gmt_end, 'to_alipay_dict'): params['gmt_end'] = self.gmt_end.to_alipay_dict() else: params['gmt_end'] = self.gmt_end if self.name: if hasattr(self.name, 'to_alipay_dict'): params['name'] = self.name.to_alipay_dict() else: params['name'] = self.name if self.out_biz_no: if hasattr(self.out_biz_no, 'to_alipay_dict'): params['out_biz_no'] = self.out_biz_no.to_alipay_dict() else: params['out_biz_no'] = self.out_biz_no if self.out_budget_no: if hasattr(self.out_budget_no, 'to_alipay_dict'): params['out_budget_no'] = self.out_budget_no.to_alipay_dict() else: params['out_budget_no'] = self.out_budget_no if self.publisher_logon_id: if hasattr(self.publisher_logon_id, 'to_alipay_dict'): params['publisher_logon_id'] = self.publisher_logon_id.to_alipay_dict() else: params['publisher_logon_id'] = self.publisher_logon_id if self.total_amount: if hasattr(self.total_amount, 'to_alipay_dict'): params['total_amount'] = self.total_amount.to_alipay_dict() else: params['total_amount'] = self.total_amount return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayMarketingCampaignDiscountBudgetCreateModel() if 'biz_from' in d: o.biz_from = d['biz_from'] if 'fund_type' in d: o.fund_type = d['fund_type'] if 'gmt_end' in d: o.gmt_end = d['gmt_end'] if 'name' in d: o.name = d['name'] if 'out_biz_no' in d: o.out_biz_no = d['out_biz_no'] if 'out_budget_no' in d: o.out_budget_no = d['out_budget_no'] if 'publisher_logon_id' in d: o.publisher_logon_id = d['publisher_logon_id'] if 'total_amount' in d: o.total_amount = d['total_amount'] return o
30.650685
87
0.593296
32d92dee3a88533855b14b7f272bea2d493952c5
312
py
Python
cwr/manage.py
ghinda/chrome-webstore-ranking
4a508d30d34ecd348ca506bd914f556dc89e6f80
[ "MIT" ]
1
2021-05-16T18:03:13.000Z
2021-05-16T18:03:13.000Z
cwr/manage.py
ghinda/chrome-webstore-ranking
4a508d30d34ecd348ca506bd914f556dc89e6f80
[ "MIT" ]
null
null
null
cwr/manage.py
ghinda/chrome-webstore-ranking
4a508d30d34ecd348ca506bd914f556dc89e6f80
[ "MIT" ]
null
null
null
import logging from flask.ext.script import Manager from flask.ext.migrate import Migrate, MigrateCommand from cwr.app import app, db manager = Manager(app) migrate = Migrate(app, db) manager.add_command('db', MigrateCommand) logger = logging.getLogger(__file__) if __name__ == "__main__": manager.run()
20.8
53
0.766026
e22362aa67115de6cc5a043c786b6c9a8c81877d
9,281
py
Python
tfx/extensions/google_cloud_big_query/experimental/elwc_example_gen/component/executor_test.py
avelez93/tfx
75fbb6a7d50e99138609be3ca4c3a204a13a2195
[ "Apache-2.0" ]
1,813
2019-02-04T17:17:30.000Z
2022-03-29T13:39:30.000Z
tfx/extensions/google_cloud_big_query/experimental/elwc_example_gen/component/executor_test.py
avelez93/tfx
75fbb6a7d50e99138609be3ca4c3a204a13a2195
[ "Apache-2.0" ]
2,710
2019-02-14T00:41:00.000Z
2022-03-31T07:23:00.000Z
tfx/extensions/google_cloud_big_query/experimental/elwc_example_gen/component/executor_test.py
avelez93/tfx
75fbb6a7d50e99138609be3ca4c3a204a13a2195
[ "Apache-2.0" ]
731
2019-02-04T17:59:18.000Z
2022-03-31T06:45:51.000Z
# Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.extensions.google_cloud_big_query.elwc_example_gen.component.executor.""" from unittest import mock import apache_beam as beam from apache_beam.testing import util from google.cloud import bigquery import tensorflow as tf from tfx.extensions.google_cloud_big_query import utils from tfx.extensions.google_cloud_big_query.experimental.elwc_example_gen.component import executor from tfx.extensions.google_cloud_big_query.experimental.elwc_example_gen.proto import elwc_config_pb2 from tfx.proto import example_gen_pb2 from google.protobuf import json_format from google.protobuf import text_format from tensorflow_serving.apis import input_pb2 _ELWC_1 = text_format.Parse( """ examples { features { feature { key: "feature_id_1" value { int64_list { value: 1 } } } feature { key: "feature_id_2" value { float_list { value: 1.0 } } } feature { key: "feature_id_3" value { bytes_list { value: "one" } } } } } context { features { feature { key: "context_feature_1" value { int64_list { value: 1 } } } feature { key: "context_feature_2" value { int64_list { value: 1 } } } } } """, input_pb2.ExampleListWithContext()) _ELWC_2 = text_format.Parse( """ examples { features { feature { key: "feature_id_1" value { int64_list { value: 2 } } } feature { key: "feature_id_2" value { float_list { value: 2.0 } } } feature { key: "feature_id_3" value { bytes_list { value: "two" } } } } } context { features { feature { key: "context_feature_1" value { int64_list { value: 1 } } } feature { key: "context_feature_2" value { int64_list { value: 2 } } } } } """, input_pb2.ExampleListWithContext()) _ELWC_3 = text_format.Parse( """ examples { features { feature { key: "feature_id_1" value { int64_list { value: 3 } } } feature { key: "feature_id_2" value { float_list { value: 3.0 } } } feature { key: "feature_id_3" value { bytes_list { value: "three" } } } } } examples { features { feature { key: "feature_id_1" value { int64_list { value: 4 } } } feature { key: "feature_id_2" value { float_list { value: 4.0 } } } feature { key: "feature_id_3" value { bytes_list { value: "four" } } } } } context { features { feature { key: "context_feature_1" value { int64_list { value: 2 } } } feature { key: "context_feature_2" value { int64_list { value: 1 } } } } } """, input_pb2.ExampleListWithContext()) # 'context_feature_2' has missing value. _ELWC_4 = text_format.Parse( """ examples { features { feature { key: "feature_id_1" value { int64_list { value: 5 } } } feature { key: "feature_id_2" value { float_list { value: 5.0 } } } feature { key: "feature_id_3" value { bytes_list { value: "five" } } } } } context { features { feature { key: "context_feature_1" value { int64_list { value: 3 } } } feature { key: "context_feature_2" value { } } } } """, input_pb2.ExampleListWithContext()) # 'feature_id_2' and 'context_feature_2' have missing value. _ELWC_5 = text_format.Parse( """ examples { features { feature { key: "feature_id_1" value { int64_list { value: 5 } } } feature { key: "feature_id_2" value { } } feature { key: "feature_id_3" value { bytes_list { value: "five" } } } } } context { features { feature { key: "context_feature_1" value { int64_list { value: 4 } } } feature { key: "context_feature_2" value { } } } } """, input_pb2.ExampleListWithContext()) @beam.ptransform_fn def _MockReadFromBigQuery(pipeline, query): del query # Unused arg mock_query_results = [{ 'context_feature_1': 1, 'context_feature_2': 1, 'feature_id_1': 1, 'feature_id_2': 1.0, 'feature_id_3': 'one' }, { 'context_feature_1': 1, 'feature_id_3': 'two', 'feature_id_1': 2, 'context_feature_2': 2, 'feature_id_2': 2.0 }, { 'context_feature_1': 2, 'context_feature_2': 1, 'feature_id_1': 3, 'feature_id_2': 3.0, 'feature_id_3': 'three' }, { 'context_feature_1': 2, 'context_feature_2': 1, 'feature_id_1': 4, 'feature_id_2': 4.0, 'feature_id_3': ['four'] }, { 'context_feature_1': 3, 'context_feature_2': None, 'feature_id_1': 5, 'feature_id_2': [5.0], 'feature_id_3': 'five' }, { 'context_feature_1': 4, 'context_feature_2': None, 'feature_id_1': [5], 'feature_id_2': None, 'feature_id_3': 'five' }] return pipeline | beam.Create(mock_query_results) class ExecutorTest(tf.test.TestCase): def setUp(self): # Mock BigQuery result schema. self._schema = [ bigquery.SchemaField('context_feature_1', 'INTEGER', mode='NULLABLE'), bigquery.SchemaField('context_feature_2', 'INTEGER', mode='NULLABLE'), bigquery.SchemaField('feature_id_1', 'INTEGER', mode='NULLABLE'), bigquery.SchemaField('feature_id_2', 'FLOAT', mode='NULLABLE'), bigquery.SchemaField('feature_id_3', 'STRING', mode='NULLABLE'), ] super().setUp() @mock.patch.multiple( utils, ReadFromBigQuery=_MockReadFromBigQuery, ) @mock.patch.object(bigquery, 'Client') def testBigQueryToElwc(self, mock_client): # Mock query result schema for _BigQueryElwcConverter. mock_client.return_value.query.return_value.result.return_value.schema = self._schema elwc_config = elwc_config_pb2.ElwcConfig( context_feature_fields=['context_feature_1', 'context_feature_2']) packed_custom_config = example_gen_pb2.CustomConfig() packed_custom_config.custom_config.Pack(elwc_config) with beam.Pipeline() as pipeline: elwc_examples = ( pipeline | 'ToElwc' >> executor._BigQueryToElwc( exec_properties={ '_beam_pipeline_args': [], 'custom_config': json_format.MessageToJson( packed_custom_config, preserving_proto_field_name=True) }, split_pattern='SELECT context_feature_1, context_feature_2, ' 'feature_id_1, feature_id_2, feature_id_3 FROM `fake`')) expected_elwc_examples = [_ELWC_1, _ELWC_2, _ELWC_3, _ELWC_4, _ELWC_5] util.assert_that(elwc_examples, util.equal_to(expected_elwc_examples)) if __name__ == '__main__': tf.test.main()
23.2025
101
0.497145
0b73bec679360f6a3f5ca1cefd88f6c8fee9a870
238
py
Python
GlobalDataset/scripts/runChi_sa.py
gehilley/GlobalSteepness
62a1a5b66adb230d5bbbc004aa5d2c5b618a2fdd
[ "MIT" ]
3
2019-09-19T00:04:27.000Z
2020-02-17T16:17:55.000Z
GlobalDataset/scripts/runChi_sa.py
gehilley/GlobalSteepness
62a1a5b66adb230d5bbbc004aa5d2c5b618a2fdd
[ "MIT" ]
null
null
null
GlobalDataset/scripts/runChi_sa.py
gehilley/GlobalSteepness
62a1a5b66adb230d5bbbc004aa5d2c5b618a2fdd
[ "MIT" ]
1
2020-12-17T07:35:23.000Z
2020-12-17T07:35:23.000Z
from denudationRateAnalysis import create_chi_grid_for_geographic_prefix as create_chi prefix = 'sa' thetas = [0.4, 0.5, 0.6] Ao = 1000000 basin_lengths = [50000, 100000, 200000, 400000] create_chi(prefix, thetas, Ao, basin_lengths)
21.636364
86
0.768908
7c2382df251ebf6d5ccfd633eff15b723e1cb001
5,610
py
Python
scipy/spatial/tests/test_hausdorff.py
magnusja/scipy
c4a5a1f984e28840010f20a7e41caa21b8f41979
[ "FSFAP" ]
366
2019-04-07T20:34:48.000Z
2022-03-29T07:35:38.000Z
scipy/spatial/tests/test_hausdorff.py
magnusja/scipy
c4a5a1f984e28840010f20a7e41caa21b8f41979
[ "FSFAP" ]
30
2020-04-15T19:37:40.000Z
2020-04-22T21:19:35.000Z
scipy/spatial/tests/test_hausdorff.py
magnusja/scipy
c4a5a1f984e28840010f20a7e41caa21b8f41979
[ "FSFAP" ]
61
2019-04-08T00:58:14.000Z
2022-03-20T23:04:28.000Z
from __future__ import division, absolute_import, print_function import numpy as np from numpy.testing import (assert_almost_equal, assert_array_equal, assert_equal, assert_) import pytest from scipy.spatial.distance import directed_hausdorff from scipy.spatial import distance from scipy._lib._util import check_random_state class TestHausdorff(object): # Test various properties of the directed Hausdorff code. def setup_method(self): np.random.seed(1234) random_angles = np.random.random(100) * np.pi * 2 random_columns = np.column_stack( (random_angles, random_angles, np.zeros(100))) random_columns[..., 0] = np.cos(random_columns[..., 0]) random_columns[..., 1] = np.sin(random_columns[..., 1]) random_columns_2 = np.column_stack( (random_angles, random_angles, np.zeros(100))) random_columns_2[1:, 0] = np.cos(random_columns_2[1:, 0]) * 2.0 random_columns_2[1:, 1] = np.sin(random_columns_2[1:, 1]) * 2.0 # move one point farther out so we don't have two perfect circles random_columns_2[0, 0] = np.cos(random_columns_2[0, 0]) * 3.3 random_columns_2[0, 1] = np.sin(random_columns_2[0, 1]) * 3.3 self.path_1 = random_columns self.path_2 = random_columns_2 self.path_1_4d = np.insert(self.path_1, 3, 5, axis=1) self.path_2_4d = np.insert(self.path_2, 3, 27, axis=1) def test_symmetry(self): # Ensure that the directed (asymmetric) Hausdorff distance is # actually asymmetric forward = directed_hausdorff(self.path_1, self.path_2)[0] reverse = directed_hausdorff(self.path_2, self.path_1)[0] assert_(forward != reverse) def test_brute_force_comparison_forward(self): # Ensure that the algorithm for directed_hausdorff gives the # same result as the simple / brute force approach in the # forward direction. actual = directed_hausdorff(self.path_1, self.path_2)[0] # brute force over rows: expected = max(np.amin(distance.cdist(self.path_1, self.path_2), axis=1)) assert_almost_equal(actual, expected, decimal=9) def test_brute_force_comparison_reverse(self): # Ensure that the algorithm for directed_hausdorff gives the # same result as the simple / brute force approach in the # reverse direction. actual = directed_hausdorff(self.path_2, self.path_1)[0] # brute force over columns: expected = max(np.amin(distance.cdist(self.path_1, self.path_2), axis=0)) assert_almost_equal(actual, expected, decimal=9) def test_degenerate_case(self): # The directed Hausdorff distance must be zero if both input # data arrays match. actual = directed_hausdorff(self.path_1, self.path_1)[0] assert_almost_equal(actual, 0.0, decimal=9) def test_2d_data_forward(self): # Ensure that 2D data is handled properly for a simple case # relative to brute force approach. actual = directed_hausdorff(self.path_1[..., :2], self.path_2[..., :2])[0] expected = max(np.amin(distance.cdist(self.path_1[..., :2], self.path_2[..., :2]), axis=1)) assert_almost_equal(actual, expected, decimal=9) def test_4d_data_reverse(self): # Ensure that 4D data is handled properly for a simple case # relative to brute force approach. actual = directed_hausdorff(self.path_2_4d, self.path_1_4d)[0] # brute force over columns: expected = max(np.amin(distance.cdist(self.path_1_4d, self.path_2_4d), axis=0)) assert_almost_equal(actual, expected, decimal=9) def test_indices(self): # Ensure that correct point indices are returned -- they should # correspond to the Hausdorff pair path_simple_1 = np.array([[-1,-12],[0,0], [1,1], [3,7], [1,2]]) path_simple_2 = np.array([[0,0], [1,1], [4,100], [10,9]]) actual = directed_hausdorff(path_simple_2, path_simple_1)[1:] expected = (2, 3) assert_array_equal(actual, expected) def test_random_state(self): # ensure that the global random state is not modified because # the directed Hausdorff algorithm uses randomization rs = check_random_state(None) old_global_state = rs.get_state() directed_hausdorff(self.path_1, self.path_2) rs2 = check_random_state(None) new_global_state = rs2.get_state() assert_equal(new_global_state, old_global_state) def test_random_state_None_int(self): # check that seed values of None or int do not alter global # random state for seed in [None, 27870671]: rs = check_random_state(None) old_global_state = rs.get_state() directed_hausdorff(self.path_1, self.path_2, seed) rs2 = check_random_state(None) new_global_state = rs2.get_state() assert_equal(new_global_state, old_global_state) def test_invalid_dimensions(self): # Ensure that a ValueError is raised when the number of columns # is not the same np.random.seed(1234) A = np.random.rand(3, 2) B = np.random.rand(4, 5) with pytest.raises(ValueError): directed_hausdorff(A, B)
44.52381
79
0.630838
b15351a8a0d26a86cfde31a182294ae222b5a776
6,308
py
Python
transformer_atten/transformer/utils/tokenizer_test.py
StuartCHAN/neural-qa
42bbd997757bbea57f71398c4dd52d469a6916e9
[ "MIT" ]
5
2020-04-08T16:12:27.000Z
2021-05-14T14:05:06.000Z
transformer_atten/transformer/utils/tokenizer_test.py
StuartCHAN/neural-qa
42bbd997757bbea57f71398c4dd52d469a6916e9
[ "MIT" ]
null
null
null
transformer_atten/transformer/utils/tokenizer_test.py
StuartCHAN/neural-qa
42bbd997757bbea57f71398c4dd52d469a6916e9
[ "MIT" ]
1
2020-07-03T13:59:11.000Z
2020-07-03T13:59:11.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test Subtokenizer and string helper methods.""" import collections import tempfile import tensorflow as tf # pylint: disable=g-bad-import-order from transformer_atten.transformer.utils import tokenizer class SubtokenizerTest(tf.test.TestCase): def _init_subtokenizer(self, vocab_list): temp_file = tempfile.NamedTemporaryFile(delete=False) with tf.io.gfile.GFile(temp_file.name, "w") as w: for subtoken in vocab_list: w.write("'%s'" % subtoken) w.write("\n") return tokenizer.Subtokenizer(temp_file.name, reserved_tokens=[]) def test_encode(self): vocab_list = ["123_", "test", "ing_"] subtokenizer = self._init_subtokenizer(vocab_list) s = "testing 123" encoded_list = subtokenizer.encode(s) self.assertEqual([1, 2, 0], encoded_list) def test_decode(self): vocab_list = ["123_", "test", "ing_"] subtokenizer = self._init_subtokenizer(vocab_list) encoded_list = [1, 2, 0] # testing 123 decoded_str = subtokenizer.decode(encoded_list) self.assertEqual("testing 123", decoded_str) def test_subtoken_ids_to_tokens(self): vocab_list = ["123_", "test", "ing_"] subtokenizer = self._init_subtokenizer(vocab_list) encoded_list = [1, 2, 0] # testing 123 token_list = subtokenizer._subtoken_ids_to_tokens(encoded_list) self.assertEqual([u"testing", u"123"], token_list) class StringHelperTest(tf.test.TestCase): def test_split_string_to_tokens(self): text = "test? testing 123." tokens = tokenizer._split_string_to_tokens(text) self.assertEqual(["test", "? ", "testing", "123", "."], tokens) def test_join_tokens_to_string(self): tokens = ["test", "? ", "testing", "123", "."] s = tokenizer._join_tokens_to_string(tokens) self.assertEqual("test? testing 123.", s) def test_escape_token(self): token = u"abc_\\4" alphabet = set("abc_\\u;") escaped_token = tokenizer._escape_token(token, alphabet) self.assertEqual("abc\\u\\\\\\52;_", escaped_token) def test_unescape_token(self): escaped_token = u"Underline: \\u, Backslash: \\\\, Unicode: \\52;" unescaped_token = tokenizer._unescape_token(escaped_token) self.assertEqual( "Underline: _, Backslash: \\, Unicode: 4", unescaped_token) def test_list_to_index_dict(self): lst = ["test", "strings"] d = tokenizer._list_to_index_dict(lst) self.assertDictEqual({"test": 0, "strings": 1}, d) def test_split_token_to_subtokens(self): token = "abc" subtoken_dict = {"a": 0, "b": 1, "c": 2, "ab": 3} max_subtoken_length = 2 subtokens = tokenizer._split_token_to_subtokens( token, subtoken_dict, max_subtoken_length) self.assertEqual(["ab", "c"], subtokens) def test_generate_alphabet_dict(self): s = ["testing", "123"] reserved_tokens = ["???"] alphabet = tokenizer._generate_alphabet_dict(s, reserved_tokens) self.assertIn("?", alphabet) self.assertIn("t", alphabet) self.assertIn("e", alphabet) self.assertIn("s", alphabet) self.assertIn("i", alphabet) self.assertIn("n", alphabet) self.assertIn("g", alphabet) self.assertIn("1", alphabet) self.assertIn("2", alphabet) self.assertIn("3", alphabet) def test_count_and_gen_subtokens(self): token_counts = {"abc": 5} alphabet = set("abc_") subtoken_dict = {"a": 0, "b": 1, "c": 2, "_": 3} max_subtoken_length = 2 subtoken_counts = tokenizer._count_and_gen_subtokens( token_counts, alphabet, subtoken_dict, max_subtoken_length) self.assertIsInstance(subtoken_counts, collections.defaultdict) self.assertDictEqual( {"a": 5, "b": 5, "c": 5, "_": 5, "ab": 5, "bc": 5, "c_": 5, "abc": 5, "bc_": 5, "abc_": 5}, subtoken_counts) def test_filter_and_bucket_subtokens(self): subtoken_counts = collections.defaultdict( int, {"a": 2, "b": 4, "c": 1, "ab": 6, "ac": 3, "abbc": 5}) min_count = 3 subtoken_buckets = tokenizer._filter_and_bucket_subtokens( subtoken_counts, min_count) self.assertEqual(len(subtoken_buckets[0]), 0) self.assertEqual(set("b"), subtoken_buckets[1]) self.assertEqual(set(["ab", "ac"]), subtoken_buckets[2]) self.assertEqual(len(subtoken_buckets[3]), 0) self.assertEqual(set(["abbc"]), subtoken_buckets[4]) def test_gen_new_subtoken_list(self): subtoken_counts = collections.defaultdict( int, {"translate": 10, "t": 40, "tr": 16, "tra": 12}) min_count = 5 alphabet = set("translate") reserved_tokens = ["reserved", "tokens"] subtoken_list, max_token_length = tokenizer._gen_new_subtoken_list( subtoken_counts, min_count, alphabet, reserved_tokens) # Check that "tra" isn"t in the list (its count should be decremented to 2, # so it should not be added to the canddiate list). self.assertNotIn("tra", subtoken_list) self.assertIn("tr", subtoken_list) self.assertIn("t", subtoken_list) self.assertEqual(len("translate"), max_token_length) def test_generate_subtokens(self): token_counts = {"ab": 1, "bc": 3, "abc": 5} alphabet = set("abc_") min_count = 100 num_iterations = 1 reserved_tokens = ["reserved", "tokens"] vocab_list = tokenizer._generate_subtokens( token_counts, alphabet, min_count, num_iterations, reserved_tokens) # Check that reserved tokens are at the front of the list self.assertEqual(vocab_list[:2], reserved_tokens) # Check that each character in alphabet is in the vocab list for c in alphabet: self.assertIn(c, vocab_list) if __name__ == "__main__": tf.test.main()
34.469945
80
0.676443
d6d0763354355fb4413488e2803ed02fa763f7bf
4,005
py
Python
ross/stochastic/st_results_elements.py
hssaabbl/ross
5e548d24c8522c8a9a294479c580c21b4eb3bb65
[ "MIT" ]
69
2018-12-26T19:21:26.000Z
2022-02-10T08:48:03.000Z
ross/stochastic/st_results_elements.py
hssaabbl/ross
5e548d24c8522c8a9a294479c580c21b4eb3bb65
[ "MIT" ]
639
2018-12-18T16:44:11.000Z
2022-03-27T16:46:41.000Z
ross/stochastic/st_results_elements.py
hssaabbl/ross
5e548d24c8522c8a9a294479c580c21b4eb3bb65
[ "MIT" ]
136
2019-01-08T12:37:32.000Z
2022-03-30T07:14:35.000Z
"""Plotting module for elements. This modules provides functions to plot the elements statistic data. """ from copy import copy import numpy as np from plotly import graph_objects as go from plotly import io as pio from plotly.subplots import make_subplots from scipy.stats import gaussian_kde from ross.plotly_theme import tableau_colors def plot_histogram( attribute_dict, label={}, var_list=[], histogram_kwargs=None, plot_kwargs=None ): """Plot histogram and the PDF. This function creates a histogram to display the random variable distribution. Parameters ---------- attribute_dict : dict Dictionary with element parameters. label : dict Dictionary with labels for each element parameter. Labels are displayed on plotly figure. var_list : list, optional List of random variables, in string format, to plot. histogram_kwargs : dict, optional Additional key word arguments can be passed to change the plotly.go.histogram (e.g. histnorm="probability density", nbinsx=20...). *See Plotly API to more information. plot_kwargs : dict, optional Additional key word arguments can be passed to change the plotly go.figure (e.g. line=dict(width=4.0, color="royalblue"), opacity=1.0...). *See Plotly API to more information. Returns ------- subplots : Plotly graph_objects.make_subplots() A figure with the histogram plots. """ histogram_kwargs = {} if histogram_kwargs is None else copy(histogram_kwargs) plot_kwargs = {} if plot_kwargs is None else copy(plot_kwargs) hist_default_values = dict( histnorm="probability density", cumulative_enabled=False, nbinsx=20, marker_color=tableau_colors["red"], opacity=1.0, ) for k, v in hist_default_values.items(): histogram_kwargs.setdefault(k, v) plot_default_values = dict( line=dict(width=4.0, color=tableau_colors["blue"]), opacity=1.0 ) for k, v in plot_default_values.items(): plot_kwargs.setdefault(k, v) rows = 1 if len(var_list) < 2 else 2 cols = len(var_list) // 2 + len(var_list) % 2 fig = make_subplots(rows=rows, cols=cols) for i, var in enumerate(var_list): row = i % 2 + 1 col = i // 2 + 1 if histogram_kwargs["histnorm"] == "probability density": if histogram_kwargs["cumulative_enabled"] is True: y_label = "CDF" else: y_label = "PDF" else: y_label = "Frequency" fig.add_trace( go.Histogram( x=attribute_dict[var], name="Histogram", legendgroup="Histogram", showlegend=True if i == 0 else False, **histogram_kwargs, ), row=row, col=col, ) if y_label == "PDF": x = np.linspace( min(attribute_dict[var]), max(attribute_dict[var]), len(attribute_dict[var]), ) kernel = gaussian_kde(attribute_dict[var]) fig.add_trace( go.Scatter( x=x, y=kernel(x), mode="lines", name="PDF Estimation", legendgroup="PDF Estimation", showlegend=True if i == 0 else False, **plot_kwargs, ), row=row, col=col, ) fig.update_xaxes( title=dict(text="<b>{}</b>".format(label[var])), exponentformat="E", row=row, col=col, ) fig.update_yaxes( title=dict(text="<b>{}</b>".format(y_label), standoff=0), exponentformat="E", row=row, col=col, ) fig.update_layout(bargroupgap=0.1, plot_bgcolor="white") return fig
31.785714
84
0.571536
724747d91a2bdd1a359f0582c9539099a8cba832
140
py
Python
metatron/__init__.py
harel/metatron
e8d82aa3e000c0682d215396112900ede54a96d6
[ "MIT" ]
4
2018-02-16T10:54:45.000Z
2021-07-12T20:41:48.000Z
metatron/__init__.py
harel/metatron
e8d82aa3e000c0682d215396112900ede54a96d6
[ "MIT" ]
1
2020-10-03T15:23:37.000Z
2020-10-03T15:23:37.000Z
metatron/__init__.py
harel/metatron
e8d82aa3e000c0682d215396112900ede54a96d6
[ "MIT" ]
null
null
null
from .metatron import Metatron, add_schema_spec from .version import __version__ __all__ = ['Metatron', 'add_schema_spec', '__version__']
23.333333
56
0.785714
6c7a686d74b5fa6ab4c26825bf886d6141919255
2,131
py
Python
mods/goog-mail.py
tomsec/discover
8afec1f4b8f13e11c22f0386fc50eeb762b3492c
[ "MIT" ]
null
null
null
mods/goog-mail.py
tomsec/discover
8afec1f4b8f13e11c22f0386fc50eeb762b3492c
[ "MIT" ]
null
null
null
mods/goog-mail.py
tomsec/discover
8afec1f4b8f13e11c22f0386fc50eeb762b3492c
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import http.client import re import string import sys import urllib.request import urllib.parse def StripTags(text): finished = 0 while not finished: finished = 1 start = text.find(b"<") if start >= 0: stop = text[start:].find(b">") if stop >= 0: text = text[:start] + text[start+stop+1:] finished = 0 return text if len(sys.argv) != 2: print("\nExtracts emails from Google results.") print("\nUsage: ./goog-mail.py <domain>") sys.exit(1) domain_name = sys.argv[1] d = {} page_counter = 0 try: while page_counter < 50: results = 'https://groups.google.com/groups?q='+str(domain_name)+'&hl=en&lr=&ie=UTF-8&start=' + repr(page_counter) + '&sa=N' request = urllib.request.Request(results) request.add_header('User-Agent', 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)') opener = urllib.request.build_opener() text = opener.open(request).read() emails = re.findall(rb"([\w\.\-]+@'+domain_name+')", StripTags(text)) for email in emails: d[email] = 1 uniq_emails = list(d.keys()) page_counter = page_counter + 10 except IOError as e: print(e) page_counter_web = 0 try: while page_counter_web < 50: results_web = 'https://www.google.com/search?q=%40'+str(domain_name)+'&hl=en&lr=&ie=UTF-8&start=' + repr(page_counter_web) + '&sa=N' request_web = urllib.request.Request(results_web) request_web.add_header('User-Agent', 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)') opener_web = urllib.request.build_opener() text = opener_web.open(request_web).read() emails_web = re.findall(rb"([\w\.\-]+@'+domain_name+')", StripTags(text)) for email_web in emails_web: d[email_web] = 1 uniq_emails_web = list(d.keys()) page_counter_web = page_counter_web + 10 except IOError as e: print(e) for uniq_emails_web in list(d.keys()): print(uniq_emails_web+"")
31.338235
140
0.594087
0ca910060bea9f6ebfc1bc25413e18f66af8654a
9,468
py
Python
devices/DeviceCommon.py
hzg-wpi/p05nano
af13c97256e754e30512d4c9ef88c287f09dedaa
[ "MIT" ]
null
null
null
devices/DeviceCommon.py
hzg-wpi/p05nano
af13c97256e754e30512d4c9ef88c287f09dedaa
[ "MIT" ]
null
null
null
devices/DeviceCommon.py
hzg-wpi/p05nano
af13c97256e754e30512d4c9ef88c287f09dedaa
[ "MIT" ]
null
null
null
import time import PyTango import p05.common.TangoFailsaveComm as tfs # TODO (!check!) - not used. CODE: OK, may leave as it is class DeviceCommon(object): def __init__(self, devdict=None): self.__devdict = devdict def _tRead(self, tObject, attribute): """ DESCRIPTION: Read tango attribute of a specified tango object. PARAMETER: tObject: Tango Object attribute: attribute of the Tango object which is to be read """ return tfs.tSaveCommReadAttribute(tObject, attribute, silent=True) def _tWrite(self, tObject, attribute, value, wait=True): """ DESCRIPTION: Write tango attribute of a specified tango object. PARAMETER: tObject: Tango Object attribute: attribute of the Tango object which is to be set value: new value for the Tango object's attribute KEYWORDS: wait: waits for Tango device ON state before continuing default: True """ tfs.tSaveCommWriteAttribute(tObject, attribute, value, silent=True, wait=wait) return None def _tExec(self, tObject, command, param=None, wait=True): """ DESCRIPTION: Execute tango command of a specified tango object. PARAMETER: tObject: Tango Object cmd: command which is passed to the Tango object. KEYWORDS: param=<*> command parameter, if existing """ return tfs.tSaveCommCommand(tObject, command, Argument=param, silent=True, wait=wait) # tcmd = getattr(tObject,cmd) # if param==None: # tcmd() # else: # tcmd(param) # return None def _tMotionWait(self, tObject, poll_time=0.1): """ DESCRIPTION: Poll Tango device state until it is not in moving state. PARAMETER: tObject: Tango Object KEYWORDS: poll_time=<FLOAT> poll time interval. Default: 0.1 """ while tObject.State() == PyTango.DevState.MOVING: time.sleep(poll_time) return None def _MoveMotor(self, tObject, attribute, position=None, wait=True, relative=False, backlash=None, verbose=True): """ DESCRIPTION: Pass motion command to Tango server. PARAMETER: tObject: Tango Object attribute: The Tango Object's attribute KEYWORDS: position=<FLOAT>/<STRING>/None: set <value> to move to a position, set 'home' to home this motor set None to read the current position of the motor wait=<BOOLEAN>: wait for the motor motion to be complete before command prompt is released. Default: True relative=<BOOLEAN>: move relative to current position. Default: False backlash=<FLOAT>/None: move with backlash. Default: None verbose=<BOOLEAN>: Print messages on screen. Default: True """ CurrentPosition = self._tRead(tObject, attribute) if position is None: current_position = self._tRead(tObject, attribute) if verbose is True: print('%s %s: %f' % (tObject, attribute, current_position)) return current_position else: if relative is True: position = CurrentPosition + position if verbose is True: print('Move %s from %s to %s.' % (tObject, CurrentPosition, position)) try: if not backlash: self._tWrite(tObject, attribute, position, wait) #if wait: # self._tMotionWait(tObject) else: self._tWrite(tObject, attribute, position + backlash, wait) #if wait is True: # self._tMotionWait(tObject) self._tWrite(tObject, attribute, position, wait) #if wait is True: # self._tMotionWait(tObject) except (KeyboardInterrupt, SystemExit): self.stop() return None def _HomeAxis(self, tObject, command, wait=True): self._tExec(tObject, command) if wait: self._tMotionWait(tObject) return None def pos(self, device='all', verbose=True): """ DESCRIPTION: Returns the position of either all axis or a given axis. KEYWORDS: device=<STRING>: returns the position of axis <STRING>. Use Show() to list device names. if <STRING>=='all', the position of all devices of this class are shown. Default: 'all' verbose=<BOOLEAN>: Print messages on screen. Default: True """ RetValue = {} if device == 'all': for iDev in sorted(self.__devdict): iDevValue = [] for attribute in self.__devdict[iDev][1]: if type(attribute) is dict: pass else: iDevValue.append( self._tRead(self.__devdict[iDev][0], attribute)) if verbose is True: print("%s %s: %s" % (iDev, attribute, self._tRead(self.__devdict[iDev][0], attribute))) RetValue[iDev] = iDevValue else: iDev = self.__devdict[device] for attribute in iDev[1]: if type(attribute) is dict: pass else: RetValue[device] = self._tRead(iDev[0], attribute) if verbose is True: print("%s %s: %s" % (device, attribute, self._tRead(iDev[0], attribute))) return RetValue def state(self, device='all', verbose=True): """ DESCRIPTION: Returns the State of either all axis or a given axis. KEYWORDS: device=<STRING>: returns the state of axis <STRING>. Use Show() to list device names. if <STRING>=='all', the position of all devices of this class are shown. Default: 'all' verbose=<BOOLEAN>: Print messages on screen. Default: True """ RetValue = [] if device == 'all': for iDev in sorted(self.__devdict): RetValue.append(self._tRead(self.__devdict[iDev][0], 'State')) if verbose is True: print("%s: %s" % (iDev, self._tRead(self.__devdict[iDev][0], 'State'))) else: iDev = self.__devdict[device] RetValue.append(self._tRead(self.__devdict[iDev][0], 'State')) if verbose is True: print('%s: %s ' % (device, self._tRead(iDev[0], 'State'))) return RetValue def status(self, device='all', verbose=True): """ DESCRIPTION: Returns the Status of either all axis or a given axis. KEYWORDS: device=<STRING>: returns the state of axis <STRING>. Use Show() to list device names. if <STRING>=='all', the position of all devices of this class are shown. Default: 'all' verbose=<BOOLEAN>: Print messages on screen. Default: True """ RetValue = [] if device == 'all': for iDev in sorted(self.__devdict): RetValue.append(self._tRead(self.__devdict[iDev][0], 'Status')) if verbose is True: print("%s: %s" % (iDev, self._tRead(self.__devdict[iDev][0], 'Status'))) else: iDev = self.__devdict[device] RetValue.append(self._tRead(self.__devdict[iDev][0], 'Status')) if verbose is True: print('%s: %s ' % (device, self._tRead(iDev[0], 'Status'))) return RetValue def stop(self): """ DESCRIPTION: Stops motion of all axis of this class. """ for iDev in sorted(self.__devdict): if self.__devdict[iDev][1][-1]['ismotor'] is False: pass else: self._tExec(self.__devdict[iDev][0], 'StopMove') return None def show(self, verbose=True): """ DESCRIPTION: Print a list of all devices and their attributes controlled by this class. KEYWORDS: verbose=<BOOLEAN>: Print messages on screen. Default: True """ RetValue = [] for device in sorted(self.__devdict): RetValue.append([device, self.__devdict[device][1]]) if verbose is True: print('Device: %s, %s' % (device, self.__devdict[device][1])) return RetValue
36.697674
115
0.508872
9563f41a47dd2252467072990341667d2fc553a3
24
py
Python
poefixer/postprocess/__init__.py
trh3/poefixer
dafc489ce41d176b0289ba1b48ec82bb6d9e9f07
[ "MIT" ]
18
2018-08-02T03:16:12.000Z
2021-07-10T22:21:55.000Z
poefixer/postprocess/__init__.py
trh3/poefixer
dafc489ce41d176b0289ba1b48ec82bb6d9e9f07
[ "MIT" ]
null
null
null
poefixer/postprocess/__init__.py
trh3/poefixer
dafc489ce41d176b0289ba1b48ec82bb6d9e9f07
[ "MIT" ]
11
2019-02-19T20:00:46.000Z
2022-01-20T22:57:58.000Z
from .currency import *
12
23
0.75
a6d78ef1d5e0c4dc8499c6a00fa4d0e8b5135aff
2,695
py
Python
raytracerchallenge_python/cone.py
toku345/RayTracerChallenge_Python
40ced097f92cc61b116d24c6d6c4f27d6b13029d
[ "MIT" ]
1
2020-05-13T20:54:01.000Z
2020-05-13T20:54:01.000Z
raytracerchallenge_python/cone.py
toku345/RayTracerChallenge_Python
40ced097f92cc61b116d24c6d6c4f27d6b13029d
[ "MIT" ]
null
null
null
raytracerchallenge_python/cone.py
toku345/RayTracerChallenge_Python
40ced097f92cc61b116d24c6d6c4f27d6b13029d
[ "MIT" ]
null
null
null
from raytracerchallenge_python.shape import Shape from raytracerchallenge_python.intersection import Intersections, Intersection from raytracerchallenge_python.tuple import Vector from raytracerchallenge_python.helpers import EPSILON from math import sqrt class Cone(Shape): def __init__(self): super().__init__() self.minimum = -float('inf') self.maximum = float('inf') self.closed = False def local_intersect(self, ray): a = ray.direction.x ** 2 - ray.direction.y ** 2 + ray.direction.z ** 2 b = 2 * ray.origin.x * ray.direction.x \ - 2 * ray.origin.y * ray.direction.y \ + 2 * ray.origin.z * ray.direction.z c = ray.origin.x ** 2 - ray.origin.y ** 2 + ray.origin.z ** 2 if abs(a) < EPSILON: if abs(b) < EPSILON: return Intersections() else: xs = [Intersection(-c / (2 * b), self)] + \ self._intersect_caps(ray) return Intersections(*xs) disc = b ** 2 - 4 * a * c if disc < 0: return Intersections() t0 = (-b - sqrt(disc)) / (2 * a) t1 = (-b + sqrt(disc)) / (2 * a) xs = [] y0 = ray.origin.y + t0 * ray.direction.y if self.minimum < y0 and y0 < self.maximum: xs.append(Intersection(t0, self)) y1 = ray.origin.y + t1 * ray.direction.y if self.minimum < y1 and y1 < self.maximum: xs.append(Intersection(t1, self)) xs = xs + self._intersect_caps(ray) return Intersections(*xs) def _intersect_caps(self, ray): def check_cap(ray, t): x = ray.origin.x + t * ray.direction.x y = ray.origin.y + t * ray.direction.y z = ray.origin.z + t * ray.direction.z return (x ** 2 + z ** 2) <= y ** 2 xs = [] if self.closed is False or abs(ray.direction.y) < EPSILON: return xs t = (self.minimum - ray.origin.y) / ray.direction.y if check_cap(ray, t): xs.append(Intersection(t, self)) t = (self.maximum - ray.origin.y) / ray.direction.y if check_cap(ray, t): xs.append(Intersection(t, self)) return xs def local_normal_at(self, point): dist = point.x ** 2 + point.z ** 2 if dist < abs(point.y) and point.y >= self.maximum - EPSILON: return Vector(0, 1, 0) elif dist < abs(point.y) and point.y <= self.minimum + EPSILON: return Vector(0, -1, 0) y = sqrt(point.x ** 2 + point.z ** 2) if point.y > 0: y = -y return Vector(point.x, y, point.z)
31.337209
78
0.53692
144f58350322bcae42e152300778f491908a1576
8,860
py
Python
utils/cider/pyciderevalcap/ciderD/ciderD_scorer.py
zhaoguangxiang/OFA
cc1719df2713f0a046f34acb0afd8782e08ea6be
[ "Apache-2.0" ]
828
2020-05-14T21:00:30.000Z
2022-03-29T07:21:39.000Z
utils/cider/pyciderevalcap/ciderD/ciderD_scorer.py
zhaoguangxiang/OFA
cc1719df2713f0a046f34acb0afd8782e08ea6be
[ "Apache-2.0" ]
181
2020-05-18T13:14:59.000Z
2022-03-30T17:45:59.000Z
utils/cider/pyciderevalcap/ciderD/ciderD_scorer.py
zhaoguangxiang/OFA
cc1719df2713f0a046f34acb0afd8782e08ea6be
[ "Apache-2.0" ]
226
2020-05-14T20:55:37.000Z
2022-03-23T09:45:36.000Z
#!/usr/bin/env python # Tsung-Yi Lin <tl483@cornell.edu> # Ramakrishna Vedantam <vrama91@vt.edu> from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from collections import defaultdict import numpy as np import pdb import math import six from six.moves import cPickle import os def precook(s, n=4, out=False): """ Takes a string as input and returns an object that can be given to either cook_refs or cook_test. This is optional: cook_refs and cook_test can take string arguments as well. :param s: string : sentence to be converted into ngrams :param n: int : number of ngrams for which representation is calculated :return: term frequency vector for occuring ngrams """ words = s.split() counts = defaultdict(int) for k in range(1,n+1): for i in range(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] += 1 return counts def cook_refs(refs, n=4): ## lhuang: oracle will call with "average" '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them. :param refs: list of string : reference sentences for some image :param n: int : number of ngrams for which (ngram) representation is calculated :return: result (list of dict) ''' return [precook(ref, n) for ref in refs] def cook_test(test, n=4): '''Takes a test sentence and returns an object that encapsulates everything that BLEU needs to know about it. :param test: list of string : hypothesis sentence for some image :param n: int : number of ngrams for which (ngram) representation is calculated :return: result (dict) ''' return precook(test, n, True) class CiderScorer(object): """CIDEr scorer. """ def copy(self): ''' copy the refs.''' new = CiderScorer(n=self.n) new.ctest = copy.copy(self.ctest) new.crefs = copy.copy(self.crefs) return new def copy_empty(self): new = CiderScorer(df_mode="corpus", n=self.n, sigma=self.sigma) new.df_mode = self.df_mode new.ref_len = self.ref_len new.document_frequency = self.document_frequency return new def __init__(self, df_mode="corpus", test=None, refs=None, n=4, sigma=6.0): ''' singular instance ''' self.n = n self.sigma = sigma self.crefs = [] self.ctest = [] self.df_mode = df_mode self.ref_len = None if self.df_mode != "corpus": pkl_file = cPickle.load(open(df_mode,'rb'), **(dict(encoding='latin1') if six.PY3 else {})) self.ref_len = np.log(float(pkl_file['ref_len'])) self.document_frequency = pkl_file['document_frequency'] else: self.document_frequency = None self.cook_append(test, refs) def clear(self): self.crefs = [] self.ctest = [] def cook_append(self, test, refs): '''called by constructor and __iadd__ to avoid creating new instances.''' if refs is not None: self.crefs.append(cook_refs(refs)) if test is not None: self.ctest.append(cook_test(test)) ## N.B.: -1 else: self.ctest.append(None) # lens of crefs and ctest have to match def size(self): assert len(self.crefs) == len(self.ctest), "refs/test mismatch! %d<>%d" % (len(self.crefs), len(self.ctest)) return len(self.crefs) def __iadd__(self, other): '''add an instance (e.g., from another sentence).''' if type(other) is tuple: ## avoid creating new CiderScorer instances self.cook_append(other[0], other[1]) else: self.ctest.extend(other.ctest) self.crefs.extend(other.crefs) return self def compute_doc_freq(self): ''' Compute term frequency for reference data. This will be used to compute idf (inverse document frequency later) The term frequency is stored in the object :return: None ''' for refs in self.crefs: # refs, k ref captions of one image for ngram in set([ngram for ref in refs for (ngram,count) in ref.items()]): self.document_frequency[ngram] += 1 # maxcounts[ngram] = max(maxcounts.get(ngram,0), count) def compute_cider(self): def counts2vec(cnts): """ Function maps counts of ngram to vector of tfidf weights. The function returns vec, an array of dictionary that store mapping of n-gram and tf-idf weights. The n-th entry of array denotes length of n-grams. :param cnts: :return: vec (array of dict), norm (array of float), length (int) """ vec = [defaultdict(float) for _ in range(self.n)] length = 0 norm = [0.0 for _ in range(self.n)] for (ngram,term_freq) in cnts.items(): # give word count 1 if it doesn't appear in reference corpus df = np.log(max(1.0, self.document_frequency[ngram])) # ngram index n = len(ngram)-1 # tf (term_freq) * idf (precomputed idf) for n-grams vec[n][ngram] = float(term_freq)*(self.ref_len - df) # compute norm for the vector. the norm will be used for computing similarity norm[n] += pow(vec[n][ngram], 2) if n == 1: length += term_freq norm = [np.sqrt(n) for n in norm] return vec, norm, length def sim(vec_hyp, vec_ref, norm_hyp, norm_ref, length_hyp, length_ref): ''' Compute the cosine similarity of two vectors. :param vec_hyp: array of dictionary for vector corresponding to hypothesis :param vec_ref: array of dictionary for vector corresponding to reference :param norm_hyp: array of float for vector corresponding to hypothesis :param norm_ref: array of float for vector corresponding to reference :param length_hyp: int containing length of hypothesis :param length_ref: int containing length of reference :return: array of score for each n-grams cosine similarity ''' delta = float(length_hyp - length_ref) # measure consine similarity val = np.array([0.0 for _ in range(self.n)]) for n in range(self.n): # ngram for (ngram,count) in vec_hyp[n].items(): # vrama91 : added clipping val[n] += min(vec_hyp[n][ngram], vec_ref[n][ngram]) * vec_ref[n][ngram] if (norm_hyp[n] != 0) and (norm_ref[n] != 0): val[n] /= (norm_hyp[n]*norm_ref[n]) assert(not math.isnan(val[n])) # vrama91: added a length based gaussian penalty val[n] *= np.e**(-(delta**2)/(2*self.sigma**2)) return val # compute log reference length if self.df_mode == "corpus": self.ref_len = np.log(float(len(self.crefs))) #elif self.df_mode == "coco-val-df": # if coco option selected, use length of coco-val set # self.ref_len = np.log(float(40504)) scores = [] for test, refs in zip(self.ctest, self.crefs): # compute vector for test captions vec, norm, length = counts2vec(test) # compute vector for ref captions score = np.array([0.0 for _ in range(self.n)]) for ref in refs: vec_ref, norm_ref, length_ref = counts2vec(ref) score += sim(vec, vec_ref, norm, norm_ref, length, length_ref) # change by vrama91 - mean of ngram scores, instead of sum score_avg = np.mean(score) # divide by number of references score_avg /= len(refs) # multiply score by 10 score_avg *= 10.0 # append score of an image to the score list scores.append(score_avg) return scores def compute_score(self, option=None, verbose=0): # compute idf if self.df_mode == "corpus": self.document_frequency = defaultdict(float) self.compute_doc_freq() # assert to check document frequency assert(len(self.ctest) >= max(self.document_frequency.values())) # import json for now and write the corresponding files # compute cider score score = self.compute_cider() # debug # print score return np.mean(np.array(score)), np.array(score)
39.730942
116
0.592664
8af2267b0d9b24453b559eba27cf2c8e2555a492
1,707
py
Python
test/integration/019_analysis_tests/test_analyses.py
tomasfarias/dbt-core
ed5df342ca5d99c5e6971ee6d11c8cf3e6e263b3
[ "Apache-2.0" ]
3,156
2017-03-05T09:59:23.000Z
2021-06-30T01:27:52.000Z
test/integration/019_analysis_tests/test_analyses.py
tomasfarias/dbt-core
ed5df342ca5d99c5e6971ee6d11c8cf3e6e263b3
[ "Apache-2.0" ]
2,608
2017-02-27T15:39:40.000Z
2021-06-30T01:49:20.000Z
test/integration/019_analysis_tests/test_analyses.py
tomasfarias/dbt-core
ed5df342ca5d99c5e6971ee6d11c8cf3e6e263b3
[ "Apache-2.0" ]
693
2017-03-13T03:04:49.000Z
2021-06-25T15:57:41.000Z
from test.integration.base import DBTIntegrationTest, use_profile, get_manifest import os class TestAnalyses(DBTIntegrationTest): @property def schema(self): return "test_analyses_019" @property def models(self): return "models" def analysis_path(self): return "analyses" @property def project_config(self): return { "config-version": 2, "analysis-paths": [self.analysis_path()] } def assert_contents_equal(self, path, expected): with open(path) as fp: self.assertEqual(fp.read().strip(), expected) @use_profile('postgres') def test_postgres_analyses(self): compiled_analysis_path = os.path.normpath('target/compiled/test/analyses') path_1 = os.path.join(compiled_analysis_path, 'my_analysis.sql') path_2 = os.path.join(compiled_analysis_path, 'raw_stuff.sql') self.run_dbt(['clean']) self.assertFalse(os.path.exists(compiled_analysis_path)) results = self.run_dbt(["compile"]) self.assertEqual(len(results), 3) manifest = get_manifest() analysis_id = 'analysis.test.my_analysis' self.assertIn(analysis_id, manifest.nodes) node = manifest.nodes[analysis_id] self.assertEqual(node.description, 'This is my analysis') self.assertTrue(os.path.exists(path_1)) self.assertTrue(os.path.exists(path_2)) expected_sql = 'select * from "{}"."{}"."my_model"'.format( self.default_database, self.unique_schema() ) self.assert_contents_equal(path_1, expected_sql) self.assert_contents_equal(path_2, '{% invalid jinja stuff %}')
31.611111
82
0.652021
721666ef70f0e94f243759afc2128c74442caac9
1,750
py
Python
app.py
masaponto/dentaku2
843569efd7df272fd47af7cb51d92413a3250d0a
[ "MIT" ]
null
null
null
app.py
masaponto/dentaku2
843569efd7df272fd47af7cb51d92413a3250d0a
[ "MIT" ]
null
null
null
app.py
masaponto/dentaku2
843569efd7df272fd47af7cb51d92413a3250d0a
[ "MIT" ]
null
null
null
# !/usr/bin/env python import tensorflow as tf import numpy as np from mnist import model from flask import Flask, render_template, request, jsonify app = Flask(__name__, template_folder='build', static_folder='build') x = tf.placeholder("float", [None, 784]) sess = tf.Session() with tf.variable_scope("convolutional"): keep_prob = tf.placeholder("float") y_conv2, variables = model.convolutional(x, keep_prob) saver = tf.train.Saver(variables) saver.restore(sess, "mnist/model/cnn_dentaku.ckpt") operators = {10: '+', 11: '-', 12: '*', 13: '/'} def fix_output(output): if output in operators: return operators[output] else: return output def cnn(input_x): y = sess.run(y_conv2, feed_dict={ x: input_x, keep_prob: 1.0}).flatten().tolist() return y.index(max(y)) @app.route('/') def index(): return render_template('index.html') @app.route('/estimate', methods=["POST"]) def estimate(): try: input_x = ( (255 - np.array(request.json["input"])) / 255.0).reshape(1, 784) output = cnn(input_x) return jsonify({"estimated": fix_output(output)}) except Exception as e: print(e) return jsonify({"error": e}) @app.route('/csv', methods=["POST"]) def feature_to_csv(): try: input_x = (255 - np.array(request.json["input"])).reshape(1, 784) print(np.array(request.json["input"])) print(input_x) input_csv = [str(x) for x in input_x[0].tolist()] input_csv = ','.join(input_csv) return jsonify({"feature": input_csv}) except Exception as e: print(e) return jsonify({"error": e}) if __name__ == "__main__": app.run(host='0.0.0.0', port=8080)
23.648649
76
0.62
3b44d31358b9638edacc7a4612870829ae4abe67
1,939
py
Python
aiida/cmdline/params/types/__init__.py
hongyi-zhao/aiida-core
d6e8c7d10537b754d1cb6334689ba2edf4347d43
[ "BSD-2-Clause", "MIT" ]
null
null
null
aiida/cmdline/params/types/__init__.py
hongyi-zhao/aiida-core
d6e8c7d10537b754d1cb6334689ba2edf4347d43
[ "BSD-2-Clause", "MIT" ]
null
null
null
aiida/cmdline/params/types/__init__.py
hongyi-zhao/aiida-core
d6e8c7d10537b754d1cb6334689ba2edf4347d43
[ "BSD-2-Clause", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Provides all parameter types.""" from .calculation import CalculationParamType from .choice import LazyChoice from .code import CodeParamType from .computer import ComputerParamType, ShebangParamType, MpirunCommandParamType from .config import ConfigOptionParamType from .data import DataParamType from .group import GroupParamType from .identifier import IdentifierParamType from .multiple import MultipleValueParamType from .node import NodeParamType from .process import ProcessParamType from .strings import (NonEmptyStringParamType, EmailType, HostnameType, EntryPointType, LabelStringType) from .path import AbsolutePathParamType, ImportPath from .plugin import PluginParamType from .profile import ProfileParamType from .user import UserParamType from .test_module import TestModuleParamType from .workflow import WorkflowParamType __all__ = ( 'LazyChoice', 'IdentifierParamType', 'CalculationParamType', 'CodeParamType', 'ComputerParamType', 'ConfigOptionParamType', 'DataParamType', 'GroupParamType', 'NodeParamType', 'MpirunCommandParamType', 'MultipleValueParamType', 'NonEmptyStringParamType', 'PluginParamType', 'AbsolutePathParamType', 'ShebangParamType', 'UserParamType', 'TestModuleParamType', 'ProfileParamType', 'WorkflowParamType', 'ProcessParamType', 'ImportPath' )
52.405405
120
0.6787
50fc22daf9f187e84aa7cc6c543652dd65b97292
338
py
Python
squareroot.py
m10singh94/Python-programs
a83083044b4a85afcf70c4b7024287a808b01fee
[ "Apache-2.0" ]
null
null
null
squareroot.py
m10singh94/Python-programs
a83083044b4a85afcf70c4b7024287a808b01fee
[ "Apache-2.0" ]
null
null
null
squareroot.py
m10singh94/Python-programs
a83083044b4a85afcf70c4b7024287a808b01fee
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 17 09:24:52 2020 @author: u7075106 """ import math import random def square_root(a): x = random.randint(1, a/2) while abs((x**2) - a) > 1e-6: x = ((x + a/x)/2) print("calculated sqrt", x) print("Actual sqrt :", math.sqrt(a))
18.777778
40
0.544379
fbabc165b2fb2dd1d7e8cf012483c6c490b6c120
1,454
py
Python
enaml/workbench/ui/ui_workbench.py
timgates42/enaml
054efe6a4047d84f2fff718d656a64a2363884dc
[ "BSD-3-Clause-Clear" ]
null
null
null
enaml/workbench/ui/ui_workbench.py
timgates42/enaml
054efe6a4047d84f2fff718d656a64a2363884dc
[ "BSD-3-Clause-Clear" ]
1
2019-08-22T14:38:24.000Z
2019-08-22T14:38:24.000Z
enaml/workbench/ui/ui_workbench.py
timgates42/enaml
054efe6a4047d84f2fff718d656a64a2363884dc
[ "BSD-3-Clause-Clear" ]
null
null
null
#------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ from __future__ import unicode_literals from enaml.workbench.workbench import Workbench UI_PLUGIN = u'enaml.workbench.ui' class UIWorkbench(Workbench): """ A class for creating workbench UI applications. The UIWorkbench class is a subclass of Workbench which loads the builtin ui plugin and provides an entry point to start the main application event loop. """ def run(self): """ Run the UI workbench application. This method will load the core and ui plugins and start the main application event loop. This is a blocking call which will return when the application event loop exits. """ import enaml with enaml.imports(): from enaml.workbench.core.core_manifest import CoreManifest from enaml.workbench.ui.ui_manifest import UIManifest self.register(CoreManifest()) self.register(UIManifest()) ui = self.get_plugin(UI_PLUGIN) ui.show_window() ui.start_application() # TODO stop all plugins on app exit? self.unregister(UI_PLUGIN)
30.93617
79
0.616231
0988813302362f9909cf8926d18f6de5666207a4
983
py
Python
Cas_1/Salinity/A_General_Salinity.py
Herpinemmanuel/Oceanography
a37befa33698c0e351b11a4b7561d07a430dc28c
[ "MIT" ]
1
2020-01-16T07:20:33.000Z
2020-01-16T07:20:33.000Z
Cas_1/Salinity/A_General_Salinity.py
Herpinemmanuel/Oceanography
a37befa33698c0e351b11a4b7561d07a430dc28c
[ "MIT" ]
61
2017-06-15T08:37:55.000Z
2017-07-20T15:46:29.000Z
Cas_1/Salinity/A_General_Salinity.py
Herpinemmanuel/Oceanography
a37befa33698c0e351b11a4b7561d07a430dc28c
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt import cartopy.crs as ccrs from xmitgcm import open_mdsdataset from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER plt.ion() dir1 = '/homedata/bderembl/runmit/test_southatlgyre' ds1 = open_mdsdataset(dir1,prefix=['S']) nt = 0 nz = 0 # Cartography S : Salinity plt.figure(1) ax = plt.subplot(projection=ccrs.PlateCarree()); ds1['S'][nt,nz,:,:].plot.pcolormesh('XC', 'YC', ax=ax); plt.title('Case 1 : Salinity') ax.coastlines() gl = ax.gridlines(draw_labels=True, alpha = 0.5, linestyle='--'); gl.xlabels_top = False gl.ylabels_right = False gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER plt.savefig('S_General_Salinity_cas1'+'.png') plt.clf() # Averages Average_S = ds1.S.mean().values print('Average of Salinity') print(Average_S,'psu') Average_S_mask = ds1.S.where(ds1.hFacC>0).mean().values print('Average of Salinity without continents') print(Average_S_mask,'psu')
25.205128
73
0.746694
4a84bb6cefb51485e4065b1af97e953faf82b49f
10,344
py
Python
biosppy/utils.py
PatriciaBota/BioSPPy
92d97e2b49373069a06dbe6d7711beefa40f2dee
[ "BSD-3-Clause" ]
1
2019-08-01T12:30:46.000Z
2019-08-01T12:30:46.000Z
biosppy/utils.py
PatriciaBota/BioSPPy
92d97e2b49373069a06dbe6d7711beefa40f2dee
[ "BSD-3-Clause" ]
null
null
null
biosppy/utils.py
PatriciaBota/BioSPPy
92d97e2b49373069a06dbe6d7711beefa40f2dee
[ "BSD-3-Clause" ]
1
2019-08-01T13:25:52.000Z
2019-08-01T13:25:52.000Z
# -*- coding: utf-8 -*- """ biosppy.utils ------------- This module provides several frequently used functions and hacks. :copyright: (c) 2015-2018 by Instituto de Telecomunicacoes :license: BSD 3-clause, see LICENSE for more details. """ # Imports # compat from __future__ import absolute_import, division, print_function from six.moves import map, range, zip import six # built-in import collections import copy import keyword import os import re # 3rd party import numpy as np def normpath(path): """Normalize a path. Parameters ---------- path : str The path to normalize. Returns ------- npath : str The normalized path. """ if '~' in path: out = os.path.abspath(os.path.expanduser(path)) else: out = os.path.abspath(path) return out def fileparts(path): """split a file path into its directory, name, and extension. Parameters ---------- path : str Input file path. Returns ------- dirname : str File directory. fname : str File name. ext : str File extension. Notes ----- * Removes the dot ('.') from the extension. """ dirname, fname = os.path.split(path) fname, ext = os.path.splitext(fname) ext = ext.replace('.', '') return dirname, fname, ext def fullfile(*args): """Join one or more file path components, assuming the last is the extension. Parameters ---------- ``*args`` : list, optional Components to concatenate. Returns ------- fpath : str The concatenated file path. """ nb = len(args) if nb == 0: return '' elif nb == 1: return args[0] elif nb == 2: return os.path.join(*args) fpath = os.path.join(*args[:-1]) + '.' + args[-1] return fpath def walktree(top=None, spec=None): """Iterator to recursively descend a directory and return all files matching the spec. Parameters ---------- top : str, optional Starting directory; if None, defaults to the current working directoty. spec : str, optional Regular expression to match the desired files; if None, matches all files; typical patterns: * `r'\.txt$'` - matches files with '.txt' extension; * `r'^File_'` - matches files starting with 'File\_' * `r'^File_.+\.txt$'` - matches files starting with 'File\_' and ending with the '.txt' extension. Yields ------ fpath : str Absolute file path. Notes ----- * Partial matches are also selected. See Also -------- * https://docs.python.org/3/library/re.html * https://regex101.com/ """ if top is None: top = os.getcwd() if spec is None: spec = r'.*?' prog = re.compile(spec) for root, _, files in os.walk(top): for name in files: if prog.search(name): fname = os.path.join(root, name) yield fname def remainderAllocator(votes, k, reverse=True, check=False): """Allocate k seats proportionally using the Remainder Method. Also known as Hare-Niemeyer Method. Uses the Hare quota. Parameters ---------- votes : list Number of votes for each class/party/cardinal. k : int Total number o seats to allocate. reverse : bool, optional If True, allocates remaining seats largest quota first. check : bool, optional If True, limits the number of seats to the total number of votes. Returns ------- seats : list Number of seats for each class/party/cardinal. """ # check total number of votes tot = np.sum(votes) if check and k > tot: k = tot # frequencies length = len(votes) freqs = np.array(votes, dtype='float') / tot # assign items aux = k * freqs seats = aux.astype('int') # leftovers nb = k - seats.sum() if nb > 0: if reverse: ind = np.argsort(aux - seats)[::-1] else: ind = np.argsort(aux - seats) for i in range(nb): seats[ind[i % length]] += 1 return seats.tolist() def highestAveragesAllocator(votes, k, divisor='dHondt', check=False): """Allocate k seats proportionally using the Highest Averages Method. Parameters ---------- votes : list Number of votes for each class/party/cardinal. k : int Total number o seats to allocate. divisor : str, optional Divisor method; one of 'dHondt', 'Huntington-Hill', 'Sainte-Lague', 'Imperiali', or 'Danish'. check : bool, optional If True, limits the number of seats to the total number of votes. Returns ------- seats : list Number of seats for each class/party/cardinal. """ # check total number of cardinals tot = np.sum(votes) if check and k > tot: k = tot # select divisor if divisor == 'dHondt': fcn = lambda i: float(i) elif divisor == 'Huntington-Hill': fcn = lambda i: np.sqrt(i * (i + 1.)) elif divisor == 'Sainte-Lague': fcn = lambda i: i - 0.5 elif divisor == 'Imperiali': fcn = lambda i: float(i + 1) elif divisor == 'Danish': fcn = lambda i: 3. * (i - 1.) + 1. else: raise ValueError("Unknown divisor method.") # compute coefficients tab = [] length = len(votes) D = [fcn(i) for i in range(1, k + 1)] for i in range(length): for j in range(k): tab.append((i, votes[i] / D[j])) # sort tab.sort(key=lambda item: item[1], reverse=True) tab = tab[:k] tab = np.array([item[0] for item in tab], dtype='int') seats = np.zeros(length, dtype='int') for i in range(length): seats[i] = np.sum(tab == i) return seats.tolist() def random_fraction(indx, fraction, sort=True): """Select a random fraction of an input list of elements. Parameters ---------- indx : list, array Elements to partition. fraction : int, float Fraction to select. sort : bool, optional If True, output lists will be sorted. Returns ------- use : list, array Selected elements. unuse : list, array Remaining elements. """ # number of elements to use fraction = float(fraction) nb = int(fraction * len(indx)) # copy because shuffle works in place aux = copy.deepcopy(indx) # shuffle np.random.shuffle(indx) # select use = aux[:nb] unuse = aux[nb:] # sort if sort: use.sort() unuse.sort() return use, unuse class ReturnTuple(tuple): """A named tuple to use as a hybrid tuple-dict return object. Parameters ---------- values : iterable Return values. names : iterable, optional Names for return values. Raises ------ ValueError If the number of values differs from the number of names. ValueError If any of the items in names: * contain non-alphanumeric characters; * are Python keywords; * start with a number; * are duplicates. """ def __new__(cls, values, names=None): return tuple.__new__(cls, tuple(values)) def __init__(self, values, names=None): nargs = len(values) if names is None: # create names names = ['_%d' % i for i in range(nargs)] else: # check length if len(names) != nargs: raise ValueError("Number of names and values mismatch.") # convert to str names = list(map(str, names)) # check for keywords, alphanumeric, digits, repeats seen = set() for name in names: if not all(c.isalnum() or (c == '_') for c in name): raise ValueError("Names can only contain alphanumeric \ characters and underscores: %r." % name) if keyword.iskeyword(name): raise ValueError("Names cannot be a keyword: %r." % name) if name[0].isdigit(): raise ValueError("Names cannot start with a number: %r." % name) if name in seen: raise ValueError("Encountered duplicate name: %r." % name) seen.add(name) self._names = names self._values = values def as_dict(self): """Convert to an ordered dictionary. Returns ------- out : OrderedDict An OrderedDict representing the return values. """ return collections.OrderedDict(zip(self._names, self)) __dict__ = property(as_dict) def __getitem__(self, key): """Get item as an index or keyword. Returns ------- out : object The object corresponding to the key, if it exists. Raises ------ KeyError If the key is a string and it does not exist in the mapping. IndexError If the key is an int and it is out of range. """ if isinstance(key, six.string_types): if key not in self._names: raise KeyError("Unknown key: %r." % key) key = self._names.index(key) return super(ReturnTuple, self).__getitem__(key) def __repr__(self): """Return representation string.""" tpl = '%s=%r' rp = ', '.join(tpl % item for item in zip(self._names, self)) return 'ReturnTuple(%s)' % rp def __getnewargs__(self): """Return self as a plain tuple; used for copy and pickle.""" return tuple(self) def keys(self): """Return the value names. Returns ------- out : list The keys in the mapping. """ return list(self._names) def values(self): """Return the varibale values. Returns ------- out : list The values in the mapping. """ return list(self._values)
23.037862
110
0.549884
7db307a40d21bf184d0f12ca1a90f8b6c147feff
1,615
py
Python
tests/compiler/division/test_division.py
eternalSeeker/pcc
c2b64c2b9e3f9374063854fff953c19efcdad514
[ "MIT" ]
1
2019-10-09T14:24:01.000Z
2019-10-09T14:24:01.000Z
tests/compiler/division/test_division.py
eternalSeeker/pcc
c2b64c2b9e3f9374063854fff953c19efcdad514
[ "MIT" ]
null
null
null
tests/compiler/division/test_division.py
eternalSeeker/pcc
c2b64c2b9e3f9374063854fff953c19efcdad514
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from os.path import abspath, dirname import pytest import tests.generateOutputsDecorator from tests.compiler.CompilerHelper import CompilerHelper, \ generate_compiler_outputs generate_outputs = tests.generateOutputsDecorator.generate_outputs # The parametrize function is generated, so it does not work to import parametrize = pytest.mark.parametrize files_to_test = [ ('char.c', 'charHelper.c', 'char.out'), ('int.c', 'intHelper.c', 'int.out'), ('float.c', 'floatHelper.c', 'float.out'), ('double.c', 'doubleHelper.c', 'double.out'), ('charInit.c', 'charHelper.c', 'charInit.out'), ('intInit.c', 'intHelper.c', 'intInit.out'), ('floatInit.c', 'floatHelper.c', 'floatInit.out'), ('doubleInit.c', 'doubleHelper.c', 'doubleInit.out'), ('charVarAndConstant.c', 'charHelper.c', 'charVarAndConstant.out'), ('intVarAndConstant.c', 'intHelper.c', 'intVarAndConstant.out'), ('floatVarAndConstant.c', 'floatHelper.c', 'floatVarAndConstant.out'), ('doubleVarAndConstant.c', 'doubleHelper.c', 'doubleVarAndConstant.out'), ] @generate_outputs def generate_compiler_test_outputs(): path_of_this_file = abspath(dirname(__file__)) generate_compiler_outputs(files_to_test, path_of_this_file) class TestDivision(CompilerHelper): @parametrize('file_to_test,helper,output_file', files_to_test) def test_division(self, file_to_test, helper, output_file, capsys): path_of_this_file = abspath(dirname(__file__)) self.execute_test(file_to_test, helper, output_file, capsys, path_of_this_file)
35.888889
77
0.713313
e9bb9ff9429ec639f3c7a659e0450bf1fe596420
970
py
Python
app/conftest.py
dxw/nhx-website
88344c7602823e0b371d3c6f933aa24aeb57db16
[ "MIT" ]
50
2019-04-04T17:50:00.000Z
2021-08-05T15:08:37.000Z
app/conftest.py
dxw/nhx-website
88344c7602823e0b371d3c6f933aa24aeb57db16
[ "MIT" ]
434
2019-04-04T18:25:32.000Z
2022-03-31T18:23:37.000Z
app/conftest.py
nhsx-mirror/nhsx-website
2133b4e275ca35ff77f7d6874e809f139ec4bf86
[ "MIT" ]
23
2019-04-04T09:52:07.000Z
2021-04-11T07:41:47.000Z
# -*- coding: utf-8 -*- """ conftest ~~~~~~~~ Pytest config. """ import pytest from consoler import console # NOQA try: import envkey # NOQA except Exception: pass from tests.init import setup from tests.fixtures import * # NOQA from modules.core.tests.fixtures import * # NOQA from modules.home.tests.fixtures import * # NOQA from modules.blog_posts.tests.fixtures import * # NOQA from modules.publications.tests.fixtures import * # NOQA from modules.news.tests.fixtures import * # NOQA from modules.users.tests.fixtures import * # NOQA pytestmark = pytest.mark.django_db @pytest.fixture(autouse=True) def enable_db_access_for_all_tests(db): pass @pytest.fixture(scope="session") def django_db_setup(django_db_setup, django_db_blocker): with django_db_blocker.unblock(): setup() @pytest.fixture(scope="session", autouse=True) def faker_session_locale(): return "en_US" return ["it_IT", "ja_JP", "en_US"]
21.555556
57
0.715464
452c5ec86ee25af24f44a7412bf98c148acf8d59
32,036
py
Python
vispy/app/backends/_qt.py
3DAlgoLab/vispy
91972307cf336674aad58198fb26b9e46f8f9ca1
[ "BSD-3-Clause" ]
1
2021-08-04T06:31:02.000Z
2021-08-04T06:31:02.000Z
vispy/app/backends/_qt.py
3DAlgoLab/vispy
91972307cf336674aad58198fb26b9e46f8f9ca1
[ "BSD-3-Clause" ]
null
null
null
vispy/app/backends/_qt.py
3DAlgoLab/vispy
91972307cf336674aad58198fb26b9e46f8f9ca1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) Vispy Development Team. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. """ Base code for the Qt backends. Note that this is *not* (anymore) a backend by itself! One has to explicitly use either PySide, PyQt4 or PySide2, PyQt5. Note that the automatic backend selection prefers a GUI toolkit that is already imported. The _pyside, _pyqt4, _pyside2, _pyqt5 and _pyside6 modules will import * from this module, and also keep a ref to the module object. Note that if two of the backends are used, this module is actually reloaded. This is a sorts of poor mans "subclassing" to get a working version for both backends using the same code. Note that it is strongly discouraged to use the PySide/PyQt4/PySide2/PyQt5/PySide6 backends simultaneously. It is known to cause unpredictable behavior and segfaults. """ from __future__ import division from time import sleep, time import os import sys import atexit import ctypes from distutils.version import LooseVersion from ...util import logger from ..base import (BaseApplicationBackend, BaseCanvasBackend, BaseTimerBackend) from ...util import keys from ... import config from . import qt_lib USE_EGL = config['gl_backend'].lower().startswith('es') # Get platform IS_LINUX = IS_OSX = IS_WIN = IS_RPI = False if sys.platform.startswith('linux'): if os.uname()[4].startswith('arm'): IS_RPI = True else: IS_LINUX = True elif sys.platform.startswith('darwin'): IS_OSX = True elif sys.platform.startswith('win'): IS_WIN = True # -------------------------------------------------------------------- init --- def _check_imports(lib): # Make sure no conflicting libraries have been imported. libs = ['PyQt4', 'PyQt5', 'PySide', 'PySide2', 'PySide6'] libs.remove(lib) for lib2 in libs: lib2 += '.QtCore' if lib2 in sys.modules: raise RuntimeError("Refusing to import %s because %s is already " "imported." % (lib, lib2)) # Get what qt lib to try. This tells us wheter this module is imported # via _pyside or _pyqt4 or _pyqt5 QGLWidget = object QT5_NEW_API = False QT6_NEW_API = False if qt_lib == 'pyqt4': _check_imports('PyQt4') if not USE_EGL: from PyQt4.QtOpenGL import QGLWidget, QGLFormat from PyQt4 import QtGui, QtCore, QtTest QWidget, QApplication = QtGui.QWidget, QtGui.QApplication # Compat elif qt_lib == 'pyqt5': _check_imports('PyQt5') if not USE_EGL: from PyQt5.QtCore import QT_VERSION_STR if LooseVersion(QT_VERSION_STR) >= '5.4.0': from PyQt5.QtWidgets import QOpenGLWidget as QGLWidget from PyQt5.QtGui import QSurfaceFormat as QGLFormat QT5_NEW_API = True else: from PyQt5.QtOpenGL import QGLWidget, QGLFormat from PyQt5 import QtGui, QtCore, QtWidgets, QtTest QWidget, QApplication = QtWidgets.QWidget, QtWidgets.QApplication # Compat elif qt_lib == 'pyside6': _check_imports('PySide6') if not USE_EGL: from PySide6.QtCore import __version__ as QT_VERSION_STR if LooseVersion(QT_VERSION_STR) >= '6.0.0': from PySide6.QtOpenGLWidgets import QOpenGLWidget as QGLWidget from PySide6.QtGui import QSurfaceFormat as QGLFormat QT6_NEW_API = True else: from PySide6.QtOpenGL import QGLWidget, QGLFormat from PySide6 import QtGui, QtCore, QtWidgets, QtTest QWidget, QApplication = QtWidgets.QWidget, QtWidgets.QApplication # Compat elif qt_lib == 'pyside2': _check_imports('PySide2') if not USE_EGL: from PySide2.QtCore import __version__ as QT_VERSION_STR if LooseVersion(QT_VERSION_STR) >= '5.4.0': from PySide2.QtWidgets import QOpenGLWidget as QGLWidget from PySide2.QtGui import QSurfaceFormat as QGLFormat QT5_NEW_API = True else: from PySide2.QtOpenGL import QGLWidget, QGLFormat from PySide2 import QtGui, QtCore, QtWidgets, QtTest QWidget, QApplication = QtWidgets.QWidget, QtWidgets.QApplication # Compat elif qt_lib == 'pyside': _check_imports('PySide') if not USE_EGL: from PySide.QtOpenGL import QGLWidget, QGLFormat from PySide import QtGui, QtCore, QtTest QWidget, QApplication = QtGui.QWidget, QtGui.QApplication # Compat elif qt_lib: raise RuntimeError("Invalid value for qt_lib %r." % qt_lib) else: raise RuntimeError("Module backends._qt should not be imported directly.") # todo: add support for distinguishing left and right shift/ctrl/alt keys. # Linux scan codes: (left, right) # Shift 50, 62 # Ctrl 37, 105 # Alt 64, 108 KEYMAP = { QtCore.Qt.Key_Shift: keys.SHIFT, QtCore.Qt.Key_Control: keys.CONTROL, QtCore.Qt.Key_Alt: keys.ALT, QtCore.Qt.Key_AltGr: keys.ALT, QtCore.Qt.Key_Meta: keys.META, QtCore.Qt.Key_Left: keys.LEFT, QtCore.Qt.Key_Up: keys.UP, QtCore.Qt.Key_Right: keys.RIGHT, QtCore.Qt.Key_Down: keys.DOWN, QtCore.Qt.Key_PageUp: keys.PAGEUP, QtCore.Qt.Key_PageDown: keys.PAGEDOWN, QtCore.Qt.Key_Insert: keys.INSERT, QtCore.Qt.Key_Delete: keys.DELETE, QtCore.Qt.Key_Home: keys.HOME, QtCore.Qt.Key_End: keys.END, QtCore.Qt.Key_Escape: keys.ESCAPE, QtCore.Qt.Key_Backspace: keys.BACKSPACE, QtCore.Qt.Key_F1: keys.F1, QtCore.Qt.Key_F2: keys.F2, QtCore.Qt.Key_F3: keys.F3, QtCore.Qt.Key_F4: keys.F4, QtCore.Qt.Key_F5: keys.F5, QtCore.Qt.Key_F6: keys.F6, QtCore.Qt.Key_F7: keys.F7, QtCore.Qt.Key_F8: keys.F8, QtCore.Qt.Key_F9: keys.F9, QtCore.Qt.Key_F10: keys.F10, QtCore.Qt.Key_F11: keys.F11, QtCore.Qt.Key_F12: keys.F12, QtCore.Qt.Key_Space: keys.SPACE, QtCore.Qt.Key_Enter: keys.ENTER, QtCore.Qt.Key_Return: keys.ENTER, QtCore.Qt.Key_Tab: keys.TAB, } BUTTONMAP = {0: 0, 1: 1, 2: 2, 4: 3, 8: 4, 16: 5} # Properly log Qt messages def message_handler(*args): if qt_lib in ("pyqt4", "pyside"): msg_type, msg = args elif qt_lib in ("pyqt5", "pyside2", "pyside6"): # Is this correct for pyside2? msg_type, context, msg = args elif qt_lib: raise RuntimeError("Invalid value for qt_lib %r." % qt_lib) else: raise RuntimeError("Module backends._qt ", "should not be imported directly.") BLACKLIST = [ # Ignore spam about tablet input 'QCocoaView handleTabletEvent: This tablet device is unknown', # Not too sure why this warning is emitted when using # Spyder + PyQt5 + Vispy # https://github.com/vispy/vispy/issues/1787 # In either case, it is really annoying. We should filter it away 'QSocketNotifier: Multiple socket notifiers for same', ] for item in BLACKLIST: if msg.startswith(item): return msg = msg.decode() if not isinstance(msg, str) else msg logger.warning(msg) def use_shared_contexts(): """Enable context sharing for PyQt5 5.4+ API applications. This is disabled by default for PyQt5 5.4+ due to occasional segmentation faults and other issues when contexts are shared. """ forced_env_var = os.getenv('VISPY_PYQT5_SHARE_CONTEXT', 'false').lower() == 'true' return not (QT5_NEW_API or QT6_NEW_API) or forced_env_var try: QtCore.qInstallMsgHandler(message_handler) except AttributeError: QtCore.qInstallMessageHandler(message_handler) # PyQt5 # -------------------------------------------------------------- capability --- capability = dict( # things that can be set by the backend title=True, size=True, position=True, show=True, vsync=True, resizable=True, decorate=True, fullscreen=True, context=use_shared_contexts(), multi_window=True, scroll=True, parent=True, always_on_top=True, ) # ------------------------------------------------------- set_configuration --- def _set_config(c): """Set the OpenGL configuration""" glformat = QGLFormat() glformat.setRedBufferSize(c['red_size']) glformat.setGreenBufferSize(c['green_size']) glformat.setBlueBufferSize(c['blue_size']) glformat.setAlphaBufferSize(c['alpha_size']) if QT5_NEW_API or QT6_NEW_API: # Qt5 >= 5.4.0 - below options automatically enabled if nonzero. glformat.setSwapBehavior(glformat.DoubleBuffer if c['double_buffer'] else glformat.SingleBuffer) else: # Qt4 and Qt5 < 5.4.0 - buffers must be explicitly requested. glformat.setAccum(False) glformat.setRgba(True) glformat.setDoubleBuffer(True if c['double_buffer'] else False) glformat.setDepth(True if c['depth_size'] else False) glformat.setStencil(True if c['stencil_size'] else False) glformat.setSampleBuffers(True if c['samples'] else False) glformat.setDepthBufferSize(c['depth_size'] if c['depth_size'] else 0) glformat.setStencilBufferSize(c['stencil_size'] if c['stencil_size'] else 0) glformat.setSamples(c['samples'] if c['samples'] else 0) glformat.setStereo(c['stereo']) return glformat # ------------------------------------------------------------- application --- class ApplicationBackend(BaseApplicationBackend): def __init__(self): BaseApplicationBackend.__init__(self) # sharing is currently buggy and causes segmentation faults for tests with PyQt 5.6 if (QT5_NEW_API or QT6_NEW_API) and use_shared_contexts(): # For Qt5 >= 5.4.0 - Enable sharing of context between windows. QApplication.setAttribute(QtCore.Qt.AA_ShareOpenGLContexts, True) def _vispy_get_backend_name(self): name = QtCore.__name__.split('.')[0] return name def _vispy_process_events(self): app = self._vispy_get_native_app() # sendPostedEvents replaces flush which has been removed from Qt6.0+ # This should be compatible with Qt4.x and Qt5.x app.sendPostedEvents() app.processEvents() def _vispy_run(self): app = self._vispy_get_native_app() if hasattr(app, '_in_event_loop') and app._in_event_loop: pass # Already in event loop else: return app.exec_() def _vispy_quit(self): return self._vispy_get_native_app().quit() def _vispy_get_native_app(self): # Get native app in save way. Taken from guisupport.py app = QApplication.instance() if app is None: app = QApplication(['']) # Store so it won't be deleted, but not on a vispy object, # or an application may produce error when closed. QtGui._qApp = app # Return return app def _vispy_sleep(self, duration_sec): QtTest.QTest.qWait(duration_sec * 1000) # in ms # ------------------------------------------------------------------ canvas --- def _get_qpoint_pos(pos): """Return the coordinates of a QPointF object.""" return pos.x(), pos.y() class QtBaseCanvasBackend(BaseCanvasBackend): """Base functionality of Qt backend. No OpenGL Stuff.""" # args are for BaseCanvasBackend, kwargs are for us. def __init__(self, *args, **kwargs): BaseCanvasBackend.__init__(self, *args) # Maybe to ensure that exactly all arguments are passed? p = self._process_backend_kwargs(kwargs) self._initialized = False # Init in desktop GL or EGL way self._init_specific(p, kwargs) assert self._initialized self.setMouseTracking(True) self._vispy_set_title(p.title) self._vispy_set_size(*p.size) if p.fullscreen is not False: if p.fullscreen is not True: logger.warning('Cannot specify monitor number for Qt ' 'fullscreen, using default') self._fullscreen = True else: self._fullscreen = False # must set physical size before setting visible or fullscreen # operations may make the size invalid if hasattr(self, 'devicePixelRatio'): # handle high DPI displays in PyQt5 ratio = self.devicePixelRatio() else: ratio = 1 self._physical_size = (p.size[0] * ratio, p.size[1] * ratio) if not p.resizable: self.setFixedSize(self.size()) if p.position is not None: self._vispy_set_position(*p.position) if p.show: self._vispy_set_visible(True) # Qt supports OS double-click events, so we set this here to # avoid double events self._double_click_supported = True try: # see screen_changed docstring for more details self.window().windowHandle().screenChanged.connect(self.screen_changed) except AttributeError: # either not PyQt5 backend or no parent window available pass # Activate touch and gesture. # NOTE: we only activate touch on OS X because there seems to be # problems on Ubuntu computers with touchscreen. # See https://github.com/vispy/vispy/pull/1143 if sys.platform == 'darwin': self.setAttribute(QtCore.Qt.WA_AcceptTouchEvents) self.grabGesture(QtCore.Qt.PinchGesture) def screen_changed(self, new_screen): """Window moved from one display to another, resize canvas. If display resolutions are the same this is essentially a no-op except for the redraw. If the display resolutions differ (HiDPI versus regular displays) the canvas needs to be redrawn to reset the physical size based on the current `devicePixelRatio()` and redrawn with that new size. """ self.resizeGL(*self._vispy_get_size()) def _vispy_warmup(self): etime = time() + 0.25 while time() < etime: sleep(0.01) self._vispy_canvas.set_current() self._vispy_canvas.app.process_events() def _vispy_set_title(self, title): # Set the window title. Has no effect for widgets if self._vispy_canvas is None: return self.setWindowTitle(title) def _vispy_set_size(self, w, h): # Set size of the widget or window self.resize(w, h) def _vispy_set_physical_size(self, w, h): self._physical_size = (w, h) def _vispy_get_physical_size(self): if self._vispy_canvas is None: return return self._physical_size def _vispy_set_position(self, x, y): # Set location of the widget or window. May have no effect for widgets self.move(x, y) def _vispy_set_visible(self, visible): # Show or hide the window or widget if visible: if self._fullscreen: self.showFullScreen() else: self.showNormal() else: self.hide() def _vispy_set_fullscreen(self, fullscreen): self._fullscreen = bool(fullscreen) self._vispy_set_visible(True) def _vispy_get_fullscreen(self): return self._fullscreen def _vispy_update(self): if self._vispy_canvas is None: return # Invoke a redraw self.update() def _vispy_get_position(self): g = self.geometry() return g.x(), g.y() def _vispy_get_size(self): g = self.geometry() return g.width(), g.height() def sizeHint(self): return self.size() def mousePressEvent(self, ev): if self._vispy_canvas is None: return self._vispy_mouse_press( native=ev, pos=(ev.pos().x(), ev.pos().y()), button=BUTTONMAP.get(ev.button(), 0), modifiers=self._modifiers(ev), ) def mouseReleaseEvent(self, ev): if self._vispy_canvas is None: return self._vispy_mouse_release( native=ev, pos=(ev.pos().x(), ev.pos().y()), button=BUTTONMAP[ev.button()], modifiers=self._modifiers(ev), ) def mouseDoubleClickEvent(self, ev): if self._vispy_canvas is None: return self._vispy_mouse_double_click( native=ev, pos=(ev.pos().x(), ev.pos().y()), button=BUTTONMAP.get(ev.button(), 0), modifiers=self._modifiers(ev), ) def mouseMoveEvent(self, ev): if self._vispy_canvas is None: return self._vispy_mouse_move( native=ev, pos=(ev.pos().x(), ev.pos().y()), modifiers=self._modifiers(ev), ) def wheelEvent(self, ev): if self._vispy_canvas is None: return # Get scrolling deltax, deltay = 0.0, 0.0 if hasattr(ev, 'orientation'): if ev.orientation == QtCore.Qt.Horizontal: deltax = ev.delta() / 120.0 else: deltay = ev.delta() / 120.0 else: # PyQt5 delta = ev.angleDelta() deltax, deltay = delta.x() / 120.0, delta.y() / 120.0 if hasattr(ev, 'pos'): posx, posy = ev.pos().x(), ev.pos().y() else: # Compatibility for PySide6 posx, posy = ev.position().x(), ev.position().y() # Emit event self._vispy_canvas.events.mouse_wheel( native=ev, delta=(deltax, deltay), pos=(posx, posy), modifiers=self._modifiers(ev), ) def keyPressEvent(self, ev): self._keyEvent(self._vispy_canvas.events.key_press, ev) def keyReleaseEvent(self, ev): self._keyEvent(self._vispy_canvas.events.key_release, ev) def event(self, ev): out = super(QtBaseCanvasBackend, self).event(ev) t = ev.type() # Two-finger pinch. if (t == QtCore.QEvent.TouchBegin): self._vispy_canvas.events.touch(type='begin') if (t == QtCore.QEvent.TouchEnd): self._vispy_canvas.events.touch(type='end') if (t == QtCore.QEvent.Gesture): gesture = ev.gesture(QtCore.Qt.PinchGesture) if gesture: (x, y) = _get_qpoint_pos(gesture.centerPoint()) scale = gesture.scaleFactor() last_scale = gesture.lastScaleFactor() rotation = gesture.rotationAngle() self._vispy_canvas.events.touch( type="pinch", pos=(x, y), last_pos=None, scale=scale, last_scale=last_scale, rotation=rotation, total_rotation_angle=gesture.totalRotationAngle(), total_scale_factor=gesture.totalScaleFactor(), ) # General touch event. elif (t == QtCore.QEvent.TouchUpdate): points = ev.touchPoints() # These variables are lists of (x, y) coordinates. pos = [_get_qpoint_pos(p.pos()) for p in points] lpos = [_get_qpoint_pos(p.lastPos()) for p in points] self._vispy_canvas.events.touch(type='touch', pos=pos, last_pos=lpos, ) return out def _keyEvent(self, func, ev): # evaluates the keycode of qt, and transform to vispy key. key = int(ev.key()) if key in KEYMAP: key = KEYMAP[key] elif key >= 32 and key <= 127: key = keys.Key(chr(key)) else: key = None mod = self._modifiers(ev) func(native=ev, key=key, text=str(ev.text()), modifiers=mod) def _modifiers(self, event): # Convert the QT modifier state into a tuple of active modifier keys. mod = () qtmod = event.modifiers() for q, v in ([QtCore.Qt.ShiftModifier, keys.SHIFT], [QtCore.Qt.ControlModifier, keys.CONTROL], [QtCore.Qt.AltModifier, keys.ALT], [QtCore.Qt.MetaModifier, keys.META]): if q & qtmod: mod += (v,) return mod _EGL_DISPLAY = None egl = None # todo: Make work on Windows # todo: Make work without readpixels on Linux? # todo: Make work on OSX? # todo: Make work on Raspberry Pi! class CanvasBackendEgl(QtBaseCanvasBackend, QWidget): def _init_specific(self, p, kwargs): # Initialize egl. Note that we only import egl if needed. global _EGL_DISPLAY global egl if egl is None: from ...ext import egl as _egl egl = _egl # Use MESA driver on Linux if IS_LINUX and not IS_RPI: os.environ['EGL_SOFTWARE'] = 'true' # Create and init display _EGL_DISPLAY = egl.eglGetDisplay() CanvasBackendEgl._EGL_VERSION = egl.eglInitialize(_EGL_DISPLAY) atexit.register(egl.eglTerminate, _EGL_DISPLAY) # Deal with context p.context.shared.add_ref('qt-egl', self) if p.context.shared.ref is self: self._native_config = c = egl.eglChooseConfig(_EGL_DISPLAY)[0] self._native_context = egl.eglCreateContext(_EGL_DISPLAY, c, None) else: self._native_config = p.context.shared.ref._native_config self._native_context = p.context.shared.ref._native_context # Init widget if p.always_on_top or not p.decorate: hint = 0 hint |= 0 if p.decorate else QtCore.Qt.FramelessWindowHint hint |= QtCore.Qt.WindowStaysOnTopHint if p.always_on_top else 0 else: hint = QtCore.Qt.Widget # can also be a window type QWidget.__init__(self, p.parent, hint) if 0: # IS_LINUX or IS_RPI: self.setAutoFillBackground(False) self.setAttribute(QtCore.Qt.WA_NoSystemBackground, True) self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent, True) elif IS_WIN: self.setAttribute(QtCore.Qt.WA_PaintOnScreen, True) self.setAutoFillBackground(False) # Init surface w = self.get_window_id() self._surface = egl.eglCreateWindowSurface(_EGL_DISPLAY, c, w) self.initializeGL() self._initialized = True def get_window_id(self): """Get the window id of a PySide Widget. Might also work for PyQt4.""" # Get Qt win id winid = self.winId() # On Linux this is it if IS_RPI: nw = (ctypes.c_int * 3)(winid, self.width(), self.height()) return ctypes.pointer(nw) elif IS_LINUX: return int(winid) # Is int on PySide, but sip.voidptr on PyQt # Get window id from stupid capsule thingy # http://translate.google.com/translate?hl=en&sl=zh-CN&u=http://www.cnb # logs.com/Shiren-Y/archive/2011/04/06/2007288.html&prev=/search%3Fq%3Dp # yside%2Bdirectx%26client%3Dfirefox-a%26hs%3DIsJ%26rls%3Dorg.mozilla:n # l:official%26channel%3Dfflb%26biw%3D1366%26bih%3D614 # Prepare ctypes.pythonapi.PyCapsule_GetName.restype = ctypes.c_char_p ctypes.pythonapi.PyCapsule_GetName.argtypes = [ctypes.py_object] ctypes.pythonapi.PyCapsule_GetPointer.restype = ctypes.c_void_p ctypes.pythonapi.PyCapsule_GetPointer.argtypes = [ctypes.py_object, ctypes.c_char_p] # Extract handle from capsule thingy name = ctypes.pythonapi.PyCapsule_GetName(winid) handle = ctypes.pythonapi.PyCapsule_GetPointer(winid, name) return handle def _vispy_close(self): # Destroy EGL surface if self._surface is not None: egl.eglDestroySurface(_EGL_DISPLAY, self._surface) self._surface = None # Force the window or widget to shut down self.close() def _vispy_set_current(self): egl.eglMakeCurrent(_EGL_DISPLAY, self._surface, self._surface, self._native_context) def _vispy_swap_buffers(self): egl.eglSwapBuffers(_EGL_DISPLAY, self._surface) def initializeGL(self): self._vispy_canvas.set_current() self._vispy_canvas.events.initialize() def resizeEvent(self, event): w, h = event.size().width(), event.size().height() self._vispy_canvas.events.resize(size=(w, h)) def paintEvent(self, event): self._vispy_canvas.events.draw(region=None) if IS_LINUX or IS_RPI: # Arg, cannot get GL to draw to the widget, so we take a # screenshot and draw that for now ... # Further, QImage keeps a ref to the data that we pass, so # we need to use a static buffer to prevent memory leakage from ... import gloo import numpy as np if not hasattr(self, '_gl_buffer'): self._gl_buffer = np.ones((3000 * 3000 * 4), np.uint8) * 255 # Take screenshot and turn into RGB QImage im = gloo.read_pixels() sze = im.shape[0] * im.shape[1] self._gl_buffer[0:0+sze*4:4] = im[:, :, 2].ravel() self._gl_buffer[1:0+sze*4:4] = im[:, :, 1].ravel() self._gl_buffer[2:2+sze*4:4] = im[:, :, 0].ravel() img = QtGui.QImage(self._gl_buffer, im.shape[1], im.shape[0], QtGui.QImage.Format_RGB32) # Paint the image painter = QtGui.QPainter() painter.begin(self) rect = QtCore.QRect(0, 0, self.width(), self.height()) painter.drawImage(rect, img) painter.end() def paintEngine(self): if IS_LINUX and not IS_RPI: # For now we are drawing a screenshot return QWidget.paintEngine(self) else: return None # Disable Qt's native drawing system class CanvasBackendDesktop(QtBaseCanvasBackend, QGLWidget): def _init_specific(self, p, kwargs): # Deal with config glformat = _set_config(p.context.config) glformat.setSwapInterval(1 if p.vsync else 0) # Deal with context widget = kwargs.pop('shareWidget', None) or self p.context.shared.add_ref('qt', widget) if p.context.shared.ref is widget: if widget is self: widget = None # QGLWidget does not accept self ;) else: widget = p.context.shared.ref if 'shareWidget' in kwargs: raise RuntimeError('Cannot use vispy to share context and ' 'use built-in shareWidget.') if p.always_on_top or not p.decorate: hint = 0 hint |= 0 if p.decorate else QtCore.Qt.FramelessWindowHint hint |= QtCore.Qt.WindowStaysOnTopHint if p.always_on_top else 0 else: hint = QtCore.Qt.Widget # can also be a window type if QT5_NEW_API or QT6_NEW_API: # Qt5 >= 5.4.0 - sharing is automatic QGLWidget.__init__(self, p.parent, hint) # Need to create an offscreen surface so we can get GL parameters # without opening/showing the Widget. PyQt5 >= 5.4 will create the # valid context later when the widget is shown. self._secondary_context = QtGui.QOpenGLContext() self._secondary_context.setShareContext(self.context()) self._secondary_context.setFormat(glformat) self._secondary_context.create() self._surface = QtGui.QOffscreenSurface() self._surface.setFormat(glformat) self._surface.create() self._secondary_context.makeCurrent(self._surface) else: # Qt4 and Qt5 < 5.4.0 - sharing is explicitly requested QGLWidget.__init__(self, p.parent, widget, hint) # unused with this API self._secondary_context = None self._surface = None self.setFormat(glformat) self._initialized = True if not QT5_NEW_API and not QT6_NEW_API and not self.isValid(): # On Qt5 >= 5.4.0, isValid is only true once the widget is shown raise RuntimeError('context could not be created') if not QT5_NEW_API and not QT6_NEW_API: # to make consistent with other backends self.setAutoBufferSwap(False) self.setFocusPolicy(QtCore.Qt.WheelFocus) def _vispy_close(self): # Force the window or widget to shut down self.close() self.doneCurrent() if not QT5_NEW_API and not QT6_NEW_API: self.context().reset() if self._vispy_canvas is not None: self._vispy_canvas.app.process_events() self._vispy_canvas.app.process_events() def _vispy_set_current(self): if self._vispy_canvas is None: return # todo: can we get rid of this now? if self.isValid(): self.makeCurrent() def _vispy_swap_buffers(self): # Swap front and back buffer if self._vispy_canvas is None: return if QT5_NEW_API or QT6_NEW_API: ctx = self.context() ctx.swapBuffers(ctx.surface()) else: self.swapBuffers() def _vispy_get_fb_bind_location(self): if QT5_NEW_API or QT6_NEW_API: return self.defaultFramebufferObject() else: return QtBaseCanvasBackend._vispy_get_fb_bind_location(self) def initializeGL(self): if self._vispy_canvas is None: return self._vispy_canvas.events.initialize() def resizeGL(self, w, h): if self._vispy_canvas is None: return if hasattr(self, 'devicePixelRatio'): # We take into account devicePixelRatio, which is non-unity on # e.g HiDPI displays. # self.devicePixelRatio() is a float and should have been in Qt5 according to the documentation ratio = int(self.devicePixelRatio()) w = w * ratio h = h * ratio self._vispy_set_physical_size(w, h) self._vispy_canvas.events.resize(size=(self.width(), self.height()), physical_size=(w, h)) def paintGL(self): if self._vispy_canvas is None: return # (0, 0, self.width(), self.height())) self._vispy_canvas.set_current() self._vispy_canvas.events.draw(region=None) # Clear the alpha channel with QOpenGLWidget (Qt >= 5.4), otherwise the # window is translucent behind non-opaque objects. # Reference: MRtrix3/mrtrix3#266 if QT5_NEW_API or QT6_NEW_API: context = self._vispy_canvas.context context.set_color_mask(False, False, False, True) context.clear(color=True, depth=False, stencil=False) context.set_color_mask(True, True, True, True) context.flush() # Select CanvasBackend if USE_EGL: CanvasBackend = CanvasBackendEgl else: CanvasBackend = CanvasBackendDesktop # ------------------------------------------------------------------- timer --- class TimerBackend(BaseTimerBackend, QtCore.QTimer): def __init__(self, vispy_timer): # Make sure there is an app app = ApplicationBackend() app._vispy_get_native_app() # Init BaseTimerBackend.__init__(self, vispy_timer) QtCore.QTimer.__init__(self) self.timeout.connect(self._vispy_timeout) def _vispy_start(self, interval): self.start(interval * 1000.) def _vispy_stop(self): self.stop() def _vispy_timeout(self): self._vispy_timer._timeout()
36.117249
107
0.611624
fe8386ae52c111a7fa07f53884d4e9631099ff26
662
py
Python
checkrp.py
BartMassey/meme-voting
b04fd2ab0927d4760172d2e9333be807b6d84d27
[ "MIT" ]
4
2020-02-01T04:56:22.000Z
2020-05-11T06:31:38.000Z
checkrp.py
BartMassey/meme-voting
b04fd2ab0927d4760172d2e9333be807b6d84d27
[ "MIT" ]
null
null
null
checkrp.py
BartMassey/meme-voting
b04fd2ab0927d4760172d2e9333be807b6d84d27
[ "MIT" ]
null
null
null
# Check the relative ranking of two candidates. # Bart Massey import csv import sys ballots = "meme-election-ballots.csv" if len(sys.argv) > 3: ballots = sys.argv[3] ballots = open(ballots, 'r') ballots = csv.reader(ballots) header = next(ballots) ballots = [[int(rank) - 1 for rank in ballot] for ballot in ballots] ncandidates = len(header) header_index = { name : candidate for candidate, name in enumerate(header) } c1 = header_index[sys.argv[1]] c2 = header_index[sys.argv[2]] v1 = 0 v2 = 0 for ballot in ballots: if ballot[c1] < ballot[c2]: v1 += 1 else: v2 += 1 print(header[c1], v1) print(header[c2], v2) print(v1 - v2)
20.6875
76
0.669184
4e93b88f04539023c23627328087e52207beaa18
731
py
Python
ccs_amplicon/label_haplotype_seqs.py
lumc-pgx/CCS-Amplicon
0f4f35c468e6e5f43f4ed037da5238e3ab0bc22f
[ "MIT" ]
null
null
null
ccs_amplicon/label_haplotype_seqs.py
lumc-pgx/CCS-Amplicon
0f4f35c468e6e5f43f4ed037da5238e3ab0bc22f
[ "MIT" ]
null
null
null
ccs_amplicon/label_haplotype_seqs.py
lumc-pgx/CCS-Amplicon
0f4f35c468e6e5f43f4ed037da5238e3ab0bc22f
[ "MIT" ]
null
null
null
#! /usr/bin/env python from __future__ import print_function import click from Bio import SeqIO import sys @click.command(context_settings=dict( ignore_unknown_options=True, ), short_help="rename the sequences created by LAA" ) @click.option("--prefix", "-p", type=str, default="haplotype", help="prefix to use for the sequence id/name") @click.argument("sequence_fastq", type=click.Path(exists=True)) def cli_handler(prefix, sequence_fastq): for record in SeqIO.parse(sequence_fastq, "fastq"): name = prefix record.id = name record.name = name record.description = name SeqIO.write(record, sys.stdout, "fastq") if __name__ == '__main__': cli_handler()
27.074074
63
0.685363
0c8f8d1507c82e91cc7bb8c53f27c188d85c60c3
5,419
py
Python
examples/training/avg_word_embeddings/training_stsbenchmark_tf-idf_word_embeddings.py
faezakamran/sentence-transformers
2158fff3aa96651b10fe367c41fdd5008a33c5c6
[ "Apache-2.0" ]
7,566
2019-07-25T07:45:17.000Z
2022-03-31T22:15:35.000Z
examples/training/avg_word_embeddings/training_stsbenchmark_tf-idf_word_embeddings.py
faezakamran/sentence-transformers
2158fff3aa96651b10fe367c41fdd5008a33c5c6
[ "Apache-2.0" ]
1,444
2019-07-25T11:53:48.000Z
2022-03-31T15:13:32.000Z
examples/training/avg_word_embeddings/training_stsbenchmark_tf-idf_word_embeddings.py
faezakamran/sentence-transformers
2158fff3aa96651b10fe367c41fdd5008a33c5c6
[ "Apache-2.0" ]
1,567
2019-07-26T15:19:28.000Z
2022-03-31T19:57:35.000Z
""" This example weights word embeddings (like GloVe) with IDF weights. The IDF weights can for example be computed on Wikipedia. If 'glove.6B.300d.txt.gz' does not exist, it tries to download it from our server. See https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/ for available word embeddings files You can get term-document frequencies from here: https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/wikipedia_doc_frequencies.txt """ from torch.utils.data import DataLoader import math from sentence_transformers import models, losses, util from sentence_transformers import LoggingHandler, SentenceTransformer from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.readers import * import logging from datetime import datetime import os import csv import gzip #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Read the dataset batch_size = 32 model_save_path = 'output/training_tf-idf_word_embeddings-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # Wikipedia document frequency for words wiki_doc_freq = 'wikipedia_doc_frequencies.txt' if not os.path.exists(wiki_doc_freq): util.http_get('https://public.ukp.informatik.tu-darmstadt.de/reimers/embeddings/wikipedia_doc_frequencies.txt', wiki_doc_freq) #Check if dataset exsist. If not, download and extract it sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) logging.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) if row['split'] == 'dev': dev_samples.append(inp_example) elif row['split'] == 'test': test_samples.append(inp_example) else: train_samples.append(inp_example) ##### Construction of the SentenceTransformer Model ##### # Map tokens to traditional word embeddings like GloVe word_embedding_model = models.WordEmbeddings.from_text_file('glove.6B.300d.txt.gz') # Weight word embeddings using Inverse-Document-Frequency (IDF) values. # For each word in the vocab ob the tokenizer, we must specify a weight value. # The word embedding is then multiplied by this value vocab = word_embedding_model.tokenizer.get_vocab() word_weights = {} lines = open(wiki_doc_freq, encoding='utf8').readlines() num_docs = int(lines[0]) for line in lines[1:]: word, freq = line.strip().split("\t") word_weights[word] = math.log(num_docs/int(freq)) # Words in the vocab that are not in the doc_frequencies file get a frequency of 1 unknown_word_weight = math.log(num_docs/1) # Initialize the WordWeights model. This model must be between the WordEmbeddings and the Pooling model word_weights = models.WordWeights(vocab=vocab, word_weights=word_weights, unknown_word_weight=unknown_word_weight) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) # Add two trainable feed-forward networks (DAN) sent_embeddings_dimension = pooling_model.get_sentence_embedding_dimension() dan1 = models.Dense(in_features=sent_embeddings_dimension, out_features=sent_embeddings_dimension) dan2 = models.Dense(in_features=sent_embeddings_dimension, out_features=sent_embeddings_dimension) model = SentenceTransformer(modules=[word_embedding_model, word_weights, pooling_model, dan1, dan2]) # Convert the dataset to a DataLoader ready for training logging.info("Read STSbenchmark train dataset") train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=batch_size) train_loss = losses.CosineSimilarityLoss(model=model) logging.info("Read STSbenchmark dev dataset") evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') # Configure the training num_epochs = 10 warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) #10% of train data for warm-up logging.info("Warmup-steps: {}".format(warmup_steps)) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') model.evaluate(evaluator)
41.366412
130
0.730947
11deea198d9829cb63efd6010dd70a37a61873fd
16,716
py
Python
pygama/analysis/histograms.py
iguinn/pygama
ae643524a49c476c0c5b35407a6ad82ba5d0401c
[ "Apache-2.0" ]
13
2019-05-01T01:37:30.000Z
2022-03-18T08:52:19.000Z
pygama/analysis/histograms.py
iguinn/pygama
ae643524a49c476c0c5b35407a6ad82ba5d0401c
[ "Apache-2.0" ]
111
2019-03-25T00:50:48.000Z
2022-03-30T17:13:43.000Z
pygama/analysis/histograms.py
iguinn/pygama
ae643524a49c476c0c5b35407a6ad82ba5d0401c
[ "Apache-2.0" ]
52
2019-01-24T21:05:04.000Z
2022-03-07T23:37:55.000Z
""" pygama convenience functions for 1D histograms. 1D hists in pygama require 3 things available from all implementations of 1D histograms of numerical data in python: hist, bins, and var: - hist: an array of histogram values - bins: an array of bin edges - var: an array of variances in each bin If var is not provided, pygama assuems that the hist contains "counts" with variance = counts (Poisson stats) These are just convenience functions, provided for your convenience. Hopefully they will help you if you need to do something trickier than is provided (e.g. 2D hists). """ import numpy as np import matplotlib.pyplot as plt import pygama.utils as pgu from pylab import rcParams def get_hist(data, bins=None, range=None, dx=None, wts=None): """ return hist, bins, var after binning data This is just a wrapper for numpy.histogram, with optional weights for each element and proper computing of variances. Note: there are no overflow / underflow bins. Available binning methods: - Default (no binning arguments) : 100 bins over an auto-detected range - bins=N, range=(x_lo, x_hi) : N bins over the specified range (or leave range=None for auto-detected range) - bins=[str] : use one of np.histogram's automatic binning algorithms - bins=bin_edges_array : array lower bin edges, supports non-uniform binning - dx=dx, range=(x_lo, x_hi): bins of width dx over the specified range. Note: dx overrides the bins argument! Parameters ---------- data : array like The array of data to be histogrammed bins: int, array, or str (optional) int: the number of bins to be used in the histogram array: an array of bin edges to use str: the name of the np.histogram automatic binning algorithm to use If not provided, np.histogram's default auto-binning routine is used range : tuple (float, float) (optional) (x_lo, x_high) is the tuple of low and high x values to uses for the very ends of the bin range. If not provided, np.histogram chooses the ends based on the data in data dx : float (optional) Specifies the bin width. Overrides "bins" if both arguments are present wts : float or array like (optional) Array of weights for each bin. For example, if you want to divide all bins by a time T to get the bin contents in count rate, set wts = 1/T. Variances will be computed for each bin that appropriately account for each data point's weighting. Returns ------- hist, bins, var : tuple (array, array, array) hist : the values in each bin of the histogram bins : an array of bin edges: bins[i] is the lower edge of the ith bin. Note: it includes the upper edge of the last bin and does not include underflow or overflow bins. So len(bins) = len(hist) + 1 var : array of variances in each bin of the histogram """ if bins is None: bins = 100 # override np.histogram default of just 10 if dx is not None: bins = int((range[1] - range[0]) / dx) # bins includes left edge of first bin and right edge of all other bins hist, bins = np.histogram(data, bins=bins, range=range, weights=wts) if wts is None: # no weights: var = hist, but return a copy so that mods to var don't # modify hist. # Note: If you don't want a var copy, just call np.histogram() return hist, bins, hist.copy() else: # get the variances by binning with double the weight var, bins = np.histogram(data, bins=bins, weights=wts*wts) return hist, bins, var def better_int_binning(x_lo=0, x_hi=None, dx=None, n_bins=None): """ Get a good binning for integer data. Guarantees an integer bin width. At least two of x_hi, dx, or n_bins must be provided. Parameters ---------- x_lo : float Desired low x value for the binning x_hi : float Desired high x value for the binning dx : float Desired bin width n_bins : float Desired number of bins Returns ------- x_lo: int int values for best x_lo x_hi: int int values for best x_hi, returned if x_hi is not None dx : int best int bin width, returned if arg dx is not None n_bins : int best int n_bins, returned if arg n_bins is not None """ # process inputs n_Nones = int(x_hi is None) + int(dx is None) + int(n_bins is None) if n_Nones > 1: print('better_int_binning: must provide two of x_hi, dx or n_bins') return if n_Nones == 0: print('better_int_binning: overconstrained. Ignoring x_hi.') x_hi = None # get valid dx or n_bins if dx is not None: if dx <= 0: print(f'better_int_binning: invalid dx={dx}') return dx = np.round(dx) if dx == 0: dx = 1 if n_bins is not None: if n_bins <= 0: print(f'better_int_binning: invalid n_bins={n_bins}') return n_bins = np.round(n_bins) # can already return if no x_hi if x_hi is None: # must have both dx and n_bins return int(x_lo), int(dx), int(n_bins) # x_hi is valid. Get a valid dx if we don't have one if dx is None: # must have n_bins dx = np.round((x_hi-x_lo)/n_bins) if dx == 0: dx = 1 # Finally, build a good binning from dx n_bins = np.ceil((x_hi-x_lo)/dx) x_lo = np.floor(x_lo) x_hi = x_lo + n_bins*dx if n_bins is None: return int(x_lo), int(x_hi), int(dx) else: return int(x_lo), int(x_hi), int(n_bins) def get_bin_centers(bins): """ Returns an array of bin centers from an input array of bin edges. Works for non-uniform binning. Note: a new array is allocated Parameters: """ return (bins[:-1] + bins[1:]) / 2. def get_bin_widths(bins): """ Returns an array of bin widths from an input array of bin edges. Works for non-uniform binning. """ return (bins[1:] - bins[:-1]) def find_bin(x, bins): """ Returns the index of the bin containing x Returns -1 for underflow, and len(bins) for overflow For uniform bins, jumps directly to the appropriate index. For non-uniform bins, binary search is used. """ # first handle overflow / underflow if len(bins) == 0: return 0 # i.e. overflow if x < bins[0]: return -1 if x > bins[-1]: return len(bins) # we are definitely in range, and there are at least 2 bin edges, one below # and one above x. try assuming uniform bins dx = bins[1]-bins[0] index = int(np.floor((x-bins[0])/dx)) if bins[index] <= x and bins[index+1] > x: return index # bins are non-uniform: find by binary search return np.searchsorted(bins, x, side='right') def range_slice(x_min, x_max, hist, bins, var=None): i_min = find_bin(x_min, bins) i_max = find_bin(x_max, bins) if var is not None: var = var[i_min:i_max] return hist[i_min:i_max], bins[i_min:i_max+1], var def get_fwhm(hist, bins, var=None, mx=None, dmx=0, bl=0, dbl=0, method='bins_over_f', n_slope=3): """ Estimate the FWHM of data in a histogram See get_fwfm for parameters and return values """ if len(bins) == len(hist): print("note: this function has been updated to require bins rather", "than bin_centers. Don't trust this result") return get_fwfm(0.5, hist, bins, var, mx, dmx, bl, dbl, method, n_slope) def get_fwfm(fraction, hist, bins, var=None, mx=None, dmx=0, bl=0, dbl=0, method='bins_over_f', n_slope=3): """ Estimate the full width at some fraction of the max of data in a histogram Typically used by sending slices around a peak. Searches about argmax(hist) for the peak to fall by [fraction] from mx to bl Paramaters ---------- fraction : float The fractional amplitude at which to evaluate the full width hist : array-like The histogram data array containing the peak bin_centers : array-like An array of bin centers for the histogram var : array-like (optional) An array of histogram variances. Used with the 'fit_slopes' method mx : float or tuple(float, float) (optional) The value to use for the max of the peak. If None, np.amax(hist) is used. dmx : float (optional) The uncertainty in mx bl : float or tuple (float, float) (optional) Used to specify an offset from which to estimate the FWFM. dbl : float (optional) The uncertainty in the bl method : string 'bins_over_f' : the simplest method: just take the diffence in the bin centers that are over [fraction] of max. Only works for high stats and FWFM/bin_width >> 1 'interpolate' : interpolate between the bins that cross the [fration] line. Works well for high stats and a reasonable number of bins. Uncertainty incorporates var, if provided. 'fit_slopes' : fit over n_slope bins in the vicinity of the FWFM and interpolate to get the fractional crossing point. Works okay even when stats are moderate but requires enough bins that dx traversed by n_slope bins is approximately linear. Incorporates bin variances in fit and final uncertainties if provided. Returns ------- fwfm, dfwfm : float, float fwfm: the full width at [fraction] of the maximum above bl dfwfm: the uncertainty in fwfm Examples -------- >>> import pygama.analysis.histograms as pgh >>> from numpy.random import normal >>> hist, bins, var = pgh.get_hist(normal(size=10000), bins=100, range=(-5,5)) >>> pgh.get_fwfm(0.5, hist, bins, var, method='bins_over_f') (2.2, 0.15919638684132664) # may vary >>> pgh.get_fwfm(0.5, hist, bins, var, method='interpolate') (2.2041666666666666, 0.09790931254396479) # may vary >>> pgh.get_fwfm(0.5, hist, bins, var, method='fit_slopes') (2.3083363869003466, 0.10939486522749278) # may vary """ # find bins over [fraction] if mx is None: mx = np.amax(hist) if var is not None and dmx == 0: dmx = np.sqrt(var[np.argmax(hist)]) idxs_over_f = hist > (bl + fraction * (mx-bl)) # argmax will return the index of the first occurence of a maximum # so we can use it to find the first and last time idxs_over_f is "True" bin_lo = np.argmax(idxs_over_f) bin_hi = len(idxs_over_f) - np.argmax(idxs_over_f[::-1]) bin_centers = get_bin_centers(bins) # precalc dheight: uncertainty in height used as the threshold dheight2 = (fraction*dmx)**2 + ((1-fraction)*dbl)**2 if method == 'bins_over_f': # the simplest method: just take the diffence in the bin centers fwfm = bin_centers[bin_hi] - bin_centers[bin_lo] # compute rough uncertainty as [bin width] (+) [dheight / slope] dx = bin_centers[bin_lo] - bin_centers[bin_lo-1] dy = hist[bin_lo] - hist[bin_lo-1] if dy == 0: dy = (hist[bin_lo+1] - hist[bin_lo-2])/3 dfwfm2 = dx**2 + dheight2 * (dx/dy)**2 dx = bin_centers[bin_hi+1] - bin_centers[bin_hi] dy = hist[bin_hi] - hist[bin_hi+1] if dy == 0: dy = (hist[bin_hi-1] - hist[bin_hi+2])/3 dfwfm2 += dx**2 + dheight2 * (dx/dy)**2 return fwfm, np.sqrt(dfwfm2) elif method == 'interpolate': # interpolate between the two bins that cross the [fraction] line # works well for high stats if bin_lo < 1 or bin_hi >= len(hist)-1: print(f"get_fwhm: can't interpolate ({bin_lo}, {bin_hi})") return 0, 0 val_f = bl + fraction*(mx-bl) # x_lo dx = bin_centers[bin_lo] - bin_centers[bin_lo-1] dhf = val_f - hist[bin_lo-1] dh = hist[bin_lo] - hist[bin_lo-1] x_lo = bin_centers[bin_lo-1] + dx * dhf/dh # uncertainty dx2_lo = 0 if var is not None: dx2_lo = (dhf/dh)**2 * var[bin_lo] + ((dh-dhf)/dh)**2 * var[bin_lo-1] dx2_lo *= (dx/dh)**2 dDdh = -dx/dh # x_hi dx = bin_centers[bin_hi+1] - bin_centers[bin_hi] dhf = hist[bin_hi] - val_f dh = hist[bin_hi] - hist[bin_hi+1] if dh == 0: raise ValueError(f"get_fwhm: interpolation failed, dh == 0") x_hi = bin_centers[bin_hi] + dx * dhf/dh if x_hi < x_lo: raise ValueError(f"get_fwfm: interpolation produced negative fwfm") # uncertainty dx2_hi = 0 if var is not None: dx2_hi = (dhf/dh)**2 * var[bin_hi+1] + ((dh-dhf)/dh)**2 * var[bin_hi] dx2_hi *= (dx/dh)**2 dDdh += dx/dh return x_hi - x_lo, np.sqrt(dx2_lo + dx2_hi + dDdh**2 * dheight2) elif method == 'fit_slopes': # evaluate the [fraction] point on a line fit to n_slope bins near the crossing. # works okay even when stats are moderate val_f = bl + fraction*(mx-bl) # x_lo i_0 = bin_lo - int(np.floor(n_slope/2)) if i_0 < 0: print(f"get_fwfm: fit slopes failed") return 0, 0 i_n = i_0 + n_slope wts = None if var is None else 1/np.sqrt(var[i_0:i_n]) #fails for any var = 0 wts = [w if w != np.inf else 0 for w in wts] try: (m, b), cov = np.polyfit(bin_centers[i_0:i_n], hist[i_0:i_n], 1, w=wts, cov='unscaled') except np.linalg.LinAlgError: print(f"get_fwfm: LinAlgError") return 0, 0 x_lo = (val_f-b)/m #uncertainty dxl2 = cov[0,0]/m**2 + (cov[1,1] + dheight2)/(val_f-b)**2 + 2*cov[0,1]/(val_f-b)/m dxl2 *= x_lo**2 # x_hi i_0 = bin_hi - int(np.floor(n_slope/2)) + 1 if i_0 == len(hist): print(f"get_fwfm: fit slopes failed") return 0, 0 i_n = i_0 + n_slope wts = None if var is None else 1/np.sqrt(var[i_0:i_n]) wts = [w if w != np.inf else 0 for w in wts] try: (m, b), cov = np.polyfit(bin_centers[i_0:i_n], hist[i_0:i_n], 1, w=wts, cov='unscaled') except np.linalg.LinAlgError: print(f"get_fwfm: LinAlgError") return 0, 0 x_hi = (val_f-b)/m if x_hi < x_lo: print(f"get_fwfm: fit slopes produced negative fwfm") return 0, 0 #uncertainty dxh2 = cov[0,0]/m**2 + (cov[1,1] + dheight2)/(val_f-b)**2 + 2*cov[0,1]/(val_f-b)/m dxh2 *= x_hi**2 return x_hi - x_lo, np.sqrt(dxl2 + dxh2) else: print(f"get_fwhm: unrecognized method {method}") return 0, 0 def plot_hist(hist, bins, var=None, show_stats=False, stats_hloc=0.75, stats_vloc=0.85, **kwargs): """ plot a step histogram, with optional error bars """ if var is None: # the concat calls get the steps to draw correctly at the range boundaries # where="post" tells plt to draw the step y[i] between x[i] and x[i+1] plt.step(np.concatenate(([bins[0]], bins)), np.concatenate(([0], hist, [0])), where="post", **kwargs) else: plt.errorbar(get_bin_centers(bins), hist, xerr=get_bin_widths(bins) / 2, yerr=np.sqrt(var), fmt='none', **kwargs) if show_stats is True: bin_centers = get_bin_centers(bins) N = np.sum(hist) if N <= 1: print("can't compute sigma for N =", N) return mean = np.sum(hist*bin_centers)/N x2ave = np.sum(hist*bin_centers*bin_centers)/N stddev = np.sqrt(N/(N-1) * (x2ave - mean*mean)) dmean = stddev/np.sqrt(N) mean, dmean = pgu.get_formatted_stats(mean, dmean, 2) stats = '$\mu=%s \pm %s$\n$\sigma=%#.3g$' % (mean, dmean, stddev) stats_fontsize = rcParams['legend.fontsize'] plt.text(stats_hloc, stats_vloc, stats, transform=plt.gca().transAxes, fontsize = stats_fontsize) def get_gaussian_guess(hist, bins): """ given a hist, gives guesses for mu, sigma, and amplitude """ if len(bins) == len(hist): print("note: this function has been updated to require bins rather", "than bin_centers. Don't trust this result") max_idx = np.argmax(hist) guess_e = (bins[max_idx] + bins[max_idx])/2 # bin center guess_amp = hist[max_idx] # find 50% amp bounds on both sides for a FWHM guess guess_sigma = get_fwhm(hist, bins) / 2.355 # FWHM to sigma guess_area = guess_amp * guess_sigma * np.sqrt(2 * np.pi) return (guess_e, guess_sigma, guess_area)
37.229399
109
0.617253
a34c163c29a316bb88e3ed68c52e410785e76362
54
py
Python
pam/__init__.py
jbkalmbach/pam
91318dd2efaa1663eec4edb5a860dd7469ba4c2a
[ "MIT" ]
2
2020-01-17T19:57:19.000Z
2020-01-24T18:12:57.000Z
pam/__init__.py
jbkalmbach/pam
91318dd2efaa1663eec4edb5a860dd7469ba4c2a
[ "MIT" ]
8
2018-11-30T00:46:39.000Z
2020-01-15T19:20:10.000Z
pam/__init__.py
jbkalmbach/pam
91318dd2efaa1663eec4edb5a860dd7469ba4c2a
[ "MIT" ]
null
null
null
from .gan import * from .defaultArchitectures import *
27
35
0.796296
8ac211ed55e7ab79cbb5164647eca05045eef929
921
py
Python
src/MyAIGuide/data/fitbitDataGatheredFromWebExport.py
LeviBorodenko/MyAIGuide
3077173e63537522a49d50da5872147460c6469f
[ "MIT" ]
null
null
null
src/MyAIGuide/data/fitbitDataGatheredFromWebExport.py
LeviBorodenko/MyAIGuide
3077173e63537522a49d50da5872147460c6469f
[ "MIT" ]
null
null
null
src/MyAIGuide/data/fitbitDataGatheredFromWebExport.py
LeviBorodenko/MyAIGuide
3077173e63537522a49d50da5872147460c6469f
[ "MIT" ]
null
null
null
import csv import datetime import os import os.path import pickle import re import numpy as np import pandas as pd def fitbitDataGatheredFromWebExport(fname, data): directory = os.fsencode(fname) for file in os.listdir(directory): name = os.fsdecode(file) if name.endswith(".csv"): filename = (fname + name) with open(filename, newline="") as csvfile: spamreader = csv.reader(csvfile) count = 0 for row in spamreader: count = count + 1 if count > 2 and len(row): day = row[0][0:2] month = row[0][3:5] year = row[0][6:10] date = year + "-" + month + "-" + day data.loc[date, "steps"] = int(row[2].replace(",", "")) data.loc[date, "denivelation"] = int(row[4]) return data
30.7
76
0.507058
6247e0adabd1ad839b87deca75ef1b737289015f
3,435
py
Python
Supervised_Categorization_Research/settings.py
AdityaKapoor74/Supervised_Categorization_Study_Pt2
abedfa64d708360694e5cc00cfae866c5cfaebe8
[ "MIT" ]
null
null
null
Supervised_Categorization_Research/settings.py
AdityaKapoor74/Supervised_Categorization_Study_Pt2
abedfa64d708360694e5cc00cfae866c5cfaebe8
[ "MIT" ]
null
null
null
Supervised_Categorization_Research/settings.py
AdityaKapoor74/Supervised_Categorization_Study_Pt2
abedfa64d708360694e5cc00cfae866c5cfaebe8
[ "MIT" ]
null
null
null
""" Django settings for Supervised_Categorization_Research project. Generated by 'django-admin startproject' using Django 3.0.6. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gz$2j*msxfl4eb2qm-z^_4%4z(up7_&97i1qjjig8=aw8pef+u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['localhost','127.0.0.1','159.89.160.154'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'Questionnaire_type1', 'Questionnaire_type2', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Supervised_Categorization_Research.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Supervised_Categorization_Research.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { # SQL 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Calcutta' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/'
27.047244
91
0.704803
8eafe43919eafa787f2a86eb18ed99005d201642
393
py
Python
pythainlp/tag/__init__.py
preenet/pythainlp
52df5221174f32c04155973b452c24e569b7380a
[ "Apache-2.0" ]
null
null
null
pythainlp/tag/__init__.py
preenet/pythainlp
52df5221174f32c04155973b452c24e569b7380a
[ "Apache-2.0" ]
null
null
null
pythainlp/tag/__init__.py
preenet/pythainlp
52df5221174f32c04155973b452c24e569b7380a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Linguistic tagger. Tagging each token in a sentence with supplementary information, such as its Part-of-Speech (POS) tag, and Named Entity Recognition (NER) tag. """ __all__ = ["pos_tag", "pos_tag_sents", "tag_provinces"] from pythainlp.tag.locations import tag_provinces from pythainlp.tag.pos_tag import pos_tag from pythainlp.tag.pos_tag import pos_tag_sents
28.071429
77
0.765903
f297546eb5c3eb51cda5cc8facc2c04ff1ffd43f
892
py
Python
permitify/src/von_connector/eventloop.py
bioharz/indy-ssivc-tutorial
13508142cea67b839f9edfa5e0ad6013bf56e398
[ "Apache-2.0" ]
82
2018-05-08T23:27:07.000Z
2022-03-10T21:33:24.000Z
permitify/src/von_connector/eventloop.py
bioharz/indy-ssivc-tutorial
13508142cea67b839f9edfa5e0ad6013bf56e398
[ "Apache-2.0" ]
35
2018-04-17T14:17:59.000Z
2019-03-14T10:37:54.000Z
permitify/src/von_connector/eventloop.py
bioharz/indy-ssivc-tutorial
13508142cea67b839f9edfa5e0ad6013bf56e398
[ "Apache-2.0" ]
69
2018-05-08T16:26:06.000Z
2022-01-25T08:51:25.000Z
""" Copyright 2017 Government of Canada - Public Services and Procurement Canada - buyandsell.gc.ca Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import asyncio def do(coro): event_loop = None try: event_loop = asyncio.get_event_loop() except RuntimeError: event_loop = asyncio.new_event_loop() asyncio.set_event_loop(event_loop) return event_loop.run_until_complete(coro)
35.68
95
0.765695
b9a3d0dd3e21eed5df5e3e4e7f49db438105d970
5,138
py
Python
python-package/test/test_data_conversion.py
c-bata/xlearn
499a1836532e6efd9643bd1d17d76f5d874f8903
[ "Apache-2.0" ]
3,144
2017-11-06T08:48:13.000Z
2022-03-20T00:35:50.000Z
python-package/test/test_data_conversion.py
c-bata/xlearn
499a1836532e6efd9643bd1d17d76f5d874f8903
[ "Apache-2.0" ]
325
2017-11-18T12:59:39.000Z
2022-02-24T07:19:03.000Z
python-package/test/test_data_conversion.py
c-bata/xlearn
499a1836532e6efd9643bd1d17d76f5d874f8903
[ "Apache-2.0" ]
612
2017-11-09T14:19:17.000Z
2022-01-24T10:17:49.000Z
# Copyright (c) 2018 by contributors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 # This file test the data conversion for sklearn API import unittest import tempfile import os import numpy as np from xlearn import write_data_to_xlearn_format from scipy.sparse import csr_matrix from sklearn.datasets import load_svmlight_file class TestDataConversion(unittest.TestCase): """ Test data conversion to libsvm and libffm inside LRModel, FMModel and FFMModel """ def setUp(self): # data generation self.num_rows = 10 self.num_features = 4 self.X = np.random.randn(self.num_rows, self.num_features) self.X[self.X < 0] = 0 # introduce sparsity self.y = np.random.binomial(1, 0.5, size=(self.num_rows, 1)) self.fields = np.array([1, 2, 1, 0]) def _read_libffm_file(self, filename): """ An internal function for reading libffm back to numpy array. """ X_true = np.zeros((self.num_rows, self.num_features)) y_true = np.zeros((self.num_rows, 1)) field_true = np.zeros((self.num_features, 1)) with open(filename, 'r') as f: i = 0 for line in f: tmp_row = line.replace('\n', '').split(' ') # extract label y_true[i] = int(tmp_row[0]) # extract data and fields for k in range(1, len(tmp_row)): if len(tmp_row[k]) > 0: tmp_str = tmp_row[k].split(':') j = int(tmp_str[1]) field_true[j] = int(tmp_str[0]) tmp_data = float(tmp_str[2]) X_true[i, j] = tmp_data i = i + 1 return X_true, y_true, field_true def test_convert_numpy_to_libsvm(self): """ Test if the conversion between libsvm and numpy array is correct """ file = tempfile.NamedTemporaryFile(delete=False) # write to temporary files write_data_to_xlearn_format(self.X, self.y, file.name) # load data back and compare if they are the same as original data X_true, y_true = load_svmlight_file(file.name) file.close() if os.path.exists(file.name): os.remove(file.name) assert np.all(np.isclose(self.X, X_true.todense())) assert np.all(self.y.ravel() == y_true.ravel()) def test_convert_csr_to_libsvm(self): """ Test if the conversion between libsvm and csr matrix is correct """ X_spase = csr_matrix(self.X) file = tempfile.NamedTemporaryFile(delete=False) # write to temporary files write_data_to_xlearn_format(X_spase, self.y, file.name) # load data back and compare if they are the same as original data X_true, y_true = load_svmlight_file(file.name) file.close() if os.path.exists(file.name): os.remove(file.name) assert np.all(np.isclose(X_spase.todense(), X_true.todense())) assert np.all(self.y.ravel() == y_true.ravel()) def test_convert_numpy_to_libffm(self): """ Test if the conversion between libffm and numpy array is correct """ file = tempfile.NamedTemporaryFile(delete=False) # write data to libffm format write_data_to_xlearn_format(self.X, self.y, file.name, fields=self.fields) # read back data from file X_true, y_true, field_true = self._read_libffm_file(file.name) file.close() if os.path.exists(file.name): os.remove(file.name) assert np.all(np.isclose(self.X, X_true)) assert np.all(self.y.ravel() == y_true.ravel()) assert np.all(self.fields.ravel() == field_true.ravel()) def test_convert_csr_to_libffm(self): """ Test if the conversion between libffm and csr matrix is correct """ X_sparse = csr_matrix(self.X) file = tempfile.NamedTemporaryFile(delete=False) # write data to libffm format write_data_to_xlearn_format(X_sparse, self.y, file.name, fields=self.fields) # read back data from file X_true, y_true, field_true = self._read_libffm_file(file.name) file.close() if os.path.exists(file.name): os.remove(file.name) assert np.all(np.isclose(X_sparse.todense(), X_true)) assert np.all(self.y.ravel() == y_true.ravel()) assert np.all(self.fields.ravel() == field_true.ravel()) if __name__ == '__main__': unittest.main()
35.191781
84
0.622421
e4abe8fd44e71c9547f71ac14673e1454bf0c656
3,026
py
Python
inspect_live_objects/traceback_example.py
rolandovillca/python_introduction_basic
d1333a832a9e2b103e128a9dfc0c0da0952c267f
[ "MIT" ]
null
null
null
inspect_live_objects/traceback_example.py
rolandovillca/python_introduction_basic
d1333a832a9e2b103e128a9dfc0c0da0952c267f
[ "MIT" ]
null
null
null
inspect_live_objects/traceback_example.py
rolandovillca/python_introduction_basic
d1333a832a9e2b103e128a9dfc0c0da0952c267f
[ "MIT" ]
null
null
null
''' This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack traces under program control, such as in a “wrapper” around the interpreter. The module uses traceback objects — this is the object type that is stored in the variables sys.exc_traceback (deprecated) and sys.last_traceback and returned as the third item from sys.exc_info(). ''' # EXAMPLE 1: # ============================================================================== # This simple example implements a basic read-eval-print loop, # similar to (but less useful than) the standard Python interactive interpreter loop. # For a more complete implementation of the interpreter loop, refer to the code module. import sys, traceback def run_user_code(envdir): source = raw_input(">>> ") try: exec source in envdir except: print "Exception in user code:" print '-'*60 traceback.print_exc(file=sys.stdout) print '-'*60 envdir = {} while 1: run_user_code(envdir) # EXAMPLE 2: Demonstrates the different ways to print and format the exception and traceback: # ============================================================================== import sys, traceback def lumberjack(): bright_side_of_death() def bright_side_of_death(): return tuple()[0] try: lumberjack() except IndexError: exc_type, exc_value, exc_traceback = sys.exc_info() print "*** print_tb:" traceback.print_tb(exc_traceback, limit=1, file=sys.stdout) print "*** print_exception:" traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2, file=sys.stdout) print "*** print_exc:" traceback.print_exc() print "*** format_exc, first and last line:" formatted_lines = traceback.format_exc().splitlines() print formatted_lines[0] print formatted_lines[-1] print "*** format_exception:" print repr(traceback.format_exception(exc_type, exc_value, exc_traceback)) print "*** extract_tb:" print repr(traceback.extract_tb(exc_traceback)) print "*** format_tb:" print repr(traceback.format_tb(exc_traceback)) print "*** tb_lineno:", exc_traceback.tb_lineno # EXAMPLE 3: This example shows the different ways to print and format the stack: # ============================================================================== import traceback def another_function(): lumberstack() def lumberstack(): traceback.print_stack() print repr(traceback.extract_stack()) print repr(traceback.format_stack()) # EXAMPLE 4: This last example demonstrates the final few formatting functions: # ============================================================================== import traceback traceback.format_list([('spam.py', 3, '<module>', 'spam.eggs()'), ('eggs.py', 42, 'eggs', 'return "bacon"')])
35.186047
109
0.630205
87691cf5a980b8d00b1b4e77eed80429009b46ee
7,942
py
Python
tools/wptrunner/wptrunner/formatters/tests/test_chromium.py
Thezone1975/wpt
9e201113cf36aefe07fe9c14caa47705d541e141
[ "BSD-3-Clause" ]
8
2019-04-09T21:13:05.000Z
2021-11-23T17:25:18.000Z
tools/wptrunner/wptrunner/formatters/tests/test_chromium.py
Thezone1975/wpt
9e201113cf36aefe07fe9c14caa47705d541e141
[ "BSD-3-Clause" ]
7
2021-01-07T23:42:14.000Z
2021-12-13T20:43:42.000Z
tools/wptrunner/wptrunner/formatters/tests/test_chromium.py
Thezone1975/wpt
9e201113cf36aefe07fe9c14caa47705d541e141
[ "BSD-3-Clause" ]
11
2019-04-12T01:20:16.000Z
2021-11-23T17:25:02.000Z
import json import sys from os.path import dirname, join from six.moves import cStringIO as StringIO from mozlog import handlers, structuredlog sys.path.insert(0, join(dirname(__file__), "..", "..")) from formatters.chromium import ChromiumFormatter def test_chromium_required_fields(capfd): # Test that the test results contain a handful of required fields. # Set up the handler. output = StringIO() logger = structuredlog.StructuredLogger("test_a") logger.add_handler(handlers.StreamHandler(output, ChromiumFormatter())) # output a bunch of stuff logger.suite_start(["test-id-1"], run_info={}, time=123) logger.test_start("test-id-1") logger.test_end("test-id-1", status="PASS", expected="PASS") logger.suite_end() # check nothing got output to stdout/stderr # (note that mozlog outputs exceptions during handling to stderr!) captured = capfd.readouterr() assert captured.out == "" assert captured.err == "" # check the actual output of the formatter output.seek(0) output_obj = json.load(output) # Check for existence of required fields assert "interrupted" in output_obj assert "path_delimiter" in output_obj assert "version" in output_obj assert "num_failures_by_type" in output_obj assert "tests" in output_obj test_obj = output_obj["tests"]["test-id-1"] assert "actual" in test_obj assert "expected" in test_obj def test_chromium_test_name_trie(capfd): # Ensure test names are broken into directories and stored in a trie with # test results at the leaves. # Set up the handler. output = StringIO() logger = structuredlog.StructuredLogger("test_a") logger.add_handler(handlers.StreamHandler(output, ChromiumFormatter())) # output a bunch of stuff logger.suite_start(["/foo/bar/test-id-1", "/foo/test-id-2"], run_info={}, time=123) logger.test_start("/foo/bar/test-id-1") logger.test_end("/foo/bar/test-id-1", status="TIMEOUT", expected="FAIL") logger.test_start("/foo/test-id-2") logger.test_end("/foo/test-id-2", status="ERROR", expected="TIMEOUT") logger.suite_end() # check nothing got output to stdout/stderr # (note that mozlog outputs exceptions during handling to stderr!) captured = capfd.readouterr() assert captured.out == "" assert captured.err == "" # check the actual output of the formatter output.seek(0) output_obj = json.load(output) # Ensure that the test names are broken up by directory name and that the # results are stored at the leaves. test_obj = output_obj["tests"]["foo"]["bar"]["test-id-1"] assert test_obj["actual"] == "TIMEOUT" assert test_obj["expected"] == "FAIL" test_obj = output_obj["tests"]["foo"]["test-id-2"] # The ERROR status is mapped to FAIL for Chromium assert test_obj["actual"] == "FAIL" assert test_obj["expected"] == "TIMEOUT" def test_num_failures_by_type(capfd): # Test that the number of failures by status type is correctly calculated. # Set up the handler. output = StringIO() logger = structuredlog.StructuredLogger("test_a") logger.add_handler(handlers.StreamHandler(output, ChromiumFormatter())) # Run some tests with different statuses: 3 passes, 1 timeout logger.suite_start(["t1", "t2", "t3", "t4"], run_info={}, time=123) logger.test_start("t1") logger.test_end("t1", status="PASS", expected="PASS") logger.test_start("t2") logger.test_end("t2", status="PASS", expected="PASS") logger.test_start("t3") logger.test_end("t3", status="PASS", expected="FAIL") logger.test_start("t4") logger.test_end("t4", status="TIMEOUT", expected="CRASH") logger.suite_end() # check nothing got output to stdout/stderr # (note that mozlog outputs exceptions during handling to stderr!) captured = capfd.readouterr() assert captured.out == "" assert captured.err == "" # check the actual output of the formatter output.seek(0) num_failures_by_type = json.load(output)["num_failures_by_type"] # We expect 3 passes and 1 timeout, nothing else. assert sorted(num_failures_by_type.keys()) == ["PASS", "TIMEOUT"] assert num_failures_by_type["PASS"] == 3 assert num_failures_by_type["TIMEOUT"] == 1 def test_subtest_messages(capfd): # Tests accumulation of test output # Set up the handler. output = StringIO() logger = structuredlog.StructuredLogger("test_a") logger.add_handler(handlers.StreamHandler(output, ChromiumFormatter())) # Run two tests with subtest messages. The subtest name should be included # in the output. We should also tolerate missing messages. logger.suite_start(["t1", "t2"], run_info={}, time=123) logger.test_start("t1") logger.test_status("t1", status="FAIL", subtest="t1_a", message="t1_a_message") logger.test_status("t1", status="PASS", subtest="t1_b", message="t1_b_message") logger.test_end("t1", status="PASS", expected="PASS") logger.test_start("t2") # Currently, subtests with empty messages will be ignored logger.test_status("t2", status="PASS", subtest="t2_a") # A test-level message will also be appended logger.test_end("t2", status="TIMEOUT", expected="PASS", message="t2_message") logger.suite_end() # check nothing got output to stdout/stderr # (note that mozlog outputs exceptions during handling to stderr!) captured = capfd.readouterr() assert captured.out == "" assert captured.err == "" # check the actual output of the formatter output.seek(0) output_json = json.load(output) t1_log = output_json["tests"]["t1"]["artifacts"]["log"] assert t1_log == "[FAIL] t1_a: t1_a_message\n" \ "[PASS] t1_b: t1_b_message\n" t2_log = output_json["tests"]["t2"]["artifacts"]["log"] assert t2_log == "[TIMEOUT] t2_message\n" def test_subtest_failure(capfd): # Tests that a test fails if a subtest fails # Set up the handler. output = StringIO() logger = structuredlog.StructuredLogger("test_a") formatter = ChromiumFormatter() logger.add_handler(handlers.StreamHandler(output, formatter)) # Run a test with some subtest failures. logger.suite_start(["t1"], run_info={}, time=123) logger.test_start("t1") logger.test_status("t1", status="FAIL", subtest="t1_a", message="t1_a_message") logger.test_status("t1", status="PASS", subtest="t1_b", message="t1_b_message") logger.test_status("t1", status="TIMEOUT", subtest="t1_c", message="t1_c_message") # Make sure the test name was added to the set of tests with subtest fails assert "t1" in formatter.tests_with_subtest_fails # The test status is reported as a pass here because the harness was able to # run the test to completion. logger.test_end("t1", status="PASS", expected="PASS") logger.suite_end() # check nothing got output to stdout/stderr # (note that mozlog outputs exceptions during handling to stderr!) captured = capfd.readouterr() assert captured.out == "" assert captured.err == "" # check the actual output of the formatter output.seek(0) output_json = json.load(output) test_obj = output_json["tests"]["t1"] t1_log = test_obj["artifacts"]["log"] assert t1_log == "[FAIL] t1_a: t1_a_message\n" \ "[PASS] t1_b: t1_b_message\n" \ "[TIMEOUT] t1_c: t1_c_message\n" # The status of the test in the output is a failure because subtests failed, # despite the harness reporting that the test passed. assert test_obj["actual"] == "FAIL" # Also ensure that the formatter cleaned up its internal state assert "t1" not in formatter.tests_with_subtest_fails
37.11215
80
0.67376
b4ee3780bc05c7549582e862d26ebf84c7897113
716
py
Python
dlint/linters/format_string.py
timgates42/dlint
501acbc53f710fed00d16b443076581d03f33163
[ "BSD-3-Clause" ]
null
null
null
dlint/linters/format_string.py
timgates42/dlint
501acbc53f710fed00d16b443076581d03f33163
[ "BSD-3-Clause" ]
null
null
null
dlint/linters/format_string.py
timgates42/dlint
501acbc53f710fed00d16b443076581d03f33163
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from __future__ import ( absolute_import, division, print_function, unicode_literals, ) from . import base class FormatStringLinter(base.BaseLinter): """This linter looks for use of Python's format string operator, e.g. '%'. Use of the format string operator in Python can lead to information disclosure, DoS, etc, if not done properly[1]. [1] http://www.drdobbs.com/security/programming-language-format-string-vulne/197002914?pgno=3 """ # We're still working on this one... off_by_default = True _code = 'DUO104' _error_tmpl = 'DUO104 avoid format strings, please use "format" function' def visit_BinOp(self, node): pass
24.689655
97
0.691341
64cf43bace1ab590c1ed4ba111c5c8f668a526bc
6,271
py
Python
tool_validation/validate_Estimate_Bankfull.py
FluvialGeomorph/FluvialGeomorph-toolbox
d7b0712d4841af5cc341443d695bf0481eeccb23
[ "CC0-1.0" ]
null
null
null
tool_validation/validate_Estimate_Bankfull.py
FluvialGeomorph/FluvialGeomorph-toolbox
d7b0712d4841af5cc341443d695bf0481eeccb23
[ "CC0-1.0" ]
1
2021-03-25T12:38:23.000Z
2021-03-25T12:38:23.000Z
tool_validation/validate_Estimate_Bankfull.py
FluvialGeomorph/FluvialGeomorph-toolbox
d7b0712d4841af5cc341443d695bf0481eeccb23
[ "CC0-1.0" ]
null
null
null
"""____________________________________________________________________________ Script Name: _validate_Estimate_Bankfull.py Description: Used to validate the script tool _Estimate_Bankfull.py. Date: 09/12/2020 Usage: This code gets copied into the Validation tab of the script tool. Features: * Populates the `regions` parameter's value list. Use the `update_regions.R` function to get the latest list of regions. ____________________________________________________________________________""" import arcpy class ToolValidator(object): """Class for validating a tool's parameter values and controlling the behavior of the tool's dialog.""" def __init__(self): """Setup arcpy and the list of tool parameters.""" self.params = arcpy.GetParameterInfo() def initializeParameters(self): """Refine the properties of a tool's parameters. This method is called when the tool is opened.""" # Set the list of regions self.params[18].filter.list = ["Altlantic Plain", "Appalachain Highlands", "Central and Southern AZ", "Eastern - Appalachian Plateau, New England, Valley and Ridge", "Eastern - Coastal Plain", "Eastern - Piedmont", "Eastern AZ/NM", "Eastern Highlands", "Eastern United States", "IL River LTE 120", "IL River LTE 300", "IL River Panther Creek", "Illinois River", "IN Central Till Plain", "IN Northern Moraine and Lake", "IN Southern Hills and Lowlands", "Interior Highlands", "Interior Plains", "Intermontane Plateau", "Laurentian Upland", "Lower Southern Driftless", "MA", "MD Allegheny Plateau/Valley and Ridge", "MD Eastern Coastal Plain", "MD Piedmont", "MD Western Coastal Plain", "ME Coastal and Central", "MI Southern Lower Ecoregion", "Mid-Atlantic", "Minnesota Eastern", "Minnesota Western", "NC Coastal Plain", "NC Mountains", "NC Piedmont Rural", "NC Piedmont Urban", "New England", "NH", "Northeast - Appalachian Plateau, Coastal Plain, New England, Piedmont, Valley and Ridge", "Northeast - Appalachian Plateau, New England, Piedmont, Valley and Ridge", "Northern Appalachians", "NY Hydrologic Region 1/2", "NY Hydrologic Region 3", "NY Hydrologic Region 4/4a", "NY Hydrologic Region 5", "NY Hydrologic Region 6", "NY Hydrologic Region 7", "OH Region A", "OH Region B", "ON Southern", "PA Carbonate Areas", "PA Non-Carbonate Areas", "PA Piedmont 1", "PA Piedmont 2", "Pacific Maritime Mountain", "Pacific Mountain System", "Pacific Northwest", "Rocky Mountain System", "San Francisco Bay", "Southern Appalachians", "Southern Driftless", "Upper Green River", "Upper Salmon River", "USA", "VA Piedmont", "VA, MD Coastal Plain", "VA, MD, WV Valley and Ridge", "VT", "West Interior Basin and Range", "Western Cordillera", "WV Appalachian Plateau", "WV Eastern Valley and Ridge", "WV Western Appalachian Plateau"] # Set the default region self.params[18].value = "USA" return def updateParameters(self): """Modify the values and properties of parameters before internal validation is performed. This method is called whenever a parameter has been changed.""" return def updateMessages(self): """Modify the messages created by internal validation for each tool parameter. This method is called after internal validation.""" return
54.530435
131
0.383352
4124542e46f610bc98426264e06fe9be29c1ad32
9,738
py
Python
colour/difference/cam02_ucs.py
OmarWagih1/colour
bdc880a2783ff523dafb19f1233212dd03a639bd
[ "BSD-3-Clause" ]
2
2020-06-20T03:44:41.000Z
2020-06-20T14:08:41.000Z
colour/difference/cam02_ucs.py
OmarWagih1/colour
bdc880a2783ff523dafb19f1233212dd03a639bd
[ "BSD-3-Clause" ]
null
null
null
colour/difference/cam02_ucs.py
OmarWagih1/colour
bdc880a2783ff523dafb19f1233212dd03a639bd
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ :math:`\\Delta E'` - Delta E Colour Difference - Luo, Cui and Li (2006) ====================================================================== Defines :math:`\\Delta E'` colour difference computation objects based on *Luo et al. (2006)* *CAM02-LCD*, *CAM02-SCD*, and *CAM02-UCS* colourspaces: - :func:`colour.difference.delta_E_CAM02LCD` - :func:`colour.difference.delta_E_CAM02SCD` - :func:`colour.difference.delta_E_CAM02UCS` References ---------- - :cite:`Luo2006b` : Luo, M. Ronnier, Cui, G., & Li, C. (2006). Uniform colour spaces based on CIECAM02 colour appearance model. Color Research & Application, 31(4), 320-330. doi:10.1002/col.20227 """ from __future__ import division, unicode_literals import numpy as np from colour.utilities import tsplit from colour.models.cam02_ucs import COEFFICIENTS_UCS_LUO2006 __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = 'colour-developers@colour-science.org' __status__ = 'Production' __all__ = [ 'delta_E_Luo2006', 'delta_E_CAM02LCD', 'delta_E_CAM02SCD', 'delta_E_CAM02UCS' ] def delta_E_Luo2006(Jpapbp_1, Jpapbp_2, coefficients): """ Returns the difference :math:`\\Delta E'` between two given *Luo et al. (2006)* *CAM02-LCD*, *CAM02-SCD*, or *CAM02-UCS* colourspaces :math:`J'a'b'` arrays. Parameters ---------- Jpapbp_1 : array_like Standard / reference *Luo et al. (2006)* *CAM02-LCD*, *CAM02-SCD*, or *CAM02-UCS* colourspaces :math:`J'a'b'` array. Jpapbp_2 : array_like Sample / test *Luo et al. (2006)* *CAM02-LCD*, *CAM02-SCD*, or *CAM02-UCS* colourspaces :math:`J'a'b'` array. coefficients : array_like Coefficients of one of the *Luo et al. (2006)* *CAM02-LCD*, *CAM02-SCD*, or *CAM02-UCS* colourspaces. Returns ------- numeric or ndarray Colour difference :math:`\\Delta E'`. Notes ----- +--------------+------------------------+--------------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +==============+========================+====================+ | ``Jpapbp_1`` | ``Jp_1`` : [0, 100] | ``Jp_1`` : [0, 1] | | | | | | | ``ap_1`` : [-100, 100] | ``ap_1`` : [-1, 1] | | | | | | | ``bp_1`` : [-100, 100] | ``bp_1`` : [-1, 1] | +--------------+------------------------+--------------------+ | ``Jpapbp_2`` | ``Jp_2`` : [0, 100] | ``Jp_2`` : [0, 1] | | | | | | | ``ap_2`` : [-100, 100] | ``ap_2`` : [-1, 1] | | | | | | | ``bp_2`` : [-100, 100] | ``bp_2`` : [-1, 1] | +--------------+------------------------+--------------------+ Examples -------- >>> Jpapbp_1 = np.array([54.90433134, -0.08450395, -0.06854831]) >>> Jpapbp_2 = np.array([54.80352754, -3.96940084, -13.57591013]) >>> delta_E_Luo2006(Jpapbp_1, Jpapbp_2, ... COEFFICIENTS_UCS_LUO2006['CAM02-LCD']) ... # doctest: +ELLIPSIS 0.0001034... """ J_p_1, a_p_1, b_p_1 = tsplit(Jpapbp_1) J_p_2, a_p_2, b_p_2 = tsplit(Jpapbp_2) K_L, _c_1, _c_2 = tsplit(coefficients) d_E = np.sqrt(((J_p_1 - J_p_2) / K_L) ** 2 + (a_p_1 - a_p_2) ** 2 + (b_p_1 - b_p_2) ** 2) return d_E def delta_E_CAM02LCD(Jpapbp_1, Jpapbp_2): """ Returns the difference :math:`\\Delta E'` between two given *Luo et al. (2006)* *CAM02-LCD* colourspaces :math:`J'a'b'` arrays. Parameters ---------- Jpapbp_1 : array_like Standard / reference *Luo et al. (2006)* *CAM02-LCD* colourspaces :math:`J'a'b'` array. Jpapbp_2 : array_like Sample / test *Luo et al. (2006)* *CAM02-LCD* colourspaces :math:`J'a'b'` array. Returns ------- numeric or ndarray Colour difference :math:`\\Delta E'`. Notes ----- +--------------+------------------------+--------------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +==============+========================+====================+ | ``Jpapbp_1`` | ``Jp_1`` : [0, 100] | ``Jp_1`` : [0, 1] | | | | | | | ``ap_1`` : [-100, 100] | ``ap_1`` : [-1, 1] | | | | | | | ``bp_1`` : [-100, 100] | ``bp_1`` : [-1, 1] | +--------------+------------------------+--------------------+ | ``Jpapbp_2`` | ``Jp_2`` : [0, 100] | ``Jp_2`` : [0, 1] | | | | | | | ``ap_2`` : [-100, 100] | ``ap_2`` : [-1, 1] | | | | | | | ``bp_2`` : [-100, 100] | ``bp_2`` : [-1, 1] | +--------------+------------------------+--------------------+ References ---------- :cite:`Luo2006b` Examples -------- >>> Jpapbp_1 = np.array([54.90433134, -0.08450395, -0.06854831]) >>> Jpapbp_2 = np.array([54.80352754, -3.96940084, -13.57591013]) >>> delta_E_CAM02LCD(Jpapbp_1, Jpapbp_2) # doctest: +ELLIPSIS 14.0555464... """ return delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-LCD']) def delta_E_CAM02SCD(Jpapbp_1, Jpapbp_2): """ Returns the difference :math:`\\Delta E'` between two given *Luo et al. (2006)* *CAM02-SCD* colourspaces :math:`J'a'b'` arrays. Parameters ---------- Jpapbp_1 : array_like Standard / reference *Luo et al. (2006)* *CAM02-SCD* colourspaces :math:`J'a'b'` array. Jpapbp_2 : array_like Sample / test *Luo et al. (2006)* *CAM02-SCD* colourspaces :math:`J'a'b'` array. Returns ------- numeric or ndarray Colour difference :math:`\\Delta E'`. Notes ----- +--------------+------------------------+--------------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +==============+========================+====================+ | ``Jpapbp_1`` | ``Jp_1`` : [0, 100] | ``Jp_1`` : [0, 1] | | | | | | | ``ap_1`` : [-100, 100] | ``ap_1`` : [-1, 1] | | | | | | | ``bp_1`` : [-100, 100] | ``bp_1`` : [-1, 1] | +--------------+------------------------+--------------------+ | ``Jpapbp_2`` | ``Jp_2`` : [0, 100] | ``Jp_2`` : [0, 1] | | | | | | | ``ap_2`` : [-100, 100] | ``ap_2`` : [-1, 1] | | | | | | | ``bp_2`` : [-100, 100] | ``bp_2`` : [-1, 1] | +--------------+------------------------+--------------------+ References ---------- :cite:`Luo2006b` Examples -------- >>> Jpapbp_1 = np.array([54.90433134, -0.08450395, -0.06854831]) >>> Jpapbp_2 = np.array([54.80352754, -3.96940084, -13.57591013]) >>> delta_E_CAM02SCD(Jpapbp_1, Jpapbp_2) # doctest: +ELLIPSIS 14.0551718... """ return delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-SCD']) def delta_E_CAM02UCS(Jpapbp_1, Jpapbp_2): """ Returns the difference :math:`\\Delta E'` between two given *Luo et al. (2006)* *CAM02-UCS* colourspaces :math:`J'a'b'` arrays. Parameters ---------- Jpapbp_1 : array_like Standard / reference *Luo et al. (2006)* *CAM02-UCS* colourspaces :math:`J'a'b'` array. Jpapbp_2 : array_like Sample / test *Luo et al. (2006)* *CAM02-UCS* colourspaces :math:`J'a'b'` array. Returns ------- numeric or ndarray Colour difference :math:`\\Delta E'`. Notes ----- +--------------+------------------------+--------------------+ | **Domain** | **Scale - Reference** | **Scale - 1** | +==============+========================+====================+ | ``Jpapbp_1`` | ``Jp_1`` : [0, 100] | ``Jp_1`` : [0, 1] | | | | | | | ``ap_1`` : [-100, 100] | ``ap_1`` : [-1, 1] | | | | | | | ``bp_1`` : [-100, 100] | ``bp_1`` : [-1, 1] | +--------------+------------------------+--------------------+ | ``Jpapbp_2`` | ``Jp_2`` : [0, 100] | ``Jp_2`` : [0, 1] | | | | | | | ``ap_2`` : [-100, 100] | ``ap_2`` : [-1, 1] | | | | | | | ``bp_2`` : [-100, 100] | ``bp_2`` : [-1, 1] | +--------------+------------------------+--------------------+ References ---------- :cite:`Luo2006b` Examples -------- >>> Jpapbp_1 = np.array([54.90433134, -0.08450395, -0.06854831]) >>> Jpapbp_2 = np.array([54.80352754, -3.96940084, -13.57591013]) >>> delta_E_CAM02UCS(Jpapbp_1, Jpapbp_2) # doctest: +ELLIPSIS 14.0552982... """ return delta_E_Luo2006(Jpapbp_1, Jpapbp_2, COEFFICIENTS_UCS_LUO2006['CAM02-UCS'])
37.744186
78
0.40573
6d14c63c81cc87bc44147f27b5d009c1d3f55ed2
112
py
Python
Web3/FullStack_DeFi_App/tests/conftest.py
C-Mierez/Web3-Solidity
6a24f9cf87dc303c8e9e74e4e895bf306940afb3
[ "MIT" ]
1
2022-02-02T21:46:45.000Z
2022-02-02T21:46:45.000Z
Web3/FullStack_DeFi_App/tests/conftest.py
C-Mierez/Web3-Solidity
6a24f9cf87dc303c8e9e74e4e895bf306940afb3
[ "MIT" ]
null
null
null
Web3/FullStack_DeFi_App/tests/conftest.py
C-Mierez/Web3-Solidity
6a24f9cf87dc303c8e9e74e4e895bf306940afb3
[ "MIT" ]
null
null
null
import pytest from web3 import Web3 @pytest.fixture def to_stake_amount(): return Web3.toWei(1, "ether")
12.444444
33
0.732143
9ccb7d6739b66a08d46580cc104651a304b45960
1,740
py
Python
tools/perf/page_sets/pathological_mobile_sites.py
google-ar/chromium
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
777
2017-08-29T15:15:32.000Z
2022-03-21T05:29:41.000Z
tools/perf/page_sets/pathological_mobile_sites.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
66
2017-08-30T18:31:18.000Z
2021-08-02T10:59:35.000Z
tools/perf/page_sets/pathological_mobile_sites.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
123
2017-08-30T01:19:34.000Z
2022-03-17T22:55:31.000Z
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from telemetry.page import page as page_module from telemetry.page import shared_page_state from telemetry import story class PathologicalMobileSitesPage(page_module.Page): def __init__(self, url, page_set): super(PathologicalMobileSitesPage, self).__init__( url=url, page_set=page_set, credentials_path='data/credentials.json', shared_page_state_class=shared_page_state.SharedMobilePageState) def RunPageInteractions(self, action_runner): with action_runner.CreateGestureInteraction('ScrollAction'): action_runner.ScrollPage() class PathologicalMobileSitesPageSet(story.StorySet): """Pathologically bad and janky sites on mobile.""" def __init__(self): super(PathologicalMobileSitesPageSet, self).__init__( archive_data_file='data/pathological_mobile_sites.json', cloud_storage_bucket=story.PARTNER_BUCKET) sites = ['http://edition.cnn.com', 'http://m.espn.go.com/nhl/rankings', 'http://recode.net', 'http://sports.yahoo.com/', 'http://www.latimes.com', ('http://www.pbs.org/newshour/bb/' 'much-really-cost-live-city-like-seattle/#the-rundown'), ('http://www.theguardian.com/politics/2015/mar/09/' 'ed-balls-tory-spending-plans-nhs-charging'), 'http://www.zdnet.com', 'http://www.wowwiki.com/World_of_Warcraft:_Mists_of_Pandaria', 'https://www.linkedin.com/in/linustorvalds'] for site in sites: self.AddStory(PathologicalMobileSitesPage(site, self))
38.666667
77
0.696552
991eb596d956ceded74908388f05da8cafc36e78
4,793
py
Python
setup.py
mneundorfer/asn1crypto
3c9f12daee77738bd7eba9b0bf756e2514b30cc1
[ "MIT" ]
null
null
null
setup.py
mneundorfer/asn1crypto
3c9f12daee77738bd7eba9b0bf756e2514b30cc1
[ "MIT" ]
null
null
null
setup.py
mneundorfer/asn1crypto
3c9f12daee77738bd7eba9b0bf756e2514b30cc1
[ "MIT" ]
1
2021-01-20T11:42:17.000Z
2021-01-20T11:42:17.000Z
import codecs import os import shutil import sys import warnings import setuptools from setuptools import setup, Command from setuptools.command.egg_info import egg_info PACKAGE_NAME = 'asn1crypto' PACKAGE_VERSION = '1.4.0' PACKAGE_ROOT = os.path.dirname(os.path.abspath(__file__)) # setuptools 38.6.0 and newer know about long_description_content_type, but # distutils still complains about it, so silence the warning sv = setuptools.__version__ svi = tuple(int(o) if o.isdigit() else o for o in sv.split('.')) if svi >= (38, 6): warnings.filterwarnings( 'ignore', "Unknown distribution option: 'long_description_content_type'", module='distutils.dist' ) # Try to load the tests first from the source repository layout. If that # doesn't work, we assume this file is in the release package, and the tests # are part of the package {PACKAGE_NAME}_tests. if os.path.exists(os.path.join(PACKAGE_ROOT, 'tests')): tests_require = [] test_suite = 'tests.make_suite' else: tests_require = ['%s_tests' % PACKAGE_NAME] test_suite = '%s_tests.make_suite' % PACKAGE_NAME # This allows us to send the LICENSE and docs when creating a sdist. Wheels # automatically include the LICENSE, and don't need the docs. For these # to be included, the command must be "python setup.py sdist". package_data = {} if sys.argv[1:] == ['sdist'] or sorted(sys.argv[1:]) == ['-q', 'sdist']: package_data[PACKAGE_NAME] = [ '../LICENSE', '../*.md', '../docs/*.md', ] # Ensures a copy of the LICENSE is included with the egg-info for # install and bdist_egg commands class EggInfoCommand(egg_info): def run(self): egg_info_path = os.path.join( PACKAGE_ROOT, '%s.egg-info' % PACKAGE_NAME ) if not os.path.exists(egg_info_path): os.mkdir(egg_info_path) shutil.copy2( os.path.join(PACKAGE_ROOT, 'LICENSE'), os.path.join(egg_info_path, 'LICENSE') ) egg_info.run(self) class CleanCommand(Command): user_options = [ ('all', 'a', '(Compatibility with original clean command)'), ] def initialize_options(self): self.all = False def finalize_options(self): pass def run(self): sub_folders = ['build', 'temp', '%s.egg-info' % PACKAGE_NAME] if self.all: sub_folders.append('dist') for sub_folder in sub_folders: full_path = os.path.join(PACKAGE_ROOT, sub_folder) if os.path.exists(full_path): shutil.rmtree(full_path) for root, dirs, files in os.walk(os.path.join(PACKAGE_ROOT, PACKAGE_NAME)): for filename in files: if filename[-4:] == '.pyc': os.unlink(os.path.join(root, filename)) for dirname in list(dirs): if dirname == '__pycache__': shutil.rmtree(os.path.join(root, dirname)) readme = '' with codecs.open(os.path.join(PACKAGE_ROOT, 'readme.md'), 'r', 'utf-8') as f: readme = f.read() setup( name=PACKAGE_NAME, version=PACKAGE_VERSION, description=( 'Fast ASN.1 parser and serializer with definitions for private keys, ' 'public keys, certificates, CRL, OCSP, CMS, PKCS#3, PKCS#7, PKCS#8, ' 'PKCS#12, PKCS#5, X.509 and TSP' ), long_description=readme, long_description_content_type='text/markdown', url='https://github.com/wbond/asn1crypto', author='wbond', author_email='will@wbond.net', license='MIT', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Security :: Cryptography', ], keywords='asn1 crypto pki x509 certificate rsa dsa ec dh', packages=[PACKAGE_NAME], package_data=package_data, tests_require=tests_require, test_suite=test_suite, cmdclass={ 'clean': CleanCommand, 'egg_info': EggInfoCommand, } )
30.144654
83
0.626747
ff18e632e59c3428086a4c096c36672835da720e
4,406
py
Python
Code/bases.py
Evansdava/CS-1.3-Core-Data-Structures
e101c89ecb0b58b67196bfc703491deaa053f447
[ "MIT" ]
null
null
null
Code/bases.py
Evansdava/CS-1.3-Core-Data-Structures
e101c89ecb0b58b67196bfc703491deaa053f447
[ "MIT" ]
6
2020-02-14T05:51:52.000Z
2020-03-10T17:05:44.000Z
Code/bases.py
Evansdava/CS-1.3-Core-Data-Structures
e101c89ecb0b58b67196bfc703491deaa053f447
[ "MIT" ]
null
null
null
#!python import string # Hint: Use these string constants to encode/decode hexadecimal digits and more # string.digits is '0123456789' # string.hexdigits is '0123456789abcdefABCDEF' # string.ascii_lowercase is 'abcdefghijklmnopqrstuvwxyz' # string.ascii_uppercase is 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # string.ascii_letters is ascii_lowercase + ascii_uppercase # string.printable is digits + ascii_letters + punctuation + whitespace def decode(digits, base): """Decode given digits in given base to number in base 10. digits: str -- string representation of number (in given base) base: int -- base of given number return: int -- integer representation of number (in base 10) """ # Handle up to base 36 [0-9a-z] assert 2 <= base <= 36, 'base is out of range: {}'.format(base) printable = string.digits + string.ascii_lowercase digits = digits.lower() """ Check the length of the string Loop from right to left For each digit, multiply it by the power of the base Add the results together Return total """ # total = 0 # i = 1 # while i <= len(digits): # dig = digits[-i] # num = printable.find(dig) # total += num * (base ** (i - 1)) # i += 1 # return total decimal, i = 0, 0 for digit in reversed(digits): decimal += printable.find(digit) * pow(base, i) i += 1 return decimal def encode(number, base): """Encode given number in base 10 to digits in given base. number: int -- integer representation of number (in base 10) base: int -- base to convert to return: str -- string representation of number (in given base) """ # Handle up to base 36 [0-9a-z] assert 2 <= base <= 36, 'base is out of range: {}'.format(base) # Handle unsigned numbers only for now assert number >= 0, 'number is negative: {}'.format(number) printable = string.digits + string.ascii_lowercase """ While the number can be divided by the base: Divide the number by the base Put the remainders in a list If that number can be divided by the base, repeat this loop The number of iterations of the loop is the number of digits - 1 For each digit, enter the remainder of the digit before it """ # remainders = get_remainders(number, base) # result = "" # for rem in reversed(remainders): # result += printable[rem] # remainders.clear() # return result num, survivor = divmod(number, base) survivors = [] survivors.append(survivor) while num > 0: num, survivor = divmod(num, base) survivors.append(survivor) casual_ties = "" for survivor in reversed(survivors): casual_ties += printable[survivor] return casual_ties def get_remainders(number, base, remainders=[]): """Helper function for encode() to get a list of remainders""" if number / base < 1: remainders.append(number) else: num, mod = divmod(number, base) remainders.append(mod) remainders = get_remainders(num, base, remainders) return remainders def convert(digits, base1, base2): """Convert given digits in base1 to digits in base2. digits: str -- string representation of number (in base1) base1: int -- base of given number base2: int -- base to convert to return: str -- string representation of number (in base2) """ # Handle up to base 36 [0-9a-z] assert 2 <= base1 <= 36, 'base1 is out of range: {}'.format(base1) assert 2 <= base2 <= 36, 'base2 is out of range: {}'.format(base2) return encode(decode(digits, base1), base2) def main(): """Read command-line arguments and convert given digits between bases.""" import sys args = sys.argv[1:] # Ignore script file name if len(args) == 3: digits = args[0].lower() base1 = int(args[1]) base2 = int(args[2]) # Convert given digits between bases result = convert(digits, base1, base2) print('{} in base {} is {} in base {}'.format(digits, base1, result, base2)) else: print('Usage: {} digits base1 base2'.format(sys.argv[0])) # print('Converts digits from base1 to base2') # print(decode("9a", 16)) # print(encode(939, 16)) if __name__ == '__main__': main()
34.155039
79
0.629369
0653dc5f108e956ecec4a91165c503ccd4cfd719
8,864
py
Python
tests/test_singleton.py
GlobalParametrics/TCRM
0882ad6f857c50c7f276ec2b3099b3006939664e
[ "CC-BY-4.0" ]
1
2021-09-01T09:27:57.000Z
2021-09-01T09:27:57.000Z
tests/test_singleton.py
GlobalParametrics/TCRM
0882ad6f857c50c7f276ec2b3099b3006939664e
[ "CC-BY-4.0" ]
null
null
null
tests/test_singleton.py
GlobalParametrics/TCRM
0882ad6f857c50c7f276ec2b3099b3006939664e
[ "CC-BY-4.0" ]
1
2021-04-08T03:10:18.000Z
2021-04-08T03:10:18.000Z
import unittest import time from Utilities.singleton import Singleton, forgetAllSingletons, SingletonException import threading class TestSingleton(unittest.TestCase): def testReturnsSameObject(self): """Test normal use case""" #Demonstrates normal use -- just call getInstance and it returns a singleton instance class A(Singleton): def __init__(self): super(A, self).__init__() a1 = A.getInstance() a2 = A.getInstance() self.assertEquals(id(a1), id(a2)) def testInstantiateWithMultiArgConstructor(self): """Test constructor with args""" # If the singleton needs args to construct, include them in the first # call to getInstances. class B(Singleton): def __init__(self, arg1, arg2): super(B, self).__init__() self.arg1 = arg1 self.arg2 = arg2 b1 = B.getInstance('arg1 value', 'arg2 value') b2 = B.getInstance() self.assertEquals(b1.arg1, 'arg1 value') self.assertEquals(b1.arg2, 'arg2 value') self.assertEquals(id(b1), id(b2)) def testInstantiateWithKeywordArg(self): """Test instantiation with keyword args""" class B(Singleton): def __init__(self, arg1=5): super(B, self).__init__() self.arg1 = arg1 b1 = B.getInstance('arg1 value') b2 = B.getInstance() self.assertEquals(b1.arg1, 'arg1 value') self.assertEquals(id(b1), id(b2)) def testTryToInstantiateWithoutNeededArgs(self): """Test instantiation without required arguments""" class B(Singleton): def __init__(self, arg1, arg2): super(B, self).__init__() self.arg1 = arg1 self.arg2 = arg2 self.assertRaises(SingletonException, B.getInstance) def testPassTypeErrorIfAllArgsThere(self): """ Make sure the test for capturing missing args doesn't interfere with a normal TypeError. """ class B(Singleton): def __init__(self, arg1, arg2): super(B, self).__init__() self.arg1 = arg1 self.arg2 = arg2 raise TypeError, 'some type error' self.assertRaises(TypeError, B.getInstance, 1, 2) def testTryToInstantiateWithoutGetInstance(self): """Test instantiation only occurs through getInstance()""" # Demonstrates that singletons can ONLY be instantiated through # getInstance, as long as they call Singleton.__init__ during construction. # If this check is not required, you don't need to call Singleton.__init__(). class A(Singleton): def __init__(self): super(A, self).__init__() self.assertRaises(SingletonException, A) def testDontAllowNew(self): """Test instatiating illegal class raises SingletonException""" def instantiatedAnIllegalClass(): class A(Singleton): def __init__(self): super(A, self).__init__() def __new__(metaclass, strName, tupBases, dct): return super(MetaSingleton, metaclass).__new__(metaclass, strName, tupBases, dct) # pylint: disable-msg=E0602 self.assertRaises(SingletonException, instantiatedAnIllegalClass) def testDontAllowArgsAfterConstruction(self): """Test instatiation with args after construction""" class B(Singleton): def __init__(self, arg1, arg2): super(B, self).__init__() self.arg1 = arg1 self.arg2 = arg2 B.getInstance('arg1 value', 'arg2 value') self.assertRaises(SingletonException, B, 'arg1 value', 'arg2 value') def test_forgetClassInstanceReferenceForTesting(self): """Test destruction of class instances for testing""" class A(Singleton): def __init__(self): super(A, self).__init__() class B(A): def __init__(self): super(B, self).__init__() # check that changing the class after forgetting the instance produces # an instance of the new class a = A.getInstance() assert a.__class__.__name__ == 'A' A._forgetClassInstanceReferenceForTesting() b = B.getInstance() assert b.__class__.__name__ == 'B' # check that invoking the 'forget' on a subclass still deletes the instance B._forgetClassInstanceReferenceForTesting() a = A.getInstance() B._forgetClassInstanceReferenceForTesting() b = B.getInstance() assert b.__class__.__name__ == 'B' def test_forgetAllSingletons(self): """Test that all singletons are removed by forgetAllSingletons""" # Should work if there are no singletons forgetAllSingletons() class A(Singleton): ciInitCount = 0 def __init__(self): super(A, self).__init__() A.ciInitCount += 1 A.getInstance() self.assertEqual(A.ciInitCount, 1) A.getInstance() self.assertEqual(A.ciInitCount, 1) forgetAllSingletons() A.getInstance() self.assertEqual(A.ciInitCount, 2) def test_threadedCreation(self): """Test that only one Singleton is created in multithread applications""" # Check that only one Singleton is created even if multiple # threads try at the same time. If fails, would see assert in _addSingleton class Test_Singleton(Singleton): def __init__(self): super(Test_Singleton, self).__init__() class Test_SingletonThread(threading.Thread): def __init__(self, fTargetTime): super(Test_SingletonThread, self).__init__() self._fTargetTime = fTargetTime self._eException = None def run(self): try: fSleepTime = self._fTargetTime - time.time() if fSleepTime > 0: time.sleep(fSleepTime) Test_Singleton.getInstance() except Exception, e: self._eException = e fTargetTime = time.time() + 0.1 lstThreads = [] for _ in xrange(100): t = Test_SingletonThread(fTargetTime) t.start() lstThreads.append(t) eException = None for t in lstThreads: t.join() if t._eException and not eException: eException = t._eException if eException: raise eException #pylint: disable-msg=E0702 def testNoInit(self): """Demonstrates use with a class not defining __init__""" class A(Singleton): pass #INTENTIONALLY UNDEFINED: #def __init__(self): # super(A, self).__init__() A.getInstance() #Make sure no exception is raised def testMultipleGetInstancesWithArgs(self): """Test multiple calls to getInstance with args""" class A(Singleton): ignoreSubsequent = True def __init__(self, a, b=1): pass a1 = A.getInstance(1) a2 = A.getInstance(2) # ignores the second call because of ignoreSubsequent class B(Singleton): def __init__(self, a, b=1): pass b1 = B.getInstance(1) self.assertRaises(SingletonException, B.getInstance, 2) # No ignoreSubsequent included class C(Singleton): def __init__(self, a=1): pass c1 = C.getInstance(a=1) self.assertRaises(SingletonException, C.getInstance, a=2) # No ignoreSubsequent included def testInheritance(self): """Test Singleton inheritance""" # It's sometimes said that you can't subclass a singleton (see, for instance, # http://steve.yegge.googlepages.com/singleton-considered-stupid point e). This # test shows that at least rudimentary subclassing works fine for us. class A(Singleton): def setX(self, x): self.x = x def setZ(self, z): raise NotImplementedError class B(A): def setX(self, x): self.x = -x def setY(self, y): self.y = y a = A.getInstance() a.setX(5) b = B.getInstance() b.setX(5) b.setY(50) self.assertEqual((a.x, b.x, b.y), (5, -5, 50)) self.assertRaises(AttributeError, eval, 'a.setY', {}, locals()) self.assertRaises(NotImplementedError, b.setZ, 500) if __name__ == "__main__": unittest.main()
33.198502
129
0.586304
25f7e8ded6a3da3648e9020870fc19e58b6a21f3
841
py
Python
pylegos/cli/templates/code/build.py
velexio/pyLegos
64d3622f2b6d78a02b171e0438a0224a951d2644
[ "MIT" ]
null
null
null
pylegos/cli/templates/code/build.py
velexio/pyLegos
64d3622f2b6d78a02b171e0438a0224a951d2644
[ "MIT" ]
2
2016-11-23T00:36:34.000Z
2016-11-23T00:39:08.000Z
pylegos/cli/templates/code/build.py
velexio/pyLegos
64d3622f2b6d78a02b171e0438a0224a951d2644
[ "MIT" ]
null
null
null
from pylegos.core import FileUtils from pylegos.core import PlatformProperty class AppBuilder: def __init__(self): sep = PlatformProperty.FileSep self.ProjectBaseDir = FileUtils.getParentDir(__file__) + sep projectDirArray = self.ProjectBaseDir.strip(sep).split(sep) self.ProjectName = projectDirArray[len(projectDirArray) - 1].lower() self.DistDir = self.ProjectBaseDir+'dist'+sep if not FileUtils().dirExists(self.DistDir): FileUtils().createDir(self.DistDir) FileUtils().touchFile(self.DistDir+'build.log') def __buildDatabaseScripts(self): pass def buildApp(self): pass def buildInstaller(self): pass if __name__ == '__main__': appBuilder = AppBuilder() appBuilder.buildApp() appBuilder.buildInstaller()
26.28125
76
0.676576
0811b1ddccf52d9855254d34776743f1bfeaa8ea
86
py
Python
utils/essfolder.py
SHI3DO/Andante
beb6fdf96ef86a10de9f802cef2d97dd81b3e688
[ "MIT" ]
2
2021-12-26T06:26:06.000Z
2022-02-24T23:54:58.000Z
utils/essfolder.py
SHI3DO/Andante
beb6fdf96ef86a10de9f802cef2d97dd81b3e688
[ "MIT" ]
null
null
null
utils/essfolder.py
SHI3DO/Andante
beb6fdf96ef86a10de9f802cef2d97dd81b3e688
[ "MIT" ]
null
null
null
import os def make(): if not os.path.isdir('./maps'): os.mkdir('./maps')
14.333333
35
0.534884
e03915f0b7809755b7b12c323497623e88dff22c
8,826
py
Python
src/the_tale/the_tale/game/quests/tests/test_workers.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
null
null
null
src/the_tale/the_tale/game/quests/tests/test_workers.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
null
null
null
src/the_tale/the_tale/game/quests/tests/test_workers.py
al-arz/the-tale
542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5
[ "BSD-3-Clause" ]
null
null
null
import smart_imports smart_imports.all() class QuestsGeneratorWorkerTests(clans_helpers.ClansTestsMixin, emissaries_helpers.EmissariesTestsMixin, utils_testcase.TestCase): def setUp(self): super(QuestsGeneratorWorkerTests, self).setUp() self.places = game_logic.create_test_map() self.account_1 = self.accounts_factory.create_account() self.account_2 = self.accounts_factory.create_account() self.account_3 = self.accounts_factory.create_account() self.account_4 = self.accounts_factory.create_account() self.storage = game_logic_storage.LogicStorage() self.storage.load_account_data(self.account_1) self.storage.load_account_data(self.account_2) self.storage.load_account_data(self.account_3) self.storage.load_account_data(self.account_4) self.hero_1 = self.storage.accounts_to_heroes[self.account_1.id] self.hero_2 = self.storage.accounts_to_heroes[self.account_2.id] self.hero_3 = self.storage.accounts_to_heroes[self.account_3.id] self.hero_4 = self.storage.accounts_to_heroes[self.account_4.id] self.prepair_forum_for_clans() self.clan = self.create_clan(owner=self.account_1, uid=1) self.emissary = self.create_emissary(clan=self.clan, initiator=self.account_1, place_id=self.places[0].id) self.worker = quests_workers_quests_generator.Worker(name='game_quests_generator') self.worker.initialize() def test_process_request_quest(self): with mock.patch('the_tale.game.workers.supervisor.Worker.cmd_setup_quest') as cmd_setup_quest: self.worker.process_request_quest(self.hero_1.account_id, hero_info=logic.create_hero_info(self.hero_1).serialize(), emissary_id=None, place_id=None, person_id=None, person_action=None) self.worker.generate_quest() self.assertEqual(cmd_setup_quest.call_count, 1) self.assertEqual(cmd_setup_quest.call_args_list[0][0][0], self.hero_1.account_id) self.assertTrue(questgen_knowledge_base.KnowledgeBase.deserialize(cmd_setup_quest.call_args_list[0][0][1], fact_classes=questgen_facts.FACTS)) def test_generate_quest__empty_queue(self): self.worker.generate_quest() def test_process_request_quest__query(self): old_hero_1_info = logic.create_hero_info(self.hero_1) self.hero_1.level = 666 new_hero_1_info = logic.create_hero_info(self.hero_1) hero_2_info = logic.create_hero_info(self.hero_2) hero_3_info = logic.create_hero_info(self.hero_3) hero_4_info = logic.create_hero_info(self.hero_4) self.assertNotEqual(old_hero_1_info, new_hero_1_info) self.worker.process_request_quest(self.hero_1.account_id, hero_info=old_hero_1_info.serialize(), emissary_id=None, place_id=None, person_id=None, person_action=None) self.worker.process_request_quest(self.hero_2.account_id, hero_info=hero_2_info.serialize(), emissary_id=self.emissary.id, place_id=None, person_id=None, person_action=relations.PERSON_ACTION.HARM.value) self.worker.process_request_quest(self.hero_1.account_id, hero_info=new_hero_1_info.serialize(), emissary_id=None, place_id=None, person_id=None, person_action=None) self.worker.process_request_quest(self.hero_3.account_id, hero_info=hero_3_info.serialize(), emissary_id=None, place_id=self.places[0].id, person_id=None, person_action=relations.PERSON_ACTION.HELP.value) person = self.places[1].persons[0] self.worker.process_request_quest(self.hero_4.account_id, hero_info=hero_4_info.serialize(), emissary_id=None, place_id=None, person_id=person.id, person_action=relations.PERSON_ACTION.HARM.value) self.assertEqual(self.worker.requests_query, collections.deque([self.account_1.id, self.account_2.id, self.account_3.id, self.account_4.id])) args_1 = {'info': new_hero_1_info, 'emissary_id': None, 'place_id': None, 'person_id': None, 'person_action': None} args_2 = {'info': hero_2_info, 'emissary_id': self.emissary.id, 'place_id': None, 'person_id': None, 'person_action': relations.PERSON_ACTION.HARM} args_3 = {'info': hero_3_info, 'emissary_id': None, 'place_id': self.places[0].id, 'person_id': None, 'person_action': relations.PERSON_ACTION.HELP} args_4 = {'info': hero_4_info, 'emissary_id': None, 'place_id': None, 'person_id': person.id, 'person_action': relations.PERSON_ACTION.HARM} self.assertEqual(self.worker.requests_heroes_infos, {self.account_1.id: args_1, self.account_2.id: args_2, self.account_3.id: args_3, self.account_4.id: args_4}) with mock.patch('the_tale.game.workers.supervisor.Worker.cmd_setup_quest') as cmd_setup_quest: self.worker.generate_quest() self.assertEqual(cmd_setup_quest.call_args_list[0][0][0], self.account_1.id) self.assertEqual(self.worker.requests_query, collections.deque([self.account_2.id, self.account_3.id, self.account_4.id])) self.assertEqual(self.worker.requests_heroes_infos, {self.account_2.id: args_2, self.account_3.id: args_3, self.account_4.id: args_4}) with mock.patch('the_tale.game.workers.supervisor.Worker.cmd_setup_quest') as cmd_setup_quest: self.worker.generate_quest() self.assertEqual(cmd_setup_quest.call_args_list[0][0][0], self.account_2.id) self.assertEqual(self.worker.requests_query, collections.deque([self.account_3.id, self.account_4.id])) self.assertEqual(self.worker.requests_heroes_infos, {self.account_3.id: args_3, self.account_4.id: args_4}) with mock.patch('the_tale.game.workers.supervisor.Worker.cmd_setup_quest') as cmd_setup_quest: self.worker.generate_quest() self.assertEqual(cmd_setup_quest.call_args_list[0][0][0], self.account_3.id) self.assertEqual(self.worker.requests_query, collections.deque([self.account_4.id])) self.assertEqual(self.worker.requests_heroes_infos, {self.account_4.id: args_4}) with mock.patch('the_tale.game.workers.supervisor.Worker.cmd_setup_quest') as cmd_setup_quest: self.worker.generate_quest() self.assertEqual(cmd_setup_quest.call_args_list[0][0][0], self.account_4.id) self.assertEqual(self.worker.requests_query, collections.deque([])) self.assertEqual(self.worker.requests_heroes_infos, {})
47.197861
150
0.540335
61c13aaf5913dbd803f099c90235dd4ee70cef51
7,599
py
Python
tests/test_reader.py
virtuald/pynsq
40a637b02c28edfb7723373b81f7e7b9d5e364ed
[ "MIT" ]
null
null
null
tests/test_reader.py
virtuald/pynsq
40a637b02c28edfb7723373b81f7e7b9d5e364ed
[ "MIT" ]
null
null
null
tests/test_reader.py
virtuald/pynsq
40a637b02c28edfb7723373b81f7e7b9d5e364ed
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import os import sys import signal import subprocess import time import ssl import tornado.httpclient import tornado.testing # shunt '..' into sys.path since we are in a 'tests' subdirectory base_dir = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..')) if base_dir not in sys.path: sys.path.insert(0, base_dir) from nsq import protocol from nsq.async import AsyncConn from nsq.deflate_socket import DeflateSocket from nsq.reader import Reader from nsq.snappy_socket import SnappySocket class ReaderIntegrationTest(tornado.testing.AsyncTestCase): identify_options = { 'user_agent': 'sup', 'snappy': True, 'tls_v1': True, 'tls_options': {'cert_reqs': ssl.CERT_NONE}, 'heartbeat_interval': 10, 'output_buffer_size': 4096, 'output_buffer_timeout': 50 } nsqd_command = ['nsqd', '--verbose', '--snappy', '--tls-key=%s/tests/key.pem' % base_dir, '--tls-cert=%s/tests/cert.pem' % base_dir] def setUp(self): super(ReaderIntegrationTest, self).setUp() self.processes = [] proc = subprocess.Popen(self.nsqd_command) self.processes.append(proc) http = tornado.httpclient.HTTPClient() start = time.time() while True: try: resp = http.fetch('http://127.0.0.1:4151/ping') if resp.body == b'OK': break continue except: if time.time() - start > 5: raise time.sleep(0.1) continue def tearDown(self): super(ReaderIntegrationTest, self).tearDown() for proc in self.processes: os.kill(proc.pid, signal.SIGKILL) proc.wait() def test_bad_reader_arguments(self): topic = 'test_reader_msgs_%s' % time.time() bad_options = dict(self.identify_options) bad_options.update(dict(foo=10)) handler = lambda x: None self.assertRaises( AssertionError, Reader, nsqd_tcp_addresses=['127.0.0.1:4150'], topic=topic, channel='ch', io_loop=self.io_loop, message_handler=handler, max_in_flight=100, **bad_options) def test_conn_identify(self): c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop) c.on('identify_response', self.stop) c.connect() response = self.wait() print(response) assert response['conn'] is c assert isinstance(response['data'], dict) def test_conn_identify_options(self): c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop, **self.identify_options) c.on('identify_response', self.stop) c.connect() response = self.wait() print(response) assert response['conn'] is c assert isinstance(response['data'], dict) assert response['data']['snappy'] is True assert response['data']['tls_v1'] is True def test_conn_socket_upgrade(self): c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop, **self.identify_options) c.on('ready', self.stop) c.connect() self.wait() assert isinstance(c.socket, SnappySocket) assert isinstance(c.socket._socket, ssl.SSLSocket) def test_conn_subscribe(self): topic = 'test_conn_suscribe_%s' % time.time() c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop, **self.identify_options) def _on_ready(*args, **kwargs): c.on('response', self.stop) c.send(protocol.subscribe(topic, 'ch')) c.on('ready', _on_ready) c.connect() response = self.wait() print(response) assert response['conn'] is c assert response['data'] == b'OK' def _send_messages(self, topic, count, body): c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop) c.connect() def _on_ready(*args, **kwargs): for i in range(count): c.send(protocol.pub(topic, body)) c.on('ready', _on_ready) def test_conn_messages(self): self.msg_count = 0 topic = 'test_conn_suscribe_%s' % time.time() self._send_messages(topic, 5, b'sup') c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop, **self.identify_options) def _on_message(*args, **kwargs): self.msg_count += 1 if c.rdy == 0: self.stop() def _on_ready(*args, **kwargs): c.on('message', _on_message) c.send(protocol.subscribe(topic, 'ch')) c.send_rdy(5) c.on('ready', _on_ready) c.connect() self.wait() assert self.msg_count == 5 def test_reader_messages(self): self.msg_count = 0 num_messages = 500 topic = 'test_reader_msgs_%s' % time.time() self._send_messages(topic, num_messages, b'sup') def handler(msg): assert msg.body == b'sup' self.msg_count += 1 if self.msg_count >= num_messages: self.stop() return True r = Reader(nsqd_tcp_addresses=['127.0.0.1:4150'], topic=topic, channel='ch', io_loop=self.io_loop, message_handler=handler, max_in_flight=100, **self.identify_options) self.wait() r.close() def test_reader_heartbeat(self): this = self this.count = 0 def handler(msg): return True class HeartbeatReader(Reader): def heartbeat(self, conn): this.count += 1 if this.count == 2: this.stop() topic = 'test_reader_hb_%s' % time.time() HeartbeatReader(nsqd_tcp_addresses=['127.0.0.1:4150'], topic=topic, channel='ch', io_loop=self.io_loop, message_handler=handler, max_in_flight=100, heartbeat_interval=1) self.wait() class DeflateReaderIntegrationTest(ReaderIntegrationTest): identify_options = { 'user_agent': 'sup', 'deflate': True, 'deflate_level': 6, 'tls_v1': True, 'tls_options': {'cert_reqs': ssl.CERT_NONE}, 'heartbeat_interval': 10, 'output_buffer_size': 4096, 'output_buffer_timeout': 50 } nsqd_command = ['nsqd', '--verbose', '--deflate', '--tls-key=%s/tests/key.pem' % base_dir, '--tls-cert=%s/tests/cert.pem' % base_dir] def test_conn_identify_options(self): c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop, **self.identify_options) c.on('identify_response', self.stop) c.connect() response = self.wait() print(response) assert response['conn'] is c assert isinstance(response['data'], dict) assert response['data']['deflate'] is True assert response['data']['tls_v1'] is True def test_conn_socket_upgrade(self): c = AsyncConn('127.0.0.1', 4150, io_loop=self.io_loop, **self.identify_options) c.on('ready', self.stop) c.connect() self.wait() assert isinstance(c.socket, DeflateSocket) assert isinstance(c.socket._socket, ssl.SSLSocket)
31.6625
90
0.574023
9e3688906b0219192216008ef1c6c8222810aa4e
1,016
py
Python
packages/python/plotly/plotly/validators/histogram2d/_xcalendar.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/histogram2d/_xcalendar.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/histogram2d/_xcalendar.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class XcalendarValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="xcalendar", parent_name="histogram2d", **kwargs): super(XcalendarValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), values=kwargs.pop( "values", [ "chinese", "coptic", "discworld", "ethiopian", "gregorian", "hebrew", "islamic", "jalali", "julian", "mayan", "nanakshahi", "nepali", "persian", "taiwan", "thai", "ummalqura", ], ), **kwargs, )
30.787879
85
0.40748
ecf24e24f8658c2a121a0f3c023feee45eb775e3
144
py
Python
backend/adminapp/apps.py
christian-japan-devs/vietcatholic-jp
1a800f478584538cc5e21ddd5816894dff8bd90f
[ "MIT" ]
null
null
null
backend/adminapp/apps.py
christian-japan-devs/vietcatholic-jp
1a800f478584538cc5e21ddd5816894dff8bd90f
[ "MIT" ]
6
2021-05-29T04:39:00.000Z
2021-07-04T00:40:15.000Z
backend/adminapp/apps.py
christian-japan-devs/vietcatholic-jp
1a800f478584538cc5e21ddd5816894dff8bd90f
[ "MIT" ]
null
null
null
from django.apps import AppConfig class AdminappConfig(AppConfig): name = 'adminapp' def ready(self): import adminapp.signals
18
33
0.708333
517fb34d5bd6a317364d4d37076e5073fb7ef712
3,773
py
Python
algorithms/Other/print_concentric_rectangle.py
serlop3791/useful_functions
039aeb52f78bcf9cae09cb5984a059a6f78a54f6
[ "Apache-2.0" ]
null
null
null
algorithms/Other/print_concentric_rectangle.py
serlop3791/useful_functions
039aeb52f78bcf9cae09cb5984a059a6f78a54f6
[ "Apache-2.0" ]
null
null
null
algorithms/Other/print_concentric_rectangle.py
serlop3791/useful_functions
039aeb52f78bcf9cae09cb5984a059a6f78a54f6
[ "Apache-2.0" ]
null
null
null
# Print concentric rectangular pattern in a 2d matrix. # # Let us show you some examples to clarify what we mean. # # Example 1: # # Input: A = 4. # # Output: # # 4 4 4 4 4 4 4 # 4 3 3 3 3 3 4 # 4 3 2 2 2 3 4 # 4 3 2 1 2 3 4 # 4 3 2 2 2 3 4 # 4 3 3 3 3 3 4 # 4 4 4 4 4 4 4 # Example 2: # # Input: A = 3. # # Output: # # 3 3 3 3 3 # 3 2 2 2 3 # 3 2 1 2 3 # 3 2 2 2 3 # 3 3 3 3 3 # The outermost rectangle is formed by A, then the next outermost is formed by A-1 and so on. # # You will be given A as an argument to the function you need to implement, and you need to return a 2D array. # # Example 2: # # # # Input: A = 3. # # # # Output: # # # # 3 3 3 3 3 # # 3 2 2 2 3 # # 3 2 1 2 3 # # 3 2 2 2 3 # # 3 3 3 3 3 def get_empty_matrix(size): rows_count, cols_count = size, size return [[0 for _ in range(cols_count)] for _ in range(rows_count)] def print_matrix_rows(matrix): for i in range(len(matrix)): print(str(matrix[i]), end='\n') # print_matrix_rows(get_empty_matrix(5)) def fill_matrix(matrix): count = 0 for i in range(len(matrix)): for j in range(len(matrix[i])): matrix[i][j] = count count += 1 return matrix # print_matrix_rows(fill_matrix(get_empty_matrix(3))) # matrix = get_empty_matrix(2) # # Input: A = 2. # # Output: # # 2 2 2 # # 2 1 2 # # 2 2 2 matrix = fill_matrix(get_empty_matrix(3)) print_matrix_rows(matrix) # end of top right # end of bottom right # end of bottom left # end of top left # concentric traversal # 0 1 2 5 8 7 6 3 4 # # for i in range(0, len(matrix[0])): # print(matrix[0][i], end=' ') # print(" ") # for i in range(0, len(matrix)): # # i = 1, j = 2 or j = len(matrix[i]) - 1 # num_to_print = matrix[0] # # print(i, end=' ') # Python3 program for printing # the rectangular pattern # Function to print the pattern def printPattern(n): # a = n, b = n – 1, c = n – 2 # number of rows and columns to be printed s = 2 * n - 1 # Upper Half for i in range(0, int(s / 2) + 1): m = n # Decreasing part for j in range(0, i): print(m, end=" ") m -= 1 # Constant Part for k in range(0, s - 2 * i): print(n - i, end=" ") # Increasing part. m = n - i + 1 for l in range(0, i): print(m, end=" ") m += 1 print("") # Lower Half for i in range(int(s / 2), -1, -1): # Decreasing Part m = n for j in range(0, i): print(m, end=" ") m -= 1 # Constant Part. for k in range(0, s - 2 * i): print(n - i, end=" ") # Decreasing Part m = n - i + 1 for l in range(0, i): print(m, end=" ") m += 1 print("") # Driven Program if __name__ == '__main__': n = 3 printPattern(n) # this code is contributed by Smitha Dinesh # Semwal # Python3 program for printing # the rectangular pattern # Function to print the pattern # def printPattern(n): # arraySize = n * 2 - 1; # result = [[0 for x in range(arraySize)] # for y in range(arraySize)]; # # # Fill the values # for i in range(arraySize): # for j in range(arraySize): # if (abs(i - (arraySize // 2)) > # abs(j - (arraySize // 2))): # result[i][j] = abs(i - (arraySize // 2)) + 1; # else: # result[i][j] = abs(j - (arraySize // 2)) + 1; # # # Print the array # for i in range(arraySize): # for j in range(arraySize): # print(result[i][j], end=" "); # print(""); # # # # Driver Code # n = 3; # # printPattern(n); # This code is contributed by mits
19.25
110
0.521601
f736eeac450d1ff8d9e88665aa56c3f3474104df
2,597
py
Python
dgp/core/context.py
dataspot/dgp
553a255a4884b935cf2efecdc761050232f0f066
[ "MIT" ]
1
2019-07-17T11:34:27.000Z
2019-07-17T11:34:27.000Z
dgp/core/context.py
datahq/dgp
f39592ce20ba67b73b08188f14585b6eb3d43f96
[ "MIT" ]
2
2019-04-30T12:32:32.000Z
2019-04-30T12:35:26.000Z
dgp/core/context.py
dataspot/dgp
553a255a4884b935cf2efecdc761050232f0f066
[ "MIT" ]
null
null
null
import copy import tabulator import requests from .config import Config from ..config.log import logger from ..config.consts import CONFIG_SKIP_ROWS, CONFIG_TAXONOMY_ID, CONFIG_FORMAT, CONFIG_ALLOW_INSECURE_TLS from ..taxonomies import TaxonomyRegistry, Taxonomy _workbook_cache = {} def trimmer(extended_rows): for row_number, headers, row in extended_rows: if headers: row = row[:len(headers)] if len(row) < len(headers): continue yield (row_number, headers, row) class Context(): def __init__(self, config: Config, taxonomies: TaxonomyRegistry): self.config = config self.taxonomies: TaxonomyRegistry = taxonomies self._stream = None self.enricher_dir = None def _structure_params(self): skip_rows = self.config.get(CONFIG_SKIP_ROWS) if CONFIG_SKIP_ROWS in self.config else None fmt = self.config.get(CONFIG_FORMAT) return dict( headers=skip_rows + 1 if skip_rows is not None else None, ignore_blank_headers=fmt in ('csv', 'xlsx', 'xls'), post_parse=[trimmer] ) def reset_stream(self): self._stream = None def http_session(self): http_session = requests.Session() http_session.headers.update(tabulator.config.HTTP_HEADERS) if self.config.get(CONFIG_ALLOW_INSECURE_TLS): http_session.verify = False return http_session @property def stream(self): if self._stream is None: source = copy.deepcopy(self.config._unflatten().get('source', {})) structure = self._structure_params() try: path = source.pop('path') if not path: return None logger.info('Opening stream %s', path) if 'workbook_cache' in source: source['workbook_cache'] = _workbook_cache self._stream = tabulator.Stream(path, **source, **structure, http_session=self.http_session()).open() for k in source.keys(): self.config.get('source.' + k) for k in structure.keys(): self.config.get('structure.' + k) except Exception: logger.exception('Failed to open URL, source=%r, structure=%r', source, structure) raise return self._stream @property def taxonomy(self) -> Taxonomy: if CONFIG_TAXONOMY_ID in self.config: return self.taxonomies.get(self.config[CONFIG_TAXONOMY_ID])
34.171053
117
0.613015
8bf307ea747a7d3f44252bb14172e6c64c606964
9,755
py
Python
src/gluonts/core/serde/_base.py
Xiaoxiong-Liu/gluon-ts
097c492769258dd70b7f223f826b17b0051ceee9
[ "Apache-2.0" ]
2,648
2019-06-03T17:18:27.000Z
2022-03-31T08:29:22.000Z
src/gluonts/core/serde/_base.py
Xiaoxiong-Liu/gluon-ts
097c492769258dd70b7f223f826b17b0051ceee9
[ "Apache-2.0" ]
1,220
2019-06-04T09:00:14.000Z
2022-03-31T10:45:43.000Z
src/gluonts/core/serde/_base.py
Xiaoxiong-Liu/gluon-ts
097c492769258dd70b7f223f826b17b0051ceee9
[ "Apache-2.0" ]
595
2019-06-04T01:04:31.000Z
2022-03-30T10:40:26.000Z
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. import textwrap from enum import Enum from functools import singledispatch, partial from pathlib import PurePath from pydoc import locate from typing import Any, NamedTuple, cast from toolz.dicttoolz import valmap from pydantic import BaseModel from gluonts.core import fqname_for bad_type_msg = textwrap.dedent( """ Cannot serialize type {}. See the documentation of the `encode` and `validate` functions at http://gluon-ts.mxnet.io/api/gluonts/gluonts.html and the Python documentation of the `__getnewargs_ex__` magic method at https://docs.python.org/3/library/pickle.html#object.__getnewargs_ex__ for more information how to make this type serializable. """ ).lstrip() class StatelessMeta(type): def __call__(cls, *args, **kwargs): self = cls.__new__(cls, *args, **kwargs) if isinstance(self, cls): if hasattr(self.__init__, "__checked__"): (this, *args), kwargs = self.__init__.__checked__( self, *args, **kwargs ) self.__init__.__wrapped__(this, *args, **kwargs) else: self.__init__(*args, **kwargs) self.__init_args__ = args, kwargs self.__sealed__ = True return self class Stateless(metaclass=StatelessMeta): def __getnewargs_ex__(self): return self.__init_args__ def __setattr__(self, name, value): if hasattr(self, "__sealed__"): classname = self.__class__.__name__ raise ValueError( f"Assignment to `{name}` outside of `{classname}.__init__`." ) return object.__setattr__(self, name, value) class Stateful: pass class Kind(str, Enum): Type = "type" Instance = "instance" Stateful = "stateful" @singledispatch def encode(v: Any) -> Any: """ Transforms a value `v` as a serializable intermediate representation (for example, named tuples are encoded as dictionaries). The intermediate representation is then recursively traversed and serialized either as Python code or as JSON string. This function is decorated with :func:`~functools.singledispatch` and can be specialized by clients for families of types that are not supported by the basic implementation (explained below). Examples -------- The conversion logic implemented by the basic implementation is used as a fallback and is best explained by a series of examples. Lists (as lists). >>> encode([1, 2.0, '3']) [1, 2.0, '3'] Dictionaries (as dictionaries). >>> encode({'a': 1, 'b': 2.0, 'c': '3'}) {'a': 1, 'b': 2.0, 'c': '3'} Named tuples (as dictionaries with a ``'__kind__': <Kind.Instance: 'instance'>`` member). >>> from pprint import pprint >>> from typing import NamedTuple >>> class ComplexNumber(NamedTuple): ... x: float = 0.0 ... y: float = 0.0 >>> pprint(encode(ComplexNumber(4.0, 2.0))) {'__kind__': <Kind.Instance: 'instance'>, 'class': 'gluonts.core.serde._base.ComplexNumber', 'kwargs': {'x': 4.0, 'y': 2.0}} Classes with a :func:`~gluonts.core.component.validated` initializer (as dictionaries with a ``'__kind__': <Kind.Instance: 'instance'>`` member). >>> from gluonts.core.component import validated >>> class ComplexNumber: ... @validated() ... def __init__(self, x: float = 0.0, y: float = 0.0) -> None: ... self.x = x ... self.y = y >>> pprint(encode(ComplexNumber(4.0, 2.0))) {'__kind__': <Kind.Instance: 'instance'>, 'args': [], 'class': 'gluonts.core.serde._base.ComplexNumber', 'kwargs': {'x': 4.0, 'y': 2.0}} Classes with a ``__getnewargs_ex__`` magic method (as dictionaries with a ``'__kind__': <Kind.Instance: 'instance'>`` member). >>> from gluonts.core.component import validated >>> class ComplexNumber: ... def __init__(self, x: float = 0.0, y: float = 0.0) -> None: ... self.x = x ... self.y = y ... def __getnewargs_ex__(self): ... return [], {'x': self.x, 'y': self.y} >>> pprint(encode(ComplexNumber(4.0, 2.0))) {'__kind__': <Kind.Instance: 'instance'>, 'args': [], 'class': 'gluonts.core.serde._base.ComplexNumber', 'kwargs': {'x': 4.0, 'y': 2.0}} Types (as dictionaries with a ``'__kind__': <Kind.Type: 'type'> member``). >>> encode(ComplexNumber) {'__kind__': <Kind.Type: 'type'>, 'class': 'gluonts.core.serde._base.ComplexNumber'} Parameters ---------- v The value to be encoded. Returns ------- Any An encoding of ``v`` that can be serialized to Python code or JSON string. See Also -------- decode Inverse function. dump_json Serializes an object to a JSON string. dump_code Serializes an object to a Python code string. """ if v is None: return None if isinstance(v, (float, int, str)): return v # check for namedtuples first, to encode them not as plain tuples if isinstance(v, tuple) and hasattr(v, "_asdict"): v = cast(NamedTuple, v) return { "__kind__": Kind.Instance, "class": fqname_for(v.__class__), "kwargs": encode(v._asdict()), } if isinstance(v, (tuple, set)): return { "__kind__": Kind.Instance, "class": fqname_for(type(v)), "args": [list(map(encode, v))], } if isinstance(v, list): return list(map(encode, v)) if isinstance(v, dict): return valmap(encode, v) if isinstance(v, type): return {"__kind__": Kind.Type, "class": fqname_for(v)} if hasattr(v, "__getnewargs_ex__"): args, kwargs = v.__getnewargs_ex__() # mypy: ignore return { "__kind__": Kind.Instance, "class": fqname_for(v.__class__), # args need to be a list, since we encode tuples explicitly "args": encode(list(args)), "kwargs": encode(kwargs), } try: # as fallback, we try to just take the path of the value fqname = fqname_for(v) assert ( "<lambda>" not in fqname ), f"Can't serialize lambda function {fqname}" if hasattr(v, "__self__") and hasattr(v, "__func__"): # v is a method # to model`obj.method`, we encode `getattr(obj, "method")` return { "__kind__": Kind.Instance, "class": fqname_for(getattr), "args": encode((v.__self__, v.__func__.__name__)), } return {"__kind__": Kind.Type, "class": fqname_for(v)} except AttributeError: pass raise RuntimeError(bad_type_msg.format(fqname_for(v.__class__))) @encode.register(Stateful) def encode_from_state(v: Stateful) -> Any: return { "__kind__": Kind.Stateful, "class": fqname_for(v.__class__), "kwargs": encode(v.__dict__), } @encode.register(PurePath) def encode_path(v: PurePath) -> Any: """ Specializes :func:`encode` for invocations where ``v`` is an instance of the :class:`~PurePath` class. """ return { "__kind__": Kind.Instance, "class": fqname_for(v.__class__), "args": [str(v)], } @encode.register(BaseModel) def encode_pydantic_model(v: BaseModel) -> Any: """ Specializes :func:`encode` for invocations where ``v`` is an instance of the :class:`~BaseModel` class. """ return { "__kind__": Kind.Instance, "class": fqname_for(v.__class__), "kwargs": encode(v.__dict__), } @encode.register(partial) def encode_partial(v: partial) -> Any: args = (v.func,) + v.args return { "__kind__": Kind.Instance, "class": fqname_for(v.__class__), "args": encode(args), "kwargs": encode(v.keywords), } def decode(r: Any) -> Any: """ Decodes a value from an intermediate representation `r`. Parameters ---------- r An intermediate representation to be decoded. Returns ------- Any A Python data structure corresponding to the decoded version of ``r``. See Also -------- encode Inverse function. """ # structural recursion over the possible shapes of r if type(r) == dict and "__kind__" in r: kind = r["__kind__"] cls = cast(Any, locate(r["class"])) assert cls is not None, f"Can not locate {r['class']}." if kind == Kind.Type: return cls args = decode(r.get("args", [])) kwargs = decode(r.get("kwargs", {})) if kind == Kind.Instance: return cls(*args, **kwargs) if kind == Kind.Stateful: obj = cls.__new__(cls) obj.__dict__.update(kwargs) return obj raise ValueError(f"Unknown kind {kind}.") if type(r) == dict: return valmap(decode, r) if type(r) == list: return list(map(decode, r)) return r
28.523392
78
0.593337
1eb6ba96b1af612c3af56275b4d7cc0511b32822
1,864
py
Python
mir/termdbg/ascii.py
darkfeline/mir.termdbg
a654b4ac0cae0da012b683d99b2d290db0acb48b
[ "Apache-2.0" ]
null
null
null
mir/termdbg/ascii.py
darkfeline/mir.termdbg
a654b4ac0cae0da012b683d99b2d290db0acb48b
[ "Apache-2.0" ]
null
null
null
mir/termdbg/ascii.py
darkfeline/mir.termdbg
a654b4ac0cae0da012b683d99b2d290db0acb48b
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2016 Allen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ASCII character table. Constants: CONTROL_CHARS -- Mapping of ints to control character information Functions: is_printable -- Return whether character is printable """ import collections import csv import io import pkg_resources CONTROL_CHARS = None ControlChar = collections.namedtuple( 'ControlChar', 'value,abbrev,unicode,repr,name') def is_printable(char: int): """Return whether char is printable.""" return char not in CONTROL_CHARS def _init_control_chars(): """Initialize CONTROL_CHARS constant.""" global CONTROL_CHARS CONTROL_CHARS = { char.value: char for char in _load_control_chars() } def _load_control_chars(): """Yield ControlChars read from the package's list.""" with _open_control_chars_file() as file: yield from _load_control_chars_from_file(file) def _open_control_chars_file(): """Open control chars file shipped with this package.""" binary_stream = pkg_resources.resource_stream(__name__, 'ascii.csv') return io.TextIOWrapper(binary_stream) def _load_control_chars_from_file(file): """Yield ControlChars read from a CSV file.""" reader = csv.reader(file) for row in reader: row[0] = int(row[0]) yield ControlChar(*row) _init_control_chars()
26.628571
74
0.732833
9df180ec84138a3c91d13d66d30c133e173343e2
4,507
py
Python
sysinv/cgts-client/cgts-client/cgtsclient/v1/certificate_shell.py
albailey/config
40ebe63d7dfc6a0a03216ebe55ed3ec9cf5410b9
[ "Apache-2.0" ]
null
null
null
sysinv/cgts-client/cgts-client/cgtsclient/v1/certificate_shell.py
albailey/config
40ebe63d7dfc6a0a03216ebe55ed3ec9cf5410b9
[ "Apache-2.0" ]
null
null
null
sysinv/cgts-client/cgts-client/cgtsclient/v1/certificate_shell.py
albailey/config
40ebe63d7dfc6a0a03216ebe55ed3ec9cf5410b9
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2018 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # # vim: tabstop=4 shiftwidth=4 softtabstop=4 # All Rights Reserved. # import os from cgtsclient.common import utils from cgtsclient import exc def _print_certificate_show(certificate): fields = ['uuid', 'certtype', 'signature', 'start_date', 'expiry_date'] if isinstance(certificate, dict): data = [(f, certificate.get(f, '')) for f in fields] details = ('details', certificate.get('details', '')) else: data = [(f, getattr(certificate, f, '')) for f in fields] details = ('details', getattr(certificate, 'details', '')) if details[1]: data.append(details) utils.print_tuple_list(data) @utils.arg('certificate_uuid', metavar='<certificate_uuid>', help="UUID of certificate or the reserved word 'tpm' " "to show TPM certificate") def do_certificate_show(cc, args): """Show Certificate details.""" if args.certificate_uuid == 'tpm': certificates = cc.certificate.list() for cert in certificates: if cert.certtype == 'tpm_mode': args.certificate_uuid = cert.uuid break else: print("No TPM certificate installed") return certificate = cc.certificate.get(args.certificate_uuid) if certificate: _print_certificate_show(certificate) else: print("No Certificates installed") def do_certificate_list(cc, args): """List certificates.""" certificates = cc.certificate.list() fields = ['uuid', 'certtype', 'expiry_date'] field_labels = fields utils.print_list(certificates, fields, field_labels, sortby=0) @utils.arg('certificate_file', metavar='<certificate_file>', help='Path to Certificate file (PEM format) to install. ' 'WARNING: For security reasons, the original certificate_file ' 'will be removed. Installing an invalid certificate ' 'could cause service interruption.') @utils.arg('-p', '--passphrase', metavar='<passphrase>', help='The passphrase for the PEM file') @utils.arg('-m', '--mode', metavar='<mode>', help="optional mode: 'tpm_mode'," "'docker_registry, 'openstack', 'openstack_ca', 'ssl_ca'. " "Default is 'ssl'.") def do_certificate_install(cc, args): """Install certificate.""" certificate_file = args.certificate_file try: sec_file = open(certificate_file, 'rb') except Exception: raise exc.CommandError("Error: Could not open file %s." % certificate_file) data = {'passphrase': args.passphrase, 'mode': args.mode} print("WARNING: For security reasons, the original certificate, ") print("containing the private key, will be removed, ") print("once the private key is processed.") try: response = cc.certificate.certificate_install(sec_file, data=data) except exc.HTTPNotFound: raise exc.CommandError('Certificate not installed %s. No response.' % certificate_file) except Exception as e: raise exc.CommandError('Certificate %s not installed: %s' % (certificate_file, e)) else: certificates = response.get('certificates') if certificates: for certificate in certificates: _print_certificate_show(certificate) error = response.get('error') if error: print("WARNING: Some certificates were not installed.") print(error) else: try: os.remove(certificate_file) except OSError: raise exc.CommandError('Error: Could not remove the ' 'certificate %s' % certificate_file) @utils.arg('certificate_uuid', metavar='<certificate_uuid>', help="UUID of certificate to uninstall") @utils.arg('-m', '--mode', metavar='<mode>', help="Supported mode: 'ssl_ca'.") def do_certificate_uninstall(cc, args): """Uninstall certificate.""" supported_modes = ['ssl_ca'] if args.mode not in supported_modes: raise exc.CommandError('Unsupported mode: %s' % args.mode) cc.certificate.certificate_uninstall(args.certificate_uuid) print('Uninstalled certificate: %s' % (args.certificate_uuid))
34.40458
79
0.613934
80181ac28fd0e4c6951f3917d8ffa73a6a1d6191
9,387
py
Python
network_builder.py
comRamona/Multimodal-Sentiment-Analysis---ACL-2018
2831df3ef210cb3e259bbc43dd39159533f4a33e
[ "BSD-3-Clause" ]
1
2018-05-22T13:08:54.000Z
2018-05-22T13:08:54.000Z
network_builder.py
comRamona/Multimodal-Sentiment-Analysis-Multicomp-ACL-2018
2831df3ef210cb3e259bbc43dd39159533f4a33e
[ "BSD-3-Clause" ]
null
null
null
network_builder.py
comRamona/Multimodal-Sentiment-Analysis-Multicomp-ACL-2018
2831df3ef210cb3e259bbc43dd39159533f4a33e
[ "BSD-3-Clause" ]
1
2020-06-02T00:57:20.000Z
2020-06-02T00:57:20.000Z
import tensorflow as tf from network_architectures import VGGClassifier, FCCLayerClassifier class ClassifierNetworkGraph: def __init__(self, input_x, target_placeholder, dropout_rate, batch_size=100, num_channels=1, n_classes=100, is_training=True, augment_rotate_flag=True, tensorboard_use=False, use_batch_normalization=False, strided_dim_reduction=True, network_name='VGG_classifier'): """ Initializes a Classifier Network Graph that can build models, train, compute losses and save summary statistics and images :param input_x: A placeholder that will feed the input images, usually of size [batch_size, height, width, channels] :param target_placeholder: A target placeholder of size [batch_size,]. The classes should be in index form i.e. not one hot encoding, that will be done automatically by tf :param dropout_rate: A placeholder of size [None] that holds a single float that defines the amount of dropout to apply to the network. i.e. for 0.1 drop 0.1 of neurons :param batch_size: The batch size :param num_channels: Number of channels :param n_classes: Number of classes we will be classifying :param is_training: A placeholder that will indicate whether we are training or not :param augment_rotate_flag: A placeholder indicating whether to apply rotations augmentations to our input data :param tensorboard_use: Whether to use tensorboard in this experiment :param use_batch_normalization: Whether to use batch normalization between layers :param strided_dim_reduction: Whether to use strided dim reduction instead of max pooling """ self.batch_size = batch_size if network_name == "VGG_classifier": self.c = VGGClassifier(self.batch_size, name="classifier_neural_network", batch_norm_use=use_batch_normalization, num_channels=num_channels, num_classes=n_classes, layer_stage_sizes=[64, 128, 256], strided_dim_reduction=strided_dim_reduction) elif network_name == "FCCClassifier": self.c = FCCLayerClassifier(self.batch_size, name="classifier_neural_network", batch_norm_use=use_batch_normalization, num_channels=num_channels, num_classes=n_classes, layer_stage_sizes=[64, 128, 256], strided_dim_reduction=strided_dim_reduction) self.input_x = input_x self.dropout_rate = dropout_rate self.targets = target_placeholder self.training_phase = is_training self.n_classes = n_classes self.iterations_trained = 0 self.augment_rotate = augment_rotate_flag self.is_tensorboard = tensorboard_use self.strided_dim_reduction = strided_dim_reduction self.use_batch_normalization = use_batch_normalization def loss(self): """build models, calculates losses, saves summary statistcs and images. Returns: dict of losses. """ with tf.name_scope("losses"): image_inputs = self.data_augment_batch(self.input_x) # conditionally apply augmentaions true_outputs = self.targets # produce predictions and get layer features to save for visual inspection preds, layer_features = self.c(image_input=image_inputs, training=self.training_phase, dropout_rate=self.dropout_rate) # compute loss and accuracy correct_prediction = tf.equal(tf.argmax(preds, 1), tf.cast(true_outputs, tf.int64)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) crossentropy_loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(labels=true_outputs, logits=preds)) # add loss and accuracy to collections tf.add_to_collection('crossentropy_losses', crossentropy_loss) tf.add_to_collection('accuracy', accuracy) # save summaries for the losses, accuracy and image summaries for input images, augmented images # and the layer features if len(self.input_x.get_shape().as_list()) == 4: self.save_features(name="VGG_features", features=layer_features) tf.summary.image('image', [tf.concat(tf.unstack(self.input_x, axis=0), axis=0)]) tf.summary.image('augmented_image', [tf.concat(tf.unstack(image_inputs, axis=0), axis=0)]) tf.summary.scalar('crossentropy_losses', crossentropy_loss) tf.summary.scalar('accuracy', accuracy) return {"crossentropy_losses": tf.add_n(tf.get_collection('crossentropy_losses'), name='total_classification_loss'), "accuracy": tf.add_n(tf.get_collection('accuracy'), name='total_accuracy')} def save_features(self, name, features, num_rows_in_grid=4): """ Saves layer features in a grid to be used in tensorboard :param name: Features name :param features: A list of feature tensors """ for i in range(len(features)): shape_in = features[i].get_shape().as_list() channels = shape_in[3] y_channels = num_rows_in_grid x_channels = int(channels / y_channels) activations_features = tf.reshape(features[i], shape=(shape_in[0], shape_in[1], shape_in[2], y_channels, x_channels)) activations_features = tf.unstack(activations_features, axis=4) activations_features = tf.concat(activations_features, axis=2) activations_features = tf.unstack(activations_features, axis=3) activations_features = tf.concat(activations_features, axis=1) activations_features = tf.expand_dims(activations_features, axis=3) tf.summary.image('{}_{}'.format(name, i), activations_features) def rotate_image(self, image): """ Rotates a single image :param image: An image to rotate :return: A rotated or a non rotated image depending on the result of the flip """ no_rotation_flip = tf.unstack( tf.random_uniform([1], minval=1, maxval=100, dtype=tf.int32, seed=None, name=None)) # get a random number between 1 and 100 flip_boolean = tf.less_equal(no_rotation_flip[0], 50) # if that number is less than or equal to 50 then set to true random_variable = tf.unstack(tf.random_uniform([1], minval=1, maxval=3, dtype=tf.int32, seed=None, name=None)) # get a random variable between 1 and 3 for how many degrees the rotation will be i.e. k=1 means 1*90, # k=2 2*90 etc. image = tf.cond(flip_boolean, lambda: tf.image.rot90(image, k=random_variable[0]), lambda: image) # if flip_boolean is true the rotate if not then do not rotate return image def rotate_batch(self, batch_images): """ Rotate a batch of images :param batch_images: A batch of images :return: A rotated batch of images (some images will not be rotated if their rotation flip ends up False) """ shapes = map(int, list(batch_images.get_shape())) if len(list(batch_images.get_shape())) < 4: return batch_images batch_size, x, y, c = shapes with tf.name_scope('augment'): batch_images_unpacked = tf.unstack(batch_images) new_images = [] for image in batch_images_unpacked: new_images.append(self.rotate_image(image)) new_images = tf.stack(new_images) new_images = tf.reshape(new_images, (batch_size, x, y, c)) return new_images def data_augment_batch(self, batch_images): """ Augments data with a variety of augmentations, in the current state only does rotations. :param batch_images: A batch of images to augment :return: Augmented data """ batch_images = tf.cond(self.augment_rotate, lambda: self.rotate_batch(batch_images), lambda: batch_images) return batch_images def train(self, losses, learning_rate=1e-3, beta1=0.9): """ Args: losses dict. Returns: train op. """ c_opt = tf.train.AdamOptimizer(beta1=beta1, learning_rate=learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # Needed for correct batch norm usage with tf.control_dependencies(update_ops): c_error_opt_op = c_opt.minimize(losses["crossentropy_losses"], var_list=self.c.variables, colocate_gradients_with_ops=True) return c_error_opt_op def init_train(self): """ Builds graph ops and returns them :return: Summary, losses and training ops """ losses_ops = self.loss() c_error_opt_op = self.train(losses_ops) summary_op = tf.summary.merge_all() return summary_op, losses_ops, c_error_opt_op
51.861878
119
0.64291
083a23b94a7d06531ca7075340833ab4cb66c337
7,504
py
Python
tests/proc/test_tensorbox.py
lfd/pennylane
c0d269e5f1eba2f9d033bd9b6a79c10a11f4228a
[ "Apache-2.0" ]
null
null
null
tests/proc/test_tensorbox.py
lfd/pennylane
c0d269e5f1eba2f9d033bd9b6a79c10a11f4228a
[ "Apache-2.0" ]
null
null
null
tests/proc/test_tensorbox.py
lfd/pennylane
c0d269e5f1eba2f9d033bd9b6a79c10a11f4228a
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for TensorBox class""" import numpy as np import pytest import pennylane as qml from pennylane.proc.numpy_box import NumpyBox def test_creation_from_list(): """Test that a NumpyBox is automatically created from a list""" x = [0.1, 0.2, 0.3] res = qml.proc.TensorBox(x) assert isinstance(res, NumpyBox) assert res.interface == "numpy" assert isinstance(res.unbox(), np.ndarray) assert np.all(res.unbox() == x) def test_creation_from_tuple(): """Test that a NumpyBox is automatically created from a tuple""" x = (0.1, 0.2, 0.3) res = qml.proc.TensorBox(x) assert isinstance(res, NumpyBox) assert res.interface == "numpy" assert isinstance(res.unbox(), np.ndarray) assert np.all(res.unbox() == x) def test_creation_from_tensorbox(): """Test that a tensorbox input simply returns it""" x = qml.proc.TensorBox(np.array([0.1, 0.2, 0.3])) res = qml.proc.TensorBox(x) assert x is res def test_unknown_input_type(): """Test that an exception is raised if the input type is unknown""" with pytest.raises(ValueError, match="Unknown tensor type"): qml.proc.TensorBox(True) def test_astensor(): """Test conversion of sequences to numpy arrays""" x = np.array([0.1, 0.2, 0.3]) y = [0.4, 0.5, 0.6] res = qml.proc.TensorBox(x).astensor(y) assert isinstance(res, np.ndarray) assert np.all(res == y) def test_cast(): """Test that arrays can be cast to different dtypes""" x = np.array([1, 2, 3]) res = qml.proc.TensorBox(x).cast(np.float64) expected = np.array([1.0, 2.0, 3.0]) assert np.all(res == expected) res = qml.proc.TensorBox(x).cast(np.dtype("int8")) expected = np.array([1, 2, 3], dtype=np.int8) assert np.all(res == expected) res = qml.proc.TensorBox(x).cast("complex128") expected = np.array([1, 2, 3], dtype=np.complex128) assert np.all(res == expected) def test_len(): """Test length""" x = np.array([[1, 2], [3, 4]]) res = qml.proc.TensorBox(x) assert len(res) == len(x) == 2 def test_ufunc_compatibility(): """Test that the NumpyBox class has ufunc compatibility""" x = np.array([0.1, 0.2, 0.3]) res = np.sum(np.sin(qml.proc.TensorBox(x))) assert res == np.sin(0.1) + np.sin(0.2) + np.sin(0.3) x = np.array([0.1, 0.2, 0.3]) res = np.sum(np.sin(qml.proc.TensorBox(x), out=np.empty([3]))) assert res == np.sin(0.1) + np.sin(0.2) + np.sin(0.3) def test_inplace_addition(): """Test that in-place addition works correctly""" x = qml.proc.TensorBox(np.array([0.0, 0.0, 0.0])) np.add.at(x, [0, 1, 1], 1) assert np.all(x == np.array([1.0, 2.0, 0.0])) def test_addition(): """Test addition between tensors and arrays""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 0], [0, 1]]) xT = qml.proc.TensorBox(x) res = xT + y assert np.all(res.unbox() == x + y) yT = qml.proc.TensorBox(y) res = x + yT assert np.all(res.unbox() == x + y) res = xT + yT assert np.all(res.unbox() == x + y) def test_subtraction(): """Test addition between tensors and arrays""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 0], [0, 1]]) xT = qml.proc.TensorBox(x) res = xT - y assert np.all(res.unbox() == x - y) yT = qml.proc.TensorBox(y) res = x - yT assert np.all(res.unbox() == x - y) res = xT - yT assert np.all(res.unbox() == x - y) def test_multiplication(): """Test multiplication between tensors and arrays""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 0], [0, 1]]) xT = qml.proc.TensorBox(x) res = xT * y assert np.all(res.unbox() == x * y) yT = qml.proc.TensorBox(y) res = x * yT assert np.all(res.unbox() == x * y) res = xT * yT assert np.all(res.unbox() == x * y) def test_division(): """Test addition between tensors and arrays""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 4], [0.25, 1]]) xT = qml.proc.TensorBox(x) res = xT / y assert np.all(res.unbox() == x / y) yT = qml.proc.TensorBox(y) res = x / yT assert np.all(res.unbox() == x / y) res = xT / yT assert np.all(res.unbox() == x / y) res = 5 / yT assert np.all(res.unbox() == 5 / y) res = yT / 5 assert np.all(res.unbox() == y / 5) def test_exponentiation(): """Test exponentiation between tensors and arrays""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 0], [0, 1]]) xT = qml.proc.TensorBox(x) res = xT ** 2 assert np.all(res.unbox() == x ** 2) yT = qml.proc.TensorBox(y) res = 2 ** yT assert np.all(res.unbox() == 2 ** y) res = xT ** yT assert np.all(res.unbox() == x ** y) def test_unbox_list(): """Test unboxing a mixed list works correctly""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 0], [0, 1]]) xT = qml.proc.TensorBox(x) res = xT.unbox_list([y, xT, x]) assert np.all(res == [y, x, x]) def test_numpy(): """Test that calling numpy() returns a NumPy array representation of the TensorBox""" x = np.array([[1, 2], [3, 4]]) xT = qml.proc.TensorBox(x) assert isinstance(xT.numpy(), np.ndarray) assert np.all(xT.numpy() == x) def test_shape(): """Test that arrays return the right shape""" x = np.array([[[1, 2], [3, 4]]]) x = qml.proc.TensorBox(x) res = x.shape assert res == (1, 2, 2) def test_expand_dims(): """Test that dimension expansion works""" x = np.array([1, 2, 3]) xT = qml.proc.TensorBox(x) res = xT.expand_dims(axis=1) expected = np.expand_dims(x, axis=1) assert isinstance(res, NumpyBox) assert np.all(res == expected) def test_ones_like(): """Test that all ones arrays are correctly created""" x = np.array([[1, 2, 3], [4, 5, 6]]) xT = qml.proc.TensorBox(x) res = xT.ones_like() expected = np.ones_like(x) assert isinstance(res, NumpyBox) assert np.all(res == expected) def test_stack(): """Test that arrays are correctly stacked together""" x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 0], [0, 1]]) xT = qml.proc.TensorBox(x) res = xT.stack([y, xT, x]) assert np.all(res == np.stack([y, x, x])) def test_transpose(): """Test that the transpose is correct""" x = np.array([[1, 2], [3, 4]]) xT = qml.proc.TensorBox(x) assert np.all(xT.T == x.T) def test_requires_grad(): """Test that the requires grad attribute always returns False""" x = np.array([[1, 2], [3, 4]]) xT = qml.proc.TensorBox(x) assert not xT.requires_grad
27.487179
75
0.573561
8ae4363eced64a807a7a8ada1007057e4adcec3b
16,834
py
Python
change_bomb_rate.py
minoriwww/MeterDetection
0373cd30fe8a1de4886a8a60860c4714b2b28333
[ "MIT" ]
7
2019-11-13T01:02:14.000Z
2021-08-10T10:03:46.000Z
change_bomb_rate.py
minoriwww/MeterDetection
0373cd30fe8a1de4886a8a60860c4714b2b28333
[ "MIT" ]
null
null
null
change_bomb_rate.py
minoriwww/MeterDetection
0373cd30fe8a1de4886a8a60860c4714b2b28333
[ "MIT" ]
1
2019-12-26T10:34:18.000Z
2019-12-26T10:34:18.000Z
import os dirs = "sitaiqu/rates/" if not os.path.exists(dirs): os.makedirs(dirs) import string import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.switch_backend('agg') import data_processing0 as dp import datetime import math import random from scipy.spatial.distance import pdist, squareform import os os.environ["CUDA_VISIBLE_DEVICES"]="1" import tensorflow as tf config=tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction=0.5 config.gpu_options.allow_growth=True tf.Session(config=config) import numpy as np np.random.seed(1337) import keras from keras.models import Sequential from keras.layers import Dense import matplotlib as mpl import random from imutils import paths mpl.use('Agg') import matplotlib.pyplot as plt from sklearn.model_selection import KFold plt.switch_backend('agg') import pandas as pd from sklearn import preprocessing from sklearn.metrics import confusion_matrix import tensorflow as tf from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop from keras.wrappers.scikit_learn import KerasRegressor from keras.preprocessing.image import img_to_array from keras.utils import to_categorical from keras import regularizers from keras import backend as K from keras.models import Model, Sequential from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score, KFold from sklearn.metrics import mean_squared_error from keras.optimizers import SGD, Adadelta, Adam from keras.layers.normalization import BatchNormalization from keras.callbacks import EarlyStopping, ModelCheckpoint,Callback from keras.layers import Dense, Dropout, Activation, Flatten, Input, Convolution1D, Convolution2D, LSTM, Reshape import keras.layers.convolutional as conv from keras.regularizers import l1, l2 import sklearn.metrics as m import time from scipy import interp import cv2 from sklearn.model_selection import StratifiedKFold # from DProcess import convertRawToXY from sklearn.metrics import average_precision_score from sklearn.metrics import roc_auc_score import hyperopt as hp from hyperopt import fmin,tpe,hp,STATUS_OK,Trials from keras.utils import plot_model from ROC_PR_threshold import roc_curve import sys seed = 7 np.random.seed(seed) def random_pick(some_list,probabilities): x=random.uniform(0,1) cumulative_probability=0.0 for item,item_probability in zip(some_list,probabilities): cumulative_probability += item_probability if x < cumulative_probability: break return item def op(id,df,rate,file_path): c=random_pick([0,1],[rate,1-rate]) print(c,id) if c==0 : single_input(id=id,df=df,DATA_PATH=file_path) else: single_bomb(id = id,wat=df,DATA_PATH=file_path) def rec_plot(s, eps=None, steps=None): if eps==None: eps=0.1 if steps==None: steps=100 d = pdist(s[:,None]) d = np.floor(d/eps) d[d>steps] = steps Z = squareform(d) return Z def single_bomb(id,DATA_PATH = "", date = "2015/05/01",wat=None): if not os.path.exists(DATA_PATH+'csv'): os.makedirs(DATA_PATH+'csv') if not os.path.exists(DATA_PATH+'png'): os.makedirs(DATA_PATH+'png') d = single_input(id=id,mode=1,df=wat) df = d.sample(n=1) df.reset_index(inplace=True) date = df.loc[0, 'date'] id = id new = wat[(wat['date']>=date) & (wat['meterID']==id)] #print(new) def update(x): i=(pd.to_datetime(x.loc['date'])-pd.to_datetime(date)).days x.loc['usage']=x.loc['usage']*(1+i/100) #i = float(i) #x.loc['usage'] += x.loc['usage'] * (0.05 * i / math.sqrt((1 + math.pow((i / 15), 2)))) return x.loc['usage'] d1=d[d['date']<date] d2=d[d['date']>=date] d2.reset_index(inplace=True) for i in range(0,d2.iloc[:,0].size-1): d2.loc[i,'usage']=update(d2[['date','usage']].iloc[i]) d=d1.append(d2) d=d.drop(columns=['index']) d=d[['id','usage','date','com_date','week','month','year']] x=d['usage'] rec = rec_plot(x) plt.imshow(rec) plt.xticks([]) plt.yticks([]) plt.axis('off') plt.savefig(DATA_PATH+'png/' + str(id) + "single_bomb.png",dpi=300) d.to_csv(path_or_buf=DATA_PATH+'csv/' + str(id) + "single_bomb.csv", encoding="utf-8",index=False) def single_input(id=123, DATA_PATH="", mode=0, df=None): if not os.path.exists(DATA_PATH+'csv'): os.makedirs(DATA_PATH+'csv') if not os.path.exists(DATA_PATH+'png'): os.makedirs(DATA_PATH+'png') df = df[df['meterID'] == id] res = pd.DataFrame() res['id'] = df['meterID'] res['usage'] = df['usage'] res['date'] = pd.to_datetime(df['date']) res = dp.date_format(res, base='2014/8/3') res = res.sort_values(by='date') # df = df[(df['date'] >= pd.to_datetime(begin)) & (df['date'] <= pd.to_datetime(end))] x = res['usage'] rec = rec_plot(x) plt.imshow(rec) plt.xticks([]) plt.yticks([]) plt.axis('off') if mode ==0 : plt.savefig(DATA_PATH+'png/'+str(id)+"single_input.png",dpi=300) res.to_csv(path_or_buf=DATA_PATH+'csv/'+ str(id) + "single_input.csv",encoding="utf-8", index=False) return res def generate_sample(filepath,rate = 0.5,filename="sitaiqu/kilowatt_everyday_2year.xlsx"): df = pd.read_excel(filename, sheet_name=dp.SN) df.rename(columns={df.columns[0]: "index", df.columns[1]: "redidentsID", df.columns[2]: "userID", df.columns[3]: "meterID", df.columns[4]: "date", df.columns[5]: "usage", }, inplace=True) df = df[df['meterID'] != dp.SMID] df = df.drop_duplicates(['meterID', 'date']) df['date'] = pd.to_datetime(df['date']) df = df[df['usage'] >= 0] df = df.sort_values(by='date') ids = df['meterID'].to_frame() ids = ids.drop_duplicates().reset_index() # ids['meterID'].apply(op) for i in range(0, ids.iloc[:, 0].size): op(ids.loc[i, 'meterID'], df,rate,filepath) def helper(x): split = map(int, x.strip('[').strip(']').split(',')) d = {} for counter, value in enumerate(split): k = str(len(list(split)))+"-"+str(counter) d[k] = int(value) return d def png_folder_processing(path,seed=42): print("[INFO] loading images...") data = [] labels = [] # grab the image paths and randomly shuffle them imagePaths = sorted(list(paths.list_images(path))) random.seed(seed) #random.shuffle(imagePaths) # loop over the input images for imagePath in imagePaths: # load the image, pre-process it, and store it in the data list print(imagePath) image = cv2.imread(imagePath) image = cv2.resize(image, (128, 128)) #image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) image = img_to_array(image) data.append(image) # extract the class label from the image path and update the # labels list if str.find(imagePath,'bomb')!=-1: # y_array.append(1) labels.append(1) print('1') else: # y_array.append(0) labels.append(0) print('0') # scale the raw pixel intensities to the range [0, 1] data = np.array(data, dtype="float") / 255.0 labels = np.array(labels) # convert the labels from integers to vectors return data,labels def csv_folder_processing(DATAPATH='samples2/'): X_array = [] y_array = [] line_nb = 0 col_num = 0 num_users = 1 for lists in os.listdir(DATAPATH): sub_path = os.path.join(DATAPATH, lists) # print(sub_path) if os.path.isfile(sub_path): num_users += 1 X = np.zeros((num_users, 729, 23), dtype=np.float32) y = np.zeros(num_users, dtype=np.float32) g = os.walk(DATAPATH) for path,dir_list,file_list in g: for j, file_name in enumerate(file_list, 1): print(file_name) if not file_name.startswith('.'): X_csv = csv_processing(csv_file_name = os.path.join(path, file_name), padding_line = 729) X[j] = X_csv[:729, ...] # if file_name.split('.')[0].endswith('bomb'): y[j] = 1 print('1') else: y[j] = 0 print('0') return X def date_helper(x, column_name): return pd.Series(list(map(int, x[column_name].strip('[').strip(']').split(',')))) def csv_processing(csv_file_name = "", padding_line = 729): fold_index = 1 ### dtypes = {'sub': 'float', 'super': 'float', 'error': 'float', 'com_date': 'int', 'week': 'str', 'month': 'str', 'year': 'str', 'numbers':'int', 'log':'float', 'id': 'str', 'usage': 'float'} # , 'A_mean': 'float', 'V_mean': 'float'} parse_dates = ['date'] print("start "+ csv_file_name) df = pd.read_csv(csv_file_name, header = 0, dtype=dtypes, parse_dates=parse_dates,encoding="utf-8") # df_test = pd.read_csv(DATAPATH+"test"+str(fold_index)+".csv", header = 0, dtype=dtypes, parse_dates=parse_dates,encoding="utf-8") df = df.sample(frac=1) # df_train_temp = df_train['week'].apply(helper).apply(pd.Series) # df_week = df['week'].apply(helper).apply(pd.Series).as_matrix() #7 # df_month = df['month'].apply(helper).apply(pd.Series).as_matrix() #12 # df_year = df['year'].apply(helper).apply(pd.Series).as_matrix() #3 df_week = df.apply(lambda x: date_helper(x, 'week'), axis=1) df_month = df.apply(lambda x: date_helper(x, 'month'), axis=1) df_year = df.apply(lambda x: date_helper(x, 'year'), axis=1) ''' X_train = df[['super','com_date']].as_matrix() X_train = np.column_stack((X_train, df_week, df_month, df_year)) Y_train = df[['error']].as_matrix() ''' df_empty = df[[ 'usage', 'com_date']].copy() # print(df_empty) # ss_x = preprocessing.MaxAbsScaler() ss_x = preprocessing.StandardScaler() array_new = ss_x.fit_transform(df_empty.ix[:,[0]]) df_usage = pd.DataFrame(array_new) array_new = ss_x.fit_transform(df_empty.ix[:,[1]]) df_com_date = pd.DataFrame(array_new) df_week = ss_x.fit_transform(df_week) # df_week = pd.DataFrame(df_week) df_month = ss_x.fit_transform(df_month) # df_month = pd.DataFrame(df_month) df_year = ss_x.fit_transform(df_year) # df_year = pd.DataFrame(df_year) # X_train = df_empty.ix[:,[2]].as_matrix() X_train = np.column_stack((df_usage, df_week, df_month, df_year)) #+ 1 7 12 3 = 23 if df.shape[0]<=padding_line: X_train = np.pad(X_train, ((0, padding_line), (0,0)), 'edge') return X_train def Combine_model(X1_train,X2_train): VGGmodel = keras.applications.vgg16.VGG16(include_top=False , weights='imagenet' # , input_tensor=inputs , input_shape=X1_train.shape[1:] , pooling=None # , classes=1000 ) x1= Flatten()(VGGmodel.output) x1= Dropout(0.5)(x1) x1= Dense(128)(x1) xs = Input(X2_train.shape[1:]) x_image = conv.Convolution1D(16, 5, padding='same', init='he_normal', W_regularizer=l1(0.01))(xs) x_image = BatchNormalization()(x_image) x_image = Activation('relu')(x_image) x_image = conv.Convolution1D(64, 5, padding='same', init='he_normal', W_regularizer=l1(0.01))(x_image) x_image = Activation('relu')(x_image) # x_image = BatchNormalization()(x_image) # x_image = conv.Convolution2D(128, (2, 2), padding='same',init='he_normal')(x_image) # x_image = Activation('relu')(x_image) # x_image = BatchNormalization()(x_image) x_image = Flatten()(x_image) x_image = Dense(128, init='he_normal', activation='relu', kernel_regularizer=regularizers.l2(0.01), activity_regularizer=regularizers.l1(0.01))(x_image) x_image = keras.layers.Add()([x1, x_image]) x_image = Dropout(0.5)(x_image) preds = Dense(2, init='he_normal', activation='sigmoid')(x_image) ada = Adadelta(lr=1e-3, rho=0.95, epsilon=1e-6) model = Model([VGGmodel.input,xs], preds) # Compile model model.summary() # model.compile(loss='mean_squared_error', optimizer=sgd) model.compile(loss='categorical_crossentropy', optimizer=ada, metrics=['accuracy']) #categorical_crossentropy #binary_crossentropy # history = model.fit(X_train, Y_train, # batch_size = 20, # epochs = 50, # verbose = 1, # validation_data = (X_test, Y_test)) # score = model.evaluate(X_test, Y_test, verbose=1) # print('Test loss:', score[0]) # print('Test accuracy:', score[1]) return model def kfold_evaluation_plot(X1, X2,y): tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) recalls = [] precisions = [] praucs = [] mean_precision = np.linspace(0, 1, 100) mean_recall = np.linspace(0, 1, 100) kf = KFold(n_splits=3,shuffle=True) # print("Y:") # print(y) early_stopping = EarlyStopping(monitor='val_acc', verbose=1, patience=30) lw = 2 i = 1 for train_index, test_index in kf.split(X1): results_filename = str(time.time()) checkpoint = ModelCheckpoint("./weights/dnn_weights" + results_filename + ".h5", monitor='val_loss', verbose=1, save_best_only=True) X1_train, X1_test = X1[train_index], X1[test_index] Y_train, Y_test = y[train_index], y[test_index] X1_val, Y_val = X1_test, Y_test X2_train, X2_test = X2[train_index], X2[test_index] X2_val = X2_test, Y_test = convert_y(Y_test) # print(Y_test) Y_train= convert_y(Y_train) model = Combine_model(X1_train,X2_train) model.fit([X1_train,X2_train], Y_train, batch_size=1, epochs=1000, validation_data=([X1_test,X2_test], Y_test), callbacks=[early_stopping, checkpoint]) prediction = model.predict([X1_test,X2_test]) print(prediction[1]) print(Y_test[1]) fpr, tpr, thresholds = m.roc_curve(Y_test.T[1], prediction.T[1], pos_label=1) print("TPR:") print(tpr) tprs.append(interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = m.auc(fpr, tpr) aucs.append(roc_auc) i += 1 # plt.subplot(1, 2, 1) # plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', # label='Chance', alpha=.8) print(tprs) mean_tpr = np.mean(tprs, axis=0) print("Mean_FPR") print (mean_fpr, mean_tpr) mean_tpr[-1] = 1.0 mean_auc = m.auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) print("end of function") print (mean_auc,std_auc) return mean_auc, std_auc def convert_y(y): y_dim2=[] for i in y: if (i==0): y_dim2.append([1,0]) if (i==1): y_dim2.append([0,1]) return np.array(y_dim2) def run_cnn(path): X1, y = png_folder_processing(path = path+'png/') X2 = csv_folder_processing(DATAPATH = path+'csv/') mean_auc, std_auc = kfold_evaluation_plot(X1, X2, y) # print (mean_auc, std_auc) return mean_auc, std_auc if __name__ == '__main__': # rate = 0.9 # while rate<0.96: # file_path = dirs+str(rate)+'/' # if not os.path.exists(file_path): # os.makedirs(file_path) # generate_sample(file_path,rate) # rate+=0.01 auc_x=[] auc_y=[] stds = [] rate = 0.5 while rate<1: rate = round(rate,2) print ("Now working with rate ="+str(rate)) file_path = dirs+str(rate)+'/' # if not os.path.exists(file_path): # os.makedirs(file_path) #generate_sample(file_path,rate) aucc, std = run_cnn(file_path) print ("************************************************") print (aucc, std) auc_x.append(rate) auc_y.append(aucc) stds.append(std) rate += 0.1 print(auc_x) print(auc_y) upper = [] lower = [] for i in range(len(auc_y)): upper.append(auc_y[i] + stds[i]) lower.append(auc_y[i] - stds[i]) plt.plot(auc_x,auc_y) plt.fill_between(auc_x, lower, upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') plt.xlabel('Rate') plt.ylabel('Area Under Curve') plt.savefig("sitaiqu/rates/rate"+str(time.time())+".png", dpi=300)
30.276978
193
0.61453
db4a1a6383b5bbc895eba85d0d432153717af512
670
py
Python
bin/checkgloss.py
encukou/teachtogether.tech
64c4e4b3ee6d45a0b489a5e5130123634aa32fea
[ "CC-BY-4.0" ]
null
null
null
bin/checkgloss.py
encukou/teachtogether.tech
64c4e4b3ee6d45a0b489a5e5130123634aa32fea
[ "CC-BY-4.0" ]
1
2018-09-14T10:12:27.000Z
2018-09-18T07:46:24.000Z
bin/checkgloss.py
encukou/teachtogether.tech
64c4e4b3ee6d45a0b489a5e5130123634aa32fea
[ "CC-BY-4.0" ]
1
2018-10-20T20:04:56.000Z
2018-10-20T20:04:56.000Z
#!/usr/bin/env python import sys import re DEF = re.compile(r'\*\*.+?\*\*{:#(g:.+?)}', re.DOTALL) REF = re.compile(r'\[.+?\]\(#(g:.+?)\)', re.DOTALL) def main(filenames): defs = set() refs = set() for path in filenames: with open(path, 'r') as reader: doc = reader.read() defs.update({d for d in DEF.findall(doc)}) refs.update({r for r in REF.findall(doc)}) report('missing', refs - defs) report('unused', defs - refs) def report(title, items): if not items: return print(title) for i in sorted(items): print(' {}'.format(i)) if __name__ == '__main__': main(sys.argv[1:])
20.9375
54
0.541791
d2ffeb2b14e926a50c9465081bef69ccf0fd0041
1,280
py
Python
LeetCode/2018-12-21-74-Search-a-2D-Matrix.py
HeRuivio/-Algorithm
1fbe6256630758fda3af68f469471ee246730afc
[ "MIT" ]
5
2018-10-30T05:07:32.000Z
2019-06-18T08:11:38.000Z
LeetCode/2018-12-21-74-Search-a-2D-Matrix.py
HeRuivio/-Algorithm
1fbe6256630758fda3af68f469471ee246730afc
[ "MIT" ]
1
2020-05-09T09:05:16.000Z
2020-05-09T09:05:16.000Z
LeetCode/2018-12-21-74-Search-a-2D-Matrix.py
HeRuivio/-Algorithm
1fbe6256630758fda3af68f469471ee246730afc
[ "MIT" ]
2
2020-05-09T09:02:22.000Z
2020-12-09T13:23:00.000Z
# -*- coding: utf-8 -*- # @Author: 何睿 # @Create Date: 2018-12-21 10:33:47 # @Last Modified by: 何睿 # @Last Modified time: 2018-12-21 10:56:40 class Solution: def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ # 如果矩阵为空,返回False if not matrix or not matrix[0]: return False # 二分法遍历,首先确定target在哪一行 left, right, middle = 0, len(matrix)-1, 0 while left <= right: middle = left+((right-left) >> 1) if matrix[middle][0] < target: left = middle+1 elif matrix[middle][0] > target: right = middle-1 else: return True row = right left, right = 0, len(matrix[0])-1 # 二分法遍历,确定当前值在哪一个位置 while left <= right: middle = left+((right-left) >> 1) if matrix[row][middle] < target: left = middle+1 elif matrix[row][middle] > target: right = middle - 1 else: return True return False if __name__ == "__main__": so = Solution() res = so.searchMatrix( [[]], 1001) print(res)
27.234043
49
0.480469
f64950a91d30cbba26a563b3e6f55220133ce1d6
3,226
py
Python
src/python/examples/simple_http_model_control.py
theHamsta/client
a0cfb8adc1f281da650c0974b4c7ddd5dc751358
[ "BSD-3-Clause" ]
107
2021-04-20T03:14:18.000Z
2022-03-29T02:53:26.000Z
src/python/examples/simple_http_model_control.py
theHamsta/client
a0cfb8adc1f281da650c0974b4c7ddd5dc751358
[ "BSD-3-Clause" ]
28
2021-05-05T12:05:57.000Z
2022-03-30T21:10:11.000Z
src/python/examples/simple_http_model_control.py
theHamsta/client
a0cfb8adc1f281da650c0974b4c7ddd5dc751358
[ "BSD-3-Clause" ]
90
2021-04-20T14:12:34.000Z
2022-03-30T02:40:14.000Z
#!/usr/bin/env python # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import sys import tritonclient.http as httpclient from tritonclient.utils import InferenceServerException if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action="store_true", required=False, default=False, help='Enable verbose output') parser.add_argument('-u', '--url', type=str, required=False, default='localhost:8000', help='Inference server URL. Default is localhost:8000.') FLAGS = parser.parse_args() try: triton_client = httpclient.InferenceServerClient(url=FLAGS.url, verbose=FLAGS.verbose) except Exception as e: print("context creation failed: " + str(e)) sys.exit(1) model_name = 'simple' # There are seven models in the repository directory if len(triton_client.get_model_repository_index()) != 7: sys.exit(1) triton_client.load_model(model_name) if not triton_client.is_model_ready(model_name): sys.exit(1) triton_client.unload_model(model_name) if triton_client.is_model_ready(model_name): sys.exit(1) # Trying to load wrong model name should emit exception try: triton_client.load_model("wrong_model_name") except InferenceServerException as e: if "failed to load" in e.message(): print("PASS: model control") else: sys.exit(1)
40.835443
80
0.67297
b60914f846ce453854ee6e675c9795045a9b2091
1,614
py
Python
opentelemetry-api/src/opentelemetry/context/thread_local_context.py
Skeen/opentelemetry-python
ad7a809a6dda7fbf73d9f47a3ff2ed85752cd0af
[ "Apache-2.0" ]
1
2020-01-15T06:58:27.000Z
2020-01-15T06:58:27.000Z
opentelemetry-api/src/opentelemetry/context/thread_local_context.py
Skeen/opentelemetry-python
ad7a809a6dda7fbf73d9f47a3ff2ed85752cd0af
[ "Apache-2.0" ]
null
null
null
opentelemetry-api/src/opentelemetry/context/thread_local_context.py
Skeen/opentelemetry-python
ad7a809a6dda7fbf73d9f47a3ff2ed85752cd0af
[ "Apache-2.0" ]
null
null
null
# Copyright 2019, OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading import typing # pylint: disable=unused-import from . import base_context class ThreadLocalRuntimeContext(base_context.BaseRuntimeContext): class Slot(base_context.BaseRuntimeContext.Slot): _thread_local = threading.local() def __init__(self, name: str, default: "object"): # pylint: disable=super-init-not-called self.name = name self.default = base_context.wrap_callable( default ) # type: typing.Callable[..., object] def clear(self) -> None: setattr(self._thread_local, self.name, self.default()) def get(self) -> "object": try: got = getattr(self._thread_local, self.name) # type: object return got except AttributeError: value = self.default() self.set(value) return value def set(self, value: "object") -> None: setattr(self._thread_local, self.name, value)
35.086957
76
0.651177
a6a059d81b4ba42cfea83b3559ee52fc73c2bf07
3,297
py
Python
config/validateRelease.py
timlehr/gaffer
354acd6af7500e0bd1ce19d7c417929e2f0a919e
[ "BSD-3-Clause" ]
null
null
null
config/validateRelease.py
timlehr/gaffer
354acd6af7500e0bd1ce19d7c417929e2f0a919e
[ "BSD-3-Clause" ]
null
null
null
config/validateRelease.py
timlehr/gaffer
354acd6af7500e0bd1ce19d7c417929e2f0a919e
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python ########################################################################## # # Copyright (c) 2019, Cinesite VFX Ltd. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import argparse import os import tarfile # A script to validate a Gaffer release archive parser = argparse.ArgumentParser() parser.add_argument( "--archive", dest = "archive", required = True, help = "The path to the build archive to publish." ) args = parser.parse_args() if not os.path.exists( args.archive ) : parser.exit( 1, "The specified archive '%s' does not exist." % args.archive ) print( "Validating %s" % args.archive ) # Validate the release contains our mandatory components requiredPaths = [ os.path.join( "doc", "gaffer", "html", "index.html" ), os.path.join( "resources", "examples" ) ] for module in ( "Gaffer", "GafferAppleseed", "GafferArnold", "GafferDelight", "GafferDispatch", "GafferImage", "GafferOSL", "GafferScene", "GafferTractor", "GafferVDB" ) : requiredPaths.append( os.path.join( "python", module ) ) requiredPaths.append( os.path.join( "python", "%sUI" % module ) ) with tarfile.open( args.archive, "r:gz" ) as a: # getmember still reads the whole archive, so might as well grab them all # as we go. We need to strip the first directory from all paths too as that # contains the release name archivePaths = { os.path.join( *m.name.split( os.sep )[1:] ) for m in a.getmembers() if os.sep in m.name } missing = [ p for p in requiredPaths if p not in archivePaths ] if missing : parser.exit( 1, "ERROR: The following are missing from the archive:\n%s" % "\n".join( missing ) ) print( "Archive appears OK" )
36.230769
107
0.686078
07c7f0939a3ae12a7160251818a7e2ebdb19015f
1,165
py
Python
Algorithms/CaesarCipher.py
avyayjain/Python_Scripts
d89926a84d5df3cbd57244df27f215891aa60d20
[ "Unlicense" ]
20
2020-08-17T13:49:03.000Z
2022-01-26T18:04:14.000Z
Algorithms/CaesarCipher.py
avyayjain/Python_Scripts
d89926a84d5df3cbd57244df27f215891aa60d20
[ "Unlicense" ]
20
2020-09-30T15:49:38.000Z
2021-10-21T05:06:00.000Z
Algorithms/CaesarCipher.py
avyayjain/Python_Scripts
d89926a84d5df3cbd57244df27f215891aa60d20
[ "Unlicense" ]
67
2020-08-17T18:23:11.000Z
2022-02-21T08:29:16.000Z
def caesar_cipher(message_to_encrypt: str, key: int, encrypt_direction: str) -> str: alphabet = "abcdefghijklmnopqrstuvwyzABCDEFGHIJKLMNOPQRSTUVWYZ" result = "" for character in message_to_encrypt: # returns the position of the chara"cter in alphabet array position = alphabet.find(character) if position == -1: # character not found result += character else: if encrypt_direction == "backward": # if backward direction return 1 position in alphabet array new_position = position - key elif encrypt_direction == "forward": # if forward direction advance 1 position in alphabet array new_position = position + key result += alphabet[new_position: new_position+1] return result if __name__ == "__main__": message_to_encrypt = input("insert the message you want to encrypt: ") key = int(input("insert the key you want to encrypt your text: ")) mode = input("insert the direction of the cipher: (backward) or (forward) ") print(caesar_cipher(message_to_encrypt, key, mode))
43.148148
84
0.646352
68a8f7d0c33a509a8e74e315abf9e71138e8adfe
20,617
py
Python
dlk/tests/test_optimizer.py
tvlenin/blueoil
810680df75e2640f67d515c377ba2b4531b9e584
[ "Apache-2.0" ]
null
null
null
dlk/tests/test_optimizer.py
tvlenin/blueoil
810680df75e2640f67d515c377ba2b4531b9e584
[ "Apache-2.0" ]
null
null
null
dlk/tests/test_optimizer.py
tvlenin/blueoil
810680df75e2640f67d515c377ba2b4531b9e584
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Test file for Optimizer.""" import unittest from core.data_types import Float32, PackedUint32, Int32, QUANTIZED_NOT_PACKED from core.optimizer import pass_remove_identities, pass_transpose, pass_constant_folding, \ pass_propagate_quantization_details_into_conv, pass_compute_thresholds, pass_pack_weights, \ pass_quantize_convolutions, pass_propagate_datatypes, pass_propagate_output_type_backward from core.graph import Graph from core.operators import Add, AveragePool, BatchNormalization, Constant, Conv, Identity, Input, \ MaxPool, Operator, Output, Transpose, QTZ_binary_mean_scaling, QTZ_linear_mid_tread_half, Reshape, Softmax, \ SpaceToDepth import numpy as np class TestPassTranspose(unittest.TestCase): """Test class for transposing pass.""" def test_pass_transpose(self) -> None: """Test code for transposing optimizer pass.""" data = np.random.rand(3, 2, 2, 1) graph1 = self.create_sample_graph(data) graph2 = self.create_expected_graph(data) pass_transpose(graph1) self.assertEqual(graph1, graph2, 'transpose to NHWC failed.') print("Test pass #1 transpose passed!") @staticmethod def create_sample_graph(data: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [3, 5, 5, 1], Float32(), dimension_format='CWHN') # constant and internal nodes w = Constant('weight', Float32(), data, dimension_format='CWHN') i1 = Identity('identity1', [3, 2, 2, 1], Float32(), {'input': w}, dimension_format='CWHN') q = QTZ_binary_mean_scaling('qtz1', [3, 2, 2, 1], Float32(), {'input': i1}, dimension_format='CWHN') # Conv conv = Conv('conv', [3, 4, 4, 1], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2], dimension_format='CWHN') # One output rs = Reshape('reshape', [1, 48], Float32(), {'data': conv}) y = Output('output', [1, 48], Float32(), {'input': rs},) # add ops to the graph graph.add_op_and_inputs(y) return graph @staticmethod def create_expected_graph(data: np.ndarray) -> Graph: graph = Graph() data = data.transpose([3, 2, 1, 0]) # input x = Input('placeholder', [1, 5, 5, 3], Float32(), dimension_format='NHWC') # constant and internal nodes w = Constant('weight', Float32(), data, dimension_format='NHWC') i1 = Identity('identity1', [1, 2, 2, 3], Float32(), {'input': w}, dimension_format='NHWC') q = QTZ_binary_mean_scaling('qtz1', [1, 2, 2, 3], Float32(), {'input': i1}, dimension_format='NHWC') # Conv conv = Conv('conv', [1, 4, 4, 3], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2], dimension_format='NHWC') # One output rs = Reshape('reshape', [1, 48], Float32(), {'data': conv}) y = Output('output', [1, 48], Float32(), {'input': rs},) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassRemoveIdentities(unittest.TestCase): """Test class for removing identity pass.""" def test_pass_remove_identities(self) -> None: """Test code for removing identities optimizer pass.""" data = np.random.rand(1, 2, 2, 3) graph1 = self.create_sample_graph(data) graph2 = self.create_expected_graph(data) pass_remove_identities(graph1) self.assertEqual(graph1, graph2, 'remove identities failed.') print("Test pass #2 remove identities passed!") @staticmethod def create_sample_graph(data: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # constant and internal nodes w = Constant('weight', Float32(), data) i1 = Identity('identity1', [1, 2, 2, 3], Float32(), {'input': w}) q = QTZ_binary_mean_scaling('qtz1', [1, 2, 2, 3], Float32(), {'input': i1}) # Conv conv = Conv('conv', [1, 4, 4, 3], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2]) # One output i2 = Identity('identity2', [1, 4, 4, 3], Float32(), {'input': conv}) rs = Reshape('reshape', [1, 48], Float32(), {'data': i2}) y = Output('output', [1, 48], Float32(), {'input': rs},) # add ops to the graph graph.add_op_and_inputs(y) return graph @staticmethod def create_expected_graph(data: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # constant and internal nodes w = Constant('weight', Float32(), data) q = QTZ_binary_mean_scaling('qtz1', [1, 2, 2, 3], Float32(), {'input': w}) # Conv conv = Conv('conv', [1, 4, 4, 3], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2]) # One output rs = Reshape('reshape', [1, 48], Float32(), {'data': conv}) y = Output('output', [1, 48], Float32(), {'input': rs},) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassPropagateQuantizationDetailsIntoConv(unittest.TestCase): """Test class for propagating quantization details into conv.""" def test_pass_propagate_quantization_details_into_conv(self) -> None: """Test pass.""" data1 = np.random.rand(1, 2, 2, 3) data2 = np.random.rand(1, 2, 2, 3) graph1 = self.create_sample_graph(data1, data2) graph2 = self.create_expected_graph(data1, data2) pass_propagate_quantization_details_into_conv(graph1) aq_g1 = graph1.get_op('conv2').a_quantizer aq_g2 = graph2.get_op('conv2').a_quantizer kq_g1 = graph1.get_op('conv2').quantizer kq_g2 = graph2.get_op('conv2').quantizer self.assertEqual(len(aq_g1), len(aq_g2), '[Failed] Found number of activation quantizer not matched') if aq_g1 and aq_g2: self.assertEqual(aq_g1[0].op_type, aq_g2[0].op_type, '[Failed] Found type of activation quantizer not matched') self.assertEqual(kq_g1.op_type, kq_g2.op_type, '[Failed] Found type of kernel quantizer not matched') self.assertEqual(graph1, graph2, '[Failed] Expected graph not matched') print("Test pass #3 propagate_quantization_details_into_conv passed!") @staticmethod def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) # activation quantizer s1 = Constant('aq_const1', Float32(), np.array(1)) s2 = Constant('aq_const2', Float32(), np.array(2)) aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2}) # Conv2 w2 = Constant('weight2', Float32(), data2) kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2}) conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq, 'W': kq}, kernel_shape=[2, 2]) # One output y = Output('output', [1, 3, 3, 3], Float32(), {'input': conv2}) # add ops to the graph graph.add_op_and_inputs(y) return graph @staticmethod def create_expected_graph(data1: np.ndarray, data2: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) # activation quantizer s1 = Constant('aq_const1', Float32(), np.array(1)) s2 = Constant('aq_const2', Float32(), np.array(2)) aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2}) # Conv2 w2 = Constant('weight2', Float32(), data2) kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2}) conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq, 'W': kq}, kernel_shape=[2, 2]) conv2.a_quantizer = [aq] conv2.quantizer = kq # One output y = Output('output', [1, 3, 3, 3], Float32(), {'input': conv2}) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassPackWeights(unittest.TestCase): """Test class for packing weight.""" def test_pass_pack_weights(self) -> None: """Test pass.""" data1 = np.float32(np.random.rand(1, 2, 2, 3)) data2 = np.float32(np.random.rand(1, 2, 2, 3)) graph1 = self.create_sample_graph(data1, data2) pass_pack_weights(graph1) self.assertEqual(graph1.get_op('conv2').input_ops['W'].op_type, 'Constant', '[Failed] Found input kernel weights not a constant') graph_2_1 = self.create_sample_graph_2(data1) graph_2_2 = self.create_sample_graph_2(data1) pass_pack_weights(graph_2_2) self.assertEqual(graph_2_1, graph_2_2, '[Failed] Found optimized graph not the same') print("Test pass #4 pack_weights passed!") @staticmethod def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) # activation quantizer s1 = Constant('aq_const1', Float32(), np.array(1)) s2 = Constant('aq_const2', Float32(), np.array(2)) aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2}) # Conv2 w2 = Constant('weight2', Float32(), data2) kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2}) conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq, 'W': kq}, kernel_shape=[2, 2]) conv2.a_quantizer = [aq] conv2.quantizer = kq # One output y = Output('output', [1, 3, 3, 3], Float32(), {'input': conv2}) # add ops to the graph graph.add_op_and_inputs(y) return graph @staticmethod def create_sample_graph_2(data1: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) s1 = Constant('const1', Float32(), np.zeros([1, 4, 4, 3])) add1 = Add('add', [1, 4, 4, 3], Float32(), {'A': conv1, 'B': s1}) y = Output('output', [1, 4, 4, 3], Float32(), {'input': add1}) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassQuantizeConvolutions(unittest.TestCase): """Test class for packing weight.""" def test_pass_quantize_convolutions(self) -> None: """Test pass.""" data1 = np.float32(np.random.rand(1, 2, 2, 3)) data2 = np.float32(np.random.rand(1, 2, 2, 3)) graph1 = self.create_sample_graph(data1, data2) pass_quantize_convolutions(graph1) self.assertEqual(graph1.get_op('aqtz1').dtype, QUANTIZED_NOT_PACKED(), '[Failed] Found output dtype of activation quantizer not proper') self.assertEqual(graph1.get_op('kqtz1').dtype, PackedUint32(), '[Failed] Found output dtype of kernel quantizer not proper') self.assertEqual(graph1.get_op('conv2').dtype, Float32(), '[Failed] Found output dtype of conv not proper') print("Test pass #5 quantize_convolutions passed!") @staticmethod def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) # activation quantizer s1 = Constant('aq_const1', Float32(), np.array(1)) s2 = Constant('aq_const2', Float32(), np.array(2)) aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2}) # Conv2 w2 = Constant('weight2', Float32(), data2) kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2}) conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq, 'W': kq}, kernel_shape=[2, 2]) conv2.a_quantizer = [aq] conv2.quantizer = kq # One output y = Output('output', [1, 3, 3, 3], Float32(), {'input': conv2}) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassPropagateDatatypes(unittest.TestCase): """Test class for packing weight.""" def test_pass_propagate_datatypes(self) -> None: """Test pass.""" data1 = np.float32(np.random.rand(1, 2, 2, 3)) graph1 = self.create_sample_graph(data1) # graph2 = self.create_expected_graph(data1, data2) pass_propagate_datatypes(graph1) self.assertEqual(graph1.get_op('s2d').dtype, QUANTIZED_NOT_PACKED(), '[Failed] Found dtype of SpaceToDepth not propagate correctly') print("Test pass #6 propagate data types passed!") @staticmethod def create_sample_graph(data1: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], QUANTIZED_NOT_PACKED(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) pool1 = SpaceToDepth('s2d', [1, 2, 2, 12], Float32(), {'input': conv1}) # One output y = Output('output', [1, 2, 2, 12], Float32(), {'input': pool1}) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassPropagateOutputTypeBackward(unittest.TestCase): """Test class for packing weight.""" def test_pass_propagate_output_type_backward(self) -> None: """Test pass.""" data1 = np.float32(np.random.rand(1, 2, 2, 3)) graph1 = self.create_sample_graph(data1) pass_propagate_output_type_backward(graph1) self.assertEqual(graph1.get_op('conv1').dtype, Float32(), '[Failed] Found dtype of SpaceToDepth not propagate correctly') print("Test pass #7 propagate output type backward passed!") @staticmethod def create_sample_graph(data1: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], QUANTIZED_NOT_PACKED(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) conv1.is_quantized = True pool1 = SpaceToDepth('s2d', [1, 2, 2, 12], Float32(), {'input': conv1}) # One output y = Output('output', [1, 2, 2, 12], Float32(), {'input': pool1}) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassComputeThresholds(unittest.TestCase): """Test class for packing weight.""" def test_pass_compute_thresholds(self) -> None: """Test pass.""" data1 = np.float32(np.random.rand(1, 2, 2, 3)) data2 = np.float32(np.random.rand(1, 2, 2, 3)) graph1 = self.create_sample_graph(data1, data2) pass_compute_thresholds(graph1) self.assertEqual(graph1.get_op('conv2').has_thresholds, True, '[Failed] Found threshold of Conv not calculated') print("Test pass #8 compute_thresholds passed!") def test_pass_compute_thresholds_for_huge_threshold_values(self) -> None: """Test pass.""" data1 = np.float32(np.random.rand(1, 2, 2, 3)) data2 = np.float32(np.random.uniform(10 ** (-30), 10 ** (-40), size=(1, 2, 2, 3))) graph1 = self.create_sample_graph(data1, data2) pass_compute_thresholds(graph1) self.assertEqual(graph1.get_op('conv2').has_thresholds, True, '[Failed] Found threshold of Conv not calculated') print("Test pass #8-1 compute_thresholds of enormous values passed!") @staticmethod def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph: graph = Graph() # input x = Input('placeholder', [1, 5, 5, 3], Float32()) # Conv1 w1 = Constant('weight1', Float32(), data1) conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2]) # activation quantizer s1 = Constant('aq_const1', Int32(), np.array([2], dtype=np.int32)) s2 = Constant('aq_const2', Float32(), np.array([2.0], dtype=np.float32)) aq1 = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2}) # Conv2 w2 = Constant('weight2', Float32(), data2) kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2}) conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq1, 'W': kq}, kernel_shape=[2, 2]) conv2.a_quantizer = [aq1] conv2.quantizer = kq conv2.is_quantized = True sc = Constant('bn_scale', Float32(), np.random.rand(3)) be = Constant('bn_b', Float32(), np.random.rand(3)) mu = Constant('bn_mu', Float32(), np.random.rand(3)) va = Constant('bn_var', Float32(), np.random.rand(3)) bn = BatchNormalization('bn', [1, 3, 3, 3], Float32(), {'X': conv2, 'scale': sc, 'B': be, 'mean': mu, 'var': va}) # activation quantizer s3 = Constant('aq_const3', Int32(), np.array([2], dtype=np.int32)) s4 = Constant('aq_const4', Float32(), np.array([2.0], dtype=np.float32)) aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {'X': bn, 'Y': s3, 'Z': s4}) # One output y = Output('output', [1, 3, 3, 3], Float32(), {'input': aq2}) # add ops to the graph graph.add_op_and_inputs(y) return graph class TestPassConstantFolding(unittest.TestCase): """Test class for packing weight.""" def test_pass_constant_folding(self) -> None: """Test pass.""" graph1 = self.create_sample_graph() pass_constant_folding(graph1) self.assertEqual(set(graph1.get_op('potatoes_new').data), set(np.array([2, 5])), '[Failed] Found folded constant not correct') print("Test pass #9 constant folding passed!") @staticmethod def create_sample_graph() -> Graph: graph = Graph() x = Input('placeholder', [2], Float32()) s1 = Constant('potato_1', Float32(), np.array([1, 2])) s2 = Constant('potato_2', Float32(), np.array([1, 3])) add1 = Add('potatoes', [2], Float32(), {'A': s1, 'B': s2}) add2 = Add('more_potatoes', [2], Float32(), {'A': x, 'B': add1}) # One output y = Output('output', [2], Float32(), {'input': add2}) # add ops to the graph graph.add_op_and_inputs(y) return graph if __name__ == '__main__': unittest.main()
37.349638
116
0.578988
842e9a36f58a0ab6dcb760a38a97f1c99b3a26d2
3,164
py
Python
Canvas.py
PositivePeriod/Touchable
8ecb69bd72f16bc0c244c2e983316659d2db1eb5
[ "MIT" ]
1
2020-07-24T19:29:24.000Z
2020-07-24T19:29:24.000Z
Canvas.py
PositivePeriod/Touchable
8ecb69bd72f16bc0c244c2e983316659d2db1eb5
[ "MIT" ]
2
2022-01-13T03:01:41.000Z
2022-03-12T00:40:55.000Z
Canvas.py
PositivePeriod/Touchable
8ecb69bd72f16bc0c244c2e983316659d2db1eb5
[ "MIT" ]
null
null
null
from scipy import interpolate from Function import * class Canvas: def __init__(self): self.to_draw = [] self.to_draw_image = None self.canvas = None def clear(self): self.to_draw.clear() def erase(self): if len(self.to_draw): self.to_draw.pop() def new_draw(self, command): self.to_draw.append(command) def set_canvas(self, canvas): self.canvas = canvas def pop(self): return self.to_draw.pop() def draw(self, scale, width_margin, height_margin): if self.to_draw_image is not None: self.canvas.create_image() # TODO for obj in self.to_draw: color = color_type(obj[1], 'rgb', 'hex') size = obj[2] if obj[0] == 'interpolate': try: tck = interpolate.splprep([numpy.array(obj[3]), numpy.array(obj[4])], s=0)[0] u_new = numpy.arange(0, 1.001, 0.001) out = interpolate.splev(u_new, tck) inp = [] for i in range(len(out[0])): x, y = convert_pos(scale, width_margin, height_margin, x=out[0][i], y=out[1][i]) inp.extend([x, y]) self.canvas.create_line(*inp, fill=color, width=obj[2]) except TypeError as e: points = [] for i in range(len(obj[3])): point = convert_pos(scale, width_margin, height_margin, x=obj[3][i], y=obj[4][i]) points.extend(point) self.canvas.create_line(*points, fill=color, width=obj[2]) if str(e) != 'm > k must hold': print(e) finally: continue elif obj[0] == 'line': p = tuple(obj[3][i] * scale + (width_margin if i % 2 == 0 else height_margin) for i in range(len(obj[3]))) self.canvas.create_line(*p, fill=color, width=size) continue x1, y1 = convert_pos(scale, width_margin, height_margin, x=obj[3][0], y=obj[3][1]) if obj[0] == 'point': self.canvas.create_oval(x1 - 1, y1 - 1, x1 + 1, y1 + 1, fill=color, outline=color, width=size) continue x2, y2 = convert_pos(scale, width_margin, height_margin, x=obj[4][0], y=obj[4][1]) if obj[0] == 'rectangle': if x1 != x2 and y1 != y2: x1_, y1_, x2_, y2_ = min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2) self.canvas.create_rectangle(x1_, y1_, x2_, y2_, outline=color, width=size) elif obj[0] == 'line': if obj[3] != obj[4]: self.canvas.create_line(x1, y1, x2, y2, fill=color, width=size) elif obj[0] == 'circle': r = int(square_distance((x1, y1), (x2, y2), root=True)) if r != 0: self.canvas.create_oval(x1 - r, y1 - r, x1 + r, y1 + r, outline=color, width=size) else: print(f'Error; draw; {obj}')
41.631579
122
0.48957
5b38adf4bcf4be9700cd81606f9a579fcd4b5530
433
py
Python
code/pyclient/test-cassandra.py
BastienBP/boonta_kafka_streams
bb63a42702a3ae6c1266d9b3bcc77e162c1ba559
[ "MIT" ]
20
2016-09-26T09:15:26.000Z
2018-11-20T12:31:07.000Z
code/pyclient/test-cassandra.py
BastienBP/boonta_kafka_streams
bb63a42702a3ae6c1266d9b3bcc77e162c1ba559
[ "MIT" ]
2
2016-09-23T14:01:48.000Z
2017-03-28T17:19:41.000Z
code/pyclient/test-cassandra.py
BastienBP/boonta_kafka_streams
bb63a42702a3ae6c1266d9b3bcc77e162c1ba559
[ "MIT" ]
11
2017-01-30T16:20:56.000Z
2018-10-07T01:33:08.000Z
from cassandra.cluster import Cluster cluster=Cluster(['cassandra1', 'cassandra2', 'cassandra3']) session=cluster.connect('boontadata') session.execute("INSERT INTO raw_events (message_id, device_id, device_time, category, measure1, measure2) VALUES ('pysample-1', 'pysample', 1472222537503, "test", 100, 1234.56)") rows = session.execute("SELECT * FROM raw_events") for row in rows: print(row) print("OK") cluster.shutdown()
33.307692
179
0.750577
9a76a67244fd8d5f53f59072a7a8dbcdfd053cb7
677
py
Python
utils/random.py
Samoray-l337/CryptoGuesser
7e9df5a15b3cb9958518fbcb008a03bb9364d3da
[ "MIT" ]
null
null
null
utils/random.py
Samoray-l337/CryptoGuesser
7e9df5a15b3cb9958518fbcb008a03bb9364d3da
[ "MIT" ]
null
null
null
utils/random.py
Samoray-l337/CryptoGuesser
7e9df5a15b3cb9958518fbcb008a03bb9364d3da
[ "MIT" ]
null
null
null
import random def random_abc_key(): return random.randint(1, 26) def random_subtitution_array(): array_key = {} while len(array_key.keys()) < 13: key = chr(random_abc_key() + ord('a') - 1) value = chr(random_abc_key() + ord('a') - 1) if key in array_key.keys() or value in array_key.values(): continue array_key[key] = value return array_key def random_subtitution_string(): array_string = '' while len(array_string) < 26: value = chr(random_abc_key() + ord('a') - 1) if value in array_string: continue array_string += value return array_string
23.344828
66
0.589365
1245b5e0b0c83e7839956f627746798d961450ad
422
py
Python
dico/model/__init__.py
AkiaCode/dico
d67c0c0da0370538723bcc852ad4a6b1ac00a512
[ "MIT" ]
1
2021-09-02T15:59:18.000Z
2021-09-02T15:59:18.000Z
dico/model/__init__.py
AkiaCode/dico
d67c0c0da0370538723bcc852ad4a6b1ac00a512
[ "MIT" ]
null
null
null
dico/model/__init__.py
AkiaCode/dico
d67c0c0da0370538723bcc852ad4a6b1ac00a512
[ "MIT" ]
null
null
null
from .application import * from .audit_log import * from .channel import * from .emoji import * from .event import * from .extras import * from .gateway import * from .guild import * from .guild_template import * from .invite import * from .permission import * from .snowflake import * from .stage import * from .sticker import * from .user import * from .voice import * from .webhook import * from .interactions import *
22.210526
29
0.744076
e71ad71c002ad171c3ca267ecf302921364b695a
380
py
Python
pt01_object,design/cpt01/ticket_seller.py
s3ich4n/object_study
302108212d1d1f18ae57135145416513de3cb7c2
[ "MIT" ]
null
null
null
pt01_object,design/cpt01/ticket_seller.py
s3ich4n/object_study
302108212d1d1f18ae57135145416513de3cb7c2
[ "MIT" ]
2
2021-06-03T18:45:13.000Z
2021-06-04T13:09:29.000Z
pt01_object,design/cpt01/ticket_seller.py
s3ich4n/object_study
302108212d1d1f18ae57135145416513de3cb7c2
[ "MIT" ]
null
null
null
# # 판매원 객체에 대한 코드 # # @author Seongeun Yu (s3ich4n@gmail.com) # @date 2021/06/04 02:43 created. # from ticket_office import TicketOffice class TicketSeller: def __init__( self, ticket_office: TicketOffice, ): self._ticket_office = ticket_office @property def ticket_office(self): return self._ticket_office
17.272727
46
0.628947
1d577c43ca67e89334360f4bd51eb9840c1ae0b5
1,488
py
Python
src/drone_ai/scripts/helpers/control/objects.py
ElHouas/drone_sim
e42f49d8536855516b3881c016f828e8525e4af3
[ "MIT" ]
null
null
null
src/drone_ai/scripts/helpers/control/objects.py
ElHouas/drone_sim
e42f49d8536855516b3881c016f828e8525e4af3
[ "MIT" ]
null
null
null
src/drone_ai/scripts/helpers/control/objects.py
ElHouas/drone_sim
e42f49d8536855516b3881c016f828e8525e4af3
[ "MIT" ]
1
2020-12-18T21:14:33.000Z
2020-12-18T21:14:33.000Z
#! /usr/bin/env python import rospy import time from std_msgs.msg import Empty from geometry_msgs.msg import Twist class Control(): def __init__(self): self.ctrl_c = False self._pub_cmd_vel = rospy.Publisher('/cmd_vel', Twist, queue_size=1) self._move_msg = Twist() self._pub_takeoff = rospy.Publisher('/drone/takeoff', Empty, queue_size=1) self._takeoff_msg = Empty() self._pub_land = rospy.Publisher('/drone/land', Empty, queue_size=1) self._land_msg = Empty() def stop(self): rospy.loginfo("Stopping...") self._move_msg.linear.x = 0.0 self._move_msg.angular.z = 0.0 self._pub_cmd_vel.publish(self._move_msg) def takeoff(self): rospy.loginfo('Taking off...') i=0 while not i == 3: self._pub_takeoff.publish(self._takeoff_msg) time.sleep(1) i += 1 def land(self): rospy.loginfo('Landing...') i=0 while not i == 3: self._pub_land.publish(self._land_msg) time.sleep(1) i += 1 def turn(self): rospy.loginfo("Turning...") self._move_msg.linear.x = 0.0 self._move_msg.angular.z = 1.0 self_pub_cmd_vel.publish(self._move_msg) def move_forward(self): rospy.loginfo("Moving forward...") self._move_msg.linear.x = 1.0 self._move_msg.angular.z = 0.0 self_pub_cmd_vel.publish(self._move_msg)
29.76
82
0.596774
133a40bcec8bb4d45d7a75fc81231fee770fe080
3,220
py
Python
archs4py/geo.py
MaayanLab/archs4pipeline
3d9599cb2942d839ce2f73d0ca1fd5629919dd1d
[ "Apache-2.0" ]
null
null
null
archs4py/geo.py
MaayanLab/archs4pipeline
3d9599cb2942d839ce2f73d0ca1fd5629919dd1d
[ "Apache-2.0" ]
null
null
null
archs4py/geo.py
MaayanLab/archs4pipeline
3d9599cb2942d839ce2f73d0ca1fd5629919dd1d
[ "Apache-2.0" ]
null
null
null
import urllib import GEOparse import os import pandas as pd from tqdm import tqdm import multiprocessing import contextlib import io import sys def parse_platform(platform, srr, processed_gsms): os.makedirs("downloads/soft", exist_ok=True) p = platform p1 = p[0:5]+"nnn" p2 = p[0:9] url = "ftp://ftp.ncbi.nlm.nih.gov/geo/platforms/"+p1+"/"+p2+"/soft/"+p2+"_family.soft.gz" urllib.request.urlretrieve(url, "downloads/soft/"+p2+".soft.gz") geo = GEOparse.get_GEO(filepath="downloads/soft/"+p2+".soft.gz", silent=True) gsmids = [] for gsmid, gsm in geo.gsms.items(): gsmids.append(gsmid) matching_gsms = list(set(srr.index).intersection(set(gsmids))) new_gsms = list(set(matching_gsms).difference(set(list(processed_gsms[0])))) sll = srr.loc[new_gsms] #chunk_samples = chunk(matching_gsms, 1000) #with multiprocessing.Pool(6) as pool: # parameters = [(x, geo, sll) for x in chunk_samples] # res = list(tqdm(pool.imap(check_gsm_star, parameters), desc="Scanning gsms", total=len(parameters))) #res = pd.concat(res) return check_gsm(new_gsms, geo, sll) def chunk(l, n): return [l[i:i+n] for i in range(0, len(l), n)] def check_gsm_star(args): return check_gsm(*args) def check_gsm(new_gsms, geo, sll): sralist = [] for gsmid in new_gsms: gsm = geo.gsms[gsmid] if gsm.metadata['library_strategy'][0] == 'RNA-Seq': series = gsm.metadata["series_id"][0] species = gsm.metadata["taxid_ch1"][0] sralist.append([series, gsmid, species]) mm = pd.DataFrame(sralist) if mm.shape[0] == 0: return pd.DataFrame(columns=["gse", "gsm", "sra", "species"]) else: mm.index = mm.iloc[:,1] mm = mm.join(sll, how="inner").iloc[:,[0,1,3,2]] mm.columns = ["gse", "gsm", "sra", "species"] return mm def scan_platforms(srr, processed_gsm): platforms = ["GPL24676", "GPL24247", "GPL21626", "GPL21697", "GPL21273", "GPL20795", "GPL21493", "GPL21103", "GPL19057", "GPL18480", "GPL17021", "GPL15103", "GPL13112", "GPL21290", "GPL20301", "GPL18573", "GPL18460", "GPL16791", "GPL15433", "GPL11154", "GPL23227", "GPL23479"] platform_results = [] for p in tqdm(platforms): res = parse_platform(p, srr, processed_gsm) platform_results.append(res) return pd.concat(platform_results) def fast_geo(platform, srr, processed_gsms): os.makedirs("downloads/soft", exist_ok=True) p = platform p1 = p[0:5]+"nnn" p2 = p[0:9] url = "ftp://ftp.ncbi.nlm.nih.gov/geo/platforms/"+p1+"/"+p2+"/soft/"+p2+"_family.soft.gz" urllib.request.urlretrieve(url, "downloads/soft/"+p2+".soft.gz") os.system("zgrep '\^SAMPLE\|!Sample_library_strategy' downloads/soft/"+p2+".soft.gz > temp.tsv") f=open('temp.tsv','r') lines = f.readlines() f.close() lines = [x.strip().replace("^SAMPLE = ", "") for x in lines] lines = [x.replace("!Sample_library_strategy = ", "") for x in lines] lines = [x.replace("!Sample_taxid_ch1 = ", "") for x in lines] cc = chunk(lines,2) df = pd.DataFrame(cc) rna_samples = df[df[1] == "RNA-Seq"][0] rna_samples.intersection(srr)
36.590909
280
0.631988
190fa901d81d88277676f6d87a5ee7564b71f25a
4,068
py
Python
authlib/flask/oauth2/resource_protector.py
tk193192/authlib
4c60a628f64c6d385a06ea55e416092726b94d07
[ "BSD-3-Clause" ]
2
2021-04-26T18:17:37.000Z
2021-04-28T21:39:45.000Z
authlib/flask/oauth2/resource_protector.py
tk193192/authlib
4c60a628f64c6d385a06ea55e416092726b94d07
[ "BSD-3-Clause" ]
null
null
null
authlib/flask/oauth2/resource_protector.py
tk193192/authlib
4c60a628f64c6d385a06ea55e416092726b94d07
[ "BSD-3-Clause" ]
1
2019-10-07T02:01:48.000Z
2019-10-07T02:01:48.000Z
import functools from contextlib import contextmanager from flask import json from flask import request as _req from flask import _app_ctx_stack from werkzeug.local import LocalProxy from authlib.oauth2 import ( OAuth2Error, ResourceProtector as _ResourceProtector ) from authlib.oauth2.rfc6749 import ( MissingAuthorizationError, TokenRequest, ) from .signals import token_authenticated from ..error import raise_http_exception class ResourceProtector(_ResourceProtector): """A protecting method for resource servers. Creating a ``require_oauth`` decorator easily with ResourceProtector:: from authlib.flask.oauth2 import ResourceProtector require_oauth = ResourceProtector() # add bearer token validator from authlib.oauth2.rfc6750 import BearerTokenValidator from project.models import Token class MyBearerTokenValidator(BearerTokenValidator): def authenticate_token(self, token_string): return Token.query.filter_by(access_token=token_string).first() def request_invalid(self, request): return False def token_revoked(self, token): return False require_oauth.register_token_validator(MyBearerTokenValidator()) # protect resource with require_oauth @app.route('/user') @require_oauth('profile') def user_profile(): user = User.query.get(current_token.user_id) return jsonify(user.to_dict()) """ def raise_error_response(self, error): """Raise HTTPException for OAuth2Error. Developers can re-implement this method to customize the error response. :param error: OAuth2Error :raise: HTTPException """ status = error.status_code body = json.dumps(dict(error.get_body())) headers = error.get_headers() raise_http_exception(status, body, headers) def acquire_token(self, scope=None, operator='AND'): """A method to acquire current valid token with the given scope. :param scope: string or list of scope values :param operator: value of "AND" or "OR" :return: token object """ request = TokenRequest( _req.method, _req.full_path, _req.data, _req.headers ) if not callable(operator): operator = operator.upper() token = self.validate_request(scope, request, operator) token_authenticated.send(self, token=token) ctx = _app_ctx_stack.top ctx.authlib_server_oauth2_token = token return token @contextmanager def acquire(self, scope=None, operator='AND'): """The with statement of ``require_oauth``. Instead of using a decorator, you can use a with statement instead:: @app.route('/api/user') def user_api(): with require_oauth.acquire('profile') as token: user = User.query.get(token.user_id) return jsonify(user.to_dict()) """ try: yield self.acquire_token(scope, operator) except OAuth2Error as error: self.raise_error_response(error) def __call__(self, scope=None, operator='AND', optional=False): def wrapper(f): @functools.wraps(f) def decorated(*args, **kwargs): try: self.acquire_token(scope, operator) except MissingAuthorizationError as error: if optional: return f(*args, **kwargs) self.raise_error_response(error) except OAuth2Error as error: self.raise_error_response(error) return f(*args, **kwargs) return decorated return wrapper def _get_current_token(): ctx = _app_ctx_stack.top return getattr(ctx, 'authlib_server_oauth2_token', None) current_token = LocalProxy(_get_current_token)
32.806452
79
0.632743
8809761f6b7f6dd05e4c5b852c86cd06a3375468
2,102
py
Python
pyleecan/Methods/Simulation/IndMagFEMM/comp_inductance.py
thalesmaoa/pyleecan
c4fdc6362fdeba3d0766d5d1df3ff9c97c3f9fa3
[ "Apache-2.0" ]
1
2021-11-10T11:52:57.000Z
2021-11-10T11:52:57.000Z
pyleecan/Methods/Simulation/IndMagFEMM/comp_inductance.py
thalesmaoa/pyleecan
c4fdc6362fdeba3d0766d5d1df3ff9c97c3f9fa3
[ "Apache-2.0" ]
null
null
null
pyleecan/Methods/Simulation/IndMagFEMM/comp_inductance.py
thalesmaoa/pyleecan
c4fdc6362fdeba3d0766d5d1df3ff9c97c3f9fa3
[ "Apache-2.0" ]
null
null
null
from os.path import join from ....Classes.InputCurrent import InputCurrent from ....Classes.MagFEMM import MagFEMM from ....Classes.Simulation import Simulation from ....Classes.Simu1 import Simu1 from ....Functions.Electrical.dqh_transformation import n2dqh_DataTime def comp_inductance(self, machine, OP_ref): """Compute using FEMM the inductance (Current driven only) Parameters ---------- self : IndMagFEMM an IndMagFEMM object machine : Machine a Machine object OP_ref: OperatingPoint an OP object Returns ---------- Phi_d_mean: float Flux linkage along d-axis """ self.get_logger().info("Compute dq inductances with FEMM") # Get simulation name and result path if isinstance(machine.parent, Simulation) and machine.parent.name not in [None, ""]: simu_name = machine.parent.name + "_IndMagFEMM" path_result = ( join(machine.parent.path_result, "IndMagFEMM") if machine.parent.path_result not in [None, ""] else None ) elif machine.name not in [None, ""]: simu_name = machine.name + "_IndMagFEMM" path_result = None else: simu_name = "IndMagFEMM" path_result = None # Define simulation simu_ind = Simu1( elec=None, name=simu_name, path_result=path_result, machine=machine ) simu_ind.input = InputCurrent(OP=OP_ref, Nt_tot=self.Nt_tot, Na_tot=2048) simu_ind.mag = MagFEMM( is_periodicity_t=True, is_periodicity_a=self.is_periodicity_a, is_sliding_band=self.is_sliding_band, Kgeo_fineness=self.Kgeo_fineness, type_calc_leakage=self.type_calc_leakage, nb_worker=self.nb_worker, ) # Run Simulation out_ind = simu_ind.run() # Post-Process stator_label = machine.stator.get_label() Phidqh = n2dqh_DataTime( out_ind.mag.Phi_wind[stator_label], phase_dir=out_ind.elec.phase_dir ) Phi_dqh_mean = Phidqh.get_along("time=mean", "phase")[Phidqh.symbol] return (Phi_dqh_mean[0], Phi_dqh_mean[1])
30.028571
88
0.666032
a6e8c54ced1d3b2093636edb3c923a186a434515
1,600
py
Python
src/python/icurry/types/iobject.py
andyjost/Sprite
7ecd6fc7d48d7f62da644e48c12c7b882e1a2929
[ "MIT" ]
1
2022-03-16T16:37:11.000Z
2022-03-16T16:37:11.000Z
src/python/icurry/types/iobject.py
andyjost/Sprite
7ecd6fc7d48d7f62da644e48c12c7b882e1a2929
[ "MIT" ]
null
null
null
src/python/icurry/types/iobject.py
andyjost/Sprite
7ecd6fc7d48d7f62da644e48c12c7b882e1a2929
[ "MIT" ]
null
null
null
from ...utility import curryname from ...utility.proptree import proptree import collections, six, weakref __all__ = ['IArity', 'IObject', 'IVarIndex'] IArity = int IVarIndex = int class IObject(object): def __init__(self, metadata=None): if metadata is not None: self._metadata = proptree(metadata) @property def metadata(self): return getattr(self, '_metadata', {}) def update_metadata(self, items): md = getattr(self.metadata, '_asdict', self.metadata) md.update(items) self._metadata = proptree(md) @property def children(self): return () def copy(self, **updates): '''Copy an IObject with optional updates.''' data = self.dict() data.update(**updates) return type(self)(**data) def dict(self): '''Get the object properties as a dictionary.''' if hasattr(self, '_fields_'): return collections.OrderedDict( (name, getattr(self, name)) for name in self._fields_ ) else: return { k:v for k,v in six.iteritems(self.__dict__) if k != 'metadata' } # Make objects comparable by their contents. def __eq__(lhs, rhs): if rhs is None: return False if type(lhs) != type(rhs): return False # Compare dicts. return lhs.dict() == rhs.dict() def __ne__(lhs, rhs): return not (lhs == rhs) def __hash__(self): return hash(tuple(sorted(self.dict()))) def __repr__(self): return '%s(%s)' % ( type(self).__name__ , ', '.join( '%s=%r' % item for item in self.dict().items() ) )
23.188406
62
0.608125
23bafc64cfd30e297f44696b500c8eb508faea1a
16,092
py
Python
frappe/desk/moduleview.py
erpnext-tm/frappe
7b470f28e1cf00b0659c01e06a2d0a4693b28d98
[ "MIT" ]
null
null
null
frappe/desk/moduleview.py
erpnext-tm/frappe
7b470f28e1cf00b0659c01e06a2d0a4693b28d98
[ "MIT" ]
null
null
null
frappe/desk/moduleview.py
erpnext-tm/frappe
7b470f28e1cf00b0659c01e06a2d0a4693b28d98
[ "MIT" ]
null
null
null
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import json import frappe from frappe import _ from frappe.boot import get_allowed_pages, get_allowed_reports from frappe.cache_manager import ( build_domain_restriced_doctype_cache, build_domain_restriced_page_cache, build_table_count_cache, ) from frappe.desk.doctype.desktop_icon.desktop_icon import clear_desktop_icons_cache, set_hidden @frappe.whitelist() def get(module): """Returns data (sections, list of reports, counts) to render module view in desk: `/desk/#Module/[name]`.""" data = get_data(module) out = {"data": data} return out @frappe.whitelist() def hide_module(module): set_hidden(module, frappe.session.user, 1) clear_desktop_icons_cache() def get_table_with_counts(): counts = frappe.cache().get_value("information_schema:counts") if counts: return counts else: return build_table_count_cache() def get_data(module, build=True): """Get module data for the module view `desk/#Module/[name]`""" doctype_info = get_doctype_info(module) data = build_config_from_file(module) if not data: data = build_standard_config(module, doctype_info) else: add_custom_doctypes(data, doctype_info) add_section(data, _("Custom Reports"), "fa fa-list-alt", get_report_list(module)) data = combine_common_sections(data) data = apply_permissions(data) # set_last_modified(data) if build: exists_cache = get_table_with_counts() def doctype_contains_a_record(name): exists = exists_cache.get(name) if not exists: if not frappe.db.get_value("DocType", name, "issingle"): exists = frappe.db.count(name) else: exists = True exists_cache[name] = exists return exists for section in data: for item in section["items"]: # Onboarding # First disable based on exists of depends_on list doctype = item.get("doctype") dependencies = item.get("dependencies") or None if not dependencies and doctype: item["dependencies"] = [doctype] dependencies = item.get("dependencies") if dependencies: incomplete_dependencies = [d for d in dependencies if not doctype_contains_a_record(d)] if len(incomplete_dependencies): item["incomplete_dependencies"] = incomplete_dependencies if item.get("onboard"): # Mark Spotlights for initial if item.get("type") == "doctype": name = item.get("name") count = doctype_contains_a_record(name) item["count"] = count return data def build_config_from_file(module): """Build module info from `app/config/desktop.py` files.""" data = [] module = frappe.scrub(module) for app in frappe.get_installed_apps(): try: data += get_config(app, module) except ImportError: pass return filter_by_restrict_to_domain(data) def filter_by_restrict_to_domain(data): """filter Pages and DocType depending on the Active Module(s)""" doctypes = ( frappe.cache().get_value("domain_restricted_doctypes") or build_domain_restriced_doctype_cache() ) pages = frappe.cache().get_value("domain_restricted_pages") or build_domain_restriced_page_cache() for d in data: _items = [] for item in d.get("items", []): item_type = item.get("type") item_name = item.get("name") if (item_name in pages) or (item_name in doctypes) or item_type == "report": _items.append(item) d.update({"items": _items}) return data def build_standard_config(module, doctype_info): """Build standard module data from DocTypes.""" if not frappe.db.get_value("Module Def", module): frappe.throw(_("Module Not Found")) data = [] add_section( data, _("Documents"), "fa fa-star", [d for d in doctype_info if d.document_type in ("Document", "Transaction")], ) add_section( data, _("Setup"), "fa fa-cog", [d for d in doctype_info if d.document_type in ("Master", "Setup", "")], ) add_section(data, _("Standard Reports"), "fa fa-list", get_report_list(module, is_standard="Yes")) return data def add_section(data, label, icon, items): """Adds a section to the module data.""" if not items: return data.append({"label": label, "icon": icon, "items": items}) def add_custom_doctypes(data, doctype_info): """Adds Custom DocTypes to modules setup via `config/desktop.py`.""" add_section( data, _("Documents"), "fa fa-star", [d for d in doctype_info if (d.custom and d.document_type in ("Document", "Transaction"))], ) add_section( data, _("Setup"), "fa fa-cog", [d for d in doctype_info if (d.custom and d.document_type in ("Setup", "Master", ""))], ) def get_doctype_info(module): """Returns list of non child DocTypes for given module.""" active_domains = frappe.get_active_domains() doctype_info = frappe.get_all( "DocType", filters={"module": module, "istable": 0}, or_filters={"ifnull(restrict_to_domain, '')": "", "restrict_to_domain": ("in", active_domains)}, fields=["'doctype' as type", "name", "description", "document_type", "custom", "issingle"], order_by="custom asc, document_type desc, name asc", ) for d in doctype_info: d.document_type = d.document_type or "" d.description = _(d.description or "") return doctype_info def combine_common_sections(data): """Combine sections declared in separate apps.""" sections = [] sections_dict = {} for each in data: if each["label"] not in sections_dict: sections_dict[each["label"]] = each sections.append(each) else: sections_dict[each["label"]]["items"] += each["items"] return sections def apply_permissions(data): default_country = frappe.db.get_default("country") user = frappe.get_user() user.build_permissions() allowed_pages = get_allowed_pages() allowed_reports = get_allowed_reports() new_data = [] for section in data: new_items = [] for item in section.get("items") or []: item = frappe._dict(item) if item.country and item.country != default_country: continue if ( (item.type == "doctype" and item.name in user.can_read) or (item.type == "page" and item.name in allowed_pages) or (item.type == "report" and item.name in allowed_reports) or item.type == "help" ): new_items.append(item) if new_items: new_section = section.copy() new_section["items"] = new_items new_data.append(new_section) return new_data def get_disabled_reports(): if not hasattr(frappe.local, "disabled_reports"): frappe.local.disabled_reports = set(r.name for r in frappe.get_all("Report", {"disabled": 1})) return frappe.local.disabled_reports def get_config(app, module): """Load module info from `[app].config.[module]`.""" config = frappe.get_module("{app}.config.{module}".format(app=app, module=module)) config = config.get_data() sections = [s for s in config if s.get("condition", True)] disabled_reports = get_disabled_reports() for section in sections: items = [] for item in section["items"]: if item["type"] == "report" and item["name"] in disabled_reports: continue # some module links might not have name if not item.get("name"): item["name"] = item.get("label") if not item.get("label"): item["label"] = _(item.get("name")) items.append(item) section["items"] = items return sections def config_exists(app, module): try: frappe.get_module("{app}.config.{module}".format(app=app, module=module)) return True except ImportError: return False def add_setup_section(config, app, module, label, icon): """Add common sections to `/desk#Module/Setup`""" try: setup_section = get_setup_section(app, module, label, icon) if setup_section: config.append(setup_section) except ImportError: pass def get_setup_section(app, module, label, icon): """Get the setup section from each module (for global Setup page).""" config = get_config(app, module) for section in config: if section.get("label") == _("Setup"): return {"label": label, "icon": icon, "items": section["items"]} def get_onboard_items(app, module): try: sections = get_config(app, module) except ImportError: return [] onboard_items = [] fallback_items = [] if not sections: doctype_info = get_doctype_info(module) sections = build_standard_config(module, doctype_info) for section in sections: for item in section["items"]: if item.get("onboard", 0) == 1: onboard_items.append(item) # in case onboard is not set fallback_items.append(item) if len(onboard_items) > 5: return onboard_items return onboard_items or fallback_items @frappe.whitelist() def get_links_for_module(app, module): return [{"value": l.get("name"), "label": l.get("label")} for l in get_links(app, module)] def get_links(app, module): try: sections = get_config(app, frappe.scrub(module)) except ImportError: return [] links = [] for section in sections: for item in section["items"]: links.append(item) return links @frappe.whitelist() def get_desktop_settings(): from frappe.config import get_modules_from_all_apps_for_user all_modules = get_modules_from_all_apps_for_user() home_settings = get_home_settings() modules_by_name = {} for m in all_modules: modules_by_name[m["module_name"]] = m module_categories = ["Modules", "Domains", "Places", "Administration"] user_modules_by_category = {} user_saved_modules_by_category = home_settings.modules_by_category or {} user_saved_links_by_module = home_settings.links_by_module or {} def apply_user_saved_links(module): module = frappe._dict(module) all_links = get_links(module.app, module.module_name) module_links_by_name = {} for link in all_links: module_links_by_name[link["name"]] = link if module.module_name in user_saved_links_by_module: user_links = frappe.parse_json(user_saved_links_by_module[module.module_name]) module.links = [module_links_by_name[l] for l in user_links if l in module_links_by_name] return module for category in module_categories: if category in user_saved_modules_by_category: user_modules = user_saved_modules_by_category[category] user_modules_by_category[category] = [ apply_user_saved_links(modules_by_name[m]) for m in user_modules if modules_by_name.get(m) ] else: user_modules_by_category[category] = [ apply_user_saved_links(m) for m in all_modules if m.get("category") == category ] # filter out hidden modules if home_settings.hidden_modules: for category in user_modules_by_category: hidden_modules = home_settings.hidden_modules or [] modules = user_modules_by_category[category] user_modules_by_category[category] = [ module for module in modules if module.module_name not in hidden_modules ] return user_modules_by_category @frappe.whitelist() def update_hidden_modules(category_map): category_map = frappe.parse_json(category_map) home_settings = get_home_settings() saved_hidden_modules = home_settings.hidden_modules or [] for category in category_map: config = frappe._dict(category_map[category]) saved_hidden_modules += config.removed or [] saved_hidden_modules = [d for d in saved_hidden_modules if d not in (config.added or [])] if home_settings.get("modules_by_category") and home_settings.modules_by_category.get(category): module_placement = [ d for d in (config.added or []) if d not in home_settings.modules_by_category[category] ] home_settings.modules_by_category[category] += module_placement home_settings.hidden_modules = saved_hidden_modules set_home_settings(home_settings) return get_desktop_settings() @frappe.whitelist() def update_global_hidden_modules(modules): modules = frappe.parse_json(modules) frappe.only_for("System Manager") doc = frappe.get_doc("User", "Administrator") doc.set("block_modules", []) for module in modules: doc.append("block_modules", {"module": module}) doc.save(ignore_permissions=True) return get_desktop_settings() @frappe.whitelist() def update_modules_order(module_category, modules): modules = frappe.parse_json(modules) home_settings = get_home_settings() home_settings.modules_by_category = home_settings.modules_by_category or {} home_settings.modules_by_category[module_category] = modules set_home_settings(home_settings) @frappe.whitelist() def update_links_for_module(module_name, links): links = frappe.parse_json(links) home_settings = get_home_settings() home_settings.setdefault("links_by_module", {}) home_settings["links_by_module"].setdefault(module_name, None) home_settings["links_by_module"][module_name] = links set_home_settings(home_settings) return get_desktop_settings() @frappe.whitelist() def get_options_for_show_hide_cards(): global_options = [] if "System Manager" in frappe.get_roles(): global_options = get_options_for_global_modules() return {"user_options": get_options_for_user_blocked_modules(), "global_options": global_options} @frappe.whitelist() def get_options_for_global_modules(): from frappe.config import get_modules_from_all_apps all_modules = get_modules_from_all_apps() blocked_modules = frappe.get_doc("User", "Administrator").get_blocked_modules() options = [] for module in all_modules: module = frappe._dict(module) options.append( { "category": module.category, "label": module.label, "value": module.module_name, "checked": module.module_name not in blocked_modules, } ) return options @frappe.whitelist() def get_options_for_user_blocked_modules(): from frappe.config import get_modules_from_all_apps_for_user all_modules = get_modules_from_all_apps_for_user() home_settings = get_home_settings() hidden_modules = home_settings.hidden_modules or [] options = [] for module in all_modules: module = frappe._dict(module) options.append( { "category": module.category, "label": module.label, "value": module.module_name, "checked": module.module_name not in hidden_modules, } ) return options def set_home_settings(home_settings): frappe.cache().hset("home_settings", frappe.session.user, home_settings) frappe.db.set_value("User", frappe.session.user, "home_settings", json.dumps(home_settings)) @frappe.whitelist() def get_home_settings(): def get_from_db(): settings = frappe.db.get_value("User", frappe.session.user, "home_settings") return frappe.parse_json(settings or "{}") home_settings = frappe.cache().hget("home_settings", frappe.session.user, get_from_db) return home_settings def get_module_link_items_from_list(app, module, list_of_link_names): try: sections = get_config(app, frappe.scrub(module)) except ImportError: return [] links = [] for section in sections: for item in section["items"]: if item.get("label", "") in list_of_link_names: links.append(item) return links def set_last_modified(data): for section in data: for item in section["items"]: if item["type"] == "doctype": item["last_modified"] = get_last_modified(item["name"]) def get_last_modified(doctype): def _get(): try: last_modified = frappe.get_all( doctype, fields=["max(modified)"], as_list=True, limit_page_length=1 )[0][0] except Exception as e: if frappe.db.is_table_missing(e): last_modified = None else: raise # hack: save as -1 so that it is cached if last_modified == None: last_modified = -1 return last_modified last_modified = frappe.cache().hget("last_modified", doctype, _get) if last_modified == -1: last_modified = None return last_modified def get_report_list(module, is_standard="No"): """Returns list on new style reports for modules.""" reports = frappe.get_list( "Report", fields=["name", "ref_doctype", "report_type"], filters={"is_standard": is_standard, "disabled": 0, "module": module}, order_by="name", ) out = [] for r in reports: out.append( { "type": "report", "doctype": r.ref_doctype, "is_query_report": 1 if r.report_type in ("Query Report", "Script Report", "Custom Report") else 0, "label": _(r.name), "name": r.name, } ) return out
26.038835
99
0.727691
ff76eee5af137c925641dfd7dca4bb3c72963dd1
515
py
Python
spectacle/tests/test_fitting.py
nmearl/spectacle
ae2d11a41dfae5430de392d54b06bf991003fd69
[ "BSD-3-Clause" ]
null
null
null
spectacle/tests/test_fitting.py
nmearl/spectacle
ae2d11a41dfae5430de392d54b06bf991003fd69
[ "BSD-3-Clause" ]
1
2021-05-13T20:51:13.000Z
2021-05-13T20:51:13.000Z
spectacle/tests/test_fitting.py
nmearl/spectacle
ae2d11a41dfae5430de392d54b06bf991003fd69
[ "BSD-3-Clause" ]
null
null
null
from astropy.modeling.fitting import LevMarLSQFitter from spectacle.modeling import Spectral1D, OpticalDepth1D import astropy.units as u import numpy as np def test_levmar(): line1 = OpticalDepth1D(lambda_0=1216 * u.AA, v_doppler=500 * u.km /u.s, column_density=14) spec_mod = Spectral1D(line1, continuum=1) x = np.linspace(1200, 1225, 1000) * u.Unit('Angstrom') y = spec_mod(x) fitter = LevMarLSQFitter() fit_spec_mod = fitter(spec_mod, x, y) assert np.allclose(y, fit_spec_mod(x))
30.294118
94
0.724272
986f6a0e68fb365ff7368808c20f337c44c5b15b
2,461
py
Python
11/11.py
zinccat/Convex-Analysis-homework
16b2abc5a62717821fa3e06dee31ed99584347ff
[ "MIT" ]
5
2021-05-02T14:01:00.000Z
2022-03-30T03:16:45.000Z
11/11.py
zinccat/Convex-Analysis-homework
16b2abc5a62717821fa3e06dee31ed99584347ff
[ "MIT" ]
null
null
null
11/11.py
zinccat/Convex-Analysis-homework
16b2abc5a62717821fa3e06dee31ed99584347ff
[ "MIT" ]
2
2022-03-06T03:49:26.000Z
2022-03-06T15:13:13.000Z
# HW11 给定函数的梯度下降优化 # By ZincCat import numpy as np from matplotlib import pyplot as plt # 设置随机种子 np.random.seed(19890817) # 初始化问题 m = 10 n = 15 a = np.random.normal(5, 5, [n, m]) x = np.ones(n) def f(x): # 计算函数值 return np.sum(np.exp(a.T@x)) + np.sum(np.exp(-a.T@x)) def gradient_f(x): # 计算函数梯度 return a@(np.exp(a.T@x) - np.exp(-a.T@x)) def descent(x, grad, grad_norm, mode='2'): # 梯度下降函数 # 输入目前x取值, 梯度, 梯度的范数, 下降模式 # 输出下降后x取值, 步长t # 下降模式为'2'时采用2范数, 为'inf'时采用无穷范数 normalized_grad = grad/grad_norm t = 1.0 if mode == '2': # l_2 norm while f(x - t*normalized_grad) > value - alpha*t*np.dot(grad, normalized_grad): t *= beta x -= t*normalized_grad elif mode == 'inf': # l_infty norm while f(x - t*np.sign(normalized_grad)) > value - alpha*t*np.dot(grad, np.sign(normalized_grad)): t *= beta x -= t*np.sign(normalized_grad) return x, t minValue = f(np.zeros(n)) # 函数最小值 alpha_list = [0.22] beta_list = [0.62] maxIter = 1000 # 最大迭代次数 eta = 0.01 # 停止条件 result = [] # 记录 参数-结果 对 time = [] # 记录时间步, 用于绘图 values = [] # 记录某一时间步下函数值, 用于绘图 stepsize = [] # 记录某一时间步下步长, 用于绘图 Plot = True # 是否绘图, 请保证此时alpha, beta均为单一取值 t = 0 # 用于绘图 # 实验 for alpha in alpha_list: for beta in beta_list: timestep = 0 x = np.ones(n) while True: value = f(x) # print("Iteration:", timestep, "Error", value - minValue) if Plot: time.append(timestep) stepsize.append(t) values.append(value) grad = gradient_f(x) grad_norm = np.linalg.norm(grad) if grad_norm <= eta or timestep > maxIter: break x, t = descent(x, grad, grad_norm, mode='inf') # 此时使用无穷范数 timestep += 1 result.append((alpha, beta, f(x)-minValue, timestep)) for i in result: print(i) # 绘图 if Plot: # f − p^* versus iteration plt.plot(time, values) plt.xlabel('Iterations', fontsize=14) plt.ylabel('Value', fontsize=14) plt.savefig('alpha'+str(alpha)+'beta'+str(beta)+'value.pdf') plt.show() # step length versus iteration number del(time[0]) del(stepsize[0]) plt.plot(time, stepsize) plt.xlabel('Iterations', fontsize=14) plt.ylabel('Step length', fontsize=14) plt.savefig('alpha'+str(alpha)+'beta'+str(beta)+'step.pdf') plt.show()
24.61
105
0.572531
8453ab1f830f25573159eba866ca915bb3d27ca5
1,792
py
Python
dask_sql/physical/rel/logical/table_scan.py
rjzamora/dask-sql
c3ad6a9f6b01ce02127fde7501eaf322c8160f7e
[ "MIT" ]
56
2021-08-17T21:21:24.000Z
2022-03-29T11:28:51.000Z
dask_sql/physical/rel/logical/table_scan.py
rjzamora/dask-sql
c3ad6a9f6b01ce02127fde7501eaf322c8160f7e
[ "MIT" ]
195
2021-08-13T16:48:17.000Z
2022-03-29T16:17:48.000Z
dask_sql/physical/rel/logical/table_scan.py
rjzamora/dask-sql
c3ad6a9f6b01ce02127fde7501eaf322c8160f7e
[ "MIT" ]
22
2021-08-17T08:31:27.000Z
2022-03-15T16:39:39.000Z
from typing import TYPE_CHECKING from dask_sql.datacontainer import DataContainer from dask_sql.physical.rel.base import BaseRelPlugin if TYPE_CHECKING: import dask_sql from dask_sql.java import org class DaskTableScanPlugin(BaseRelPlugin): """ A DaskTableScal is the main ingredient: it will get the data from the database. It is always used, when the SQL looks like SELECT .... FROM table .... We need to get the dask dataframe from the registered tables and return the requested columns from it. Calcite will always refer to columns via index. """ class_name = "com.dask.sql.nodes.DaskTableScan" def convert( self, rel: "org.apache.calcite.rel.RelNode", context: "dask_sql.Context" ) -> DataContainer: # There should not be any input. This is the first step. self.assert_inputs(rel, 0) # The table(s) we need to return table = rel.getTable() # The table names are all names split by "." # We assume to always have the form something.something table_names = [str(n) for n in table.getQualifiedName()] assert len(table_names) == 2 schema_name = table_names[0] table_name = table_names[1] table_name = table_name.lower() dc = context.schema[schema_name].tables[table_name] df = dc.df cc = dc.column_container # Make sure we only return the requested columns row_type = table.getRowType() field_specifications = [str(f) for f in row_type.getFieldNames()] cc = cc.limit_to(field_specifications) cc = self.fix_column_to_row_type(cc, rel.getRowType()) dc = DataContainer(df, cc) dc = self.fix_dtype_to_row_type(dc, rel.getRowType()) return dc
32.581818
80
0.667969
09201441818015d1809ec5698d1811ea09583fbf
929
py
Python
test/test_minimal_software_asset.py
cons3rt/cons3rt-python-sdk
f0bcb295735ac55bbe47448fcbd95d2c7beb3ec0
[ "RSA-MD" ]
null
null
null
test/test_minimal_software_asset.py
cons3rt/cons3rt-python-sdk
f0bcb295735ac55bbe47448fcbd95d2c7beb3ec0
[ "RSA-MD" ]
null
null
null
test/test_minimal_software_asset.py
cons3rt/cons3rt-python-sdk
f0bcb295735ac55bbe47448fcbd95d2c7beb3ec0
[ "RSA-MD" ]
null
null
null
# coding: utf-8 """ CONS3RT Web API A CONS3RT ReSTful API # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: apiteam@swagger.io Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import openapi_client from openapi_client.models.minimal_software_asset import MinimalSoftwareAsset # noqa: E501 from openapi_client.rest import ApiException class TestMinimalSoftwareAsset(unittest.TestCase): """MinimalSoftwareAsset unit test stubs""" def setUp(self): pass def tearDown(self): pass def testMinimalSoftwareAsset(self): """Test MinimalSoftwareAsset""" # FIXME: construct object with mandatory attributes with example values # model = openapi_client.models.minimal_software_asset.MinimalSoftwareAsset() # noqa: E501 pass if __name__ == '__main__': unittest.main()
22.658537
99
0.717976
14210c3b83ac555606dc4dc3f4d5a714f7d8154f
8,695
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_available_service_aliases_operations.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_available_service_aliases_operations.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2020_04_01/operations/_available_service_aliases_operations.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class AvailableServiceAliasesOperations(object): """AvailableServiceAliasesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.AvailableServiceAliasesResult"] """Gets all available service aliases for this subscription in this region. :param location: The location. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailableServiceAliasesResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_04_01.models.AvailableServiceAliasesResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AvailableServiceAliasesResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('AvailableServiceAliasesResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/locations/{location}/availableServiceAliases'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str location, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.AvailableServiceAliasesResult"] """Gets all available service aliases for this resource group in this region. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param location: The location. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AvailableServiceAliasesResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2020_04_01.models.AvailableServiceAliasesResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.AvailableServiceAliasesResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('AvailableServiceAliasesResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/locations/{location}/availableServiceAliases'} # type: ignore
46.497326
204
0.650029
073a8d5a67e53ae645e119e666eb1893e7066f35
2,768
py
Python
pysm/experiments/semantic_labeling/summary.py
binh-vu/semantic-modeling
b387584502ba1daa6abd6b7573828416f6426b49
[ "MIT" ]
3
2019-10-31T15:26:20.000Z
2022-03-03T06:04:03.000Z
pysm/experiments/semantic_labeling/summary.py
binh-vu/semantic-modeling
b387584502ba1daa6abd6b7573828416f6426b49
[ "MIT" ]
1
2021-10-05T14:57:29.000Z
2022-03-27T01:58:41.000Z
pysm/experiments/semantic_labeling/summary.py
binh-vu/semantic-modeling
b387584502ba1daa6abd6b7573828416f6426b49
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import argparse import shutil import ujson from pathlib import Path import numpy as np # import gmtk.config # gmtk.config.USE_C_EXTENSION = False from semantic_labeling import create_semantic_typer from semantic_modeling.assembling.learning.evaluate import predict_sm, evaluate from datetime import datetime from experiments.slack_notifier import send_message, ExpResultMessage, TextMessage from semantic_modeling.assembling.learning.online_learning import create_default_model, online_learning from semantic_modeling.assembling.learning.shared_models import TrainingArgs from semantic_modeling.assembling.undirected_graphical_model.model import Model from semantic_modeling.config import config from semantic_modeling.data_io import get_semantic_models, get_short_train_name from semantic_modeling.settings import Settings from semantic_modeling.utilities.serializable import serializeCSV, deserializeCSV def get_shell_args(): def str2bool(v): assert v.lower() in {"true", "false"} return v.lower() == "true" parser = argparse.ArgumentParser('Semantic labeling experiment') parser.register("type", "boolean", str2bool) parser.add_argument('--dataset', type=str, default=None, help="Dataset name") parser.add_argument('--exp_dir', type=str, help='Experiment directory, must be existed before') parser.add_argument('--channel', type=str) parser.add_argument('--detail', type=str) args = parser.parse_args() return args if __name__ == '__main__': args = get_shell_args() dataset = args.dataset kfold_eval = [["source", "mrr", "accuracy", "coverage"]] exp_dir = Path(args.exp_dir) assert exp_dir.exists() for file in exp_dir.iterdir(): if file.name.endswith('.test.csv'): eval = deserializeCSV(file) assert eval[0][0] == 'source' and eval[-1][0] == 'average' kfold_eval += eval[1:-1] if len(kfold_eval) == 1: print(">>> ERROR NO OUTPUTS") send_message(config.slack.channel[args.channel], TextMessage(f"Experiment error: no outputs\n.*Experiment dir*: {args.exp_dir}")) else: average = [ 'average', np.average([float(x[1]) for x in kfold_eval[1:]]), np.average([float(x[2]) for x in kfold_eval[1:]]), np.average([float(x[3]) for x in kfold_eval[1:]]), ] kfold_eval.append(average) serializeCSV(kfold_eval, exp_dir / f"all.csv") send_message(config.slack.channel[args.channel], ExpResultMessage(dataset, args.detail, args.exp_dir, { "mrr": average[1], "accuracy": average[2], "coverage": average[3] })) print(">>> AVERAGE:", average)
36.906667
137
0.692558
df148910e62fc8528eceeb1afce7b2e74e3b36ff
749
py
Python
improved_enigma/main/tests/factories.py
2019342a/improved-enigma
7be2cf30673ed7cc3b78f68b3f22c1ba6d800dee
[ "MIT" ]
null
null
null
improved_enigma/main/tests/factories.py
2019342a/improved-enigma
7be2cf30673ed7cc3b78f68b3f22c1ba6d800dee
[ "MIT" ]
6
2021-09-06T08:36:33.000Z
2022-03-01T23:01:24.000Z
improved_enigma/main/tests/factories.py
2019342a/improved-enigma
7be2cf30673ed7cc3b78f68b3f22c1ba6d800dee
[ "MIT" ]
null
null
null
from factory.django import DjangoModelFactory from factory import Faker from factory import SubFactory from ..models import Customer from ..models import Order from ..models import Product from ..models import Stock class CustomerFactory(DjangoModelFactory): full_name = Faker("name") email = Faker("email") class Meta: model = Customer class ProductFactory(DjangoModelFactory): name = Faker("name") description = Faker("text") class Meta: model = Product class StockFactory(DjangoModelFactory): product = SubFactory(ProductFactory) class Meta: model = Stock class OrderFactory(DjangoModelFactory): customer = SubFactory(CustomerFactory) class Meta: model = Order
19.205128
45
0.714286
325986b27dd73a92732384e751d9c9e719907fd5
6,363
py
Python
org/mk/training/dl/tfwordslstmmulti.py
slowbreathing/Deep-Breathe
bcc97cadfc53d3297317764ecfb2223e5e715fd1
[ "MIT" ]
5
2019-05-01T03:49:32.000Z
2022-02-20T12:41:38.000Z
org/mk/training/dl/tfwordslstmmulti.py
slowbreathing/Deep-Breathe
bcc97cadfc53d3297317764ecfb2223e5e715fd1
[ "MIT" ]
null
null
null
org/mk/training/dl/tfwordslstmmulti.py
slowbreathing/Deep-Breathe
bcc97cadfc53d3297317764ecfb2223e5e715fd1
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf from tensorflow.contrib import rnn import random import collections import time from tensorflow.python.ops import array_ops from tensorflow.contrib.rnn.python.ops import rnn_cell from tensorflow.python.ops import variable_scope from tensorflow.python.ops import init_ops from tensorflow.contrib.rnn import GRUCell from org.mk.training.dl.common import input_one_hot from org.mk.training.dl.util import get_rel_save_file import sys # data I/O train_file=sys.argv[1] data = open(train_file, 'r').read() # Parameters learning_rate = 0.001 #training_iters = 50000 training_iters = 200 display_step = 100 n_input = 3 # number of units in RNN cell n_hidden = 5 rnd=np.random.RandomState(42) def read_data(fname): with open(fname) as f: data = f.readlines() data = [x.strip() for x in data] data = [data[i].lower().split() for i in range(len(data))] data = np.array(data) data = np.reshape(data, [-1, ]) return data train_data = read_data(train_file) def build_dataset(words): count = collections.Counter(words).most_common() dictionary = dict() sortedwords=sorted(set(words)) for i,word in enumerate(sortedwords): dictionary[word] = i reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return dictionary, reverse_dictionary dictionary, reverse_dictionary = build_dataset(train_data) vocab_size = len(dictionary) # Place holder for Mini batch input output x = tf.placeholder("float", [None, n_input, vocab_size]) y = tf.placeholder("float", [None, vocab_size]) # RNN output node weights and biases weights = { 'out': tf.Variable([[-0.09588283, -2.2044923 , -0.74828255, 0.14180686, -0.32083616, -0.9444244 , 0.06826905, -0.9728962 , -0.18506959, 1.0618515 ], [ 1.156649 , 3.2738173 , -1.2556943 , -0.9079511 , -0.82127047, -1.1448543 , -0.60807484, -0.5885713 , 1.0378786 , -0.7088431 ], [ 1.006477 , 0.28033388, -0.1804534 , 0.8093307 , -0.36991575, 0.29115433, -0.01028167, -0.7357091 , 0.92254084, -0.10753923], [ 0.19266959, 0.6108299 , 2.2495654 , 1.5288974 , 1.0172302 , 1.1311738 , 0.2666629 , -0.30611828, -0.01412263, 0.44799015], [ 0.19266959, 0.6108299 , 2.2495654 , 1.5288974 , 1.0172302 , 1.1311738 , 0.2666629 , -0.30611828, -0.01412263, 0.44799015]] ) } biases = { 'out': tf.Variable([ 0.1458478 , -0.3660951 , -2.1647317 , -1.9633691 , -0.24532059, 0.14005205, -1.0961286 , -0.43737876, 0.7028531 , -1.8481724 ] ) } #works with 3 dimensions. Line 112 takes care of extracting last (h*wy=by) in 2 dimensions def RNN(x, weights, biases): with variable_scope.variable_scope( "other", initializer=init_ops.constant_initializer(0.1)) as vs: cell = rnn.MultiRNNCell([rnn_cell.LayerNormBasicLSTMCell(n_hidden, layer_norm=False), rnn_cell.LayerNormBasicLSTMCell(n_hidden, layer_norm=False)]) outputs, states = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32) return tf.expand_dims(tf.matmul(outputs[-1], weights['out'])[-1],0) + biases['out'],outputs[-1],states,weights['out'],biases['out'] pred,output,state,weights_out,biases_out = RNN(x, weights, biases) # Loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) grads_and_vars_tf_style = optimizer.compute_gradients(cost) train_tf_style = optimizer.apply_gradients(grads_and_vars_tf_style) # Model evaluation correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) global_step = tf.Variable(0, name='global_step', trainable=False) # Initializing the variables init = tf.global_variables_initializer() projectdir="rnn_words" start_time = time.time() def elapsed(sec): if sec<60: return str(sec) + " sec" elif sec<(60*60): return str(sec/60) + " min" else: return str(sec/(60*60)) + " hr" # Launch the graph saver = tf.train.Saver(max_to_keep=200) with tf.Session() as session: session.run(init) step = 0 offset =2 end_offset = n_input + 1 acc_total = 0 loss_total = 0 print ("offset:",offset) while step < training_iters: if offset > (len(train_data)-end_offset): offset = rnd.randint(0, n_input+1) print("offset:", offset) symbols_in_keys = [ input_one_hot(dictionary[ str(train_data[i])],vocab_size) for i in range(offset, offset+n_input) ] symbols_in_keys = np.reshape(np.array(symbols_in_keys), [-1, n_input,vocab_size]) symbols_out_onehot=input_one_hot(dictionary[str(train_data[offset+n_input])],vocab_size) symbols_out_onehot = np.reshape(symbols_out_onehot,[1,-1]) tfgrads_and_vars_tf_style, _,acc, loss, onehot_pred,tfoutput,tfstate,tfout_weights,tfbiases_out = session.run([grads_and_vars_tf_style,train_tf_style, accuracy, cost, pred,output,state,weights_out,biases_out], \ feed_dict={x: symbols_in_keys, y: symbols_out_onehot}) loss_total += loss acc_total += acc print("tfoutput:",tfoutput," tfstate:",tfstate) print("onehot_pred:",onehot_pred) print("loss:",loss) print("tfgrads_and_vars_tf_style:",tfgrads_and_vars_tf_style) if (step+1) % display_step == 0: print("Iter= " + str(step+1) + ", Average Loss= " + \ "{:.6f}".format(loss_total/display_step) + ", Average Accuracy= " + \ "{:.2f}%".format(100*acc_total/display_step)) acc_total = 0 loss_total = 0 symbols_in = [train_data[i] for i in range(offset, offset + n_input)] symbols_out = train_data[offset + n_input] symbols_out_pred = reverse_dictionary[int(tf.argmax(onehot_pred, 1).eval())] saver.save(session, get_rel_save_file(projectdir)+ '%04d' % (step+1), global_step=global_step) print("%s - Actual word:[%s] vs Predicted word:[%s]" % (symbols_in,symbols_out,symbols_out_pred)) step += 1 offset += (n_input+1) print("Optimization Finished!") print("Elapsed time: ", elapsed(time.time() - start_time))
39.76875
220
0.670596
e7607a42b94ee4061ca7064ef4c256067aa03f0c
1,622
py
Python
app/api.py
NTsystems/python_belgrade_meetup_9
4e7c2809a70f01b7593166aa5b788dba9333f9a8
[ "MIT" ]
2
2018-07-02T10:34:19.000Z
2018-07-02T10:35:18.000Z
app/api.py
nmrkic/python_belgrade_meetup_9
4e7c2809a70f01b7593166aa5b788dba9333f9a8
[ "MIT" ]
null
null
null
app/api.py
nmrkic/python_belgrade_meetup_9
4e7c2809a70f01b7593166aa5b788dba9333f9a8
[ "MIT" ]
2
2017-03-22T10:39:05.000Z
2018-07-02T10:35:17.000Z
import tornado.ioloop import tornado.web import models from tornado import websocket import json import os clients = [] root = os.path.dirname(__file__) class Tweets(tornado.web.RequestHandler): def post(self): try: data = json.loads(self.request.body.decode('utf-8')) models.add_tweet(data) count = models.get_counts() if clients and data.get('hashtags', []): clients[0].send_message({'tweet': data, 'count': count}) self.write({'status': "ok"}) except: self.write({'status': "error"}) def get(self): try: hashtag = self.get_argument("hashtag", "").lower() tweets = models.get_last_tweets(hashtag) self.write(tweets) except: pass class SocketHandler(websocket.WebSocketHandler): def check_origin(self, origin): return True def open(self): if self not in clients: clients.append(self) def on_close(self): if self in clients: clients.remove(self) def on_message(self, message): pass @staticmethod def send_message(data): for client in clients: client.write_message(data) def make_app(): return tornado.web.Application([ (r"/tweets/?", Tweets), (r'/socket/?', SocketHandler), (r"/(.*)", tornado.web.StaticFileHandler, {"path": root, "default_filename": "index.html"}), ], autoreload=True) if __name__ == '__main__': app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start()
24.575758
100
0.589396
456d79b4a5e78504208e72dfe81decd2e07bb07f
35,207
py
Python
volttrontesting/platform/test_instance_setup.py
gnmerritt/volttron
ebfbf62bab77d46fd3e8d6aaca1fc4f33932ccf3
[ "Apache-2.0" ]
1
2020-06-08T16:54:28.000Z
2020-06-08T16:54:28.000Z
volttrontesting/platform/test_instance_setup.py
gnmerritt/volttron
ebfbf62bab77d46fd3e8d6aaca1fc4f33932ccf3
[ "Apache-2.0" ]
8
2016-10-07T22:49:28.000Z
2022-02-23T00:57:58.000Z
volttrontesting/platform/test_instance_setup.py
gnmerritt/volttron
ebfbf62bab77d46fd3e8d6aaca1fc4f33932ccf3
[ "Apache-2.0" ]
null
null
null
import contextlib import os import shutil import subprocess import pytest from configparser import ConfigParser from volttron.platform import is_rabbitmq_available from volttron.platform.instance_setup import _is_agent_installed from volttron.utils import get_hostname from volttron.platform.agent.utils import is_volttron_running from volttrontesting.fixtures.rmq_test_setup import create_rmq_volttron_setup from volttrontesting.utils.platformwrapper import create_volttron_home HAS_RMQ = is_rabbitmq_available() ''' Example variables to be used during each of the tests, depending on the prompts that will be asked message_bus = "zmq" rmq_home = "" domain_name = "" new_root_ca = "Y" ca_country = "US" ca_state = "test-state" ca_location = "test-location" ca_organization = "test-org" ca_org_unit = "test-org-unit" default_rmq_values = "Y" remove_rmq_conf = "Y" vip_address = "" vip_port = "" is_web_enabled = "Y" web_protocol = "https" web_port = "" gen_web_cert = "Y" is_vc = "N" vc_admin_name = "test" vc_admin_password = "test" is_vcp = "N" instance_name = "" vc_hostname = "" vc_port = "8443" install_historian = "N" install_driver = "N" install_fake_device = "N" install_listener = "N" agent_autostart = "N" ''' @contextlib.contextmanager def create_vcfg_vhome(): debug_flag = os.environ.get('DEBUG', False) vhome = create_volttron_home() yield vhome if not debug_flag: shutil.rmtree(vhome, ignore_errors=True) def test_should_remove_config_vhome(monkeypatch): monkeypatch.setenv("DEBUG", '') with create_vcfg_vhome() as vhome: assert os.path.isdir(vhome) assert not os.path.isdir(vhome) def test_should_not_remove_config_vhome_when_debugging(monkeypatch): monkeypatch.setenv("DEBUG", 1) with create_vcfg_vhome() as vhome: assert os.path.isdir(vhome) assert os.path.isdir(vhome) shutil.rmtree(vhome, ignore_errors=True) def test_zmq_case_no_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) config_path = os.path.join(vhome, "config") message_bus = "zmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "N" is_vcp = "N" install_historian = "N" install_driver = "N" install_listener = "N" vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, is_vcp, install_historian, install_driver, install_listener ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) # print("CWD is: {}".format(os.getcwd())) # print("OUT is: {}".format(out)) # print("ERROR is: {}".format(err)) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "zmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "volttron1" assert not _is_agent_installed("listener") assert not _is_agent_installed("master_driver") assert not _is_agent_installed("platform_historian") assert not _is_agent_installed("vc ") assert not _is_agent_installed("vcp") assert not is_volttron_running(vhome) def test_zmq_case_with_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) config_path = os.path.join(vhome, "config") message_bus = "zmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "N" is_vcp = "Y" instance_name = "test_zmq" vc_hostname = "{}{}".format("https://", get_hostname()) vc_port = "8443" install_historian = "Y" install_driver = "Y" install_fake_device = "Y" install_listener = "Y" agent_autostart = "N" vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, is_vcp, instance_name, vc_hostname, vc_port, agent_autostart, install_historian, agent_autostart, install_driver, install_fake_device, agent_autostart, install_listener, agent_autostart ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "zmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_zmq" assert _is_agent_installed("listener") assert _is_agent_installed("master_driver") assert _is_agent_installed("platform_historian") assert _is_agent_installed("vcp") assert not _is_agent_installed("vc ") assert not is_volttron_running(vhome) def test_zmq_case_web_no_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) config_path = os.path.join(vhome, "config") message_bus = "zmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "Y" web_protocol = "https" web_port = "8443" gen_web_cert = "Y" new_root_ca = "Y" ca_country = "US" ca_state = "test-state" ca_location = "test-location" ca_organization = "test-org" ca_org_unit = "test-org-unit" is_vc = "N" is_vcp = "N" install_historian = "N" install_driver = "N" install_listener = "N" vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_protocol, web_port, gen_web_cert, new_root_ca, ca_country, ca_state, ca_location, ca_organization, ca_org_unit, is_vc, is_vcp, install_historian, install_driver, install_listener ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "zmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "volttron1" assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname().lower(), ":8443") assert config.get('volttron', 'web-ssl-cert') == os.path.join(vhome, "certificates", "certs", "master_web-server.crt") assert config.get('volttron', 'web-ssl-key') == os.path.join(vhome, "certificates", "private", "master_web-server.pem") assert not _is_agent_installed("listener") assert not _is_agent_installed("master_driver") assert not _is_agent_installed("platform_historian") assert not _is_agent_installed("vc ") assert not _is_agent_installed("vcp") assert not is_volttron_running(vhome) def test_zmq_case_web_with_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) config_path = os.path.join(vhome, "config") message_bus = "zmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "Y" web_protocol = "https" web_port = "8443" gen_web_cert = "Y" new_root_ca = "Y" ca_country = "US" ca_state = "test-state" ca_location = "test-location" ca_organization = "test-org" ca_org_unit = "test-org-unit" is_vc = "N" is_vcp = "Y" instance_name = "test_zmq" vc_hostname = "{}{}".format("https://", get_hostname()) vc_port = "8443" install_historian = "Y" install_driver = "Y" install_fake_device = "Y" install_listener = "Y" agent_autostart = "N" vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_protocol, web_port, gen_web_cert, new_root_ca, ca_country, ca_state, ca_location, ca_organization, ca_org_unit, is_vc, is_vcp, instance_name, vc_hostname, vc_port, agent_autostart, install_historian, agent_autostart, install_driver, install_fake_device, agent_autostart, install_listener, agent_autostart ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "zmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_zmq" assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname().lower(), ":8443") assert config.get('volttron', 'web-ssl-cert') == os.path.join(vhome, "certificates", "certs", "master_web-server.crt") assert config.get('volttron', 'web-ssl-key') == os.path.join(vhome, "certificates", "private", "master_web-server.pem") assert _is_agent_installed("listener") assert _is_agent_installed("master_driver") assert _is_agent_installed("platform_historian") assert not _is_agent_installed("vc ") assert _is_agent_installed("vcp") assert not is_volttron_running(vhome) def test_zmq_case_web_vc(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) config_path = os.path.join(vhome, "config") message_bus = "zmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "Y" web_protocol = "https" web_port = "8443" gen_web_cert = "Y" new_root_ca = "Y" ca_country = "US" ca_state = "test-state" ca_location = "test-location" ca_organization = "test-org" ca_org_unit = "test-org-unit" is_vc = "Y" is_vcp = "Y" instance_name = "test_zmq" install_historian = "N" install_driver = "N" install_listener = "N" agent_autostart = "N" vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_protocol, web_port, gen_web_cert, new_root_ca, ca_country, ca_state, ca_location, ca_organization, ca_org_unit, is_vc, agent_autostart, is_vcp, instance_name, agent_autostart, install_historian, install_driver, install_listener ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "zmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_zmq" assert config.get('volttron', 'volttron-central-address') == "{}{}{}".format("https://", get_hostname().lower(), ":8443") assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname().lower(), ":8443") assert config.get('volttron', 'web-ssl-cert') == os.path.join(vhome, "certificates", "certs", "master_web-server.crt") assert config.get('volttron', 'web-ssl-key') == os.path.join(vhome, "certificates", "private", "master_web-server.pem") assert not _is_agent_installed("listener") assert not _is_agent_installed("master_driver") assert not _is_agent_installed("platform_historian") assert _is_agent_installed("vc ") assert _is_agent_installed("vcp") assert not is_volttron_running(vhome) def test_zmq_case_web_vc_with_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) config_path = os.path.join(vhome, "config") message_bus = "zmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "Y" web_protocol = "https" web_port = "8443" gen_web_cert = "Y" new_root_ca = "Y" ca_country = "US" ca_state = "test-state" ca_location = "test-location" ca_organization = "test-org" ca_org_unit = "test-org-unit" is_vc = "Y" is_vcp = "Y" instance_name = "test_zmq" install_historian = "Y" install_driver = "Y" install_fake_device = "Y" install_listener = "Y" agent_autostart = "N" vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_protocol, web_port, gen_web_cert, new_root_ca, ca_country, ca_state, ca_location, ca_organization, ca_org_unit, is_vc, agent_autostart, is_vcp, instance_name, agent_autostart, install_historian, agent_autostart, install_driver, install_fake_device, agent_autostart, install_listener, agent_autostart ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "zmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_zmq" assert config.get('volttron', 'volttron-central-address') == "{}{}{}".format("https://", get_hostname().lower(), ":8443") assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname().lower(), ":8443") assert config.get('volttron', 'web-ssl-cert') == os.path.join(vhome, "certificates", "certs", "master_web-server.crt") assert config.get('volttron', 'web-ssl-key') == os.path.join(vhome, "certificates", "private", "master_web-server.pem") assert _is_agent_installed("listener") assert _is_agent_installed("master_driver") assert _is_agent_installed("platform_historian") assert _is_agent_installed("vc ") assert _is_agent_installed("vcp") assert not is_volttron_running(vhome) @pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.mark.timeout(360) def test_rmq_case_no_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) monkeypatch.setenv("RABBITMQ_CONF_ENV_FILE", "") config_path = os.path.join(vhome, "config") message_bus = "rmq" instance_name = "test_rmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "N" is_vcp = "N" install_historian = "N" install_driver = "N" install_listener = "N" create_rmq_volttron_setup(vhome=vhome, env=os.environ, ssl_auth=True, instance_name=instance_name) vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, is_vcp, install_historian, install_driver, install_listener ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "rmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_rmq" assert not _is_agent_installed("listener") assert not _is_agent_installed("master_driver") assert not _is_agent_installed("platform_historian") assert not _is_agent_installed("vc ") assert not _is_agent_installed("vcp") assert not is_volttron_running(vhome) @pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.mark.timeout(360) def test_rmq_case_with_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) monkeypatch.setenv("RABBITMQ_CONF_ENV_FILE", "") config_path = os.path.join(vhome, "config") message_bus = "rmq" instance_name = "test_rmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "N" is_vcp = "Y" vc_hostname = "{}{}".format("https://", get_hostname()) vc_port = "8443" install_historian = "Y" install_driver = "Y" install_fake_device = "Y" install_listener = "Y" agent_autostart = "N" create_rmq_volttron_setup(vhome=vhome, env=os.environ, ssl_auth=True, instance_name=instance_name) vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, is_vcp, instance_name, vc_hostname, vc_port, agent_autostart, install_historian, agent_autostart, install_driver, install_fake_device, agent_autostart, install_listener, agent_autostart ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "rmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_rmq" assert _is_agent_installed("listener") assert _is_agent_installed("master_driver") assert _is_agent_installed("platform_historian") assert _is_agent_installed("vcp") assert not _is_agent_installed("vc ") assert not is_volttron_running(vhome) @pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.mark.timeout(360) def test_rmq_case_web_no_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) monkeypatch.setenv("RABBITMQ_CONF_ENV_FILE", "") config_path = os.path.join(vhome, "config") message_bus = "rmq" instance_name = "test_rmq" is_web_enabled = "Y" web_port = "8443" is_vc = "N" is_vcp = "N" vip_address = "tcp://127.0.0.15" vip_port = "22916" install_historian = "N" install_driver = "N" install_listener = "N" create_rmq_volttron_setup(vhome=vhome, env=os.environ, ssl_auth=True, instance_name=instance_name) vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_port, is_vc, is_vcp, install_historian, install_driver, install_listener ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "rmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_rmq" assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname(), ":8443") assert not _is_agent_installed("listener") assert not _is_agent_installed("master_driver") assert not _is_agent_installed("platform_historian") assert not _is_agent_installed("vc ") assert not _is_agent_installed("vcp") assert not is_volttron_running(vhome) @pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.mark.timeout(360) def test_rmq_case_web_with_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) monkeypatch.setenv("RABBITMQ_CONF_ENV_FILE", "") config_path = os.path.join(vhome, "config") message_bus = "rmq" instance_name = "test_rmq" is_web_enabled = "Y" web_port = "8443" is_vc = "N" is_vcp = "Y" vc_hostname = "{}{}".format("https://", get_hostname()) vc_port = "8443" vip_address = "tcp://127.0.0.15" vip_port = "22916" install_historian = "Y" install_driver = "Y" install_fake_device = "Y" install_listener = "Y" agent_autostart = "N" create_rmq_volttron_setup(vhome=vhome, env=os.environ, ssl_auth=True, instance_name=instance_name) vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_port, is_vc, is_vcp, instance_name, vc_hostname, vc_port, agent_autostart, install_historian, agent_autostart, install_driver, install_fake_device, agent_autostart, install_listener, agent_autostart ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "rmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_rmq" assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname(), ":8443") assert _is_agent_installed("listener") assert _is_agent_installed("master_driver") assert _is_agent_installed("platform_historian") assert not _is_agent_installed("vc ") assert _is_agent_installed("vcp") assert not is_volttron_running(vhome) @pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.mark.timeout(360) def test_rmq_case_web_vc(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) monkeypatch.setenv("RABBITMQ_CONF_ENV_FILE", "") config_path = os.path.join(vhome, "config") message_bus = "rmq" instance_name = "test_rmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "Y" web_port = "8443" is_vc = "Y" vc_admin_name = "test" vc_admin_password = "test" is_vcp = "Y" install_historian = "N" install_driver = "N" install_listener = "N" agent_autostart = "N" create_rmq_volttron_setup(vhome=vhome, env=os.environ, ssl_auth=True, instance_name=instance_name) vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_port, is_vc, agent_autostart, is_vcp, instance_name, agent_autostart, install_historian, install_driver, install_listener ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "rmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_rmq" assert config.get('volttron', 'volttron-central-address') == "{}{}{}".format("https://", get_hostname(), ":8443") assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname(), ":8443") assert not _is_agent_installed("listener") assert not _is_agent_installed("master_driver") assert not _is_agent_installed("platform_historian") assert _is_agent_installed("vc ") assert _is_agent_installed("vcp") assert not is_volttron_running(vhome) @pytest.mark.skipif(not HAS_RMQ, reason='RabbitMQ is not setup') @pytest.mark.timeout(360) def test_rmq_case_web_vc_with_agents(monkeypatch): with create_vcfg_vhome() as vhome: monkeypatch.setenv("VOLTTRON_HOME", vhome) monkeypatch.setenv("RABBITMQ_CONF_ENV_FILE", "") config_path = os.path.join(vhome, "config") message_bus = "rmq" instance_name = "test_rmq" vip_address = "tcp://127.0.0.15" vip_port = "22916" is_web_enabled = "Y" web_port = "8443" is_vc = "Y" is_vcp = "Y" install_historian = "Y" install_driver = "Y" install_fake_device = "Y" install_listener = "Y" agent_autostart = "N" create_rmq_volttron_setup(vhome=vhome, env=os.environ, ssl_auth=True, instance_name=instance_name) vcfg_args = "\n".join([message_bus, vip_address, vip_port, is_web_enabled, web_port, is_vc, agent_autostart, is_vcp, instance_name, agent_autostart, install_historian, agent_autostart, install_driver, install_fake_device, agent_autostart, install_listener, agent_autostart ]) with subprocess.Popen(["vcfg", "--vhome", vhome], env=os.environ, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) as vcfg: out, err = vcfg.communicate(vcfg_args) assert os.path.exists(config_path) config = ConfigParser() config.read(config_path) assert config.get('volttron', 'message-bus') == "rmq" assert config.get('volttron', 'vip-address') == "tcp://127.0.0.15:22916" assert config.get('volttron', 'instance-name') == "test_rmq" assert config.get('volttron', 'volttron-central-address') == "{}{}{}".format("https://", get_hostname(), ":8443") assert config.get('volttron', 'bind-web-address') == "{}{}{}".format("https://", get_hostname(), ":8443") assert _is_agent_installed("listener") assert _is_agent_installed("master_driver") assert _is_agent_installed("platform_historian") assert _is_agent_installed("vc ") assert _is_agent_installed("vcp") assert not is_volttron_running(vhome)
40.56106
129
0.50524
af1fc9110573b046fa817312ab97d8a265126663
65,665
py
Python
nova/tests/unit/test_utils.py
LinShuicheng/stx-nova
0b03ed64e2c3aa32eb07bd7e315ca1248d9c451c
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/test_utils.py
LinShuicheng/stx-nova
0b03ed64e2c3aa32eb07bd7e315ca1248d9c451c
[ "Apache-2.0" ]
null
null
null
nova/tests/unit/test_utils.py
LinShuicheng/stx-nova
0b03ed64e2c3aa32eb07bd7e315ca1248d9c451c
[ "Apache-2.0" ]
null
null
null
# Copyright 2011 Justin Santa Barbara # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime import hashlib import os import os.path import tempfile import eventlet from keystoneauth1 import adapter as ks_adapter from keystoneauth1 import exceptions as ks_exc from keystoneauth1.identity import base as ks_identity from keystoneauth1 import session as ks_session import mock import netaddr from oslo_concurrency import processutils from oslo_config import cfg from oslo_context import context as common_context from oslo_context import fixture as context_fixture from oslo_log import log as logging from oslo_utils import encodeutils from oslo_utils import fixture as utils_fixture from oslo_utils import units import six from nova import context from nova import exception from nova.objects import base as obj_base from nova.objects import instance as instance_obj from nova import test from nova.tests import fixtures as nova_fixtures from nova.tests.unit.objects import test_objects from nova.tests.unit import utils as test_utils from nova import utils CONF = cfg.CONF class GenericUtilsTestCase(test.NoDBTestCase): def test_parse_server_string(self): result = utils.parse_server_string('::1') self.assertEqual(('::1', ''), result) result = utils.parse_server_string('[::1]:8773') self.assertEqual(('::1', '8773'), result) result = utils.parse_server_string('2001:db8::192.168.1.1') self.assertEqual(('2001:db8::192.168.1.1', ''), result) result = utils.parse_server_string('[2001:db8::192.168.1.1]:8773') self.assertEqual(('2001:db8::192.168.1.1', '8773'), result) result = utils.parse_server_string('192.168.1.1') self.assertEqual(('192.168.1.1', ''), result) result = utils.parse_server_string('192.168.1.2:8773') self.assertEqual(('192.168.1.2', '8773'), result) result = utils.parse_server_string('192.168.1.3') self.assertEqual(('192.168.1.3', ''), result) result = utils.parse_server_string('www.example.com:8443') self.assertEqual(('www.example.com', '8443'), result) result = utils.parse_server_string('www.example.com') self.assertEqual(('www.example.com', ''), result) # error case result = utils.parse_server_string('www.exa:mple.com:8443') self.assertEqual(('', ''), result) result = utils.parse_server_string('') self.assertEqual(('', ''), result) def test_hostname_unicode_sanitization(self): hostname = u"\u7684.test.example.com" self.assertEqual("test.example.com", utils.sanitize_hostname(hostname)) def test_hostname_sanitize_periods(self): hostname = "....test.example.com..." self.assertEqual("test.example.com", utils.sanitize_hostname(hostname)) def test_hostname_sanitize_dashes(self): hostname = "----test.example.com---" self.assertEqual("test.example.com", utils.sanitize_hostname(hostname)) def test_hostname_sanitize_characters(self): hostname = "(#@&$!(@*--#&91)(__=+--test-host.example!!.com-0+" self.assertEqual("91----test-host.example.com-0", utils.sanitize_hostname(hostname)) def test_hostname_translate(self): hostname = "<}\x1fh\x10e\x08l\x02l\x05o\x12!{>" self.assertEqual("hello", utils.sanitize_hostname(hostname)) def test_hostname_has_default(self): hostname = u"\u7684hello" defaultname = "Server-1" self.assertEqual("hello", utils.sanitize_hostname(hostname, defaultname)) def test_hostname_empty_has_default(self): hostname = u"\u7684" defaultname = "Server-1" self.assertEqual(defaultname, utils.sanitize_hostname(hostname, defaultname)) def test_hostname_empty_has_default_too_long(self): hostname = u"\u7684" defaultname = "a" * 64 self.assertEqual("a" * 63, utils.sanitize_hostname(hostname, defaultname)) def test_hostname_empty_no_default(self): hostname = u"\u7684" self.assertEqual("", utils.sanitize_hostname(hostname)) def test_hostname_empty_minus_period(self): hostname = "---..." self.assertEqual("", utils.sanitize_hostname(hostname)) def test_hostname_with_space(self): hostname = " a b c " self.assertEqual("a-b-c", utils.sanitize_hostname(hostname)) def test_hostname_too_long(self): hostname = "a" * 64 self.assertEqual(63, len(utils.sanitize_hostname(hostname))) def test_hostname_truncated_no_hyphen(self): hostname = "a" * 62 hostname = hostname + '-' + 'a' res = utils.sanitize_hostname(hostname) # we trim to 63 and then trim the trailing dash self.assertEqual(62, len(res)) self.assertFalse(res.endswith('-'), 'The hostname ends with a -') def test_generate_password(self): password = utils.generate_password() self.assertTrue([c for c in password if c in '0123456789']) self.assertTrue([c for c in password if c in 'abcdefghijklmnopqrstuvwxyz']) self.assertTrue([c for c in password if c in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ']) @mock.patch('nova.privsep.path.chown') def test_temporary_chown(self, mock_chown): with tempfile.NamedTemporaryFile() as f: with utils.temporary_chown(f.name, owner_uid=2): mock_chown.assert_called_once_with(f.name, uid=2) mock_chown.reset_mock() mock_chown.assert_called_once_with(f.name, uid=os.getuid()) def test_get_shortened_ipv6(self): self.assertEqual("abcd:ef01:2345:6789:abcd:ef01:c0a8:fefe", utils.get_shortened_ipv6( "abcd:ef01:2345:6789:abcd:ef01:192.168.254.254")) self.assertEqual("::1", utils.get_shortened_ipv6( "0000:0000:0000:0000:0000:0000:0000:0001")) self.assertEqual("caca::caca:0:babe:201:102", utils.get_shortened_ipv6( "caca:0000:0000:caca:0000:babe:0201:0102")) self.assertRaises(netaddr.AddrFormatError, utils.get_shortened_ipv6, "127.0.0.1") self.assertRaises(netaddr.AddrFormatError, utils.get_shortened_ipv6, "failure") def test_get_shortened_ipv6_cidr(self): self.assertEqual("2600::/64", utils.get_shortened_ipv6_cidr( "2600:0000:0000:0000:0000:0000:0000:0000/64")) self.assertEqual("2600::/64", utils.get_shortened_ipv6_cidr( "2600::1/64")) self.assertRaises(netaddr.AddrFormatError, utils.get_shortened_ipv6_cidr, "127.0.0.1") self.assertRaises(netaddr.AddrFormatError, utils.get_shortened_ipv6_cidr, "failure") def test_safe_ip_format(self): self.assertEqual("[::1]", utils.safe_ip_format("::1")) self.assertEqual("127.0.0.1", utils.safe_ip_format("127.0.0.1")) self.assertEqual("[::ffff:127.0.0.1]", utils.safe_ip_format( "::ffff:127.0.0.1")) self.assertEqual("localhost", utils.safe_ip_format("localhost")) def test_format_remote_path(self): self.assertEqual("[::1]:/foo/bar", utils.format_remote_path("::1", "/foo/bar")) self.assertEqual("127.0.0.1:/foo/bar", utils.format_remote_path("127.0.0.1", "/foo/bar")) self.assertEqual("[::ffff:127.0.0.1]:/foo/bar", utils.format_remote_path("::ffff:127.0.0.1", "/foo/bar")) self.assertEqual("localhost:/foo/bar", utils.format_remote_path("localhost", "/foo/bar")) self.assertEqual("/foo/bar", utils.format_remote_path(None, "/foo/bar")) def test_get_hash_str(self): base_str = b"foo" base_unicode = u"foo" value = hashlib.md5(base_str).hexdigest() self.assertEqual( value, utils.get_hash_str(base_str)) self.assertEqual( value, utils.get_hash_str(base_unicode)) def test_get_obj_repr_unicode(self): instance = instance_obj.Instance() instance.display_name = u'\u00CD\u00F1st\u00E1\u00F1c\u00E9' # should be a bytes string if python2 before conversion self.assertIs(str, type(repr(instance))) self.assertIs(six.text_type, type(utils.get_obj_repr_unicode(instance))) def test_use_rootwrap(self): self.flags(disable_rootwrap=False, group='workarounds') self.flags(rootwrap_config='foo') cmd = utils.get_root_helper() self.assertEqual('sudo nova-rootwrap foo', cmd) def test_use_sudo(self): self.flags(disable_rootwrap=True, group='workarounds') cmd = utils.get_root_helper() self.assertEqual('sudo', cmd) def test_ssh_execute(self): expected_args = ('ssh', '-o', 'BatchMode=yes', 'remotehost', 'ls', '-l') with mock.patch('nova.utils.execute') as mock_method: utils.ssh_execute('remotehost', 'ls', '-l') mock_method.assert_called_once_with(*expected_args) def test_generate_hostid(self): host = 'host' project_id = '9b9e3c847e904b0686e8ffb20e4c6381' hostId = 'fa123c6f74efd4aad95f84096f9e187caa0625925a9e7837b2b46792' self.assertEqual(hostId, utils.generate_hostid(host, project_id)) def test_generate_hostid_with_none_host(self): project_id = '9b9e3c847e904b0686e8ffb20e4c6381' self.assertEqual('', utils.generate_hostid(None, project_id)) class TestCachedFile(test.NoDBTestCase): @mock.patch('os.path.getmtime', return_value=1) def test_read_cached_file(self, getmtime): utils._FILE_CACHE = { '/this/is/a/fake': {"data": 1123, "mtime": 1} } fresh, data = utils.read_cached_file("/this/is/a/fake") fdata = utils._FILE_CACHE['/this/is/a/fake']["data"] self.assertEqual(fdata, data) @mock.patch('os.path.getmtime', return_value=2) def test_read_modified_cached_file(self, getmtime): utils._FILE_CACHE = { '/this/is/a/fake': {"data": 1123, "mtime": 1} } fake_contents = "lorem ipsum" with mock.patch('six.moves.builtins.open', mock.mock_open(read_data=fake_contents)): fresh, data = utils.read_cached_file("/this/is/a/fake") self.assertEqual(data, fake_contents) self.assertTrue(fresh) def test_delete_cached_file(self): filename = '/this/is/a/fake/deletion/of/cached/file' utils._FILE_CACHE = { filename: {"data": 1123, "mtime": 1} } self.assertIn(filename, utils._FILE_CACHE) utils.delete_cached_file(filename) self.assertNotIn(filename, utils._FILE_CACHE) def test_delete_cached_file_not_exist(self): # We expect that if cached file does not exist no Exception raised. filename = '/this/is/a/fake/deletion/attempt/of/not/cached/file' self.assertNotIn(filename, utils._FILE_CACHE) utils.delete_cached_file(filename) self.assertNotIn(filename, utils._FILE_CACHE) class RootwrapDaemonTestCase(test.NoDBTestCase): @mock.patch('oslo_rootwrap.client.Client') def test_get_client(self, mock_client): mock_conf = mock.MagicMock() utils.RootwrapDaemonHelper(mock_conf) mock_client.assert_called_once_with( ["sudo", "nova-rootwrap-daemon", mock_conf]) @mock.patch('nova.utils.LOG.info') def test_execute(self, mock_info): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(0, None, None)) daemon.execute('a', 1, foo='bar', run_as_root=True) daemon.client.execute.assert_called_once_with(['a', '1'], None) mock_info.assert_has_calls([mock.call( u'Executing RootwrapDaemonHelper.execute cmd=[%(cmd)r] ' u'kwargs=[%(kwargs)r]', {'cmd': u'a 1', 'kwargs': {'run_as_root': True, 'foo': 'bar'}})]) def test_execute_with_kwargs(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(0, None, None)) daemon.execute('a', 1, foo='bar', run_as_root=True, process_input=True) daemon.client.execute.assert_called_once_with(['a', '1'], True) def test_execute_fail(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(-2, None, None)) self.assertRaises(processutils.ProcessExecutionError, daemon.execute, 'b', 2) def test_execute_pass_with_check_exit_code(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(-2, None, None)) daemon.execute('b', 2, check_exit_code=[-2]) @mock.patch('time.sleep', new=mock.Mock()) def test_execute_fail_with_retry(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(-2, None, None)) self.assertRaises(processutils.ProcessExecutionError, daemon.execute, 'b', 2, attempts=2) daemon.client.execute.assert_has_calls( [mock.call(['b', '2'], None), mock.call(['b', '2'], None)]) @mock.patch('time.sleep', new=mock.Mock()) @mock.patch('nova.utils.LOG.log') def test_execute_fail_and_logging(self, mock_log): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(-2, None, None)) self.assertRaises(processutils.ProcessExecutionError, daemon.execute, 'b', 2, attempts=2, loglevel=logging.CRITICAL, log_errors=processutils.LOG_ALL_ERRORS) mock_log.assert_has_calls( [ mock.call(logging.CRITICAL, u'Running cmd (subprocess): %s', u'b 2'), mock.call(logging.CRITICAL, 'CMD "%(sanitized_cmd)s" returned: %(return_code)s ' 'in %(end_time)0.3fs', {'sanitized_cmd': u'b 2', 'return_code': -2, 'end_time': mock.ANY}), mock.call(logging.CRITICAL, u'%(desc)r\ncommand: %(cmd)r\nexit code: %(code)r' u'\nstdout: %(stdout)r\nstderr: %(stderr)r', {'code': -2, 'cmd': u'b 2', 'stdout': u'None', 'stderr': u'None', 'desc': None}), mock.call(logging.CRITICAL, u'%r failed. Retrying.', u'b 2'), mock.call(logging.CRITICAL, u'Running cmd (subprocess): %s', u'b 2'), mock.call(logging.CRITICAL, 'CMD "%(sanitized_cmd)s" returned: %(return_code)s ' 'in %(end_time)0.3fs', {'sanitized_cmd': u'b 2', 'return_code': -2, 'end_time': mock.ANY}), mock.call(logging.CRITICAL, u'%(desc)r\ncommand: %(cmd)r\nexit code: %(code)r' u'\nstdout: %(stdout)r\nstderr: %(stderr)r', {'code': -2, 'cmd': u'b 2', 'stdout': u'None', 'stderr': u'None', 'desc': None}), mock.call(logging.CRITICAL, u'%r failed. Not Retrying.', u'b 2')] ) def test_trycmd(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(0, None, None)) daemon.trycmd('a', 1, foo='bar', run_as_root=True) daemon.client.execute.assert_called_once_with(['a', '1'], None) def test_trycmd_with_kwargs(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.execute = mock.Mock(return_value=('out', 'err')) daemon.trycmd('a', 1, foo='bar', run_as_root=True, loglevel=logging.WARN, log_errors=True, process_input=True, delay_on_retry=False, attempts=5, check_exit_code=[200]) daemon.execute.assert_called_once_with('a', 1, attempts=5, check_exit_code=[200], delay_on_retry=False, foo='bar', log_errors=True, loglevel=30, process_input=True, run_as_root=True) def test_trycmd_fail(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(-2, None, None)) expected_err = six.text_type('''\ Unexpected error while running command. Command: a 1 Exit code: -2''') out, err = daemon.trycmd('a', 1, foo='bar', run_as_root=True) daemon.client.execute.assert_called_once_with(['a', '1'], None) self.assertIn(expected_err, err) @mock.patch('time.sleep', new=mock.Mock()) def test_trycmd_fail_with_retry(self): mock_conf = mock.MagicMock() daemon = utils.RootwrapDaemonHelper(mock_conf) daemon.client = mock.MagicMock() daemon.client.execute = mock.Mock(return_value=(-2, None, None)) expected_err = six.text_type('''\ Unexpected error while running command. Command: a 1 Exit code: -2''') out, err = daemon.trycmd('a', 1, foo='bar', run_as_root=True, attempts=3) self.assertIn(expected_err, err) daemon.client.execute.assert_has_calls( [mock.call(['a', '1'], None), mock.call(['a', '1'], None), mock.call(['a', '1'], None)]) class AuditPeriodTest(test.NoDBTestCase): def setUp(self): super(AuditPeriodTest, self).setUp() # a fairly random time to test with self.useFixture(utils_fixture.TimeFixture( datetime.datetime(second=23, minute=12, hour=8, day=5, month=3, year=2012))) def test_hour(self): begin, end = utils.last_completed_audit_period(unit='hour') self.assertEqual(begin, datetime.datetime( hour=7, day=5, month=3, year=2012)) self.assertEqual(end, datetime.datetime( hour=8, day=5, month=3, year=2012)) def test_hour_with_offset_before_current(self): begin, end = utils.last_completed_audit_period(unit='hour@10') self.assertEqual(begin, datetime.datetime( minute=10, hour=7, day=5, month=3, year=2012)) self.assertEqual(end, datetime.datetime( minute=10, hour=8, day=5, month=3, year=2012)) def test_hour_with_offset_after_current(self): begin, end = utils.last_completed_audit_period(unit='hour@30') self.assertEqual(begin, datetime.datetime( minute=30, hour=6, day=5, month=3, year=2012)) self.assertEqual(end, datetime.datetime( minute=30, hour=7, day=5, month=3, year=2012)) def test_day(self): begin, end = utils.last_completed_audit_period(unit='day') self.assertEqual(begin, datetime.datetime( day=4, month=3, year=2012)) self.assertEqual(end, datetime.datetime( day=5, month=3, year=2012)) def test_day_with_offset_before_current(self): begin, end = utils.last_completed_audit_period(unit='day@6') self.assertEqual(begin, datetime.datetime( hour=6, day=4, month=3, year=2012)) self.assertEqual(end, datetime.datetime( hour=6, day=5, month=3, year=2012)) def test_day_with_offset_after_current(self): begin, end = utils.last_completed_audit_period(unit='day@10') self.assertEqual(begin, datetime.datetime( hour=10, day=3, month=3, year=2012)) self.assertEqual(end, datetime.datetime( hour=10, day=4, month=3, year=2012)) def test_month(self): begin, end = utils.last_completed_audit_period(unit='month') self.assertEqual(begin, datetime.datetime( day=1, month=2, year=2012)) self.assertEqual(end, datetime.datetime( day=1, month=3, year=2012)) def test_month_with_offset_before_current(self): begin, end = utils.last_completed_audit_period(unit='month@2') self.assertEqual(begin, datetime.datetime( day=2, month=2, year=2012)) self.assertEqual(end, datetime.datetime( day=2, month=3, year=2012)) def test_month_with_offset_after_current(self): begin, end = utils.last_completed_audit_period(unit='month@15') self.assertEqual(begin, datetime.datetime( day=15, month=1, year=2012)) self.assertEqual(end, datetime.datetime( day=15, month=2, year=2012)) def test_year(self): begin, end = utils.last_completed_audit_period(unit='year') self.assertEqual(begin, datetime.datetime( day=1, month=1, year=2011)) self.assertEqual(end, datetime.datetime( day=1, month=1, year=2012)) def test_year_with_offset_before_current(self): begin, end = utils.last_completed_audit_period(unit='year@2') self.assertEqual(begin, datetime.datetime( day=1, month=2, year=2011)) self.assertEqual(end, datetime.datetime( day=1, month=2, year=2012)) def test_year_with_offset_after_current(self): begin, end = utils.last_completed_audit_period(unit='year@6') self.assertEqual(begin, datetime.datetime( day=1, month=6, year=2010)) self.assertEqual(end, datetime.datetime( day=1, month=6, year=2011)) class MetadataToDictTestCase(test.NoDBTestCase): def test_metadata_to_dict(self): self.assertEqual(utils.metadata_to_dict( [{'key': 'foo1', 'value': 'bar'}, {'key': 'foo2', 'value': 'baz'}]), {'foo1': 'bar', 'foo2': 'baz'}) def test_metadata_to_dict_with_include_deleted(self): metadata = [{'key': 'foo1', 'value': 'bar', 'deleted': 1442875429, 'other': 'stuff'}, {'key': 'foo2', 'value': 'baz', 'deleted': 0, 'other': 'stuff2'}] self.assertEqual({'foo1': 'bar', 'foo2': 'baz'}, utils.metadata_to_dict(metadata, include_deleted=True)) self.assertEqual({'foo2': 'baz'}, utils.metadata_to_dict(metadata, include_deleted=False)) # verify correct default behavior self.assertEqual(utils.metadata_to_dict(metadata), utils.metadata_to_dict(metadata, include_deleted=False)) def test_metadata_to_dict_empty(self): self.assertEqual({}, utils.metadata_to_dict([])) self.assertEqual({}, utils.metadata_to_dict([], include_deleted=True)) self.assertEqual({}, utils.metadata_to_dict([], include_deleted=False)) def test_dict_to_metadata(self): def sort_key(adict): return sorted(adict.items()) metadata = utils.dict_to_metadata(dict(foo1='bar1', foo2='bar2')) expected = [{'key': 'foo1', 'value': 'bar1'}, {'key': 'foo2', 'value': 'bar2'}] self.assertEqual(sorted(metadata, key=sort_key), sorted(expected, key=sort_key)) def test_dict_to_metadata_empty(self): self.assertEqual(utils.dict_to_metadata({}), []) class ExpectedArgsTestCase(test.NoDBTestCase): def test_passes(self): @utils.expects_func_args('foo', 'baz') def dec(f): return f @dec def func(foo, bar, baz="lol"): pass # Call to ensure nothing errors func(None, None) def test_raises(self): @utils.expects_func_args('foo', 'baz') def dec(f): return f def func(bar, baz): pass self.assertRaises(TypeError, dec, func) def test_var_no_of_args(self): @utils.expects_func_args('foo') def dec(f): return f @dec def func(bar, *args, **kwargs): pass # Call to ensure nothing errors func(None) def test_more_layers(self): @utils.expects_func_args('foo', 'baz') def dec(f): return f def dec_2(f): def inner_f(*a, **k): return f() return inner_f @dec_2 def func(bar, baz): pass self.assertRaises(TypeError, dec, func) class StringLengthTestCase(test.NoDBTestCase): def test_check_string_length(self): self.assertIsNone(utils.check_string_length( 'test', 'name', max_length=255)) self.assertRaises(exception.InvalidInput, utils.check_string_length, 11, 'name', max_length=255) self.assertRaises(exception.InvalidInput, utils.check_string_length, '', 'name', min_length=1) self.assertRaises(exception.InvalidInput, utils.check_string_length, 'a' * 256, 'name', max_length=255) def test_check_string_length_noname(self): self.assertIsNone(utils.check_string_length( 'test', max_length=255)) self.assertRaises(exception.InvalidInput, utils.check_string_length, 11, max_length=255) self.assertRaises(exception.InvalidInput, utils.check_string_length, '', min_length=1) self.assertRaises(exception.InvalidInput, utils.check_string_length, 'a' * 256, max_length=255) class ValidateIntegerTestCase(test.NoDBTestCase): def test_exception_converted(self): self.assertRaises(exception.InvalidInput, utils.validate_integer, "im-not-an-int", "not-an-int") self.assertRaises(exception.InvalidInput, utils.validate_integer, 3.14, "Pie") self.assertRaises(exception.InvalidInput, utils.validate_integer, "299", "Sparta no-show", min_value=300, max_value=300) self.assertRaises(exception.InvalidInput, utils.validate_integer, 55, "doing 55 in a 54", max_value=54) self.assertRaises(exception.InvalidInput, utils.validate_integer, six.unichr(129), "UnicodeError", max_value=1000) class ValidateNeutronConfiguration(test.NoDBTestCase): def test_nova_network(self): self.flags(use_neutron=False) self.assertFalse(utils.is_neutron()) def test_neutron(self): self.flags(use_neutron=True) self.assertTrue(utils.is_neutron()) class AutoDiskConfigUtilTestCase(test.NoDBTestCase): def test_is_auto_disk_config_disabled(self): self.assertTrue(utils.is_auto_disk_config_disabled("Disabled ")) def test_is_auto_disk_config_disabled_none(self): self.assertFalse(utils.is_auto_disk_config_disabled(None)) def test_is_auto_disk_config_disabled_false(self): self.assertFalse(utils.is_auto_disk_config_disabled("false")) class GetSystemMetadataFromImageTestCase(test.NoDBTestCase): def get_image(self): image_meta = { "id": "fake-image", "name": "fake-name", "min_ram": 1, "min_disk": 1, "disk_format": "raw", "container_format": "bare", } return image_meta def get_flavor(self): flavor = { "id": "fake.flavor", "root_gb": 10, } return flavor def test_base_image_properties(self): image = self.get_image() # Verify that we inherit all the needed keys sys_meta = utils.get_system_metadata_from_image(image) for key in utils.SM_INHERITABLE_KEYS: sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) self.assertEqual(image[key], sys_meta.get(sys_key)) # Verify that everything else is ignored self.assertEqual(len(sys_meta), len(utils.SM_INHERITABLE_KEYS)) def test_inherit_image_properties(self): image = self.get_image() image["properties"] = {"foo1": "bar", "foo2": "baz"} sys_meta = utils.get_system_metadata_from_image(image) # Verify that we inherit all the image properties for key, expected in image["properties"].items(): sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) self.assertEqual(sys_meta[sys_key], expected) def test_skip_image_properties(self): image = self.get_image() image["properties"] = { "foo1": "bar", "foo2": "baz", "mappings": "wizz", "img_block_device_mapping": "eek", } sys_meta = utils.get_system_metadata_from_image(image) # Verify that we inherit all the image properties for key, expected in image["properties"].items(): sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) if key in utils.SM_SKIP_KEYS: self.assertNotIn(sys_key, sys_meta) else: self.assertEqual(sys_meta[sys_key], expected) def test_vhd_min_disk_image(self): image = self.get_image() flavor = self.get_flavor() image["disk_format"] = "vhd" sys_meta = utils.get_system_metadata_from_image(image, flavor) # Verify that the min_disk property is taken from # flavor's root_gb when using vhd disk format sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, "min_disk") self.assertEqual(sys_meta[sys_key], flavor["root_gb"]) def test_dont_inherit_empty_values(self): image = self.get_image() for key in utils.SM_INHERITABLE_KEYS: image[key] = None sys_meta = utils.get_system_metadata_from_image(image) # Verify that the empty properties have not been inherited for key in utils.SM_INHERITABLE_KEYS: sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) self.assertNotIn(sys_key, sys_meta) class GetImageFromSystemMetadataTestCase(test.NoDBTestCase): def get_system_metadata(self): sys_meta = { "image_min_ram": 1, "image_min_disk": 1, "image_disk_format": "raw", "image_container_format": "bare", } return sys_meta def test_image_from_system_metadata(self): sys_meta = self.get_system_metadata() sys_meta["%soo1" % utils.SM_IMAGE_PROP_PREFIX] = "bar" sys_meta["%soo2" % utils.SM_IMAGE_PROP_PREFIX] = "baz" sys_meta["%simg_block_device_mapping" % utils.SM_IMAGE_PROP_PREFIX] = "eek" image = utils.get_image_from_system_metadata(sys_meta) # Verify that we inherit all the needed keys for key in utils.SM_INHERITABLE_KEYS: sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) self.assertEqual(image[key], sys_meta.get(sys_key)) # Verify that we inherit the rest of metadata as properties self.assertIn("properties", image) for key in image["properties"]: sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) self.assertEqual(image["properties"][key], sys_meta[sys_key]) self.assertNotIn("img_block_device_mapping", image["properties"]) def test_dont_inherit_empty_values(self): sys_meta = self.get_system_metadata() for key in utils.SM_INHERITABLE_KEYS: sys_key = "%s%s" % (utils.SM_IMAGE_PROP_PREFIX, key) sys_meta[sys_key] = None image = utils.get_image_from_system_metadata(sys_meta) # Verify that the empty properties have not been inherited for key in utils.SM_INHERITABLE_KEYS: self.assertNotIn(key, image) class GetImageMetadataFromVolumeTestCase(test.NoDBTestCase): def test_inherit_image_properties(self): properties = {"fake_prop": "fake_value"} volume = {"volume_image_metadata": properties} image_meta = utils.get_image_metadata_from_volume(volume) self.assertEqual(properties, image_meta["properties"]) def test_image_size(self): volume = {"size": 10} image_meta = utils.get_image_metadata_from_volume(volume) self.assertEqual(10 * units.Gi, image_meta["size"]) def test_image_status(self): volume = {} image_meta = utils.get_image_metadata_from_volume(volume) self.assertEqual("active", image_meta["status"]) def test_values_conversion(self): properties = {"min_ram": "5", "min_disk": "7"} volume = {"volume_image_metadata": properties} image_meta = utils.get_image_metadata_from_volume(volume) self.assertEqual(5, image_meta["min_ram"]) self.assertEqual(7, image_meta["min_disk"]) def test_suppress_not_image_properties(self): properties = {"min_ram": "256", "min_disk": "128", "image_id": "fake_id", "image_name": "fake_name", "container_format": "ami", "disk_format": "ami", "size": "1234", "checksum": "fake_checksum"} volume = {"volume_image_metadata": properties} image_meta = utils.get_image_metadata_from_volume(volume) self.assertEqual({}, image_meta["properties"]) self.assertEqual(0, image_meta["size"]) # volume's properties should not be touched self.assertNotEqual({}, properties) class ResourceFilterTestCase(test.NoDBTestCase): def _assert_filtering(self, res_list, filts, expected_tags): actual_tags = utils.filter_and_format_resource_metadata('instance', res_list, filts, 'metadata') self.assertJsonEqual(expected_tags, actual_tags) def test_filter_and_format_resource_metadata(self): # Create some tags # One overlapping pair, and one different key value pair # i1 : foo=bar, bax=wibble # i2 : foo=bar, baz=quux # resources i1 = { 'uuid': '1', 'metadata': {'foo': 'bar', 'bax': 'wibble'}, } i2 = { 'uuid': '2', 'metadata': {'foo': 'bar', 'baz': 'quux'}, } # Resources list rl = [i1, i2] # tags i11 = {'instance_id': '1', 'key': 'foo', 'value': 'bar'} i12 = {'instance_id': '1', 'key': 'bax', 'value': 'wibble'} i21 = {'instance_id': '2', 'key': 'foo', 'value': 'bar'} i22 = {'instance_id': '2', 'key': 'baz', 'value': 'quux'} # No filter self._assert_filtering(rl, [], [i11, i12, i21, i22]) self._assert_filtering(rl, {}, [i11, i12, i21, i22]) # Key search # Both should have tags with key 'foo' and value 'bar' self._assert_filtering(rl, {'key': 'foo', 'value': 'bar'}, [i11, i21]) # Both should have tags with key 'foo' self._assert_filtering(rl, {'key': 'foo'}, [i11, i21]) # Only i2 should have tags with key 'baz' and value 'quux' self._assert_filtering(rl, {'key': 'baz', 'value': 'quux'}, [i22]) # Only i2 should have tags with value 'quux' self._assert_filtering(rl, {'value': 'quux'}, [i22]) # Empty list should be returned when no tags match self._assert_filtering(rl, {'key': 'split', 'value': 'banana'}, []) # Multiple values # Only i2 should have tags with key 'baz' and values in the set # ['quux', 'wibble'] self._assert_filtering(rl, {'key': 'baz', 'value': ['quux', 'wibble']}, [i22]) # But when specified as two different filters, no tags should be # returned. This is because, the filter will mean "return tags which # have (key=baz AND value=quux) AND (key=baz AND value=wibble) self._assert_filtering(rl, [{'key': 'baz', 'value': 'quux'}, {'key': 'baz', 'value': 'wibble'}], []) # Test for regex self._assert_filtering(rl, {'value': '(?s)\\Aqu..*\\Z'}, [i22]) # Make sure bug #1365887 is fixed i1['metadata']['key3'] = 'a' self._assert_filtering(rl, {'value': 'banana'}, []) class SafeTruncateTestCase(test.NoDBTestCase): def test_exception_to_dict_with_long_message_3_bytes(self): # Generate Chinese byte string whose length is 300. This Chinese UTF-8 # character occupies 3 bytes. After truncating, the byte string length # should be 255. msg = u'\u8d75' * 100 truncated_msg = utils.safe_truncate(msg, 255) byte_message = encodeutils.safe_encode(truncated_msg) self.assertEqual(255, len(byte_message)) def test_exception_to_dict_with_long_message_2_bytes(self): # Generate Russian byte string whose length is 300. This Russian UTF-8 # character occupies 2 bytes. After truncating, the byte string length # should be 254. msg = encodeutils.safe_decode('\xd0\x92' * 150) truncated_msg = utils.safe_truncate(msg, 255) byte_message = encodeutils.safe_encode(truncated_msg) self.assertEqual(254, len(byte_message)) class SpawnNTestCase(test.NoDBTestCase): def setUp(self): super(SpawnNTestCase, self).setUp() self.useFixture(context_fixture.ClearRequestContext()) self.spawn_name = 'spawn_n' def test_spawn_n_no_context(self): self.assertIsNone(common_context.get_current()) def _fake_spawn(func, *args, **kwargs): # call the method to ensure no error is raised func(*args, **kwargs) self.assertEqual('test', args[0]) def fake(arg): pass with mock.patch.object(eventlet, self.spawn_name, _fake_spawn): getattr(utils, self.spawn_name)(fake, 'test') self.assertIsNone(common_context.get_current()) def test_spawn_n_context(self): self.assertIsNone(common_context.get_current()) ctxt = context.RequestContext('user', 'project') def _fake_spawn(func, *args, **kwargs): # call the method to ensure no error is raised func(*args, **kwargs) self.assertEqual(ctxt, args[0]) self.assertEqual('test', kwargs['kwarg1']) def fake(context, kwarg1=None): pass with mock.patch.object(eventlet, self.spawn_name, _fake_spawn): getattr(utils, self.spawn_name)(fake, ctxt, kwarg1='test') self.assertEqual(ctxt, common_context.get_current()) def test_spawn_n_context_different_from_passed(self): self.assertIsNone(common_context.get_current()) ctxt = context.RequestContext('user', 'project') ctxt_passed = context.RequestContext('user', 'project', overwrite=False) self.assertEqual(ctxt, common_context.get_current()) def _fake_spawn(func, *args, **kwargs): # call the method to ensure no error is raised func(*args, **kwargs) self.assertEqual(ctxt_passed, args[0]) self.assertEqual('test', kwargs['kwarg1']) def fake(context, kwarg1=None): pass with mock.patch.object(eventlet, self.spawn_name, _fake_spawn): getattr(utils, self.spawn_name)(fake, ctxt_passed, kwarg1='test') self.assertEqual(ctxt, common_context.get_current()) class SpawnTestCase(SpawnNTestCase): def setUp(self): super(SpawnTestCase, self).setUp() self.spawn_name = 'spawn' class UT8TestCase(test.NoDBTestCase): def test_none_value(self): self.assertIsInstance(utils.utf8(None), type(None)) def test_bytes_value(self): some_value = b"fake data" return_value = utils.utf8(some_value) # check that type of returned value doesn't changed self.assertIsInstance(return_value, type(some_value)) self.assertEqual(some_value, return_value) def test_not_text_type(self): return_value = utils.utf8(1) self.assertEqual(b"1", return_value) self.assertIsInstance(return_value, six.binary_type) def test_text_type_with_encoding(self): some_value = 'test\u2026config' self.assertEqual(some_value, utils.utf8(some_value).decode("utf-8")) class TestObjectCallHelpers(test.NoDBTestCase): def test_with_primitives(self): tester = mock.Mock() tester.foo(1, 'two', three='four') self.assertTrue( test_utils.obj_called_with(tester.foo, 1, 'two', three='four')) self.assertFalse( test_utils.obj_called_with(tester.foo, 42, 'two', three='four')) def test_with_object(self): obj_base.NovaObjectRegistry.register(test_objects.MyObj) obj = test_objects.MyObj(foo=1, bar='baz') tester = mock.Mock() tester.foo(1, obj) self.assertTrue( test_utils.obj_called_with( tester.foo, 1, test_objects.MyObj(foo=1, bar='baz'))) self.assertFalse( test_utils.obj_called_with( tester.foo, 1, test_objects.MyObj(foo=2, bar='baz'))) def test_with_object_multiple(self): obj_base.NovaObjectRegistry.register(test_objects.MyObj) obj1 = test_objects.MyObj(foo=1, bar='baz') obj2 = test_objects.MyObj(foo=3, bar='baz') tester = mock.Mock() tester.foo(1, obj1) tester.foo(1, obj1) tester.foo(3, obj2) # Called at all self.assertTrue( test_utils.obj_called_with( tester.foo, 1, test_objects.MyObj(foo=1, bar='baz'))) # Called once (not true) self.assertFalse( test_utils.obj_called_once_with( tester.foo, 1, test_objects.MyObj(foo=1, bar='baz'))) # Not called with obj.foo=2 self.assertFalse( test_utils.obj_called_with( tester.foo, 1, test_objects.MyObj(foo=2, bar='baz'))) # Called with obj.foo.3 self.assertTrue( test_utils.obj_called_with( tester.foo, 3, test_objects.MyObj(foo=3, bar='baz'))) # Called once with obj.foo.3 self.assertTrue( test_utils.obj_called_once_with( tester.foo, 3, test_objects.MyObj(foo=3, bar='baz'))) class GetKSAAdapterTestCase(test.NoDBTestCase): """Tests for nova.utils.get_endpoint_data().""" def setUp(self): super(GetKSAAdapterTestCase, self).setUp() self.sess = mock.create_autospec(ks_session.Session, instance=True) self.auth = mock.create_autospec(ks_identity.BaseIdentityPlugin, instance=True) load_adap_p = mock.patch( 'keystoneauth1.loading.load_adapter_from_conf_options') self.addCleanup(load_adap_p.stop) self.load_adap = load_adap_p.start() ksa_fixture = self.useFixture(nova_fixtures.KSAFixture()) self.mock_ksa_load_auth = ksa_fixture.mock_load_auth self.mock_ksa_load_sess = ksa_fixture.mock_load_sess self.mock_ksa_session = ksa_fixture.mock_session self.mock_ksa_load_auth.return_value = self.auth self.mock_ksa_load_sess.return_value = self.sess def test_bogus_service_type(self): self.assertRaises(exception.ConfGroupForServiceTypeNotFound, utils.get_ksa_adapter, 'bogus') self.mock_ksa_load_auth.assert_not_called() self.mock_ksa_load_sess.assert_not_called() self.load_adap.assert_not_called() def test_all_params(self): ret = utils.get_ksa_adapter( 'image', ksa_auth='auth', ksa_session='sess', min_version='min', max_version='max') # Returned the result of load_adapter_from_conf_options self.assertEqual(self.load_adap.return_value, ret) # Because we supplied ksa_auth, load_auth* not called self.mock_ksa_load_auth.assert_not_called() # Ditto ksa_session/load_session* self.mock_ksa_load_sess.assert_not_called() # load_adapter* called with what we passed in (and the right group) self.load_adap.assert_called_once_with( utils.CONF, 'glance', session='sess', auth='auth', min_version='min', max_version='max', raise_exc=False) def test_auth_from_session(self): self.sess.auth = 'auth' ret = utils.get_ksa_adapter('baremetal', ksa_session=self.sess) # Returned the result of load_adapter_from_conf_options self.assertEqual(self.load_adap.return_value, ret) # Because ksa_auth found in ksa_session, load_auth* not called self.mock_ksa_load_auth.assert_not_called() # Because we supplied ksa_session, load_session* not called self.mock_ksa_load_sess.assert_not_called() # load_adapter* called with the auth from the session self.load_adap.assert_called_once_with( utils.CONF, 'ironic', session=self.sess, auth='auth', min_version=None, max_version=None, raise_exc=False) def test_load_auth_and_session(self): ret = utils.get_ksa_adapter('volumev3') # Returned the result of load_adapter_from_conf_options self.assertEqual(self.load_adap.return_value, ret) # Had to load the auth self.mock_ksa_load_auth.assert_called_once_with(utils.CONF, 'cinder') # Had to load the session, passed in the loaded auth self.mock_ksa_load_sess.assert_called_once_with(utils.CONF, 'cinder', auth=self.auth) # load_adapter* called with the loaded auth & session self.load_adap.assert_called_once_with( utils.CONF, 'cinder', session=self.sess, auth=self.auth, min_version=None, max_version=None, raise_exc=False) class GetEndpointTestCase(test.NoDBTestCase): def setUp(self): super(GetEndpointTestCase, self).setUp() self.adap = mock.create_autospec(ks_adapter.Adapter, instance=True) self.adap.endpoint_override = None self.adap.service_type = 'stype' self.adap.interface = ['admin', 'public'] def test_endpoint_override(self): self.adap.endpoint_override = 'foo' self.assertEqual('foo', utils.get_endpoint(self.adap)) self.adap.get_endpoint_data.assert_not_called() self.adap.get_endpoint.assert_not_called() def test_image_good(self): self.adap.service_type = 'image' self.adap.get_endpoint_data.return_value.catalog_url = 'url' self.assertEqual('url', utils.get_endpoint(self.adap)) self.adap.get_endpoint_data.assert_called_once_with() self.adap.get_endpoint.assert_not_called() def test_image_bad(self): self.adap.service_type = 'image' self.adap.get_endpoint_data.side_effect = AttributeError self.adap.get_endpoint.return_value = 'url' self.assertEqual('url', utils.get_endpoint(self.adap)) self.adap.get_endpoint_data.assert_called_once_with() self.adap.get_endpoint.assert_called_once_with() def test_nonimage_good(self): self.adap.get_endpoint.return_value = 'url' self.assertEqual('url', utils.get_endpoint(self.adap)) self.adap.get_endpoint_data.assert_not_called() self.adap.get_endpoint.assert_called_once_with() def test_nonimage_try_interfaces(self): self.adap.get_endpoint.side_effect = (ks_exc.EndpointNotFound, 'url') self.assertEqual('url', utils.get_endpoint(self.adap)) self.adap.get_endpoint_data.assert_not_called() self.assertEqual(2, self.adap.get_endpoint.call_count) self.assertEqual('admin', self.adap.interface) def test_nonimage_try_interfaces_fail(self): self.adap.get_endpoint.side_effect = ks_exc.EndpointNotFound self.assertRaises(ks_exc.EndpointNotFound, utils.get_endpoint, self.adap) self.adap.get_endpoint_data.assert_not_called() self.assertEqual(3, self.adap.get_endpoint.call_count) self.assertEqual('public', self.adap.interface) class RunOnceTests(test.NoDBTestCase): fake_logger = mock.MagicMock() @utils.run_once("already ran once", fake_logger) def dummy_test_func(self, fail=False): if fail: raise ValueError() return True def setUp(self): super(RunOnceTests, self).setUp() self.dummy_test_func.reset() RunOnceTests.fake_logger.reset_mock() def test_wrapped_funtions_called_once(self): self.assertFalse(self.dummy_test_func.called) result = self.dummy_test_func() self.assertTrue(result) self.assertTrue(self.dummy_test_func.called) # assert that on second invocation no result # is returned and that the logger is invoked. result = self.dummy_test_func() RunOnceTests.fake_logger.assert_called_once() self.assertIsNone(result) def test_wrapped_funtions_called_once_raises(self): self.assertFalse(self.dummy_test_func.called) self.assertRaises(ValueError, self.dummy_test_func, fail=True) self.assertTrue(self.dummy_test_func.called) # assert that on second invocation no result # is returned and that the logger is invoked. result = self.dummy_test_func() RunOnceTests.fake_logger.assert_called_once() self.assertIsNone(result) def test_wrapped_funtions_can_be_reset(self): # assert we start with a clean state self.assertFalse(self.dummy_test_func.called) result = self.dummy_test_func() self.assertTrue(result) self.dummy_test_func.reset() # assert we restored a clean state self.assertFalse(self.dummy_test_func.called) result = self.dummy_test_func() self.assertTrue(result) # assert that we never called the logger RunOnceTests.fake_logger.assert_not_called() def test_reset_calls_cleanup(self): mock_clean = mock.Mock() @utils.run_once("already ran once", self.fake_logger, cleanup=mock_clean) def f(): pass f() self.assertTrue(f.called) f.reset() self.assertFalse(f.called) mock_clean.assert_called_once_with() def test_clean_is_not_called_at_reset_if_wrapped_not_called(self): mock_clean = mock.Mock() @utils.run_once("already ran once", self.fake_logger, cleanup=mock_clean) def f(): pass self.assertFalse(f.called) f.reset() self.assertFalse(f.called) self.assertFalse(mock_clean.called) def test_reset_works_even_if_cleanup_raises(self): mock_clean = mock.Mock(side_effect=ValueError()) @utils.run_once("already ran once", self.fake_logger, cleanup=mock_clean) def f(): pass f() self.assertTrue(f.called) self.assertRaises(ValueError, f.reset) self.assertFalse(f.called) mock_clean.assert_called_once_with() class TestResourceClassNormalize(test.NoDBTestCase): def test_normalize_name(self): values = [ ("foo", "CUSTOM_FOO"), ("VCPU", "CUSTOM_VCPU"), ("CUSTOM_BOB", "CUSTOM_CUSTOM_BOB"), ("CUSTM_BOB", "CUSTOM_CUSTM_BOB"), ] for test_value, expected in values: result = utils.normalize_rc_name(test_value) self.assertEqual(expected, result) def test_normalize_name_bug_1762789(self): """The .upper() builtin treats sharp S (\xdf) differently in py2 vs. py3. Make sure normalize_name handles it properly. """ name = u'Fu\xdfball' self.assertEqual(u'CUSTOM_FU_BALL', utils.normalize_rc_name(name)) class TestGetConfGroup(test.NoDBTestCase): """Tests for nova.utils._get_conf_group""" @mock.patch('nova.utils.CONF') @mock.patch('nova.utils._SERVICE_TYPES.get_project_name') def test__get_conf_group(self, mock_get_project_name, mock_conf): test_conf_grp = 'test_confgrp' test_service_type = 'test_service_type' mock_get_project_name.return_value = test_conf_grp # happy path mock_conf.test_confgrp = None actual_conf_grp = utils._get_conf_group(test_service_type) self.assertEqual(test_conf_grp, actual_conf_grp) mock_get_project_name.assert_called_once_with(test_service_type) # service type as the conf group del mock_conf.test_confgrp mock_conf.test_service_type = None actual_conf_grp = utils._get_conf_group(test_service_type) self.assertEqual(test_service_type, actual_conf_grp) @mock.patch('nova.utils._SERVICE_TYPES.get_project_name') def test__get_conf_group_fail(self, mock_get_project_name): test_service_type = 'test_service_type' # not confgrp mock_get_project_name.return_value = None self.assertRaises(exception.ConfGroupForServiceTypeNotFound, utils._get_conf_group, None) # not hasattr mock_get_project_name.return_value = 'test_fail' self.assertRaises(exception.ConfGroupForServiceTypeNotFound, utils._get_conf_group, test_service_type) class TestGetAuthAndSession(test.NoDBTestCase): """Tests for nova.utils._get_auth_and_session""" def setUp(self): super(TestGetAuthAndSession, self).setUp() self.test_auth = 'test_auth' self.test_session = 'test_session' self.test_session_auth = 'test_session_auth' self.test_confgrp = 'test_confgrp' self.mock_session = mock.Mock() self.mock_session.auth = self.test_session_auth @mock.patch('nova.utils.ks_loading.load_auth_from_conf_options') @mock.patch('nova.utils.ks_loading.load_session_from_conf_options') def test_auth_and_session(self, mock_load_session, mock_load_auth): # yes auth, yes session actual = utils._get_auth_and_session(self.test_confgrp, ksa_auth=self.test_auth, ksa_session=self.test_session) self.assertEqual(actual, (self.test_auth, self.test_session)) mock_load_session.assert_not_called() mock_load_auth.assert_not_called() @mock.patch('nova.utils.ks_loading.load_auth_from_conf_options') @mock.patch('nova.utils.ks_loading.load_session_from_conf_options') @mock.patch('nova.utils.CONF') def test_no_session(self, mock_CONF, mock_load_session, mock_load_auth): # yes auth, no session mock_load_session.return_value = self.test_session actual = utils._get_auth_and_session(self.test_confgrp, ksa_auth=self.test_auth, ksa_session=None) self.assertEqual(actual, (self.test_auth, self.test_session)) mock_load_session.assert_called_once_with(mock_CONF, self.test_confgrp, auth=self.test_auth) mock_load_auth.assert_not_called() @mock.patch('nova.utils.ks_loading.load_auth_from_conf_options') @mock.patch('nova.utils.ks_loading.load_session_from_conf_options') def test_no_auth(self, mock_load_session, mock_load_auth): # no auth, yes session, yes session.auth actual = utils._get_auth_and_session(self.test_confgrp, ksa_auth=None, ksa_session=self.mock_session) self.assertEqual(actual, (self.test_session_auth, self.mock_session)) mock_load_session.assert_not_called() mock_load_auth.assert_not_called() @mock.patch('nova.utils.ks_loading.load_auth_from_conf_options') @mock.patch('nova.utils.ks_loading.load_session_from_conf_options') @mock.patch('nova.utils.CONF') def test_no_auth_no_sauth(self, mock_CONF, mock_load_session, mock_load_auth): # no auth, yes session, no session.auth mock_load_auth.return_value = self.test_auth self.mock_session.auth = None actual = utils._get_auth_and_session(self.test_confgrp, ksa_auth=None, ksa_session=self.mock_session) self.assertEqual(actual, (self.test_auth, self.mock_session)) mock_load_session.assert_not_called() mock_load_auth.assert_called_once_with(mock_CONF, self.test_confgrp) @mock.patch('nova.utils.ks_loading.load_auth_from_conf_options') @mock.patch('nova.utils.ks_loading.load_session_from_conf_options') @mock.patch('nova.utils.CONF') def test__get_auth_and_session(self, mock_CONF, mock_load_session, mock_load_auth): # no auth, no session mock_load_auth.return_value = self.test_auth mock_load_session.return_value = self.test_session actual = utils._get_auth_and_session(self.test_confgrp, ksa_auth=None, ksa_session=None) self.assertEqual(actual, (self.test_auth, self.test_session)) mock_load_session.assert_called_once_with(mock_CONF, self.test_confgrp, auth=self.test_auth) mock_load_auth.assert_called_once_with(mock_CONF, self.test_confgrp) class TestGetSDKAdapter(test.NoDBTestCase): """Tests for nova.utils.get_sdk_adapter""" @mock.patch('nova.utils._get_conf_group') @mock.patch('nova.utils._get_auth_and_session') @mock.patch('nova.utils.connection.Connection') @mock.patch('nova.utils.CONF') def test_get_sdk_adapter(self, mock_conf, mock_connection, mock_get_auth_sess, mock_get_confgrp): service_type = 'test_service' mock_conn = mock.Mock() mock_proxy = mock.Mock() setattr(mock_conn, service_type, mock_proxy) mock_connection.return_value = mock_conn mock_session = mock.Mock() mock_get_auth_sess.return_value = (None, mock_session) mock_get_confgrp.return_value = mock_confgrp = mock.Mock() actual = utils.get_sdk_adapter(service_type) self.assertEqual(actual, mock_proxy) mock_get_confgrp.assert_called_once_with(service_type) mock_get_auth_sess.assert_called_once_with(mock_confgrp) mock_connection.assert_called_once_with(session=mock_session, oslo_conf=mock_conf) @mock.patch('nova.utils._get_conf_group') @mock.patch('nova.utils._get_auth_and_session') @mock.patch('nova.utils.connection.Connection') def test_get_sdk_adapter_fail(self, mock_connection, mock_get_auth_sess, mock_get_confgrp): service_type = 'test_service' mock_get_confgrp.side_effect = \ exception.ConfGroupForServiceTypeNotFound(stype=service_type) self.assertRaises(exception.ConfGroupForServiceTypeNotFound, utils.get_sdk_adapter, service_type) mock_get_confgrp.assert_called_once_with(service_type) mock_connection.assert_not_called() mock_get_auth_sess.assert_not_called()
41.066291
79
0.588502
0e4698d5bcbe84fa02becca4cdf6209496a99aa7
3,373
py
Python
clear_nb_cache.py
nigelnquande/clear-netbeans-cache
27a65c8ea7d187d9ff8508c6ceeaa47f623497ff
[ "MIT" ]
null
null
null
clear_nb_cache.py
nigelnquande/clear-netbeans-cache
27a65c8ea7d187d9ff8508c6ceeaa47f623497ff
[ "MIT" ]
null
null
null
clear_nb_cache.py
nigelnquande/clear-netbeans-cache
27a65c8ea7d187d9ff8508c6ceeaa47f623497ff
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Program to clear the Netbeans Cache # TODO: Do not delete anything that starts with *jython* (including subdirectories and directory contents). import os from sys import stderr, argv from shutil import rmtree def getVersion (): return "0.00.01" def get_immediate_subdirectories(a_dir): return [name for name in os.listdir(a_dir) if os.path.isdir(os.path.join(a_dir, name))] def clean_nb_cache(cache_dir, verbose): """ Given a directory containing the Netbeans cache structure, check that it has subdirectories and ask which one to clean, then delete all contents in 'index' """ total_dirs = 0 subdirs = get_immediate_subdirectories(cache_dir) if len(subdirs) > 0: ask_dir = "For which version of NetBeans do you wish to clear caches?\nType the directory at the prompt (or leave blank for none), followed by <Enter>." for a_dir in subdirs: ask_dir = ask_dir + "\n\t" + a_dir ask_dir = ask_dir + "\n\t? " clean_dir = input(ask_dir).rstrip() if len(clean_dir) > 0: clean_full = os.path.join(cache_dir, clean_dir, "index") print("Cleaning " + clean_full + " ...") subdirs = get_immediate_subdirectories(clean_full) # Don't want to delete index but its subdirectories for a_dir in subdirs: if str(a_dir).startswith("jython"): continue # ignore jython directories if (verbose): print("Cleaning " + a_dir + " ...") total_dirs += 1 rmtree(os.path.join(clean_full, a_dir), ignore_errors=True) # Will delete the dir as well if (verbose): print ("Cleaning " + os.path.join(clean_full, a_dir) + " ...") total_dirs += 1 else: print("No cache directory supplied!", file=stderr) else: print("Cannot find a netbeans version in " + cache_dir, file=stderr) print("Cleaning cache completed. (%s directories cleaned.)" % total_dirs) def main(verbose): print("NetBeans Cache Cleaner [" + getVersion() + "]") print("\nPlease exit NetBeans if you haven't already ...\nSupply -v or --verbose for verbose output. Supply -V or --version for version information.\n") home_dir = os.getenv("HOME", "/home") # Get the location of $HOME (UNIX) cache_dir = os.path.join(home_dir, ".cache", "netbeans") if os.path.isdir(cache_dir): # Get a list of directories in $HOME/.cache/netbeans/, assuming it exists clean_nb_cache(cache_dir, verbose) elif os.path.isdir(os.path.join(home_dir, ".netbeans", "cache")): # Alternate cache location clean_nb_cache(os.path.join(home_dir, ".netbeans", "cache"), verbose) elif os.getenv("OS", "?").startswith("Windows") and len(os.getenv("USERPROFILE", "")) > 0: # NetBeans puts its cache in different location in home dir on Windows home_dir = os.getenv("USERPROFILE", "") # Windows Equivalent of HOME cache_dir = os.path.join(home_dir, "AppData", "Local", "NetBeans", "Cache") if os.path.isdir(cache_dir): clean_nb_cache(cache_dir, verbose) else: print("Cannot find NetBeans cache in " + cache_dir, file=stderr) else: print("Cannot find NetBeans cache in " + cache_dir, file=stderr) # Ask the user to choose which version of Netbeans to clear, based on directories # Delete all files and directories (recursive) within the 'index' dir if __name__ == "__main__": if ("-V" in argv) or ("--version") in argv: print(getVersion()) else: verbose = ("-v" in argv) or ("--verbose" in argv) main(verbose)
42.696203
162
0.702342
eec401f04cfc542bf92fc67fa0d722b0d1b44b01
1,169
py
Python
tests/unit/test_mpath.py
darkwyrm/pymensago
add93a6a87def3b6909666d23b8d885cfbdee5c4
[ "MIT" ]
1
2021-10-01T01:35:19.000Z
2021-10-01T01:35:19.000Z
tests/unit/test_mpath.py
darkwyrm/pymensago
add93a6a87def3b6909666d23b8d885cfbdee5c4
[ "MIT" ]
null
null
null
tests/unit/test_mpath.py
darkwyrm/pymensago
add93a6a87def3b6909666d23b8d885cfbdee5c4
[ "MIT" ]
null
null
null
import pymensago.mpath as mpath def test_basename(): '''Tests mpath.basename()''' assert mpath.basename('/ foo bar baz') == 'baz', 'basename test failed' def test_parent(): '''Tests mpath.parent()''' assert mpath.parent('/ foo bar baz') == '/ foo bar', 'parent test failed' def test_split(): '''Tests mpath.split()''' testdata = '/ foo bar baz / spam eggs / 123 456 789' expected_data = ['/ foo bar baz', '/ spam eggs', '/ 123 456 789'] assert mpath.split(testdata) == expected_data, 'split test failed' def test_validate_server_path(): '''Tests mpath.validate_server_path()''' testpaths = [ '/', '/ tmp 11111111-1111-1111-1111-111111111111 1234.1234.22222222-2222-2222-2222-222222222222', '/ out 11111111-1111-1111-1111-111111111111 33333333-3333-3333-3333-333333333333', '/ wsp 11111111-1111-1111-1111-111111111111 33333333-3333-3333-3333-333333333333 new ' '1234.1234.22222222-2222-2222-2222-222222222222', ] for testpath in testpaths: assert mpath.validate_server_path(testpath), 'validate_server_path test failed: ' + testpath if __name__ == '__main__': test_basename() test_parent() test_split() test_validate_server_path()
29.974359
94
0.715141
accf3c3458d1f3eb2fa3379b9ec04a5b0571fc0b
9,171
py
Python
src/Examples/VideoUploaderClient.py
eacg91/WhosApp
c822b2aa61ab29e47ebf590570b15bb9558275c6
[ "MIT" ]
null
null
null
src/Examples/VideoUploaderClient.py
eacg91/WhosApp
c822b2aa61ab29e47ebf590570b15bb9558275c6
[ "MIT" ]
null
null
null
src/Examples/VideoUploaderClient.py
eacg91/WhosApp
c822b2aa61ab29e47ebf590570b15bb9558275c6
[ "MIT" ]
1
2020-02-16T20:43:39.000Z
2020-02-16T20:43:39.000Z
''' Copyright (c) <2012> Tarek Galal <tare2.galal@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' from Yowsup.connectionmanager import YowsupConnectionManager import time, datetime, sys from Yowsup.Media.downloader import MediaDownloader from Yowsup.Media.uploader import MediaUploader from sys import stdout import os import hashlib import base64 from PIL import Image import StringIO size = 100,100 if sys.version_info >= (3, 0): raw_input = input class VideoUploaderClient: def __init__(self, phoneNumber, imagePath, keepAlive = False, sendReceipts = False): self.sendReceipts = sendReceipts self.phoneNumber = phoneNumber self.imagePath = imagePath if '-' in phoneNumber: self.jid = "%s@g.us" % phoneNumber else: self.jid = "%s@s.whatsapp.net" % phoneNumber self.sentCache = {} connectionManager = YowsupConnectionManager() connectionManager.setAutoPong(keepAlive) self.signalsInterface = connectionManager.getSignalsInterface() self.methodsInterface = connectionManager.getMethodsInterface() self.signalsInterface.registerListener("auth_success", self.onAuthSuccess) self.signalsInterface.registerListener("auth_fail", self.onAuthFailed) self.signalsInterface.registerListener("message_received", self.onMessageReceived) self.signalsInterface.registerListener("receipt_messageSent", self.onMessageSent) self.signalsInterface.registerListener("presence_updated", self.onPresenceUpdated) self.signalsInterface.registerListener("disconnected", self.onDisconnected) self.signalsInterface.registerListener("media_uploadRequestSuccess", self.onmedia_uploadRequestSuccess) self.signalsInterface.registerListener("media_uploadRequestFailed", self.onmedia_uploadRequestFailed) self.signalsInterface.registerListener("media_uploadRequestDuplicate", self.onmedia_uploadRequestDuplicate) self.path = "" self.gotMediaReceipt = False self.done = False self.commandMappings = {"lastseen":lambda: self.methodsInterface.call("presence_request", ( self.jid,)), "available": lambda: self.methodsInterface.call("presence_sendAvailable"), "unavailable": lambda: self.methodsInterface.call("presence_sendUnavailable") } self.done = False #signalsInterface.registerListener("receipt_messageDelivered", lambda jid, messageId: methodsInterface.call("delivered_ack", (jid, messageId))) def login(self, username, password): self.username = username self.methodsInterface.call("auth_login", (username, password)) while not self.done: time.sleep(0.5) def onAuthSuccess(self, username): print("Authed %s" % username) self.methodsInterface.call("ready") self.runCommand("/pic "+self.imagePath) def onAuthFailed(self, username, err): print("Auth Failed!") def onDisconnected(self, reason): print("Disconnected because %s" %reason) def onPresenceUpdated(self, jid, lastSeen): formattedDate = datetime.datetime.fromtimestamp(long(time.time()) - lastSeen).strftime('%d-%m-%Y %H:%M') self.onMessageReceived(0, jid, "LAST SEEN RESULT: %s"%formattedDate, long(time.time()), False, None, False) def onMessageSent(self, jid, messageId): formattedDate = datetime.datetime.fromtimestamp(self.sentCache[messageId][0]).strftime('%d-%m-%Y %H:%M') print("%s [%s]:%s"%(self.username, formattedDate, self.sentCache[messageId][1])) print(self.getPrompt()) def runCommand(self, command): splitstr = command.split(' ') if splitstr[0] == "/pic" and len(splitstr) == 2: self.path = splitstr[1] if not os.path.isfile(splitstr[1]): print("File %s does not exists" % splitstr[1]) return 1 statinfo = os.stat(self.path) name=os.path.basename(self.path) print("Sending picture %s of size %s with name %s" %(self.path, statinfo.st_size, name)) mtype = "image" sha1 = hashlib.sha256() fp = open(self.path, 'rb') try: sha1.update(fp.read()) hsh = base64.b64encode(sha1.digest()) print("Sending media_requestUpload") self.methodsInterface.call("media_requestUpload", (hsh, mtype, os.path.getsize(self.path))) finally: fp.close() timeout = 100 t = 0; while t < timeout and not self.gotMediaReceipt: time.sleep(0.5) t+=1 if not self.gotMediaReceipt: print("MediaReceipt print timedout!") else: print("Got request MediaReceipt") # added by sirpoot self.done = True return 1 elif command[0] == "/": command = command[1:].split(' ') try: self.commandMappings[command[0]]() return 1 except KeyError: return 0 return 0 def onMessageReceived(self, messageId, jid, messageContent, timestamp, wantsReceipt, pushName, isBroadcast): if jid[:jid.index('@')] != self.phoneNumber: return formattedDate = datetime.datetime.fromtimestamp(timestamp).strftime('%d-%m-%Y %H:%M') print("%s [%s]:%s"%(jid, formattedDate, messageContent)) if wantsReceipt and self.sendReceipts: self.methodsInterface.call("message_ack", (jid, messageId)) print(self.getPrompt()) def goInteractive(self, jid): print("Starting Interactive chat with %s" % jid) jid = "%s@s.whatsapp.net" % jid print(self.getPrompt()) while True: message = raw_input() message = message.strip() if not len(message): continue if not self.runCommand(message.strip()): msgId = self.methodsInterface.call("message_send", (jid, message)) self.sentCache[msgId] = [int(time.time()), message] self.done = True def getPrompt(self): return "Enter Message or command: (/%s)" % ", /".join(self.commandMappings) def onImageReceived(self, messageId, jid, preview, url, size, wantsReceipt, isBroadcast): print("Image received: Id:%s Jid:%s Url:%s size:%s" %(messageId, jid, url, size)) downloader = MediaDownloader(self.onDlsuccess, self.onDlerror, self.onDlprogress) downloader.download(url) if wantsReceipt and self.sendReceipts: self.methodsInterface.call("message_ack", (jid, messageId)) timeout = 10 t = 0; while t < timeout: time.sleep(0.5) t+=1 def onDlsuccess(self, path): stdout.write("\n") stdout.flush() print("Image downloded to %s"%path) print(self.getPrompt()) def onDlerror(self): stdout.write("\n") stdout.flush() print("Download Error") print(self.getPrompt()) def onDlprogress(self, progress): stdout.write("\r Progress: %s" % progress) stdout.flush() def onmedia_uploadRequestSuccess(self,_hash, url, resumeFrom): print("Request Succ: hash: %s url: %s resume: %s"%(_hash, url, resumeFrom)) self.uploadImage(url) self.gotMediaReceipt = True def onmedia_uploadRequestFailed(self,_hash): print("Request Fail: hash: %s"%(_hash)) self.gotReceipt = True def onmedia_uploadRequestDuplicate(self,_hash, url): print("Request Dublicate: hash: %s url: %s "%(_hash, url)) self.doSendImage(url) self.gotMediaReceipt = True def uploadImage(self, url): uploader = MediaUploader(self.jid, self.username, self.onUploadSuccess, self.onError, self.onProgressUpdated) uploader.upload(self.path,url) def onUploadSuccess(self, url): stdout.write("\n") stdout.flush() print("Upload Succ: url: %s "%( url)) self.doSendImage(url) def onError(self): stdout.write("\n") stdout.flush() print("Upload Fail:") def onProgressUpdated(self, progress): stdout.write("\r Progress: %s" % progress) stdout.flush() def doSendImage(self, url): print("Sending message_video") statinfo = os.stat(self.path) name=os.path.basename(self.path) #im = Image.open("c:\\users\\poot\\desktop\\icon.png") #im.thumbnail(size, Image.ANTIALIAS) #msgId = self.methodsInterface.call("message_videoSend", (self.jid, url, name,str(statinfo.st_size), self.createThumb())) msgId = self.methodsInterface.call("message_videoSend", (self.jid, url, name,str(statinfo.st_size), None)) self.sentCache[msgId] = [int(time.time()), self.path] def createThumb(self): THUMBNAIL_SIZE = 64, 64 thumbnailFile = "thumb.jpg" im = Image.open(self.path) im.thumbnail(THUMBNAIL_SIZE, Image.ANTIALIAS) im.save(thumbnailFile, "JPEG") with open(thumbnailFile, "rb") as imageFile: raw = base64.b64encode(imageFile.read()) return raw;
33.841328
145
0.726638
827acea0f9e04b1c2291a731ce67b919a277b139
1,569
py
Python
xdl/test/python/unit_test/ps_ops/test_ps_sparse_assign_op.py
hitflame/x-deeplearning
c8029396c6ae6dbf397a34a1801ceadc824e4f8d
[ "Apache-2.0" ]
2
2019-11-11T09:51:56.000Z
2021-08-04T04:02:29.000Z
xdl/test/python/unit_test/ps_ops/test_ps_sparse_assign_op.py
hitflame/x-deeplearning
c8029396c6ae6dbf397a34a1801ceadc824e4f8d
[ "Apache-2.0" ]
1
2019-11-29T14:52:53.000Z
2019-11-29T14:52:53.000Z
xdl/test/python/unit_test/ps_ops/test_ps_sparse_assign_op.py
hitflame/x-deeplearning
c8029396c6ae6dbf397a34a1801ceadc824e4f8d
[ "Apache-2.0" ]
1
2019-08-03T05:22:19.000Z
2019-08-03T05:22:19.000Z
# Copyright (C) 2016-2018 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import xdl import unittest import numpy as np from xdl.python.lib.datatype import * from xdl.python.lib.graph import execute class TestPsSparseAssignOp(unittest.TestCase): def test_all(self): var = xdl.Variable(name="w", dtype=DataType.float, shape=[4,2], initializer=xdl.Zeros()) execute(xdl.variable_registers()) execute(xdl.global_initializers()) op = xdl.ps_sparse_assign_op( var_name="w", var_type="index", ids=np.array([1,2], dtype=np.int32), values=np.array([[1,2],[3,4]], dtype=np.float32)) execute(op) ret = execute(var.value) self.assertTrue((ret == np.array([[0,0],[1,2],[3,4],[0,0]], dtype=np.float32)).all()) def suite(): return unittest.TestLoader().loadTestsFromTestCase(TestPsSparseAssignOp) if __name__ == '__main__': unittest.TextTestRunner().run(suite())
39.225
96
0.660293
96da19a11b7f019b832f836904ff25fd5ee42918
398
py
Python
kp_report.py
NaomiatLibrary/OpenNMT-kpg-release
1da3468d7dad22529a77f3526abf9b373bd3dc4c
[ "MIT" ]
152
2019-10-07T03:15:53.000Z
2022-03-24T16:26:26.000Z
kp_report.py
NaomiatLibrary/OpenNMT-kpg-release
1da3468d7dad22529a77f3526abf9b373bd3dc4c
[ "MIT" ]
46
2019-11-04T09:51:51.000Z
2022-03-06T18:40:13.000Z
kp_report.py
NaomiatLibrary/OpenNMT-kpg-release
1da3468d7dad22529a77f3526abf9b373bd3dc4c
[ "MIT" ]
28
2019-11-04T02:02:23.000Z
2021-12-29T06:10:04.000Z
# -*- coding: utf-8 -*- """ Python File Template """ import os import kp_evaluate __author__ = "Rui Meng" __email__ = "rui.meng@pitt.edu" if __name__ == '__main__': eval_dir = '/zfs1/pbrusilovsky/rum20/kp/OpenNMT-kpg/output/keyphrase/meng17-one2one/meng17-one2one-kp20k-v2/' dataset_scores_dict = kp_evaluate.gather_eval_results(eval_root_dir=eval_dir) print(dataset_scores_dict)
22.111111
113
0.738693
a7377dad9309074ca0a9ede9d231125a41cae3e7
831
py
Python
blog/migrations/0009_auto_20190129_0021.py
ufotable/DjangoBlog
64ac857d2d105b39200984816187e5a7bf6be43a
[ "MIT" ]
21
2019-02-12T09:21:03.000Z
2019-06-05T03:36:16.000Z
blog/migrations/0009_auto_20190129_0021.py
ufotable/DjangoBlog
64ac857d2d105b39200984816187e5a7bf6be43a
[ "MIT" ]
25
2019-01-25T02:31:30.000Z
2019-03-09T13:52:12.000Z
blog/migrations/0009_auto_20190129_0021.py
ufotable/DjangoBlog
64ac857d2d105b39200984816187e5a7bf6be43a
[ "MIT" ]
10
2019-02-28T10:30:50.000Z
2019-05-16T00:11:13.000Z
# Generated by Django 2.1.4 on 2019-01-29 00:21 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0008_auto_20190129_0019'), ] operations = [ migrations.AlterField( model_name='comment', name='published_date', field=models.DateTimeField(blank=True, default=datetime.datetime(2019, 1, 29, 0, 21, 39, 296873)), ), migrations.AlterField( model_name='comment', name='reply_to', field=models.IntegerField(blank=True), ), migrations.AlterField( model_name='post', name='published_date', field=models.DateTimeField(default=datetime.datetime(2019, 1, 29, 0, 21, 39, 296279)), ), ]
27.7
110
0.590854
232b9a28aba486a88730936490c4c2961cbe2dce
549
py
Python
BlueprintsApp/main/gui/buttons/apply_button.py
PiCodingClub/BlueprintsEdu
f65ad2c3bf6f01acb26660505f6ceded0bee888f
[ "Apache-2.0" ]
null
null
null
BlueprintsApp/main/gui/buttons/apply_button.py
PiCodingClub/BlueprintsEdu
f65ad2c3bf6f01acb26660505f6ceded0bee888f
[ "Apache-2.0" ]
null
null
null
BlueprintsApp/main/gui/buttons/apply_button.py
PiCodingClub/BlueprintsEdu
f65ad2c3bf6f01acb26660505f6ceded0bee888f
[ "Apache-2.0" ]
null
null
null
from gui.buttons.button import Button from utils.string_utils import StringUtils from utils import scene_utils from utils.gui_utils import Themes class ApplyButton(Button): def __init__(self, pos=0): Button.__init__(self, StringUtils.get_string("ID_APPLY"), pos) def on_click(self, board, form=None): board.set_scene(scene_utils.WELCOME_SCENE) super().on_click(board) def update_button(self, color=Themes.DEFAULT_THEME.get("button")): super().update_button(StringUtils.get_string("ID_APPLY"), color)
30.5
72
0.739526
b37d859710b6bcfc64412cb827233ee4cdf18fdc
1,232
py
Python
src/posts/serializers/post.py
edgarbs1998/partesanato-server
1b01f75f94dca85ff5b963c49c237fb758b27b43
[ "MIT" ]
null
null
null
src/posts/serializers/post.py
edgarbs1998/partesanato-server
1b01f75f94dca85ff5b963c49c237fb758b27b43
[ "MIT" ]
1
2020-06-05T22:09:06.000Z
2020-06-05T22:09:06.000Z
src/posts/serializers/post.py
edgarbs1998/partesanato-server
1b01f75f94dca85ff5b963c49c237fb758b27b43
[ "MIT" ]
null
null
null
# posts/serializers/post.py from rest_framework.serializers import HyperlinkedModelSerializer from posts.models import Post from posts.serializers import PostCommentSerializer, PostImageSerializer, UserSerializer class AdminPostSerializer(HyperlinkedModelSerializer): parent_lookup_kwargs = { 'user_pk': 'user__pk', } user = UserSerializer(read_only=True) comments = PostCommentSerializer(many=True, read_only=True) images = PostImageSerializer(many=True, read_only=True) class Meta: model = Post fields = ( 'url', 'id', 'user', 'title', 'description', 'short_description', 'approved', 'likes', 'dislikes', 'datetime_created', 'datetime_modified', 'comments', 'images', ) read_only_fields = ( 'likes', 'dislikes', ) depth = 1 class PostSerializer(AdminPostSerializer): class Meta(AdminPostSerializer.Meta): read_only_fields = AdminPostSerializer.Meta.read_only_fields + ( 'approved', )
26.212766
89
0.569805
d59c46d26abcd04390984a019be11e79a32a9f65
1,419
py
Python
test_python/layers/test_softmax.py
moskomule/TensorComprehensions
c215ae2bbe1cf0424a65b1848dec486aa2d2eafa
[ "Apache-2.0" ]
null
null
null
test_python/layers/test_softmax.py
moskomule/TensorComprehensions
c215ae2bbe1cf0424a65b1848dec486aa2d2eafa
[ "Apache-2.0" ]
null
null
null
test_python/layers/test_softmax.py
moskomule/TensorComprehensions
c215ae2bbe1cf0424a65b1848dec486aa2d2eafa
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import tensor_comprehensions as tc import torch import torch.cuda import unittest class TestSoftmax(unittest.TestCase): # one can't reuse names on the LHS once they've been used in another tensor # otherwise the size of the tensors is ill-defined def test_softmax(self): LANG = """ def softmax(float(N, D) I) -> (O, maxVal, expDistance, expSum) { maxVal(n) max= I(n, d) expDistance(n, d) = exp(I(n, d) - maxVal(n)) expSum(n) +=! expDistance(n, d) O(n, d) = expDistance(n, d) / expSum(n) } """ softmax = tc.define(LANG, name="softmax") inp = torch.randn(32, 16).cuda() out = softmax(inp) if __name__ == '__main__': unittest.main()
33
79
0.627202
d7dd37609fbf0bff444d9fdee2adc3db2e58fb88
3,742
py
Python
ddqn.py
tonegas/deep-q-learning
b375acb0ae64340706ea6dd03702d1dde5e932c2
[ "MIT" ]
1
2020-12-03T15:46:19.000Z
2020-12-03T15:46:19.000Z
ddqn.py
AlexKaravaev/deep-q-learning
eba2519d34d97620584810427c1331d37a2dcf1d
[ "MIT" ]
null
null
null
ddqn.py
AlexKaravaev/deep-q-learning
eba2519d34d97620584810427c1331d37a2dcf1d
[ "MIT" ]
2
2019-04-13T08:36:58.000Z
2021-05-08T08:20:39.000Z
# -*- coding: utf-8 -*- import random import gym import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from keras import backend as K EPISODES = 5000 class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 # discount rate self.epsilon = 1.0 # exploration rate self.epsilon_min = 0.01 self.epsilon_decay = 0.99 self.learning_rate = 0.001 self.model = self._build_model() self.target_model = self._build_model() self.update_target_model() def _huber_loss(self, target, prediction): # sqrt(1+error^2)-1 error = prediction - target return K.mean(K.sqrt(1+K.square(error))-1, axis=-1) def _build_model(self): # Neural Net for Deep-Q learning Model model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss=self._huber_loss, optimizer=Adam(lr=self.learning_rate)) return model def update_target_model(self): # copy weights from model to target_model self.target_model.set_weights(self.model.get_weights()) def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) return np.argmax(act_values[0]) # returns action def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = self.model.predict(state) if done: target[0][action] = reward else: a = self.model.predict(next_state)[0] t = self.target_model.predict(next_state)[0] target[0][action] = reward + self.gamma * t[np.argmax(a)] self.model.fit(state, target, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay def load(self, name): self.model.load_weights(name) def save(self, name): self.model.save_weights(name) if __name__ == "__main__": env = gym.make('CartPole-v1') state_size = env.observation_space.shape[0] action_size = env.action_space.n agent = DQNAgent(state_size, action_size) # agent.load("./save/cartpole-ddqn.h5") done = False batch_size = 32 for e in range(EPISODES): state = env.reset() state = np.reshape(state, [1, state_size]) for time in range(500): # env.render() action = agent.act(state) next_state, reward, done, _ = env.step(action) reward = reward if not done else -10 next_state = np.reshape(next_state, [1, state_size]) agent.remember(state, action, reward, next_state, done) state = next_state if done: agent.update_target_model() print("episode: {}/{}, score: {}, e: {:.2}" .format(e, EPISODES, time, agent.epsilon)) break if len(agent.memory) > batch_size: agent.replay(batch_size) # if e % 10 == 0: # agent.save("./save/cartpole-ddqn.h5")
35.301887
74
0.607964
d2d1a179393059673b7e3fc4856e33e17ceba783
171
py
Python
examples/nested_directory_tests_fixture/tests/some_top_directory_test.py
Avvir/pyne
864885a8fb632b72c00af164f150b1daa38a346f
[ "MIT" ]
4
2018-08-10T20:05:10.000Z
2019-07-24T15:29:32.000Z
examples/nested_directory_tests_fixture/tests/some_top_directory_test.py
Avvir/pyne
864885a8fb632b72c00af164f150b1daa38a346f
[ "MIT" ]
6
2018-09-25T20:15:51.000Z
2021-12-22T17:09:52.000Z
examples/nested_directory_tests_fixture/tests/some_top_directory_test.py
Avvir/pyne
864885a8fb632b72c00af164f150b1daa38a346f
[ "MIT" ]
null
null
null
from pynetest.pyne_test_collector import it from pynetest.pyne_tester import pyne @pyne def some_top_directory_test(): @it("can pass") def _(self): pass
17.1
43
0.719298
8ea6884ac306051b5594f9511900716e12154c8d
665
py
Python
ml-agents/tests/yamato/sample_curation.py
Musubee/ml-agents
22a45cc14788cbbe0b3b874f510f0a048b494675
[ "Apache-2.0" ]
null
null
null
ml-agents/tests/yamato/sample_curation.py
Musubee/ml-agents
22a45cc14788cbbe0b3b874f510f0a048b494675
[ "Apache-2.0" ]
null
null
null
ml-agents/tests/yamato/sample_curation.py
Musubee/ml-agents
22a45cc14788cbbe0b3b874f510f0a048b494675
[ "Apache-2.0" ]
null
null
null
import sys import argparse from .yamato_utils import get_base_path, create_samples def main(scenes): base_path = get_base_path() print(f"Running in base path {base_path}") returncode = create_samples( scenes, base_path, log_output_path=None, # Log to stdout so we get timestamps on the logs ) if returncode == 0: print("Test run SUCCEEDED!") else: print("Test run FAILED!") sys.exit(returncode) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--scene", nargs="+", default=None, required=True) args = parser.parse_args() main(args.scene)
22.166667
79
0.657143
e0fb8589e71c6fd2749f9f68c1198b65e2b75795
525
py
Python
DQMServices/Core/python/DQMStore_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
6
2017-09-08T14:12:56.000Z
2022-03-09T23:57:01.000Z
DQMServices/Core/python/DQMStore_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
545
2017-09-19T17:10:19.000Z
2022-03-07T16:55:27.000Z
DQMServices/Core/python/DQMStore_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
14
2017-10-04T09:47:21.000Z
2019-10-23T18:04:45.000Z
import FWCore.ParameterSet.Config as cms DQMStore = cms.Service("DQMStore", verbose = cms.untracked.int32(0), # similar to LSBasedMode but for offline. Explicitly sets LumiFLag on all # MEs/modules that allow it (canSaveByLumi) saveByLumi = cms.untracked.bool(False), trackME = cms.untracked.string(""), # UNUSED: historical HLT configs expect this option to be present, so it # remains here, even though the DQMStore does not use it any more. enableMultiThread = cms.untracked.bool(True) )
37.5
77
0.725714
d1b5526b2c01ae7998ffec7b3276d7596f42c545
2,217
py
Python
src/cogs/event.py
thuanGIT/cinnamon
f06166f7ccd417b4ec9963a02753423cc1bb3f21
[ "MIT" ]
null
null
null
src/cogs/event.py
thuanGIT/cinnamon
f06166f7ccd417b4ec9963a02753423cc1bb3f21
[ "MIT" ]
null
null
null
src/cogs/event.py
thuanGIT/cinnamon
f06166f7ccd417b4ec9963a02753423cc1bb3f21
[ "MIT" ]
1
2021-03-18T01:00:50.000Z
2021-03-18T01:00:50.000Z
from discord.ext import commands import sys class Event(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_ready(self): print(f'{self.bot.user} has connected to Discord!') @commands.Cog.listener() async def on_message(self, message): content = message.content # Check if the sender is the bot itself if message.author == self.bot.user: return elif not content.startswith('#'): await message.channel.send("Let me notify Jamie! Please wait a little...", delete_after = 0.5) # Register commands to work with on_message # Only use this in @bot.event. If placed in a listener, do not manually call this. # await self.bot.process_commands(message) # Overriding the default error handler to save the error logs # Won't take any effect as said by the documentation # @commands.Cog.listener() # async def on_error(self, event, *args, **kwargs): # with open('error.log', 'a') as f: # # Since on_message take only 1 argument (message) so args[0] should be expected to be that argument. # f.write(f'Unhandled message: {args[0]}\n') #Overwrite on_command_error @commands.Cog.listener() async def on_command_error(self, context, error): type_help = '\nType \'#help\' to see available commands and instructions.' if isinstance(error, commands.CommandNotFound): await context.send("No such command found!" + type_help) elif isinstance(error, commands.BadArgument): await context.send("Syntax Error!" + type_help) elif isinstance(error, commands.NotOwner): await context.send("You are not authorized for deleting a question!" + type_help) else: print(error) await context.send("Opps! Something happens!" + type_help) @commands.Cog.listener() async def on_disconnect(self): print("Cinnamon disconnected for some reason.") @commands.Cog.listener() async def on_resumed(self): print("Cinnamon is back online.") def setup(bot): bot.add_cog(Event(bot))
39.589286
114
0.641858