hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
fd7ddf414c153d91f9749982752c427d082f2d2f
6,313
py
Python
src/models/optimizer_bank.py
ChihHsuLin/cellular_image_classification
5ea81b4a0f42d17ecb95c41ff4349ef610841394
[ "MIT" ]
null
null
null
src/models/optimizer_bank.py
ChihHsuLin/cellular_image_classification
5ea81b4a0f42d17ecb95c41ff4349ef610841394
[ "MIT" ]
null
null
null
src/models/optimizer_bank.py
ChihHsuLin/cellular_image_classification
5ea81b4a0f42d17ecb95c41ff4349ef610841394
[ "MIT" ]
1
2021-09-24T12:22:28.000Z
2021-09-24T12:22:28.000Z
import math import torch import torchcontrib from torch.optim.optimizer import Optimizer import itertools as it class StochasticWeightAverage(torchcontrib.optim.SWA): def __init__(self, optimizer, swa_start=None, swa_freq=None, swa_lr=None): super(StochasticWeightAverage, self).__init__(optimizer, swa_start, swa_freq, swa_lr) def has_swa(self): for group in self.param_groups: for p in group['params']: param_state = self.state[p] if 'swa_buffer' not in param_state: return False return True def set_swa_param(self, swa_start=None, swa_freq=None, swa_lr=None): if swa_start is not None: self.swa_start = swa_start if swa_freq is not None: self.swa_freq = swa_freq if swa_lr is not None: self.swa_lr = swa_lr # from torch.optim import Optimizer # credit - Lookahead implementation from LonePatient - https://github.com/lonePatient/lookahead_pytorch/blob/master/optimizer.py # credit2 - RAdam code by https://github.com/LiyuanLucasLiu/RAdam/blob/master/radam.py class Ranger(Optimizer): def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95, 0.999), eps=1e-8, weight_decay=0): # parameter checks if not 0.0 <= alpha <= 1.0: raise ValueError(f'Invalid slow update rate: {alpha}') if not 1 <= k: raise ValueError(f'Invalid lookahead steps: {k}') if not lr > 0: raise ValueError(f'Invalid Learning Rate: {lr}') if not eps > 0: raise ValueError(f'Invalid eps: {eps}') # parameter comments: # beta1 (momentum) of .95 seems to work better than .90... # N_sma_threshold of 5 seems better in testing than 4. # In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you. # prep defaults and init torch.optim base defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(Ranger, self).__init__(params, defaults) # adjustable threshold self.N_sma_threshhold = N_sma_threshhold # now we can get to work... for group in self.param_groups: group["step_counter"] = 0 # print("group step counter init") # look ahead params self.alpha = alpha self.k = k # radam buffer for state self.radam_buffer = [[None, None, None] for ind in range(10)] # lookahead weights self.slow_weights = [[p.clone().detach() for p in group['params']] for group in self.param_groups] # don't use grad for lookahead weights for w in it.chain(*self.slow_weights): w.requires_grad = False def __setstate__(self, state): print("set state called") super(Ranger, self).__setstate__(state) def step(self, closure=None): loss = None # note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure. # Uncomment if you need to use the actual closure... # if closure is not None: # loss = closure() # ------------ radam for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 buffered = self.radam_buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma if N_sma > self.N_sma_threshhold: step_size = group['lr'] * math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( N_sma_max - 2)) / (1 - beta1 ** state['step']) else: step_size = group['lr'] / (1 - beta1 ** state['step']) buffered[2] = step_size if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) if N_sma > self.N_sma_threshhold: denom = exp_avg_sq.sqrt().add_(group['eps']) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) else: p_data_fp32.add_(-step_size, exp_avg) p.data.copy_(p_data_fp32) # ---------------- end radam step # look ahead tracking and updating if latest batch = k for group, slow_weights in zip(self.param_groups, self.slow_weights): group['step_counter'] += 1 if group['step_counter'] % self.k != 0: continue for p, q in zip(group['params'], slow_weights): if p.grad is None: continue q.data.add_(self.alpha, p.data - q.data) p.data.copy_(q.data) return loss
38.03012
132
0.545699
0d7687ea57c2206103bf0f5dd9a10c2ea2f50369
6,472
py
Python
tests/mechanic/launcher_test.py
paulcoghlan/rally
76f82265814836565ccf53edda3d5426e4c2db8a
[ "Apache-2.0" ]
null
null
null
tests/mechanic/launcher_test.py
paulcoghlan/rally
76f82265814836565ccf53edda3d5426e4c2db8a
[ "Apache-2.0" ]
null
null
null
tests/mechanic/launcher_test.py
paulcoghlan/rally
76f82265814836565ccf53edda3d5426e4c2db8a
[ "Apache-2.0" ]
null
null
null
from unittest import TestCase, mock from esrally import config, exceptions from esrally.utils import opts from esrally.mechanic import launcher class MockMetricsStore: def add_meta_info(self, scope, scope_key, key, value): pass class MockClientFactory: def __init__(self, hosts, client_options): self.client_options = client_options def create(self): return MockClient(self.client_options) class MockClient: def __init__(self, client_options): self.client_options = client_options self.cluster = SubClient({ "cluster_name": "rally-benchmark-cluster", "nodes": { "FCFjozkeTiOpN-SI88YEcg": { "name": "Nefarius", "host": "127.0.0.1" } } }) self.nodes = SubClient({ "nodes": { "FCFjozkeTiOpN-SI88YEcg": { "name": "Nefarius", "host": "127.0.0.1", "os": { "name": "Mac OS X", "version": "10.11.4", "available_processors": 8 }, "jvm": { "version": "1.8.0_74", "vm_vendor": "Oracle Corporation" } } } }) self._info = { "version": { "number": "5.0.0", "build_hash": "abc123" } } def info(self): if self.client_options.get("raise-error-on-info", False): import elasticsearch raise elasticsearch.ConnectionError("Unittest error") return self._info def search(self, *args, **kwargs): return {} class SubClient: def __init__(self, info): self._info = info def stats(self, *args, **kwargs): return self._info def info(self, *args, **kwargs): return self._info class ExternalLauncherTests(TestCase): test_host = opts.TargetHosts("127.0.0.1:9200,10.17.0.5:19200") client_options = opts.ClientOptions("timeout:60") def test_setup_external_cluster_single_node(self): cfg = config.Config() cfg.add(config.Scope.application, "mechanic", "telemetry.devices", []) cfg.add(config.Scope.application, "client", "hosts", self.test_host) cfg.add(config.Scope.application, "client", "options",self.client_options) m = launcher.ExternalLauncher(cfg, MockMetricsStore(), client_factory_class=MockClientFactory) m.start() # automatically determined by launcher on attach self.assertEqual(cfg.opts("mechanic", "distribution.version"), "5.0.0") def test_setup_external_cluster_multiple_nodes(self): cfg = config.Config() cfg.add(config.Scope.application, "mechanic", "telemetry.devices", []) cfg.add(config.Scope.application, "client", "hosts", self.test_host) cfg.add(config.Scope.application, "client", "options", self.client_options) cfg.add(config.Scope.application, "mechanic", "distribution.version", "2.3.3") m = launcher.ExternalLauncher(cfg, MockMetricsStore(), client_factory_class=MockClientFactory) m.start() # did not change user defined value self.assertEqual(cfg.opts("mechanic", "distribution.version"), "2.3.3") class ClusterLauncherTests(TestCase): test_host = opts.TargetHosts("10.0.0.10:9200,10.0.0.11:9200") client_options = opts.ClientOptions('timeout:60') def test_launches_cluster_with_post_launch_handler(self): on_post_launch = mock.Mock() cfg = config.Config() cfg.add(config.Scope.application, "client", "hosts", self.test_host) cfg.add(config.Scope.application, "client", "options", self.client_options) cfg.add(config.Scope.application, "mechanic", "telemetry.devices", []) cfg.add(config.Scope.application, "mechanic", "telemetry.params", {}) cluster_launcher = launcher.ClusterLauncher(cfg, MockMetricsStore(), on_post_launch=on_post_launch, client_factory_class=MockClientFactory) cluster = cluster_launcher.start() self.assertEqual([{"host": "10.0.0.10", "port":9200}, {"host": "10.0.0.11", "port":9200}], cluster.hosts) self.assertIsNotNone(cluster.telemetry) # this requires at least Python 3.6 # on_post_launch.assert_called_once() self.assertEqual(1, on_post_launch.call_count) def test_launches_cluster_without_post_launch_handler(self): cfg = config.Config() cfg.add(config.Scope.application, "client", "hosts", self.test_host) cfg.add(config.Scope.application, "client", "options", self.client_options) cfg.add(config.Scope.application, "mechanic", "telemetry.devices", []) cfg.add(config.Scope.application, "mechanic", "telemetry.params", {}) cluster_launcher = launcher.ClusterLauncher(cfg, MockMetricsStore(), client_factory_class=MockClientFactory) cluster = cluster_launcher.start() self.assertEqual([{"host": "10.0.0.10", "port":9200}, {"host": "10.0.0.11", "port":9200}], cluster.hosts) self.assertIsNotNone(cluster.telemetry) @mock.patch("time.sleep") def test_error_on_cluster_launch(self, sleep): on_post_launch = mock.Mock() cfg = config.Config() cfg.add(config.Scope.application, "client", "hosts", self.test_host) # Simulate that the client will raise an error upon startup cfg.add(config.Scope.application, "client", "options", opts.ClientOptions("raise-error-on-info:true")) #cfg.add(config.Scope.application, "client", "options", {"raise-error-on-info": True}) cfg.add(config.Scope.application, "mechanic", "telemetry.devices", []) cfg.add(config.Scope.application, "mechanic", "telemetry.params", {}) cluster_launcher = launcher.ClusterLauncher(cfg, MockMetricsStore(), on_post_launch=on_post_launch, client_factory_class=MockClientFactory) with self.assertRaisesRegex(exceptions.LaunchError, "Elasticsearch REST API layer is not available. Forcefully terminated cluster."): cluster_launcher.start() self.assertEqual(0, on_post_launch.call_count)
40.198758
122
0.612021
a21a9d6c77a9a4b3b388e91b2ff2c17fc6c3c815
9,065
py
Python
scripts/comb_model.py
fpl-analytics/gr_crypto
2b0ab451c9c205a9f572c4bca23fffbb68ca188f
[ "MIT" ]
null
null
null
scripts/comb_model.py
fpl-analytics/gr_crypto
2b0ab451c9c205a9f572c4bca23fffbb68ca188f
[ "MIT" ]
null
null
null
scripts/comb_model.py
fpl-analytics/gr_crypto
2b0ab451c9c205a9f572c4bca23fffbb68ca188f
[ "MIT" ]
null
null
null
# G-Research Crypto Kaggle Project # Running tf model based on vwap. # I want to try this a couple of different ways : # - Normalised (whole column) # - Normalised (by each "row" in the 3d array) # I think row based will be better, as Target is Growth not absolute # Setup import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import tensorflow as tf import multiprocessing from sklearn.decomposition import PCA from sklearn.metrics import confusion_matrix cores = multiprocessing.cpu_count() tf.config.threading.set_inter_op_parallelism_threads(cores-1) tf.keras.backend.set_floatx('float64') root_folder = os.getcwd() + "/data" # Reading wide_vwap = pd.read_csv(root_folder + "/working/wide_vwap.csv") wide_high = pd.read_csv(root_folder + "/working/wide_high.csv") wide_low = pd.read_csv(root_folder + "/working/wide_low.csv") wide_target = pd.read_csv(root_folder + "/working/wide_target.csv") asset_details = pd.read_csv(root_folder + "/asset_details.csv") # assets = list(asset_details["Asset_Name"]) assets = [str(i) for i in asset_details["Asset_ID"]] # Preprocess DataFrame ## Getting high_rel and low_rel high_rel = pd.DataFrame(columns=[s + "_high" for s in assets], index=range(len(wide_low))) low_rel = pd.DataFrame(columns=[s + "_low" for s in assets], index=range(len(wide_low))) for a in assets: high_rel[a + "_high"] = np.log(wide_high[a]) - np.log(wide_vwap[a]) low_rel[a + "_low"] = np.log(wide_low[a]) - np.log(wide_vwap[a]) # Adding time back to df high_rel["time"] = wide_high["time"] low_rel["time"] = wide_low["time"] ## Get vwap diff # define function to compute log returns def log_return(series, periods=1): return np.log(series).diff(periods=periods) # Get minute by minute vwap returns for each asset df = wide_vwap[assets].apply(log_return) df["time"] = wide_vwap["time"] ## Converting Target df to just bitcoin, for merging on btc_num = asset_details[asset_details["Asset_Name"] == "Bitcoin"]["Asset_ID"] \ .to_string(index = False).strip() btc = wide_target[["time", btc_num]] btc = btc.rename(columns = {btc_num: "Target"}) df = df.merge(btc, how = "left", on = "time") \ .merge(high_rel, how = "left", on = "time") \ .merge(low_rel, how = "left", on = "time") ## Convert Inf to NA. Makes dropna() work and generally easier to work with df.replace([np.inf, -np.inf], np.nan, inplace=True) # Changes of "Target" above or below 0.025 I think are causing problems. # I'm going to manually set to NA for now, a more elegant solution may follow outliers = np.abs(df["Target"]) > 0.025 print("Number of outliers is ", np.sum(outliers)) df["Target"] = np.where(np.abs(df["Target"]) > 0.025, np.nan, df["Target"]) ## Checking that we don't have missing minutes print(df.shape) # print(sum(df["time"] == (df["time"].shift(1) + pd.Timedelta(minutes = 1)))) # Filtering """ Before creating 3d Array, I'm going to filter for rows after all coins exist. This just makes the dataset smaller. NB - dogecoin only exists after ~mid 2019, so removing na rows removes all data before this point. If you want more data you could impute Dogecoin, although this of course comes with its own problems. """ # NB - This doesn't seem to be working properly. I think there's some noise # in Dogecoin, where a random row is = 0 first = df[assets].apply(pd.Series.first_valid_index) df_filt = df[df.index >= max(first)] df_filt = df_filt.reset_index(drop = True) ## Drop time (not part of modelling) time = df_filt["time"] df_filt = df_filt.drop("time", axis = 1) ## Normalise Data means = df_filt.mean() stds = df_filt.std() df_filt_norm = (df_filt - df_filt.mean()) / df_filt.std() df_filt_norm["time"] = time # long = df_filt_norm.dropna().melt(var_name = "column", value_name = "value") # ax = sns.boxplot(x='column', y='value', data = long) # _ = ax.set_xticklabels(long.keys(), rotation=90) # Highs and Lows have long heads / tails respectively. Not sure how # much of a problem this will be at this point... # PCA # Running PCA on non bitcoin columns # TODO: Tidy up this whole section cols = [btc_num, btc_num + "_low", btc_num + "_high", "Target"] temp = df_filt_norm.dropna() time = pd.to_datetime(temp["time"]) no_na = temp.drop("time", axis = 1) no_na = no_na.reset_index(drop = True) bitcoin = no_na[cols] other = no_na.drop(cols, axis = 1) pca = PCA() pca.fit(other) ## Scree plot PC_values = np.arange(pca.n_components_) + 1 plt.plot(PC_values, pca.explained_variance_ratio_, 'ro-', linewidth=2) plt.title('Scree Plot') plt.xlabel('Principal Component') plt.ylabel('Proportion of Variance Explained') plt.show() out_sum = np.cumsum(pca.explained_variance_ratio_) print ("Cumulative Prop. Variance Explained: ", out_sum) # I'm going to take 10 for now, although as always with PCA this could be up for debate # I'd also like to look at other techniques, e.g. Kernel PCA. other_pca_np = pca.transform(other) other_pca = pd.DataFrame(other_pca_np, columns=["pca_" + str(i) for i in list(range(1, other_pca_np.shape[1]+1))]) everything = pd.concat([other_pca[["pca_" + str(i) for i in list(range(1, 11))]], bitcoin], axis = 1).set_index(time) everything = everything.reindex(pd.date_range(everything.index.min(), everything.index.max(), name = "time", freq = "1 min")) x = np.array(everything.drop("Target", axis = 1)) y = np.array(everything["Target"]).reshape(-1, 1) # Clear some space del(outliers) del(other_pca_np) del(other) del(other_pca) del(no_na) del(df) del(df_filt) # del(long) del(everything) del([wide_high, wide_low, wide_target, wide_vwap]) # Create a 3D input def create_dataset (X, y, time_steps = 1): Xs, ys = [], [] for i in range(len(X)-time_steps): v = X[i:(i+time_steps), :] Xs.append(v) ys.append(y[i+time_steps]) return np.array(Xs), np.array(ys) all_x, all_y = create_dataset(x, y, 60) # Remove NAs ## Checking for X (e.g. 3D) ### Boolean for NA rows missing_x = ~np.isnan(all_x).any(axis=1) missing_row_x = ~np.logical_not(missing_x).any(axis=1) ## Checking for Y missing_y = ~np.isnan(all_y).any(axis=1) ## Combining both = np.logical_and(missing_row_x, missing_y) ## Filtering arrays filt_x = all_x[both, :, :] filt_y = all_y[both, :] # Train / Test Splits # TODO: Spit into folds for CV n = len(filt_y) train_x = filt_x[0:int(n*0.8),:,:] train_y = filt_y[0:int(n*0.8),:] test_x = filt_x[int(n*0.8):, :, :] test_y = filt_y[int(n*0.8):,:] print("train_x is ", train_x.shape) print("train_y is ", train_y.shape) print("test_x is ", test_x.shape) print("test_y is ", test_y.shape) lstm_model = tf.keras.models.Sequential([ tf.keras.layers.LSTM(52, return_sequences = True, dropout = 0.4), tf.keras.layers.LSTM(104, dropout = 0.2), tf.keras.layers.Dense(52, activation='relu'), tf.keras.layers.Dense(26, activation='relu'), # Shape => [batch, time, features] tf.keras.layers.Dense(units=1) ]) mult_dense_mod = tf.keras.Sequential([ # Shape: (time, features) => (time*features) tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=1000, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(units=500, activation='relu'), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(units=100, activation='relu'), tf.keras.layers.Dense(units=1), # Add back the time dimension. # Shape: (outputs) => (1, outputs) tf.keras.layers.Reshape([1, -1]), ]) def compile_and_fit(model, x, y, patience=5, epochs = 10): early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience, mode='min') model.compile(loss=tf.losses.MeanSquaredError(), optimizer=tf.optimizers.Adam(), metrics=[tf.metrics.MeanAbsoluteError()]) history = model.fit(x = x, y = y, epochs=epochs, validation_split=0.2, callbacks=[early_stopping]) return history lstm_history = compile_and_fit(lstm_model, train_x, train_y, patience = 2, epochs = 10) # dense_history = compile_and_fit(mult_dense_mod, train_x, train_y, patience = 2, epochs = 10) preds = lstm_model.predict(test_x) plt.hist(preds) preds_actual = (preds * stds["Target"]) + means["Target"] y_actual = (test_y * stds["Target"]) + means["Target"] plt.hist(y_actual, bins = 50) plt.hist(preds_actual, bins = 50) def evaluate_regression(pred, actual): errors = pred - actual mse = np.square(errors).mean() rmse = np.sqrt(mse) mae = np.abs(errors).mean() print('Mean Absolute Error: {:.4f}'.format(mae)) print('Root Mean Square Error: {:.4f}'.format(rmse)) def evaluate_up_down(pred, actual): pred_up = pred > 0 actual_up = actual > 0 print(confusion_matrix(actual_up, pred_up)) evaluate_regression(preds_actual, y_actual) evaluate_up_down(preds_actual, y_actual)
31.919014
94
0.677882
444a69435675d1abac498373dfdc6f793bda43f7
3,462
py
Python
api/admin/controller/cdn_services.py
aseefahmed/circulation
17cbc9186ab3cde9606912559f92b393ac18ecaa
[ "Apache-2.0" ]
null
null
null
api/admin/controller/cdn_services.py
aseefahmed/circulation
17cbc9186ab3cde9606912559f92b393ac18ecaa
[ "Apache-2.0" ]
44
2022-01-20T01:31:32.000Z
2022-03-31T01:50:41.000Z
api/admin/controller/cdn_services.py
jonathangreen/circulation
118866f8257e2a97431a28ea5ba8e34e5bd393eb
[ "Apache-2.0" ]
null
null
null
import flask from flask import Response from flask_babel import lazy_gettext as _ from api.admin.problem_details import * from core.model import Configuration, ExternalIntegration from core.util.problem_detail import ProblemDetail from . import SettingsController class CDNServicesController(SettingsController): def __init__(self, manager): super(CDNServicesController, self).__init__(manager) self.protocols = [ { "name": ExternalIntegration.CDN, "sitewide": True, "settings": [ { "key": ExternalIntegration.URL, "label": _("CDN URL"), "required": True, "format": "url", }, { "key": Configuration.CDN_MIRRORED_DOMAIN_KEY, "label": _("Mirrored domain"), "required": True, }, ], } ] self.goal = ExternalIntegration.CDN_GOAL def process_cdn_services(self): self.require_system_admin() if flask.request.method == "GET": return self.process_get() else: return self.process_post() def process_get(self): services = self._get_integration_info(self.goal, self.protocols) return dict( cdn_services=services, protocols=self.protocols, ) def process_post(self): name = flask.request.form.get("name") protocol = flask.request.form.get("protocol") fields = {"name": name, "protocol": protocol} form_field_error = self.validate_form_fields(**fields) if form_field_error: return form_field_error is_new = False id = flask.request.form.get("id") if id: # Find an existing service in order to edit it service = self.look_up_service_by_id(id, protocol) else: service, is_new = self._create_integration( self.protocols, protocol, self.goal ) if isinstance(service, ProblemDetail): self._db.rollback() return service name_error = self.check_name_unique(service, name) if name_error: self._db.rollback() return name_error protocol_error = self.set_protocols(service, protocol) if protocol_error: self._db.rollback() return protocol_error service.name = name if is_new: return Response(str(service.id), 201) else: return Response(str(service.id), 200) def validate_form_fields(self, **fields): """The 'name' and 'protocol' fields cannot be blank, and the protocol must be selected from the list of recognized protocols. The URL must be valid.""" name = fields.get("name") protocol = fields.get("protocol") if not name: return INCOMPLETE_CONFIGURATION if protocol: error = self.validate_protocol() if error: return error else: wrong_format = self.validate_formats() if wrong_format: return wrong_format def process_delete(self, service_id): return self._delete_integration(service_id, self.goal)
31.472727
85
0.561236
c5512f0e5d970c7647efe67ebc0959b8f8a9a047
102,258
py
Python
montepython/analyze.py
syasini/montepython_public
d33537664b9719c172dab72273939f4301f2f3ba
[ "MIT" ]
2
2021-01-11T13:15:09.000Z
2022-03-04T00:44:59.000Z
montepython/analyze.py
syasini/montepython_public
d33537664b9719c172dab72273939f4301f2f3ba
[ "MIT" ]
1
2019-08-10T00:54:28.000Z
2019-08-10T00:54:28.000Z
montepython/analyze.py
syasini/montepython_public
d33537664b9719c172dab72273939f4301f2f3ba
[ "MIT" ]
1
2019-06-26T10:38:21.000Z
2019-06-26T10:38:21.000Z
""" .. module:: analyze :synopsis: Extract data from chains and produce plots .. moduleauthor:: Karim Benabed <benabed@iap.fr> .. moduleauthor:: Benjamin Audren <benjamin.audren@epfl.ch> Collection of functions needed to analyze the Markov chains. This module defines as well a class :class:`Information`, that stores useful quantities, and shortens the argument passing between the functions. .. note:: Some of the methods used in this module are directly adapted from the `CosmoPmc <http://www.cosmopmc.info>`_ code from Kilbinger et. al. """ import os import math import numpy as np from itertools import count # The root plotting module, to change options like font sizes, etc... import matplotlib # The following line suppresses the need for an X server matplotlib.use("Agg") # Module for handling display import matplotlib.pyplot as plt # Module to handle warnings from matplotlib import warnings import importlib import io_mp from itertools import ifilterfalse from itertools import ifilter import scipy.ndimage import scipy.special import numpy.linalg as la # Defined to remove the burnin for all the points that were produced before the # first time where -log-likelihood <= min-minus-log-likelihood+LOG_LKL_CUTOFF LOG_LKL_CUTOFF = 3 NUM_COLORS = 6 def analyze(command_line): """ Main function, does the entire analysis. It calls in turn all the other routines from this module. To limit the arguments of each function to a reasonnable size, a :class:`Information` instance is used. This instance is initialized in this function, then appended by the other routines. """ # Check if the scipy module has the interpolate method correctly # installed (should be the case on every linux distribution with # standard numpy) try: from scipy.interpolate import interp1d Information.has_interpolate_module = True except ImportError: Information.has_interpolate_module = False warnings.warn( 'No cubic interpolation done (no interpolate method found ' + 'in scipy), only linear') # Determine how many different folders are asked through the 'info' # command, and create as many Information instances files = separate_files(command_line.files) # Create an instance of the Information class for each subgroup found in # the previous function. They will each hold all relevant information, and # be used as a compact way of exchanging information between functions information_instances = [] for item in files: info = Information(command_line) information_instances.append(info) # Prepare the files, according to the case, load the log.param, and # prepare the output (plots folder, .covmat, .info and .log files). # After this step, info.files will contain all chains. status = prepare(item, info) # If the preparation step generated new files (for instance, # translating from NS or CH to Markov Chains) this routine should stop # now. if not status: return # Compute the mean, maximum of likelihood, 1-sigma variance for this # main folder. This will create the info.chain object, which contains # all the points computed stacked in one big array. convergence(info) # check if analyze() is called directly by the user, or by the mcmc loop during an updating phase try: # command_line.update is defined when called by the mcmc loop command_line.update except: # in case it was not defined (i.e. when analyze() is called directly by user), set it to False command_line.update = 0 # check if analyze() is called directly by the user, or by the mcmc loop at the start of an adaptive run try: # command_line.adaptive is defined when called by the mcmc loop command_line.adaptive except: # in case it was not defined (i.e. when analyze() is called directly by user), set it to False command_line.adaptive = 0 # compute covariance matrix, except when we are in update mode and convergence is too bad or good enough # or if we are in adaptive mode and only want a first guess for the covmat if command_line.update and (np.amax(info.R) > 3. or np.amax(info.R) < 0.4 or np.isnan(np.sum(info.R))) and not command_line.adaptive: print '--> Not computing covariance matrix' else: try: if command_line.want_covmat: print '--> Computing covariance matrix' info.covar = compute_covariance_matrix(info) # Writing it out in name_of_folder.covmat io_mp.write_covariance_matrix( info.covar, info.backup_names, info.cov_path) except: print '--> Computing covariance matrix failed' pass # Store an array, sorted_indices, containing the list of indices # corresponding to the line with the highest likelihood as the first # element, and then as decreasing likelihood info.sorted_indices = info.chain[:, 1].argsort(0) # Writing the best-fit model in name_of_folder.bestfit bestfit_line = [elem*info.scales[i, i] for i, elem in enumerate(info.chain[info.sorted_indices[0], 2:])] io_mp.write_bestfit_file(bestfit_line, info.backup_names, info.best_fit_path) # Overwrite center of Fisher matrix from log.param with the bestfit # from the last set of chains provided # DEBUG: This doesn't plot the first parameter (omega_b), possibly # because it's re-scaled (since it's the only one that is rescaled # and the rest are plotted)? if command_line.center_fisher: for index, elem in enumerate(info.ref_names): info.centers[index] = bestfit_line[index]/info.scales[index, index] if not command_line.minimal: # Computing 1,2 and 3-sigma errors, and plot. This will create the # triangle and 1d plot by default. compute_posterior(information_instances) print '--> Writing .info and .tex files' for info in information_instances: info.write_information_files() # when called by MCMC in update mode, return R values so that they can be written for information in the chains if command_line.update: return info.R def prepare(files, info): """ Scan the whole input folder, and include all chains in it. Since you can decide to analyze some file(s), or a complete folder, this function first needs to separate between the two cases. .. warning:: If someday you change the way the chains are named, remember to change here too, because this routine assumes the chains have a double underscore in their names. .. note:: Only files ending with .txt will be selected, to keep compatibility with CosmoMC format .. note:: New in version 2.0.0: if you ask to analyze a MultiNest sub-folder (i.e. something that ends in `NS` with capital letters), the analyze module will translate the output from MultiNest to standard chains for Monte Python, and stops. You can then run the `-- info` flag on the whole folder. **This procedure is not necessary if the run was complete, but only if the MultiNest run was killed before completion**. Parameters ---------- files : list list of potentially only one element, containing the files to analyze. This can be only one file, or the encompassing folder, files info : Information instance Used to store the result """ # First test if the folder is a MultiNest, PolyChord or CosmoHammer folder. # If so, call the module's own routine through the clean conversion # function, which will translate the output of this other sampling into # MCMC chains that can then be analyzed. modules = ['MultiNest', 'PolyChord', 'cosmo_hammer'] tags = ['NS', 'PC', 'CH'] for module_name, tag in zip(modules, tags): action_done = clean_conversion(module_name, tag, files[0]) if action_done: return False # If the input command was an entire folder, then grab everything in it. # Too small files (below 600 octets) and subfolders are automatically # removed. folder, files, basename = recover_folder_and_files(files) info.files = files info.folder = folder info.basename = basename # Check if the log.param file exists parameter_file_path = os.path.join(folder, 'log.param') if os.path.isfile(parameter_file_path): if os.path.getsize(parameter_file_path) == 0: raise io_mp.AnalyzeError( "The log param file %s " % os.path.join(folder, 'log.param') + "seems empty") else: raise io_mp.AnalyzeError( "The log param file %s " % os.path.join(folder, 'log.param') + "is missing in the analyzed folder?") # If the folder has no subdirectory, then go for a simple infoname, # otherwise, call it with the last name basename = (os.path.basename(folder) if os.path.basename(folder) != '.' else os.path.basename(os.path.abspath( os.path.join(folder, '..')))) info.v_info_path = os.path.join(folder, basename+'.v_info') info.h_info_path = os.path.join(folder, basename+'.h_info') info.tex_path = os.path.join(folder, basename+'.tex') info.cov_path = os.path.join(folder, basename+'.covmat') info.log_path = os.path.join(folder, basename+'.log') info.best_fit_path = os.path.join(folder, basename+'.bestfit') info.param_path = parameter_file_path return True def convergence(info): """ Compute convergence for the desired chains, using Gelman-Rubin diagnostic Chains have been stored in the info instance of :class:`Information`. Note that the G-R diagnostic can be computed for a single chain, albeit it will most probably give absurd results. To do so, it separates the chain into three subchains. """ # Recovering parameter names and scales, creating tex names, extract_parameter_names(info) # Now that the number of parameters is known, the array containing bounds # can be initialised info.bounds = np.zeros((len(info.ref_names), len(info.levels), 2)) # Circle through all files to find the global maximum of likelihood #print '--> Finding global maximum of likelihood' find_maximum_of_likelihood(info) # Restarting the circling through files, this time removing the burnin, # given the maximum of likelihood previously found and the global variable # LOG_LKL_CUTOFF. spam now contains all the accepted points that were # explored once the chain moved within min_minus_lkl - LOG_LKL_CUTOFF. # If the user asks for a keep_fraction <1, this is also the place where # a fraction (1-keep_fraction) is removed at the beginning of each chain. #print '--> Removing burn-in' spam = remove_bad_points(info) info.remap_parameters(spam) # Now that the list spam contains all the different chains removed of # their respective burn-in, proceed to the convergence computation # 2D arrays for mean and var, one column will contain the total (over # all chains) mean (resp. variance), and each other column the # respective chain mean (resp. chain variance). R only contains the # values for each parameter. Therefore, mean and var will have len(spam)+1 # as a first dimension mean = np.zeros((len(spam)+1, info.number_parameters)) var = np.zeros((len(spam)+1, info.number_parameters)) R = np.zeros(info.number_parameters) # Store the total number of points, and the total in each chain total = np.zeros(len(spam)+1) for j in xrange(len(spam)): total[j+1] = spam[j][:, 0].sum() total[0] = total[1:].sum() # Compute mean and variance for each chain print '--> Computing mean values' compute_mean(mean, spam, total) print '--> Computing variance' compute_variance(var, mean, spam, total) print '--> Computing convergence criterium (Gelman-Rubin)' # Gelman Rubin Diagnostic: # Computes a quantity linked to the ratio of the mean of the variances of # the different chains (within), and the variance of the means (between) # Note: This is not strictly speaking the Gelman Rubin test, defined for # same-length MC chains. Our quantity is defined without the square root, # which should not change much the result: a small sqrt(R) will still be a # small R. The same convention is used in CosmoMC, except for the weighted # average: we decided to do the average taking into account that longer # chains should count more within = 0 between = 0 for i in xrange(np.shape(mean)[1]): for j in xrange(len(spam)): within += total[j+1]*var[j+1, i] between += total[j+1]*(mean[j+1, i]-mean[0, i])**2 within /= total[0] between /= (total[0]-1) R[i] = between/within if i == 0: print ' -> R-1 is %.6f' % R[i], '\tfor ', info.ref_names[i] else: print ' %.6f' % R[i], '\tfor ', info.ref_names[i] # Log finally the total number of steps, and absolute loglikelihood with open(info.log_path, 'a') as log: log.write("--> Total number of steps: %d\n" % ( info.steps)) log.write("--> Total number of accepted steps: %d\n" % ( info.accepted_steps)) log.write("--> Minimum of -logLike : %.2f" % ( info.min_minus_lkl)) # Store the remaining members in the info instance, for further writing to # files, storing only the mean and total of all the chains taken together info.mean = mean[0] info.R = R info.total = total[0] # Create the main chain, which consists in all elements of spam # put together. This will serve for the plotting. info.chain = np.vstack(spam) def compute_posterior(information_instances): """ computes the marginalized posterior distributions, and optionnally plots them Parameters ---------- information_instances : list list of information objects, initialised on the given folders, or list of file, in input. For each of these instance, plot the 1d and 2d posterior distribution, depending on the flags stored in the instances, comming from command line arguments or read from a file. """ # For convenience, store as `conf` the first element of the list # information_instances, since it will be called often to check for # configuration parameters conf = information_instances[0] # Pre configuration of the output, note that changes to the font size # will occur later on as well, to obtain a nice scaling. matplotlib.rc('text', usetex=True) matplotlib.rc('font', size=11) matplotlib.rc('xtick', labelsize='8') matplotlib.rc('ytick', labelsize='8') # Recover max and min values for each instance, defining the a priori place # of ticks (in case of a comparison, this should change) for info in information_instances: info.define_ticks() # If plots/ folder in output folder does not exist, create it if os.path.isdir(os.path.join(info.folder, 'plots')) is False: os.mkdir(os.path.join(info.folder, 'plots')) # Determine the total number of parameters to plot, based on the list # without duplicates of the plotted parameters of all information instances plotted_parameters = [] # For printing not in latex ref_names = [] for info in information_instances: for index, name in enumerate(info.plotted_parameters): if name not in plotted_parameters: plotted_parameters.append(name) ref_names.append(info.ref_names[index]) if len(plotted_parameters) == 0: raise io_mp.AnalyzeError( "You provided no parameters to analyze, probably by selecting" " wrong parameters names in the '--extra' file.") # Find the appropriate number of columns and lines for the 1d posterior # plot if conf.num_columns_1d == None: num_columns = int(round(math.sqrt(len(plotted_parameters)))) else: num_columns = conf.num_columns_1d num_lines = int(math.ceil(len(plotted_parameters)*1.0/num_columns)) # For special needs, you can impose here a different number of columns and lines in the 1d plot # Here is a commented example: # if (len(plotted_parameters) == 10): # num_columns = 5 # num_lines = 2 # Create the figures # which will be 3*3 inches per subplot, quickly growing! if conf.plot: fig1d = plt.figure(num=1, figsize=( 3*num_columns, 3*num_lines), dpi=80) if conf.plot_2d: fig2d = plt.figure(num=2, figsize=( 3*len(plotted_parameters), 3*len(plotted_parameters)), dpi=80) # Create the name of the files, concatenating the basenames with # underscores. file_name = "_".join( [info.basename for info in information_instances]) # JL: READ HERE INVERSE FISHER if info.plot_fisher: try: # read inv_fisher file file_name = os.path.join(info.folder, 'inv_fisher.mat') n=0 with open(file_name, 'r') as f: inv_fisher = np.zeros((len(info.ref_names), len(info.ref_names)), 'float64') for line in f: if line.find('#') != -1: fisher_num_param = len(line.split())-1 fisher_indices = np.zeros(fisher_num_param, 'int') for i in range(fisher_num_param): fisher_name = line.split()[i+1].replace(',', '') try: fisher_indices[i] = info.ref_names.index(fisher_name) print 'Read fisher matrix entry for parameter ',fisher_name except: print 'Input fisher matrix contained unknown parameter ',fisher_name fisher_indices[i] = -1 else: if fisher_indices[n] >= 0: for m in range(fisher_num_param): if fisher_indices[m] >= 0: inv_fisher[fisher_indices[n],fisher_indices[m]]=line.split()[m] n += 1 #print 'Read Fisher matrix:' #print 'param center scale (Fii)^1/2 (Fii)^-1/2' #for i in range(len(info.ref_names)): # if fisher[i,i] != 0.: # print info.ref_names[i],info.centers[i],info.scales[i,i],math.sqrt(fisher[i,i]),1./math.sqrt(fisher[i,i]) # else: # print info.ref_names[i],info.centers[i],' ---' except Warning: warnings.warn("Did not find inv_fisher file %s" % file_name) # Loop over all the plotted parameters # There will be two indices at all time, the one running over the plotted # parameters, `index`, and the one corresponding to the actual column in # the actual file, `native_index`. For instance, if you try to plot only # two columns of a several columns file, index will vary from 0 to 1, but # the corresponding native indices might be anything. # Obviously, since plotted parameters contain potentially names not # contained in some files (in case of a comparison), native index might be # undefined. # Defined the legends object, which will store the plot style, to display # at the level of the figure legends = [None for _ in range(len(information_instances))] if not conf.legendnames: legend_names = [info.basename.replace('_', ' ') for info in information_instances] else: legend_names = conf.legendnames print '-----------------------------------------------' for index, name in enumerate(plotted_parameters): # Adding the subplots to the respective figures, this will correspond # to the diagonal on the triangle plot. if conf.plot_2d: ax2d = fig2d.add_subplot( len(plotted_parameters), len(plotted_parameters), index*(len(plotted_parameters)+1)+1, yticks=[]) if conf.plot: ax1d = fig1d.add_subplot( num_lines, num_columns, index+1, yticks=[]) # check for each instance if the name is part of the list of plotted # parameters, and if yes, store the native_index. If not, store a flag # to ignore any further plotting or computing issues concerning this # particular instance. for info in information_instances: try: info.native_index = info.ref_names.index(name) info.ignore_param = False standard_name = info.backup_names[info.native_index] except ValueError: info.ignore_param = True # The limits might have been enforced by the user if name in conf.force_limits.iterkeys(): x_span = conf.force_limits[name][1]-conf.force_limits[name][0] tick_min = conf.force_limits[name][0] +0.1*x_span tick_max = conf.force_limits[name][1] -0.1*x_span ticks = np.linspace(tick_min, tick_max, info.ticknumber) for info in information_instances: if not info.ignore_param: info.x_range[info.native_index] = conf.force_limits[name] info.ticks[info.native_index] = ticks # otherwise, find them automatically else: adjust_ticks(name, information_instances) print ' -> Computing histograms for ', name for info in information_instances: if not info.ignore_param: # 1D posterior normalised to P_max=1 (first step) # # simply the histogram from the chains, with few bins # info.hist, info.bin_edges = np.histogram( info.chain[:, info.native_index+2], bins=info.bins, weights=info.chain[:, 0], normed=False, density=False) info.hist = info.hist/info.hist.max() # Correct for temperature info.hist = info.hist**conf.temperature info.bincenters = 0.5*(info.bin_edges[1:]+info.bin_edges[:-1]) # 1D posterior normalised to P_max=1 (second step) # # returns a histogram still normalised to one, but with a ten times finer sampling; # >> first, tries a method with spline interpolation between bin centers and extrapolation at the edges # >> if it fails, a simpler and more robust method of linear interpolation between bin centers is used # >> if the interpolation module is not installed, this step keeps the same posterior # info.interp_hist, info.interp_grid = cubic_interpolation( info, info.hist, info.bincenters) # minimum credible interval (method by Jan Haman). Fails for # multimodal histograms bounds = minimum_credible_intervals(info) info.bounds[info.native_index] = bounds # plotting for info in information_instances: if not info.ignore_param: # 1D posterior normalised to P_max=1 (third step, used only for plotting) # # apply gaussian smoothing (obsolete - we don't do it anymore since the option --posterior-smoothing # was defined, so we commented out this part) # # factor by which the grid has been made thinner (10 means 10 times more bins) interpolation_factor = float(len(info.interp_grid))/float(len(info.bincenters)) # factor for gaussian smoothing sigma = interpolation_factor*info.gaussian_smoothing # smooth #smoothed_interp_hist = scipy.ndimage.filters.gaussian_filter(info.interp_hist,sigma) # re-normalised #smoothed_interp_hist = smoothed_interp_hist/smoothed_interp_hist.max() if conf.plot_2d: ################################################## # plot 1D posterior in diagonal of triangle plot # ################################################## plot = ax2d.plot( info.interp_grid, # version without gaussian smoothing: info.interp_hist, # version with gaussian smoothing (commented) #smoothed_interp_hist, linewidth=info.line_width, ls='-', color = info.MP_color_cycle[info.id][1], # the [1] picks up the color of the 68% contours # with [0] you would get that of the 95% contours alpha = info.alphas[info.id]) legends[info.id] = plot[0] ax2d.set_xticks(info.ticks[info.native_index]) if conf.legend_style == 'top': ax2d.set_title( '%s=$%.{0}g^{{+%.{0}g}}_{{%.{0}g}}$'.format( info.decimal) % ( info.tex_names[info.native_index], info.mean[info.native_index], info.bounds[info.native_index, 0, -1], info.bounds[info.native_index, 0, 0]), fontsize=info.fontsize) ax2d.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) elif conf.legend_style == 'sides': # Except for the last 1d plot (bottom line), don't # print ticks if index == len(plotted_parameters)-1: ax2d.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) ax2d.tick_params('x',direction='inout') ax2d.set_xlabel( info.tex_names[info.native_index], fontsize=info.fontsize) else: ax2d.set_xticklabels([]) ax2d.axis([info.x_range[info.native_index][0], info.x_range[info.native_index][1], 0, 1.05]) if conf.plot: if conf.short_title_1d: ax1d.set_title( '%s'.format(info.decimal) % ( info.tex_names[info.native_index]), fontsize=info.fontsize) else: # Note the use of double curly brackets {{ }} to produce # the desired LaTeX output. This is necessary because the # format function would otherwise understand single # brackets as fields. ax1d.set_title( '%s=$%.{0}g^{{+%.{0}g}}_{{%.{0}g}}$'.format( info.decimal) % ( info.tex_names[info.native_index], info.mean[info.native_index], info.bounds[info.native_index, 0, -1], info.bounds[info.native_index, 0, 0]), fontsize=info.fontsize) ax1d.set_xticks(info.ticks[info.native_index]) ax1d.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) ax1d.axis([info.x_range[info.native_index][0], info.x_range[info.native_index][1], 0, 1.05]) # Execute some customisation scripts for the 1d plots if (info.custom1d != []): for elem in info.custom1d: execfile('plot_files/'+elem) ################################################## # plot 1D posterior in 1D plot # ################################################## ax1d.plot( info.interp_grid, # 1d posterior without gaussian filter: info.interp_hist, # gaussian filtered 1d posterior (commented): #smoothed_interp_hist, # raw 1d posterior: #info.interp_hist, lw=info.line_width, ls='-', color = info.MP_color_cycle[info.id][1], # the [1] picks up the color of the 68% contours # with [0] you would get that of the 95% contours alpha = info.alphas[info.id]) # uncomment if you want to see the raw points from the histogram # (to check whether the inteprolation and smoothing generated artefacts) #ax1d.plot( # info.bincenters, # info.hist, # 'ro') if conf.mean_likelihood: for info in information_instances: if not info.ignore_param: try: # 1D mean likelihood normalised to P_max=1 (first step) # # simply the histogram from the chains, weighted by mutiplicity*likelihood # lkl_mean, _ = np.histogram( info.chain[:, info.native_index+2], bins=info.bin_edges, normed=False, weights=np.exp( conf.min_minus_lkl-info.chain[:, 1])*info.chain[:, 0]) lkl_mean /= lkl_mean.max() # 1D mean likelihood normalised to P_max=1 (second step) # # returns a histogram still normalised to one, but with a ten times finer sampling; # >> first, tries a method with spline interpolation between bin centers and extrapolation at the edges # >> if it fails, a simpler and more robust method of linear interpolation between bin centers is used # >> if the interpolation module is not installed, this step keeps the same posterior # interp_lkl_mean, interp_grid = cubic_interpolation( info, lkl_mean, info.bincenters) # 1D mean likelihood normalised to P_max=1 (third step, used only for plotting) # # apply gaussian smoothing (obsolete - we don't do it anymore since the option --posterior-smoothing # was defined, so we commented out this part) # # smooth #smoothed_interp_lkl_mean = scipy.ndimage.filters.gaussian_filter(interp_lkl_mean,sigma) # re-normalised #smoothed_interp_lkl_mean = smoothed_interp_lkl_mean/smoothed_interp_lkl_mean.max() # Execute some customisation scripts for the 1d plots if (info.custom1d != []): for elem in info.custom1d: execfile('plot_files/'+elem) ######################################################## # plot 1D mean likelihood in diagonal of triangle plot # ######################################################## if conf.plot_2d: # raw mean likelihoods: #ax2d.plot(info.bincenter, lkl_mean, # ls='--', lw=conf.line_width, # color = info.MP_color_cycle[info.id][1], # alpha = info.alphas[info.id]) # smoothed and interpolated mean likelihoods: ax2d.plot(interp_grid, # version without gaussian smoothing: interp_lkl_mean, # version with gaussian smoothing (commented) #smoothed_interp_lkl_mean, ls='--', lw=conf.line_width, color = info.MP_color_cycle[info.id][1], alpha = info.alphas[info.id]) ######################################################## # plot 1D mean likelihood in 1D plot # ######################################################## if conf.plot: # raw mean likelihoods: #ax1d.plot(info.bincenters, lkl_mean, # ls='--', lw=conf.line_width, # color = info.MP_color_cycle[info.id][1], # alpha = info.alphas[info.id]) # smoothed and interpolated mean likelihoods: ax1d.plot(interp_grid, # version without gaussian smoothing interp_lkl_mean, # version with gaussian smoothing (commented) #smoothed_interp_lkl_mean, ls='--', lw=conf.line_width, color = info.MP_color_cycle[info.id][1], alpha = info.alphas[info.id]) except: print 'could not find likelihood contour for ', print info.ref_parameters[info.native_index] if conf.subplot is True: if conf.plot_2d: extent2d = ax2d.get_window_extent().transformed( fig2d.dpi_scale_trans.inverted()) fig2d.savefig(os.path.join( conf.folder, 'plots', file_name+'.'+conf.extension), bbox_inches=extent2d.expanded(1.1, 1.4)) if conf.plot: extent1d = ax1d.get_window_extent().transformed( fig1d.dpi_scale_trans.inverted()) fig1d.savefig(os.path.join( conf.folder, 'plots', file_name+'.'+conf.extension), bbox_inches=extent1d.expanded(1.1, 1.4)) # Store the function in a file for info in information_instances: if not info.ignore_param: hist_file_name = os.path.join( info.folder, 'plots', info.basename+'_%s.hist' % ( standard_name)) write_histogram(hist_file_name, info.interp_grid, info.interp_hist) # Now do the rest of the triangle plot if conf.plot_2d: for second_index in xrange(index): second_name = plotted_parameters[second_index] for info in information_instances: if not info.ignore_param: try: info.native_second_index = info.ref_names.index( plotted_parameters[second_index]) info.has_second_param = True second_standard_name = info.backup_names[ info.native_second_index] except ValueError: info.has_second_param = False else: info.has_second_param = False ax2dsub = fig2d.add_subplot( len(plotted_parameters), len(plotted_parameters), (index)*len(plotted_parameters)+second_index+1) for info in information_instances: if info.has_second_param: ax2dsub.axis([info.x_range[info.native_second_index][0], info.x_range[info.native_second_index][1], info.x_range[info.native_index][0], info.x_range[info.native_index][1]]) # 2D likelihood (first step) # # simply the histogram from the chains, with few bins only # info.n, info.xedges, info.yedges = np.histogram2d( info.chain[:, info.native_index+2], info.chain[:, info.native_second_index+2], weights=info.chain[:, 0], bins=(info.bins, info.bins), normed=False) # Correct for temperature: info.n = info.n**conf.temperature info.extent = [ info.x_range[info.native_second_index][0], info.x_range[info.native_second_index][1], info.x_range[info.native_index][0], info.x_range[info.native_index][1]] info.x_centers = 0.5*(info.xedges[1:]+info.xedges[:-1]) info.y_centers = 0.5*(info.yedges[1:]+info.yedges[:-1]) # 2D likelihood (second step) # # like for 1D, interpolate to get a finer grid # TODO: we should not only interpolate between bin centers, but also extrapolate between side bin centers and bin edges # interp_y_centers = scipy.ndimage.zoom(info.y_centers,info.interpolation_smoothing, mode='reflect') interp_x_centers = scipy.ndimage.zoom(info.x_centers,info.interpolation_smoothing, mode='reflect') interp_likelihood = scipy.ndimage.zoom(info.n,info.interpolation_smoothing, mode='reflect') # 2D likelihood (third step) # # gaussian smoothing # sigma = info.interpolation_smoothing*info.gaussian_smoothing interp_smoothed_likelihood = scipy.ndimage.filters.gaussian_filter(interp_likelihood,[sigma,sigma], mode='reflect') # Execute some customisation scripts for the 2d contour plots if (info.custom2d != []): for elem in info.custom2d: execfile('plot_files/'+elem) # plotting contours, using the ctr_level method (from Karim # Benabed). Note that only the 1 and 2 sigma contours are # displayed (due to the line with info.levels[:2]) try: ########################### # plot 2D filled contours # ########################### if not info.contours_only: contours = ax2dsub.contourf( interp_y_centers, interp_x_centers, interp_smoothed_likelihood, extent=info.extent, levels=ctr_level( interp_smoothed_likelihood, info.levels[:2]), zorder=4, colors = info.MP_color_cycle[info.id], alpha=info.alphas[info.id]) # now add a thin darker line # around the 95% contour ax2dsub.contour( interp_y_centers, interp_x_centers, interp_smoothed_likelihood, extent=info.extent, levels=ctr_level( interp_smoothed_likelihood, info.levels[1:2]), zorder=4, colors = info.MP_color_cycle[info.id][1], alpha = info.alphas[info.id], linewidths=1) ########################### # plot 2D contours # ########################### if info.contours_only: contours = ax2dsub.contour( interp_y_centers, interp_x_centers, interp_smoothed_likelihood, extent=info.extent, levels=ctr_level( interp_smoothed_likelihood, info.levels[:2]), zorder=4, colors = info.MP_color_cycle[info.id], alpha = info.alphas[info.id], linewidths=info.line_width) except Warning: warnings.warn( "The routine could not find the contour of the " + "'%s-%s' 2d-plot" % ( info.plotted_parameters[info.native_index], info.plotted_parameters[info.native_second_index])) # ADDING FISHER CONTOURS if info.plot_fisher: sub_inv_fisher = np.zeros((2,2), 'float64') sub_inv_fisher[0,0] = inv_fisher[info.native_index,info.native_index]/info.scales[info.native_index,info.native_index]/info.scales[info.native_index,info.native_index] sub_inv_fisher[1,1] = inv_fisher[info.native_second_index,info.native_second_index]/info.scales[info.native_second_index,info.native_second_index]/info.scales[info.native_second_index,info.native_second_index] sub_inv_fisher[0,1] = inv_fisher[info.native_index,info.native_second_index]/info.scales[info.native_index,info.native_index]/info.scales[info.native_second_index,info.native_second_index] sub_inv_fisher[1,0] = sub_inv_fisher[0,1] if sub_inv_fisher[0,0]*sub_inv_fisher[1,1] != 0.: inv_sub_inv_fisher = np.linalg.inv(sub_inv_fisher) x = scipy.ndimage.zoom(info.x_centers,info.interpolation_smoothing, mode='reflect') y = scipy.ndimage.zoom(info.y_centers,info.interpolation_smoothing, mode='reflect') z = np.zeros((len(x),len(y)), 'float64') #print info.ref_names[info.native_index] #print info.scales #print info.boundaries[info.native_index] #print info.centers[info.native_index] for ix in range(len(x)): dx = (x[ix] - info.centers[info.native_index]) for iy in range(len(y)): dy = (y[iy] - info.centers[info.native_second_index]) z[ix,iy] = dx*inv_sub_inv_fisher[0,0]*dx + dy*inv_sub_inv_fisher[1,1]*dy + 2.*dx*inv_sub_inv_fisher[0,1]*dy ax2dsub.contour(y,x,z, extent=info.extent, levels=[2.3,6.18], #levels=[9.30,15.79], zorder=4, colors='k') ax2dsub.set_xticks(info.ticks[info.native_second_index]) ax2dsub.set_yticks(info.ticks[info.native_index]) ax2dsub.tick_params('both',direction='inout',top=True,bottom=True,left=True,right=True) if index == len(plotted_parameters)-1: ax2dsub.set_xticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_second_index]], fontsize=info.ticksize) if conf.legend_style == 'sides': ax2dsub.set_xlabel( info.tex_names[info.native_second_index], fontsize=info.fontsize) else: ax2dsub.set_xticklabels(['']) ax2dsub.set_yticks(info.ticks[info.native_index]) if second_index == 0: ax2dsub.set_yticklabels( ['%.{0}g'.format(info.decimal) % s for s in info.ticks[info.native_index]], fontsize=info.ticksize) else: ax2dsub.set_yticklabels(['']) if conf.legend_style == 'sides': if second_index == 0: ax2dsub.set_ylabel( info.tex_names[info.native_index], fontsize=info.fontsize) if conf.subplot is True: # Store the individual 2d plots. if conf.plot_2d: area = ax2dsub.get_window_extent().transformed( fig2d.dpi_scale_trans.inverted()) # Pad the saved area by 10% in the x-direction and 20% in # the y-direction fig2d.savefig(os.path.join( conf.folder, 'plots', file_name+'_2d_%s-%s.%s' % ( standard_name, second_standard_name, conf.extension)), bbox_inches=area.expanded(1.4, 1.4)) # store the coordinates of the points for further # plotting. store_contour_coordinates( conf, standard_name, second_standard_name, contours) for info in information_instances: if not info.ignore_param and info.has_second_param: info.hist_file_name = os.path.join( info.folder, 'plots', '{0}_2d_{1}-{2}.hist'.format( info.basename, standard_name, second_standard_name)) write_histogram_2d( info.hist_file_name, info.x_centers, info.y_centers, info.extent, info.n) print '-----------------------------------------------' if conf.plot: print '--> Saving figures to .{0} files'.format(info.extension) plot_name = '-vs-'.join([os.path.split(elem.folder)[-1] for elem in information_instances]) if conf.plot_2d: # Legend of triangle plot if ((conf.plot_legend_2d == None) and (len(legends) > 1)) or (conf.plot_legend_2d == True): # Create a virtual subplot in the top right corner, # just to be able to anchor the legend nicely ax2d = fig2d.add_subplot( len(plotted_parameters), len(plotted_parameters), len(plotted_parameters), ) ax2d.axis('off') try: ax2d.legend(legends, legend_names, loc='upper right', borderaxespad=0., fontsize=info.legendsize) except TypeError: ax2d.legend(legends, legend_names, loc='upper right', borderaxespad=0., prop={'fontsize': info.legendsize}) fig2d.subplots_adjust(wspace=0, hspace=0) fig2d.savefig( os.path.join( conf.folder, 'plots', '{0}_triangle.{1}'.format( plot_name, info.extension)), bbox_inches='tight') # Legend of 1D plot if conf.plot: if ((conf.plot_legend_1d == None) and (len(legends) > 1)) or (conf.plot_legend_1d == True): # no space left: add legend to thr right if len(plotted_parameters)<num_columns*num_lines: fig1d.legend(legends, legend_names, loc= ((num_columns-0.9)/num_columns,0.1/num_columns), fontsize=info.legendsize) # space left in lower right part: add legend there else: fig1d.legend(legends, legend_names, loc= 'center right', bbox_to_anchor = (1.2,0.5), fontsize=info.legendsize) fig1d.tight_layout() fig1d.savefig( os.path.join( conf.folder, 'plots', '{0}_1d.{1}'.format( plot_name, info.extension)), bbox_inches='tight') def ctr_level(histogram2d, lvl, infinite=False): """ Extract the contours for the 2d plots (Karim Benabed) """ hist = histogram2d.flatten()*1. hist.sort() cum_hist = np.cumsum(hist[::-1]) cum_hist /= cum_hist[-1] alvl = np.searchsorted(cum_hist, lvl)[::-1] clist = [0]+[hist[-i] for i in alvl]+[hist.max()] if not infinite: return clist[1:] return clist def minimum_credible_intervals(info): """ Extract minimum credible intervals (method from Jan Haman) FIXME """ histogram = info.hist bincenters = info.bincenters levels = info.levels bounds = np.zeros((len(levels), 2)) j = 0 delta = bincenters[1]-bincenters[0] left_edge = max(histogram[0] - 0.5*(histogram[1]-histogram[0]), 0.) right_edge = max(histogram[-1] + 0.5*(histogram[-1]-histogram[-2]), 0.) failed = False for level in levels: norm = float( (np.sum(histogram)-0.5*(histogram[0]+histogram[-1]))*delta) norm += 0.25*(left_edge+histogram[0])*delta norm += 0.25*(right_edge+histogram[-1])*delta water_level_up = np.max(histogram)*1.0 water_level_down = np.min(histogram)*1.0 top = 0. iterations = 0 while (abs((top/norm)-level) > 0.0001) and not failed: top = 0. water_level = (water_level_up + water_level_down)/2. #ontop = [elem for elem in histogram if elem > water_level] indices = [i for i in range(len(histogram)) if histogram[i] > water_level] # check for multimodal posteriors if ((indices[-1]-indices[0]+1) != len(indices)): warnings.warn( "could not derive minimum credible intervals " + "for this multimodal posterior") warnings.warn( "please try running longer chains or reducing " + "the number of bins with --bins BINS (default: 20)") failed = True break top = (np.sum(histogram[indices]) - 0.5*(histogram[indices[0]]+histogram[indices[-1]]))*(delta) # left if indices[0] > 0: top += (0.5*(water_level+histogram[indices[0]]) * delta*(histogram[indices[0]]-water_level) / (histogram[indices[0]]-histogram[indices[0]-1])) else: if (left_edge > water_level): top += 0.25*(left_edge+histogram[indices[0]])*delta else: top += (0.25*(water_level + histogram[indices[0]]) * delta*(histogram[indices[0]]-water_level) / (histogram[indices[0]]-left_edge)) # right if indices[-1] < (len(histogram)-1): top += (0.5*(water_level + histogram[indices[-1]]) * delta*(histogram[indices[-1]]-water_level) / (histogram[indices[-1]]-histogram[indices[-1]+1])) else: if (right_edge > water_level): top += 0.25*(right_edge+histogram[indices[-1]])*delta else: top += (0.25*(water_level + histogram[indices[-1]]) * delta * (histogram[indices[-1]]-water_level) / (histogram[indices[-1]]-right_edge)) if top/norm >= level: water_level_down = water_level else: water_level_up = water_level # safeguard, just in case iterations += 1 if (iterations > 1000): warnings.warn( "the loop to check for sigma deviations was " + "taking too long to converge") failed = True break # min if failed: bounds[j][0] = np.nan elif indices[0] > 0: bounds[j][0] = bincenters[indices[0]] - delta*(histogram[indices[0]]-water_level)/(histogram[indices[0]]-histogram[indices[0]-1]) else: if (left_edge > water_level): bounds[j][0] = bincenters[0]-0.5*delta else: bounds[j][0] = bincenters[indices[0]] - 0.5*delta*(histogram[indices[0]]-water_level)/(histogram[indices[0]]-left_edge) # max if failed: bounds[j][1] = np.nan elif indices[-1] < (len(histogram)-1): bounds[j][1] = bincenters[indices[-1]] + delta*(histogram[indices[-1]]-water_level)/(histogram[indices[-1]]-histogram[indices[-1]+1]) else: if (right_edge > water_level): bounds[j][1] = bincenters[-1]+0.5*delta else: bounds[j][1] = bincenters[indices[-1]] + \ 0.5*delta*(histogram[indices[-1]]-water_level) / \ (histogram[indices[-1]]-right_edge) j += 1 for elem in bounds: for j in (0, 1): elem[j] -= info.mean[info.native_index] return bounds def write_h(info_file, indices, name, string, quantity, modifiers=None): """ Write one horizontal line of output """ info_file.write('\n '+name+'\t: ') for i in indices: info_file.write(string % quantity[i]+'\t') def cubic_interpolation(info, hist, bincenters): """ Small routine to accomodate the absence of the interpolate module """ # we start from a try becuase if anything goes wrong, we want to return the raw histogram rather than nothing try: # test that all elements are strictly positive, otherwise we could not take the log, and we must switch to the robust method for i,elem in enumerate(hist): if elem == 0.: hist[i] = 1.e-99 elif elem <0: print hist[i] raise exception() # One of our methods (using polyfit) does assume that the input histogram has a maximum value of 1. # If in a future version this is not guaranteedanymore, we should renormalise it here. # This is important for computing weights and thresholds. # The threshold below which the likelihood will be # approximated as zero is hard-codeed here (could become an # input parameter but that would not clearly be useful).: threshold = 1.e-3 # prepare the interpolation on log(Like): ln_hist = np.log(hist) # define a finer grid on a wider range (assuming that the following method is fine both for inter- and extra-polation) left = bincenters[0]-2.5*(bincenters[1]-bincenters[0]) if (info.boundaries[info.native_index][0] != None): if (info.boundaries[info.native_index][0] > left): left = info.boundaries[info.native_index][0] right = bincenters[-1]+2.5*(bincenters[-1]-bincenters[-2]) if (info.boundaries[info.native_index][1] != None): if (info.boundaries[info.native_index][1] < right): right = info.boundaries[info.native_index][1] interp_grid = np.linspace(left, right, (len(bincenters)+4)*10+1) ###################################### # polynomial fit method (default): # #####################################W if info.posterior_smoothing >= 2: # the points in the histogram with a very low likelihood (i.e. hist[i]<<1 hist is normalised to a maximum of one) # have a lot of Poisson noise and are unreliable. However, if we do nothing, they may dominate the outcome of the fitted polynomial. # Hence we can: # 1) give them less weight (weight = sqrt(hist) seems to work well) # 2) cut them at some threshold value and base the fit only on higher points # 3) both # the one working best seems to be 2). We also wrote 1) below, but copmmented out. # method 1): #f = np.poly1d(np.polyfit(bincenters,ln_hist,info.posterior_smoothing,w=np.sqrt(hist))) #interp_hist = f(interp_grid) # method 2): # find index values such that hist is negligble everywhere excepted in hist[sub_indices[0]], hist[sub_indices[-1]] sub_indices = [i for i,elem in enumerate(hist) if elem > threshold] # The interpolation is done precisely in this range: hist[sub_indices[0]] < x < hist[sub_indices[-1]] g = np.poly1d(np.polyfit(bincenters[sub_indices],ln_hist[sub_indices],info.posterior_smoothing)) #,w=np.sqrt(hist[sub_indices]))) # The extrapolation is done in a range including one more bin on each side, excepted when the boundary is hit if (info.boundaries[info.native_index][0] == None): extrapolation_range_left = [bincenters[sub_indices[0]] if sub_indices[0] == 0 else bincenters[sub_indices[0]-1]] else: extrapolation_range_left = [info.boundaries[info.native_index][0] if sub_indices[0] == 0 else bincenters[sub_indices[0]-1]] if (info.boundaries[info.native_index][1] == None): extrapolation_range_right = [bincenters[sub_indices[-1]] if sub_indices[-1] == len(hist)-1 else bincenters[sub_indices[-1]+1]] else: extrapolation_range_right = [info.boundaries[info.native_index][1] if sub_indices[-1] == len(hist)-1 else bincenters[sub_indices[-1]+1]] # outside of this range, log(L) is brutally set to a negligible value,e, log(1.e-10) interp_hist = [g(elem) if (elem > extrapolation_range_left and elem < extrapolation_range_right) else np.log(1.e-10) for elem in interp_grid] elif info.posterior_smoothing<0: raise io_mp.AnalyzeError( "You passed --posterior-smoothing %d, this value is not understood"%info.posterior_smoothing) ############################################################ # other methods: # # - linear inter/extra-polation if posterior_smoothing = 0 # # - cubic inter/extra-polation if posterior_smoothing = 0 # ############################################################ else: # try first inter/extra-polation try: # prepare to interpolate and extrapolate: if info.posterior_smoothing == 0: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='linear', fill_value='extrapolate') else: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='cubic', fill_value='extrapolate') interp_hist = f(interp_grid) # failure probably caused by old scipy not having the fill_value='extrapolate' argument. Then, only interpoolate. except: # define a finer grid but not a wider one left = bincenters[0] if (info.boundaries[info.native_index][0] != None): if (info.boundaries[info.native_index][0] > left): left = info.boundaries[info.native_index][0] right = bincenters[-1] if (info.boundaries[info.native_index][1] != None): if (info.boundaries[info.native_index][1] < right): right = info.boundaries[info.native_index][1] interp_grid = np.linspace(left, right, len(bincenters)*10+1) # prepare to interpolate only: if info.posterior_smoothing == 0: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='linear') else: f = scipy.interpolate.interp1d(bincenters, ln_hist, kind='cubic') interp_hist = f(interp_grid) # final steps used b y all methods # go back from ln_Like to Like interp_hist = np.exp(interp_hist) # re-normalise the interpolated curve interp_hist = interp_hist / interp_hist.max() return interp_hist, interp_grid except: # we will end up here if anything went wrong before # do nothing (raw histogram) warnings.warn( "The 1D posterior could not be processed normally, probably" + "due to incomplete or obsolete numpy and/or scipy versions." + "So the raw histograms will be plotted.") return hist, bincenters def write_histogram(hist_file_name, x_centers, hist): """ Store the posterior distribution to a file """ with open(hist_file_name, 'w') as hist_file: hist_file.write("# 1d posterior distribution\n") hist_file.write("\n# x_centers\n") hist_file.write(", ".join( [str(elem) for elem in x_centers])+"\n") hist_file.write("\n# Histogram\n") hist_file.write(", ".join( [str(elem) for elem in hist])+"\n") print 'wrote ', hist_file_name def read_histogram(histogram_path): """ Recover a stored 1d posterior """ with open(histogram_path, 'r') as hist_file: for line in hist_file: if line: if line.find("# x_centers") != -1: x_centers = [float(elem) for elem in hist_file.next().split(",")] elif line.find("# Histogram") != -1: hist = [float(elem) for elem in hist_file.next().split(",")] x_centers = np.array(x_centers) hist = np.array(hist) return x_centers, hist def write_histogram_2d(hist_file_name, x_centers, y_centers, extent, hist): """ Store the histogram information to a file, to plot it later """ with open(hist_file_name, 'w') as hist_file: hist_file.write("# Interpolated histogram\n") hist_file.write("\n# x_centers\n") hist_file.write(", ".join( [str(elem) for elem in x_centers])+"\n") hist_file.write("\n# y_centers\n") hist_file.write(", ".join( [str(elem) for elem in y_centers])+"\n") hist_file.write("\n# Extent\n") hist_file.write(", ".join( [str(elem) for elem in extent])+"\n") hist_file.write("\n# Histogram\n") for line in hist: hist_file.write(", ".join( [str(elem) for elem in line])+"\n") def read_histogram_2d(histogram_path): """ Read the histogram information that was stored in a file. To use it, call something like this: .. code:: x_centers, y_centers, extent, hist = read_histogram_2d_from_file(path) fig, ax = plt.subplots() ax.contourf( y_centers, x_centers, hist, extent=extent, levels=ctr_level(hist, [0.68, 0.95]), zorder=5, cma=plt.cm.autumn_r) plt.show() """ with open(histogram_path, 'r') as hist_file: length = 0 for line in hist_file: if line: if line.find("# x_centers") != -1: x_centers = [float(elem) for elem in hist_file.next().split(",")] length = len(x_centers) elif line.find("# y_centers") != -1: y_centers = [float(elem) for elem in hist_file.next().split(",")] elif line.find("# Extent") != -1: extent = [float(elem) for elem in hist_file.next().split(",")] elif line.find("# Histogram") != -1: hist = [] for index in range(length): hist.append([float(elem) for elem in hist_file.next().split(",")]) x_centers = np.array(x_centers) y_centers = np.array(y_centers) extent = np.array(extent) hist = np.array(hist) return x_centers, y_centers, extent, hist def clean_conversion(module_name, tag, folder): """ Execute the methods "convert" from the different sampling algorithms Returns True if something was made, False otherwise """ has_module = False subfolder_name = tag+"_subfolder" try: # Don't try to import the wrong (unrequested) module, in case it's not installed if not folder.lower().endswith(tag.lower()): raise ImportError module = importlib.import_module(module_name) subfolder = getattr(module, subfolder_name) has_module = True except ImportError: # The module is not installed, the conversion can not take place pass if has_module and os.path.isdir(folder): # Remove any potential trailing slash folder = os.path.join( *[elem for elem in folder.split(os.path.sep) if elem]) if folder.split(os.path.sep)[-1] == subfolder: try: getattr(module, 'from_%s_output_to_chains' % tag)(folder) except IOError: raise io_mp.AnalyzeError( "You asked to analyze a %s folder which " % tag + "seems to come from an unfinished run, or to be empty " + "or corrupt. Please make sure the run went smoothly " + "enough.") warnings.warn( "The content of the %s subfolder has been " % tag + "translated for Monte Python. Please run an " "analysis of the entire folder now.") return True else: return False def separate_files(files): """ Separate the input files in folder Given all input arguments to the command line files entry, separate them in a list of lists, grouping them by folders. The number of identified folders will determine the number of information instances to create """ final_list = [] temp = [files[0]] folder = (os.path.dirname(files[0]) if os.path.isfile(files[0]) else files[0]) if len(files) > 1: for elem in files[1:]: new_folder = (os.path.dirname(elem) if os.path.isfile(elem) else elem) if new_folder == folder: temp.append(elem) else: folder = new_folder final_list.append(temp) temp = [elem] final_list.append(temp) return final_list def recover_folder_and_files(files): """ Distinguish the cases when analyze is called with files or folder Note that this takes place chronologically after the function `separate_files`""" # The following list defines the substring that a chain should contain for # the code to recognise it as a proper chain. substrings = ['.txt', '__'] limit = 10 # If the first element is a folder, grab all chain files inside if os.path.isdir(files[0]): folder = os.path.normpath(files[0]) files = [os.path.join(folder, elem) for elem in os.listdir(folder) if not os.path.isdir(os.path.join(folder, elem)) and not os.path.getsize(os.path.join(folder, elem)) < limit and all([x in elem for x in substrings])] # Otherwise, extract the folder from the chain file-name. else: # If the name is completely wrong, say it if not os.path.exists(files[0]): raise io_mp.AnalyzeError( "You provided a non-existant folder/file to analyze") folder = os.path.relpath( os.path.dirname(os.path.realpath(files[0])), os.path.curdir) files = [os.path.join(folder, elem) for elem in os.listdir(folder) if os.path.join(folder, elem) in np.copy(files) and not os.path.isdir(os.path.join(folder, elem)) and not os.path.getsize(os.path.join(folder, elem)) < limit and all([x in elem for x in substrings])] basename = os.path.basename(folder) return folder, files, basename def extract_array(line): """ Return the array on the RHS of the line >>> extract_array("toto = ['one', 'two']\n") ['one', 'two'] >>> extract_array('toto = ["one", 0.2]\n') ['one', 0.2] """ # Recover RHS of the equal sign, and remove surrounding spaces rhs = line.split('=')[-1].strip() # Remove array signs rhs = rhs.strip(']').lstrip('[') # Recover each element of the list sequence = [e.strip().strip('"').strip("'") for e in rhs.split(',')] for index, elem in enumerate(sequence): try: sequence[index] = int(elem) except ValueError: try: sequence[index] = float(elem) except ValueError: pass return sequence def extract_dict(line): """ Return the key and value of the dictionary element contained in line >>> extract_dict("something['toto'] = [0, 1, 2, -2, 'cosmo']") 'toto', [0, 1, 2, -2, 'cosmo'] """ # recovering the array sequence = extract_array(line) # Recovering only the LHS lhs = line.split('=')[0].strip() # Recovering the name from the LHS name = lhs.split('[')[-1].strip(']') name = name.strip('"').strip("'") return name, sequence def extract_parameter_names(info): """ Reading the log.param, store in the Information instance the names """ backup_names = [] plotted_parameters = [] boundaries = [] ref_names = [] tex_names = [] scales = [] rescales = [] centers = [] with open(info.param_path, 'r') as param: for line in param: if line.find('#') == -1: if line.find('data.experiments') != -1: info.experiments = extract_array(line) if line.find('data.parameters') != -1: name, array = extract_dict(line) original = name # Rename the names according the .extra file (opt) if name in info.to_change.iterkeys(): name = info.to_change[name] # If the name corresponds to a varying parameter (fourth # entry in the initial array being non-zero, or a derived # parameter (could be designed as fixed, it does not make # any difference)), then continue the process of analyzing. if array[3] != 0 or array[5] == 'derived': # The real name is always kept, to have still the class # names in the covmat backup_names.append(original) # With the list "to_plot", we can potentially restrict # the variables plotted. If it is empty, though, simply # all parameters will be plotted. if info.to_plot == []: plotted_parameters.append(name) else: if name in info.to_plot: plotted_parameters.append(name) # Append to the boundaries array boundaries.append([ None if elem == 'None' or (isinstance(elem, int) and elem == -1) else elem for elem in array[1:3]]) ref_names.append(name) # Take care of the scales scale = array[4] rescale = 1. if name in info.new_scales.iterkeys(): rescale = info.new_scales[name]/array[4] scales.append(scale) rescales.append(rescale) # Given the scale, decide for the pretty tex name number = 1./(scale*rescale) tex_names.append( io_mp.get_tex_name(name, number=number)) # Read starting values (useful for plotting Fisher) centers.append(array[0]) scales = np.diag(scales) rescales = np.diag(rescales) info.ref_names = ref_names info.tex_names = tex_names info.boundaries = boundaries info.backup_names = backup_names info.scales = scales info.rescales = rescales # Beware, the following two numbers are different. The first is the total # number of parameters stored in the chain, whereas the second is for # plotting purpose only. info.number_parameters = len(ref_names) info.plotted_parameters = plotted_parameters info.centers = centers def find_maximum_of_likelihood(info): """ Finding the global maximum of likelihood min_minus_lkl will be appended with all the maximum likelihoods of files, then will be replaced by its own maximum. This way, the global maximum likelihood will be used as a reference, and not each chain's maximum. """ min_minus_lkl = [] for chain_file in info.files: # cheese will brutally contain everything (- log likelihood) in the # file chain_file being scanned. # This could potentially be faster with pandas, but is already quite # fast # # This would read the chains including comment lines: #cheese = (np.array([float(line.split()[1].strip()) # for line in open(chain_file, 'r')])) # # This reads the chains excluding comment lines: with open(chain_file, 'r') as f: cheese = (np.array([float(line.split()[1].strip()) for line in ifilterfalse(iscomment,f)])) try: min_minus_lkl.append(cheese[:].min()) except ValueError: pass # beware, it is the min because we are talking about # '- log likelihood' # Selecting only the true maximum. try: min_minus_lkl = min(min_minus_lkl) except ValueError: raise io_mp.AnalyzeError( "No decently sized chain was found in the desired folder. " + "Please wait to have more accepted point before trying " + "to analyze it.") info.min_minus_lkl = min_minus_lkl def remove_bad_points(info): """ Create an array with all the points from the chains, after removing non-markovian, burn-in and fixed fraction """ # spam will brutally contain all the chains with sufficient number of # points, after the burn-in was removed. spam = list() # Recover the longest file name, for pleasing display max_name_length = max([len(e) for e in info.files]) # Total number of steps done: steps = 0 accepted_steps = 0 # Open the log file log = open(info.log_path, 'w') for index, chain_file in enumerate(info.files): # To improve presentation, and print only once the full path of the # analyzed folder, we recover the length of the path name, and # create an empty complementary string of this length total_length = 18+max_name_length empty_length = 18+len(os.path.dirname(chain_file))+1 basename = os.path.basename(chain_file) if index == 0: exec "print '--> Scanning file %-{0}s' % chain_file,".format( max_name_length) else: exec "print '%{0}s%-{1}s' % ('', basename),".format( empty_length, total_length-empty_length) # cheese will brutally contain everything in the chain chain_file being # scanned # # This would read the chains including comment lines: #cheese = (np.array([[float(elem) for elem in line.split()] # for line in open(chain_file, 'r')])) # # This read the chains excluding comment lines: with open(chain_file, 'r') as f: cheese = (np.array([[float(elem) for elem in line.split()] for line in ifilterfalse(iscomment,f)])) # If the file contains a broken line with a different number of # elements, the previous array generation might fail, and will not have # the correct shape. Hence the following command will fail. To avoid # that, the error is caught. try: local_min_minus_lkl = cheese[:, 1].min() except IndexError: raise io_mp.AnalyzeError( "Error while scanning %s." % chain_file + " This file most probably contains " "an incomplete line, rendering the analysis impossible. " "I think that the following line(s) is(are) wrong:\n %s" % ( '\n '.join( ['-> %s' % line for line in open(chain_file, 'r') if len(line.split()) != len(info.backup_names)+2]))) line_count = float(sum(1 for line in open(chain_file, 'r'))) # Logging the information obtained until now. number_of_steps = cheese[:, 0].sum() log.write("%s\t " % os.path.basename(chain_file)) log.write(" Number of steps:%d\t" % number_of_steps) log.write(" Steps accepted:%d\t" % line_count) log.write(" acc = %.2g\t" % (float(line_count)/number_of_steps)) log.write("min(-loglike) = %.2f\n" % local_min_minus_lkl) steps += number_of_steps accepted_steps += line_count # check if analyze() is called directly by the user, or by the mcmc loop during an updating phase try: # command_line.update is defined when called by the mcmc loop info.update except: # in case it was not defined (i.e. when analyze() is called directly by user), set it to False info.update = 0 # check if analyze() is called directly by the user, or by the mcmc loop during an updating phase try: # command_line.adaptive is defined when called by the mcmc loop info.adaptive except: # in case it was not defined (i.e. when analyze() is called directly by user), set it to False info.adaptive = 0 # Removing non-markovian part, burn-in, and fraction= (1 - keep-fraction) start = 0 markovian=0 try: # Read all comments in chains about times when proposal was updated # The last of these comments gives the number of lines to be skipped in the files if info.markovian and not info.update: with open(chain_file, 'r') as f: for line in ifilter(iscomment,f): if info.only_markovian or ('update proposal' in line): start = int(line.split()[2]) else: pass markovian = start # Remove burn-in, defined as all points until the likelhood reaches min_minus_lkl+LOG_LKL_CUTOFF # except when it is run in adaptive mode if not info.adaptive: while cheese[start, 1] > info.min_minus_lkl+LOG_LKL_CUTOFF: start += 1 burnin = start-markovian # Remove fixed fraction as requested by user (usually not useful if non-markovian is also removed) if info.keep_fraction < 1: start = start + int((1.-info.keep_fraction)*(line_count - start)) print ": Removed", if info.markovian: print "%d non-markovian points," % markovian, print "%d points of burn-in," % burnin, if info.keep_fraction < 1: print "and first %.0f percent," % (100.*(1-info.keep_fraction)), print "keep %d steps" % (line_count-start) except IndexError: print ': Removed everything: chain not converged' # ham contains cheese without the burn-in, if there are any points # left (more than 5) if np.shape(cheese)[0] > start+5: ham = np.copy(cheese[int(start)::]) # Deal with single file case if len(info.files) == 1: warnings.warn("Convergence computed for a single file") bacon = np.copy(cheese[::3, :]) egg = np.copy(cheese[1::3, :]) sausage = np.copy(cheese[2::3, :]) spam.append(bacon) spam.append(egg) spam.append(sausage) continue # Adding resulting table to spam spam.append(ham) # Test the length of the list if len(spam) == 0: raise io_mp.AnalyzeError( "No decently sized chain was found. " + "Please wait a bit to analyze this folder") # Applying now new rules for scales, if the name is contained in the # referenced names for name in info.new_scales.iterkeys(): try: index = info.ref_names.index(name) for i in xrange(len(spam)): spam[i][:, index+2] *= 1./info.rescales[index, index] except ValueError: # there is nothing to do if the name is not contained in ref_names pass info.steps = steps info.accepted_steps = accepted_steps return spam def compute_mean(mean, spam, total): """ """ for i in xrange(np.shape(mean)[1]): for j in xrange(len(spam)): submean = np.sum(spam[j][:, 0]*spam[j][:, i+2]) mean[j+1, i] = submean / total[j+1] mean[0, i] += submean mean[0, i] /= total[0] def compute_variance(var, mean, spam, total): """ """ for i in xrange(np.shape(var)[1]): for j in xrange(len(spam)): var[0, i] += np.sum( spam[j][:, 0]*(spam[j][:, i+2]-mean[0, i])**2) var[j+1, i] = np.sum( spam[j][:, 0]*(spam[j][:, i+2]-mean[j+1, i])**2) / \ (total[j+1]-1) var[0, i] /= (total[0]-1) def compute_covariance_matrix(info): """ """ covar = np.zeros((len(info.ref_names), len(info.ref_names))) for i in xrange(len(info.ref_names)): for j in xrange(i, len(info.ref_names)): covar[i, j] = ( info.chain[:, 0]*( (info.chain[:, i+2]-info.mean[i]) * (info.chain[:, j+2]-info.mean[j]))).sum() if i != j: covar[j, i] = covar[i, j] covar /= info.total # Removing scale factors in order to store true parameter covariance covar = np.dot(info.scales.T, np.dot(covar, info.scales)) return covar def adjust_ticks(param, information_instances): """ """ if len(information_instances) == 1: return # Recovering all x_range and ticks entries from the concerned information # instances x_ranges = [] ticks = [] for info in information_instances: if not info.ignore_param: x_ranges.append(info.x_range[info.native_index]) ticks.append(info.ticks[info.native_index]) # The new x_range and tick should min/max all the existing ones new_x_range = np.array( [min([e[0] for e in x_ranges]), max([e[1] for e in x_ranges])]) temp_ticks = np.array( [min([e[0] for e in ticks]), max([e[-1] for e in ticks])]) new_ticks = np.linspace(temp_ticks[0], temp_ticks[1], info.ticknumber) for info in information_instances: if not info.ignore_param: info.x_range[info.native_index] = new_x_range info.ticks[info.native_index] = new_ticks def store_contour_coordinates(info, name1, name2, contours): """docstring""" file_name = os.path.join( info.folder, 'plots', '{0}_2d_{1}-{2}.dat'.format( info.basename, name1, name2)) with open(file_name, 'w') as plot_file: plot_file.write( '# contour for confidence level {0}\n'.format( info.levels[1])) for elem in contours.collections[0].get_paths(): points = elem.vertices for k in range(np.shape(points)[0]): plot_file.write("%.8g\t %.8g\n" % ( points[k, 0], points[k, 1])) # stop to not include the inner contours if k != 0: if all(points[k] == points[0]): plot_file.write("\n") break plot_file.write("\n\n") plot_file.write( '# contour for confidence level {0}\n'.format( info.levels[0])) for elem in contours.collections[1].get_paths(): points = elem.vertices for k in range(np.shape(points)[0]): plot_file.write("%.8g\t %.8g\n" % ( points[k, 0], points[k, 1])) if k != 0: if all(points[k] == points[0]): plot_file.write("\n") break plot_file.write("\n\n") def iscomment(s): """ Define what we call a comment in MontePython chain files """ return s.startswith('#') class Information(object): """ Hold all information for analyzing runs """ # Counting the number of instances, to choose the color map _ids = count(0) # Flag checking the absence or presence of the interp1d function has_interpolate_module = False # Actual pairs of colors used by MP. # For each pair, the first color is for the 95% contour, # and the second for the 68% contour + the 1d probability. # Note that, as with the other customisation options, you can specify new # values for this in the extra plot_file. MP_color = { 'Red':['#E37C80','#CE121F'], 'Blue':['#7A98F6','#1157EF'], 'Green':['#88B27A','#297C09'], 'Orange':['#F3BE82','#ED920F'], 'Grey':['#ABABAB','#737373'], 'Purple':['#B87294','#88004C'] } # order used when several directories are analysed MP_color_cycle = [ MP_color['Red'], MP_color['Blue'], MP_color['Green'], MP_color['Orange'], MP_color['Grey'], MP_color['Purple'] ] # in the same order, list of transparency levels alphas = [0.9, 0.9, 0.9, 0.9, 0.9, 0.9] def __init__(self, command_line, other=None): """ The following initialization creates the three tables that can be customized in an extra plot_file (see :mod:`parser_mp`). Parameters ---------- command_line : Namespace it contains the initialised command line arguments """ self.to_change = {} """ Dictionary whose keys are the old parameter names, and values are the new ones. For instance :code:`{'beta_plus_lambda':'beta+lambda'}` """ self.to_plot = [] """ Array of names of parameters to plot. If left empty, all will be plotted. .. warning:: If you changed a parameter name with :attr:`to_change`, you need to give the new name to this array """ self.new_scales = {} """ Dictionary that redefines some scales. The keys will be the parameter name, and the value its scale. """ # Assign a unique id to this instance self.id = self._ids.next() # Defining the sigma contours (1, 2 and 3-sigma) self.levels = np.array([68.26, 95.4, 99.7])/100. # Follows a bunch of initialisation to provide default members self.ref_names, self.backup_names = [], [] self.scales, self.plotted_parameters = [], [] self.spam = [] # Store directly all information from the command_line object into this # instance, except the protected members (begin and end with __) for elem in dir(command_line): if elem.find('__') == -1: setattr(self, elem, getattr(command_line, elem)) # initialise the legend flags self.plot_legend_1d = None self.plot_legend_2d = None # initialize the legend size to be the same as fontsize, but can be # altered in the extra file self.legendsize = self.fontsize self.legendnames = [] # initialize the customisation script flags self.custom1d = [] self.custom2d = [] # initialise the dictionary enmforcing limit self.force_limits = {} # Read a potential file describing changes to be done for the parameter # names, and number of paramaters plotted (can be let empty, all will # then be plotted), but also the style of the plot. Note that this # overrides the command line options if command_line.optional_plot_file: plot_file_vars = {'info': self,'plt': plt} execfile(command_line.optional_plot_file, plot_file_vars) # check and store keep_fraction if command_line.keep_fraction<=0 or command_line.keep_fraction>1: raise io_mp.AnalyzeError("after --keep-fraction you should pass a float >0 and <=1") self.keep_fraction = command_line.keep_fraction def remap_parameters(self, spam): """ Perform substitutions of parameters for analyzing .. note:: for arbitrary combinations of parameters, the prior will not necessarily be flat. """ if hasattr(self, 'redefine'): for key, value in self.redefine.iteritems(): # Check that the key was an original name if key in self.backup_names: print ' /|\ Transforming', key, 'into', value # We recover the indices of the key index_to_change = self.backup_names.index(key)+2 print('/_o_\ The new variable will be called ' + self.ref_names[self.backup_names.index(key)]) # Recover all indices of all variables present in the # remapping variable_names = [elem for elem in self.backup_names if value.find(elem) != -1] indices = [self.backup_names.index(name)+2 for name in variable_names] # Now loop over all files in spam for i in xrange(len(spam)): # Assign variables to their values for index, name in zip(indices, variable_names): exec("%s = spam[i][:, %i]" % (name, index)) # Assign to the desired index the combination exec("spam[i][:, %i] = %s" % (index_to_change, value)) def define_ticks(self): """ """ self.max_values = self.chain[:, 2:].max(axis=0) self.min_values = self.chain[:, 2:].min(axis=0) self.span = (self.max_values-self.min_values) # Define the place of ticks, given the number of ticks desired, stored # in conf.ticknumber self.ticks = np.array( [np.linspace(self.min_values[i]+self.span[i]*0.1, self.max_values[i]-self.span[i]*0.1, self.ticknumber) for i in range(len(self.span))]) # Define the x range (ticks start not exactly at the range boundary to # avoid display issues) self.x_range = np.array((self.min_values, self.max_values)).T # In case the exploration hit a boundary (as defined in the parameter # file), at the level of precision defined by the number of bins, the # ticks and x_range should be altered in order to display this # meaningful number instead. for i in range(np.shape(self.ticks)[0]): x_range = self.x_range[i] bounds = self.boundaries[i] # Left boundary if bounds[0] is not None: if abs(x_range[0]-bounds[0]) < self.span[i]/self.bins: self.ticks[i][0] = bounds[0] self.x_range[i][0] = bounds[0] # Right boundary if bounds[-1] is not None: if abs(x_range[-1]-bounds[-1]) < self.span[i]/self.bins: self.ticks[i][-1] = bounds[-1] self.x_range[i][-1] = bounds[-1] def write_information_files(self): # Store in info_names only the tex_names that were plotted, for this # instance, and in indices the corresponding list of indices. It also # removes the $ signs, for clarity self.info_names = [ name for index, name in enumerate(self.tex_names) if self.ref_names[index] in self.plotted_parameters] self.indices = [self.tex_names.index(name) for name in self.info_names] self.tex_names = [name for index, name in enumerate(self.tex_names) if self.ref_names[index] in self.plotted_parameters] self.info_names = [name.replace('$', '') for name in self.info_names] # Define the bestfit array self.bestfit = np.zeros(len(self.ref_names)) for i in xrange(len(self.ref_names)): self.bestfit[i] = self.chain[self.sorted_indices[0], :][2+i] # Write down to the .h_info file all necessary information self.write_h_info() self.write_v_info() self.write_tex() def write_h_info(self): with open(self.h_info_path, 'w') as h_info: h_info.write(' param names\t: ') for name in self.info_names: h_info.write("%-14s" % name) write_h(h_info, self.indices, 'R-1 values', '% .6f', self.R) write_h(h_info, self.indices, 'Best Fit ', '% .6e', self.bestfit) write_h(h_info, self.indices, 'mean ', '% .6e', self.mean) write_h(h_info, self.indices, 'sigma ', '% .6e', (self.bounds[:, 0, 1]-self.bounds[:, 0, 0])/2.) h_info.write('\n') write_h(h_info, self.indices, '1-sigma - ', '% .6e', self.bounds[:, 0, 0]) write_h(h_info, self.indices, '1-sigma + ', '% .6e', self.bounds[:, 0, 1]) write_h(h_info, self.indices, '2-sigma - ', '% .6e', self.bounds[:, 1, 0]) write_h(h_info, self.indices, '2-sigma + ', '% .6e', self.bounds[:, 1, 1]) write_h(h_info, self.indices, '3-sigma - ', '% .6e', self.bounds[:, 2, 0]) write_h(h_info, self.indices, '3-sigma + ', '% .6e', self.bounds[:, 2, 1]) # bounds h_info.write('\n') write_h(h_info, self.indices, '1-sigma > ', '% .6e', self.mean+self.bounds[:, 0, 0]) write_h(h_info, self.indices, '1-sigma < ', '% .6e', self.mean+self.bounds[:, 0, 1]) write_h(h_info, self.indices, '2-sigma > ', '% .6e', self.mean+self.bounds[:, 1, 0]) write_h(h_info, self.indices, '2-sigma < ', '% .6e', self.mean+self.bounds[:, 1, 1]) write_h(h_info, self.indices, '3-sigma > ', '% .6e', self.mean+self.bounds[:, 2, 0]) write_h(h_info, self.indices, '3-sigma < ', '% .6e', self.mean+self.bounds[:, 2, 1]) def write_v_info(self): """Write vertical info file""" with open(self.v_info_path, 'w') as v_info: v_info.write('%-15s\t: %-11s' % ('param names', 'R-1')) v_info.write(' '.join(['%-11s' % elem for elem in [ 'Best fit', 'mean', 'sigma', '1-sigma -', '1-sigma +', '2-sigma -', '2-sigma +', '1-sigma >', '1-sigma <', '2-sigma >', '2-sigma <']])) for index, name in zip(self.indices, self.info_names): v_info.write('\n%-15s\t: % .4e' % (name, self.R[index])) v_info.write(' '.join(['% .4e' % elem for elem in [ self.bestfit[index], self.mean[index], (self.bounds[index, 0, 1]-self.bounds[index, 0, 0])/2., self.bounds[index, 0, 0], self.bounds[index, 0, 1], self.bounds[index, 1, 0], self.bounds[index, 1, 1], self.mean[index]+self.bounds[index, 0, 0], self.mean[index]+self.bounds[index, 0, 1], self.mean[index]+self.bounds[index, 1, 0], self.mean[index]+self.bounds[index, 1, 1]]])) def write_tex(self): """Write a tex table containing the main results """ with open(self.tex_path, 'w') as tex: tex.write("\\begin{tabular}{|l|c|c|c|c|} \n \\hline \n") tex.write("Param & best-fit & mean$\pm\sigma$ ") tex.write("& 95\% lower & 95\% upper \\\\ \\hline \n") for index, name in zip(self.indices, self.tex_names): tex.write("%s &" % name) tex.write("$%.4g$ & $%.4g_{%.2g}^{+%.2g}$ " % ( self.bestfit[index], self.mean[index], self.bounds[index, 0, 0], self.bounds[index, 0, 1])) tex.write("& $%.4g$ & $%.4g$ \\\\ \n" % ( self.mean[index]+self.bounds[index, 1, 0], self.mean[index]+self.bounds[index, 1, 1])) tex.write("\\hline \n \\end{tabular} \\\\ \n") tex.write("$-\ln{\cal L}_\mathrm{min} =%.6g$, " % ( self.min_minus_lkl)) tex.write("minimum $\chi^2=%.4g$ \\\\ \n" % ( self.min_minus_lkl*2.))
44.928822
237
0.536056
7f20a9b827484444a291861e56b197b9a601ca91
466
py
Python
backend/group/migrations/0003_auto_20200829_1930.py
cjc7373/hackergame
86971b4cf8a2761044d417b4c8bd934c3309d6fd
[ "MIT" ]
2
2020-07-12T13:11:43.000Z
2020-07-14T08:12:17.000Z
backend/group/migrations/0003_auto_20200829_1930.py
cjc7373/hackergame
86971b4cf8a2761044d417b4c8bd934c3309d6fd
[ "MIT" ]
1
2020-08-13T13:56:18.000Z
2020-09-29T12:39:08.000Z
backend/group/migrations/0003_auto_20200829_1930.py
cjc7373/hackergame
86971b4cf8a2761044d417b4c8bd934c3309d6fd
[ "MIT" ]
null
null
null
# Generated by Django 3.1 on 2020-08-29 11:30 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('group', '0002_auto_20200812_2011'), ] operations = [ migrations.AlterField( model_name='application', name='status', field=models.CharField(choices=[('accepted', 'accepted'), ('pending', 'pending')], default='pending', max_length=10), ), ]
24.526316
129
0.609442
9ee4359f215d9507c158cdc207f2be19e67ed873
261
py
Python
Plotting/Standard/Pandas/Scatter plot.py
fraunhofer-iais/IAIS-Python-Snippets
a3ee610d6270cda2c891688851696c34831ffa2b
[ "MIT" ]
null
null
null
Plotting/Standard/Pandas/Scatter plot.py
fraunhofer-iais/IAIS-Python-Snippets
a3ee610d6270cda2c891688851696c34831ffa2b
[ "MIT" ]
null
null
null
Plotting/Standard/Pandas/Scatter plot.py
fraunhofer-iais/IAIS-Python-Snippets
a3ee610d6270cda2c891688851696c34831ffa2b
[ "MIT" ]
null
null
null
# Directly plot a scatter-plot from a pandas DataFrame attribute1 = '' attribute2 = '' data.plot.scatter(x=attribute1, y=attribute2, figsize=(10,6), alpha=0.5, s=50) ax = plt.gca() ax.set_xlabel(attribute1, fontsize=14) ax.set_ylabel(attribute2, fontsize=14);
29
78
0.739464
fc3f0bae1fdb96441d5be8afd33686f1016d308a
805
py
Python
Reading/manage.py
SnowmanZhang/CharacterTest
c4936174557594fca93a747b3a9893446e9afd67
[ "MIT" ]
null
null
null
Reading/manage.py
SnowmanZhang/CharacterTest
c4936174557594fca93a747b3a9893446e9afd67
[ "MIT" ]
null
null
null
Reading/manage.py
SnowmanZhang/CharacterTest
c4936174557594fca93a747b3a9893446e9afd67
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Reading.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
35
77
0.642236
44e8971d46e5d5896fea6c265508a5bd004cb952
16,883
py
Python
qa/rpc-tests/pruning.py
realzzt/BitCoin2013
a8e6863dd39570db449318296c0809fb8476174d
[ "MIT" ]
null
null
null
qa/rpc-tests/pruning.py
realzzt/BitCoin2013
a8e6863dd39570db449318296c0809fb8476174d
[ "MIT" ]
null
null
null
qa/rpc-tests/pruning.py
realzzt/BitCoin2013
a8e6863dd39570db449318296c0809fb8476174d
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test pruning code # ******** # WARNING: # This test uses 4GB of disk space. # This test takes 30 mins or more (up to 2 hours) # ******** from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * def calc_usage(blockdir): return sum(os.path.getsize(blockdir+f) for f in os.listdir(blockdir) if os.path.isfile(blockdir+f)) / (1024. * 1024.) class PruneTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 3 self.utxo = [] self.address = ["",""] self.txouts = gen_return_txouts() def setup_network(self): self.nodes = [] self.is_network_split = False # Create nodes 0 and 1 to mine self.nodes.append(start_node(0, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=999000", "-checkblocks=5"], timewait=900)) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=999000", "-checkblocks=5"], timewait=900)) # Create node 2 to test pruning self.nodes.append(start_node(2, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-prune=550"], timewait=900)) self.prunedir = self.options.tmpdir+"/node2/regtest/blocks/" self.address[0] = self.nodes[0].getnewaddress() self.address[1] = self.nodes[1].getnewaddress() # Determine default relay fee self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"] connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[1], 2) connect_nodes(self.nodes[2], 0) sync_blocks(self.nodes[0:3]) def create_big_chain(self): # Start by creating some coinbases we can spend later self.nodes[1].generate(200) sync_blocks(self.nodes[0:2]) self.nodes[0].generate(150) # Then mine enough full blocks to create more than 550MiB of data for i in range(645): self.mine_full_block(self.nodes[0], self.address[0]) sync_blocks(self.nodes[0:3]) def test_height_min(self): if not os.path.isfile(self.prunedir+"blk00000.dat"): raise AssertionError("blk00000.dat is missing, pruning too early") print("Success") print("Though we're already using more than 550MiB, current usage:", calc_usage(self.prunedir)) print("Mining 25 more blocks should cause the first block file to be pruned") # Pruning doesn't run until we're allocating another chunk, 20 full blocks past the height cutoff will ensure this for i in range(25): self.mine_full_block(self.nodes[0],self.address[0]) waitstart = time.time() while os.path.isfile(self.prunedir+"blk00000.dat"): time.sleep(0.1) if time.time() - waitstart > 30: raise AssertionError("blk00000.dat not pruned when it should be") print("Success") usage = calc_usage(self.prunedir) print("Usage should be below target:", usage) if (usage > 550): raise AssertionError("Pruning target not being met") def create_chain_with_staleblocks(self): # Create stale blocks in manageable sized chunks print("Mine 24 (stale) blocks on Node 1, followed by 25 (main chain) block reorg from Node 0, for 12 rounds") for j in range(12): # Disconnect node 0 so it can mine a longer reorg chain without knowing about node 1's soon-to-be-stale chain # Node 2 stays connected, so it hears about the stale blocks and then reorg's when node0 reconnects # Stopping node 0 also clears its mempool, so it doesn't have node1's transactions to accidentally mine stop_node(self.nodes[0],0) self.nodes[0]=start_node(0, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=999000", "-checkblocks=5"], timewait=900) # Mine 24 blocks in node 1 self.utxo = self.nodes[1].listunspent() for i in range(24): if j == 0: self.mine_full_block(self.nodes[1],self.address[1]) else: self.nodes[1].generate(1) #tx's already in mempool from previous disconnects # Reorg back with 25 block chain from node 0 self.utxo = self.nodes[0].listunspent() for i in range(25): self.mine_full_block(self.nodes[0],self.address[0]) # Create connections in the order so both nodes can see the reorg at the same time connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) sync_blocks(self.nodes[0:3]) print("Usage can be over target because of high stale rate:", calc_usage(self.prunedir)) def reorg_test(self): # Node 1 will mine a 300 block chain starting 287 blocks back from Node 0 and Node 2's tip # This will cause Node 2 to do a reorg requiring 288 blocks of undo data to the reorg_test chain # Reboot node 1 to clear its mempool (hopefully make the invalidate faster) # Lower the block max size so we don't keep mining all our big mempool transactions (from disconnected blocks) stop_node(self.nodes[1],1) self.nodes[1]=start_node(1, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=5000", "-checkblocks=5", "-disablesafemode"], timewait=900) height = self.nodes[1].getblockcount() print("Current block height:", height) invalidheight = height-287 badhash = self.nodes[1].getblockhash(invalidheight) print("Invalidating block at height:",invalidheight,badhash) self.nodes[1].invalidateblock(badhash) # We've now switched to our previously mined-24 block fork on node 1, but thats not what we want # So invalidate that fork as well, until we're on the same chain as node 0/2 (but at an ancestor 288 blocks ago) mainchainhash = self.nodes[0].getblockhash(invalidheight - 1) curhash = self.nodes[1].getblockhash(invalidheight - 1) while curhash != mainchainhash: self.nodes[1].invalidateblock(curhash) curhash = self.nodes[1].getblockhash(invalidheight - 1) assert(self.nodes[1].getblockcount() == invalidheight - 1) print("New best height", self.nodes[1].getblockcount()) # Reboot node1 to clear those giant tx's from mempool stop_node(self.nodes[1],1) self.nodes[1]=start_node(1, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=5000", "-checkblocks=5", "-disablesafemode"], timewait=900) print("Generating new longer chain of 300 more blocks") self.nodes[1].generate(300) print("Reconnect nodes") connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[2], 1) sync_blocks(self.nodes[0:3], timeout=120) print("Verify height on node 2:",self.nodes[2].getblockcount()) print("Usage possibly still high bc of stale blocks in block files:", calc_usage(self.prunedir)) print("Mine 220 more blocks so we have requisite history (some blocks will be big and cause pruning of previous chain)") self.nodes[0].generate(220) #node 0 has many large tx's in its mempool from the disconnects sync_blocks(self.nodes[0:3], timeout=300) usage = calc_usage(self.prunedir) print("Usage should be below target:", usage) if (usage > 550): raise AssertionError("Pruning target not being met") return invalidheight,badhash def reorg_back(self): # Verify that a block on the old main chain fork has been pruned away try: self.nodes[2].getblock(self.forkhash) raise AssertionError("Old block wasn't pruned so can't test redownload") except JSONRPCException as e: print("Will need to redownload block",self.forkheight) # Verify that we have enough history to reorg back to the fork point # Although this is more than 288 blocks, because this chain was written more recently # and only its other 299 small and 220 large block are in the block files after it, # its expected to still be retained self.nodes[2].getblock(self.nodes[2].getblockhash(self.forkheight)) first_reorg_height = self.nodes[2].getblockcount() curchainhash = self.nodes[2].getblockhash(self.mainchainheight) self.nodes[2].invalidateblock(curchainhash) goalbestheight = self.mainchainheight goalbesthash = self.mainchainhash2 # As of 0.10 the current block download logic is not able to reorg to the original chain created in # create_chain_with_stale_blocks because it doesn't know of any peer thats on that chain from which to # redownload its missing blocks. # Invalidate the reorg_test chain in node 0 as well, it can successfully switch to the original chain # because it has all the block data. # However it must mine enough blocks to have a more work chain than the reorg_test chain in order # to trigger node 2's block download logic. # At this point node 2 is within 288 blocks of the fork point so it will preserve its ability to reorg if self.nodes[2].getblockcount() < self.mainchainheight: blocks_to_mine = first_reorg_height + 1 - self.mainchainheight print("Rewind node 0 to prev main chain to mine longer chain to trigger redownload. Blocks needed:", blocks_to_mine) self.nodes[0].invalidateblock(curchainhash) assert(self.nodes[0].getblockcount() == self.mainchainheight) assert(self.nodes[0].getbestblockhash() == self.mainchainhash2) goalbesthash = self.nodes[0].generate(blocks_to_mine)[-1] goalbestheight = first_reorg_height + 1 print("Verify node 2 reorged back to the main chain, some blocks of which it had to redownload") waitstart = time.time() while self.nodes[2].getblockcount() < goalbestheight: time.sleep(0.1) if time.time() - waitstart > 900: raise AssertionError("Node 2 didn't reorg to proper height") assert(self.nodes[2].getbestblockhash() == goalbesthash) # Verify we can now have the data for a block previously pruned assert(self.nodes[2].getblock(self.forkhash)["height"] == self.forkheight) def mine_full_block(self, node, address): # Want to create a full block # We'll generate a 66k transaction below, and 14 of them is close to the 1MB block limit for j in range(14): if len(self.utxo) < 14: self.utxo = node.listunspent() inputs=[] outputs = {} t = self.utxo.pop() inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) remchange = t["amount"] - 100*self.relayfee # Fee must be above min relay rate for 66kb tx outputs[address]=remchange # Create a basic transaction that will send change back to ourself after account for a fee # And then insert the 128 generated transaction outs in the middle rawtx[92] is where the # # of txouts is stored and is the only thing we overwrite from the original transaction rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + self.txouts newtx = newtx + rawtx[94:] # Appears to be ever so slightly faster to sign with SIGHASH_NONE signresult = node.signrawtransaction(newtx,None,None,"NONE") txid = node.sendrawtransaction(signresult["hex"], True) # Mine a full sized block which will be these transactions we just created node.generate(1) def run_test(self): print("Warning! This test requires 4GB of disk space and takes over 30 mins (up to 2 hours)") print("Mining a big blockchain of 995 blocks") self.create_big_chain() # Chain diagram key: # * blocks on main chain # +,&,$,@ blocks on other forks # X invalidated block # N1 Node 1 # # Start by mining a simple chain that all nodes have # N0=N1=N2 **...*(995) print("Check that we haven't started pruning yet because we're below PruneAfterHeight") self.test_height_min() # Extend this chain past the PruneAfterHeight # N0=N1=N2 **...*(1020) print("Check that we'll exceed disk space target if we have a very high stale block rate") self.create_chain_with_staleblocks() # Disconnect N0 # And mine a 24 block chain on N1 and a separate 25 block chain on N0 # N1=N2 **...*+...+(1044) # N0 **...**...**(1045) # # reconnect nodes causing reorg on N1 and N2 # N1=N2 **...*(1020) *...**(1045) # \ # +...+(1044) # # repeat this process until you have 12 stale forks hanging off the # main chain on N1 and N2 # N0 *************************...***************************(1320) # # N1=N2 **...*(1020) *...**(1045) *.. ..**(1295) *...**(1320) # \ \ \ # +...+(1044) &.. $...$(1319) # Save some current chain state for later use self.mainchainheight = self.nodes[2].getblockcount() #1320 self.mainchainhash2 = self.nodes[2].getblockhash(self.mainchainheight) print("Check that we can survive a 288 block reorg still") (self.forkheight,self.forkhash) = self.reorg_test() #(1033, ) # Now create a 288 block reorg by mining a longer chain on N1 # First disconnect N1 # Then invalidate 1033 on main chain and 1032 on fork so height is 1032 on main chain # N1 **...*(1020) **...**(1032)X.. # \ # ++...+(1031)X.. # # Now mine 300 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@(1332) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # Reconnect nodes and mine 220 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # N2 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ *...**(1320) # \ \ # ++...++(1044) .. # # N0 ********************(1032) @@...@@@(1552) # \ # *...**(1320) print("Test that we can rerequest a block we previously pruned if needed for a reorg") self.reorg_back() # Verify that N2 still has block 1033 on current chain (@), but not on main chain (*) # Invalidate 1033 on current chain (@) on N2 and we should be able to reorg to # original main chain (*), but will require redownload of some blocks # In order to have a peer we think we can download from, must also perform this invalidation # on N0 and mine a new longest chain to trigger. # Final result: # N0 ********************(1032) **...****(1553) # \ # X@...@@@(1552) # # N2 **...*(1020) **...**(1032) **...****(1553) # \ \ # \ X@...@@@(1552) # \ # +.. # # N1 doesn't change because 1033 on main chain (*) is invalid print("Done") if __name__ == '__main__': PruneTest().main()
49.365497
168
0.573239
f27e97ed8084150b94c02d541e89ddc9fbc8ce1a
5,770
py
Python
tests/integrational/native_threads/test_channel_groups.py
17media/pubnub-python
ee372eec82f16d3a80a4cd027bca8976755b817f
[ "MIT" ]
null
null
null
tests/integrational/native_threads/test_channel_groups.py
17media/pubnub-python
ee372eec82f16d3a80a4cd027bca8976755b817f
[ "MIT" ]
null
null
null
tests/integrational/native_threads/test_channel_groups.py
17media/pubnub-python
ee372eec82f16d3a80a4cd027bca8976755b817f
[ "MIT" ]
null
null
null
import logging import threading import time import unittest import pubnub from pubnub.models.consumer.channel_group import PNChannelGroupsAddChannelResult, PNChannelGroupsListResult, \ PNChannelGroupsRemoveChannelResult, PNChannelGroupsRemoveGroupResult from pubnub.pubnub import PubNub from tests.helper import pnconf_copy from tests.integrational.vcr_helper import use_cassette_and_stub_time_sleep_native pubnub.set_stream_logger('pubnub', logging.DEBUG) class TestPubNubChannelGroups(unittest.TestCase): def setUp(self): self.event = threading.Event() def callback(self, response, status): self.response = response self.status = status self.event.set() @use_cassette_and_stub_time_sleep_native( 'tests/integrational/fixtures/native_threads/channel_groups/single_channel.yaml', filter_query_parameters=['uuid']) def test_single_channel(self): ch = "channel-groups-unit-ch" gr = "channel-groups-unit-cg" pubnub = PubNub(pnconf_copy()) # add pubnub.add_channel_to_channel_group() \ .channels(ch) \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert not self.status.is_error() assert isinstance(self.response, PNChannelGroupsAddChannelResult) self.event.clear() time.sleep(1) # list pubnub.list_channels_in_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsListResult) assert len(self.response.channels) == 1 assert self.response.channels[0] == ch self.event.clear() # remove pubnub.remove_channel_from_channel_group() \ .channels(ch) \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsRemoveChannelResult) self.event.clear() time.sleep(1) # list pubnub.list_channels_in_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsListResult) assert len(self.response.channels) == 0 self.event.clear() @use_cassette_and_stub_time_sleep_native( 'tests/integrational/fixtures/native_threads/channel_groups/add_remove_multiple_channels.yaml', filter_query_parameters=['uuid']) def test_add_remove_multiple_channels(self): ch1 = "channel-groups-unit-ch1" ch2 = "channel-groups-unit-ch2" gr = "channel-groups-unit-cg" pubnub = PubNub(pnconf_copy()) # add pubnub.add_channel_to_channel_group() \ .channels([ch1, ch2]) \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert not self.status.is_error() assert isinstance(self.response, PNChannelGroupsAddChannelResult) self.event.clear() time.sleep(1) # list pubnub.list_channels_in_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsListResult) assert len(self.response.channels) == 2 assert ch1 in self.response.channels assert ch2 in self.response.channels self.event.clear() # remove pubnub.remove_channel_from_channel_group() \ .channels([ch1, ch2]) \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsRemoveChannelResult) self.event.clear() time.sleep(1) # list pubnub.list_channels_in_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsListResult) assert len(self.response.channels) == 0 self.event.clear() @use_cassette_and_stub_time_sleep_native( 'tests/integrational/fixtures/native_threads/channel_groups/add_channel_remove_group.yaml', filter_query_parameters=['uuid']) def test_add_channel_remove_group(self): ch = "channel-groups-unit-ch" gr = "channel-groups-unit-cg" pubnub = PubNub(pnconf_copy()) # add pubnub.add_channel_to_channel_group() \ .channels(ch) \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert not self.status.is_error() assert isinstance(self.response, PNChannelGroupsAddChannelResult) self.event.clear() time.sleep(1) # list pubnub.list_channels_in_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsListResult) assert len(self.response.channels) == 1 assert self.response.channels[0] == ch self.event.clear() # remove pubnub.remove_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsRemoveGroupResult) self.event.clear() time.sleep(1) # list pubnub.list_channels_in_channel_group() \ .channel_group(gr) \ .async(self.callback) self.event.wait() assert isinstance(self.response, PNChannelGroupsListResult) assert len(self.response.channels) == 0 self.event.clear()
30.855615
110
0.638128
b9b511a07527d05beb6d79489f4bd928241160d7
966
py
Python
awwards_users/urls.py
andyjohn23/awwards-clone
6f4297f37dbc15e95e845d837149d7f4d97eecad
[ "MIT" ]
null
null
null
awwards_users/urls.py
andyjohn23/awwards-clone
6f4297f37dbc15e95e845d837149d7f4d97eecad
[ "MIT" ]
null
null
null
awwards_users/urls.py
andyjohn23/awwards-clone
6f4297f37dbc15e95e845d837149d7f4d97eecad
[ "MIT" ]
null
null
null
from django.urls import path from .views import CategoryListView, PostDeleteView, PostListView, PostCreateView, PersonalPostListView, UserPostListView, PostUpdateView, PostDetailView from . import views urlpatterns = [ path('', PostListView.as_view(), name='index'), path('rates/', views.rating_project, name='rating'), path('site/submission/', PostCreateView.as_view(), name="post-create"), path('user/<str:username>', UserPostListView.as_view(), name="user-details"), path('user/details/', PersonalPostListView.as_view(), name="user-detail"), path('project/<int:pk>/', PostDetailView.as_view(), name="post-detail"), path('project/<int:pk>/update/', PostUpdateView.as_view(), name="post-update"), path('project/<int:pk>/delete/', PostDeleteView.as_view(), name="post-delete"), path('category/<category>/', views.CategoryListView.as_view(), name="category"), path('search/', views.project_search, name='project-search'), ]
50.842105
153
0.716356
abbf1e9fceca32a098bb5178c2d6d4421a679168
1,560
py
Python
trinity/plugins/registry.py
stringray55/trinity
d14ad79bfb679d7a8430f5a73605c2c57e542fb0
[ "MIT" ]
null
null
null
trinity/plugins/registry.py
stringray55/trinity
d14ad79bfb679d7a8430f5a73605c2c57e542fb0
[ "MIT" ]
null
null
null
trinity/plugins/registry.py
stringray55/trinity
d14ad79bfb679d7a8430f5a73605c2c57e542fb0
[ "MIT" ]
null
null
null
import pkg_resources from typing import ( Tuple, ) from trinity.extensibility import ( BasePlugin, ) from trinity.plugins.builtin.attach.plugin import ( AttachPlugin ) from trinity.plugins.builtin.ethstats.plugin import ( EthstatsPlugin, ) from trinity.plugins.builtin.fix_unclean_shutdown.plugin import ( FixUncleanShutdownPlugin ) from trinity.plugins.builtin.json_rpc.plugin import ( JsonRpcServerPlugin, ) from trinity.plugins.builtin.peer_discovery.plugin import ( PeerDiscoveryPlugin, ) from trinity.plugins.builtin.tx_pool.plugin import ( TxPlugin, ) from trinity.plugins.builtin.light_peer_chain_bridge.plugin import ( LightPeerChainBridgePlugin ) def is_ipython_available() -> bool: try: pkg_resources.get_distribution('IPython') except pkg_resources.DistributionNotFound: return False else: return True BASE_PLUGINS: Tuple[BasePlugin, ...] = ( AttachPlugin(use_ipython=is_ipython_available()), FixUncleanShutdownPlugin(), JsonRpcServerPlugin(), PeerDiscoveryPlugin(), ) ETH1_NODE_PLUGINS: Tuple[BasePlugin, ...] = ( EthstatsPlugin(), LightPeerChainBridgePlugin(), TxPlugin(), ) def discover_plugins() -> Tuple[BasePlugin, ...]: # Plugins need to define entrypoints at 'trinity.plugins' to automatically get loaded # https://packaging.python.org/guides/creating-and-discovering-plugins/#using-package-metadata return tuple( entry_point.load()() for entry_point in pkg_resources.iter_entry_points('trinity.plugins') )
24.761905
98
0.741667
aacc47078076a0cbfd37b382390a1557d587faa1
32,013
py
Python
game.py
Xe-Xo/Catan
f34b82b88bc58b1e698b576bb7e771bf36b4390c
[ "MIT" ]
1
2022-01-13T20:07:46.000Z
2022-01-13T20:07:46.000Z
game.py
Xe-Xo/Catan
f34b82b88bc58b1e698b576bb7e771bf36b4390c
[ "MIT" ]
null
null
null
game.py
Xe-Xo/Catan
f34b82b88bc58b1e698b576bb7e771bf36b4390c
[ "MIT" ]
null
null
null
import pygame import random import math from grid import * from players import * ## TO DO -- BETTER WAY TO TREAT GLOBALS THAT CAN BE ACCESSED BY MAIN AND GAME class GAME_GLOBALS(): WHITE = (255,255,255) LIGHT_GRAY = (200,200,200) GRAY = (150,150,150) DARK_GRAY = (100,100,100) BLACK = (50,50,50) RED = (230,30,30) BLUE = (30,30,230) GREEN = (30,230,30) DARK_GREEN = (0,160,0) KHAKI = (240,230,140) OLIVE = (128,128,0) MOCCASIN = (255,228,181) LIGHT_YELLOW = (255,255,224) #RGB codes sourced from https://www.pinterest.com.au/pin/238339005262876109/ BEAUTIFUL_BLUE = (0,104,132) BEAUTIFUL_AQUA = (0,144,158) BEAUTIFUL_LIGHT_BLUE = (137,219,236) BEAUTIFUL_RED = (237,0,38) BEAUTIFUL_ORANGE = (250, 157, 0) BEAUTIFUL_SAND = (255,208,141) BEAUTIFUL_ROSE = (176,0,81) BEAUTIFUL_PEACH = (246,131,112) BEAUTIFUL_PINK = (254,171,185) BEAUTIFUL_PURPLE = (110,0,108) BEAUTIFUL_LIGHT_PURPLE = (145,39,143) BEAUTIFUL_GREEN = (149,212,122) BEAUTIFUL_YELLOW = (254,226,62) PLAYER_COLORS = [BEAUTIFUL_BLUE,BEAUTIFUL_GREEN,BEAUTIFUL_RED,BEAUTIFUL_YELLOW] ORE_COLOR = (145,134,126) WHEAT_COLOR = (201,194,127) SHEEP_COLOR = (178,200,145) BRICK_COLOR = (228,153,105) WOOD_COLOR = (116,161,142) ROBBER_COLOR = (185,156,107) SEA_COLOR = (21,52,80) SAND_COLOR = LIGHT_YELLOW POS_X = (1,0,0) NEG_X = (-1,0,0) POS_Y = (0,1,0) NEG_Y = (0,-1,0) POS_Z = (0,0,1) NEG_Z = (0,0,-1) RESOURCE_TO_COLOR = [WOOD_COLOR,BRICK_COLOR,ORE_COLOR,WHEAT_COLOR,SHEEP_COLOR,ROBBER_COLOR] SCREEN_WIDTH = 1200 SCREEN_HEIGHT = 800 SCREEN_CENTER = (SCREEN_WIDTH/2,SCREEN_HEIGHT/2) GRID_SIZE = 2 NUMBER_HEXES_WIDTH = GRID_SIZE*2+1 HEX_DIAMETER = min(SCREEN_WIDTH/3*2,SCREEN_HEIGHT)/NUMBER_HEXES_WIDTH HEX_GAP = HEX_DIAMETER/4 G_HEX_DIAMETER = HEX_DIAMETER - HEX_GAP ALPHA = HEX_DIAMETER/4 BETA = math.sqrt(3) * ALPHA G_ALPHA = (G_HEX_DIAMETER)/4 G_BETA = math.sqrt(3) * G_ALPHA ROAD_LENGTH = HEX_DIAMETER/4 ROAD_THICKNESS = ROAD_LENGTH/10 ROLL_RANK = { 2:1, 3:2, 4:3, 5:4, 6:5, 7:0, 8:5, 9:4, 10:3, 11:2, 12:1 } def ColorRange(color1,color2,additional_steps=0): colorlist = [] c1r, c1g, c1b = color1 c2r, c2g, c2b = color2 sr, sg, sb = c2r - c1r, c2g - c1g, c2b - c1b colorlist.append(color1) for step in range(0,additional_steps): newcolor = int(c1r + sr/additional_steps*step+1), int(c1g + sg/additional_steps*step+1), int(c1b + sb/additional_steps*step+1) colorlist.append(newcolor) colorlist.append(color2) return colorlist class Scene(): """This class represents an instance of the gamestate""" """subclass to be used for State Machine between Main Menu, Game and GameOver screens""" def __init__(self): pass def move_state(self, state_index): if state_index == 0 and type(self) != MainMenu: return MainMenu() elif state_index == 1 and type(self) != Game: return Game() else: return self def process_events(self): """Process all the events. Return a True if we need to close the window""" for event in pygame.event.get(): if event.type == pygame.QUIT: return True, self return False, self def run_logic(self): pass def display_frame(self,screen): pygame.display.update() def text_to_screen(self,screen,text,xy_tuple,size=16,color = GAME_GLOBALS.BLACK, font_type = None,offset=(0,0),background_color=None): try: text = str(text) font = pygame.font.Font(font_type,size) text = font.render(text,True,color) x_offset, y_offset = offset x_offset -= text.get_rect().width / 2 y_offset -= text.get_rect().height / 2 x, y = xy_tuple x,y = x + x_offset, y + y_offset if background_color is not None and type(background_color) is tuple: background_color = self.fix_color(background_color) pygame.draw.rect(screen,background_color,(x,y,text.get_rect().width, text.get_rect().height)) screen.blit(text,(x,y)) return x,y,text.get_rect().width, text.get_rect().height except Exception as e: print('Font Error') raise e def point_to_grid_coord(self,center_xy,xy_point,set_sign=None): mouse_x, mouse_y = xy_point #Location of mouse in window center_x, center_y = center_xy #Location of the centerpoint of the grid pixel_x, pixel_y = mouse_x-center_x,mouse_y-center_y #x,y to be turned into grid coords #coord to point uses matrix multiplication for calculation of x,y #after rearranging formula into a square matrix (subsistute x = 0 - y - z) we can calculate the inverse matrix that can be multiplied by pixel_x, pixel_y #see https://www.wolframalpha.com/input/?i=24*%7B%7B-sqrt%283%29%2C1%7D%2C%7B0%2C2%7D%7D*%7Bx%2Cy%7D+ #See Readme notes for detailed breakdown hex_y = -2*pixel_x/(math.sqrt(3)*GAME_GLOBALS.HEX_DIAMETER) + (2*pixel_y)/(3*GAME_GLOBALS.HEX_DIAMETER) hex_z = 0*pixel_x + -4*pixel_y/(3*GAME_GLOBALS.HEX_DIAMETER) hex_x = 0 - hex_y - hex_z print(Coords(hex_x,hex_y,hex_z),Coords(hex_x,hex_y,hex_z).round(set_total=set_sign),set_sign) return Coords(hex_x,hex_y,hex_z).round(set_total=set_sign) def point_to_corner_coord(self,center_xy,xy_point): pointx, pointy = xy_point nx, ny, nz = self.point_to_grid_coord(center_xy,xy_point,set_sign=-1).tuple() px, py, pz = self.point_to_grid_coord(center_xy,xy_point,set_sign=1).tuple() negposx, negposy = self.coord_to_point(center_xy,nx,ny,nz,gap=False) posposx, posposy = self.coord_to_point(center_xy,px,py,pz,gap=False) negdistance = math.pow(pointx - negposx,2) + math.pow(pointy - negposy,2) posdisance = math.pow(pointx - posposx,2) + math.pow(pointy - posposy,2) if negdistance < posdisance: return self.point_to_grid_coord(center_xy,xy_point,set_sign=-1) else: return self.point_to_grid_coord(center_xy,xy_point,set_sign=1) def coord_to_point(self,center_xy,x,y,z,gap=True): #starting center point generally the xy of 0,0,0 hexagon #however this changes if finding the points of a hexagon not in the center #returns a tuple (x,y) #gap (optional): renders points at approx 2/3rds back from usual render points. Useful for seeing gaps between hexes. if gap == True: pixel_x = (GAME_GLOBALS.G_BETA * x) + (-GAME_GLOBALS.G_BETA * y) + 0 * z pixel_y = (GAME_GLOBALS.G_ALPHA * x) + (GAME_GLOBALS.G_ALPHA * y) + (-2 * GAME_GLOBALS.G_ALPHA * z) else: pixel_x = (GAME_GLOBALS.BETA * x) + (-GAME_GLOBALS.BETA * y) + 0 * z pixel_y = (GAME_GLOBALS.ALPHA * x) + (GAME_GLOBALS.ALPHA * y) + (-2 * GAME_GLOBALS.ALPHA * z) return (int(pixel_x + center_xy[0]),int(pixel_y + center_xy[1])) def hex_corners(self,center_xy,x,y,z,gap=True): #finds the corner x,y points given the hex coordinates. #Calculates the center location of the hex then calculates the points surrounding it. #AXIS movement heading clockwise starting at north points = [(0,0,1),(0,-1,0),(1,0,0),(0,0,-1),(0,1,0),(-1,0,0)] start_center = center_xy hex_center = self.coord_to_point(start_center,x,y,z,gap=False) corner_points = [] for point_xyz in points: px,py,pz = point_xyz corner_points.append(self.coord_to_point(hex_center,px,py,pz,gap=gap)) return corner_points def fix_color(self,color_tuple): new_color_list = [] for color_int in color_tuple: if color_int > 255: new_color = 255 elif color_int < 0: new_color = 0 else: new_color = int(color_int) new_color_list.append(new_color) return tuple(new_color_list) def road_xy(self,screen,road_tuple): x1, y1, x2, y2 = road_tuple z1 = -1 - x1 - y1 z2 = 1 - x2 - y2 cx1,cy1 = self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,x1,y1,z1,gap=False) cx2,cy2 = self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,x2,y2,z2,gap=False) nx1,nx2 = cx1 + (cx2 - cx1)/5 , cx2 - (cx2 - cx1)/5 ny1,ny2 = cy1 + (cy2 - cy1)/5 , cy2 - (cy2 - cy1)/5 return ((nx1,ny1),(nx2,ny2)) def road_rect(self,screen,road_tuple): #return list of points to draw rect x1, y1, x2, y2 = road_tuple z1 = -1 - x1 - y1 z2 = 1 - x2 - y2 cx1,cy1 = self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,x1,y1,z1,gap=False) cx2,cy2 = self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,x2,y2,z2,gap=False) x_delta = cx2 - cx1 y_delta = cy2 - cy1 hypot = math.sqrt(math.pow(x_delta,2) + math.pow(y_delta,2)) n = (hypot-GAME_GLOBALS.ROAD_LENGTH)/2 iX = n * x_delta/hypot iY = n * y_delta/hypot try: angle = math.atan(y_delta/x_delta) xmove = math.sin(angle) * GAME_GLOBALS.ROAD_THICKNESS ymove = math.cos(angle) * GAME_GLOBALS.ROAD_THICKNESS except ZeroDivisionError: xmove = GAME_GLOBALS.ROAD_THICKNESS ymove = 0 p1 = cx1 + iX - xmove, cy1 + iY + ymove p2 = cx1 + iX + xmove, cy1 + iY - ymove p3 = cx2 - iX + xmove, cy2 - iY - ymove p4 = cx2 - iX - xmove, cy2 - iY + ymove return [p1,p2,p3,p4] class Game(Scene): """This class represents an instance of the game""" def __init__(self): super().__init__() self.debug = False self.road_hover_tuple = None self.grid_hover_tuple = None self.corner_hover_tuple = None """Constructor. create all our attributes and initialise the game""" self.game_over = False """Create the grid""" self.grid = Grid(GAME_GLOBALS.GRID_SIZE) """Setup grid numbers and resources""" self.setup_grid_numbers() #Randomly apply numbers to the board self.setup_grid_resources() #Randomly apply resources to the board self.setup_corner_ranks() #Calculate the strength of each corner """Setup players""" self.setup_players() self.setup_settlements() self.setup_ports() self.setup_roads() self.settlements_placed = [] #round, player_id, settlement_tuple self.roads_placed = [] #round, player_id, road_tuple self.round = 0 def process_events(self): """Process all the events. Return a True if we need to close the Window""" for event in pygame.event.get(): if event.type == pygame.QUIT: return True, self elif self.current_game_state == "place_settlement": if event.type == pygame.MOUSEBUTTONDOWN: coord_pointing = self.point_to_corner_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos()) if self.valid_settlement(self.turn,coord_pointing): self.place_settlement(self.turn,coord_pointing,self.round) self.next_game_state() return False,self else: self.corner_hover_tuple = self.point_to_corner_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos()) elif self.current_game_state == "place_road": if event.type == pygame.MOUSEBUTTONDOWN: coord_pointing_neg = self.point_to_grid_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos(),set_sign=-1) coord_pointing_pos = self.point_to_grid_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos(),set_sign=1) road_pos = (coord_pointing_neg.x, coord_pointing_neg.y, coord_pointing_pos.x, coord_pointing_pos.y) if self.valid_road(self.turn,road_pos): self.place_road(self.turn, road_pos,self.round) self.next_game_state() return False,self else: coord_pointing_neg = self.point_to_grid_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos(),set_sign=-1) coord_pointing_pos = self.point_to_grid_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos(),set_sign=1) self.road_hover_tuple = (coord_pointing_neg.x, coord_pointing_neg.y, coord_pointing_pos.x, coord_pointing_pos.y) elif self.current_game_state == "debug": coord_pointing_neg = self.point_to_grid_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos(),set_sign=-1) coord_pointing_pos = self.point_to_grid_coord(GAME_GLOBALS.SCREEN_CENTER,pygame.mouse.get_pos(),set_sign=1) road_pos = (coord_pointing_neg.x, coord_pointing_neg.y, coord_pointing_pos.x, coord_pointing_pos.y) self.debug_road_tuple = road_pos return self.game_over, self def run_logic(self): if self.current_game_state == "allocate_initial_resources": for round, turn, settlement_tuple in self.settlements_placed: if round == 1: hex_coords = self.grid.corners[settlement_tuple].connected_hexes_coords() for hex in hex_coords: try: resource_index = self.grid_resources[hex.tuple()] self.players[turn].add_resouces(ResourceBunch.from_index(resource_index)) except: pass self.next_game_state() def display_frame(self,screen): if self.debug == True: self.display_debug(screen) elif self.current_game_state == "place_settlement": self.display_place_settlement(screen,self.turn) elif self.current_game_state == "place_road": self.display_place_road(screen,self.turn) elif self.current_game_state == "player_turn": self.display_player_turn(screen,self.turn) pygame.display.update() """Display Methods""" def display_debug(self,screen): self.draw_background(screen) self.draw_hexes(screen) self.draw_roads(screen) self.draw_potential_road(screen,self.debug_road_tuple) def display_place_settlement(self,screen,playerindex): self.draw_background(screen) self.draw_hexes(screen) self.draw_hexes_scarcity(screen) self.draw_game_state(screen) self.draw_valid_settlements(screen,playerindex) self.draw_corners_ranks(screen) self.draw_settlements(screen) self.draw_roads(screen) def display_place_road(self,screen,playerindex): self.draw_background(screen) self.draw_hexes(screen) self.draw_hexes_scarcity(screen) self.draw_game_state(screen) self.draw_settlements(screen) self.draw_valid_roads(screen,playerindex) self.draw_roads(screen) def display_player_turn(self,screen,player_index): self.draw_background(screen) self.draw_hexes(screen) self.draw_hexes_scarcity(screen) self.draw_game_state(screen) self.draw_settlements(screen) self.draw_roads(screen) """Player Methods""" def setup_players(self): """Setup players""" self.players = [] for playerindex in range(0,4): self.players.append(Human(playerindex)) self.game_state_queue = [((0,0),"place_settlement"),((0,0),"place_road"),((0,1),"place_settlement"),((0,1),"place_road"), ((0,2),"place_settlement"),((0,2),"place_road"),((0,3),"place_settlement"),((0,3),"place_road"), ((1,3),"place_settlement"),((1,3),"place_road"),((1,2),"place_settlement"),((1,2),"place_road"), ((1,1),"place_settlement"),((1,1),"place_road"),((1,0),"place_settlement"),((1,0),"place_road"), ((2,0),"allocate_initial_resources"),((2,0),"player_turn") ] self.next_game_state() def next_player_index(self,current_player_index): next_player_index = current_player_index + 1 if next_player_index >= 4: return self.turn + 1, 0 return self.turn, next_player_index def next_player(self,player): return self.players[self.next_player_index(player.playerindex)] def place_settlement(self,player_index,coords,round): print(f"set settlement {coords.tuple()} --> {player_index}") self.settlements_placed.append((round,player_index,coords.tuple())) self.settlements[coords.tuple()] = player_index def place_road(self,player_index,road_tuple,round): print(f"set road {road_tuple} --> {player_index}") self.roads_placed.append((round,player_index,road_tuple)) self.roads[road_tuple] = player_index """Game State Methods""" def next_game_state(self): try: (self.round, self.turn), self.current_game_state = self.game_state_queue.pop(0) except: (self.round, self.turn), self.current_game_state = self.next_player_index(self.turn), "player_turn" def valid_settlement(self,player_id,coords,limit_by_road=False): #TO DO - this is complicated when it really shouldnt be. #clean up this trainwreck try: corner_selected = self.grid.corners[coords.tuple()] if self.settlements[coords.tuple()] != -1: return False for other_corners_coords in corner_selected.connected_corner_coords(): try: if self.settlements[other_corners_coords.tuple()] != -1: return False except: pass if limit_by_road: for road_coords in corner_selected.connected_road_coords(): if self.roads[road_coords] == player_id: return True return False else: return True except KeyError: print("KeyError") return False def valid_road(self,player_id,roadcoords): return True """Setup Grid Methods""" def setup_grid_numbers(self): """Load self.grid_numbers and self.number_to_hex with the values""" self.grid_numbers = {} self.number_to_hex = {} possible_numbers = [2,3,3,4,4,5,5,6,6,7,8,8,9,9,10,10,11,11,12] for num in possible_numbers: self.number_to_hex[num] = [] random.shuffle(possible_numbers) for hex in self.grid.hexes.values(): number_picked = possible_numbers.pop(0) self.number_to_hex[number_picked].append(hex) self.grid_numbers[hex.coords.tuple()] = number_picked print("Grid Numbers applied!") def setup_grid_resources(self): """Load self.grid_resources with values""" resource_index = [0,1,2,3,4] random.shuffle(resource_index) resources = [resource_index.pop(0)] * 4 resources += [resource_index.pop(0)] * 4 resources += [resource_index.pop(0)] * 4 resources += [resource_index.pop(0)] * 3 resources += [resource_index.pop(0)] * 3 random.shuffle(resources) self.grid_resources = {} for hex_tuple in self.grid.hexes.keys(): if self.grid_numbers[hex_tuple] != 7: try: self.grid_resources[hex_tuple] = resources.pop(0) except IndexError as e: print(e) else: self.grid_resources[hex_tuple] = 5 print("Grid Resources applied!") def calculate_resource_scarcity(self): #from 36 rolls with even distribution #the probability of each resource being given out #resouce scarcity = SUM(Possible ways number can be rolled #eg. 2 can be rolled 1 way and there is one placement on board. # 3 can be rolled 2 ways and there is two placements on board. # # sum of this (2x1+2x2+3x2+.....) = 58 resource_scarcity = [] for resource_index in [0,1,2,3,4]: totalpoints = 0 for hex_tuple in self.grid_resources.keys(): if self.grid_resources[hex_tuple] == resource_index: totalpoints += GAME_GLOBALS.ROLL_RANK[self.grid_numbers[hex_tuple]]/58 resource_scarcity.append(totalpoints) return resource_scarcity def setup_corner_ranks(self): #Calculates the strength of a corner given the overall resource scarcity # self.corner_ranks = {} for corner in self.grid.corners.values(): rank_value = 0 for hex_coords in corner.connected_hexes_coords(): try: resource_index = self.grid_resources[hex_coords.tuple()] try: resource_scarcity = self.calculate_resouce_scarcity()[resource_index] except: resource_scarcity = 1 roll_rank_of_hex = GAME_GLOBALS.ROLL_RANK[self.grid_numbers[hex_coords.tuple()]] rank_value += roll_rank_of_hex/resource_scarcity except KeyError as e: rank_value += 0 self.corner_ranks[corner.coords.tuple()] = int(rank_value) def setup_settlements(self): self.settlements = {} for corner_tuple in self.grid.corners.keys(): self.settlements[corner_tuple] = -1 def setup_roads(self): self.roads = {} for road_tuple in self.grid.roads.keys(): self.roads[road_tuple] = -1 def setup_ports(self): self.ports = {} possible_ports = [ ((),("sheep",2)), ((),("wood",2)), ((),("brick",2)), ((),("ore",2)), ((),("wheat",2)), ((),("any",3)), ((),("any",3)), ((),("any",3)) ] """Render Methods""" def draw_background(self,screen): screen.fill(GAME_GLOBALS.SEA_COLOR) def draw_hexes(self,screen): for hex in self.grid.hexes.values(): hx, hy, hz = hex.coords.tuple() pygame.draw.polygon(screen,GAME_GLOBALS.BEAUTIFUL_LIGHT_BLUE, self.hex_corners(GAME_GLOBALS.SCREEN_CENTER,hx,hy,hz,gap=False),20) for hex in self.grid.hexes.values(): hx, hy, hz = hex.coords.tuple() resource_color = GAME_GLOBALS.RESOURCE_TO_COLOR[self.grid_resources[hex.coords.tuple()]] pygame.draw.polygon(screen,GAME_GLOBALS.SAND_COLOR, self.hex_corners(GAME_GLOBALS.SCREEN_CENTER,hx,hy,hz,gap=False)) pygame.draw.polygon(screen,GAME_GLOBALS.BLACK, self.hex_corners(GAME_GLOBALS.SCREEN_CENTER,hx,hy,hz,gap=False),2) pygame.draw.polygon(screen,resource_color, self.hex_corners(GAME_GLOBALS.SCREEN_CENTER,hx,hy,hz)) number = self.grid_numbers[hex.coords.tuple()] self.text_to_screen(screen,number,self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,hx,hy,hz,gap=False),size=20,color=GAME_GLOBALS.WHITE) def draw_hexes_scarcity(self,screen): for hex in self.grid.hexes.values(): hx, hy, hz = hex.coords.tuple() resource_index = self.grid_resources[hx,hy,hz] try: resource_scarcity = self.calculate_resouce_scarcity()[resource_index] except: resource_scarcity = 1 roll_rank_of_hex = GAME_GLOBALS.ROLL_RANK[self.grid_numbers[(hx,hy,hz)]] number = round(roll_rank_of_hex/resource_scarcity,2) string = "".join(int(number) * ['*']) self.text_to_screen(screen,string,self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,hx,hy,hz,gap=False),size=20,offset=(0,10),color=GAME_GLOBALS.WHITE) def draw_settlements(self,screen): for corner in self.grid.corners.values(): try: settlementplayer = self.settlements[corner.coords.tuple()] if settlementplayer != -1: pygame.draw.circle(screen, GAME_GLOBALS.PLAYER_COLORS[settlementplayer],self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,corner.coords.x,corner.coords.y,corner.coords.z,gap=False),int(GAME_GLOBALS.ALPHA/4)) except KeyError as e: print(corner.tuple()) def draw_roads(self,screen): for road in self.grid.roads.values(): roadplayer = self.roads[road.coords_tuple()] if roadplayer != -1: pointslist = self.road_rect(screen,road.coords_tuple()) pygame.draw.polygon(screen, GAME_GLOBALS.PLAYER_COLORS[roadplayer], pointslist) def draw_game_state(self,screen): self.text_to_screen(screen,self.current_game_state,(100,100),size=32,color=GAME_GLOBALS.RED) self.text_to_screen(screen,self.turn,(150,150),size=32,color=GAME_GLOBALS.RED) def draw_corners_ranks(self,screen): for corner in self.grid.corners.values(): cx,cy,cz = corner.coords.tuple() if self.valid_settlement(1,corner.coords): color = self.fix_color((int(255/14*(self.corner_ranks[corner.coords.tuple()]-1)),150,150)) try: pygame.draw.circle(screen, color, self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER, cx, cy, cz, gap=False),int(GAME_GLOBALS.ALPHA/4),2) except: print(color) self.text_to_screen(screen,self.corner_ranks[corner.coords.tuple()],self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,cx,cy,cz,gap=False),size=16) def draw_valid_settlements(self,screen,player_index): for corner in self.grid.corners.values(): if self.valid_settlement(player_index,corner.coords,limit_by_road=False): pygame.draw.circle(screen, GAME_GLOBALS.LIGHT_GRAY,self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,corner.coords.x,corner.coords.y,corner.coords.z,gap=False),int(GAME_GLOBALS.ALPHA/4)) def draw_valid_roads(self,screen,player_index): for road in self.grid.roads.values(): if self.valid_road(player_index,road.coords_tuple()): pointslist = self.road_rect(screen,road.coords_tuple()) pygame.draw.polygon(screen, GAME_GLOBALS.LIGHT_GRAY, pointslist) def draw_potential_road(self,screen,road_tuple): if road_tuple in self.roads.keys(): pointslist = self.road_rect(screen,road_tuple) pygame.draw.polygon(screen, GAME_GLOBALS.BEAUTIFUL_PINK, pointslist) def draw_potential_settlement(self,screen,settlement_tuple): if settlement_tuple in self.settlements.keys(): sx, sy, sz = settlement_tuple drawpoint = self.coord_to_point(GAME_GLOBALS.SCREEN_CENTER,sx,sy,sz,gap=False) pygame.draw.circle(screen, GAME_GLOBALS.BEAUTIFUL_PINK,drawpoint,int(GAME_GLOBALS.ALPHA/4)) class MainMenu(Scene): def __init__(self): super().__init__() self.buttons = {} self.grid = Grid(2) self.setup_background() def process_events(self): """Process all the events. Return a True if we need to close the window, return GameState should be using after events.""" for event in pygame.event.get(): if event.type == pygame.QUIT: return True, self elif event.type == pygame.MOUSEBUTTONDOWN: for button_coords in self.buttons.keys(): x,y,w,h = button_coords if self.button_check(pygame.mouse.get_pos(),x,y,w,h): for function in self.buttons[button_coords]: if function == "game_start": return False, self.move_state(1) elif function == "game_quit": return True, self return False, self def run_logic(self): x, y = self.background_center self.background_center = x + self.move, y + self.move if self.background_center[0] > GAME_GLOBALS.SCREEN_WIDTH or self.background_center[0] < 0 or self.background_center[1] > GAME_GLOBALS.SCREEN_HEIGHT or self.background_center[1] < 0: self.move = self.move * -1 def display_frame(self,screen): self.draw_background(screen) self.draw_menu_background(screen) self.draw_title(screen) self.draw_start_button(screen) pygame.display.update() def setup_background(self): #creating the background grid self.background_center = (0,0) self.hex_colors = {} self.move = 1 for hex in self.grid.hexes.values(): self.hex_colors[hex.coords.tuple()] = random.choice(GAME_GLOBALS.RESOURCE_TO_COLOR) def draw_background(self,screen): screen.fill(GAME_GLOBALS.SEA_COLOR) for hex in self.grid.hexes.values(): hx, hy, hz = hex.coords.tuple() resource_color = self.hex_colors[hx,hy,hz] pygame.draw.polygon(screen,GAME_GLOBALS.SAND_COLOR, self.hex_corners(self.background_center,hx,hy,hz,gap=False)) pygame.draw.polygon(screen,resource_color, self.hex_corners(self.background_center,hx,hy,hz)) def draw_title(self,screen): self.text_to_screen(screen,"Settlers of Catan", (GAME_GLOBALS.SCREEN_CENTER[0], 60), size=100, color=GAME_GLOBALS.WHITE) def draw_menu_background(self,screen): w, h = GAME_GLOBALS.SCREEN_WIDTH/3 , GAME_GLOBALS.SCREEN_HEIGHT/3 x, y = GAME_GLOBALS.SCREEN_CENTER x = x - w/2 y = y - h/2 pygame.draw.rect(screen,GAME_GLOBALS.BLACK,(x,y,w,h)) def draw_start_button(self,screen): center_x, center_y = GAME_GLOBALS.SCREEN_CENTER button_posx, button_posy = center_x, center_y - GAME_GLOBALS.SCREEN_HEIGHT/10 self.make_button(screen,GAME_GLOBALS.BLACK,GAME_GLOBALS.WHITE,button_posx,button_posy,"START",["game_start"]) def draw_quit_button(self,screen): center_x, center_y = GAME_GLOBALS.SCREEN_CENTER button_posx, button_posy = center_x, center_y - GAME_GLOBALS.SCREEN_HEIGHT/4 self.make_button(screen,GAME_GLOBALS.BLACK,GAME_GLOBALS.WHITE,button_posx,button_posy,"QUIT",["game_quit"]) def make_button(self,screen,color,text_color,x,y,text,functionalitylist): x,y,w,h = self.text_to_screen(screen,text,(x,y),size=32,color=text_color,background_color=color) self.buttons[x,y,w,h] = functionalitylist def button_check(self,mouse_pos,x,y,w,h): #mouse pos from event.pos #x,y where you render the button #x1,y1 is the width/height #returns true if button is clicked mouse_x, mouse_y = mouse_pos return mouse_x >= x and mouse_x < x + w and mouse_y >= y and mouse_y < y + h
39.86675
224
0.613001
e850dc18a522715904d99e972558fa9712fb49a5
12,823
py
Python
src/whop/whopclient/model/create_checkout_log_request.py
whopio/whop-python-sdk
9b4da585bf81065a9a435cf6651d9a0cd206088c
[ "MIT" ]
null
null
null
src/whop/whopclient/model/create_checkout_log_request.py
whopio/whop-python-sdk
9b4da585bf81065a9a435cf6651d9a0cd206088c
[ "MIT" ]
null
null
null
src/whop/whopclient/model/create_checkout_log_request.py
whopio/whop-python-sdk
9b4da585bf81065a9a435cf6651d9a0cd206088c
[ "MIT" ]
null
null
null
""" Whop API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 1.0.10 Contact: support@whop.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from whop.whopclient.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from whop.whopclient.exceptions import ApiAttributeError class CreateCheckoutLogRequest(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('status',): { 'SUCCESS': "success", 'DENIED': "denied", }, } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'key': (str,), # noqa: E501 'product_name': (str,), # noqa: E501 'website': (str,), # noqa: E501 'size': (int,), # noqa: E501 'image_url': (str,), # noqa: E501 'price': (float,), # noqa: E501 'status': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'key': 'key', # noqa: E501 'product_name': 'product_name', # noqa: E501 'website': 'website', # noqa: E501 'size': 'size', # noqa: E501 'image_url': 'image_url', # noqa: E501 'price': 'price', # noqa: E501 'status': 'status', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """CreateCheckoutLogRequest - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) key (str): The license key.. [optional] # noqa: E501 product_name (str): The name of the product.. [optional] # noqa: E501 website (str): The website associated with the product.. [optional] # noqa: E501 size (int): The size of the product.. [optional] # noqa: E501 image_url (str): An image URL of the product. [optional] # noqa: E501 price (float): The price of the product.. [optional] # noqa: E501 status (str): The status of the checkout log. Can be: success or denied.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """CreateCheckoutLogRequest - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) key (str): The license key.. [optional] # noqa: E501 product_name (str): The name of the product.. [optional] # noqa: E501 website (str): The website associated with the product.. [optional] # noqa: E501 size (int): The size of the product.. [optional] # noqa: E501 image_url (str): An image URL of the product. [optional] # noqa: E501 price (float): The price of the product.. [optional] # noqa: E501 status (str): The status of the checkout log. Can be: success or denied.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
44.992982
124
0.567028
9907edefe8393736c52bbad19f029e86a1b29115
1,896
py
Python
login/views.py
nitinankad/diet-tracker
e21afc578e0c2575a7b6168a488e123e9a319c19
[ "MIT" ]
4
2020-10-13T18:42:48.000Z
2021-08-10T13:57:00.000Z
login/views.py
nitinankad/diet-tracker
e21afc578e0c2575a7b6168a488e123e9a319c19
[ "MIT" ]
null
null
null
login/views.py
nitinankad/diet-tracker
e21afc578e0c2575a7b6168a488e123e9a319c19
[ "MIT" ]
3
2019-12-13T23:32:10.000Z
2020-06-02T22:42:28.000Z
from django.shortcuts import render from django.http import HttpResponseRedirect from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib import messages from login.forms import LoginForm def register(request): if request.method == "POST": login_form = LoginForm(data=request.POST) if login_form.is_valid(): user = login_form.save() print(user.password) user.set_password(user.password) user.save() messages.success(request, "Successfully registered") return HttpResponseRedirect("/login") messages.error(request, "Error while registering") return HttpResponseRedirect("/login") @login_required def user_logout(request): logout(request) messages.success(request, "Logged out") return HttpResponseRedirect("/login") def login_attempt(request): success = False if "demo" in request.POST: username = password = "demo" else: username = request.POST["username"] password = request.POST["password"] user = authenticate(username=username, password=password) if user: if user.is_active: login(request, user) success = True return success def login_index(request): if request.method == "POST": result = login_attempt(request) if result: messages.success(request, "Successfully logged in") else: messages.error(request, "Error logging in") return HttpResponseRedirect("/") form_responses = messages.get_messages(request) response_message = None for response in form_responses: response_message = response break form_responses.used = True return render(request, "login/login.html", {"response_message": response_message})
27.882353
86
0.672996
8585d3d969eb2df6f59daea7aa65925c3a46a8d5
2,371
py
Python
core.py
kmlmhnn/ren
fcf83bd16193fc15f27a8b3234ac0e150bd27ce3
[ "MIT" ]
null
null
null
core.py
kmlmhnn/ren
fcf83bd16193fc15f27a8b3234ac0e150bd27ce3
[ "MIT" ]
null
null
null
core.py
kmlmhnn/ren
fcf83bd16193fc15f27a8b3234ac0e150bd27ce3
[ "MIT" ]
null
null
null
import os def prefixfn(string, _, new): return new + string def suffixfn(string, _, new): return string + new def insertfn(string, substring, new): if not new or not substring or substring not in string: return string before, sep, after = string.partition(substring) return ''.join([before, new, sep, after]) def appendfn(string, substring, new): if not new or not substring or substring not in string: return string before, sep, after = string.partition(substring) return ''.join([before, sep, new, after]) def changefn(string, substring, replacement): if not substring or substring not in string: return string before, sep, after = string.partition(substring) return ''.join([before, replacement, after]) or string def listdir(path): os.chdir(path) return [name for name in os.listdir() if not os.path.isdir(name)] def rename(path, lst): os.chdir(path) count = 0 for (src, dest) in lst: if src != dest: os.replace(src, dest) count += 1 return count class FilenameCollisionError(Exception): pass class Selection: def __init__(self, filenames): self.entries = [[name] for name in filenames] self.stack = [list(range(len(self.entries)))] def clear(self): self.stack = [list(range(len(self.entries)))] def active(self): return self.stack[-1] def tighten(self, pattern): current = self.active() new = [i for i in current if pattern in self.entries[i][0]] if current != new: self.stack.append(new) def loosen(self): if len(self.stack) > 1: self.stack.pop() def peek(self): result = [] for i in self.active(): entry = self.entries[i] result.append((entry[0], entry[-1])) return result def transform(self, fn): for i in self.active(): entry = self.entries[i] entry.append(fn(entry[-1])) names = [e[-1] for e in self.entries] if len(names) != len(set(names)): self.rollback() raise FilenameCollisionError('Filename collisions detected.') def rollback(self): for i in self.active(): entry = self.entries[i] if len(entry) > 1: entry.pop()
25.223404
73
0.592155
dee87e2cd732e0965365e9cdbfcf155f0d78d6f0
22,397
py
Python
tools/converter.py
htwangtw/pydra-fsl
84b18e32eb181f61780bff75240be7fa05efa637
[ "Apache-2.0" ]
1
2021-06-17T09:58:06.000Z
2021-06-17T09:58:06.000Z
tools/converter.py
htwangtw/pydra-fsl
84b18e32eb181f61780bff75240be7fa05efa637
[ "Apache-2.0" ]
16
2020-11-03T13:56:12.000Z
2022-01-31T17:07:13.000Z
tools/converter.py
htwangtw/pydra-fsl
84b18e32eb181f61780bff75240be7fa05efa637
[ "Apache-2.0" ]
4
2020-06-16T17:40:37.000Z
2021-02-18T09:42:48.000Z
from attr import has from nipype.interfaces import fsl from nipype.interfaces.base import traits_extension from pydra.engine import specs from pydra.engine.helpers import ensure_list import os, sys, yaml, black, imp import traits from pathlib import Path import typing as ty import inspect import click import warnings import functools sys.path.append(str(Path(__file__).resolve().parent.parent / 'specs')) import callables class FSLConverter: INPUT_KEYS = [ "allowed_values", "argstr", "container_path", "copyfile", "desc", "mandatory", "position", "requires", "sep", "xor", ] OUTPUT_KEYS = ["desc"] NAME_MAPPING = {"desc": "help_string"} TRAITS_IRREL = [ 'output_type', 'args', 'environ', 'environ_items', '__all__', 'trait_added', 'trait_modified', ] TYPE_REPLACE = [ ("\'File\'", "specs.File"), ("\'bool\'", "bool"), ("\'str\'", "str"), ("\'Any\'", "ty.Any"), ("\'int\'", "int"), ("\'float\'", "float"), ("\'list\'", "list"), ("\'dict\'", "dict"), ("\'MultiInputObj\'", "specs.MultiInputObj"), ("\'MultiOutputObj\'", "specs.MultiOutputObj"), ("\'MultiInputFile\'", "specs.MultiInputFile"), ("\'MultiOutputFile\'", "specs.MultiOutputFile"), ] def __init__(self, interface_name, interface_spec_file): self.interface_name = interface_name with interface_spec_file.open() as f: self.interface_spec = yaml.safe_load(f)[self.interface_name] if self.interface_spec.get("output_requirements") is None: self.interface_spec["output_requirements"] = [] if self.interface_spec.get("inputs_metadata") is None: self.interface_spec["inputs_metadata"] = {} if self.interface_spec.get("inputs_drop") is None: self.interface_spec["inputs_drop"] = [] if self.interface_spec.get("output_templates") is None: self.interface_spec["output_templates"] = {} if self.interface_spec.get("output_callables") is None: self.interface_spec["output_callables"] = {} if ( not self.interface_spec["output_callables"] .keys() .isdisjoint(self.interface_spec["output_templates"].keys()) ): raise Exception("output_callables and output_templates have the same keys") if self.interface_spec.get("doctest") is None: self.interface_spec["doctest"] = {} # getting input/output spec from nipype nipype_interface = getattr(fsl, self.interface_name) self.cmd = nipype_interface._cmd self.nipype_input_spec = nipype_interface.input_spec() self.nipype_output_spec = nipype_interface.output_spec() def pydra_specs(self, write=False, dirname=None): """creating pydra input/output spec from nipype specs if write is True, a pydra Task class will be written to the file together with tests """ input_fields_pdr, inp_templates = self.convert_input_fields() output_fields_pdr = self.convert_output_spec(fields_from_template=inp_templates) input_spec_pydra = specs.SpecInfo( name="Input", fields=input_fields_pdr, bases=(specs.ShellSpec,) ) output_spec_pydra = specs.SpecInfo( name="Output", fields=output_fields_pdr, bases=(specs.ShellOutSpec,) ) if write: if dirname is None: raise Exception("dirname has to be provided if write is True") self.write_pydra_files( dirname=dirname, pydra_input_spec=input_fields_pdr, pydra_output_spec=output_fields_pdr, ) return input_spec_pydra, output_spec_pydra def write_pydra_files(self, dirname, pydra_input_spec, pydra_output_spec): """writing pydra task and tests to the files""" testdir = dirname / "tests" testdir.mkdir(parents=True, exist_ok=True) Path.touch(dirname / "__init__.py") Path.touch(testdir / "__init__.py") filename = dirname / f"{self.interface_name.lower()}.py" filename_test = testdir / f"test_spec_{filename.name}" filename_test_run = testdir / f"test_run_{filename.name}" print("\n FILENAME", filename) self.write_task(filename, pydra_input_spec, pydra_output_spec) self.write_test(filename_test=filename_test) self.write_test(filename_test=filename_test_run, run=True) def write_task(self, filename, input_fields, output_fields): """writing pydra task to the dile based on the input and output spec""" def types_to_names(spec_fields): spec_fields_str = [] for el in spec_fields: el = list(el) try: el[1] = el[1].__name__ except (AttributeError): el[1] = el[1]._name spec_fields_str.append(tuple(el)) return spec_fields_str input_fields_str = types_to_names(spec_fields=input_fields) output_fields_str = types_to_names(spec_fields=output_fields) functions_str = self.function_callables() spec_str = "from pydra.engine import specs \nfrom pydra import ShellCommandTask \n" spec_str += f"import typing as ty\n" spec_str += functions_str spec_str += f"input_fields = {input_fields_str}\n" spec_str += f"{self.interface_name}_input_spec = specs.SpecInfo(name='Input', fields=input_fields, bases=(specs.ShellSpec,))\n\n" spec_str += f"output_fields = {output_fields_str}\n" spec_str += f"{self.interface_name}_output_spec = specs.SpecInfo(name='Output', fields=output_fields, bases=(specs.ShellOutSpec,))\n\n" spec_str += f"class {self.interface_name}(ShellCommandTask):\n" if self.interface_spec["doctest"]: spec_str += self.create_doctest() spec_str += f" input_spec = {self.interface_name}_input_spec\n" spec_str += f" output_spec = {self.interface_name}_output_spec\n" spec_str += f" executable='{self.cmd}'\n" for tp_repl in self.TYPE_REPLACE: spec_str = spec_str.replace(*tp_repl) spec_str_black = black.format_file_contents(spec_str, fast=False, mode=black.FileMode()) with open(filename, "w") as f: f.write(spec_str_black) def write_test(self, filename_test, run=False): """writing tests for the specific interface based on the test spec (from interface_spec) if run is True the test contains task run, if run is False only the spec is check by the test """ tests_inputs = self.interface_spec["tests_inputs"] tests_outputs = self.interface_spec["tests_outputs"] if len(tests_inputs) != len(tests_outputs): raise Exception("tests and tests_outputs should have the same length") tests_inp_outp = [] tests_inp_error = [] for i, out in enumerate(tests_outputs): if isinstance(out, list): tests_inp_outp.append((tests_inputs[i], out)) elif out is None: tests_inp_outp.append((tests_inputs[i], [])) # allowing for incomplete or incorrect inputs that should raise an exception elif out not in ["AttributeError", "Exception"]: tests_inp_outp.append((tests_inputs[i], [out])) else: tests_inp_error.append((tests_inputs[i], out)) spec_str = f"import os, pytest \nfrom pathlib import Path\n" spec_str += f"from ..{self.interface_name.lower()} import {self.interface_name} \n\n" if run: spec_str += ( "@pytest.mark.xfail('FSLDIR' not in os.environ, reason='no FSL found', " "raises=FileNotFoundError)\n" ) spec_str += f"@pytest.mark.parametrize('inputs, outputs', {tests_inp_outp})\n" spec_str += f"def test_{self.interface_name}(test_data, inputs, outputs):\n" spec_str += f" in_file = Path(test_data) / 'test.nii.gz'\n" spec_str += f" if inputs is None: inputs = {{}}\n" spec_str += f" for key, val in inputs.items():\n" spec_str += f" try: inputs[key] = eval(val)\n" spec_str += f" except: pass\n" spec_str += f" task = {self.interface_name}(in_file=in_file, **inputs)\n" spec_str += ( f" assert set(task.generated_output_names) == " f"set(['return_code', 'stdout', 'stderr'] + outputs)\n" ) if run: spec_str += f" res = task()\n" spec_str += f" print('RESULT: ', res)\n" spec_str += f" for out_nm in outputs: assert getattr(res.output, out_nm).exists()\n" # if test_inp_error is not empty, than additional test function will be created if tests_inp_error: spec_str += self.write_test_error(input_error=tests_inp_error) spec_str_black = black.format_file_contents(spec_str, fast=False, mode=black.FileMode()) with open(filename_test, "w") as f: f.write(spec_str_black) def write_test_error(self, input_error): """creating a tests for incorrect or incomplete inputs checking if the exceptions are raised """ spec_str = "\n\n" spec_str += f"@pytest.mark.parametrize('inputs, error', {input_error})\n" spec_str += f"def test_{self.interface_name}_exception(test_data, inputs, error):\n" spec_str += f" in_file = Path(test_data) / 'test.nii.gz'\n" spec_str += f" if inputs is None: inputs = {{}}\n" spec_str += f" for key, val in inputs.items():\n" spec_str += f" try: inputs[key] = eval(val)\n" spec_str += f" except: pass\n" spec_str += f" task = {self.interface_name}(in_file=in_file, **inputs)\n" spec_str += f" with pytest.raises(eval(error)):\n" spec_str += f" task.generated_output_names\n" return spec_str def create_doctest(self): """adding doctests to the interfaces""" cmdline = self.interface_spec["doctest"].pop("cmdline") doctest = ' """\n Example\n -------\n' doctest += f' >>> task = {self.interface_name}()\n' for key, val in self.interface_spec["doctest"].items(): if type(val) is str: doctest += f' >>> task.inputs.{key} = "{val}"\n' else: doctest += f' >>> task.inputs.{key} = {val}\n' doctest += ' >>> task.cmdline\n' doctest += f" '{cmdline}'" doctest += '\n """\n' return doctest def convert_input_fields(self): """creating fields list for pydra input spec""" fields_pdr_dict = {} position_dict = {} has_template = [] for name, fld in self.nipype_input_spec.traits().items(): if name in self.TRAITS_IRREL: continue if name in self.interface_spec["inputs_drop"]: continue fld_pdr, pos = self.pydra_fld_input(fld, name) meta_pdr = fld_pdr[-1] if "output_file_template" in meta_pdr: has_template.append(name) fields_pdr_dict[name] = (name,) + fld_pdr if pos is not None: position_dict[name] = pos fields_pdr_l = list(fields_pdr_dict.values()) return fields_pdr_l, has_template def pydra_fld_input(self, field, nm): """converting a single nipype field to one element of fields for pydra input_spec""" tp_pdr = self.pydra_type_converter(field, spec_type="input", name=nm) if nm in self.interface_spec["inputs_metadata"]: metadata_extra_spec = self.interface_spec["inputs_metadata"][nm] else: metadata_extra_spec = {} if "default" in metadata_extra_spec: default_pdr = metadata_extra_spec.pop("default") elif getattr(field, "usedefault") and field.default is not traits.ctrait.Undefined: default_pdr = field.default else: default_pdr = None metadata_pdr = {"help_string": ""} for key in self.INPUT_KEYS: key_nm_pdr = self.NAME_MAPPING.get(key, key) val = getattr(field, key) if val is not None: if key == "argstr" and "%" in val: val = self.string_formats(argstr=val, name=nm) metadata_pdr[key_nm_pdr] = val if getattr(field, "name_template"): template = getattr(field, "name_template") name_source = ensure_list(getattr(field, "name_source")) metadata_pdr["output_file_template"] = self.string_formats( argstr=template, name=name_source[0] ) if tp_pdr in [specs.File, specs.Directory]: tp_pdr = str elif getattr(field, "genfile"): if nm in self.interface_spec["output_templates"]: metadata_pdr["output_file_template"] = self.interface_spec["output_templates"][nm] if tp_pdr in [ specs.File, specs.Directory, ]: # since this is a template, the file doesn't exist tp_pdr = str elif nm not in self.interface_spec["output_callables"]: raise Exception( f"the filed {nm} has genfile=True, but no output template or callables provided" ) metadata_pdr.update(metadata_extra_spec) pos = metadata_pdr.get("position", None) if default_pdr is not None and not metadata_pdr.get("mandatory", None): return (tp_pdr, default_pdr, metadata_pdr), pos else: return (tp_pdr, metadata_pdr), pos def convert_output_spec(self, fields_from_template): """creating fields list for pydra input spec""" fields_pdr_l = [] for name, fld in self.nipype_output_spec.traits().items(): if ( name in self.interface_spec["output_requirements"] and name not in fields_from_template ): fld_pdr = self.pydra_fld_output(fld, name) fields_pdr_l.append((name,) + fld_pdr) return fields_pdr_l def pydra_fld_output(self, field, name): """converting a single nipype field to one element of fields for pydra output_spec""" tp_pdr = self.pydra_type_converter(field, spec_type="output", name=name) metadata_pdr = {} for key in self.OUTPUT_KEYS: key_nm_pdr = self.NAME_MAPPING.get(key, key) val = getattr(field, key) if val: metadata_pdr[key_nm_pdr] = val if self.interface_spec["output_requirements"][name]: if all( [isinstance(el, list) for el in self.interface_spec["output_requirements"][name]] ): requires_l = self.interface_spec["output_requirements"][name] nested_flag = True elif all( [ isinstance(el, (str, dict)) for el in self.interface_spec["output_requirements"][name] ] ): requires_l = [self.interface_spec["output_requirements"][name]] nested_flag = False else: Exception("has to be either list of list or list of str/dict") metadata_pdr["requires"] = [] for requires in requires_l: requires_mod = [] for el in requires: if isinstance(el, str): requires_mod.append(el) elif isinstance(el, dict): requires_mod += list(el.items()) metadata_pdr["requires"].append(requires_mod) if nested_flag is False: metadata_pdr["requires"] = metadata_pdr["requires"][0] if name in self.interface_spec["output_templates"]: metadata_pdr["output_file_template"] = self.interface_spec["output_templates"][name] elif name in self.interface_spec["output_callables"]: metadata_pdr["callable"] = self.interface_spec["output_callables"][name] return (tp_pdr, metadata_pdr) def function_callables(self): if not self.interface_spec["output_callables"]: return "" python_functions_spec = Path(os.path.dirname(__file__)) / "../specs/callables.py" if not python_functions_spec.exists(): raise Exception( "specs/callables.py file is needed if output_callables in the spec files" ) fun_str = "" fun_names = list(set(self.interface_spec["output_callables"].values())) fun_names.sort() for fun_nm in fun_names: fun = getattr(callables, fun_nm) fun_str += inspect.getsource(fun) + "\n" return fun_str def pydra_type_converter(self, field, spec_type, name): """converting types to types used in pydra""" if spec_type not in ["input", "output"]: raise Exception(f"spec_type has to be input or output, but {spec_type} provided") tp = field.trait_type if isinstance(tp, traits.trait_types.Int): tp_pdr = int elif isinstance(tp, traits.trait_types.Float): tp_pdr = float elif isinstance(tp, traits.trait_types.Str): tp_pdr = str elif isinstance(tp, traits.trait_types.Bool): tp_pdr = bool elif isinstance(tp, traits.trait_types.Dict): tp_pdr = dict elif isinstance(tp, traits_extension.InputMultiObject): if isinstance(field.inner_traits[0].trait_type, traits_extension.File): tp_pdr = specs.MultiInputFile else: tp_pdr = specs.MultiInputObj elif isinstance(tp, traits_extension.OutputMultiObject): if isinstance(field.inner_traits[0].trait_type, traits_extension.File): tp_pdr = specs.MultiOutputFile else: tp_pdr = specs.MultiOutputObj elif isinstance(tp, traits.trait_types.List): if isinstance(field.inner_traits[0].trait_type, traits_extension.File): if spec_type == "input": tp_pdr = specs.MultiInputFile else: tp_pdr = specs.MultiOutputFile else: tp_pdr = list elif isinstance(tp, traits_extension.File): if ( spec_type == "output" or tp.exists is True ): # TODO check the hash_file metadata in nipype tp_pdr = specs.File else: tp_pdr = str else: tp_pdr = ty.Any return tp_pdr def string_formats(self, argstr, name): import re if "%s" in argstr: argstr_new = argstr.replace("%s", f"{{{name}}}") elif "%d" in argstr: argstr_new = argstr.replace("%d", f"{{{name}}}") elif "%f" in argstr: argstr_new = argstr.replace("%f", f"{{{name}}}") elif "%g" in argstr: argstr_new = argstr.replace("%g", f"{{{name}}}") elif len(re.findall("%[0-9.]+f", argstr)) == 1: old_format = re.findall("%[0-9.]+f", argstr)[0] argstr_new = argstr.replace(old_format, f"{{{name}:{old_format[1:]}}}") else: raise Exception(f"format from {argstr} is not supported TODO") return argstr_new FSL_MODULES = ['aroma', 'dti', 'epi', 'fix', 'maths', 'model', 'possum', 'preprocess', 'utils'] @click.command() @click.option( "-i", "--interface_name", required=True, default="all", help="name of the interface (name used in Nipype, e.g. BET) or all (default)" "if all is used all interfaces from the spec file will be created", ) @click.option( "-m", "--module_name", required=True, help=f"name of the module from the list {FSL_MODULES}" ) def create_pydra_spec(interface_name, module_name): if module_name not in FSL_MODULES: raise Exception( f"module name {module_name} not available;" f"should be from the list {FSL_MODULES}" ) spec_file = Path(os.path.dirname(__file__)) / f"../specs/fsl_{module_name}_param.yml" if not spec_file.exists(): raise Exception( f"the specification file doesn't exist for the module {module_name}," f"create the specification file in {spec_file.parent}" ) @functools.lru_cache() def all_interfaces(module): nipype_module = getattr(fsl, module) all_specs = [el for el in dir(nipype_module) if "InputSpec" in el] all_interf = [el.replace("InputSpec", "") for el in all_specs] # interfaces in the spec file with open(spec_file) as f: spec_interf = yaml.safe_load(f).keys() if set(all_interf) - set(spec_interf): warnings.warn( f"some interfaces are not in the spec file: " f"{set(all_interf) - set(spec_interf)}, " f"and pydra interfaces will not be created for them" ) return spec_interf if interface_name == "all": interface_list = all_interfaces(module_name) elif interface_name in all_interfaces(module_name): interface_list = [interface_name] else: raise Exception( f"interface_name has to be 'all' " f"or a name from the list {all_interfaces(module_name)}" ) dirname_interf = Path(__file__).parent.parent / f"pydra/tasks/fsl/{module_name}" dirname_interf.mkdir(exist_ok=True) for interface_el in interface_list: converter = FSLConverter( interface_name=interface_el, interface_spec_file=Path(__file__).parent.parent / f"specs/fsl_{module_name}_param.yml", ) converter.pydra_specs(write=True, dirname=dirname_interf) if __name__ == '__main__': create_pydra_spec()
41.170956
143
0.594901
6786cd7847fa50ff7e6fe51240d177a0c7515538
4,483
py
Python
devtools/mk/create_resources.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
3
2022-01-06T16:52:52.000Z
2022-03-07T11:30:47.000Z
devtools/mk/create_resources.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
null
null
null
devtools/mk/create_resources.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
1
2021-10-24T01:47:22.000Z
2021-10-24T01:47:22.000Z
#!/usr/bin/env python3 # Copyright 2018 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utility to create 'resource' files for Chromium OS factory build system. This utility scans for *.rsrc, and creates the resource files based on the rules defined in rsrc files. See the URL for more details: https://chromium.googlesource.com/chromiumos/platform/factory/+/HEAD/resources/README.md """ import argparse import glob import itertools import logging import os import sys import tarfile RSRC_FILES = '*.rsrc' class ResourceError(Exception): """All exceptions when creating resources.""" def AddResource(output, rule, args): """Adds one resource from given rule to output (tar) object. output: A tarfile.TarFile instance for adding resource into. rule: A string in SRC[:DEST] format. args: the environment arguments for sysroot, board files, and resources. """ is_optional = rule.startswith('?') if is_optional: rule = rule[1:] src, dest = rule.split(':') if ':' in rule else (rule, rule) logging.info('%s => %s%s', src, dest, ' (optional)' if is_optional else '') if os.path.isabs(src): src_list = [os.path.join(args.sysroot, '.' + src)] else: src_list = [os.path.normpath(os.path.join(args.resources, src))] if args.board_resources: src_list += [os.path.normpath(os.path.join(args.board_resources, src))] found = 0 for src_path in src_list: if not os.path.exists(src_path): continue found += 1 logging.debug('Add: %s=>%s', src_path, dest) output.add(src_path, dest) if found < 1: if is_optional: logging.info('skip non-exist optional resource: %s', src) return raise ResourceError('Failed to find input resource: %s' % src) def CreateResource(resource, input_list, args): """Creates a resource file by descriptions in input_list. resource: the name of the resource file to create. input_list: a list of RSRC files for creating the resource file. args: the environment arguments for sysroot, board files, and resources. """ logging.info('Creating resource [%s]...', resource) with tarfile.open(os.path.join(args.output_dir, resource + '.tar'), 'w', dereference=True) as t: for input_file in input_list: with open(input_file) as f: for rule in f.readlines(): rule = rule.strip() if rule.startswith('#') or not rule: continue AddResource(t, rule, args) def CreateAllResources(args): """Scans and creates all resources from *.rsrc files.""" def GetResourceName(rc_path): """Returns the derived resource name from an rsrc file. The rsrc file name should be in format <resource-name>.[<sub-name>*.]rsrc resource-name will be used to construct the name of output file. sub-name will be simply discarded - this is to help packing multiple files from multiple import files (i.e., sharing definition files between multiple output files). """ return os.path.basename(rc_path).partition('.')[0] rc_files = glob.glob(os.path.join(args.resources, RSRC_FILES)) if args.board_resources: rc_files += glob.glob(os.path.join(args.board_resources, RSRC_FILES)) rc_files.sort() rc_groups = {name: list(paths) for name, paths in itertools.groupby( rc_files, GetResourceName)} logging.debug('rc_groups: %r', rc_groups) for resource, input_list in rc_groups.items(): CreateResource(resource, input_list, args) def main(): parser = argparse.ArgumentParser( description=(__doc__)) parser.add_argument('--verbose', '-v', action='count', default=0, help='Verbose output') parser.add_argument('--sysroot', default='/', help='directory to search for absolute path resource') parser.add_argument('--resources', default='.', help='path to "resources/" to search for relative files') parser.add_argument('--board_resources', help='BOARD_FILES_DIR/resources for relative resource') parser.add_argument('--output_dir', default='.', help='directory to put generated resources') args = parser.parse_args() logging.basicConfig(level=logging.WARNING - args.verbose * 10) try: CreateAllResources(args) except Exception as e: print('ERROR: %s' % e) sys.exit(1) if __name__ == '__main__': main()
32.963235
88
0.68124
ebfe22dad69d3fb9671bcdfd49387b22de140a59
9,446
py
Python
internal-enrichment/hygiene/src/hygiene.py
tiiibs/connectors
65349790813a1d49f4536662725d99d8bfa08481
[ "Apache-2.0" ]
132
2019-06-28T23:23:18.000Z
2022-03-30T07:47:55.000Z
internal-enrichment/hygiene/src/hygiene.py
tiiibs/connectors
65349790813a1d49f4536662725d99d8bfa08481
[ "Apache-2.0" ]
472
2019-06-26T12:14:54.000Z
2022-03-31T13:49:53.000Z
internal-enrichment/hygiene/src/hygiene.py
tiiibs/connectors
65349790813a1d49f4536662725d99d8bfa08481
[ "Apache-2.0" ]
185
2019-07-01T09:32:14.000Z
2022-03-28T05:29:12.000Z
import os import yaml from pymispwarninglists import WarningLists from pycti import OpenCTIConnectorHelper, get_config_variable # At the moment it is not possible to map lists to their upstream path. # Thus we need to have our own mapping here. # Reference: https://github.com/MISP/misp-warninglists/issues/142 # To generate: grep '"name"' -r lists, and then reformat using vscode LIST_MAPPING = { "List of known gmail sending IP ranges": "lists/google-gmail-sending-ips/list.json", "List of known domains to know external IP": "lists/whats-my-ip/list.json", "Top 500 domains and pages from https://moz.com/top500": "lists/moz-top500/list.json", "List of known Windows 10 connection endpoints": "lists/microsoft-win10-connection-endpoints/list.json", "List of known security providers/vendors blog domain": "lists/security-provider-blogpost/list.json", "List of known hashes with common false-positives (based on Florian Roth input list)": "lists/common-ioc-false-positive/list.json", "Top 20 000 websites from Cisco Umbrella": "lists/cisco_top20k/list.json", "Specialized list of IPv4 addresses belonging to common VPN providers and datacenters": "lists/vpn-ipv4/list.json", "List of known Office 365 IP address ranges in China": "lists/microsoft-office365-cn/list.json", "List of RFC 5735 CIDR blocks": "lists/rfc5735/list.json", "List of RFC 5771 multicast CIDR blocks": "lists/multicast/list.json", "CRL Warninglist": "lists/crl-ip-hostname/list.json", "List of known GCP (Google Cloud Platform) IP address ranges": "lists/google-gcp/list.json", "List of RFC 1918 CIDR blocks": "lists/rfc1918/list.json", "Top 1000 website from Alexa": "lists/alexa/list.json", "List of known Office 365 URLs": "lists/microsoft-office365/list.json", "Hashes that are often included in IOC lists but are false positives.": "lists/ti-falsepositives/list.json", "List of known bank domains": "lists/bank-website/list.json", "List of known IPv6 public DNS resolvers": "lists/public-dns-v6/list.json", "List of known google domains": "lists/google/list.json", "List of known microsoft domains": "lists/microsoft/list.json", "List of known Ovh Cluster IP": "lists/ovh-cluster/list.json", "List of known domains used by automated malware analysis services & security vendors": "lists/automated-malware-analysis/list.json", "List of known Cloudflare IP ranges": "lists/cloudflare/list.json", "Top 10 000 websites from Cisco Umbrella": "lists/cisco_top10k/list.json", "List of known hashes for empty files": "lists/empty-hashes/list.json", "List of known Fastly IP address ranges": "lists/fastly/list.json", "Common contact e-mail addresses": "lists/common-contact-emails/list.json", "Fingerprint of trusted CA certificates": "lists/mozilla-CA/list.json", "Covid-19 Cyber Threat Coalition's Whitelist": "lists/covid-19-cyber-threat-coalition-whitelist/list.json", "List of known Akamai IP ranges": "lists/akamai/list.json", "Specialized list of IPv6 addresses belonging to common VPN providers and datacenters": "lists/vpn-ipv6/list.json", "List of known Microsoft Azure Datacenter IP Ranges": "lists/microsoft-azure/list.json", "List of IPv6 link local blocks": "lists/ipv6-linklocal/list.json", "List of known public DNS resolvers expressed as hostname": "lists/public-dns-hostname/list.json", "Top 1000 websites from Cisco Umbrella": "lists/cisco_top1000/list.json", "List of hashes for EICAR test virus": "lists/eicar.com/list.json", "University domains": "lists/university_domains/list.json", "List of known Office 365 IP address ranges": "lists/microsoft-office365-ip/list.json", "Top 10K most-used sites from Tranco": "lists/tranco10k/list.json", "List of known Amazon AWS IP address ranges": "lists/amazon-aws/list.json", "List of known Googlebot IP ranges": "lists/googlebot/list.json", "TLDs as known by IANA": "lists/tlds/list.json", "Top 5000 websites from Cisco Umbrella": "lists/cisco_top5k/list.json", "Unattributed phone number.": "lists/phone_numbers/list.json", "List of RFC 3849 CIDR blocks": "lists/rfc3849/list.json", "List of known Office 365 Attack Simulator used for phishing awareness campaigns": "lists/microsoft-attack-simulator/list.json", "List of RFC 6761 Special-Use Domain Names": "lists/rfc6761/list.json", "List of RFC 6598 CIDR blocks": "lists/rfc6598/list.json", "List of known IPv4 public DNS resolvers": "lists/public-dns-v4/list.json", "List of known dax30 webpages": "lists/dax30/list.json", "List of disposable email domains": "lists/disposable-email/list.json", "Top 1,000,000 most-used sites from Tranco": "lists/tranco/list.json", "Valid covid-19 related domains": "lists/covid/list.json", "Top 10K websites from Majestic Million": "lists/majestic_million/list.json", "List of known URL Shorteners domains": "lists/url-shortener/list.json", "Covid-19 Krassi's Whitelist": "lists/covid-19-krassi-whitelist/list.json", "List of known Wikimedia address ranges": "lists/wikimedia/list.json", "List of known sinkholes": "lists/sinkholes/list.json", "Second level TLDs as known by Mozilla Foundation": "lists/second-level-tlds/list.json", "Fingerprint of known intermedicate of trusted certificates": "lists/mozilla-IntermediateCA/list.json", } class HygieneConnector: def __init__(self): # Instantiate the connector helper from config config_file_path = os.path.dirname(os.path.abspath(__file__)) + "/config.yml" config = ( yaml.load(open(config_file_path), Loader=yaml.FullLoader) if os.path.isfile(config_file_path) else {} ) self.helper = OpenCTIConnectorHelper(config) warninglists_slow_search = bool( get_config_variable( "HYGIENE_WARNINGLISTS_SLOW_SEARCH", ["hygiene", "warninglists_slow_search"], config, default=False, ) ) self.helper.log_info(f"Warning lists slow search: {warninglists_slow_search}") self.warninglists = WarningLists(slow_search=warninglists_slow_search) # Create Hygiene Tag self.label_hygiene = self.helper.api.label.create( value="Hygiene", color="#fc0341" ) def _process_observable(self, observable) -> str: # Extract IPv4, IPv6 and Domain from entity data observable_value = observable["observable_value"] # Search in warninglist result = self.warninglists.search(observable_value) # Iterate over the hits if result: self.helper.log_info( "Hit found for %s in warninglists" % (observable_value) ) for hit in result: self.helper.log_info( "Type: %s | Name: %s | Version: %s | Descr: %s" % (hit.type, hit.name, hit.version, hit.description) ) # We set the score based on the number of warning list entries if len(result) >= 5: score = "5" elif len(result) >= 3: score = "10" elif len(result) == 1: score = "15" else: score = "20" self.helper.log_info( f"number of hits ({len(result)}) setting score to {score}" ) self.helper.api.stix_cyber_observable.add_label( id=observable["id"], label_id=self.label_hygiene["id"] ) self.helper.api.stix_cyber_observable.update_field( id=observable["id"], input={"key": "x_opencti_score", "value": score}, ) for indicator_id in observable["indicatorsIds"]: self.helper.api.stix_domain_object.add_label( id=indicator_id, label_id=self.label_hygiene["id"] ) self.helper.api.stix_domain_object.update_field( id=indicator_id, input={"key": "x_opencti_score", "value": score}, ) # Create external references external_reference_id = self.helper.api.external_reference.create( source_name="misp-warninglist", url="https://github.com/MISP/misp-warninglists/tree/main/" + LIST_MAPPING[hit.name], external_id=hit.name, description=hit.description, ) self.helper.api.stix_cyber_observable.add_external_reference( id=observable["id"], external_reference_id=external_reference_id["id"], ) return "Observable value found on warninglist and tagged accordingly" def _process_message(self, data) -> str: entity_id = data["entity_id"] observable = self.helper.api.stix_cyber_observable.read(id=entity_id) return self._process_observable(observable) # Start the main loop def start(self): self.helper.listen(self._process_message) if __name__ == "__main__": HygieneInstance = HygieneConnector() HygieneInstance.start()
52.187845
137
0.653187
978f499978b1b72de6b0de2378200641a3a7591b
921
py
Python
sa/profiles/HP/Comware/get_chassis_id.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
84
2017-10-22T11:01:39.000Z
2022-02-27T03:43:48.000Z
sa/profiles/HP/Comware/get_chassis_id.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
22
2017-12-11T07:21:56.000Z
2021-09-23T02:53:50.000Z
sa/profiles/HP/Comware/get_chassis_id.py
prorevizor/noc
37e44b8afc64318b10699c06a1138eee9e7d6a4e
[ "BSD-3-Clause" ]
23
2017-12-06T06:59:52.000Z
2022-02-24T00:02:25.000Z
# --------------------------------------------------------------------- # HP.Comware.get_chassis_id # --------------------------------------------------------------------- # Copyright (C) 2007-2016 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import re # NOC modules from noc.sa.profiles.Generic.get_chassis_id import Script as BaseScript from noc.sa.interfaces.igetchassisid import IGetChassisID class Script(BaseScript): name = "HP.Comware.get_chassis_id" cache = True interface = IGetChassisID rx_id = re.compile(r"^\s*MAC_ADDRESS\s+:\s+(?P<id>\S+)", re.IGNORECASE | re.MULTILINE) def execute_cli(self, **kwargs): match = self.re_search(self.rx_id, self.cli("display device manuinfo", cached=True)) mac = match.group("id") return {"first_chassis_mac": mac, "last_chassis_mac": mac}
34.111111
92
0.54506
b3b1605b206912ee968bd3a65a6ab1469759411d
60,629
py
Python
tensorflow/python/tpu/tensor_tracer.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/python/tpu/tensor_tracer.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
tensorflow/python/tpu/tensor_tracer.py
uve/tensorflow
e08079463bf43e5963acc41da1f57e95603f8080
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ======================================================================== """A utility to trace tensor values on TPU.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import os.path import sys from tensorflow.core.framework import summary_pb2 from tensorflow.python.ops import summary_ops_v2 as summary from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import graph_io from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.tpu import tensor_tracer_flags from tensorflow.python.tpu import tensor_tracer_report from tensorflow.python.tpu import tpu from tensorflow.python.tpu.ops import tpu_ops from tensorflow.python.training import training_util from tensorflow.python.ops import nn_impl _DEVICE_TYPE_TPU = 'tpu' _DEVICE_TYPE_CPU = 'cpu' _TRACE_MODE_PART_TENSOR_SIZE = 3 _REASON_OUTSIDE_OP_RANGE = 'not-traced-outside-op-range' _REASON_UNSAFE_OP = 'not-traced-unsafe-op' _REASON_WHILELOOP_OP = 'not-traced-special-whileloop-op' _REASON_UNSAFE_SCALAR = 'not-traced-unsafe-scalar' _REASON_SKIP_SCALAR = 'not-traced-scalar' _REASON_LESS_INTERESTING_OP = 'not-traced-less-interesting-op' _REASON_DEVICE_MISMATCH = 'not-traced-device-mismatch' _REASON_DYNAMIC_SHAPE = 'not-traced-dynamic-shape' _REASON_SCALAR_GET_TRACED = 'traced-scalar' _REASON_TENSOR_GET_TRACED = 'traced-tensor' _REASON_USER_INCLUDED = 'traced-user-included' _REASON_USER_EXCLUDED = 'not-traced-user-excluded' _REASON_NOT_EXECUTED = 'not-traced-not-in-exec-path' _REASON_NON_NUMERIC_TENSOR = 'not-traced-non-numeric-tensor' _REASON_FEEDS_WHILELOOP_OP = 'not-traced-feeds-special-whileloop-op' _OUTPUT_STREAM_ESCAPE = 'file://' _TENSOR_TRACER_COLLECTION = 'tensor_tracer_variables' _TRACE_FILE_NAME = 'trace.all' _COMPACT_TRACE_FILE_PREFIX = 'compact_trace.' _COMPACT_TRACE_ENTRY_INIT_VALUE = -1.0 _TENSOR_TRACER_STORAGE = 'tensor_tracer_storage' _TENSOR_VALUES_CACHE = 'tensor_values_cache' _REPLICA_ID_TAG = '#replica-id: ' _TT_SUMMARY_NORM = 'tensor_tracer_norm' _TT_SUMMARY_MAX = 'tensor_tracer_max' _TT_SUMMARY_MIN = 'tensor_tracer_min' _TT_SUMMARY_MEAN = 'tensor_tracer_mean' _TT_SUMMARY_VAR = 'tensor_tracer_var' _TT_SUMMARY_SIZE = 'tensor_tracer_size' _TT_SUMMARY_TAG = 'tensor_tracer_summary' _TT_SUMMARY_MAX_QUEUE = 100 def tensor_tracepoint(tensor, checkpoint_name): """Adds a checkpoint with the given checkpoint name for the given tensor. The tensor will be added to the list of tensors that will be traced by the tensor tracer. Args: tensor: the tensor object for which the tracing is requested. checkpoint_name: a string name for the checkpoint. This name has to be a unique name if used within model comparison. The tensors that have the same checkpoint identifier is compared in model comparison. Returns: The provided tensor. """ tensor.graph.get_collection(_TENSOR_TRACER_COLLECTION) tensor.graph.add_to_collection(_TENSOR_TRACER_COLLECTION, (tensor, checkpoint_name)) return tensor def keras_layer_tracepoint(layer, checkpoint_name): """An interface for adding the tensor outputs of a keras layer. Encapsulates tensor_tracepoint. Args: layer: A keras layer. checkpoint_name: a string name for the checkpoint. This name has to be a unique name if used within model comparison. The tensors that have the same checkpoint identifier is compared in model comparison. Returns: The provided layer. """ try: outputs = layer.output if tensor_util.is_tensor(outputs): tensor_tracepoint(outputs, '%s' % (checkpoint_name)) else: idx = 0 for output_tensor in outputs: if tensor_util.is_tensor(outputs): tensor_tracepoint(output_tensor, '%s_%d' % (checkpoint_name, idx)) idx += 1 except AttributeError: pass except RuntimeError: pass return layer def _trace_files_need_precreated(output_dir): """Return True if trace files must be pre-created by users.""" if not output_dir.startswith('/'): return False if len(output_dir) < 5: return False if output_dir[2] != 'n': return False if output_dir[3] != 's': return False if output_dir[1] != 'c': return False if output_dir[4] != '/': return False return True class TensorTracer(object): """A software construct for tracing tensor values in a TF graph on TPU. This utility is disabled by default. It can be enabled by setting the TENSOR_TRACER_FLAGS env variable as: export TENSOR_TRACER_FLAGS="--enable=1" If it is enabled, it will trace the output tensor values of selected Ops in the graph. It has two outputs: (1) the traces and (2) a report. The traces are dumped to a specified local file on the TPU host. The report is printed to the log.info of the TPU job. By passing options via the env variable, users can change: (1) the trace mode (e.g., detecting NaN/Inf, printing partial or full tensor values) (2) which Ops to be traced (via op.name or op.type) (3) output trace file path. """ # The set of graphs that are rewritten by tensor tracer. _traced_graphs = set() @staticmethod def is_enabled(): """Returns True if TensorTracer is enabled.""" return tensor_tracer_flags.TTParameters().is_enabled() @staticmethod def check_device_type(device_type): """Checks if the given device type is valid.""" if device_type not in [_DEVICE_TYPE_TPU, _DEVICE_TYPE_CPU]: raise ValueError('Invalid device_type "%s"'%device_type) @staticmethod def check_trace_mode(device_type, trace_mode): """Checks if the given trace mode work on the given device type. Args: device_type: Device type, TPU, GPU, CPU. trace_mode: Tensor tracer trace mode. Raises: ValueError: If the given trace mode is not supported for the device. """ if trace_mode == tensor_tracer_flags.TRACE_MODE_SUMMARY: if device_type != _DEVICE_TYPE_TPU: raise ValueError('Device_type "%s" is not yet supported for ' 'trace mode "%s"' % (device_type, trace_mode)) @staticmethod def loop_cond_op(op): return op.type in ('LoopCond', 'RefLoopCond') @staticmethod def while_loop_op(op): """Returns true if op is one of the special ops of in a while loop. Args: op: A tf.Operation. Returns: True if the given op is one of [Switch, Merge, Enter, Exit, NextIteration, LoopCond], which are all building blocks for TF while loops. """ return (control_flow_util.IsLoopSwitch(op) or control_flow_util.IsLoopMerge(op) or control_flow_util.IsLoopEnter(op) or control_flow_util.IsLoopExit(op) or TensorTracer.loop_cond_op(op) or op.type in ('RefNextIteration', 'NextIteration')) @staticmethod def unsafe_op(op): """Returns True if this op is not safe to be traced.""" if control_flow_util.IsInCond(op): return True # Reasons for not including following op types: # Assign: cause incorrect result with CPU tracing. if op.type in ['Assign']: return True return False @staticmethod def device_mismatch(device_type, op): if device_type == _DEVICE_TYPE_TPU: # pylint: disable=protected-access return tpu._TPU_REPLICATE_ATTR not in op.node_def.attr # pylint: enable=protected-access return False @staticmethod def unsafe_scalar_trace(op): """Return true if scalar output tensor from Op is not safe to be traced.""" # Tracing the following causes cycle in the graph on TPU. if op.type in ['LoopCond', 'Enter', 'Merge', 'Const', 'Switch', 'Less', 'ReadVariableOp']: return True # Tracing the following will cause casting-issue # with the norm tracing mode or other compilation issues on CPU. if op.type in ['VarHandleOp', 'IteratorToStringHandle', 'IteratorGetNext', 'OneShotIterator', 'IteratorV2', 'MakeIterator', 'BatchDatasetV2', 'MapDataset', 'FixedLengthRecordDataset', 'TakeDataset', 'ZipDataset', 'Placeholder', 'PlaceholderWithDefault', 'StridedSlice']: return True return False def _less_interesting_op(self, op): """Returns True if the given op is not an interesting one to be traced.""" # If flag is set to include less interesting ops, then include everything. if self._parameters.include_less_interesting_ops: return False # Following ops are highly unlikey to cause bugs. return op.type in ['Const', 'Identity', 'Cast', 'Shape'] @staticmethod def reason(op_idx, details): """Returns reason why the Op at op_idx is traced or not.""" return '%d %s'%(op_idx, details) def __init__(self): """Initializes a TensorTracer. Sets the various member fields from the flags (if given) or the defaults. """ self._replica_id = None self._tt_config = tensor_tracer_report.TensorTracerConfig() self._parameters = tensor_tracer_flags.TTParameters() self._included_op_full_names = set() self._host_call_fn = {} self._cache_tensors = {} def _create_or_get_tensor_values_cache(self, cache_name, graph=None, num_tensors=None, num_signatures=None): """Creates a variable as the cache to store intermediate tensor values. Args: cache_name: Name to be given to the cache (an instance of tf.variable). graph: Tensorflow graph. num_tensors: The number of traced tensors. num_signatures: The number of signatures, statistics to be collected. Returns: A ref to newly created or existing cache with dimensions num_tensors x num_signatures Raises: ValueError: If missing a parameter to create the cache. """ if cache_name not in self._cache_tensors: if graph is None: raise ValueError('Graph must be provided at cache creation.') if num_tensors is None: raise ValueError('num_tensors must be provided at cache creation.') if num_signatures is None: raise ValueError('num_signatures must be provided at cache creation.') graph = graph or ops.get_default_graph() # Create in proper graph and base name_scope. with graph.as_default() as g, g.name_scope(None): self._cache_tensors[cache_name] = variable_scope.get_variable( cache_name + '_' + _TENSOR_VALUES_CACHE, shape=[num_tensors, num_signatures], dtype=dtypes.float32, initializer=init_ops.constant_initializer( _COMPACT_TRACE_ENTRY_INIT_VALUE), trainable=False, use_resource=True, collections=[_TENSOR_TRACER_STORAGE, ops.GraphKeys.LOCAL_VARIABLES]) return self._cache_tensors[cache_name] def _add_replica_id_to_graph(self): """Adds nodes for computing the replica ID to the graph.""" if self._tt_config.num_replicas: with ops.control_dependencies(None): # Uses None as dependency to run outside of TPU graph rewrites. self._replica_id = tpu_ops.tpu_replicated_input( list(range(self._tt_config.num_replicas)), name='tt_replica_id') else: self._replica_id = 'unknown' def _inside_op_range(self, idx): """Return True if the given index is inside the selected range.""" if idx < self._parameters.op_range[0]: return False return (self._parameters.op_range[1] < 0 or idx <= self._parameters.op_range[1]) def _is_user_included_op(self, op): """Checks whether the op is included in the tensor tracer flags. Args: op: tf Operation Returns: True, if the op is included. An op is included if: - Its op name is given in included_opnames - Its op type is given in included_optypes - The op is at most _trace_ops_before_included hops before an included op - The op is at most _trace_ops_after_included hops after an included op """ def _is_op_or_any_neighbor_included(op, check_before=0, check_after=0): """Helper function to check if op is included or not.""" if op.name in self._included_op_full_names: return True for opname_re in self._parameters.included_opname_re_list: if opname_re.match(op.name): self._included_op_full_names.add(op.name) return True for optype_re in self._parameters.included_optype_re_list: if optype_re.match(op.type): self._included_op_full_names.add(op.name) return True if check_after > 0: for out_tensor in op.outputs: for consumer in out_tensor.consumers(): if _is_op_or_any_neighbor_included(consumer, check_after - 1, 0): self._included_op_full_names.add(op.name) return True if check_before > 0: for input_tensor in op.inputs: if _is_op_or_any_neighbor_included(input_tensor.op, 0, check_before - 1): self._included_op_full_names.add(op.name) return True return False # check_after and check_before are swapped below, as below operation # checks the distance from an arbitrary op to included ops. return _is_op_or_any_neighbor_included( op, self._parameters.trace_ops_after_included, self._parameters.trace_ops_before_included) def _is_user_excluded_op(self, op): for opname_re in self._parameters.excluded_opname_re_list: if opname_re.match(op.name): return True for optype_re in self._parameters.excluded_optype_re_list: if optype_re.match(op.type): return True return False def _signature_types(self): """Returns a dictionary holding the order of signatures in the cache for the selected trace mode.""" if self._parameters.trace_mode in set([ tensor_tracer_flags.TRACE_MODE_NAN_INF, tensor_tracer_flags.TRACE_MODE_NORM, tensor_tracer_flags.TRACE_MODE_MAX_ABS]): return {self._parameters.trace_mode: 0} if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_SUMMARY: return {_TT_SUMMARY_NORM: 0, _TT_SUMMARY_MAX: 1, _TT_SUMMARY_MIN: 2, _TT_SUMMARY_MEAN: 3, _TT_SUMMARY_VAR: 4, _TT_SUMMARY_SIZE: 5} return {} def _num_signature_dimensions(self): return len(self._signature_types()) def _use_tensor_values_cache(self): """Returns True if immediate tensors should be first saved to a cache.""" if self._parameters.trace_mode not in set([ tensor_tracer_flags.TRACE_MODE_NAN_INF, tensor_tracer_flags.TRACE_MODE_NORM, tensor_tracer_flags.TRACE_MODE_MAX_ABS, tensor_tracer_flags.TRACE_MODE_SUMMARY ]): return False if (self._parameters.trace_dir and _trace_files_need_precreated(self._parameters.trace_dir)): return True return self._parameters.use_compact_trace def _save_tensor_value_to_cache_op(self, cache_idx, updates): """Returns an op that will save the given updates to an entry in the cache. Args: cache_idx: The cache index of the tensor within the cache. updates: A dictionary of the signature updates. Returns: Cache update operation. """ # state_ops.scatter_update allows updates only along the first dimension. # Make a compact array by concantating different signatures, and update # them all together. sorted_update = [] signature_indices = self._signature_types() for _, val in sorted(updates.items(), key=lambda item: signature_indices[item[0]]): sorted_update.append(val) cache = self._create_or_get_tensor_values_cache(self._parameters.trace_mode) indices = constant_op.constant([cache_idx]) updates = array_ops.concat(sorted_update, axis=0) updates = array_ops.reshape(updates, [1, self._num_signature_dimensions()]) return state_ops.scatter_update(cache, indices, updates).op def _preprocess_traced_tensor(self, tensor): """Computes NAN/Norm/Max on TPUs before sending to CPU. Args: tensor: The tensor to be traced. Returns: A tensor that should be input to the trace_function. Raises: RuntimeError: If the trace mode is invalid. """ def _detect_nan_inf(tensor): """Trace function for detecting any NaN/Inf in the tensor.""" if tensor.dtype.is_floating: mask = math_ops.reduce_any( gen_math_ops.logical_or( gen_math_ops.is_nan(tensor), gen_math_ops.is_inf(tensor))) output_tensor = control_flow_ops.cond(mask, lambda: constant_op.constant(1.0), lambda: constant_op.constant(0.0)) else: output_tensor = constant_op.constant(0.0) # The shape has to be 1. Set it if it does not have the information. output_tensor = array_ops.reshape(output_tensor, [1]) return output_tensor def _compute_signature(tensor, tf_op, cast_to_f32=True): if cast_to_f32: tensor = math_ops.cast(tensor, dtypes.float32) output_tensor = tf_op(tensor) # The shape has to be 1. Set it if it does not have the information. output_tensor = array_ops.reshape(output_tensor, [1]) return output_tensor def _show_size(tensor): # In order to check the size of a tensor. # Not all sizes are known at the compile time, also, different replicas # sometimes get different sizes of tensors. # Collect it here to be used in merging replica data. tsize = _compute_signature(tensor, array_ops.size, cast_to_f32=False) # Cast to float32, so that it can be placed into same cache with other # signatures. return math_ops.cast(tsize, dtypes.float32) def _show_max(tensor, cast_to_f32=True): # returns -inf for empty tensor return _compute_signature(tensor, math_ops.reduce_max, cast_to_f32) def _show_min(tensor, cast_to_f32=True): # returns inf for empty tensor return _compute_signature(tensor, math_ops.reduce_min, cast_to_f32) def _show_norm(tensor, cast_to_f32=True): # returns 0 for empty tensor return _compute_signature(tensor, linalg_ops.norm, cast_to_f32) def _show_mean_and_variance(tensor, cast_to_f32=True): if cast_to_f32: tensor = math_ops.cast(tensor, dtypes.float32) # returns nan for empty tensor mean, var = nn_impl.moments(array_ops.reshape(tensor, [-1]), axes=[0]) # The shape has to be 1. Set it if it does not have the information. mean = array_ops.reshape(mean, [1]) var = array_ops.reshape(var, [1]) return mean, var def _show_max_abs(tensor): tensor = math_ops.cast(tensor, dtypes.float32) output_tensor = math_ops.reduce_max(math_ops.abs(tensor)) zero = constant_op.constant(0, dtypes.float32) output_tensor = gen_math_ops.maximum(zero, output_tensor) # The shape has to be 1. Set it if it does not have the information. output_tensor = array_ops.reshape(output_tensor, [1]) return output_tensor def _detect_inf_nan_producer(tensor): """Checks if the tensor is the first NaN/Inf tensor in the computation path.""" if tensor.op.inputs: inp_check = [ _detect_nan_inf(inp_tensor) for inp_tensor in tensor.op.inputs ] is_any_input_inf_nan = math_ops.add_n(inp_check) else: is_any_input_inf_nan = constant_op.constant(0, dtypes.bool) is_current_tensor_inf_nan = _detect_nan_inf(tensor) # An op is NaN/INF producer only when all inputs are nan/inf free ( # is_any_input_inf_nan = 0), and its output has nan/inf ( # is_current_tensor_inf_nan=1). Below will be 1 if op nan/inf is producer. is_nan_producer = is_current_tensor_inf_nan - is_any_input_inf_nan is_nan_producer = math_ops.reduce_any(is_nan_producer > 0) return is_nan_producer if (self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_FULL_IF_NAN): return {self._parameters.trace_mode: _detect_inf_nan_producer(tensor)} if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_NAN_INF: return {self._parameters.trace_mode: _detect_nan_inf(tensor)} if (self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_PART_TENSOR): return {self._parameters.trace_mode: tensor} if (self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_FULL_TENSOR): return {self._parameters.trace_mode: tensor} if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_NORM: return {self._parameters.trace_mode: _show_norm(tensor)} if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_MAX_ABS: return {self._parameters.trace_mode: _show_max_abs(tensor)} if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_SUMMARY: tensor = math_ops.cast(tensor, dtypes.float32) tsize = _show_size(tensor) tnorm = _show_norm(tensor, cast_to_f32=False) tmax = _show_max(tensor, cast_to_f32=False) tmin = _show_min(tensor, cast_to_f32=False) tmean, tvar = _show_mean_and_variance(tensor, cast_to_f32=False) return {_TT_SUMMARY_NORM: tnorm, _TT_SUMMARY_MAX: tmax, _TT_SUMMARY_MIN: tmin, _TT_SUMMARY_MEAN: tmean, _TT_SUMMARY_VAR: tvar, _TT_SUMMARY_SIZE: tsize} raise RuntimeError( 'Tensor trace fun for %s is not yet implemented' % self._parameters.trace_mode) def _make_tensor_trace_fun(self, tensor_name, tensor_trace_order): """Makes the tensor tracing function called by outside compilation. Args: tensor_name: name of the tensor being traced. tensor_trace_order: TensorTraceOrder object holding tensorname to id map. Returns: A function to be passed as the first argument to outside compilation. Raises: RuntimeError: If the trace mode is invalid. """ def _print_tensor(tensor_name, num_elements, tensor, output_tensor): """Prints a tensor value to a file. Args: tensor_name: name of the tensor being traced. num_elements: number of elements to print (-1 means print all). tensor: the tensor needs to be returned. output_tensor: the tensor needs to be printed. Returns: The same tensor passed via the "tensor" argument. Raises: ValueError: If tensor_name is not already in self._tensorname_idx_map. """ if self._parameters.is_brief_mode(): if tensor_name not in tensor_trace_order.tensorname_idx_map: raise ValueError( 'Tensor name %s is not in the tensorname_idx_map'%tensor_name) msg = '%d'%self._tensorname_idx_map[tensor_name] else: msg = '"%s"'%tensor_name if self._parameters.trace_dir: output_path = os.path.join(self._parameters.trace_dir, _TRACE_FILE_NAME) output_stream = _OUTPUT_STREAM_ESCAPE + output_path else: output_stream = sys.stderr return logging_ops.print_v2(msg, array_ops.shape(output_tensor), '@', self._replica_id, '\n', output_tensor, '\n', summarize=num_elements, output_stream=output_stream) def _show_part_tensor(tensor): """Trace function for printing part of the tensor.""" return _print_tensor(tensor_name, _TRACE_MODE_PART_TENSOR_SIZE, tensor, tensor) def _show_full_tensor(tensor): """Trace function for printing the entire tensor.""" return _print_tensor(tensor_name, -1, tensor, tensor) def _show_full_tensors(tensor): """Prints the full tensor values for the tensors that are _trace_stack_size hops away from a given tensor.""" def _get_distance_k_tensors(k_before=0): """Returns the tensors that are at most k_before hops away from the tensor.""" if k_before < 0: return [] visited_tensors = {tensor: 0} visitor_queue = [tensor] head = 0 while head < len(visitor_queue): current_tensor = visitor_queue[head] head += 1 distance = visited_tensors[current_tensor] if distance == k_before: break for input_tensor in current_tensor.op.inputs: if input_tensor in visited_tensors: continue visitor_queue.append(input_tensor) visited_tensors[input_tensor] = distance + 1 return visitor_queue tensors_to_print = _get_distance_k_tensors( self._parameters.trace_stack_size) print_ops = [_print_tensor(t.name, -1, t, t) for t in tensors_to_print] with ops.control_dependencies(print_ops): return constant_op.constant(True) if (self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_FULL_IF_NAN): return _show_full_tensors if (self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_PART_TENSOR): return _show_part_tensor # The input tensor has a shape of "[1]" for TRACE_MODE_NAN_INF, # TRACE_MODE_NORM, and TRACE_MODE_MAX_ABS, as related computations are # performed within TPUs and only their results are transferred to CPU. # Simply, print the full tensor for these trace modes. if self._parameters.trace_mode in [ tensor_tracer_flags.TRACE_MODE_NAN_INF, tensor_tracer_flags.TRACE_MODE_NORM, tensor_tracer_flags.TRACE_MODE_FULL_TENSOR, tensor_tracer_flags.TRACE_MODE_MAX_ABS, tensor_tracer_flags.TRACE_MODE_SUMMARY ]: return _show_full_tensor raise RuntimeError('Tensor trace fun for %s is not yet implemented' %self._parameters.trace_mode) def _skip_op(self, op_id, op, ops_in_exec_path, report_handler): """Returns True if we should not trace Op. Args: op_id: Topological index of the op. op: tf.Operation ops_in_exec_path: Set of operations that are in the execution path. report_handler: An instance of tensor_tracer_report.TTReportHandle. Returns: True if the op should not be traced, false otherwise. """ if TensorTracer.while_loop_op(op): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_WHILELOOP_OP)) return True if TensorTracer.unsafe_op(op): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_UNSAFE_OP)) return True if TensorTracer.device_mismatch(self._tt_config.device_type, op): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_DEVICE_MISMATCH)) return True if op not in ops_in_exec_path: report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_NOT_EXECUTED)) return True if not self._inside_op_range(op_id): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_OUTSIDE_OP_RANGE)) return True if self._less_interesting_op(op): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_LESS_INTERESTING_OP)) return True if self._is_user_included_op(op): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_USER_INCLUDED)) return False if self._is_user_excluded_op(op): report_handler.instrument_op( op, TensorTracer.reason(op_id, _REASON_USER_EXCLUDED)) return True return False def _skip_tensor(self, op_id, out_tensor, report_handler): """Returns True if we should not trace out_tensor. Args: op_id: Topological index of the op producing tensor. out_tensor: tf.Tensor report_handler: An instance of tensor_tracer_report.TTReportHandle. Returns: True if the tensor should not be traced, false otherwise. """ # Skips a tensor if the tensor has a non-numeric type. # Note: we cannot use check_ops.is_numeric_tensor(out_tensor) # because it also excludes tensors with dtypes, bool, and # float32_ref, which we actually want to trace. non_numeric_tensor_types = set([dtypes.variant, dtypes.resource, dtypes.string]) if out_tensor.dtype in non_numeric_tensor_types: report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_NON_NUMERIC_TENSOR)) return True # Skip a tensor if it feeds a special while loop op. if [consumer for consumer in out_tensor.consumers() if TensorTracer.while_loop_op(consumer)]: report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_FEEDS_WHILELOOP_OP)) return True if self._is_user_included_op(out_tensor.op): report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_USER_INCLUDED)) return False if self._is_user_excluded_op(out_tensor.op): report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_USER_EXCLUDED)) return True if not out_tensor.get_shape().is_fully_defined(): # If trace mode is nan-inf, norm or max, then the tensor will be reduced # to a scalar before the outside compilation call. if self._parameters.trace_mode in [ tensor_tracer_flags.TRACE_MODE_NAN_INF, tensor_tracer_flags.TRACE_MODE_NORM, tensor_tracer_flags.TRACE_MODE_MAX_ABS, tensor_tracer_flags.TRACE_MODE_SUMMARY ]: report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_TENSOR_GET_TRACED)) return False else: report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_DYNAMIC_SHAPE)) return True rank = len(out_tensor.shape) if rank < 1: # scalar if self._parameters.trace_scalar_ops: if TensorTracer.unsafe_scalar_trace(out_tensor.op): report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_UNSAFE_SCALAR)) return True else: report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_SCALAR_GET_TRACED)) return False else: report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_SKIP_SCALAR)) return True else: # tensor report_handler.instrument_tensor( out_tensor, TensorTracer.reason(op_id, _REASON_TENSOR_GET_TRACED)) return False def _filter_execution_path_operations(self, operations, fetches): """Returns the set of ops in the execution path to compute given fetches.""" # If no fetch provided, then return all operations. if fetches is None: return set(operations) # Convert to list, if a single element is provided. if not isinstance(fetches, (list, tuple)): fetches = [fetches] # If a tensor is given as fetch, convert it to op. op_fetches = [] for fetch in fetches: if isinstance(fetch, ops.Operation): op_fetches.append(fetch) elif isinstance(fetch, ops.Tensor): op_fetches.append(fetch.op) else: raise RuntimeError('Given fetch:%s is neither a tensor nor an op.' %fetch) execution_path_operations = set(op_fetches) traverse_stack = list(op_fetches) while True: if not traverse_stack: break head_op = traverse_stack.pop() input_ops = [tensor_input.op for tensor_input in head_op.inputs] input_ops.extend(head_op.control_inputs) for input_op in input_ops: if input_op not in execution_path_operations: # Filter out loop condition operations, tracing them causes a cycle. # Trace only the loop-body. if TensorTracer.loop_cond_op(input_op): continue execution_path_operations.add(input_op) traverse_stack.append(input_op) return execution_path_operations def _determine_and_instrument_traced_tensors(self, graph_order, ops_in_exec_path, tensor_trace_points, report_handler): """Determines the tensors to trace and instruments the trace details. Args: graph_order: graph_order tuple containing graph (tf.graph), operations (list of operations), op_to_idx (op id mapping), (tensors) list of tensors, tensor_to_idx (tensor id mapping), contains_cycle (whether there is a cycle in the graph), topological_order_or_cycle (list of ops in topological order or list of ops creating a cycle). ops_in_exec_path: Set of ops in the execution path. tensor_trace_points: Collection of programatic tensor trace points. report_handler: An instance of tensor_tracer_report.TTReportHandle. Returns: List of tensors to be traced. """ traced_tensors = [] checkpoint_operations = set([tensor.op for (tensor, _) in tensor_trace_points]) for op_id, op in enumerate(graph_order.operations): if checkpoint_operations and op not in checkpoint_operations: continue if self._skip_op(op_id, op, ops_in_exec_path, report_handler): continue for i in range(len(op.outputs)): out_tensor = op.outputs[i] if not self._skip_tensor(op_id, out_tensor, report_handler): traced_tensors.append(out_tensor) return traced_tensors def _check_trace_files(self): """Checks if any requirements for trace files are satisfied.""" if not self._parameters.trace_dir: # traces will be written to stderr. No need to check trace files. return if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_SUMMARY: # Output files are handled by tf.summary operations, no need to precreate # them. return if _trace_files_need_precreated(self._parameters.trace_dir): for replica_id in range(0, self._tt_config.num_replicas): trace_file_path = os.path.join( self._parameters.trace_dir, _COMPACT_TRACE_FILE_PREFIX) + '%d'%replica_id if not gfile.Exists(trace_file_path): raise RuntimeError( '%s must be pre-created with the ' 'appropriate properties.'%trace_file_path) else: if not gfile.Exists(self._parameters.trace_dir): gfile.MkDir(self._parameters.trace_dir) if not gfile.Exists(self._parameters.trace_dir): raise RuntimeError('Failed to create %s'%self._parameters.trace_dir) def _determine_trace_and_create_report(self, graph, ops_in_exec_path): """Work needs to be done prior to TPU or CPU tracing. Args: graph: tf.graph ops_in_exec_path: Set of operations in the execution path. Returns: An instance of tensor_tracer_report.TensorTraceOrder, containing list of tensors to be traced with their topological order information. """ self._check_trace_files() graph_order = tensor_tracer_report.sort_tensors_and_ops(graph) tensor_trace_points = graph.get_collection(_TENSOR_TRACER_COLLECTION) report_handler = tensor_tracer_report.TTReportHandle() traced_tensors = self._determine_and_instrument_traced_tensors( graph_order, ops_in_exec_path, tensor_trace_points, report_handler) tensor_trace_order = tensor_tracer_report.TensorTraceOrder(graph_order, traced_tensors) num_signatures = self._num_signature_dimensions() if num_signatures: self._create_or_get_tensor_values_cache(self._parameters.trace_mode, graph, len(traced_tensors), num_signatures) if self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_SUMMARY: report_proto = report_handler.create_report_proto(self._tt_config, self._parameters, tensor_trace_order, tensor_trace_points, self._signature_types()) report_handler.write_report_proto(report_proto, self._parameters) else: report_handler.create_report(self._tt_config, self._parameters, tensor_trace_order, tensor_trace_points) return tensor_trace_order def _create_host_call(self): return self._parameters.trace_mode == tensor_tracer_flags.TRACE_MODE_SUMMARY def _generate_flush_cache_op(self, num_replicas, on_tpu): """Generates an Op that will flush the cache to file. Args: num_replicas: total number of replicas. on_tpu: if the graph is executed on TPU. Returns: The Op to flush the cache to file. """ def _flush_fun(cache, replica_id): """Flushes the cache to a file corresponding to replica_id.""" def _f(file_index): """Generates a func that flushes the cache to a file.""" def _print_cache(): """Flushes the cache to a file.""" replica_str = ('%d' % file_index) if self._parameters.trace_dir: output_path = (os.path.join(self._parameters.trace_dir, _COMPACT_TRACE_FILE_PREFIX) + replica_str) output_stream = _OUTPUT_STREAM_ESCAPE + output_path else: output_stream = sys.stderr new_step_line = _REPLICA_ID_TAG + replica_str print_ops = [] for i in range(self._num_signature_dimensions()): print_ops.append(logging_ops.print_v2( new_step_line, '\n', cache[:, i], '\n', summarize=-1, output_stream=output_stream)) with ops.control_dependencies(print_ops): return constant_op.constant(0).op return _print_cache def _eq(file_index): return math_ops.equal(replica_id, file_index) flush_op_cases = {} for i in range(num_replicas): flush_op_cases[_eq(i)] = _f(i) # Each replica needs to determine where to write their output. # To do this, we check if replica_id is 0, then 1, ..., and then # num_replicas - 1 statically; and return the corresponding static file # name. We cannot simply set the file name in python, as replica_id is # only known during tf runtime, and we cannot create dynamic filenames. return control_flow_ops.case(flush_op_cases, exclusive=True) cache = self._create_or_get_tensor_values_cache( self._parameters.trace_mode) if on_tpu: flush_op = tpu.outside_compilation(_flush_fun, cache.value(), self._replica_id) else: flush_op = _flush_fun(cache.value(), self._replica_id) with ops.control_dependencies([flush_op]): reset_value = constant_op.constant(_COMPACT_TRACE_ENTRY_INIT_VALUE, dtype=cache.dtype, shape=cache.shape) assign_op = state_ops.assign(cache, reset_value).op with ops.control_dependencies([assign_op]): return constant_op.constant(0).op def _flush_tensor_values_cache(self, tensor_fetches, op_fetches, on_tpu): """Flushes the intermediate tensor values in the graph to the cache. Args: tensor_fetches: list of tensor results returned by the model_fn. op_fetches: list of ops that are returned by the model_fn, e.g., train_op. on_tpu: if the graph is executed on TPU. Returns: An identical copy of tensor_fetches. """ # Add a dependency to op and tensor fetches to make sure that all tracing # ops are executed before flushing trace results. with ops.control_dependencies(op_fetches + [tensor.op for tensor in tensor_fetches]): flush_cache_op = self._generate_flush_cache_op( self._tt_config.num_replicas, on_tpu) return control_flow_ops.tuple(tensor_fetches, control_inputs=[flush_cache_op]) def _process_tensor_fetches(self, tensor_fetches): """Check that tensor_fetches is not empty and have valid tensors.""" # If none or empty list. if tensor_fetches is None: raise RuntimeError('tensor_fetches provided to tensor_tracer cannot be ' 'None.') if not isinstance(tensor_fetches, (list, tuple)): tensor_fetches = [tensor_fetches] elif not tensor_fetches: raise RuntimeError('tensor_fetches provided to tensor_tracer cannot be ' 'empty list.') fetches = [] for fetch in tensor_fetches: if isinstance(fetch, ops.Tensor): fetches.append(fetch) else: raise RuntimeError('Given tensor_fetch:%s is not a tensor.' % fetch) return fetches def _process_op_fetches(self, op_fetches): """Check that op_fetches have valid ops.""" if op_fetches is None: return [] if not isinstance(op_fetches, (list, tuple)): op_fetches = [op_fetches] fetches = [] for fetch in op_fetches: if isinstance(fetch, ops.Operation): fetches.append(fetch) elif isinstance(fetch, ops.Tensor): fetches.append(fetch.op) else: logging.warning('Ignoring the given op_fetch:%s, which is not an op.' % fetch) return fetches def _convert_fetches_to_input_format(self, input_fetches, current_fetches): """Changes current_fetches' format, so that it matches input_fetches.""" if isinstance(input_fetches, ops.Tensor): if len(current_fetches) != 1: raise RuntimeError('Tensor tracer input/output fetches do not match.') return current_fetches[0] else: if len(current_fetches) != len(current_fetches): raise RuntimeError('Tensor tracer input/output fetches do not match.') elif isinstance(input_fetches, tuple): return tuple(current_fetches) else: return current_fetches def _get_op_control_flow_context(self, op): """Returns the control flow of the given op. Args: op: tf.Operation for which the control flow context is requested. Returns: op_control_flow_context: which the is control flow context of the given op. If the operation type is LoopExit, returns the outer control flow context. """ # pylint: disable=protected-access op_control_flow_context = op._control_flow_context # pylint: enable=protected-access if control_flow_util.IsLoopExit(op): op_control_flow_context = op_control_flow_context.outer_context return op_control_flow_context def _prepare_host_call_fn(self, processed_t_fetches, op_fetches): """Creates a host call function that will write the cache as tb summary. Args: processed_t_fetches: List of tensor provided to session.run. op_fetches: List of operations provided to session.run. Raises: ValueError if trace_dir is not set. """ if self._parameters.trace_dir is None: raise ValueError('Provide a trace_dir for tensor tracer in summary mode. ' '--trace_dir=/model/dir') def _write_cache(concatenated_cache_tensor, step): """Writes the cache as tensor summary.""" summary_metadata = summary_pb2.SummaryMetadata( display_name=_TT_SUMMARY_TAG, summary_description='', plugin_data=summary_pb2.SummaryMetadata.PluginData( plugin_name='tensor_tracer')) # TODO(deveci): Parametrize max_queue, so that flushing op can be called # less frequently. # Setting max_queue to 100 appears to be safe even when the number of # iterations are much lower, as the destructor of the writer will flushes # it. with summary.create_file_writer_v2( self._parameters.trace_dir, max_queue=_TT_SUMMARY_MAX_QUEUE).as_default(): return summary.write( _TT_SUMMARY_TAG, concatenated_cache_tensor, metadata=summary_metadata, step=step[0]) step = array_ops.reshape(training_util.get_or_create_global_step(), [1]) self._host_call_fn = {} local_cache = self._create_or_get_tensor_values_cache( self._parameters.trace_mode) host_call_deps = op_fetches + [tensor.op for tensor in processed_t_fetches] with ops.control_dependencies(host_call_deps): # Convert the 2D cache shape from num_tensors x num_signatures # to 3D shape of 1 x num_tensors x num_signatures, so that the after host # call the dimensions will be num_cores x num_tensors x num_signatures cache = array_ops.reshape(local_cache.value(), [1, -1, self._num_signature_dimensions()]) self._host_call_fn['tensor_tracer_host_call'] = (_write_cache, [cache, step]) def host_call_deps_and_fn(self): return self._host_call_fn def _trace_execution(self, graph, tensor_fetches, op_fetches=None, on_tpu=True): """Commong tracing function for both CPU and TPUs. The caller function should set device_type, num_replicas, num_replicas_per_host, num_hosts and replica_id before calling _trace_execution. Args: graph: the graph of Ops executed on the TPU. tensor_fetches: a (list,tuple,or a single object) of tensor fetches returned by model_fn given to session.run. Function must be provided with as least one tensor to fetch. op_fetches: A list of op fetches returned by model_fn given to session.run. op_fetches and tensor_fetches are used to determine the nodes that will be executed. Can be None. on_tpu: True if executing on TPU. Returns: tensor_fetches: an exact copy of tensor_fetches that has additional dependencies. Raises: RuntimeError: If tensor_fetches is None or empty. """ def _cast_unsupported_dtypes(tensor): """Casts tensor to a supported type.""" if tensor.dtype.__eq__(dtypes.int64): # outside-compilation doesn't support int64 input yet. return math_ops.cast(tensor, dtypes.int32) if tensor.dtype.__eq__(dtypes.bfloat16) or tensor.dtype.__eq__( dtypes.float16): # Since host can't handle bf16, convert tensor to f32. return math_ops.cast(tensor, dtypes.float32) return tensor TensorTracer.check_device_type(self._tt_config.device_type) TensorTracer.check_trace_mode(self._tt_config.device_type, self._parameters.trace_mode) # Check in_tensor_fetches, and op_fetches and convert them to lists. processed_t_fetches = self._process_tensor_fetches(tensor_fetches) op_fetches = self._process_op_fetches(op_fetches) all_fetches = op_fetches + [tensor.op for tensor in processed_t_fetches] # Filter out the operations that won't be executed. # if fetches=None, then ops_in_exec_path = set(operations) exec_op_set = self._filter_execution_path_operations(graph.get_operations(), all_fetches) # Write report file, and determine the traced tensors. tensor_trace_order = self._determine_trace_and_create_report( graph, exec_op_set) tensor_fetch_set = set(processed_t_fetches) tracing_ops = [] # pylint: disable=protected-access current_control_flow_context = graph._get_control_flow_context() # pylint: enable=protected-access sorted_exec_op_list = list(exec_op_set) sorted_exec_op_list.sort(key=lambda op: op.name) # Trace ops only if they are in the execution path. for op in sorted_exec_op_list: for i in range(len(op.outputs)): out_tensor = op.outputs[i] tensor_name = out_tensor.name if tensor_name not in tensor_trace_order.tensorname_to_cache_idx: continue # Create the list of consumers before calling _preprocess_traced_tensor. # Otherwise, adding control input below, will introduce a cycle in the # graph. consumers = out_tensor.consumers() # Not all consumers may be in the exec path. Filter out the consumers # to keep the graph simpler. consumers = [cop for cop in consumers if cop in exec_op_set] # If there is no consumer of the tensor, there is no need to trace it; # unless the tensor itself is one of the fetches. is_a_fetched_tensor = out_tensor in tensor_fetch_set if (not consumers) and (not is_a_fetched_tensor): continue op_control_flow_context = self._get_op_control_flow_context(op) # pylint: disable=protected-access graph._set_control_flow_context(op_control_flow_context) # pylint: enable=protected-access processed_tensors = self._preprocess_traced_tensor(out_tensor) if on_tpu: for signature in processed_tensors.keys(): processed_tensors[signature] = _cast_unsupported_dtypes( processed_tensors[signature]) if self._use_tensor_values_cache(): cache_idx = tensor_trace_order.tensorname_to_cache_idx[tensor_name] trace_op = self._save_tensor_value_to_cache_op(cache_idx, processed_tensors) else: def tpu_wrap_trace_fn(tensor, out_tensor_name): """Wraps the trace_fn with outside compilation if on TPUs.""" tensor_trace_fn = self._make_tensor_trace_fun(out_tensor_name, tensor_trace_order) if on_tpu: return tpu.outside_compilation(tensor_trace_fn, tensor) else: return tensor_trace_fn(tensor) def conditional_trace_fn(predicate_tensor, out_tensor, trace_fn, out_tensor_name): """Creates a cond op that traces the out_tensor if predicate is satisfied.""" return control_flow_ops.cond( predicate_tensor, lambda: trace_fn(out_tensor, out_tensor_name), lambda: constant_op.constant(False)).op if len(processed_tensors) != 1: raise RuntimeError('Multiple stats are only allowed in compact ' 'mode.') # Collecting multiple statistics are only supported in the summary # mode that uses compact format(self._use_tensor_values_cache = true). # Non-compact mode currently allows single stat per tensor. processed_out_tensor = processed_tensors.values()[0] if self._parameters.is_conditional_trace: trace_op = conditional_trace_fn(processed_out_tensor, out_tensor, tpu_wrap_trace_fn, tensor_name) elif self._parameters.included_cores: should_print = constant_op.constant(False) for core in self._parameters.included_cores: should_print = gen_math_ops.logical_or( should_print, gen_math_ops.equal(self._replica_id, core)) trace_op = conditional_trace_fn(should_print, processed_out_tensor, tpu_wrap_trace_fn, tensor_name) else: trace_op = tpu_wrap_trace_fn(processed_out_tensor, tensor_name) if is_a_fetched_tensor: tracing_ops.append(trace_op) continue # Add it to all consumers, as some consumers may not be executed if they # are in a control flow. for consumer_op in consumers: # pylint: disable=protected-access consumer_op._add_control_input(trace_op) # pylint: enable=protected-access # pylint: disable=protected-access graph._set_control_flow_context(current_control_flow_context) # pylint: enable=protected-access if tracing_ops: # If we are tracing a fetched tensor, their dependency is stored in # tracing_ops. processed_t_fetches = control_flow_ops.tuple(processed_t_fetches, control_inputs=tracing_ops) if self._use_tensor_values_cache(): if self._create_host_call() and on_tpu: self._prepare_host_call_fn(processed_t_fetches, op_fetches) else: processed_t_fetches = self._flush_tensor_values_cache( processed_t_fetches, op_fetches, on_tpu=on_tpu) # processed_t_fetches is a list at this point. Convert it to the same # format as given in tensor_fetches. return self._convert_fetches_to_input_format(tensor_fetches, processed_t_fetches) def trace_tpu(self, graph, tensor_fetches, op_fetches=None, num_replicas=None, num_replicas_per_host=None, num_hosts=None): """Traces the tensors generated by TPU Ops in a TF graph. Args: graph: the graph of Ops executed on the TPU. tensor_fetches: a (list,tuple,or a single object) of tensor fetches returned by model_fn given to session.run. Function must be provided with as least one tensor to fetch. op_fetches: A list of op fetches returned by model_fn given to session.run. op_fetches and tensor_fetches are used to determine the nodes that will be executed. Can be None. num_replicas: number of replicas used on the TPU. num_replicas_per_host: number of replicas per TPU host. num_hosts: total number of TPU hosts. Returns: tensor_fetches: an exact copy of tensor_fetches that has additional dependencies. Raises: RuntimeError: If num_replicas_per_host > 8. RuntimeError: If tensor_fetches is None or empty. """ if graph in TensorTracer._traced_graphs: logging.warning('Graph is already rewritten with tensor tracer, ignoring ' 'multiple calls.') return tensor_fetches else: TensorTracer._traced_graphs.add(graph) self._tt_config.device_type = _DEVICE_TYPE_TPU self._tt_config.num_replicas = num_replicas self._tt_config.num_replicas_per_host = num_replicas_per_host self._tt_config.num_hosts = num_hosts if self._tt_config.num_replicas is not None: if self._tt_config.num_replicas_per_host is None: self._tt_config.num_replicas_per_host = 8 if self._tt_config.num_hosts is None: self._tt_config.num_hosts = ( num_replicas // self._tt_config.num_replicas_per_host + (num_replicas % self._tt_config.num_replicas_per_host > 0)) if self._parameters.graph_dump_path: graph_io.write_graph(graph, self._parameters.graph_dump_path, 'graph_before_tt.pbtxt') with graph.as_default(): self._add_replica_id_to_graph() tensor_fetches = self._trace_execution(graph, tensor_fetches, op_fetches, on_tpu=True) if self._parameters.graph_dump_path: graph_io.write_graph(graph, self._parameters.graph_dump_path, 'graph_after_tt.pbtxt') return tensor_fetches def trace_cpu(self, graph, tensor_fetches, op_fetches=None): """Traces the tensors generated by CPU Ops in a TF graph. Args: graph: the graph of Ops executed on the CPU. tensor_fetches: a (list,tuple,or a single object) of tensor fetches returned by model_fn given to session.run. Function must be provided with as least one tensor to fetch. op_fetches: A list of op fetches returned by model_fn given to session.run. op_fetches and tensor_fetches are used to determine the nodes that will be executed. Can be None. Returns: tensor_fetches: an exact copy of tensor_fetches that has additional dependencies. Raises: RuntimeError: If tensor_fetches is None or empty. """ if graph in TensorTracer._traced_graphs: logging.warning('Graph is already rewritten with tensor tracer, ignoring ' 'multiple calls.') return tensor_fetches else: TensorTracer._traced_graphs.add(graph) self._tt_config.device_type = _DEVICE_TYPE_CPU self._tt_config.num_replicas = 1 self._tt_config.num_replicas_per_host = 1 self._tt_config.num_hosts = 1 self._replica_id = 0 if self._parameters.graph_dump_path: graph_io.write_graph(graph, self._parameters.graph_dump_path, 'graph_before_tt.pbtxt') with graph.as_default(): tensor_fetches = self._trace_execution(graph, tensor_fetches, op_fetches, on_tpu=False) if self._parameters.graph_dump_path: graph_io.write_graph(graph, self._parameters.graph_dump_path, 'graph_after_tt.pbtxt') return tensor_fetches
42.103472
116
0.663478
7268a93b653f4f6560499c60351ef846046b26a0
3,236
py
Python
gobigger/hyper/configs/config_2f2s.py
jayyoung0802/GoBigger
f7cf14ee4208e041295035342ecee70026f268d9
[ "Apache-2.0" ]
189
2021-10-08T07:55:10.000Z
2022-03-31T23:49:43.000Z
gobigger/hyper/configs/config_2f2s.py
jayyoung0802/GoBigger
f7cf14ee4208e041295035342ecee70026f268d9
[ "Apache-2.0" ]
25
2021-11-01T06:59:30.000Z
2022-03-22T11:22:27.000Z
gobigger/hyper/configs/config_2f2s.py
jayyoung0802/GoBigger
f7cf14ee4208e041295035342ecee70026f268d9
[ "Apache-2.0" ]
28
2021-10-14T12:23:14.000Z
2022-03-31T23:49:45.000Z
# 分身合球,分身吃球 server_default_config = dict( team_num=2, player_num_per_team=2, map_width=300, map_height=300, match_time=10, state_tick_per_second=10, # frame action_tick_per_second=5, # frame collision_detection_type='precision', save_video=False, save_quality='high', # ['high', 'low'] save_path='', save_bin=False, # save bin to go-explore load_bin=False, load_bin_path='', load_bin_frame_num = 'all', jump_to_frame_file = '', manager_settings=dict( # food setting food_manager=dict( num_init=180, # initial number num_min=180, # Minimum number num_max=225, # Maximum number refresh_time=2, # Time interval (seconds) for refreshing food in the map refresh_num=0, # The number of refreshed foods in the map each time ball_settings=dict( # The specific parameter description can be viewed in the ball module radius_min=2, radius_max=2, ), ), # thorns setting thorns_manager=dict( num_init=1, # initial number num_min=1, # Minimum number num_max=2, # Maximum number refresh_time=6, # Time interval (seconds) for refreshing thorns in the map refresh_num=0, # The number of refreshed thorns in the map each time ball_settings=dict( # The specific parameter description can be viewed in the ball module radius_min=12, radius_max=20, vel_max=100, eat_spore_vel_init=10, eat_spore_vel_zero_time=1, ) ), # player setting player_manager=dict( ball_settings=dict( # The specific parameter description can be viewed in the ball module acc_max=100, vel_max=25, radius_min=3, radius_max=300, radius_init=3, part_num_max=16, on_thorns_part_num=10, on_thorns_part_radius_max=20, split_radius_min=10, eject_radius_min=10, recombine_age=20, split_vel_init=30, split_vel_zero_time=1, stop_zero_time=1, size_decay_rate=0.00005, given_acc_weight=10, ) ), # spore setting spore_manager=dict( ball_settings=dict( # The specific parameter description can be viewed in the ball module radius_min=3, radius_max=3, vel_init=250, vel_zero_time=0.3, spore_radius_init=20, ) ) ), custom_init=dict( food=[], # only position and radius thorns=[[300, 300, 16]], # only position and radius spore=[], # only position and radius clone=[[80, 100, 16, '0', '0'], [130, 100, 10, '1', '0'], [130, 130, 12, '2', '1'], [300, 300, 3, '3', '1']], ), obs_settings=dict( with_spatial=True, with_speed=False, with_all_vision=False, ), )
35.173913
102
0.542954
b486343e3e524177322949219cae4c7b4728f679
163
py
Python
analysis/test.py
njchiang/analogy-fmri
90a6870a7c15dc71d3ea193b6dfea91fc7295108
[ "MIT" ]
2
2019-12-11T02:46:36.000Z
2021-07-02T08:29:16.000Z
analysis/test.py
njchiang/analogy-fmri
90a6870a7c15dc71d3ea193b6dfea91fc7295108
[ "MIT" ]
null
null
null
analysis/test.py
njchiang/analogy-fmri
90a6870a7c15dc71d3ea193b6dfea91fc7295108
[ "MIT" ]
null
null
null
import os from fmri.analogy_rsa import * from fmri.analogy_utils import * def main(): assert True, "something's broken" if __name__ == "__main__": main()
18.111111
37
0.705521
4c7476e36b1f3d0f009a8671bdb4f20dd8780ff5
2,933
py
Python
parlai/scripts/build_candidates.py
omry/ParlAI
61703c7b76dce45bc7f7282b20a35be64c6a0880
[ "MIT" ]
9
2020-01-17T09:34:00.000Z
2021-11-19T07:46:52.000Z
parlai/scripts/build_candidates.py
omry/ParlAI
61703c7b76dce45bc7f7282b20a35be64c6a0880
[ "MIT" ]
5
2019-12-29T07:52:39.000Z
2022-03-12T00:10:03.000Z
parlai/scripts/build_candidates.py
omry/ParlAI
61703c7b76dce45bc7f7282b20a35be64c6a0880
[ "MIT" ]
2
2020-01-28T01:41:52.000Z
2020-12-27T07:22:07.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Build the candidate responses for a retrieval model. Examples -------- .. code-block:: shell python build_candidates.py -t convai2 --outfile /tmp/cands.txt """ from parlai.core.params import ParlaiParser from parlai.agents.repeat_label.repeat_label import RepeatLabelAgent from parlai.core.worlds import create_task from parlai.utils.misc import TimeLogger import random import tempfile def build_cands(opt): # create repeat label agent and assign it to the specified task if opt['numthreads'] > 1: # Broken in hogwild mode. Just fall back to single processing mode opt['numthreads'] = 1 agent = RepeatLabelAgent(opt) world = create_task(opt, agent) if opt['outfile'] is None: outfile = tempfile.mkstemp( prefix='{}_{}_'.format(opt['task'], opt['datatype']), suffix='.txt' )[1] else: outfile = opt['outfile'] if opt.get('num_examples', -1) == -1: num_examples = world.num_examples() else: num_examples = opt['num_examples'] log_timer = TimeLogger() print('[ starting to build candidates from task.. (ex:' + str(num_examples) + ')]') print('[ saving output to {} ]'.format(outfile)) cands = [] for _ in range(num_examples): world.parley() # We get the acts of the first agent, which is the teacher. acts = world.get_acts()[0] if isinstance(acts, dict): # We turn into a batch of 1 example, in case batching is being used. acts = [acts] for a in acts: candidate = a.get('labels', a.get('eval_labels', None)) if candidate is not None: candidate = candidate[0] cands.append(candidate) if log_timer.time() > opt['log_every_n_secs']: text, _log = log_timer.log(world.total_parleys, world.num_examples()) print(text) if world.epoch_done(): print('EPOCH DONE') break fw = open(outfile, 'w') fw.write('\n'.join(cands)) fw.close() def main(): random.seed(42) # Get command line arguments parser = ParlaiParser() parser.add_argument( '-n', '--num-examples', default=-1, type=int, help='Total number of exs to convert, -1 to convert all examples', ) parser.add_argument( '-of', '--outfile', default=None, type=str, help='Output file where to save, by default will be created in /tmp', ) parser.add_argument('-ltim', '--log-every-n-secs', type=float, default=2) parser.set_defaults(datatype='train:evalmode') opt = parser.parse_args() build_cands(opt) if __name__ == '__main__': main()
30.552083
87
0.617457
39ce4fa6784d926edf82192f9146f5b179fec43f
24,564
py
Python
safe_control_gym/controllers/lqr/ilqr.py
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
[ "MIT" ]
null
null
null
safe_control_gym/controllers/lqr/ilqr.py
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
[ "MIT" ]
null
null
null
safe_control_gym/controllers/lqr/ilqr.py
catgloss/safe-control-gym
b3f69bbed8577f64fc36d23677bf50027e991b2d
[ "MIT" ]
null
null
null
"""Linear Quadratic Regulator (LQR) [1] https://studywolf.wordpress.com/2016/02/03/the-iterative-linear-quadratic-regulator-method/ [2] https://arxiv.org/pdf/1708.09342.pdf Example: run ilqr on cartpole balance: python3 experiments/main.py --func test --tag ilqr_pendulum --algo ilqr --task cartpole run ilqr on quadrotor stabilization: python3 experiments/main.py --func test --tag ilqr_quad --algo ilqr --task quadrotor --q_lqr 0.1 """ import os import numpy as np from termcolor import colored from matplotlib.ticker import FormatStrFormatter from safe_control_gym.envs.env_wrappers.record_episode_statistics import RecordEpisodeStatistics, VecRecordEpisodeStatistics from safe_control_gym.utils.logging import ExperimentLogger from safe_control_gym.controllers.base_controller import BaseController from safe_control_gym.controllers.lqr.lqr_utils import * from safe_control_gym.envs.benchmark_env import Cost, Task class iLQR(BaseController): """Linear quadratic regulator. Attributes: env (gym.Env): environment for the task. Q, R (np.array): cost weight matrix. x_0, u_0 (np.array): equilibrium state & input. gain (np.array): input gain matrix. """ def __init__( self, env_func, # model args q_lqr=[1], r_lqr=[1], discrete_dynamics=1, # runner args deque_size=10, eval_batch_size=1, # Task task: Task = Task.STABILIZATION, task_info=None, episode_len_sec=10, # iLQR args max_iterations=15, lamb_factor=10, lamb_max=1000, epsilon=0.01, # shared/base args output_dir="./results/temp/", verbose=True, random_init=True, ctrl_freq=240, pyb_freq=240, save_data=False, data_dir=None, plot_traj=False, plot_dir=None, save_plot=False, **kwargs): """Example of docstring on the __init__ method. The __init__ method may be documented in either the class level docstring, or as a docstring on the __init__ method itself. Args: param1 (str): Description of `param1`. param2 (:obj:`int`, optional): Description of `param2`. Multiple lines are supported. param3 (:obj:`list` of :obj:`str`): Description of `param3`. """ # All params/args (lazy hack). for k, v in locals().items(): if k != "self" and k != "kwargs" and "__" not in k: self.__dict__[k] = v # Task. self.env_func = env_func self.ctrl_freq = ctrl_freq self.pyb_freq = pyb_freq self.deque_size = deque_size self.task = Task(task) self.task_info = task_info self.episode_len_sec = episode_len_sec self.discrete_dynamics = discrete_dynamics # iLQR iterations. self.max_iterations = max_iterations # iLQR policy update parameters. See [1] for details. self.lamb_factor = lamb_factor # Factor for scaling lambda self.lamb_max = lamb_max # Maximum lambda self.epsilon = epsilon # Tolerance for convergence # Stop iteration (to make sure that subsequent iteration number not # exceeding the first one) self.stop_iteration = False # Plot trajectory. self.plot_traj = plot_traj # Randomize initial state self.random_init = random_init # Plot trajectory. self.plot_traj = plot_traj # Save plot. self.save_plot = save_plot # Plot output directory. self.plot_dir = plot_dir if not os.path.exists(plot_dir): os.makedirs(plot_dir) # Save data. self.save_data = save_data # Data output directory. self.data_dir = data_dir if not os.path.exists(data_dir): os.makedirs(data_dir) # Logging. self.logger = ExperimentLogger(output_dir) # Verbose. self.verbose = verbose def close(self): """Cleans up resources. """ self.env.close() self.logger.close() def run_ilqr(self, render=False, logging=False): """Run iLQR to iteratively update policy for each time step k Args: render (bool): Flag to save frames for visualization. logging (bool): Flag to log results. Returns: ilqr_eval_results (dict): Dictionary containing the results from each iLQR iteration. """ # Snapshot env state # state_dict = self.env.state_dict() # Initialize iteration logging variables. ite_returns, ite_lengths, ite_data, frames = [], [], {}, [] # Initialize iteration and step counter. self.ite_counter = 0 self.k = 0 # Initialize step size self.lamb = 1.0 # Set update unstable flag to False self.update_unstable = False # Loop through iLQR iterations while self.ite_counter < self.max_iterations: # Current goal. if self.task == Task.STABILIZATION: current_goal = self.x_0 elif self.task == Task.TRAJ_TRACKING: current_goal = self.x_0[self.k] # Compute input. action = self.select_action(self.env.state, self.k) # Save rollout data. if self.k == 0: # Initialize state and input stack. state_stack = self.env.state input_stack = action goal_stack = current_goal # Print initial state. print(colored("initial state: " + get_arr_str(self.env.state), "green")) if self.ite_counter == 0: self.init_state = self.env.state else: # Save state and input. state_stack = np.vstack((state_stack, self.env.state)) input_stack = np.vstack((input_stack, action)) goal_stack = np.vstack((goal_stack, current_goal)) # Step forward. obs, reward, done, info = self.env.step(action) # Update step counter. self.k += 1 # print("step", k, "done", done) # Print out. if self.verbose and self.k % 100 == 0: print(colored("episode: %d step: %d" % (self.ite_counter, self.k), "green")) print("state: " + get_arr_str(self.env.state)) print("action: " + get_arr_str(self.env.state) + "\n") # Save frame for visualization. if render: self.env.render() frames.append(self.env.render("rgb_array")) # Save data and update policy if iteration is finished. if done: # Push last state and input to stack. # Last input is not really used. state_stack = np.vstack((state_stack, self.env.state)) # input_stack = np.vstack((input_stack, action)) # goal_stack = np.vstack((goal_stack, current_goal)) # Update iteration return and length lists. assert "episode" in info ite_returns.append(info["episode"]["r"]) ite_lengths.append(info["episode"]["l"]) ite_data["ite%d_state" % self.ite_counter] = state_stack ite_data["ite%d_input" % self.ite_counter] = input_stack # Print iteration reward. print(colored("final state: " + get_arr_str(self.env.state), "green")) print(colored("iteration %d reward %.4f" % (self.ite_counter, info["episode"]["r"]), "green")) print(colored("--------------------------", "green")) # Break if the first iteration is not successful if self.task == Task.STABILIZATION: if self.ite_counter == 0 and not info["goal_reached"]: print(colored("The initial policy might be unstable. " + "Break from iLQR updates.", "red")) break # Maximum episode length. self.num_steps = np.shape(input_stack)[0] self.episode_len_sec = self.num_steps * self.stepsize print(colored("Maximum episode length: %d steps!" % (self.num_steps), "blue")) print(np.shape(input_stack), np.shape(self.gains_fb)) # import ipdb; ipdb.set_trace() # Check if cost is increased and update lambda correspondingly delta_reward = np.diff(ite_returns[-2:]) if self.ite_counter == 0: # Save best iteration. print("Save iteration gains. Best iteration %d" % self.ite_counter) self.best_iteration = self.ite_counter self.input_ff_best = np.copy(self.input_ff) self.gains_fb_best = np.copy(self.gains_fb) # Update controller gains self.update_policy(state_stack, input_stack) # Initialize improved flag. self.prev_ite_improved = False elif delta_reward < 0.0 or self.update_unstable: # If cost is increased, increase lambda self.lamb *= self.lamb_factor # Reset feedforward term and controller gain to that from # the previous iteration. print("Cost increased by %.2f. " % -delta_reward + "Set feedforward term and controller gain to that " "from the previous iteration. " "Increased lambda to %.2f." % self.lamb) print("Current policy is from iteration %d." % self.best_iteration) self.input_ff = np.copy(self.input_ff_best) self.gains_fb = np.copy(self.gains_fb_best) # Set improved flag to False. self.prev_ite_improved = False # Break if maximum lambda is reached. if self.lamb > self.lamb_max: print(colored("Maximum lambda reached.", "red")) self.lamb = self.lamb_max # Reset update_unstable flag to False. self.update_unstable = False elif delta_reward >= 0.0: # If cost is reduced, reduce lambda. # Smoother convergence if not scaling down lambda. # self.lamb /= self.lamb_factor # Save feedforward term and gain and state and input stacks. print("Save iteration gains. Best iteration %d" % self.ite_counter) self.best_iteration = self.ite_counter self.input_ff_best = np.copy(self.input_ff) self.gains_fb_best = np.copy(self.gains_fb) # Check consecutive reward increment (cost decrement). if delta_reward < self.epsilon and self.prev_ite_improved: # Cost converged. print(colored("iLQR cost converged with a tolerance " + "of %.2f." % self.epsilon, "yellow")) break # Set improved flag to True. self.prev_ite_improved = True # Update controller gains self.update_policy(state_stack, input_stack) # Reset iteration and step counter. self.ite_counter += 1 self.k = 0 # Reset environment. print("Reset environment.") self.reset_env() # Post analysis. if self.plot_traj or self.save_plot or self.save_data: analysis_data = post_analysis(goal_stack, state_stack, input_stack, self.env, 0, self.ep_counter, self.plot_traj, self.save_plot, self.save_data, self.plot_dir, self.data_dir) # Collect evaluation results. ite_lengths = np.asarray(ite_lengths) ite_returns = np.asarray(ite_returns) if logging: msg = "****** Evaluation ******\n" msg += "eval_ep_length {:.2f} +/- {:.2f} | " + \ "eval_ep_return {:.3f} +/- {:.3f}\n".format( ite_lengths.mean(), ite_lengths.std(), ite_returns.mean(), ite_returns.std()) self.logger.info(msg + "\n") ilqr_eval_results = { "ite_returns": ite_returns, "ite_lengths": ite_lengths, "ite_data": ite_data } if len(frames) > 0: ilqr_eval_results["frames"] = frames return ilqr_eval_results def update_policy(self, state_stack, input_stack): """One-line description. Args: state_stack (np.array): States from previous rollout. input_stack (np.array): Inputs from previous rollout. """ print(colored("UPDATE POLICY", "blue")) # Get symbolic loss function which also contains the necessary Jacobian # and Hessian of the loss w.r.t. state and input. loss = self.model.loss # Initialize backward pass. state_k = state_stack[-1] input_k = self.env.U_GOAL if self.task == Task.STABILIZATION: x_goal = self.x_0 elif self.task == Task.TRAJ_TRACKING: x_goal = self.x_0[-1] loss_k = loss(x=state_k, u=input_k, Xr=x_goal, Ur=self.env.U_GOAL, Q=self.Q, R=self.R) s = loss_k["l"].toarray() Sv = loss_k["l_x"].toarray().transpose() Sm = loss_k["l_xx"].toarray().transpose() # Backward pass. for k in reversed(range(self.num_steps)): print(k, self.num_steps, np.shape(state_stack), np.shape(input_stack), np.shape(self.gains_fb)) # Get current operating point. state_k = state_stack[k] input_k = input_stack[k] # Linearized dynamics about (x_k, u_k). df_k = self.model.df_func(state_k, input_k) Ac_k, Bc_k = df_k[0].toarray(), df_k[1].toarray() Ad_k, Bd_k = discretize_linear_system(Ac_k, Bc_k, self.model.dt) # Get symbolic loss function that includes the necessary Jacobian # and Hessian of the loss w.r.t. state and input. if self.task == Task.STABILIZATION: x_goal = self.x_0 elif self.task == Task.TRAJ_TRACKING: x_goal = self.x_0[k] loss_k = loss(x=state_k, u=input_k, Xr=x_goal, Ur=self.env.U_GOAL, Q=self.Q, R=self.R) # Quadratic approximation of cost. q = loss_k["l"].toarray() # l Qv = loss_k["l_x"].toarray().transpose() # dl/dx Qm = loss_k["l_xx"].toarray().transpose() # ddl/dxdx Rv = loss_k["l_u"].toarray().transpose() # dl/du Rm = loss_k["l_uu"].toarray().transpose() # ddl/dudu Pm = loss_k["l_xu"].toarray().transpose() # ddl/dudx # Control dependent terms of cost function. g = Rv + Bd_k.transpose().dot(Sv) G = Pm + Bd_k.transpose().dot(Sm.dot(Ad_k)) H = Rm + Bd_k.transpose().dot(Sm.dot(Bd_k)) # Trick to make sure H is well-conditioned for inversion if not (np.isinf(np.sum(H)) or np.isnan(np.sum(H))): H = (H + H.transpose()) / 2 H_eval, H_evec = np.linalg.eig(H) H_eval[H_eval < 0] = 0.0 H_eval += self.lamb H_inv = np.dot(H_evec, np.dot(np.diag(1.0 / H_eval), H_evec.T)) # Update controller gains. duff = -H_inv.dot(g) K = -H_inv.dot(G) # Update control input. input_ff_k = input_k + duff[:, 0] - K.dot(state_k) self.input_ff[:, k] = input_ff_k self.gains_fb[k] = K # Update s variables for time step k. Sm = Qm + Ad_k.transpose().dot(Sm.dot(Ad_k)) + \ K.transpose().dot(H.dot(K)) + \ K.transpose().dot(G) + G.transpose().dot(K) Sv = Qv + Ad_k.transpose().dot(Sv) + \ K.transpose().dot(H.dot(duff)) + K.transpose().dot(g) + \ G.transpose().dot(duff) s = q + s + 0.5 * duff.transpose().dot(H.dot(duff)) + \ duff.transpose().dot(g) else: self.update_unstable = True print(colored("Policy update unstable. Terminate update.", "red")) def select_action(self, x, k): """Control input u = -K x. Args: x (np.array): Current state of the system. k (int): Current time step. Returns: action (np.array): Action computed based on current policy. """ if self.ite_counter == 0: # Compute gain for the first iteration. # action = -self.gain @ (x - self.x_0) + self.u_0 if self.task == Task.STABILIZATION: gains_fb = -self.gain input_ff = self.gain @ self.x_0 + self.u_0 elif self.task == Task.TRAJ_TRACKING: self.gain = compute_lqr_gain(self.model, self.x_0[k], self.u_0, self.Q, self.R, self.discrete_dynamics) gains_fb = -self.gain input_ff = self.gain @ self.x_0[k] + self.u_0 else: print(colored("Incorrect task specified.", "red")) # Compute action action = gains_fb.dot(x) + input_ff # Save gains and feedforward term if self.k == 0: self.gains_fb = gains_fb.reshape(1, self.model.nu, self.model.nx) self.input_ff = input_ff.reshape(self.model.nu, 1) else: self.gains_fb = np.append(self.gains_fb, gains_fb.reshape(1, self.model.nu, self.model.nx), axis=0) self.input_ff = np.append(self.input_ff, input_ff.reshape(self.model.nu, 1), axis=1) else: print(k, self.gains_fb[k]) action = self.gains_fb[k].dot(x) + self.input_ff[:, k] return action def init_env(self): self.env = self.env_func(randomized_init=self.random_init, cost=Cost.QUADRATIC, randomized_inertial_prop=False, episode_len_sec=self.episode_len_sec, task=self.task, task_info=self.task_info, ctrl_freq=self.ctrl_freq, pyb_freq=self.pyb_freq ) self.env = RecordEpisodeStatistics(self.env, self.deque_size) # Controller params. self.model = self.env.symbolic self.Q = get_cost_weight_matrix(self.q_lqr, self.model.nx) self.R = get_cost_weight_matrix(self.r_lqr, self.model.nu) self.env.set_cost_function_param(self.Q, self.R) self.env.reset() # Linearize at operating point (equilibrium for stabilization). self.x_0, self.u_0 = self.env.X_GOAL, self.env.U_GOAL if self.task == Task.STABILIZATION: self.gain = compute_lqr_gain(self.model, self.x_0, self.u_0, self.Q, self.R, self.discrete_dynamics) # Control stepsize. self.stepsize = self.model.dt def reset_env(self): '''Reset environment between iLQR iterations.''' print(colored("Set maximum episode length to %.3f" % self.episode_len_sec, "blue")) self.env = self.env_func(init_state=self.init_state, randomized_init=False, cost=Cost.QUADRATIC, randomized_inertial_prop=False, episode_len_sec=self.episode_len_sec, task=self.task, task_info=self.task_info, ctrl_freq=self.ctrl_freq, pyb_freq=self.pyb_freq ) self.env = RecordEpisodeStatistics(self.env, self.deque_size) # Controller params. self.model = self.env.symbolic self.Q = get_cost_weight_matrix(self.q_lqr, self.model.nx) self.R = get_cost_weight_matrix(self.r_lqr, self.model.nu) self.env.set_cost_function_param(self.Q, self.R) self.env.reset() # Linearize at operating point (equilibrium for stabilization). self.x_0, self.u_0 = self.env.X_GOAL, self.env.U_GOAL def run(self, n_episodes=1, render=False, logging=False, verbose=False, use_adv=False): """Runs evaluation with current policy. Args: render (bool): Flag to save frames for visualization. logging (bool): Flag to log results. Returns: eval_results (dict): Dictionary containing returns and data for each evaluation trial. """ # Initialize logging variables. ep_returns, ep_lengths, ep_fulldata, frames = [], [], {}, [] # Loop through episode. for self.ep_counter in range(self.eval_batch_size): # Initialize new environment for the test trial. self.init_env() # Run iLQR for the particular initial condition. ilqr_eval_results = self.run_ilqr(render=render, logging=logging) # Save the results from the last iteration for evaluation. ep_returns.append(ilqr_eval_results["ite_returns"][-1]) ep_lengths.append(ilqr_eval_results["ite_lengths"][-1]) ep_fulldata["run%d_data" % self.ep_counter] = ilqr_eval_results["ite_data"] if "frames" in ilqr_eval_results: frames.append(ilqr_eval_results["frames"][-1]) # Print episode reward. print(colored("Test Run %d reward %.4f" % (self.ep_counter, ep_returns[-1]), "yellow")) print(colored("==========================\n", "yellow")) # Save reward if self.save_data: np.savetxt(self.data_dir + "test%d_rewards.csv" % self.ep_counter, np.array([ep_returns[-1]]), delimiter=',', fmt='%.8f') # Collect evaluation results. ep_lengths = np.asarray(ep_lengths) ep_returns = np.asarray(ep_returns) # Log data. if logging: msg = "****** Evaluation ******\n" msg += "eval_ep_length {:.2f} +/- {:.2f} | " + \ "eval_ep_return {:.3f} +/- {:.3f}\n".format( ep_lengths.mean(), ep_lengths.std(), ep_returns.mean(), ep_returns.std()) self.logger.info(msg + "\n") # Save evaluation results. # Note: To retrieve the state and input trajectories, use the following # eval_results["ep_fulldata"]["run#_data"]["ite#_state"] # eval_results["ep_fulldata"]["run#_data"]["ite#_input"] eval_results = { "ep_returns": ep_returns, "ep_lengths": ep_lengths, "ep_fulldata": ep_fulldata } # Save frames. if frames is not None and len(frames) > 0: eval_results["frames"] = frames return eval_results
39.11465
137
0.532202
393dffcf9e04df00974024a1d02d23daa2a05bb8
2,956
py
Python
docs/conf.py
dmyersturnbull/sauronx
5c0cd4a0602dcd3224f799701f95f48d5ddf2fc0
[ "Apache-2.0" ]
null
null
null
docs/conf.py
dmyersturnbull/sauronx
5c0cd4a0602dcd3224f799701f95f48d5ddf2fc0
[ "Apache-2.0" ]
27
2021-02-22T06:49:46.000Z
2022-03-14T09:15:55.000Z
docs/conf.py
dmyersturnbull/sauronx
5c0cd4a0602dcd3224f799701f95f48d5ddf2fc0
[ "Apache-2.0" ]
null
null
null
""" Sphinx config file. Uses several extensions to get API docs and sourcecode. https://www.sphinx-doc.org/en/master/usage/configuration.html """ from pathlib import Path from typing import Optional, Type, TypeVar import tomlkit # This assumes that we have the full project root above, containing pyproject.toml _root = Path(__file__).parent.parent.absolute() _toml = tomlkit.loads((_root / "pyproject.toml").read_text(encoding="utf8")) T = TypeVar("T") def find(key: str, default: Optional[T] = None, as_type: Type[T] = str) -> Optional[T]: """ Gets a value from pyproject.toml, or a default. Args: key: A period-delimited TOML key; e.g. ``tools.poetry.name`` default: Default value if any node in the key is not found as_type: Convert non-``None`` values to this type before returning Returns: The value converted to ``as_type``, or ``default`` if it was not found """ at = _toml for k in key.split("."): at = at.get(k) if at is None: return default return as_type(at) # Basic information, used by Sphinx # Leave language as None unless you have multiple translations language = None project = find("tool.poetry.name") version = find("tool.poetry.version") release = version author = ", ".join(find("tool.poetry.authors", as_type=list)) # Copyright string (for documentation) # It's not clear whether we're supposed to, but we'll add the license copyright = find("tool.tyrannosaurus.sources.copyright").strip("'") _license = find("tool.tyrannosaurus.sources.doc_license") _license_url = find("tool.tyrannosaurus.sources.doc_license_url") # Load extensions # These should be in docs/requirements.txt # Napoleon is bundled in Sphinx, so we don't need to list it there # NOTE: 'autoapi' here refers to sphinx-autoapi # See https://sphinx-autoapi.readthedocs.io/ extensions = [ "autoapi.extension", "sphinx.ext.napoleon", "sphinx_copybutton", "sphinx_rtd_theme", ] master_doc = "index" napoleon_include_special_with_doc = True autoapi_type = "python" autoapi_dirs = [str(_root / project)] autoapi_keep_files = True autoapi_python_class_content = "both" autoapi_member_order = "groupwise" autoapi_options = ["private-members", "undoc-members", "special-members"] # The vast majority of Sphinx themes are unmaintained # This includes the commonly used alabaster theme # The readthedocs theme is pretty good anyway # These can be specific to the theme, or processed by Sphinx directly # https://www.sphinx-doc.org/en/master/usage/configuration.html html_theme = "sphinx_rtd_theme" html_theme_options = dict( collapse_navigation=False, navigation_depth=False, style_external_links=True, ) # doc types to build sphinx_enable_epub_build = False sphinx_enable_pdf_build = False exclude_patterns = ["_build", "Thumbs.db", ".*", "~*", "*~", "*#"] if __name__ == "__main__": print(f"{project} v{version}\n© Copyright {copyright}")
32.844444
87
0.721583
25198d8b8d4beda066b30989fdc21735cb50c1c4
4,120
py
Python
chartify/_core/options.py
rechenchen/PycharmProjects
9e5dd9e3795bc440738d2d9df4ec55eb9f902f08
[ "Apache-2.0" ]
1
2019-01-03T00:36:08.000Z
2019-01-03T00:36:08.000Z
chartify/_core/options.py
gabriel-rcpereira/chartify
6dbe996e847d9c37ebe1b712eb9791ab96c8387a
[ "Apache-2.0" ]
4
2021-09-08T03:06:21.000Z
2022-03-12T00:55:48.000Z
chartify/_core/options.py
gabriel-rcpereira/chartify
6dbe996e847d9c37ebe1b712eb9791ab96c8387a
[ "Apache-2.0" ]
1
2019-05-22T20:11:16.000Z
2019-05-22T20:11:16.000Z
# -*- coding: utf-8 -*- # # Copyright (c) 2017-2018 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import os from pathlib import Path import yaml class ChartifyOptions: def __init__(self): try: options_path = os.environ['CHARTIFY_CONFIG_DIR'] except KeyError: home_path = str(Path.home()) options_path = home_path + '/.chartify/' self._options = OrderedDict({ 'style.color_palette_categorical': OptionValue('Category20'), 'style.color_palette_sequential': OptionValue('Blues'), 'style.color_palette_diverging': OptionValue('RdBu'), 'style.color_palette_accent': OptionValue('Category20'), 'style.color_palette_accent_default_color': OptionValue('grey'), 'chart.blank_labels': OptionValue(False), 'config.logos_path': OptionValue(options_path + 'logos/'), 'config.options': OptionValue(options_path + 'options_config.yaml'), 'config.style_settings': OptionValue(options_path + 'style_settings_config.yaml'), 'config.colors': OptionValue(options_path + 'colors_config.yaml'), 'config.color_palettes': OptionValue(options_path + 'color_palettes_config.yaml') }) config_filename = self.get_option('config.options') try: self._from_yaml(config_filename) except FileNotFoundError: pass def get_option(self, option_name): """Return the value of the given option""" return self._options[option_name].value def set_option(self, option_name, option_value): """Set the default value of the specified option. Available options: 'style.color_palette_categorical': (str) Color palette for categorical palette types. 'style.color_palette_sequential': (str) Color palette for sequential palette types. 'style.color_palette_diverging': (str) Color palette for diverging palette types. 'style.color_palette_accent': (str) Color palette for assigning color to specific values. 'style.color_palette_accent_default_color': (str) Default color of values in the 'color_column' that are not accented. Default: 'light grey' 'chart.blank_labels': boolean If False, chartify.Chart objects populate the default chart labels with helper text. Default: False """ self._options[option_name].value = option_value @staticmethod def _get_value(option_value): if isinstance(option_value, OptionValue): return option_value.value else: return option_value def _to_yaml(self, filename): """Write the options to a yaml file""" with open(filename, 'w') as outfile: yaml.dump(self._options, outfile, default_flow_style=False) def _from_yaml(self, filename): """Load options from a yaml file. Overwrites any options that are specified in the yaml file. """ yaml_options = yaml.load(open(filename)) self._options.update(yaml_options) class OptionValue: def __init__(self, value): self.value = value def __repr__(self): return '%s' % self.value options = ChartifyOptions()
33.495935
74
0.625485
7e1fc58e7d813e9c8e11ec3b66eadc0433fd2f6a
1,960
py
Python
day2/day2.py
tomp/AOC-2020
c7b8313f883b6285f118d281d99c4b32b0497289
[ "MIT" ]
null
null
null
day2/day2.py
tomp/AOC-2020
c7b8313f883b6285f118d281d99c4b32b0497289
[ "MIT" ]
null
null
null
day2/day2.py
tomp/AOC-2020
c7b8313f883b6285f118d281d99c4b32b0497289
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # # Advent of Code 2020 - Day N # from pathlib import Path from collections import Counter import re LINE_RE = re.compile(r"(\d+)-(\d+) (\w): (\w+)$") INPUTFILE = 'input.txt' def sample_input(): return filter_blank_lines(""" 1-3 a: abcde 1-3 b: cdefg 2-9 c: ccccccccc """.split("\n")) # Utility functions def load_input(infile): return filter_blank_lines(Path(infile).open()) def filter_blank_lines(lines): for line in lines: line = line.strip() if line: yield line # Solution def is_valid(line: str) -> bool: m = LINE_RE.match(line) if m: lo, hi, ch, password = m.groups() c = Counter(password) return int(lo) <= c[ch] <= int(hi) def is_valid2(line: str) -> bool: m = LINE_RE.match(line) if m: lo, hi, ch, password = m.groups() return (password[int(lo)-1] == ch) != (password[int(hi)-1] == ch) def solve(lines, is_valid) -> int: """Solve the problem.""" count = 0 for line in lines: if is_valid(line): count += 1 return count # PART 1 def example(): passwords = list(sample_input()) expected = 2 result = solve(passwords, is_valid) print("'sample-input' -> {} (expected {})".format(result, expected)) assert result == expected print('= ' * 32) def part1(lines): result = solve(lines, is_valid) print("result is {}".format(result)) print('= ' * 32) # PART 2 def example2(): passwords = list(sample_input()) expected = 1 result = solve(passwords, is_valid2) print("'sample-input' -> {} (expected {})".format(result, expected)) assert result == expected print('= ' * 32) def part2(lines): result = solve(lines, is_valid2) print("result is {}".format(result)) print('= ' * 32) if __name__ == '__main__': example() lines = list(load_input(INPUTFILE)) part1(lines) example2() part2(lines)
21.075269
73
0.592347
31c17378634a74755a77a40ade0b50f6004b3f3d
205
py
Python
python_pd/work/syntax/fizzbuzz/fizzbuzz.py
SerLap-ctrl/python-bp
1db0446bc95989ac23083e277806a2942c8d124f
[ "MIT" ]
17
2020-12-02T08:37:10.000Z
2022-03-11T11:58:57.000Z
python_pd/work/syntax/fizzbuzz/fizzbuzz.py
SerLap-ctrl/python-bp
1db0446bc95989ac23083e277806a2942c8d124f
[ "MIT" ]
6
2021-07-01T04:39:24.000Z
2021-11-03T19:04:43.000Z
python_pd/work/syntax/fizzbuzz/fizzbuzz.py
SerLap-ctrl/python-bp
1db0446bc95989ac23083e277806a2942c8d124f
[ "MIT" ]
15
2021-07-01T04:41:15.000Z
2022-03-04T15:49:15.000Z
def fizzbuzz(number): # разместите здесь реализацию основной логики программы. pass def main(): # разместите здесь проверку входных значений. pass if __name__ == '__main__': main()
15.769231
60
0.682927
7927271ed1659b7348835fc54abf7fb3cd146395
339
py
Python
day1.py
davide-butera/advent-of-code-2020
1cc67992caaa24200ee3c379f6558b46a2b5fcc7
[ "MIT" ]
null
null
null
day1.py
davide-butera/advent-of-code-2020
1cc67992caaa24200ee3c379f6558b46a2b5fcc7
[ "MIT" ]
null
null
null
day1.py
davide-butera/advent-of-code-2020
1cc67992caaa24200ee3c379f6558b46a2b5fcc7
[ "MIT" ]
null
null
null
from load import load data = list(map(lambda l: int(l), load())) def part1(): for i in data: if (2020 - i) in data: return i * (2020 - i) def part2(): for i in data: for j in data: if (2020 - i - j) in data: return i * j * (2020 - i - j) print(part1()) print(part2())
16.142857
45
0.480826
cb5881f2477edd3c915a34e30533fe364a5b0276
3,152
py
Python
MachineLearning/Server_Prediction3.py
SKravitsky/MachineLearningServer
170081fe1ea53be7394e35ce208bd665ae002b73
[ "Apache-2.0" ]
null
null
null
MachineLearning/Server_Prediction3.py
SKravitsky/MachineLearningServer
170081fe1ea53be7394e35ce208bd665ae002b73
[ "Apache-2.0" ]
null
null
null
MachineLearning/Server_Prediction3.py
SKravitsky/MachineLearningServer
170081fe1ea53be7394e35ce208bd665ae002b73
[ "Apache-2.0" ]
null
null
null
import numpy as np import pandas as pd import os import sys import pydot import mysql.connector from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.externals.six import StringIO config = { 'user': 'ECE32', 'password': 'seniordesign', 'host': 'septa-instance.ctejk6luw06s.us-west-2.rds.amazonaws.com', 'database': 'septa', 'raise_on_warnings': True, } def get_all_lines(user_id): cnx = mysql.connector.connect(**config) cursor = cnx.cursor(dictionary=True) sql4 = 'SELECT id_weekday, time_departure, id_station_origin, id_station_destination FROM trips WHERE id_user = "%s"' % user_id sql = 'SELECT id_weekday, time_departure, id_station_origin, id_station_destination FROM trips' df_mysql = pd.read_sql(sql, con=cnx) #print df_mysql.dtypes df_mysql.time_departure = df_mysql.time_departure.astype(int) #print df_mysql.dtypes #print df_mysql.head() return df_mysql def get_csv(): if os.path.exists("Update.csv"): df = pd.read_csv("Update.csv") return df def scrub_df(data): #print("* df.head()", data.head()) features = list(data.columns[:3]) targets = list(data.columns[3:]) #print("* features:", features) #print("* targets:", targets) X = data[features] Y = data[targets] #print("Head", X.tail()) #print("Head2", Y.tail()) return X,Y,features,targets def prediction_accuracy(F, T, FN, TN): clf = tree.DecisionTreeClassifier() F_train, F_test, T_train, T_test = train_test_split(F, T, test_size = .2) clf.fit(F, T) predictions = clf.predict(F_test) print accuracy_score(T_test, predictions) #tree.export_graphviz(clf, out_file='tree.dot', feature_names=FN, filled=True, rounded=True) #os.system('dot -Tpng tree.dot -o tree.png') def prediction(F, T, FN, TN, data): clf = tree.DecisionTreeClassifier() clf.fit(F, T) df_api = pd.DataFrame(data, columns = ['id_weekday','time_departure','id_station_origin']) df_api.time_departure = df_api.time_departure.astype(int) prediction = clf.predict(df_api) return prediction def start_function(user_id, weekday, time, station): df = get_all_lines(user_id) features, targets, fnames, tnames = scrub_df(df) data = (weekday, time, station) #print features #prediction_accuracy(features, targets, fnames, tnames) output_prediction = prediction(features, targets, fnames, tnames, data) print output_prediction def lambda_handler(event, context): user_id = event['key1'] weekday = event['key2'] time = event['key3'] station = event['key4'] start_function(user_id, weekday, time, station) if __name__ == "__main__": user_id = 'e2f4uovEeYU' df = get_all_lines(user_id) features, targets, fnames, tnames = scrub_df(df) print features ''' df2 = get_csv() features2, targets2, fnames2, tnames2 = scrub_df(df2) print '----' print features2 ''' prediction_accuracy(features, targets, fnames, tnames)
23.878788
131
0.678299
0b5a3bc86832a854920da1271aba439a1bbef913
7,419
py
Python
library/ospf_element_facts.py
Forcepoint/fp-NGFW-SMC-ansible
47cafea1bef162e75f3632b969e996d53d636374
[ "Apache-2.0" ]
5
2019-11-19T07:23:01.000Z
2021-08-25T08:04:49.000Z
library/ospf_element_facts.py
Forcepoint/fp-NGFW-SMC-ansible
47cafea1bef162e75f3632b969e996d53d636374
[ "Apache-2.0" ]
2
2020-03-24T20:30:32.000Z
2020-09-15T09:02:44.000Z
library/ospf_element_facts.py
Forcepoint/fp-NGFW-SMC-ansible
47cafea1bef162e75f3632b969e996d53d636374
[ "Apache-2.0" ]
3
2020-03-24T20:32:29.000Z
2022-02-15T15:29:07.000Z
#!/usr/bin/python # Copyright (c) 2017-2019 Forcepoint ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = ''' --- module: ospf_element_facts short_description: Facts about OSPF based elements in the SMC description: - BGP elements are the building blocks to building a BGP configuration on a layer 3 engine. Use this module to obtain available elements and their values. version_added: '2.5' options: element: description: - Type of OSPF element to retrieve required: true choices: - ospfv2_area - ospfv2_profile type: str extends_documentation_fragment: - management_center - management_center_facts requirements: - smc-python author: - Forcepoint ''' EXAMPLES = ''' - name: Facts about OSPF elements hosts: localhost gather_facts: no tasks: - name: Find all OSPF v2 areas ospf_element_facts: element: ospfv2_area - name: Find a specific OSPF area with details ospf_element_facts: element: ospfv2_area filter: myarea - name: Find an OSPF profile containing name 'Default' ospf_element_facts: element: ospfv2_profile filter: Default - name: Get details for autonomous system myas and save as yaml register: results ospf_element_facts: smc_logging: level: 10 path: ansible-smc.log element: ospfv2_profile filter: myprofile exact_match: false as_yaml: true - name: Write the yaml using a jinja template template: src=templates/facts_yaml.j2 dest=./ospf_element.yml vars: playbook: ospf_element ''' RETURN = ''' elements: description: List all OSPF Areas returned: always type: list sample: [ { "name": "myarea", "type": "ospfv2_area" }, { "name": "myarea2", "type": "ospfv2_area" }, { "name": "foo", "type": "ospfv2_area" }] elements: description: List a specific OSPF profile returned: always type: list sample: [ { "comment": "added by ansible", "default_metric": 123, "domain_settings_ref": "Default OSPFv2 Domain Settings", "external_distance": 110, "inter_distance": 130, "intra_distance": 110, "name": "myprofile", "redistribution_entry": [ { "enabled": true, "metric_type": "external_1", "type": "bgp" }, { "enabled": true, "filter": { "route_map": [ "myroutemap" ] }, "metric": 2, "metric_type": "external_1", "type": "static" }, { "enabled": true, "filter": { "ip_access_list": [ "myacl" ] }, "metric_type": "external_2", "type": "connected" }, { "enabled": false, "metric_type": "external_1", "type": "kernel" }, { "enabled": false, "metric_type": "external_1", "type": "default_originate" }] }] ''' from ansible.module_utils.smc_util import ForcepointModuleBase, format_element try: from smc.routing.route_map import RouteMap from smc.routing.access_list import IPAccessList from smc.base.model import lookup_class except ImportError: pass ospf_elements = ('ospfv2_area', 'ospfv2_interface_settings', 'ospfv2_key_chain', 'ospfv2_profile', 'ospfv2_domain_settings') def area_to_yaml(area): yaml = {} yaml.update( name=area.name, comment=area.comment, area_type=area.area_type, interface_settings_ref=area.interface_settings_ref.name) for filt in ('inbound_filters', 'outbound_filters'): if len(getattr(area, '%s_ref' % filt)): for _filt in getattr(area, filt): _filter = {_filt.typeof: [_filt.name]} yaml.setdefault(filt, {}).update(_filter) return yaml def profile_to_yaml(profile): yaml = {} yaml.update( name=profile.name, comment=profile.comment, external_distance=profile.external_distance, inter_distance=profile.inter_distance, intra_distance=profile.intra_distance, domain_settings_ref=profile.domain_settings_ref.name, default_metric=profile.data.get('default_metric', None) ) redist_entries = [] for redist in profile.data.get('redistribution_entry', []): filter_type = redist.pop('filter_type', 'none') if filter_type != 'none': if filter_type == 'route_map_policy': redist.update( filter={'route_map': [RouteMap.from_href( redist.pop('redistribution_rm_ref')).name]}) elif filter_type == 'access_list': redist.update( filter={'ip_access_list': [IPAccessList.from_href( redist.pop('redistribution_filter_ref')).name]}) redist_entries.append(redist) yaml.update(redistribution_entry=redist_entries) return yaml def convert_to_dict(element): if element.typeof == 'ospfv2_area': return {element.typeof: area_to_yaml(element)} elif element.typeof == 'ospfv2_profile': return {element.typeof: profile_to_yaml(element)} else: return {element.typeof: format_element(element)} class OSPFElementFacts(ForcepointModuleBase): def __init__(self): self.module_args = dict( element=dict(required=True, type='str', choices=list(ospf_elements)) ) self.element = None self.limit = None self.filter = None self.as_yaml = None self.exact_match = None self.case_sensitive = None required_if=([ ('as_yaml', True, ['filter'])]) self.results = dict( ansible_facts=dict( ospf_element=[] ) ) super(OSPFElementFacts, self).__init__(self.module_args, required_if=required_if, is_fact=True) def exec_module(self, **kwargs): for name, value in kwargs.items(): setattr(self, name, value) result = self.search_by_type(lookup_class(self.element)) if self.filter: if self.as_yaml: elements = [convert_to_dict(element) for element in result if element.name == self.filter] else: elements = [convert_to_dict(element) for element in result] else: elements = [{'name': element.name, 'type': element.typeof} for element in result] self.results['ansible_facts']['ospf_element'] = [{'elements': elements}]\ if elements else [] return self.results def main(): OSPFElementFacts() if __name__ == '__main__': main()
27.275735
93
0.560183
913479ed43dbdc561dc9fe7b69728da1da432d1d
794
py
Python
egs2/libritts/tts1/src/create_data_from_alex.py
ishine/Unsupervised-TTS
6f89633228626100615bcbe21263d80aea6920c5
[ "Apache-2.0" ]
2
2022-02-25T13:27:36.000Z
2022-03-18T21:11:35.000Z
egs2/libritts/tts1/src/create_data_from_alex.py
ishine/Unsupervised-TTS
6f89633228626100615bcbe21263d80aea6920c5
[ "Apache-2.0" ]
null
null
null
egs2/libritts/tts1/src/create_data_from_alex.py
ishine/Unsupervised-TTS
6f89633228626100615bcbe21263d80aea6920c5
[ "Apache-2.0" ]
1
2022-02-26T23:54:53.000Z
2022-02-26T23:54:53.000Z
import os import argparse def create_data_dir(phn_seq_file, text_file): with open(phn_seq_file, 'r') as f: content = f.readlines() content = [x.strip('\n') for x in content] id2phn_seq = {x.split()[0]:' '.join(x.split()[1:]) for x in content} with open(text_file, 'r') as f: content = f.readlines() content = [x.strip('\n') for x in content] id_seq = [x.split()[0] for x in content] with open(text_file, 'w') as f: for id in id_seq: f.write('%s %s\n' % (id, id2phn_seq[id])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--phn_file', type=str) parser.add_argument('--text_file', type=str) args = parser.parse_args() create_data_dir(args.phn_file, args.text_file)
29.407407
72
0.618388
18375165a526a780f2e602a3800e12833dbb3e67
14,121
py
Python
alphafold/data/mmcif_parsing.py
thenotcompany/alphafold
1d43aaff941c84dc56311076b58795797e49107b
[ "Apache-2.0" ]
45
2022-01-12T04:39:36.000Z
2022-03-25T12:33:36.000Z
alphafold/data/mmcif_parsing.py
thenotcompany/alphafold
1d43aaff941c84dc56311076b58795797e49107b
[ "Apache-2.0" ]
6
2022-01-15T16:48:39.000Z
2022-03-15T16:20:34.000Z
alphafold/data/mmcif_parsing.py
thenotcompany/alphafold
1d43aaff941c84dc56311076b58795797e49107b
[ "Apache-2.0" ]
10
2022-01-12T11:28:03.000Z
2022-03-30T11:36:41.000Z
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parses the mmCIF file format.""" import collections import dataclasses import io from typing import Any, Mapping, Optional, Sequence, Tuple from absl import logging from Bio import PDB from Bio.Data import SCOPData # Type aliases: ChainId = str PdbHeader = Mapping[str, Any] PdbStructure = PDB.Structure.Structure SeqRes = str MmCIFDict = Mapping[str, Sequence[str]] @dataclasses.dataclass(frozen=True) class Monomer: id: str num: int # Note - mmCIF format provides no guarantees on the type of author-assigned # sequence numbers. They need not be integers. @dataclasses.dataclass(frozen=True) class AtomSite: residue_name: str author_chain_id: str mmcif_chain_id: str author_seq_num: str mmcif_seq_num: int insertion_code: str hetatm_atom: str model_num: int # Used to map SEQRES index to a residue in the structure. @dataclasses.dataclass(frozen=True) class ResiduePosition: chain_id: str residue_number: int insertion_code: str @dataclasses.dataclass(frozen=True) class ResidueAtPosition: position: Optional[ResiduePosition] name: str is_missing: bool hetflag: str @dataclasses.dataclass(frozen=True) class MmcifObject: """Representation of a parsed mmCIF file. Contains: file_id: A meaningful name, e.g. a pdb_id. Should be unique amongst all files being processed. header: Biopython header. structure: Biopython structure. chain_to_seqres: Dict mapping chain_id to 1 letter amino acid sequence. E.g. {'A': 'ABCDEFG'} seqres_to_structure: Dict; for each chain_id contains a mapping between SEQRES index and a ResidueAtPosition. e.g. {'A': {0: ResidueAtPosition, 1: ResidueAtPosition, ...}} raw_string: The raw string used to construct the MmcifObject. """ file_id: str header: PdbHeader structure: PdbStructure chain_to_seqres: Mapping[ChainId, SeqRes] seqres_to_structure: Mapping[ChainId, Mapping[int, ResidueAtPosition]] raw_string: Any @dataclasses.dataclass(frozen=True) class ParsingResult: """Returned by the parse function. Contains: mmcif_object: A MmcifObject, may be None if no chain could be successfully parsed. errors: A dict mapping (file_id, chain_id) to any exception generated. """ mmcif_object: Optional[MmcifObject] errors: Mapping[Tuple[str, str], Any] class ParseError(Exception): """An error indicating that an mmCIF file could not be parsed.""" def mmcif_loop_to_list(prefix: str, parsed_info: MmCIFDict) -> Sequence[Mapping[str, str]]: """Extracts loop associated with a prefix from mmCIF data as a list. Reference for loop_ in mmCIF: http://mmcif.wwpdb.org/docs/tutorials/mechanics/pdbx-mmcif-syntax.html Args: prefix: Prefix shared by each of the data items in the loop. e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num, _entity_poly_seq.mon_id. Should include the trailing period. parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython parser. Returns: Returns a list of dicts; each dict represents 1 entry from an mmCIF loop. """ cols = [] data = [] for key, value in parsed_info.items(): if key.startswith(prefix): cols.append(key) data.append(value) assert all([len(xs) == len(data[0]) for xs in data]), ( 'mmCIF error: Not all loops are the same length: %s' % cols) return [dict(zip(cols, xs)) for xs in zip(*data)] def mmcif_loop_to_dict(prefix: str, index: str, parsed_info: MmCIFDict, ) -> Mapping[str, Mapping[str, str]]: """Extracts loop associated with a prefix from mmCIF data as a dictionary. Args: prefix: Prefix shared by each of the data items in the loop. e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num, _entity_poly_seq.mon_id. Should include the trailing period. index: Which item of loop data should serve as the key. parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython parser. Returns: Returns a dict of dicts; each dict represents 1 entry from an mmCIF loop, indexed by the index column. """ entries = mmcif_loop_to_list(prefix, parsed_info) return {entry[index]: entry for entry in entries} def parse(*, file_id: str, mmcif_string: str, catch_all_errors: bool = True) -> ParsingResult: """Entry point, parses an mmcif_string. Args: file_id: A string identifier for this file. Should be unique within the collection of files being processed. mmcif_string: Contents of an mmCIF file. catch_all_errors: If True, all exceptions are caught and error messages are returned as part of the ParsingResult. If False exceptions will be allowed to propagate. Returns: A ParsingResult. """ errors = {} try: parser = PDB.MMCIFParser(QUIET=True) handle = io.StringIO(mmcif_string) full_structure = parser.get_structure('', handle) first_model_structure = _get_first_model(full_structure) # Extract the _mmcif_dict from the parser, which contains useful fields not # reflected in the Biopython structure. parsed_info = parser._mmcif_dict # pylint:disable=protected-access # Ensure all values are lists, even if singletons. for key, value in parsed_info.items(): if not isinstance(value, list): parsed_info[key] = [value] header = _get_header(parsed_info) # Determine the protein chains, and their start numbers according to the # internal mmCIF numbering scheme (likely but not guaranteed to be 1). valid_chains = _get_protein_chains(parsed_info=parsed_info) if not valid_chains: return ParsingResult( None, {(file_id, ''): 'No protein chains found in this file.'}) seq_start_num = {chain_id: min([monomer.num for monomer in seq]) for chain_id, seq in valid_chains.items()} # Loop over the atoms for which we have coordinates. Populate two mappings: # -mmcif_to_author_chain_id (maps internal mmCIF chain ids to chain ids used # the authors / Biopython). # -seq_to_structure_mappings (maps idx into sequence to ResidueAtPosition). mmcif_to_author_chain_id = {} seq_to_structure_mappings = {} for atom in _get_atom_site_list(parsed_info): if atom.model_num != '1': # We only process the first model at the moment. continue mmcif_to_author_chain_id[atom.mmcif_chain_id] = atom.author_chain_id if atom.mmcif_chain_id in valid_chains: hetflag = ' ' if atom.hetatm_atom == 'HETATM': # Water atoms are assigned a special hetflag of W in Biopython. We # need to do the same, so that this hetflag can be used to fetch # a residue from the Biopython structure by id. if atom.residue_name in ('HOH', 'WAT'): hetflag = 'W' else: hetflag = 'H_' + atom.residue_name insertion_code = atom.insertion_code if not _is_set(atom.insertion_code): insertion_code = ' ' position = ResiduePosition(chain_id=atom.author_chain_id, residue_number=int(atom.author_seq_num), insertion_code=insertion_code) seq_idx = int(atom.mmcif_seq_num) - seq_start_num[atom.mmcif_chain_id] current = seq_to_structure_mappings.get(atom.author_chain_id, {}) current[seq_idx] = ResidueAtPosition(position=position, name=atom.residue_name, is_missing=False, hetflag=hetflag) seq_to_structure_mappings[atom.author_chain_id] = current # Add missing residue information to seq_to_structure_mappings. for chain_id, seq_info in valid_chains.items(): author_chain = mmcif_to_author_chain_id[chain_id] current_mapping = seq_to_structure_mappings[author_chain] for idx, monomer in enumerate(seq_info): if idx not in current_mapping: current_mapping[idx] = ResidueAtPosition(position=None, name=monomer.id, is_missing=True, hetflag=' ') author_chain_to_sequence = {} for chain_id, seq_info in valid_chains.items(): author_chain = mmcif_to_author_chain_id[chain_id] seq = [] for monomer in seq_info: code = SCOPData.protein_letters_3to1.get(monomer.id, 'X') seq.append(code if len(code) == 1 else 'X') seq = ''.join(seq) author_chain_to_sequence[author_chain] = seq mmcif_object = MmcifObject( file_id=file_id, header=header, structure=first_model_structure, chain_to_seqres=author_chain_to_sequence, seqres_to_structure=seq_to_structure_mappings, raw_string=parsed_info) return ParsingResult(mmcif_object=mmcif_object, errors=errors) except Exception as e: # pylint:disable=broad-except errors[(file_id, '')] = e if not catch_all_errors: raise return ParsingResult(mmcif_object=None, errors=errors) def _get_first_model(structure: PdbStructure) -> PdbStructure: """Returns the first model in a Biopython structure.""" return next(structure.get_models()) _MIN_LENGTH_OF_CHAIN_TO_BE_COUNTED_AS_PEPTIDE = 21 def get_release_date(parsed_info: MmCIFDict) -> str: """Returns the oldest revision date.""" revision_dates = parsed_info['_pdbx_audit_revision_history.revision_date'] return min(revision_dates) def _get_header(parsed_info: MmCIFDict) -> PdbHeader: """Returns a basic header containing method, release date and resolution.""" header = {} experiments = mmcif_loop_to_list('_exptl.', parsed_info) header['structure_method'] = ','.join([ experiment['_exptl.method'].lower() for experiment in experiments]) # Note: The release_date here corresponds to the oldest revision. We prefer to # use this for dataset filtering over the deposition_date. if '_pdbx_audit_revision_history.revision_date' in parsed_info: header['release_date'] = get_release_date(parsed_info) else: logging.warning('Could not determine release_date: %s', parsed_info['_entry.id']) header['resolution'] = 0.00 for res_key in ('_refine.ls_d_res_high', '_em_3d_reconstruction.resolution', '_reflns.d_resolution_high'): if res_key in parsed_info: try: raw_resolution = parsed_info[res_key][0] header['resolution'] = float(raw_resolution) except ValueError: logging.warning('Invalid resolution format: %s', parsed_info[res_key]) return header def _get_atom_site_list(parsed_info: MmCIFDict) -> Sequence[AtomSite]: """Returns list of atom sites; contains data not present in the structure.""" return [AtomSite(*site) for site in zip( # pylint:disable=g-complex-comprehension parsed_info['_atom_site.label_comp_id'], parsed_info['_atom_site.auth_asym_id'], parsed_info['_atom_site.label_asym_id'], parsed_info['_atom_site.auth_seq_id'], parsed_info['_atom_site.label_seq_id'], parsed_info['_atom_site.pdbx_PDB_ins_code'], parsed_info['_atom_site.group_PDB'], parsed_info['_atom_site.pdbx_PDB_model_num'], )] def _get_protein_chains( *, parsed_info: Mapping[str, Any]) -> Mapping[ChainId, Sequence[Monomer]]: """Extracts polymer information for protein chains only. Args: parsed_info: _mmcif_dict produced by the Biopython parser. Returns: A dict mapping mmcif chain id to a list of Monomers. """ # Get polymer information for each entity in the structure. entity_poly_seqs = mmcif_loop_to_list('_entity_poly_seq.', parsed_info) polymers = collections.defaultdict(list) for entity_poly_seq in entity_poly_seqs: polymers[entity_poly_seq['_entity_poly_seq.entity_id']].append( Monomer(id=entity_poly_seq['_entity_poly_seq.mon_id'], num=int(entity_poly_seq['_entity_poly_seq.num']))) # Get chemical compositions. Will allow us to identify which of these polymers # are proteins. chem_comps = mmcif_loop_to_dict('_chem_comp.', '_chem_comp.id', parsed_info) # Get chains information for each entity. Necessary so that we can return a # dict keyed on chain id rather than entity. struct_asyms = mmcif_loop_to_list('_struct_asym.', parsed_info) entity_to_mmcif_chains = collections.defaultdict(list) for struct_asym in struct_asyms: chain_id = struct_asym['_struct_asym.id'] entity_id = struct_asym['_struct_asym.entity_id'] entity_to_mmcif_chains[entity_id].append(chain_id) # Identify and return the valid protein chains. valid_chains = {} for entity_id, seq_info in polymers.items(): chain_ids = entity_to_mmcif_chains[entity_id] # Reject polymers without any peptide-like components, such as DNA/RNA. if any(['peptide' in chem_comps[monomer.id]['_chem_comp.type'] for monomer in seq_info]): for chain_id in chain_ids: valid_chains[chain_id] = seq_info return valid_chains def _is_set(data: str) -> bool: """Returns False if data is a special mmCIF character indicating 'unset'.""" return data not in ('.', '?')
36.677922
84
0.691665
260d3c5cecb37be3378fd1d3816fd08ad94a64a8
6,570
py
Python
modules/feedparser/util.py
whanderley/eden
08ced3be3d52352c54cbd412ed86128fbb68b1d2
[ "MIT" ]
2
2019-11-25T20:34:52.000Z
2021-06-04T20:05:46.000Z
modules/feedparser/util.py
whanderley/eden
08ced3be3d52352c54cbd412ed86128fbb68b1d2
[ "MIT" ]
1
2020-01-29T15:33:17.000Z
2020-01-29T15:33:17.000Z
modules/feedparser/util.py
whanderley/eden
08ced3be3d52352c54cbd412ed86128fbb68b1d2
[ "MIT" ]
3
2019-11-30T20:25:55.000Z
2022-02-03T17:12:16.000Z
# Copyright 2010-2019 Kurt McKee <contactme@kurtmckee.org> # Copyright 2002-2008 Mark Pilgrim # All rights reserved. # # This file is a part of feedparser. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from __future__ import unicode_literals import warnings class FeedParserDict(dict): keymap = { 'channel': 'feed', 'items': 'entries', 'guid': 'id', 'date': 'updated', 'date_parsed': 'updated_parsed', 'description': ['summary', 'subtitle'], 'description_detail': ['summary_detail', 'subtitle_detail'], 'url': ['href'], 'modified': 'updated', 'modified_parsed': 'updated_parsed', 'issued': 'published', 'issued_parsed': 'published_parsed', 'copyright': 'rights', 'copyright_detail': 'rights_detail', 'tagline': 'subtitle', 'tagline_detail': 'subtitle_detail', } def __getitem__(self, key): """ :return: A :class:`FeedParserDict`. """ if key == 'category': try: return dict.__getitem__(self, 'tags')[0]['term'] except IndexError: raise KeyError("object doesn't have key 'category'") elif key == 'enclosures': norel = lambda link: FeedParserDict([(name, value) for (name, value) in link.items() if name != 'rel']) return [ norel(link) for link in dict.__getitem__(self, 'links') if link['rel'] == 'enclosure' ] elif key == 'license': for link in dict.__getitem__(self, 'links'): if link['rel'] == 'license' and 'href' in link: return link['href'] elif key == 'updated': # Temporarily help developers out by keeping the old # broken behavior that was reported in issue 310. # This fix was proposed in issue 328. if ( not dict.__contains__(self, 'updated') and dict.__contains__(self, 'published') ): warnings.warn( "To avoid breaking existing software while " "fixing issue 310, a temporary mapping has been created " "from `updated` to `published` if `updated` doesn't " "exist. This fallback will be removed in a future version " "of feedparser.", DeprecationWarning, ) return dict.__getitem__(self, 'published') return dict.__getitem__(self, 'updated') elif key == 'updated_parsed': if ( not dict.__contains__(self, 'updated_parsed') and dict.__contains__(self, 'published_parsed') ): warnings.warn( "To avoid breaking existing software while " "fixing issue 310, a temporary mapping has been created " "from `updated_parsed` to `published_parsed` if " "`updated_parsed` doesn't exist. This fallback will be " "removed in a future version of feedparser.", DeprecationWarning, ) return dict.__getitem__(self, 'published_parsed') return dict.__getitem__(self, 'updated_parsed') else: realkey = self.keymap.get(key, key) if isinstance(realkey, list): for k in realkey: if dict.__contains__(self, k): return dict.__getitem__(self, k) elif dict.__contains__(self, realkey): return dict.__getitem__(self, realkey) return dict.__getitem__(self, key) def __contains__(self, key): if key in ('updated', 'updated_parsed'): # Temporarily help developers out by keeping the old # broken behavior that was reported in issue 310. # This fix was proposed in issue 328. return dict.__contains__(self, key) try: self.__getitem__(key) except KeyError: return False else: return True has_key = __contains__ def get(self, key, default=None): """ :return: A :class:`FeedParserDict`. """ try: return self.__getitem__(key) except KeyError: return default def __setitem__(self, key, value): key = self.keymap.get(key, key) if isinstance(key, list): key = key[0] return dict.__setitem__(self, key, value) def setdefault(self, k, default): if k not in self: self[k] = default return default return self[k] def __getattr__(self, key): # __getattribute__() is called first; this will be called # only if an attribute was not already found try: return self.__getitem__(key) except KeyError: raise AttributeError("object has no attribute '%s'" % key) def __hash__(self): # This is incorrect behavior -- dictionaries shouldn't be hashable. # Note to self: remove this behavior in the future. return id(self)
39.341317
115
0.591629
43585adbcbc8761b49ed87aecc2093b1534422eb
10,580
py
Python
tests/connectors/pony/test_statement_filter.py
gvasold/papilotte
7683da0a56daf77450f962caaf58b7cfe3acf408
[ "Apache-2.0" ]
3
2019-10-28T08:27:32.000Z
2021-03-01T02:30:26.000Z
tests/connectors/pony/test_statement_filter.py
gvasold/papilotte
7683da0a56daf77450f962caaf58b7cfe3acf408
[ "Apache-2.0" ]
null
null
null
tests/connectors/pony/test_statement_filter.py
gvasold/papilotte
7683da0a56daf77450f962caaf58b7cfe3acf408
[ "Apache-2.0" ]
null
null
null
"""Tests filtering (searching) for papilotte.connectors.pony.statement """ import copy import datetime import pytest from pony import orm from papilotte.connectors.pony import statement def test_filter_by_factoid_id(db200final_cfg): "Test the factoidId filter." connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, factoidId="F00154")) == 5 # searching for ids only matches full ids (not parts of id) assert connector.search(size=100, page=1, factoidId="F0015") == [] def test_filter_by_from(db200final_cfg): "Filter by from= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, from_='1803-03-30')) == 18 def test_filter_by_member_of(db200final_cfg): "Filter by memberOf= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, memberOf='Group 00051')) == 6 # search for partial entry in label assert len(connector.search(size=100, page=1, memberOf='oup 00051')) == 6 # searching in label is case insensitive assert len(connector.search(size=100, page=1, memberOf='group 00051')) == 6 # searching in uri is case sensitive and only matches full matches assert len(connector.search(size=100, page=1, memberOf='https://example.com/groups/00053')) == 6 # Upercase 'G' should not be found assert connector.search(size=100, page=1, memberOf='https://example.com/Groups/00053') == [] assert connector.search(size=100, page=1, memberOf='https://example.com/Groups/00053') == [] assert connector.search(size=100, page=1, memberOf='https://example.com/Groups/0005') == [] def test_filter_by_name(db200final_cfg): "Filter by name= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, name="Statement 0001")) == 9 assert len(connector.search(size=100, page=1, name="statement 0001")) == 9 assert len(connector.search(size=100, page=1, name="atement 0001")) == 9 def test_filter_by_place(db200final_cfg): "Filter by name= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, place="Place 00053")) == 12 assert len(connector.search(size=100, page=1, place="place 00053")) == 12 assert len(connector.search(size=100, page=1, place="ace 00053")) == 12 assert len(connector.search(size=100, page=1, place="https://example.com/places/00053")) == 6 assert connector.search(size=100, page=1, place="https://example.com/PLaces/00053") == [] assert connector.search(size=100, page=1, place="https://example.com/places/0005") == [] def test_filter_by_relates_to_person(db200final_cfg): "Filter by name= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, relatesToPerson="Related person 00056")) == 6 assert len(connector.search(size=100, page=1, relatesToPerson="related person 00056")) == 6 assert len(connector.search(size=100, page=1, relatesToPerson="lated person 00056")) == 6 assert len(connector.search(size=100, page=1, relatesToPerson="https://example.com/relatedpersons/00058")) == 3 assert connector.search(size=100, page=1, relatesToPerson="https://example.com/RelatedPersons/00058") == [] assert connector.search(size=100, page=1, relatesToPerson="https://example.com/relatedpersons/0005") == [] def test_filter_by_role(db200final_cfg): "Filter by name= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, role="Role 00051")) == 6 assert len(connector.search(size=100, page=1, role="role 00051")) == 6 assert len(connector.search(size=100, page=1, role="le 00051")) == 6 assert len(connector.search(size=100, page=1, role="https://example.com/roles/00053")) == 6 assert connector.search(size=100, page=1, role="https://example.com/ROLES/00053") == [] assert connector.search(size=100, page=1, role="https://example.com/roles/0005") == [] def test_filter_by_source_id(db200final_cfg): "Test the sourceId filter." connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, sourceId="S00055")) == 10 # searching for ids only matches full ids (not parts of id) assert connector.search(size=100, page=1, factoidId="F001") == [] def test_filter_by_source_label(db200final_cfg): "Test the label filter." connector = statement.StatementConnector(db200final_cfg) # search for exact label assert len(connector.search(size=100, page=1, label="Source 00002")) == 4 # search for part of label assert len(connector.search(size=100, page=1, label="Source 0000")) == 40 # search for non existing label assert connector.search(size=100, page=1, label="FooFooBar") == [] def test_filter_by_statement_content(db200final_cfg): "Filter by statementContent= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, statementContent="Statement content 00061")) == 3 assert len(connector.search(size=100, page=1, statementContent="statement content 00061")) == 3 assert len(connector.search(size=100, page=1, statementContent="ement content 00061")) == 3 def test_filter_by_statement_type(db200final_cfg): "Filter by statementContent= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, statementType="Statement type 00061")) == 6 assert len(connector.search(size=100, page=1, statementType="statement TYPE 00061")) == 6 assert len(connector.search(size=100, page=1, statementType="tement type 00061")) == 6 assert len(connector.search(size=100, page=1, statementType="https://example.com/statementtypes/00021")) == 9 assert connector.search(size=100, page=1, statementType="https://example.com/statementtypes/0002") == [] def test_filter_by_statement_id(db200final_cfg): "Test the statementId filter." connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=200, page=1, statementId="Stmt00024")) == 1 # searching for ids only matches full ids (not parts of id) assert connector.search(size=100, page=1, factoidId="Stmt001") == [] def test_filter_by_to(db200final_cfg): "Filter by statementContent= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, to='1800-06-01')) == 15 # ------------- Compliance level 1+ get tests ---------------------------------------------- # TODO: more tests def test_filter_by_p(db200final_cfg): "Test the p= parameter." connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=200, page=1, p="P00058")) == 6 assert len(connector.search(size=200, page=1, p="P0005")) == 66 assert len(connector.search(size=200, page=1, p="https://example.com/persons/22a")) == 6 # Test if only full uris are matched, so only '6', but not 60 assert len(connector.search(size=200, page=1, p="https://example.com/persons/22")) == 0 # TODO: more tests def test_filter_by_f(db200final_cfg): "Test the f= parameter" connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=220, page=1, f="F00033")) == 4 assert len(connector.search(size=200, page=1, f="F0003")) == 30 # TODO: more tests def test_filter_by_s(db200final_cfg): "Test the s= parameter." connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=200, page=1, s="S00033")) == 6 assert len(connector.search(size=200, page=1, s="S0003")) == 60 assert len(connector.search(size=200, page=1, s="Source 00031")) == 2 # TODO: more tests? def test_filter_by_st(db200final_cfg): "Test the st= parameter." connector = statement.StatementConnector(db200final_cfg) assert len(connector.search(size=100, page=1, s="Source 00031")) == 2 # id assert len(connector.search(size=100, page=1, st="Stmt00048")) == 1 # date.label assert len(connector.search(size=100, page=1, st="Historical Date 00061")) == 2 # memberOf.label assert len(connector.search(size=100, page=1, st="Group 00061")) == 6 # memberOf.uri assert len(connector.search(size=100, page=1, st="https://example.com/groups/00061")) == 3 # name assert len(connector.search(size=100, page=1, st="Statement 00048")) == 1 # role.label assert len(connector.search(size=100, page=1, st="Role 00061")) == 6 # statementContent assert len(connector.search(size=100, page=1, st="Statement content 00061")) == 3 # statementtype.label assert len(connector.search(size=100, page=1, st="Statement type 00061")) == 6 # statementType.uri assert len(connector.search(size=100, page=1, st="https://example.com/statementtypes/00021")) == 9 # places.label assert len(connector.search(size=100, page=1, st="Place 00051")) == 12 # places.uri assert len(connector.search(size=100, page=1, st="https://example.com/places/00053")) == 6 # relatesToPersons.label assert len(connector.search(size=100, page=1, st="Related person 00056")) == 6 # relatesToPersons.uri assert len(connector.search(size=100, page=1, st="https://example.com/relatedpersons/00058")) == 3 # uris assert len(connector.search(size=100, page=1, st="https://example.com/statements/61a")) == 1 def test_filter_factoid_and_source(db200final_cfg): "Test the sourceId filter together with factoid filter." connector = statement.StatementConnector(db200final_cfg) # there are 2 person with this source id assert len(connector.search(size=100, page=1, sourceId="S00055")) == 10 # if we add a factoidId, there should be only one left assert len(connector.search(size=100, page=1, sourceId="S00055", factoidId="F00054")) == 5 def test_get_factoid_refs(db200final_cfg): connector = statement.StatementConnector(db200final_cfg) st = connector.get('Stmt00001') refs = st['factoid-refs'] assert len(refs) == 1 assert refs[0]['@id'] == 'F00001' assert refs[0]['source-ref']['@id'] == 'S00002' assert refs[0]['person-ref']['@id'] == 'P00002' assert refs[0]['statement-refs'][0]['@id'] == 'Stmt00001'
48.53211
102
0.703875
a8bef0dbbb17486c7114c09d850536406924295c
20,808
py
Python
blender/render_bodies.py
ivantishchenko/RefRESH
08dd7a323ab62abcbf16b1cd13d48b787fbc878b
[ "MIT" ]
1
2020-02-12T10:37:40.000Z
2020-02-12T10:37:40.000Z
blender/render_bodies.py
ivantishchenko/RefRESH
08dd7a323ab62abcbf16b1cd13d48b787fbc878b
[ "MIT" ]
null
null
null
blender/render_bodies.py
ivantishchenko/RefRESH
08dd7a323ab62abcbf16b1cd13d48b787fbc878b
[ "MIT" ]
null
null
null
""" MIT License Copyright (c) 2018 Zhaoyang Lv Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys, os, math, time import numpy as np from os import getenv, remove from os.path import join, dirname, realpath, exists from glob import glob from pickle import load # from random import choice, seed, random import bpy from bpy_extras.object_utils import world_to_camera_view as world2cam sys.path.insert(0, ".") from motion_surreal import * from utils import world_to_blender, set_intrinsic def create_directory(target_dir): if not os.path.isdir(target_dir): os.makedirs(target_dir) def restart_blender_scene(): for obj in bpy.data.objects.values(): obj.select=False bpy.context.scene.objects.active = None class SceneGeneration: start_time = None frame_per_clip = 200 # We will generate 200 poses per clip def log_message(self, message): elapsed_time = time.time() - self.start_time print("[%.2f s] %s" % (elapsed_time, message)) def __init__(self, fg_stride, fg_number): ''' Foreground action stride. You can make it random for each object ''' self.fg_stride = fg_stride self.fg_total_number = fg_number self.start_time = time.time() self.params = io_utils.load_file('body_config', 'SYNTH_HUMAN') ##################################################################### self.log_message("Setup Blender") scene = bpy.context.scene scene = bpy.data.scenes['Scene'] scene.render.engine = 'CYCLES' scene.cycles.shading_system = True scene.use_nodes = True ##################################################################### # import idx info with the format (name, split) self.log_message("Importing idx info pickle") seed() idx_info = load(open("pkl/idx_info.pickle", 'rb')) # random load foreground indices idx_info_len = len(idx_info) fg_indices = [int(idx_info_len*random()) for i in range(idx_info_len)] self.fg_indices_info = [] for idx in fg_indices: self.fg_indices_info.append(idx_info[idx]) ####################################################################### self.log_message("Loading the smpl data") smpl_data_folder = self.params['smpl_data_folder'] smpl_data_filename = self.params['smpl_data_filename'] self.smpl_data = np.load(join(smpl_data_folder, smpl_data_filename)) ###################################################################### self.log_message('Set up background information') self.init_camera() ######################################################################## # the closing option grey, nongrey or all clothing_option = self.params['clothing_option'] self.log_message('Set up foreground information. clothing: %s' % clothing_option) genders = {0: 'female', 1: 'male'} # pick several foreground objects with random gender and clothing self.clothing_names = [] for idx in range(self.fg_total_number): gender = choice(genders) with open( join(smpl_data_folder, 'textures', '%s_%s.txt' % ( gender, self.fg_indices_info[idx]['use_split'] ) ) ) as f: txt_paths = f.read().splitlines() # if using only one source of clothing if clothing_option == 'nongrey': txt_paths = [k for k in txt_paths if 'nongrey' in k] elif clothing_option == 'grey': txt_paths = [k for k in txt_paths if 'nongrey' not in k] # random clothing texture cloth_img_name = choice(txt_paths) cloth_img_name = join(smpl_data_folder, cloth_img_name) self.clothing_names.append([gender, cloth_img_name]) ###################################################################### self.log_message('Prepare for output directory') self.init_directories() # >> don't use random generator before this point << # initialize RNG with seeds from sequence id ToDo: not sure whether still useful or not import hashlib s = "synth_data:{:d}".format(fg_stride) seed_number = int(hashlib.sha1(s.encode('utf-8')).hexdigest(), 16) % (10 ** 8) self.log_message("GENERATED SEED %d from string '%s'" % (seed_number, s)) np.random.seed(seed_number) output_types = self.params['output_types'] if(output_types['vblur']): vblur_factor = np.random.normal(0.5, 0.5) self.params['vblur_factor'] = vblur_factor ####################################################################### # grab clothing names self.log_message('Set up blender node') self.res_paths = self.create_composite_nodes(scene.node_tree) def init_directories(self): ''' how the data will be saved ''' folder_name = 'bodies_output' tmp_path = self.params['tmp_path'] tmp_path = join(tmp_path, folder_name) self.tmp_path = tmp_path print('The blender output will be written to {:s}'.format(self.tmp_path)) if exists(tmp_path) and tmp_path != "" and tmp_path != "/": os.system('rm -rf %s' % tmp_path) rgb_vid_filename = folder_name + ".mp4" create_directory(tmp_path) # create copy-spher.harm. directory if not exists sh_dir = join(tmp_path, 'spher_harm') create_directory(sh_dir) self.sh_dst = join(sh_dir, 'sh_sphere.osl') os.system('cp spher_harm/sh.osl {:s}'.format(self.sh_dst)) self.rgb_path = join(tmp_path, 'rgb_video.mp4') def init_camera(self): ''' Currently no camera poses are loaded. You can random set the camera trajectory to render multiple images at one time. Leave to Abhijit as an option TODO. ''' # load the pickle file generated from background rendering self.cam_poses = [] self.cam_poses.append(np.eye(4)) # set or load the camera intrinsic here K = [528.871, 528.871, 320, 240] bpy_camera_obj = bpy.data.objects['Camera'] bpy_scene = bpy.context.scene set_intrinsic(K, bpy_camera_obj, bpy_scene, self.params['height'], self.params['width']) self.K = np.eye(3) self.K[0,0] = K[0] self.K[1,1] = K[1] self.K[0,2] = K[2] self.K[1,2] = K[3] def run(self): # time logging scene = bpy.context.scene output_types = self.params['output_types'] restart_blender_scene() self.log_message("Initializing scene") fg_humans, bpy_camera_obj = self.init_scene() orig_cam_loc = bpy_camera_obj.location.copy() smpl_DoF = 10 # only pick the top DoF for the creations, maximum 10 # for each clipsize'th frame in the sequence random_zrot = 0 reset_loc = False batch_it = 0 random_zrot = 2*np.pi*np.random.rand() bpy_camera_obj.animation_data_clear() # set for optical flow for part, material in fg_humans[0].materials.items(): material.node_tree.nodes['Vector Math'].inputs[1].default_value[:2] = (0, 0) # set up random light shading_params = .7 * (2 * np.random.rand(9) - 1) shading_params[0] = .5 + .9 * np.random.rand() # Ambient light (first coeff) needs a minimum is ambient. Rest is uniformly distributed, higher means brighter. shading_params[1] = -.7 * np.random.rand() # spherical harmonics material needs a script to be loaded and compiled spherical_harmonics = [] for mname, material in fg_humans[0].materials.items(): spherical_harmonics.append(material.node_tree.nodes['Script']) spherical_harmonics[-1].filepath = self.sh_dst spherical_harmonics[-1].update() for ish, coeff in enumerate(shading_params): for sc in spherical_harmonics: sc.inputs[ish+1].default_value = coeff ''' -------------------- LOOP TO CREATE 3D ANIMATION ''' # create a keyframe animation with pose, translation, blendshapes and camera motion for frame_idx in range(0, len(self.cam_poses)): scene.frame_set(frame_idx) bpy_camera_obj.matrix_world = world_to_blender(Matrix(self.cam_poses[frame_idx])) bpy_camera_obj.keyframe_insert('location', frame=frame_idx) bpy_camera_obj.keyframe_insert('rotation_euler', frame=frame_idx) # apply the translation, pose and shape to the character body_data_index = frame_idx * self.fg_stride for idx in range(self.fg_total_number): pose, trans = fg_humans[idx].apply_Rt_body_shape(body_data_index, frame_idx) scene.update() ''' ---------------------- LOOP TO RENDER ------------------------- ''' # iterate over the keyframes and render for frame_idx in range(0, len(self.cam_poses)): scene.frame_set(frame_idx) scene.render.use_antialiasing = False scene.render.filepath = join(self.rgb_path, 'Image%04d.png' % frame_idx) self.log_message("Rendering frame {:d}".format(frame_idx)) # disable render output logfile = '/dev/null' open(logfile, 'a').close() old = os.dup(1) sys.stdout.flush() os.close(1) os.open(logfile, os.O_WRONLY) # Render bpy.ops.render.render(write_still=True) # disable output redirection os.close(1) os.dup(old) os.close(old) for idx in range(self.fg_total_number): fg_humans[idx].reset_pose() def create_composite_nodes(self, tree, img=None): ''' Create the different passes for blender rendering. Note: refer to blender render passes for all the relevant information: https://docs.blender.org/manual/en/dev/render/blender_render/settings/passes.html We use cycles engine in our renderng setting: https://docs.blender.org/manual/en/dev/render/cycles/settings/scene/render_layers/passes.html ''' res_paths = {k:join(self.tmp_path, k) for k in self.params['output_types'] if self.params['output_types'][k]} # clear default nodes for n in tree.nodes: tree.nodes.remove(n) # create node for foreground image layers = tree.nodes.new('CompositorNodeRLayers') layers.location = -300, 400 if(self.params['output_types']['vblur']): # create node for computing vector blur (approximate motion blur) vblur = tree.nodes.new('CompositorNodeVecBlur') vblur.factor = params['vblur_factor'] vblur.location = 240, 400 # create node for saving output of vector blurred image vblur_out = tree.nodes.new('CompositorNodeOutputFile') vblur_out.format.file_format = 'PNG' vblur_out.base_path = res_paths['vblur'] vblur_out.location = 460, 460 # create node for the final output composite_out = tree.nodes.new('CompositorNodeComposite') composite_out.location = 240, 30 # create node for saving depth if(self.params['output_types']['depth']): depth_out = tree.nodes.new('CompositorNodeOutputFile') depth_out.location = 40, 700 depth_out.format.file_format = 'OPEN_EXR' depth_out.base_path = res_paths['depth'] # create node for saving normals if(self.params['output_types']['normal']): normal_out = tree.nodes.new('CompositorNodeOutputFile') normal_out.location = 40, 600 normal_out.format.file_format = 'OPEN_EXR' normal_out.base_path = res_paths['normal'] # create node for saving foreground image if(self.params['output_types']['fg']): fg_out = tree.nodes.new('CompositorNodeOutputFile') fg_out.location = 170, 600 fg_out.format.file_format = 'PNG' fg_out.base_path = res_paths['fg'] # create node for saving ground truth flow if(self.params['output_types']['gtflow']): gtflow_out = tree.nodes.new('CompositorNodeOutputFile') gtflow_out.location = 40, 500 gtflow_out.format.file_format = 'OPEN_EXR' gtflow_out.base_path = res_paths['gtflow'] # create node for saving segmentation if(self.params['output_types']['segm']): segm_out = tree.nodes.new('CompositorNodeOutputFile') segm_out.location = 40, 400 segm_out.format.file_format = 'OPEN_EXR' segm_out.base_path = res_paths['segm'] if(self.params['output_types']['vblur']): tree.links.new(layers.outputs['Image'], vblur.inputs[0]) # apply vector blur on the bg+fg image, tree.links.new(layers.outputs['Depth'], vblur.inputs[1]) # using depth, tree.links.new(layers.outputs['Vector'], vblur.inputs[2]) # and flow. tree.links.new(vblur.outputs[0], vblur_out.inputs[0]) # save vblurred output if(self.params['output_types']['fg']): tree.links.new(layers.outputs['Image'], fg_out.inputs[0]) # save fg if(self.params['output_types']['depth']): tree.links.new(layers.outputs['Depth'], depth_out.inputs[0]) # save depth if(self.params['output_types']['normal']): tree.links.new(layers.outputs['Normal'], normal_out.inputs[0]) # save normal if(self.params['output_types']['gtflow']): tree.links.new(layers.outputs['Vector'], gtflow_out.inputs[0]) # save ground truth flow if(self.params['output_types']['segm']): # IndexMA: get access to alpha value per object per mask # https://docs.blender.org/manual/en/dev/compositing/types/converter/id_mask.html tree.links.new(layers.outputs['IndexMA'], segm_out.inputs[0]) # save segmentation return(res_paths) # creation of the spherical harmonics material, using an OSL script def create_shader_material(self, tree, sh_path, texture): # clear default nodes for n in tree.nodes: tree.nodes.remove(n) uv = tree.nodes.new('ShaderNodeTexCoord') uv.location = -800, 400 uv_xform = tree.nodes.new('ShaderNodeVectorMath') uv_xform.location = -600, 400 uv_xform.inputs[1].default_value = (0, 0, 1) uv_xform.operation = 'AVERAGE' # for pair in self.clothing_names: cloth_img = bpy.data.images.load(texture) uv_im = tree.nodes.new('ShaderNodeTexImage') uv_im.location = -400, 400 uv_im.image = cloth_img rgb = tree.nodes.new('ShaderNodeRGB') rgb.location = -400, 200 script = tree.nodes.new('ShaderNodeScript') script.location = -230, 400 script.mode = 'EXTERNAL' script.filepath = sh_path #'spher_harm/sh.osl' #using the same file from multiple jobs causes white texture script.update() # the emission node makes it independent of the scene lighting emission = tree.nodes.new('ShaderNodeEmission') emission.location = -60, 400 mat_out = tree.nodes.new('ShaderNodeOutputMaterial') mat_out.location = 110, 400 tree.links.new(uv.outputs[2], uv_im.inputs[0]) tree.links.new(uv_im.outputs[0], script.inputs[0]) tree.links.new(script.outputs[0], emission.inputs[0]) tree.links.new(emission.outputs[0], mat_out.inputs[0]) def init_scene(self): '''init_scene Initialize the blender scene environment ''' # TODO: add the scene loading functions # may also need to add the camera sequence here # assign the existing spherical harmonics material #fg_obj.active_material = bpy.data.materials['Material'] # delete the default cube (which held the material) bpy.ops.object.select_all(action='DESELECT') bpy.data.objects['Cube'].select = True bpy.ops.object.delete(use_global=False) # set camera properties and initial position bpy.ops.object.select_all(action='DESELECT') bpy_camera_obj = bpy.data.objects['Camera'] bpy_scene = bpy.context.scene bpy_scene.objects.active = bpy_camera_obj bpy_camera_obj.matrix_world = world_to_blender(Matrix(self.cam_poses[0])) ##### set cycles and cuda cycles_preferences = bpy.context.user_preferences.addons['cycles'].preferences bpy_scene.render.use_overwrite = False bpy_scene.render.use_placeholder = True cycles_preferences.compute_device_type = "CUDA" bpy_scene.cycles.film_transparent = True bpy_scene.render.layers["RenderLayer"].use_pass_vector = True bpy_scene.render.layers["RenderLayer"].use_pass_normal = True bpy_scene.render.layers['RenderLayer'].use_pass_emit = True bpy_scene.render.layers['RenderLayer'].use_pass_material_index = True # set render size bpy_scene.render.resolution_x = self.params['width'] bpy_scene.render.resolution_y = self.params['height'] bpy_scene.render.resolution_percentage = 100 bpy_scene.render.image_settings.file_format = 'PNG' # set the render parameters bpy_scene.render.use_raytrace = False bpy_scene.render.tile_x = 512 bpy_scene.render.tile_y = 512 bpy_scene.cycles.max_bounces = 8 bpy_scene.cycles.samples = 64 W, H = self.params['width'], self.params['height'] fg_humans = [] for idx in range(self.fg_total_number): # randomly set the camera pose here, leave to Abhijit to set the foreground poses np.random.seed() loc_2d = [np.random.uniform(0, W), np.random.uniform(0, H), 1.0] distance = np.random.uniform(1, 20) # Not sure how you want to normalize it. loc_3d = np.linalg.inv(self.K).dot(loc_2d) * distance # transform coordinate to blender loc_3d *= np.array([1, -1, -1]) cam_pose = world_to_blender(Matrix(self.cam_poses[0])) # set up the material for the object material = bpy.data.materials.new(name='Material'+str(idx)) # material = bpy.data.materials['Material'] material.use_nodes = True self.create_shader_material(material.node_tree, self.sh_dst, self.clothing_names[idx][1]) # randomly generate action number gender = self.clothing_names[idx][0] fg_human = SMPL_Body(self.smpl_data, gender, cam_pose, material, idx, anchor_location3d=loc_3d) fg_human.obj.active_material = material fg_humans.append(fg_human) return fg_humans, bpy_camera_obj if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Generate synth dataset images') parser.add_argument('--fg_stride', type=int, default=0, help='The number of stride when we load') parser.add_argument('--fg_number', type=int, default=0, help='The total number of foreground bodies') args = parser.parse_args(sys.argv[sys.argv.index("--") + 1:]) fg_stride, fg_number = None, None if args.fg_stride != 0: fg_stride = args.fg_stride if args.fg_number != 0: fg_number = args.fg_number sg = SceneGeneration(fg_stride, fg_number) sg.run() # sys.exit()
40.247582
167
0.621588
53683e5667d608ca22d96dd2e0c1d70999f55e9b
294
py
Python
jurisdictions/united-states/downloaddate_function.py
DiarmuidM/charity-dissolution
17ddaa2177ec97661516bb46f773e7fb32178a29
[ "MIT" ]
null
null
null
jurisdictions/united-states/downloaddate_function.py
DiarmuidM/charity-dissolution
17ddaa2177ec97661516bb46f773e7fb32178a29
[ "MIT" ]
null
null
null
jurisdictions/united-states/downloaddate_function.py
DiarmuidM/charity-dissolution
17ddaa2177ec97661516bb46f773e7fb32178a29
[ "MIT" ]
2
2020-03-26T12:38:59.000Z
2020-04-22T19:43:40.000Z
from time import sleep from datetime import datetime # Define a function that identifies the data the script was run; derived from datatime. Call on this function from other scripts. def downloaddate(): ddate = datetime.today().strftime('%Y%m%d') print(ddate) return ddate #downloaddate()
29.4
129
0.768707
8dd5c507d7da342fde880fdbf2deb8b0ab3a95ee
7,173
py
Python
homeassistant/components/tibber/sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
4
2020-07-29T17:47:10.000Z
2020-09-16T13:39:13.000Z
homeassistant/components/tibber/sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
6
2020-11-08T19:40:10.000Z
2022-03-01T11:11:07.000Z
homeassistant/components/tibber/sensor.py
klauern/home-assistant-core
c18ba6aec0627e6afb6442c678edb5ff2bb17db6
[ "Apache-2.0" ]
5
2020-03-29T00:29:13.000Z
2021-09-06T20:58:40.000Z
"""Support for Tibber sensors.""" import asyncio from datetime import timedelta import logging import aiohttp from homeassistant.const import POWER_WATT from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle, dt as dt_util from .const import DOMAIN as TIBBER_DOMAIN, MANUFACTURER _LOGGER = logging.getLogger(__name__) ICON = "mdi:currency-usd" ICON_RT = "mdi:power-plug" SCAN_INTERVAL = timedelta(minutes=1) MIN_TIME_BETWEEN_UPDATES = timedelta(minutes=5) PARALLEL_UPDATES = 0 async def async_setup_entry(hass, entry, async_add_entities): """Set up the Tibber sensor.""" tibber_connection = hass.data.get(TIBBER_DOMAIN) dev = [] for home in tibber_connection.get_homes(only_active=False): try: await home.update_info() except asyncio.TimeoutError as err: _LOGGER.error("Timeout connecting to Tibber home: %s ", err) raise PlatformNotReady() except aiohttp.ClientError as err: _LOGGER.error("Error connecting to Tibber home: %s ", err) raise PlatformNotReady() if home.has_active_subscription: dev.append(TibberSensorElPrice(home)) if home.has_real_time_consumption: dev.append(TibberSensorRT(home)) async_add_entities(dev, True) class TibberSensor(Entity): """Representation of a generic Tibber sensor.""" def __init__(self, tibber_home): """Initialize the sensor.""" self._tibber_home = tibber_home self._last_updated = None self._state = None self._is_available = False self._device_state_attributes = {} self._name = tibber_home.info["viewer"]["home"]["appNickname"] if self._name is None: self._name = tibber_home.info["viewer"]["home"]["address"].get( "address1", "" ) @property def device_state_attributes(self): """Return the state attributes.""" return self._device_state_attributes @property def model(self): """Return the model of the sensor.""" return None @property def state(self): """Return the state of the device.""" return self._state @property def device_id(self): """Return the ID of the physical device this sensor is part of.""" home = self._tibber_home.info["viewer"]["home"] return home["meteringPointData"]["consumptionEan"] @property def device_info(self): """Return the device_info of the device.""" device_info = { "identifiers": {(TIBBER_DOMAIN, self.device_id)}, "name": self.name, "manufacturer": MANUFACTURER, } if self.model is not None: device_info["model"] = self.model return device_info class TibberSensorElPrice(TibberSensor): """Representation of a Tibber sensor for el price.""" async def async_update(self): """Get the latest data and updates the states.""" now = dt_util.now() if ( self._tibber_home.current_price_total and self._last_updated and self._last_updated.hour == now.hour and self._tibber_home.last_data_timestamp ): return if ( not self._tibber_home.last_data_timestamp or (self._tibber_home.last_data_timestamp - now).total_seconds() / 3600 < 12 or not self._is_available ): _LOGGER.debug("Asking for new data.") await self._fetch_data() res = self._tibber_home.current_price_data() self._state, price_level, self._last_updated = res self._device_state_attributes["price_level"] = price_level attrs = self._tibber_home.current_attributes() self._device_state_attributes.update(attrs) self._is_available = self._state is not None @property def available(self): """Return True if entity is available.""" return self._is_available @property def name(self): """Return the name of the sensor.""" return f"Electricity price {self._name}" @property def model(self): """Return the model of the sensor.""" return "Price Sensor" @property def icon(self): """Return the icon to use in the frontend.""" return ICON @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return self._tibber_home.price_unit @property def unique_id(self): """Return a unique ID.""" return self.device_id @Throttle(MIN_TIME_BETWEEN_UPDATES) async def _fetch_data(self): try: await self._tibber_home.update_info() await self._tibber_home.update_price_info() except (asyncio.TimeoutError, aiohttp.ClientError): return data = self._tibber_home.info["viewer"]["home"] self._device_state_attributes["app_nickname"] = data["appNickname"] self._device_state_attributes["grid_company"] = data["meteringPointData"][ "gridCompany" ] self._device_state_attributes["estimated_annual_consumption"] = data[ "meteringPointData" ]["estimatedAnnualConsumption"] class TibberSensorRT(TibberSensor): """Representation of a Tibber sensor for real time consumption.""" async def async_added_to_hass(self): """Start listen for real time data.""" await self._tibber_home.rt_subscribe(self.hass.loop, self._async_callback) async def _async_callback(self, payload): """Handle received data.""" errors = payload.get("errors") if errors: _LOGGER.error(errors[0]) return data = payload.get("data") if data is None: return live_measurement = data.get("liveMeasurement") if live_measurement is None: return self._state = live_measurement.pop("power", None) for key, value in live_measurement.items(): if value is None: continue self._device_state_attributes[key] = value self.async_write_ha_state() @property def available(self): """Return True if entity is available.""" return self._tibber_home.rt_subscription_running @property def model(self): """Return the model of the sensor.""" return "Tibber Pulse" @property def name(self): """Return the name of the sensor.""" return f"Real time consumption {self._name}" @property def should_poll(self): """Return the polling state.""" return False @property def icon(self): """Return the icon to use in the frontend.""" return ICON_RT @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return POWER_WATT @property def unique_id(self): """Return a unique ID.""" return f"{self.device_id}_rt_consumption"
30.523404
88
0.632511
bc67a947ec5d3b7bd326a55d3b9cf1e39817f1b7
15,411
py
Python
dependencies/rdflib/namespace.py
situx/geowebannotation
1c4f27226913ae45f8943ee5fb2cabed494f3273
[ "MIT" ]
8
2019-05-29T09:38:30.000Z
2021-01-20T03:36:59.000Z
dependencies/rdflib/namespace.py
situx/geowebannotation
1c4f27226913ae45f8943ee5fb2cabed494f3273
[ "MIT" ]
12
2021-03-09T03:01:16.000Z
2022-03-11T23:59:36.000Z
dependencies/rdflib/namespace.py
situx/geowebannotation
1c4f27226913ae45f8943ee5fb2cabed494f3273
[ "MIT" ]
4
2021-06-10T18:54:16.000Z
2021-10-25T00:42:22.000Z
from rdflib.py3compat import format_doctest_out __doc__ = format_doctest_out(""" =================== Namespace Utilities =================== RDFLib provides mechanisms for managing Namespaces. In particular, there is a :class:`~rdflib.namespace.Namespace` class that takes as its argument the base URI of the namespace. .. code-block:: pycon >>> from rdflib.namespace import Namespace >>> owl = Namespace('http://www.w3.org/2002/07/owl#') Fully qualified URIs in the namespace can be constructed either by attribute or by dictionary access on Namespace instances: .. code-block:: pycon >>> owl.seeAlso rdflib.term.URIRef(%(u)s'http://www.w3.org/2002/07/owl#seeAlso') >>> owl['seeAlso'] rdflib.term.URIRef(%(u)s'http://www.w3.org/2002/07/owl#seeAlso') Automatic handling of unknown predicates ----------------------------------------- As a programming convenience, a namespace binding is automatically created when :class:`rdflib.term.URIRef` predicates are added to the graph. Importable namespaces ----------------------- The following namespaces are available by directly importing from rdflib: * RDF * RDFS * OWL * XSD * FOAF * SKOS * DOAP * DC * DCTERMS * VOID .. code-block:: pycon >>> from rdflib import OWL >>> OWL.seeAlso rdflib.term.URIRef(%(u)s'http://www.w3.org/2002/07/owl#seeAlso') """) import logging logger = logging.getLogger(__name__) import os from urllib.parse import urljoin, urldefrag from urllib.request import pathname2url from rdflib.term import URIRef, Variable, _XSD_PFX, _is_valid_uri __all__ = [ 'is_ncname', 'split_uri', 'Namespace', 'ClosedNamespace', 'NamespaceManager', 'XMLNS', 'RDF', 'RDFS', 'XSD', 'OWL', 'SKOS', 'DOAP', 'FOAF', 'DC', 'DCTERMS', 'VOID'] class Namespace(str): __doc__ = format_doctest_out(""" Utility class for quickly generating URIRefs with a common prefix >>> from rdflib import Namespace >>> n = Namespace("http://example.org/") >>> n.Person # as attribute rdflib.term.URIRef(%(u)s'http://example.org/Person') >>> n['first-name'] # as item - for things that are not valid python identifiers rdflib.term.URIRef(%(u)s'http://example.org/first-name') """) def __new__(cls, value): try: rt = str.__new__(cls, value) except UnicodeDecodeError: rt = str.__new__(cls, value, 'utf-8') return rt @property def title(self): return URIRef(self + 'title') def term(self, name): # need to handle slices explicitly because of __getitem__ override return URIRef(self + (name if isinstance(name, str) else '')) def __getitem__(self, key, default=None): return self.term(key) def __getattr__(self, name): if name.startswith("__"): # ignore any special Python names! raise AttributeError else: return self.term(name) def __repr__(self): return "Namespace(%s)"%str.__repr__(self) class URIPattern(str): __doc__ = format_doctest_out(""" Utility class for creating URIs according to some pattern This supports either new style formatting with .format or old-style with %% operator >>> u=URIPattern("http://example.org/%%s/%%d/resource") >>> u%%('books', 12345) rdflib.term.URIRef(%(u)s'http://example.org/books/12345/resource') """) def __new__(cls, value): try: rt = str.__new__(cls, value) except UnicodeDecodeError: rt = str.__new__(cls, value, 'utf-8') return rt def __mod__(self, *args, **kwargs): return URIRef(str(self).__mod__(*args, **kwargs)) def format(self, *args, **kwargs): return URIRef(str.format(self, *args, **kwargs)) def __repr__(self): return "URIPattern(%r)"%str.__repr__(self) class ClosedNamespace(object): """ A namespace with a closed list of members Trying to create terms not listen is an error """ def __init__(self, uri, terms): self.uri = uri self.__uris = {} for t in terms: self.__uris[t] = URIRef(self.uri + t) def term(self, name): uri = self.__uris.get(name) if uri is None: raise Exception( "term '%s' not in namespace '%s'" % (name, self.uri)) else: return uri def __getitem__(self, key, default=None): return self.term(key) def __getattr__(self, name): if name.startswith("__"): # ignore any special Python names! raise AttributeError else: return self.term(name) def __str__(self): return str(self.uri) def __repr__(self): return """rdf.namespace.ClosedNamespace('%s')""" % str(self.uri) class _RDFNamespace(ClosedNamespace): """ Closed namespace for RDF terms """ def __init__(self): super(_RDFNamespace, self).__init__( URIRef("http://www.w3.org/1999/02/22-rdf-syntax-ns#"), terms=[ # Syntax Names "RDF", "Description", "ID", "about", "parseType", "resource", "li", "nodeID", "datatype", # RDF Classes "Seq", "Bag", "Alt", "Statement", "Property", "List", "PlainLiteral", # RDF Properties "subject", "predicate", "object", "type", "value", "first", "rest", # and _n where n is a non-negative integer # RDF Resources "nil", # Added in RDF 1.1 "XMLLiteral", "HTML", "langString"] ) def term(self, name): try: i = int(name) return URIRef("%s_%s" % (self.uri, i)) except ValueError: return super(_RDFNamespace, self).term(name) RDF = _RDFNamespace() RDFS = ClosedNamespace( uri=URIRef("http://www.w3.org/2000/01/rdf-schema#"), terms=[ "Resource", "Class", "subClassOf", "subPropertyOf", "comment", "label", "domain", "range", "seeAlso", "isDefinedBy", "Literal", "Container", "ContainerMembershipProperty", "member", "Datatype"] ) OWL = Namespace('http://www.w3.org/2002/07/owl#') XSD = Namespace(_XSD_PFX) SKOS = Namespace('http://www.w3.org/2004/02/skos/core#') DOAP = Namespace('http://usefulinc.com/ns/doap#') FOAF = Namespace('http://xmlns.com/foaf/0.1/') DC = Namespace('http://purl.org/dc/elements/1.1/') DCTERMS = Namespace('http://purl.org/dc/terms/') VOID = Namespace('http://rdfs.org/ns/void#') class NamespaceManager(object): """ Class for managing prefix => namespace mappings Sample usage from FuXi ... .. code-block:: python ruleStore = N3RuleStore(additionalBuiltins=additionalBuiltins) nsMgr = NamespaceManager(Graph(ruleStore)) ruleGraph = Graph(ruleStore,namespace_manager=nsMgr) and ... .. code-block:: pycon >>> import rdflib >>> from rdflib import Graph >>> from rdflib.namespace import Namespace, NamespaceManager >>> exNs = Namespace('http://example.com/') >>> namespace_manager = NamespaceManager(Graph()) >>> namespace_manager.bind('ex', exNs, override=False) >>> g = Graph() >>> g.namespace_manager = namespace_manager >>> all_ns = [n for n in g.namespace_manager.namespaces()] >>> assert ('ex', rdflib.term.URIRef('http://example.com/')) in all_ns >>> """ def __init__(self, graph): self.graph = graph self.__cache = {} self.__log = None self.bind("xml", "http://www.w3.org/XML/1998/namespace") self.bind("rdf", RDF) self.bind("rdfs", RDFS) self.bind("xsd", XSD) def reset(self): self.__cache = {} def __get_store(self): return self.graph.store store = property(__get_store) def qname(self, uri): prefix, namespace, name = self.compute_qname(uri) if prefix == "": return name else: return ":".join((prefix, name)) def normalizeUri(self, rdfTerm): """ Takes an RDF Term and 'normalizes' it into a QName (using the registered prefix) or (unlike compute_qname) the Notation 3 form for URIs: <...URI...> """ try: namespace, name = split_uri(rdfTerm) namespace = URIRef(str(namespace)) except: if isinstance(rdfTerm, Variable): return "?%s" % rdfTerm else: return "<%s>" % rdfTerm prefix = self.store.prefix(namespace) if prefix is None and isinstance(rdfTerm, Variable): return "?%s" % rdfTerm elif prefix is None: return "<%s>" % rdfTerm else: qNameParts = self.compute_qname(rdfTerm) return ':'.join([qNameParts[0], qNameParts[-1]]) def compute_qname(self, uri, generate=True): if not _is_valid_uri(uri): raise Exception('"%s" does not look like a valid URI, I cannot serialize this. Perhaps you wanted to urlencode it?'%uri) if not uri in self.__cache: namespace, name = split_uri(uri) namespace = URIRef(namespace) prefix = self.store.prefix(namespace) if prefix is None: if not generate: raise Exception( "No known prefix for %s and generate=False") num = 1 while 1: prefix = "ns%s" % num if not self.store.namespace(prefix): break num += 1 self.bind(prefix, namespace) self.__cache[uri] = (prefix, namespace, name) return self.__cache[uri] def bind(self, prefix, namespace, override=True, replace=False): """bind a given namespace to the prefix if override, rebind, even if the given namespace is already bound to another prefix. if replace, replace any existing prefix with the new namespace """ namespace = URIRef(str(namespace)) # When documenting explain that override only applies in what cases if prefix is None: prefix = '' bound_namespace = self.store.namespace(prefix) # Check if the bound_namespace contains a URI # and if so convert it into a URIRef for comparison # This is to prevent duplicate namespaces with the # same URI if bound_namespace: bound_namespace = URIRef(bound_namespace) if bound_namespace and bound_namespace != namespace: if replace: self.store.bind(prefix, namespace) return # prefix already in use for different namespace # # append number to end of prefix until we find one # that's not in use. if not prefix: prefix = "default" num = 1 while 1: new_prefix = "%s%s" % (prefix, num) tnamespace = self.store.namespace(new_prefix) if tnamespace and namespace == URIRef(tnamespace): # the prefix is already bound to the correct # namespace return if not self.store.namespace(new_prefix): break num += 1 self.store.bind(new_prefix, namespace) else: bound_prefix = self.store.prefix(namespace) if bound_prefix is None: self.store.bind(prefix, namespace) elif bound_prefix == prefix: pass # already bound else: if override or bound_prefix.startswith("_"): # or a generated # prefix self.store.bind(prefix, namespace) def namespaces(self): for prefix, namespace in self.store.namespaces(): namespace = URIRef(namespace) yield prefix, namespace def absolutize(self, uri, defrag=1): base = urljoin("file:", pathname2url(os.getcwd())) result = urljoin("%s/" % base, uri, allow_fragments=not defrag) if defrag: result = urldefrag(result)[0] if not defrag: if uri and uri[-1] == "#" and result[-1] != "#": result = "%s#" % result return URIRef(result) # From: http://www.w3.org/TR/REC-xml#NT-CombiningChar # # * Name start characters must have one of the categories Ll, Lu, Lo, # Lt, Nl. # # * Name characters other than Name-start characters must have one of # the categories Mc, Me, Mn, Lm, or Nd. # # * Characters in the compatibility area (i.e. with character code # greater than #xF900 and less than #xFFFE) are not allowed in XML # names. # # * Characters which have a font or compatibility decomposition # (i.e. those with a "compatibility formatting tag" in field 5 of the # database -- marked by field 5 beginning with a "<") are not allowed. # # * The following characters are treated as name-start characters rather # than name characters, because the property file classifies them as # Alphabetic: [#x02BB-#x02C1], #x0559, #x06E5, #x06E6. # # * Characters #x20DD-#x20E0 are excluded (in accordance with Unicode # 2.0, section 5.14). # # * Character #x00B7 is classified as an extender, because the property # list so identifies it. # # * Character #x0387 is added as a name character, because #x00B7 is its # canonical equivalent. # # * Characters ':' and '_' are allowed as name-start characters. # # * Characters '-' and '.' are allowed as name characters. from unicodedata import category NAME_START_CATEGORIES = ["Ll", "Lu", "Lo", "Lt", "Nl"] NAME_CATEGORIES = NAME_START_CATEGORIES + ["Mc", "Me", "Mn", "Lm", "Nd"] ALLOWED_NAME_CHARS = ["\u00B7", "\u0387", "-", ".", "_"] # http://www.w3.org/TR/REC-xml-names/#NT-NCName # [4] NCName ::= (Letter | '_') (NCNameChar)* /* An XML Name, minus # the ":" */ # [5] NCNameChar ::= Letter | Digit | '.' | '-' | '_' | CombiningChar # | Extender def is_ncname(name): first = name[0] if first == "_" or category(first) in NAME_START_CATEGORIES: for i in range(1, len(name)): c = name[i] if not category(c) in NAME_CATEGORIES: if c in ALLOWED_NAME_CHARS: continue return 0 # if in compatibility area # if decomposition(c)!='': # return 0 return 1 else: return 0 XMLNS = "http://www.w3.org/XML/1998/namespace" def split_uri(uri): if uri.startswith(XMLNS): return (XMLNS, uri.split(XMLNS)[1]) length = len(uri) for i in range(0, length): c = uri[-i - 1] if not category(c) in NAME_CATEGORIES: if c in ALLOWED_NAME_CHARS: continue for j in range(-1 - i, length): if category(uri[j]) in NAME_START_CATEGORIES or uri[j] == "_": ns = uri[:j] if not ns: break ln = uri[j:] return (ns, ln) break raise Exception("Can't split '%s'" % uri)
30.638171
132
0.577445
2ad490768db3777f6472de436030686eaa44944b
2,583
py
Python
ote_sdk/ote_sdk/usecases/exportable_code/visualization.py
pfinashx/training_extensions
6b9d085900c0f8c0742a477ebf04f55987edd241
[ "Apache-2.0" ]
null
null
null
ote_sdk/ote_sdk/usecases/exportable_code/visualization.py
pfinashx/training_extensions
6b9d085900c0f8c0742a477ebf04f55987edd241
[ "Apache-2.0" ]
null
null
null
ote_sdk/ote_sdk/usecases/exportable_code/visualization.py
pfinashx/training_extensions
6b9d085900c0f8c0742a477ebf04f55987edd241
[ "Apache-2.0" ]
null
null
null
# INTEL CONFIDENTIAL # # Copyright (C) 2021 Intel Corporation # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were provided to # you ("License"). Unless the License provides otherwise, you may not use, modify, copy, # publish, distribute, disclose or transmit this software or the related documents # without Intel's prior written permission. # # This software and the related documents are provided as is, # with no express or implied warranties, other than those that are expressly stated # in the License. from typing import Optional import cv2 import numpy as np from ote_sdk.entities.annotation import AnnotationSceneEntity from ote_sdk.usecases.exportable_code.streamer.streamer import MediaType from ote_sdk.utils.shape_drawer import ShapeDrawer class Visualizer: """ Visualize the predicted output by drawing the annotations on the input image. :example: >>> predictions = inference_model.predict(frame) >>> annotation = prediction_converter.convert_to_annotation(predictions) >>> output = visualizer.draw(frame, annotation.shape, annotation.get_labels()) >>> visualizer.show(output) """ def __init__( self, media_type: Optional[MediaType] = None, window_name: Optional[str] = None, show_count: bool = False, is_one_label: bool = False, delay: Optional[int] = None, ): self.window_name = "Window" if window_name is None else window_name self.shape_drawer = ShapeDrawer(show_count, is_one_label) if delay is None: self.delay = 0 if (media_type == "" or media_type == MediaType.image) else 1 def draw(self, image: np.ndarray, annotation: AnnotationSceneEntity) -> np.ndarray: """ Draw annotations on the image :param image: Input image :param annotation: Annotations to be drawn on the input image :return: Output image with annotations. """ # TODO: Conversion is to be made in `show` not here. # This requires ShapeDrawer.draw to be updated image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) return self.shape_drawer.draw(image, annotation, labels=[]) def show(self, image: np.ndarray) -> None: # TODO: RGB2BGR Conversion is to be made here. # This requires ShapeDrawer.draw to be updated cv2.imshow(self.window_name, image) def is_quit(self) -> bool: return ord("q") == cv2.waitKey(self.delay)
36.380282
88
0.69338
98ff682c19a81c98f8897b0a20c2e6e30bcf587e
670
py
Python
api/util/escape.py
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
285
2019-12-23T09:50:21.000Z
2021-12-08T09:08:49.000Z
api/util/escape.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
null
null
null
api/util/escape.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
9
2019-12-23T12:59:25.000Z
2022-03-15T05:12:11.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- try: import simplejson as __json except ImportError: import json as __json def to_str(value): """unicode->str""" if isinstance(value, (str, type(None))): return value assert isinstance(value, unicode) return value.encode("utf-8") def to_unicode(value): """str->unicode""" if isinstance(value, (unicode, type(None))): return value assert isinstance(value, str) return value.decode("utf-8") def load_json(value): """json->obj""" return __json.loads(value) def dump_json(value): """obj->json""" return __json.dumps(value, separators=(',', ':'))
19.142857
53
0.622388
b20bd4d5269618989c3d8751b85a713941a0ccdb
1,415
py
Python
solum/tests/api/camp/test_platform_endpoints.py
ed-/solum
2d23edb7fb53e1bdeff510710824658575d166c4
[ "Apache-2.0" ]
null
null
null
solum/tests/api/camp/test_platform_endpoints.py
ed-/solum
2d23edb7fb53e1bdeff510710824658575d166c4
[ "Apache-2.0" ]
null
null
null
solum/tests/api/camp/test_platform_endpoints.py
ed-/solum
2d23edb7fb53e1bdeff510710824658575d166c4
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from solum.api.controllers.camp import platform_endpoints from solum import objects from solum.tests import base from solum.tests import fakes @mock.patch('pecan.request', new_callable=fakes.FakePecanRequest) @mock.patch('pecan.response', new_callable=fakes.FakePecanResponse) class TestPlatformEndpoints(base.BaseTestCase): def setUp(self): super(TestPlatformEndpoints, self).setUp() objects.load() def test_platform_endpoints_get(self, resp_mock, request_mock): fake_platform_endpoints = fakes.FakePlatformEndpoints() cont = platform_endpoints.Controller() resp = cont.index() self.assertEqual(200, resp_mock.status) self.assertEqual(fake_platform_endpoints.name, resp['result'].name) self.assertEqual(fake_platform_endpoints.type, resp['result'].type)
38.243243
75
0.75053
225321c0bd21e3f7235ca52e56130ee6921043ed
822
py
Python
src/z3c/celery/logging.py
agroszer/z3c.celery
b64504c78a4b8d60f90208970167c3932c0aa919
[ "BSD-3-Clause" ]
null
null
null
src/z3c/celery/logging.py
agroszer/z3c.celery
b64504c78a4b8d60f90208970167c3932c0aa919
[ "BSD-3-Clause" ]
null
null
null
src/z3c/celery/logging.py
agroszer/z3c.celery
b64504c78a4b8d60f90208970167c3932c0aa919
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import from celery._state import get_current_task import zope.exceptions.log class TaskFormatter(zope.exceptions.log.Formatter): """Provides `task_id` and `task_name` variables for the log format. We want to have a general formatter so we want to get rid of '???' which are rendered by celery.app.log.TaskFormatter. Also we inherit from zope.exceptions to support `__traceback_info__`. """ def format(self, record): task = get_current_task() if task: record.__dict__.update( task_id=task.request.id, task_name=task.name) else: record.__dict__.setdefault('task_name', '') record.__dict__.setdefault('task_id', '') return super(TaskFormatter, self).format(record)
34.25
76
0.667883
835430777bb2dc5a56129928167fbec1d8ed13be
4,927
py
Python
clickTheBall.py
tommccallum/python-simple-games
f3a4e02c14ee200f7d20f816367668315fed42f6
[ "MIT" ]
null
null
null
clickTheBall.py
tommccallum/python-simple-games
f3a4e02c14ee200f7d20f816367668315fed42f6
[ "MIT" ]
null
null
null
clickTheBall.py
tommccallum/python-simple-games
f3a4e02c14ee200f7d20f816367668315fed42f6
[ "MIT" ]
null
null
null
#!/usr/bin/python ## python script for a simple game ## where the person has to click on a round circle ## when they do their score goes up ## every n points the speed of movement increases import pygame import sys import math import random import time timeAllowed=10 ## seconds level=1 width=640 height=480 initialRadius=20 radius = initialRadius thickness = 0 ## fills if thickness is zero color = ( 255, 0, 0 ) startx = int(round(width / 2)) starty = int(round(height / 2)) score = 0 win_points = 1 step = 5 # how many points before we change speed speed = 1 # how fast do we move direction_x = random.choice([-1,1]) direction_y = random.choice([-1,1]) initialSleep=50000 sleep=initialSleep cnt=0 startTime=time.clock() state=True COLORS = [(139, 0, 0), (0, 100, 0), (0, 0, 139)] ## initalise location x = startx y = starty def random_color(): return random.choice(COLORS) def onClick( pos, x, y, radius ): "This function detects in pos is in the circle (x,y,r)" d = pow(radius,2) n = math.pow(pos[0] - x,2) + math.pow(pos[1] - y,2) if n <= 0: return False if n >= 0 and n <= d: return True return False def draw( screen, color, x, y, radius, thickness, score, level, timeLeft ): screen.fill((255,255,255)) ## clear screen to background color ## draw shapes pygame.draw.circle( screen, color, (x,y), radius, thickness ) ## display score text using a given font f = pygame.font.SysFont("monospace",15) label = f.render("Level: "+str(level)+" Score: "+str(score)+" Time Left: "+str(timeLeft), 1, (0,0,0)) screen.blit(label, (10,10)) pygame.display.update() pygame.init() ## screen setup ## (0,0) is upper left hand corner screen = pygame.display.set_mode( (width, height), 0, 32 ) ## draw starting position timeLeft = timeAllowed - int(round(time.clock() - startTime)) draw( screen, color, x, y, radius, thickness, score, level, timeLeft ) ## enter our event loop looking for the user to click the circle while True: if state == True: ev = pygame.event.get() for event in ev: if event.type == pygame.MOUSEBUTTONUP: pos = pygame.mouse.get_pos() hit = onClick( pos, x, y, radius ) if hit == True: print("HIT!") score += win_points color = random_color() direction_x = random.choice([-1,1]) direction_y = random.choice([-1,1]) x = random.randint(radius,width-radius) y = random.randint(radius,height-radius) radius=random.randint(20,50) if score % step == 0: sleep = int(round(sleep * 0.8)) level = level + 1 if event.type == pygame.KEYDOWN: if event.key == pygame.K_q: pygame.quit() sys.exit("Bye!") if event.key == pygame.K_n: ## quickly skip to next level sleep = int(round(sleep * 0.8)) level = level + 1 if cnt % sleep == 0: x = x + ( speed * direction_x ) y = y + ( speed * direction_y ) if x > width-radius: direction_x = -1 * direction_x if x < radius: direction_x = -1 * direction_x if y > height-radius: direction_y = -1 * direction_y if y < radius: direction_y = -1 * direction_y timeLeft = timeAllowed - int(round(time.clock() - startTime)) draw( screen, color, x, y, radius, thickness, score, level, timeLeft ) cnt=cnt+1 if time.clock() - startTime > timeAllowed: screen.fill((0,255,0)) ## clear screen to background color f = pygame.font.SysFont("arial bold",45) s = "Well Done! You scored "+str(score) d = f.size(s) label = f.render(s, 1, (255,255,0)) screen.blit(label, (width/2 - d[0]/2,height/2 - d[1]/2)) pygame.display.update() state=False else: # waiting for player to restart ev = pygame.event.get() for event in ev: if event.type == pygame.KEYDOWN: if event.key == pygame.K_r: state=True startTime=time.clock() score=0 cnt=0 sleep=initialSleep direction_x = random.choice([-1,1]) direction_y = random.choice([-1,1]) level=1 radius = initialRadius if event.key == pygame.K_q: pygame.quit() sys.exit("Bye!")
31.787097
105
0.527907
6c99c8379c86057607da638af82b3463e170302a
1,043
py
Python
oscarBuild/ContainerLauncher.py
PatrickKutch/minioncontainers
018a9644199b4ec00348065519674eb775cc1d92
[ "Apache-2.0" ]
null
null
null
oscarBuild/ContainerLauncher.py
PatrickKutch/minioncontainers
018a9644199b4ec00348065519674eb775cc1d92
[ "Apache-2.0" ]
null
null
null
oscarBuild/ContainerLauncher.py
PatrickKutch/minioncontainers
018a9644199b4ec00348065519674eb775cc1d92
[ "Apache-2.0" ]
null
null
null
import argparse import subprocess import os def main(): parser = argparse.ArgumentParser(description='Minion Launcher.') parser.add_argument("-t","--target",help='specifies the IP:PORT of target Oscar or Marvin',required=True,type=str) parser.add_argument("-p","--port",help="the UDP port to listen on default is 3232",type=int,default=3232) parser.add_argument("-i","--id",help="the Oscar ID, default is 'ContainerizedOscar'",type=str,default="ContainerizedOscar") args = parser.parse_args() parts=args.target.split(":") marvinIP = parts[0] marvinPort = parts[1] int(parts[1]) # port should be an int envVars=dict(os.environ) envVars["MarvinIP"]=marvinIP envVars["MarvinPort"]= marvinPort envVars["ListenPort"] = str(args.port) oscarProc = subprocess.Popen(["python", "Oscar.py", "-i", "OscarConfig.xml"],env=envVars) oscarProc.wait() if __name__ == "__main__": try: main() except Exception as ex: print("Uncaught app error: " + str(ex))
30.676471
127
0.667306
169b2eeed2adb366abf620fa777ed2660e7b3b9d
5,700
py
Python
tests/test_pipeline3.py
gvwilson/nitinat
48d95e27301af955c09d3757507f8fd66ce204d7
[ "MIT" ]
null
null
null
tests/test_pipeline3.py
gvwilson/nitinat
48d95e27301af955c09d3757507f8fd66ce204d7
[ "MIT" ]
14
2022-03-22T22:48:14.000Z
2022-03-31T11:18:53.000Z
tests/test_pipeline3.py
gvwilson/nitinat
48d95e27301af955c09d3757507f8fd66ce204d7
[ "MIT" ]
null
null
null
"""Test provenance pipeline.""" from datetime import datetime from textwrap import dedent from unittest.mock import patch import pandas as pd import yaml from pytest import fixture from nitinat.pipeline3 import pipeline READ_CONFIG = "nitinat.pipeline3._read_config" NOW = "nitinat.pipeline3._now" READER_SHORTENED_LEN = 3 def simple_df(): return pd.DataFrame( { "red": [0.1, 0.2, 0.3], "green": [0.4, 0.5, 0.6], "blue": [0.7, 0.8, 0.9], "orange": [1.1, 1.2, 1.3], "yellow": [1.4, 1.5, 1.6], "purple": [1.7, 1.8, 1.9], } ) def times(num_stages): return [datetime(2022, 1, 1, 1, 1, i) for i in range(2 * num_stages)] def first(df): """To demonstrate pipeline operation.""" return df.iloc[[0]] def head(df, num, debug=False): """To demonstrate pipeline operation.""" return df.head(1) if debug else df.head(num) def tail(df, num, debug=False): """To demonstrate pipeline operation.""" return df.tail(1) if debug else df.tail(num) def reader(debug=False): """To demonstrate pipeline operation.""" df = simple_df() return df.head(READER_SHORTENED_LEN) if debug else df def failure(df, debug=False): """To demonstrate pipeline operation.""" raise ValueError("failure message") @fixture def available(): return {f.__name__: f for f in [first, head, tail, reader, failure]} def test_pipeline3_empty_returns_nothing(available): with patch(READ_CONFIG, return_value=[]): provenance, result = pipeline("test.yml", available) assert result is None assert provenance == [] def test_pipeline3_single_stage_no_parameters_no_overall(available): config = [{"function": "reader"}] with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(1)), ): expected = simple_df() provenance, result = pipeline("test.yml", available) assert result.equals(expected) assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader"} ] def test_pipeline3_two_stages_with_parameters_no_overall(available): config = [{"function": "reader"}, {"function": "head", "num": 2}] with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(2)), ): provenance, result = pipeline("test.yml", available) assert len(result) == 2 assert result.equals(simple_df().iloc[[0, 1]]) assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader"}, {"exc": None, "elapsed": 1.0, "function": "head", "num": 2}, ] def test_pipeline3_single_stage_with_debugging(available): config = [{"function": "reader", "debug": True}] with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(1)), ): provenance, result = pipeline("test.yml", available) assert len(result) == READER_SHORTENED_LEN assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader", "debug": True} ] def test_pipeline3_single_stage_with_overall_debugging(available): config = [{"overall": {"debug": True}}, {"function": "reader"}] with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(1)), ): provenance, result = pipeline("test.yml", available) assert len(result) == READER_SHORTENED_LEN assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader", "debug": True} ] def test_pipeline3_two_stage_with_overall_debugging(available): data_len = len(simple_df()) config = [ {"overall": {"debug": True}}, {"function": "reader"}, {"function": "head", "num": data_len}, ] with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(2)), ): provenance, result = pipeline("test.yml", available) assert len(result) == 1 assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader", "debug": True}, { "exc": None, "elapsed": 1.0, "function": "head", "num": data_len, "debug": True, }, ] def test_pipeline3_two_stage_with_yaml_text(available): config = dedent( """\ - overall: debug: true - function: reader - function: head num: 1000 """ ) config = yaml.safe_load(config) with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(2)), ): provenance, result = pipeline("test.yml", available) assert len(result) == 1 assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader", "debug": True}, { "exc": None, "elapsed": 1.0, "function": "head", "num": 1000, "debug": True, }, ] def test_pipeline3_two_stages_with_failure(available): config = [{"function": "reader"}, {"function": "failure"}] with ( patch(READ_CONFIG, return_value=config), patch(NOW, side_effect=times(2)), ): provenance, result = pipeline("test.yml", available) assert result is None assert provenance == [ {"exc": None, "elapsed": 1.0, "function": "reader"}, { "exc": "ValueError('failure message')", "elapsed": 1.0, "function": "failure", }, ]
28.787879
79
0.569123
de284f9dc9535c3eed51076b4eeae5f734ada46d
2,630
py
Python
src/jama/api_caller.py
taishengG/jama-slack-integration
746b7186ceaf955ca81e9e0ad4862141ce35eb8d
[ "MIT" ]
1
2019-07-17T22:39:21.000Z
2019-07-17T22:39:21.000Z
src/jama/api_caller.py
taishengG/jama-slack-integration
746b7186ceaf955ca81e9e0ad4862141ce35eb8d
[ "MIT" ]
4
2018-11-16T05:56:06.000Z
2018-11-29T05:07:52.000Z
src/jama/api_caller.py
taishengG/jama-slack-integration
746b7186ceaf955ca81e9e0ad4862141ce35eb8d
[ "MIT" ]
6
2018-11-08T03:49:28.000Z
2019-04-29T19:53:25.000Z
from jama import oauth import os import json import requests def is_using_oauth(): return "DB_HOST" in os.environ def post(team_id, user_id, url, payload): """ Using post method to get data from given Jama url Args: team_id (string): Slack team ID user_id (string): Slack User ID url (string): Jama API url payload (dict): The dictionary of payload wants to be sent to the url Returns: (dict): Data get from Jama (None): If fail to get Jama OAuth, return None """ if is_using_oauth(): token = oauth.get_access_token(team_id, user_id) if token is None: return None header_list = { "content-type": "application/json", "Authorization": "Bearer " + token } response = requests.post(url, json=payload, headers=header_list) else: response = requests.post(url, json=payload, auth=(os.environ["JAMA_USER"], os.environ["JAMA_PASS"])) return json.loads(response.text) def get(team_id, user_id, url): """ Using get method to get data from given Jama url Args: team_id (string): Slack team ID user_id (string): Slack User ID url (string): Jama API url Returns: (dict): Data get from Jama (None): If fail to get Jama OAuth, return None """ if is_using_oauth(): token = oauth.get_access_token(team_id, user_id) if token is None: return None header_list = { "content-type": "application/json", "Authorization": "Bearer " + token } response = requests.get(url, headers=header_list) else: response = requests.get(url, auth=(os.environ["JAMA_USER"], os.environ["JAMA_PASS"])) return json.loads(response.text) def put_file(team_id, user_id, url, file_data): """ Using put method to get data from given url Args: team_id (string): Slack team ID user_id (string): Slack User ID url (string): Jama API url file_data (dict): The file name and file data wants to be sent to the url Returns: (dict): Data get from Jama (None): If fail to get Jama OAuth, return None """ if is_using_oauth(): token = oauth.get_access_token(team_id, user_id) if token is None: return None response = requests.put(url, files=file_data, headers={"Authorization": "Bearer " + token}) else: response = requests.put(url, files=file_data, auth=(os.environ["JAMA_USER"], os.environ["JAMA_PASS"])) return response.status_code
32.073171
110
0.61635
fb28fd1ffef02a96e84c8adfeb706ddfa69ff423
9,706
py
Python
recommender.py
cmpgamer/Sprint2
5f9aadb4b3450cfa3db34484b52ef0614e6abc6b
[ "MIT" ]
null
null
null
recommender.py
cmpgamer/Sprint2
5f9aadb4b3450cfa3db34484b52ef0614e6abc6b
[ "MIT" ]
null
null
null
recommender.py
cmpgamer/Sprint2
5f9aadb4b3450cfa3db34484b52ef0614e6abc6b
[ "MIT" ]
null
null
null
import codecs from math import sqrt class recommender: def __init__(self, k=1, n=5): self.k = k self.n = n self.data = {} self.username2id = {} self.userid2name = {} self.productid2name = {} self.cardinality = {} self.slopeOneDeviations = {} #Grab a bunch of info from the CSV self.artists = {} self.users = {} self.normalizedData = {} self.similarity = {} self.frequencies = {} self.deviations = {} # for some reason I want to save the name of the metric def convertProductID2name(self, id): if id in self.productid2name: return self.productid2name[id] else: return id def userRatings(self, id, n): """Return n top ratings for user with id""" print ("Ratings for " + self.userid2name[id]) ratings = self.data[id] print(len(ratings)) ratings = list(ratings.items())[:n] ratings = [(self.convertProductID2name(k), v) for (k, v) in ratings] # finally sort and return ratings.sort(key=lambda artistTuple: artistTuple[1], reverse = True) for rating in ratings: print("%s\t%i" % (rating[0], rating[1])) def showUserTopItems(self, user, n): """ show top n items for user""" items = list(self.data[user].items()) items.sort(key=lambda itemTuple: itemTuple[1], reverse=True) for i in range(n): print("%s\t%i" % (self.convertProductID2name(items[i][0]),items[i][1])) def computeDeviations(self): # for each person in the data: # get their ratings for ratings in self.data.values(): # for each item & rating in that set of ratings: for (item, rating) in ratings.items(): self.frequencies.setdefault(item, {}) self.deviations.setdefault(item, {}) # for each item2 & rating2 in that set of ratings: for (item2, rating2) in ratings.items(): if item != item2: # add the difference between the ratings to our # computation self.frequencies[item].setdefault(item2, 0) self.deviations[item].setdefault(item2, 0.0) self.frequencies[item][item2] += 1 self.deviations[item][item2] += rating - rating2 for (item, ratings) in self.deviations.items(): for item2 in ratings: ratings[item2] /= self.frequencies[item][item2] def pearson(self, rating1, rating2): sum_xy = 0 sum_x = 0 sum_y = 0 sum_x2 = 0 sum_y2 = 0 n = 0 for key in rating1: if key in rating2: n += 1 x = rating1[key] y = rating2[key] sum_xy += x * y sum_x += x sum_y += y sum_x2 += pow(x, 2) sum_y2 += pow(y, 2) if n == 0: return 0 # now compute denominator denominator = sqrt(sum_x2 - pow(sum_x, 2) / n) * sqrt(sum_y2 - pow(sum_y, 2) / n) if denominator == 0: return 0 else: return (sum_xy - (sum_x * sum_y) / n) / denominator def computeNearestNeighbor(self, username): distances = [] for instance in self.data: if instance != username: distance = self.manhattan(self.data[username], self.data[instance]) distances.append((instance, distance)) # sort based on distance -- closest first distances.sort(key=lambda artistTuple: artistTuple[1], reverse=True) return distances def recommend(self, user): print("we got here") """Give list of recommendations""" recommendations = {} # first get list of users ordered by nearness nearest = self.computeNearestNeighbor(user) # # now get the ratings for the user # userRatings = self.data[user] # # determine the total distance totalDistance = 0.0 for i in range(self.k): totalDistance += nearest[i][1] # now iterate through the k nearest neighbors # accumulating their ratings for i in range(self.k): # compute slice of pie weight = nearest[i][1] / totalDistance # get the name of the person name = nearest[i][0] # get the ratings for this person neighborRatings = self.data[name] # get the name of the person # now find bands neighbor rated that user didn't for artist in neighborRatings: if not artist in userRatings: if artist not in recommendations: recommendations[artist] = neighborRatings[artist] * weight else: recommendations[artist] = recommendations[artist] + neighborRatings[artist] * weight # now make list from dictionary and only get the first n items recommendations = list(recommendations.items())[:self.n] recommendations = [(self.convertProductID2name(k), v) for (k, v) in recommendations] # finally sort and return recommendations.sort(key=lambda artistTuple: artistTuple[1], reverse = True) return recommendations def manhattan(self, rating1, rating2): """Computes the Manhattan distance. Both rating1 and rating2 are dictionaries of the form {'The Strokes': 3.0, 'Slightly Stoopid': 2.5}""" distance = 0 commonRatings = False for key in rating1: if key in rating2: distance += abs(rating1[key] - rating2[key]) commonRatings = True if commonRatings: return distance else: return -1 #Indicates no ratings in common def euclidean(self, rating1, rating2): """Computes the euclidean distance. Both rating1 and rating2 are dictionaries of the form {'The Strokes': 3.0, 'Slightly Stoopid': 2.5}""" totalDistance = 0 distance = 0 commonRatings = False for key in rating1: if key in rating2: distance = abs(rating1[key] - rating2[key]) totalDistance += pow(distance, 2) commonRatings = True if commonRatings: return pow(totalDistance, .5) else: return -1 #Indicates no ratings in common def computeCosineSimilarity(self): averages = {} similarity = {} #We need the averages for each user for the numerator for userItem, ratings in self.data.items(): userAvg = sum(ratings.values())/len(ratings) averages[userItem] = userAvg for user, value in self.data.items(): #time to do the denominator for band1 in value: newTuple = {} for band2 in value: numerator = 0 denominator1 = 0 denominator2 = 0 if band1 is band2: continue for userItem, ratings in self.data.items(): if band1 in ratings and band2 in ratings: userAvg = averages[userItem] numerator += (ratings[band1] - userAvg) * (ratings[band2] - userAvg) denominator1 += (ratings[band1] - userAvg)**2 denominator2 += (ratings[band2] - userAvg)**2 finalD = (sqrt(denominator1) * sqrt(denominator2)) try: newTuple[band2] = numerator/(sqrt(denominator1) * sqrt(denominator2)) except: newTuple[band2] = 0 similarity[band1] = newTuple self.similarity = similarity #print(similarity) def normalizeData(self, minNum, maxNum): normalized = {} listOfUsers = self.data.items() for userItem, ratings in listOfUsers: newTuple = {} for band in self.data: if band in ratings: normalRate = (2*(ratings[band] - minNum) - (maxNum - minNum))/(maxNum - minNum) newTuple[band] = normalRate normalized[userItem] = newTuple self.normalizedData = normalized #print(normalized) def recommendCosine(self, minNum, maxNum): normalized = self.normalizedData similarity = self.similarity finalRatings = {} for user, userRatings in normalized.items(): finalRatings[user] = {} for artist in self.data: if not artist in userRatings: numerator = 0 denominator = 0 for otherArtist in self.data: if otherArtist in userRatings: numerator += (userRatings[otherArtist] * similarity[artist][otherArtist]) denominator += abs(similarity[artist][otherArtist]) finalRatings[user][artist] = .5*((numerator/denominator)+ 1)*(maxNum-minNum)+minNum print(finalRatings)
39.295547
110
0.524624
583d97c3d484a8a0f89b4bf6bf98102e90f42d66
5,857
py
Python
python/drydock_provisioner/drivers/kubernetes/promenade_driver/driver.py
Vjrx/airship-drydock
315fb9864e6d55a66d5266f76c160be55d22c98b
[ "Apache-2.0" ]
null
null
null
python/drydock_provisioner/drivers/kubernetes/promenade_driver/driver.py
Vjrx/airship-drydock
315fb9864e6d55a66d5266f76c160be55d22c98b
[ "Apache-2.0" ]
1
2021-06-01T23:08:49.000Z
2021-06-01T23:08:49.000Z
python/drydock_provisioner/drivers/kubernetes/promenade_driver/driver.py
Vjrx/airship-drydock
315fb9864e6d55a66d5266f76c160be55d22c98b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 AT&T Intellectual Property. All other rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Task driver for Promenade""" import logging import uuid import concurrent.futures from oslo_config import cfg import drydock_provisioner.error as errors import drydock_provisioner.objects.fields as hd_fields import drydock_provisioner.config as config from drydock_provisioner.drivers.kubernetes.driver import KubernetesDriver from drydock_provisioner.drivers.kubernetes.promenade_driver.promenade_client \ import PromenadeClient from .actions.k8s_node import RelabelNode class PromenadeDriver(KubernetesDriver): driver_name = 'promenadedriver' driver_key = 'promenadedriver' driver_desc = 'Promenade Kubernetes Driver' action_class_map = { hd_fields.OrchestratorAction.RelabelNode: RelabelNode, } def __init__(self, **kwargs): super().__init__(**kwargs) self.logger = logging.getLogger( cfg.CONF.logging.kubernetesdriver_logger_name) def execute_task(self, task_id): # actions that should be threaded for execution threaded_actions = [ hd_fields.OrchestratorAction.RelabelNode, ] action_timeouts = { hd_fields.OrchestratorAction.RelabelNode: config.config_mgr.conf.timeouts.relabel_node, } task = self.state_manager.get_task(task_id) if task is None: raise errors.DriverError("Invalid task %s" % (task_id)) if task.action not in self.supported_actions: raise errors.DriverError("Driver %s doesn't support task action %s" % (self.driver_desc, task.action)) task.set_status(hd_fields.TaskStatus.Running) task.save() if task.action in threaded_actions: if task.retry > 0: msg = "Retrying task %s on previous failed entities." % str( task.get_id()) task.add_status_msg( msg=msg, error=False, ctx=str(task.get_id()), ctx_type='task') target_nodes = self.orchestrator.get_target_nodes( task, failures=True) else: target_nodes = self.orchestrator.get_target_nodes(task) with concurrent.futures.ThreadPoolExecutor() as e: subtask_futures = dict() for n in target_nodes: prom_client = PromenadeClient() nf = self.orchestrator.create_nodefilter_from_nodelist([n]) subtask = self.orchestrator.create_task( design_ref=task.design_ref, action=task.action, node_filter=nf, retry=task.retry) task.register_subtask(subtask) action = self.action_class_map.get(task.action, None)( subtask, self.orchestrator, self.state_manager, prom_client=prom_client) subtask_futures[subtask.get_id().bytes] = e.submit( action.start) timeout = action_timeouts.get( task.action, config.config_mgr.conf.timeouts.relabel_node) finished, running = concurrent.futures.wait( subtask_futures.values(), timeout=(timeout * 60)) for t, f in subtask_futures.items(): if not f.done(): task.add_status_msg( "Subtask timed out before completing.", error=True, ctx=str(uuid.UUID(bytes=t)), ctx_type='task') task.failure() else: if f.exception(): msg = ("Subtask %s raised unexpected exception: %s" % (str(uuid.UUID(bytes=t)), str(f.exception()))) self.logger.error(msg, exc_info=f.exception()) task.add_status_msg( msg=msg, error=True, ctx=str(uuid.UUID(bytes=t)), ctx_type='task') task.failure() task.bubble_results() task.align_result() else: try: prom_client = PromenadeClient() action = self.action_class_map.get(task.action, None)( task, self.orchestrator, self.state_manager, prom_client=prom_client) action.start() except Exception as e: msg = ("Subtask for action %s raised unexpected exception: %s" % (task.action, str(e))) self.logger.error(msg, exc_info=e) task.add_status_msg( msg=msg, error=True, ctx=str(task.get_id()), ctx_type='task') task.failure() task.set_status(hd_fields.TaskStatus.Complete) task.save() return
37.787097
79
0.555062
5b66444d5bb885c6ab5920db6f1c193b3c2cf253
422
py
Python
pajbot/modules/clr_overlay/__init__.py
MrBean355/pajbot
3f27aabccfb242f5e3e8eedd20c97633b0d39950
[ "MIT" ]
145
2019-06-08T15:38:40.000Z
2022-03-29T22:51:47.000Z
pajbot/modules/clr_overlay/__init__.py
MrBean355/pajbot
3f27aabccfb242f5e3e8eedd20c97633b0d39950
[ "MIT" ]
671
2019-05-26T22:19:08.000Z
2022-03-31T06:00:49.000Z
pajbot/modules/clr_overlay/__init__.py
MrBean355/pajbot
3f27aabccfb242f5e3e8eedd20c97633b0d39950
[ "MIT" ]
105
2019-05-25T18:22:13.000Z
2022-02-23T00:57:27.000Z
import logging from pajbot.modules import BaseModule from pajbot.modules.base import ModuleType log = logging.getLogger(__name__) class CLROverlayModule(BaseModule): ID = "clroverlay-group" NAME = "CLR Overlay" DESCRIPTION = "A collection of overlays that can be used in the streaming software of choice" CATEGORY = "Feature" ENABLED_DEFAULT = True MODULE_TYPE = ModuleType.TYPE_ALWAYS_ENABLED
26.375
97
0.760664
d90475c08dca53f116aa6a9949c6a75e0aec556f
16,971
py
Python
sharpy/utils/settings.py
ostodieck/sharpy
b85aa1c001a0ec851af4eb259cce7c01dfa68b9e
[ "BSD-3-Clause" ]
1
2020-07-27T05:15:35.000Z
2020-07-27T05:15:35.000Z
sharpy/utils/settings.py
briandesilva/sharpy
aed86428ff88fd14d36cabd91cf7e04b5fc9a39a
[ "BSD-3-Clause" ]
null
null
null
sharpy/utils/settings.py
briandesilva/sharpy
aed86428ff88fd14d36cabd91cf7e04b5fc9a39a
[ "BSD-3-Clause" ]
null
null
null
""" Settings Generator Utilities """ import configparser import ctypes as ct import numpy as np import sharpy.utils.exceptions as exceptions import sharpy.utils.cout_utils as cout import ast class DictConfigParser(configparser.ConfigParser): def as_dict(self): d = dict(self._sections) for k in d: d[k] = dict(self._defaults, **d[k]) d[k].pop('__name__', None) return d def cast(k, v, pytype, ctype, default): try: # if default is None: # raise TypeError val = ctype(pytype(v)) except KeyError: val = ctype(default) cout.cout_wrap("--- The variable " + k + " has no given value, using the default " + default, 2) except TypeError: raise exceptions.NoDefaultValueException(k) except ValueError: val = ctype(v.value) return val def to_custom_types(dictionary, types, default, options=dict(), no_ctype=False): for k, v in types.items(): if v == 'int': if no_ctype: data_type = int else: data_type = ct.c_int try: dictionary[k] = cast(k, dictionary[k], int, data_type, default[k]) except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = cast(k, default[k], int, data_type, default[k]) notify_default_value(k, dictionary[k]) elif v == 'float': if no_ctype: data_type = float else: data_type = ct.c_double try: dictionary[k] = cast(k, dictionary[k], float, data_type, default[k]) except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = cast(k, default[k], float, data_type, default[k]) notify_default_value(k, dictionary[k]) elif v == 'str': try: dictionary[k] = cast(k, dictionary[k], str, str, default[k]) except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = cast(k, default[k], eval(v), eval(v), default[k]) notify_default_value(k, dictionary[k]) elif v == 'bool': if no_ctype: data_type = bool else: data_type = ct.c_bool try: dictionary[k] = cast(k, dictionary[k], str2bool, data_type, default[k]) except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = cast(k, default[k], str2bool, data_type, default[k]) notify_default_value(k, dictionary[k]) elif v == 'list(str)': try: # if isinstance(dictionary[k], list): # continue # dictionary[k] = dictionary[k].split(',') # getting rid of leading and trailing spaces dictionary[k] = list(map(lambda x: x.strip(), dictionary[k])) except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = default[k].copy() notify_default_value(k, dictionary[k]) elif v == 'list(dict)': try: # if isinstance(dictionary[k], list): # continue # dictionary[k] = dictionary[k].split(',') # getting rid of leading and trailing spaces for i in range(len(dictionary[k])): dictionary[k][i] = ast.literal_eval(dictionary[k][i]) except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = default[k].copy() notify_default_value(k, dictionary[k]) elif v == 'list(float)': try: dictionary[k] except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = default[k].copy() notify_default_value(k, dictionary[k]) if isinstance(dictionary[k], np.ndarray): continue if isinstance(dictionary[k], list): for i in range(len(dictionary[k])): dictionary[k][i] = float(dictionary[k][i]) dictionary[k] = np.array(dictionary[k]) continue # dictionary[k] = dictionary[k].split(',') # # getting rid of leading and trailing spaces # dictionary[k] = list(map(lambda x: x.strip(), dictionary[k])) if dictionary[k].find(',') < 0: dictionary[k] = np.fromstring(dictionary[k].strip('[]'), sep=' ', dtype=ct.c_double) else: dictionary[k] = np.fromstring(dictionary[k].strip('[]'), sep=',', dtype=ct.c_double) elif v == 'list(int)': try: dictionary[k] except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = default[k].copy() notify_default_value(k, dictionary[k]) if isinstance(dictionary[k], np.ndarray): continue if isinstance(dictionary[k], list): for i in range(len(dictionary[k])): dictionary[k][i] = int(dictionary[k][i]) dictionary[k] = np.array(dictionary[k]) continue # dictionary[k] = dictionary[k].split(',') # # getting rid of leading and trailing spaces # dictionary[k] = list(map(lambda x: x.strip(), dictionary[k])) if dictionary[k].find(',') < 0: dictionary[k] = np.fromstring(dictionary[k].strip('[]'), sep=' ').astype(ct.c_int) else: dictionary[k] = np.fromstring(dictionary[k].strip('[]'), sep=',').astype(ct.c_int) elif v == 'list(complex)': try: dictionary[k] except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = default[k].copy() notify_default_value(k, dictionary[k]) if isinstance(dictionary[k], np.ndarray): continue if isinstance(dictionary[k], list): for i in range(len(dictionary[k])): dictionary[k][i] = float(dictionary[k][i]) dictionary[k] = np.array(dictionary[k]) continue # dictionary[k] = dictionary[k].split(',') # # getting rid of leading and trailing spaces # dictionary[k] = list(map(lambda x: x.strip(), dictionary[k])) if dictionary[k].find(',') < 0: dictionary[k] = np.fromstring(dictionary[k].strip('[]'), sep=' ').astype(complex) else: dictionary[k] = np.fromstring(dictionary[k].strip('[]'), sep=',').astype(complex) elif v == 'dict': try: if not isinstance(dictionary[k], dict): raise TypeError except KeyError: if default[k] is None: raise exceptions.NoDefaultValueException(k) dictionary[k] = default[k].copy() notify_default_value(k, dictionary[k]) else: raise TypeError('Variable %s has an unknown type (%s) that cannot be casted' % (k, v)) check_settings_in_options(dictionary, types, options) for k in dictionary.keys(): if k not in list(types.keys()): cout.cout_wrap('Warning - Unrecognised setting: %s. Please check input file and/or documentation.' % k, 3) def check_settings_in_options(settings, settings_types, settings_options): """ Checks that settings given a type ``str`` or ``int`` and allowable options are indeed valid. Args: settings (dict): Dictionary of processed settings settings_types (dict): Dictionary of settings types settings_options (dict): Dictionary of options (may be empty) Raises: exception.NotValidSetting: if the setting is not allowed. """ for k in settings_options: if settings_types[k] == 'int': try: value = settings[k].value except AttributeError: value = settings[k] if value not in settings_options[k]: raise exceptions.NotValidSetting(k, value, settings_options[k]) elif settings_types[k] == 'str': value = settings[k] if value not in settings_options[k] and value: # checks that the value is within the options and that it is not an empty string. raise exceptions.NotValidSetting(k, value, settings_options[k]) elif settings_types[k] == 'list(str)': for item in settings[k]: if item not in settings_options[k] and item: raise exceptions.NotValidSetting(k, item, settings_options[k]) else: pass # no other checks implemented / required def load_config_file(file_name: str) -> dict: """This function reads the flight condition and solver input files. Args: file_name (str): contains the path and file name of the file to be read by the ``configparser`` reader. Returns: config (dict): a ``ConfigParser`` object that behaves like a dictionary """ # config = DictConfigParser() # config.read(file_name) # dict_config = config.as_dict() import configobj dict_config = configobj.ConfigObj(file_name) return dict_config def str2bool(string): false_list = ['false', 'off', '0', 'no'] if isinstance(string, bool): return string if isinstance(string, ct.c_bool): return string.value if not string: return False elif string.lower() in false_list: return False else: return True def notify_default_value(k, v): cout.cout_wrap('Variable ' + k + ' has no assigned value in the settings file.') cout.cout_wrap(' will default to the value: ' + str(v), 1) class SettingsTable: """ Generates the documentation's setting table at runtime. Sphinx is our chosen documentation manager and takes docstrings in reStructuredText format. Given that the SHARPy solvers contain several settings, this class produces a table in reStructuredText format with the solver's settings and adds it to the solver's docstring. This table will then be printed alongside the remaining docstrings. To generate the table, parse the setting's description to a solver dictionary named ``settings_description``, in a similar fashion to what is done with ``settings_types`` and ``settings_default``. If no description is given it will be left blank. Then, add at the end of the solver's class declaration method an instance of the ``SettingsTable`` class and a call to the ``SettingsTable.generate()`` method. Examples: The end of the solver's class declaration should contain .. code-block:: python # Generate documentation table settings_table = settings.SettingsTable() __doc__ += settings_table.generate(settings_types, settings_default, settings_description) to generate the settings table. """ def __init__(self): self.n_fields = 4 self.n_settings = 0 self.field_length = [0] * self.n_fields self.titles = ['Name', 'Type', 'Description', 'Default'] self.settings_types = dict() self.settings_description = dict() self.settings_default = dict() self.settings_options = dict() self.settings_options_strings = dict() self.line_format = '' self.table_string = '' def generate(self, settings_types, settings_default, settings_description, settings_options=dict(), header_line=None): """ Returns a rst-format table with the settings' names, types, description and default values Args: settings_types (dict): Setting types. settings_default (dict): Settings default value. settings_description (dict): Setting description. header_line (str): Header line description (optional) Returns: str: .rst formatted string with a table containing the settings' information. """ self.settings_types = settings_types self.settings_default = settings_default self.n_settings = len(self.settings_types) # if header_line is None: header_line = 'The settings that this solver accepts are given by a dictionary, ' \ 'with the following key-value pairs:' else: assert type(header_line) == str, 'header_line not a string, verify order of arguments' if type(settings_options) != dict: raise TypeError('settings_options is not a dictionary') if settings_options: # if settings_options are provided self.settings_options = settings_options self.n_fields += 1 self.field_length.append(0) self.titles.append('Options') self.process_options() try: self.settings_description = settings_description except AttributeError: pass self.set_field_length() self.line_format = self.setting_line_format() table_string = '\n ' + header_line + '\n' table_string += '\n ' + self.print_divider_line() table_string += ' ' + self.print_header() table_string += ' ' + self.print_divider_line() for setting in self.settings_types: table_string += ' ' + self.print_setting(setting) table_string += ' ' + self.print_divider_line() self.table_string = table_string return table_string def process_options(self): self.settings_options_strings = self.settings_options.copy() for k, v in self.settings_options.items(): opts = '' for option in v: opts += ' ``%s``,' %str(option) self.settings_options_strings[k] = opts[1:-1] # removes the initial whitespace and final comma def set_field_length(self): field_lengths = [[] for i in range(self.n_fields)] for setting in self.settings_types: stype = str(self.settings_types.get(setting, '')) description = self.settings_description.get(setting, '') default = str(self.settings_default.get(setting, '')) option = str(self.settings_options_strings.get(setting, '')) field_lengths[0].append(len(setting) + 4) # length of name field_lengths[1].append(len(stype) + 4) # length of type + 4 for the rst ``X`` field_lengths[2].append(len(description)) # length of type field_lengths[3].append(len(default) + 4) # length of type + 4 for the rst ``X`` if self.settings_options: field_lengths[4].append(len(option)) for i_field in range(self.n_fields): field_lengths[i_field].append(len(self.titles[i_field])) self.field_length[i_field] = max(field_lengths[i_field]) + 2 # add the two spaces as column dividers def print_divider_line(self): divider = '' for i_field in range(self.n_fields): divider += '='*(self.field_length[i_field]-2) + ' ' divider += '\n' return divider def print_setting(self, setting): type = '``' + str(self.settings_types.get(setting, '')) + '``' description = self.settings_description.get(setting, '') default = '``' + str(self.settings_default.get(setting, '')) + '``' if self.settings_options: option = self.settings_options_strings.get(setting, '') line = self.line_format.format(['``' + str(setting) + '``', type, description, default, option]) + '\n' else: line = self.line_format.format(['``' + str(setting) + '``', type, description, default]) + '\n' return line def print_header(self): header = self.line_format.format(self.titles) + '\n' return header def setting_line_format(self): string = '' for i_field in range(self.n_fields): string += '{0[' + str(i_field) + ']:<' + str(self.field_length[i_field]) + '}' return string
39.013793
122
0.574981
47a2f0ce4b0fd2b720912c617794374f1c2ffa71
1,267
py
Python
pyscf/nao/test/test_0045_tddft_load_kernel_nao.py
robert-anderson/pyscf
cdc56e168cb15f47e8cdc791a92d689fa9b655af
[ "Apache-2.0" ]
3
2021-02-28T00:52:53.000Z
2021-03-01T06:23:33.000Z
pyscf/nao/test/test_0045_tddft_load_kernel_nao.py
robert-anderson/pyscf
cdc56e168cb15f47e8cdc791a92d689fa9b655af
[ "Apache-2.0" ]
36
2018-08-22T19:44:03.000Z
2020-05-09T10:02:36.000Z
pyscf/nao/test/test_0045_tddft_load_kernel_nao.py
robert-anderson/pyscf
cdc56e168cb15f47e8cdc791a92d689fa9b655af
[ "Apache-2.0" ]
4
2018-02-14T16:28:28.000Z
2019-08-12T16:40:30.000Z
from __future__ import print_function, division import os,unittest,numpy as np from pyscf.nao import tddft_iter import h5py dname = os.path.dirname(os.path.abspath(__file__)) td = tddft_iter(label='water', cd=dname, jcutoff=7, iter_broadening=1e-2, xc_code='RPA') np.savetxt("kernel.txt", td.kernel) np.save("kernel.npy", td.kernel) hdf = h5py.File("kernel.hdf5", "w") hdf.create_dataset("kernel_pack", data=td.kernel) hdf.close() class KnowValues(unittest.TestCase): def test_load_kernel(self): data_ref_nonin = np.loadtxt(dname+'/water.tddft_iter.omega.pxx.txt-ref')[:, 1] data_ref_inter = np.loadtxt(dname+'/water.tddft_iter.omega.inter.pxx.txt-ref')[:, 1] for form in ["txt", "npy", "hdf5"]: td = tddft_iter(label='water', cd=dname, iter_broadening=1e-2, xc_code='RPA', load_kernel=True, kernel_fname = "kernel." + form, kernel_format = form, kernel_path_hdf5="kernel_pack") omegas = np.linspace(0.0,2.0,150)+1j*td.eps pxx = -td.comp_polariz_inter_xx(omegas).imag data = np.array([omegas.real*27.2114, pxx]) np.savetxt('water.tddft_iter_rpa.omega.inter.pxx.txt', data.T, fmt=['%f','%f']) self.assertTrue(np.allclose(data_ref_inter, pxx, rtol=1.0, atol=1e-05)) if __name__ == "__main__": unittest.main()
37.264706
188
0.706393
2675b097cf5e9478dcad9486baea6499b7103e03
15,343
py
Python
YOLO/.history/pytorch-yolo-v3/video_demo_20201105163826.py
jphacks/D_2003
60a5684d549862e85bdf758069518702d9925a48
[ "MIT" ]
1
2020-11-07T07:58:13.000Z
2020-11-07T07:58:13.000Z
YOLO/.history/pytorch-yolo-v3/video_demo_20201105163826.py
jphacks/D_2003
60a5684d549862e85bdf758069518702d9925a48
[ "MIT" ]
null
null
null
YOLO/.history/pytorch-yolo-v3/video_demo_20201105163826.py
jphacks/D_2003
60a5684d549862e85bdf758069518702d9925a48
[ "MIT" ]
4
2020-11-02T02:51:45.000Z
2020-11-07T02:54:47.000Z
from __future__ import division import time import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import cv2 from util import * from darknet import Darknet from preprocess import prep_image, inp_to_image import pandas as pd import random import argparse import pickle as pkl import requests from requests.auth import HTTPDigestAuth import io from PIL import Image, ImageDraw, ImageFilter import play #from pygame import mixer #import winsound camera_name = { "north":0, "south":2, "east":1, "west":3, } def prep_image(img, inp_dim): # CNNに通すために画像を加工する orig_im = img dim = orig_im.shape[1], orig_im.shape[0] img = cv2.resize(orig_im, (inp_dim, inp_dim)) img_ = img[:,:,::-1].transpose((2,0,1)).copy() img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0) return img_, orig_im, dim def count(x, img, count): # 画像に結果を描画 c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) label = "{0}".format(classes[cls]) print("label:\n", label) # 人数カウント if(label=='no-mask'): count+=1 print(count) return count def write(x, img,camId): global count global point p = [0,0] # 画像に結果を描画 c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) print(camId, "_c0:",c1) print(camId, "_c1:",c2) label = "{0}".format(classes[cls]) print("label:", label) # 人数カウント if(label=='no-mask'): count+=1 print(count) p[0] = (c2[0]-c1[0])/2 p[1] = (c2[1]-c1[1])/2 point[camId].append(p) print("point0",point[0]) print("point1",point[1]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img def arg_parse(): # モジュールの引数を作成 parser = argparse.ArgumentParser(description='YOLO v3 Cam Demo') # ArgumentParserで引数を設定する parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.25) # confidenceは信頼性 parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4) # nms_threshは閾値 parser.add_argument("--reso", dest = 'reso', help = "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed", default = "160", type = str) # resoはCNNの入力解像度で、増加させると精度が上がるが、速度が低下する。 return parser.parse_args() # 引数を解析し、返す def cvpaste(img, imgback, x, y, angle, scale): # x and y are the distance from the center of the background image r = img.shape[0] c = img.shape[1] rb = imgback.shape[0] cb = imgback.shape[1] hrb=round(rb/2) hcb=round(cb/2) hr=round(r/2) hc=round(c/2) # Copy the forward image and move to the center of the background image imgrot = np.zeros((rb,cb,3),np.uint8) imgrot[hrb-hr:hrb+hr,hcb-hc:hcb+hc,:] = img[:hr*2,:hc*2,:] # Rotation and scaling M = cv2.getRotationMatrix2D((hcb,hrb),angle,scale) imgrot = cv2.warpAffine(imgrot,M,(cb,rb)) # Translation M = np.float32([[1,0,x],[0,1,y]]) imgrot = cv2.warpAffine(imgrot,M,(cb,rb)) # Makeing mask imggray = cv2.cvtColor(imgrot,cv2.COLOR_BGR2GRAY) ret, mask = cv2.threshold(imggray, 10, 255, cv2.THRESH_BINARY) mask_inv = cv2.bitwise_not(mask) # Now black-out the area of the forward image in the background image img1_bg = cv2.bitwise_and(imgback,imgback,mask = mask_inv) # Take only region of the forward image. img2_fg = cv2.bitwise_and(imgrot,imgrot,mask = mask) # Paste the forward image on the background image imgpaste = cv2.add(img1_bg,img2_fg) return imgpaste def hconcat_resize_min(im_list, interpolation=cv2.INTER_CUBIC): h_min = min(im.shape[0] for im in im_list) im_list_resize = [cv2.resize(im, (int(im.shape[1] * h_min / im.shape[0]), h_min), interpolation=interpolation) for im in im_list] return cv2.hconcat(im_list_resize) # def beep(freq, dur=100): # winsound.Beep(freq, dur) if __name__ == '__main__': #学習前YOLO # cfgfile = "cfg/yolov3.cfg" # 設定ファイル # weightsfile = "weight/yolov3.weights" # 重みファイル # classes = load_classes('data/coco.names') # 識別クラスのリスト #マスク学習後YOLO cfgfile = "cfg/mask.cfg" # 設定ファイル weightsfile = "weight/mask_1500.weights" # 重みファイル classes = load_classes('data/mask.names') # 識別クラスのリスト num_classes = 80 # クラスの数 args = arg_parse() # 引数を取得 confidence = float(args.confidence) # 信頼性の設定値を取得 nms_thesh = float(args.nms_thresh) # 閾値を取得 start = 0 CUDA = torch.cuda.is_available() # CUDAが使用可能かどうか max = 0 #限界人数 num_camera = 3 #camera数 num_classes = 80 # クラスの数 bbox_attrs = 5 + num_classes model = [[] for i in range(num_camera)] inp_dim = [[] for i in range(num_camera)] cap = [[] for i in range(num_camera)] point = [[] for i in range(num_camera)] # output = [[] for i in range(num_camera)] # output = torch.tensor(output) # print("output_shape\n", output.shape) for i in range(num_camera): model[i] = Darknet(cfgfile) #model1の作成 model[i].load_weights(weightsfile) # model1に重みを読み込む model[i].net_info["height"] = args.reso inp_dim[i] = int(model[i].net_info["height"]) assert inp_dim[i] % 32 == 0 assert inp_dim[i] > 32 #mixer.init() #初期化 if CUDA: for i in range(num_camera): model[i].cuda() #CUDAが使用可能であればcudaを起動 for i in range(num_camera): model[i].eval() cap[0] = cv2.VideoCapture(0) #カメラを指定(USB接続) cap[1] = cv2.VideoCapture(1) #カメラを指定(USB接続) cap[2] = cv2.VideoCapture(2) #カメラを指定(USB接続) # cap = cv2.VideoCapture("movies/sample.mp4") #cap = cv2.VideoCapture("movies/one_v2.avi") # Use the next line if your camera has a username and password # cap = cv2.VideoCapture('protocol://username:password@IP:port/1') #cap = cv2.VideoCapture('rtsp://admin:admin@192.168.11.4/1') #(ネットワーク接続) #cap = cv2.VideoCapture('rtsp://admin:admin@192.168.11.4/80') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.4:80/video') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.4/camera-cgi/admin/recorder.cgi?action=start&id=samba') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.4/recorder.cgi?action=start&id=samba') #cap = cv2.VideoCapture('http://admin:admin@192.168.11.5:80/snapshot.jpg?user=admin&pwd=admin&strm=0') print('-1') #カメラの起動を確認 for i in range(num_camera): if not cap[i].isOpened(): if i < num_camera - 1: for j in range(len(num_camera - i) - 1): cap[i + j] = cap[i + j + 1] cap.pop() num_camera -= 1 #assert cap.isOpened(), 'Cannot capture source' #カメラが起動できたか確認 img1 = cv2.imread("images/phase_1.jpg") img2 = cv2.imread("images/phase_2.jpg") img3 = cv2.imread("images/phase_2_red.jpg") img4 = cv2.imread("images/phase_3.jpg") #mixer.music.load("voice/voice_3.m4a") #print(img1) frames = 0 count_frame = 0 #フレーム数カウント flag = 0 #密状態(0:疎密,1:密入り) start = time.time() print('-1') while (cap[i].isOpened() for i in range(num_camera)): #カメラが起動している間 count=0 #人数をカウント point = [[] for i in range(num_camera)] ret = [[] for i in range(num_camera)] frame = [[] for i in range(num_camera)] img = [[] for i in range(num_camera)] orig_im = [[] for i in range(num_camera)] dim = [[] for i in range(num_camera)] output0 = [] output1 = [] output2 = [] output3 = [] for i in range(num_camera): if cap == []: ret[i], frame[i] = cap[i].read() #キャプチャ画像を取得 if (ret[i] for i in range(num_camera)): # 解析準備としてキャプチャ画像を加工 for i in range(num_camera): if not frame[i] == [] and inp_dim[i] == []: img[i], orig_im[i], dim[i] = prep_image(frame[i], inp_dim[i]) if CUDA: for i in range(num_camera): im_dim[i] = im_dim[i].cuda() img[i] = img[i].cuda() # for i in range(num_camera): # output[i] = model[i](Variable(img[i]), CUDA) if not img[0] == []: output0 = model[0](Variable(img[0]), CUDA) if not img[1] == []: output1 = model[1](Variable(img[1]), CUDA) # output2 = model[2](Variable(img[2]), CUDA) # output3 = model[3](Variable(img[3]), CUDA) #print("output:\n", output) # output[i] = write_results(output[i], confidence, num_classes, nms = True, nms_conf = nms_thesh) if not output0 == []: output0 = write_results(output0, confidence, num_classes, nms = True, nms_conf = nms_thesh) if not output1 == []: output1 = write_results(output1, confidence, num_classes, nms = True, nms_conf = nms_thesh) # output2 = write_results(output2, confidence, num_classes, nms = True, nms_conf = nms_thesh) # output3 = write_results(output3, confidence, num_classes, nms = True, nms_conf = nms_thesh) # print("output", i, ":\n", output[i]) # print(output.shape) """ # FPSの表示 if (type(output[i]) == int for i in range(num_camera)): print("表示") frames += 1 print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) # qキーを押すとFPS表示の終了 key = cv2.waitKey(1) if key & 0xFF == ord('q'): break continue for i in range(num_camera): output[i][:,1:5] = torch.clamp(output[i][:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] output[i][:,[1,3]] *= frame[i].shape[1] output[i][:,[2,4]] *= frame[i].shape[0] """ # # FPSの表示 # if type(output0) == int: # print("表示") # frames += 1 # print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) # # qキーを押すとFPS表示の終了 # key = cv2.waitKey(1) # if key & 0xFF == ord('q'): # break # continue # for i in range(num_camera): if not output0 == []: output0[:,1:5] = torch.clamp(output0[:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] output0[:,[1,3]] *= frame[0].shape[1] output0[:,[2,4]] *= frame[0].shape[0] if not output1 == []: output1[:,1:5] = torch.clamp(output1[:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] output1[:,[1,3]] *= frame[1].shape[1] output1[:,[2,4]] *= frame[1].shape[0] # if cap[2].isOpened(): # output2[:,1:5] = torch.clamp(output2[:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] # output2[:,[1,3]] *= frame[i].shape[1] # output2[:,[2,4]] *= frame[i].shape[0] # if cap[3].isOpened(): # output3[:,1:5] = torch.clamp(output3[:,1:5], 0.0, float(inp_dim[i]))/inp_dim[i] # output3[:,[1,3]] *= frame[i].shape[1] # output3[:,[2,4]] *= frame[i].shape[0] colors = pkl.load(open("pallete", "rb")) #count = lambda x: count(x, orig_im, count) #人数をカウント """ for i in range(num_camera): list(map(lambda x: write(x, orig_im[i]), output[i])) print("count:\n",count) """ # for i in range(num_camera): # list(map(lambda x: write(x, orig_im[i]), output)) if not orig_im[0] == []: list(map(lambda x0: write(x0, orig_im[0],0), output0)) if not orig_im[1] == []: list(map(lambda x1: write(x1, orig_im[1],1), output1)) # print("x0",x0) # list(map(lambda x2: write(x2, orig_im[2],2), output2)) # list(map(lambda x3: write(x3, orig_im[3],3), output3)) # print("point0",point[0]) # print("point1",point[1]) print("count:\n",count) print("count_frame", count_frame) if count > max: count_frame += 1 #print("-1") if count_frame <= 50: x=0 y=0 angle=20 scale=1.5 for i in range(num_camera): if not orig_im[i] == []: imgpaste = cvpaste(img1, orig_im[i], x, y, angle, scale) if flag == 1: # play.googlehome() flag += 1 #mixer.music.play(1) elif count_frame <= 100: x=-30 y=10 angle=20 scale=1.1 if count_frame%2==1: for i in range(num_camera): if not orig_im[i] == []: imgpaste = cvpaste(img2, orig_im[i], x, y, angle, scale) else: for i in range(num_camera): if not orig_im[i] == []: imgpaste = cvpaste(img3, orig_im[i], x, y, angle, scale) if flag == 2: # play.googlehome() flag += 1 else: x=-30 y=0 angle=20 scale=1.5 for i in range(num_camera): if not orig_im[i] == []: imgpaste = cvpaste(img4, orig_im[i], x, y, angle, scale) if count_frame > 101: #<--2フレームずらす print("\007") #警告音 time.sleep(3) if flag == 3: # play.googlehome() flag += 1 # cv2.imshow("frame", imgpaste) else: count_frame = 0 flag = 0 #print("-2") # for i in range(num_camera): for i in range(num_classes): if orig_im[i] == []: orig1_im[i] = img im_h_resize = hconcat_resize_min(orig_im) cv2.imshow("frame", im_h_resize ) # play.googlehome() key = cv2.waitKey(1) # qキーを押すと動画表示の終了 if key & 0xFF == ord('q'): break frames += 1 print("count_frame:\n", count_frame) print("FPS of the video is {:5.2f}".format( frames / (time.time() - start))) else: break
35.516204
126
0.524148
47754147f12902b92fac59a09938726f6b10a5be
9,170
py
Python
hack/gen.py
akutz/go-interface-values-and-malloc
2077a43f46036a397d546f2858f54a7995231607
[ "Apache-2.0" ]
24
2022-02-17T19:05:21.000Z
2022-03-27T10:20:04.000Z
hack/gen.py
x448/go-interface-values
478b2428e64a411baa6a2a574bb3585b61528029
[ "Apache-2.0" ]
2
2022-02-08T08:28:31.000Z
2022-02-09T18:07:15.000Z
hack/gen.py
x448/go-interface-values
478b2428e64a411baa6a2a574bb3585b61528029
[ "Apache-2.0" ]
4
2022-02-08T08:16:54.000Z
2022-02-20T12:14:09.000Z
#!/usr/bin/env python3 """ Copyright 2022 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """generate Generates several of the go source files. """ import subprocess _HEADER = """/* Copyright 2022 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // // !! Generated code -- do not modify !! // package mem_test """ _INSTRUMENTED_TYPES = [ { "type": "int", "nonz": "nonZeroRandInt(_int_size)", }, { "type": "int8", "nonz": "int8(nonZeroRandInt(8))", }, { "type": "int16", "nonz": "int16(nonZeroRandInt(16))", }, { "type": "int32", "nonz": "int32(nonZeroRandInt(32))", }, { "type": "int64", "nonz": "int64(nonZeroRandInt(64))", "nwln": 2, }, { "type": "uint", "nonz": "uint(nonZeroRandInt(_int_size))", }, { "type": "uint8", "nonz": "uint8(nonZeroRandInt(8))", }, { "type": "uint16", "nonz": "uint16(nonZeroRandInt(16))", }, { "type": "uint32", "nonz": "uint32(nonZeroRandInt(32))", }, { "type": "uint64", "nonz": "uint64(nonZeroRandInt(64))", "nwln": 2, }, { "type": "float32", "nonz": "float32(nonZeroRandInt(32))", }, { "type": "float64", "nonz": "float64(nonZeroRandInt(64))", "nwln": 2, }, { "type": "complex64", "nonz": "complex(float32(nonZeroRandInt(32)), float32(nonZeroRandInt(32)))", }, { "type": "complex128", "nonz": "complex(float64(nonZeroRandInt(64)), float64(nonZeroRandInt(64)))", "nwln": 2, }, { "type": "byte", "nonz": "byte(nonZeroRandInt(8))", }, { "type": "bool", "nonz": "nonConstBoolTrue()", }, { "type": "rune", "nonz": "rune(nonZeroRandInt(32))", }, { "type": "string", "nonz": "nonZeroString(50)", "nwln": 2, }, { "name": "struct_int32_int32", "type": "struct{ a, b int32 }", "nonz": "{ a: int32(nonZeroRandInt(32)), b: int32(nonZeroRandInt(32)) }", }, { "name": "struct_int32_int64", "type": "struct { a int32; b int64 }", "nonz": "{ a: int32(nonZeroRandInt(32)), b: int64(nonZeroRandInt(64)) }", }, { "name": "struct_array_bytes_7", "type": "struct{ a [7]byte }", "nonz": "{ a: [7]byte{byte(nonZeroRandInt(8)), byte(nonZeroRandInt(8)), byte(nonZeroRandInt(8)), byte(nonZeroRandInt(8)), byte(nonZeroRandInt(8)), byte(nonZeroRandInt(8)), byte(nonZeroRandInt(8)) }}", }, { "name": "struct_byte_7", "type": "struct{ a, b, c, d, e, f, g byte }", "nonz": "{ a: byte(nonZeroRandInt(8)), b: byte(nonZeroRandInt(8)), c: byte(nonZeroRandInt(8)), d: byte(nonZeroRandInt(8)), e: byte(nonZeroRandInt(8)), f: byte(nonZeroRandInt(8)), g: byte(nonZeroRandInt(8)) }", "nwln": 2, }, ] _TYPES_TEST_PATH = "types_test.go" _MEM_TEST_PATH = "bench_test.go" _is_struct = lambda t: t["type"].startswith("struct") _non_struct_types = [t for t in _INSTRUMENTED_TYPES if not _is_struct(t)] _struct_types = [t for t in _INSTRUMENTED_TYPES if _is_struct(t)] def go_fmt(p): # Format the file. subprocess.run( ["go", "fmt", p], capture_output=True, check=True, ) def gen_types(): def _print( f, it, is_zero=False, is_struct=False, is_wrapped=False, is_benchmark_global=False, ): t = it["type"] # Define the variable' name. f.write("\t_") if is_wrapped: f.write("struct_") f.write(t if "name" not in it else it["name"]) if not is_zero: f.write("_n") if is_benchmark_global: f.write("_benchmark") f.write(" ") # The variables type declaration depends on whether this is a non-zero # value and if the type is a struct. if not is_zero and not is_benchmark_global and (is_struct or is_wrapped): f.write(" = ") # Define the variable' type. if is_wrapped: f.write("struct{ a ") f.write(t) if is_wrapped: f.write(" }") if not is_zero: # Define the variable's value. if not is_struct and not is_wrapped: f.write(" = ") if is_wrapped: f.write("{ a: ") f.write(it["nonz"]) if is_wrapped: f.write(" }") f.write("\n" * (1 if "nwln" not in it else it["nwln"])) with open(_TYPES_TEST_PATH, "w") as f: f.write(_HEADER) f.write("var (\n") # Define the variables for the zero values for the non-struct types. for it in _non_struct_types: _print(f, it, is_zero=True) # Define the variables for the zero values for the non-struct types wrapped # by a struct. for it in _non_struct_types: _print(f, it, is_zero=True, is_wrapped=True) # Define the variables for the zero-values for the struct types. for it in _struct_types: _print(f, it, is_zero=True, is_struct=True) # Define the variables for the non-zero values for the non-struct types. for it in _non_struct_types: _print(f, it) # Define the variables for the non-zero values for the non-struct types # wrapped by a struct. for it in _non_struct_types: _print(f, it, is_wrapped=True) # Define the variables for the non-zero values for the struct types. for it in _struct_types: _print(f, it, is_struct=True) # Define the variables for the zero values for the non-struct types # used by the typed benchmarks. for it in _non_struct_types: _print(f, it, is_zero=True, is_benchmark_global=True) # Define the variables for the zero values for the non-struct types # wrapped by a struct and used by the typed benchmarks. for it in _non_struct_types: _print(f, it, is_zero=True, is_wrapped=True, is_benchmark_global=True) # Define the variables for the zero-values for the struct types # used by the typed benchmarks. for it in _struct_types: _print(f, it, is_zero=True, is_struct=True, is_benchmark_global=True) f.write(")\n\n") go_fmt(_TYPES_TEST_PATH) def gen_bench(): s = """ b.Run("{0}", func(b *testing.B) {{ b.Logf("real(T)=%T", _{0}) b.Run("0", func(b *testing.B) {{ b.Run("h", func(b *testing.B) {{ for j := 0; j < b.N; j++ {{ _i = _{0} }} }}) b.Run("s", func(b *testing.B) {{ for j := 0; j < b.N; j++ {{ _{0}_benchmark = _{0} }} }}) }}) b.Run("n", func(b *testing.B) {{ b.Run("h", func(b *testing.B) {{ for j := 0; j < b.N; j++ {{ _i = _{0}_n }} }}) b.Run("s", func(b *testing.B) {{ for j := 0; j < b.N; j++ {{ _{0}_benchmark = _{0}_n }} }}) }}) }}) """ def _print(f, it, is_wrapped=False): t = it["type"] if "name" not in it else it["name"] if is_wrapped: t = "struct_" + t f.write(s.format(t)) with open(_MEM_TEST_PATH, "w") as f: f.write(_HEADER) f.write('\nimport "testing"\n') f.write("func BenchmarkMem(b *testing.B) {\n") # Benchmarks for the non-struct types. for it in _non_struct_types: _print(f, it) # Benchmarks for the non-struct types wrapped by a struct. for it in _non_struct_types: _print(f, it, is_wrapped=True) # Benchmarks for the struct types. for it in _struct_types: _print(f, it) f.write("}\n") go_fmt(_MEM_TEST_PATH) gen_types() gen_bench()
27.87234
217
0.545474
71c64def6ef5ea5dd0401d07fbcaf8c4b291cce1
2,362
py
Python
src/config.py
youngerous/transformer
7b849dbca813ceff140f7261ad739c72a045faaa
[ "Apache-2.0" ]
3
2021-05-21T03:58:49.000Z
2021-07-13T06:00:36.000Z
src/config.py
youngerous/transformer
7b849dbca813ceff140f7261ad739c72a045faaa
[ "Apache-2.0" ]
null
null
null
src/config.py
youngerous/transformer
7b849dbca813ceff140f7261ad739c72a045faaa
[ "Apache-2.0" ]
null
null
null
import argparse def load_config(): parser = argparse.ArgumentParser() # default hparams parser.add_argument("--root-path", type=str, default="./src/data") parser.add_argument("--ckpt-path", type=str, default="./src/checkpoints/") parser.add_argument("--result-path", type=str, default="./src/results.csv") parser.add_argument("--seed", type=int, default=42, help="Seed for reproducibility") parser.add_argument("--workers", type=int, default=0) parser.add_argument("--log-step", type=int, default=200) parser.add_argument( "--eval-ratio", type=float, default=0.0, help="Evaluation will be done at the end of epoch if set to 0.0", ) parser.add_argument( "--amp", action="store_true", default=False, help="PyTorch(>=1.6.x) AMP" ) # ddp hparams parser.add_argument( "--distributed", action="store_true", default=False, help="Whether to use ddp" ) parser.add_argument("--dist-backend", type=str, default="nccl") parser.add_argument("--dist-url", default="tcp://127.0.0.1:3456", type=str) parser.add_argument( "--world-size", type=int, default=1, help="Total number of processes to run" ) parser.add_argument( "--rank", type=int, default=-1, help="Local GPU rank (-1 if not using ddp)" ) # training hparams parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--batch-size", type=int, default=8) parser.add_argument("--lr", type=float, default=5e-5) parser.add_argument("--dropout", type=float, default=0.1) parser.add_argument("--weight-decay", type=float, default=0.01) parser.add_argument("--warmup-ratio", type=float, default=0.1) parser.add_argument("--max-grad-norm", type=float, default=1.0) parser.add_argument("--gradient-accumulation-step", type=int, default=1) # model hparams parser.add_argument("--n-enc-block", type=int, default=6) parser.add_argument("--n-dec-block", type=int, default=6) parser.add_argument("--hidden", type=int, default=512) parser.add_argument("--fc-hidden", type=int, default=2048) parser.add_argument( "--num-head", type=int, default=8, help="Number of self-attention head" ) parser.add_argument("--max-len", type=int, default=512) args = parser.parse_args() return args
40.033898
88
0.657494
2fe91c96f87a19b617285cd2409bd9c0519ed67b
3,638
py
Python
HARK/tests/test_core.py
HsinYiHung/HARK_HY
086c46af5bd037fe1ced6906c6ea917ed58b134f
[ "Apache-2.0" ]
null
null
null
HARK/tests/test_core.py
HsinYiHung/HARK_HY
086c46af5bd037fe1ced6906c6ea917ed58b134f
[ "Apache-2.0" ]
null
null
null
HARK/tests/test_core.py
HsinYiHung/HARK_HY
086c46af5bd037fe1ced6906c6ea917ed58b134f
[ "Apache-2.0" ]
null
null
null
""" This file implements unit tests for interpolation methods """ from HARK.core import HARKobject, distanceMetric, AgentType import numpy as np import unittest class testdistanceMetric(unittest.TestCase): def setUp(self): self.list_a = [1.0, 2.1, 3] self.list_b = [3.1, 4, -1.4] self.list_c = [8.6, 9] self.obj_a = HARKobject() self.obj_b = HARKobject() self.obj_c = HARKobject() def test_list(self): # same length self.assertEqual(distanceMetric(self.list_a, self.list_b), 4.4) # different length self.assertEqual(distanceMetric(self.list_b, self.list_c), 1.0) # sanity check, same objects self.assertEqual(distanceMetric(self.list_b, self.list_b), 0.0) def test_array(self): # same length self.assertEqual( distanceMetric(np.array(self.list_a), np.array(self.list_b)), 4.4 ) # different length self.assertEqual( distanceMetric(np.array(self.list_b).reshape(1, 3), np.array(self.list_c)), 1.0, ) # sanity check, same objects self.assertEqual( distanceMetric(np.array(self.list_b), np.array(self.list_b)), 0.0 ) def test_hark_object_distance(self): self.obj_a.distance_criteria = ["var_1", "var_2", "var_3"] self.obj_b.distance_criteria = ["var_1", "var_2", "var_3"] self.obj_c.distance_criteria = ["var_5"] # if attributes don't exist or don't match self.assertEqual(distanceMetric(self.obj_a, self.obj_b), 1000.0) self.assertEqual(distanceMetric(self.obj_a, self.obj_c), 1000.0) # add single numbers to attributes self.obj_a.var_1, self.obj_a.var_2, self.obj_a.var_3 = 0.1, 1, 2.1 self.obj_b.var_1, self.obj_b.var_2, self.obj_b.var_3 = 1.8, -1, 0.1 self.assertEqual(distanceMetric(self.obj_a, self.obj_b), 2.0) # sanity check - same objects self.assertEqual(distanceMetric(self.obj_a, self.obj_a), 0.0) class testHARKobject(unittest.TestCase): def setUp(self): # similar test to distanceMetric self.obj_a = HARKobject() self.obj_b = HARKobject() self.obj_c = HARKobject() def test_distance(self): self.obj_a.distance_criteria = ["var_1", "var_2", "var_3"] self.obj_b.distance_criteria = ["var_1", "var_2", "var_3"] self.obj_c.distance_criteria = ["var_5"] self.obj_a.var_1, self.obj_a.var_2, self.obj_a.var_3 = [0.1], [1, 2], [2.1] self.obj_b.var_1, self.obj_b.var_2, self.obj_b.var_3 = [1.8], [0, 0.1], [1.1] self.assertEqual(self.obj_a.distance(self.obj_b), 1.9) # change the length of a attribute list self.obj_b.var_1, self.obj_b.var_2, self.obj_b.var_3 = [1.8], [0, 0, 0.1], [1.1] self.assertEqual(self.obj_a.distance(self.obj_b), 1.7) # sanity check self.assertEqual(self.obj_b.distance(self.obj_b), 0.0) class testAgentType(unittest.TestCase): def setUp(self): self.agent = AgentType() def test_solve(self): self.agent.time_vary = ['vary_1'] self.agent.time_inv = ['inv_1'] self.agent.vary_1 = [1.1, 1.2, 1.3, 1.4] self.agent.inv_1 = 1.05 # to test the superclass we create a dummy solveOnePeriod function # for our agent, which doesn't do anything, instead of using a NullFunc self.agent.solveOnePeriod = lambda vary_1: HARKobject() self.agent.solve() self.assertEqual(len(self.agent.solution), 4) self.assertTrue(isinstance(self.agent.solution[0], HARKobject))
38.702128
88
0.630566
0d005040f44129d4069b7bd9d2eabfee08d462b7
665
py
Python
paper/tools/mse_gf.py
toros-astro/corral
75474b38ff366330d33644461a902d07374a5bbc
[ "BSD-3-Clause" ]
4
2015-11-19T16:04:30.000Z
2021-05-13T06:42:27.000Z
paper/tools/mse_gf.py
toros-astro/corral
75474b38ff366330d33644461a902d07374a5bbc
[ "BSD-3-Clause" ]
27
2015-10-20T16:28:02.000Z
2018-08-21T20:48:45.000Z
paper/tools/mse_gf.py
toros-astro/corral
75474b38ff366330d33644461a902d07374a5bbc
[ "BSD-3-Clause" ]
5
2015-11-20T00:03:07.000Z
2019-07-15T00:39:53.000Z
import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_context(context='paper', font_scale=1.8) mse = np.arange(40) f20 = np.exp(mse/20.) f13 = np.exp(mse/13.) f10 = np.exp(mse/10.) f5 = np.exp(mse/5.) gf10 = 2./(1+f10) gf13 = 2./(1+f13) gf5 = 2./(1+f5) gf20 = 2./(1+f20) plt.rc('text', usetex=True) plt.rc('font', family='serif', size=20) plt.plot(mse, gf20, 'r-.', label=r'$\tau=20$') plt.plot(mse, gf13, 'b', label=r'$\tau=13$') plt.plot(mse, gf10, 'g:', label=r'$\tau=10$') plt.plot(mse, gf5, 'y--', label=r'$\tau=5$') plt.ylabel(r'$2 \times [1+exp(MSE/\tau)]^{-1}$') plt.xlabel('MSE Style errors') plt.legend(loc=1) plt.show()
21.451613
48
0.619549
56563ea32089e25c1db3365ebf229670134f3418
5,198
py
Python
src/mce_irl.py
andyruddh/irl-maxent
f1644ec4a2a31e3d99aa5d22c8f441c395da1de0
[ "MIT" ]
null
null
null
src/mce_irl.py
andyruddh/irl-maxent
f1644ec4a2a31e3d99aa5d22c8f441c395da1de0
[ "MIT" ]
null
null
null
src/mce_irl.py
andyruddh/irl-maxent
f1644ec4a2a31e3d99aa5d22c8f441c395da1de0
[ "MIT" ]
null
null
null
#!/usr/bin/env python import gridworld as W import maxent as M import plot as P import trajectory as T import solver as S import optimizer as O import numpy as np import matplotlib.pyplot as plt import os def setup_mdp(GRID_SIZE, p_slip, avoid_states): """ Set-up our MDP/GridWorld """ # create our world world = W.IcyGridWorld(size=GRID_SIZE, p_slip=p_slip) # set up the reward function # reward = np.zeros(world.n_states) reward = np.ones(world.n_states) reward[-1] = 3.0 # reward[6] = 2.5 # Define some obstacles or avoid regions for s in avoid_states: reward[s] = 0 # set up terminal states terminal = [GRID_SIZE**2-1] # print(world.n_states) # print(reward) return world, reward, terminal def generate_trajectories(world, reward, terminal): """ Generate some "expert" trajectories. """ # parameters n_trajectories = 300 print("\nNumber of experts: %d\n" %(n_trajectories)) discount = 0.9 weighting = lambda x: x**5 # set up initial probabilities for trajectory generation initial = np.zeros(world.n_states) initial[0] = 1.0 # generate trajectories value = S.value_iteration(world.p_transition, reward, discount) policy = S.stochastic_policy_from_value(world, value, w=weighting) policy_exec = T.stochastic_policy_adapter(policy) tjs = list(T.generate_trajectories(n_trajectories, world, policy_exec, initial, terminal)) return tjs, policy def maxent(world, terminal, trajectories, avoid_states=None): """ Maximum Entropy Inverse Reinforcement Learning """ # set up features: we use one feature vector per state # features = W.state_features(world) features = W.state_custom_features(world, avoid_states, terminal) # choose our parameter initialization strategy: # initialize parameters with constant init = O.Constant(1.0) # choose our optimization strategy: # we select exponentiated gradient descent with linear learning-rate decay optim = O.ExpSga(lr=O.linear_decay(lr0=0.2)) # actually do some inverse reinforcement learning reward = M.irl(world.p_transition, features, terminal, trajectories, optim, init) return reward def maxent_causal(world, avoid_states, terminal, trajectories, discount=0.7): """ Maximum Causal Entropy Inverse Reinforcement Learning """ # set up features: we use one feature vector per state features = W.state_custom_features(world, avoid_states, terminal) # features = W.state_features(world) # choose our parameter initialization strategy: # initialize parameters with constant init = O.Constant(1.0) # choose our optimization strategy: # we select exponentiated gradient descent with linear learning-rate decay optim = O.ExpSga(lr=O.linear_decay(lr0=0.2)) # actually do some inverse reinforcement learning reward = M.irl_causal(world.p_transition, features, terminal, trajectories, optim, init, discount) return reward def mce_irl(grid_size, p_slip, avoid_states): cwd = os.getcwd() fig_dir = "figs" if not os.path.exists(fig_dir): os.makedirs(fig_dir) # common style arguments for plotting style = { 'border': {'color': 'red', 'linewidth': 0.5}, 'cmap': "Blues", } # set-up mdp world, reward, terminal = setup_mdp(grid_size, p_slip, avoid_states) # show our original reward ax = plt.figure(num='Original Reward').add_subplot(111) tt = P.plot_state_values(ax, world, reward, **style) plt.colorbar(tt) plt.draw() plt.savefig(os.path.join(fig_dir, "gt_reward.png")) print("\nGenerating expert trajectories ...\n") # generate "expert" trajectories trajectories, expert_policy = generate_trajectories(world, reward, terminal) # show our expert policies ax = plt.figure(num='Expert Trajectories and Policy').add_subplot(111) P.plot_stochastic_policy(ax, world, expert_policy, **style) for t in trajectories: P.plot_trajectory(ax, world, t, lw=5, color='white', alpha=0.025) plt.draw() plt.savefig(os.path.join(fig_dir, "demonstrations.png")) ''' print("ME-IRL ...") # maximum entropy reinforcement learning (non-causal) reward_maxent = maxent(world, terminal, trajectories) # show the computed reward ax = plt.figure(num='MaxEnt Reward').add_subplot(111) P.plot_state_values(ax, world, reward_maxent, **style) plt.draw() ''' print("\nPerforming MCE-IRL ...\n") # maximum casal entropy reinforcement learning (non-causal) # reward_maxcausal = maxent_causal(world, avoid_states, terminal, trajectories) reward_maxcausal = maxent(world, terminal, trajectories, avoid_states) # print(reward_maxcausal) # show the computed reward ax = plt.figure(num='MaxEnt Reward (Causal)').add_subplot(111) tt = P.plot_state_values(ax, world, reward_maxcausal, **style) plt.colorbar(tt) plt.draw() plt.savefig(os.path.join(fig_dir, "maxent_causal_reward.png")) print("\nDone! Rewards learned\n") # plt.show() return (reward_maxcausal, world, terminal)
30.046243
102
0.691227
4e85cfd4865cd2504e0383c6886e4007bdaa0655
435
py
Python
scripts/planck_data_info.py
veragluscevic/npoint-fgs
911a7c998cc2d8303bf7b59f028d194bb5ce2b09
[ "MIT" ]
null
null
null
scripts/planck_data_info.py
veragluscevic/npoint-fgs
911a7c998cc2d8303bf7b59f028d194bb5ce2b09
[ "MIT" ]
null
null
null
scripts/planck_data_info.py
veragluscevic/npoint-fgs
911a7c998cc2d8303bf7b59f028d194bb5ce2b09
[ "MIT" ]
null
null
null
# for beam_file='HFI_RIMO_Beams-100pc_R2.00.fits' BEAM_INDEX = { '100': 3, '143': 4, '217': 5, '353': 6, '100P': 7, '143P': 8, '217P': 9, '353P': 10, } #for maskfile='HFI_Mask_GalPlane-apo{}_2048_R2.00.fits' MASK_FIELD = { 20: 0, 40: 1, 60: 2, 70: 3, 80: 4, 90: 5, 97: 6, 99: 7, } FG_SCALING = { 100: 1., 143: 1., 217: 1., 353: 1., }
12.794118
55
0.441379
765495ec01abb0e8a98c2e2274626f69e46fd483
2,953
py
Python
pygazebo/msg/world_reset_pb2.py
CryptoCopter/pygazebo
f16704f3b59cb50a1390ef92fde283558fd71f8f
[ "Apache-2.0" ]
null
null
null
pygazebo/msg/world_reset_pb2.py
CryptoCopter/pygazebo
f16704f3b59cb50a1390ef92fde283558fd71f8f
[ "Apache-2.0" ]
null
null
null
pygazebo/msg/world_reset_pb2.py
CryptoCopter/pygazebo
f16704f3b59cb50a1390ef92fde283558fd71f8f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: world_reset.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='world_reset.proto', package='gazebo.msgs', syntax='proto2', serialized_options=None, create_key=_descriptor._internal_create_key, serialized_pb=b'\n\x11world_reset.proto\x12\x0bgazebo.msgs\"T\n\nWorldReset\x12\x11\n\x03\x61ll\x18\x01 \x01(\x08:\x04true\x12\x18\n\ttime_only\x18\x02 \x01(\x08:\x05\x66\x61lse\x12\x19\n\nmodel_only\x18\x03 \x01(\x08:\x05\x66\x61lse' ) _WORLDRESET = _descriptor.Descriptor( name='WorldReset', full_name='gazebo.msgs.WorldReset', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='all', full_name='gazebo.msgs.WorldReset.all', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='time_only', full_name='gazebo.msgs.WorldReset.time_only', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='model_only', full_name='gazebo.msgs.WorldReset.model_only', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=34, serialized_end=118, ) DESCRIPTOR.message_types_by_name['WorldReset'] = _WORLDRESET _sym_db.RegisterFileDescriptor(DESCRIPTOR) WorldReset = _reflection.GeneratedProtocolMessageType('WorldReset', (_message.Message,), { 'DESCRIPTOR' : _WORLDRESET, '__module__' : 'world_reset_pb2' # @@protoc_insertion_point(class_scope:gazebo.msgs.WorldReset) }) _sym_db.RegisterMessage(WorldReset) # @@protoc_insertion_point(module_scope)
34.741176
236
0.758212
c476aea2890fe203a58963632f6592591e1c7a1c
569
py
Python
src/scion/service/test/orb_sources.py
scion-network/scion
9a778eeb3e4e690d1b1ebd19e5349314cbf7b0fc
[ "BSD-2-Clause" ]
null
null
null
src/scion/service/test/orb_sources.py
scion-network/scion
9a778eeb3e4e690d1b1ebd19e5349314cbf7b0fc
[ "BSD-2-Clause" ]
null
null
null
src/scion/service/test/orb_sources.py
scion-network/scion
9a778eeb3e4e690d1b1ebd19e5349314cbf7b0fc
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import subprocess from pyon.public import CFG antelope_path = CFG.get_safe("scion.antelope.path", "/opt/antelope/5.6") cmd = ". " + antelope_path + "/setup.sh;orbstat -s ceusnexport.ucsd.edu:usarray | grep M40 | grep seconds | cut -d' ' -f1" max_sources = 5 res = subprocess.check_output(cmd, shell=True) all_sources = res.split() #if max_sources: # sources = all_sources[0:max_sources] #else: # sources = all_sources sources = all_sources print 'retrieved %i of %i M40 sources with seconds latency' % (len(sources), len(all_sources))
22.76
122
0.718805
13e356bab1f32bd858c618450780d7e66011e0de
7,428
py
Python
kitti_eval/depth_evaluation_utils.py
sakshikakde/sfm_dl
d39d7068e23fe44394a3d5694bba074f2f05edaf
[ "MIT" ]
null
null
null
kitti_eval/depth_evaluation_utils.py
sakshikakde/sfm_dl
d39d7068e23fe44394a3d5694bba074f2f05edaf
[ "MIT" ]
null
null
null
kitti_eval/depth_evaluation_utils.py
sakshikakde/sfm_dl
d39d7068e23fe44394a3d5694bba074f2f05edaf
[ "MIT" ]
null
null
null
# Mostly based on the code written by Clement Godard: # https://github.com/mrharicot/monodepth/blob/master/utils/evaluation_utils.py import numpy as np # import pandas as pd import os import cv2 from collections import Counter import pickle def compute_errors(gt, pred): thresh = np.maximum((gt / pred), (pred / gt)) a1 = (thresh < 1.25 ).mean() a2 = (thresh < 1.25 ** 2).mean() a3 = (thresh < 1.25 ** 3).mean() rmse = (gt - pred) ** 2 rmse = np.sqrt(rmse.mean()) rmse_log = (np.log(gt) - np.log(pred)) ** 2 rmse_log = np.sqrt(rmse_log.mean()) abs_rel = np.mean(np.abs(gt - pred) / gt) sq_rel = np.mean(((gt - pred)**2) / gt) return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3 ############################################################################### ####################### KITTI width_to_focal = dict() width_to_focal[1242] = 721.5377 width_to_focal[1241] = 718.856 width_to_focal[1224] = 707.0493 width_to_focal[1238] = 718.3351 def load_gt_disp_kitti(path): gt_disparities = [] for i in range(200): disp = cv2.imread(path + "/training/disp_noc_0/" + str(i).zfill(6) + "_10.png", -1) disp = disp.astype(np.float32) / 256 gt_disparities.append(disp) return gt_disparities def convert_disps_to_depths_kitti(gt_disparities, pred_disparities): gt_depths = [] pred_depths = [] pred_disparities_resized = [] for i in range(len(gt_disparities)): gt_disp = gt_disparities[i] height, width = gt_disp.shape pred_disp = pred_disparities[i] pred_disp = width * cv2.resize(pred_disp, (width, height), interpolation=cv2.INTER_LINEAR) pred_disparities_resized.append(pred_disp) mask = gt_disp > 0 gt_depth = width_to_focal[width] * 0.54 / (gt_disp + (1.0 - mask)) pred_depth = width_to_focal[width] * 0.54 / pred_disp gt_depths.append(gt_depth) pred_depths.append(pred_depth) return gt_depths, pred_depths, pred_disparities_resized ############################################################################### ####################### EIGEN def read_text_lines(file_path): f = open(file_path, 'r') lines = f.readlines() f.close() lines = [l.rstrip() for l in lines] return lines def read_file_data(files, data_root): gt_files = [] gt_calib = [] im_sizes = [] im_files = [] cams = [] num_probs = 0 for filename in files: filename = filename.split()[0] splits = filename.split('/') # camera_id = filename[-1] # 2 is left, 3 is right date = splits[0] im_id = splits[4][:10] file_root = '{}/{}' im = filename vel = '{}/{}/velodyne_points/data/{}.bin'.format(splits[0], splits[1], im_id) if os.path.isfile(data_root + im): gt_files.append(data_root + vel) gt_calib.append(data_root + date + '/') im_sizes.append(cv2.imread(data_root + im).shape[:2]) im_files.append(data_root + im) cams.append(2) else: num_probs += 1 print('{} missing'.format(data_root + im)) # print(num_probs, 'files missing') return gt_files, gt_calib, im_sizes, im_files, cams def load_velodyne_points(file_name): # adapted from https://github.com/hunse/kitti points = np.fromfile(file_name, dtype=np.float32).reshape(-1, 4) points[:, 3] = 1.0 # homogeneous return points def lin_interp(shape, xyd): # taken from https://github.com/hunse/kitti m, n = shape ij, d = xyd[:, 1::-1], xyd[:, 2] f = LinearNDInterpolator(ij, d, fill_value=0) J, I = np.meshgrid(np.arange(n), np.arange(m)) IJ = np.vstack([I.flatten(), J.flatten()]).T disparity = f(IJ).reshape(shape) return disparity def read_calib_file(path): # taken from https://github.com/hunse/kitti float_chars = set("0123456789.e+- ") data = {} with open(path, 'r') as f: for line in f.readlines(): key, value = line.split(':', 1) value = value.strip() data[key] = value if float_chars.issuperset(value): # try to cast to float array try: data[key] = np.array(list(map(float, value.split(' ')))) except ValueError: # casting error: data[key] already eq. value, so pass pass return data def get_focal_length_baseline(calib_dir, cam=2): cam2cam = read_calib_file(calib_dir + 'calib_cam_to_cam.txt') P2_rect = cam2cam['P_rect_02'].reshape(3,4) P3_rect = cam2cam['P_rect_03'].reshape(3,4) # cam 2 is left of camera 0 -6cm # cam 3 is to the right +54cm b2 = P2_rect[0,3] / -P2_rect[0,0] b3 = P3_rect[0,3] / -P3_rect[0,0] baseline = b3-b2 if cam==2: focal_length = P2_rect[0,0] elif cam==3: focal_length = P3_rect[0,0] return focal_length, baseline def sub2ind(matrixSize, rowSub, colSub): m, n = matrixSize return rowSub * (n-1) + colSub - 1 def generate_depth_map(calib_dir, velo_file_name, im_shape, cam=2, interp=False, vel_depth=False): # load calibration files cam2cam = read_calib_file(calib_dir + 'calib_cam_to_cam.txt') velo2cam = read_calib_file(calib_dir + 'calib_velo_to_cam.txt') velo2cam = np.hstack((velo2cam['R'].reshape(3,3), velo2cam['T'][..., np.newaxis])) velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0]))) # compute projection matrix velodyne->image plane R_cam2rect = np.eye(4) R_cam2rect[:3,:3] = cam2cam['R_rect_00'].reshape(3,3) P_rect = cam2cam['P_rect_0'+str(cam)].reshape(3,4) P_velo2im = np.dot(np.dot(P_rect, R_cam2rect), velo2cam) # load velodyne points and remove all behind image plane (approximation) # each row of the velodyne data is forward, left, up, reflectance velo = load_velodyne_points(velo_file_name) velo = velo[velo[:, 0] >= 0, :] # project the points to the camera velo_pts_im = np.dot(P_velo2im, velo.T).T velo_pts_im[:, :2] = velo_pts_im[:,:2] / velo_pts_im[:,2][..., np.newaxis] if vel_depth: velo_pts_im[:, 2] = velo[:, 0] # check if in bounds # use minus 1 to get the exact same value as KITTI matlab code velo_pts_im[:, 0] = np.round(velo_pts_im[:,0]) - 1 velo_pts_im[:, 1] = np.round(velo_pts_im[:,1]) - 1 val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0) val_inds = val_inds & (velo_pts_im[:,0] < im_shape[1]) & (velo_pts_im[:,1] < im_shape[0]) velo_pts_im = velo_pts_im[val_inds, :] # project to image depth = np.zeros((im_shape)) depth[velo_pts_im[:, 1].astype(np.int), velo_pts_im[:, 0].astype(np.int)] = velo_pts_im[:, 2] # find the duplicate points and choose the closest depth inds = sub2ind(depth.shape, velo_pts_im[:, 1], velo_pts_im[:, 0]) dupe_inds = [item for item, count in Counter(inds).items() if count > 1] for dd in dupe_inds: pts = np.where(inds==dd)[0] x_loc = int(velo_pts_im[pts[0], 0]) y_loc = int(velo_pts_im[pts[0], 1]) depth[y_loc, x_loc] = velo_pts_im[pts, 2].min() depth[depth<0] = 0 if interp: # interpolate the depth map to fill in holes depth_interp = lin_interp(im_shape, velo_pts_im) return depth, depth_interp else: return depth
32.578947
98
0.599623
9407a11ad6881e63f368e757cc5e9b0e8685cf29
8,914
py
Python
utils_pg.py
ruotianluo/neural-summ-cnndm-pytorch
027b63107b748bc56356bd119b243cfdda684aa2
[ "MIT" ]
3
2018-10-22T23:03:40.000Z
2018-10-23T09:45:32.000Z
utils_pg.py
ruotianluo/neural-summ-cnndm-pytorch
027b63107b748bc56356bd119b243cfdda684aa2
[ "MIT" ]
null
null
null
utils_pg.py
ruotianluo/neural-summ-cnndm-pytorch
027b63107b748bc56356bd119b243cfdda684aa2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #pylint: skip-file import numpy as np from numpy.random import random as rand import cPickle as pickle import sys import os import shutil from copy import deepcopy import random import torch from torch import nn def init_seeds(): random.seed(123) torch.manual_seed(123) if torch.cuda.is_available(): torch.cuda.manual_seed_all(123) def init_lstm_weight(lstm): for param in lstm.parameters(): if len(param.shape) >= 2: # weights init_ortho_weight(param.data) else: # bias init_bias(param.data) def init_gru_weight(gru): for param in gru.parameters(): if len(param.shape) >= 2: # weights init_ortho_weight(param.data) else: # bias init_bias(param.data) def init_linear_weight(linear): init_xavier_weight(linear.weight) if linear.bias is not None: init_bias(linear.bias) def init_normal_weight(w): nn.init.normal_(w, mean=0, std=0.01) def init_uniform_weight(w): nn.init.uniform_(w, -0.1, 0.1) def init_ortho_weight(w): nn.init.orthogonal_(w) def init_xavier_weight(w): nn.init.xavier_normal_(w) def init_bias(b): nn.init.constant_(b, 0.) def rebuild_dir(path): if os.path.exists(path): try: shutil.rmtree(path) except OSError: pass os.mkdir(path) def save_model(f, model, optimizer): torch.save({"model_state_dict" : model.state_dict(), "optimizer_state_dict" : optimizer.state_dict()}, f) def load_model(f, model, optimizer): checkpoint = torch.load(f) model.load_state_dict(checkpoint["model_state_dict"]) optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) return model, optimizer def sort_samples(x, len_x, mask_x, y, len_y, \ mask_y, oys, x_ext, y_ext, oovs): sorted_x_idx = np.argsort(len_x)[::-1] sorted_x_len = np.array(len_x)[sorted_x_idx] sorted_x = x[:, sorted_x_idx] sorted_x_mask = mask_x[:, sorted_x_idx, :] sorted_oovs = [oovs[i] for i in sorted_x_idx] sorted_y_len = np.array(len_y)[sorted_x_idx] sorted_y = y[:, sorted_x_idx] sorted_y_mask = mask_y[:, sorted_x_idx, :] sorted_oys = [oys[i] for i in sorted_x_idx] sorted_x_ext = x_ext[:, sorted_x_idx] sorted_y_ext = y_ext[:, sorted_x_idx] return sorted_x, sorted_x_len, sorted_x_mask, sorted_y, \ sorted_y_len, sorted_y_mask, sorted_oys, \ sorted_x_ext, sorted_y_ext, sorted_oovs def print_sent_dec(y_pred, y, y_mask, oovs, modules, consts, options, batch_size, lvt_dict = None): print "golden truth and prediction samples:" max_y_words = np.sum(y_mask, axis = 0) max_y_words = max_y_words.reshape((batch_size)) max_num_docs = 16 if batch_size > 16 else batch_size is_unicode = options["is_unicode"] dict_size = len(modules["i2w"]) for idx_doc in range(max_num_docs): print idx_doc + 1, "----------------------------------------------------------------------------------------------------" sent_true= "" for idx_word in range(max_y_words[idx_doc]): i = y[idx_word, idx_doc] if options["has_learnable_w2v"] else np.argmax(y[idx_word, idx_doc]) if i in modules["i2w"]: sent_true += modules["i2w"][i] else: sent_true += oovs[idx_doc][i - dict_size] if not is_unicode: sent_true += " " if is_unicode: print sent_true.encode("utf-8") else: print sent_true print sent_pred = "" for idx_word in range(max_y_words[idx_doc]): i = torch.argmax(y_pred[idx_word, idx_doc, :]).item() if options["has_lvt_trick"]: i = lvt_dict[i] if i in modules["i2w"]: sent_pred += modules["i2w"][i] else: sent_pred += oovs[idx_doc][i - dict_size] if not is_unicode: sent_pred += " " if is_unicode: print sent_pred.encode("utf-8") else: print sent_pred print "----------------------------------------------------------------------------------------------------" print def write_summ(dst_path, summ_list, num_summ, options, i2w = None, score_list = None): is_unicode = options["is_unicode"] assert num_summ > 0 with open(dst_path, "w") as f_summ: if num_summ == 1: if score_list != None: f_summ.write(str(score_list[0])) f_summ.write("\t") if i2w != None: #for e in summ_list: # print i2w[int(e)], #print "\n" if is_unicode: s = "".join([i2w[int(e)] for e in summ_list]).encode("utf-8") else: s = " ".join([i2w[int(e)] for e in summ_list]) else: s = " ".join(summ_list) f_summ.write(s) f_summ.write("\n") else: assert num_summ == len(summ_list) if score_list != None: assert num_summ == len(score_list) for i in xrange(num_summ): if score_list != None: f_summ.write(str(score_list[i])) f_summ.write("\t") if i2w != None: #for e in summ_list[i]: # print i2w[int(e)], #print "\n" if is_unicode: s = "".join([i2w[int(e)] for e in summ_list[i]]).encode("utf-8") else: s = " ".join([i2w[int(e)] for e in summ_list[i]]) else: s = " ".join(summ_list[i]) f_summ.write(s) f_summ.write("\n") def write_for_rouge(fname, ref_sents, dec_words, cfg): dec_sents = [] while len(dec_words) > 0: try: fst_period_idx = dec_words.index(".") except ValueError: fst_period_idx = len(dec_words) sent = dec_words[:fst_period_idx + 1] dec_words = dec_words[fst_period_idx + 1:] dec_sents.append(' '.join(sent)) ref_file = "".join((cfg.cc.GROUND_TRUTH_PATH, fname)) decoded_file = "".join((cfg.cc.SUMM_PATH, fname)) with open(ref_file, "w") as f: for idx, sent in enumerate(ref_sents): sent = sent.strip() f.write(sent) if idx == len(ref_sents) - 1 else f.write(sent + "\n") with open(decoded_file, "w") as f: for idx, sent in enumerate(dec_sents): sent = sent.strip() f.write(sent) if idx == len(dec_sents) - 1 else f.write(sent + "\n") def write_summ_copy(dst_path, summ_list, num_summ, options, i2w = None, oovs=None, score_list = None): assert num_summ > 0 with open(dst_path, "w") as f_summ: if num_summ == 1: if score_list != None: f_summ.write(str(score_list[0])) f_summ.write("\t") if i2w != None: ''' for e in summ_list: e = int(e) if e in i2w: print i2w[e], else: print oovs[e - len(i2w)], print "\n" ''' s = [] for e in summ_list: e = int(e) if e in i2w: s.append(i2w[e]) else: s.append(oovs[e - len(i2w)]) s = " ".join(s) else: s = " ".join(summ_list) f_summ.write(s) f_summ.write("\n") else: assert num_summ == len(summ_list) if score_list != None: assert num_summ == len(score_list) for i in xrange(num_summ): if score_list != None: f_summ.write(str(score_list[i])) f_summ.write("\t") if i2w != None: ''' for e in summ_list[i]: e = int(e) if e in i2w: print i2w[e], else: print oovs[e - len(i2w)], print "\n" ''' s = [] for e in summ_list[i]: e = int(e) if e in i2w: s.append(i2w[e]) else: s.append(oovs[e - len(i2w)]) s = " ".join(s) else: s = " ".join(summ_list[i]) f_summ.write(s) f_summ.write("\n")
33.137546
129
0.4954
4a8bea19b4c3c8588c3bf0158c1afe9b34871a0c
12,872
py
Python
google/cloud/errorreporting_v1beta1/services/error_group_service/transports/grpc_asyncio.py
LaudateCorpus1/python-error-reporting
b207f2cec4f5f3196e775ed35cd429f34f9c0bd1
[ "Apache-2.0" ]
17
2020-09-19T17:48:32.000Z
2022-03-09T06:40:39.000Z
google/cloud/errorreporting_v1beta1/services/error_group_service/transports/grpc_asyncio.py
LaudateCorpus1/python-error-reporting
b207f2cec4f5f3196e775ed35cd429f34f9c0bd1
[ "Apache-2.0" ]
67
2020-02-11T13:24:20.000Z
2022-03-18T15:27:25.000Z
google/cloud/errorreporting_v1beta1/services/error_group_service/transports/grpc_asyncio.py
LaudateCorpus1/python-error-reporting
b207f2cec4f5f3196e775ed35cd429f34f9c0bd1
[ "Apache-2.0" ]
6
2020-02-07T00:29:36.000Z
2022-02-16T07:27:09.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.errorreporting_v1beta1.types import common from google.cloud.errorreporting_v1beta1.types import error_group_service from .base import ErrorGroupServiceTransport, DEFAULT_CLIENT_INFO from .grpc import ErrorGroupServiceGrpcTransport class ErrorGroupServiceGrpcAsyncIOTransport(ErrorGroupServiceTransport): """gRPC AsyncIO backend transport for ErrorGroupService. Service for retrieving and updating individual error groups. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "clouderrorreporting.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "clouderrorreporting.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def get_group( self, ) -> Callable[[error_group_service.GetGroupRequest], Awaitable[common.ErrorGroup]]: r"""Return a callable for the get group method over gRPC. Get the specified group. Returns: Callable[[~.GetGroupRequest], Awaitable[~.ErrorGroup]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_group" not in self._stubs: self._stubs["get_group"] = self.grpc_channel.unary_unary( "/google.devtools.clouderrorreporting.v1beta1.ErrorGroupService/GetGroup", request_serializer=error_group_service.GetGroupRequest.serialize, response_deserializer=common.ErrorGroup.deserialize, ) return self._stubs["get_group"] @property def update_group( self, ) -> Callable[ [error_group_service.UpdateGroupRequest], Awaitable[common.ErrorGroup] ]: r"""Return a callable for the update group method over gRPC. Replace the data for the specified group. Fails if the group does not exist. Returns: Callable[[~.UpdateGroupRequest], Awaitable[~.ErrorGroup]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_group" not in self._stubs: self._stubs["update_group"] = self.grpc_channel.unary_unary( "/google.devtools.clouderrorreporting.v1beta1.ErrorGroupService/UpdateGroup", request_serializer=error_group_service.UpdateGroupRequest.serialize, response_deserializer=common.ErrorGroup.deserialize, ) return self._stubs["update_group"] def close(self): return self.grpc_channel.close() __all__ = ("ErrorGroupServiceGrpcAsyncIOTransport",)
44.233677
93
0.639372
d99b69cd7e1b049fe6663ea634a948e0e7b74755
3,197
py
Python
canon.py
ipa-tys/ockeghem
a30ffa9e7ea7cf86b376ff5a9976a792bc725276
[ "MIT" ]
null
null
null
canon.py
ipa-tys/ockeghem
a30ffa9e7ea7cf86b376ff5a9976a792bc725276
[ "MIT" ]
null
null
null
canon.py
ipa-tys/ockeghem
a30ffa9e7ea7cf86b376ff5a9976a792bc725276
[ "MIT" ]
null
null
null
from music21 import * from midi2audio import FluidSynth import random import pdb import sys import argparse import textwrap if __name__ == '__main__': parser = argparse.ArgumentParser(description='generate canon antecedents.', prog='canon.py', formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent(''' Examples: 1.) Canon in the lower fourth: python canon.py -o canon01 -t l4 ''') ) parser.add_argument('-t','--type', help='Type of canon', required=True) parser.add_argument('-o','--output',help='File stem for output files',required=True) parser.add_argument('--pdf', help='Generate sheet music PDF', action='store_true') # todo: add difficulty levels (e.g. only a subset of steps, etc) # let choose the soundfont args = parser.parse_args() filestem = args.output canon_type = args.type pdf_output = args.pdf # todo: ficta notes B, Eb, and F-sharp are allowed # after creating a new note, check that it has no melodic tritone and that the two lines are consonant # check_comes_melodically(note1) # check_canon_harmonically(note1) # otherwise try ficta in comes and/or in dux legalNoteNamesTenor = ['B-2','B2','C3','D3','E3','F3','G3','A3','B-3','B3','C4','D4','E4','F4','G4','A4'] legalNoteNamesSoprano = ['B-3','B3','C4','D4','E4','F4','G4','A4','B-4','B4','C5','D5'] # 'E5','F5','G5','A5'] legalNotes = [] for legalNote in legalNoteNamesSoprano: note1 = note.Note(legalNote) note1.duration = note.duration.Duration(4.0) legalNotes.append(note1) if canon_type == 'l8': intervalNames = ['m-3','M-3','P-4','P1','m3','M3','P5'] if canon_type == 'l5': intervalNames = ['m-3','M-3','P-5','P1','m2','M2','P4'] if canon_type == 'l4': intervalNames = ['m-2','M-2','P-4','m2','M2','m3','M3','P5'] intervals = [] for intervalName in intervalNames: intervals.append(interval.Interval(intervalName)) fs = FluidSynth('Papelmedia_Irina_Brochin.sf2') note1 = note.Note('D4') note1.duration = note.duration.Duration(4.0) stream1 = stream.Stream() stream1.append(note1) for i in range(10): legal = False while not legal: i = random.choice(intervals) i.noteStart = stream1[-1] if i.noteEnd in legalNotes: legal = True note1 = i.noteEnd note1.duration = note.duration.Duration(4.0) stream1.append(note1) fp = stream1.write('midi', fp=filestem + '.mid') if args.pdf: stream1.show() # stream1.show(filestem + '.pdf') my_tempo = tempo.MetronomeMark(number=40) stream1.insert(0, my_tempo) cadence_midi = stream1.write('midi') fs = FluidSynth('~/soundfonts/papelmedia_Irina_Brochin.sf2') fs.midi_to_audio(cadence_midi, filestem + '.wav') # todo: command line parser, e.g. with option for tempo, ornamentation etc. # other canons, e.g. in upper octave, fifth, fourth, ... # antecedent for canon around a cantus firmus # try aubio for pitch detection
33.652632
114
0.618392
0c786a5b9646824715d086306d165d9e0d44c2fa
8,725
py
Python
python/doc/conf.py
industrial-sloth/thunder
ea2a6b3cfdefb8d09441865e15ac65c6e2f01151
[ "Apache-2.0" ]
null
null
null
python/doc/conf.py
industrial-sloth/thunder
ea2a6b3cfdefb8d09441865e15ac65c6e2f01151
[ "Apache-2.0" ]
null
null
null
python/doc/conf.py
industrial-sloth/thunder
ea2a6b3cfdefb8d09441865e15ac65c6e2f01151
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Thunder documentation build configuration file, created by # sphinx-quickstart on Wed Jul 16 17:00:45 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os import sphinx_bootstrap_theme import matplotlib as mpl mpl.use("Agg") # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. sys.path.insert(0, os.path.abspath('sphinxext')) extensions = ['sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc', 'ipython_directive', 'ipython_console_highlighting'] # Generate the API documentation when building autosummary_generate = True numpydoc_show_class_members = False autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Thunder' copyright = u'2014, Jeremy Freeman' html_show_copyright = False # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # sys.path.insert(0, os.path.abspath(os.path.pardir)) import thunder version = thunder.__version__ # The full version, including alpha/beta/rc tags. release = thunder.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build','_templates'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' html_logo = "thunder_logo.png" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { 'navbar_title': " ", 'source_link_position': "footer", 'bootstrap_version': "3", 'bootswatch_theme': "simplex", 'navbar_sidebarrel': False, 'navbar_links': [("Tutorials", "tutorials"),("API", "api")] } # Add any paths that contain custom themes here, relative to this directory. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Thunderdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Thunder.tex', u'Thunder Documentation', u'Jeremy Freeman', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'thunder', u'Thunder Documentation', [u'Jeremy Freeman'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Thunder', u'Thunder Documentation', u'Jeremy Freeman', 'Thunder', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
31.384892
80
0.714842
df22bcb9cd272e5d8175cde97861a1cd0c68c0ef
4,703
py
Python
MSS_points.py
U-Shift/circuity-lisbon
fb55e201d336c5a10af989cd1e4ed2c3052fbeb7
[ "MIT" ]
null
null
null
MSS_points.py
U-Shift/circuity-lisbon
fb55e201d336c5a10af989cd1e4ed2c3052fbeb7
[ "MIT" ]
null
null
null
MSS_points.py
U-Shift/circuity-lisbon
fb55e201d336c5a10af989cd1e4ed2c3052fbeb7
[ "MIT" ]
null
null
null
import pandas as pd import geopandas as gpd from tqdm import tqdm, trange import random from shapely.geometry import Point, Polygon def generate_random(number, polygon): points = [] aux = polygon.bounds minx = aux['minx'] miny = aux['miny'] maxx = aux['maxx'] maxy = aux['maxy'] while len(points) < number: pnt = Point(random.uniform(float(minx), float(maxx)), random.uniform(float(miny), float(maxy))) if polygon.contains(pnt).any(): points.append(pnt) return points NUMBER_OF_POINTS_PER_ZONE = 5 OUTPUT_FILE = 'data/imob_generated_points.csv' # Read IMOB data on OD df = pd.read_csv('Data/IMOB/15.1_IMOB/BASE DADOS/AML/CSV/TBL_AML/TBL_viagens_OR_DE_AML.csv', sep=';') df = df[df['DTCC_or11'].notna()] df = df[df['DTCC_de11'].notna()] df['DTCC_or11'] = df['DTCC_or11'].astype('int64') df['FR_or11'] = df['FR_or11'].astype('int64') df['Sec_or11'] = df['Sec_or11'].astype('int64') df['SS_or11'] = df['SS_or11'].astype('int64') df['DTCC_de11'] = df['DTCC_de11'].astype('int64') df['FR_de11'] = df['FR_de11'].astype('int64') df['Sec_de11'] = df['Sec_de11'].astype('int64') df['SS_de11'] = df['SS_de11'].astype('int64') df['Tipo_veiculo_2'] = df['Tipo_veiculo_2'].astype('category') print('Original IMOB data shape: ', df.shape) ### Compute BRI for OD trips df['BRI11_or'] = df['DTCC_or11'].astype('str').str.zfill(4) + \ df['FR_or11'].astype('str').str.zfill(2) + \ df['Sec_or11'].astype('str').str.zfill(3) + \ df['SS_or11'].astype('str').str.zfill(2) df['BRI11_de'] = df['DTCC_de11'].astype('str').str.zfill(4) + \ df['FR_de11'].astype('str').str.zfill(2) + \ df['Sec_de11'].astype('str').str.zfill(3) + \ df['SS_de11'].astype('str').str.zfill(2) df['BRI11_or'] = df['BRI11_or'].astype('int64') df['BRI11_de'] = df['BRI11_de'].astype('int64') ### Filter for Lisbon municipaly instead of metropolitan area mask_lisboa = (df['DTCC_or11'] == 1106) & (df['DTCC_de11'] == 1106) df = df.loc[mask_lisboa] print('Trips inside Lisbon\'s municipality:', df.shape[0]) # Divide into cycling, driving and walking trips df_cycling = df[df['Tipo_veiculo_2'] == 'Cycling'] df_walking = df[df['Tipo_veiculo_2'] == 'Walking'] df_motorized = df[(df['Tipo_veiculo_2'] == 'passenger car - as driver') | \ (df['Tipo_veiculo_2'] == 'passenger car - as passenger') | \ (df['Tipo_veiculo_2'] == 'van/lorry/tractor/camper') | \ (df['Tipo_veiculo_2'] == 'Táxi (como passageiro)') | \ (df['Tipo_veiculo_2'] == 'motorcycle and moped')] df_tp = df[(df['Tipo_veiculo_2'] == 'Regular train') | \ (df['Tipo_veiculo_2'] == 'Urban rail') | \ (df['Tipo_veiculo_2'] == 'Waterways') | \ (df['Tipo_veiculo_2'] == 'bus and coach - TE') | \ (df['Tipo_veiculo_2'] == 'bus and coach - TP')] print('Amount of trips:', '\n Cycling:', df_cycling.shape[0], '\n Walking:', df_walking.shape[0], '\n Motorized:', df_motorized.shape[0], '\n TP:', df_tp.shape[0],) # Read Lisbon's CAOP 2011 data gdf = gpd.read_file("IMOB/lisboa2011/BGRI11_LISBOA.shp") gdf['DTMN11'] = gdf['DTMN11'].astype('int64') gdf['FR11'] = gdf['FR11'].astype('int64') gdf['SEC11'] = gdf['SEC11'].astype('int64') gdf['SS11'] = gdf['SS11'].astype('int64') gdf['BGRI11'] = gdf['BGRI11'].astype('int64') gdf['LUG11'] = gdf['LUG11'].astype('int64') gdf_proj = gdf.to_crs(epsg=4326) columns = ['point_A', 'point_B', 'vehicle', 'weekday', 'weight'] data = pd.DataFrame(columns=columns) with tqdm(total=df.shape[0]*NUMBER_OF_POINTS_PER_ZONE) as t: t.set_description('Generating random points ') for i in range(df.shape[0]): example = df.iloc[i] example_or = example['BRI11_or'] example_de = example['BRI11_de'] mask_or = gdf_proj['BGRI11'] == example_or mask_de = gdf_proj['BGRI11'] == example_de example_or = gdf_proj.loc[mask_or] example_de = gdf_proj.loc[mask_de] for j in range(NUMBER_OF_POINTS_PER_ZONE): t.update(1) points_or = generate_random(1, example_or.geometry)[0] points_de = generate_random(1, example_de.geometry)[0] data_row = {} data_row['point_A'] = [points_or.x, points_or.y] data_row['point_B'] = [points_de.x, points_de.y] data_row['vehicle'] = example['Tipo_veiculo_2'] data_row['weekday'] = example['Dia_da_semana'] data_row['weight'] = example['PESOFIN'] data = data.append(data_row, ignore_index=True, sort=False) data.to_csv(OUTPUT_FILE)
36.457364
103
0.613863
d7bb7313465f6c274eaad5056521f69857e0d1dc
81,664
py
Python
manim/mobject/types/vectorized_mobject.py
Pow3r5/manim
2972a64342aa5ae72977b444f653b05250ab1f8f
[ "MIT" ]
2
2022-03-31T08:31:00.000Z
2022-03-31T08:31:43.000Z
manim/mobject/types/vectorized_mobject.py
Pow3r5/manim
2972a64342aa5ae72977b444f653b05250ab1f8f
[ "MIT" ]
null
null
null
manim/mobject/types/vectorized_mobject.py
Pow3r5/manim
2972a64342aa5ae72977b444f653b05250ab1f8f
[ "MIT" ]
null
null
null
"""Mobjects that use vector graphics.""" __all__ = [ "VMobject", "VGroup", "VDict", "VectorizedPoint", "CurvesAsSubmobjects", "DashedVMobject", ] import itertools as it import sys import typing from typing import Optional, Sequence, Union import colour import numpy as np from PIL.Image import Image from manim.mobject.opengl.opengl_compatibility import ConvertToOpenGL from manim.mobject.opengl.opengl_vectorized_mobject import OpenGLVMobject from manim.mobject.three_d.three_d_utils import ( get_3d_vmob_gradient_start_and_end_points, ) from ... import config from ...constants import * from ...mobject.mobject import Mobject from ...utils.bezier import ( bezier, get_smooth_handle_points, integer_interpolate, interpolate, partial_bezier_points, proportions_along_bezier_curve_for_point, ) from ...utils.color import BLACK, WHITE, color_to_rgba from ...utils.deprecation import deprecated from ...utils.iterables import make_even, stretch_array_to_length, tuplify from ...utils.space_ops import rotate_vector, shoelace_direction # TODO # - Change cubic curve groups to have 4 points instead of 3 # - Change sub_path idea accordingly # - No more mark_paths_closed, instead have the camera test # if last point in close to first point # - Think about length of self.points. Always 0 or 1 mod 4? # That's kind of weird. class VMobject(Mobject): """A vectorized mobject. Parameters ---------- background_stroke_color The purpose of background stroke is to have something that won't overlap fill, e.g. For text against some textured background. sheen_factor When a color c is set, there will be a second color computed based on interpolating c to WHITE by with sheen_factor, and the display will gradient to this secondary color in the direction of sheen_direction. close_new_points Indicates that it will not be displayed, but that it should count in parent mobject's path tolerance_point_for_equality This is within a pixel """ sheen_factor = 0.0 def __init__( self, fill_color=None, fill_opacity=0.0, stroke_color=None, stroke_opacity=1.0, stroke_width=DEFAULT_STROKE_WIDTH, background_stroke_color=BLACK, background_stroke_opacity=1.0, background_stroke_width=0, sheen_factor=0.0, sheen_direction=UL, close_new_points=False, pre_function_handle_to_anchor_scale_factor=0.01, make_smooth_after_applying_functions=False, background_image=None, shade_in_3d=False, # TODO, do we care about accounting for varying zoom levels? tolerance_for_point_equality=1e-6, n_points_per_cubic_curve=4, **kwargs, ): self.fill_opacity = fill_opacity self.stroke_opacity = stroke_opacity self.stroke_width = stroke_width self.background_stroke_color = background_stroke_color self.background_stroke_opacity = background_stroke_opacity self.background_stroke_width = background_stroke_width self.sheen_factor = sheen_factor self.sheen_direction = sheen_direction self.close_new_points = close_new_points self.pre_function_handle_to_anchor_scale_factor = ( pre_function_handle_to_anchor_scale_factor ) self.make_smooth_after_applying_functions = make_smooth_after_applying_functions self.background_image = background_image self.shade_in_3d = shade_in_3d self.tolerance_for_point_equality = tolerance_for_point_equality self.n_points_per_cubic_curve = n_points_per_cubic_curve super().__init__(**kwargs) if fill_color: self.fill_color = fill_color if stroke_color: self.stroke_color = stroke_color def get_group_class(self): return VGroup # Colors def init_colors(self, propagate_colors=True): self.set_fill( color=self.fill_color, opacity=self.fill_opacity, family=propagate_colors, ) self.set_stroke( color=self.stroke_color, width=self.stroke_width, opacity=self.stroke_opacity, family=propagate_colors, ) self.set_background_stroke( color=self.background_stroke_color, width=self.background_stroke_width, opacity=self.background_stroke_opacity, family=propagate_colors, ) self.set_sheen( factor=self.sheen_factor, direction=self.sheen_direction, family=propagate_colors, ) if not propagate_colors: for submobject in self.submobjects: submobject.init_colors(propagate_colors=False) return self def generate_rgbas_array(self, color, opacity): """ First arg can be either a color, or a tuple/list of colors. Likewise, opacity can either be a float, or a tuple of floats. If self.sheen_factor is not zero, and only one color was passed in, a second slightly light color will automatically be added for the gradient """ colors = [c if (c is not None) else BLACK for c in tuplify(color)] opacities = [o if (o is not None) else 0 for o in tuplify(opacity)] rgbas = np.array( [color_to_rgba(c, o) for c, o in zip(*make_even(colors, opacities))], ) sheen_factor = self.get_sheen_factor() if sheen_factor != 0 and len(rgbas) == 1: light_rgbas = np.array(rgbas) light_rgbas[:, :3] += sheen_factor np.clip(light_rgbas, 0, 1, out=light_rgbas) rgbas = np.append(rgbas, light_rgbas, axis=0) return rgbas def update_rgbas_array(self, array_name, color=None, opacity=None): rgbas = self.generate_rgbas_array(color, opacity) if not hasattr(self, array_name): setattr(self, array_name, rgbas) return self # Match up current rgbas array with the newly calculated # one. 99% of the time they'll be the same. curr_rgbas = getattr(self, array_name) if len(curr_rgbas) < len(rgbas): curr_rgbas = stretch_array_to_length(curr_rgbas, len(rgbas)) setattr(self, array_name, curr_rgbas) elif len(rgbas) < len(curr_rgbas): rgbas = stretch_array_to_length(rgbas, len(curr_rgbas)) # Only update rgb if color was not None, and only # update alpha channel if opacity was passed in if color is not None: curr_rgbas[:, :3] = rgbas[:, :3] if opacity is not None: curr_rgbas[:, 3] = rgbas[:, 3] return self def set_fill( self, color: Optional[str] = None, opacity: Optional[float] = None, family: bool = True, ): """Set the fill color and fill opacity of a :class:`VMobject`. Parameters ---------- color Fill color of the :class:`VMobject`. opacity Fill opacity of the :class:`VMobject`. family If ``True``, the fill color of all submobjects is also set. Returns ------- :class:`VMobject` ``self`` Examples -------- .. manim:: SetFill :save_last_frame: class SetFill(Scene): def construct(self): square = Square().scale(2).set_fill(WHITE,1) circle1 = Circle().set_fill(GREEN,0.8) circle2 = Circle().set_fill(YELLOW) # No fill_opacity circle3 = Circle().set_fill(color = '#FF2135', opacity = 0.2) group = Group(circle1,circle2,circle3).arrange() self.add(square) self.add(group) See Also -------- :meth:`~.VMobject.set_style` """ if family: for submobject in self.submobjects: submobject.set_fill(color, opacity, family) self.update_rgbas_array("fill_rgbas", color, opacity) if opacity is not None: self.fill_opacity = opacity return self def set_stroke( self, color=None, width=None, opacity=None, background=False, family=True, ): if family: for submobject in self.submobjects: submobject.set_stroke(color, width, opacity, background, family) if background: array_name = "background_stroke_rgbas" width_name = "background_stroke_width" opacity_name = "background_stroke_opacity" else: array_name = "stroke_rgbas" width_name = "stroke_width" opacity_name = "stroke_opacity" self.update_rgbas_array(array_name, color, opacity) if width is not None: setattr(self, width_name, width) if opacity is not None: setattr(self, opacity_name, opacity) if color is not None and background: self.background_stroke_color = color return self def set_background_stroke(self, **kwargs): kwargs["background"] = True self.set_stroke(**kwargs) return self def set_style( self, fill_color=None, fill_opacity=None, stroke_color=None, stroke_width=None, stroke_opacity=None, background_stroke_color=None, background_stroke_width=None, background_stroke_opacity=None, sheen_factor=None, sheen_direction=None, background_image=None, family=True, ): self.set_fill(color=fill_color, opacity=fill_opacity, family=family) self.set_stroke( color=stroke_color, width=stroke_width, opacity=stroke_opacity, family=family, ) self.set_background_stroke( color=background_stroke_color, width=background_stroke_width, opacity=background_stroke_opacity, family=family, ) if sheen_factor: self.set_sheen( factor=sheen_factor, direction=sheen_direction, family=family, ) if background_image: self.color_using_background_image(background_image) return self def get_style(self, simple=False): ret = { "stroke_opacity": self.get_stroke_opacity(), "stroke_width": self.get_stroke_width(), } if simple: ret["fill_color"] = colour.rgb2hex(self.get_fill_color().get_rgb()) ret["fill_opacity"] = self.get_fill_opacity() ret["stroke_color"] = colour.rgb2hex(self.get_stroke_color().get_rgb()) else: ret["fill_color"] = self.get_fill_colors() ret["fill_opacity"] = self.get_fill_opacities() ret["stroke_color"] = self.get_stroke_colors() ret["background_stroke_color"] = self.get_stroke_colors(background=True) ret["background_stroke_width"] = self.get_stroke_width(background=True) ret["background_stroke_opacity"] = self.get_stroke_opacity(background=True) ret["sheen_factor"] = self.get_sheen_factor() ret["sheen_direction"] = self.get_sheen_direction() ret["background_image"] = self.get_background_image() return ret def match_style(self, vmobject, family=True): self.set_style(**vmobject.get_style(), family=False) if family: # Does its best to match up submobject lists, and # match styles accordingly submobs1, submobs2 = self.submobjects, vmobject.submobjects if len(submobs1) == 0: return self elif len(submobs2) == 0: submobs2 = [vmobject] for sm1, sm2 in zip(*make_even(submobs1, submobs2)): sm1.match_style(sm2) return self def set_color(self, color, family=True): self.set_fill(color, family=family) self.set_stroke(color, family=family) return self def set_opacity(self, opacity, family=True): self.set_fill(opacity=opacity, family=family) self.set_stroke(opacity=opacity, family=family) self.set_stroke(opacity=opacity, family=family, background=True) return self def fade(self, darkness=0.5, family=True): factor = 1.0 - darkness self.set_fill(opacity=factor * self.get_fill_opacity(), family=False) self.set_stroke(opacity=factor * self.get_stroke_opacity(), family=False) self.set_background_stroke( opacity=factor * self.get_stroke_opacity(background=True), family=False, ) super().fade(darkness, family) return self def get_fill_rgbas(self): try: return self.fill_rgbas except AttributeError: return np.zeros((1, 4)) def get_fill_color(self): """ If there are multiple colors (for gradient) this returns the first one """ return self.get_fill_colors()[0] fill_color = property(get_fill_color, set_fill) def get_fill_opacity(self): """ If there are multiple opacities, this returns the first """ return self.get_fill_opacities()[0] def get_fill_colors(self): return [ colour.Color(rgb=rgba[:3]) if rgba.any() else None for rgba in self.get_fill_rgbas() ] def get_fill_opacities(self): return self.get_fill_rgbas()[:, 3] def get_stroke_rgbas(self, background=False): try: if background: rgbas = self.background_stroke_rgbas else: rgbas = self.stroke_rgbas return rgbas except AttributeError: return np.zeros((1, 4)) def get_stroke_color(self, background=False): return self.get_stroke_colors(background)[0] stroke_color = property(get_stroke_color, set_stroke) def get_stroke_width(self, background=False): if background: width = self.background_stroke_width else: width = self.stroke_width if isinstance(width, str): width = int(width) return max(0, width) def get_stroke_opacity(self, background=False): return self.get_stroke_opacities(background)[0] def get_stroke_colors(self, background=False): return [ colour.Color(rgb=rgba[:3]) if rgba.any() else None for rgba in self.get_stroke_rgbas(background) ] def get_stroke_opacities(self, background=False): return self.get_stroke_rgbas(background)[:, 3] def get_color(self): if np.all(self.get_fill_opacities() == 0): return self.get_stroke_color() return self.get_fill_color() color = property(get_color, set_color) def set_sheen_direction(self, direction: np.ndarray, family=True): """Sets the direction of the applied sheen. Parameters ---------- direction : :class:`numpy.ndarray`, optional Direction from where the gradient is applied. Examples -------- Normal usage:: Circle().set_sheen_direction(UP) See Also -------- :meth:`~.VMobject.set_sheen` :meth:`~.VMobject.rotate_sheen_direction` """ direction = np.array(direction) if family: for submob in self.get_family(): submob.sheen_direction = direction else: self.sheen_direction = direction return self def rotate_sheen_direction(self, angle: np.ndarray, axis: float = OUT, family=True): """Rotates the direction of the applied sheen. Parameters ---------- angle : :class:`float` Angle by which the direction of sheen is rotated. axis : :class:`numpy.ndarray` Axis of rotation. Examples -------- Normal usage:: Circle().set_sheen_direction(UP).rotate_sheen_direction(PI) See Also -------- :meth:`~.VMobject.set_sheen_direction` """ if family: for submob in self.get_family(): submob.sheen_direction = rotate_vector( submob.sheen_direction, angle, axis, ) else: self.sheen_direction = rotate_vector(self.sheen_direction, angle, axis) return self def set_sheen(self, factor, direction: np.ndarray = None, family=True): """Applies a color gradient from a direction. Parameters ---------- factor : :class:`float` The extent of lustre/gradient to apply. If negative, the gradient starts from black, if positive the gradient starts from white and changes to the current color. direction : :class:`numpy.ndarray`, optional Direction from where the gradient is applied. Examples -------- .. manim:: SetSheen :save_last_frame: class SetSheen(Scene): def construct(self): circle = Circle(fill_opacity=1).set_sheen(-0.3, DR) self.add(circle) """ if family: for submob in self.submobjects: submob.set_sheen(factor, direction, family) self.sheen_factor = factor if direction is not None: # family set to false because recursion will # already be handled above self.set_sheen_direction(direction, family=False) # Reset color to put sheen_factor into effect if factor != 0: self.set_stroke(self.get_stroke_color(), family=family) self.set_fill(self.get_fill_color(), family=family) return self def get_sheen_direction(self): return np.array(self.sheen_direction) def get_sheen_factor(self): return self.sheen_factor def get_gradient_start_and_end_points(self): if self.shade_in_3d: return get_3d_vmob_gradient_start_and_end_points(self) else: direction = self.get_sheen_direction() c = self.get_center() bases = np.array( [self.get_edge_center(vect) - c for vect in [RIGHT, UP, OUT]], ).transpose() offset = np.dot(bases, direction) return (c - offset, c + offset) def color_using_background_image(self, background_image: Union[Image, str]): self.background_image = background_image self.set_color(WHITE) for submob in self.submobjects: submob.color_using_background_image(background_image) return self def get_background_image(self) -> Union[Image, str]: return self.background_image def match_background_image(self, vmobject): self.color_using_background_image(vmobject.get_background_image()) return self def set_shade_in_3d(self, value=True, z_index_as_group=False): for submob in self.get_family(): submob.shade_in_3d = value if z_index_as_group: submob.z_index_group = self return self def set_points(self, points): self.points = np.array(points) return self def set_anchors_and_handles( self, anchors1: Sequence[float], handles1: Sequence[float], handles2: Sequence[float], anchors2: Sequence[float], ): """Given two sets of anchors and handles, process them to set them as anchors and handles of the VMobject. anchors1[i], handles1[i], handles2[i] and anchors2[i] define the i-th bezier curve of the vmobject. There are four hardcoded parameters and this is a problem as it makes the number of points per cubic curve unchangeable from 4 (two anchors and two handles). Returns ------- :class:`VMobject` ``self`` """ assert len(anchors1) == len(handles1) == len(handles2) == len(anchors2) nppcc = self.n_points_per_cubic_curve # 4 total_len = nppcc * len(anchors1) self.points = np.zeros((total_len, self.dim)) # the following will, from the four sets, dispatch them in points such that # self.points = [ # anchors1[0], handles1[0], handles2[0], anchors1[0], anchors1[1], # handles1[1], ... # ] arrays = [anchors1, handles1, handles2, anchors2] for index, array in enumerate(arrays): self.points[index::nppcc] = array return self def clear_points(self): self.points = np.zeros((0, self.dim)) def append_points(self, new_points): # TODO, check that number new points is a multiple of 4? # or else that if len(self.points) % 4 == 1, then # len(new_points) % 4 == 3? self.points = np.append(self.points, new_points, axis=0) return self def start_new_path(self, point): # TODO, make sure that len(self.points) % 4 == 0? self.append_points([point]) return self def add_cubic_bezier_curve( self, anchor1: np.ndarray, handle1: np.ndarray, handle2: np.ndarray, anchor2, ) -> None: # TODO, check the len(self.points) % 4 == 0? self.append_points([anchor1, handle1, handle2, anchor2]) def add_cubic_bezier_curve_to( self, handle1: np.ndarray, handle2: np.ndarray, anchor: np.ndarray, ): """Add cubic bezier curve to the path. NOTE : the first anchor is not a parameter as by default the end of the last sub-path! Parameters ---------- handle1 : np.ndarray first handle handle2 : np.ndarray second handle anchor : np.ndarray anchor Returns ------- :class:`VMobject` ``self`` """ self.throw_error_if_no_points() new_points = [handle1, handle2, anchor] if self.has_new_path_started(): self.append_points(new_points) else: self.append_points([self.get_last_point()] + new_points) return self def add_quadratic_bezier_curve_to( self, handle: np.ndarray, anchor: np.ndarray, ): """Add Quadratic bezier curve to the path. Returns ------- :class:`VMobject` ``self`` """ # How does one approximate a quadratic with a cubic? # refer to the Wikipedia page on Bezier curves # https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Degree_elevation, accessed Jan 20, 2021 # 1. Copy the end points, and then # 2. Place the 2 middle control points 2/3 along the line segments # from the end points to the quadratic curve's middle control point. # I think that's beautiful. self.add_cubic_bezier_curve_to( 2 / 3 * handle + 1 / 3 * self.get_last_point(), 2 / 3 * handle + 1 / 3 * anchor, anchor, ) return self def add_line_to(self, point: np.ndarray): """Add a straight line from the last point of VMobject to the given point. Parameters ---------- point : np.ndarray end of the straight line. Returns ------- :class:`VMobject` ``self`` """ nppcc = self.n_points_per_cubic_curve self.add_cubic_bezier_curve_to( *( interpolate(self.get_last_point(), point, a) for a in np.linspace(0, 1, nppcc)[1:] ) ) return self def add_smooth_curve_to(self, *points: np.array): """Creates a smooth curve from given points and add it to the VMobject. If two points are passed in, the first is interpreted as a handle, the second as an anchor. Parameters ---------- points: np.array Points (anchor and handle, or just anchor) to add a smooth curve from Returns ------- :class:`VMobject` ``self`` Raises ------ ValueError If 0 or more than 2 points are given. """ # TODO remove the value error and just add two parameters with one optional if len(points) == 1: handle2 = None new_anchor = points[0] elif len(points) == 2: handle2, new_anchor = points else: name = sys._getframe(0).f_code.co_name raise ValueError(f"Only call {name} with 1 or 2 points") if self.has_new_path_started(): self.add_line_to(new_anchor) else: self.throw_error_if_no_points() last_h2, last_a2 = self.points[-2:] last_tangent = last_a2 - last_h2 handle1 = last_a2 + last_tangent if handle2 is None: to_anchor_vect = new_anchor - last_a2 new_tangent = rotate_vector(last_tangent, PI, axis=to_anchor_vect) handle2 = new_anchor - new_tangent self.append_points([last_a2, handle1, handle2, new_anchor]) return self def has_new_path_started(self): nppcc = self.n_points_per_cubic_curve # 4 # A new path starting is defined by a control point which is not part of a bezier subcurve. return len(self.points) % nppcc == 1 def get_last_point(self): return self.points[-1] def is_closed(self): # TODO use consider_points_equals_2d ? return self.consider_points_equals(self.points[0], self.points[-1]) def add_points_as_corners(self, points: np.ndarray) -> "VMobject": for point in points: self.add_line_to(point) return points def set_points_as_corners(self, points: Sequence[float]): """Given an array of points, set them as corner of the vmobject. To achieve that, this algorithm sets handles aligned with the anchors such that the resultant bezier curve will be the segment between the two anchors. Parameters ---------- points : Iterable[float] Array of points that will be set as corners. Returns ------- :class:`VMobject` ``self`` """ nppcc = self.n_points_per_cubic_curve points = np.array(points) # This will set the handles aligned with the anchors. # Id est, a bezier curve will be the segment from the two anchors such that the handles belongs to this segment. self.set_anchors_and_handles( *(interpolate(points[:-1], points[1:], a) for a in np.linspace(0, 1, nppcc)) ) return self def set_points_smoothly(self, points): self.set_points_as_corners(points) self.make_smooth() return self def change_anchor_mode(self, mode: str): """Changes the anchor mode of the bezier curves. This will modify the handles. There can be only two modes, "jagged", and "smooth". Returns ------- :class:`VMobject` ``self`` """ assert mode in ["jagged", "smooth"] nppcc = self.n_points_per_cubic_curve for submob in self.family_members_with_points(): subpaths = submob.get_subpaths() submob.clear_points() # A subpath can be composed of several bezier curves. for subpath in subpaths: # This will retrieve the anchors of the subpath, by selecting every n element in the array subpath # The append is needed as the last element is not reached when slicing with numpy. anchors = np.append(subpath[::nppcc], subpath[-1:], 0) if mode == "smooth": h1, h2 = get_smooth_handle_points(anchors) elif mode == "jagged": # The following will make the handles aligned with the anchors, thus making the bezier curve a segment a1 = anchors[:-1] a2 = anchors[1:] h1 = interpolate(a1, a2, 1.0 / 3) h2 = interpolate(a1, a2, 2.0 / 3) new_subpath = np.array(subpath) new_subpath[1::nppcc] = h1 new_subpath[2::nppcc] = h2 submob.append_points(new_subpath) return self def make_smooth(self): return self.change_anchor_mode("smooth") def make_jagged(self): return self.change_anchor_mode("jagged") def add_subpath(self, points: np.ndarray): assert len(points) % 4 == 0 self.points = np.append(self.points, points, axis=0) return self def append_vectorized_mobject(self, vectorized_mobject): new_points = list(vectorized_mobject.points) if self.has_new_path_started(): # Remove last point, which is starting # a new path self.points = self.points[:-1] self.append_points(new_points) def apply_function(self, function): factor = self.pre_function_handle_to_anchor_scale_factor self.scale_handle_to_anchor_distances(factor) super().apply_function(function) self.scale_handle_to_anchor_distances(1.0 / factor) if self.make_smooth_after_applying_functions: self.make_smooth() return self def rotate( self, angle: float, axis: np.ndarray = OUT, about_point: Optional[Sequence[float]] = None, **kwargs, ): self.rotate_sheen_direction(angle, axis) super().rotate(angle, axis, about_point, **kwargs) return self def scale_handle_to_anchor_distances(self, factor: float): """If the distance between a given handle point H and its associated anchor point A is d, then it changes H to be a distances factor*d away from A, but so that the line from A to H doesn't change. This is mostly useful in the context of applying a (differentiable) function, to preserve tangency properties. One would pull all the handles closer to their anchors, apply the function then push them out again. Parameters ---------- factor The factor used for scaling. Returns ------- :class:`VMobject` ``self`` """ for submob in self.family_members_with_points(): if len(submob.points) < self.n_points_per_cubic_curve: # The case that a bezier quad is not complete (there is no bezier curve as there is not enough control points.) continue a1, h1, h2, a2 = submob.get_anchors_and_handles() a1_to_h1 = h1 - a1 a2_to_h2 = h2 - a2 new_h1 = a1 + factor * a1_to_h1 new_h2 = a2 + factor * a2_to_h2 submob.set_anchors_and_handles(a1, new_h1, new_h2, a2) return self # def consider_points_equals(self, p0, p1): return np.allclose(p0, p1, atol=self.tolerance_for_point_equality) def consider_points_equals_2d(self, p0: np.ndarray, p1: np.ndarray) -> bool: """Determine if two points are close enough to be considered equal. This uses the algorithm from np.isclose(), but expanded here for the 2D point case. NumPy is overkill for such a small question. Parameters ---------- p0 : np.ndarray first point p1 : np.ndarray second point Returns ------- bool whether two points considered close. """ rtol = 1.0e-5 # default from np.isclose() atol = self.tolerance_for_point_equality if abs(p0[0] - p1[0]) > atol + rtol * abs(p1[0]): return False if abs(p0[1] - p1[1]) > atol + rtol * abs(p1[1]): return False return True # Information about line def get_cubic_bezier_tuples_from_points(self, points): return np.array(list(self.gen_cubic_bezier_tuples_from_points(points))) def gen_cubic_bezier_tuples_from_points(self, points: np.ndarray) -> typing.Tuple: """Returns the bezier tuples from an array of points. self.points is a list of the anchors and handles of the bezier curves of the mobject (ie [anchor1, handle1, handle2, anchor2, anchor3 ..]) This algorithm basically retrieve them by taking an element every n, where n is the number of control points of the bezier curve. Parameters ---------- points : np.ndarray Points from which control points will be extracted. Returns ------- typing.Tuple Bezier control points. """ nppcc = self.n_points_per_cubic_curve remainder = len(points) % nppcc points = points[: len(points) - remainder] # Basically take every nppcc element. return (points[i : i + nppcc] for i in range(0, len(points), nppcc)) def get_cubic_bezier_tuples(self): return self.get_cubic_bezier_tuples_from_points(self.points) def _gen_subpaths_from_points( self, points: np.ndarray, filter_func: typing.Callable[[int], bool], ) -> typing.Tuple: """Given an array of points defining the bezier curves of the vmobject, return subpaths formed by these points. Here, Two bezier curves form a path if at least two of their anchors are evaluated True by the relation defined by filter_func. The algorithm every bezier tuple (anchors and handles) in ``self.points`` (by regrouping each n elements, where n is the number of points per cubic curve)), and evaluate the relation between two anchors with filter_func. NOTE : The filter_func takes an int n as parameter, and will evaluate the relation between points[n] and points[n - 1]. This should probably be changed so the function takes two points as parameters. Parameters ---------- points : np.ndarray points defining the bezier curve. filter_func : typing.Callable[int, bool] Filter-func defining the relation. Returns ------- typing.Tuple subpaths formed by the points. """ nppcc = self.n_points_per_cubic_curve filtered = filter(filter_func, range(nppcc, len(points), nppcc)) split_indices = [0] + list(filtered) + [len(points)] return ( points[i1:i2] for i1, i2 in zip(split_indices, split_indices[1:]) if (i2 - i1) >= nppcc ) def get_subpaths_from_points(self, points): return list( self._gen_subpaths_from_points( points, lambda n: not self.consider_points_equals(points[n - 1], points[n]), ), ) def gen_subpaths_from_points_2d(self, points): return self._gen_subpaths_from_points( points, lambda n: not self.consider_points_equals_2d(points[n - 1], points[n]), ) def get_subpaths(self) -> typing.Tuple: """Returns subpaths formed by the curves of the VMobject. Subpaths are ranges of curves with each pair of consecutive curves having their end/start points coincident. Returns ------- typing.Tuple subpaths. """ return self.get_subpaths_from_points(self.points) def get_nth_curve_points(self, n: int) -> np.ndarray: """Returns the points defining the nth curve of the vmobject. Parameters ---------- n : int index of the desired bezier curve. Returns ------- np.ndarray points defininf the nth bezier curve (anchors, handles) """ assert n < self.get_num_curves() nppcc = self.n_points_per_cubic_curve return self.points[nppcc * n : nppcc * (n + 1)] def get_nth_curve_function(self, n: int) -> typing.Callable[[float], np.ndarray]: """Returns the expression of the nth curve. Parameters ---------- n : int index of the desired curve. Returns ------- typing.Callable[float] expression of the nth bezier curve. """ return bezier(self.get_nth_curve_points(n)) def get_nth_curve_length_pieces( self, n: int, sample_points: Optional[int] = None, ) -> np.ndarray: """Returns the array of short line lengths used for length approximation. Parameters ---------- n The index of the desired curve. sample_points The number of points to sample to find the length. Returns ------- np.ndarray The short length-pieces of the nth curve. """ if sample_points is None: sample_points = 10 curve = self.get_nth_curve_function(n) points = np.array([curve(a) for a in np.linspace(0, 1, sample_points)]) diffs = points[1:] - points[:-1] norms = np.apply_along_axis(np.linalg.norm, 1, diffs) return norms def get_nth_curve_length( self, n: int, sample_points: Optional[int] = None, ) -> float: """Returns the (approximate) length of the nth curve. Parameters ---------- n The index of the desired curve. sample_points The number of points to sample to find the length. Returns ------- length : :class:`float` The length of the nth curve. """ _, length = self.get_nth_curve_function_with_length(n, sample_points) return length def get_nth_curve_function_with_length( self, n: int, sample_points: Optional[int] = None, ) -> typing.Tuple[typing.Callable[[float], np.ndarray], float]: """Returns the expression of the nth curve along with its (approximate) length. Parameters ---------- n The index of the desired curve. sample_points The number of points to sample to find the length. Returns ------- curve : typing.Callable[[float], np.ndarray] The function for the nth curve. length : :class:`float` The length of the nth curve. """ curve = self.get_nth_curve_function(n) norms = self.get_nth_curve_length_pieces(n, sample_points=sample_points) length = np.sum(norms) return curve, length def get_num_curves(self) -> int: """Returns the number of curves of the vmobject. Returns ------- int number of curves. of the vmobject. """ nppcc = self.n_points_per_cubic_curve return len(self.points) // nppcc def get_curve_functions( self, ) -> typing.Iterable[typing.Callable[[float], np.ndarray]]: """Gets the functions for the curves of the mobject. Returns ------- typing.Iterable[typing.Callable[[float], np.ndarray]] The functions for the curves. """ num_curves = self.get_num_curves() for n in range(num_curves): yield self.get_nth_curve_function(n) def get_curve_functions_with_lengths( self, **kwargs ) -> typing.Iterable[typing.Tuple[typing.Callable[[float], np.ndarray], float]]: """Gets the functions and lengths of the curves for the mobject. Parameters ---------- **kwargs The keyword arguments passed to :meth:`get_nth_curve_function_with_length` Returns ------- typing.Iterable[typing.Tuple[typing.Callable[[float], np.ndarray], float]] The functions and lengths of the curves. """ num_curves = self.get_num_curves() for n in range(num_curves): yield self.get_nth_curve_function_with_length(n, **kwargs) def point_from_proportion(self, alpha: float) -> np.ndarray: """Gets the point at a proportion along the path of the :class:`VMobject`. Parameters ---------- alpha The proportion along the the path of the :class:`VMobject`. Returns ------- :class:`numpy.ndarray` The point on the :class:`VMobject`. Raises ------ :exc:`ValueError` If ``alpha`` is not between 0 and 1. :exc:`Exception` If the :class:`VMobject` has no points. """ if alpha < 0 or alpha > 1: raise ValueError(f"Alpha {alpha} not between 0 and 1.") self.throw_error_if_no_points() if alpha == 1: return self.points[-1] curves_and_lengths = tuple(self.get_curve_functions_with_lengths()) target_length = alpha * sum(length for _, length in curves_and_lengths) current_length = 0 for curve, length in curves_and_lengths: if current_length + length >= target_length: if length != 0: residue = (target_length - current_length) / length else: residue = 0 return curve(residue) current_length += length def proportion_from_point( self, point: typing.Iterable[typing.Union[float, int]], ) -> float: """Returns the proportion along the path of the :class:`VMobject` a particular given point is at. Parameters ---------- point The Cartesian coordinates of the point which may or may not lie on the :class:`VMobject` Returns ------- float The proportion along the path of the :class:`VMobject`. Raises ------ :exc:`ValueError` If ``point`` does not lie on the curve. :exc:`Exception` If the :class:`VMobject` has no points. """ self.throw_error_if_no_points() # Iterate over each bezier curve that the ``VMobject`` is composed of, checking # if the point lies on that curve. If it does not lie on that curve, add # the whole length of the curve to ``target_length`` and move onto the next # curve. If the point does lie on the curve, add how far along the curve # the point is to ``target_length``. # Then, divide ``target_length`` by the total arc length of the shape to get # the proportion along the ``VMobject`` the point is at. num_curves = self.get_num_curves() total_length = self.get_arc_length() target_length = 0 for n in range(num_curves): control_points = self.get_nth_curve_points(n) length = self.get_nth_curve_length(n) proportions_along_bezier = proportions_along_bezier_curve_for_point( point, control_points, ) if len(proportions_along_bezier) > 0: proportion_along_nth_curve = max(proportions_along_bezier) target_length += length * proportion_along_nth_curve break target_length += length else: raise ValueError(f"Point {point} does not lie on this curve.") alpha = target_length / total_length return alpha def get_anchors_and_handles(self) -> typing.Iterable[np.ndarray]: """Returns anchors1, handles1, handles2, anchors2, where (anchors1[i], handles1[i], handles2[i], anchors2[i]) will be four points defining a cubic bezier curve for any i in range(0, len(anchors1)) Returns ------- typing.Iterable[np.ndarray] Iterable of the anchors and handles. """ nppcc = self.n_points_per_cubic_curve return [self.points[i::nppcc] for i in range(nppcc)] def get_start_anchors(self) -> np.ndarray: """Returns the start anchors of the bezier curves. Returns ------- np.ndarray Starting anchors """ return self.points[0 :: self.n_points_per_cubic_curve] def get_end_anchors(self) -> np.ndarray: """Return the starting anchors of the bezier curves. Returns ------- np.ndarray Starting anchors """ nppcc = self.n_points_per_cubic_curve return self.points[nppcc - 1 :: nppcc] def get_anchors(self) -> np.ndarray: """Returns the anchors of the curves forming the VMobject. Returns ------- np.ndarray The anchors. """ if self.points.shape[0] == 1: return self.points return np.array( list(it.chain(*zip(self.get_start_anchors(), self.get_end_anchors()))), ) def get_points_defining_boundary(self): # Probably returns all anchors, but this is weird regarding the name of the method. return np.array(list(it.chain(*(sm.get_anchors() for sm in self.get_family())))) def get_arc_length(self, sample_points_per_curve: Optional[int] = None) -> float: """Return the approximated length of the whole curve. Parameters ---------- sample_points_per_curve Number of sample points per curve used to approximate the length. More points result in a better approximation. Returns ------- float The length of the :class:`VMobject`. """ return sum( length for _, length in self.get_curve_functions_with_lengths( sample_points=sample_points_per_curve, ) ) # Alignment def align_points(self, vmobject: "VMobject"): """Adds points to self and vmobject so that they both have the same number of subpaths, with corresponding subpaths each containing the same number of points. Points are added either by subdividing curves evenly along the subpath, or by creating new subpaths consisting of a single point repeated. Parameters ---------- vmobject The object to align points with. Returns ------- :class:`VMobject` ``self`` """ self.align_rgbas(vmobject) # TODO: This shortcut can be a bit over eager. What if they have the same length, but different subpath lengths? if self.get_num_points() == vmobject.get_num_points(): return for mob in self, vmobject: # If there are no points, add one to # wherever the "center" is if mob.has_no_points(): mob.start_new_path(mob.get_center()) # If there's only one point, turn it into # a null curve if mob.has_new_path_started(): mob.add_line_to(mob.get_last_point()) # Figure out what the subpaths are subpaths1 = self.get_subpaths() subpaths2 = vmobject.get_subpaths() n_subpaths = max(len(subpaths1), len(subpaths2)) # Start building new ones new_path1 = np.zeros((0, self.dim)) new_path2 = np.zeros((0, self.dim)) nppcc = self.n_points_per_cubic_curve def get_nth_subpath(path_list, n): if n >= len(path_list): # Create a null path at the very end return [path_list[-1][-1]] * nppcc path = path_list[n] # Check for useless points at the end of the path and remove them # https://github.com/ManimCommunity/manim/issues/1959 while len(path) > nppcc: # If the last nppc points are all equal to the preceding point if self.consider_points_equals(path[-nppcc:], path[-nppcc - 1]): path = path[:-nppcc] else: break return path for n in range(n_subpaths): # For each pair of subpaths, add points until they are the same length sp1 = get_nth_subpath(subpaths1, n) sp2 = get_nth_subpath(subpaths2, n) diff1 = max(0, (len(sp2) - len(sp1)) // nppcc) diff2 = max(0, (len(sp1) - len(sp2)) // nppcc) sp1 = self.insert_n_curves_to_point_list(diff1, sp1) sp2 = self.insert_n_curves_to_point_list(diff2, sp2) new_path1 = np.append(new_path1, sp1, axis=0) new_path2 = np.append(new_path2, sp2, axis=0) self.set_points(new_path1) vmobject.set_points(new_path2) return self def insert_n_curves(self, n: int): """Inserts n curves to the bezier curves of the vmobject. Parameters ---------- n Number of curves to insert. Returns ------- :class:`VMobject` ``self`` """ new_path_point = None if self.has_new_path_started(): new_path_point = self.get_last_point() new_points = self.insert_n_curves_to_point_list(n, self.points) self.set_points(new_points) if new_path_point is not None: self.append_points([new_path_point]) return self def insert_n_curves_to_point_list(self, n: int, points: np.ndarray) -> np.ndarray: """Given an array of k points defining a bezier curves (anchors and handles), returns points defining exactly k + n bezier curves. Parameters ---------- n : int Number of desired curves. points : np.ndarray Starting points. Returns ------- np.ndarray Points generated. """ if len(points) == 1: nppcc = self.n_points_per_cubic_curve return np.repeat(points, nppcc * n, 0) bezier_quads = self.get_cubic_bezier_tuples_from_points(points) curr_num = len(bezier_quads) target_num = curr_num + n # This is an array with values ranging from 0 # up to curr_num, with repeats such that # it's total length is target_num. For example, # with curr_num = 10, target_num = 15, this would # be [0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9] repeat_indices = (np.arange(target_num, dtype="i") * curr_num) // target_num # If the nth term of this list is k, it means # that the nth curve of our path should be split # into k pieces. # In the above example our array had the following elements # [0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9] # We have two 0s, one 1, two 2s and so on. # The split factors array would hence be: # [2, 1, 2, 1, 2, 1, 2, 1, 2, 1] split_factors = np.zeros(curr_num, dtype="i") for val in repeat_indices: split_factors[val] += 1 new_points = np.zeros((0, self.dim)) for quad, sf in zip(bezier_quads, split_factors): # What was once a single cubic curve defined # by "quad" will now be broken into sf # smaller cubic curves alphas = np.linspace(0, 1, sf + 1) for a1, a2 in zip(alphas, alphas[1:]): new_points = np.append( new_points, partial_bezier_points(quad, a1, a2), axis=0, ) return new_points def align_rgbas(self, vmobject): attrs = ["fill_rgbas", "stroke_rgbas", "background_stroke_rgbas"] for attr in attrs: a1 = getattr(self, attr) a2 = getattr(vmobject, attr) if len(a1) > len(a2): new_a2 = stretch_array_to_length(a2, len(a1)) setattr(vmobject, attr, new_a2) elif len(a2) > len(a1): new_a1 = stretch_array_to_length(a1, len(a2)) setattr(self, attr, new_a1) return self def get_point_mobject(self, center=None): if center is None: center = self.get_center() point = VectorizedPoint(center) point.match_style(self) return point def interpolate_color(self, mobject1, mobject2, alpha): attrs = [ "fill_rgbas", "stroke_rgbas", "background_stroke_rgbas", "stroke_width", "background_stroke_width", "sheen_direction", "sheen_factor", ] for attr in attrs: setattr( self, attr, interpolate(getattr(mobject1, attr), getattr(mobject2, attr), alpha), ) if alpha == 1.0: setattr(self, attr, getattr(mobject2, attr)) def pointwise_become_partial( self, vmobject: "VMobject", a: float, b: float, ): """Given two bounds a and b, transforms the points of the self vmobject into the points of the vmobject passed as parameter with respect to the bounds. Points here stand for control points of the bezier curves (anchors and handles) Parameters ---------- vmobject : VMobject The vmobject that will serve as a model. a : float upper-bound. b : float lower-bound Returns ------- :class:`VMobject` ``self`` """ assert isinstance(vmobject, VMobject) # Partial curve includes three portions: # - A middle section, which matches the curve exactly # - A start, which is some ending portion of an inner cubic # - An end, which is the starting portion of a later inner cubic if a <= 0 and b >= 1: self.set_points(vmobject.points) return self bezier_quads = vmobject.get_cubic_bezier_tuples() num_cubics = len(bezier_quads) # The following two lines will compute which bezier curves of the given mobject need to be processed. # The residue basically indicates de proportion of the selected bezier curve that have to be selected. # Ex : if lower_index is 3, and lower_residue is 0.4, then the algorithm will append to the points 0.4 of the third bezier curve lower_index, lower_residue = integer_interpolate(0, num_cubics, a) upper_index, upper_residue = integer_interpolate(0, num_cubics, b) self.clear_points() if num_cubics == 0: return self if lower_index == upper_index: self.append_points( partial_bezier_points( bezier_quads[lower_index], lower_residue, upper_residue, ), ) else: self.append_points( partial_bezier_points(bezier_quads[lower_index], lower_residue, 1), ) for quad in bezier_quads[lower_index + 1 : upper_index]: self.append_points(quad) self.append_points( partial_bezier_points(bezier_quads[upper_index], 0, upper_residue), ) return self def get_subcurve(self, a: float, b: float) -> "VMobject": """Returns the subcurve of the VMobject between the interval [a, b]. The curve is a VMobject itself. Parameters ---------- a The lower bound. b The upper bound. Returns ------- VMobject The subcurve between of [a, b] """ if self.is_closed() and a > b: vmob = self.copy() vmob.pointwise_become_partial(self, a, 1) vmob2 = self.copy() vmob2.pointwise_become_partial(self, 0, b) vmob.append_vectorized_mobject(vmob2) else: vmob = self.copy() vmob.pointwise_become_partial(self, a, b) return vmob def get_direction(self): """Uses :func:`~.space_ops.shoelace_direction` to calculate the direction. The direction of points determines in which direction the object is drawn, clockwise or counterclockwise. Examples -------- The default direction of a :class:`~.Circle` is counterclockwise:: >>> from manim import Circle >>> Circle().get_direction() 'CCW' Returns ------- :class:`str` Either ``"CW"`` or ``"CCW"``. """ return shoelace_direction(self.get_start_anchors()) def reverse_direction(self): """Reverts the point direction by inverting the point order. Returns ------- :class:`VMobject` Returns self. Examples -------- .. manim:: ChangeOfDirection class ChangeOfDirection(Scene): def construct(self): ccw = RegularPolygon(5) ccw.shift(LEFT) cw = RegularPolygon(5) cw.shift(RIGHT).reverse_direction() self.play(Create(ccw), Create(cw), run_time=4) """ self.points = self.points[::-1] return self def force_direction(self, target_direction): """Makes sure that points are either directed clockwise or counterclockwise. Parameters ---------- target_direction : :class:`str` Either ``"CW"`` or ``"CCW"``. """ if target_direction not in ("CW", "CCW"): raise ValueError('Invalid input for force_direction. Use "CW" or "CCW"') if self.get_direction() != target_direction: # Since we already assured the input is CW or CCW, # and the directions don't match, we just reverse self.reverse_direction() return self class VGroup(VMobject, metaclass=ConvertToOpenGL): """A group of vectorized mobjects. This can be used to group multiple :class:`~.VMobject` instances together in order to scale, move, ... them together. Examples -------- To add :class:`~.VMobject`s to a :class:`~.VGroup`, you can either use the :meth:`~.VGroup.add` method, or use the `+` and `+=` operators. Similarly, you can subtract elements of a VGroup via :meth:`~.VGroup.remove` method, or `-` and `-=` operators: >>> from manim import Triangle, Square, VGroup >>> vg = VGroup() >>> triangle, square = Triangle(), Square() >>> vg.add(triangle) VGroup(Triangle) >>> vg + square # a new VGroup is constructed VGroup(Triangle, Square) >>> vg # not modified VGroup(Triangle) >>> vg += square; vg # modifies vg VGroup(Triangle, Square) >>> vg.remove(triangle) VGroup(Square) >>> vg - square; # a new VGroup is constructed VGroup() >>> vg # not modified VGroup(Square) >>> vg -= square; vg # modifies vg VGroup() .. manim:: ArcShapeIris :save_last_frame: class ArcShapeIris(Scene): def construct(self): colors = [DARK_BROWN, BLUE_E, BLUE_D, BLUE_A, TEAL_B, GREEN_B, YELLOW_E] radius = [1 + rad * 0.1 for rad in range(len(colors))] circles_group = VGroup() # zip(radius, color) makes the iterator [(radius[i], color[i]) for i in range(radius)] circles_group.add(*[Circle(radius=rad, stroke_width=10, color=col) for rad, col in zip(radius, colors)]) self.add(circles_group) """ def __init__(self, *vmobjects, **kwargs): super().__init__(**kwargs) self.add(*vmobjects) def __repr__(self): return ( self.__class__.__name__ + "(" + ", ".join(str(mob) for mob in self.submobjects) + ")" ) def __str__(self): return ( f"{self.__class__.__name__} of {len(self.submobjects)} " f"submobject{'s' if len(self.submobjects) > 0 else ''}" ) def add(self, *vmobjects): """Checks if all passed elements are an instance of VMobject and then add them to submobjects Parameters ---------- vmobjects : :class:`~.VMobject` List of VMobject to add Returns ------- :class:`VGroup` Raises ------ TypeError If one element of the list is not an instance of VMobject Examples -------- .. manim:: AddToVGroup class AddToVGroup(Scene): def construct(self): circle_red = Circle(color=RED) circle_green = Circle(color=GREEN) circle_blue = Circle(color=BLUE) circle_red.shift(LEFT) circle_blue.shift(RIGHT) gr = VGroup(circle_red, circle_green) gr2 = VGroup(circle_blue) # Constructor uses add directly self.add(gr,gr2) self.wait() gr += gr2 # Add group to another self.play( gr.animate.shift(DOWN), ) gr -= gr2 # Remove group self.play( # Animate groups separately gr.animate.shift(LEFT), gr2.animate.shift(UP), ) self.play( #Animate groups without modification (gr+gr2).animate.shift(RIGHT) ) self.play( # Animate group without component (gr-circle_red).animate.shift(RIGHT) ) """ if not all(isinstance(m, (VMobject, OpenGLVMobject)) for m in vmobjects): raise TypeError("All submobjects must be of type VMobject") return super().add(*vmobjects) def __add__(self, vmobject): return VGroup(*self.submobjects, vmobject) def __iadd__(self, vmobject): return self.add(vmobject) def __sub__(self, vmobject): copy = VGroup(*self.submobjects) copy.remove(vmobject) return copy def __isub__(self, vmobject): return self.remove(vmobject) def __setitem__(self, key: int, value: Union[VMobject, typing.Sequence[VMobject]]): """Override the [] operator for item assignment. Parameters ---------- key The index of the submobject to be assigned value The vmobject value to assign to the key Returns ------- None Examples -------- Normal usage:: >>> vgroup = VGroup(VMobject()) >>> new_obj = VMobject() >>> vgroup[0] = new_obj """ if not all(isinstance(m, (VMobject, OpenGLVMobject)) for m in value): raise TypeError("All submobjects must be of type VMobject") self.submobjects[key] = value class VDict(VMobject, metaclass=ConvertToOpenGL): """A VGroup-like class, also offering submobject access by key, like a python dict Parameters ---------- mapping_or_iterable : Union[:class:`Mapping`, Iterable[Tuple[Hashable, :class:`~.VMobject`]]], optional The parameter specifying the key-value mapping of keys and mobjects. show_keys : :class:`bool`, optional Whether to also display the key associated with the mobject. This might be useful when debugging, especially when there are a lot of mobjects in the :class:`VDict`. Defaults to False. kwargs : Any Other arguments to be passed to `Mobject`. Attributes ---------- show_keys : :class:`bool` Whether to also display the key associated with the mobject. This might be useful when debugging, especially when there are a lot of mobjects in the :class:`VDict`. When displayed, the key is towards the left of the mobject. Defaults to False. submob_dict : :class:`dict` Is the actual python dictionary that is used to bind the keys to the mobjects. Examples -------- .. manim:: ShapesWithVDict class ShapesWithVDict(Scene): def construct(self): square = Square().set_color(RED) circle = Circle().set_color(YELLOW).next_to(square, UP) # create dict from list of tuples each having key-mobject pair pairs = [("s", square), ("c", circle)] my_dict = VDict(pairs, show_keys=True) # display it just like a VGroup self.play(Create(my_dict)) self.wait() text = Tex("Some text").set_color(GREEN).next_to(square, DOWN) # add a key-value pair by wrapping it in a single-element list of tuple # after attrs branch is merged, it will be easier like `.add(t=text)` my_dict.add([("t", text)]) self.wait() rect = Rectangle().next_to(text, DOWN) # can also do key assignment like a python dict my_dict["r"] = rect # access submobjects like a python dict my_dict["t"].set_color(PURPLE) self.play(my_dict["t"].animate.scale(3)) self.wait() # also supports python dict styled reassignment my_dict["t"] = Tex("Some other text").set_color(BLUE) self.wait() # remove submobject by key my_dict.remove("t") self.wait() self.play(Uncreate(my_dict["s"])) self.wait() self.play(FadeOut(my_dict["c"])) self.wait() self.play(FadeOut(my_dict["r"], shift=DOWN)) self.wait() # you can also make a VDict from an existing dict of mobjects plain_dict = { 1: Integer(1).shift(DOWN), 2: Integer(2).shift(2 * DOWN), 3: Integer(3).shift(3 * DOWN), } vdict_from_plain_dict = VDict(plain_dict) vdict_from_plain_dict.shift(1.5 * (UP + LEFT)) self.play(Create(vdict_from_plain_dict)) # you can even use zip vdict_using_zip = VDict(zip(["s", "c", "r"], [Square(), Circle(), Rectangle()])) vdict_using_zip.shift(1.5 * RIGHT) self.play(Create(vdict_using_zip)) self.wait() """ def __init__(self, mapping_or_iterable={}, show_keys=False, **kwargs): super().__init__(**kwargs) self.show_keys = show_keys self.submob_dict = {} self.add(mapping_or_iterable) def __repr__(self): return __class__.__name__ + "(" + repr(self.submob_dict) + ")" def add(self, mapping_or_iterable): """Adds the key-value pairs to the :class:`VDict` object. Also, it internally adds the value to the `submobjects` :class:`list` of :class:`~.Mobject`, which is responsible for actual on-screen display. Parameters --------- mapping_or_iterable : Union[:class:`Mapping`, Iterable[Tuple[Hashable, :class:`~.VMobject`]]], optional The parameter specifying the key-value mapping of keys and mobjects. Returns ------- :class:`VDict` Returns the :class:`VDict` object on which this method was called. Examples -------- Normal usage:: square_obj = Square() my_dict.add([('s', square_obj)]) """ for key, value in dict(mapping_or_iterable).items(): self.add_key_value_pair(key, value) return self def remove(self, key): """Removes the mobject from the :class:`VDict` object having the key `key` Also, it internally removes the mobject from the `submobjects` :class:`list` of :class:`~.Mobject`, (which is responsible for removing it from the screen) Parameters ---------- key : :class:`typing.Hashable` The key of the submoject to be removed. Returns ------- :class:`VDict` Returns the :class:`VDict` object on which this method was called. Examples -------- Normal usage:: my_dict.remove('square') """ if key not in self.submob_dict: raise KeyError("The given key '%s' is not present in the VDict" % str(key)) super().remove(self.submob_dict[key]) del self.submob_dict[key] return self def __getitem__(self, key): """Override the [] operator for item retrieval. Parameters ---------- key : :class:`typing.Hashable` The key of the submoject to be accessed Returns ------- :class:`VMobject` The submobject corresponding to the key `key` Examples -------- Normal usage:: self.play(Create(my_dict['s'])) """ submob = self.submob_dict[key] return submob def __setitem__(self, key, value): """Override the [] operator for item assignment. Parameters ---------- key : :class:`typing.Hashable` The key of the submoject to be assigned value : :class:`VMobject` The submobject to bind the key to Returns ------- None Examples -------- Normal usage:: square_obj = Square() my_dict['sq'] = square_obj """ if key in self.submob_dict: self.remove(key) self.add([(key, value)]) def __delitem__(self, key): """Override the del operator for deleting an item. Parameters ---------- key : :class:`typing.Hashable` The key of the submoject to be deleted Returns ------- None Examples -------- :: >>> from manim import * >>> my_dict = VDict({'sq': Square()}) >>> 'sq' in my_dict True >>> del my_dict['sq'] >>> 'sq' in my_dict False Notes ----- Removing an item from a VDict does not remove that item from any Scene that the VDict is part of. """ del self.submob_dict[key] def __contains__(self, key): """Override the in operator. Parameters ---------- key : :class:`typing.Hashable` The key to check membership of. Returns ------- :class:`bool` Examples -------- :: >>> from manim import * >>> my_dict = VDict({'sq': Square()}) >>> 'sq' in my_dict True """ return key in self.submob_dict def get_all_submobjects(self): """To get all the submobjects associated with a particular :class:`VDict` object Returns ------- :class:`dict_values` All the submobjects associated with the :class:`VDict` object Examples -------- Normal usage:: for submob in my_dict.get_all_submobjects(): self.play(Create(submob)) """ submobjects = self.submob_dict.values() return submobjects def add_key_value_pair(self, key, value): """A utility function used by :meth:`add` to add the key-value pair to :attr:`submob_dict`. Not really meant to be used externally. Parameters ---------- key : :class:`typing.Hashable` The key of the submobject to be added. value : :class:`~.VMobject` The mobject associated with the key Returns ------- None Raises ------ TypeError If the value is not an instance of VMobject Examples -------- Normal usage:: square_obj = Square() self.add_key_value_pair('s', square_obj) """ if not isinstance(value, (VMobject, OpenGLVMobject)): raise TypeError("All submobjects must be of type VMobject") mob = value if self.show_keys: # This import is here and not at the top to avoid circular import from manim.mobject.text.tex_mobject import Tex key_text = Tex(str(key)).next_to(value, LEFT) mob.add(key_text) self.submob_dict[key] = mob super().add(value) class VectorizedPoint(VMobject, metaclass=ConvertToOpenGL): def __init__( self, location=ORIGIN, color=BLACK, fill_opacity=0, stroke_width=0, artificial_width=0.01, artificial_height=0.01, **kwargs, ): self.artificial_width = artificial_width self.artificial_height = artificial_height super().__init__( color=color, fill_opacity=fill_opacity, stroke_width=stroke_width, **kwargs, ) self.set_points(np.array([location])) basecls = OpenGLVMobject if config.renderer == "opengl" else VMobject @basecls.width.getter def width(self): return self.artificial_width @basecls.height.getter def height(self): return self.artificial_height def get_location(self): return np.array(self.points[0]) def set_location(self, new_loc): self.set_points(np.array([new_loc])) class CurvesAsSubmobjects(VGroup): """Convert a curve's elements to submobjects. Examples -------- .. manim:: LineGradientExample :save_last_frame: class LineGradientExample(Scene): def construct(self): curve = ParametricFunction(lambda t: [t, np.sin(t), 0], t_range=[-PI, PI, 0.01], stroke_width=10) new_curve = CurvesAsSubmobjects(curve) new_curve.set_color_by_gradient(BLUE, RED) self.add(new_curve.shift(UP), curve) """ def __init__(self, vmobject, **kwargs): super().__init__(**kwargs) tuples = vmobject.get_cubic_bezier_tuples() for tup in tuples: part = VMobject() part.set_points(tup) part.match_style(vmobject) self.add(part) class DashedVMobject(VMobject, metaclass=ConvertToOpenGL): """A :class:`VMobject` composed of dashes instead of lines. Parameters ---------- vmobject The object that will get dashed num_dashes Number of dashes to add. dashed_ratio Ratio of dash to empty space. dash_offset Shifts the starting point of dashes along the path. Value 1 shifts by one full dash length. equal_lengths If ``True``, dashes will be (approximately) equally long. If ``False``, dashes will be split evenly in the curve's input t variable (legacy behavior). Examples -------- .. manim:: DashedVMobjectExample :save_last_frame: class DashedVMobjectExample(Scene): def construct(self): r = 0.5 top_row = VGroup() # Increasing num_dashes for dashes in range(1, 12): circ = DashedVMobject(Circle(radius=r, color=WHITE), num_dashes=dashes) top_row.add(circ) middle_row = VGroup() # Increasing dashed_ratio for ratio in np.arange(1 / 11, 1, 1 / 11): circ = DashedVMobject( Circle(radius=r, color=WHITE), dashed_ratio=ratio ) middle_row.add(circ) func1 = FunctionGraph(lambda t: t**5,[-1,1],color=WHITE) func_even = DashedVMobject(func1,num_dashes=6,equal_lengths=True) func_stretched = DashedVMobject(func1, num_dashes=6, equal_lengths=False) bottom_row = VGroup(func_even,func_stretched) top_row.arrange(buff=0.3) middle_row.arrange() bottom_row.arrange(buff=1) everything = VGroup(top_row, middle_row, bottom_row).arrange(DOWN, buff=1) self.add(everything) """ def __init__( self, vmobject, num_dashes=15, dashed_ratio=0.5, dash_offset=0, color=WHITE, equal_lengths=True, **kwargs, ): self.dashed_ratio = dashed_ratio self.num_dashes = num_dashes super().__init__(color=color, **kwargs) r = self.dashed_ratio n = self.num_dashes if n > 0: # Assuming total length is 1 dash_len = r / n if vmobject.is_closed(): void_len = (1 - r) / n else: if n == 1: void_len = 1 - r else: void_len = (1 - r) / (n - 1) period = dash_len + void_len phase_shift = (dash_offset % 1) * period if vmobject.is_closed(): # closed curves have equal amount of dashes and voids pattern_len = 1 else: # open curves start and end with a dash, so the whole dash pattern with the last void is longer pattern_len = 1 + void_len dash_starts = [((i * period + phase_shift) % pattern_len) for i in range(n)] dash_ends = [ ((i * period + dash_len + phase_shift) % pattern_len) for i in range(n) ] # closed shapes can handle overflow at the 0-point # open shapes need special treatment for it if not vmobject.is_closed(): # due to phase shift being [0...1] range, always the last dash element needs attention for overflow # if an entire dash moves out of the shape end: if dash_ends[-1] > 1 and dash_starts[-1] > 1: # remove the last element since it is out-of-bounds dash_ends.pop() dash_starts.pop() elif dash_ends[-1] < dash_len: # if it overflowed if ( dash_starts[-1] < 1 ): # if the beginning of the piece is still in range dash_starts.append(0) dash_ends.append(dash_ends[-1]) dash_ends[-2] = 1 else: dash_starts[-1] = 0 elif dash_starts[-1] > (1 - dash_len): dash_ends[-1] = 1 if equal_lengths: # calculate the entire length by adding up short line-pieces norms = np.array(0) for k in range(vmobject.get_num_curves()): norms = np.append(norms, vmobject.get_nth_curve_length_pieces(k)) # add up length-pieces in array form length_vals = np.cumsum(norms) ref_points = np.linspace(0, 1, length_vals.size) curve_length = length_vals[-1] self.add( *( vmobject.get_subcurve( np.interp( dash_starts[i] * curve_length, length_vals, ref_points, ), np.interp( dash_ends[i] * curve_length, length_vals, ref_points, ), ) for i in range(len(dash_starts)) ) ) else: self.add( *( vmobject.get_subcurve( dash_starts[i], dash_ends[i], ) for i in range(len(dash_starts)) ) ) # Family is already taken care of by get_subcurve # implementation if config.renderer == "opengl": self.match_style(vmobject, recurse=False) else: self.match_style(vmobject, family=False)
33.496308
162
0.568439
b40cfd4d1c2fdb6112a7bb776e25c15d983598ff
889
py
Python
lldb/packages/Python/lldbsuite/test/python_api/default-constructor/sb_listener.py
medismailben/llvm-project
e334a839032fe500c3bba22bf976ab7af13ce1c1
[ "Apache-2.0" ]
2,338
2018-06-19T17:34:51.000Z
2022-03-31T11:00:37.000Z
lldb/packages/Python/lldbsuite/test/python_api/default-constructor/sb_listener.py
medismailben/llvm-project
e334a839032fe500c3bba22bf976ab7af13ce1c1
[ "Apache-2.0" ]
3,740
2019-01-23T15:36:48.000Z
2022-03-31T22:01:13.000Z
lldb/packages/Python/lldbsuite/test/python_api/default-constructor/sb_listener.py
medismailben/llvm-project
e334a839032fe500c3bba22bf976ab7af13ce1c1
[ "Apache-2.0" ]
500
2019-01-23T07:49:22.000Z
2022-03-30T02:59:37.000Z
""" Fuzz tests an object after the default construction to make sure it does not crash lldb. """ import lldb def fuzz_obj(obj): obj.AddEvent(lldb.SBEvent()) obj.StartListeningForEvents(lldb.SBBroadcaster(), 0xffffffff) obj.StopListeningForEvents(lldb.SBBroadcaster(), 0xffffffff) event = lldb.SBEvent() broadcaster = lldb.SBBroadcaster() obj.WaitForEvent(5, event) obj.WaitForEventForBroadcaster(5, broadcaster, event) obj.WaitForEventForBroadcasterWithType(5, broadcaster, 0xffffffff, event) obj.PeekAtNextEvent(event) obj.PeekAtNextEventForBroadcaster(broadcaster, event) obj.PeekAtNextEventForBroadcasterWithType(broadcaster, 0xffffffff, event) obj.GetNextEvent(event) obj.GetNextEventForBroadcaster(broadcaster, event) obj.GetNextEventForBroadcasterWithType(broadcaster, 0xffffffff, event) obj.HandleBroadcastEvent(event)
37.041667
88
0.777278
c679731725cf02fdeb21808aa6b0562cceaedca6
400
py
Python
tests/apps/app1/overrides/orm/metaclass.py
coboyoshi/uvicore
9cfdeeac83000b156fe48f068b4658edaf51c8de
[ "MIT" ]
11
2021-03-22T22:07:49.000Z
2022-03-08T16:18:33.000Z
tests/apps/app1/overrides/orm/metaclass.py
coboyoshi/uvicore
9cfdeeac83000b156fe48f068b4658edaf51c8de
[ "MIT" ]
12
2021-03-04T05:51:24.000Z
2021-09-22T05:16:18.000Z
tests/apps/app1/overrides/orm/metaclass.py
coboyoshi/uvicore
9cfdeeac83000b156fe48f068b4658edaf51c8de
[ "MIT" ]
2
2021-03-25T14:49:56.000Z
2021-11-17T23:20:29.000Z
from typing import Any from uvicore.support.dumper import dd, dump from uvicore.orm.query import QueryBuilder # Parent from uvicore.orm.metaclass import ModelMetaclass as X class ModelMetaclass(X): async def find(entity, id: Any) -> Any: """Query builder passthrough""" dump('find override----------------------------------') return await QueryBuilder(entity).find(id)
28.571429
63
0.66
f820eaa3528b4620f596e0cf982d4639e6e1d25f
9,726
py
Python
paz/evaluation/detection.py
niqbal996/paz
f27205907367415d5b21f90e1a1d1d1ce598e889
[ "MIT" ]
300
2020-10-29T08:02:05.000Z
2022-03-30T21:47:32.000Z
paz/evaluation/detection.py
albertofernandezvillan/paz
9fbd50b993f37e1e807297a29c6044c09967c9cc
[ "MIT" ]
30
2020-10-29T12:40:32.000Z
2022-03-31T14:06:35.000Z
paz/evaluation/detection.py
albertofernandezvillan/paz
9fbd50b993f37e1e807297a29c6044c09967c9cc
[ "MIT" ]
62
2020-10-29T12:34:13.000Z
2022-03-29T05:21:45.000Z
import numpy as np from ..backend.boxes import compute_ious from ..backend.image import load_image def compute_matches(dataset, detector, class_to_arg, iou_thresh=0.5): """ Arguments: dataset: List of dictionaries containing 'image' as key and a numpy array representing an image as value. detector : Function for performing inference class_to_arg: Dict. of class names and their id iou_thresh (float): A prediction is correct if its Intersection over Union with the ground truth is above this value.. Returns: num_positives: Dict. containing number of positives for each class score: Dict. containing matching scores of boxes for each class match: Dict. containing match/non-match info of boxes in each class """ # classes_count = len(np.unique(np.concatenate(ground_truth_class_args))) num_classes = len(class_to_arg) num_positives = {label_id: 0 for label_id in range(1, num_classes + 1)} score = {label_id: [] for label_id in range(1, num_classes + 1)} match = {label_id: [] for label_id in range(1, num_classes + 1)} for sample in dataset: # obtaining ground truths ground_truth_boxes = np.array(sample['boxes'][:, :4]) ground_truth_class_args = np.array(sample['boxes'][:, 4]) if 'difficulties' in sample.keys(): difficulties = np.array(sample['difficulties']) else: difficulties = None # obtaining predictions image = load_image(sample['image']) results = detector(image) predicted_boxes, predicted_class_args, predicted_scores = [], [], [] for box2D in results['boxes2D']: predicted_scores.append(box2D.score) predicted_class_args.append(class_to_arg[box2D.class_name]) predicted_boxes.append(list(box2D.coordinates)) predicted_boxes = np.array(predicted_boxes, dtype=np.float32) predicted_class_args = np.array(predicted_class_args) predicted_scores = np.array(predicted_scores, dtype=np.float32) # setting difficulties to ``Easy`` if they are None if difficulties is None: difficulties = np.zeros(len(ground_truth_boxes), dtype=bool) # iterating over each class present in the image class_args = np.concatenate( (predicted_class_args, ground_truth_class_args)) class_args = np.unique(class_args).astype(int) for class_arg in class_args: # masking predictions by class class_mask = class_arg == predicted_class_args class_predicted_boxes = predicted_boxes[class_mask] class_predicted_scores = predicted_scores[class_mask] # sort score from maximum to minimum for masked predictions sorted_args = class_predicted_scores.argsort()[::-1] class_predicted_boxes = class_predicted_boxes[sorted_args] class_predicted_scores = class_predicted_scores[sorted_args] # masking ground truths by class class_mask = class_arg == ground_truth_class_args class_ground_truth_boxes = ground_truth_boxes[class_mask] class_difficulties = difficulties[class_mask] # the number of positives equals the number of easy boxes num_easy = np.logical_not(class_difficulties).sum() num_positives[class_arg] = num_positives[class_arg] + num_easy # add all predicted scores to scores score[class_arg].extend(class_predicted_scores) # if not predicted boxes for this class continue if len(class_predicted_boxes) == 0: continue # if not ground truth boxes continue but add zeros as matches if len(class_ground_truth_boxes) == 0: match[class_arg].extend((0,) * len(class_predicted_boxes)) continue # evaluation on VOC follows integer typed bounding boxes. class_predicted_boxes = class_predicted_boxes.copy() class_predicted_boxes[:, 2:] = ( class_predicted_boxes[:, 2:] + 1) class_ground_truth_boxes = class_ground_truth_boxes.copy() class_ground_truth_boxes[:, 2:] = ( class_ground_truth_boxes[:, 2:] + 1) ious = compute_ious( class_predicted_boxes, class_ground_truth_boxes) ground_truth_args = ious.argmax(axis=1) # set -1 if there is no matching ground truth ground_truth_args[ious.max(axis=1) < iou_thresh] = -1 selected = np.zeros(len(class_ground_truth_boxes), dtype=bool) for ground_truth_arg in ground_truth_args: if ground_truth_arg >= 0: if class_difficulties[ground_truth_arg]: match[class_arg].append(-1) else: if not selected[ground_truth_arg]: match[class_arg].append(1) else: match[class_arg].append(0) selected[ground_truth_arg] = True else: match[class_arg].append(0) return num_positives, score, match def calculate_relevance_metrics(num_positives, scores, matches): """Calculates precision and recall. Arguments: num_positives: Dict. with number of positives for each class scores: Dict. with matching scores of boxes for each class matches: Dict. wth match/non-match info for boxes for each class Returns: precision: Dict. with precision values per class recall : Dict. with recall values per class """ num_classes = max(num_positives.keys()) + 1 precision, recall = [None] * num_classes, [None] * num_classes for class_arg in num_positives.keys(): class_positive_matches = np.array(matches[class_arg], dtype=np.int8) class_scores = np.array(scores[class_arg]) order = class_scores.argsort()[::-1] class_positive_matches = class_positive_matches[order] true_positives = np.cumsum(class_positive_matches == 1) false_positives = np.cumsum(class_positive_matches == 0) precision[class_arg] = ( true_positives / (false_positives + true_positives)) if num_positives[class_arg] > 0: recall[class_arg] = true_positives / num_positives[class_arg] return precision, recall def calculate_average_precisions(precision, recall, use_07_metric=False): """Calculate average precisions based based on PASCAL VOC evaluation Arguments: num_positives: Dict. with number of positives for each class scores: Dict. with matching scores of boxes for each class matches: Dict. wth match/non-match info for boxes for each class Returns: """ num_classes = len(precision) average_precisions = np.empty(num_classes) for class_arg in range(num_classes): if precision[class_arg] is None or recall[class_arg] is None: average_precisions[class_arg] = np.nan continue if use_07_metric: # 11 point metric average_precisions[class_arg] = 0 for t in np.arange(0., 1.1, 0.1): if np.sum(recall[class_arg] >= t) == 0: p_interpolation = 0 else: p_interpolation = np.max( np.nan_to_num( precision[class_arg] )[recall[class_arg] >= t] ) average_precision_class = average_precisions[class_arg] average_precision_class = (average_precision_class + (p_interpolation / 11)) average_precisions[class_arg] = average_precision_class else: # first append sentinel values at the end average_precision = np.concatenate( ([0], np.nan_to_num(precision[class_arg]), [0])) average_recall = np.concatenate(([0], recall[class_arg], [1])) average_precision = np.maximum.accumulate( average_precision[::-1])[::-1] # to calculate area under PR curve, look for points # where X axis (recall) changes value recall_change_arg = np.where( average_recall[1:] != average_recall[:-1])[0] # and sum (\Delta recall) * precision average_precisions[class_arg] = np.sum( (average_recall[recall_change_arg + 1] - average_recall[recall_change_arg]) * average_precision[recall_change_arg + 1]) return average_precisions def evaluateMAP(detector, dataset, class_to_arg, iou_thresh=0.5, use_07_metric=False): """Calculate average precisions based on evaluation code of PASCAL VOC. Arguments: dataset: List of dictionaries containing 'image' as key and a numpy array representing an image as value. detector : Function for performing inference class_to_arg: Dict. of class names and their id iou_thresh: Float indicating intersection over union threshold for assigning a prediction as correct. # Returns: """ positives, score, match = compute_matches( dataset, detector, class_to_arg, iou_thresh) precision, recall = calculate_relevance_metrics(positives, score, match) average_precisions = calculate_average_precisions( precision, recall, use_07_metric) return {'ap': average_precisions, 'map': np.nanmean(average_precisions)}
47.213592
77
0.634176
0a76edbd926d66f160f7e9865fee900d8ea34ce0
936
py
Python
freeCodeCamp/01-scientific-computing-with-python/src/04-strings.py
aysedemirel/python-journey
16abd1729c2d999aedb2b4db5ade6c14aca7a23f
[ "MIT" ]
1
2021-02-27T14:22:53.000Z
2021-02-27T14:22:53.000Z
freeCodeCamp/01-scientific-computing-with-python/src/04-strings.py
aysedemirel/python-journey
16abd1729c2d999aedb2b4db5ade6c14aca7a23f
[ "MIT" ]
null
null
null
freeCodeCamp/01-scientific-computing-with-python/src/04-strings.py
aysedemirel/python-journey
16abd1729c2d999aedb2b4db5ade6c14aca7a23f
[ "MIT" ]
null
null
null
hello = "Hello" world = "World" hello_world = hello + " " + world print(hello_world) num = '123' num = int(num) + 1 print(num) text = "Sample Text For Python" print(text[0:6]) print(text[7:11]) print(text[12:15]) print(text[16:22]) fruit = "banana" print('n' in fruit) print('m' in fruit) print("Hello Wolrd".lower()) print("Hello Wolrd".upper()) print("hello world".capitalize()) hello = "Hello World" print(type(hello)) dir(hello) str = "Hello world" isFound = str.find('wo') print(isFound) str = "Hello Ayse" print(str) replace_str = str.replace("Ayse","Mustafa") print(replace_str) str = " Hello World " print(str.lstrip()) print(str.rstrip()) print(str.strip()) str = "Please have a nice day" print(str.startswith('Please')) print(str.startswith('please')) data = "hello there,i'm Ayse" comma = data.find(',') empty = data.find(' ',comma) text = data[comma+1: empty] print(comma) print(empty) print(text)
16.714286
43
0.665598
49ed777f2fb60bb228c99ec5ce931550c38380c9
2,036
py
Python
pyports.py
dunker4o/PyPortS
394e155c681764fd263aa667f9645264629bd071
[ "MIT" ]
null
null
null
pyports.py
dunker4o/PyPortS
394e155c681764fd263aa667f9645264629bd071
[ "MIT" ]
null
null
null
pyports.py
dunker4o/PyPortS
394e155c681764fd263aa667f9645264629bd071
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Oct 3 23:05:47 2019 @author: Borko """ # 1. Parse input from the console: # 1) IP Address # 2) Port range - optional # 3) IPv - optional # 4) TCP/UDP - optional import argparse import ipaddress import socket parser = argparse.ArgumentParser(description="A simple Python Port Scanner \ that checks if any are open.") parser.add_argument("first_ip", type=str, help="Starting IP address of the \ scan.") parser.add_argument("last_ip", type=str, help="Last IP address to scan.") parser.add_argument("-p", "--port", type=int, help="Set the last port to scan.\ Default is 1024.", required=False, default=1024) ''' parser.add_argument("-v", "--version", type=int, help="Specify if you are \ testing IPv4 or IPv6 addresses. IPv4 is default.", required=False, default=4) parser.add_argument("-u", "--udp", help="Selects UDP as the underlying \ protocol for testing.") ''' parser.add_argument("-t", "--timeout", help="Set the timeout in seconds for \ each port scan. Default is 3.", default=3, type=int) args = parser.parse_args() # 2. Loop through the IP range and check for connections. # 3. Print results start_ip = ipaddress.IPv4Address(args.first_ip) end_ip = ipaddress.IPv4Address(args.last_ip) for current_ip in range(int(start_ip), int(end_ip)+1): print("\r\n" + "***"*15) print("Open ports on {}:".format(ipaddress.IPv4Address(current_ip))) none = True for port in range(1, args.port+1): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(args.timeout) connection = sock.connect_ex((str(ipaddress.IPv4Address(current_ip)), port)) if connection == 0: print("Port {} is OPEN!".format(port)) none = False sock.close() if none: print("No open ports found.") print("---"*15)
33.377049
85
0.611493
77b0ac2ef14accf667b6c72d4de635696eb68e42
1,271
py
Python
bann/b_test_train_prepare/functions/test/one_cl_stats/acc_calc.py
arturOnRails/BANN
027af04349304941fb73c2ede502aca4b76f1ad1
[ "MIT" ]
null
null
null
bann/b_test_train_prepare/functions/test/one_cl_stats/acc_calc.py
arturOnRails/BANN
027af04349304941fb73c2ede502aca4b76f1ad1
[ "MIT" ]
null
null
null
bann/b_test_train_prepare/functions/test/one_cl_stats/acc_calc.py
arturOnRails/BANN
027af04349304941fb73c2ede502aca4b76f1ad1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ .. moduleauthor:: Artur Lissin .. moduleauthor:: Fabian Tann """ from typing import Tuple, List, Dict from bann.b_test_train_prepare.container.test.rttff_c import RtTfF from bann.b_test_train_prepare.functions.test.one_cl_stats.merge_rttff import calc_one_class_stats def _acc_calc(fp_c: int, tn_c: int, tp_c: int, fn_c: int, /) -> float: try: res = (tp_c + tn_c) / (tp_c + tn_c + fp_c + fn_c) except ZeroDivisionError as ex_z: print(ex_z) res = -1 return res def merge_one_class_acc(data: List[Tuple[Dict[int, RtTfF], ...]], class_num: int, step_cnt: int, /) -> Tuple[str, ...]: rev_list, classes_list = calc_one_class_stats(class_num, step_cnt, data) res = [ (str(cl_id), str(_acc_calc( cl_el[rev_list[cl_id][1]].r_fp, cl_el[rev_list[cl_id][1]].r_tn, cl_el[rev_list[cl_id][1]].r_tp, cl_el[rev_list[cl_id][1]].r_fn ))) for cl_id, cl_el in enumerate(classes_list) ] cross_tab = [ "\"OneClass_ACC\": {", "\"ClassID\": [" + ','.join(re_t[0] for re_t in res) + "],", "\"ACC\": [" + ','.join(re_t[1] for re_t in res) + "]" "}" ] return tuple(cross_tab)
31
98
0.583792
1e8f48a070611060d25e3fbb8844c49eb0751e6b
901
py
Python
spikeinterface/extractors/neoextractors/spike2.py
khl02007/spikeinterface
a29739a2ecc1d27af0fdb7adfed895aa9fdd0be4
[ "MIT" ]
116
2019-07-12T14:33:43.000Z
2022-03-29T01:10:00.000Z
spikeinterface/extractors/neoextractors/spike2.py
khl02007/spikeinterface
a29739a2ecc1d27af0fdb7adfed895aa9fdd0be4
[ "MIT" ]
424
2019-07-15T13:29:34.000Z
2022-03-30T13:30:45.000Z
spikeinterface/extractors/neoextractors/spike2.py
khl02007/spikeinterface
a29739a2ecc1d27af0fdb7adfed895aa9fdd0be4
[ "MIT" ]
60
2019-08-26T11:59:07.000Z
2022-03-24T20:05:38.000Z
from .neobaseextractor import NeoBaseRecordingExtractor, NeoBaseSortingExtractor class Spike2RecordingExtractor(NeoBaseRecordingExtractor): """ Class for reading spike2 smr files. smrx are not supported with this, prefer CedRecordingExtractor instead. Based on neo.rawio.Spike2RawIO Parameters ---------- file_path: str The xml file. stream_id: str or None """ mode = 'file' NeoRawIOClass = 'Spike2RawIO' def __init__(self, file_path, stream_id=None): neo_kwargs = {'filename': file_path} NeoBaseRecordingExtractor.__init__(self, stream_id=stream_id, **neo_kwargs) self._kwargs = {'file_path': str(file_path), 'stream_id': stream_id} def read_spike2(*args, **kwargs): recording = Spike2RecordingExtractor(*args, **kwargs) return recording read_spike2.__doc__ = Spike2RecordingExtractor.__doc__
27.30303
83
0.705882
ccd3f2d84a301cf43ea7cbd885d3d8dc149547ff
3,805
bzl
Python
bazel/dependency_imports.bzl
Zerpet/envoy
1533857904db361de3ab7d10167f12310c6e6abf
[ "Apache-2.0" ]
null
null
null
bazel/dependency_imports.bzl
Zerpet/envoy
1533857904db361de3ab7d10167f12310c6e6abf
[ "Apache-2.0" ]
null
null
null
bazel/dependency_imports.bzl
Zerpet/envoy
1533857904db361de3ab7d10167f12310c6e6abf
[ "Apache-2.0" ]
null
null
null
load("@rules_foreign_cc//:workspace_definitions.bzl", "rules_foreign_cc_dependencies") load("@io_bazel_rules_go//go:deps.bzl", "go_register_toolchains", "go_rules_dependencies") load("@envoy_build_tools//toolchains:rbe_toolchains_config.bzl", "rbe_toolchains_config") load("@bazel_toolchains//rules/exec_properties:exec_properties.bzl", "create_rbe_exec_properties_dict", "custom_exec_properties") load("@bazel_gazelle//:deps.bzl", "gazelle_dependencies", "go_repository") load("@build_bazel_rules_apple//apple:repositories.bzl", "apple_rules_dependencies") load("@rules_fuzzing//fuzzing:repositories.bzl", "rules_fuzzing_dependencies") load("@upb//bazel:workspace_deps.bzl", "upb_deps") load("@rules_rust//rust:repositories.bzl", "rust_repositories") load("@config_validation_pip3//:requirements.bzl", config_validation_pip_install = "pip_install") load("@configs_pip3//:requirements.bzl", configs_pip_install = "pip_install") load("@headersplit_pip3//:requirements.bzl", headersplit_pip_install = "pip_install") load("@kafka_pip3//:requirements.bzl", kafka_pip_install = "pip_install") load("@protodoc_pip3//:requirements.bzl", protodoc_pip_install = "pip_install") load("@thrift_pip3//:requirements.bzl", thrift_pip_install = "pip_install") load("@fuzzing_pip3//:requirements.bzl", fuzzing_pip_install = "pip_install") load("@rules_antlr//antlr:deps.bzl", "antlr_dependencies") load("@proxy_wasm_rust_sdk//bazel:dependencies.bzl", "proxy_wasm_rust_sdk_dependencies") # go version for rules_go GO_VERSION = "1.15.5" def envoy_dependency_imports(go_version = GO_VERSION): rules_foreign_cc_dependencies() go_rules_dependencies() go_register_toolchains(go_version) rbe_toolchains_config() gazelle_dependencies() apple_rules_dependencies() rust_repositories() upb_deps() antlr_dependencies(472) proxy_wasm_rust_sdk_dependencies() rules_fuzzing_dependencies( oss_fuzz = True, honggfuzz = False, ) custom_exec_properties( name = "envoy_large_machine_exec_property", constants = { "LARGE_MACHINE": create_rbe_exec_properties_dict(labels = dict(size = "large")), }, ) # These dependencies, like most of the Go in this repository, exist only for the API. go_repository( name = "org_golang_google_grpc", build_file_proto_mode = "disable", importpath = "google.golang.org/grpc", sum = "h1:EC2SB8S04d2r73uptxphDSUG+kTKVgjRPF+N3xpxRB4=", version = "v1.29.1", ) go_repository( name = "org_golang_x_net", importpath = "golang.org/x/net", sum = "h1:fHDIZ2oxGnUZRN6WgWFCbYBjH9uqVPRCUVUDhs0wnbA=", version = "v0.0.0-20190813141303-74dc4d7220e7", ) go_repository( name = "org_golang_x_text", importpath = "golang.org/x/text", sum = "h1:g61tztE5qeGQ89tm6NTjjM9VPIm088od1l6aSorWRWg=", version = "v0.3.0", ) go_repository( name = "com_github_spf13_afero", importpath = "github.com/spf13/afero", sum = "h1:8q6vk3hthlpb2SouZcnBVKboxWQWMDNF38bwholZrJc=", version = "v1.3.4", ) go_repository( name = "com_github_lyft_protoc_gen_star", importpath = "github.com/lyft/protoc-gen-star", sum = "h1:sImehRT+p7lW9n6R7MQc5hVgzWGEkDVZU4AsBQ4Isu8=", version = "v0.5.1", ) go_repository( name = "com_github_iancoleman_strcase", importpath = "github.com/iancoleman/strcase", sum = "h1:ux/56T2xqZO/3cP1I2F86qpeoYPCOzk+KF/UH/Ar+lk=", version = "v0.0.0-20180726023541-3605ed457bf7", ) config_validation_pip_install() configs_pip_install() headersplit_pip_install() kafka_pip_install() protodoc_pip_install() thrift_pip_install() fuzzing_pip_install()
41.358696
129
0.716426
868a0863ffecc9c4156a7e2dfd05bb2ff74a28fa
1,423
py
Python
main.py
nathanjmcdougall/convergence-plot
0f2173094549d107de0b86a7d3e2bafc9bba70b9
[ "MIT" ]
null
null
null
main.py
nathanjmcdougall/convergence-plot
0f2173094549d107de0b86a7d3e2bafc9bba70b9
[ "MIT" ]
null
null
null
main.py
nathanjmcdougall/convergence-plot
0f2173094549d107de0b86a7d3e2bafc9bba70b9
[ "MIT" ]
null
null
null
"""A script to create nice animations of Julia sets for families of functions. """ from matplotlib.animation import ArtistAnimation from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt from plotting import plot_recursions_convergence if __name__ == '__main__': xlim = [-2, 2] ylim = [-2, 2] extent = xlim + ylim PIXELS_PER_AXIS = 2000 THRESHOLD = 2 MAX_IT = 20 def julia_func(theta): """Returns a julia function for the given parameter a. """ constant = 0.2*np.exp(theta*1j) return lambda z: z**4 - 1.3*z + constant # TODO(NAMC) incorporate the more efficient method in this SO answer: # https://stackoverflow.com/a/15883620/10931340 fig, ax = plt.subplots(figsize=(10, 10)) frames = tqdm(np.linspace(0, 2*np.pi, num=100)) ims = [] for frame in frames: im = plot_recursions_convergence( ax, func=julia_func(frame), threshold=THRESHOLD, max_it=MAX_IT, extent=extent, pixels_per_axis=PIXELS_PER_AXIS, cmap='inferno' ) ax.axis('off') ims.append([im]) fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None) fig.set_size_inches(19.20, 10.80, True) ani = ArtistAnimation(fig, ims, interval=30, blit=True) ani.save("animation.mp4", dpi=100) plt.show()
27.901961
83
0.624034
a082fe4d9a593477a3e9ed582e36bb9a13e715da
4,371
py
Python
prune/pruning_method_transposable_block_l1.py
itayhubara/AcceleratedSparseNeuralTraining
425897dec9c7ef185841d7000c4418ebb1c95896
[ "Apache-2.0" ]
3
2021-11-24T12:46:11.000Z
2021-11-25T01:45:14.000Z
prune/pruning_method_transposable_block_l1.py
itayhubara/AcceleratedSparseNeuralTraining
425897dec9c7ef185841d7000c4418ebb1c95896
[ "Apache-2.0" ]
null
null
null
prune/pruning_method_transposable_block_l1.py
itayhubara/AcceleratedSparseNeuralTraining
425897dec9c7ef185841d7000c4418ebb1c95896
[ "Apache-2.0" ]
null
null
null
from pulp import * from tqdm import tqdm from multiprocessing import Pool from common.timer import Timer from prune.pruning_method_utils import * import numpy as np import torch.nn.utils.prune as prune class PruningMethodTransposableBlockL1(prune.BasePruningMethod): PRUNING_TYPE = 'unstructured' # pruning type "structured" refers to channels RUN_SPEED_TEST = False def __init__(self, block_size, topk, optimize_transposed=False, n_workers=None, with_tqdm=True): super(PruningMethodTransposableBlockL1, self).__init__() assert topk <= block_size assert n_workers is None or n_workers > 0 self.bs = block_size self.topk = topk self.optimize_transposed = optimize_transposed self.n_workers = n_workers self.with_tqdm = with_tqdm # used for multiprocess in order to avoid serialize/deserialize tensors etc. self.mp_tensor, self.mp_mask = None, None def ip_transpose(self, data): prob = LpProblem('TransposableMask', LpMaximize) combinations = [] magnitude_loss = {} indicators = {} bs = self.bs for r in range(bs): for c in range(bs): combinations.append('ind' + '_{}r_{}c'.format(r, c)) magnitude_loss['ind' + '_{}r_{}c'.format(r, c)] = abs(data[r, c]) indicators['ind' + '_{}r_{}c'.format(r, c)] = \ LpVariable('ind' + '_{}r_{}c'.format(r, c), 0, 1, LpInteger) prob += lpSum([indicators[ind] * magnitude_loss[ind] for ind in magnitude_loss.keys()]) for r in range(bs): prob += lpSum([indicators[key] for key in combinations if '_{}r'.format(r) in key]) == self.topk for c in range(bs): prob += lpSum([indicators[key] for key in combinations if '_{}c'.format(c) in key]) == self.topk solver = LpSolverDefault solver.msg = False prob.solve(solver) assert prob.status != -1, 'Infeasible' mask = np.zeros([self.bs, self.bs]) for v in prob.variables(): if 'ind' in v.name: rc = re.findall(r'\d+', v.name) mask[int(rc[0]), int(rc[1])] = v.varValue return mask def get_mask_iter(self, c): co, inners = self.mp_tensor.shape block_numel = self.bs ** 2 n_blocks = inners // block_numel for j in range(n_blocks): offset = j * block_numel w_block = self.mp_tensor[c, offset:offset + block_numel].reshape(self.bs, self.bs) w_block = w_block + w_block.T if self.optimize_transposed else w_block mask_block = self.ip_transpose(w_block).reshape(-1) self.mp_mask[c, offset:offset + block_numel] = torch.from_numpy(mask_block) def get_mask(self, t): self.mp_tensor = t self.mp_mask = torch.zeros_like(t) co, inners = t.shape n_blocks = inners // (self.bs ** 2) if self.RUN_SPEED_TEST: self.RUN_SPEED_TEST = False with Timer() as t: self.get_mask_iter(0) elapsed = t.total().total_seconds() print('Single core speed test: blocks={} secs={} block-time={}'.format(n_blocks, elapsed, elapsed/n_blocks)) p = Pool(self.n_workers) n_iterations = co bar = tqdm(total=n_iterations, ncols=80) if self.with_tqdm else None bar.set_postfix_str('n_processes={}, blocks/iter={}'.format(p._processes, n_blocks)) if self.with_tqdm else None block_indexes = range(co) for _ in p.imap_unordered(self.get_mask_iter, block_indexes): bar.update(1) if self.with_tqdm else None bar.close() if self.with_tqdm else None p.close() return self.mp_mask def compute_mask(self, t, default_mask): # permute and pad validate_tensor_shape_2d_4d(t) t_masked = t.clone().detach().mul_(default_mask) t_permuted = permute_to_nhwc(t_masked) pad_to = self.bs ** 2 t_padded = pad_inner_dims(t_permuted, pad_to) t = t_padded.data.abs().to(t) # compute mask mask = self.get_mask(t) # restore to original shape block_mask = clip_padding(mask, t_permuted.shape).reshape(t_permuted.shape) block_mask = permute_to_nchw(block_mask) return block_mask
39.026786
120
0.616106
23a3bae65bfa7b4b4888b40642f0506cc7173b75
1,097
py
Python
kubernetes/test/test_v2beta1_cross_version_object_reference.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
2
2020-06-21T08:03:18.000Z
2020-06-21T09:53:29.000Z
kubernetes/test/test_v2beta1_cross_version_object_reference.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v2beta1_cross_version_object_reference.py
L3T/python
b6e4ae81a2afb49f668a142eb7d1c6e2571ef478
[ "Apache-2.0" ]
1
2020-12-10T07:28:08.000Z
2020-12-10T07:28:08.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: release-1.16 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.models.v2beta1_cross_version_object_reference import V2beta1CrossVersionObjectReference # noqa: E501 from kubernetes.client.rest import ApiException class TestV2beta1CrossVersionObjectReference(unittest.TestCase): """V2beta1CrossVersionObjectReference unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV2beta1CrossVersionObjectReference(self): """Test V2beta1CrossVersionObjectReference""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes.client.models.v2beta1_cross_version_object_reference.V2beta1CrossVersionObjectReference() # noqa: E501 pass if __name__ == '__main__': unittest.main()
27.425
132
0.758432
0a6a8ad142eda6a4f975fd848ab05b249e2dac30
168
py
Python
mara_superset/cli.py
leo-schick/mara-superset
359adcab3c2ac32283bd465901ceeb768d436557
[ "MIT" ]
3
2021-12-14T18:01:57.000Z
2022-01-01T10:17:42.000Z
mara_superset/cli.py
leo-schick/mara-superset
359adcab3c2ac32283bd465901ceeb768d436557
[ "MIT" ]
null
null
null
mara_superset/cli.py
leo-schick/mara-superset
359adcab3c2ac32283bd465901ceeb768d436557
[ "MIT" ]
null
null
null
import click @click.command() def update_metadata(): """Sync schema definitions from Mara to Superset""" from . import metadata metadata.update_metadata()
21
55
0.720238
2d2cbeb79f650476ca7348776e39f0b55c32e0e9
1,136
py
Python
setup.py
cycomanic/pelican-perpagepublications
75657a708996fee8ad47759a0d92a3498a05f50a
[ "Unlicense" ]
null
null
null
setup.py
cycomanic/pelican-perpagepublications
75657a708996fee8ad47759a0d92a3498a05f50a
[ "Unlicense" ]
null
null
null
setup.py
cycomanic/pelican-perpagepublications
75657a708996fee8ad47759a0d92a3498a05f50a
[ "Unlicense" ]
null
null
null
import pelican_bibtex from distutils.core import setup CLASSIFIERS = """\ Development Status :: 5 - Production/Stable Intended Audience :: Science/Research Intended Audience :: Developers License :: Public Domain Programming Language :: Python Programming Language :: Python :: 3 Topic :: Software Development Operating System :: POSIX Operating System :: Unix """ LONG_DESCRIPTION = """\ Requirements ============ pelican\_perpagepublications requires pybtex. Create scientific publications list for different publication type BibTeX databases given in the page or post metadata. This plugin is an extension of the Pelican BibTex plugni by Vlad Vene. """ setup( name='pelican_perpagepublications', description='Create per page/post publication lists with BibTeX in Pelican', long_description=LONG_DESCRIPTION, version=pelican_bibtex.__version__, author='Jochen Schroeder', author_email='jochen.schroeder@jochenschroeder.com', url='https://pypi.python.org/pypi/pelican_perpagepublications', py_modules=['pelican_perpagepublications'], classifiers=[_f for _f in CLASSIFIERS.split('\n') if _f] )
30.702703
190
0.765845
92a53e19f501124e4a55f27ca617dbf03d3931d0
4,429
py
Python
app/recipe/tests/test_ingredients_api.py
AndreWicaksono/recipe-app-api
a134306ece5b74ff83b3aea4d8a64225caeaa07c
[ "MIT" ]
null
null
null
app/recipe/tests/test_ingredients_api.py
AndreWicaksono/recipe-app-api
a134306ece5b74ff83b3aea4d8a64225caeaa07c
[ "MIT" ]
null
null
null
app/recipe/tests/test_ingredients_api.py
AndreWicaksono/recipe-app-api
a134306ece5b74ff83b3aea4d8a64225caeaa07c
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Ingredient, Recipe from recipe.serializers import IngredientSerializer INGREDIENTS_URL = reverse('recipe:ingredient-list') class PublicIngredientsApiTests(TestCase): """Test the publicly available ingredients API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test that login is required to access the endpoint""" res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateIngredientsApiTests(TestCase): """Test the private ingredients API""" def setUp(self): self.client = APIClient() self.user = get_user_model().objects.create_user( 'administrator@andrewicaksono.com', 'testpass' ) self.client.force_authenticate(self.user) def test_retrieve_ingredient_list(self): """Test retrieving a list of ingredients""" Ingredient.objects.create(user=self.user, name='Kale') Ingredient.objects.create(user=self.user, name='Salt') res = self.client.get(INGREDIENTS_URL) ingredients = Ingredient.objects.all().order_by('-name') serializer = IngredientSerializer(ingredients, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_ingredients_limited_to_user(self): """Test that ingredients for the authenticated user are returned""" user2 = get_user_model().objects.create_user( 'moderator@andrewicaksono.com', 'testpass' ) Ingredient.objects.create(user=user2, name='Vinegar') ingredient = Ingredient.objects.create(user=self.user, name='Tumeric') res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], ingredient.name) def test_create_ingredients_successful(self): """Test create a new ingredient""" payload = {'name': 'Cabbage'} self.client.post(INGREDIENTS_URL, payload) exists = Ingredient.objects.filter( user=self.user, name=payload['name'], ).exists() self.assertTrue(exists) def test_create_ingredients_invalid(self): """Test creating invalid ingredient fails""" payload = {'name': ''} res = self.client.post(INGREDIENTS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_ingredients_assigned_to_recipes(self): """Test filtering ingredients by those assigned to recipes""" ingredient1 = Ingredient.objects.create( user=self.user, name='Apple' ) ingredient2 = Ingredient.objects.create( user=self.user, name='Turkey' ) recipe = Recipe.objects.create( title='Apple Crumble', time_minutes=5, price=10, user=self.user ) recipe.ingredients.add(ingredient1) res = self.client.get(INGREDIENTS_URL, {'assigned_only': 1}) serializer1 = IngredientSerializer(ingredient1) serializer2 = IngredientSerializer(ingredient2) self.assertIn(serializer1.data, res.data) self.assertNotIn(serializer2.data, res.data) def test_retrieve_ingredients_assigned_unique(self): """Test filtering ingredients by assigned returns unique items""" ingredient = Ingredient.objects.create(user=self.user, name='Eggs') Ingredient.objects.create(user=self.user, name='Cheese') recipe1 = Recipe.objects.create( title='Eggs Benedict', time_minutes=30, price=12.00, user=self.user ) recipe1.ingredients.add(ingredient) recipe2 = Recipe.objects.create( title='Coriander Eggs on Toast', time_minutes=20, price=5.00, user=self.user ) recipe2.ingredients.add(ingredient) res = self.client.get(INGREDIENTS_URL, {'assigned_only': 1}) self.assertEqual(len(res.data), 1)
33.55303
78
0.658162
86ff11f0c9cf93e9e206f9d7ee5a6ffb6643a0b3
6,376
py
Python
faang-codingexercises/codechallenge_017.py
veilair/code-development
953eef62204809f3ea0715a6ace5c5b7c1ff5115
[ "MIT" ]
1
2022-02-20T00:48:20.000Z
2022-02-20T00:48:20.000Z
faang-codingexercises/codechallenge_017.py
exajobs/coding-interview-collection
3daa3863b4a72d8959530edb9ecc9161a93ee99e
[ "MIT" ]
null
null
null
faang-codingexercises/codechallenge_017.py
exajobs/coding-interview-collection
3daa3863b4a72d8959530edb9ecc9161a93ee99e
[ "MIT" ]
null
null
null
''' Date: 12/29/2018 Problem description: =================== This problem was asked by Jane Street. Suppose you are given a table of currency exchange rates, represented as a 2D array. Determine whether there is a possible arbitrage: that is, whether there is some sequence of trades you can make, starting with some amount A of any currency, so that you can end up with some amount greater than A of that currency. There are no transaction costs and you can trade fractional quantities. Some research: ============= Arbitrage involves three immediate transactions of buy low sell high. For example, we use 2 US dollars to buy 1 British pound sterling, then use that pound to buy 1.50 euros, and then use the l.50 euros to buy $2.50. By trading this way we have gained $0.50 In actuality, arbitrage takes advantage of market inefficiency(delay in infomation sharing) to trade for fractional gain Below is the actual currency exchange rate table on 12-31-2018 US Dollar 1.00 USD inv. 1.00 USD --------- -------- ------------- Euro 0.870903 1.148233 British Pound 0.783992 1.275523 Indian Rupee 69.605725 0.014367 Australian Dollar 1.420549 0.703953 Canadian Dollar 1.363172 0.733583 Singapore Dollar 1.362844 0.733760 Swiss Franc 0.983397 1.016883 Malaysian Ringgit 4.132583 0.241979 Japanese Yen 109.558545 0.009128 Chinese Renminbi 6.874934 0.145456 Given: USCurrencyEquivalent = { "Euro": 0.870903, "British Pound": 0.783992, "Indian Rupee": 69.605725, "Australian Dollar": 1.420549, "Canadian Dollar": 1.363172, "Singapore Dollar": 1.362844, "Swiss Franc": 0.983397, "Malaysian Ringgit": 4.132583, "Japanese Yen": 109.558545, "Chinese Renminbi": 6.874934 } Then figure out the inversion rate, # e.g. 1 Euro = 1.148233 US USInversionRate = { "Euro": 1.148233, "British Pound": 1.275523, "Indian Rupee": 0.014367, "Australian Dollar": 0.703953, "Canadian Dollar": 0.733583, "Singapore Dollar": 0.733760, "Swiss Franc": 1.016883, "Malaysian Ringgit": 0.241979, "Japanese Yen": 0.009128, "Chinese Renminbi": 0.145456 } The best marginal gain is 1 * (lowest inversion rate / highest inversion rate) e.g. 1US * (0.009128Yen/1.275523Pound) = 0.007156280208196952US If we invest 1000US buying Pound then Yen then back to US dollars, we gain 1000 * 0.007156280208196952 = 7.156$ Algorithm: ========= Input: A dictionary of USCurrencyEquivalent, and an investment number in US dollars Ouput: Gain in decimal value of US dollars Pseudo code: 1. Check for valid input 2. Convert dictionary into inversion hash table 3. Find the highest ratio in the hash table. i.e. lowest/highest 4. Output the InvestAmount * (ratio) ''' import unittest def invert(func): def inner(dict_of_currencies): for k in dict_of_currencies: #print (k, 1/dict_of_currencies[k]) dict_of_currencies[k] = 1 / dict_of_currencies[k] return func(dict_of_currencies) return inner @invert def inversionRatio(USCurrencyEquivalent={}): return USCurrencyEquivalent def gainArbitrage(USCurrencyEquivalent, AmountUSD): inversionHash = inversionRatio(USCurrencyEquivalent) # step1 maxrate = max([inversionHash[k] for k in inversionHash]) XAmount = AmountUSD/maxrate XCurrencyName = [k for k,v in inversionHash.items() if v == maxrate] print("Step1: Trade {} USD for {} {}".format(AmountUSD, XAmount, str(XCurrencyName[0]))) # step2 minrate = min([inversionHash[k] for k in inversionHash]) YAmount = XAmount/minrate YCurrencyName = [k for k,v in inversionHash.items() if v == minrate] print("Step2: Trade {} {} for {} {}".format(XAmount, str(XCurrencyName[0]), YAmount, str(YCurrencyName[0]))) # step3 ZAmount = AmountUSD + AmountUSD *(minrate/maxrate) print("Step3: Trade {} {} back to {} USD".format(YAmount, str(YCurrencyName[0]), ZAmount)) return AmountUSD * (minrate/maxrate) class TestArbitrage(unittest.TestCase): def test_code(self): InvestAmount = 1000000 USCurrencyEquivalent = { "Euro": 0.870903, "British Pound": 0.783992, "Indian Rupee": 69.605725, "Australian Dollar": 1.420549, "Canadian Dollar": 1.363172, "Singapore Dollar": 1.362844, "Swiss Franc": 0.983397, "Malaysian Ringgit": 4.132583, "Japanese Yen": 109.558545, "Chinese Renminbi": 6.874934 } self.assertEqual(gainArbitrage(USCurrencyEquivalent, InvestAmount) == 7155.91832658968, True) if __name__ == '__main__': Amount = 1000000 # US dollars USCurrencyEquivalent = { "Euro": 0.870903, "British Pound": 0.783992, "Indian Rupee": 69.605725, "Australian Dollar": 1.420549, "Canadian Dollar": 1.363172, "Singapore Dollar": 1.362844, "Swiss Franc": 0.983397, "Malaysian Ringgit": 4.132583, "Japanese Yen": 109.558545, "Chinese Renminbi": 6.874934 } print("Gain from arbitrage trades: {} USD".format(gainArbitrage(USCurrencyEquivalent, Amount))) unittest.main() ''' Run-time output: =============== markn@u17101vaio:~/devel/python-prj/DailyCodingChallenge$ python codechallenge_017.py Step1: Trade 1000000 USD for 783992.0000000001 British Pound Step2: Trade 783992.0000000001 British Pound for 85893022.81164001Japanese Yen Step3: Trade 85893022.81164001 Japanese Yen back to 1007155.9183265896 USD Gain from arbitrage trades: 7155.91832658968 USD markn@u17101vaio:~/devel/python-prj/DailyCodingChallenge$ pytest codechallenge_017.py ===================================== test session starts ===================================== platform linux -- Python 3.6.4, pytest-4.0.2, py-1.7.0, pluggy-0.8.0 rootdir: /home/markn/devel/python-prj/DailyCodingChallenge, inifile: collected 1 item codechallenge_017.py . [100%] ================================== 1 passed in 0.65 seconds =================================== '''
36.227273
112
0.638331
6776a9e1a90e18fdc5722cb3e8e4959c79771638
2,108
py
Python
core/models.py
Armestrong/resale_api
75a798f2aa95b7d316e145f3811fa05537c606df
[ "MIT" ]
null
null
null
core/models.py
Armestrong/resale_api
75a798f2aa95b7d316e145f3811fa05537c606df
[ "MIT" ]
null
null
null
core/models.py
Armestrong/resale_api
75a798f2aa95b7d316e145f3811fa05537c606df
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import BaseUserManager, \ AbstractBaseUser, PermissionsMixin from django.conf import settings class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and saves a new user""" if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates a nee super user """ user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """ Custom user model that using email instead of username """ email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email' class RealEstate(models.Model): name = models.CharField(max_length=255) address = models.CharField(max_length=255) user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) def __str__(self): return self.name class Property(models.Model): """Property object""" name = models.CharField(max_length=255) address = models.CharField(max_length=255) description = models.CharField(max_length=255) features = models.CharField(max_length=255, blank=True) status = models.BooleanField(default=False) type = models.CharField(max_length=255) finality = models.CharField(max_length=255, blank=True) real_estates = models.ManyToManyField('RealEstate') user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) def __str__(self): return self.name
31.462687
76
0.686433
e29cc2c51658b00bdbc2b22c8cd108383155a434
3,113
py
Python
Fujitsu/benchmarks/resnet/implementations/mxnet/3rdparty/tvm/tests/python/unittest/test_autotvm_measure.py
mengkai94/training_results_v0.6
43dc3e250f8da47b5f8833197d74cb8cf1004fc9
[ "Apache-2.0" ]
64
2021-05-02T14:42:34.000Z
2021-05-06T01:35:03.000Z
tests/python/unittest/test_autotvm_measure.py
clhne/tvm
d59320c764bd09474775e1b292f3c05c27743d24
[ "Apache-2.0" ]
23
2019-07-29T05:21:52.000Z
2020-08-31T18:51:42.000Z
tests/python/unittest/test_autotvm_measure.py
clhne/tvm
d59320c764bd09474775e1b292f3c05c27743d24
[ "Apache-2.0" ]
51
2019-07-12T05:10:25.000Z
2021-07-28T16:19:06.000Z
"""Test builder and runner""" import logging import time import numpy as np import tvm from tvm import autotvm from test_autotvm_common import get_sample_task, bad_matmul from tvm.autotvm.measure.measure import Runner, MeasureResult, MeasureErrorNo def test_task_tuner_without_measurement(): """test task and tuner without measurement""" task, target = get_sample_task() class DummyRunner(Runner): def __init__(self): super(DummyRunner, self).__init__(1, 1) def run(self, measure_inputs, build_results): return [MeasureResult((np.random.random(),), 0, 0.2, time.time()) for _ in range(len(measure_inputs))] def get_build_kwargs(self): return {} measure_option = autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=DummyRunner() ) logging.info("%s", task.config_space) for tuner_class in [autotvm.tuner.RandomTuner, autotvm.tuner.GridSearchTuner, autotvm.tuner.GATuner, autotvm.tuner.XGBTuner]: tuner = tuner_class(task) tuner.tune(n_trial=10, measure_option=measure_option) assert tuner.best_flops > 1 def test_check_correctness(): task, target = get_sample_task() measure_option = autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=autotvm.LocalRunner(check_correctness=True) ) def _callback_correct(tuner, measure_inputs, measure_results): for inp, res in zip(measure_inputs, measure_results): assert res.error_no == 0 tuner = autotvm.tuner.RandomTuner(task) tuner.tune(n_trial=2, measure_option=measure_option, callbacks=[_callback_correct]) # a bad template n = 128 target = tvm.target.create("llvm -device=bad_device") task = autotvm.task.create(bad_matmul, args=(n, n, n, 'float32'), target=target) def _callback_wrong(tuner, measure_inputs, measure_results): for inp, res in zip(measure_inputs, measure_results): assert res.error_no == MeasureErrorNo.WRONG_ANSWER tuner = autotvm.tuner.RandomTuner(task) tuner.tune(n_trial=2, measure_option=measure_option, callbacks=[_callback_wrong]) def test_min_repeat_ms(): task, target = get_sample_task() measure_option = autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=autotvm.LocalRunner(number=1, min_repeat_ms=100) ) def _callback(tuner, measure_inputs, measure_results): for inp, res in zip(measure_inputs, measure_results): if res.error_no != 0: continue assert 1000 * np.mean(res.costs) * \ measure_option['runner'].cur_number >= 100 tuner = autotvm.tuner.RandomTuner(task) tuner.tune(n_trial=5, measure_option=measure_option, callbacks=[_callback]) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) test_task_tuner_without_measurement() test_check_correctness() test_min_repeat_ms()
31.765306
84
0.668166
f646ddf258814d6277ec173cf1f790481709dd22
30,980
py
Python
pymc3_ext/variational/inference.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
pymc3_ext/variational/inference.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
pymc3_ext/variational/inference.py
wlad111/pymc3
43432834be5bbca72caa32d40a848515eea554a8
[ "Apache-2.0" ]
null
null
null
import logging import warnings import collections import numpy as np from fastprogress.fastprogress import progress_bar import pymc3_ext as pm from pymc3_ext.variational import test_functions from pymc3_ext.variational.approximations import ( MeanField, FullRank, Empirical, NormalizingFlow, ) from pymc3_ext.variational.operators import KL, KSD from . import opvi logger = logging.getLogger(__name__) __all__ = [ "ADVI", "FullRankADVI", "SVGD", "ASVGD", "NFVI", "Inference", "ImplicitGradient", "KLqp", "fit", ] State = collections.namedtuple("State", "i,step,callbacks,score") class Inference: r"""**Base class for Variational Inference** Communicates Operator, Approximation and Test Function to build Objective Function Parameters ---------- op : Operator class approx : Approximation class or instance tf : TestFunction instance model : Model PyMC3 Model kwargs : kwargs passed to :class:`Operator` """ def __init__(self, op, approx, tf, **kwargs): self.hist = np.asarray(()) self.objective = op(approx, **kwargs)(tf) self.state = None approx = property(lambda self: self.objective.approx) def _maybe_score(self, score): returns_loss = self.objective.op.returns_loss if score is None: score = returns_loss elif score and not returns_loss: warnings.warn( "method `fit` got `score == True` but %s " "does not return loss. Ignoring `score` argument" % self.objective.op ) score = False else: pass return score def run_profiling(self, n=1000, score=None, **kwargs): score = self._maybe_score(score) fn_kwargs = kwargs.pop("fn_kwargs", dict()) fn_kwargs["profile"] = True step_func = self.objective.step_function( score=score, fn_kwargs=fn_kwargs, **kwargs ) progress = progress_bar(range(n)) try: for _ in progress: step_func() except KeyboardInterrupt: pass return step_func.profile def fit(self, n=10000, score=None, callbacks=None, progressbar=True, **kwargs): """Perform Operator Variational Inference Parameters ---------- n : int number of iterations score : bool evaluate loss on each iteration or not callbacks : list[function : (Approximation, losses, i) -> None] calls provided functions after each iteration step progressbar : bool whether to show progressbar or not Other Parameters ---------------- obj_n_mc : `int` Number of monte carlo samples used for approximation of objective gradients tf_n_mc : `int` Number of monte carlo samples used for approximation of test function gradients obj_optimizer : function (grads, params) -> updates Optimizer that is used for objective params test_optimizer : function (grads, params) -> updates Optimizer that is used for test function params more_obj_params : `list` Add custom params for objective optimizer more_tf_params : `list` Add custom params for test function optimizer more_updates : `dict` Add custom updates to resulting updates total_grad_norm_constraint : `float` Bounds gradient norm, prevents exploding gradient problem fn_kwargs : `dict` Add kwargs to theano.function (e.g. `{'profile': True}`) more_replacements : `dict` Apply custom replacements before calculating gradients Returns ------- :class:`Approximation` """ if callbacks is None: callbacks = [] score = self._maybe_score(score) step_func = self.objective.step_function(score=score, **kwargs) if progressbar: progress = progress_bar(range(n), display=progressbar) else: progress = range(n) if score: state = self._iterate_with_loss(0, n, step_func, progress, callbacks) else: state = self._iterate_without_loss(0, n, step_func, progress, callbacks) # hack to allow pm.fit() access to loss hist self.approx.hist = self.hist self.state = state return self.approx def _iterate_without_loss(self, s, _, step_func, progress, callbacks): i = 0 try: for i in progress: step_func() current_param = self.approx.params[0].get_value() if np.isnan(current_param).any(): name_slc = [] tmp_hold = list(range(current_param.size)) vmap = self.approx.groups[0].bij.ordering.vmap for vmap_ in vmap: slclen = len(tmp_hold[vmap_.slc]) for j in range(slclen): name_slc.append((vmap_.var, j)) index = np.where(np.isnan(current_param))[0] errmsg = ["NaN occurred in optimization. "] suggest_solution = ( "Try tracking this parameter: " "http://docs.pymc.io/notebooks/variational_api_quickstart.html#Tracking-parameters" ) try: for ii in index: errmsg.append( "The current approximation of RV `{}`.ravel()[{}]" " is NaN.".format(*name_slc[ii]) ) errmsg.append(suggest_solution) except IndexError: pass raise FloatingPointError("\n".join(errmsg)) for callback in callbacks: callback(self.approx, None, i + s + 1) except (KeyboardInterrupt, StopIteration) as e: if isinstance(e, StopIteration): logger.info(str(e)) return State(i + s, step=step_func, callbacks=callbacks, score=False) def _iterate_with_loss(self, s, n, step_func, progress, callbacks): def _infmean(input_array): """Return the mean of the finite values of the array""" input_array = input_array[np.isfinite(input_array)].astype("float64") if len(input_array) == 0: return np.nan else: return np.mean(input_array) scores = np.empty(n) scores[:] = np.nan i = 0 try: for i in progress: e = step_func() if np.isnan(e): # pragma: no cover scores = scores[:i] self.hist = np.concatenate([self.hist, scores]) current_param = self.approx.params[0].get_value() name_slc = [] tmp_hold = list(range(current_param.size)) vmap = self.approx.groups[0].bij.ordering.vmap for vmap_ in vmap: slclen = len(tmp_hold[vmap_.slc]) for j in range(slclen): name_slc.append((vmap_.var, j)) index = np.where(np.isnan(current_param))[0] errmsg = ["NaN occurred in optimization. "] suggest_solution = ( "Try tracking this parameter: " "http://docs.pymc.io/notebooks/variational_api_quickstart.html#Tracking-parameters" ) try: for ii in index: errmsg.append( "The current approximation of RV `{}`.ravel()[{}]" " is NaN.".format(*name_slc[ii]) ) errmsg.append(suggest_solution) except IndexError: pass raise FloatingPointError("\n".join(errmsg)) scores[i] = e if i % 10 == 0: avg_loss = _infmean(scores[max(0, i - 1000): i + 1]) if hasattr(progress, 'comment'): progress.comment = "Average Loss = {:,.5g}".format(avg_loss) avg_loss = scores[max(0, i - 1000): i + 1].mean() if hasattr(progress, 'comment'): progress.comment = "Average Loss = {:,.5g}".format(avg_loss) for callback in callbacks: callback(self.approx, scores[: i + 1], i + s + 1) except (KeyboardInterrupt, StopIteration) as e: # pragma: no cover # do not print log on the same line scores = scores[:i] if isinstance(e, StopIteration): logger.info(str(e)) if n < 10: logger.info( "Interrupted at {:,d} [{:.0f}%]: Loss = {:,.5g}".format( i, 100 * i // n, scores[i] ) ) else: avg_loss = _infmean(scores[min(0, i - 1000): i + 1]) logger.info( "Interrupted at {:,d} [{:.0f}%]: Average Loss = {:,.5g}".format( i, 100 * i // n, avg_loss ) ) else: if n < 10: logger.info("Finished [100%]: Loss = {:,.5g}".format(scores[-1])) else: avg_loss = _infmean(scores[max(0, i - 1000): i + 1]) logger.info("Finished [100%]: Average Loss = {:,.5g}".format(avg_loss)) self.hist = np.concatenate([self.hist, scores]) return State(i + s, step=step_func, callbacks=callbacks, score=True) def refine(self, n, progressbar=True): """Refine the solution using the last compiled step function """ if self.state is None: raise TypeError("Need to call `.fit` first") i, step, callbacks, score = self.state if progressbar: progress = progress_bar(n, display=progressbar) else: progress = range(n) # This is a guess at what progress_bar(n) does. if score: state = self._iterate_with_loss(i, n, step, progress, callbacks) else: state = self._iterate_without_loss(i, n, step, progress, callbacks) self.state = state class KLqp(Inference): """**Kullback Leibler Divergence Inference** General approach to fit Approximations that define :math:`logq` by maximizing ELBO (Evidence Lower Bound). In some cases rescaling the regularization term KL may be beneficial .. math:: ELBO_\beta = \log p(D|\theta) - \beta KL(q||p) Parameters ---------- approx : :class:`Approximation` Approximation to fit, it is required to have `logQ` beta : float Scales the regularization term in ELBO (see Christopher P. Burgess et al., 2017) References ---------- - Christopher P. Burgess et al. (NIPS, 2017) Understanding disentangling in :math:`\beta`-VAE arXiv preprint 1804.03599 """ def __init__(self, approx, beta=1.0): super().__init__(KL, approx, None, beta=beta) class ADVI(KLqp): r"""**Automatic Differentiation Variational Inference (ADVI)** This class implements the meanfield ADVI, where the variational posterior distribution is assumed to be spherical Gaussian without correlation of parameters and fit to the true posterior distribution. The means and standard deviations of the variational posterior are referred to as variational parameters. For explanation, we classify random variables in probabilistic models into three types. Observed random variables :math:`{\cal Y}=\{\mathbf{y}_{i}\}_{i=1}^{N}` are :math:`N` observations. Each :math:`\mathbf{y}_{i}` can be a set of observed random variables, i.e., :math:`\mathbf{y}_{i}=\{\mathbf{y}_{i}^{k}\}_{k=1}^{V_{o}}`, where :math:`V_{k}` is the number of the types of observed random variables in the model. The next ones are global random variables :math:`\Theta=\{\theta^{k}\}_{k=1}^{V_{g}}`, which are used to calculate the probabilities for all observed samples. The last ones are local random variables :math:`{\cal Z}=\{\mathbf{z}_{i}\}_{i=1}^{N}`, where :math:`\mathbf{z}_{i}=\{\mathbf{z}_{i}^{k}\}_{k=1}^{V_{l}}`. These RVs are used only in AEVB. The goal of ADVI is to approximate the posterior distribution :math:`p(\Theta,{\cal Z}|{\cal Y})` by variational posterior :math:`q(\Theta)\prod_{i=1}^{N}q(\mathbf{z}_{i})`. All of these terms are normal distributions (mean-field approximation). :math:`q(\Theta)` is parametrized with its means and standard deviations. These parameters are denoted as :math:`\gamma`. While :math:`\gamma` is a constant, the parameters of :math:`q(\mathbf{z}_{i})` are dependent on each observation. Therefore these parameters are denoted as :math:`\xi(\mathbf{y}_{i}; \nu)`, where :math:`\nu` is the parameters of :math:`\xi(\cdot)`. For example, :math:`\xi(\cdot)` can be a multilayer perceptron or convolutional neural network. In addition to :math:`\xi(\cdot)`, we can also include deterministic mappings for the likelihood of observations. We denote the parameters of the deterministic mappings as :math:`\eta`. An example of such mappings is the deconvolutional neural network used in the convolutional VAE example in the PyMC3 notebook directory. This function maximizes the evidence lower bound (ELBO) :math:`{\cal L}(\gamma, \nu, \eta)` defined as follows: .. math:: {\cal L}(\gamma,\nu,\eta) & = \mathbf{c}_{o}\mathbb{E}_{q(\Theta)}\left[ \sum_{i=1}^{N}\mathbb{E}_{q(\mathbf{z}_{i})}\left[ \log p(\mathbf{y}_{i}|\mathbf{z}_{i},\Theta,\eta) \right]\right] \\ & - \mathbf{c}_{g}KL\left[q(\Theta)||p(\Theta)\right] - \mathbf{c}_{l}\sum_{i=1}^{N} KL\left[q(\mathbf{z}_{i})||p(\mathbf{z}_{i})\right], where :math:`KL[q(v)||p(v)]` is the Kullback-Leibler divergence .. math:: KL[q(v)||p(v)] = \int q(v)\log\frac{q(v)}{p(v)}dv, :math:`\mathbf{c}_{o/g/l}` are vectors for weighting each term of ELBO. More precisely, we can write each of the terms in ELBO as follows: .. math:: \mathbf{c}_{o}\log p(\mathbf{y}_{i}|\mathbf{z}_{i},\Theta,\eta) & = & \sum_{k=1}^{V_{o}}c_{o}^{k} \log p(\mathbf{y}_{i}^{k}| {\rm pa}(\mathbf{y}_{i}^{k},\Theta,\eta)) \\ \mathbf{c}_{g}KL\left[q(\Theta)||p(\Theta)\right] & = & \sum_{k=1}^{V_{g}}c_{g}^{k}KL\left[ q(\theta^{k})||p(\theta^{k}|{\rm pa(\theta^{k})})\right] \\ \mathbf{c}_{l}KL\left[q(\mathbf{z}_{i}||p(\mathbf{z}_{i})\right] & = & \sum_{k=1}^{V_{l}}c_{l}^{k}KL\left[ q(\mathbf{z}_{i}^{k})|| p(\mathbf{z}_{i}^{k}|{\rm pa}(\mathbf{z}_{i}^{k}))\right], where :math:`{\rm pa}(v)` denotes the set of parent variables of :math:`v` in the directed acyclic graph of the model. When using mini-batches, :math:`c_{o}^{k}` and :math:`c_{l}^{k}` should be set to :math:`N/M`, where :math:`M` is the number of observations in each mini-batch. This is done with supplying `total_size` parameter to observed nodes (e.g. :code:`Normal('x', 0, 1, observed=data, total_size=10000)`). In this case it is possible to automatically determine appropriate scaling for :math:`logp` of observed nodes. Interesting to note that it is possible to have two independent observed variables with different `total_size` and iterate them independently during inference. For working with ADVI, we need to give - The probabilistic model `model` with three types of RVs (`observed_RVs`, `global_RVs` and `local_RVs`). - (optional) Minibatches The tensors to which mini-bathced samples are supplied are handled separately by using callbacks in :func:`Inference.fit` method that change storage of shared theano variable or by :func:`pymc3_ext.generator` that automatically iterates over minibatches and defined beforehand. - (optional) Parameters of deterministic mappings They have to be passed along with other params to :func:`Inference.fit` method as `more_obj_params` argument. For more information concerning training stage please reference :func:`pymc3_ext.variational.opvi.ObjectiveFunction.step_function` Parameters ---------- local_rv : dict[var->tuple] mapping {model_variable -> approx params} Local Vars are used for Autoencoding Variational Bayes See (AEVB; Kingma and Welling, 2014) for details model : :class:`pymc3.Model` PyMC3 model for inference random_seed : None or int leave None to use package global RandomStream or other valid value to create instance specific one start : `Point` starting point for inference References ---------- - Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2016). Automatic Differentiation Variational Inference. arXiv preprint arXiv:1603.00788. - Geoffrey Roeder, Yuhuai Wu, David Duvenaud, 2016 Sticking the Landing: A Simple Reduced-Variance Gradient for ADVI approximateinference.org/accepted/RoederEtAl2016.pdf - Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. stat, 1050, 1. """ def __init__(self, *args, **kwargs): super().__init__(MeanField(*args, **kwargs)) class FullRankADVI(KLqp): r"""**Full Rank Automatic Differentiation Variational Inference (ADVI)** Parameters ---------- local_rv : dict[var->tuple] mapping {model_variable -> approx params} Local Vars are used for Autoencoding Variational Bayes See (AEVB; Kingma and Welling, 2014) for details model : :class:`pymc3.Model` PyMC3 model for inference random_seed : None or int leave None to use package global RandomStream or other valid value to create instance specific one start : `Point` starting point for inference References ---------- - Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and Blei, D. M. (2016). Automatic Differentiation Variational Inference. arXiv preprint arXiv:1603.00788. - Geoffrey Roeder, Yuhuai Wu, David Duvenaud, 2016 Sticking the Landing: A Simple Reduced-Variance Gradient for ADVI approximateinference.org/accepted/RoederEtAl2016.pdf - Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. stat, 1050, 1. """ def __init__(self, *args, **kwargs): super().__init__(FullRank(*args, **kwargs)) class ImplicitGradient(Inference): """**Implicit Gradient for Variational Inference** **not suggested to use** An approach to fit arbitrary approximation by computing kernel based gradient By default RBF kernel is used for gradient estimation. Default estimator is Kernelized Stein Discrepancy with temperature equal to 1. This temperature works only for large number of samples. Larger temperature is needed for small number of samples but there is no theoretical approach to choose the best one in such case. """ def __init__(self, approx, estimator=KSD, kernel=test_functions.rbf, **kwargs): super().__init__(op=estimator, approx=approx, tf=kernel, **kwargs) class SVGD(ImplicitGradient): r"""**Stein Variational Gradient Descent** This inference is based on Kernelized Stein Discrepancy it's main idea is to move initial noisy particles so that they fit target distribution best. Algorithm is outlined below *Input:* A target distribution with density function :math:`p(x)` and a set of initial particles :math:`\{x^0_i\}^n_{i=1}` *Output:* A set of particles :math:`\{x^{*}_i\}^n_{i=1}` that approximates the target distribution. .. math:: x_i^{l+1} &\leftarrow x_i^{l} + \epsilon_l \hat{\phi}^{*}(x_i^l) \\ \hat{\phi}^{*}(x) &= \frac{1}{n}\sum^{n}_{j=1}[k(x^l_j,x) \nabla_{x^l_j} logp(x^l_j)+ \nabla_{x^l_j} k(x^l_j,x)] Parameters ---------- n_particles : `int` number of particles to use for approximation jitter : `float` noise sd for initial point model : :class:`pymc3.Model` PyMC3 model for inference kernel : `callable` kernel function for KSD :math:`f(histogram) -> (k(x,.), \nabla_x k(x,.))` temperature : float parameter responsible for exploration, higher temperature gives more broad posterior estimate start : `dict` initial point for inference random_seed : None or int leave None to use package global RandomStream or other valid value to create instance specific one start : `Point` starting point for inference kwargs : other keyword arguments passed to estimator References ---------- - Qiang Liu, Dilin Wang (2016) Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm arXiv:1608.04471 - Yang Liu, Prajit Ramachandran, Qiang Liu, Jian Peng (2017) Stein Variational Policy Gradient arXiv:1704.02399 """ def __init__( self, n_particles=100, jitter=1, model=None, start=None, random_seed=None, estimator=KSD, kernel=test_functions.rbf, **kwargs, ): if kwargs.get("local_rv") is not None: raise opvi.AEVBInferenceError("SVGD does not support local groups") empirical = Empirical( size=n_particles, jitter=jitter, start=start, model=model, random_seed=random_seed, ) super().__init__(approx=empirical, estimator=estimator, kernel=kernel, **kwargs) class ASVGD(ImplicitGradient): r"""**Amortized Stein Variational Gradient Descent** **not suggested to use** This inference is based on Kernelized Stein Discrepancy it's main idea is to move initial noisy particles so that they fit target distribution best. Algorithm is outlined below *Input:* Parametrized random generator :math:`R_{\theta}` *Output:* :math:`R_{\theta^{*}}` that approximates the target distribution. .. math:: \Delta x_i &= \hat{\phi}^{*}(x_i) \\ \hat{\phi}^{*}(x) &= \frac{1}{n}\sum^{n}_{j=1}[k(x_j,x) \nabla_{x_j} logp(x_j)+ \nabla_{x_j} k(x_j,x)] \\ \Delta_{\theta} &= \frac{1}{n}\sum^{n}_{i=1}\Delta x_i\frac{\partial x_i}{\partial \theta} Parameters ---------- approx : :class:`Approximation` default is :class:`FullRank` but can be any kernel : `callable` kernel function for KSD :math:`f(histogram) -> (k(x,.), \nabla_x k(x,.))` model : :class:`Model` kwargs : kwargs for gradient estimator References ---------- - Dilin Wang, Yihao Feng, Qiang Liu (2016) Learning to Sample Using Stein Discrepancy http://bayesiandeeplearning.org/papers/BDL_21.pdf - Dilin Wang, Qiang Liu (2016) Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning arXiv:1611.01722 - Yang Liu, Prajit Ramachandran, Qiang Liu, Jian Peng (2017) Stein Variational Policy Gradient arXiv:1704.02399 """ def __init__(self, approx=None, estimator=KSD, kernel=test_functions.rbf, **kwargs): warnings.warn( "You are using experimental inference Operator. " "It requires careful choice of temperature, default is 1. " "Default temperature works well for low dimensional problems and " "for significant `n_obj_mc`. Temperature > 1 gives more exploration " "power to algorithm, < 1 leads to undesirable results. Please take " "it in account when looking at inference result. Posterior variance " "is often **underestimated** when using temperature = 1." ) if approx is None: approx = FullRank( model=kwargs.pop("model", None), local_rv=kwargs.pop("local_rv", None) ) super().__init__(estimator=estimator, approx=approx, kernel=kernel, **kwargs) def fit( self, n=10000, score=None, callbacks=None, progressbar=True, obj_n_mc=500, **kwargs, ): return super().fit( n=n, score=score, callbacks=callbacks, progressbar=progressbar, obj_n_mc=obj_n_mc, **kwargs, ) def run_profiling(self, n=1000, score=None, obj_n_mc=500, **kwargs): return super().run_profiling(n=n, score=score, obj_n_mc=obj_n_mc, **kwargs) class NFVI(KLqp): r"""**Normalizing Flow based :class:`KLqp` inference** Normalizing flow is a series of invertible transformations on initial distribution. .. math:: z_K = f_K \circ \dots \circ f_2 \circ f_1(z_0) In that case we can compute tractable density for the flow. .. math:: \ln q_K(z_K) = \ln q_0(z_0) - \sum_{k=1}^{K}\ln \left|\frac{\partial f_k}{\partial z_{k-1}}\right| Every :math:`f_k` here is a parametric function with defined determinant. We can choose every step here. For example the here is a simple flow is an affine transform: .. math:: z = loc(scale(z_0)) = \mu + \sigma * z_0 Here we get mean field approximation if :math:`z_0 \sim \mathcal{N}(0, 1)` **Flow Formulas** In PyMC3 there is a flexible way to define flows with formulas. We have 5 of them by the moment: - Loc (:code:`loc`): :math:`z' = z + \mu` - Scale (:code:`scale`): :math:`z' = \sigma * z` - Planar (:code:`planar`): :math:`z' = z + u * \tanh(w^T z + b)` - Radial (:code:`radial`): :math:`z' = z + \beta (\alpha + (z-z_r))^{-1}(z-z_r)` - Householder (:code:`hh`): :math:`z' = H z` Formula can be written as a string, e.g. `'scale-loc'`, `'scale-hh*4-loc'`, `'panar*10'`. Every step is separated with `'-'`, repeated flow is marked with `'*'` producing `'flow*repeats'`. Parameters ---------- flow : str|AbstractFlow formula or initialized Flow, default is `'scale-loc'` that is identical to MeanField model : :class:`pymc3.Model` PyMC3 model for inference random_seed : None or int leave None to use package global RandomStream or other valid value to create instance specific one """ def __init__(self, *args, **kwargs): super().__init__(NormalizingFlow(*args, **kwargs)) def fit( n=10000, local_rv=None, method="advi", model=None, random_seed=None, start=None, inf_kwargs=None, **kwargs, ): r"""Handy shortcut for using inference methods in functional way Parameters ---------- n : `int` number of iterations local_rv : dict[var->tuple] mapping {model_variable -> approx params} Local Vars are used for Autoencoding Variational Bayes See (AEVB; Kingma and Welling, 2014) for details method : str or :class:`Inference` string name is case insensitive in: - 'advi' for ADVI - 'fullrank_advi' for FullRankADVI - 'svgd' for Stein Variational Gradient Descent - 'asvgd' for Amortized Stein Variational Gradient Descent - 'nfvi' for Normalizing Flow with default `scale-loc` flow - 'nfvi=<formula>' for Normalizing Flow using formula model : :class:`Model` PyMC3 model for inference random_seed : None or int leave None to use package global RandomStream or other valid value to create instance specific one inf_kwargs : dict additional kwargs passed to :class:`Inference` start : `Point` starting point for inference Other Parameters ---------------- score : bool evaluate loss on each iteration or not callbacks : list[function : (Approximation, losses, i) -> None] calls provided functions after each iteration step progressbar: bool whether to show progressbar or not obj_n_mc : `int` Number of monte carlo samples used for approximation of objective gradients tf_n_mc : `int` Number of monte carlo samples used for approximation of test function gradients obj_optimizer : function (grads, params) -> updates Optimizer that is used for objective params test_optimizer : function (grads, params) -> updates Optimizer that is used for test function params more_obj_params : `list` Add custom params for objective optimizer more_tf_params : `list` Add custom params for test function optimizer more_updates : `dict` Add custom updates to resulting updates total_grad_norm_constraint : `float` Bounds gradient norm, prevents exploding gradient problem fn_kwargs : `dict` Add kwargs to theano.function (e.g. `{'profile': True}`) more_replacements : `dict` Apply custom replacements before calculating gradients Returns ------- :class:`Approximation` """ if inf_kwargs is None: inf_kwargs = dict() else: inf_kwargs = inf_kwargs.copy() if local_rv is not None: inf_kwargs["local_rv"] = local_rv if random_seed is not None: inf_kwargs["random_seed"] = random_seed if start is not None: inf_kwargs["start"] = start if model is None: model = pm.modelcontext(model) _select = dict( advi=ADVI, fullrank_advi=FullRankADVI, svgd=SVGD, asvgd=ASVGD, nfvi=NFVI ) if isinstance(method, str): method = method.lower() if method.startswith("nfvi="): formula = method[5:] inference = NFVI(formula, **inf_kwargs) elif method in _select: inference = _select[method](model=model, **inf_kwargs) else: raise KeyError( f"method should be one of {set(_select.keys())} or Inference instance" ) elif isinstance(method, Inference): inference = method else: raise TypeError( f"method should be one of {set(_select.keys())} or Inference instance" ) return inference.fit(n, **kwargs)
37.460701
120
0.595997
6a4befedd903104c8718d7218a09d36bcf076cd7
3,465
py
Python
terrascript/data/rancher/rancher2.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
507
2017-07-26T02:58:38.000Z
2022-01-21T12:35:13.000Z
terrascript/data/rancher/rancher2.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
135
2017-07-20T12:01:59.000Z
2021-10-04T22:25:40.000Z
terrascript/data/rancher/rancher2.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
81
2018-02-20T17:55:28.000Z
2022-01-31T07:08:40.000Z
# terrascript/data/rancher/rancher2.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:25:37 UTC) import terrascript class rancher2_app(terrascript.Data): pass class rancher2_catalog(terrascript.Data): pass class rancher2_catalog_v2(terrascript.Data): pass class rancher2_certificate(terrascript.Data): pass class rancher2_cloud_credential(terrascript.Data): pass class rancher2_cluster(terrascript.Data): pass class rancher2_cluster_alert_group(terrascript.Data): pass class rancher2_cluster_alert_rule(terrascript.Data): pass class rancher2_cluster_driver(terrascript.Data): pass class rancher2_cluster_logging(terrascript.Data): pass class rancher2_cluster_role_template_binding(terrascript.Data): pass class rancher2_cluster_scan(terrascript.Data): pass class rancher2_cluster_template(terrascript.Data): pass class rancher2_cluster_v2(terrascript.Data): pass class rancher2_etcd_backup(terrascript.Data): pass class rancher2_global_dns_provider(terrascript.Data): pass class rancher2_global_role(terrascript.Data): pass class rancher2_global_role_binding(terrascript.Data): pass class rancher2_multi_cluster_app(terrascript.Data): pass class rancher2_namespace(terrascript.Data): pass class rancher2_node_driver(terrascript.Data): pass class rancher2_node_pool(terrascript.Data): pass class rancher2_node_template(terrascript.Data): pass class rancher2_notifier(terrascript.Data): pass class rancher2_pod_security_policy_template(terrascript.Data): pass class rancher2_project(terrascript.Data): pass class rancher2_project_alert_group(terrascript.Data): pass class rancher2_project_alert_rule(terrascript.Data): pass class rancher2_project_logging(terrascript.Data): pass class rancher2_project_role_template_binding(terrascript.Data): pass class rancher2_registry(terrascript.Data): pass class rancher2_role_template(terrascript.Data): pass class rancher2_secret(terrascript.Data): pass class rancher2_secret_v2(terrascript.Data): pass class rancher2_setting(terrascript.Data): pass class rancher2_storage_class_v2(terrascript.Data): pass class rancher2_user(terrascript.Data): pass __all__ = [ "rancher2_app", "rancher2_catalog", "rancher2_catalog_v2", "rancher2_certificate", "rancher2_cloud_credential", "rancher2_cluster", "rancher2_cluster_alert_group", "rancher2_cluster_alert_rule", "rancher2_cluster_driver", "rancher2_cluster_logging", "rancher2_cluster_role_template_binding", "rancher2_cluster_scan", "rancher2_cluster_template", "rancher2_cluster_v2", "rancher2_etcd_backup", "rancher2_global_dns_provider", "rancher2_global_role", "rancher2_global_role_binding", "rancher2_multi_cluster_app", "rancher2_namespace", "rancher2_node_driver", "rancher2_node_pool", "rancher2_node_template", "rancher2_notifier", "rancher2_pod_security_policy_template", "rancher2_project", "rancher2_project_alert_group", "rancher2_project_alert_rule", "rancher2_project_logging", "rancher2_project_role_template_binding", "rancher2_registry", "rancher2_role_template", "rancher2_secret", "rancher2_secret_v2", "rancher2_setting", "rancher2_storage_class_v2", "rancher2_user", ]
17.953368
73
0.765657
1fa313065b367fbacede0465502d8e1fd14d89d1
21,000
py
Python
baselines/cifar/rank1_bnn.py
y0ast/uncertainty-baselines
8d32c77ba0803ed715c1406378adf10ebd61ab74
[ "Apache-2.0" ]
null
null
null
baselines/cifar/rank1_bnn.py
y0ast/uncertainty-baselines
8d32c77ba0803ed715c1406378adf10ebd61ab74
[ "Apache-2.0" ]
null
null
null
baselines/cifar/rank1_bnn.py
y0ast/uncertainty-baselines
8d32c77ba0803ed715c1406378adf10ebd61ab74
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rank-1 BNN Wide ResNet 28-10 on CIFAR-10 and CIFAR-100. A Rank-1 Bayesian neural net (Rank-1 BNN) [1] is an efficient and scalable approach to variational BNNs that posits prior distributions on rank-1 factors of the weights and optimizes global mixture variational posterior distributions. References: [1]: Michael W. Dusenberry*, Ghassen Jerfel*, Yeming Wen, Yian Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, Dustin Tran. Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors. In Proc. of International Conference on Machine Learning (ICML) 2020. https://arxiv.org/abs/2005.07186 """ import os import time from absl import app from absl import flags from absl import logging import robustness_metrics as rm import tensorflow as tf import tensorflow_datasets as tfds import uncertainty_baselines as ub import utils # local file import from baselines.cifar from tensorboard.plugins.hparams import api as hp flags.DEFINE_integer('kl_annealing_epochs', 200, 'Number of epoch over which to anneal the KL term to 1.') flags.DEFINE_string('alpha_initializer', 'trainable_normal', 'Initializer name for the alpha parameters.') flags.DEFINE_string('gamma_initializer', 'trainable_normal', 'Initializer name for the gamma parameters.') flags.DEFINE_string('alpha_regularizer', 'normal_kl_divergence', 'Regularizer name for the alpha parameters.') flags.DEFINE_string('gamma_regularizer', 'normal_kl_divergence', 'Regularizer name for the gamma parameters.') flags.DEFINE_boolean('use_additive_perturbation', False, 'Use additive perturbations instead of multiplicative.') flags.DEFINE_float('dropout_rate', 1e-3, 'Dropout rate. Only used if alpha/gamma initializers are, ' 'e.g., trainable normal.') flags.DEFINE_float('prior_mean', 1., 'Prior mean.') flags.DEFINE_float('prior_stddev', 0.1, 'Prior stddev. Sort of like a prior on dropout rate, where ' 'it encourages defaulting/shrinking to this value.') flags.DEFINE_integer('ensemble_size', 4, 'Size of ensemble.') flags.DEFINE_float('random_sign_init', 0.5, 'Use random sign init for fast weights.') flags.DEFINE_float('fast_weight_lr_multiplier', 1.0, 'fast weights lr multiplier.') flags.DEFINE_integer('num_eval_samples', 1, 'Number of model predictions to sample per example at ' 'eval time.') # Redefining default values flags.FLAGS.set_default('corruptions_interval', 250) flags.FLAGS.set_default('train_epochs', 250) flags.FLAGS.set_default('l2', 1e-4) flags.FLAGS.set_default('lr_decay_epochs', ['80', '160', '180']) FLAGS = flags.FLAGS def main(argv): del argv # unused arg tf.io.gfile.makedirs(FLAGS.output_dir) logging.info('Saving checkpoints at %s', FLAGS.output_dir) tf.random.set_seed(FLAGS.seed) data_dir = FLAGS.data_dir if FLAGS.use_gpu: logging.info('Use GPU') strategy = tf.distribute.MirroredStrategy() else: logging.info('Use TPU at %s', FLAGS.tpu if FLAGS.tpu is not None else 'local') resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu) tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) ds_info = tfds.builder(FLAGS.dataset).info batch_size = ((FLAGS.per_core_batch_size // FLAGS.ensemble_size) * FLAGS.num_cores) train_dataset_size = ds_info.splits['train'].num_examples steps_per_epoch = train_dataset_size // batch_size test_dataset_size = ds_info.splits['test'].num_examples steps_per_eval = test_dataset_size // batch_size num_classes = ds_info.features['label'].num_classes train_builder = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TRAIN, validation_percent=1. - FLAGS.train_proportion) train_dataset = train_builder.load(batch_size=batch_size) validation_dataset = None steps_per_validation = 0 if FLAGS.train_proportion < 1.0: validation_builder = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.VALIDATION, validation_percent=1. - FLAGS.train_proportion) validation_dataset = validation_builder.load(batch_size=batch_size) validation_dataset = strategy.experimental_distribute_dataset( validation_dataset) steps_per_validation = validation_builder.num_examples // batch_size clean_test_builder = ub.datasets.get( FLAGS.dataset, data_dir=data_dir, download_data=FLAGS.download_data, split=tfds.Split.TEST) clean_test_dataset = clean_test_builder.load(batch_size=batch_size) train_dataset = strategy.experimental_distribute_dataset(train_dataset) test_datasets = { 'clean': strategy.experimental_distribute_dataset(clean_test_dataset), } steps_per_epoch = train_builder.num_examples // batch_size steps_per_eval = clean_test_builder.num_examples // batch_size num_classes = 100 if FLAGS.dataset == 'cifar100' else 10 if FLAGS.corruptions_interval > 0: if FLAGS.dataset == 'cifar100': data_dir = FLAGS.cifar100_c_path corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset) for corruption_type in corruption_types: for severity in range(1, 6): dataset = ub.datasets.get( f'{FLAGS.dataset}_corrupted', corruption_type=corruption_type, data_dir=data_dir, severity=severity, split=tfds.Split.TEST).load(batch_size=batch_size) test_datasets[f'{corruption_type}_{severity}'] = ( strategy.experimental_distribute_dataset(dataset)) summary_writer = tf.summary.create_file_writer( os.path.join(FLAGS.output_dir, 'summaries')) with strategy.scope(): logging.info('Building Keras model') model = ub.models.wide_resnet_rank1( input_shape=(32, 32, 3), depth=28, width_multiplier=10, num_classes=num_classes, alpha_initializer=FLAGS.alpha_initializer, gamma_initializer=FLAGS.gamma_initializer, alpha_regularizer=FLAGS.alpha_regularizer, gamma_regularizer=FLAGS.gamma_regularizer, use_additive_perturbation=FLAGS.use_additive_perturbation, ensemble_size=FLAGS.ensemble_size, random_sign_init=FLAGS.random_sign_init, dropout_rate=FLAGS.dropout_rate, prior_mean=FLAGS.prior_mean, prior_stddev=FLAGS.prior_stddev) logging.info('Model input shape: %s', model.input_shape) logging.info('Model output shape: %s', model.output_shape) logging.info('Model number of weights: %s', model.count_params()) # Linearly scale learning rate and the decay epochs by vanilla settings. base_lr = FLAGS.base_learning_rate * batch_size / 128 lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200 for start_epoch_str in FLAGS.lr_decay_epochs] lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule( steps_per_epoch, base_lr, decay_ratio=FLAGS.lr_decay_ratio, decay_epochs=lr_decay_epochs, warmup_epochs=FLAGS.lr_warmup_epochs) optimizer = tf.keras.optimizers.SGD(lr_schedule, momentum=1.0 - FLAGS.one_minus_momentum, nesterov=True) metrics = { 'train/negative_log_likelihood': tf.keras.metrics.Mean(), 'train/kl': tf.keras.metrics.Mean(), 'train/kl_scale': tf.keras.metrics.Mean(), 'train/elbo': tf.keras.metrics.Mean(), 'train/loss': tf.keras.metrics.Mean(), 'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'train/ece': rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins), 'test/negative_log_likelihood': tf.keras.metrics.Mean(), 'test/kl': tf.keras.metrics.Mean(), 'test/elbo': tf.keras.metrics.Mean(), 'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'test/ece': rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins), } eval_dataset_splits = ['test'] if validation_dataset: metrics.update({ 'validation/negative_log_likelihood': tf.keras.metrics.Mean(), 'validation/kl': tf.keras.metrics.Mean(), 'validation/elbo': tf.keras.metrics.Mean(), 'validation/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(), 'validation/ece': rm.metrics.ExpectedCalibrationError( num_bins=FLAGS.num_bins), }) eval_dataset_splits += ['validation'] for i in range(FLAGS.ensemble_size): for dataset_split in eval_dataset_splits: metrics[f'{dataset_split}/nll_member_{i}'] = tf.keras.metrics.Mean() metrics[f'{dataset_split}/accuracy_member_{i}'] = ( tf.keras.metrics.SparseCategoricalAccuracy()) if FLAGS.corruptions_interval > 0: corrupt_metrics = {} for intensity in range(1, 6): for corruption in corruption_types: dataset_name = '{0}_{1}'.format(corruption, intensity) corrupt_metrics['test/nll_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/kl_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/elbo_{}'.format(dataset_name)] = ( tf.keras.metrics.Mean()) corrupt_metrics['test/accuracy_{}'.format(dataset_name)] = ( tf.keras.metrics.SparseCategoricalAccuracy()) corrupt_metrics['test/ece_{}'.format(dataset_name)] = ( rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins)) checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer) latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir) initial_epoch = 0 if latest_checkpoint: # checkpoint.restore must be within a strategy.scope() so that optimizer # slot variables are mirrored. checkpoint.restore(latest_checkpoint) logging.info('Loaded checkpoint %s', latest_checkpoint) initial_epoch = optimizer.iterations.numpy() // steps_per_epoch def compute_l2_loss(model): filtered_variables = [] for var in model.trainable_variables: # Apply l2 on the BN parameters and bias terms. This # excludes only fast weight approximate posterior/prior parameters, # but pay caution to their naming scheme. if ('kernel' in var.name or 'batch_norm' in var.name or 'bias' in var.name): filtered_variables.append(tf.reshape(var, (-1,))) l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss( tf.concat(filtered_variables, axis=0)) return l2_loss @tf.function def train_step(iterator): """Training StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] if FLAGS.ensemble_size > 1: images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) labels = tf.tile(labels, [FLAGS.ensemble_size]) with tf.GradientTape() as tape: logits = model(images, training=True) negative_log_likelihood = tf.reduce_mean( tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)) l2_loss = compute_l2_loss(model) kl = sum(model.losses) / train_dataset_size kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype) kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs kl_scale = tf.minimum(1., kl_scale) kl_loss = kl_scale * kl # Scale the loss given the TPUStrategy will reduce sum all gradients. loss = negative_log_likelihood + l2_loss + kl_loss scaled_loss = loss / strategy.num_replicas_in_sync elbo = -(negative_log_likelihood + l2_loss + kl) grads = tape.gradient(scaled_loss, model.trainable_variables) # Separate learning rate implementation. if FLAGS.fast_weight_lr_multiplier != 1.0: grads_and_vars = [] for grad, var in zip(grads, model.trainable_variables): # Apply different learning rate on the fast weight approximate # posterior/prior parameters. This is excludes BN and slow weights, # but pay caution to the naming scheme. if ('kernel' not in var.name and 'batch_norm' not in var.name and 'bias' not in var.name): grads_and_vars.append((grad * FLAGS.fast_weight_lr_multiplier, var)) else: grads_and_vars.append((grad, var)) optimizer.apply_gradients(grads_and_vars) else: optimizer.apply_gradients(zip(grads, model.trainable_variables)) probs = tf.nn.softmax(logits) metrics['train/negative_log_likelihood'].update_state( negative_log_likelihood) metrics['train/kl'].update_state(kl) metrics['train/kl_scale'].update_state(kl_scale) metrics['train/elbo'].update_state(elbo) metrics['train/loss'].update_state(loss) metrics['train/accuracy'].update_state(labels, probs) metrics['train/ece'].add_batch(probs, label=labels) for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)): strategy.run(step_fn, args=(next(iterator),)) @tf.function def test_step(iterator, dataset_split, dataset_name, num_steps): """Evaluation StepFn.""" def step_fn(inputs): """Per-Replica StepFn.""" images = inputs['features'] labels = inputs['labels'] if FLAGS.ensemble_size > 1: images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1]) logits = tf.reshape( [model(images, training=False) for _ in range(FLAGS.num_eval_samples)], [FLAGS.num_eval_samples, FLAGS.ensemble_size, -1, num_classes]) probs = tf.nn.softmax(logits) if FLAGS.ensemble_size > 1: per_probs = tf.reduce_mean(probs, axis=0) # marginalize samples for i in range(FLAGS.ensemble_size): member_probs = per_probs[i] member_loss = tf.keras.losses.sparse_categorical_crossentropy( labels, member_probs) metrics[f'{dataset_split}/nll_member_{i}'].update_state(member_loss) metrics[f'{dataset_split}/accuracy_member_{i}'].update_state( labels, member_probs) # Negative log marginal likelihood computed in a numerically-stable way. labels_broadcasted = tf.broadcast_to( labels, [FLAGS.num_eval_samples, FLAGS.ensemble_size, tf.shape(labels)[0]]) log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy( labels_broadcasted, logits, from_logits=True) negative_log_likelihood = tf.reduce_mean( -tf.reduce_logsumexp(log_likelihoods, axis=[0, 1]) + tf.math.log(float(FLAGS.num_eval_samples * FLAGS.ensemble_size))) probs = tf.math.reduce_mean(probs, axis=[0, 1]) # marginalize l2_loss = compute_l2_loss(model) kl = sum(model.losses) / test_dataset_size elbo = -(negative_log_likelihood + l2_loss + kl) if dataset_name == 'clean': metrics[f'{dataset_split}/negative_log_likelihood'].update_state( negative_log_likelihood) metrics[f'{dataset_split}/kl'].update_state(kl) metrics[f'{dataset_split}/elbo'].update_state(elbo) metrics[f'{dataset_split}/accuracy'].update_state(labels, probs) metrics[f'{dataset_split}/ece'].add_batch(probs, label=labels) else: corrupt_metrics['test/nll_{}'.format(dataset_name)].update_state( negative_log_likelihood) corrupt_metrics['test/kl_{}'.format(dataset_name)].update_state(kl) corrupt_metrics['test/elbo_{}'.format(dataset_name)].update_state(elbo) corrupt_metrics['test/accuracy_{}'.format(dataset_name)].update_state( labels, probs) corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch( probs, label=labels) for _ in tf.range(tf.cast(num_steps, tf.int32)): strategy.run(step_fn, args=(next(iterator),)) train_iterator = iter(train_dataset) start_time = time.time() for epoch in range(initial_epoch, FLAGS.train_epochs): logging.info('Starting to run epoch: %s', epoch) train_step(train_iterator) current_step = (epoch + 1) * steps_per_epoch max_steps = steps_per_epoch * FLAGS.train_epochs time_elapsed = time.time() - start_time steps_per_sec = float(current_step) / time_elapsed eta_seconds = (max_steps - current_step) / steps_per_sec message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. ' 'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format( current_step / max_steps, epoch + 1, FLAGS.train_epochs, steps_per_sec, eta_seconds / 60, time_elapsed / 60)) logging.info(message) if validation_dataset: validation_iterator = iter(validation_dataset) test_step( validation_iterator, 'validation', 'clean', steps_per_validation) datasets_to_evaluate = {'clean': test_datasets['clean']} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): datasets_to_evaluate = test_datasets for dataset_name, test_dataset in datasets_to_evaluate.items(): test_iterator = iter(test_dataset) logging.info('Testing on dataset %s', dataset_name) logging.info('Starting to run eval at epoch: %s', epoch) test_step(test_iterator, 'test', dataset_name, steps_per_eval) logging.info('Done with testing on %s', dataset_name) corrupt_results = {} if (FLAGS.corruptions_interval > 0 and (epoch + 1) % FLAGS.corruptions_interval == 0): corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics, corruption_types) logging.info('Train Loss: %.4f, Accuracy: %.2f%%', metrics['train/loss'].result(), metrics['train/accuracy'].result() * 100) logging.info('Test NLL: %.4f, Accuracy: %.2f%%', metrics['test/negative_log_likelihood'].result(), metrics['test/accuracy'].result() * 100) if FLAGS.ensemble_size > 1: for i in range(FLAGS.ensemble_size): logging.info('Member %d Test Loss: %.4f, Accuracy: %.2f%%', i, metrics['test/nll_member_{}'.format(i)].result(), metrics['test/accuracy_member_{}'.format(i)].result()*100) total_results = {name: metric.result() for name, metric in metrics.items()} total_results.update(corrupt_results) # Metrics from Robustness Metrics (like ECE) will return a dict with a # single key/value, instead of a scalar. total_results = { k: (list(v.values())[0] if isinstance(v, dict) else v) for k, v in total_results.items() } with summary_writer.as_default(): for name, result in total_results.items(): tf.summary.scalar(name, result, step=epoch + 1) for metric in metrics.values(): metric.reset_states() if (FLAGS.checkpoint_interval > 0 and (epoch + 1) % FLAGS.checkpoint_interval == 0): checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved checkpoint to %s', checkpoint_name) final_checkpoint_name = checkpoint.save( os.path.join(FLAGS.output_dir, 'checkpoint')) logging.info('Saved last checkpoint to %s', final_checkpoint_name) with summary_writer.as_default(): hp.hparams({ 'base_learning_rate': FLAGS.base_learning_rate, 'one_minus_momentum': FLAGS.one_minus_momentum, 'l2': FLAGS.l2, 'fast_weight_lr_multiplier': FLAGS.fast_weight_lr_multiplier, 'num_eval_samples': FLAGS.num_eval_samples, }) if __name__ == '__main__': app.run(main)
44.491525
80
0.672619
7496bc0a5db11df897273bbc4d797dbfbcb6d33d
2,134
py
Python
airbyte-integrations/connectors/source-greenhouse/source_greenhouse/source.py
vagrantism/airbyte
b072a6d7bd6ea0b843ad7e98ff8f98dd3b8aa824
[ "MIT" ]
6,215
2020-09-21T13:45:56.000Z
2022-03-31T21:21:45.000Z
airbyte-integrations/connectors/source-greenhouse/source_greenhouse/source.py
vitoravancini/airbyte
a7ddd167f6c42905af16b6dac744bcf18354de19
[ "MIT" ]
8,448
2020-09-21T00:43:50.000Z
2022-03-31T23:56:06.000Z
airbyte-integrations/connectors/source-greenhouse/source_greenhouse/source.py
vitoravancini/airbyte
a7ddd167f6c42905af16b6dac744bcf18354de19
[ "MIT" ]
1,251
2020-09-20T05:48:47.000Z
2022-03-31T10:41:29.000Z
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # from typing import Any, List, Mapping, Tuple from airbyte_cdk import AirbyteLogger from airbyte_cdk.models import SyncMode from airbyte_cdk.sources import AbstractSource from airbyte_cdk.sources.streams import Stream from requests.auth import HTTPBasicAuth from source_greenhouse.streams import ( Applications, ApplicationsInterviews, Candidates, CloseReasons, CustomFields, Degrees, Departments, Interviews, JobPosts, Jobs, JobsOpenings, JobsStages, JobStages, Offers, RejectionReasons, Scorecards, Sources, Users, ) class SourceGreenhouse(AbstractSource): def check_connection(self, logger: AirbyteLogger, config: Mapping[str, Any]) -> Tuple[bool, Any]: try: auth = HTTPBasicAuth(config["api_key"], "") users_gen = Users(authenticator=auth).read_records(sync_mode=SyncMode.full_refresh) next(users_gen) return True, None except Exception as error: return False, f"Unable to connect to Greenhouse API with the provided credentials - {repr(error)}" def streams(self, config: Mapping[str, Any]) -> List[Stream]: auth = HTTPBasicAuth(config["api_key"], "") streams = [ Applications(authenticator=auth), ApplicationsInterviews(authenticator=auth), Candidates(authenticator=auth), CloseReasons(authenticator=auth), CustomFields(authenticator=auth), Degrees(authenticator=auth), Departments(authenticator=auth), Interviews(authenticator=auth), JobPosts(authenticator=auth), JobStages(authenticator=auth), Jobs(authenticator=auth), JobsOpenings(authenticator=auth), JobsStages(authenticator=auth), Offers(authenticator=auth), RejectionReasons(authenticator=auth), Scorecards(authenticator=auth), Sources(authenticator=auth), Users(authenticator=auth), ] return streams
31.382353
110
0.656514
1c0aa1604f519962a11a563803754ae30395d547
3,452
py
Python
src/oscar/profiling/middleware.py
akiyoko/oscar_sandbox
b384f1c0b5f297fd4b84509a575f6766a48630a5
[ "BSD-3-Clause" ]
68
2016-11-06T05:07:57.000Z
2021-12-17T09:17:38.000Z
src/oscar/profiling/middleware.py
akiyoko/oscar_sandbox
b384f1c0b5f297fd4b84509a575f6766a48630a5
[ "BSD-3-Clause" ]
null
null
null
src/oscar/profiling/middleware.py
akiyoko/oscar_sandbox
b384f1c0b5f297fd4b84509a575f6766a48630a5
[ "BSD-3-Clause" ]
28
2016-12-04T07:12:50.000Z
2021-02-06T21:13:15.000Z
import cProfile import hotshot import hotshot.stats import pstats import sys import tempfile from cStringIO import StringIO def profile_this(fn): def profiled_fn(*args, **kwargs): filepath = "/tmp/%s.profile" % fn.__name__ prof = cProfile.Profile() ret = prof.runcall(fn, *args, **kwargs) print("Writing to %s" % filepath) prof.dump_stats(filepath) print("Printing stats") stats = pstats.Stats(filepath) stats.sort_stats('cumulative') stats.print_stats() return ret return profiled_fn class BaseMiddleware(object): query_param = None def show_profile(self, request): return self.query_param in request.GET def process_request(self, request): if self.show_profile(request): if 'prof_file' in request.GET: # It's sometimes useful to generate a file of output that can # converted for use with kcachegrind. To convert this file, # use: # # pyprof2calltree -o /tmp/callgrind.stats -i /tmp/out.stats # # then open the file in kcachegrind. self.tmpfile = open('/tmp/out.stats', 'w') else: self.tmpfile = tempfile.NamedTemporaryFile() self.profile = self.profiler() def profiler(self): return None def process_view(self, request, callback, callback_args, callback_kwargs): # We profile the view call - note that this misses the rest of Django's # request processing (eg middleware etc) if self.show_profile(request): return self.profile.runcall( callback, request, *callback_args, **callback_kwargs) def process_response(self, request, response): if self.show_profile(request): stats = self.stats() if 'prof_strip' in request.GET: stats.strip_dirs() if 'prof_sort' in request.GET: # See # http://docs.python.org/2/library/profile.html#pstats.Stats.sort_stats # noqa # for the fields you can sort on. stats.sort_stats(*request.GET['prof_sort'].split(',')) else: stats.sort_stats('time', 'calls') # Capture STDOUT temporarily old_stdout = sys.stdout out = StringIO() sys.stdout = out stats.print_stats() stats_str = out.getvalue() sys.stdout.close() sys.stdout = old_stdout # Print status within PRE block if response and response.content and stats_str: response.content = "<pre>" + stats_str + "</pre>" return response class ProfileMiddleware(BaseMiddleware): query_param = 'cprofile' def profiler(self): return cProfile.Profile() def stats(self): self.profile.dump_stats(self.tmpfile.name) return pstats.Stats(self.tmpfile.name) class HotshotMiddleware(BaseMiddleware): """ Displays hotshot profiling for any view. http://yoursite.com/yourview/?prof Based on http://djangosnippets.org/snippets/186/ """ query_param = 'hotshot' def profiler(self): return hotshot.Profile(self.tmpfile.name) def stats(self): self.profile.close() return hotshot.stats.load(self.tmpfile.name)
30.017391
95
0.595886
4b24e0aad366f70b2ec047e627ab24b6616a571d
165
py
Python
recipes/Python/473788_processing_options_program_that_runs_another/recipe-473788.py
tdiprima/code
61a74f5f93da087d27c70b2efe779ac6bd2a3b4f
[ "MIT" ]
2,023
2017-07-29T09:34:46.000Z
2022-03-24T08:00:45.000Z
recipes/Python/473788_processing_options_program_that_runs_another/recipe-473788.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
32
2017-09-02T17:20:08.000Z
2022-02-11T17:49:37.000Z
recipes/Python/473788_processing_options_program_that_runs_another/recipe-473788.py
unhacker/code
73b09edc1b9850c557a79296655f140ce5e853db
[ "MIT" ]
780
2017-07-28T19:23:28.000Z
2022-03-25T20:39:41.000Z
optparser = OptionParser() ... optparser.disable_interspersed_args() (opts, argv) = optparser.parse_args() ## argv now has the options to pass to the second program
27.5
57
0.763636
33d9906d1c5d703e926954736995e5ab6bd0c980
2,193
py
Python
hc/api/management/commands/sendalerts.py
aMugabi/healthchecks
df137bfdad57cb53bcf31bdc92056cb4f316f921
[ "BSD-3-Clause" ]
2
2018-06-21T18:11:04.000Z
2018-06-22T14:52:42.000Z
hc/api/management/commands/sendalerts.py
aMugabi/healthchecks
df137bfdad57cb53bcf31bdc92056cb4f316f921
[ "BSD-3-Clause" ]
34
2019-09-05T06:41:12.000Z
2021-06-25T15:25:28.000Z
hc/api/management/commands/sendalerts.py
aMugabi/healthchecks
df137bfdad57cb53bcf31bdc92056cb4f316f921
[ "BSD-3-Clause" ]
30
2017-04-22T07:09:56.000Z
2019-06-30T08:24:01.000Z
import logging import time from concurrent.futures import ThreadPoolExecutor from django.core.management.base import BaseCommand from django.db import connection from django.utils import timezone from hc.api.models import Check executor = ThreadPoolExecutor(max_workers=10) logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Sends UP/DOWN email alerts' def handle_many(self): """ Send alerts for many checks simultaneously. """ query = Check.objects.filter(user__isnull=False).select_related("user") now = timezone.now() going_down = query.filter(alert_after__lt=now, status="up") going_up = query.filter(alert_after__gt=now, status="down") # Don't combine this in one query so Postgres can query using index: checks = list(going_down.iterator()) + list(going_up.iterator()) if not checks: return False futures = [executor.submit(self.handle_one, check) for check in checks] for future in futures: future.result() return True def handle_one(self, check): """ Send an alert for a single check. Return True if an appropriate check was selected and processed. Return False if no checks need to be processed. """ # Save the new status. If sendalerts crashes, # it won't process this check again. check.status = check.get_status() check.save() tmpl = "\nSending alert, status=%s, code=%s\n" self.stdout.write(tmpl % (check.status, check.code)) errors = check.send_alert() for ch, error in errors: self.stdout.write("ERROR: %s %s %s\n" % (ch.kind, ch.value, error)) connection.close() return True def handle(self, *args, **options): self.stdout.write("sendalerts is now running") ticks = 0 while True: if self.handle_many(): ticks = 1 else: ticks += 1 time.sleep(1) if ticks % 60 == 0: formatted = timezone.now().isoformat() self.stdout.write("-- MARK %s --" % formatted)
30.887324
79
0.616507
d686ec9a38c3ca481092bfdfa076187e420af7e6
2,359
py
Python
src/rembg/cmd/server.py
prostakov/rembg
bc2680e7b7f3065b6a56d5b1f444c5a326a7fc4a
[ "MIT" ]
1
2021-03-18T18:41:18.000Z
2021-03-18T18:41:18.000Z
src/rembg/cmd/server.py
SSardorf/rembg
125adc690abfce2eb7094f92e6bcca79e8b097c6
[ "MIT" ]
null
null
null
src/rembg/cmd/server.py
SSardorf/rembg
125adc690abfce2eb7094f92e6bcca79e8b097c6
[ "MIT" ]
1
2021-05-14T09:37:40.000Z
2021-05-14T09:37:40.000Z
import argparse from io import BytesIO from urllib.parse import unquote_plus from urllib.request import urlopen from flask import Flask, request, send_file from waitress import serve from ..bg import remove app = Flask(__name__) @app.route("/", methods=["GET", "POST"]) def index(): file_content = "" if request.method == "POST": if "file" not in request.files: return {"error": "missing post form param 'file'"}, 400 file_content = request.files["file"].read() if request.method == "GET": url = request.args.get("url", type=str) if url is None: return {"error": "missing query param 'url'"}, 400 file_content = urlopen(unquote_plus(url)).read() if file_content == "": return {"error": "File content is empty"}, 400 alpha_matting = "a" in request.values af = request.values.get("af", type=int, default=240) ab = request.values.get("ab", type=int, default=10) ae = request.values.get("ae", type=int, default=10) az = request.values.get("az", type=int, default=1000) model = request.args.get("model", type=str, default="u2net") if model not in ("u2net", "u2net_human_seg", "u2netp"): return {"error": "invalid query param 'model'"}, 400 try: return send_file( BytesIO( remove( file_content, model_name=model, alpha_matting=alpha_matting, alpha_matting_foreground_threshold=af, alpha_matting_background_threshold=ab, alpha_matting_erode_structure_size=ae, alpha_matting_base_size=az, ) ), mimetype="image/png", ) except Exception as e: app.logger.exception(e, exc_info=True) return {"error": "oops, something went wrong!"}, 500 def main(): ap = argparse.ArgumentParser() ap.add_argument( "-a", "--addr", default="0.0.0.0", type=str, help="The IP address to bind to.", ) ap.add_argument( "-p", "--port", default=5000, type=int, help="The port to bind to.", ) args = ap.parse_args() serve(app, host=args.addr, port=args.port) if __name__ == "__main__": main()
26.505618
67
0.570581
2e459beeaed959342dfedcab5d8a6271c8091eef
443
py
Python
tests/functests.py
epigos/data-explorer
d90be65fe046b49025dc6fa422baa5c127dcb734
[ "MIT" ]
1
2017-01-18T08:40:40.000Z
2017-01-18T08:40:40.000Z
tests/functests.py
epigos/data-explorer
d90be65fe046b49025dc6fa422baa5c127dcb734
[ "MIT" ]
null
null
null
tests/functests.py
epigos/data-explorer
d90be65fe046b49025dc6fa422baa5c127dcb734
[ "MIT" ]
null
null
null
import unittest from tornado.testing import AsyncHTTPTestCase from dexplorer import DataExplorer class TestDataServer(AsyncHTTPTestCase): def get_app(self): dte = DataExplorer() return dte.make_app() def test_homepage(self): response = self.fetch('/') self.assertEqual(response.code, 200) self.assertIn("Data Explorer", str(response.body)) if __name__ == "__main__": unittest.main()
20.136364
58
0.68623
f6a5212bab65f8494f2a60b7d03eedaca35bc11e
36
py
Python
session/example.py
Navya-PampariRaghu/cis-demo
298da7918689e3716ad558be2dcb197381654657
[ "MIT" ]
null
null
null
session/example.py
Navya-PampariRaghu/cis-demo
298da7918689e3716ad558be2dcb197381654657
[ "MIT" ]
null
null
null
session/example.py
Navya-PampariRaghu/cis-demo
298da7918689e3716ad558be2dcb197381654657
[ "MIT" ]
1
2021-12-05T02:57:02.000Z
2021-12-05T02:57:02.000Z
print("Hey, I am practicing this!!")
36
36
0.694444
746c0db4693ab751a24d7ab97e88601db714cf88
3,312
py
Python
gui/merge.py
mokojm/townshell
3cb209892c63742ed4e20066e29a178a04c4f7ee
[ "MIT" ]
34
2021-02-02T09:16:32.000Z
2022-02-28T22:45:40.000Z
gui/merge.py
mokojm/townshell
3cb209892c63742ed4e20066e29a178a04c4f7ee
[ "MIT" ]
1
2021-04-26T21:12:36.000Z
2021-05-09T15:38:42.000Z
gui/merge.py
mokojm/townshell
3cb209892c63742ed4e20066e29a178a04c4f7ee
[ "MIT" ]
1
2021-02-21T19:58:33.000Z
2021-02-21T19:58:33.000Z
from kivy.app import App from kivy.factory import Factory from kivy.lang import Builder from kivy.uix.floatlayout import FloatLayout from kivy.uix.screenmanager import Screen Builder.load_file(r"gui\merge.kv") class BoxClip(FloatLayout): def __init__(self, **kwargs): self.util = App.get_running_app().util super(BoxClip, self).__init__(**kwargs) self.clip = "" self.clipIsValid = False def checkClip(self, *args): if self.util.isclip(self.boxclip.text) is False: self.boxclip.color = 1, 0, 0, 1 self.clipIsValid = False else: self.boxclip.color = 0, 0, 0, 1 self.clip = self.boxclip.text self.clipIsValid = True class MergeScreen(Screen): def __init__(self, **kwargs): self.util = App.get_running_app().util super(MergeScreen, self).__init__(**kwargs) self.amountBoxClip = 2 self.maxAmountBoxClip = 5 def add_boxclip(self): if self.amountBoxClip < self.maxAmountBoxClip: self.add_widget(BoxClip(pos_hint=self.add.pos_hint, size_hint=(0.5, 0.1))) self.add.pos_hint = { "x": self.add.pos_hint["x"], "y": self.add.pos_hint["y"] - 0.1, } self.amountBoxClip += 1 def del_boxclip(self): for child in self.children[:]: if isinstance(child, BoxClip): self.remove_widget(child) self.add.pos_hint = { "x": self.add.pos_hint["x"], "y": self.add.pos_hint["y"] + 0.1, } self.amountBoxClip -= 1 break def save_to_clipboard(self): myPopUp = Factory.NotifPopUp() myPopUp.title = "Merge" if any( [ isinstance(child, BoxClip) and child.clipIsValid is False for child in self.walk(loopback=True) ] ): myPopUp.level = "ERROR" myPopUp.mytext = "One of the clip is wrong or not filled" myPopUp.open() else: settings = { "input" + str(i): child.clip for i, child in enumerate(self.walk(loopback=True)) if isinstance(child, BoxClip) } settings['op'] = self.box_ope.ope.text[-2] #print(settings) if self.util.merge(settings): myPopUp.level = "INFO" myPopUp.mytext = "Click 'Load from Clipboard'" else: myPopUp.level = "ERROR" myPopUp.mytext = "See 'town.log' for more information" myPopUp.open() def reset(self): #Deleting widget count = 0 for child in self.walk(loopback=True): if isinstance(child, BoxClip): count += 1 child.boxclip.text = "" if count > 2: self.remove_widget(child) self.add.pos_hint = { "x": self.add.pos_hint["x"], "y": self.add.pos_hint["y"] + 0.1, } self.amountBoxClip -= 1 #reset operator self.box_ope.ope.text = self.box_ope.ope.values[0]
30.666667
86
0.519626
e3d41d21a38beb9011fa8deb8f36620ac027210e
9,341
py
Python
angola_erp/angola_erpnext/report/user_item_wise_sales_register/user_item_wise_sales_register.py
smehata/angola_erp
51614992709476e353aef1c03099d78f2a7cedb2
[ "MIT" ]
4
2019-06-12T06:54:10.000Z
2021-08-28T06:07:42.000Z
angola_erp/angola_erpnext/report/user_item_wise_sales_register/user_item_wise_sales_register.py
smehata/angola_erp
51614992709476e353aef1c03099d78f2a7cedb2
[ "MIT" ]
4
2017-08-24T17:33:45.000Z
2017-09-24T16:54:01.000Z
angola_erp/angola_erpnext/report/user_item_wise_sales_register/user_item_wise_sales_register.py
smehata/angola_erp
51614992709476e353aef1c03099d78f2a7cedb2
[ "MIT" ]
4
2018-02-10T21:08:10.000Z
2021-08-28T06:08:11.000Z
# Copyright (c) 2013, Helio de Jesus and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe, erpnext from frappe import _ from frappe.utils import flt from frappe.model.meta import get_field_precision from frappe.utils.xlsxutils import handle_html from erpnext.accounts.report.sales_register.sales_register import get_mode_of_payments def execute(filters=None): return _execute(filters) def _execute(filters=None, additional_table_columns=None, additional_query_columns=None): if not filters: filters = {} columns = get_columns(additional_table_columns) company_currency = erpnext.get_company_currency(filters.company) item_list = get_items(filters, additional_query_columns) if item_list: itemised_tax, tax_columns = get_tax_accounts(item_list, columns, company_currency) columns.append({ "fieldname": "currency", "label": _("Currency"), "fieldtype": "Data", "width": 80 }) mode_of_payments = get_mode_of_payments(set([d.parent for d in item_list])) so_dn_map = get_delivery_notes_against_sales_order(item_list) data = [] for d in item_list: delivery_note = None if d.delivery_note: delivery_note = d.delivery_note elif d.so_detail: delivery_note = ", ".join(so_dn_map.get(d.so_detail, [])) if not delivery_note and d.update_stock: delivery_note = d.parent row = [d.item_code, d.item_name, d.item_group, d.parent, d.posting_date, d.customer, d.customer_name, d.owner] if additional_query_columns: for col in additional_query_columns: row.append(d.get(col)) row += [ d.customer_group, d.debit_to, ", ".join(mode_of_payments.get(d.parent, [])), d.territory, d.project, d.company, d.sales_order, delivery_note, d.income_account, d.cost_center, d.stock_qty, d.stock_uom ] row += [(d.base_net_rate * d.qty)/d.stock_qty, d.base_net_amount] \ if d.stock_uom != d.uom else [d.base_net_rate, d.base_net_amount] total_tax = 0 for tax in tax_columns: item_tax = itemised_tax.get(d.name, {}).get(tax, {}) row += [item_tax.get("tax_rate", 0), item_tax.get("tax_amount", 0)] total_tax += flt(item_tax.get("tax_amount")) row += [total_tax, d.base_net_amount + total_tax, company_currency] data.append(row) return columns, data def get_columns(additional_table_columns): columns = [ _("Item Code") + ":Link/Item:120", _("Item Name") + "::120", _("Item Group") + ":Link/Item Group:100", _("Invoice") + ":Link/Sales Invoice:120", _("Posting Date") + ":Date:80", _("Customer") + ":Link/Customer:120", _("Customer Name") + "::120", _("User") + "::120"] if additional_table_columns: columns += additional_table_columns columns += [ _("Customer Group") + ":Link/Customer Group:120", _("Receivable Account") + ":Link/Account:120", _("Mode of Payment") + "::120", _("Territory") + ":Link/Territory:80", _("Project") + ":Link/Project:80", _("Company") + ":Link/Company:100", _("Sales Order") + ":Link/Sales Order:100", _("Delivery Note") + ":Link/Delivery Note:100", _("Income Account") + ":Link/Account:140", _("Cost Center") + ":Link/Cost Center:140", _("Stock Qty") + ":Float:120", _("Stock UOM") + "::100", _("Rate") + ":Currency/currency:120", _("Amount") + ":Currency/currency:120" ] return columns def get_conditions(filters): conditions = "" for opts in (("company", " and company=%(company)s"), ("cost_center", " and `tabSales Invoice Item`.cost_center = %(cost_center)s"), ("customer", " and `tabSales Invoice`.customer = %(customer)s"), ("item_code", " and `tabSales Invoice Item`.item_code = %(item_code)s"), ("from_date", " and `tabSales Invoice`.posting_date>=%(from_date)s"), ("to_date", " and `tabSales Invoice`.posting_date<=%(to_date)s"), ("owner", " and `tabSales Invoice`.owner = %(owner)s")): if filters.get(opts[0]): conditions += opts[1] if filters.get("mode_of_payment"): conditions += """ and exists(select name from `tabSales Invoice Payment` where parent=`tabSales Invoice`.name and ifnull(`tabSales Invoice Payment`.mode_of_payment, '') = %(mode_of_payment)s)""" return conditions def get_items(filters, additional_query_columns): conditions = get_conditions(filters) match_conditions = frappe.build_match_conditions("Sales Invoice") if match_conditions: match_conditions = " and {0} ".format(match_conditions) if additional_query_columns: additional_query_columns = ', ' + ', '.join(additional_query_columns) return frappe.db.sql(""" select `tabSales Invoice Item`.name, `tabSales Invoice Item`.parent, `tabSales Invoice`.posting_date, `tabSales Invoice`.debit_to, `tabSales Invoice`.project, `tabSales Invoice`.customer, `tabSales Invoice`.remarks, `tabSales Invoice`.territory, `tabSales Invoice`.company, `tabSales Invoice`.base_net_total, `tabSales Invoice Item`.item_code, `tabSales Invoice Item`.item_name, `tabSales Invoice Item`.item_group, `tabSales Invoice Item`.sales_order, `tabSales Invoice Item`.delivery_note, `tabSales Invoice Item`.income_account, `tabSales Invoice Item`.cost_center, `tabSales Invoice Item`.stock_qty, `tabSales Invoice Item`.stock_uom, `tabSales Invoice Item`.base_net_rate, `tabSales Invoice Item`.base_net_amount, `tabSales Invoice`.customer_name, `tabSales Invoice`.customer_group, `tabSales Invoice Item`.so_detail, `tabSales Invoice`.update_stock, `tabSales Invoice Item`.uom, `tabSales Invoice Item`.qty {0}, `tabSales Invoice`.owner from `tabSales Invoice`, `tabSales Invoice Item` where `tabSales Invoice`.name = `tabSales Invoice Item`.parent and `tabSales Invoice`.docstatus = 1 %s %s order by `tabSales Invoice`.posting_date desc, `tabSales Invoice Item`.cost_center desc, `tabSales Invoice Item`.item_code desc """.format(additional_query_columns or '') % (conditions, match_conditions), filters, as_dict=1) def get_delivery_notes_against_sales_order(item_list): so_dn_map = frappe._dict() so_item_rows = list(set([d.so_detail for d in item_list])) if so_item_rows: delivery_notes = frappe.db.sql(""" select parent, so_detail from `tabDelivery Note Item` where docstatus=1 and so_detail in (%s) group by so_detail, parent """ % (', '.join(['%s']*len(so_item_rows))), tuple(so_item_rows), as_dict=1) for dn in delivery_notes: so_dn_map.setdefault(dn.so_detail, []).append(dn.parent) return so_dn_map def get_tax_accounts(item_list, columns, company_currency, doctype="Sales Invoice", tax_doctype="Sales Taxes and Charges"): import json item_row_map = {} tax_columns = [] invoice_item_row = {} itemised_tax = {} tax_amount_precision = get_field_precision(frappe.get_meta(tax_doctype).get_field("tax_amount"), currency=company_currency) or 2 for d in item_list: invoice_item_row.setdefault(d.parent, []).append(d) item_row_map.setdefault(d.parent, {}).setdefault(d.item_code or d.item_name, []).append(d) conditions = "" if doctype == "Purchase Invoice": conditions = " and category in ('Total', 'Valuation and Total') and base_tax_amount_after_discount_amount != 0" tax_details = frappe.db.sql(""" select parent, description, item_wise_tax_detail, charge_type, base_tax_amount_after_discount_amount from `tab%s` where parenttype = %s and docstatus = 1 and (description is not null and description != '') and parent in (%s) %s order by description """ % (tax_doctype, '%s', ', '.join(['%s']*len(invoice_item_row)), conditions), tuple([doctype] + invoice_item_row.keys())) for parent, description, item_wise_tax_detail, charge_type, tax_amount in tax_details: description = handle_html(description) if description not in tax_columns and tax_amount: # as description is text editor earlier and markup can break the column convention in reports tax_columns.append(description) if item_wise_tax_detail: try: item_wise_tax_detail = json.loads(item_wise_tax_detail) for item_code, tax_data in item_wise_tax_detail.items(): itemised_tax.setdefault(item_code, frappe._dict()) if isinstance(tax_data, list): tax_rate, tax_amount = tax_data else: tax_rate = tax_data tax_amount = 0 if charge_type == "Actual" and not tax_rate: tax_rate = "NA" item_net_amount = sum([flt(d.base_net_amount) for d in item_row_map.get(parent, {}).get(item_code, [])]) for d in item_row_map.get(parent, {}).get(item_code, []): item_tax_amount = flt((tax_amount * d.base_net_amount) / item_net_amount) \ if item_net_amount else 0 if item_tax_amount: itemised_tax.setdefault(d.name, {})[description] = frappe._dict({ "tax_rate": tax_rate, "tax_amount": flt(item_tax_amount, tax_amount_precision) }) except ValueError: continue elif charge_type == "Actual" and tax_amount: for d in invoice_item_row.get(parent, []): itemised_tax.setdefault(d.name, {})[description] = frappe._dict({ "tax_rate": "NA", "tax_amount": flt((tax_amount * d.base_net_amount) / d.base_net_total, tax_amount_precision) }) tax_columns.sort() for desc in tax_columns: columns.append(desc + " Rate:Data:80") columns.append(desc + " Amount:Currency/currency:100") columns += ["Total Tax:Currency/currency:80", "Total:Currency/currency:100"] return itemised_tax, tax_columns
37.514056
129
0.716626
14c112ca41ff83d6b0a74de3d4799bd0ccc44b07
563
py
Python
tests/conf_zephyr_tests.py
sriiora/tcf
e607ce04f97dbb4910d94428c0600a6a7145a825
[ "Apache-2.0" ]
24
2018-08-21T18:04:48.000Z
2022-02-07T22:50:06.000Z
tests/conf_zephyr_tests.py
sriiora/tcf
e607ce04f97dbb4910d94428c0600a6a7145a825
[ "Apache-2.0" ]
16
2018-08-21T18:03:52.000Z
2022-03-01T17:15:42.000Z
tests/conf_zephyr_tests.py
sriiora/tcf
e607ce04f97dbb4910d94428c0600a6a7145a825
[ "Apache-2.0" ]
29
2018-08-22T19:40:59.000Z
2021-12-21T11:13:23.000Z
#! /usr/bin/python3 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # # We only use single BSP BSP models here, because with QEMU targets # otherwise we have to muck around which is the right console ttbl.config.target_add(tt_qemu_zephyr("za-01", [ "x86" ]), target_type = "qemu-x86") ttbl.config.target_add(tt_qemu_zephyr("zb-01", [ "arm" ]), target_type = "qemu-arm") ttbl.config.target_add(tt_qemu_zephyr("zc-01", [ "nios2" ]), target_type = "qemu-nios2")
33.117647
67
0.630551
ae810d130874396842e2e9b0430580f1fcc2e7d9
1,846
py
Python
datapack/data/scripts/ai/individual/nurka.py
DigitalCoin1/L2SPERO
f9ec069804d7bf13f9c4bfb508db2eb6ce37ab94
[ "Unlicense" ]
null
null
null
datapack/data/scripts/ai/individual/nurka.py
DigitalCoin1/L2SPERO
f9ec069804d7bf13f9c4bfb508db2eb6ce37ab94
[ "Unlicense" ]
null
null
null
datapack/data/scripts/ai/individual/nurka.py
DigitalCoin1/L2SPERO
f9ec069804d7bf13f9c4bfb508db2eb6ce37ab94
[ "Unlicense" ]
null
null
null
import sys from com.l2jfrozen.gameserver.ai import CtrlIntention from com.l2jfrozen.gameserver.model.entity.siege.clanhalls import FortressOfResistance from com.l2jfrozen.gameserver.model.quest import State from com.l2jfrozen.gameserver.model.quest import QuestState from com.l2jfrozen.gameserver.model.quest.jython import QuestJython as JQuest from com.l2jfrozen.gameserver.managers import ClanHallManager from com.l2jfrozen.util.random import Rnd from java.lang import System NURKA = 35368 MESSENGER = 35382 CLANLEADERS = [] class Nurka(JQuest): def __init__(self,id,name,descr): JQuest.__init__(self,id,name,descr) def onTalk (self,npc,player): global CLANLEADERS npcId = npc.getNpcId() if npcId == MESSENGER : for clname in CLANLEADERS: if player.getName() == clname : return "<html><body>You already registered!</body></html>" if FortressOfResistance.getInstance().Conditions(player) : CLANLEADERS.append(player.getName()) return "<html><body>You have successful registered on a battle</body></html>" else: return "<html><body>Condition are not allow to do that!</body></html>" return def onAttack (self,npc,player,damage,isPet): CLAN = player.getClan() if CLAN == None : return CLANLEADER = CLAN.getLeader() if CLANLEADER == None : return global CLANLEADERS for clname in CLANLEADERS: if clname <> None : if CLANLEADER.getName() == clname : FortressOfResistance.getInstance().addSiegeDamage(CLAN,damage) return def onKill(self,npc,player,isPet): FortressOfResistance.getInstance().CaptureFinish() return QUEST = Nurka(-1, "nurka", "ai") CREATED = State('Start', QUEST) QUEST.setInitialState(CREATED) QUEST.addTalkId(MESSENGER) QUEST.addStartNpc(MESSENGER) QUEST.addAttackId(NURKA) QUEST.addKillId(NURKA)
30.766667
86
0.733478