hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
c40a6d905d2ababfcd8cc2279b320a8d6dff51ea
251
py
Python
Ago-Dic-2020/lopez-flores-jorge-luis/Especial/Ejercicio2/Autobus.py
bryanbalderas/DAS_Sistemas
1e31f088c0de7134471025a5730b0abfc19d936e
[ "MIT" ]
41
2017-09-26T09:36:32.000Z
2022-03-19T18:05:25.000Z
Ago-Dic-2020/lopez-flores-jorge-luis/Especial/Ejercicio2/Autobus.py
bryanbalderas/DAS_Sistemas
1e31f088c0de7134471025a5730b0abfc19d936e
[ "MIT" ]
67
2017-09-11T05:06:12.000Z
2022-02-14T04:44:04.000Z
Ago-Dic-2020/lopez-flores-jorge-luis/Especial/Ejercicio2/Autobus.py
bryanbalderas/DAS_Sistemas
1e31f088c0de7134471025a5730b0abfc19d936e
[ "MIT" ]
210
2017-09-01T00:10:08.000Z
2022-03-19T18:05:12.000Z
from Especial.Ejercicio1.Vehiculo import * class Autobus(vehicle): def __str__(self): return "Corro a: {} km/h \n Tengo {}km recorridos\n y llevo hasta: {} pasajeros\n".format(self.velocidad_maxima, self.kilometraje, self.capacidad).strip()
27.888889
158
0.729084
47d5f61559722138a95fda4d68233132bb80b14f
2,370
py
Python
src/commands/pipe/display.py
VFRAMEio/vframe
0dbc991697a6de47ccf3b65ced5b1201a45156b6
[ "MIT" ]
null
null
null
src/commands/pipe/display.py
VFRAMEio/vframe
0dbc991697a6de47ccf3b65ced5b1201a45156b6
[ "MIT" ]
null
null
null
src/commands/pipe/display.py
VFRAMEio/vframe
0dbc991697a6de47ccf3b65ced5b1201a45156b6
[ "MIT" ]
null
null
null
############################################################################# # # VFRAME # MIT License # Copyright (c) 2020 Adam Harvey and VFRAME # https://vframe.io # ############################################################################# import click from vframe.models.types import MediaType from vframe.utils.click_utils import processor from vframe.models.types import FrameImage, FrameImageVar from vframe.utils.click_utils import show_help @click.command('') @click.option('--fps', 'opt_fps', default=25, show_default=True, type=click.IntRange(1,1000), help='Frames per second. Use 0 to pause.') @click.option('--pause/--play', 'opt_pause', is_flag=True, help='Autoplay video') @click.option('--frame', 'opt_frame_type', default='draw', type=FrameImageVar, help=show_help(FrameImage)) @click.option('--filter', 'opt_filter', type=click.Choice(['detections', 'no-detections']), help='Only display frames with detections') @processor @click.pass_context def cli(ctx, sink, opt_fps, opt_pause, opt_frame_type, opt_filter): """Display images to screen""" import time from vframe.settings.app_cfg import LOG, SKIP_FRAME, USE_DRAW_FRAME from vframe.settings.app_cfg import PAUSED, READER from vframe.utils.display_utils import DisplayUtils # --------------------------------------------------------------------------- # initialize ctx.obj[USE_DRAW_FRAME] = True display_utils = DisplayUtils() target_mspf = 1000 / opt_fps ctx.obj[PAUSED] = opt_pause st = time.time() # --------------------------------------------------------------------------- # process while True: M = yield # skip frame if flagged if ctx.obj[SKIP_FRAME]: sink.send(M) continue # override pause if single image if ctx.obj[READER].n_files == 1 and M.type == MediaType.IMAGE: ctx.obj[PAUSED] = True # dynamically adjust framerate actual_mspf = (time.time() - st) / 1000 frame_delay_ms = int(max(1, target_mspf - actual_mspf)) # get and display image fde = M.frame_detections_exist if not opt_filter or ((fde and opt_filter == 'detections') or (fde == False and opt_filter == 'no-detections')): im = M.images.get(opt_frame_type) display_utils.show_ctx(ctx, im, delay=frame_delay_ms) # continue sink.send(M) st = time.time()
30
116
0.604219
0f71cbd2bc0b2bc3fdbecfda7958a2b4ec2ad0f0
361
py
Python
trdb2py/indicator_test.py
zhs007/trdb2py
d07b874bd37085ed64b5c6c6c2c21a380024d082
[ "Apache-2.0" ]
null
null
null
trdb2py/indicator_test.py
zhs007/trdb2py
d07b874bd37085ed64b5c6c6c2c21a380024d082
[ "Apache-2.0" ]
43
2020-12-11T09:07:51.000Z
2021-05-29T07:31:10.000Z
trdb2py/indicator_test.py
zhs007/trdb2py
d07b874bd37085ed64b5c6c6c2c21a380024d082
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- import pytest from trdb2py.indicator import isPriceIndicator def test_isPriceIndicator(): assert isPriceIndicator('ema.5') == True assert isPriceIndicator('rsi.5') == False assert isPriceIndicator("ta-ema.29>day/1d/5m/53700") == True assert isPriceIndicator("ta-ema") == True assert isPriceIndicator('rsi') == False
30.083333
64
0.706371
9956d02cb6d0e1899bcd3066ffcc56bba1d1fd73
970
py
Python
tools/miktex-pkg-md5.py
MiKTeX/miktex-packagin
5c4f131c04eaff9006cccdfb2e09c1e9efb61642
[ "MIT" ]
20
2018-04-29T01:07:28.000Z
2022-01-15T14:40:21.000Z
tools/miktex-pkg-md5.py
MiKTeX/miktex-packagin
5c4f131c04eaff9006cccdfb2e09c1e9efb61642
[ "MIT" ]
273
2017-09-03T17:24:13.000Z
2022-03-26T21:26:44.000Z
tools/miktex-pkg-md5.py
MiKTeX/miktex-packagin
5c4f131c04eaff9006cccdfb2e09c1e9efb61642
[ "MIT" ]
2
2020-05-18T14:11:30.000Z
2021-02-28T08:14:41.000Z
#!/usr/bin/env python3 # # Licensed to you under the MIT license. See the LICENSE file in the # project root for more information. import sys from miktex.packaging.info import inifile from miktex.packaging.info import md5 if len(sys.argv) != 2 and len(sys.argv) != 3: sys.exit("Usage: {} [-update] <package>".format(sys.argv[0])) if sys.argv[1] == "-update": if len(sys.argv) != 3: sys.exit("missing package name") update_requested = True package_id = sys.argv[2] else: if len(sys.argv) != 2: sys.exit("invalid argument(s)") update_requested = False package_id = sys.argv[1] md5_hash = md5.try_get_md5_hash(package_id) if update_requested: if not md5_hash: sys.exit("TDS digest of package '{}' could not be calculated".format(package_id)) package_info = inifile.PackageInfo(package_id) package_info.md5 = md5_hash package_info.write() else: print(md5_hash)
27.714286
90
0.657732
c4999cccfedc88e4e187281a191983b9edf90cc7
867
py
Python
openvas/komand_openvas/actions/scan_status/action.py
killstrelok/insightconnect-plugins
911358925f4233ab273dbd8172e8b7b9188ebc01
[ "MIT" ]
1
2020-03-18T09:14:55.000Z
2020-03-18T09:14:55.000Z
openvas/komand_openvas/actions/scan_status/action.py
killstrelok/insightconnect-plugins
911358925f4233ab273dbd8172e8b7b9188ebc01
[ "MIT" ]
1
2021-02-23T23:57:37.000Z
2021-02-23T23:57:37.000Z
openvas/komand_openvas/actions/scan_status/action.py
killstrelok/insightconnect-plugins
911358925f4233ab273dbd8172e8b7b9188ebc01
[ "MIT" ]
null
null
null
import komand from .schema import ScanStatusInput, ScanStatusOutput # Custom imports below import sys class ScanStatus(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='scan_status', description='Get status of scan', input=ScanStatusInput(), output=ScanStatusOutput()) def run(self, params={}): scan_id = str(params.get('scan_id')) try: stat = self.connection.scanner.get_scan_status(scan_id) except: return {'status': '', 'success': False, 'message': ' | '.join([str(sys.exc_info()[0]), str(sys.exc_info()[1])])} return {'status': str(stat), 'success': True, 'message': 'Got status successfully'} def test(self): # TODO: Implement test function return {}
30.964286
92
0.581315
3a4e19d7374dbbc1e76b915db440317af8a20fce
3,418
py
Python
mcc/storage.py
lanl/materialsCloudCompute
6aa5019638b830a79f35a0cf3ef879ff0ab4f2bb
[ "BSD-3-Clause" ]
null
null
null
mcc/storage.py
lanl/materialsCloudCompute
6aa5019638b830a79f35a0cf3ef879ff0ab4f2bb
[ "BSD-3-Clause" ]
null
null
null
mcc/storage.py
lanl/materialsCloudCompute
6aa5019638b830a79f35a0cf3ef879ff0ab4f2bb
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Storage Management""" import random import boto3 def connection(): """Creates an s3 client connection""" return boto3.client("s3") def build_storage(name="", s3=connection()): """Builds a storage bucket for the calculation Parameters ---------- name : string, optional Name of the bucket. (Default: autogenerated) s3 : s3 object, optional S3 client object (Default: Creates a new one) Returns ------- name : string Name of the bucket response : dict api response """ if not name: name = str(hex(random.randint(1e10, 1e11-1))) response = s3.create_bucket(Bucket=name) return name, response def close_storage(name, s3=connection(), safe=True): """Closes storage bucket Parameters ---------- s3 : S3 object S3 client object name : string Name of bucket to delete safe : bool, optional Safely delete will only delete if bucket is empty. (Default: True) """ if safe: response = s3.delete_bucket(Bucket=name) else: empty_storage(name, s3) response = s3.delete_bucket(Bucket=name) return response def empty_storage(name, s3=connection()): """Empties storage bucket Parameters ---------- s3 : s3 object S3 client objection name : string Name of bucket to empty Returns ------- response : dict api response """ response = [] object_list = s3.list_objects(Bucket=name) for file in object_list.get("Contents", []): response.append(s3.delete_object(Bucket=name, Key=file["Key"])) return response def get_bucket_names(s3=connection()): """Gets the names of all of the buckets in s3 coonection Parameters ---------- s3 : s3 object, optional S3 client object (Default: creates connection from aws configuration) Returns ------- names : list{string} the names, if any, of the existing buckets in your s3 """ return [bucket["Name"] for bucket in s3.list_buckets()["Buckets"]] def upload(bucket, file, s3=connection()): """Uploads a file to a specified bucket Parameters ---------- bucket : string Name of bucket file : string Path to file s3 : s3 object, optional S3 client object (Default: auto-connect) Returns ------- response : bucket """ response = s3.upload_file(file, bucket, file) return response def download(bucket, file, key=None, output=None, s3=connection()): """Download a file to a specified bucket Parameters ---------- bucket : string Name of bucket file : string Path to file key : string, optional path to file in bucket (Default: will try to determine key from filename) output : string, optional local path to download to s3 : s3 object, optional S3 client object (Default: auto-connect) Returns ------- response : bucket """ if key is None: obj_list = s3.list_objects(Bucket=bucket) for obj in obj_list.get("Contents", []): if obj["Key"].endswith(file): key = obj["Key"] break if output is None: output = file response = s3.download_file(bucket, key, output) return response
21.229814
81
0.59567
8d812df5a692e796ff222fea6f8e9695ae5cccfc
9,593
py
Python
raft/server.py
guilload/aio-raft
3c6ca593996a26addf54e29ce1abdfb5013f2361
[ "MIT" ]
2
2015-07-23T15:11:12.000Z
2022-02-16T06:06:21.000Z
raft/server.py
guilload/aio-raft
3c6ca593996a26addf54e29ce1abdfb5013f2361
[ "MIT" ]
null
null
null
raft/server.py
guilload/aio-raft
3c6ca593996a26addf54e29ce1abdfb5013f2361
[ "MIT" ]
null
null
null
import asyncio import json import logging import sys from enum import Enum from random import randint from uuid import uuid4 from log import Log from machine import Machine from pool import Pool from protocols import ClientProtocol, ServerProtocol class State(Enum): LEADER = 'Leader' FOLLOWER = 'Follower' CANDIDATE = 'Candidate' class Server(object): def __init__(self, peers, host, port): self.host = host self.port = port self.peer_id = '{}:{}'.format(host, port) self._logger = logging.getLogger(__name__) self._loop = asyncio.get_event_loop() self._pool = Pool(self, peers) # heartbeat constants and bookkeeping variables self._heartbeat_interval = 1000 # ms self._last_interval = None self._min_heartbeat_timeout = 2000 # ms self._max_heartbeat_timeout = 4000 # ms self._heartbeat_timeout = None self._last_heartbeat = None self.reset_heartbeat() self.reset_timeout() self._log = Log(Machine()) self.state = State.FOLLOWER self.term = 0 self.voted = None self.votes = set() self._pending_clients = {} self.handlers = {'append_entries_req': self.handle_append_entries_req, 'append_entries_resp': self.handle_append_entries_resp, 'request_vote_req': self.handle_request_vote_req, 'request_vote_resp': self.handle_request_vote_resp} def reset_heartbeat(self): self._last_heartbeat = self._loop.time() def reset_interval(self): self._last_interval = self._loop.time() def reset_timeout(self): self._heartbeat_timeout = randint(self._min_heartbeat_timeout, self._max_heartbeat_timeout) / 1000 @property def stale(self): return self._last_heartbeat + self._heartbeat_timeout < self._loop.time() @staticmethod def decode(data): return json.loads(data.decode()) @staticmethod def encode(data): return json.dumps(data).encode() def broadcast(self, request): for peer in self._pool: self.send_async(peer, request) @asyncio.coroutine def run(self): self.reset_interval() while True: self._logger.debug('state: {}, term: {}'.format(self.state, self.term)) if self.state == State.LEADER: self.append_entries() if self.state in (State.CANDIDATE, State.FOLLOWER) and self.stale: self.request_vote() yield from self.wait() @asyncio.coroutine def send(self, peer, request): """ Send a request to a peer (if available). """ transport = yield from peer.get_transport() if transport: transport.write(self.encode(request)) def send_async(self, peer, request): """ Schedule the execution """ asyncio.async(self.send(peer, request)) @asyncio.coroutine def wait(self): """ Wait for the next interval. """ tic = self._heartbeat_interval / 1000 - self._loop.time() + self._last_interval yield from asyncio.sleep(tic) self.reset_interval() def to_leader(self): self.append_entries() self.state = State.LEADER self.voted = None self.votes = set() for peer in self._pool: peer.match = -1 peer.next = self._log.index + 1 def to_follower(self, term): self.state = State.FOLLOWER self.term = term self.voted = None self.votes = set() def append_entries(self, peer=None): """ Append entries RPC. """ peers = self._pool.all() if peer is None else [peer] for peer in peers: log_entries = self._log[peer.next:] log_index, log_term, _ = self._log[peer.next - 1] request = {'rpc': 'append_entries_req', 'peer_id': self.peer_id, 'term': self.term, 'log_commit': self._log.commit, 'log_entries': log_entries, 'log_index': log_index, 'log_term': log_term, } self.send_async(peer, request) self._logger.debug('broadcasting append entries') def request_vote(self): """ Request vote RPC. """ self.reset_heartbeat() self.reset_timeout() self.state = State.CANDIDATE self.term += 1 self.voted = self.peer_id self.votes = set([self.peer_id]) request = {'rpc': 'request_vote_req', 'peer_id': self.peer_id, 'term': self.term, 'log_index': self._log.index, 'log_term': self._log.term, } self.broadcast(request) self._logger.debug('broadcasting request vote') def handle_peer(self, request): """ Dispatch requests to the appropriate handlers. """ if self.term < request['term']: self.to_follower(request['term']) return self.handlers[request['rpc']](request) def handle_append_entries_req(self, request): self._logger.debug('append entries request received') if request['term'] < self.term: return self.reset_heartbeat() log_index = request['log_index'] log_term = request['log_term'] if not self._log.match(log_index, log_term): return {'rpc': 'append_entries_resp', 'peer_id': self.peer_id, 'term': self.term, 'log_index': self._log.index, 'success': False } log_entries = request['log_entries'] self._log.append(log_index, log_entries) log_commit = request['log_commit'] if self._log.commit < log_commit: index = min(self._log.index, log_commit) self._log.commit = index self._log.apply(index) if not log_entries: # no need to answer, the peer might have committed return # new entries but has certainly not replicated new ones return {'rpc': 'append_entries_resp', 'peer_id': self.peer_id, 'term': self.term, 'log_index': self._log.index, 'log_term': self._log.term, 'success': True, } def handle_append_entries_resp(self, response): if response['success']: self._logger.debug('append entries succeeded') log_index = response['log_index'] log_term = response['log_term'] peer_id = response['peer_id'] self._pool[peer_id].match = log_index self._pool[peer_id].next = log_index + 1 if (self._log.commit < log_index and self._pool.ack(log_index) and log_term == self.term): self._log.commit = log_index results = self._log.apply(log_index) self.return_results(results) else: peer = self._pool[response['peer_id']] peer.next -= 1 self.append_entries(peer) # self._logger.debug('append entries failed') def handle_request_vote_req(self, request): self._logger.debug('request vote request received') if request['term'] < self.term: return log_index = request['log_index'] log_term = request['log_term'] peer_id = request['peer_id'] if self.voted in (None, peer_id) and self._log.match(log_index, log_term): granted = True self.reset_heartbeat() else: granted = False return {'rpc': 'request_vote_resp', 'peer_id': self.peer_id, 'term': self.term, 'granted': granted, } def handle_request_vote_resp(self, response): if self.term == response['term'] and response['granted']: self.votes.add(response['peer_id']) if self._pool.majority(len(self.votes)): self.to_leader() def handle_client(self, cmd, transport): self._log.add(self.term, cmd) self._pending_clients[(self.term, self._log.index)] = transport self.append_entries() def return_results(self, results): for result in results: term, index, result = result transport = self._pending_clients.pop((term, index)) transport.write(self.encode(result)) transport.close() def run(port, ports): loop = asyncio.get_event_loop() peers = [('localhost', port) for port in ports] raft = Server(peers, 'localhost', port) client = loop.create_server(lambda: ClientProtocol(raft), 'localhost', port + 10) server = loop.create_server(lambda: ServerProtocol(raft), 'localhost', port) coroutines = asyncio.gather(client, server, raft.run()) try: loop.run_forever() except KeyboardInterrupt: pass # server.close() # loop.run_until_complete(server.wait_closed()) # loop.close() if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) port, *ports = map(int, sys.argv[1:]) run(port, ports)
29.69969
87
0.569686
9a898fb1e871fbc0a5eb1651d326dd0f73487717
7,221
py
Python
snakeeyes/blueprints/billing/views/billing.py
Pythonian/bsawf
3e422a81cfb1b157119473c20b94a9a01f8b9672
[ "MIT" ]
null
null
null
snakeeyes/blueprints/billing/views/billing.py
Pythonian/bsawf
3e422a81cfb1b157119473c20b94a9a01f8b9672
[ "MIT" ]
null
null
null
snakeeyes/blueprints/billing/views/billing.py
Pythonian/bsawf
3e422a81cfb1b157119473c20b94a9a01f8b9672
[ "MIT" ]
null
null
null
from flask import (Blueprint, current_app, flash, redirect, render_template, request, url_for) from flask_login import current_user, login_required from config import settings from snakeeyes.blueprints.billing.decorators import (handle_stripe_exceptions, subscription_required) from snakeeyes.blueprints.billing.forms import (CancelSubscriptionForm, CreditCardForm, UpdateSubscriptionForm) from snakeeyes.blueprints.billing.models.coupon import Coupon from snakeeyes.blueprints.billing.models.invoice import Invoice from snakeeyes.blueprints.billing.models.subscription import Subscription from utils.util_json import render_json billing = Blueprint('billing', __name__, template_folder='../templates', url_prefix='/subscription') @billing.route('/pricing') def pricing(): if current_user.is_authenticated and current_user.subscription: return redirect(url_for('billing.update')) form = UpdateSubscriptionForm() return render_template('billing/pricing.html', form=form, plans=settings.STRIPE_PLANS) @billing.route('/coupon_code', methods=['POST']) @login_required def coupon_code(): code = request.form.get('coupon_code') if code is None: return render_json(422, {'error': 'Coupon code cannot be processed.'}) coupon = Coupon.find_by_code(code) if coupon is None: return render_json(404, {'error': 'Coupon code not found.'}) return render_json(200, {'data': coupon.to_json()}) @billing.route('/create', methods=['GET', 'POST']) @handle_stripe_exceptions @login_required def create(): if current_user.subscription: flash('You already have an active subscription.', 'info') return redirect(url_for('user.settings')) plan = request.args.get('plan') subscription_plan = Subscription.get_plan_by_id(plan) # Guard against an invalid or missing plan. if subscription_plan is None and request.method == 'GET': flash('Sorry, that plan did not exist.', 'error') return redirect(url_for('billing.pricing')) stripe_key = current_app.config.get('STRIPE_PUBLISHABLE_KEY') form = CreditCardForm(stripe_key=stripe_key, plan=plan) if form.validate_on_submit(): subscription = Subscription() created = subscription.create(user=current_user, name=request.form.get('name'), plan=request.form.get('plan'), coupon=request.form.get('coupon_code'), token=request.form.get('stripe_token')) if created: flash('Awesome, thanks for subscribing!', 'success') else: flash('You must enable JavaScript for this request.', 'warning') return redirect(url_for('user.settings')) return render_template('billing/payment_method.html', form=form, plan=subscription_plan) @billing.route('/update', methods=['GET', 'POST']) @handle_stripe_exceptions @subscription_required @login_required def update(): current_plan = current_user.subscription.plan active_plan = Subscription.get_plan_by_id(current_plan) new_plan = Subscription.get_new_plan(request.form.keys()) plan = Subscription.get_plan_by_id(new_plan) # Guard against an invalid, missing or identical plan. is_same_plan = new_plan == active_plan['id'] if ((new_plan is not None and plan is None) or is_same_plan) and \ request.method == 'POST': return redirect(url_for('billing.update')) form = UpdateSubscriptionForm(coupon_code=current_user.subscription.coupon) if form.validate_on_submit(): subscription = Subscription() updated = subscription.update(user=current_user, coupon=request.form.get('coupon_code'), plan=plan.get('id')) if updated: flash('Your subscription has been updated.', 'success') return redirect(url_for('user.settings')) return render_template('billing/pricing.html', form=form, plans=settings.STRIPE_PLANS, active_plan=active_plan) @billing.route('/cancel', methods=['GET', 'POST']) @handle_stripe_exceptions @login_required def cancel(): if not current_user.subscription: flash('You do not have an active subscription.', 'error') return redirect(url_for('user.settings')) form = CancelSubscriptionForm() if form.validate_on_submit(): subscription = Subscription() cancelled = subscription.cancel(user=current_user) if cancelled: flash('Sorry to see you go, your subscription has been cancelled.', 'success') return redirect(url_for('user.settings')) return render_template('billing/cancel.html', form=form) @billing.route('/update_payment_method', methods=['GET', 'POST']) @handle_stripe_exceptions @login_required def update_payment_method(): if not current_user.credit_card: flash('You do not have a payment method on file.', 'error') return redirect(url_for('user.settings')) active_plan = Subscription.get_plan_by_id( current_user.subscription.plan) card = current_user.credit_card stripe_key = current_app.config.get('STRIPE_PUBLISHABLE_KEY') form = CreditCardForm(stripe_key=stripe_key, plan=active_plan, name=current_user.name) if form.validate_on_submit(): subscription = Subscription() updated = subscription.update_payment_method(user=current_user, credit_card=card, name=request.form.get( 'name'), token=request.form.get( 'stripe_token')) if updated: flash('Your payment method has been updated.', 'success') else: flash('You must enable JavaScript for this request.', 'warning') return redirect(url_for('user.settings')) return render_template('billing/payment_method.html', form=form, plan=active_plan, card_last4=str(card.last4)) @billing.route('/billing_details') @handle_stripe_exceptions @login_required def billing_details(): invoices = Invoice.billing_history(current_user) if current_user.subscription: upcoming = Invoice.upcoming(current_user.payment_id) coupon = Coupon.query \ .filter(Coupon.code == current_user.subscription.coupon).first() else: upcoming = None coupon = None return render_template('billing/billing_details.html', invoices=invoices, upcoming=upcoming, coupon=coupon)
37.221649
79
0.62429
4bcabca8ad0ec3768c301f665d2e898cc3432f07
393
py
Python
src/MpesaAPI/wsgi.py
EdwinMurimi/django-daraja
367ea6000c5097ec5941c28907300a8fecc505f8
[ "MIT" ]
null
null
null
src/MpesaAPI/wsgi.py
EdwinMurimi/django-daraja
367ea6000c5097ec5941c28907300a8fecc505f8
[ "MIT" ]
null
null
null
src/MpesaAPI/wsgi.py
EdwinMurimi/django-daraja
367ea6000c5097ec5941c28907300a8fecc505f8
[ "MIT" ]
null
null
null
""" WSGI config for MpesaAPI project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'MpesaAPI.settings') application = get_wsgi_application()
23.117647
78
0.78626
48bca5ae9a59423fb329fce2c3a0ad15ddf8c427
3,953
py
Python
bigquery/tests/unit/test_dbapi__helpers.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
1
2021-01-04T11:40:17.000Z
2021-01-04T11:40:17.000Z
bigquery/tests/unit/test_dbapi__helpers.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
bigquery/tests/unit/test_dbapi__helpers.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import math import unittest import google.cloud._helpers from google.cloud.bigquery.dbapi import _helpers from google.cloud.bigquery.dbapi import exceptions class TestQueryParameters(unittest.TestCase): def test_scalar_to_query_parameter(self): expected_types = [ (True, 'BOOL'), (False, 'BOOL'), (123, 'INT64'), (-123456789, 'INT64'), (1.25, 'FLOAT64'), (b'I am some bytes', 'BYTES'), (u'I am a string', 'STRING'), (datetime.date(2017, 4, 1), 'DATE'), (datetime.time(12, 34, 56), 'TIME'), (datetime.datetime(2012, 3, 4, 5, 6, 7), 'DATETIME'), ( datetime.datetime( 2012, 3, 4, 5, 6, 7, tzinfo=google.cloud._helpers.UTC), 'TIMESTAMP', ), ] for value, expected_type in expected_types: msg = 'value: {} expected_type: {}'.format(value, expected_type) parameter = _helpers.scalar_to_query_parameter(value) self.assertIsNone(parameter.name, msg=msg) self.assertEqual(parameter.type_, expected_type, msg=msg) self.assertEqual(parameter.value, value, msg=msg) named_parameter = _helpers.scalar_to_query_parameter( value, name='myvar') self.assertEqual(named_parameter.name, 'myvar', msg=msg) self.assertEqual(named_parameter.type_, expected_type, msg=msg) self.assertEqual(named_parameter.value, value, msg=msg) def test_scalar_to_query_parameter_w_unexpected_type(self): with self.assertRaises(exceptions.ProgrammingError): _helpers.scalar_to_query_parameter(value={'a': 'dictionary'}) def test_scalar_to_query_parameter_w_special_floats(self): nan_parameter = _helpers.scalar_to_query_parameter(float('nan')) self.assertTrue(math.isnan(nan_parameter.value)) self.assertEqual(nan_parameter.type_, 'FLOAT64') inf_parameter = _helpers.scalar_to_query_parameter(float('inf')) self.assertTrue(math.isinf(inf_parameter.value)) self.assertEqual(inf_parameter.type_, 'FLOAT64') def test_to_query_parameters_w_dict(self): parameters = { 'somebool': True, 'somestring': u'a-string-value', } query_parameters = _helpers.to_query_parameters(parameters) query_parameter_tuples = [] for param in query_parameters: query_parameter_tuples.append( (param.name, param.type_, param.value)) self.assertSequenceEqual( sorted(query_parameter_tuples), sorted([ ('somebool', 'BOOL', True), ('somestring', 'STRING', u'a-string-value'), ])) def test_to_query_parameters_w_list(self): parameters = [True, u'a-string-value'] query_parameters = _helpers.to_query_parameters(parameters) query_parameter_tuples = [] for param in query_parameters: query_parameter_tuples.append( (param.name, param.type_, param.value)) self.assertSequenceEqual( sorted(query_parameter_tuples), sorted([ (None, 'BOOL', True), (None, 'STRING', u'a-string-value'), ]))
40.336735
76
0.630407
ee4d6d8a0b7f26e246800ff0f570032d9a2752f7
25,399
py
Python
nltk/text.py
yigitsever/nltk
952a9636db4b1178dceb1789c98d56161deda3ab
[ "Apache-2.0" ]
4
2020-02-05T11:26:47.000Z
2021-05-26T07:48:46.000Z
nltk/text.py
yigitsever/nltk
952a9636db4b1178dceb1789c98d56161deda3ab
[ "Apache-2.0" ]
1
2021-04-30T17:27:07.000Z
2021-04-30T17:27:07.000Z
nltk/text.py
yigitsever/nltk
952a9636db4b1178dceb1789c98d56161deda3ab
[ "Apache-2.0" ]
1
2021-05-12T07:12:02.000Z
2021-05-12T07:12:02.000Z
# Natural Language Toolkit: Texts # # Copyright (C) 2001-2019 NLTK Project # Author: Steven Bird <stevenbird1@gmail.com> # Edward Loper <edloper@gmail.com> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ This module brings together a variety of NLTK functionality for text analysis, and provides simple, interactive interfaces. Functionality includes: concordancing, collocation discovery, regular expression search over tokenized strings, and distributional similarity. """ from __future__ import print_function, division, unicode_literals, absolute_import from math import log from collections import defaultdict, Counter, namedtuple from functools import reduce import re from six import text_type from nltk.probability import FreqDist from nltk.probability import ConditionalFreqDist as CFD from nltk.util import tokenwrap, LazyConcatenation from nltk.metrics import f_measure, BigramAssocMeasures from nltk.collocations import BigramCollocationFinder from nltk.compat import python_2_unicode_compatible ConcordanceLine = namedtuple( 'ConcordanceLine', ['left', 'query', 'right', 'offset', 'left_print', 'right_print', 'line'], ) class ContextIndex(object): """ A bidirectional index between words and their 'contexts' in a text. The context of a word is usually defined to be the words that occur in a fixed window around the word; but other definitions may also be used by providing a custom context function. """ @staticmethod def _default_context(tokens, i): """One left token and one right token, normalized to lowercase""" left = tokens[i - 1].lower() if i != 0 else '*START*' right = tokens[i + 1].lower() if i != len(tokens) - 1 else '*END*' return (left, right) def __init__(self, tokens, context_func=None, filter=None, key=lambda x: x): self._key = key self._tokens = tokens if context_func: self._context_func = context_func else: self._context_func = self._default_context if filter: tokens = [t for t in tokens if filter(t)] self._word_to_contexts = CFD( (self._key(w), self._context_func(tokens, i)) for i, w in enumerate(tokens) ) self._context_to_words = CFD( (self._context_func(tokens, i), self._key(w)) for i, w in enumerate(tokens) ) def tokens(self): """ :rtype: list(str) :return: The document that this context index was created from. """ return self._tokens def word_similarity_dict(self, word): """ Return a dictionary mapping from words to 'similarity scores,' indicating how often these two words occur in the same context. """ word = self._key(word) word_contexts = set(self._word_to_contexts[word]) scores = {} for w, w_contexts in self._word_to_contexts.items(): scores[w] = f_measure(word_contexts, set(w_contexts)) return scores def similar_words(self, word, n=20): scores = defaultdict(int) for c in self._word_to_contexts[self._key(word)]: for w in self._context_to_words[c]: if w != word: scores[w] += ( self._context_to_words[c][word] * self._context_to_words[c][w] ) return sorted(scores, key=scores.get, reverse=True)[:n] def common_contexts(self, words, fail_on_unknown=False): """ Find contexts where the specified words can all appear; and return a frequency distribution mapping each context to the number of times that context was used. :param words: The words used to seed the similarity search :type words: str :param fail_on_unknown: If true, then raise a value error if any of the given words do not occur at all in the index. """ words = [self._key(w) for w in words] contexts = [set(self._word_to_contexts[w]) for w in words] empty = [words[i] for i in range(len(words)) if not contexts[i]] common = reduce(set.intersection, contexts) if empty and fail_on_unknown: raise ValueError("The following word(s) were not found:", " ".join(words)) elif not common: # nothing in common -- just return an empty freqdist. return FreqDist() else: fd = FreqDist( c for w in words for c in self._word_to_contexts[w] if c in common ) return fd @python_2_unicode_compatible class ConcordanceIndex(object): """ An index that can be used to look up the offset locations at which a given word occurs in a document. """ def __init__(self, tokens, key=lambda x: x): """ Construct a new concordance index. :param tokens: The document (list of tokens) that this concordance index was created from. This list can be used to access the context of a given word occurrence. :param key: A function that maps each token to a normalized version that will be used as a key in the index. E.g., if you use ``key=lambda s:s.lower()``, then the index will be case-insensitive. """ self._tokens = tokens """The document (list of tokens) that this concordance index was created from.""" self._key = key """Function mapping each token to an index key (or None).""" self._offsets = defaultdict(list) """Dictionary mapping words (or keys) to lists of offset indices.""" # Initialize the index (self._offsets) for index, word in enumerate(tokens): word = self._key(word) self._offsets[word].append(index) def tokens(self): """ :rtype: list(str) :return: The document that this concordance index was created from. """ return self._tokens def offsets(self, word): """ :rtype: list(int) :return: A list of the offset positions at which the given word occurs. If a key function was specified for the index, then given word's key will be looked up. """ word = self._key(word) return self._offsets[word] def __repr__(self): return '<ConcordanceIndex for %d tokens (%d types)>' % ( len(self._tokens), len(self._offsets), ) def find_concordance(self, word, width=80): """ Find all concordance lines given the query word. """ half_width = (width - len(word) - 2) // 2 context = width // 4 # approx number of words of context # Find the instances of the word to create the ConcordanceLine concordance_list = [] offsets = self.offsets(word) if offsets: for i in offsets: query_word = self._tokens[i] # Find the context of query word. left_context = self._tokens[max(0, i - context) : i] right_context = self._tokens[i + 1 : i + context] # Create the pretty lines with the query_word in the middle. left_print = ' '.join(left_context)[-half_width:] right_print = ' '.join(right_context)[:half_width] # The WYSIWYG line of the concordance. line_print = ' '.join([left_print, query_word, right_print]) # Create the ConcordanceLine concordance_line = ConcordanceLine( left_context, query_word, right_context, i, left_print, right_print, line_print, ) concordance_list.append(concordance_line) return concordance_list def print_concordance(self, word, width=80, lines=25): """ Print concordance lines given the query word. :param word: The target word :type word: str :param lines: The number of lines to display (default=25) :type lines: int :param width: The width of each line, in characters (default=80) :type width: int :param save: The option to save the concordance. :type save: bool """ concordance_list = self.find_concordance(word, width=width) if not concordance_list: print("no matches") else: lines = min(lines, len(concordance_list)) print("Displaying {} of {} matches:".format(lines, len(concordance_list))) for i, concordance_line in enumerate(concordance_list[:lines]): print(concordance_line.line) class TokenSearcher(object): """ A class that makes it easier to use regular expressions to search over tokenized strings. The tokenized string is converted to a string where tokens are marked with angle brackets -- e.g., ``'<the><window><is><still><open>'``. The regular expression passed to the ``findall()`` method is modified to treat angle brackets as non-capturing parentheses, in addition to matching the token boundaries; and to have ``'.'`` not match the angle brackets. """ def __init__(self, tokens): self._raw = ''.join('<' + w + '>' for w in tokens) def findall(self, regexp): """ Find instances of the regular expression in the text. The text is a list of tokens, and a regexp pattern to match a single token must be surrounded by angle brackets. E.g. >>> from nltk.text import TokenSearcher >>> print('hack'); from nltk.book import text1, text5, text9 hack... >>> text5.findall("<.*><.*><bro>") you rule bro; telling you bro; u twizted bro >>> text1.findall("<a>(<.*>)<man>") monied; nervous; dangerous; white; white; white; pious; queer; good; mature; white; Cape; great; wise; wise; butterless; white; fiendish; pale; furious; better; certain; complete; dismasted; younger; brave; brave; brave; brave >>> text9.findall("<th.*>{3,}") thread through those; the thought that; that the thing; the thing that; that that thing; through these than through; them that the; through the thick; them that they; thought that the :param regexp: A regular expression :type regexp: str """ # preprocess the regular expression regexp = re.sub(r'\s', '', regexp) regexp = re.sub(r'<', '(?:<(?:', regexp) regexp = re.sub(r'>', ')>)', regexp) regexp = re.sub(r'(?<!\\)\.', '[^>]', regexp) # perform the search hits = re.findall(regexp, self._raw) # Sanity check for h in hits: if not h.startswith('<') and h.endswith('>'): raise ValueError('Bad regexp for TokenSearcher.findall') # postprocess the output hits = [h[1:-1].split('><') for h in hits] return hits @python_2_unicode_compatible class Text(object): """ A wrapper around a sequence of simple (string) tokens, which is intended to support initial exploration of texts (via the interactive console). Its methods perform a variety of analyses on the text's contexts (e.g., counting, concordancing, collocation discovery), and display the results. If you wish to write a program which makes use of these analyses, then you should bypass the ``Text`` class, and use the appropriate analysis function or class directly instead. A ``Text`` is typically initialized from a given document or corpus. E.g.: >>> import nltk.corpus >>> from nltk.text import Text >>> moby = Text(nltk.corpus.gutenberg.words('melville-moby_dick.txt')) """ # This defeats lazy loading, but makes things faster. This # *shouldn't* be necessary because the corpus view *should* be # doing intelligent caching, but without this it's running slow. # Look into whether the caching is working correctly. _COPY_TOKENS = True def __init__(self, tokens, name=None): """ Create a Text object. :param tokens: The source text. :type tokens: sequence of str """ if self._COPY_TOKENS: tokens = list(tokens) self.tokens = tokens if name: self.name = name elif ']' in tokens[:20]: end = tokens[:20].index(']') self.name = " ".join(text_type(tok) for tok in tokens[1:end]) else: self.name = " ".join(text_type(tok) for tok in tokens[:8]) + "..." # //////////////////////////////////////////////////////////// # Support item & slice access # //////////////////////////////////////////////////////////// def __getitem__(self, i): return self.tokens[i] def __len__(self): return len(self.tokens) # //////////////////////////////////////////////////////////// # Interactive console methods # //////////////////////////////////////////////////////////// def concordance(self, word, width=79, lines=25): """ Prints a concordance for ``word`` with the specified context window. Word matching is not case-sensitive. :param word: The target word :type word: str :param width: The width of each line, in characters (default=80) :type width: int :param lines: The number of lines to display (default=25) :type lines: int :seealso: ``ConcordanceIndex`` """ if '_concordance_index' not in self.__dict__: self._concordance_index = ConcordanceIndex( self.tokens, key=lambda s: s.lower() ) return self._concordance_index.print_concordance(word, width, lines) def concordance_list(self, word, width=79, lines=25): """ Generate a concordance for ``word`` with the specified context window. Word matching is not case-sensitive. :param word: The target word :type word: str :param width: The width of each line, in characters (default=80) :type width: int :param lines: The number of lines to display (default=25) :type lines: int :seealso: ``ConcordanceIndex`` """ if '_concordance_index' not in self.__dict__: self._concordance_index = ConcordanceIndex( self.tokens, key=lambda s: s.lower() ) return self._concordance_index.find_concordance(word, width)[:lines] def collocation_list(self, num=20, window_size=2): """ Return collocations derived from the text, ignoring stopwords. :param num: The maximum number of collocations to return. :type num: int :param window_size: The number of tokens spanned by a collocation (default=2) :type window_size: int """ if not ( '_collocations' in self.__dict__ and self._num == num and self._window_size == window_size ): self._num = num self._window_size = window_size # print("Building collocations list") from nltk.corpus import stopwords ignored_words = stopwords.words('english') finder = BigramCollocationFinder.from_words(self.tokens, window_size) finder.apply_freq_filter(2) finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words) bigram_measures = BigramAssocMeasures() self._collocations = finder.nbest(bigram_measures.likelihood_ratio, num) return [w1 + ' ' + w2 for w1, w2 in self._collocations] def collocations(self, num=20, window_size=2): """ Print collocations derived from the text, ignoring stopwords. :param num: The maximum number of collocations to print. :type num: int :param window_size: The number of tokens spanned by a collocation (default=2) :type window_size: int """ collocation_strings = [w1 + ' ' + w2 for w1, w2 in self.collocation_list(num, window_size)] print(tokenwrap(collocation_strings, separator="; ")) def count(self, word): """ Count the number of times this word appears in the text. """ return self.tokens.count(word) def index(self, word): """ Find the index of the first occurrence of the word in the text. """ return self.tokens.index(word) def readability(self, method): # code from nltk_contrib.readability raise NotImplementedError def similar(self, word, num=20): """ Distributional similarity: find other words which appear in the same contexts as the specified word; list most similar words first. :param word: The word used to seed the similarity search :type word: str :param num: The number of words to generate (default=20) :type num: int :seealso: ContextIndex.similar_words() """ if '_word_context_index' not in self.__dict__: # print('Building word-context index...') self._word_context_index = ContextIndex( self.tokens, filter=lambda x: x.isalpha(), key=lambda s: s.lower() ) # words = self._word_context_index.similar_words(word, num) word = word.lower() wci = self._word_context_index._word_to_contexts if word in wci.conditions(): contexts = set(wci[word]) fd = Counter( w for w in wci.conditions() for c in wci[w] if c in contexts and not w == word ) words = [w for w, _ in fd.most_common(num)] print(tokenwrap(words)) else: print("No matches") def common_contexts(self, words, num=20): """ Find contexts where the specified words appear; list most frequent common contexts first. :param words: The words used to seed the similarity search :type words: str :param num: The number of words to generate (default=20) :type num: int :seealso: ContextIndex.common_contexts() """ if '_word_context_index' not in self.__dict__: # print('Building word-context index...') self._word_context_index = ContextIndex( self.tokens, key=lambda s: s.lower() ) try: fd = self._word_context_index.common_contexts(words, True) if not fd: print("No common contexts were found") else: ranked_contexts = [w for w, _ in fd.most_common(num)] print(tokenwrap(w1 + "_" + w2 for w1, w2 in ranked_contexts)) except ValueError as e: print(e) def dispersion_plot(self, words): """ Produce a plot showing the distribution of the words through the text. Requires pylab to be installed. :param words: The words to be plotted :type words: list(str) :seealso: nltk.draw.dispersion_plot() """ from nltk.draw import dispersion_plot dispersion_plot(self, words) def generate(self, words): """ Issues a reminder to users following the book online """ import warnings warnings.warn( 'The generate() method is no longer available.', DeprecationWarning ) def plot(self, *args): """ See documentation for FreqDist.plot() :seealso: nltk.prob.FreqDist.plot() """ self.vocab().plot(*args) def vocab(self): """ :seealso: nltk.prob.FreqDist """ if "_vocab" not in self.__dict__: # print("Building vocabulary index...") self._vocab = FreqDist(self) return self._vocab def findall(self, regexp): """ Find instances of the regular expression in the text. The text is a list of tokens, and a regexp pattern to match a single token must be surrounded by angle brackets. E.g. >>> print('hack'); from nltk.book import text1, text5, text9 hack... >>> text5.findall("<.*><.*><bro>") you rule bro; telling you bro; u twizted bro >>> text1.findall("<a>(<.*>)<man>") monied; nervous; dangerous; white; white; white; pious; queer; good; mature; white; Cape; great; wise; wise; butterless; white; fiendish; pale; furious; better; certain; complete; dismasted; younger; brave; brave; brave; brave >>> text9.findall("<th.*>{3,}") thread through those; the thought that; that the thing; the thing that; that that thing; through these than through; them that the; through the thick; them that they; thought that the :param regexp: A regular expression :type regexp: str """ if "_token_searcher" not in self.__dict__: self._token_searcher = TokenSearcher(self) hits = self._token_searcher.findall(regexp) hits = [' '.join(h) for h in hits] print(tokenwrap(hits, "; ")) # //////////////////////////////////////////////////////////// # Helper Methods # //////////////////////////////////////////////////////////// _CONTEXT_RE = re.compile('\w+|[\.\!\?]') def _context(self, tokens, i): """ One left & one right token, both case-normalized. Skip over non-sentence-final punctuation. Used by the ``ContextIndex`` that is created for ``similar()`` and ``common_contexts()``. """ # Left context j = i - 1 while j >= 0 and not self._CONTEXT_RE.match(tokens[j]): j -= 1 left = tokens[j] if j != 0 else '*START*' # Right context j = i + 1 while j < len(tokens) and not self._CONTEXT_RE.match(tokens[j]): j += 1 right = tokens[j] if j != len(tokens) else '*END*' return (left, right) # //////////////////////////////////////////////////////////// # String Display # //////////////////////////////////////////////////////////// def __str__(self): return '<Text: %s>' % self.name def __repr__(self): return '<Text: %s>' % self.name # Prototype only; this approach will be slow to load class TextCollection(Text): """A collection of texts, which can be loaded with list of texts, or with a corpus consisting of one or more texts, and which supports counting, concordancing, collocation discovery, etc. Initialize a TextCollection as follows: >>> import nltk.corpus >>> from nltk.text import TextCollection >>> print('hack'); from nltk.book import text1, text2, text3 hack... >>> gutenberg = TextCollection(nltk.corpus.gutenberg) >>> mytexts = TextCollection([text1, text2, text3]) Iterating over a TextCollection produces all the tokens of all the texts in order. """ def __init__(self, source): if hasattr(source, 'words'): # bridge to the text corpus reader source = [source.words(f) for f in source.fileids()] self._texts = source Text.__init__(self, LazyConcatenation(source)) self._idf_cache = {} def tf(self, term, text): """ The frequency of the term in text. """ return text.count(term) / len(text) def idf(self, term): """ The number of texts in the corpus divided by the number of texts that the term appears in. If a term does not appear in the corpus, 0.0 is returned. """ # idf values are cached for performance. idf = self._idf_cache.get(term) if idf is None: matches = len([True for text in self._texts if term in text]) if len(self._texts) == 0: raise ValueError('IDF undefined for empty document collection') idf = log(len(self._texts) / matches) if matches else 0.0 self._idf_cache[term] = idf return idf def tf_idf(self, term, text): return self.tf(term, text) * self.idf(term) def demo(): from nltk.corpus import brown text = Text(brown.words(categories='news')) print(text) print() print("Concordance:") text.concordance('news') print() print("Distributionally similar words:") text.similar('news') print() print("Collocations:") text.collocations() print() # print("Automatically generated text:") # text.generate() # print() print("Dispersion plot:") text.dispersion_plot(['news', 'report', 'said', 'announced']) print() print("Vocabulary plot:") text.plot(50) print() print("Indexing:") print("text[3]:", text[3]) print("text[3:5]:", text[3:5]) print("text.vocab()['news']:", text.vocab()['news']) if __name__ == '__main__': demo() __all__ = [ "ContextIndex", "ConcordanceIndex", "TokenSearcher", "Text", "TextCollection", ]
35.473464
99
0.589196
3055847e43da805015f37bcfb04096c0ff642d02
2,173
py
Python
test/pybind_test/multi_node_dcn_4node_2gpu.py
quinnrong94/HugeCTR
1068dc48b05a1219b393144dd3b61a1749f232df
[ "Apache-2.0" ]
1
2021-06-04T04:03:54.000Z
2021-06-04T04:03:54.000Z
test/pybind_test/multi_node_dcn_4node_2gpu.py
quinnrong94/HugeCTR
1068dc48b05a1219b393144dd3b61a1749f232df
[ "Apache-2.0" ]
null
null
null
test/pybind_test/multi_node_dcn_4node_2gpu.py
quinnrong94/HugeCTR
1068dc48b05a1219b393144dd3b61a1749f232df
[ "Apache-2.0" ]
null
null
null
from hugectr import Session, solver_parser_helper, get_learning_rate_scheduler from mpi4py import MPI import threading import sys def session_impl_test(json_file): solver_config = solver_parser_helper(seed = 0, batchsize = 16384, batchsize_eval = 16384, model_file = "", embedding_files = [], vvgpu = [[0,1],[2,3],[4,5],[6,7]], use_mixed_precision = False, scaler = 1.0, i64_input_key = False, use_algorithm_search = True, use_cuda_graph = True, repeat_dataset = True ) sess = Session(solver_config, json_file) sess.start_data_reading() lr_sch = get_learning_rate_scheduler(json_file) for i in range(10000): lr = lr_sch.get_next() sess.set_learning_rate(lr) sess.train() if (i%100 == 0): loss = sess.get_current_loss() if (rank == 0): print("[HUGECTR][INFO] iter: {}; loss: {}".format(i, loss)) if (i%1000 == 0 and i != 0): sess.check_overflow() sess.copy_weights_for_evaluation() data_reader_eval = sess.get_data_reader_eval() for _ in range(solver_config.max_eval_batches): sess.eval() metrics = sess.get_eval_metrics() print("[HUGECTR][INFO] rank: {}, iter: {}, {}".format(rank, i, metrics)) return if __name__ == "__main__": json_file = sys.argv[1] comm = MPI.COMM_WORLD rank = comm.Get_rank() thread = threading.Thread(target=session_impl_test, args = (json_file,), name='[rank-%d train]' % rank) current_thread = threading.currentThread() print('[HUGECTR][INFO] %s is main thread: %s' % (current_thread.name, MPI.Is_thread_main())) print('[HUGECTR][INFO] before: rank %d '% (rank)) # start the thread thread.start() # wait for terminate thread.join() print('[HUGECTR][INFO] after: rank %d ' % (rank))
39.509091
105
0.541647
bc252ddc9c2a12d3d363641f212d576994ac1ad3
1,653
py
Python
h2o-py/tests/testdir_algos/glm/pyunit_solvers_glm.py
ghk829/h2o-study
bb2c2ff6bf3ca9430b1f0b428b007aedfd56264d
[ "Apache-2.0" ]
null
null
null
h2o-py/tests/testdir_algos/glm/pyunit_solvers_glm.py
ghk829/h2o-study
bb2c2ff6bf3ca9430b1f0b428b007aedfd56264d
[ "Apache-2.0" ]
1
2021-11-15T17:47:41.000Z
2021-11-15T17:47:41.000Z
h2o-py/tests/testdir_algos/glm/pyunit_solvers_glm.py
purushothamgowthu/h2oai-h2o-3
af79095b600684978a9c397a086f1dedb9540760
[ "Apache-2.0" ]
1
2019-12-09T03:07:04.000Z
2019-12-09T03:07:04.000Z
from __future__ import print_function import sys from h2o.exceptions import H2OResponseError sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.estimators.glm import H2OGeneralizedLinearEstimator def glm_solvers(): predictors = ["displacement","power","weight","acceleration","year"] for solver in ["AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE", "COORDINATE_DESCENT"]: print("Solver = {0}".format(solver)) for family in ["binomial", "gaussian", "poisson", "tweedie", "gamma"]: if family == 'binomial': response_col = "economy_20mpg" elif family == 'gaussian': response_col = "economy" else: response_col = "cylinders" print("Family = {0}".format(family)) training_data = h2o.import_file(pyunit_utils.locate("smalldata/junit/cars_20mpg.csv")) if family == 'binomial': training_data[response_col] = training_data[response_col].asfactor() else: training_data[response_col] = training_data[response_col].asnumeric() model = H2OGeneralizedLinearEstimator(family=family, alpha=0, Lambda=1e-5, solver=solver) try: model.train(x=predictors, y=response_col, training_frame=training_data) except H2OResponseError as e: #Coordinate descent (naive version) is not yet fully implemented. # An exception is expected. assert solver == "COORDINATE_DESCENT_NAIVE" assert "unimplemented: Naive coordinate descent is not supported." in str(e) h2o.remove(training_data) if __name__ == "__main__": pyunit_utils.standalone_test(glm_solvers) else: glm_solvers()
41.325
102
0.695705
8d6848194d9e725436f9026b67c0ae41d2a1227c
518
py
Python
tests/test_micro.py
basic-ph/feat
0660a34e5eeeab920d1ce8e139ab486e63bd419b
[ "MIT" ]
2
2020-07-13T11:59:19.000Z
2020-07-13T12:02:05.000Z
tests/test_micro.py
basic-ph/feat
0660a34e5eeeab920d1ce8e139ab486e63bd419b
[ "MIT" ]
null
null
null
tests/test_micro.py
basic-ph/feat
0660a34e5eeeab920d1ce8e139ab486e63bd419b
[ "MIT" ]
null
null
null
from feat import micro def test_reuss_model(): Ef = 224.4 Em = 3.1 Vf = 0.66 output = micro.reuss_model(Ef, Em, Vf) assert round(output,2) == 8.88 def test_halpin_tsai_model(): # DOI: 10.1080/15376494.2014.938792 (page 11) Ef = 74 Em = 3.35 Vf = 0.3 output_1 = micro.halpin_tsai_model(Ef, Em, Vf) print(output_1) output_2 = micro.halpin_tsai_model(Ef, Em, Vf, xi=1) print(output_2) assert round(output_1, 3) == 6.930 assert round(output_2, 3) == 5.879
20.72
56
0.621622
5996e4378f366978af04818cbda24d9cc19ced74
721
py
Python
Python Script Sample/osinfo.py
areriff/pythonlearncanvas
b797887311cafe38030e82cdac2068618ce4d33a
[ "MIT" ]
null
null
null
Python Script Sample/osinfo.py
areriff/pythonlearncanvas
b797887311cafe38030e82cdac2068618ce4d33a
[ "MIT" ]
null
null
null
Python Script Sample/osinfo.py
areriff/pythonlearncanvas
b797887311cafe38030e82cdac2068618ce4d33a
[ "MIT" ]
null
null
null
# Script Name : osinfo.py # Author : Craig Richards # Created : 5th April 2012 # Last Modified : # Version : 1.0 # Modifications : # Description : Displays some information about the OS you are running this script on import platform profile = [ platform.architecture(), platform.dist(), platform.libc_ver(), platform.mac_ver(), platform.machine(), platform.node(), platform.platform(), platform.processor(), platform.python_build(), platform.python_compiler(), platform.python_version(), platform.release(), platform.system(), platform.uname(), platform.version(), ] i = 1 for item in profile: print '#', i, ' ', item i = i + 1;
20.6
87
0.632455
61c1a7ed7c55c3b8d9aae422e2ee9735786d7c9f
639
py
Python
magnum_ui/api/rest/__init__.py
NeCTAR-RC/magnum-ui
f2f3e9ec71fecd60f166faf5bd228c0f26be80d0
[ "Apache-2.0" ]
29
2015-06-23T08:06:10.000Z
2021-08-09T18:20:54.000Z
magnum_ui/api/rest/__init__.py
NeCTAR-RC/magnum-ui
f2f3e9ec71fecd60f166faf5bd228c0f26be80d0
[ "Apache-2.0" ]
null
null
null
magnum_ui/api/rest/__init__.py
NeCTAR-RC/magnum-ui
f2f3e9ec71fecd60f166faf5bd228c0f26be80d0
[ "Apache-2.0" ]
14
2016-01-08T06:30:41.000Z
2022-01-03T19:48:01.000Z
# Copyright 2016 Cisco Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import REST modules here from . import magnum # noqa: F401
37.588235
74
0.760563
3215dd2819e32d08cc6e02171cdc89f330cdda8f
638
py
Python
tests/test_946.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
tests/test_946.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
tests/test_946.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
#!/usr/bin/env python import pytest """ Test 946. Validate Stack Sequences """ @pytest.fixture(scope="session") def init_variables_946(): from src.leetcode_946_validate_stack_sequences import Solution solution = Solution() def _init_variables_946(): return solution yield _init_variables_946 class TestClass946: def test_solution_0(self, init_variables_946): assert init_variables_946().validateStackSequences([1, 2, 3, 4, 5], [4, 5, 3, 2, 1]) def test_solution_1(self, init_variables_946): assert not init_variables_946().validateStackSequences([1, 2, 3, 4, 5], [4, 3, 5, 1, 2])
22.785714
96
0.702194
72e38e57cf0afc8da446f2c210f3ac456261a5e1
7,000
py
Python
extra_apps/social_core/backends/odnoklassniki.py
kaocher82/Vue-Django-Shop-Website
6273990a5510b72c3a3115d73e149d242049b5bc
[ "MIT" ]
84
2019-02-22T08:19:52.000Z
2022-02-08T03:36:32.000Z
Backend/extra_apps/social_core/backends/odnoklassniki.py
GinCho-Max/Dailyfresh-B2C
7c94e9a4428e5116c91bf27cf696e6eee430748a
[ "Apache-2.0" ]
16
2019-09-06T10:25:40.000Z
2022-02-12T06:37:41.000Z
Backend/extra_apps/social_core/backends/odnoklassniki.py
GinCho-Max/Dailyfresh-B2C
7c94e9a4428e5116c91bf27cf696e6eee430748a
[ "Apache-2.0" ]
61
2019-03-20T02:29:23.000Z
2021-07-09T08:14:25.000Z
""" Odnoklassniki OAuth2 and Iframe Application backends, docs at: https://python-social-auth.readthedocs.io/en/latest/backends/odnoklassnikiru.html """ from hashlib import md5 from six.moves.urllib_parse import unquote from .base import BaseAuth from .oauth import BaseOAuth2 from ..exceptions import AuthFailed class OdnoklassnikiOAuth2(BaseOAuth2): """Odnoklassniki authentication backend""" name = 'odnoklassniki-oauth2' ID_KEY = 'uid' ACCESS_TOKEN_METHOD = 'POST' SCOPE_SEPARATOR = ';' AUTHORIZATION_URL = 'https://connect.ok.ru/oauth/authorize' ACCESS_TOKEN_URL = 'https://api.ok.ru/oauth/token.do' EXTRA_DATA = [('refresh_token', 'refresh_token'), ('expires_in', 'expires')] def get_user_details(self, response): """Return user details from Odnoklassniki request""" fullname, first_name, last_name = self.get_user_names( fullname=unquote(response['name']), first_name=unquote(response['first_name']), last_name=unquote(response['last_name']) ) return { 'username': response['uid'], 'email': response.get('email', ''), 'fullname': fullname, 'first_name': first_name, 'last_name': last_name } def user_data(self, access_token, *args, **kwargs): """Return user data from Odnoklassniki REST API""" data = {'access_token': access_token, 'method': 'users.getCurrentUser'} key, secret = self.get_key_and_secret() public_key = self.setting('PUBLIC_NAME') return odnoklassniki_api(self, data, 'https://api.ok.ru/', public_key, secret, 'oauth') class OdnoklassnikiApp(BaseAuth): """Odnoklassniki iframe app authentication backend""" name = 'odnoklassniki-app' ID_KEY = 'uid' def extra_data(self, user, uid, response, details=None, *args, **kwargs): return dict([(key, value) for key, value in response.items() if key in response['extra_data_list']]) def get_user_details(self, response): fullname, first_name, last_name = self.get_user_names( fullname=unquote(response['name']), first_name=unquote(response['first_name']), last_name=unquote(response['last_name']) ) return { 'username': response['uid'], 'email': '', 'fullname': fullname, 'first_name': first_name, 'last_name': last_name } def auth_complete(self, *args, **kwargs): self.verify_auth_sig() response = self.get_response() fields = ('uid', 'first_name', 'last_name', 'name') + \ self.setting('EXTRA_USER_DATA_LIST', ()) data = { 'method': 'users.getInfo', 'uids': '{0}'.format(response['logged_user_id']), 'fields': ','.join(fields), } client_key, client_secret = self.get_key_and_secret() public_key = self.setting('PUBLIC_NAME') details = odnoklassniki_api(self, data, response['api_server'], public_key, client_secret, 'iframe_nosession') if len(details) == 1 and 'uid' in details[0]: details = details[0] auth_data_fields = self.setting('EXTRA_AUTH_DATA_LIST', ('api_server', 'apiconnection', 'session_key', 'authorized', 'session_secret_key')) for field in auth_data_fields: details[field] = response[field] details['extra_data_list'] = fields + auth_data_fields kwargs.update({'backend': self, 'response': details}) else: raise AuthFailed(self, 'Cannot get user details: API error') return self.strategy.authenticate(*args, **kwargs) def get_auth_sig(self): secret_key = self.setting('SECRET') hash_source = '{0:s}{1:s}{2:s}'.format(self.data['logged_user_id'], self.data['session_key'], secret_key) return md5(hash_source.encode('utf-8')).hexdigest() def get_response(self): fields = ('logged_user_id', 'api_server', 'application_key', 'session_key', 'session_secret_key', 'authorized', 'apiconnection') return dict((name, self.data[name]) for name in fields if name in self.data) def verify_auth_sig(self): correct_key = self.get_auth_sig() key = self.data['auth_sig'].lower() if correct_key != key: raise AuthFailed(self, 'Wrong authorization key') def odnoklassniki_oauth_sig(data, client_secret): """ Calculates signature of request data access_token value must be included Algorithm is described at https://apiok.ru/wiki/pages/viewpage.action?pageId=12878032, search for "little bit different way" """ suffix = md5( '{0:s}{1:s}'.format(data['access_token'], client_secret).encode('utf-8') ).hexdigest() check_list = sorted(['{0:s}={1:s}'.format(key, value) for key, value in data.items() if key != 'access_token']) return md5((''.join(check_list) + suffix).encode('utf-8')).hexdigest() def odnoklassniki_iframe_sig(data, client_secret_or_session_secret): """ Calculates signature as described at: https://apiok.ru/wiki/display/ok/Authentication+and+Authorization If API method requires session context, request is signed with session secret key. Otherwise it is signed with application secret key """ param_list = sorted(['{0:s}={1:s}'.format(key, value) for key, value in data.items()]) return md5( (''.join(param_list) + client_secret_or_session_secret).encode('utf-8') ).hexdigest() def odnoklassniki_api(backend, data, api_url, public_key, client_secret, request_type='oauth'): """Calls Odnoklassniki REST API method https://apiok.ru/wiki/display/ok/Odnoklassniki+Rest+API""" data.update({ 'application_key': public_key, 'format': 'JSON' }) if request_type == 'oauth': data['sig'] = odnoklassniki_oauth_sig(data, client_secret) elif request_type == 'iframe_session': data['sig'] = odnoklassniki_iframe_sig(data, data['session_secret_key']) elif request_type == 'iframe_nosession': data['sig'] = odnoklassniki_iframe_sig(data, client_secret) else: msg = 'Unknown request type {0}. How should it be signed?' raise AuthFailed(backend, msg.format(request_type)) return backend.get_json(api_url + 'fb.do', params=data)
40.462428
85
0.591714
6ba4ec129b2bd7da6db22e968694016a8d368f9c
10,912
py
Python
django/db/migrations/graph.py
indevgr/django
0247c9b08f8da4a2d93b9cede6c615011552b55a
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/db/migrations/graph.py
indevgr/django
0247c9b08f8da4a2d93b9cede6c615011552b55a
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/db/migrations/graph.py
indevgr/django
0247c9b08f8da4a2d93b9cede6c615011552b55a
[ "PSF-2.0", "BSD-3-Clause" ]
1
2016-04-21T11:47:46.000Z
2016-04-21T11:47:46.000Z
from __future__ import unicode_literals import warnings from collections import deque from functools import total_ordering from django.db.migrations.state import ProjectState from django.utils.datastructures import OrderedSet from django.utils.encoding import python_2_unicode_compatible from .exceptions import CircularDependencyError, NodeNotFoundError RECURSION_DEPTH_WARNING = ( "Maximum recursion depth exceeded while generating migration graph, " "falling back to iterative approach. If you're experiencing performance issues, " "consider squashing migrations as described at " "https://docs.djangoproject.com/en/dev/topics/migrations/#squashing-migrations." ) @python_2_unicode_compatible @total_ordering class Node(object): """ A single node in the migration graph. Contains direct links to adjacent nodes in either direction. """ def __init__(self, key): self.key = key self.children = set() self.parents = set() def __eq__(self, other): return self.key == other def __lt__(self, other): return self.key < other def __hash__(self): return hash(self.key) def __getitem__(self, item): return self.key[item] def __str__(self): return str(self.key) def __repr__(self): return '<Node: (%r, %r)>' % self.key def add_child(self, child): self.children.add(child) def add_parent(self, parent): self.parents.add(parent) # Use manual caching, @cached_property effectively doubles the # recursion depth for each recursion. def ancestors(self): # Use self.key instead of self to speed up the frequent hashing # when constructing an OrderedSet. if '_ancestors' not in self.__dict__: ancestors = deque([self.key]) for parent in sorted(self.parents): ancestors.extendleft(reversed(parent.ancestors())) self.__dict__['_ancestors'] = list(OrderedSet(ancestors)) return self.__dict__['_ancestors'] # Use manual caching, @cached_property effectively doubles the # recursion depth for each recursion. def descendants(self): # Use self.key instead of self to speed up the frequent hashing # when constructing an OrderedSet. if '_descendants' not in self.__dict__: descendants = deque([self.key]) for child in sorted(self.children): descendants.extendleft(reversed(child.descendants())) self.__dict__['_descendants'] = list(OrderedSet(descendants)) return self.__dict__['_descendants'] @python_2_unicode_compatible class MigrationGraph(object): """ Represents the digraph of all migrations in a project. Each migration is a node, and each dependency is an edge. There are no implicit dependencies between numbered migrations - the numbering is merely a convention to aid file listing. Every new numbered migration has a declared dependency to the previous number, meaning that VCS branch merges can be detected and resolved. Migrations files can be marked as replacing another set of migrations - this is to support the "squash" feature. The graph handler isn't responsible for these; instead, the code to load them in here should examine the migration files and if the replaced migrations are all either unapplied or not present, it should ignore the replaced ones, load in just the replacing migration, and repoint any dependencies that pointed to the replaced migrations to point to the replacing one. A node should be a tuple: (app_path, migration_name). The tree special-cases things within an app - namely, root nodes and leaf nodes ignore dependencies to other apps. """ def __init__(self): self.node_map = {} self.nodes = {} self.cached = False def add_node(self, key, implementation): node = Node(key) self.node_map[key] = node self.nodes[key] = implementation self.clear_cache() def add_dependency(self, migration, child, parent): if child not in self.nodes: raise NodeNotFoundError( "Migration %s dependencies reference nonexistent child node %r" % (migration, child), child ) if parent not in self.nodes: raise NodeNotFoundError( "Migration %s dependencies reference nonexistent parent node %r" % (migration, parent), parent ) self.node_map[child].add_parent(self.node_map[parent]) self.node_map[parent].add_child(self.node_map[child]) self.clear_cache() def clear_cache(self): if self.cached: for node in self.nodes: self.node_map[node].__dict__.pop('_ancestors', None) self.node_map[node].__dict__.pop('_descendants', None) self.cached = False def forwards_plan(self, target): """ Given a node, returns a list of which previous nodes (dependencies) must be applied, ending with the node itself. This is the list you would follow if applying the migrations to a database. """ if target not in self.nodes: raise NodeNotFoundError("Node %r not a valid node" % (target, ), target) # Use parent.key instead of parent to speed up the frequent hashing in ensure_not_cyclic self.ensure_not_cyclic(target, lambda x: (parent.key for parent in self.node_map[x].parents)) self.cached = True node = self.node_map[target] try: return node.ancestors() except RuntimeError: # fallback to iterative dfs warnings.warn(RECURSION_DEPTH_WARNING, RuntimeWarning) return self.iterative_dfs(node) def backwards_plan(self, target): """ Given a node, returns a list of which dependent nodes (dependencies) must be unapplied, ending with the node itself. This is the list you would follow if removing the migrations from a database. """ if target not in self.nodes: raise NodeNotFoundError("Node %r not a valid node" % (target, ), target) # Use child.key instead of child to speed up the frequent hashing in ensure_not_cyclic self.ensure_not_cyclic(target, lambda x: (child.key for child in self.node_map[x].children)) self.cached = True node = self.node_map[target] try: return node.descendants() except RuntimeError: # fallback to iterative dfs warnings.warn(RECURSION_DEPTH_WARNING, RuntimeWarning) return self.iterative_dfs(node, forwards=False) def iterative_dfs(self, start, forwards=True): """ Iterative depth first search, for finding dependencies. """ visited = deque() visited.append(start) if forwards: stack = deque(sorted(start.parents)) else: stack = deque(sorted(start.children)) while stack: node = stack.popleft() visited.appendleft(node) if forwards: children = sorted(node.parents, reverse=True) else: children = sorted(node.children, reverse=True) # reverse sorting is needed because prepending using deque.extendleft # also effectively reverses values stack.extendleft(children) return list(OrderedSet(visited)) def root_nodes(self, app=None): """ Returns all root nodes - that is, nodes with no dependencies inside their app. These are the starting point for an app. """ roots = set() for node in self.nodes: if not any(key[0] == node[0] for key in self.node_map[node].parents) and (not app or app == node[0]): roots.add(node) return sorted(roots) def leaf_nodes(self, app=None): """ Returns all leaf nodes - that is, nodes with no dependents in their app. These are the "most current" version of an app's schema. Having more than one per app is technically an error, but one that gets handled further up, in the interactive command - it's usually the result of a VCS merge and needs some user input. """ leaves = set() for node in self.nodes: if not any(key[0] == node[0] for key in self.node_map[node].children) and (not app or app == node[0]): leaves.add(node) return sorted(leaves) def ensure_not_cyclic(self, start, get_children): # Algo from GvR: # http://neopythonic.blogspot.co.uk/2009/01/detecting-cycles-in-directed-graph.html todo = set(self.nodes) while todo: node = todo.pop() stack = [node] while stack: top = stack[-1] for node in get_children(top): if node in stack: cycle = stack[stack.index(node):] raise CircularDependencyError(", ".join("%s.%s" % n for n in cycle)) if node in todo: stack.append(node) todo.remove(node) break else: node = stack.pop() def __str__(self): return 'Graph: %s nodes, %s edges' % self._nodes_and_edges() def __repr__(self): nodes, edges = self._nodes_and_edges() return '<%s: nodes=%s, edges=%s>' % (self.__class__.__name__, nodes, edges) def _nodes_and_edges(self): return len(self.nodes), sum(len(node.parents) for node in self.node_map.values()) def make_state(self, nodes=None, at_end=True, real_apps=None): """ Given a migration node or nodes, returns a complete ProjectState for it. If at_end is False, returns the state before the migration has run. If nodes is not provided, returns the overall most current project state. """ if nodes is None: nodes = list(self.leaf_nodes()) if len(nodes) == 0: return ProjectState() if not isinstance(nodes[0], tuple): nodes = [nodes] plan = [] for node in nodes: for migration in self.forwards_plan(node): if migration not in plan: if not at_end and migration in nodes: continue plan.append(migration) project_state = ProjectState(real_apps=real_apps) for node in plan: project_state = self.nodes[node].mutate_state(project_state, preserve=False) return project_state def __contains__(self, node): return node in self.nodes
38.558304
114
0.627383
3b53171a053e7c3ca15c8e46bff4ccefb3d43cdc
3,270
py
Python
src/deepfield_jobs/deepfield_jobs/metadata.py
flixr/bagbunker
661814a2a481faf8363c63489cf19ad3b6af9fc9
[ "MIT" ]
null
null
null
src/deepfield_jobs/deepfield_jobs/metadata.py
flixr/bagbunker
661814a2a481faf8363c63489cf19ad3b6af9fc9
[ "MIT" ]
null
null
null
src/deepfield_jobs/deepfield_jobs/metadata.py
flixr/bagbunker
661814a2a481faf8363c63489cf19ad3b6af9fc9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2015 Ternaris, Munich, Germany # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import absolute_import, division import os from marv import bb, db from marv.bb import job_logger as logger from bagbunker import bb_bag __version__ = '0.0.3' @bb.job_model() class Metadata(object): robot_name = db.Column(db.String(42), nullable=False) use_case = db.Column(db.String(126), nullable=False) # XXX: This will receive all messages. What we really want is to # receive only /robot_name/name messages, but be called also if there # are no messages. @bb.job() @bb_bag.messages(topics='*') def job(fileset, messages): if not fileset.bag: return name_topic = '/robot_name/name' messages = messages \ if any(True for x in fileset.bag.topics if x.topic.name == name_topic) \ else () for topic, msg, timestamp in messages: if topic == name_topic: try: robot_name = msg.data except AttributeError: robot_name = msg.robot_name logger.debug('found robot_name via topic: %s' % msg) use_case = '' break else: path = fileset.dirpath.split(os.sep) robot_name = path[3] if len(path) > 3 else 'unknown' use_case = path[6] if len(path) > 6 else 'unknown' logger.info('robot_name=%s, use_case=%s', robot_name, use_case) yield Metadata(robot_name=robot_name, use_case=use_case) @bb.filter() @bb.filter_input('robot', operators=['substring']) def filter_robot(query, ListingEntry, robot): return query.filter(ListingEntry.robot.contains(robot.val)) @bb.filter() @bb.filter_input('use_case', operators=['substring']) def filter_use_case(query, ListingEntry, use_case): return query.filter(ListingEntry.use_case.contains(use_case.val)) @bb.listing() @bb.listing_column('robot') @bb.listing_column('use_case') def listing(fileset): jobrun = fileset.get_latest_jobrun('deepfield::metadata') if jobrun is None: return {} meta = Metadata.query.filter(Metadata.jobrun == jobrun).first() if meta is None: return {} return { 'robot': meta.robot_name, 'use_case': meta.use_case, }
33.367347
80
0.700917
e4ced51a1b52f9b63f923e4135a7e8d06d25d2e0
8,627
py
Python
willie/modules/clock.py
RuneMagic/HelpingHand
c3b53518758cd7c8461da365aebbc3ecc0c8a23f
[ "EFL-2.0" ]
null
null
null
willie/modules/clock.py
RuneMagic/HelpingHand
c3b53518758cd7c8461da365aebbc3ecc0c8a23f
[ "EFL-2.0" ]
null
null
null
willie/modules/clock.py
RuneMagic/HelpingHand
c3b53518758cd7c8461da365aebbc3ecc0c8a23f
[ "EFL-2.0" ]
null
null
null
# coding=utf8 """ clock.py - Willie Clock Module Copyright 2008-9, Sean B. Palmer, inamidst.com Copyright 2012, Edward Powell, embolalia.net Licensed under the Eiffel Forum License 2. http://willie.dfbta.net """ from __future__ import unicode_literals try: import pytz except ImportError: pytz = None from willie.module import commands, example, OP from willie.tools.time import ( get_timezone, format_time, validate_format, validate_timezone ) from willie.config.types import StaticSection, ValidatedAttribute class TimeSection(StaticSection): tz = ValidatedAttribute( 'tz', parse=validate_timezone, serialize=validate_timezone, default='UTC' ) """Default time zone (see http://dft.ba/-tz)""" time_format = ValidatedAttribute( 'time_format', parse=validate_format, default='%Y-%m-%d - %T%Z' ) """Default time format (see http://strftime.net)""" def configure(config): config.define_section('clock', TimeSection) config.clock.configure_setting( 'tz', 'Preferred time zone (http://dft.ba/-tz)') config.clock.configure_setting( 'time_format', 'Preferred time format (http://strftime.net)') def setup(bot): bot.config.define_section('clock', TimeSection) @commands('t', 'time') @example('.t America/New_York') def f_time(bot, trigger): """Returns the current time.""" if trigger.group(2): zone = get_timezone(bot.db, bot.config, trigger.group(2).strip(), None, None) if not zone: bot.say('Could not find timezone %s.' % trigger.group(2).strip()) return else: zone = get_timezone(bot.db, bot.config, None, trigger.nick, trigger.sender) time = format_time(bot.db, bot.config, zone, trigger.nick, trigger.sender) bot.say(time) @commands('settz', 'settimezone') @example('.settz America/New_York') def update_user(bot, trigger): """ Set your preferred time zone. Most timezones will work, but it's best to use one from http://dft.ba/-tz """ if not pytz: bot.reply("Sorry, I don't have timezone support installed.") else: tz = trigger.group(2) if not tz: bot.reply("What timezone do you want to set? Try one from " "http://dft.ba/-tz") return if tz not in pytz.all_timezones: bot.reply("I don't know that time zone. Try one from " "http://dft.ba/-tz") return bot.db.set_nick_value(trigger.nick, 'timezone', tz) if len(tz) < 7: bot.say("Okay, {}, but you should use one from http://dft.ba/-tz " "if you use DST.".format(trigger.nick)) else: bot.reply('I now have you in the %s time zone.' % tz) @commands('gettz', 'gettimezone') @example('.gettz [nick]') def get_user_tz(bot, trigger): """ Gets a user's preferred time zone, will show yours if no user specified """ if not pytz: bot.reply("Sorry, I don't have timezone support installed.") else: nick = trigger.group(2) if not nick: nick = trigger.nick nick = nick.strip() tz = bot.db.get_nick_value(nick, 'timezone') if tz: bot.say('%s\'s time zone is %s.' % (nick, tz)) else: bot.say('%s has not set their time zone' % nick) @commands('settimeformat', 'settf') @example('.settf %Y-%m-%dT%T%z') def update_user_format(bot, trigger): """ Sets your preferred format for time. Uses the standard strftime format. You can use http://strftime.net or your favorite search engine to learn more. """ tformat = trigger.group(2) if not tformat: bot.reply("What format do you want me to use? Try using" " http://strftime.net to make one.") return tz = get_timezone(bot.db, bot.config, None, trigger.nick, trigger.sender) # Get old format as back-up old_format = bot.db.get_nick_value(trigger.nick, 'time_format') # Save the new format in the database so we can test it. bot.db.set_nick_value(trigger.nick, 'time_format', tformat) try: timef = format_time(db=bot.db, zone=tz, nick=trigger.nick) except: bot.reply("That format doesn't work. Try using" " http://strftime.net to make one.") # New format doesn't work. Revert save in database. bot.db.set_nick_value(trigger.nick, 'time_format', old_format) return bot.reply("Got it. Your time will now appear as %s. (If the " "timezone is wrong, you might try the settz command)" % timef) @commands('gettimeformat', 'gettf') @example('.gettf [nick]') def get_user_format(bot, trigger): """ Gets a user's preferred time format, will show yours if no user specified """ nick = trigger.group(2) if not nick: nick = trigger.nick nick = nick.strip() # Get old format as back-up format = bot.db.get_nick_value(nick, 'time_format') if format: bot.say("%s's time format: %s." % (nick, format)) else: bot.say("%s hasn't set a custom time format" % nick) @commands('setchanneltz', 'setctz') @example('.setctz America/New_York') def update_channel(bot, trigger): """ Set the preferred time zone for the channel. """ if bot.privileges[trigger.sender][trigger.nick] < OP: return elif not pytz: bot.reply("Sorry, I don't have timezone support installed.") else: tz = trigger.group(2) if not tz: bot.reply("What timezone do you want to set? Try one from " "http://dft.ba/-tz") return if tz not in pytz.all_timezones: bot.reply("I don't know that time zone. Try one from " "http://dft.ba/-tz") return bot.db.set_channel_value(trigger.sender, 'timezone', tz) if len(tz) < 7: bot.say("Okay, {}, but you should use one from http://dft.ba/-tz " "if you use DST.".format(trigger.nick)) else: bot.reply( 'I now have {} in the {} time zone.'.format(trigger.sender, tz)) @commands('getchanneltz', 'getctz') @example('.getctz [channel]') def get_channel_tz(bot, trigger): """ Gets the preferred channel timezone, or the current channel timezone if no channel given. """ if not pytz: bot.reply("Sorry, I don't have timezone support installed.") else: channel = trigger.group(2) if not channel: channel = trigger.sender channel = channel.strip() timezone = bot.db.get_channel_value(channel, 'timezone') if timezone: bot.say('%s\'s timezone: %s' % (channel, timezone)) else: bot.say('%s has no preferred timezone' % channel) @commands('setchanneltimeformat', 'setctf') @example('.setctf %Y-%m-%dT%T%z') def update_channel_format(bot, trigger): """ Sets your preferred format for time. Uses the standard strftime format. You can use http://strftime.net or your favorite search engine to learn more. """ if bot.privileges[trigger.sender][trigger.nick] < OP: return tformat = trigger.group(2) if not tformat: bot.reply("What format do you want me to use? Try using" " http://strftime.net to make one.") tz = get_timezone(bot.db, bot.config, None, None, trigger.sender) try: timef = format_time(zone=tz) except: bot.reply("That format doesn't work. Try using" " http://strftime.net to make one.") return bot.db.set_channel_value(trigger.sender, 'time_format', tformat) bot.reply("Got it. Times in this channel will now appear as %s " "unless a user has their own format set. (If the timezone" " is wrong, you might try the settz and channeltz " "commands)" % timef) @commands('getchanneltimeformat', 'getctf') @example('.getctf [channel]') def get_channel_format(bot, trigger): """ Gets the channel's preferred time format, will return current channel's if no channel name is given """ channel = trigger.group(2) if not channel: channel = trigger.sender channel = channel.strip() tformat = bot.db.get_channel_value(channel, 'time_format') if tformat: bot.say('%s\'s time format: %s' % (channel, tformat)) else: bot.say('%s has no preferred time format' % channel)
31.485401
85
0.60983
c5584a4e2452c8af9c201f73eb663450e684a80f
7,985
py
Python
code-postprocessing/cocopp/config.py
asmaatamna/coco
4b1497a0e6d4de4a0dd75e03779d6c5349fa21ae
[ "BSD-3-Clause" ]
2
2021-02-15T17:09:24.000Z
2021-12-28T09:23:01.000Z
code-postprocessing/cocopp/config.py
patsp/coco
4b1497a0e6d4de4a0dd75e03779d6c5349fa21ae
[ "BSD-3-Clause" ]
null
null
null
code-postprocessing/cocopp/config.py
patsp/coco
4b1497a0e6d4de4a0dd75e03779d6c5349fa21ae
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python # -*- coding: utf-8 -*- """This module is an attempt for a global configuration file for various parameters. The import of this module, :py:mod:`config`, changes default settings (attributes) of other modules. This works, because each module has only one instance. Before this module is imported somewhere, modules use their default settings. This file could be dynamically modified and reloaded. See also genericsettings.py which is a central place to define settings used by other modules, but does not modify settings of other modules. """ import warnings import numpy as np import ppfigdim from . import genericsettings, pproc, pprldistr from . import testbedsettings as tbs from .comp2 import ppfig2, ppscatter from .compall import pprldmany def target_values(is_expensive): """manage target values setting in "expensive" optimization scenario. """ if is_expensive: genericsettings.runlength_based_targets = True genericsettings.maxevals_fix_display = genericsettings.xlimit_expensive else: genericsettings.runlength_based_targets = False genericsettings.maxevals_fix_display = None def config(testbed_name=None): """called from a high level, e.g. rungeneric, to configure the lower level modules via modifying parameter settings. """ if testbed_name: tbs.load_current_testbed(testbed_name, pproc.TargetValues) genericsettings.simulated_runlength_bootstrap_sample_size = 10 + 990 / (1 + 10 * max(0, genericsettings.in_a_hurry)) if tbs.current_testbed and tbs.current_testbed.name not in tbs.suite_to_testbed: if ((genericsettings.isExpensive in (True, 1) or genericsettings.runlength_based_targets in (True, 1)) and tbs.current_testbed.reference_algorithm_filename == ''): warnings.warn('Expensive setting not yet supported with ' + tbs.current_testbed.name + ' testbed; using non-expensive setting instead.') genericsettings.isExpensive = False genericsettings.runlength_based_targets = False # pprldist.plotRLDistr2 needs to be revised regarding run_length based targets if genericsettings.runlength_based_targets in (True, 1): print('Reference algorithm based target values, using ' + tbs.current_testbed.reference_algorithm_filename + ': now for each function, the target ' + 'values differ, but the "level of difficulty" ' + 'is "the same". ') reference_data = 'testbedsettings' # pprldmany: if 1 < 3: # not yet functional, captions need to be adjusted and the bug reported by Ilya sorted out # pprldmany.caption = ... captions are still hard coded in LaTeX pprldmany.x_limit = genericsettings.maxevals_fix_display # always fixed if tbs.current_testbed: testbed = tbs.current_testbed testbed.scenario = tbs.scenario_rlbased # genericsettings (to be used in rungeneric2 while calling pprldistr.comp(...)): testbed.rldValsOfInterest = pproc.RunlengthBasedTargetValues( genericsettings.target_runlengths_in_single_rldistr, reference_data=reference_data, force_different_targets_factor=10**-0.2) testbed.ppfigdim_target_values = pproc.RunlengthBasedTargetValues( genericsettings.target_runlengths_in_scaling_figs, reference_data=reference_data, force_different_targets_factor=10**-0.2) testbed.pprldistr_target_values = pproc.RunlengthBasedTargetValues( genericsettings.target_runlengths_in_single_rldistr, reference_data=reference_data, force_different_targets_factor=10**-0.2) testbed.pprldmany_target_values = pproc.RunlengthBasedTargetValues( np.logspace(np.log10(0.5), np.log10(50), 31), reference_data=reference_data, smallest_target=1e-8 * 10**0.000, force_different_targets_factor=1, unique_target_values=True) testbed.ppscatter_target_values = pproc.RunlengthBasedTargetValues( np.logspace(np.log10(0.5), np.log10(50), 8)) # pptable: testbed.pptable_targetsOfInterest = pproc.RunlengthBasedTargetValues( testbed.pptable_target_runlengths, reference_data=reference_data, force_different_targets_factor=10**-0.2) # pptable2: testbed.pptable2_targetsOfInterest = pproc.RunlengthBasedTargetValues( testbed.pptable2_target_runlengths, reference_data=reference_data, force_different_targets_factor=10**-0.2) # pptables: testbed.pptablemany_targetsOfInterest = pproc.RunlengthBasedTargetValues( testbed.pptables_target_runlengths, reference_data=reference_data, force_different_targets_factor=10**-0.2) # ppfigs testbed.ppfigs_ftarget = pproc.RunlengthBasedTargetValues([genericsettings.target_runlength], reference_data=reference_data) # pprldistr: pprldistr.runlen_xlimits_max = \ genericsettings.maxevals_fix_display / 2 if genericsettings.maxevals_fix_display else None # can be None pprldistr.runlen_xlimits_min = 10**-0.3 # can be None # ppfigdim: ppfigdim.xlim_max = genericsettings.maxevals_fix_display if ppfigdim.xlim_max: ppfigdim.styles = [ # sort of rainbow style, most difficult (red) first {'color': 'y', 'marker': '^', 'markeredgecolor': 'k', 'markeredgewidth': 2, 'linewidth': 4}, {'color': 'g', 'marker': '.', 'linewidth': 4}, {'color': 'r', 'marker': 'o', 'markeredgecolor': 'k', 'markeredgewidth': 2, 'linewidth': 4}, {'color': 'm', 'marker': '.', 'linewidth': 4}, {'color': 'c', 'marker': 'v', 'markeredgecolor': 'k', 'markeredgewidth': 2, 'linewidth': 4}, {'color': 'b', 'marker': '.', 'linewidth': 4}, {'color': 'k', 'marker': 'o', 'markeredgecolor': 'k', 'markeredgewidth': 2, 'linewidth': 4}, ] ppscatter.markersize = 16 else: pass # here the default values of the modules apply # pprlmany.x_limit = ...should depend on noisy/noiseless if 11 < 3: # for testing purpose if tbs.current_testbed: # TODO: this case needs to be tested yet: the current problem is that no noisy data are in this folder tbs.current_testbed.pprldmany_target_values = \ pproc.RunlengthBasedTargetValues(10**np.arange(1, 4, 0.2), 'RANDOMSEARCH') pprldmany.fontsize = 20.0 # should depend on the number of data lines down to 10.0 ? ppscatter.markersize = 14 ppfig2.linewidth = 4 def main(): config()
49.290123
120
0.580589
9aecc584c0116b87fc40774fde96c0900b5edabc
717
py
Python
db/generate.py
WhatCheer/Number-Laundry
c8cb7a6190a115ce84998a0bef8ab3490788d071
[ "MIT" ]
1
2019-04-10T05:02:14.000Z
2019-04-10T05:02:14.000Z
db/generate.py
WhatCheer/Number-Laundry
c8cb7a6190a115ce84998a0bef8ab3490788d071
[ "MIT" ]
null
null
null
db/generate.py
WhatCheer/Number-Laundry
c8cb7a6190a115ce84998a0bef8ab3490788d071
[ "MIT" ]
null
null
null
import json # This program takes Twilio's rate data (in JSON form) and writes out queries for inserting. # The output (at this time) is almost direct insert, there are just a few manual tweaks # you will run into when you try the insert. print 'INSERT INTO prefixes ( id, prefix, country, country_code, twilio_rate ) VALUES ' with open( 'international-calling-rates-ajax', 'r' ) as handle: for line in json.loads( handle.read() ): for prefix in line['Prefixes'].replace( ',', '' ).split( ' ' ): print "( NULL, '%s', '%s', '%s', '%s' )," % ( prefix.replace( "'", "''" ), line['Country'].replace( "'", "''" ), line['IsoCountry'].replace( "'", "''" ), line['Price'].replace( "'", "''" ) )
37.736842
92
0.612273
1cc40154953e1de06017bb3cf4758a1711cea40c
11,587
py
Python
fanficfare/adapters/__init__.py
bennr01/FanFicFare
3c77a68e61c39b0aa166f0bdf8df2f76f55d6de1
[ "Apache-2.0" ]
1
2020-06-18T05:22:56.000Z
2020-06-18T05:22:56.000Z
venv/pyenv.cfg/Lib/site-packages/fanficfare/adapters/__init__.py
DylanB5402/SummerProject2
d2e20d16f310826b9c87a010f8eefcd0abe290b0
[ "Apache-2.0" ]
null
null
null
venv/pyenv.cfg/Lib/site-packages/fanficfare/adapters/__init__.py
DylanB5402/SummerProject2
d2e20d16f310826b9c87a010f8eefcd0abe290b0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2011 Fanficdownloader team, 2020 FanFicFare team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import import os, re, sys, glob, types from os.path import dirname, basename, normpath import logging # py2 vs py3 transition from ..six import text_type as unicode from ..six.moves.urllib.parse import urlparse logger = logging.getLogger(__name__) from .. import exceptions as exceptions from .. import configurable as configurable ## must import each adapter here. from . import base_efiction_adapter from . import adapter_test1 from . import adapter_fanfictionnet from . import adapter_fanficcastletvnet from . import adapter_fictionalleyorg from . import adapter_fictionpresscom from . import adapter_ficwadcom from . import adapter_fimfictionnet from . import adapter_mediaminerorg from . import adapter_potionsandsnitches from . import adapter_tenhawkpresents from . import adapter_adastrafanficcom from . import adapter_tthfanficorg from . import adapter_twilightednet from . import adapter_whoficcom from . import adapter_siyecouk from . import adapter_archiveofourownorg from . import adapter_ficbooknet from . import adapter_midnightwhispers from . import adapter_ksarchivecom from . import adapter_archiveskyehawkecom from . import adapter_squidgeorgpeja from . import adapter_libraryofmoriacom from . import adapter_wraithbaitcom from . import adapter_ashwindersycophanthexcom from . import adapter_chaossycophanthexcom from . import adapter_erosnsapphosycophanthexcom from . import adapter_lumossycophanthexcom from . import adapter_occlumencysycophanthexcom from . import adapter_phoenixsongnet from . import adapter_walkingtheplankorg from . import adapter_dokugacom from . import adapter_iketernalnet from . import adapter_storiesofardacom from . import adapter_destinysgatewaycom from . import adapter_ncisfictioncom from . import adapter_fanfiktionde from . import adapter_ponyfictionarchivenet from . import adapter_themasquenet from . import adapter_pretendercentrecom from . import adapter_darksolaceorg from . import adapter_finestoriescom from . import adapter_hpfanficarchivecom from . import adapter_nhamagicalworldsus from . import adapter_hlfictionnet from . import adapter_dracoandginnycom from . import adapter_scarvesandcoffeenet from . import adapter_thepetulantpoetesscom from . import adapter_wolverineandroguecom from . import adapter_merlinficdtwinscouk from . import adapter_thehookupzonenet from . import adapter_bloodtiesfancom from . import adapter_qafficcom from . import adapter_efpfanficnet from . import adapter_potterficscom from . import adapter_efictionestelielde from . import adapter_imagineeficcom from . import adapter_potterheadsanonymouscom from . import adapter_fictionpadcom from . import adapter_storiesonlinenet from . import adapter_trekiverseorg from . import adapter_literotica from . import adapter_voracity2eficcom from . import adapter_spikeluvercom from . import adapter_bloodshedversecom from . import adapter_fanfichu from . import adapter_fictionmaniatv from . import adapter_themaplebookshelf from . import adapter_sheppardweircom from . import adapter_samandjacknet from . import adapter_csiforensicscom from . import adapter_fanfictionjunkiesde from . import adapter_tgstorytimecom from . import adapter_itcouldhappennet from . import adapter_forumsspacebattlescom from . import adapter_forumssufficientvelocitycom from . import adapter_forumquestionablequestingcom from . import adapter_ninelivesarchivecom from . import adapter_masseffect2in from . import adapter_quotevcom from . import adapter_mcstoriescom from . import adapter_buffygilescom from . import adapter_andromedawebcom from . import adapter_naiceanilmenet from . import adapter_deepinmysoulnet from . import adapter_adultfanfictionorg from . import adapter_fictionhuntcom from . import adapter_royalroadcom from . import adapter_chosentwofanficcom from . import adapter_bdsmlibrarycom from . import adapter_asexstoriescom from . import adapter_gluttonyfictioncom from . import adapter_valentchambercom from . import adapter_looselugscom from . import adapter_wwwgiantessworldnet from . import adapter_lotrgficcom from . import adapter_tomparisdormcom from . import adapter_sugarquillnet from . import adapter_starslibrarynet from . import adapter_fanficauthorsnet from . import adapter_fireflyfansnet from . import adapter_sebklainenet from . import adapter_shriftweborgbfa from . import adapter_trekfanfictionnet from . import adapter_wuxiaworldcom from . import adapter_wwwlushstoriescom from . import adapter_wwwutopiastoriescom from . import adapter_sinfuldreamscomunicornfic from . import adapter_sinfuldreamscomwhisperedmuse from . import adapter_sinfuldreamscomwickedtemptation from . import adapter_asianfanficscom from . import adapter_webnovelcom from . import adapter_deandamagecom from . import adapter_mttjustoncenet from . import adapter_narutoficorg from . import adapter_starskyhutcharchivenet from . import adapter_swordborderlineangelcom from . import adapter_tasteofpoisoninkubationnet from . import adapter_thedelphicexpansecom from . import adapter_thundercatsfansorg from . import adapter_wwwaneroticstorycom from . import adapter_gravitytalescom from . import adapter_lcfanficcom from . import adapter_noveltrovecom from . import adapter_inkbunnynet from . import adapter_alternatehistorycom from . import adapter_wattpadcom from . import adapter_novelonlinefullcom from . import adapter_wwwnovelallcom from . import adapter_wuxiaworldco from . import adapter_harrypotterfanfictioncom from . import adapter_hentaifoundrycom from . import adapter_mugglenetfanfictioncom from . import adapter_swiorgru from . import adapter_fanficsme from . import adapter_archivehpfanfictalkcom from . import adapter_scifistoriescom from . import adapter_silmarillionwritersguildorg ## This bit of complexity allows adapters to be added by just adding ## importing. It eliminates the long if/else clauses we used to need ## to pick out the adapter. ## List of registered site adapters. __class_list = [] __domain_map = {} def imports(): out = [] for name, val in globals().items(): if isinstance(val, types.ModuleType): out.append(val.__name__) return out for x in imports(): if "fanficfare.adapters.adapter_" in x: #print x cls = sys.modules[x].getClass() __class_list.append(cls) for site in cls.getAcceptDomains(): l = __domain_map.get(site,[]) l.append(cls) __domain_map[site]=l def get_url_chapter_range(url_in): # Allow chapter range with URL. # like test1.com?sid=5[4-6] or [4,6] mc = re.match(r"^(?P<url>.*?)(?:\[(?P<begin>\d+)?(?P<comma>[,-])?(?P<end>\d+)?\])?$",url_in) #print("url:(%s) begin:(%s) end:(%s)"%(mc.group('url'),mc.group('begin'),mc.group('end'))) url = mc.group('url') ch_begin = mc.group('begin') ch_end = mc.group('end') if ch_begin and not mc.group('comma'): ch_end = ch_begin return url,ch_begin,ch_end def getNormalStoryURL(url): r = getNormalStoryURLSite(url) if r: return r[0] else: return None def getNormalStoryURLSite(url): # print("getNormalStoryURLSite:%s"%url) if not getNormalStoryURL.__dummyconfig: getNormalStoryURL.__dummyconfig = configurable.Configuration(["test1.com"],"EPUB",lightweight=True) # pulling up an adapter is pretty low over-head. If # it fails, it's a bad url. try: adapter = getAdapter(getNormalStoryURL.__dummyconfig,url) url = adapter.url site = adapter.getSiteDomain() del adapter return (url,site) except: return None # kludgey function static/singleton getNormalStoryURL.__dummyconfig = None def getAdapter(config,url,anyurl=False): #logger.debug("trying url:"+url) (cls,fixedurl) = _get_class_for(url) #logger.debug("fixedurl:"+fixedurl) if cls: if anyurl: fixedurl = cls.getSiteExampleURLs().split()[0] adapter = cls(config,fixedurl) # raises InvalidStoryURL return adapter # No adapter found. raise exceptions.UnknownSite( url, [cls.getSiteDomain() for cls in __class_list] ) def getSiteSections(): # doesn't include base sections. Sections rather than site DNS because of squidge/peja return [cls.getConfigSection() for cls in __class_list] def getConfigSections(): # does include base sections. sections = set() for cls in __class_list: sections.update(cls.getConfigSections()) return sections def get_bulk_load_sites(): # for now, all eFiction Base adapters are assumed to allow bulk_load. sections = set() for cls in [x for x in __class_list if issubclass(x,base_efiction_adapter.BaseEfictionAdapter) ]: sections.update( [ x.replace('www.','') for x in cls.getConfigSections() ] ) return sections def getSiteExamples(): l=[] for cls in sorted(__class_list, key=lambda x : x.getConfigSection()): l.append((cls.getConfigSection(),cls.getSiteExampleURLs().split())) return l def getConfigSectionsFor(url): (cls,fixedurl) = _get_class_for(url) if cls: return cls.getConfigSections() # No adapter found. raise exceptions.UnknownSite( url, [cls.getSiteDomain() for cls in __class_list] ) def _get_class_for(url): ## fix up leading protocol. fixedurl = re.sub(r"(?i)^[htp]+(s?)[:/]+",r"http\1://",url.strip()) if fixedurl.startswith("//"): fixedurl = "http:%s"%url if not fixedurl.startswith("http"): fixedurl = "http://%s"%url ## remove any trailing '#' locations, except for #post-12345 for ## XenForo if not "#post-" in fixedurl: fixedurl = re.sub(r"#.*$","",fixedurl) parsedUrl = urlparse(fixedurl) domain = parsedUrl.netloc.lower() if( domain != parsedUrl.netloc ): fixedurl = fixedurl.replace(parsedUrl.netloc,domain) clslst = _get_classlist_fromlist(domain) ## assumes all adapters for a domain will have www or not have www ## but not mixed. if not clslst and domain.startswith("www."): domain = domain.replace("www.","") #logger.debug("trying site:without www: "+domain) clslst = _get_classlist_fromlist(domain) fixedurl = re.sub(r"^http(s?)://www\.",r"http\1://",fixedurl) if not clslst: #logger.debug("trying site:www."+domain) clslst =_get_classlist_fromlist("www."+domain) fixedurl = re.sub(r"^http(s?)://",r"http\1://www.",fixedurl) cls = None if clslst: if len(clslst) == 1: cls = clslst[0] elif len(clslst) > 1: for c in clslst: if c.getSiteURLFragment() in fixedurl: cls = c break if cls: fixedurl = cls.stripURLParameters(fixedurl) return (cls,fixedurl) def _get_classlist_fromlist(domain): try: return __domain_map[domain] except KeyError: pass # return none.
35.006042
107
0.754811
07045b1ad3592a1bfa53c3004a47ea7aa88c935a
91
py
Python
k8s/images/codalab/apps/authenz/admin.py
abdulari/codalab-competitions
fdfbb77ac62d56c6b4b9439935037f97ffcd1423
[ "Apache-2.0" ]
333
2015-12-29T22:49:40.000Z
2022-03-27T12:01:57.000Z
k8s/images/codalab/apps/authenz/admin.py
abdulari/codalab-competitions
fdfbb77ac62d56c6b4b9439935037f97ffcd1423
[ "Apache-2.0" ]
1,572
2015-12-28T21:54:00.000Z
2022-03-31T13:00:32.000Z
k8s/images/codalab/apps/authenz/admin.py
abdulari/codalab-competitions
fdfbb77ac62d56c6b4b9439935037f97ffcd1423
[ "Apache-2.0" ]
107
2016-01-08T03:46:07.000Z
2022-03-16T08:43:57.000Z
from django.contrib import admin from .models import ClUser admin.site.register(ClUser)
13
32
0.802198
c73f5fd7ac98902fa516ac91084b383f12bc4e38
39
py
Python
.history/app/__init___20210927034948.py
GraceOswal/pitch-perfect
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
[ "MIT" ]
2
2021-09-04T03:01:37.000Z
2021-09-04T03:06:38.000Z
.history/app/__init___20210927034948.py
GraceOswal/pitch-perfect
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
[ "MIT" ]
1
2021-09-04T03:06:32.000Z
2021-09-04T03:08:26.000Z
.history/app/__init___20210927034948.py
GraceOswal/pitch-perfect
d781c6e0f55c11f2a5e5dceb952f6b2de3c47c3b
[ "MIT" ]
1
2021-09-04T03:02:01.000Z
2021-09-04T03:02:01.000Z
from flask_sqlalchemy import SQLAlchemy
39
39
0.923077
463dba0f6e77400648951b355cf4bc041bd43e13
1,629
py
Python
quant/demo/ma20.py
yunfeiz/py_learnt
d4134d8e9f1caed2db2848f19474c15c1b36557e
[ "Apache-2.0" ]
null
null
null
quant/demo/ma20.py
yunfeiz/py_learnt
d4134d8e9f1caed2db2848f19474c15c1b36557e
[ "Apache-2.0" ]
null
null
null
quant/demo/ma20.py
yunfeiz/py_learnt
d4134d8e9f1caed2db2848f19474c15c1b36557e
[ "Apache-2.0" ]
null
null
null
''' Created on 2017-5-30 @author: 3xtrees ''' # coding: UTF-8 import tushare as ts ''' ma20 strategy ''' def parse(stock, start_date): '''''process stock''' is_buy = 0 buy_val = [] buy_date = [] sell_val = [] sell_date = [] df = ts.get_hist_data(stock, start=start_date) ma20 = df[u'ma20'] close = df[u'close'] rate = 1.0 idx = len(ma20) while idx > 0: idx -= 1 close_val = close[idx] ma20_val = ma20[idx] if close_val > ma20_val: if is_buy == 0: is_buy = 1 buy_val.append(close_val) buy_date.append(close.keys()[idx]) elif close_val < ma20_val: if is_buy == 1: is_buy = 0 sell_val.append(close_val) sell_date.append(close.keys()[idx]) print ("stock number: %s" % stock) print ("buy count : %d" % len(buy_val)) print ("sell count : %d" % len(sell_val)) for i in range(len(sell_val)): rate = rate * (sell_val[i] * (1 - 0.002) / buy_val[i]) print ("buy date : %s, buy price : %.2f" % (buy_date[i], buy_val[i])) print ("sell date: %s, sell price: %.2f" % (sell_date[i], sell_val[i])) print ("rate: %.2f" % rate) pass if __name__ == '__main__': stock_pool = ['601668'] start_date_list = ['2014-05-29', '2015-05-29', '2016-05-29'] for stock in stock_pool: for start_date in start_date_list: parse(stock, start_date)
29.089286
81
0.493554
3d57db52b8a469e07e28b76539eca38b35de9525
555
py
Python
plasTeX/Imagers/gsdvipng.py
perfectbark/LaTex2Docx
e32f9dcc59cce7bea4e7b114687b2300c623d8c0
[ "MIT" ]
23
2019-06-16T06:00:39.000Z
2022-03-29T14:44:32.000Z
plasTeX/Imagers/gsdvipng.py
hao-han/LaTex2Docx
e32f9dcc59cce7bea4e7b114687b2300c623d8c0
[ "MIT" ]
null
null
null
plasTeX/Imagers/gsdvipng.py
hao-han/LaTex2Docx
e32f9dcc59cce7bea4e7b114687b2300c623d8c0
[ "MIT" ]
12
2019-05-27T06:32:06.000Z
2022-03-15T10:22:07.000Z
#!/usr/bin/env python import gspdfpng, os, sys gs = 'gs' if sys.platform.startswith('win'): gs = 'gswin32c' class GSDVIPNG(gspdfpng.GSPDFPNG): """ Imager that uses gs to convert dvi to png """ compiler = 'latex' verification = '(%s --help && dvips --help)' % gs def executeConverter(self, output): open('images.dvi', 'w').write(output.read()) rc = os.system('dvips -o images.ps images.dvi') if rc: return rc, None return gspdfpng.GSPDFPNG.executeConverter(self, open('images.ps')) Imager = GSDVIPNG
26.428571
74
0.634234
b165d81d264409e4f163bbec119f15d6cb16c5fe
3,217
py
Python
vendas/views/cliente_view.py
SolutionUp/SolutionUP-System
4f341df1a51a43b350e626d47abd207a55edb94d
[ "MIT" ]
4
2021-08-30T01:45:46.000Z
2022-01-08T18:05:10.000Z
vendas/views/cliente_view.py
DiskFar/DiskFar-System
dfd687e55cbca03118656d14761eb5de6c5a58a9
[ "MIT" ]
6
2021-08-29T03:26:48.000Z
2021-09-24T00:13:11.000Z
vendas/views/cliente_view.py
DiskFar/DiskFar-System
dfd687e55cbca03118656d14761eb5de6c5a58a9
[ "MIT" ]
1
2021-08-16T21:21:34.000Z
2021-08-16T21:21:34.000Z
from django.shortcuts import render, redirect, get_object_or_404 from django.views.generic import ListView, DetailView from django.contrib import messages from django.db.models import Q from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from vendas.forms import FormCliente from vendas.models import Clientes class ClienteListView(LoginRequiredMixin, ListView): model = Clientes paginate_by = 100 template_name = 'cliente/cliente_list.html' def get_queryset(self): query = self.request.GET.get('q') or '' object_list = self.model.objects.filter( Q(nome__icontains=query) | Q(cpf__icontains=query) ) return object_list class ClienteDetailView(LoginRequiredMixin, DetailView): model = Clientes @login_required def adicionar_cliente(request): if request.method == 'POST': form_cliente = FormCliente(request.POST) if form_cliente.is_valid(): if form_cliente.cleaned_data['cpf'] == None or len(form_cliente.cleaned_data['cpf']) == 11: if '@' and '.com' in form_cliente.cleaned_data['email']: form_cliente.save() messages.add_message(request, messages.SUCCESS, 'Cliente cadastrado!', extra_tags='success') return redirect('/clientes/adicionar') else: messages.add_message(request, messages.ERROR, 'Erro no formulário, tente novamente!', extra_tags='danger') return render(request, 'cliente/cliente_add.html', {'form': form_cliente}) else: messages.add_message(request, messages.ERROR, 'Erro no formulário, tente novamente!', extra_tags='danger') return render(request, 'cliente/cliente_add.html', {'form': form_cliente}) else: messages.add_message(request, messages.ERROR, 'Erro no formulário, tente novamente!', extra_tags='danger') return render(request, 'cliente/cliente_add.html', {'form': form_cliente}) else: form_cliente = FormCliente() return render(request, 'cliente/cliente_add.html', {'form': form_cliente}) @login_required def remover_cliente(request, id): if request.method == 'GET': cliente = Clientes.objects.get(id=id) cliente.delete() return redirect('/clientes') else: return render(request, 'cliente/cliente_list.html') @login_required def alterar_cliente(request, id): instance = get_object_or_404(Clientes, id=id) form_cliente = FormCliente(request.POST or None, instance=instance) if request.method == 'POST': if form_cliente.is_valid(): form_cliente.save() messages.add_message(request, messages.SUCCESS, 'Cliente alterado!', extra_tags='success') return redirect('/clientes') else: messages.add_message(request, messages.ERROR, 'Erro no formulário, tente novamente!', extra_tags='danger') return render(request, 'cliente/cliente_add.html', {'form': form_cliente}) else: return render(request, 'cliente/cliente_add.html', {'form': form_cliente})
44.068493
126
0.6705
8cdd85dc12846fea47281681d10d0adeadd0c309
539
py
Python
tools/stopwords/freqlist2stoplist.py
TeMU-BSC/jusText-plusplus
14ad3eda6ecc5a98833f1ab333583539dfb64da5
[ "BSD-2-Clause" ]
null
null
null
tools/stopwords/freqlist2stoplist.py
TeMU-BSC/jusText-plusplus
14ad3eda6ecc5a98833f1ab333583539dfb64da5
[ "BSD-2-Clause" ]
null
null
null
tools/stopwords/freqlist2stoplist.py
TeMU-BSC/jusText-plusplus
14ad3eda6ecc5a98833f1ab333583539dfb64da5
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import sys import re CORPUS_COVERAGE = 0.5 #non_alphabetical = re.compile('(?!\s)(?:\W|\d|_)', re.U) alphabetical = re.compile('(?![0-9_])\w', re.U) sum_rel_freq = 0 for line in sys.stdin: uline = unicode(line, 'utf-8', errors='ignore') word, dummy_freq, rel_freq, dummy_sum_rel_freq = uline.strip().split() if alphabetical.search(word): rel_freq = float(rel_freq) sum_rel_freq+= rel_freq print word.encode('utf-8') if sum_rel_freq >= CORPUS_COVERAGE: break
26.95
74
0.638219
3590bf0b226bc316b4277b59a724675d9c71fed8
1,367
py
Python
web_dynamic/3-hbnb.py
DanielBaquero28/AirBnB_clone_v4
2bb1cae776f599674d07daed29f7cdc9893c7ca2
[ "MIT" ]
1
2017-09-29T16:36:55.000Z
2017-09-29T16:36:55.000Z
web_dynamic/3-hbnb.py
DanielBaquero28/AirBnB_clone_v4
2bb1cae776f599674d07daed29f7cdc9893c7ca2
[ "MIT" ]
null
null
null
web_dynamic/3-hbnb.py
DanielBaquero28/AirBnB_clone_v4
2bb1cae776f599674d07daed29f7cdc9893c7ca2
[ "MIT" ]
2
2017-10-25T01:13:11.000Z
2022-02-15T02:10:44.000Z
#!/usr/bin/python3 """ Flask App that integrates with AirBnB static HTML Template """ from flask import Flask, render_template, url_for from models import storage import uuid import os # flask setup app = Flask(__name__) app.url_map.strict_slashes = False host = os.getenv("HBNB_API_HOST", "0.0.0.0") port = os.getenv("HBNB_API_PORT", "5000") # begin flask page rendering @app.teardown_appcontext def teardown_db(exception): """ after each request, this method calls .close() (i.e. .remove()) on the current SQLAlchemy Session """ storage.close() @app.route('/3-hbnb/') def hbnb_filters(the_id=None): """ handles request to custom template with states, cities & amentities """ state_objs = storage.all('State').values() states = dict([state.name, state] for state in state_objs) amens = storage.all('Amenity').values() places = storage.all('Place').values() users = dict([user.id, "{} {}".format(user.first_name, user.last_name)] for user in storage.all('User').values()) cache_id = str(uuid.uuid4()) return render_template('3-hbnb.html', states=states, amens=amens, places=places, users=users, cache_id=cache_id) if __name__ == "__main__": app.run(host=host, port=port)
28.479167
75
0.631309
bf7170b7e7d7f3a7d15d0053cfda0f3c53c1e0b1
9,838
py
Python
deepracing_py/generate_image_poses.py
linklab-uva/deepracing
fc25c47658277df029e7399d295d97a75fe85216
[ "Apache-2.0" ]
11
2020-06-29T15:21:37.000Z
2021-04-12T00:42:26.000Z
deepracing_py/generate_image_poses.py
linklab-uva/deepracing
fc25c47658277df029e7399d295d97a75fe85216
[ "Apache-2.0" ]
null
null
null
deepracing_py/generate_image_poses.py
linklab-uva/deepracing
fc25c47658277df029e7399d295d97a75fe85216
[ "Apache-2.0" ]
4
2019-01-23T23:36:57.000Z
2021-07-02T00:18:37.000Z
import numpy as np import numpy.linalg as la import scipy import skimage import PIL from PIL import Image as PILImage import TimestampedPacketMotionData_pb2 import PoseSequenceLabel_pb2 import TimestampedImage_pb2 import Vector3dStamped_pb2 import argparse import os import google.protobuf.json_format import Pose3d_pb2 import cv2 import bisect import FrameId_pb2 import scipy.interpolate import deepracing.backend import deepracing.pose_utils from deepracing.protobuf_utils import getAllSessionPackets, getAllImageFilePackets, getAllMotionPackets, extractPose, extractVelocity, extractAngularVelocity from tqdm import tqdm as tqdm import yaml import shutil from scipy.spatial.transform import Rotation as Rot from scipy.spatial.transform import RotationSpline as RotSpline import json from scipy.spatial import KDTree as KDTree import matplotlib.pyplot as plt import time from deepracing import trackNames import json def imageDataKey(data): return data.timestamp def poseSequenceLabelKey(label): return label.car_pose.session_time parser = argparse.ArgumentParser() parser.add_argument("db_path", help="Path to root directory of DB", type=str) parser.add_argument("--output_dir", help="Output directory for the labels. relative to the database folder", default="image_poses", required=False) parser.add_argument("--zforward", help="Use the old-school z-forward convention for orientation of poses", action="store_true", required=False) args = parser.parse_args() zforward : bool = args.zforward root_dir = args.db_path with open(os.path.join(root_dir,"f1_dataset_config.yaml"),"r") as f: config = yaml.load(f,Loader=yaml.SafeLoader) use_json = config["use_json"] motion_data_folder = os.path.join(root_dir,"udp_data","motion_packets") image_folder = os.path.join(root_dir,"images") session_folder = os.path.join(root_dir,"udp_data","session_packets") session_packets = getAllSessionPackets(session_folder,use_json) track_ids = [packet.udp_packet.m_trackId for packet in session_packets] if(len(list(set(track_ids))) > 1): raise ValueError("This script only works on sessions where the whole session was done on the same track.") track_id = track_ids[0] output_dir = os.path.join(root_dir, args.output_dir) if os.path.isdir(output_dir): shutil.rmtree(output_dir) time.sleep(1.0) os.makedirs(output_dir) spectating_flags = [bool(packet.udp_packet.m_isSpectating) for packet in session_packets] spectating = any(spectating_flags) car_indices = [int(packet.udp_packet.m_spectatorCarIndex) for packet in session_packets] car_indices_set = set(car_indices) print(car_indices_set) print(car_indices) if spectating: if len(car_indices_set)>1: raise ValueError("Spectated datasets are only supported if you only spectate 1 car the entire time.") else: car_index = car_indices[0] else: car_index = None image_tags = getAllImageFilePackets(image_folder, use_json) motion_packets = getAllMotionPackets(motion_data_folder, use_json) motion_packets = sorted(motion_packets, key=deepracing.timestampedUdpPacketKey) session_times = np.array([packet.udp_packet.m_header.m_sessionTime for packet in motion_packets]) system_times = np.array([packet.timestamp/1000.0 for packet in motion_packets]) print(system_times) print(session_times) maxudptime = system_times[-1] image_tags = [ tag for tag in image_tags if tag.timestamp/1000.0<(maxudptime) ] image_tags = sorted(image_tags, key = imageDataKey) image_timestamps = np.array([data.timestamp/1000.0 for data in image_tags]) first_image_time = image_timestamps[0] print(first_image_time) Imin = system_times>(first_image_time + 1.0) firstIndex = np.argmax(Imin) motion_packets = motion_packets[firstIndex:] motion_packets = sorted(motion_packets, key=deepracing.timestampedUdpPacketKey) session_times = np.array([packet.udp_packet.m_header.m_sessionTime for packet in motion_packets], dtype=np.float64) unique_session_times, unique_session_time_indices = np.unique(session_times, return_index=True) motion_packets = [motion_packets[i] for i in unique_session_time_indices] motion_packets = sorted(motion_packets, key=deepracing.timestampedUdpPacketKey) session_times = np.array([packet.udp_packet.m_header.m_sessionTime for packet in motion_packets], dtype=np.float64) system_times = np.array([packet.timestamp/1000.0 for packet in motion_packets], dtype=np.float64) print("Range of session times: [%f,%f]" %(session_times[0], session_times[-1])) print("Range of udp system times: [%f,%f]" %(system_times[0], system_times[-1])) print("Range of image system times: [%f,%f]" %(image_timestamps[0], image_timestamps[-1])) poses = [extractPose(packet.udp_packet, car_index=car_index, zforward=zforward) for packet in motion_packets] velocities = np.array([extractVelocity(packet.udp_packet, car_index=car_index) for packet in motion_packets]) positions = np.array([pose[0] for pose in poses]) position_diffs = np.diff(positions, axis=0) position_diff_norms = la.norm(position_diffs, axis=1) print("Diff norm vector has length %d: " % (len(position_diff_norms))) quaternions = np.array([pose[1] for pose in poses]) rotations = Rot.from_quat(quaternions) slope_session_time_fit, intercept_session_time_fit, rvalue, pvalue, stderr = scipy.stats.linregress(np.linspace(1,session_times.shape[0],session_times.shape[0]), session_times) print("Slope and intercept of raw session times: [%f,%f]" %(slope_session_time_fit, intercept_session_time_fit)) slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(system_times, session_times) print("Slope and intercept of session time vs system time: [%f,%f]" %(slope, intercept)) print( "r value of session time vs system time: %f" % ( rvalue ) ) print( "r^2 value of session time vs system time: %f" % ( rvalue**2 ) ) image_session_timestamps = slope*image_timestamps + intercept print("Range of image session times before clipping: [%f,%f]" %(image_session_timestamps[0], image_session_timestamps[-1])) Iclip = (image_session_timestamps>(np.min(session_times) + 1.5)) * (image_session_timestamps<(np.max(session_times) - 1.5 )) image_tags = [image_tags[i] for i in range(len(image_session_timestamps)) if Iclip[i]] image_session_timestamps = image_session_timestamps[Iclip] print("Range of image session times after clipping: [%f,%f]" %(image_session_timestamps[0], image_session_timestamps[-1])) position_interpolant = scipy.interpolate.make_interp_spline(session_times, positions) rotation_interpolant = RotSpline(session_times, rotations) velocity_interpolant = scipy.interpolate.make_interp_spline(session_times, velocities) interpolated_positions = position_interpolant(image_session_timestamps) interpolated_velocities = velocity_interpolant(image_session_timestamps) interpolated_rotations = rotation_interpolant(image_session_timestamps) interpolated_quaternions = interpolated_rotations.as_quat() if spectating: interpolated_angular_velocities = rotation_interpolant(image_session_timestamps,order=1) else: angular_velocities = np.array([extractAngularVelocity(packet.udp_packet) for packet in motion_packets]) angular_velocity_interpolant = scipy.interpolate.make_interp_spline(session_times, angular_velocities) interpolated_angular_velocities = angular_velocity_interpolant(image_session_timestamps) fig = plt.figure() plt.scatter(interpolated_positions[:,0], interpolated_positions[:,2]) plt.show() plt.close("all") print() print(len(image_tags)) print(len(image_session_timestamps)) print(len(interpolated_positions)) print(len(interpolated_quaternions)) print(len(interpolated_angular_velocities)) print() print("Linear map from system time to session time: session_time = %f*system_time + %f" %(slope,intercept)) print("Standard error: %f" %(std_err)) print("R^2: %f" %(r_value**2)) output_dict : dict = dict() image_keys = [] for i in tqdm(range(len(image_tags))): image_tag = image_tags[i] key, extension = os.path.splitext(image_tag.image_file) key = key.replace("\n","") image_keys.append(key) imagedict : dict = dict() imagedict["position"] = interpolated_positions[i].tolist() imagedict["session_time"] = image_session_timestamps[i] imagedict["quaternion"] = interpolated_quaternions[i].tolist() imagedict["linear_velocity"] = interpolated_velocities[i].tolist() imagedict["angular_velocity"] = interpolated_angular_velocities[i].tolist() output_dict[key] = imagedict output_dir = os.path.join(root_dir, args.output_dir) if os.path.isdir(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) image_files = os.path.join(output_dir, "image_files.txt") with open(image_files, "w") as f: f.writelines([key+"\n" for key in image_keys]) dictionary_file = os.path.join(output_dir, "image_poses.json") with open(dictionary_file, "w") as f: json.dump(output_dict, f, indent=3) metadata : dict = { "zforward" : zforward, "trackname" : trackNames[track_ids[0]], "networkgame" : session_packets[0].udp_packet.m_networkGame>0, "spectating" : spectating } metadata_file = os.path.join(output_dir, "metadata.json") with open(metadata_file, "w") as f: json.dump(metadata, f, indent=3) geometric_data_file = os.path.join(output_dir, "geometric_data.npz") with open(geometric_data_file, "wb") as f: np.savez(f, interpolated_positions=interpolated_positions, \ interpolated_quaternions = interpolated_quaternions, \ interpolated_velocities=interpolated_velocities, \ interpolated_angular_velocities=interpolated_angular_velocities, \ image_session_timestamps=image_session_timestamps, \ udp_positions=positions, \ udp_rotations=rotations.as_quat(), \ udp_velocities=velocities, \ udp_session_times=session_times, \ )
43.530973
176
0.78085
ecaa7438c7365a3f5f22e50068ea6bd8ea03e08d
2,164
py
Python
do_data/getter.py
justinhchae/pandas_project
233532d84b8af0c0064ca170a01320ce0d83e4eb
[ "MIT" ]
null
null
null
do_data/getter.py
justinhchae/pandas_project
233532d84b8af0c0064ca170a01320ce0d83e4eb
[ "MIT" ]
null
null
null
do_data/getter.py
justinhchae/pandas_project
233532d84b8af0c0064ca170a01320ce0d83e4eb
[ "MIT" ]
null
null
null
import pandas as pd import os from do_mods.modify_columns import ModifyColumns class Reader(): def __init__(self, folder='data', display_all_cols=True): self.folder = folder self.path = os.environ['PWD'] + os.sep + self.folder + os.sep self.modify_columns = ModifyColumns() if display_all_cols: pd.set_option('display.max_columns', None) def to_df(self , filename=None , index_col=None , usecols=None , dtype=None , preview=True , echo=True , clean=True ): if not isinstance(filename, str): return "Filename should be a string" if filename: csv = '.csv' pickle = '.pickle' if csv in filename or pickle not in filename: self.filename = filename path = self.path + self.filename if echo: print('Reading From:', path) print() df = pd.read_csv(path , index_col=index_col , usecols=usecols , dtype=dtype , low_memory=False ) if echo: print('Read dataframe of length', len(df)) print() if preview: print(df.head(2)) print() if clean: df = self.modify_columns.parse_cols(df) return df if pickle in filename: self.filename = filename path = self.path + self.filename if echo: print('Reading From:', path) print() df = pd.read_pickle(path) if echo: print('Read dataframe of length', len(df)) print() if preview: print(df.head(2)) print() return df
27.05
69
0.424214
6043ff82b2c7796f1a77b5003c747e1882857673
8,106
py
Python
sdk/python/pulumi_azure_nextgen/network/v20200701/get_network_security_group.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/network/v20200701/get_network_security_group.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/network/v20200701/get_network_security_group.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetNetworkSecurityGroupResult', 'AwaitableGetNetworkSecurityGroupResult', 'get_network_security_group', ] @pulumi.output_type class GetNetworkSecurityGroupResult: """ NetworkSecurityGroup resource. """ def __init__(__self__, default_security_rules=None, etag=None, flow_logs=None, location=None, name=None, network_interfaces=None, provisioning_state=None, resource_guid=None, security_rules=None, subnets=None, tags=None, type=None): if default_security_rules and not isinstance(default_security_rules, list): raise TypeError("Expected argument 'default_security_rules' to be a list") pulumi.set(__self__, "default_security_rules", default_security_rules) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if flow_logs and not isinstance(flow_logs, list): raise TypeError("Expected argument 'flow_logs' to be a list") pulumi.set(__self__, "flow_logs", flow_logs) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if network_interfaces and not isinstance(network_interfaces, list): raise TypeError("Expected argument 'network_interfaces' to be a list") pulumi.set(__self__, "network_interfaces", network_interfaces) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_guid and not isinstance(resource_guid, str): raise TypeError("Expected argument 'resource_guid' to be a str") pulumi.set(__self__, "resource_guid", resource_guid) if security_rules and not isinstance(security_rules, list): raise TypeError("Expected argument 'security_rules' to be a list") pulumi.set(__self__, "security_rules", security_rules) if subnets and not isinstance(subnets, list): raise TypeError("Expected argument 'subnets' to be a list") pulumi.set(__self__, "subnets", subnets) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="defaultSecurityRules") def default_security_rules(self) -> Sequence['outputs.SecurityRuleResponse']: """ The default security rules of network security group. """ return pulumi.get(self, "default_security_rules") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="flowLogs") def flow_logs(self) -> Sequence['outputs.FlowLogResponse']: """ A collection of references to flow log resources. """ return pulumi.get(self, "flow_logs") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkInterfaces") def network_interfaces(self) -> Sequence['outputs.NetworkInterfaceResponse']: """ A collection of references to network interfaces. """ return pulumi.get(self, "network_interfaces") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the network security group resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> str: """ The resource GUID property of the network security group resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter(name="securityRules") def security_rules(self) -> Optional[Sequence['outputs.SecurityRuleResponse']]: """ A collection of security rules of the network security group. """ return pulumi.get(self, "security_rules") @property @pulumi.getter def subnets(self) -> Sequence['outputs.SubnetResponse']: """ A collection of references to subnets. """ return pulumi.get(self, "subnets") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetNetworkSecurityGroupResult(GetNetworkSecurityGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetNetworkSecurityGroupResult( default_security_rules=self.default_security_rules, etag=self.etag, flow_logs=self.flow_logs, location=self.location, name=self.name, network_interfaces=self.network_interfaces, provisioning_state=self.provisioning_state, resource_guid=self.resource_guid, security_rules=self.security_rules, subnets=self.subnets, tags=self.tags, type=self.type) def get_network_security_group(expand: Optional[str] = None, network_security_group_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNetworkSecurityGroupResult: """ Use this data source to access information about an existing resource. :param str expand: Expands referenced resources. :param str network_security_group_name: The name of the network security group. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['expand'] = expand __args__['networkSecurityGroupName'] = network_security_group_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network/v20200701:getNetworkSecurityGroup', __args__, opts=opts, typ=GetNetworkSecurityGroupResult).value return AwaitableGetNetworkSecurityGroupResult( default_security_rules=__ret__.default_security_rules, etag=__ret__.etag, flow_logs=__ret__.flow_logs, location=__ret__.location, name=__ret__.name, network_interfaces=__ret__.network_interfaces, provisioning_state=__ret__.provisioning_state, resource_guid=__ret__.resource_guid, security_rules=__ret__.security_rules, subnets=__ret__.subnets, tags=__ret__.tags, type=__ret__.type)
38.235849
236
0.660252
08f0e57920d720737ee644528ffad5ff2ae6cd9f
7,866
py
Python
juriscraper/lib/html_utils.py
Alex-Devoid/juriscraper
6ac2d5182dbf3aea14d918e645d582e9b42c9dd6
[ "BSD-2-Clause" ]
null
null
null
juriscraper/lib/html_utils.py
Alex-Devoid/juriscraper
6ac2d5182dbf3aea14d918e645d582e9b42c9dd6
[ "BSD-2-Clause" ]
null
null
null
juriscraper/lib/html_utils.py
Alex-Devoid/juriscraper
6ac2d5182dbf3aea14d918e645d582e9b42c9dd6
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 import re import sys from lxml import etree, html from lxml.etree import XMLSyntaxError from lxml.html import fromstring, html5parser, tostring from lxml.html.clean import Cleaner from six import text_type from six.moves.html_parser import HTMLParser from six.moves.urllib.parse import urlsplit, urlunsplit try: # Use cchardet for performance to detect the character encoding. import cchardet as chardet except ImportError: import chardet if sys.maxunicode == 65535: from .log_tools import make_default_logger logger = make_default_logger() logger.warn("You are using a narrow build of Python, which is not " "completely supported. See issue #188 for details.") def get_xml_parsed_text(text): return etree.fromstring(text) def get_html_parsed_text(text): return html.fromstring(text) def get_html5_parsed_text(text): """Return content using the html5parser, ideal for faulty html. This dance is slightly different than usual because it uses the html5parser to first create an _Element object, then serialize it using `tostring`, then parse *that* using the usual fromstring function. The end result is that irregularities in the html are fixed by the html5parser, and the usual lxml parser gives us the same API we are used to. :param text: The html of the document :return: an lxml.HtmlElement object """ parsed = html5parser.document_fromstring(text.encode('utf-8')) return fromstring(tostring(parsed, encoding='unicode')) def get_table_column_text(html, cell_num, path_base=False): path_cell = '//table//tr/td[%d]' % cell_num path = path_base + path_cell if path_base else path_cell return [cell.text_content().strip() for cell in html.xpath(path)] def get_table_column_links(html, cell_num, path_base=False): path_cell = '//table//tr/td[%d]//a/@href' % cell_num path = path_base + path_cell if path_base else path_cell return html.xpath(path) def get_row_column_text(row, cell_num): """Return string cell value for specified column. :param row: HtmlElement :param cell_num: int :return: string """ return row.xpath('.//td[%d]' % cell_num)[0].text_content().strip() def get_row_column_links(row, cell_num): """Return string href value for link in specified column. NOTE: if there are multiple links in the column, you might need to write your own function. :param row: HtmlElement :param cell_num: int :return: string """ return row.xpath('.//td[%d]//a/@href' % cell_num)[0] def get_clean_body_content(content, remove_extra_tags=[]): """Parse out the body from an html string, clean it up, and send it along. """ remove_tags = ['a', 'body', 'font', 'noscript'] remove_tags.extend(remove_extra_tags) cleaner = Cleaner(style=True, remove_tags=remove_tags) try: return cleaner.clean_html(content) except XMLSyntaxError: return "Unable to extract the content from this file. Please try " \ "reading the original." def get_visible_text(html_content): html_tree = html.fromstring(html_content) text = html_tree.xpath("""//text()[normalize-space() and not(parent::style | parent::link | parent::head | parent::script)]""") return " ".join(text) def html_unescape(s): h = HTMLParser() return h.unescape(s) def set_response_encoding(request): """Set the encoding if it isn't set already. Use cchardet for added performance. """ if request: # If the encoding is iso-8859-1, switch it to cp1252 (a superset) if request.encoding == 'ISO-8859-1': request.encoding = 'cp1252' if request.encoding is None: # Requests detects the encoding when the item is GET'ed using # HTTP headers, and then when r.text is accessed, if the encoding # hasn't been set by that point. By setting the encoding here, we # ensure that it's done by cchardet, if it hasn't been done with # HTTP headers. This way it is done before r.text is accessed # (which would do it with vanilla chardet). This is a big # performance boon, and can be removed once requests is upgraded if isinstance(request.content, text_type): as_bytes = request.content.encode() request.encoding = chardet.detect(as_bytes)['encoding'] else: request.encoding = chardet.detect(request.content)['encoding'] def clean_html(text): """ Cleans up text before we make it into an HTML tree: 1. Nukes <![CDATA stuff. 2. Nukes XML encoding declarations 3. Replaces </br> with <br/> 4. Nukes invalid bytes in input 5. ? """ # Remove <![CDATA because it causes breakage in lxml. text = re.sub(r'<!\[CDATA\[', u'', text) text = re.sub(r'\]\]>', u'', text) # Remove <?xml> declaration in Unicode objects, because it causes an # error: "ValueError: Unicode strings with encoding declaration are not # supported." # Note that the error only occurs if the <?xml> tag has an "encoding" # attribute, but we remove it in all cases, as there's no downside to # removing it. This moves our encoding detection to chardet, rather than # lxml. if isinstance(text, text_type): text = re.sub(r'^\s*<\?xml\s+.*?\?>', '', text) # Fix invalid bytes in XML (http://stackoverflow.com/questions/8733233/) # Note that this won't work completely on narrow builds of Python, which # existed prior to Py3. Thus, we check if it's a narrow build, and adjust # accordingly. if sys.maxunicode == 65535: text = re.sub(u'[^\u0020-\uD7FF\u0009\u000A\u000D\uE000-\uFFFD]+', u'', text) else: text = re.sub(u'[^\u0020-\uD7FF\u0009\u000A\u000D\uE000-\uFFFD' u'\U00010000-\U0010FFFF]+', u'', text) return text def fix_links_but_keep_anchors(link): # Wrap the function below so that we have one that can be passed to # lxml's rewrite_links method, which doesn't accept any parameters. return fix_links_in_lxml_tree(link, keep_anchors=True) def fix_links_in_lxml_tree(link, keep_anchors=False): """Fix links in an lxml tree. :param keep_anchors: Whether to nuke anchors at the ends of links. This function is called by the rewrite_links method of an lxml tree, and is used to normalize links in a few ways. It makes links absolute, works around buggy URLs and nukes anchors. Example: html_tree.rewrite_links(fix_links_in_lxml_tree, base_href=my_url) Some URLS, like the following, make no sense: - https://www.appeals2.az.gov/../Decisions/CR20130096OPN.pdf. ^^^^ -- This makes no sense! The fix is to remove any extra '/..' patterns at the beginning of the path. Others have annoying anchors on the end, like: - http://example.com/path/#anchor Note that lxml has a method generally for this purpose called make_links_absolute, but we cannot use it because it does not work around invalid relative URLS, nor remove anchors. This is a limitation of Python's urljoin that will be fixed in Python 3.5 according to a bug we filed: http://bugs.python.org/issue22118 """ url_parts = urlsplit(link) url = urlunsplit( url_parts[:2] + (re.sub('^(/\.\.)+', '', url_parts.path),) + url_parts[3:] ) if keep_anchors: return url else: return url.split('#')[0]
36.082569
85
0.65192
0c7930500ca408365b15fae9fdb3d446d471abf8
18,572
py
Python
asposewordscloud/models/xaml_flow_save_options_data.py
rizwanniazigroupdocs/aspose-words-cloud-python
b943384a1e3c0710cc84df74119e6edf7356037e
[ "MIT" ]
null
null
null
asposewordscloud/models/xaml_flow_save_options_data.py
rizwanniazigroupdocs/aspose-words-cloud-python
b943384a1e3c0710cc84df74119e6edf7356037e
[ "MIT" ]
null
null
null
asposewordscloud/models/xaml_flow_save_options_data.py
rizwanniazigroupdocs/aspose-words-cloud-python
b943384a1e3c0710cc84df74119e6edf7356037e
[ "MIT" ]
null
null
null
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose" file="xaml_flow_save_options_data.py"> # Copyright (c) 2020 Aspose.Words for Cloud # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six import json class XamlFlowSaveOptionsData(object): """Container class for xaml flow save options. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'dml3_d_effects_rendering_mode': 'str', 'dml_effects_rendering_mode': 'str', 'dml_rendering_mode': 'str', 'file_name': 'str', 'save_format': 'str', 'update_fields': 'bool', 'update_last_printed_property': 'bool', 'update_last_saved_time_property': 'bool', 'update_sdt_content': 'bool', 'zip_output': 'bool', 'images_folder': 'str', 'images_folder_alias': 'str' } attribute_map = { 'dml3_d_effects_rendering_mode': 'Dml3DEffectsRenderingMode', 'dml_effects_rendering_mode': 'DmlEffectsRenderingMode', 'dml_rendering_mode': 'DmlRenderingMode', 'file_name': 'FileName', 'save_format': 'SaveFormat', 'update_fields': 'UpdateFields', 'update_last_printed_property': 'UpdateLastPrintedProperty', 'update_last_saved_time_property': 'UpdateLastSavedTimeProperty', 'update_sdt_content': 'UpdateSdtContent', 'zip_output': 'ZipOutput', 'images_folder': 'ImagesFolder', 'images_folder_alias': 'ImagesFolderAlias' } def __init__(self, dml3_d_effects_rendering_mode=None, dml_effects_rendering_mode=None, dml_rendering_mode=None, file_name=None, save_format=None, update_fields=None, update_last_printed_property=None, update_last_saved_time_property=None, update_sdt_content=None, zip_output=None, images_folder=None, images_folder_alias=None): # noqa: E501 """XamlFlowSaveOptionsData - a model defined in Swagger""" # noqa: E501 self._dml3_d_effects_rendering_mode = None self._dml_effects_rendering_mode = None self._dml_rendering_mode = None self._file_name = None self._save_format = None self._update_fields = None self._update_last_printed_property = None self._update_last_saved_time_property = None self._update_sdt_content = None self._zip_output = None self._images_folder = None self._images_folder_alias = None self.discriminator = None if dml3_d_effects_rendering_mode is not None: self.dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode if dml_effects_rendering_mode is not None: self.dml_effects_rendering_mode = dml_effects_rendering_mode if dml_rendering_mode is not None: self.dml_rendering_mode = dml_rendering_mode if file_name is not None: self.file_name = file_name if save_format is not None: self.save_format = save_format if update_fields is not None: self.update_fields = update_fields if update_last_printed_property is not None: self.update_last_printed_property = update_last_printed_property if update_last_saved_time_property is not None: self.update_last_saved_time_property = update_last_saved_time_property if update_sdt_content is not None: self.update_sdt_content = update_sdt_content if zip_output is not None: self.zip_output = zip_output if images_folder is not None: self.images_folder = images_folder if images_folder_alias is not None: self.images_folder_alias = images_folder_alias @property def dml3_d_effects_rendering_mode(self): """Gets the dml3_d_effects_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the value determining how 3D effects are rendered. # noqa: E501 :return: The dml3_d_effects_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._dml3_d_effects_rendering_mode @dml3_d_effects_rendering_mode.setter def dml3_d_effects_rendering_mode(self, dml3_d_effects_rendering_mode): """Sets the dml3_d_effects_rendering_mode of this XamlFlowSaveOptionsData. Gets or sets the value determining how 3D effects are rendered. # noqa: E501 :param dml3_d_effects_rendering_mode: The dml3_d_effects_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ allowed_values = ["Basic", "Advanced"] # noqa: E501 if not dml3_d_effects_rendering_mode.isdigit(): if dml3_d_effects_rendering_mode not in allowed_values: raise ValueError( "Invalid value for `dml3_d_effects_rendering_mode` ({0}), must be one of {1}" # noqa: E501 .format(dml3_d_effects_rendering_mode, allowed_values)) self._dml3_d_effects_rendering_mode = dml3_d_effects_rendering_mode else: self._dml3_d_effects_rendering_mode = allowed_values[int(dml3_d_effects_rendering_mode) if six.PY3 else long(dml3_d_effects_rendering_mode)] @property def dml_effects_rendering_mode(self): """Gets the dml_effects_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the value determining how DrawingML effects are rendered. { Simplified | None | Fine }. # noqa: E501 :return: The dml_effects_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._dml_effects_rendering_mode @dml_effects_rendering_mode.setter def dml_effects_rendering_mode(self, dml_effects_rendering_mode): """Sets the dml_effects_rendering_mode of this XamlFlowSaveOptionsData. Gets or sets the value determining how DrawingML effects are rendered. { Simplified | None | Fine }. # noqa: E501 :param dml_effects_rendering_mode: The dml_effects_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ self._dml_effects_rendering_mode = dml_effects_rendering_mode @property def dml_rendering_mode(self): """Gets the dml_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the option that controls how DrawingML shapes are rendered. # noqa: E501 :return: The dml_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._dml_rendering_mode @dml_rendering_mode.setter def dml_rendering_mode(self, dml_rendering_mode): """Sets the dml_rendering_mode of this XamlFlowSaveOptionsData. Gets or sets the option that controls how DrawingML shapes are rendered. # noqa: E501 :param dml_rendering_mode: The dml_rendering_mode of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ self._dml_rendering_mode = dml_rendering_mode @property def file_name(self): """Gets the file_name of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the name of destination file. # noqa: E501 :return: The file_name of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._file_name @file_name.setter def file_name(self, file_name): """Sets the file_name of this XamlFlowSaveOptionsData. Gets or sets the name of destination file. # noqa: E501 :param file_name: The file_name of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ self._file_name = file_name @property def save_format(self): """Gets the save_format of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the format of save. # noqa: E501 :return: The save_format of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._save_format @save_format.setter def save_format(self, save_format): """Sets the save_format of this XamlFlowSaveOptionsData. Gets or sets the format of save. # noqa: E501 :param save_format: The save_format of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ self._save_format = save_format @property def update_fields(self): """Gets the update_fields of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets a value indicating whether fields should be updated before saving the document to a fixed page format. The default value is true. # noqa: E501 :return: The update_fields of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: bool """ return self._update_fields @update_fields.setter def update_fields(self, update_fields): """Sets the update_fields of this XamlFlowSaveOptionsData. Gets or sets a value indicating whether fields should be updated before saving the document to a fixed page format. The default value is true. # noqa: E501 :param update_fields: The update_fields of this XamlFlowSaveOptionsData. # noqa: E501 :type: bool """ self._update_fields = update_fields @property def update_last_printed_property(self): """Gets the update_last_printed_property of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets a value indicating whether the Aspose.Words.Properties.BuiltInDocumentProperties.LastPrinted property is updated before saving. # noqa: E501 :return: The update_last_printed_property of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: bool """ return self._update_last_printed_property @update_last_printed_property.setter def update_last_printed_property(self, update_last_printed_property): """Sets the update_last_printed_property of this XamlFlowSaveOptionsData. Gets or sets a value indicating whether the Aspose.Words.Properties.BuiltInDocumentProperties.LastPrinted property is updated before saving. # noqa: E501 :param update_last_printed_property: The update_last_printed_property of this XamlFlowSaveOptionsData. # noqa: E501 :type: bool """ self._update_last_printed_property = update_last_printed_property @property def update_last_saved_time_property(self): """Gets the update_last_saved_time_property of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets a value indicating whether the Aspose.Words.Properties.BuiltInDocumentProperties.LastSavedTime property is updated before saving. # noqa: E501 :return: The update_last_saved_time_property of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: bool """ return self._update_last_saved_time_property @update_last_saved_time_property.setter def update_last_saved_time_property(self, update_last_saved_time_property): """Sets the update_last_saved_time_property of this XamlFlowSaveOptionsData. Gets or sets a value indicating whether the Aspose.Words.Properties.BuiltInDocumentProperties.LastSavedTime property is updated before saving. # noqa: E501 :param update_last_saved_time_property: The update_last_saved_time_property of this XamlFlowSaveOptionsData. # noqa: E501 :type: bool """ self._update_last_saved_time_property = update_last_saved_time_property @property def update_sdt_content(self): """Gets the update_sdt_content of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets a value indicating whether content of StructuredDocumentTag is updated before saving. # noqa: E501 :return: The update_sdt_content of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: bool """ return self._update_sdt_content @update_sdt_content.setter def update_sdt_content(self, update_sdt_content): """Sets the update_sdt_content of this XamlFlowSaveOptionsData. Gets or sets a value indicating whether content of StructuredDocumentTag is updated before saving. # noqa: E501 :param update_sdt_content: The update_sdt_content of this XamlFlowSaveOptionsData. # noqa: E501 :type: bool """ self._update_sdt_content = update_sdt_content @property def zip_output(self): """Gets the zip_output of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets a value indicating whether to zip output or not. The default value is false. # noqa: E501 :return: The zip_output of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: bool """ return self._zip_output @zip_output.setter def zip_output(self, zip_output): """Sets the zip_output of this XamlFlowSaveOptionsData. Gets or sets a value indicating whether to zip output or not. The default value is false. # noqa: E501 :param zip_output: The zip_output of this XamlFlowSaveOptionsData. # noqa: E501 :type: bool """ self._zip_output = zip_output @property def images_folder(self): """Gets the images_folder of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the physical folder where images are saved when exporting. # noqa: E501 :return: The images_folder of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._images_folder @images_folder.setter def images_folder(self, images_folder): """Sets the images_folder of this XamlFlowSaveOptionsData. Gets or sets the physical folder where images are saved when exporting. # noqa: E501 :param images_folder: The images_folder of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ self._images_folder = images_folder @property def images_folder_alias(self): """Gets the images_folder_alias of this XamlFlowSaveOptionsData. # noqa: E501 Gets or sets the name of the folder used to construct image URIs. # noqa: E501 :return: The images_folder_alias of this XamlFlowSaveOptionsData. # noqa: E501 :rtype: str """ return self._images_folder_alias @images_folder_alias.setter def images_folder_alias(self, images_folder_alias): """Sets the images_folder_alias of this XamlFlowSaveOptionsData. Gets or sets the name of the folder used to construct image URIs. # noqa: E501 :param images_folder_alias: The images_folder_alias of this XamlFlowSaveOptionsData. # noqa: E501 :type: str """ self._images_folder_alias = images_folder_alias def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[self.attribute_map[attr]] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[self.attribute_map[attr]] = value.to_dict() elif isinstance(value, dict): result[self.attribute_map[attr]] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[self.attribute_map[attr]] = value return json.dumps(result) def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, XamlFlowSaveOptionsData): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
40.907489
346
0.669879
7ad12d58bc0a030dbaee99cb2cc5c37b70671b2a
23,619
py
Python
model.py
biancaAlexandru/painting
de442174687f477c743355009f74dd3b05a0e82e
[ "Apache-2.0" ]
null
null
null
model.py
biancaAlexandru/painting
de442174687f477c743355009f74dd3b05a0e82e
[ "Apache-2.0" ]
null
null
null
model.py
biancaAlexandru/painting
de442174687f477c743355009f74dd3b05a0e82e
[ "Apache-2.0" ]
null
null
null
import numba import torch import torchvision from scipy import stats import numpy as np from torch import nn import utils @numba.jit(nopython=True) def make_input_tensor(input_tensor, new_aug_lidar_cam_coords, bin_idxs, pillar_idxs): """ :return input_tensor: (10, P, N) np.array passed into conv layer. """ max_pts_per_pillar = 100 num_nonempty_pillars = pillar_idxs.shape[0] for i in range(num_nonempty_pillars): condition = bin_idxs == pillar_idxs[i] condition = (condition[:, 0] & condition[:, 1]) points = new_aug_lidar_cam_coords[condition][ :max_pts_per_pillar] # all points w/ same bin idx as pillar_idxs[i] points = points.T num_points = points.shape[1] input_tensor[:, i, :num_points] = points return input_tensor class PFNv2(nn.Module): def __init__(self): super(PFNv2, self).__init__() self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.max_pillars = 12000 self.max_pts_per_pillar = 100 self.xrange = (-40, 40) self.zrange = (0, 80) self.conv1 = nn.Conv2d(10, 64, kernel_size=1, bias=False) # output is (batch, 64, P, N) tensor self.bn1 = nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) def forward(self, lidar): """ :param lidar: list of tensors. (N_points, 5) in camera coordinates (x,y,z,r,class) """ assert isinstance(lidar, list) assert len(lidar[0].shape) == 2 # (points, 5) batch_size = len(lidar) input_tensor = torch.zeros(batch_size, 10, self.max_pillars, self.max_pts_per_pillar).to(self.device) encoded_bev = torch.zeros(batch_size, 64, 500, 500).to(self.device) pillar_idxs = [] for i in range(batch_size): l = np.array(lidar[i].cpu()) new_aug_lidar_cam_coords, bin_idxs, pillar_idxs_ = self.augment_points(l) pillar_idxs.append(pillar_idxs_) input_tensor_ = np.zeros((10, self.max_pillars, self.max_pts_per_pillar)) input_tensor_ = make_input_tensor(input_tensor_, new_aug_lidar_cam_coords, bin_idxs, pillar_idxs_) input_tensor[i] = torch.from_numpy(input_tensor_).to(self.device) x = nn.functional.relu(self.bn1(self.conv1(input_tensor))) # (batch, 64, P, N) encoded_pillars, _ = x.max(dim=-1) # (batch, 64, P) for i in range(batch_size): encoded_bev_ = self.scatter_encoded_pillars_to_bev(encoded_pillars[i], pillar_idxs[i]) encoded_bev[i] = encoded_bev_ return encoded_bev # (batch, 64, 500, 500) def augment_points(self, augmented_lidar_cam_coords): """ Converts (x,y,z,r,class) to (x,y,z,r,class,xc,yc,zc,xp,zp) """ points_in_xrange = (-40 < augmented_lidar_cam_coords[:, 0]) & (augmented_lidar_cam_coords[:, 0] < 40) points_in_zrange = (0 < augmented_lidar_cam_coords[:, 2]) & (augmented_lidar_cam_coords[:, 2] < 70.4) augmented_lidar_cam_coords = augmented_lidar_cam_coords[points_in_xrange & points_in_zrange] new_aug_lidar_cam_coords = np.zeros((augmented_lidar_cam_coords.shape[0], 10)) new_aug_lidar_cam_coords[:, :5] = augmented_lidar_cam_coords xedges = np.linspace(-40, 40, 501, dtype=np.float32) # 80 first because a point 80m from ego car is in top row of bev img (row 0) zedges = np.linspace(80, 0, 501, dtype=np.float32) x = augmented_lidar_cam_coords[:, 0] # left/right y = augmented_lidar_cam_coords[:, 1] # y in cam coords (+ is down, - is up) z = augmented_lidar_cam_coords[:, 2] # front/back x_inds = np.digitize(x, xedges).reshape(-1, 1) - 1 # subtract 1 to get 0 based indexing z_inds = np.digitize(z, zedges).reshape(-1, 1) - 1 # idx into rows of bev img bin_idxs = np.hstack((z_inds, x_inds)) # z first because it corresponds to rows of the bev # mean of x vals of points in each bin ret_x = stats.binned_statistic_2d(z, x, x, 'mean', bins=[np.flip(zedges), xedges]) ret_y = stats.binned_statistic_2d(z, x, y, 'mean', bins=[np.flip(zedges), xedges]) ret_z = stats.binned_statistic_2d(z, x, z, 'mean', bins=[np.flip(zedges), xedges]) # since need to flip zedges (row bins) to make function work, need to flip output by rows x_mean = np.flip(ret_x.statistic, axis=0) y_mean = np.flip(ret_y.statistic, axis=0) # mean of all z values in each bev img 'pixel', NaN at cells with no points. z_mean = np.flip(ret_z.statistic, axis=0) # coord of x center of each bev cell. All cols have same value x_ctr = np.tile(np.linspace((-40 + .08), (40 - .08), 500), (500, 1)) z_ctr = np.tile(np.linspace((80 - .08), (0 + .08), 500).reshape(-1, 1), (1, 500)) # all rows have same value # offset of each point from x_mean of pillar, ymean, zmean, x_center, y_center # offset of each point from xmean of pillar new_aug_lidar_cam_coords[:, 5] = new_aug_lidar_cam_coords[:, 0] - x_mean[bin_idxs[:, 0], bin_idxs[:, 1]] new_aug_lidar_cam_coords[:, 6] = new_aug_lidar_cam_coords[:, 1] - y_mean[bin_idxs[:, 0], bin_idxs[:, 1]] # yc new_aug_lidar_cam_coords[:, 7] = new_aug_lidar_cam_coords[:, 2] - z_mean[bin_idxs[:, 0], bin_idxs[:, 1]] # zc # offset from x center of pillar new_aug_lidar_cam_coords[:, 8] = new_aug_lidar_cam_coords[:, 0] - x_ctr[bin_idxs[:, 0], bin_idxs[:, 1]] new_aug_lidar_cam_coords[:, 9] = new_aug_lidar_cam_coords[:, 2] - z_ctr[bin_idxs[:, 0], bin_idxs[:, 1]] # zp H, _, __ = np.histogram2d(z, x, bins=(np.flip(zedges), xedges)) H[H != 0] = 1 num_nonempty_pillars = int(np.flip(H, axis=0).sum()) # pillars containing >= 1 lidar point pillar_idxs = np.unique(bin_idxs, axis=0) # ith element will be bin (row, col of bev img) of that pillar if pillar_idxs.shape[0] > self.max_pillars: np.random.shuffle(pillar_idxs) pillar_idxs = pillar_idxs[:self.max_pillars] return new_aug_lidar_cam_coords, bin_idxs, pillar_idxs def scatter_encoded_pillars_to_bev(self, encoded_pillars, pillar_idxs): """ :return encoded_bev: (64, 500, 500) tensor for input to resnet portion of network """ num_nonempty_pillars = pillar_idxs.shape[0] # bev_map and encoded_pillars must be torch.float, indices tensors must be torch.long encoded_bev = torch.zeros(64, 500, 500).to(self.device) encoded_bev[:, pillar_idxs[:, 0], pillar_idxs[:, 1]] = encoded_pillars[:, :num_nonempty_pillars] return encoded_bev class PredictionConvolutions(nn.Module): def __init__(self, channels_for_block, n_classes): super(PredictionConvolutions, self).__init__() self.n_classes = n_classes # including background # Number of prior-boxes we are considering per position in each feature map n_boxes = 2 # Localization prediction convolutions (predict offsets w.r.t prior-boxes # (4 values) and height/elevation (2 values)) self.loc_block0 = nn.Conv2d(channels_for_block[0], n_boxes * 4, kernel_size=3, padding=1) self.loc_block1 = nn.Conv2d(channels_for_block[1], n_boxes * 4, kernel_size=3, padding=1) self.loc_block2 = nn.Conv2d(channels_for_block[2], n_boxes * 4, kernel_size=3, padding=1) self.loc_block3 = nn.Conv2d(channels_for_block[3], n_boxes * 4, kernel_size=3, padding=1) # Class prediction convolutions (predict classes in localization boxes) self.cl_block0 = nn.Conv2d(channels_for_block[0], n_boxes * n_classes, kernel_size=3, padding=1) self.cl_block1 = nn.Conv2d(channels_for_block[1], n_boxes * n_classes, kernel_size=3, padding=1) self.cl_block2 = nn.Conv2d(channels_for_block[2], n_boxes * n_classes, kernel_size=3, padding=1) self.cl_block3 = nn.Conv2d(channels_for_block[3], n_boxes * n_classes, kernel_size=3, padding=1) def forward(self, block0_fmaps, block1_fmaps, block2_fmaps, block3_fmaps): batch_size = block0_fmaps.size(0) # Predict localization boxes' bounds (as offsets w.r.t prior-boxes) l_block0 = self.loc_block0(block0_fmaps) # (N, 8, 250, 250) 12 channels is for 2 boxes * (4 offsets) l_block0 = l_block0.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 4) # (N, 250*250*2, 4) l_block1 = self.loc_block1(block1_fmaps) # (N, 8, 125, 125) l_block1 = l_block1.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 4) # (N, 125*125*2, 4) l_block2 = self.loc_block2(block2_fmaps) # (N, 8, 63, 63) l_block2 = l_block2.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 4) # (N, 63*63*2, 4) l_block3 = self.loc_block3(block3_fmaps) # (N, 8, 32, 32) l_block3 = l_block3.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 4) # (N, 32*32*2, 4) # Predict classes in localization boxes c_block0 = self.cl_block0(block0_fmaps) # (N, 2 * n_classes, 250, 250). 2 refers to 2 boxes per cell of fmap c_block0 = c_block0.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, self.n_classes) # (N, 2*250*250, n_classes) c_block1 = self.cl_block1(block1_fmaps) # (N, 2 * n_classes, 125, 125) c_block1 = c_block1.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, self.n_classes) # (N, 2*125*125, n_classes) c_block2 = self.cl_block2(block2_fmaps) # (N, 2 * n_classes, 63, 63) c_block2 = c_block2.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, self.n_classes) # (N, 2*63*63, n_classes) c_block3 = self.cl_block3(block3_fmaps) # (N, 2 * n_classes, 32, 32) c_block3 = c_block3.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, self.n_classes) # (N, 2*32*32, n_classes) # Concatenate in this specific order (i.e. must match the order of the prior-boxes) locs = torch.cat([ # l_block0, l_block1, l_block2, l_block3], dim=1) classes_scores = torch.cat([ # c_block0, c_block1, c_block2, c_block3], dim=1) return locs, classes_scores class SSD(nn.Module): def __init__(self, resnet_type, n_classes): super(SSD, self).__init__() assert resnet_type in [18, 34, 50] if resnet_type == 18: resnet = list(torchvision.models.resnet18().children()) channels_for_block = [64, 128, 256, 512] # output channels of fmap for each of blocks 0 - 3 elif resnet_type == 34: resnet = list(torchvision.models.resnet34().children()) channels_for_block = [64, 128, 256, 512] else: resnet = list(torchvision.models.resnet50().children()) channels_for_block = [256, 512, 1024, 2048] self.n_classes = n_classes self.pred_convs = PredictionConvolutions(channels_for_block, n_classes) self.pillar_feat_net = PFNv2() # Input channels of Conv2d in self.downsize must be output of PFN (N, 64, 500, 500) self.downsize = nn.Sequential(nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False), nn.BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True), nn.ReLU(inplace=True)) self.block0 = resnet[4] self.block1 = resnet[5] self.block2 = resnet[6] self.block3 = resnet[7] self.priors_cxcy = self.create_prior_boxes() def forward(self, lidar): encoded_bev = self.pillar_feat_net(lidar) x = self.downsize(encoded_bev) block0_fmaps = self.block0(x) block1_fmaps = self.block1(block0_fmaps) block2_fmaps = self.block2(block1_fmaps) block3_fmaps = self.block3(block2_fmaps) locs, classes_scores = self.pred_convs(block0_fmaps, block1_fmaps, block2_fmaps, block3_fmaps) return locs, classes_scores, encoded_bev def create_prior_boxes(self): fmap_dims = { # 'block0': 250, # 'block1': 125, 'block2': 63, 'block3': 32} obj_scale = 0.031 # Assumes 500x500px BEV covers 80m x 80m and cars are 1.6m x 3.9m aspect_ratios = [2., 0.5] fmap_names = list(fmap_dims.keys()) prior_boxes = [] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") for fmap in fmap_names: for i in range(fmap_dims[fmap]): for j in range(fmap_dims[fmap]): cx = (j + 0.5) / fmap_dims[fmap] cy = (i + 0.5) / fmap_dims[fmap] for ratio in aspect_ratios: prior_boxes.append([cx, cy, obj_scale * np.sqrt(ratio), obj_scale / np.sqrt(ratio)]) prior_boxes = torch.FloatTensor(prior_boxes).to(device) prior_boxes.clamp_(0, 1) return prior_boxes def detect_objects(self, predicted_locs, predicted_scores, min_score, max_overlap, top_k): batch_size = predicted_locs.size(0) n_priors = self.priors_cxcy.size(0) predicted_scores = nn.functional.softmax(predicted_scores, dim=2) all_images_boxes = list() all_images_labels = list() all_images_scores = list() assert n_priors == predicted_locs.size(1) == predicted_scores.size(1) for i in range(batch_size): # Decode object coordinates from the form we regressed predicted boxes to decoded_locs = utils.cxcy_to_xy( utils.gcxgcy_to_cxcy(predicted_locs[i], self.priors_cxcy)) # (n_priors, 4), these are fractional pt. coordinates image_boxes = list() image_labels = list() image_scores = list() max_scores, best_label = predicted_scores[i].max(dim=1) # (8732) for c in range(1, self.n_classes): # Keep only predicted boxes and scores where scores for this class are above the minimum score class_scores = predicted_scores[i][:, c] score_above_min_score = class_scores > min_score # torch.uint8 (byte) tensor, for indexing n_above_min_score = score_above_min_score.sum().item() if n_above_min_score == 0: continue class_scores = class_scores[score_above_min_score] class_decoded_locs = decoded_locs[score_above_min_score] # Sort predicted boxes and scores by scores class_scores, sort_ind = class_scores.sort(dim=0, descending=True) class_decoded_locs = class_decoded_locs[sort_ind] print('class_scores.shape', class_scores.shape, 'class_decoded_locs.shape', class_decoded_locs.shape) # Find the overlap between predicted boxes overlap = utils.find_jaccard_overlap(class_decoded_locs, class_decoded_locs) # Non-Maximum Suppression (NMS) # A torch.uint8 (byte) tensor to keep track of which predicted boxes to suppress # 1 implies suppress, 0 implies don't suppress suppress = torch.max(suppress, (overlap[box] > max_overlap).type(torch.cuda.ByteTensor)) # (n_qualified) # Consider each box in order of decreasing scores for box in range(class_decoded_locs.size(0)): # If this box is already marked for suppression if suppress[box] == 1: continue # Suppress boxes whose overlaps (with this box) are greater than maximum overlap # Find such boxes and update suppress indices suppress = torch.max(suppress, overlap[box] > max_overlap) # The max operation retains previously suppressed boxes, like an 'OR' operation # Don't suppress this box, even though it has an overlap of 1 with itself suppress[box] = 0 # Store only unsuppressed boxes for this class image_boxes.append(class_decoded_locs[1 - suppress]) image_labels.append(torch.LongTensor((1 - suppress).sum().item() * [c]).to(self.pillar_feat_net.device)) image_scores.append(class_scores[1 - suppress]) # If no object in any class is found, store a placeholder for 'background' if len(image_boxes) == 0: image_boxes.append(torch.FloatTensor([[0., 0., 1., 1.]]).to(self.pillar_feat_net.device)) image_labels.append(torch.LongTensor([0]).to(self.pillar_feat_net.device)) image_scores.append(torch.FloatTensor([0.]).to(self.pillar_feat_net.device)) # Concatenate into single tensors image_boxes = torch.cat(image_boxes, dim=0) # (n_objects, 4) image_labels = torch.cat(image_labels, dim=0) # (n_objects) image_scores = torch.cat(image_scores, dim=0) # (n_objects) n_objects = image_scores.size(0) # Keep only the top k objects if n_objects > top_k: image_scores, sort_ind = image_scores.sort(dim=0, descending=True) image_scores = image_scores[:top_k] # (top_k) image_boxes = image_boxes[sort_ind][:top_k] # (top_k, 4) image_labels = image_labels[sort_ind][:top_k] # (top_k) # Append to lists that store predicted boxes and scores for all images all_images_boxes.append(image_boxes) all_images_labels.append(image_labels) all_images_scores.append(image_scores) return all_images_boxes, all_images_labels, all_images_scores # lists of length batch_size class MultiBoxLoss(nn.Module): """ The MultiBox loss, a loss function for object detection. This is a combination of: (1) a localization loss for the predicted locations of the boxes, and (2) a confidence loss for the predicted class scores. """ def __init__(self, priors_cxcy, threshold=0.5, neg_pos_ratio=3, alpha=1.): super(MultiBoxLoss, self).__init__() self.priors_cxcy = priors_cxcy self.priors_xy = utils.cxcy_to_xy(priors_cxcy) self.threshold = threshold self.neg_pos_ratio = neg_pos_ratio self.alpha = alpha self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.smooth_l1 = nn.L1Loss() self.cross_entropy = nn.CrossEntropyLoss(reduce=False) def forward(self, predicted_locs, predicted_scores, boxes, labels): """ Forward propagation. :param predicted_locs: predicted locations/boxes w.r.t the prior boxes, a tensor of dimensions (N, n_priors, 4) :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, n_priors, n_classes) :param boxes: true object bounding boxes in boundary coordinates, a list of N tensors :param labels: true object labels, a list of N tensors :return: multibox loss, a scalar """ batch_size = predicted_locs.size(0) n_priors = self.priors_cxcy.size(0) n_classes = predicted_scores.size(2) assert n_priors == predicted_locs.size(1) == predicted_scores.size(1) true_locs = torch.zeros((batch_size, n_priors, 4), dtype=torch.float).to(self.device) true_classes = torch.zeros((batch_size, n_priors), dtype=torch.long).to(self.device) # For each image for i in range(batch_size): n_objects = boxes[i].size(0) overlap = utils.find_jaccard_overlap(boxes[i], self.priors_xy) # (n_objects, n_priors) # For each prior, find the object that has the maximum overlap overlap_for_each_prior, object_for_each_prior = overlap.max(dim=0) # (n_priors) _, prior_for_each_object = overlap.max(dim=1) # (N_o) # Then, assign each object to the corresponding maximum-overlap-prior. (This fixes 1.) object_for_each_prior[prior_for_each_object] = torch.LongTensor(range(n_objects)).to( self.device) # To ensure these priors qualify, artificially give them an overlap of greater than 0.5. (This fixes 2.) overlap_for_each_prior[prior_for_each_object] = 1. # Labels for each prior label_for_each_prior = labels[i][object_for_each_prior] # (n_priors) # Set priors whose overlaps with objects are less than the threshold to be background (no object) label_for_each_prior[overlap_for_each_prior < self.threshold] = 0 # (n_priors) # Store true_classes[i] = label_for_each_prior # Encode center-size object coordinates into the form we regressed predicted boxes to true_locs[i] = utils.cxcy_to_gcxgcy(utils.xy_to_cxcy(boxes[i][object_for_each_prior]), self.priors_cxcy) # (n_priors, 4) # Identify priors that are positive (object/non-background) positive_priors = true_classes != 0 # (N, n_priors) # Localization loss is computed only over positive (non-background) priors loc_loss = self.smooth_l1(predicted_locs[positive_priors], true_locs[positive_priors]) # (), scalar # Number of positive and hard-negative priors per image n_positives = positive_priors.sum(dim=1) # (N) n_hard_negatives = self.neg_pos_ratio * n_positives # (N) # First, find the loss for all priors conf_loss_all = self.cross_entropy(predicted_scores.view(-1, n_classes), true_classes.view(-1)) # (N * n_priors) conf_loss_all = conf_loss_all.view(batch_size, n_priors) # (N, n_priors) # We already know which priors are positive conf_loss_pos = conf_loss_all[positive_priors] # (sum(n_positives)) # Next, find which priors are hard-negative # To do this, sort ONLY negative priors in each image in order of decreasing loss and take top n_hard_negatives conf_loss_neg = conf_loss_all.clone() # (N, n_priors) conf_loss_neg[ positive_priors] = 0. # (N, n_priors), positive priors are ignored (never in top n_hard_negatives) conf_loss_neg, _ = conf_loss_neg.sort(dim=1, descending=True) # (N, n_priors), sorted by decreasing hardness hardness_ranks = torch.LongTensor(range(n_priors)).unsqueeze(0).expand_as(conf_loss_neg).to( self.device) # (N, n_priors) hard_negatives = hardness_ranks < n_hard_negatives.unsqueeze(1) # (N, n_priors) conf_loss_hard_neg = conf_loss_neg[hard_negatives] # (sum(n_hard_negatives)) # As in the paper, averaged over positive priors only, although computed over both positive and hard-negative priors conf_loss = (conf_loss_hard_neg.sum() + conf_loss_pos.sum()) / n_positives.sum().float() # (), scalar # TOTAL LOSS return conf_loss + self.alpha * loc_loss
50.793548
134
0.629366
b7926f13417870d2f7e2f0c90b1f6ccdda236759
187
py
Python
setup.py
CyanideCN/vanadis
ebd2373fb55d5913eb1384ab434e083fe714ecab
[ "MIT" ]
1
2019-12-01T11:31:23.000Z
2019-12-01T11:31:23.000Z
setup.py
CyanideCN/vanadis
ebd2373fb55d5913eb1384ab434e083fe714ecab
[ "MIT" ]
null
null
null
setup.py
CyanideCN/vanadis
ebd2373fb55d5913eb1384ab434e083fe714ecab
[ "MIT" ]
2
2019-09-24T00:46:24.000Z
2019-12-01T11:31:24.000Z
from setuptools import setup, find_packages setup(name='vanadis', version='0.0.2', packages=find_packages(), install_requires='matplotlib', license='MIT Licence')
26.714286
43
0.684492
d49f06067d55f02bad7253dc0ac2b007faad00cd
679
py
Python
Implementation/5622_다이얼/5622_다이얼.py
7dudtj/BOJ_myCode
37d105590a7963e2232102b3098fea3c3504b96f
[ "MIT" ]
1
2022-03-30T15:50:47.000Z
2022-03-30T15:50:47.000Z
Implementation/5622_다이얼/5622_다이얼.py
7dudtj/BOJ_myCode
37d105590a7963e2232102b3098fea3c3504b96f
[ "MIT" ]
null
null
null
Implementation/5622_다이얼/5622_다이얼.py
7dudtj/BOJ_myCode
37d105590a7963e2232102b3098fea3c3504b96f
[ "MIT" ]
1
2021-07-20T07:11:06.000Z
2021-07-20T07:11:06.000Z
N = input() Sum = 0 for i in range(len(N)): if N[i] == 'A' or N[i] == 'B' or N[i] == 'C': Sum = Sum + 3 elif N[i] == 'D' or N[i] == 'E' or N[i] == 'F': Sum = Sum + 4 elif N[i] == 'G' or N[i] == 'H' or N[i] == 'I': Sum = Sum + 5 elif N[i] == 'J' or N[i] == 'K' or N[i] == 'L': Sum = Sum + 6 elif N[i] == 'M' or N[i] == 'N' or N[i] == 'O': Sum = Sum + 7 elif N[i] == 'P' or N[i] == 'Q' or N[i] == 'R' or N[i] == 'S': Sum = Sum + 8 elif N[i] == 'T' or N[i] == 'U' or N[i] == 'V': Sum = Sum + 9 elif N[i] == 'W' or N[i] == 'X' or N[i] == 'Y' or N[i] == 'Z': Sum = Sum + 10 print(Sum)
28.291667
66
0.344624
3ab3acd0ff9024a041d43712aeedd9c086c7ab6b
44,511
py
Python
tensorflow/python/keras/layers/convolutional_test.py
grasskin/tensorflow
3fbfc9351ae6a2bb719d24458ee2c95214682302
[ "Apache-2.0" ]
4
2020-06-28T08:25:36.000Z
2021-08-12T12:41:34.000Z
tensorflow/python/keras/layers/convolutional_test.py
grasskin/tensorflow
3fbfc9351ae6a2bb719d24458ee2c95214682302
[ "Apache-2.0" ]
2
2021-08-25T16:12:24.000Z
2022-02-10T02:04:13.000Z
tensorflow/python/keras/layers/convolutional_test.py
grasskin/tensorflow
3fbfc9351ae6a2bb719d24458ee2c95214682302
[ "Apache-2.0" ]
4
2019-11-28T12:18:07.000Z
2021-08-01T16:12:17.000Z
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for convolutional layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.platform import test @keras_parameterized.run_all_keras_modes class Conv1DTest(keras_parameterized.TestCase): def _run_test(self, kwargs, expected_output_shape): num_samples = 2 stack_size = 3 length = 7 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv1D, kwargs=kwargs, input_shape=(num_samples, length, stack_size), expected_output_shape=expected_output_shape) def _run_test_extra_batch_dim(self, kwargs, expected_output_shape): batch_shape = (2, 11) stack_size = 3 length = 7 with self.cached_session(use_gpu=True): if expected_output_shape is not None: expected_output_shape = (None,) + expected_output_shape testing_utils.layer_test( keras.layers.Conv1D, kwargs=kwargs, input_shape=batch_shape + (length, stack_size), expected_output_shape=expected_output_shape) @parameterized.named_parameters( ('padding_valid', { 'padding': 'valid' }, (None, 5, 2)), ('padding_same', { 'padding': 'same' }, (None, 7, 2)), ('padding_same_dilation_2', { 'padding': 'same', 'dilation_rate': 2 }, (None, 7, 2)), ('padding_same_dilation_3', { 'padding': 'same', 'dilation_rate': 3 }, (None, 7, 2)), ('padding_causal', { 'padding': 'causal' }, (None, 7, 2)), ('strides', { 'strides': 2 }, (None, 3, 2)), ('dilation_rate', { 'dilation_rate': 2 }, (None, 3, 2)), # Only runs on GPU with CUDA, groups are not supported on CPU. # https://github.com/tensorflow/tensorflow/issues/29005 ('group', { 'groups': 3, 'filters': 6 }, (None, 5, 6), True), ) def test_conv1d(self, kwargs, expected_output_shape, requires_gpu=False): kwargs['filters'] = kwargs.get('filters', 2) kwargs['kernel_size'] = 3 if not requires_gpu or test.is_gpu_available(cuda_only=True): self._run_test(kwargs, expected_output_shape) self._run_test_extra_batch_dim(kwargs, expected_output_shape) def test_conv1d_regularizers(self): kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.Conv1D(**kwargs) layer.build((None, 5, 2)) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 2)))) self.assertEqual(len(layer.losses), 3) def test_conv1d_constraints(self): k_constraint = lambda x: x b_constraint = lambda x: x kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': k_constraint, 'bias_constraint': b_constraint, 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.Conv1D(**kwargs) layer.build((None, 5, 2)) self.assertEqual(layer.kernel.constraint, k_constraint) self.assertEqual(layer.bias.constraint, b_constraint) def test_conv1d_recreate_conv(self): with self.cached_session(use_gpu=True): layer = keras.layers.Conv1D(filters=1, kernel_size=3, strides=1, dilation_rate=2, padding='causal') inpt1 = np.random.normal(size=[1, 2, 1]) inpt2 = np.random.normal(size=[1, 1, 1]) outp1_shape = layer(inpt1).shape _ = layer(inpt2).shape self.assertEqual(outp1_shape, layer(inpt1).shape) def test_conv1d_recreate_conv_unknown_dims(self): with self.cached_session(use_gpu=True): layer = keras.layers.Conv1D(filters=1, kernel_size=3, strides=1, dilation_rate=2, padding='causal') inpt1 = np.random.normal(size=[1, 9, 1]).astype(np.float32) inpt2 = np.random.normal(size=[1, 2, 1]).astype(np.float32) outp1_shape = layer(inpt1).shape @def_function.function(input_signature=[ tensor_spec.TensorSpec([1, None, 1])]) def fn(inpt): return layer(inpt) fn(inpt2) self.assertEqual(outp1_shape, layer(inpt1).shape) @keras_parameterized.run_all_keras_modes class Conv2DTest(keras_parameterized.TestCase): def _run_test(self, kwargs, expected_output_shape): num_samples = 2 stack_size = 3 num_row = 7 num_col = 6 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv2D, kwargs=kwargs, input_shape=(num_samples, num_row, num_col, stack_size), expected_output_shape=expected_output_shape) def _run_test_extra_batch_dim(self, kwargs, expected_output_shape): batch_shape = (2, 11) stack_size = 3 num_row = 7 num_col = 6 with self.cached_session(use_gpu=True): if expected_output_shape is not None: expected_output_shape = (None,) + expected_output_shape testing_utils.layer_test( keras.layers.Conv2D, kwargs=kwargs, input_shape=batch_shape + (num_row, num_col, stack_size), expected_output_shape=expected_output_shape) @parameterized.named_parameters( ('padding_valid', { 'padding': 'valid' }, (None, 5, 4, 2)), ('padding_same', { 'padding': 'same' }, (None, 7, 6, 2)), ('padding_same_dilation_2', { 'padding': 'same', 'dilation_rate': 2 }, (None, 7, 6, 2)), ('strides', { 'strides': (2, 2) }, (None, 3, 2, 2)), ('dilation_rate', { 'dilation_rate': (2, 2) }, (None, 3, 2, 2)), # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. ('data_format', { 'data_format': 'channels_first' }, None, True), # Only runs on GPU with CUDA, groups are not supported on CPU. # https://github.com/tensorflow/tensorflow/issues/29005 ('group', { 'groups': 3, 'filters': 6 }, (None, 5, 4, 6), True), ) def test_conv2d(self, kwargs, expected_output_shape=None, requires_gpu=False): kwargs['filters'] = kwargs.get('filters', 2) kwargs['kernel_size'] = (3, 3) if not requires_gpu or test.is_gpu_available(cuda_only=True): self._run_test(kwargs, expected_output_shape) self._run_test_extra_batch_dim(kwargs, expected_output_shape) def test_conv2d_regularizers(self): kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.Conv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) self.assertEqual(len(layer.losses), 3) def test_conv2d_constraints(self): k_constraint = lambda x: x b_constraint = lambda x: x kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': k_constraint, 'bias_constraint': b_constraint, 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.Conv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(layer.kernel.constraint, k_constraint) self.assertEqual(layer.bias.constraint, b_constraint) def test_conv2d_zero_kernel_size(self): kwargs = {'filters': 2, 'kernel_size': 0} with self.assertRaises(ValueError): keras.layers.Conv2D(**kwargs) @keras_parameterized.run_all_keras_modes class Conv3DTest(keras_parameterized.TestCase): def _run_test(self, kwargs, expected_output_shape, validate_training=True): num_samples = 2 stack_size = 3 num_row = 7 num_col = 6 depth = 5 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv3D, kwargs=kwargs, input_shape=(num_samples, depth, num_row, num_col, stack_size), expected_output_shape=expected_output_shape, validate_training=validate_training) def _run_test_extra_batch_dim(self, kwargs, expected_output_shape, validate_training=True): batch_shape = (2, 11) stack_size = 3 num_row = 7 num_col = 6 depth = 5 with self.cached_session(use_gpu=True): if expected_output_shape is not None: expected_output_shape = (None,) + expected_output_shape testing_utils.layer_test( keras.layers.Conv3D, kwargs=kwargs, input_shape=batch_shape + (depth, num_row, num_col, stack_size), expected_output_shape=expected_output_shape, validate_training=validate_training) @parameterized.named_parameters( ('padding_valid', { 'padding': 'valid' }, (None, 3, 5, 4, 2)), ('padding_same', { 'padding': 'same' }, (None, 5, 7, 6, 2)), ('strides', { 'strides': (2, 2, 2) }, (None, 2, 3, 2, 2)), ('dilation_rate', { 'dilation_rate': (2, 2, 2) }, (None, 1, 3, 2, 2)), # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. ('data_format', { 'data_format': 'channels_first' }, None, True), # Only runs on GPU with CUDA, groups are not supported on CPU. # https://github.com/tensorflow/tensorflow/issues/29005 ('group', { 'groups': 3, 'filters': 6 }, (None, 3, 5, 4, 6), True), ) def test_conv3d(self, kwargs, expected_output_shape=None, requires_gpu=False): kwargs['filters'] = kwargs.get('filters', 2) kwargs['kernel_size'] = (3, 3, 3) # train_on_batch currently fails with XLA enabled on GPUs test_training = 'groups' not in kwargs or not test_util.is_xla_enabled() if not requires_gpu or test.is_gpu_available(cuda_only=True): self._run_test(kwargs, expected_output_shape, test_training) self._run_test_extra_batch_dim(kwargs, expected_output_shape, test_training) def test_conv3d_regularizers(self): kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.Conv3D(**kwargs) layer.build((None, 5, 5, 5, 2)) self.assertEqual(len(layer.losses), 2) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 5, 5, 2)))) self.assertEqual(len(layer.losses), 3) def test_conv3d_constraints(self): k_constraint = lambda x: x b_constraint = lambda x: x kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': k_constraint, 'bias_constraint': b_constraint, 'strides': 1 } with self.cached_session(use_gpu=True): layer = keras.layers.Conv3D(**kwargs) layer.build((None, 5, 5, 5, 2)) self.assertEqual(layer.kernel.constraint, k_constraint) self.assertEqual(layer.bias.constraint, b_constraint) def test_conv3d_dynamic_shape(self): input_data = np.random.random((1, 3, 3, 3, 3)).astype(np.float32) with self.cached_session(use_gpu=True): # Won't raise error here. testing_utils.layer_test( keras.layers.Conv3D, kwargs={ 'data_format': 'channels_last', 'filters': 3, 'kernel_size': 3 }, input_shape=(None, None, None, None, 3), input_data=input_data) if test.is_gpu_available(cuda_only=True): testing_utils.layer_test( keras.layers.Conv3D, kwargs={ 'data_format': 'channels_first', 'filters': 3, 'kernel_size': 3 }, input_shape=(None, 3, None, None, None), input_data=input_data) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) class GroupedConvTest(keras_parameterized.TestCase): @parameterized.named_parameters( ('Conv1D', keras.layers.Conv1D), ('Conv2D', keras.layers.Conv2D), ('Conv3D', keras.layers.Conv3D), ) def test_group_conv_incorrect_use(self, layer): with self.assertRaisesRegex(ValueError, 'The number of filters'): layer(16, 3, groups=3) with self.assertRaisesRegex(ValueError, 'The number of input channels'): layer(16, 3, groups=4).build((32, 12, 12, 3)) @parameterized.named_parameters( ('Conv1D', keras.layers.Conv1D, (32, 12, 32)), ('Conv2D', keras.layers.Conv2D, (32, 12, 12, 32)), ('Conv3D', keras.layers.Conv3D, (32, 12, 12, 12, 32)), ) def disable_test_group_conv(self, layer_cls, input_shape): if test.is_gpu_available(cuda_only=True): with testing_utils.use_gpu(): inputs = random_ops.random_uniform(shape=input_shape) layer = layer_cls(16, 3, groups=4, use_bias=False) layer.build(input_shape) input_slices = array_ops.split(inputs, 4, axis=-1) weight_slices = array_ops.split(layer.kernel, 4, axis=-1) expected_outputs = array_ops.concat([ nn.convolution_v2(inputs, weights) for inputs, weights in zip(input_slices, weight_slices) ], axis=-1) self.assertAllClose(layer(inputs), expected_outputs, rtol=1e-5) def test_group_conv_depthwise(self): if test.is_gpu_available(cuda_only=True): with testing_utils.use_gpu(): inputs = random_ops.random_uniform(shape=(3, 27, 27, 32)) layer = keras.layers.Conv2D(32, 3, groups=32, use_bias=False) layer.build((3, 27, 27, 32)) weights_dw = array_ops.reshape(layer.kernel, [3, 3, 32, 1]) expected_outputs = nn.depthwise_conv2d( inputs, weights_dw, strides=[1, 1, 1, 1], padding='VALID') self.assertAllClose(layer(inputs), expected_outputs, rtol=1e-5) @keras_parameterized.run_all_keras_modes class Conv1DTransposeTest(keras_parameterized.TestCase): def _run_test(self, kwargs, expected_output_shape): num_samples = 2 stack_size = 3 num_col = 6 with testing_utils.use_gpu(): testing_utils.layer_test( keras.layers.Conv1DTranspose, kwargs=kwargs, input_shape=(num_samples, num_col, stack_size), expected_output_shape=expected_output_shape) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}, (None, 8, 2)), ('padding_same', {'padding': 'same'}, (None, 6, 2)), ('strides', {'strides': 2}, (None, 13, 2)), # Only runs on GPU with CUDA, dilation_rate>1 is not supported on CPU. ('dilation_rate', {'dilation_rate': 2}, (None, 10, 2)), # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. ('data_format', {'data_format': 'channels_first'}), ) def test_conv1d_transpose(self, kwargs, expected_output_shape=None): kwargs['filters'] = 2 kwargs['kernel_size'] = 3 if (('data_format' not in kwargs and 'dilation_rate' not in kwargs) or test.is_gpu_available(cuda_only=True)): self._run_test(kwargs, expected_output_shape) @keras_parameterized.run_all_keras_modes class Conv3DTransposeTest(keras_parameterized.TestCase): def _run_test(self, kwargs, expected_output_shape): num_samples = 2 stack_size = 3 num_row = 7 num_col = 6 depth = 5 with testing_utils.use_gpu(): testing_utils.layer_test( keras.layers.Conv3DTranspose, kwargs=kwargs, input_shape=(num_samples, depth, num_row, num_col, stack_size), expected_output_shape=expected_output_shape) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}, (None, 7, 9, 8, 2)), ('padding_same', {'padding': 'same'}, (None, 5, 7, 6, 2)), ('strides', {'strides': (2, 2, 2)}, (None, 11, 15, 13, 2)), ('dilation_rate', {'dilation_rate': (2, 2, 2)}, (None, 7, 9, 8, 2)), # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. ('data_format', {'data_format': 'channels_first'}), ) def test_conv3d_transpose(self, kwargs, expected_output_shape=None): kwargs['filters'] = 2 kwargs['kernel_size'] = (3, 3, 3) if 'data_format' not in kwargs or test.is_gpu_available(cuda_only=True): self._run_test(kwargs, expected_output_shape) @keras_parameterized.run_all_keras_modes class ConvSequentialTest(keras_parameterized.TestCase): def _run_test(self, conv_layer_cls, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2): kwargs['filters'] = 1 kwargs['kernel_size'] = 3 kwargs['dilation_rate'] = 2 with self.cached_session(use_gpu=True): layer = conv_layer_cls(**kwargs) output1 = layer(np.zeros(input_shape1)) self.assertEqual(output1.shape, expected_output_shape1) output2 = layer(np.zeros(input_shape2)) self.assertEqual(output2.shape, expected_output_shape2) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}, (1, 8, 2), (1, 5, 2), (1, 4, 1), (1, 1, 1)), ('padding_same', {'padding': 'same'}, (1, 8, 2), (1, 5, 2), (1, 8, 1), (1, 5, 1)), ('padding_causal', {'padding': 'causal'}, (1, 8, 2), (1, 5, 2), (1, 8, 1), (1, 5, 1)), ) def test_conv1d(self, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2): self._run_test(keras.layers.Conv1D, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}, (1, 7, 6, 2), (1, 6, 5, 2), (1, 3, 2, 1), (1, 2, 1, 1)), ('padding_same', {'padding': 'same'}, (1, 7, 6, 2), (1, 6, 5, 2), (1, 7, 6, 1), (1, 6, 5, 1)), ) def test_conv2d(self, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2): self._run_test(keras.layers.Conv2D, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}, (1, 5, 7, 6, 2), (1, 8, 6, 5, 2), (1, 1, 3, 2, 1), (1, 4, 2, 1, 1)), ('padding_same', {'padding': 'same'}, (1, 5, 7, 6, 2), (1, 8, 6, 5, 2), (1, 5, 7, 6, 1), (1, 8, 6, 5, 1)), ) def test_conv3d(self, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2): self._run_test(keras.layers.Conv3D, kwargs, input_shape1, input_shape2, expected_output_shape1, expected_output_shape2) def test_dynamic_shape(self): with self.cached_session(use_gpu=True): layer = keras.layers.Conv3D(2, 3) input_shape = (5, None, None, 2) inputs = keras.Input(shape=input_shape) x = layer(inputs) # Won't raise error here with None values in input shape (b/144282043). layer(x) @keras_parameterized.run_all_keras_modes class ZeroPaddingTest(keras_parameterized.TestCase): def test_zero_padding_1d(self): num_samples = 2 input_dim = 2 num_steps = 5 shape = (num_samples, num_steps, input_dim) inputs = np.ones(shape) with self.cached_session(use_gpu=True): # basic test testing_utils.layer_test( keras.layers.ZeroPadding1D, kwargs={'padding': 2}, input_shape=inputs.shape) testing_utils.layer_test( keras.layers.ZeroPadding1D, kwargs={'padding': (1, 2)}, input_shape=inputs.shape) # correctness test layer = keras.layers.ZeroPadding1D(padding=2) layer.build(shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, offset, :], 0.) np.testing.assert_allclose(np_output[:, 2:-2, :], 1.) layer = keras.layers.ZeroPadding1D(padding=(1, 2)) layer.build(shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) for left_offset in [0]: np.testing.assert_allclose(np_output[:, left_offset, :], 0.) for right_offset in [-1, -2]: np.testing.assert_allclose(np_output[:, right_offset, :], 0.) np.testing.assert_allclose(np_output[:, 1:-2, :], 1.) layer.get_config() # test incorrect use with self.assertRaises(ValueError): keras.layers.ZeroPadding1D(padding=(1, 1, 1)) with self.assertRaises(ValueError): keras.layers.ZeroPadding1D(padding=None) @parameterized.named_parameters(('channels_first', 'channels_first'), ('channels_last', 'channels_last')) def test_zero_padding_2d(self, data_format): num_samples = 2 stack_size = 2 input_num_row = 4 input_num_col = 5 if data_format == 'channels_first': inputs = np.ones((num_samples, stack_size, input_num_row, input_num_col)) elif data_format == 'channels_last': inputs = np.ones((num_samples, input_num_row, input_num_col, stack_size)) # basic test with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.ZeroPadding2D, kwargs={ 'padding': (2, 2), 'data_format': data_format }, input_shape=inputs.shape) testing_utils.layer_test( keras.layers.ZeroPadding2D, kwargs={ 'padding': ((1, 2), (3, 4)), 'data_format': data_format }, input_shape=inputs.shape) # correctness test with self.cached_session(use_gpu=True): layer = keras.layers.ZeroPadding2D( padding=(2, 2), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_last': for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, offset, :, :], 0.) np.testing.assert_allclose(np_output[:, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.) elif data_format == 'channels_first': for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, :, :, offset], 0.) np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.) layer = keras.layers.ZeroPadding2D( padding=((1, 2), (3, 4)), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_last': for top_offset in [0]: np.testing.assert_allclose(np_output[:, top_offset, :, :], 0.) for bottom_offset in [-1, -2]: np.testing.assert_allclose(np_output[:, bottom_offset, :, :], 0.) for left_offset in [0, 1, 2]: np.testing.assert_allclose(np_output[:, :, left_offset, :], 0.) for right_offset in [-1, -2, -3, -4]: np.testing.assert_allclose(np_output[:, :, right_offset, :], 0.) np.testing.assert_allclose(np_output[:, 1:-2, 3:-4, :], 1.) elif data_format == 'channels_first': for top_offset in [0]: np.testing.assert_allclose(np_output[:, :, top_offset, :], 0.) for bottom_offset in [-1, -2]: np.testing.assert_allclose(np_output[:, :, bottom_offset, :], 0.) for left_offset in [0, 1, 2]: np.testing.assert_allclose(np_output[:, :, :, left_offset], 0.) for right_offset in [-1, -2, -3, -4]: np.testing.assert_allclose(np_output[:, :, :, right_offset], 0.) np.testing.assert_allclose(np_output[:, :, 1:-2, 3:-4], 1.) # test incorrect use with self.assertRaises(ValueError): keras.layers.ZeroPadding2D(padding=(1, 1, 1)) with self.assertRaises(ValueError): keras.layers.ZeroPadding2D(padding=None) @parameterized.named_parameters(('channels_first', 'channels_first'), ('channels_last', 'channels_last')) def test_zero_padding_3d(self, data_format): num_samples = 2 stack_size = 2 input_len_dim1 = 4 input_len_dim2 = 5 input_len_dim3 = 3 if data_format == 'channels_first': inputs = np.ones((num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3)) elif data_format == 'channels_last': inputs = np.ones((num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size)) with self.cached_session(use_gpu=True): # basic test testing_utils.layer_test( keras.layers.ZeroPadding3D, kwargs={ 'padding': (2, 2, 2), 'data_format': data_format }, input_shape=inputs.shape) testing_utils.layer_test( keras.layers.ZeroPadding3D, kwargs={ 'padding': ((1, 2), (3, 4), (0, 2)), 'data_format': data_format }, input_shape=inputs.shape) with self.cached_session(use_gpu=True): # correctness test layer = keras.layers.ZeroPadding3D( padding=(2, 2, 2), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_last': for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, offset, :, :, :], 0.) np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, 2:-2, :], 1.) elif data_format == 'channels_first': for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, :, :, :, offset], 0.) np.testing.assert_allclose(np_output[:, :, 2:-2, 2:-2, 2:-2], 1.) layer = keras.layers.ZeroPadding3D( padding=((1, 2), (3, 4), (0, 2)), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_last': for offset in [0]: np.testing.assert_allclose(np_output[:, offset, :, :, :], 0.) for offset in [-1, -2]: np.testing.assert_allclose(np_output[:, offset, :, :, :], 0.) for offset in [0, 1, 2]: np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) for offset in [-1, -2, -3, -4]: np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) for offset in [-1, -2]: np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, 1:-2, 3:-4, 0:-2, :], 1.) elif data_format == 'channels_first': for offset in [0]: np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) for offset in [-1, -2]: np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) for offset in [0, 1, 2]: np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.) for offset in [-1, -2, -3, -4]: np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.) for offset in [-1, -2]: np.testing.assert_allclose(np_output[:, :, :, :, offset], 0.) np.testing.assert_allclose(np_output[:, :, 1:-2, 3:-4, 0:-2], 1.) # test incorrect use with self.assertRaises(ValueError): keras.layers.ZeroPadding3D(padding=(1, 1)) with self.assertRaises(ValueError): keras.layers.ZeroPadding3D(padding=None) @test_util.for_all_test_methods(test_util.disable_xla, 'align_corners=False not supported by XLA') @keras_parameterized.run_all_keras_modes class UpSamplingTest(keras_parameterized.TestCase): def test_upsampling_1d(self): with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.UpSampling1D, kwargs={'size': 2}, input_shape=(3, 5, 4)) def test_upsampling_2d(self): num_samples = 2 stack_size = 2 input_num_row = 11 input_num_col = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_num_row, input_num_col) else: inputs = np.random.rand(num_samples, input_num_row, input_num_col, stack_size) # basic test with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.UpSampling2D, kwargs={'size': (2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_row in [2]: for length_col in [2, 3]: layer = keras.layers.UpSampling2D( size=(length_row, length_col), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_first': assert np_output.shape[2] == length_row * input_num_row assert np_output.shape[3] == length_col * input_num_col else: # tf assert np_output.shape[1] == length_row * input_num_row assert np_output.shape[2] == length_col * input_num_col # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_row, axis=2) expected_out = np.repeat(expected_out, length_col, axis=3) else: # tf expected_out = np.repeat(inputs, length_row, axis=1) expected_out = np.repeat(expected_out, length_col, axis=2) np.testing.assert_allclose(np_output, expected_out) def test_upsampling_2d_bilinear(self): num_samples = 2 stack_size = 2 input_num_row = 11 input_num_col = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_num_row, input_num_col) else: inputs = np.random.rand(num_samples, input_num_row, input_num_col, stack_size) testing_utils.layer_test(keras.layers.UpSampling2D, kwargs={'size': (2, 2), 'data_format': data_format, 'interpolation': 'bilinear'}, input_shape=inputs.shape) if not context.executing_eagerly(): for length_row in [2]: for length_col in [2, 3]: layer = keras.layers.UpSampling2D( size=(length_row, length_col), data_format=data_format) layer.build(inputs.shape) outputs = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(outputs) if data_format == 'channels_first': self.assertEqual(np_output.shape[2], length_row * input_num_row) self.assertEqual(np_output.shape[3], length_col * input_num_col) else: self.assertEqual(np_output.shape[1], length_row * input_num_row) self.assertEqual(np_output.shape[2], length_col * input_num_col) def test_upsampling_3d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = keras.layers.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) np.testing.assert_allclose(np_output, expected_out) @keras_parameterized.run_all_keras_modes class CroppingTest(keras_parameterized.TestCase): def test_cropping_1d(self): num_samples = 2 time_length = 4 input_len_dim1 = 2 inputs = np.random.rand(num_samples, time_length, input_len_dim1) with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.Cropping1D, kwargs={'cropping': (2, 2)}, input_shape=inputs.shape) # test incorrect use with self.assertRaises(ValueError): keras.layers.Cropping1D(cropping=(1, 1, 1)) with self.assertRaises(ValueError): keras.layers.Cropping1D(cropping=None) def test_cropping_2d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 9 input_len_dim2 = 9 cropping = ((2, 2), (3, 3)) for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, stack_size) with self.cached_session(use_gpu=True): # basic test testing_utils.layer_test( keras.layers.Cropping2D, kwargs={'cropping': cropping, 'data_format': data_format}, input_shape=inputs.shape) # correctness test layer = keras.layers.Cropping2D( cropping=cropping, data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) # compare with numpy if data_format == 'channels_first': expected_out = inputs[:, :, cropping[0][0]:-cropping[0][1], cropping[ 1][0]:-cropping[1][1]] else: expected_out = inputs[:, cropping[0][0]:-cropping[0][1], cropping[1][ 0]:-cropping[1][1], :] np.testing.assert_allclose(np_output, expected_out) for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, stack_size) # another correctness test (no cropping) with self.cached_session(use_gpu=True): cropping = ((0, 0), (0, 0)) layer = keras.layers.Cropping2D( cropping=cropping, data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) # compare with input np.testing.assert_allclose(np_output, inputs) # test incorrect use with self.assertRaises(ValueError): keras.layers.Cropping2D(cropping=(1, 1, 1)) with self.assertRaises(ValueError): keras.layers.Cropping2D(cropping=None) def test_cropping_3d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 8 input_len_dim2 = 8 input_len_dim3 = 8 croppings = [((2, 2), (1, 1), (2, 3)), 3, (0, 1, 1)] for cropping in croppings: for data_format in ['channels_last', 'channels_first']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.Cropping3D, kwargs={'cropping': cropping, 'data_format': data_format}, input_shape=inputs.shape) if len(croppings) == 3 and len(croppings[0]) == 2: # correctness test with self.cached_session(use_gpu=True): layer = keras.layers.Cropping3D( cropping=cropping, data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) if context.executing_eagerly(): np_output = output.numpy() else: np_output = keras.backend.eval(output) # compare with numpy if data_format == 'channels_first': expected_out = inputs[:, :, cropping[0][0]:-cropping[0][1], cropping[1][0]:-cropping[1][1], cropping[2][0]:-cropping[2][1]] else: expected_out = inputs[:, cropping[0][0]:-cropping[0][1], cropping[1][0]:-cropping[1][1], cropping[2][0]:-cropping[2][1], :] np.testing.assert_allclose(np_output, expected_out) # test incorrect use with self.assertRaises(ValueError): keras.layers.Cropping3D(cropping=(1, 1)) with self.assertRaises(ValueError): keras.layers.Cropping3D(cropping=None) @keras_parameterized.run_all_keras_modes class DepthwiseConv2DTest(keras_parameterized.TestCase): def _run_test(self, kwargs, expected_output_shape=None): num_samples = 2 stack_size = 3 num_row = 7 num_col = 6 with self.cached_session(use_gpu=True): testing_utils.layer_test( keras.layers.DepthwiseConv2D, kwargs=kwargs, input_shape=(num_samples, num_row, num_col, stack_size), expected_output_shape=expected_output_shape) @parameterized.named_parameters( ('padding_valid', {'padding': 'valid'}), ('padding_same', {'padding': 'same'}), ('strides', {'strides': (2, 2)}), # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. ('data_format', {'data_format': 'channels_first'}), ('depth_multiplier_1', {'depth_multiplier': 1}), ('depth_multiplier_2', {'depth_multiplier': 2}), ('dilation_rate', {'dilation_rate': (2, 2)}, (None, 3, 2, 3)), ) def test_depthwise_conv2d(self, kwargs, expected_output_shape=None): kwargs['kernel_size'] = (3, 3) if 'data_format' not in kwargs or test.is_gpu_available(cuda_only=True): self._run_test(kwargs, expected_output_shape) def test_depthwise_conv2d_full(self): kwargs = { 'kernel_size': 3, 'padding': 'valid', 'data_format': 'channels_last', 'dilation_rate': (1, 1), 'activation': None, 'depthwise_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'depthwise_constraint': 'unit_norm', 'use_bias': True, 'strides': (2, 2), 'depth_multiplier': 1, } self._run_test(kwargs) if __name__ == '__main__': test.main()
37.946292
80
0.609018
5e7e80d29558c16b0d219a10c363299af3f64964
1,080
py
Python
funciones.py
manu9812/MongoDB
d8cdb217e00f598747d0eee3780c7edff63f25c8
[ "Apache-2.0" ]
null
null
null
funciones.py
manu9812/MongoDB
d8cdb217e00f598747d0eee3780c7edff63f25c8
[ "Apache-2.0" ]
null
null
null
funciones.py
manu9812/MongoDB
d8cdb217e00f598747d0eee3780c7edff63f25c8
[ "Apache-2.0" ]
null
null
null
import pymongo from flask import Flask, jsonify, request defget_db_connection(uri): client = pymongo.MongoClient(uri) return client.cryptongo app = Flask(__name__) db_connection = get_db_connection('mongodb://localhost:27017') defget_documents(): params = {} name = int(request.args.get('name', '')) limit = int(request.args.get('limit', 0)) if name: params.udpate({'name':name}) cursor = db_connection.tickers.find( params, {'_id': 0, 'ticker_hash': 0} ).limit(limit) return list(cursor) defget_top20(): params = {} name = int(request.args.get('name', '')) limit = int(request.args.get('limit', 0)) if name: params.udpate({'name':name}) params.update({'rank': {'$lte': 20}}) cursor = db_connection.tickers.find( params, {'_id': 0, 'ticker_hash': 0} ).limit(limit) return list(cursor) defremove_currency(): params = {} name = request.args.get('name', '') if name: params.update({'name': name}) else: returnFalse return db_connection.tickers.delete_many( params ).deleted_count
24.545455
62
0.650926
e31af4fb600a4b0a70fe12777c4cbf26628e52e5
3,972
py
Python
local/tf/eval_dnn.py
Alicegaz/x-vector-kaldi-tf
5249e7d5c499291efbca6c8e49ba197392ae0a28
[ "Apache-2.0" ]
117
2018-11-27T11:55:51.000Z
2020-10-22T13:23:50.000Z
local/tf/eval_dnn.py
LCF2764/x-vector-kaldi-tf
5249e7d5c499291efbca6c8e49ba197392ae0a28
[ "Apache-2.0" ]
3
2019-01-08T10:23:03.000Z
2020-03-23T14:34:53.000Z
local/tf/eval_dnn.py
LCF2764/x-vector-kaldi-tf
5249e7d5c499291efbca6c8e49ba197392ae0a28
[ "Apache-2.0" ]
37
2018-11-27T15:38:47.000Z
2020-09-16T11:30:56.000Z
#!/usr/bin/env python from __future__ import print_function import argparse import logging import os import sys import traceback import mkl import numexpr import ze_utils as utils from models import Model from train_dnn_one_iteration import TarFileDataLoader mkl.set_num_threads(1) numexpr.set_num_threads(1) MKL_NUM_THREADS = 1 OMP_NUM_THREADS = 1 logger = logging.getLogger('eval_dnn') logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - " "%(funcName)s - %(levelname)s ] %(message)s") def get_args(): """ Get args from stdin. """ parser = argparse.ArgumentParser( description="""Trains a feed forward DNN using frame-level objectives like cross-entropy and mean-squared-error. DNNs include simple DNNs, TDNNs and CNNs.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter, conflict_handler='resolve') # Parameters for the optimization0 parser.add_argument("--use-gpu", type=str, dest='use_gpu', choices=["yes", "no"], help="Use GPU for training.", default="yes") parser.add_argument("--tar-file", type=str, dest='tar_file', required=True, help="Specifies a tar file which contains the training data. Also, there must " "ans npy file for labels with same name but with npy extension. If tar file " "was given the scp and ranges file didn't used but at least one there two " "must given.") parser.add_argument("--input-dir", type=str, dest='input_dir', required=True, help="Specify the input directory. The model will loaded from this directory and " "the new model will wrote to the output directory.") parser.add_argument("--log-file", type=str, dest='log_file', required=True, help="Specify the log file for training to be able to separate training logs " "from tensorflow logs.") print(' '.join(sys.argv)) args = parser.parse_args() args = process_args(args) handler = logging.StreamHandler(open(args.log_file, 'wt')) handler.setLevel(logging.INFO) handler.setFormatter(formatter) logger.addHandler(handler) logger.info('Starting DNN evaluation (eval_dnn.py)') return args def process_args(args): """ Process the options got from get_args() """ args.input_dir = args.input_dir.strip() if args.input_dir == '' or not os.path.exists(os.path.join(args.input_dir, 'model.meta')): raise Exception("This scripts expects the input model was exist in '{0}' directory.".format(args.input_dir)) if args.tar_file == '' or not os.path.exists(args.tar_file): raise Exception("The specified tar file '{0}' not exist.".format(args.tar_file)) if not os.path.exists(args.tar_file.replace('.tar', '.npy')): raise Exception("There is no corresponding npy label file for tar file '{0}'.".format(args.tar_file)) return args def eval_dnn(args): """ The main function for doing evaluation on a trained network. Args: args: a Namespace object with the required parameters obtained from the function process_args() """ input_dir = args.input_dir use_gpu = args.use_gpu == 'yes' data_loader = TarFileDataLoader(args.tar_file, logger=None, queue_size=16) model = Model() model.eval(data_loader, input_dir, use_gpu, logger) def main(): args = get_args() try: eval_dnn(args) utils.wait_for_background_commands() except BaseException as e: # look for BaseException so we catch KeyboardInterrupt, which is # what we get when a background thread dies. if not isinstance(e, KeyboardInterrupt): traceback.print_exc() sys.exit(1) if __name__ == "__main__": main()
33.378151
116
0.65282
22cd45d3cfe3ddc3707c354bf92acb5e93717533
2,137
py
Python
venv/lib/python3.8/site-packages/statsmodels/iolib/openfile.py
johncollinsai/post-high-frequency-data
88533b0e0afc7e7f82fee1d3ca4b68abc30aaeb4
[ "MIT" ]
6,931
2015-01-01T11:41:55.000Z
2022-03-31T17:03:24.000Z
venv/lib/python3.8/site-packages/statsmodels/iolib/openfile.py
johncollinsai/post-high-frequency-data
88533b0e0afc7e7f82fee1d3ca4b68abc30aaeb4
[ "MIT" ]
6,137
2015-01-01T00:33:45.000Z
2022-03-31T22:53:17.000Z
venv/lib/python3.8/site-packages/statsmodels/iolib/openfile.py
johncollinsai/post-high-frequency-data
88533b0e0afc7e7f82fee1d3ca4b68abc30aaeb4
[ "MIT" ]
2,608
2015-01-02T21:32:31.000Z
2022-03-31T07:38:30.000Z
""" Handle file opening for read/write """ from pathlib import Path from numpy.lib._iotools import _is_string_like class EmptyContextManager(object): """ This class is needed to allow file-like object to be used as context manager, but without getting closed. """ def __init__(self, obj): self._obj = obj def __enter__(self): """When entering, return the embedded object""" return self._obj def __exit__(self, *args): """Do not hide anything""" return False def __getattr__(self, name): return getattr(self._obj, name) def _open(fname, mode, encoding): if fname.endswith(".gz"): import gzip return gzip.open(fname, mode, encoding=encoding) else: return open(fname, mode, encoding=encoding) def get_file_obj(fname, mode="r", encoding=None): """ Light wrapper to handle strings, path objects and let files (anything else) pass through. It also handle '.gz' files. Parameters ---------- fname : str, path object or file-like object File to open / forward mode : str Argument passed to the 'open' or 'gzip.open' function encoding : str For Python 3 only, specify the encoding of the file Returns ------- A file-like object that is always a context-manager. If the `fname` was already a file-like object, the returned context manager *will not close the file*. """ if _is_string_like(fname): fname = Path(fname) if isinstance(fname, Path): return fname.open(mode=mode, encoding=encoding) elif hasattr(fname, "open"): return fname.open(mode=mode, encoding=encoding) try: return open(fname, mode, encoding=encoding) except TypeError: try: # Make sure the object has the write methods if "r" in mode: fname.read if "w" in mode or "a" in mode: fname.write except AttributeError: raise ValueError("fname must be a string or a file-like object") return EmptyContextManager(fname)
26.7125
79
0.623772
eaca363f69d14df4c50823d770dcc335e44f7631
3,702
py
Python
_unittests/ut_faq/test_graph_with_labels.py
mohamedelkansouli/Ensae_py
8bc867bd2081c259c793fadfa8be5dcc7bd1400b
[ "MIT" ]
null
null
null
_unittests/ut_faq/test_graph_with_labels.py
mohamedelkansouli/Ensae_py
8bc867bd2081c259c793fadfa8be5dcc7bd1400b
[ "MIT" ]
null
null
null
_unittests/ut_faq/test_graph_with_labels.py
mohamedelkansouli/Ensae_py
8bc867bd2081c259c793fadfa8be5dcc7bd1400b
[ "MIT" ]
null
null
null
""" @brief test log(time=3s) """ import sys import os import unittest import warnings from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import fix_tkinter_issues_virtualenv try: import src except ImportError: path = os.path.normpath( os.path.abspath( os.path.join( os.path.split(__file__)[0], "..", ".."))) if path not in sys.path: sys.path.append(path) import src from src.ensae_teaching_cs.faq import graph_with_label class TestGraphWithLabel(unittest.TestCase): def test_graph_with_label(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") x = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] y = [ 1, 3, 10, 6, 3, 5, 3, 6, 4, 2, 3, 2, 11, 10, 4, 5, 2, 5, 4, 1, 1, 1, 3, 15, 5, 2, 1, 5, 3, 1, 3, 2, 4, 5, 2, 12, 12, 5, 11, 2, 19, 21, 5, 2] xl = [ '2014-w04', '2014-w05', '2014-w06', '2014-w07', '2014-w08', '2014-w09', '2014-w10', '2014-w11', '2014-w12', '2014-w13', '2014-w14', '2014-w15', '2014-w16', '2014-w17', '2014-w18', '2014-w19', '2014-w20', '2014-w21', '2014-w22', '2014-w23', '2014-w24', '2014-w25', '2014-w27', '2014-w29', '2014-w30', '2014-w31', '2014-w32', '2014-w34', '2014-w35', '2014-w36', '2014-w38', '2014-w39', '2014-w41', '2014-w42', '2014-w43', '2014-w44', '2014-w45', '2014-w46', '2014-w47', '2014-w48', '2014-w49', '2014-w50', '2014-w51', '2014-w52'] if sys.version_info[:2] <= (3, 4): warnings.warn( "Issue with Python 3.4, bug probably related to wrong pointers") return fix_tkinter_issues_virtualenv(fLOG=fLOG) import matplotlib.pyplot as plt _, ax = plt.subplots(figsize=(8, 3)) graph_with_label(x, y, xl, ax=ax) if __name__ == "__main__": plt.show() plt.close('all') fLOG("end") if __name__ == "__main__": unittest.main()
19.691489
80
0.318747
a26d7e4bb966a864358215671fbb2cf2ebe33cd5
4,564
py
Python
server.py
niyunhuo98/simple-chat-app
b2e725083dce3200364233da54b930d2e6044513
[ "MIT" ]
null
null
null
server.py
niyunhuo98/simple-chat-app
b2e725083dce3200364233da54b930d2e6044513
[ "MIT" ]
null
null
null
server.py
niyunhuo98/simple-chat-app
b2e725083dce3200364233da54b930d2e6044513
[ "MIT" ]
null
null
null
import socket, string, random, threading, time from datetime import datetime def get_time(): """get current time""" return str(datetime.now().hour) + ':' + str(datetime.now().minute) def id_generator(): """Generate an ID""" number = str(random.randint(0, 9)) l = [random.choice(string.ascii_lowercase) for _ in range(4)] s = ''.join(l) return number + s def get_id(clients): """get a unique id""" id_num = id_generator() while id_num in clients: id_num = id_generator() return id_num def get_clients(clients, id_num): """Update client list""" available_clients = list(clients.keys()) available_clients.remove(id_num) return available_clients def create_client(connectionSocket, id_num, clients, available_clients, blocklist): """Manage client's behavior""" while 1: msg = connectionSocket.recv(1024).decode() if msg[:8] == '/unblock' and msg[9:] in clients and msg[9:] != id_num and msg[9:] in blocklist[id_num]: blocklist[id_num].remove(msg[9:]) continue if msg[:6] == '/block' and msg[7:] in clients and msg[7:] != id_num and msg[7:] not in blocklist[id_num]: blocklist[id_num].append(msg[7:]) continue if msg == '/getlist': available_clients = get_clients(clients, id_num) connectionSocket.send((f"{get_time()} Available Clients:{str(available_clients)}").encode('utf-8')) continue if msg == '/getblocklist': connectionSocket.send((f"{get_time()} Blocklist:{blocklist[id_num]}").encode('utf-8')) continue if msg == '.exit' or len(msg) == 0: connectionSocket.send(".exit".encode('utf-8')) del blocklist[id_num] del clients[id_num] print(f"{get_time()} Client {id_num} Disconnected") break try: if msg[0] == '#' and msg[1:msg.index(':')] == id_num: connectionSocket.send((f"{get_time()} Error: You cannot send the message to yourself").encode('utf-8')) elif msg[0] == '#' and msg[1:msg.index(':')] not in clients: connectionSocket.send((f"{get_time()} Error: Client ID not found").encode('utf-8')) elif msg[:6] == '/block' and msg[7:] == id_num: connectionSocket.send((f"{get_time()} Error: You cannot block yourself").encode('utf-8')) elif msg[:6] == '/block' and msg[7:] not in clients: connectionSocket.send((f"{get_time()} Error: Client ID not found").encode('utf-8')) elif msg[:6] == '/block' and msg[7:] in blocklist[id_num]: connectionSocket.send((f"{get_time()} Error: Already blocked client {msg[7:]}").encode('utf-8')) elif msg[:8] == '/unblock' and msg[9:] == id_num: connectionSocket.send((f"{get_time()} Error: You cannot unblock yourself").encode('utf-8')) elif msg[:8] == '/unblock' and msg[9:] not in blocklist[id_num]: connectionSocket.send((f"{get_time()} Error: Client ID not found").encode('utf-8')) elif id_num in blocklist[msg[1:msg.index(':')]]: connectionSocket.send((f"{get_time()} Error: Client {msg[1:msg.index(':')]} blocked you").encode('utf-8')) else: clients[msg[1:msg.index(':')]].send((f"{get_time()} From {id_num}:{msg[msg.index(':')+1:]}").encode('utf-8')) except: connectionSocket.send((f"{get_time()} Error: Incorrect Format, Please Read Description Again").encode('utf-8')) connectionSocket.close() def main(): clients = {} blocklist = {} serverSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) serverPort = 12000 serverSocket.bind(('', serverPort)) serverSocket.listen() print(f"{get_time()} The server is started") while 1: id_num = get_id(clients) connectionSocket, _ = serverSocket.accept() clients[id_num] = connectionSocket blocklist[id_num] = [] available_clients = get_clients(clients, id_num) print(f"{get_time()} Client {id_num} Connected") connectionSocket.send((f"Your Client ID is {id_num}").encode('utf-8')) time.sleep(1) connectionSocket.send((f"\n{get_time()} Available Clients:{str(available_clients)}").encode('utf-8')) threading._start_new_thread(create_client, (connectionSocket, id_num, clients, available_clients, blocklist)) connectionSocket.close() if __name__ == "__main__": main()
44.31068
125
0.602542
e4ac3d9b3eb031827b2de555d9beaff7f8ce7e7e
1,523
py
Python
evaluation/utils/pytorch_memlab/courtesy.py
NotMorven/cavaface.pytorch
822651f0e6d4d08df5441922acead39dc5375103
[ "MIT" ]
716
2019-05-29T10:28:38.000Z
2022-03-31T03:48:42.000Z
evaluation/utils/pytorch_memlab/courtesy.py
careytian0405/cavaface.pytorch
38956bb505558784081320bf40c88afd286b1fcd
[ "MIT" ]
76
2020-05-22T05:21:33.000Z
2021-07-30T03:39:06.000Z
evaluation/utils/pytorch_memlab/courtesy.py
careytian0405/cavaface.pytorch
38956bb505558784081320bf40c88afd286b1fcd
[ "MIT" ]
65
2020-05-07T08:57:16.000Z
2021-07-21T20:10:44.000Z
import gc import torch class Courtesy(): """A class to yield CUDA memory at any time in the training The whole save/load is a bit tricky because all data transfer should be inplace operation and gradient agnostic """ def __init__(self): self.loc_map = {} def yield_memory(self): """Transfer all the CUDA tensors into CPU memory""" tensors = [obj for obj in gc.get_objects() if isinstance(obj, torch.Tensor)] for t in tensors: # in case tensors appear more than once if t not in self.loc_map: self.loc_map[t] = t.device t.data = t.data.cpu() # parameters have one more wrapper for .data if isinstance(t, torch.nn.Parameter): # sometimes Parameter does not have grad try: t.grad.data = t.grad.cpu() finally: pass torch.cuda.empty_cache() def restore(self): """Restore the tensors into original CUDA devices""" for t, device in self.loc_map.items(): t.data = t.data.to(device) if isinstance(t, torch.nn.Parameter): # sometimes Parameter does not have grad try: t.grad = t.grad.to(device) finally: pass self.loc_map.clear() def __enter__(self): self.yield_memory() return self def __exit__(self, *args): self.restore()
30.46
84
0.54826
94ab233e6d8f10bcd01637bb0a9b44fed34e676d
1,034
py
Python
food.py
RevanthMBontha/Snake-Game
f0f16202fecec4b80d3ed3cbbaa30b7b5d9b4d9a
[ "MIT" ]
1
2022-03-01T04:01:30.000Z
2022-03-01T04:01:30.000Z
food.py
RevanthMBontha/Snake-Game
f0f16202fecec4b80d3ed3cbbaa30b7b5d9b4d9a
[ "MIT" ]
null
null
null
food.py
RevanthMBontha/Snake-Game
f0f16202fecec4b80d3ed3cbbaa30b7b5d9b4d9a
[ "MIT" ]
null
null
null
from turtle import Turtle from winsound import PlaySound, SND_ASYNC from global_helpers import get_random_color, get_random_location from global_helpers import FOOD_COLORS class Food(Turtle): def __init__(self): super().__init__() self.shape("circle") self.penup() self.shapesize(stretch_len=0.5, stretch_wid=0.5) self.color(get_random_color(FOOD_COLORS)) self.speed("fastest") self.goto(get_random_location()) def move_food(self): """Moves the food to a new location and set's it to a random color""" self.goto(get_random_location()) self.color(get_random_color(FOOD_COLORS)) def change_color(self): """Updates the color of the food to a new random color from the list""" self.color(get_random_color(FOOD_COLORS)) def update_food(self): """Does everything required to update the food""" self.move_food() self.change_color() PlaySound("./music/coin_collect.wav", SND_ASYNC)
30.411765
79
0.67118
119a712fa53d18c824230251eaf260b6dd246e2c
6,006
py
Python
tests/symbolicator/test_minidump_full.py
pombredanne/django-sentry
4ad09417fb3cfa3aa4a0d4175ae49fe02837c567
[ "BSD-3-Clause" ]
null
null
null
tests/symbolicator/test_minidump_full.py
pombredanne/django-sentry
4ad09417fb3cfa3aa4a0d4175ae49fe02837c567
[ "BSD-3-Clause" ]
null
null
null
tests/symbolicator/test_minidump_full.py
pombredanne/django-sentry
4ad09417fb3cfa3aa4a0d4175ae49fe02837c567
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import import pytest import zipfile from mock import patch from six import BytesIO from django.core.urlresolvers import reverse from django.core.files.uploadedfile import SimpleUploadedFile from sentry import eventstore from sentry.testutils import TransactionTestCase from sentry.models import EventAttachment from sentry.lang.native.utils import STORE_CRASH_REPORTS_ALL from tests.symbolicator import get_fixture_path, insta_snapshot_stacktrace_data class SymbolicatorMinidumpIntegrationTest(TransactionTestCase): # For these tests to run, write `symbolicator.enabled: true` into your # `~/.sentry/config.yml` and run `sentry devservices up` @pytest.fixture(autouse=True) def initialize(self, live_server): self.project.update_option("sentry:builtin_symbol_sources", []) new_prefix = live_server.url with patch("sentry.auth.system.is_internal_ip", return_value=True), self.options( {"system.url-prefix": new_prefix} ): # Run test case: yield def upload_symbols(self): url = reverse( "sentry-api-0-dsym-files", kwargs={ "organization_slug": self.project.organization.slug, "project_slug": self.project.slug, }, ) self.login_as(user=self.user) out = BytesIO() f = zipfile.ZipFile(out, "w") f.write(get_fixture_path("windows.sym"), "crash.sym") f.close() response = self.client.post( url, { "file": SimpleUploadedFile( "symbols.zip", out.getvalue(), content_type="application/zip" ) }, format="multipart", ) assert response.status_code == 201, response.content assert len(response.data) == 1 def test_full_minidump(self): self.project.update_option("sentry:store_crash_reports", STORE_CRASH_REPORTS_ALL) self.upload_symbols() with self.feature("organizations:event-attachments"): attachment = BytesIO(b"Hello World!") attachment.name = "hello.txt" with open(get_fixture_path("windows.dmp"), "rb") as f: resp = self._postMinidumpWithHeader( f, {"sentry[logger]": "test-logger", "some_file": attachment} ) assert resp.status_code == 200 event_id = resp.content event = eventstore.get_event_by_id(self.project.id, event_id) insta_snapshot_stacktrace_data(self, event.data) assert event.data.get("logger") == "test-logger" # assert event.data.get("extra") == {"foo": "bar"} attachments = sorted( EventAttachment.objects.filter(event_id=event.event_id), key=lambda x: x.name ) hello, minidump = attachments assert hello.name == "hello.txt" assert hello.file.type == "event.attachment" assert hello.file.checksum == "2ef7bde608ce5404e97d5f042f95f89f1c232871" assert minidump.name == "windows.dmp" assert minidump.file.type == "event.minidump" assert minidump.file.checksum == "74bb01c850e8d65d3ffbc5bad5cabc4668fce247" def test_full_minidump_json_extra(self): self.project.update_option("sentry:store_crash_reports", STORE_CRASH_REPORTS_ALL) self.upload_symbols() with self.feature("organizations:event-attachments"): with open(get_fixture_path("windows.dmp"), "rb") as f: resp = self._postMinidumpWithHeader( f, {"sentry": '{"logger":"test-logger"}', "foo": "bar"} ) assert resp.status_code == 200 event_id = resp.content event = eventstore.get_event_by_id(self.project.id, event_id) assert event.data.get("logger") == "test-logger" assert event.data.get("extra") == {"foo": "bar"} # Other assertions are performed by `test_full_minidump` def test_full_minidump_invalid_extra(self): self.project.update_option("sentry:store_crash_reports", STORE_CRASH_REPORTS_ALL) self.upload_symbols() with self.feature("organizations:event-attachments"): with open(get_fixture_path("windows.dmp"), "rb") as f: resp = self._postMinidumpWithHeader( f, {"sentry": "{{{{", "foo": "bar"} # invalid sentry JSON ) assert resp.status_code == 200 event_id = resp.content event = eventstore.get_event_by_id(self.project.id, event_id) assert not event.data.get("logger") assert event.data.get("extra") == {"foo": "bar"} # Other assertions are performed by `test_full_minidump` def test_raw_minidump(self): self.project.update_option("sentry:store_crash_reports", STORE_CRASH_REPORTS_ALL) self.upload_symbols() with self.feature("organizations:event-attachments"): with open(get_fixture_path("windows.dmp"), "rb") as f: # Send as raw request body instead of multipart/form-data resp = self._postMinidumpWithHeader(f, raw=True) assert resp.status_code == 200 event_id = resp.content event = eventstore.get_event_by_id(self.project.id, event_id) insta_snapshot_stacktrace_data(self, event.data) def test_missing_dsym(self): with self.feature("organizations:event-attachments"): with open(get_fixture_path("windows.dmp"), "rb") as f: resp = self._postMinidumpWithHeader(f, {"sentry[logger]": "test-logger"}) assert resp.status_code == 200 event_id = resp.content event = eventstore.get_event_by_id(self.project.id, event_id) insta_snapshot_stacktrace_data(self, event.data) assert not EventAttachment.objects.filter(event_id=event.event_id)
39
89
0.634033
b36c07e7da91090130cedd9a0fc4b23708584151
2,197
py
Python
tests/stats/test_ap_checker.py
kralka/scaaml
f47e028dad6bc74eb480cbfae83724c1057caf39
[ "Apache-2.0" ]
null
null
null
tests/stats/test_ap_checker.py
kralka/scaaml
f47e028dad6bc74eb480cbfae83724c1057caf39
[ "Apache-2.0" ]
null
null
null
tests/stats/test_ap_checker.py
kralka/scaaml
f47e028dad6bc74eb480cbfae83724c1057caf39
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from unittest.mock import MagicMock, patch import numpy as np from scaaml.stats import APChecker @patch.object(APChecker, '_run_check') def test_run_all_calls_check_all_nonzero(mock_run_check): attack_point_name = 'k' counts = np.array([]) ap_checker = APChecker(counts=counts, attack_point_name=attack_point_name) mock_run_check.assert_called_with(APChecker.check_all_nonzero) @patch.object(APChecker, 'run_all') def test_init_calls_run_all(mock_run_all): attack_point_name = 'k' counts = np.array([]) ap_checker = APChecker(counts=counts, attack_point_name=attack_point_name) mock_run_all.assert_called_once_with() @patch.object(APChecker, 'check_all_nonzero') def test_run_all_calls_check_all_nonzero(mock_check_all_nonzero): attack_point_name = 'k' counts = np.array([]) ap_checker = APChecker(counts=counts, attack_point_name=attack_point_name) mock_check_all_nonzero.assert_called_once_with() def test_attack_point_name(): attack_point_name = MagicMock() counts = np.array([]) ap_checker = APChecker(counts=counts, attack_point_name=attack_point_name) assert ap_checker.attack_point_name == attack_point_name def test_check_all_nonzero(): attack_point_name = 'some_strange_attack_p0int_name' counts = np.array([[1, 2, 3], [2, 3, 1]]) ap_checker = APChecker(counts=counts, attack_point_name=attack_point_name) assert not ap_checker._something_failed counts[1][1] = 0 ap_checker = APChecker(counts=counts, attack_point_name=attack_point_name) assert ap_checker._something_failed
30.09589
78
0.769231
3829d1597a4f02a55452c0dd261c354528323c24
1,176
py
Python
pyvo/vomas/tests/test.11.stc_position.py
lmichel/pyvo
8296bee2e799843909805fb6ae528a9b23776e8d
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
pyvo/vomas/tests/test.11.stc_position.py
lmichel/pyvo
8296bee2e799843909805fb6ae528a9b23776e8d
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
pyvo/vomas/tests/test.11.stc_position.py
lmichel/pyvo
8296bee2e799843909805fb6ae528a9b23776e8d
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
""" Created on jan 2022 @author: laurentmichel """ import unittest import os from pyvo.vomas.stc_classes.measure import Velocity from pyvo.vomas.utils.xml_utils import XmlUtils class TestSTCPosition(unittest.TestCase): def test_PKTable(self): self.maxDiff = None vpath = os.path.join(self.data_path, "data/input/test.11.xml") xmltree = XmlUtils.xmltree_from_file(vpath) velocity = Velocity(xmltree) self.assertEqual(velocity.error.__repr__(), "[Bound3D: [[1.0 1.2]mas/year [2.1 2.3]mas/year [2345.0 2399.0]km/sec]") self.assertEqual(velocity.coord.__repr__(), "[LonLatPoint: 1.1mas/year 2.2mas/year 2345.98km/sec ICRS]") self.assertEqual(velocity.__repr__(), "ucd: phys.veloc coords: [LonLatPoint: 1.1mas/year 2.2mas/year 2345.98km/sec ICRS] error: [Bound3D: [[1.0 1.2]mas/year [2.1 2.3]mas/year [2345.0 2399.0]km/sec]") def setUp(self): self.data_path = os.path.dirname(os.path.realpath(__file__)) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
34.588235
186
0.628401
37931b1a9c5782866d7459cd570bba32fb5060da
750
py
Python
Carrito/compras/compras/0002_auto_20210609_0826.py
EnriqueViajero/carrito-Jaguarete-SAA
ada20d1a15ab9d8caa977b925a62d9b9ad72c670
[ "MIT" ]
null
null
null
Carrito/compras/compras/0002_auto_20210609_0826.py
EnriqueViajero/carrito-Jaguarete-SAA
ada20d1a15ab9d8caa977b925a62d9b9ad72c670
[ "MIT" ]
null
null
null
Carrito/compras/compras/0002_auto_20210609_0826.py
EnriqueViajero/carrito-Jaguarete-SAA
ada20d1a15ab9d8caa977b925a62d9b9ad72c670
[ "MIT" ]
null
null
null
from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('muebles', '0001_initial'), ] operations = [ migrations.CreateModel( name='productos', fields=[ ('id_nombre', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=3)), ('precio', models.CharField(max_length=64)), ('cantidad_existente', models.CharField(max_length=64)), ('fecha_ingreso', models.CharField(max_length=3)), ], ), ]
30
125
0.548
0be70cb3d5d448ccfb83c89fe4b4a300cfcd2c55
12,994
py
Python
networks/comatchnet/comatchnet.py
huanglf714/COMatchNet
79023f5be65d354eb9bdac026d7e0d73110bc4aa
[ "Apache-2.0" ]
1
2022-03-30T01:26:47.000Z
2022-03-30T01:26:47.000Z
networks/comatchnet/comatchnet.py
huanglf714/COMatchNet
79023f5be65d354eb9bdac026d7e0d73110bc4aa
[ "Apache-2.0" ]
null
null
null
networks/comatchnet/comatchnet.py
huanglf714/COMatchNet
79023f5be65d354eb9bdac026d7e0d73110bc4aa
[ "Apache-2.0" ]
1
2022-03-30T01:27:23.000Z
2022-03-30T01:27:23.000Z
from PIL.Image import NONE import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from networks.layers.loss import Concat_CrossEntropyLoss from networks.layers.loss import Lovasz_Loss from networks.layers.matching import global_matching, global_matching_for_eval, local_matching, foreground2background from networks.layers.transformer import Transformer from networks.layers.attention import calculate_attention_head, calculate_attention_head_for_eval from networks.layers.co_attention import CO_Attention from networks.comatchnet.ensembler import CollaborativeEnsembler, DynamicPreHead class COMatchNet(nn.Module): def __init__(self, cfg, feature_extracter): super(COMatchNet, self).__init__() self.cfg = cfg self.epsilon = cfg.MODEL_EPSILON self.feature_extracter=feature_extracter self.seperate_conv = nn.Conv2d(cfg.MODEL_ASPP_OUTDIM, cfg.MODEL_ASPP_OUTDIM, kernel_size=3, stride=1, padding=1, groups=cfg.MODEL_ASPP_OUTDIM) self.bn1 = nn.GroupNorm(cfg.MODEL_GN_GROUPS, cfg.MODEL_ASPP_OUTDIM) self.relu1 = nn.ReLU(True) self.embedding_conv = nn.Conv2d(cfg.MODEL_ASPP_OUTDIM, cfg.MODEL_SEMANTIC_EMBEDDING_DIM, 1, 1) self.bn2 = nn.GroupNorm(cfg.MODEL_GN_EMB_GROUPS, cfg.MODEL_SEMANTIC_EMBEDDING_DIM) self.relu2 = nn.ReLU(True) self.co_attention = CO_Attention(in_dim=cfg.MODEL_SEMANTIC_EMBEDDING_DIM, co_attention_dim=cfg.MODEL_ATTENTION_OUT_DIM) self.semantic_embedding=nn.Sequential(*[self.seperate_conv, self.bn1, self.relu1, self.embedding_conv, self.bn2, self.relu2]) self.global_transformer = Transformer(100,56,feature_adjustor=None,feature_extractor=None) self.bg_bias = nn.Parameter(torch.zeros(1, 1, 1, 1)) self.fg_bias = nn.Parameter(torch.zeros(1, 1, 1, 1)) self.criterion = Concat_CrossEntropyLoss(cfg.TRAIN_TOP_K_PERCENT_PIXELS, cfg.TRAIN_HARD_MINING_STEP) # self.criterion = Lovasz_Loss(cfg.TRAIN_TOP_K_PERCENT_PIXELS, cfg.TRAIN_HARD_MINING_STEP) for m in self.semantic_embedding: if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') self.dynamic_seghead = CollaborativeEnsembler( in_dim=cfg.MODEL_SEMANTIC_EMBEDDING_DIM * 3 + cfg.MODEL_PRE_HEAD_EMBEDDING_DIM, attention_dim=cfg.MODEL_SEMANTIC_EMBEDDING_DIM * 4, embed_dim=cfg.MODEL_HEAD_EMBEDDING_DIM, refine_dim=cfg.MODEL_REFINE_CHANNELS, low_level_dim=cfg.MODEL_LOW_LEVEL_INPLANES) in_dim = 2 + len(cfg.MODEL_MULTI_LOCAL_DISTANCE) if cfg.MODEL_MATCHING_BACKGROUND: in_dim += len(cfg.MODEL_MULTI_LOCAL_DISTANCE) self.dynamic_prehead = DynamicPreHead( in_dim=in_dim, embed_dim=cfg.MODEL_PRE_HEAD_EMBEDDING_DIM) def forward(self, input, ref_frame_label, previous_frame_mask, current_frame_mask, gt_ids, step=0, tf_board=False): # print(input.shape,'--1') # print(ref_frame_label.shape,'--2') x, low_level = self.extract_feature(input) ref_frame_embedding, previous_frame_embedding, current_frame_embedding = torch.split(x, split_size_or_sections=int(x.size(0)/3), dim=0) _, _, current_low_level = torch.split(low_level, split_size_or_sections=int(x.size(0)/3), dim=0) # print(ref_frame_embedding.shape,'--3') # print(current_low_level.shape,'--4') bs, c, h, w = current_frame_embedding.size() tmp_dic, boards = self.before_seghead_process( ref_frame_embedding, previous_frame_embedding, current_frame_embedding, ref_frame_label, previous_frame_mask, gt_ids, current_low_level=current_low_level,tf_board=tf_board) label_dic=[] all_pred = [] for i in range(bs): tmp_pred_logits = tmp_dic[i] tmp_pred_logits = nn.functional.interpolate(tmp_pred_logits, size=(input.shape[2],input.shape[3]), mode='bilinear', align_corners=True) tmp_dic[i] = tmp_pred_logits label_tmp, obj_num = current_frame_mask[i], gt_ids[i] # print('label_tmp.shape:',label_tmp.shape) label_dic.append(label_tmp.long()) pred = tmp_pred_logits preds_s = torch.argmax(pred,dim=1) all_pred.append(preds_s) all_pred = torch.cat(all_pred, dim=0) return self.criterion(tmp_dic, label_dic, step), all_pred, boards def forward_for_eval(self, ref_embeddings, ref_masks, prev_embedding, prev_mask, current_frame, pred_size, gt_ids): current_frame_embedding, current_low_level = self.extract_feature(current_frame) if prev_embedding is None: return None, current_frame_embedding else: bs,c,h,w = current_frame_embedding.size() tmp_dic, _ = self.before_seghead_process( ref_embeddings, prev_embedding, current_frame_embedding, ref_masks, prev_mask, gt_ids, current_low_level=current_low_level, tf_board=False) all_pred = [] for i in range(bs): pred = tmp_dic[i] pred = nn.functional.interpolate(pred, size=(pred_size[0],pred_size[1]), mode='bilinear',align_corners=True) all_pred.append(pred) all_pred = torch.cat(all_pred, dim=0) all_pred = torch.softmax(all_pred, dim=1) return all_pred, current_frame_embedding def extract_feature(self, x): x, low_level=self.feature_extracter(x) x = self.semantic_embedding(x) return x, low_level def before_seghead_process(self, ref_frame_embedding=None, previous_frame_embedding=None, current_frame_embedding=None, ref_frame_label=None, previous_frame_mask=None, gt_ids=None, current_low_level=None, tf_board=False): cfg = self.cfg dic_tmp=[] bs,c,h,w = current_frame_embedding.size() if self.training: scale_ref_frame_label = torch.nn.functional.interpolate(ref_frame_label.float(),size=(h,w),mode='nearest') scale_ref_frame_label = scale_ref_frame_label.int() else: scale_ref_frame_labels = [] for each_ref_frame_label in ref_frame_label: each_scale_ref_frame_label = torch.nn.functional.interpolate(each_ref_frame_label.float(),size=(h,w),mode='nearest') each_scale_ref_frame_label = each_scale_ref_frame_label.int() scale_ref_frame_labels.append(each_scale_ref_frame_label) scale_ref_frame_label = torch.cat(scale_ref_frame_labels) scale_previous_frame_label=torch.nn.functional.interpolate(previous_frame_mask.float(),size=(h,w),mode='nearest') scale_previous_frame_label=scale_previous_frame_label.int() boards = {'image': {}, 'scalar': {}} for n in range(bs): ref_obj_ids = torch.arange(0, gt_ids[n] + 1, device=current_frame_embedding.device).int().view(-1, 1, 1, 1) obj_num = ref_obj_ids.size(0) if gt_ids[n] > 0: dis_bias = torch.cat([self.bg_bias, self.fg_bias.expand(gt_ids[n], -1, -1, -1)], dim=0) else: dis_bias = self.bg_bias seq_current_frame_embedding = current_frame_embedding[n] seq_current_frame_embedding = seq_current_frame_embedding.permute(1,2,0) seq_prev_frame_embedding = previous_frame_embedding[n] seq_prev_frame_embedding = seq_prev_frame_embedding.permute(1,2,0) seq_previous_frame_label = (scale_previous_frame_label[n].int() == ref_obj_ids).float() to_cat_previous_frame = seq_previous_frame_label seq_previous_frame_label = seq_previous_frame_label.squeeze(1).permute(1,2,0) #<-----------------------------global-----------------------------------------> seq_ref_frame_label = (scale_ref_frame_label[n].int() == ref_obj_ids).float() # param: # test_feat.shape=[1,1,c,h,w] # encoded_train_feat.shape=[1,1,c,h,w] # train_mask.shape=[1,obj_num,1,h,w] # return: # global_transformer_fg.shape=[1,1,obj_num,h,w] test_feat = current_frame_embedding[n].unsqueeze(0).unsqueeze(0) if self.training: train_feat = ref_frame_embedding[n].unsqueeze(0).unsqueeze(0) else: train_feat = ref_frame_embedding[n].unsqueeze(0) train_mask = seq_ref_frame_label.unsqueeze(0) # print(test_feat.shape,'----',train_feat.shape,'---',train_mask.shape) global_transformer_fg = self.global_transformer( test_feat=test_feat, train_feat=train_feat, train_mask=None, train_mask_enc=train_mask) # print(global_transformer_fg.shape,'---') #########################Local dist map local_matching_fg = local_matching( prev_frame_embedding=seq_prev_frame_embedding, query_embedding=seq_current_frame_embedding, prev_frame_labels=seq_previous_frame_label, multi_local_distance=cfg.MODEL_MULTI_LOCAL_DISTANCE, dis_bias=dis_bias, use_float16=cfg.MODEL_FLOAT16_MATCHING, atrous_rate=cfg.TRAIN_LOCAL_ATROUS_RATE if self.training else cfg.TEST_LOCAL_ATROUS_RATE, allow_downsample=cfg.MODEL_LOCAL_DOWNSAMPLE, allow_parallel=cfg.TRAIN_LOCAL_PARALLEL if self.training else cfg.TEST_LOCAL_PARALLEL) # print('match_fg.shape:----') # print(global_matching_fg.shape) # print(local_matching_fg.shape) ######################### to_cat_current_frame_embedding = current_frame_embedding[n].unsqueeze(0).expand((obj_num,-1,-1,-1)) to_cat_prev_frame_embedding = previous_frame_embedding[n].unsqueeze(0).expand((obj_num,-1,-1,-1)) # to_cat_corelation_attention = corelation_attention.permute(2,3,0,1) # to_cat_global_matching_fg = global_matching_fg.squeeze(0).permute(2,3,0,1) to_cat_local_matching_fg = local_matching_fg.squeeze(0).permute(2,3,0,1) to_cat_global_transformer_fg = global_transformer_fg.squeeze(0).permute(1,0,2,3) if cfg.MODEL_MATCHING_BACKGROUND: # to_cat_global_matching_bg = foreground2background(to_cat_global_matching_fg, gt_ids[n] + 1) reshaped_prev_nn_feature_n = to_cat_local_matching_fg.permute(0, 2, 3, 1).unsqueeze(1) to_cat_local_matching_bg = foreground2background(reshaped_prev_nn_feature_n, gt_ids[n] + 1) to_cat_local_matching_bg = to_cat_local_matching_bg.permute(0, 4, 2, 3, 1).squeeze(-1) # pre_to_cat = torch.cat((to_cat_corelation_attention, to_cat_global_transformer_fg, to_cat_local_matching_fg, to_cat_previous_frame), 1) pre_to_cat = torch.cat((to_cat_global_transformer_fg, to_cat_local_matching_fg, to_cat_previous_frame), 1) if cfg.MODEL_MATCHING_BACKGROUND: # pre_to_cat = torch.cat([pre_to_cat, to_cat_global_matching_bg, to_cat_local_matching_bg], 1) pre_to_cat = torch.cat([pre_to_cat, to_cat_local_matching_bg], 1) pre_to_cat = self.dynamic_prehead(pre_to_cat) to_cat = torch.cat((to_cat_current_frame_embedding, to_cat_prev_frame_embedding * to_cat_previous_frame, to_cat_prev_frame_embedding * (1 - to_cat_previous_frame), pre_to_cat),1) # print(ref_frame_embedding[n].shape,'---',seq_ref_frame_label.shape,'--------------',previous_frame_embedding[n].shape) attention_head = calculate_attention_head( ref_frame_embedding[n].expand((obj_num,-1,-1,-1)), seq_ref_frame_label, previous_frame_embedding[n].unsqueeze(0).expand((obj_num,-1,-1,-1)), to_cat_previous_frame, epsilon=self.epsilon) low_level_feat = current_low_level[n].unsqueeze(0) # print('to_cat.shape:',to_cat.shape) # print('attention_head',attention_head.shape) # print('low_level_feat',low_level_feat.shape) pred = self.dynamic_seghead(to_cat, attention_head, low_level_feat) # print('pred.shape:----', pred.shape) # pred.shape: (1,obj_num, 117,117) dic_tmp.append(pred) # print('dic_tmp.len:----', len(dic_tmp)) # dic_tmp is a list, len is 1 or 2 return dic_tmp, boards def get_module(): return COMatchNet
50.560311
190
0.654841
ea24357f6ac2ffda745ce9c2ba650108757515dd
523
py
Python
libact/query_strategies/__init__.py
jonzarecki/libact
32bbc4af8e31cd947aeb07c3972d4bdcd759a77f
[ "BSD-2-Clause" ]
null
null
null
libact/query_strategies/__init__.py
jonzarecki/libact
32bbc4af8e31cd947aeb07c3972d4bdcd759a77f
[ "BSD-2-Clause" ]
null
null
null
libact/query_strategies/__init__.py
jonzarecki/libact
32bbc4af8e31cd947aeb07c3972d4bdcd759a77f
[ "BSD-2-Clause" ]
null
null
null
""" Concrete query strategy classes. """ from __future__ import absolute_import import os ON_RTD = os.environ.get('READTHEDOCS', None) == 'True' import logging LOGGER = logging.getLogger(__name__) from .active_learning_by_learning import ActiveLearningByLearning from .hintsvm import HintSVM from .uncertainty_sampling import UncertaintySampling from .query_by_committee import QueryByCommittee from .quire import QUIRE from .random_sampling import RandomSampling from .density_weighted_uncertainty_sampling import DWUS
27.526316
65
0.839388
b7d210c67af331f793973212388e08de12333bee
1,804
py
Python
utils/hello.py
chuckfairy/TYOS
177c33432abee6ef827bd9c4bdbd7ed92237e278
[ "MIT" ]
null
null
null
utils/hello.py
chuckfairy/TYOS
177c33432abee6ef827bd9c4bdbd7ed92237e278
[ "MIT" ]
null
null
null
utils/hello.py
chuckfairy/TYOS
177c33432abee6ef827bd9c4bdbd7ed92237e278
[ "MIT" ]
null
null
null
import pygame, sys from pygame.locals import * # set up pygame pygame.init() # set up the window windowSurface = pygame.display.set_mode((500, 400), 0, 32) pygame.display.set_caption('Hello world!') # set up the colors BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) # set up fonts basicFont = pygame.font.SysFont(None, 48) # set up the text text = basicFont.render('Hello world!', True, WHITE, BLUE) textRect = text.get_rect() textRect.centerx = windowSurface.get_rect().centerx textRect.centery = windowSurface.get_rect().centery # draw the white background onto the surface windowSurface.fill(WHITE) # draw a green polygon onto the surface pygame.draw.polygon(windowSurface, GREEN, ((146, 0), (291, 106), (236, 277), (56, 277), (0, 106))) # draw some blue lines onto the surface pygame.draw.line(windowSurface, BLUE, (60, 60), (120, 60), 4) pygame.draw.line(windowSurface, BLUE, (120, 60), (60, 120)) pygame.draw.line(windowSurface, BLUE, (60, 120), (120, 120), 4) # draw a blue circle onto the surface pygame.draw.circle(windowSurface, BLUE, (300, 50), 20, 0) # draw a red ellipse onto the surface pygame.draw.ellipse(windowSurface, RED, (300, 250, 40, 80), 1) # draw the text's background rectangle onto the surface pygame.draw.rect(windowSurface, RED, (textRect.left - 20, textRect.top - 20, textRect.width + 40, textRect.height + 40)) # get a pixel array of the surface pixArray = pygame.PixelArray(windowSurface) pixArray[480][380] = BLACK del pixArray # draw the text onto the surface windowSurface.blit(text, textRect) # draw the window onto the screen pygame.display.update() # run the game loop while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit()
27.333333
120
0.701774
7bb96d77f95a39aef0cbe5c93baf032ad9baea3d
1,550
py
Python
test/test_hmrf_em.py
microfluidix/HMRF
d6f64ca99537e638d978e474034cabc64c6f047f
[ "MIT" ]
1
2021-11-16T10:40:25.000Z
2021-11-16T10:40:25.000Z
test/test_hmrf_em.py
gronteix/HMRF
0c7b4b1ea9cd2934b2c9218e9d48b7c63b819a34
[ "MIT" ]
null
null
null
test/test_hmrf_em.py
gronteix/HMRF
0c7b4b1ea9cd2934b2c9218e9d48b7c63b819a34
[ "MIT" ]
1
2021-11-16T10:40:59.000Z
2021-11-16T10:40:59.000Z
import networkx as nx import numpy as np import pytest from biograph import hmrf_em @pytest.fixture def create_graph(): """Create a graph with five nodes and ten edges. Each node is connected to two other nodes. Each node has one attribute 'cell_type', there are two different 'cell_type' attributes in total. Returns ------- G : networkx.Graph """ G = nx.Graph() G.add_nodes_from(range(5)) G.add_edges_from([(0, 1), (0, 2), (1, 2), (2, 3), (3, 4)]) G.nodes[0]["cell_type"] = 0 G.nodes[1]["cell_type"] = 0 G.nodes[2]["cell_type"] = 1 G.nodes[3]["cell_type"] = 1 G.nodes[4]["cell_type"] = 1 return G def test_generate_hmrf_instance(create_graph): assert isinstance(create_graph, nx.Graph) assert len(create_graph.nodes) == 5 assert len(create_graph.edges) == 5 hmrf_instance = hmrf_em.hmrf(create_graph, K=2, beta=10, max_it=30) hmrf_instance.initiate_model() assert hmrf_instance.K == 2 assert hmrf_instance.beta == 10 assert hmrf_instance.max_it == 30 assert hmrf_instance.number_of_cell_types == 2 def test_hmrf_run(create_graph): """Create a hmrf instance, then run the instance over 10 iterations. Verify that the output object is a graph. """ hmrf_instance = hmrf_em.hmrf(create_graph, K=2, beta=10, max_it=30) hmrf_instance.initiate_model() hmrf_instance.run() assert isinstance(hmrf_instance.graph, nx.Graph) assert len(hmrf_instance.graph.nodes) == 5 assert len(hmrf_instance.graph.edges) == 5
28.181818
74
0.67871
e909f7660406d75e793063721b8a307017866b5d
1,448
py
Python
jiraan/models.py
saudahabib/jiraan-
be88f94d0229e97adc41438bc27bcf1dbce85458
[ "MIT" ]
null
null
null
jiraan/models.py
saudahabib/jiraan-
be88f94d0229e97adc41438bc27bcf1dbce85458
[ "MIT" ]
null
null
null
jiraan/models.py
saudahabib/jiraan-
be88f94d0229e97adc41438bc27bcf1dbce85458
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Neighborhood(models.Model): hood_name=models.CharField(max_length=50) hood_location = models.CharField(max_length=50) hood_count=models.CharField(max_length=50) #save function def save_hood(self): self.save() #delete function def delete_hood(self): del_hoods=Neighborhood.objects.all().delete() return del_hoods def __str__(self): return self.hood_name class Meta: ordering = ['-id'] class User(models.Model): first_name=models.CharField(max_length=50) user_id=models.IntegerField() email_address=models.CharField(max_length=50) neighborhood_id=models.ForeignKey(Neighborhood, on_delete=models.CASCADE) def __str__(self): return self.first_name def save_users(self): self.save() def delete_user(self): deleted_users=User.objects.all().delete() return deleted_users class Business(models.Model): business_name=models.CharField(max_length=50) user=models.ForeignKey(User, on_delete=models.CASCADE) neighborhood_id=models.ForeignKey(Neighborhood, on_delete=models.CASCADE) business_address=models.CharField(max_length=50) def __str__(self): return self.business_name def save_bus(self): self.save() def delete_bus(self): objects=Business.objects.all().delete() return objects
24.542373
77
0.698895
95b518dc1a2cea3ae5636dda55b638daa8d88fe5
11,041
py
Python
cyberserver/servers/attacks_generator.py
csd3345/cybermap-server
f9cad5e59547d30c1e6e13c8b4b39e6ea46746cb
[ "Unlicense", "MIT" ]
null
null
null
cyberserver/servers/attacks_generator.py
csd3345/cybermap-server
f9cad5e59547d30c1e6e13c8b4b39e6ea46746cb
[ "Unlicense", "MIT" ]
null
null
null
cyberserver/servers/attacks_generator.py
csd3345/cybermap-server
f9cad5e59547d30c1e6e13c8b4b39e6ea46746cb
[ "Unlicense", "MIT" ]
null
null
null
import sys import json import time from random import choice, randint, randrange import pathlib import logging import timeit import click from click_help_colors import HelpColorsCommand, HelpColorsGroup from typing import Union, Optional from math import inf as INFINITE from cyberserver.servers import utilities _script_path = pathlib.Path(__file__) _script_stem = pathlib.Path(__file__).stem _script_name = pathlib.Path(__file__).name _logger: logging.Logger class AttacksGenerator(object): _logger: logging.Logger def __init__( self, channel: str = "raw-cyberattacks", ips_to_generate: Union[int, type(INFINITE)] = INFINITE, method: str = "random", interval: float = 0.1, filepath: Optional[Union[pathlib.Path, str]] = None, silent: Optional[bool] = None, script_mode: Optional[bool] = None, verbose: Optional[bool] = None ): self.method: str = method if self.method != "random": if filepath is None: raise FileNotFoundError(f"You have to specify a file for method {self.method}") self.ports = { 0: "DoS", # Denial of Service 1: "ICMP", # ICMP 20: "FTP", # FTP Data 21: "FTP", # FTP Control 22: "SSH", # SSH 23: "TELNET", # Telnet 25: "EMAIL", # SMTP 43: "WHOIS", # Whois 53: "DNS", # DNS 80: "HTTP", # HTTP 88: "AUTH", # Kerberos 109: "EMAIL", # POP v2 110: "EMAIL", # POP v3 115: "SFTP", # SFTP 118: "SQL", # SQL 143: "EMAIL", # IMAP 156: "SQL", # SQL 161: "SNMP", # SNMP 220: "EMAIL", # IMAP v3 389: "AUTH", # LDAP 443: "HTTPS", # HTTPS 445: "SMB", # SMB 636: "AUTH", # LDAP of SSL/TLS 1433: "SQL", # MySQL Server 1434: "SQL", # MySQL Monitor 3306: "SQL", # MySQL 3389: "RDP", # RDP 5900: "RDP", # VNC:0 5901: "RDP", # VNC:1 5902: "RDP", # VNC:2 5903: "RDP", # VNC:3 8080: "HTTP", # HTTP Alternative } self.ips_to_generate: int = ips_to_generate # random method self.channel: str = channel self.interval: float = interval # file methods self.filepath: pathlib.Path = filepath self.silent: bool = silent self.verbose: bool = verbose self.script_mode: bool = script_mode self.redis_watcher: utilities.RedisWatcher = utilities.RedisWatcher(silent = self.silent) self.ips_forged: int = 0 # initiation self._logger = utilities.logging.get_console_logger( name = _script_stem, level = logging.DEBUG if self.verbose else logging.INFO, disable_stream = True if self.silent else False ) self._logger.info(f"Method used {utilities.colorize(self.method, 'gold_1')}") if self.method != "random": self._logger.info(f"File used {utilities.colorize(self.filepath, 'gold_1')}") self._logger.info( f"Number of IPs to generate " f"{utilities.colorize(self.ips_to_generate if self.ips_to_generate != INFINITE else '∞', 'gold_1')}" ) self._logger.info( f"Publishing to channel " f"{utilities.colorize(self.channel, 'gold_1')}" ) self._logger.info(f"Publishing interval {utilities.colorize(self.interval, 'gold_1')} seconds") self._logger.info(f"Silent mode {utilities.colorize(self.silent and 'on' or 'off', 'gold_1')}") self._logger.info(f"Script mode {utilities.colorize(self.script_mode and 'on' or 'off', 'gold_1')}") def __call__(self): self.start_time = timeit.default_timer() self._logger.info( f"Attacks Generator started at: " f"{utilities.colorize(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), 'gold_1')}" ) if self.method == "random": self.random() def __del__(self): if not self.silent: sys.stdout.write("\033[1000D\033[K") self._logger.info(f"Stopped generator. Total IPs generated: {utilities.colorize(self.ips_forged)}") def random(self): while self.ips_to_generate == INFINITE or self.ips_forged < self.ips_to_generate: port = choice(list(self.ports.keys())) data = { 'src': { 'ip': self.ipv4(), 'port': port }, 'dst': { 'ip': self.ipv4(), 'port': port }, 'type': self.ports[port], 'cve': f"CVE:{randrange(1997, 2019)}:{randrange(1, 400)}" } json_data = json.dumps(data) self.redis_watcher.server.publish(channel = self.channel, message = json_data) self.ips_forged += 1 self._logger.info( f"Published random IP " f"[{utilities.colorize(f'{self.ips_forged}', 'gold_1')}]" ) self._logger.debug(f"{json.dumps(data, indent = 4)}") if not self.script_mode and not self.silent: print("\033[A\033[K", end = '') time.sleep(self.interval) @staticmethod def ipv4() -> str: """ To generate a more accurate representation of an IP address these rules are followed: https://www.quora.com/How-do-you-identify-an-invalid-IP-address 1.Any address that begins with a 0 is invalid (except as a default route). 2.Any address with a number above 255 in it is invalid. 3.Any address that has more than 3 dots is invalid. 4.Any address that begins with a number between 240 and 255 is reserved, and effectively invalid. (Theoretically, they’re usable, but I’ve never seen one in use.) 5.Any address that begins with a number between 224 and 239 is reserved for multicast, and probably invalid. """ # the left-most part of the address is calculated first as it has the most restrictions return ".".join( [ str(randint(1, 222)), str(randint(1, 255)), str(randint(1, 255)), str(randint(1, 255)), ] ) @property def method(self): return self._method @method.setter def method(self, value: str): available_methods = ['random', 'json', 'text', 'csv'] if not isinstance(value, str): raise TypeError(f"method must be a string. Available methods: {','.join(available_methods)}") if value.lower() not in available_methods: raise ValueError(f"method {value} is not available. Available methods: {','.join(available_methods)}") self._method = value.lower() @property def ports(self): return self._ports @ports.setter def ports(self, value): if not isinstance(value, dict): raise TypeError("ports must a dict") self._ports = value @property def filepath(self) -> pathlib.Path: return self._filepath @filepath.setter def filepath(self, value): if value is not None: if not isinstance(value, pathlib.Path) or not isinstance(value, str): raise TypeError("filepath must be a string or a pathlib.Path object") self._filepath = pathlib.Path(value) # region Command Line Tool section # region command settings @click.group( cls = HelpColorsGroup, help_headers_color = 'green', help_options_color = 'bright_red', name = "Attacks Generator", context_settings = { "help_option_names": ['-h', '--help'], "ignore_unknown_options": True }, no_args_is_help = False, invoke_without_command = True, options_metavar = "<options>" ) # endregion # region channel option @click.option( '-c', '--channel', default = "raw-cyberattacks", type = click.STRING, metavar = "string", help = "Redis channel in which the attacks will be forwarded" ) # endregion # region interval option @click.option( "-i", "--interval", default = 0.05, metavar = "Float", type = click.FloatRange(0.05, 100), help = "Interval between each publication" ) # endregion # region autostart option @click.option( "-a", "--autostart", metavar = "switch", is_flag = True, help = "Immediately start publishing generated attacks" ) # endregion # region verbose option @click.option( "--verbose", metavar = "switch", is_flag = True, help = "Enables verbose logging messages" ) # endregion # region silent option @click.option( "--silent", metavar = "switch", is_flag = True, help = "Disables ALL logging messages" ) # endregion # region script-mode option @click.option( "--script-mode", metavar = "switch", is_flag = True, help = "Enables script mode which uses dynamic printing features in the terminal." "CAUTION: using this flag when initializing Attacks Generator from another module may break some " "logging messages" ) # endregion @click.pass_context def main(ctx, channel: str, interval: float, verbose: bool, silent: bool, script_mode: bool, autostart: bool): """ Custom command line utility to generate cyberattacks for publishing to a redis channel """ ctx.obj = { "channel": channel, "interval": interval, "verbose": verbose, "silent": silent, "script_mode": script_mode, "autostart": autostart } if ctx.invoked_subcommand is None: ctx.invoke(random) else: # click.echo('I am about to invoke %s' % ctx.invoked_subcommand) pass @main.command() # region forge option @click.option( "-f", "--forge", "ips_to_forge", default = INFINITE, metavar = "float", type = click.FLOAT, help = "Number of IP to forge" ) # endregion @click.pass_context def random(ctx, ips_to_forge): generator = AttacksGenerator( method = "RaNdOm", channel = ctx.obj["channel"], ips_to_generate = ips_to_forge, interval = ctx.obj["interval"], silent = ctx.obj["silent"], script_mode = ctx.obj["script_mode"] ) try: generator() except KeyboardInterrupt: if ctx.obj["script_mode"] and not ctx.obj["silent"]: sys.stdout.write("\033[1000D\033[K") # endregion if __name__ == '__main__': main()
31.27762
116
0.56743
db6d526bfcf066b9dbd9e4d6828426ebe1ffb39c
390
py
Python
instagram/forms.py
Ianadika44/insta-clown
268e0cb1a66f20ff22073b308c80a2ab8d664c55
[ "Unlicense" ]
null
null
null
instagram/forms.py
Ianadika44/insta-clown
268e0cb1a66f20ff22073b308c80a2ab8d664c55
[ "Unlicense" ]
1
2021-06-08T21:42:18.000Z
2021-06-08T21:42:18.000Z
instagram/forms.py
Ianadika44/insta-clown
268e0cb1a66f20ff22073b308c80a2ab8d664c55
[ "Unlicense" ]
null
null
null
from django import forms from .models import Post class NewsLetterForm(forms.Form): your_name = forms.CharField(label='First Name',max_length=30) email = forms.EmailField(label='Email') class NewPostForm(forms.ModelForm): class Meta: model = Post exclude = ['profile'] widgets = { 'following': forms.CheckboxSelectMultiple(), }
26
65
0.648718
cce47068331277a5145a5ed8fefc8a7b8327929f
3,380
py
Python
designate-8.0.0/designate/tests/test_api/test_v2/test_service_status.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
145
2015-01-02T09:35:53.000Z
2021-12-14T17:03:53.000Z
designate/tests/test_api/test_v2/test_service_status.py
sapcc/designate
c3f084751006a2fe7562f137930542c4759d6fd9
[ "Apache-2.0" ]
6
2015-03-15T00:22:27.000Z
2019-12-16T09:37:38.000Z
designate/tests/test_api/test_v2/test_service_status.py
sapcc/designate
c3f084751006a2fe7562f137930542c4759d6fd9
[ "Apache-2.0" ]
109
2015-01-13T16:47:34.000Z
2021-03-15T13:18:48.000Z
# Copyright 2016 Hewlett Packard Enterprise Development Company LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from designate.tests.test_api.test_v2 import ApiV2TestCase LOG = logging.getLogger(__name__) class ApiV2ServiceStatusTest(ApiV2TestCase): def setUp(self): super(ApiV2ServiceStatusTest, self).setUp() def test_get_service_statuses(self): # Set the policy file as this is an admin-only API self.policy({'find_service_statuses': '@'}) response = self.client.get('/service_statuses/') # Check the headers are what we expect self.assertEqual(200, response.status_int) self.assertEqual('application/json', response.content_type) # Check the body structure is what we expect self.assertIn('service_statuses', response.json) self.assertIn('links', response.json) self.assertIn('self', response.json['links']) # Test with 0 service_statuses # Seeing that Central is started there will be 1 here already.. self.assertEqual(0, len(response.json['service_statuses'])) data = [self.update_service_status( hostname="foo%s" % i, service_name="bar") for i in range(0, 10)] self._assert_paging(data, '/service_statuses', key='service_statuses') def test_get_service_status(self): service_status = self.update_service_status(fixture=0) # Set the policy file as this is an admin-only API self.policy({'find_service_status': '@'}) response = self.client.get( '/service_statuses/%s' % service_status['id'], headers=[('Accept', 'application/json')]) # Verify the headers self.assertEqual(200, response.status_int) self.assertEqual('application/json', response.content_type) # Verify the body structure self.assertIn('links', response.json) self.assertIn('self', response.json['links']) # Verify the returned values self.assertIn('id', response.json) self.assertIn('created_at', response.json) self.assertIsNone(response.json['updated_at']) fixture = self.get_service_status_fixture(0) self.assertEqual(fixture['hostname'], response.json['hostname']) self.assertEqual(fixture['service_name'], response.json['service_name']) self.assertEqual(fixture['capabilities'], response.json['capabilities']) self.assertEqual(fixture['stats'], response.json['stats']) self.assertEqual(fixture['status'], response.json['status']) self.assertIsNone(response.json['heartbeated_at']) def test_get_service_status_invalid_id(self): self.policy({'find_service_status': '@'}) self._assert_invalid_uuid(self.client.get, '/service_statuses/%s')
39.764706
78
0.681361
16c08bf5560a181cb9066dae531a05db0771268d
5,182
py
Python
tests/mutations/test_person.py
trompamusic/ce-queries-template
cc5ae69d0e76623bfd72e9453f569f6624bf7c3b
[ "Apache-2.0" ]
1
2020-06-18T15:43:18.000Z
2020-06-18T15:43:18.000Z
tests/mutations/test_person.py
trompamusic/ce-queries-template
cc5ae69d0e76623bfd72e9453f569f6624bf7c3b
[ "Apache-2.0" ]
60
2019-12-17T11:08:28.000Z
2021-03-02T16:19:41.000Z
tests/mutations/test_person.py
trompamusic/trompace-client
cc5ae69d0e76623bfd72e9453f569f6624bf7c3b
[ "Apache-2.0" ]
null
null
null
# Tests for mutations pertaining to person objects. import os import pytest from trompace.exceptions import UnsupportedLanguageException, NotAMimeTypeException from trompace.mutations import person from tests import CeTestCase class TestPerson(CeTestCase): def setUp(self) -> None: super() self.data_dir = os.path.join(self.test_directory, "data", "person") def test_create(self): expected = self.read_file(os.path.join(self.data_dir, "create_person.txt")) created_person = person.mutation_create_person( title="A. J. Fynn", contributor="https://www.cpdl.org", creator="https://www.upf.edu", source="https://www.cpdl.org/wiki/index.php/A._J._Fynn", language="en", format_="text/html", gender="male", description="Born circa 1860Died circa 1920A. J. Fynn was an early 20th Century scholar\ in literature and anthropology") self.assert_queries_equal(created_person, expected) def test_create_invalid_values(self): """Passing invalid values to language, format_, or gender cause exceptions""" with pytest.raises(ValueError): person.mutation_create_person( title="A. J. Fynn", contributor="https://www.cpdl.org", creator="https://www.upf.edu", source="https://www.cpdl.org/wiki/index.php/A._J._Fynn", format_="text/html", gender="test" ) with pytest.raises(UnsupportedLanguageException): person.mutation_create_person( title="A. J. Fynn", contributor="https://www.cpdl.org", creator="https://www.upf.edu", source="https://www.cpdl.org/wiki/index.php/A._J._Fynn", format_="text/html", language="pt" ) with pytest.raises(NotAMimeTypeException): person.mutation_create_person( title="A. J. Fynn", contributor="https://www.cpdl.org", creator="https://www.upf.edu", source="https://www.cpdl.org/wiki/index.php/A._J._Fynn", format_="html" ) def test_update(self): expected = self.read_file(os.path.join(self.data_dir, "update_person.txt")) created_update = person.mutation_update_person('2eeca6dd-c62c-490e-beb0-2e3899fca74f', title="A. J. Fynn") self.assert_queries_equal(created_update, expected) def test_delete(self): expected = self.read_file(os.path.join(self.data_dir, "delete_person.txt")) created_delete = person.mutation_delete_person('2eeca6dd-c62c-490e-beb0-2e3899fca74f') self.assert_queries_equal(created_delete, expected) def test_invalid_language(self): with pytest.raises(UnsupportedLanguageException): person.mutation_update_person('2eeca6dd-c62c-490e-beb0-2e3899fca74f', language="ja") with pytest.raises(UnsupportedLanguageException): person.mutation_create_person(title="A. J. Fynn", contributor="https://www.cpdl.org", creator="https://www.upf.edu", source="https://www.cpdl.org/wiki/index.php/A._J._Fynn", language="ja", format_="text/html", description="Born circa 1860Died circa 1920A. J. Fynn was\ an early 20th Century scholar in literature and anthropology") def test_invalid_format(self): with pytest.raises(NotAMimeTypeException): person.mutation_update_person('2eeca6dd-c62c-490e-beb0-2e3899fca74f', format_="test,html") with pytest.raises(NotAMimeTypeException): person.mutation_create_person(title="A. J. Fynn", contributor="https://www.cpdl.org", creator="https://www.upf.edu", source="https://www.cpdl.org/wiki/index.php/A._J._Fynn", language="en", format_="text,html", description="Born circa 1860Died circa 1920A. J. Fynn was\ an early 20th Century scholar in literature and anthropology") def test_person_add_exact_match_person(self): expected = self.read_file(os.path.join(self.data_dir, "merge_person_exactmatch.txt")) actual = person.mutation_person_add_exact_match_person("d3f968f4-90cd-4764-93bc-6fadcc2a35e6", "b10ac895-beb8-489e-8168-3e786d1aeb0e") self.assert_queries_equal(actual, expected) def test_person_remove_exact_match_person(self): expected = self.read_file(os.path.join(self.data_dir, "remove_person_exactmatch.txt")) actual = person.mutation_person_remove_exact_match_person("d3f968f4-90cd-4764-93bc-6fadcc2a35e6", "b10ac895-beb8-489e-8168-3e786d1aeb0e") self.assert_queries_equal(actual, expected)
48.429907
105
0.603821
d2bffad9f4004b95f56c3810b96353c389d33c07
11,787
py
Python
com/precisely/apis/model/tax_locations.py
PreciselyData/PreciselyAPIsSDK-Python
28ffff0c96d81d3a53a5599c987d54d7b632b508
[ "Apache-2.0" ]
null
null
null
com/precisely/apis/model/tax_locations.py
PreciselyData/PreciselyAPIsSDK-Python
28ffff0c96d81d3a53a5599c987d54d7b632b508
[ "Apache-2.0" ]
null
null
null
com/precisely/apis/model/tax_locations.py
PreciselyData/PreciselyAPIsSDK-Python
28ffff0c96d81d3a53a5599c987d54d7b632b508
[ "Apache-2.0" ]
null
null
null
""" Precisely APIs Enhance & enrich your data, applications, business processes, and workflows with rich location, information, and identify APIs. # noqa: E501 The version of the OpenAPI document: 11.9.3 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from com.precisely.apis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from com.precisely.apis.exceptions import ApiAttributeError def lazy_import(): from com.precisely.apis.model.tax_geometry import TaxGeometry globals()['TaxGeometry'] = TaxGeometry class TaxLocations(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'geometry': (TaxGeometry,), # noqa: E501 'purchase_amount': (str,), # noqa: E501 'object_id': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'geometry': 'geometry', # noqa: E501 'purchase_amount': 'purchaseAmount', # noqa: E501 'object_id': 'objectId', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, geometry, *args, **kwargs): # noqa: E501 """TaxLocations - a model defined in OpenAPI Args: geometry (TaxGeometry): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) purchase_amount (str): [optional] # noqa: E501 object_id (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.geometry = geometry for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, geometry, *args, **kwargs): # noqa: E501 """TaxLocations - a model defined in OpenAPI Args: geometry (TaxGeometry): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) purchase_amount (str): [optional] # noqa: E501 object_id (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.geometry = geometry for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
42.706522
145
0.571053
d47aecd08baaeabe664ceabac9dbb67643156591
547
py
Python
cradmin_legacy/viewhelpers/mixins.py
appressoas/cradmin_legacy
b9d024299333dd04c87c1031bd5be5778aa7f1f1
[ "BSD-3-Clause" ]
null
null
null
cradmin_legacy/viewhelpers/mixins.py
appressoas/cradmin_legacy
b9d024299333dd04c87c1031bd5be5778aa7f1f1
[ "BSD-3-Clause" ]
17
2018-03-07T15:52:42.000Z
2022-03-12T01:07:06.000Z
cradmin_legacy/viewhelpers/mixins.py
appressoas/cradmin_legacy
b9d024299333dd04c87c1031bd5be5778aa7f1f1
[ "BSD-3-Clause" ]
1
2018-07-23T22:13:45.000Z
2018-07-23T22:13:45.000Z
from __future__ import unicode_literals from builtins import object class QuerysetForRoleMixin(object): def get_queryset_for_role(self, role): """ Get a queryset with all objects of ``self.model`` that the current role can access. """ raise NotImplementedError() def get_queryset(self): """ DO NOT override this. Override :meth:`.get_queryset_for_role` instead. """ queryset = self.get_queryset_for_role(self.request.cradmin_role) return queryset
27.35
72
0.652651
55ae49096829e62436750f72fbc3f1bee8928e2a
12,398
py
Python
docs/exts/docs_build/docs_builder.py
khilawar4/airflow
5f3f65b82517f615f31f0c8a7f8ac0facb325235
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2
2020-09-11T07:21:58.000Z
2021-04-29T17:14:11.000Z
docs/exts/docs_build/docs_builder.py
khilawar4/airflow
5f3f65b82517f615f31f0c8a7f8ac0facb325235
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-02-27T17:34:47.000Z
2021-03-24T21:03:30.000Z
docs/exts/docs_build/docs_builder.py
khilawar4/airflow
5f3f65b82517f615f31f0c8a7f8ac0facb325235
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2020-02-03T09:55:26.000Z
2020-02-03T09:55:26.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import re import shlex import shutil from glob import glob from subprocess import run from typing import List from rich.console import Console from docs.exts.docs_build.code_utils import ( AIRFLOW_SITE_DIR, ALL_PROVIDER_YAMLS, CONSOLE_WIDTH, DOCS_DIR, PROCESS_TIMEOUT, ROOT_PROJECT_DIR, pretty_format_path, ) from docs.exts.docs_build.errors import DocBuildError, parse_sphinx_warnings # pylint: disable=no-name-in-module from docs.exts.docs_build.spelling_checks import SpellingError, parse_spelling_warnings # pylint: enable=no-name-in-module console = Console(force_terminal=True, color_system="standard", width=CONSOLE_WIDTH) class AirflowDocsBuilder: """Documentation builder for Airflow.""" def __init__(self, package_name: str, for_production: bool): self.package_name = package_name self.for_production = for_production @property def _doctree_dir(self) -> str: return f"{DOCS_DIR}/_doctrees/docs/{self.package_name}" @property def _inventory_cache_dir(self) -> str: return f"{DOCS_DIR}/_inventory_cache" @property def is_versioned(self): """Is current documentation package versioned?""" # Disable versioning. This documentation does not apply to any released product and we can update # it as needed, i.e. with each new package of providers. return self.package_name not in ('apache-airflow-providers', 'docker-stack') @property def _build_dir(self) -> str: if self.is_versioned: version = "stable" if self.for_production else "latest" return f"{DOCS_DIR}/_build/docs/{self.package_name}/{version}" else: return f"{DOCS_DIR}/_build/docs/{self.package_name}" @property def log_spelling_filename(self) -> str: """Log from spelling job.""" return os.path.join(self._build_dir, f"output-spelling-{self.package_name}.log") @property def log_spelling_output_dir(self) -> str: """Results from spelling job.""" return os.path.join(self._build_dir, f"output-spelling-results-{self.package_name}") @property def log_build_filename(self) -> str: """Log from build job.""" return os.path.join(self._build_dir, f"output-build-{self.package_name}.log") @property def log_build_warning_filename(self) -> str: """Warnings from build job.""" return os.path.join(self._build_dir, f"warning-build-{self.package_name}.log") @property def _current_version(self): if not self.is_versioned: raise Exception("This documentation package is not versioned") if self.package_name == 'apache-airflow': from airflow.version import version as airflow_version return airflow_version if self.package_name.startswith('apache-airflow-providers-'): provider = next(p for p in ALL_PROVIDER_YAMLS if p['package-name'] == self.package_name) return provider['versions'][0] return Exception(f"Unsupported package: {self.package_name}") @property def _publish_dir(self) -> str: if self.is_versioned: return f"docs-archive/{self.package_name}/{self._current_version}" else: return f"docs-archive/{self.package_name}" @property def _src_dir(self) -> str: return f"{DOCS_DIR}/{self.package_name}" def clean_files(self) -> None: """Cleanup all artifacts generated by previous builds.""" api_dir = os.path.join(self._src_dir, "_api") shutil.rmtree(api_dir, ignore_errors=True) shutil.rmtree(self._build_dir, ignore_errors=True) os.makedirs(api_dir, exist_ok=True) os.makedirs(self._build_dir, exist_ok=True) def check_spelling(self, verbose: bool) -> List[SpellingError]: """ Checks spelling :param verbose: whether to show output while running :return: list of errors """ spelling_errors = [] os.makedirs(self._build_dir, exist_ok=True) shutil.rmtree(self.log_spelling_output_dir, ignore_errors=True) os.makedirs(self.log_spelling_output_dir, exist_ok=True) build_cmd = [ os.path.join(ROOT_PROJECT_DIR, "docs", "exts", "docs_build", "run_patched_sphinx.py"), "-W", # turn warnings into errors "--color", # do emit colored output "-T", # show full traceback on exception "-b", # builder to use "spelling", "-c", DOCS_DIR, "-d", # path for the cached environment and doctree files self._doctree_dir, self._src_dir, # path to documentation source files self.log_spelling_output_dir, ] env = os.environ.copy() env['AIRFLOW_PACKAGE_NAME'] = self.package_name if self.for_production: env['AIRFLOW_FOR_PRODUCTION'] = 'true' if verbose: console.print( f"[blue]{self.package_name:60}:[/] Executing cmd: ", " ".join([shlex.quote(c) for c in build_cmd]), ) console.print(f"[blue]{self.package_name:60}:[/] The output is hidden until an error occurs.") with open(self.log_spelling_filename, "wt") as output: completed_proc = run( # pylint: disable=subprocess-run-check build_cmd, cwd=self._src_dir, env=env, stdout=output if not verbose else None, stderr=output if not verbose else None, timeout=PROCESS_TIMEOUT, ) if completed_proc.returncode != 0: spelling_errors.append( SpellingError( file_path=None, line_no=None, spelling=None, suggestion=None, context_line=None, message=( f"Sphinx spellcheck returned non-zero exit status: {completed_proc.returncode}." ), ) ) warning_text = "" for filepath in glob(f"{self.log_spelling_output_dir}/**/*.spelling", recursive=True): with open(filepath) as spelling_file: warning_text += spelling_file.read() spelling_errors.extend(parse_spelling_warnings(warning_text, self._src_dir)) console.print(f"[blue]{self.package_name:60}:[/] [red]Finished spell-checking with errors[/]") else: if spelling_errors: console.print( f"[blue]{self.package_name:60}:[/] [yellow]Finished spell-checking with warnings[/]" ) else: console.print( f"[blue]{self.package_name:60}:[/] [green]Finished spell-checking successfully[/]" ) return spelling_errors def build_sphinx_docs(self, verbose: bool) -> List[DocBuildError]: """ Build Sphinx documentation. :param verbose: whether to show output while running :return: list of errors """ build_errors = [] os.makedirs(self._build_dir, exist_ok=True) build_cmd = [ os.path.join(ROOT_PROJECT_DIR, "docs", "exts", "docs_build", "run_patched_sphinx.py"), "-T", # show full traceback on exception "--color", # do emit colored output "-b", # builder to use "html", "-d", # path for the cached environment and doctree files self._doctree_dir, "-c", DOCS_DIR, "-w", # write warnings (and errors) to given file self.log_build_warning_filename, self._src_dir, self._build_dir, # path to output directory ] env = os.environ.copy() env['AIRFLOW_PACKAGE_NAME'] = self.package_name if self.for_production: env['AIRFLOW_FOR_PRODUCTION'] = 'true' if verbose: console.print( f"[blue]{self.package_name:60}:[/] Executing cmd: ", " ".join([shlex.quote(c) for c in build_cmd]), ) else: console.print( f"[blue]{self.package_name:60}:[/] Running sphinx. " f"The output is hidden until an error occurs." ) with open(self.log_build_filename, "wt") as output: completed_proc = run( # pylint: disable=subprocess-run-check build_cmd, cwd=self._src_dir, env=env, stdout=output if not verbose else None, stderr=output if not verbose else None, timeout=PROCESS_TIMEOUT, ) if completed_proc.returncode != 0: build_errors.append( DocBuildError( file_path=None, line_no=None, message=f"Sphinx returned non-zero exit status: {completed_proc.returncode}.", ) ) if os.path.isfile(self.log_build_warning_filename): with open(self.log_build_warning_filename) as warning_file: warning_text = warning_file.read() # Remove 7-bit C1 ANSI escape sequences warning_text = re.sub(r"\x1B[@-_][0-?]*[ -/]*[@-~]", "", warning_text) build_errors.extend(parse_sphinx_warnings(warning_text, self._src_dir)) if build_errors: console.print(f"[blue]{self.package_name:60}:[/] [red]Finished docs building with errors[/]") else: console.print(f"[blue]{self.package_name:60}:[/] [green]Finished docs building successfully[/]") return build_errors def publish(self, override_versioned: bool): """Copy documentation packages files to airflow-site repository.""" console.print(f"Publishing docs for {self.package_name}") output_dir = os.path.join(AIRFLOW_SITE_DIR, self._publish_dir) pretty_source = pretty_format_path(self._build_dir, os.getcwd()) pretty_target = pretty_format_path(output_dir, AIRFLOW_SITE_DIR) console.print(f"Copy directory: {pretty_source} => {pretty_target}") if os.path.exists(output_dir): if self.is_versioned: if override_versioned: console.print(f"Overriding previously existing {output_dir}! ") else: console.print( f"Skipping previously existing {output_dir}! " f"Delete it manually if you want to regenerate it!" ) console.print() return shutil.rmtree(output_dir) shutil.copytree(self._build_dir, output_dir) if self.is_versioned: with open(os.path.join(output_dir, "..", "stable.txt"), "w") as stable_file: stable_file.write(self._current_version) console.print() def get_available_providers_packages(): """Get list of all available providers packages to build.""" return [provider['package-name'] for provider in ALL_PROVIDER_YAMLS] def get_available_packages(): """Get list of all available packages to build.""" provider_package_names = get_available_providers_packages() return [ "apache-airflow", *provider_package_names, "apache-airflow-providers", "helm-chart", "docker-stack", ]
39.35873
108
0.610744
22049692047a19482d78243d99741b73fdd0aadb
41
py
Python
u-net_convolutional_networks_for_biomedical_image_segmentation/models/__init__.py
younnggsuk/CV-Paper-Implementation
fecd67d3f216872976f9b38445ce1c1f9ef1ac02
[ "MIT" ]
4
2021-06-03T13:56:51.000Z
2021-11-05T06:22:25.000Z
u-net_convolutional_networks_for_biomedical_image_segmentation/models/__init__.py
younnggsuk/CV-Paper-Implementation
fecd67d3f216872976f9b38445ce1c1f9ef1ac02
[ "MIT" ]
null
null
null
u-net_convolutional_networks_for_biomedical_image_segmentation/models/__init__.py
younnggsuk/CV-Paper-Implementation
fecd67d3f216872976f9b38445ce1c1f9ef1ac02
[ "MIT" ]
1
2022-03-28T09:34:03.000Z
2022-03-28T09:34:03.000Z
from .unet import * from .metric import *
20.5
21
0.731707
bbe8726b010c3b5e7361e3868ec2e799f31a25c3
3,286
py
Python
setup.py
lopessec/killerbee
c236d626e297815bdc401695cd6c8a6c9e353c38
[ "BSD-3-Clause" ]
653
2015-04-01T18:29:08.000Z
2022-03-18T09:05:22.000Z
setup.py
lopessec/killerbee
c236d626e297815bdc401695cd6c8a6c9e353c38
[ "BSD-3-Clause" ]
189
2015-04-23T03:37:34.000Z
2022-03-15T07:23:17.000Z
setup.py
lopessec/killerbee
c236d626e297815bdc401695cd6c8a6c9e353c38
[ "BSD-3-Clause" ]
223
2015-04-07T10:12:18.000Z
2022-03-25T17:39:26.000Z
# NOTE: See the README file for a list of dependencies to install. from __future__ import print_function import sys try: from setuptools import setup, Extension except ImportError: print("No setuptools found, attempting to use distutils instead.") from distutils.core import setup, Extension err = [] warn = [] apt_get_pkgs = [] pip_pkgs = [] # Ensure we have either pyUSB 0.x or pyUSB 1.x, but we now # prefer pyUSB 1.x moving forward. Support for 0.x may be deprecated. try: import usb except ImportError: err.append("usb") apt_get_pkgs.append("python-usb") try: import usb.core #print("Warning: You are using pyUSB 1.x, support is in beta.") except ImportError: warn.append("You are using pyUSB 0.x. Consider upgrading to pyUSB 1.x.") # TODO: Ideally we would detect missing python-dev and libgcrypt-dev to give better errors. # Dot15d4 is a dep of some of the newer tools try: from scapy.all import Dot15d4 except ImportError: warn.append("Scapy (with dot15d4 layer)") pip_pkgs.append("scapy") if len(err) > 0: print(""" Library requirements not met. Install the following libraries, then re-run the setup script. {}\n""".format('\n'.join(err)), file=sys.stderr) if len(warn) > 0: print(""" Library recommendations not met. For full support, install the following libraries, then re-run the setup script. {}\n""".format('\n'.join(warn)), file=sys.stderr) if len(apt_get_pkgs) > 0 or len(pip_pkgs) > 0: print("The following commands should install these dependencies on Ubuntu, and can be adapted for other OSs:", file=sys.stderr) if len(apt_get_pkgs) > 0: print("\tsudo apt-get install -y {}".format(' '.join(apt_get_pkgs)), file=sys.stderr) if len(pip_pkgs) > 0: print("\tpip3 install {}".format(' '.join(pip_pkgs)), file=sys.stderr) if len(err) > 0: sys.exit(1) zigbee_crypt = Extension('zigbee_crypt', sources = ['zigbee_crypt/zigbee_crypt.c'], libraries = ['gcrypt'], include_dirs = ['/usr/local/include', '/usr/include', '/sw/include/', 'zigbee_crypt'], library_dirs = ['/usr/local/lib', '/usr/lib','/sw/var/lib/'] ) setup(name = 'killerbee', version = '3.0.0-beta.2', description = 'ZigBee and IEEE 802.15.4 Attack Framework and Tools', author = 'Joshua Wright, Ryan Speers', author_email = 'jwright@willhackforsushi.com, ryan@riverloopsecurity.com', license = 'LICENSE.txt', packages = ['killerbee'], scripts = ['tools/zbdump', 'tools/zbgoodfind', 'tools/zbid', 'tools/zbreplay', 'tools/zbconvert', 'tools/zbdsniff', 'tools/zbstumbler', 'tools/zbassocflood', 'tools/zbscapy', 'tools/zbwireshark', 'tools/zbkey', 'tools/zbwardrive', 'tools/zbopenear', 'tools/zbfakebeacon', 'tools/zborphannotify', 'tools/zbpanidconflictflood', 'tools/zbrealign', 'tools/zbcat', 'tools/zbjammer', 'tools/kbbootloader'], install_requires=['pyserial>=2.0', 'pyusb', 'pycrypto', 'rangeparser', 'scapy'], # NOTE: pygtk doesn't install via distutils on non-Windows hosts ext_modules = [zigbee_crypt], )
38.209302
131
0.644248
e9bd0ec8d57c5b694badb5df4843632c4ef67425
2,703
py
Python
Finish/lms.py
soumallyadev07/Auto-Attendee
845c636b76884f71457de1560494ffaeaa7630fd
[ "MIT" ]
5
2020-12-18T15:42:57.000Z
2021-08-06T08:47:17.000Z
Finish/lms.py
shourygupta28/Auto-Attendee
cf01ad7ae62f53c15363c04a053c3cdd77640c87
[ "MIT" ]
null
null
null
Finish/lms.py
shourygupta28/Auto-Attendee
cf01ad7ae62f53c15363c04a053c3cdd77640c87
[ "MIT" ]
39
2020-11-19T06:56:41.000Z
2021-08-06T08:47:20.000Z
from selenium import webdriver from getpass import getpass import time from datetime import datetime import calendar import random import csv my_date = datetime.today() #https://chromedriver.chromium.org/downloads username = input("Enter in your username: ") password = getpass("Enter your password: ") lms = webdriver.Chrome(executable_path="ChromeDriver/chromedriver.exe") lms.get("https://ada-lms.thapar.edu/moodle/login/index.php") username_textbox = lms.find_element_by_id("username") username_textbox.send_keys(username) password_textbox = lms.find_element_by_id("password") password_textbox.send_keys(password) login_button = lms.find_element_by_id("loginbtn") login_button.submit() with open('Schedule.csv', newline='') as f: reader = csv.reader(f) lst = list(reader) lst.remove(lst[0]) for i in range(len(lst)): lst[i].remove(lst[i][0]) for j in range(len(lst)): if lst[j-1][0] == '': lst.remove(lst[j-1]) #print(lst) isStarted = False for i in lst: while True: if isStarted == False: if datetime.now().hour == int(i[0].split(':')[0]) and datetime.now().minute == int(i[0].split(':')[1]) and calendar.day_name[my_date.weekday()] == i[2]: lms.get(i[3]) time.sleep(10) isStarted = True elif datetime.now().hour == int(i[1].split(':')[0]): #print('1') if datetime.now().minute > int(i[1].split(':')[1]) and calendar.day_name[my_date.weekday()] == i[2]: #print('2') isStarted = False break elif datetime.now().hour > int(i[1].split(':')[0]): if calendar.day_name[my_date.weekday()] == i[2]: #print('3') isStarted = False break elif calendar.day_name[my_date.weekday()] != i[2]: isStarted = False break else: num = random.randint(1, 3) if num == 1: lms.get('https://ada-lms.thapar.edu/moodle/my/') time.sleep(2) elif num == 2: lms.get('https://ada-lms.thapar.edu/moodle/calendar/view.php?view=month') time.sleep(2) else: lms.get('https://ada-lms.thapar.edu/moodle/') time.sleep(2) elif isStarted == True: if datetime.now().hour == int(i[1].split(':')[0]) and datetime.now().minute == int(i[1].split(':')[1]) and calendar.day_name[my_date.weekday()] == i[2]: time.sleep(1) isStarted = False break
36.04
164
0.550869
b947f003fe5d12293d3261e7f48e02003603d9c1
2,655
py
Python
app.py
nevermorethesjake/weather
18e1967fd50a87cde67a6c50c64e033deda2a7e2
[ "Apache-2.0" ]
null
null
null
app.py
nevermorethesjake/weather
18e1967fd50a87cde67a6c50c64e033deda2a7e2
[ "Apache-2.0" ]
null
null
null
app.py
nevermorethesjake/weather
18e1967fd50a87cde67a6c50c64e033deda2a7e2
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from __future__ import print_function from future import standard_library standard_library.install_aliases() import urllib.request, urllib.parse, urllib.error import json import os from flask import Flask from flask import request from flask import make_response # Flask app should start in global layoutsfsf app = Flask(__name__) @app.route('/webhook', methods=['POST']) def webhook(): req = request.get_json(silent=True, force=True) print("Request:") print(json.dumps(req, indent=4)) res = processRequest(req) res = json.dumps(res, indent=4) # print(res) r = make_response(res) r.headers['Content-Type'] = 'application/json' return r def processRequest(req): if req.get("result").get("action") != "yahooWeatherForecast": return {} baseurl = "https://query.yahooapis.com/v1/public/yql?" yql_query = makeYqlQuery(req) if yql_query is None: return {} yql_url = baseurl + urllib.parse.urlencode({'q': yql_query}) + "&format=json" result = urllib.request.urlopen(yql_url).read() data = json.loads(result) res = makeWebhookResult(data) return res def makeYqlQuery(req): result = req.get("result") parameters = result.get("parameters") city = parameters.get("geo-city") if city is None: return None return "select * from weather.forecast where woeid in (select woeid from geo.places(1) where text='" + city + "') and u='c'" def makeWebhookResult(data): query = data.get('query') if query is None: return {} result = query.get('results') if result is None: return {} channel = result.get('channel') if channel is None: return {} item = channel.get('item') image = channel.get('image') location = channel.get('location') units = channel.get('units') if (location is None) or (item is None) or (image is None) or (units is None): return {} condition = item.get('condition') if condition is None: return {} # print(json.dumps(item, indent=4)) speech = "Vandaag in " + location.get('city') + ": " + condition.get('text') + \ " en het is " + condition.get('temp') + " " + units.get('temperature') + "elcius" print("Response:") print(speech) return { "speech": speech, "displayText": speech, # "data": data, # "contextOut": [], "source": "apiai-weather-webhook-sample" } if __name__ == '__main__': port = int(os.getenv('PORT', 5000)) print("Starting app on port %d" % port) app.run(debug=False, port=port, host='0.0.0.0')
25.285714
128
0.629379
ab58cb69bcfce6c695319b2fffe8755e28d2b909
13,366
py
Python
ambari-server/src/main/resources/common-services/SPARK/2.2.0/scripts/params.py
dawnwish/ambari
accbb0048435de2d08e3d1b8771d966a94b98707
[ "Apache-2.0" ]
16
2018-05-24T10:28:24.000Z
2021-08-05T03:13:26.000Z
ambari-server/src/main/resources/common-services/SPARK/2.2.0/scripts/params.py
chinaworld/ambari-zh
f3b9afcbf0ed708fa5b5995a3acfb9f4131dc019
[ "Apache-2.0" ]
null
null
null
ambari-server/src/main/resources/common-services/SPARK/2.2.0/scripts/params.py
chinaworld/ambari-zh
f3b9afcbf0ed708fa5b5995a3acfb9f4131dc019
[ "Apache-2.0" ]
17
2018-07-06T08:57:00.000Z
2021-11-04T11:00:36.000Z
#!/usr/bin/python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import socket import status_params from resource_management.libraries.functions.stack_features import check_stack_feature from resource_management.libraries.functions.constants import StackFeature from resource_management.libraries.functions import conf_select, stack_select from resource_management.libraries.functions.version import format_stack_version from resource_management.libraries.functions.copy_tarball import get_sysprep_skip_copy_tarballs_hdfs from resource_management.libraries.functions.format import format from resource_management.libraries.functions.default import default from resource_management.libraries.functions import get_kinit_path from resource_management.libraries.functions.get_not_managed_resources import get_not_managed_resources from resource_management.libraries.resources.hdfs_resource import HdfsResource from resource_management.libraries.script.script import Script # a map of the Ambari role to the component name # for use with <stack-root>/current/<component> SERVER_ROLE_DIRECTORY_MAP = { 'SPARK_JOBHISTORYSERVER' : 'spark-historyserver', 'SPARK_CLIENT' : 'spark-client', 'SPARK_THRIFTSERVER' : 'spark-thriftserver', 'LIVY_SERVER' : 'livy-server', 'LIVY_CLIENT' : 'livy-client' } component_directory = Script.get_component_from_role(SERVER_ROLE_DIRECTORY_MAP, "SPARK_CLIENT") config = Script.get_config() tmp_dir = Script.get_tmp_dir() stack_name = status_params.stack_name stack_root = Script.get_stack_root() stack_version_unformatted = config['hostLevelParams']['stack_version'] stack_version_formatted = format_stack_version(stack_version_unformatted) sysprep_skip_copy_tarballs_hdfs = get_sysprep_skip_copy_tarballs_hdfs() # New Cluster Stack Version that is defined during the RESTART of a Stack Upgrade version = default("/commandParams/version", None) spark_conf = '/etc/spark/conf' hadoop_conf_dir = conf_select.get_hadoop_conf_dir() hadoop_bin_dir = stack_select.get_hadoop_dir("bin") if stack_version_formatted and check_stack_feature(StackFeature.ROLLING_UPGRADE, stack_version_formatted): hadoop_home = stack_select.get_hadoop_dir("home") spark_conf = format("{stack_root}/current/{component_directory}/conf") spark_log_dir = config['configurations']['spark-env']['spark_log_dir'] spark_pid_dir = status_params.spark_pid_dir spark_home = format("{stack_root}/current/{component_directory}") spark_daemon_memory = config['configurations']['spark-env']['spark_daemon_memory'] spark_thrift_server_conf_file = spark_conf + "/spark-thrift-sparkconf.conf" java_home = config['hostLevelParams']['java_home'] hdfs_user = config['configurations']['hadoop-env']['hdfs_user'] hdfs_principal_name = config['configurations']['hadoop-env']['hdfs_principal_name'] hdfs_user_keytab = config['configurations']['hadoop-env']['hdfs_user_keytab'] user_group = config['configurations']['cluster-env']['user_group'] spark_user = status_params.spark_user hive_user = status_params.hive_user spark_group = status_params.spark_group user_group = status_params.user_group spark_hdfs_user_dir = format("/user/{spark_user}") spark_history_dir = default('/configurations/spark-defaults/spark.history.fs.logDirectory', "hdfs:///spark-history") spark_history_server_pid_file = status_params.spark_history_server_pid_file spark_thrift_server_pid_file = status_params.spark_thrift_server_pid_file spark_history_server_start = format("{spark_home}/sbin/start-history-server.sh") spark_history_server_stop = format("{spark_home}/sbin/stop-history-server.sh") spark_thrift_server_start = format("{spark_home}/sbin/start-thriftserver.sh") spark_thrift_server_stop = format("{spark_home}/sbin/stop-thriftserver.sh") spark_hadoop_lib_native = format("{stack_root}/current/hadoop-client/lib/native:{stack_root}/current/hadoop-client/lib/native/Linux-amd64-64") run_example_cmd = format("{spark_home}/bin/run-example") spark_smoke_example = "SparkPi" spark_service_check_cmd = format( "{run_example_cmd} --master yarn --deploy-mode cluster --num-executors 1 --driver-memory 256m --executor-memory 256m --executor-cores 1 {spark_smoke_example} 1") spark_jobhistoryserver_hosts = default("/clusterHostInfo/spark_jobhistoryserver_hosts", []) if len(spark_jobhistoryserver_hosts) > 0: spark_history_server_host = spark_jobhistoryserver_hosts[0] else: spark_history_server_host = "localhost" # spark-defaults params ui_ssl_enabled = default("configurations/spark-defaults/spark.ssl.enabled", False) spark_yarn_historyServer_address = default(spark_history_server_host, "localhost") spark_history_scheme = "http" spark_history_ui_port = config['configurations']['spark-defaults']['spark.history.ui.port'] if ui_ssl_enabled: spark_history_ui_port = str(int(spark_history_ui_port) + 400) spark_history_scheme = "https" spark_env_sh = config['configurations']['spark-env']['content'] spark_log4j_properties = config['configurations']['spark-log4j-properties']['content'] spark_metrics_properties = config['configurations']['spark-metrics-properties']['content'] hive_server_host = default("/clusterHostInfo/hive_server_host", []) is_hive_installed = not len(hive_server_host) == 0 security_enabled = config['configurations']['cluster-env']['security_enabled'] kinit_path_local = get_kinit_path(default('/configurations/kerberos-env/executable_search_paths', None)) spark_kerberos_keytab = config['configurations']['spark-defaults']['spark.history.kerberos.keytab'] spark_kerberos_principal = config['configurations']['spark-defaults']['spark.history.kerberos.principal'] smoke_user_keytab = config['configurations']['cluster-env']['smokeuser_keytab'] smokeuser_principal = config['configurations']['cluster-env']['smokeuser_principal_name'] spark_thriftserver_hosts = default("/clusterHostInfo/spark_thriftserver_hosts", []) has_spark_thriftserver = not len(spark_thriftserver_hosts) == 0 # hive-site params spark_hive_properties = { 'hive.metastore.uris': config['configurations']['hive-site']['hive.metastore.uris'] } # security settings if security_enabled: spark_principal = spark_kerberos_principal.replace('_HOST',spark_history_server_host.lower()) if is_hive_installed: spark_hive_properties.update({ 'hive.metastore.sasl.enabled': str(config['configurations']['hive-site']['hive.metastore.sasl.enabled']).lower(), 'hive.metastore.kerberos.keytab.file': config['configurations']['hive-site']['hive.metastore.kerberos.keytab.file'], 'hive.server2.authentication.spnego.principal': config['configurations']['hive-site']['hive.server2.authentication.spnego.principal'], 'hive.server2.authentication.spnego.keytab': config['configurations']['hive-site']['hive.server2.authentication.spnego.keytab'], 'hive.metastore.kerberos.principal': config['configurations']['hive-site']['hive.metastore.kerberos.principal'], 'hive.server2.authentication.kerberos.principal': config['configurations']['hive-site']['hive.server2.authentication.kerberos.principal'], 'hive.server2.authentication.kerberos.keytab': config['configurations']['hive-site']['hive.server2.authentication.kerberos.keytab'], 'hive.server2.authentication': config['configurations']['hive-site']['hive.server2.authentication'], }) hive_kerberos_keytab = config['configurations']['hive-site']['hive.server2.authentication.kerberos.keytab'] hive_kerberos_principal = config['configurations']['hive-site']['hive.server2.authentication.kerberos.principal'].replace('_HOST', socket.getfqdn().lower()) # thrift server support - available on HDP 2.3 or higher spark_thrift_sparkconf = None spark_thrift_cmd_opts_properties = '' spark_thrift_fairscheduler_content = None spark_thrift_master = "yarn-client" if 'nm_hosts' in config['clusterHostInfo'] and len(config['clusterHostInfo']['nm_hosts']) == 1: # use local mode when there's only one nodemanager spark_thrift_master = "local[4]" if has_spark_thriftserver and 'spark-thrift-sparkconf' in config['configurations']: spark_thrift_sparkconf = config['configurations']['spark-thrift-sparkconf'] spark_thrift_cmd_opts_properties = config['configurations']['spark-env']['spark_thrift_cmd_opts'] if is_hive_installed: # update default metastore client properties (async wait for metastore component) it is useful in case of # blueprint provisioning when hive-metastore and spark-thriftserver is not on the same host. spark_hive_properties.update({ 'hive.metastore.client.socket.timeout' : config['configurations']['hive-site']['hive.metastore.client.socket.timeout'] }) spark_hive_properties.update(config['configurations']['spark-hive-site-override']) if 'spark-thrift-fairscheduler' in config['configurations'] and 'fairscheduler_content' in config['configurations']['spark-thrift-fairscheduler']: spark_thrift_fairscheduler_content = config['configurations']['spark-thrift-fairscheduler']['fairscheduler_content'] default_fs = config['configurations']['core-site']['fs.defaultFS'] hdfs_site = config['configurations']['hdfs-site'] hdfs_resource_ignore_file = "/var/lib/ambari-agent/data/.hdfs_resource_ignore" ats_host = set(default("/clusterHostInfo/app_timeline_server_hosts", [])) has_ats = len(ats_host) > 0 dfs_type = default("/commandParams/dfs_type", "") # livy related config # livy for spark is only supported from HDP 2.6 has_livyserver = False if stack_version_formatted and check_stack_feature(StackFeature.SPARK_LIVY, stack_version_formatted): livy_component_directory = Script.get_component_from_role(SERVER_ROLE_DIRECTORY_MAP, "LIVY_SERVER") livy_conf = format("{stack_root}/current/{livy_component_directory}/conf") livy_log_dir = config['configurations']['livy-env']['livy_log_dir'] livy_pid_dir = status_params.livy_pid_dir livy_home = format("{stack_root}/current/{livy_component_directory}") livy_user = status_params.livy_user livy_group = status_params.livy_group user_group = status_params.user_group livy_hdfs_user_dir = format("/user/{livy_user}") livy_server_pid_file = status_params.livy_server_pid_file livy_recovery_dir = default("/configurations/livy-conf/livy.server.recovery.state-store.url", "/livy-recovery") livy_server_start = format("{livy_home}/bin/livy-server start") livy_server_stop = format("{livy_home}/bin/livy-server stop") livy_logs_dir = format("{livy_home}/logs") livy_env_sh = config['configurations']['livy-env']['content'] livy_log4j_properties = config['configurations']['livy-log4j-properties']['content'] livy_spark_blacklist_properties = config['configurations']['livy-spark-blacklist']['content'] if 'livy.server.kerberos.keytab' in config['configurations']['livy-conf']: livy_kerberos_keytab = config['configurations']['livy-conf']['livy.server.kerberos.keytab'] else: livy_kerberos_keytab = config['configurations']['livy-conf']['livy.server.launch.kerberos.keytab'] if 'livy.server.kerberos.principal' in config['configurations']['livy-conf']: livy_kerberos_principal = config['configurations']['livy-conf']['livy.server.kerberos.principal'] else: livy_kerberos_principal = config['configurations']['livy-conf']['livy.server.launch.kerberos.principal'] livy_livyserver_hosts = default("/clusterHostInfo/livy_server_hosts", []) # ats 1.5 properties entity_groupfs_active_dir = config['configurations']['yarn-site']['yarn.timeline-service.entity-group-fs-store.active-dir'] entity_groupfs_active_dir_mode = 01777 entity_groupfs_store_dir = config['configurations']['yarn-site']['yarn.timeline-service.entity-group-fs-store.done-dir'] entity_groupfs_store_dir_mode = 0700 is_webhdfs_enabled = hdfs_site['dfs.webhdfs.enabled'] if len(livy_livyserver_hosts) > 0: has_livyserver = True if security_enabled: livy_principal = livy_kerberos_principal.replace('_HOST', config['hostname'].lower()) livy_livyserver_port = default('configurations/livy-conf/livy.server.port',8999) import functools #create partial functions with common arguments for every HdfsResource call #to create/delete hdfs directory/file/copyfromlocal we need to call params.HdfsResource in code HdfsResource = functools.partial( HdfsResource, user=hdfs_user, hdfs_resource_ignore_file = hdfs_resource_ignore_file, security_enabled = security_enabled, keytab = hdfs_user_keytab, kinit_path_local = kinit_path_local, hadoop_bin_dir = hadoop_bin_dir, hadoop_conf_dir = hadoop_conf_dir, principal_name = hdfs_principal_name, hdfs_site = hdfs_site, default_fs = default_fs, immutable_paths = get_not_managed_resources(), dfs_type = dfs_type )
50.059925
163
0.794703
74ffbeee3d92ce8f6482db2f38c4cc0d2af628c4
12,836
py
Python
core/solver.py
Limacon101/EA_PODI_Library
6dee7210cd05a6112c919928fccadbd8857d7f10
[ "Apache-2.0" ]
null
null
null
core/solver.py
Limacon101/EA_PODI_Library
6dee7210cd05a6112c919928fccadbd8857d7f10
[ "Apache-2.0" ]
null
null
null
core/solver.py
Limacon101/EA_PODI_Library
6dee7210cd05a6112c919928fccadbd8857d7f10
[ "Apache-2.0" ]
null
null
null
import random from core import ops from algorithms import algo_rs, algo_ea, algo_hc from generators import gen_onemax, gen_gp, gen_sphere class Solver(object): def __init__(self, generator, algorithm, alg_params=None): """ Instantiate a Solver before starting an optimisation :param generator: Problem generator :param algorithm: Optimisation algorithm :param alg_params: Algorithm parameters """ if alg_params is None: alg_params = AlgoParams() self.alg_params = alg_params alg_params.validate() self.generator = generator Solver.validate_generator(self.generator) self.algorithm = algorithm Solver.validate_algorithm(self.algorithm) self.stats = Stats(alg_params.generations) @staticmethod def validate_generator(generator): if not hasattr(generator, 'create_solution'): print('Invalid Generator') raise AttributeError('Invalid Generator.\nGenerator must contain a function with signature: ' 'create_solution(t).\n' 'This method generates a random candidate solution to a problem, ' 'where t is a dependency injected used to generate random numbers') if not hasattr(generator, 'fitness'): raise AttributeError('Invalid Generator.\nGenerator must contain a function with signature: ' 'fitness(sol)\n' 'This method calculates the fitness of a candidate solution, ' 'where sol is a candidate solution ') return True @staticmethod def validate_algorithm(algorithm): if not hasattr(algorithm, 'run'): print('Invalid Algorithm') raise AttributeError('Invalid Algorithm.\nAlgorithm must contain a function with signature: ' 'run(solver [, alg_operators]).\n' 'This method runs the optimisation algorithm, where solver is a reference' 'to the Solver object that initiated the optimisation process') return True def solve(self): """ Optimise the problem :return: Trace object containing a solution """ return self.algorithm.run(self, self.alg_params) def create_solution(self, es_params=None): """ Create a new solution :param es_params: Additional parameters :return: Trace object """ t = Trace() sol = self.generator.create_solution(t) t.solution = sol t.new = False t.fitness = self.generator.fitness(t.solution) if es_params is not None: t.es_params = es_params return t def create_solution_with_trace(self, t): """ Create a solution using an existing Trace object :param t: Trace object :return: Trace object """ sol = self.generator.create_solution(t) t.solution = sol t.count = -1 t.fitness = self.generator.fitness(t.solution) return t def create_solution_with_raw_trace(self, trace): """ Create a solution using a list of random numbers :param trace: List of numbers :return: Trace object """ t = Trace() t.new = False t.trace = trace sol = self.generator.create_solution(t) # Trims list if random numbers extend (otherwise some mutations have no effect) if t.count < len(t.trace): t.trace = t.trace[-(len(t.trace) - t.count - 1):] t.solution = sol t.count = -1 t.fitness = self.generator.fitness(t.solution) return t class Stats(object): def __init__(self, num_gens): self.num_gens = num_gens self.best = [] self.gen_best = [] self.gen_average = [] def update_stats(self, best, gen_best=None, gen_av_fitness=None): self.best.append(best.fitness) if gen_best is not None: self.gen_best.append(gen_best.fitness) if gen_av_fitness is not None: self.gen_average.append(gen_av_fitness) def get_stats(self): """ Gets generation bests, current generation bests and current generation averages :return: A tuple with 3 lists of fitnesses """ self.validate_stats() return self.best, self.gen_best, self.gen_average def get_generational_overall_bests(self): """ For each generation, gets the best solution fitness found at this point (This value should always be getting 'better') :return: A list of fitnesses """ self.validate_stats() return self.best def get_generational_bests(self): """ For each generation, gets the best solution found during this generation (This value may get worse for non-elitist evolutionary algorithms) :return: A list of fitnesses """ self.validate_stats() return self.gen_best def get_generational_averages(self): """ For each generation, gets the generational average (This value may get worse for non-elitist evolutionary algorithms) :return: A list of fitnesses """ self.validate_stats() return self.gen_average def validate_stats(self): if len(self.gen_best) > 0: assert len(self.gen_best) == len(self.best) if len(self.gen_average) > 0: assert len(self.gen_average) == len(self.best) class AlgoParams: def __init__(self, select=None, mutate=None, crossover=None, generations=100, pop_size=30, num_children=None, mutation_rate=0.1, mutation_sd=0.1, crossover_rate=1, minimising=True, verbose=-1): """ Arguments passed to an algorithm. An algorithm can choose to use these parameters or set its own (E.g. A SAEA may dynamically set the mutation_rate based on a solution's parameters) Note: Functional arguments set as default None -- due to Python's use of mutable default arguments :param select: Selection operator :param mutate: Mutation operator :param crossover: Crossover operator :param generations: Number of generations (for iterative algorithms) :param pop_size: Population Size (for population-based algorithms) :param mutation_rate: Mutation rate :param crossover_rate: Crossover rate :param minimising: Whether algorithm should be minimising or maximising fitness :param verbose: -1: No printout 0: Detailed (runthrough) 1-N: Print generation stats every n gens """ if select is None: select = ops.select_tournament if mutate is None: mutate = ops.mutate_trace_gauss if crossover is None: crossover = ops.crossover_one_point self.select = select self.mutate = mutate self.crossover = crossover self.generations = generations self.pop_size = pop_size self.num_children = self.pop_size if num_children is None else num_children self.mutation_rate = mutation_rate self.mutation_sd = mutation_sd self.crossover_rate = crossover_rate self.minimising = minimising self.verbose = verbose def __str__(self): s = '' s += 'selection op: ' + str(self.select.__name__) + '\n' s += 'mutation op: ' + str(self.mutate.__name__) + '\n' s += 'crossover op: ' + str(self.crossover.__name__) + '\n' s += 'generations: ' + str(self.generations) + '\n' s += 'pop_size: ' + str(self.pop_size) + '\n' s += 'num_children: ' + str(self.num_children) + '\n' s += 'mutation_rate: ' + str(self.mutation_rate) + '\n' s += 'mutation_sd: ' + str(self.mutation_sd) + '\n' s += 'crossover_rate: ' + str(self.crossover_rate) + '\n' s += 'minimising: ' + str(self.minimising) + '\n' return s def validate(self): # Roulette selection cannot be used when minimising if self.select is ops.select_roulette: assert self.minimising is False assert self.generations > 0 assert self.pop_size > 0 assert 0 <= self.mutation_rate <= 1 assert 0 <= self.mutation_sd assert self.verbose >= -1 assert self.num_children <= self.pop_size # For Select_best_n method class Trace(object): """ @:param es_params Additional parameters (e.g. parameters for self-adaptation) @:param new: True if Trace created for the first time @:param trace: List holding trace values @:param solution Solution calculated from the trace @:param fitness Fitness associated with the solution @:param count During recall for a generator -- the position reached in the trace (reset externally) """ def __init__(self): self.sa_params = [] self.es_params = [] self.new = True self.trace = [] self.solution = 0 self.fitness = 0 self.count = -1 def __str__(self): return 'S: ' + str(self.solution) + ' f: ' + str(self.fitness) def random(self): """ Returns a random number float between 0 and 1 and adds it to the trace :return: Random real number 0..1 """ return self.add_to_trace(random.random()) def randrange(self, start, stop): """ Returns a random integer from range start to stop :param start: Range start :param stop: Range stop :return: Random integer """ if start >= stop: raise ValueError("stop must be larger than start") if not isinstance(start, int) or not isinstance(stop, int): raise TypeError("Inputs must be integers") r = self.random() return int(r * (stop - start) + start) def randint(self, start, stop): """ Returns a random integer R from range start to stop such that start <= R <= stop :param start: Range start :param stop: Range stop :return: Random integer """ return self.randrange(start, stop + 1) def add_to_trace(self, r): """ If the Trace is new, add random number to trace (solution creation). Otherwise get the next number from the existing trace (solution reconstruction). :param r: Random real number 0..1 :return: 'Random number from trace """ if self.new: self.trace.append(r) return r else: return self.from_seed(r) def from_seed(self, r): """ Get the next number from the trace. If the trace it too short add the random number supplied to the trace :param r: Random real number 0..1 :return: 'Random' number from trace """ self.count += 1 if self.count < len(self.trace): # print('r', self.trace[self.count]) return self.trace[self.count] elif self.count == len(self.trace): # r = random.random() self.trace.append(r) return r else: raise ValueError('Count exceeded trace length') def print_trace(self): f_list = ['%.2f' % elem for elem in self.trace] print(f_list) if __name__ == '__main__': gens = [gen_onemax, gen_sphere, gen_gp] algs = [algo_hc, algo_rs, algo_ea] for gen in gens: for alg in algs: print('\n\n', alg.__name__, ' --- ', gen.__name__) my_ops = AlgoParams(select=ops.select_tournament, crossover=ops.crossover_one_point, mutate=ops.mutate_trace, minimising=True) s = Solver(gen, alg, my_ops).solve() print(s) # gen = gen_onemax # alg = algo_hc # s = Solver(gen, alg).solve() # print(s) # t = Trace(Representation.REAL) # print(t.randint(0, 3)) # trace = t.trace # print(trace) # print("Calculating from core...") # gen = gen_sphere # alg = algo_hc # s = Solver(gen, alg) # print(s.representation) # print(s)
34.880435
120
0.579854
886e834294a2cab7e844bb55ba9ebdbd50df5937
14,690
py
Python
courses/machine_learning/deepdive/09_sequence/txtclsmodel/trainer/model_native.py
studiocardo/GCP-Tutorials
ea81f0c1cb59f75b01e4912e40e338c2bd153b75
[ "Apache-2.0" ]
1
2018-11-21T04:52:12.000Z
2018-11-21T04:52:12.000Z
courses/machine_learning/deepdive/09_sequence/txtclsmodel/trainer/model_native.py
studiocardo/GCP-Tutorials
ea81f0c1cb59f75b01e4912e40e338c2bd153b75
[ "Apache-2.0" ]
null
null
null
courses/machine_learning/deepdive/09_sequence/txtclsmodel/trainer/model_native.py
studiocardo/GCP-Tutorials
ea81f0c1cb59f75b01e4912e40e338c2bd153b75
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import pandas as pd import numpy as np import re import os from tensorflow.python.keras.preprocessing import text from tensorflow.python.keras import models from tensorflow.python.keras.layers import Dense from tensorflow.python.keras.layers import Dropout from tensorflow.python.keras.layers import Embedding from tensorflow.python.keras.layers import SeparableConv1D from tensorflow.python.keras.layers import MaxPooling1D from tensorflow.python.keras.layers import GlobalAveragePooling1D from google.cloud import storage tf.logging.set_verbosity(tf.logging.INFO) CLASSES = {'github': 0, 'nytimes': 1, 'techcrunch': 2} # label-to-int mapping TOP_K = 20000 # Limit on the number vocabulary size used for tokenization MAX_SEQUENCE_LENGTH = 50 # Sentences will be truncated/padded to this length VOCAB_FILE_PATH = None # where vocabulary is saved, dynamically set in train_and_eval function PADWORD = 'ZYXW' """ Helper function to download data from Google Cloud Storage # Arguments: source: string, the GCS URL to download from (e.g. 'gs://bucket/file.csv') destination: string, the filename to save as on local disk. MUST be filename ONLY, doesn't support folders. (e.g. 'file.csv', NOT 'folder/file.csv') # Returns: nothing, downloads file to local disk """ def download_from_gcs(source, destination): search = re.search('gs://(.*?)/(.*)', source) bucket_name = search.group(1) blob_name = search.group(2) storage_client = storage.Client() bucket = storage_client.get_bucket(bucket_name) bucket.blob(blob_name).download_to_filename(destination) """ Parses raw tsv containing hacker news headlines and returns (sentence, integer label) pairs # Arguments: train_data_path: string, path to tsv containing training data. can be a local path or a GCS url (gs://...) eval_data_path: string, path to tsv containing eval data. can be a local path or a GCS url (gs://...) # Returns: ((train_sentences, train_labels), (test_sentences, test_labels)): sentences are lists of strings, labels are numpy integer arrays """ def load_hacker_news_data(train_data_path, eval_data_path): if train_data_path.startswith('gs://'): download_from_gcs(train_data_path, destination='train.csv') train_data_path = 'train.csv' if eval_data_path.startswith('gs://'): download_from_gcs(eval_data_path, destination='eval.csv') eval_data_path = 'eval.csv' # Parse CSV using pandas column_names = ('label', 'text') df_train = pd.read_csv(train_data_path, names=column_names, sep='\t') df_eval = pd.read_csv(eval_data_path, names=column_names, sep='\t') return ((list(df_train['text']), np.array(df_train['label'].map(CLASSES))), (list(df_eval['text']), np.array(df_eval['label'].map(CLASSES)))) """ Create tf.estimator compatible input function # Arguments: texts: [strings], list of sentences labels: numpy int vector, integer labels for sentences batch_size: int, number of records to use for each train batch mode: tf.estimator.ModeKeys.TRAIN or tf.estimator.ModeKeys.EVAL # Returns: tf.estimator.inputs.numpy_input_fn, produces feature and label tensors one batch at a time """ def input_fn(texts, labels, batch_size, mode): # Convert texts from python strings to tensors x = tf.constant(texts) # Map text to sequence of word-integers and pad x = vectorize_sentences(x) # Create tf.data.Dataset from tensors dataset = tf.data.Dataset.from_tensor_slices((x, labels)) # Pad to constant length dataset = dataset.map(pad) if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None #loop indefinitley dataset = dataset.shuffle(buffer_size=50000) # our input is already shuffled so this is redundant else: num_epochs = 1 dataset = dataset.repeat(num_epochs).batch(batch_size) return dataset """ Given an int tensor, remove 0s then pad to a fixed length representation. #Arguments: feature: int tensor label: int. not used in function, just passed through #Returns: (int tensor, int) tuple. """ def pad(feature, label): # 1. Remove 0s which represent out of vocabulary words nonzero_indices = tf.where(tf.not_equal(feature, tf.zeros_like(feature))) without_zeros = tf.gather(feature,nonzero_indices) without_zeros = tf.squeeze(without_zeros, axis=1) # 2. Prepend 0s till MAX_SEQUENCE_LENGTH padded = tf.pad(without_zeros, [[MAX_SEQUENCE_LENGTH, 0]]) # pad out with zeros padded = padded[-MAX_SEQUENCE_LENGTH:] # slice to constant length return (padded, label) """ Given sentences, return an integer representation # Arguments: sentences: string tensor of shape (?,), contains sentences to vectorize # Returns: Integer representation of the sentence. Word-integer mapping is determined by VOCAB_FILE_PATH. Words out of vocabulary will map to 0 """ def vectorize_sentences(sentences): # 1. Remove punctuation sentences = tf.regex_replace(sentences, '[[:punct:]]', ' ') # 2. Split string tensor into component words words = tf.string_split(sentences) words = tf.sparse_tensor_to_dense(words, default_value=PADWORD) # 3. Map each word to respective integer table = tf.contrib.lookup.index_table_from_file( vocabulary_file=VOCAB_FILE_PATH, num_oov_buckets=0, vocab_size=None, default_value=0, # for words not in vocabulary (OOV) key_column_index=0, value_column_index=1, delimiter=',') numbers = table.lookup(words) return numbers """ Builds a separable CNN model using keras and converts to tf.estimator.Estimator # Arguments model_dir: string, file path where training files will be written config: tf.estimator.RunConfig, specifies properties of tf Estimator blocks: int, number of pairs of sepCNN and pooling blocks in the model. filters: int, output dimension of the layers. kernel_size: int, length of the convolution window. embedding_dim: int, dimension of the embedding vectors. dropout_rate: float, percentage of input to drop at Dropout layers. pool_size: int, factor by which to downscale input at MaxPooling layer. embedding_path: string , file location of pre-trained embedding (if used) defaults to None which will cause the model to train embedding from scratch word_index: dictionary, mapping of vocabulary to integers. used only if pre-trained embedding is provided # Returns A tf.estimator.Estimator that implements a sepCNN model """ def keras_estimator(model_dir, config, learning_rate, blocks=2, filters=64, dropout_rate=0.2, embedding_dim=200, kernel_size=3, pool_size=3, embedding_path=None, word_index=None): # Create model instance. model = models.Sequential() num_features = min(len(word_index) + 1, TOP_K) # Add embedding layer. If pre-trained embedding is used add weights to the # embeddings layer and set trainable to input is_embedding_trainable flag. if embedding_path != None: embedding_matrix = get_embedding_matrix(word_index, embedding_path, embedding_dim) is_embedding_trainable = True # set to False to freeze embedding weights model.add(Embedding(input_dim=num_features, output_dim=embedding_dim, input_length=MAX_SEQUENCE_LENGTH, weights=[embedding_matrix], trainable=is_embedding_trainable)) else: model.add(Embedding(input_dim=num_features, output_dim=embedding_dim, input_length=MAX_SEQUENCE_LENGTH)) for _ in range(blocks - 1): model.add(Dropout(rate=dropout_rate)) model.add(SeparableConv1D(filters=filters, kernel_size=kernel_size, activation='relu', bias_initializer='random_uniform', depthwise_initializer='random_uniform', padding='same')) model.add(SeparableConv1D(filters=filters, kernel_size=kernel_size, activation='relu', bias_initializer='random_uniform', depthwise_initializer='random_uniform', padding='same')) model.add(MaxPooling1D(pool_size=pool_size)) model.add(SeparableConv1D(filters=filters * 2, kernel_size=kernel_size, activation='relu', bias_initializer='random_uniform', depthwise_initializer='random_uniform', padding='same')) model.add(SeparableConv1D(filters=filters * 2, kernel_size=kernel_size, activation='relu', bias_initializer='random_uniform', depthwise_initializer='random_uniform', padding='same')) model.add(GlobalAveragePooling1D()) model.add(Dropout(rate=dropout_rate)) model.add(Dense(len(CLASSES), activation='softmax')) # Compile model with learning parameters. optimizer = tf.keras.optimizers.Adam(lr=learning_rate) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['acc']) estimator = tf.keras.estimator.model_to_estimator(keras_model=model, model_dir=model_dir, config=config) return estimator """ Defines the features to be passed to the model during inference Can pass in string text directly. Tokenization done in serving_input_fn # Arguments: none # Returns: tf.estimator.export.ServingInputReceiver """ def serving_input_fn(): feature_placeholder = tf.placeholder(tf.string, [None]) features = vectorize_sentences(feature_placeholder) return tf.estimator.export.TensorServingInputReceiver(features, feature_placeholder) """ Takes embedding for generic vocabulary and extracts the embeddings matching the current vocabulary The pre-trained embedding file is obtained from https://nlp.stanford.edu/projects/glove/ # Arguments: word_index: dict, {key =word in vocabulary: value= integer mapped to that word} embedding_path: string, location of the pre-trained embedding file on disk embedding_dim: int, dimension of the embedding space # Returns: numpy matrix of shape (vocabulary, embedding_dim) that contains the embedded representation of each word in the vocabulary. """ def get_embedding_matrix(word_index, embedding_path, embedding_dim): # Read the pre-trained embedding file and get word to word vector mappings. embedding_matrix_all = {} # Download if embedding file is in GCS if embedding_path.startswith('gs://'): download_from_gcs(embedding_path, destination='embedding.csv') embedding_path = 'embedding.csv' with open(embedding_path) as f: for line in f: # Every line contains word followed by the vector value values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embedding_matrix_all[word] = coefs # Prepare embedding matrix with just the words in our word_index dictionary num_words = min(len(word_index) + 1, TOP_K) embedding_matrix = np.zeros((num_words, embedding_dim)) for word, i in word_index.items(): if i >= TOP_K: continue embedding_vector = embedding_matrix_all.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector return embedding_matrix """ Main orchestrator. Responsible for calling all other functions in model.py # Arguments: output_dir: string, file path where training files will be written hparams: dict, command line parameters passed from task.py # Returns: nothing, kicks off training and evaluation """ def train_and_evaluate(output_dir, hparams): # Load Data ((train_texts, train_labels), (test_texts, test_labels)) = load_hacker_news_data( hparams['train_data_path'], hparams['eval_data_path']) # Create vocabulary from training corpus. tokenizer = text.Tokenizer(num_words=TOP_K) tokenizer.fit_on_texts(train_texts) # Save vocabulary to file to use during serving time tf.gfile.MkDir(output_dir) # directory must exist before we can use tf.gfile.open global VOCAB_FILE_PATH; VOCAB_FILE_PATH = os.path.join(output_dir,'vocab.txt') with tf.gfile.Open(VOCAB_FILE_PATH, 'wb') as f: f.write("{},0\n".format(PADWORD)) # map padword to 0 for word, index in tokenizer.word_index.items(): if index < TOP_K: # only save mappings for TOP_K words f.write("{},{}\n".format(word, index)) # Create estimator run_config = tf.estimator.RunConfig(save_checkpoints_steps=1000) estimator = keras_estimator( model_dir=output_dir, config=run_config, learning_rate=hparams['learning_rate'], embedding_path=hparams['embedding_path'], word_index=tokenizer.word_index ) # Create TrainSpec train_steps = hparams['num_epochs'] * len(train_texts) / hparams['batch_size'] train_spec = tf.estimator.TrainSpec( input_fn=lambda:input_fn( train_texts, train_labels, hparams['batch_size'], mode=tf.estimator.ModeKeys.TRAIN), max_steps=train_steps ) # Create EvalSpec exporter = tf.estimator.LatestExporter('exporter', serving_input_fn) eval_spec = tf.estimator.EvalSpec( input_fn=lambda:input_fn( test_texts, test_labels, hparams['batch_size'], mode=tf.estimator.ModeKeys.EVAL), steps=None, exporters=exporter, start_delay_secs=10, throttle_secs=10 ) # Start training tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
40.58011
108
0.671205
777b4bc7538c5f0f4cf9978cc2b6a8f4659adefa
2,186
py
Python
intake/gui/__init__.py
j-r77/intake
5c920e99b8301cc2567a7be2ee070879768ed516
[ "BSD-2-Clause" ]
null
null
null
intake/gui/__init__.py
j-r77/intake
5c920e99b8301cc2567a7be2ee070879768ed516
[ "BSD-2-Clause" ]
null
null
null
intake/gui/__init__.py
j-r77/intake
5c920e99b8301cc2567a7be2ee070879768ed516
[ "BSD-2-Clause" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. and Intake contributors # All rights reserved. # # The full license is in the LICENSE file, distributed with this software. #----------------------------------------------------------------------------- from distutils.version import LooseVersion def do_import(): error = too_old = False try: import panel as pn too_old = LooseVersion(pn.__version__) < LooseVersion("0.9.5") except ImportError as e: error = e if too_old or error: class GUI(object): def __repr__(self): raise RuntimeError("Please install panel to use the GUI `conda " "install -c conda-forge panel>=0.8.0`. Import " "failed with error: %s" % error) return GUI try: from .gui import GUI css = """ .scrolling { overflow: scroll; } """ pn.config.raw_css.append(css) # add scrolling class from css (panel GH#383, GH#384) pn.extension() except Exception as e: class GUI(object): def __repr__(self): raise RuntimeError("Initialisation of GUI failed, even though " "panel is installed. Please update it " "to a more recent version (`conda install -c" " conda-forge panel>=0.9.5`).") return GUI class InstanceMaker(object): def __init__(self): self._instance = None def _instantiate(self): if self._instance is None: GUI = do_import() self._instance = GUI() def __getattr__(self, attr, *args, **kwargs): self._instantiate() return getattr(self._instance, attr, *args, **kwargs) def __getitem__(self, item): self._instantiate() return self._instance[item] def __repr__(self): self._instantiate() return repr(self._instance) def __dir__(self): self._instantiate() return dir(self._instance)
30.361111
92
0.516468
ce9c8056876288e1b0eb63604dfe98972eba4ac2
3,667
py
Python
src/utils/Vocabulary.py
ryderling/MalGraph
4d5f0f80ab2cf7d55abe35a9ef46686b5fdb9610
[ "MIT" ]
4
2022-01-17T13:37:55.000Z
2022-03-24T07:21:43.000Z
src/utils/Vocabulary.py
ryderling/MalGraph
4d5f0f80ab2cf7d55abe35a9ef46686b5fdb9610
[ "MIT" ]
null
null
null
src/utils/Vocabulary.py
ryderling/MalGraph
4d5f0f80ab2cf7d55abe35a9ef46686b5fdb9610
[ "MIT" ]
3
2022-01-17T13:37:56.000Z
2022-03-29T10:51:48.000Z
import json import os from collections import Counter from tqdm import tqdm class Vocab: def __init__(self, freq_file: str, max_vocab_size: int, min_freq: int = 1, unk_token: str = '<unk>', pad_token: str = '<pad>', special_tokens: list = None): self.max_vocab_size = max_vocab_size self.min_freq = min_freq self.unk_token = unk_token self.pad_token = pad_token self.special_tokens = special_tokens assert os.path.exists(freq_file), "The file of {} is not exist".format(freq_file) freq_counter = self.load_freq_counter_from_file(file_path=freq_file, min_freq=self.min_freq) self.token_2_index, self.index_2_token = self.create_vocabulary(freq_counter=freq_counter) self.unk_idx = None if self.unk_token is None else self.token_2_index[self.unk_token] self.pad_idx = None if self.pad_token is None else self.token_2_index[self.pad_token] def __len__(self): return len(self.index_2_token) def __getitem__(self, item: str): assert isinstance(item, str) if item in self.token_2_index.keys(): return self.token_2_index[item] else: if self.unk_token is not None: return self.token_2_index[self.unk_token] else: raise KeyError("{} is not in the vocabulary, and self.unk_token is None".format(item)) def create_vocabulary(self, freq_counter: Counter): token_2_index = {} # dict index_2_token = [] # list if self.unk_token is not None: index_2_token.append(self.unk_token) if self.pad_token is not None: index_2_token.append(self.pad_token) if self.special_tokens is not None: for token in self.special_tokens: index_2_token.append(token) for f_name, count in tqdm(freq_counter.most_common(self.max_vocab_size), desc="creating vocab ... "): if f_name in index_2_token: print("trying to add {} to the vocabulary, but it already exists !!!".format(f_name)) continue else: index_2_token.append(f_name) for index, token in enumerate(index_2_token): # reverse token_2_index.update({token: index}) return token_2_index, index_2_token @staticmethod def load_freq_counter_from_file(file_path: str, min_freq: int): freq_dict = {} with open(file_path, 'r') as f: for line in tqdm(f, desc="Load frequency list from the file of {} ... ".format(file_path)): line = json.loads(line) f_name = line["f_name"] count = int(line["count"]) assert f_name not in freq_dict, "trying to add {} to the vocabulary, but it already exists !!!" if count < min_freq: print(line, "break") break freq_dict[f_name] = count return Counter(freq_dict) if __name__ == '__main__': max_vocab_size = 1000 vocab = Vocab(freq_file="../../data/processed_dataset/train_external_function_name_vocab.jsonl", max_vocab_size=max_vocab_size) print(len(vocab.token_2_index), vocab.token_2_index) print(len(vocab.index_2_token), vocab.index_2_token) print(vocab.unk_token, vocab.unk_idx) print(vocab.pad_token, vocab.pad_idx) print(vocab['queryperformancecounter']) print(vocab['EmptyClipboard']) print(vocab[str.lower('EmptyClipboard')]) print(vocab['X_Y_Z'])
40.296703
160
0.619853
eaa5e390f675aba469aa94642b2e874dd2f4c336
1,583
py
Python
dask_ctl/tests/test_discovery.py
keewis/dask-ctl
3d12a3fba5e0e1322936276c7b2955384614cc2f
[ "BSD-3-Clause" ]
17
2021-01-21T17:39:30.000Z
2022-03-04T10:11:37.000Z
dask_ctl/tests/test_discovery.py
keewis/dask-ctl
3d12a3fba5e0e1322936276c7b2955384614cc2f
[ "BSD-3-Clause" ]
25
2021-01-21T19:27:39.000Z
2022-03-29T08:27:56.000Z
dask_ctl/tests/test_discovery.py
keewis/dask-ctl
3d12a3fba5e0e1322936276c7b2955384614cc2f
[ "BSD-3-Clause" ]
10
2021-01-21T19:37:43.000Z
2022-03-03T17:20:03.000Z
import pytest from typing import AsyncIterator from distributed import LocalCluster from dask_ctl.discovery import ( discover_cluster_names, discover_clusters, list_discovery_methods, ) from dask_ctl.proxy import ProxyCluster def test_discovery_methods(): assert "proxycluster" in list_discovery_methods() @pytest.mark.asyncio async def test_discover_cluster_names(): assert isinstance(discover_cluster_names(), AsyncIterator) async with LocalCluster(scheduler_port=8786, asynchronous=True) as _: count = 0 async for _ in discover_cluster_names(): count += 1 assert count == 1 @pytest.mark.asyncio async def test_cluster_client(): from dask.distributed import Client port = 8786 async with LocalCluster(scheduler_port=port, asynchronous=True) as _: async with Client( f"tcp://localhost:{port}", asynchronous=True, timeout=1 ) as client: assert int(client.scheduler.address.split(":")[-1]) == port @pytest.mark.asyncio async def test_discovery_list(): from dask_ctl.proxy import discover port = 8786 async with LocalCluster(scheduler_port=port, asynchronous=True) as _: async for name, _ in discover(): assert str(port) in name @pytest.mark.asyncio async def test_discover_clusters(): with LocalCluster() as cluster: async for discovered_cluster in discover_clusters(): if isinstance(discovered_cluster, ProxyCluster): assert cluster.scheduler_info == discovered_cluster.scheduler_info
28.267857
82
0.713203
fa7e54172a3aa415cd149de1e670f35501477d93
153,455
py
Python
src/command_modules/azure-cli-sql/azure/cli/command_modules/sql/tests/latest/test_sql_commands.py
AndrewLane/azure-cli
524491c580fc3c133f2d9859cef1c8251f4192e4
[ "MIT" ]
null
null
null
src/command_modules/azure-cli-sql/azure/cli/command_modules/sql/tests/latest/test_sql_commands.py
AndrewLane/azure-cli
524491c580fc3c133f2d9859cef1c8251f4192e4
[ "MIT" ]
3
2021-03-26T00:25:36.000Z
2022-03-29T22:03:55.000Z
src/command_modules/azure-cli-sql/azure/cli/command_modules/sql/tests/latest/test_sql_commands.py
david-driscoll/azure-cli
0dbf5e4ac2f35057bc9b8234b0a59612593552c5
[ "MIT" ]
1
2020-07-13T22:28:09.000Z
2020-07-13T22:28:09.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import time import os from azure_devtools.scenario_tests import AllowLargeResponse from azure.cli.core.util import CLIError from azure.cli.core.mock import DummyCli from azure.cli.testsdk.base import execute from azure.cli.testsdk.exceptions import CliTestError from azure.cli.testsdk import ( JMESPathCheck, JMESPathCheckExists, JMESPathCheckGreaterThan, NoneCheck, ResourceGroupPreparer, ScenarioTest, StorageAccountPreparer, LiveScenarioTest, record_only) from azure.cli.testsdk.preparers import ( AbstractPreparer, SingleValueReplacer) from azure.cli.command_modules.sql.custom import ( ClientAuthenticationType, ClientType) from datetime import datetime, timedelta from time import sleep # Constants server_name_prefix = 'clitestserver' server_name_max_length = 63 managed_instance_name_prefix = 'clitestmi' managed_instance_name_max_length = 63 class SqlServerPreparer(AbstractPreparer, SingleValueReplacer): def __init__(self, name_prefix=server_name_prefix, parameter_name='server', location='westus', admin_user='admin123', admin_password='SecretPassword123', resource_group_parameter_name='resource_group', skip_delete=True): super(SqlServerPreparer, self).__init__(name_prefix, server_name_max_length) self.location = location self.parameter_name = parameter_name self.admin_user = admin_user self.admin_password = admin_password self.resource_group_parameter_name = resource_group_parameter_name self.skip_delete = skip_delete def create_resource(self, name, **kwargs): group = self._get_resource_group(**kwargs) template = 'az sql server create -l {} -g {} -n {} -u {} -p {}' execute(DummyCli(), template.format(self.location, group, name, self.admin_user, self.admin_password)) return {self.parameter_name: name} def remove_resource(self, name, **kwargs): if not self.skip_delete: group = self._get_resource_group(**kwargs) execute(DummyCli(), 'az sql server delete -g {} -n {} --yes --no-wait'.format(group, name)) def _get_resource_group(self, **kwargs): try: return kwargs.get(self.resource_group_parameter_name) except KeyError: template = 'To create a sql server account a resource group is required. Please add ' \ 'decorator @{} in front of this storage account preparer.' raise CliTestError(template.format(ResourceGroupPreparer.__name__, self.resource_group_parameter_name)) class SqlServerMgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer(parameter_name='resource_group_1') @ResourceGroupPreparer(parameter_name='resource_group_2') def test_sql_server_mgmt(self, resource_group_1, resource_group_2, resource_group_location): server_name_1 = self.create_random_name(server_name_prefix, server_name_max_length) server_name_2 = self.create_random_name(server_name_prefix, server_name_max_length) admin_login = 'admin123' admin_passwords = ['SecretPassword123', 'SecretPassword456'] loc = 'westeurope' user = admin_login # test create sql server with minimal required parameters server_1 = self.cmd('sql server create -g {} --name {} -l {} ' '--admin-user {} --admin-password {}' .format(resource_group_1, server_name_1, loc, user, admin_passwords[0]), checks=[ JMESPathCheck('name', server_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('identity', None)]).get_output_in_json() # test list sql server should be 1 self.cmd('sql server list -g {}'.format(resource_group_1), checks=[JMESPathCheck('length(@)', 1)]) # test update sql server self.cmd('sql server update -g {} --name {} --admin-password {} -i' .format(resource_group_1, server_name_1, admin_passwords[1]), checks=[ JMESPathCheck('name', server_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('identity.type', 'SystemAssigned')]) # test update without identity parameter, validate identity still exists # also use --id instead of -g/-n self.cmd('sql server update --id {} --admin-password {}' .format(server_1['id'], admin_passwords[0]), checks=[ JMESPathCheck('name', server_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('identity.type', 'SystemAssigned')]) # test create another sql server, with identity this time self.cmd('sql server create -g {} --name {} -l {} -i ' '--admin-user {} --admin-password {}' .format(resource_group_2, server_name_2, loc, user, admin_passwords[0]), checks=[ JMESPathCheck('name', server_name_2), JMESPathCheck('resourceGroup', resource_group_2), JMESPathCheck('administratorLogin', user), JMESPathCheck('identity.type', 'SystemAssigned')]) # test list sql server in that group should be 1 self.cmd('sql server list -g {}'.format(resource_group_2), checks=[JMESPathCheck('length(@)', 1)]) # test list sql server in the subscription should be at least 2 self.cmd('sql server list', checks=[JMESPathCheckGreaterThan('length(@)', 1)]) # test show sql server self.cmd('sql server show -g {} --name {}' .format(resource_group_1, server_name_1), checks=[ JMESPathCheck('name', server_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user)]) self.cmd('sql server show --id {}' .format(server_1['id']), checks=[ JMESPathCheck('name', server_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user)]) self.cmd('sql server list-usages -g {} -n {}' .format(resource_group_1, server_name_1), checks=[JMESPathCheck('[0].resourceName', server_name_1)]) # test delete sql server self.cmd('sql server delete --id {} --yes' .format(server_1['id']), checks=NoneCheck()) self.cmd('sql server delete -g {} --name {} --yes' .format(resource_group_2, server_name_2), checks=NoneCheck()) # test list sql server should be 0 self.cmd('sql server list -g {}'.format(resource_group_1), checks=[NoneCheck()]) class SqlServerFirewallMgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer() @SqlServerPreparer() def test_sql_firewall_mgmt(self, resource_group, resource_group_location, server): rg = resource_group firewall_rule_1 = 'rule1' start_ip_address_1 = '0.0.0.0' end_ip_address_1 = '255.255.255.255' firewall_rule_2 = 'rule2' start_ip_address_2 = '123.123.123.123' end_ip_address_2 = '123.123.123.124' # allow_all_azure_ips_rule = 'AllowAllAzureIPs' # allow_all_azure_ips_address = '0.0.0.0' # test sql server firewall-rule create fw_rule_1 = self.cmd('sql server firewall-rule create --name {} -g {} --server {} ' '--start-ip-address {} --end-ip-address {}' .format(firewall_rule_1, rg, server, start_ip_address_1, end_ip_address_1), checks=[ JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_1), JMESPathCheck('endIpAddress', end_ip_address_1)]).get_output_in_json() # test sql server firewall-rule show by group/server/name self.cmd('sql server firewall-rule show --name {} -g {} --server {}' .format(firewall_rule_1, rg, server), checks=[ JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_1), JMESPathCheck('endIpAddress', end_ip_address_1)]) # test sql server firewall-rule show by id self.cmd('sql server firewall-rule show --id {}' .format(fw_rule_1['id']), checks=[ JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_1), JMESPathCheck('endIpAddress', end_ip_address_1)]) # test sql server firewall-rule update by group/server/name self.cmd('sql server firewall-rule update --name {} -g {} --server {} ' '--start-ip-address {} --end-ip-address {}' .format(firewall_rule_1, rg, server, start_ip_address_2, end_ip_address_2), checks=[ JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_2), JMESPathCheck('endIpAddress', end_ip_address_2)]) # test sql server firewall-rule update by id self.cmd('sql server firewall-rule update --id {} ' '--start-ip-address {}' .format(fw_rule_1['id'], start_ip_address_1), checks=[ JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_1), JMESPathCheck('endIpAddress', end_ip_address_2)]) self.cmd('sql server firewall-rule update --name {} -g {} --server {} ' '--end-ip-address {}' .format(firewall_rule_1, rg, server, end_ip_address_1), checks=[ JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_1), JMESPathCheck('endIpAddress', end_ip_address_1)]) # test sql server firewall-rule create another rule self.cmd('sql server firewall-rule create --name {} -g {} --server {} ' '--start-ip-address {} --end-ip-address {}' .format(firewall_rule_2, rg, server, start_ip_address_2, end_ip_address_2), checks=[ JMESPathCheck('name', firewall_rule_2), JMESPathCheck('resourceGroup', rg), JMESPathCheck('startIpAddress', start_ip_address_2), JMESPathCheck('endIpAddress', end_ip_address_2)]) # test sql server firewall-rule list self.cmd('sql server firewall-rule list -g {} --server {}' .format(rg, server), checks=[JMESPathCheck('length(@)', 2)]) # # test sql server firewall-rule create azure ip rule # self.cmd('sql server firewall-rule allow-all-azure-ips -g {} --server {} ' # .format(rg, server), checks=[ # JMESPathCheck('name', allow_all_azure_ips_rule), # JMESPathCheck('resourceGroup', rg), # JMESPathCheck('startIpAddress', allow_all_azure_ips_address), # JMESPathCheck('endIpAddress', allow_all_azure_ips_address)]) # # test sql server firewall-rule list # self.cmd('sql server firewall-rule list -g {} --server {}' # .format(rg, server), checks=[JMESPathCheck('length(@)', 3)]) # test sql server firewall-rule delete self.cmd('sql server firewall-rule delete --id {}' .format(fw_rule_1['id']), checks=NoneCheck()) self.cmd('sql server firewall-rule list -g {} --server {}' .format(rg, server), checks=[JMESPathCheck('length(@)', 1)]) self.cmd('sql server firewall-rule delete --name {} -g {} --server {}' .format(firewall_rule_2, rg, server), checks=NoneCheck()) self.cmd('sql server firewall-rule list -g {} --server {}' .format(rg, server), checks=[NoneCheck()]) class SqlServerDbMgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer(location='eastus2') @SqlServerPreparer(location='eastus2') def test_sql_db_mgmt(self, resource_group, resource_group_location, server): database_name = "cliautomationdb01" database_name_2 = "cliautomationdb02" database_name_3 = "cliautomationdb03" update_service_objective = 'S1' update_storage = '10GB' update_storage_bytes = str(10 * 1024 * 1024 * 1024) rg = resource_group loc_display = 'eastus2' # test sql db commands db1 = self.cmd('sql db create -g {} --server {} --name {}' .format(rg, server, database_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('location', loc_display), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online'), JMESPathCheck('zoneRedundant', False)]).get_output_in_json() self.cmd('sql db list -g {} --server {}' .format(rg, server), checks=[ JMESPathCheck('length(@)', 2), JMESPathCheck('sort([].name)', sorted([database_name, 'master'])), JMESPathCheck('[0].resourceGroup', rg), JMESPathCheck('[1].resourceGroup', rg)]) self.cmd('sql db list-usages -g {} --server {} --name {}' .format(rg, server, database_name), checks=[JMESPathCheck('[0].resourceName', database_name)]) # Show by group/server/name self.cmd('sql db show -g {} --server {} --name {}' .format(rg, server, database_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', rg)]) # Show by id self.cmd('sql db show --id {}' .format(db1['id']), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', rg)]) # Update by group/server/name self.cmd('sql db update -g {} -s {} -n {} --service-objective {} --max-size {}' ' --set tags.key1=value1' .format(rg, server, database_name, update_service_objective, update_storage), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('requestedServiceObjectiveName', update_service_objective), JMESPathCheck('maxSizeBytes', update_storage_bytes), JMESPathCheck('tags.key1', 'value1')]) # Update by id self.cmd('sql db update --id {} --set tags.key2=value2' .format(db1['id']), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('requestedServiceObjectiveName', update_service_objective), JMESPathCheck('maxSizeBytes', update_storage_bytes), JMESPathCheck('tags.key2', 'value2')]) # Rename by group/server/name db2 = self.cmd('sql db rename -g {} -s {} -n {} --new-name {}' .format(rg, server, database_name, database_name_2), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_2)]).get_output_in_json() # Rename by id db3 = self.cmd('sql db rename --id {} --new-name {}' .format(db2['id'], database_name_3), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_3)]).get_output_in_json() # Delete by group/server/name self.cmd('sql db delete -g {} --server {} --name {} --yes' .format(rg, server, database_name_3), checks=[NoneCheck()]) # Delete by id self.cmd('sql db delete --id {} --yes' .format(db3['id']), checks=[NoneCheck()]) @ResourceGroupPreparer(location='westus2') @SqlServerPreparer(location='westus2') @AllowLargeResponse() def test_sql_db_vcore_mgmt(self, resource_group, resource_group_location, server): database_name = "cliautomationdb01" # Create database with vcore edition vcore_edition = 'GeneralPurpose' self.cmd('sql db create -g {} --server {} --name {} --edition {}' .format(resource_group, server, database_name, vcore_edition), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition)]) # Update database to dtu edition dtu_edition = 'Standard' dtu_capacity = 10 self.cmd('sql db update -g {} --server {} --name {} --edition {} --capacity {} --max-size 250GB' .format(resource_group, server, database_name, dtu_edition, dtu_capacity), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('edition', dtu_edition), JMESPathCheck('sku.tier', dtu_edition), JMESPathCheck('sku.capacity', dtu_capacity)]) # Update database back to vcore edition vcore_family = 'Gen5' vcore_capacity = 4 self.cmd('sql db update -g {} --server {} --name {} -e {} -c {} -f {}' .format(resource_group, server, database_name, vcore_edition, vcore_capacity, vcore_family), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition), JMESPathCheck('sku.capacity', vcore_capacity), JMESPathCheck('sku.family', vcore_family)]) # Update only family vcore_family_updated = 'Gen4' self.cmd('sql db update -g {} -s {} -n {} --family {}' .format(resource_group, server, database_name, vcore_family_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition), JMESPathCheck('sku.capacity', vcore_capacity), JMESPathCheck('sku.family', vcore_family_updated)]) # Update only capacity vcore_capacity_updated = 8 self.cmd('sql db update -g {} -s {} -n {} --capacity {}' .format(resource_group, server, database_name, vcore_capacity_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated)]) # Update only edition vcore_edition_updated = 'BusinessCritical' self.cmd('sql db update -g {} -s {} -n {} --tier {}' .format(resource_group, server, database_name, vcore_edition_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('edition', vcore_edition_updated), JMESPathCheck('sku.tier', vcore_edition_updated), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated)]) # Create database with vcore edition and all sku properties specified database_name_2 = 'cliautomationdb02' vcore_edition = 'GeneralPurpose' self.cmd('sql db create -g {} --server {} --name {} -e {} -c {} -f {}' .format(resource_group, server, database_name_2, vcore_edition_updated, vcore_capacity_updated, vcore_family_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name_2), JMESPathCheck('edition', vcore_edition_updated), JMESPathCheck('sku.tier', vcore_edition_updated), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated)]) class SqlServerDbOperationMgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer(location='southeastasia') @SqlServerPreparer(location='southeastasia') def test_sql_db_operation_mgmt(self, resource_group, resource_group_location, server): database_name = "cliautomationdb01" update_service_objective = 'S1' # Create db self.cmd('sql db create -g {} -s {} -n {}' .format(resource_group, server, database_name), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('status', 'Online')]) # Update DB with --no-wait self.cmd('sql db update -g {} -s {} -n {} --service-objective {} --no-wait' .format(resource_group, server, database_name, update_service_objective)) # List operations ops = list( self.cmd('sql db op list -g {} -s {} -d {}' .format(resource_group, server, database_name, update_service_objective), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].resourceGroup', resource_group), JMESPathCheck('[0].databaseName', database_name) ]) .get_output_in_json()) # Cancel operation self.cmd('sql db op cancel -g {} -s {} -d {} -n {}' .format(resource_group, server, database_name, ops[0]['name'])) class SqlServerConnectionPolicyScenarioTest(ScenarioTest): @ResourceGroupPreparer() @SqlServerPreparer() def test_sql_server_connection_policy(self, resource_group, resource_group_location, server): # Show self.cmd('sql server conn-policy show -g {} -s {}' .format(resource_group, server), checks=[JMESPathCheck('connectionType', 'Default')]) # Update for type in ('Proxy', 'Default', 'Redirect'): self.cmd('sql server conn-policy update -g {} -s {} -t {}' .format(resource_group, server, type), checks=[JMESPathCheck('connectionType', type)]) class AzureActiveDirectoryAdministratorScenarioTest(LiveScenarioTest): # convert to ScenarioTest and re-record when ISSUE #6011 is fixed @ResourceGroupPreparer() @SqlServerPreparer() def test_aad_admin(self, resource_group, server): rg = resource_group sn = server oid = '5e90ef3b-9b42-4777-819b-25c36961ea4d' oid2 = 'e4d43337-d52c-4a0c-b581-09055e0359a0' user = 'DSEngAll' user2 = 'TestUser' self.cmd('sql server ad-admin create -s {} -g {} -i {} -u {}' .format(sn, rg, oid, user), checks=[JMESPathCheck('login', user), JMESPathCheck('sid', oid)]) self.cmd('sql server ad-admin list -s {} -g {}' .format(sn, rg), checks=[JMESPathCheck('[0].login', user)]) self.cmd('sql server ad-admin update -s {} -g {} -u {} -i {}' .format(sn, rg, user2, oid2), checks=[JMESPathCheck('login', user2), JMESPathCheck('sid', oid2)]) self.cmd('sql server ad-admin delete -s {} -g {}' .format(sn, rg)) self.cmd('sql server ad-admin list -s {} -g {}' .format(sn, rg), checks=[JMESPathCheck('login', None)]) class SqlServerDbCopyScenarioTest(ScenarioTest): @ResourceGroupPreparer(parameter_name='resource_group_1') @ResourceGroupPreparer(parameter_name='resource_group_2') @SqlServerPreparer(parameter_name='server1', resource_group_parameter_name='resource_group_1') @SqlServerPreparer(parameter_name='server2', resource_group_parameter_name='resource_group_2') @AllowLargeResponse() def test_sql_db_copy(self, resource_group_1, resource_group_2, resource_group_location, server1, server2): database_name = "cliautomationdb01" database_copy_name = "cliautomationdb02" service_objective = 'S1' rg = resource_group_1 loc_display = 'westus' # create database self.cmd('sql db create -g {} --server {} --name {}' .format(rg, server1, database_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('location', loc_display), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online')]) # copy database to same server (min parameters) self.cmd('sql db copy -g {} --server {} --name {} ' '--dest-name {}' .format(rg, server1, database_name, database_copy_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_copy_name) ]) # copy database to same server (min parameters, plus service_objective) self.cmd('sql db copy -g {} --server {} --name {} ' '--dest-name {} --service-objective {}' .format(rg, server1, database_name, database_copy_name, service_objective), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_copy_name), JMESPathCheck('requestedServiceObjectiveName', service_objective), ]) # copy database to elastic pool in other server (max parameters, other than # service_objective) pool_name = 'pool1' pool_edition = 'Standard' self.cmd('sql elastic-pool create -g {} --server {} --name {} ' ' --edition {}' .format(resource_group_2, server2, pool_name, pool_edition)) self.cmd('sql db copy -g {} --server {} --name {} ' '--dest-name {} --dest-resource-group {} --dest-server {} ' '--elastic-pool {}' .format(rg, server1, database_name, database_copy_name, resource_group_2, server2, pool_name), checks=[ JMESPathCheck('resourceGroup', resource_group_2), JMESPathCheck('name', database_copy_name), JMESPathCheck('elasticPoolName', pool_name) ]) def _get_earliest_restore_date(db): return datetime.strptime(db['earliestRestoreDate'], "%Y-%m-%dT%H:%M:%S.%f+00:00") def _get_deleted_date(deleted_db): return datetime.strptime(deleted_db['deletionDate'], "%Y-%m-%dT%H:%M:%S.%f+00:00") def _create_db_wait_for_first_backup(test, rg, server, database_name): # create db db = test.cmd('sql db create -g {} --server {} --name {}' .format(rg, server, database_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('status', 'Online')]).get_output_in_json() # Wait until earliestRestoreDate is in the past. When run live, this will take at least # 10 minutes. Unforunately there's no way to speed this up. earliest_restore_date = _get_earliest_restore_date(db) if datetime.utcnow() <= earliest_restore_date: print('Waiting until earliest restore date', earliest_restore_date) while datetime.utcnow() <= earliest_restore_date: sleep(10) # seconds return db class SqlServerDbRestoreScenarioTest(ScenarioTest): @ResourceGroupPreparer() @SqlServerPreparer() @AllowLargeResponse() def test_sql_db_restore(self, resource_group, resource_group_location, server): rg = resource_group database_name = 'cliautomationdb01' # Standalone db restore_service_objective = 'S1' restore_edition = 'Standard' restore_standalone_database_name = 'cliautomationdb01restore1' restore_pool_database_name = 'cliautomationdb01restore2' elastic_pool = 'cliautomationpool1' # create elastic pool self.cmd('sql elastic-pool create -g {} -s {} -n {}' .format(rg, server, elastic_pool)) # Create database and wait for first backup to exist _create_db_wait_for_first_backup(self, rg, server, database_name) # Restore to standalone db self.cmd('sql db restore -g {} -s {} -n {} -t {} --dest-name {}' ' --service-objective {} --edition {}' .format(rg, server, database_name, datetime.utcnow().isoformat(), restore_standalone_database_name, restore_service_objective, restore_edition), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', restore_standalone_database_name), JMESPathCheck('requestedServiceObjectiveName', restore_service_objective), JMESPathCheck('status', 'Online')]) # Restore to db into pool. Note that 'elasticPoolName' is populated # in transform func which only runs after `show`/`list` commands. self.cmd('sql db restore -g {} -s {} -n {} -t {} --dest-name {}' ' --elastic-pool {}' .format(rg, server, database_name, datetime.utcnow().isoformat(), restore_pool_database_name, elastic_pool), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', restore_pool_database_name), JMESPathCheck('status', 'Online')]) self.cmd('sql db show -g {} -s {} -n {}' .format(rg, server, restore_pool_database_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', restore_pool_database_name), JMESPathCheck('status', 'Online'), JMESPathCheck('elasticPoolName', elastic_pool)]) class SqlServerDbRestoreDeletedScenarioTest(ScenarioTest): @ResourceGroupPreparer() @SqlServerPreparer() @AllowLargeResponse() def test_sql_db_restore_deleted(self, resource_group, resource_group_location, server): rg = resource_group database_name = 'cliautomationdb01' # Standalone db restore_service_objective = 'S1' restore_edition = 'Standard' restore_database_name1 = 'cliautomationdb01restore1' restore_database_name2 = 'cliautomationdb01restore2' # Create database and wait for first backup to exist _create_db_wait_for_first_backup(self, rg, server, database_name) # Delete database self.cmd('sql db delete -g {} -s {} -n {} --yes'.format(rg, server, database_name)) # Wait for deleted database to become visible. When run live, this will take around # 5-10 minutes. Unforunately there's no way to speed this up. Use timeout to ensure # test doesn't loop forever if there's a bug. start_time = datetime.now() timeout = timedelta(0, 15 * 60) # 15 minutes timeout while True: deleted_dbs = list(self.cmd('sql db list-deleted -g {} -s {}'.format(rg, server)).get_output_in_json()) if deleted_dbs: # Deleted db found, stop polling break # Deleted db not found, sleep (if running live) and then poll again. if self.is_live: self.assertTrue(datetime.now() < start_time + timeout, 'Deleted db not found before timeout expired.') sleep(10) # seconds deleted_db = deleted_dbs[0] # Restore deleted to latest point in time self.cmd('sql db restore -g {} -s {} -n {} --deleted-time {} --dest-name {}' ' --service-objective {} --edition {}' .format(rg, server, database_name, _get_deleted_date(deleted_db).isoformat(), restore_database_name1, restore_service_objective, restore_edition), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', restore_database_name1), JMESPathCheck('requestedServiceObjectiveName', restore_service_objective), JMESPathCheck('status', 'Online')]) # Restore deleted to earlier point in time self.cmd('sql db restore -g {} -s {} -n {} -t {} --deleted-time {} --dest-name {}' .format(rg, server, database_name, _get_earliest_restore_date(deleted_db).isoformat(), _get_deleted_date(deleted_db).isoformat(), restore_database_name2), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', restore_database_name2), JMESPathCheck('status', 'Online')]) class SqlServerDbSecurityScenarioTest(ScenarioTest): def _get_storage_endpoint(self, storage_account, resource_group): return self.cmd('storage account show -g {} -n {}' ' --query primaryEndpoints.blob' .format(resource_group, storage_account)).get_output_in_json() def _get_storage_key(self, storage_account, resource_group): return self.cmd('storage account keys list -g {} -n {} --query [0].value' .format(resource_group, storage_account)).get_output_in_json() @ResourceGroupPreparer() @ResourceGroupPreparer(parameter_name='resource_group_2') @SqlServerPreparer() @StorageAccountPreparer() @StorageAccountPreparer(parameter_name='storage_account_2', resource_group_parameter_name='resource_group_2') def test_sql_db_security_mgmt(self, resource_group, resource_group_2, resource_group_location, server, storage_account, storage_account_2): database_name = "cliautomationdb01" # get storage account endpoint and key storage_endpoint = self._get_storage_endpoint(storage_account, resource_group) key = self._get_storage_key(storage_account, resource_group) # create db self.cmd('sql db create -g {} -s {} -n {}' .format(resource_group, server, database_name), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', database_name), JMESPathCheck('status', 'Online')]) # get audit policy self.cmd('sql db audit-policy show -g {} -s {} -n {}' .format(resource_group, server, database_name), checks=[JMESPathCheck('resourceGroup', resource_group)]) # update audit policy - enable state_enabled = 'Enabled' retention_days = 30 audit_actions_input = 'DATABASE_LOGOUT_GROUP DATABASE_ROLE_MEMBER_CHANGE_GROUP' audit_actions_expected = ['DATABASE_LOGOUT_GROUP', 'DATABASE_ROLE_MEMBER_CHANGE_GROUP'] self.cmd('sql db audit-policy update -g {} -s {} -n {}' ' --state {} --storage-key {} --storage-endpoint={}' ' --retention-days={} --actions {}' .format(resource_group, server, database_name, state_enabled, key, storage_endpoint, retention_days, audit_actions_input), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('state', state_enabled), JMESPathCheck('storageAccountAccessKey', ''), # service doesn't return it JMESPathCheck('storageEndpoint', storage_endpoint), JMESPathCheck('retentionDays', retention_days), JMESPathCheck('auditActionsAndGroups', audit_actions_expected)]) # update audit policy - specify storage account and resource group. use secondary key storage_endpoint_2 = self._get_storage_endpoint(storage_account_2, resource_group_2) self.cmd('sql db audit-policy update -g {} -s {} -n {} --storage-account {}' .format(resource_group, server, database_name, storage_account_2, resource_group_2), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('state', state_enabled), JMESPathCheck('storageAccountAccessKey', ''), # service doesn't return it JMESPathCheck('storageEndpoint', storage_endpoint_2), JMESPathCheck('retentionDays', retention_days), JMESPathCheck('auditActionsAndGroups', audit_actions_expected)]) # update audit policy - disable state_disabled = 'Disabled' self.cmd('sql db audit-policy update -g {} -s {} -n {} --state {}' .format(resource_group, server, database_name, state_disabled), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('state', state_disabled), JMESPathCheck('storageAccountAccessKey', ''), # service doesn't return it JMESPathCheck('storageEndpoint', storage_endpoint_2), JMESPathCheck('retentionDays', retention_days), JMESPathCheck('auditActionsAndGroups', audit_actions_expected)]) # get threat detection policy self.cmd('sql db threat-policy show -g {} -s {} -n {}' .format(resource_group, server, database_name), checks=[JMESPathCheck('resourceGroup', resource_group)]) # update threat detection policy - enable disabled_alerts_input = 'Sql_Injection_Vulnerability Access_Anomaly' disabled_alerts_expected = 'Sql_Injection_Vulnerability;Access_Anomaly' email_addresses_input = 'test1@example.com test2@example.com' email_addresses_expected = 'test1@example.com;test2@example.com' email_account_admins = 'Enabled' self.cmd('sql db threat-policy update -g {} -s {} -n {}' ' --state {} --storage-key {} --storage-endpoint {}' ' --retention-days {} --email-addresses {} --disabled-alerts {}' ' --email-account-admins {}' .format(resource_group, server, database_name, state_enabled, key, storage_endpoint, retention_days, email_addresses_input, disabled_alerts_input, email_account_admins), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('state', state_enabled), JMESPathCheck('storageAccountAccessKey', key), JMESPathCheck('storageEndpoint', storage_endpoint), JMESPathCheck('retentionDays', retention_days), JMESPathCheck('emailAddresses', email_addresses_expected), JMESPathCheck('disabledAlerts', disabled_alerts_expected), JMESPathCheck('emailAccountAdmins', email_account_admins)]) # update threat policy - specify storage account and resource group. use secondary key key_2 = self._get_storage_key(storage_account_2, resource_group_2) self.cmd('sql db threat-policy update -g {} -s {} -n {} --storage-account {}' .format(resource_group, server, database_name, storage_account_2, resource_group_2), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('state', state_enabled), JMESPathCheck('storageAccountAccessKey', key_2), JMESPathCheck('storageEndpoint', storage_endpoint_2), JMESPathCheck('retentionDays', retention_days), JMESPathCheck('emailAddresses', email_addresses_expected), JMESPathCheck('disabledAlerts', disabled_alerts_expected), JMESPathCheck('emailAccountAdmins', email_account_admins)]) # update threat policy - disable self.cmd('sql db audit-policy update -g {} -s {} -n {} --state {}' .format(resource_group, server, database_name, state_disabled), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('state', state_disabled), JMESPathCheck('storageAccountAccessKey', ''), # service doesn't return it JMESPathCheck('storageEndpoint', storage_endpoint_2), JMESPathCheck('retentionDays', retention_days), JMESPathCheck('auditActionsAndGroups', audit_actions_expected)]) class SqlServerDwMgmtScenarioTest(ScenarioTest): # pylint: disable=too-many-instance-attributes @ResourceGroupPreparer() @SqlServerPreparer() @AllowLargeResponse() def test_sql_dw_mgmt(self, resource_group, resource_group_location, server): database_name = "cliautomationdb01" update_service_objective = 'DW200' update_storage = '20TB' update_storage_bytes = str(20 * 1024 * 1024 * 1024 * 1024) rg = resource_group loc_display = 'westus' # test sql db commands dw = self.cmd('sql dw create -g {} --server {} --name {}' .format(rg, server, database_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('location', loc_display), JMESPathCheck('edition', 'DataWarehouse'), JMESPathCheck('sku.tier', 'DataWarehouse'), JMESPathCheck('status', 'Online')]).get_output_in_json() # Sanity check that the default max size is not equal to the size that we will update to # later. That way we know that update is actually updating the size. self.assertNotEqual(dw['maxSizeBytes'], update_storage_bytes, 'Initial max size in bytes is equal to the value we want to update to later,' ' so we will not be able to verify that update max size is actually updating.') # DataWarehouse is a little quirky and is considered to be both a database and its # separate own type of thing. (Why? Because it has the same REST endpoint as regular # database, so it must be a database. However it has only a subset of supported operations, # so to clarify which operations are supported by dw we group them under `sql dw`.) So the # dw shows up under both `db list` and `dw list`. self.cmd('sql db list -g {} --server {}' .format(rg, server), checks=[ JMESPathCheck('length(@)', 2), # includes dw and master JMESPathCheck('sort([].name)', sorted([database_name, 'master'])), JMESPathCheck('[0].resourceGroup', rg), JMESPathCheck('[1].resourceGroup', rg)]) self.cmd('sql dw list -g {} --server {}' .format(rg, server), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', database_name), JMESPathCheck('[0].resourceGroup', rg)]) self.cmd('sql db show -g {} --server {} --name {}' .format(rg, server, database_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', rg)]) # pause/resume self.cmd('sql dw pause -g {} --server {} --name {}' .format(rg, server, database_name), checks=[NoneCheck()]) self.cmd('sql dw show --id {}' .format(dw['id']), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', rg), JMESPathCheck('status', 'Paused')]) self.cmd('sql dw resume -g {} --server {} --name {}' .format(rg, server, database_name), checks=[NoneCheck()]) self.cmd('sql dw show --id {}' .format(dw['id']), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', rg), JMESPathCheck('status', 'Online')]) # Update DW storage self.cmd('sql dw update -g {} -s {} -n {} --max-size {}' ' --set tags.key1=value1' .format(rg, server, database_name, update_storage), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('maxSizeBytes', update_storage_bytes), JMESPathCheck('tags.key1', 'value1')]) # Update DW service objective self.cmd('sql dw update --id {} --service-objective {}' .format(dw['id'], update_service_objective), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('requestedServiceObjectiveName', update_service_objective), JMESPathCheck('maxSizeBytes', update_storage_bytes), JMESPathCheck('tags.key1', 'value1')]) # Delete DW self.cmd('sql dw delete -g {} --server {} --name {} --yes' .format(rg, server, database_name), checks=[NoneCheck()]) self.cmd('sql dw delete --id {} --yes' .format(dw['id']), checks=[NoneCheck()]) class SqlServerDnsAliasMgmtScenarioTest(ScenarioTest): # create 2 servers in the same resource group, and 1 server in a different resource group @ResourceGroupPreparer(parameter_name="resource_group_1", parameter_name_for_location="resource_group_location_1") @ResourceGroupPreparer(parameter_name="resource_group_2", parameter_name_for_location="resource_group_location_2") @SqlServerPreparer(parameter_name="server_name_1", resource_group_parameter_name="resource_group_1") @SqlServerPreparer(parameter_name="server_name_2", resource_group_parameter_name="resource_group_1") @SqlServerPreparer(parameter_name="server_name_3", resource_group_parameter_name="resource_group_2") def test_sql_server_dns_alias_mgmt(self, resource_group_1, resource_group_location_1, resource_group_2, resource_group_location_2, server_name_1, server_name_2, server_name_3): # helper class so that it's clear which servers are in which groups class ServerInfo(object): # pylint: disable=too-few-public-methods def __init__(self, name, group, location): self.name = name self.group = group self.location = location s1 = ServerInfo(server_name_1, resource_group_1, resource_group_location_1) s2 = ServerInfo(server_name_2, resource_group_1, resource_group_location_1) s3 = ServerInfo(server_name_3, resource_group_2, resource_group_location_2) alias_name = 'alias1' # verify setup for s in (s1, s2, s3): self.cmd('sql server show -g {} -n {}' .format(s.group, s.name), checks=[ JMESPathCheck('name', s.name), JMESPathCheck('resourceGroup', s.group)]) # Create server dns alias self.cmd('sql server dns-alias create -n {} -s {} -g {}' .format(alias_name, s1.name, s1.group), checks=[ JMESPathCheck('name', alias_name), JMESPathCheck('resourceGroup', s1.group) ]) # Check that alias is created on a right server self.cmd('sql server dns-alias list -s {} -g {}' .format(s1.name, s1.group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', alias_name) ]) # Repoint alias to the server within the same resource group self.cmd('sql server dns-alias set -n {} --original-server {} -s {} -g {}' .format(alias_name, s1.name, s2.name, s2.group), checks=[NoneCheck()]) # List the aliases on old server to check if alias is not pointing there self.cmd('sql server dns-alias list -s {} -g {}' .format(s1.name, s1.group), checks=[ JMESPathCheck('length(@)', 0) ]) # Check if alias is pointing to new server self.cmd('sql server dns-alias list -s {} -g {}' .format(s2.name, s2.group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', alias_name) ]) # Repoint alias to the same server (to check that operation is idempotent) self.cmd('sql server dns-alias set -n {} --original-server {} -s {} -g {}' .format(alias_name, s1.name, s2.name, s2.group), checks=[NoneCheck()]) # Check if alias is pointing to the right server self.cmd('sql server dns-alias list -s {} -g {}' .format(s2.name, s2.group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', alias_name) ]) # Repoint alias to the server within the same resource group self.cmd('sql server dns-alias set -n {} --original-server {} --original-resource-group {} -s {} -g {}' .format(alias_name, s2.name, s2.group, s3.name, s3.group), checks=[NoneCheck()]) # List the aliases on old server to check if alias is not pointing there self.cmd('sql server dns-alias list -s {} -g {}' .format(s2.name, s2.group), checks=[ JMESPathCheck('length(@)', 0) ]) # Check if alias is pointing to new server self.cmd('sql server dns-alias list -s {} -g {}' .format(s3.name, s3.group), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', alias_name) ]) # Drop alias self.cmd('sql server dns-alias delete -n {} -s {} -g {}' .format(alias_name, s3.name, s3.group), checks=[NoneCheck()]) # Verify that alias got dropped correctly self.cmd('sql server dns-alias list -s {} -g {}' .format(s3.name, s3.group), checks=[ JMESPathCheck('length(@)', 0) ]) class SqlServerDbReplicaMgmtScenarioTest(ScenarioTest): # create 2 servers in the same resource group, and 1 server in a different resource group @ResourceGroupPreparer(parameter_name="resource_group_1", parameter_name_for_location="resource_group_location_1") @ResourceGroupPreparer(parameter_name="resource_group_2", parameter_name_for_location="resource_group_location_2") @SqlServerPreparer(parameter_name="server_name_1", resource_group_parameter_name="resource_group_1") @SqlServerPreparer(parameter_name="server_name_2", resource_group_parameter_name="resource_group_1") @SqlServerPreparer(parameter_name="server_name_3", resource_group_parameter_name="resource_group_2") @AllowLargeResponse() def test_sql_db_replica_mgmt(self, resource_group_1, resource_group_location_1, resource_group_2, resource_group_location_2, server_name_1, server_name_2, server_name_3): database_name = "cliautomationdb01" service_objective = 'S1' # helper class so that it's clear which servers are in which groups class ServerInfo(object): # pylint: disable=too-few-public-methods def __init__(self, name, group, location): self.name = name self.group = group self.location = location s1 = ServerInfo(server_name_1, resource_group_1, resource_group_location_1) s2 = ServerInfo(server_name_2, resource_group_1, resource_group_location_1) s3 = ServerInfo(server_name_3, resource_group_2, resource_group_location_2) # verify setup for s in (s1, s2, s3): self.cmd('sql server show -g {} -n {}' .format(s.group, s.name), checks=[ JMESPathCheck('name', s.name), JMESPathCheck('resourceGroup', s.group)]) # create db in first server self.cmd('sql db create -g {} -s {} -n {}' .format(s1.group, s1.name, database_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', s1.group)]) # create replica in second server with min params # partner resouce group unspecified because s1.group == s2.group self.cmd('sql db replica create -g {} -s {} -n {} --partner-server {}' .format(s1.group, s1.name, database_name, s2.name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', s2.group)]) # check that the replica was created in the correct server self.cmd('sql db show -g {} -s {} -n {}' .format(s2.group, s2.name, database_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', s2.group)]) # Delete replica in second server and recreate with explicit service objective self.cmd('sql db delete -g {} -s {} -n {} --yes' .format(s2.group, s2.name, database_name)) self.cmd('sql db replica create -g {} -s {} -n {} --partner-server {} ' ' --service-objective {}' .format(s1.group, s1.name, database_name, s2.name, service_objective), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', s2.group), JMESPathCheck('requestedServiceObjectiveName', service_objective)]) # Create replica in pool in third server with max params (except service objective) pool_name = 'pool1' pool_edition = 'Standard' self.cmd('sql elastic-pool create -g {} --server {} --name {} ' ' --edition {}' .format(s3.group, s3.name, pool_name, pool_edition)) self.cmd('sql db replica create -g {} -s {} -n {} --partner-server {}' ' --partner-resource-group {} --elastic-pool {}' .format(s1.group, s1.name, database_name, s3.name, s3.group, pool_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', s3.group), JMESPathCheck('elasticPoolName', pool_name)]) # check that the replica was created in the correct server self.cmd('sql db show -g {} -s {} -n {}' .format(s3.group, s3.name, database_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', s3.group)]) # list replica links on s1 - it should link to s2 and s3 self.cmd('sql db replica list-links -g {} -s {} -n {}' .format(s1.group, s1.name, database_name), checks=[JMESPathCheck('length(@)', 2)]) # list replica links on s3 - it should link only to s1 self.cmd('sql db replica list-links -g {} -s {} -n {}' .format(s3.group, s3.name, database_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].role', 'Secondary'), JMESPathCheck('[0].partnerRole', 'Primary')]) # Failover to s3. self.cmd('sql db replica set-primary -g {} -s {} -n {}' .format(s3.group, s3.name, database_name), checks=[NoneCheck()]) # list replica links on s3 - it should link to s1 and s2 self.cmd('sql db replica list-links -g {} -s {} -n {}' .format(s3.group, s3.name, database_name), checks=[JMESPathCheck('length(@)', 2)]) # Stop replication from s3 to s2 twice. Second time should be no-op. for _ in range(2): # Delete link self.cmd('sql db replica delete-link -g {} -s {} -n {} --partner-resource-group {}' ' --partner-server {} --yes' .format(s3.group, s3.name, database_name, s2.group, s2.name), checks=[NoneCheck()]) # Verify link was deleted. s3 should still be the primary. self.cmd('sql db replica list-links -g {} -s {} -n {}' .format(s3.group, s3.name, database_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].role', 'Primary'), JMESPathCheck('[0].partnerRole', 'Secondary')]) # Failover to s3 again (should be no-op, it's already primary) self.cmd('sql db replica set-primary -g {} -s {} -n {} --allow-data-loss' .format(s3.group, s3.name, database_name), checks=[NoneCheck()]) # s3 should still be the primary. self.cmd('sql db replica list-links -g {} -s {} -n {}' .format(s3.group, s3.name, database_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].role', 'Primary'), JMESPathCheck('[0].partnerRole', 'Secondary')]) # Force failover back to s1 self.cmd('sql db replica set-primary -g {} -s {} -n {} --allow-data-loss' .format(s1.group, s1.name, database_name), checks=[NoneCheck()]) class SqlElasticPoolsMgmtScenarioTest(ScenarioTest): def __init__(self, method_name): super(SqlElasticPoolsMgmtScenarioTest, self).__init__(method_name) self.pool_name = "cliautomationpool01" def verify_activities(self, activities, resource_group, server): if isinstance(activities, list.__class__): raise AssertionError("Actual value '{}' expected to be list class." .format(activities)) for activity in activities: if isinstance(activity, dict.__class__): raise AssertionError("Actual value '{}' expected to be dict class" .format(activities)) if activity['resourceGroup'] != resource_group: raise AssertionError("Actual value '{}' != Expected value {}" .format(activity['resourceGroup'], resource_group)) elif activity['serverName'] != server: raise AssertionError("Actual value '{}' != Expected value {}" .format(activity['serverName'], server)) elif activity['currentElasticPoolName'] != self.pool_name: raise AssertionError("Actual value '{}' != Expected value {}" .format(activity['currentElasticPoolName'], self.pool_name)) return True @ResourceGroupPreparer(location='eastus2') @SqlServerPreparer(location='eastus2') @AllowLargeResponse() def test_sql_elastic_pools_mgmt(self, resource_group, resource_group_location, server): database_name = "cliautomationdb02" pool_name2 = "cliautomationpool02" edition = 'Standard' dtu = 1200 db_dtu_min = 10 db_dtu_max = 50 storage = '1200GB' storage_mb = 1228800 updated_dtu = 50 updated_db_dtu_min = 10 updated_db_dtu_max = 50 updated_storage = '50GB' updated_storage_mb = 51200 db_service_objective = 'S1' rg = resource_group loc_display = 'East US 2' # test sql elastic-pool commands elastic_pool_1 = self.cmd('sql elastic-pool create -g {} --server {} --name {} ' '--dtu {} --edition {} --db-dtu-min {} --db-dtu-max {} ' '--storage {}' .format(rg, server, self.pool_name, dtu, edition, db_dtu_min, db_dtu_max, storage), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', self.pool_name), JMESPathCheck('location', loc_display), JMESPathCheck('state', 'Ready'), JMESPathCheck('dtu', dtu), JMESPathCheck('sku.capacity', dtu), JMESPathCheck('databaseDtuMin', db_dtu_min), JMESPathCheck('databaseDtuMax', db_dtu_max), JMESPathCheck('perDatabaseSettings.minCapacity', db_dtu_min), JMESPathCheck('perDatabaseSettings.maxCapacity', db_dtu_max), JMESPathCheck('edition', edition), JMESPathCheck('sku.tier', edition)]).get_output_in_json() self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, self.pool_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', self.pool_name), JMESPathCheck('state', 'Ready'), JMESPathCheck('databaseDtuMin', db_dtu_min), JMESPathCheck('databaseDtuMax', db_dtu_max), JMESPathCheck('edition', edition), JMESPathCheck('storageMb', storage_mb), JMESPathCheck('zoneRedundant', False)]) self.cmd('sql elastic-pool show --id {}' .format(elastic_pool_1['id']), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', self.pool_name), JMESPathCheck('state', 'Ready'), JMESPathCheck('databaseDtuMin', db_dtu_min), JMESPathCheck('databaseDtuMax', db_dtu_max), JMESPathCheck('edition', edition), JMESPathCheck('storageMb', storage_mb)]) self.cmd('sql elastic-pool list -g {} --server {}' .format(rg, server), checks=[ JMESPathCheck('[0].resourceGroup', rg), JMESPathCheck('[0].name', self.pool_name), JMESPathCheck('[0].state', 'Ready'), JMESPathCheck('[0].databaseDtuMin', db_dtu_min), JMESPathCheck('[0].databaseDtuMax', db_dtu_max), JMESPathCheck('[0].edition', edition), JMESPathCheck('[0].storageMb', storage_mb)]) self.cmd('sql elastic-pool update -g {} --server {} --name {} ' '--dtu {} --storage {} --set tags.key1=value1' .format(rg, server, self.pool_name, updated_dtu, updated_storage), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', self.pool_name), JMESPathCheck('state', 'Ready'), JMESPathCheck('dtu', updated_dtu), JMESPathCheck('sku.capacity', updated_dtu), JMESPathCheck('edition', edition), JMESPathCheck('sku.tier', edition), JMESPathCheck('databaseDtuMin', db_dtu_min), JMESPathCheck('databaseDtuMax', db_dtu_max), JMESPathCheck('perDatabaseSettings.minCapacity', db_dtu_min), JMESPathCheck('perDatabaseSettings.maxCapacity', db_dtu_max), JMESPathCheck('storageMb', updated_storage_mb), JMESPathCheck('maxSizeBytes', updated_storage_mb * 1024 * 1024), JMESPathCheck('tags.key1', 'value1')]) self.cmd('sql elastic-pool update --id {} ' '--dtu {} --db-dtu-min {} --db-dtu-max {} --storage {}' .format(elastic_pool_1['id'], dtu, updated_db_dtu_min, updated_db_dtu_max, storage), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', self.pool_name), JMESPathCheck('state', 'Ready'), JMESPathCheck('dtu', dtu), JMESPathCheck('sku.capacity', dtu), JMESPathCheck('databaseDtuMin', updated_db_dtu_min), JMESPathCheck('databaseDtuMax', updated_db_dtu_max), JMESPathCheck('perDatabaseSettings.minCapacity', updated_db_dtu_min), JMESPathCheck('perDatabaseSettings.maxCapacity', updated_db_dtu_max), JMESPathCheck('storageMb', storage_mb), JMESPathCheck('maxSizeBytes', storage_mb * 1024 * 1024), JMESPathCheck('tags.key1', 'value1')]) self.cmd('sql elastic-pool update -g {} --server {} --name {} ' '--remove tags.key1' .format(rg, server, self.pool_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', self.pool_name), JMESPathCheck('state', 'Ready'), JMESPathCheck('tags', {})]) # create a second pool with minimal params self.cmd('sql elastic-pool create -g {} --server {} --name {} ' .format(rg, server, pool_name2), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name2), JMESPathCheck('location', loc_display), JMESPathCheck('state', 'Ready')]) self.cmd('sql elastic-pool list -g {} -s {}'.format(rg, server), checks=[JMESPathCheck('length(@)', 2)]) # Create a database directly in an Azure sql elastic pool. # Note that 'elasticPoolName' is populated in transform # func which only runs after `show`/`list` commands. self.cmd('sql db create -g {} --server {} --name {} ' '--elastic-pool {}' .format(rg, server, database_name, self.pool_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('requestedServiceObjectiveName', 'ElasticPool'), JMESPathCheck('status', 'Online')]) self.cmd('sql db show -g {} --server {} --name {}' .format(rg, server, database_name, self.pool_name), checks=[JMESPathCheck('elasticPoolName', self.pool_name)]) # Move database to second pool. Specify service objective just for fun # Note that 'elasticPoolName' is populated in transform # func which only runs after `show`/`list` commands. self.cmd('sql db update -g {} -s {} -n {} --elastic-pool {}' ' --service-objective ElasticPool' .format(rg, server, database_name, pool_name2), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('requestedServiceObjectiveName', 'ElasticPool'), JMESPathCheck('status', 'Online')]) self.cmd('sql db show -g {} --server {} --name {}' .format(rg, server, database_name, pool_name2), checks=[JMESPathCheck('elasticPoolName', pool_name2)]) # Remove database from pool self.cmd('sql db update -g {} -s {} -n {} --service-objective {}' .format(rg, server, database_name, db_service_objective), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('elasticPoolId', None), JMESPathCheck('requestedServiceObjectiveName', db_service_objective), JMESPathCheck('status', 'Online')]) # Move database back into pool # Note that 'elasticPoolName' is populated in transform # func which only runs after `show`/`list` commands. self.cmd('sql db update -g {} -s {} -n {} --elastic-pool {}' ' --service-objective ElasticPool' .format(rg, server, database_name, self.pool_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('requestedServiceObjectiveName', 'ElasticPool'), JMESPathCheck('status', 'Online')]) self.cmd('sql db show -g {} -s {} -n {}' .format(rg, server, database_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('elasticPoolName', self.pool_name), JMESPathCheck('requestedServiceObjectiveName', 'ElasticPool'), JMESPathCheck('status', 'Online')]) # List databases in a pool self.cmd('sql elastic-pool list-dbs -g {} -s {} -n {}' .format(rg, server, self.pool_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].resourceGroup', rg), JMESPathCheck('[0].name', database_name), JMESPathCheck('[0].elasticPoolName', self.pool_name)]) # List databases in a pool - alternative command self.cmd('sql db list -g {} -s {} --elastic-pool {}' .format(rg, server, self.pool_name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].resourceGroup', rg), JMESPathCheck('[0].name', database_name), JMESPathCheck('[0].elasticPoolName', self.pool_name)]) # delete sql server database self.cmd('sql db delete -g {} --server {} --name {} --yes' .format(rg, server, database_name), checks=[NoneCheck()]) # delete sql elastic pool self.cmd('sql elastic-pool delete -g {} --server {} --name {}' .format(rg, server, self.pool_name), checks=[NoneCheck()]) # delete sql elastic pool by id self.cmd('sql elastic-pool delete --id {}' .format(elastic_pool_1['id']), checks=[NoneCheck()]) @ResourceGroupPreparer(location='westus2') @SqlServerPreparer(location='westus2') @AllowLargeResponse() def test_sql_elastic_pools_vcore_mgmt(self, resource_group, resource_group_location, server): pool_name = "cliautomationpool1" # Create pool with vcore edition vcore_edition = 'GeneralPurpose' self.cmd('sql elastic-pool create -g {} --server {} --name {} --edition {}' .format(resource_group, server, pool_name, vcore_edition), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition)]) # Update pool to dtu edition dtu_edition = 'Standard' dtu_capacity = 100 db_dtu_max = 10 self.cmd('sql elastic-pool update -g {} --server {} --name {} --edition {} --capacity {} --max-size 250GB ' '--db-max-dtu {}' .format(resource_group, server, pool_name, dtu_edition, dtu_capacity, db_dtu_max), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', dtu_edition), JMESPathCheck('sku.tier', dtu_edition), JMESPathCheck('dtu', dtu_capacity), JMESPathCheck('sku.capacity', dtu_capacity), JMESPathCheck('databaseDtuMax', db_dtu_max), JMESPathCheck('perDatabaseSettings.maxCapacity', db_dtu_max)]) # Update pool back to vcore edition vcore_family = 'Gen5' vcore_capacity = 4 self.cmd('sql elastic-pool update -g {} --server {} --name {} -e {} -c {} -f {} ' '--db-max-capacity 2' .format(resource_group, server, pool_name, vcore_edition, vcore_capacity, vcore_family), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition), JMESPathCheck('dtu', None), JMESPathCheck('sku.capacity', vcore_capacity), JMESPathCheck('sku.family', vcore_family), JMESPathCheck('databaseDtuMin', None), JMESPathCheck('databaseDtuMax', None), JMESPathCheck('perDatabaseSettings.maxCapacity', 2)]) # Update only family vcore_family_updated = 'Gen4' self.cmd('sql elastic-pool update -g {} -s {} -n {} --family {}' .format(resource_group, server, pool_name, vcore_family_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition), JMESPathCheck('dtu', None), JMESPathCheck('sku.capacity', vcore_capacity), JMESPathCheck('sku.family', vcore_family_updated), JMESPathCheck('databaseDtuMin', None), JMESPathCheck('databaseDtuMax', None), JMESPathCheck('perDatabaseSettings.maxCapacity', 2)]) # Update only capacity vcore_capacity_updated = 8 self.cmd('sql elastic-pool update -g {} -s {} -n {} --capacity {}' .format(resource_group, server, pool_name, vcore_capacity_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', vcore_edition), JMESPathCheck('sku.tier', vcore_edition), JMESPathCheck('dtu', None), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated), JMESPathCheck('databaseDtuMin', None), JMESPathCheck('databaseDtuMax', None), JMESPathCheck('perDatabaseSettings.maxCapacity', 2)]) # Update only edition vcore_edition_updated = 'BusinessCritical' self.cmd('sql elastic-pool update -g {} -s {} -n {} --tier {}' .format(resource_group, server, pool_name, vcore_edition_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', vcore_edition_updated), JMESPathCheck('sku.tier', vcore_edition_updated), JMESPathCheck('dtu', None), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated), JMESPathCheck('databaseDtuMin', None), JMESPathCheck('databaseDtuMax', None), JMESPathCheck('perDatabaseSettings.maxCapacity', 2)]) # Update only db min & max cap db_min_capacity_updated = 0.5 db_max_capacity_updated = 1 self.cmd('sql elastic-pool update -g {} -s {} -n {} --db-max-capacity {} --db-min-capacity {}' .format(resource_group, server, pool_name, db_max_capacity_updated, db_min_capacity_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name), JMESPathCheck('edition', vcore_edition_updated), JMESPathCheck('sku.tier', vcore_edition_updated), JMESPathCheck('dtu', None), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated), JMESPathCheck('databaseDtuMin', None), JMESPathCheck('databaseDtuMax', None), JMESPathCheck('perDatabaseSettings.minCapacity', db_min_capacity_updated), JMESPathCheck('perDatabaseSettings.maxCapacity', db_max_capacity_updated)]) # Create pool with vcore edition and all sku properties specified pool_name_2 = 'cliautomationpool2' vcore_edition = 'GeneralPurpose' self.cmd('sql elastic-pool create -g {} --server {} --name {} -e {} -c {} -f {}' .format(resource_group, server, pool_name_2, vcore_edition_updated, vcore_capacity_updated, vcore_family_updated), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', pool_name_2), JMESPathCheck('edition', vcore_edition_updated), JMESPathCheck('sku.tier', vcore_edition_updated), JMESPathCheck('dtu', None), JMESPathCheck('sku.capacity', vcore_capacity_updated), JMESPathCheck('sku.family', vcore_family_updated), JMESPathCheck('databaseDtuMin', None), JMESPathCheck('databaseDtuMax', None)]) class SqlElasticPoolOperationMgmtScenarioTest(ScenarioTest): def __init__(self, method_name): super(SqlElasticPoolOperationMgmtScenarioTest, self).__init__(method_name) self.pool_name = "operationtestep1" @ResourceGroupPreparer(location='southeastasia') @SqlServerPreparer(location='southeastasia') @AllowLargeResponse() def test_sql_elastic_pool_operation_mgmt(self, resource_group, resource_group_location, server): edition = 'Premium' dtu = 125 db_dtu_min = 0 db_dtu_max = 50 storage = '50GB' storage_mb = 51200 update_dtu = 250 update_db_dtu_min = 50 update_db_dtu_max = 250 # Create elastic pool self.cmd('sql elastic-pool create -g {} --server {} --name {} ' '--dtu {} --edition {} --db-dtu-min {} --db-dtu-max {} --storage {}' .format(resource_group, server, self.pool_name, dtu, edition, db_dtu_min, db_dtu_max, storage), checks=[ JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', self.pool_name), JMESPathCheck('edition', edition), JMESPathCheck('sku.tier', edition), JMESPathCheck('state', 'Ready'), JMESPathCheck('dtu', dtu), JMESPathCheck('sku.capacity', dtu), JMESPathCheck('databaseDtuMin', db_dtu_min), JMESPathCheck('databaseDtuMax', db_dtu_max), JMESPathCheck('perDatabaseSettings.minCapacity', db_dtu_min), JMESPathCheck('perDatabaseSettings.maxCapacity', db_dtu_max), JMESPathCheck('storageMb', storage_mb), JMESPathCheck('maxSizeBytes', storage_mb * 1024 * 1024)]) # Update elastic pool self.cmd('sql elastic-pool update -g {} --server {} --name {} ' '--dtu {} --db-dtu-min {} --db-dtu-max {}' .format(resource_group, server, self.pool_name, update_dtu, update_db_dtu_min, update_db_dtu_max)) # List operations on the elastic pool ops = list(self.cmd('sql elastic-pool op list -g {} --server {} --elastic-pool {}' .format(resource_group, server, self.pool_name)).get_output_in_json()) # Cancel operation try: self.cmd('sql elastic-pool op cancel -g {} --server {} --elastic-pool {} --name {}' .format(resource_group, server, self.pool_name, ops[0]['name'])) except Exception as e: expectedmessage = "Cannot cancel management operation {} in current state.".format(ops[0]['name']) if expectedmessage in str(e): pass class SqlServerCapabilityScenarioTest(ScenarioTest): @AllowLargeResponse() def test_sql_capabilities(self): location = 'westus' # New capabilities are added quite frequently and the state of each capability depends # on your subscription. So it's not a good idea to make strict checks against exactly # which capabilities are returned. The idea is to just check the overall structure. db_max_size_length_jmespath = 'length([].supportedServiceLevelObjectives[].supportedMaxSizes[])' # Get all db capabilities self.cmd('sql db list-editions -l {}'.format(location), checks=[ # At least standard and premium edition exist JMESPathCheckExists("[?name == 'Standard']"), JMESPathCheckExists("[?name == 'Premium']"), # At least s0 and p1 service objectives exist JMESPathCheckExists("[].supportedServiceLevelObjectives[] | [?name == 'S0']"), JMESPathCheckExists("[].supportedServiceLevelObjectives[] | [?name == 'P1']"), # Max size data is omitted JMESPathCheck(db_max_size_length_jmespath, 0)]) # Get all db capabilities with size data self.cmd('sql db list-editions -l {} --show-details max-size'.format(location), checks=[ # Max size data is included JMESPathCheckGreaterThan(db_max_size_length_jmespath, 0)]) # Search for db edition - note that it's case insensitive self.cmd('sql db list-editions -l {} --edition standard'.format(location), checks=[ # Standard edition exists, other editions don't JMESPathCheckExists("[?name == 'Standard']"), JMESPathCheck("length([?name != 'Standard'])", 0)]) # Search for dtus self.cmd('sql db list-editions -l {} --dtu 100'.format(location), checks=[ # All results have 100 dtu JMESPathCheckGreaterThan('length([].supportedServiceLevelObjectives[?performanceLevel.value == `100`][])', 0), JMESPathCheck('length([].supportedServiceLevelObjectives[?performanceLevel.value != `100`][])', 0), JMESPathCheck('length([].supportedServiceLevelObjectives[?performanceLevel.unit != `DTU`][])', 0)]) # Search for vcores self.cmd('sql db list-editions -l {} --vcore 2'.format(location), checks=[ # All results have 2 vcores JMESPathCheckGreaterThan('length([].supportedServiceLevelObjectives[?performanceLevel.value == `2`][])', 0), JMESPathCheck('length([].supportedServiceLevelObjectives[?performanceLevel.value != `2`][])', 0), JMESPathCheck('length([].supportedServiceLevelObjectives[?performanceLevel.unit != `VCores`][])', 0)]) # Search for db service objective - note that it's case insensitive # Checked items: # * Standard edition exists, other editions don't # * S0 service objective exists, others don't exist self.cmd('sql db list-editions -l {} --edition standard --service-objective s0'.format(location), checks=[JMESPathCheckExists("[?name == 'Standard']"), JMESPathCheck("length([?name != 'Standard'])", 0), JMESPathCheckExists("[].supportedServiceLevelObjectives[] | [?name == 'S0']"), JMESPathCheck("length([].supportedServiceLevelObjectives[] | [?name != 'S0'])", 0)]) pool_max_size_length_jmespath = 'length([].supportedElasticPoolPerformanceLevels[].supportedMaxSizes[])' pool_db_max_dtu_length_jmespath = 'length([].supportedElasticPoolPerformanceLevels[].supportedPerDatabaseMaxPerformanceLevels[])' pool_db_min_dtu_length_jmespath = ('length([].supportedElasticPoolPerformanceLevels[].supportedPerDatabaseMaxPerformanceLevels[]' '.supportedPerDatabaseMinPerformanceLevels[])') pool_db_max_size_length_jmespath = 'length([].supportedElasticPoolPerformanceLevels[].supportedPerDatabaseMaxSizes[])' # Get all elastic pool capabilities self.cmd('sql elastic-pool list-editions -l {}'.format(location), checks=[JMESPathCheckExists("[?name == 'Standard']"), # At least standard and premium edition exist JMESPathCheckExists("[?name == 'Premium']"), JMESPathCheck(pool_max_size_length_jmespath, 0), # Optional details are omitted JMESPathCheck(pool_db_max_dtu_length_jmespath, 0), JMESPathCheck(pool_db_min_dtu_length_jmespath, 0), JMESPathCheck(pool_db_max_size_length_jmespath, 0)]) # Search for elastic pool edition - note that it's case insensitive self.cmd('sql elastic-pool list-editions -l {} --edition standard'.format(location), checks=[JMESPathCheckExists("[?name == 'Standard']"), # Standard edition exists, other editions don't JMESPathCheck("length([?name != 'Standard'])", 0)]) # Search for dtus self.cmd('sql elastic-pool list-editions -l {} --dtu 100'.format(location), checks=[ # All results have 100 dtu JMESPathCheckGreaterThan('length([].supportedElasticPoolPerformanceLevels[?performanceLevel.value == `100`][])', 0), JMESPathCheck('length([].supportedElasticPoolPerformanceLevels[?performanceLevel.value != `100`][])', 0), JMESPathCheck('length([].supportedServiceLevelObjectives[?performanceLevel.unit != `DTU`][])', 0)]) # Search for vcores self.cmd('sql elastic-pool list-editions -l {} --vcore 2'.format(location), checks=[ # All results have 2 vcores JMESPathCheckGreaterThan('length([].supportedElasticPoolPerformanceLevels[?performanceLevel.value == `2`][])', 0), JMESPathCheck('length([].supportedElasticPoolPerformanceLevels[?performanceLevel.value != `2`][])', 0), JMESPathCheck('length([].supportedServiceLevelObjectives[?performanceLevel.unit != `VCores`][])', 0)]) # Get all db capabilities with pool max size self.cmd('sql elastic-pool list-editions -l {} --show-details max-size'.format(location), checks=[JMESPathCheckGreaterThan(pool_max_size_length_jmespath, 0), JMESPathCheck(pool_db_max_dtu_length_jmespath, 0), JMESPathCheck(pool_db_min_dtu_length_jmespath, 0), JMESPathCheck(pool_db_max_size_length_jmespath, 0)]) # Get all db capabilities with per db max size self.cmd('sql elastic-pool list-editions -l {} --show-details db-max-size'.format(location), checks=[JMESPathCheck(pool_max_size_length_jmespath, 0), JMESPathCheck(pool_db_max_dtu_length_jmespath, 0), JMESPathCheck(pool_db_min_dtu_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_max_size_length_jmespath, 0)]) # Get all db capabilities with per db max dtu self.cmd('sql elastic-pool list-editions -l {} --edition standard --show-details db-max-dtu'.format(location), checks=[JMESPathCheck(pool_max_size_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_max_dtu_length_jmespath, 0), JMESPathCheck(pool_db_min_dtu_length_jmespath, 0), JMESPathCheck(pool_db_max_size_length_jmespath, 0)]) # Get all db capabilities with per db min dtu (which is nested under per db max dtu) self.cmd('sql elastic-pool list-editions -l {} --edition standard --show-details db-min-dtu'.format(location), checks=[JMESPathCheck(pool_max_size_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_max_dtu_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_min_dtu_length_jmespath, 0), JMESPathCheck(pool_db_max_size_length_jmespath, 0)]) # Get all db capabilities with everything self.cmd('sql elastic-pool list-editions -l {} --edition standard --show-details db-min-dtu db-max-dtu ' 'db-max-size max-size'.format(location), checks=[JMESPathCheckGreaterThan(pool_max_size_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_max_dtu_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_min_dtu_length_jmespath, 0), JMESPathCheckGreaterThan(pool_db_max_size_length_jmespath, 0)]) class SqlServerImportExportMgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer() @SqlServerPreparer() @StorageAccountPreparer() def test_sql_db_import_export_mgmt(self, resource_group, resource_group_location, server, storage_account): location_long_name = 'westus' admin_login = 'admin123' admin_password = 'SecretPassword123' db_name = 'cliautomationdb01' db_name2 = 'cliautomationdb02' db_name3 = 'cliautomationdb03' blob = 'testbacpac.bacpac' blob2 = 'testbacpac2.bacpac' container = 'bacpacs' firewall_rule_1 = 'allowAllIps' start_ip_address_1 = '0.0.0.0' end_ip_address_1 = '0.0.0.0' # create server firewall rule self.cmd('sql server firewall-rule create --name {} -g {} --server {} ' '--start-ip-address {} --end-ip-address {}' .format(firewall_rule_1, resource_group, server, start_ip_address_1, end_ip_address_1), checks=[JMESPathCheck('name', firewall_rule_1), JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('startIpAddress', start_ip_address_1), JMESPathCheck('endIpAddress', end_ip_address_1)]) # create dbs self.cmd('sql db create -g {} --server {} --name {}' .format(resource_group, server, db_name), checks=[JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', db_name), JMESPathCheck('location', location_long_name), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online')]) self.cmd('sql db create -g {} --server {} --name {}' .format(resource_group, server, db_name2), checks=[JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', db_name2), JMESPathCheck('location', location_long_name), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online')]) self.cmd('sql db create -g {} --server {} --name {}' .format(resource_group, server, db_name3), checks=[JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('name', db_name3), JMESPathCheck('location', location_long_name), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online')]) # get storage account endpoint storage_endpoint = self.cmd('storage account show -g {} -n {}' ' --query primaryEndpoints.blob' .format(resource_group, storage_account)).get_output_in_json() bacpacUri = '{}{}/{}'.format(storage_endpoint, container, blob) bacpacUri2 = '{}{}/{}'.format(storage_endpoint, container, blob2) # get storage account key storageKey = self.cmd('storage account keys list -g {} -n {} --query [0].value' .format(resource_group, storage_account)).get_output_in_json() # Set Expiry expiryString = '9999-12-25T00:00:00Z' # Get sas key sasKey = self.cmd('storage blob generate-sas --account-name {} -c {} -n {} --permissions rw --expiry {}'.format( storage_account, container, blob2, expiryString)).get_output_in_json() # create storage account blob container self.cmd('storage container create -n {} --account-name {} --account-key {} ' .format(container, storage_account, storageKey), checks=[JMESPathCheck('created', True)]) # export database to blob container using both keys self.cmd('sql db export -s {} -n {} -g {} -p {} -u {}' ' --storage-key {} --storage-key-type StorageAccessKey' ' --storage-uri {}' .format(server, db_name, resource_group, admin_password, admin_login, storageKey, bacpacUri), checks=[JMESPathCheck('blobUri', bacpacUri), JMESPathCheck('databaseName', db_name), JMESPathCheck('requestType', 'Export'), JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('serverName', server), JMESPathCheck('status', 'Completed')]) self.cmd('sql db export -s {} -n {} -g {} -p {} -u {}' ' --storage-key {} --storage-key-type SharedAccessKey' ' --storage-uri {}' .format(server, db_name, resource_group, admin_password, admin_login, sasKey, bacpacUri2), checks=[JMESPathCheck('blobUri', bacpacUri2), JMESPathCheck('databaseName', db_name), JMESPathCheck('requestType', 'Export'), JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('serverName', server), JMESPathCheck('status', 'Completed')]) # import bacpac to second database using Storage Key self.cmd('sql db import -s {} -n {} -g {} -p {} -u {}' ' --storage-key {} --storage-key-type StorageAccessKey' ' --storage-uri {}' .format(server, db_name2, resource_group, admin_password, admin_login, storageKey, bacpacUri), checks=[JMESPathCheck('blobUri', bacpacUri), JMESPathCheck('databaseName', db_name2), JMESPathCheck('name', 'import'), JMESPathCheck('requestType', 'Import'), JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('serverName', server), JMESPathCheck('status', 'Completed')]) # import bacpac to third database using SAS key self.cmd('sql db import -s {} -n {} -g {} -p {} -u {}' ' --storage-key {} --storage-key-type SharedAccessKey' ' --storage-uri {}' .format(server, db_name3, resource_group, admin_password, admin_login, sasKey, bacpacUri2), checks=[JMESPathCheck('blobUri', bacpacUri2), JMESPathCheck('databaseName', db_name3), JMESPathCheck('name', 'import'), JMESPathCheck('requestType', 'Import'), JMESPathCheck('resourceGroup', resource_group), JMESPathCheck('serverName', server), JMESPathCheck('status', 'Completed')]) class SqlServerConnectionStringScenarioTest(ScenarioTest): def test_sql_db_conn_str(self): # ADO.NET, username/password conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c ado.net').get_output_in_json() self.assertEqual(conn_str, 'Server=tcp:myserver.database.windows.net,1433;Database=mydb;User ID=<username>;Password=<password>;Encrypt=true;Connection Timeout=30;') # ADO.NET, ADPassword conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c ado.net -a ADPassword').get_output_in_json() self.assertEqual(conn_str, 'Server=tcp:myserver.database.windows.net,1433;Database=mydb;User ID=<username>;Password=<password>;Encrypt=true;Connection Timeout=30;Authentication="Active Directory Password"') # ADO.NET, ADIntegrated conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c ado.net -a ADIntegrated').get_output_in_json() self.assertEqual(conn_str, 'Server=tcp:myserver.database.windows.net,1433;Database=mydb;Encrypt=true;Connection Timeout=30;Authentication="Active Directory Integrated"') # SqlCmd, username/password conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c sqlcmd').get_output_in_json() self.assertEqual(conn_str, 'sqlcmd -S tcp:myserver.database.windows.net,1433 -d mydb -U <username> -P <password> -N -l 30') # SqlCmd, ADPassword conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c sqlcmd -a ADPassword').get_output_in_json() self.assertEqual(conn_str, 'sqlcmd -S tcp:myserver.database.windows.net,1433 -d mydb -U <username> -P <password> -G -N -l 30') # SqlCmd, ADIntegrated conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c sqlcmd -a ADIntegrated').get_output_in_json() self.assertEqual(conn_str, 'sqlcmd -S tcp:myserver.database.windows.net,1433 -d mydb -G -N -l 30') # JDBC, user name/password conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c jdbc').get_output_in_json() self.assertEqual(conn_str, 'jdbc:sqlserver://myserver.database.windows.net:1433;database=mydb;user=<username>@myserver;password=<password>;encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;loginTimeout=30') # JDBC, ADPassword conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c jdbc -a ADPassword').get_output_in_json() self.assertEqual(conn_str, 'jdbc:sqlserver://myserver.database.windows.net:1433;database=mydb;user=<username>;password=<password>;encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;loginTimeout=30;authentication=ActiveDirectoryPassword') # JDBC, ADIntegrated conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c jdbc -a ADIntegrated').get_output_in_json() self.assertEqual(conn_str, 'jdbc:sqlserver://myserver.database.windows.net:1433;database=mydb;encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.database.windows.net;loginTimeout=30;authentication=ActiveDirectoryIntegrated') # PHP PDO, user name/password conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c php_pdo').get_output_in_json() self.assertEqual(conn_str, '$conn = new PDO("sqlsrv:server = tcp:myserver.database.windows.net,1433; Database = mydb; LoginTimeout = 30; Encrypt = 1; TrustServerCertificate = 0;", "<username>", "<password>");') # PHP PDO, ADPassword self.cmd('sql db show-connection-string -s myserver -n mydb -c php_pdo -a ADPassword', expect_failure=True) # PHP PDO, ADIntegrated self.cmd('sql db show-connection-string -s myserver -n mydb -c php_pdo -a ADIntegrated', expect_failure=True) # PHP, user name/password conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c php').get_output_in_json() self.assertEqual(conn_str, '$connectionOptions = array("UID"=>"<username>@myserver", "PWD"=>"<password>", "Database"=>mydb, "LoginTimeout" => 30, "Encrypt" => 1, "TrustServerCertificate" => 0); $serverName = "tcp:myserver.database.windows.net,1433"; $conn = sqlsrv_connect($serverName, $connectionOptions);') # PHP, ADPassword self.cmd('sql db show-connection-string -s myserver -n mydb -c php -a ADPassword', expect_failure=True) # PHP, ADIntegrated self.cmd('sql db show-connection-string -s myserver -n mydb -c php -a ADIntegrated', expect_failure=True) # ODBC, user name/password conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c odbc').get_output_in_json() self.assertEqual(conn_str, 'Driver={ODBC Driver 13 for SQL Server};Server=tcp:myserver.database.windows.net,1433;Database=mydb;Uid=<username>@myserver;Pwd=<password>;Encrypt=yes;TrustServerCertificate=no;') # ODBC, ADPassword conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c odbc -a ADPassword').get_output_in_json() self.assertEqual(conn_str, 'Driver={ODBC Driver 13 for SQL Server};Server=tcp:myserver.database.windows.net,1433;Database=mydb;Uid=<username>@myserver;Pwd=<password>;Encrypt=yes;TrustServerCertificate=no;Authentication=ActiveDirectoryPassword') # ODBC, ADIntegrated conn_str = self.cmd('sql db show-connection-string -s myserver -n mydb -c odbc -a ADIntegrated').get_output_in_json() self.assertEqual(conn_str, 'Driver={ODBC Driver 13 for SQL Server};Server=tcp:myserver.database.windows.net,1433;Database=mydb;Encrypt=yes;TrustServerCertificate=no;Authentication=ActiveDirectoryIntegrated') class SqlTransparentDataEncryptionScenarioTest(ScenarioTest): def wait_for_encryption_scan(self, rg, sn, db_name): active_scan = True retry_attempts = 5 while active_scan: tdeactivity = self.cmd('sql db tde list-activity -g {} -s {} -d {}' .format(rg, sn, db_name)).get_output_in_json() # if tdeactivity is an empty array, there is no ongoing encryption scan active_scan = (len(tdeactivity) > 0) time.sleep(10) retry_attempts -= 1 if retry_attempts <= 0: raise CliTestError("Encryption scan still ongoing: {}.".format(tdeactivity)) @ResourceGroupPreparer() @SqlServerPreparer() def test_sql_tde(self, resource_group, server): rg = resource_group sn = server db_name = self.create_random_name("sqltdedb", 20) # create database self.cmd('sql db create -g {} --server {} --name {}' .format(rg, sn, db_name)) # validate encryption is on by default self.cmd('sql db tde show -g {} -s {} -d {}' .format(rg, sn, db_name), checks=[JMESPathCheck('status', 'Enabled')]) self.wait_for_encryption_scan(rg, sn, db_name) # disable encryption self.cmd('sql db tde set -g {} -s {} -d {} --status Disabled' .format(rg, sn, db_name), checks=[JMESPathCheck('status', 'Disabled')]) self.wait_for_encryption_scan(rg, sn, db_name) # validate encryption is disabled self.cmd('sql db tde show -g {} -s {} -d {}' .format(rg, sn, db_name), checks=[JMESPathCheck('status', 'Disabled')]) # enable encryption self.cmd('sql db tde set -g {} -s {} -d {} --status Enabled' .format(rg, sn, db_name), checks=[JMESPathCheck('status', 'Enabled')]) self.wait_for_encryption_scan(rg, sn, db_name) # validate encryption is enabled self.cmd('sql db tde show -g {} -s {} -d {}' .format(rg, sn, db_name), checks=[JMESPathCheck('status', 'Enabled')]) @ResourceGroupPreparer() @SqlServerPreparer() def test_sql_tdebyok(self, resource_group, server): resource_prefix = 'sqltdebyok' # add identity to server server_resp = self.cmd('sql server update -g {} -n {} -i' .format(resource_group, server)).get_output_in_json() server_identity = server_resp['identity']['principalId'] # create db db_name = self.create_random_name(resource_prefix, 20) self.cmd('sql db create -g {} --server {} --name {}' .format(resource_group, server, db_name)) # create vault and acl server identity vault_name = self.create_random_name(resource_prefix, 24) self.cmd('keyvault create -g {} -n {} --enable-soft-delete true' .format(resource_group, vault_name)) self.cmd('keyvault set-policy -g {} -n {} --object-id {} --key-permissions wrapKey unwrapKey get list' .format(resource_group, vault_name, server_identity)) # create key key_name = self.create_random_name(resource_prefix, 32) key_resp = self.cmd('keyvault key create -n {} -p software --vault-name {}' .format(key_name, vault_name)).get_output_in_json() kid = key_resp['key']['kid'] # add server key server_key_resp = self.cmd('sql server key create -g {} -s {} -k {}' .format(resource_group, server, kid), checks=[ JMESPathCheck('uri', kid), JMESPathCheck('serverKeyType', 'AzureKeyVault')]) server_key_name = server_key_resp.get_output_in_json()['name'] # validate show key self.cmd('sql server key show -g {} -s {} -k {}' .format(resource_group, server, kid), checks=[ JMESPathCheck('uri', kid), JMESPathCheck('serverKeyType', 'AzureKeyVault'), JMESPathCheck('name', server_key_name)]) # validate list key (should return 2 items) self.cmd('sql server key list -g {} -s {}' .format(resource_group, server), checks=[JMESPathCheck('length(@)', 2)]) # validate encryption protector is service managed via show self.cmd('sql server tde-key show -g {} -s {}' .format(resource_group, server), checks=[ JMESPathCheck('serverKeyType', 'ServiceManaged'), JMESPathCheck('serverKeyName', 'ServiceManaged')]) # update encryption protector to akv key self.cmd('sql server tde-key set -g {} -s {} -t AzureKeyVault -k {}' .format(resource_group, server, kid), checks=[ JMESPathCheck('serverKeyType', 'AzureKeyVault'), JMESPathCheck('serverKeyName', server_key_name), JMESPathCheck('uri', kid)]) # validate encryption protector is akv via show self.cmd('sql server tde-key show -g {} -s {}' .format(resource_group, server), checks=[ JMESPathCheck('serverKeyType', 'AzureKeyVault'), JMESPathCheck('serverKeyName', server_key_name), JMESPathCheck('uri', kid)]) # update encryption protector to service managed self.cmd('sql server tde-key set -g {} -s {} -t ServiceManaged' .format(resource_group, server), checks=[ JMESPathCheck('serverKeyType', 'ServiceManaged'), JMESPathCheck('serverKeyName', 'ServiceManaged')]) # validate encryption protector is service managed via show self.cmd('sql server tde-key show -g {} -s {}' .format(resource_group, server), checks=[ JMESPathCheck('serverKeyType', 'ServiceManaged'), JMESPathCheck('serverKeyName', 'ServiceManaged')]) # delete server key self.cmd('sql server key delete -g {} -s {} -k {}' .format(resource_group, server, kid)) # wait for key to be deleted time.sleep(10) # validate deleted server key via list (should return 1 item) self.cmd('sql server key list -g {} -s {}' .format(resource_group, server), checks=[JMESPathCheck('length(@)', 1)]) class SqlServerVnetMgmtScenarioTest(ScenarioTest): @ResourceGroupPreparer() @SqlServerPreparer() def test_sql_vnet_mgmt(self, resource_group, resource_group_location, server): rg = resource_group vnet_rule_1 = 'rule1' vnet_rule_2 = 'rule2' # Create vnet's - vnet1 and vnet2 vnetName1 = 'vnet1' vnetName2 = 'vnet2' subnetName = 'subnet1' addressPrefix = '10.0.1.0/24' endpoint = 'Microsoft.Sql' # Vnet 1 without service endpoints to test ignore-missing-vnet-service-endpoint feature self.cmd('network vnet create -g {} -n {}'.format(rg, vnetName1)) self.cmd('network vnet subnet create -g {} --vnet-name {} -n {} --address-prefix {}' .format(rg, vnetName1, subnetName, addressPrefix)) vnet1 = self.cmd('network vnet subnet show -n {} --vnet-name {} -g {}' .format(subnetName, vnetName1, rg)).get_output_in_json() vnet_id_1 = vnet1['id'] # Vnet 2 self.cmd('network vnet create -g {} -n {}'.format(rg, vnetName2)) self.cmd('network vnet subnet create -g {} --vnet-name {} -n {} --address-prefix {} --service-endpoints {}' .format(rg, vnetName2, subnetName, addressPrefix, endpoint), checks=JMESPathCheck('serviceEndpoints[0].service', 'Microsoft.Sql')) vnet2 = self.cmd('network vnet subnet show -n {} --vnet-name {} -g {}' .format(subnetName, vnetName2, rg)).get_output_in_json() vnet_id_2 = vnet2['id'] # test sql server vnet-rule create using subnet name and vnet name and ignore-missing-vnet-service-endpoint flag self.cmd('sql server vnet-rule create --name {} -g {} --server {} --subnet {} --vnet-name {} -i' .format(vnet_rule_1, rg, server, subnetName, vnetName1)) # test sql server vnet-rule show rule 1 self.cmd('sql server vnet-rule show --name {} -g {} --server {}' .format(vnet_rule_1, rg, server), checks=[ JMESPathCheck('name', vnet_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('ignoreMissingVnetServiceEndpoint', True)]) # test sql server vnet-rule create using subnet id self.cmd('sql server vnet-rule create --name {} -g {} --server {} --subnet {}' .format(vnet_rule_2, rg, server, vnet_id_2), checks=[ JMESPathCheck('name', vnet_rule_2), JMESPathCheck('resourceGroup', rg), JMESPathCheck('virtualNetworkSubnetId', vnet_id_2), JMESPathCheck('ignoreMissingVnetServiceEndpoint', False)]) # test sql server vnet-rule update rule 1 with vnet 2 self.cmd('sql server vnet-rule update --name {} -g {} --server {} --subnet {}' .format(vnet_rule_1, rg, server, vnet_id_2), checks=[ JMESPathCheck('name', vnet_rule_1), JMESPathCheck('resourceGroup', rg), JMESPathCheck('virtualNetworkSubnetId', vnet_id_2), JMESPathCheck('ignoreMissingVnetServiceEndpoint', False)]) # test sql server vnet-rule update rule 2 with vnet 1 and ignore-missing-vnet-service-endpoint flag self.cmd('sql server vnet-rule update --name {} -g {} --server {} --subnet {} -i' .format(vnet_rule_2, rg, server, vnet_id_1), checks=[JMESPathCheck('name', vnet_rule_2), JMESPathCheck('resourceGroup', rg), JMESPathCheck('virtualNetworkSubnetId', vnet_id_1), JMESPathCheck('ignoreMissingVnetServiceEndpoint', True)]) # test sql server vnet-rule list self.cmd('sql server vnet-rule list -g {} --server {}'.format(rg, server), checks=[JMESPathCheck('length(@)', 2)]) # test sql server vnet-rule delete rule 1 self.cmd('sql server vnet-rule delete --name {} -g {} --server {}'.format(vnet_rule_1, rg, server), checks=NoneCheck()) # test sql server vnet-rule delete rule 2 self.cmd('sql server vnet-rule delete --name {} -g {} --server {}'.format(vnet_rule_2, rg, server), checks=NoneCheck()) class SqlSubscriptionUsagesScenarioTest(ScenarioTest): def test_sql_subscription_usages(self): self.cmd('sql list-usages -l westus', checks=[JMESPathCheckGreaterThan('length(@)', 0)]) self.cmd('sql show-usage -l westus -u ServerQuota', checks=[ JMESPathCheck('name', 'ServerQuota'), JMESPathCheckGreaterThan('limit', 0)]) class SqlZoneResilienceScenarioTest(ScenarioTest): @ResourceGroupPreparer(location='centralus') @SqlServerPreparer(location='centralus') @AllowLargeResponse() def test_sql_zone_resilient_database(self, resource_group, resource_group_location, server): database_name = "createUnzonedUpdateToZonedDb" database_name_2 = "createZonedUpdateToUnzonedDb" database_name_3 = "updateNoParamForUnzonedDb" database_name_4 = "updateNoParamForZonedDb" rg = resource_group loc_display = "centralus" # Test creating database with zone resilience set to false. Expect regular database created. self.cmd('sql db create -g {} --server {} --name {} --edition {} --zone-redundant {}' .format(rg, server, database_name, "Premium", False), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('location', loc_display), JMESPathCheck('elasticPoolId', None), JMESPathCheck('edition', 'Premium'), JMESPathCheck('sku.tier', 'Premium'), JMESPathCheck('zoneRedundant', False)]) # Test running update on regular database with zone resilience set to true. Expect zone resilience to update to true. self.cmd('sql db update -g {} -s {} -n {} --service-objective {} --zone-redundant' .format(rg, server, database_name, 'P1'), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online'), JMESPathCheck('requestedServiceObjectiveName', 'P1'), JMESPathCheck('zoneRedundant', True)]) # Test creating database with zone resilience set to true. Expect zone resilient database created. self.cmd('sql db create -g {} --server {} --name {} --edition {} --z' .format(rg, server, database_name_2, "Premium"), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_2), JMESPathCheck('location', loc_display), JMESPathCheck('elasticPoolId', None), JMESPathCheck('edition', 'Premium'), JMESPathCheck('sku.tier', 'Premium'), JMESPathCheck('zoneRedundant', True)]) # Test running update on zoned database with zone resilience set to false. Expect zone resilience to update to false self.cmd('sql db update -g {} -s {} -n {} --service-objective {} --z {}' .format(rg, server, database_name_2, 'P1', False), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_2), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online'), JMESPathCheck('requestedServiceObjectiveName', 'P1'), JMESPathCheck('zoneRedundant', False)]) # Create database with no zone resilience set. Expect regular database created. self.cmd('sql db create -g {} --server {} --name {} --edition {}' .format(rg, server, database_name_3, "Premium"), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_3), JMESPathCheck('location', loc_display), JMESPathCheck('elasticPoolId', None), JMESPathCheck('edition', 'Premium'), JMESPathCheck('sku.tier', 'Premium'), JMESPathCheck('zoneRedundant', False)]) # Test running update on regular database with no zone resilience set. Expect zone resilience to stay false. self.cmd('sql db update -g {} -s {} -n {} --service-objective {}' .format(rg, server, database_name_3, 'P2'), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_3), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online'), JMESPathCheck('requestedServiceObjectiveName', 'P2'), JMESPathCheck('zoneRedundant', False)]) # Create database with zone resilience set. Expect zone resilient database created. self.cmd('sql db create -g {} --server {} --name {} --edition {} --zone-redundant' .format(rg, server, database_name_4, "Premium"), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_4), JMESPathCheck('location', loc_display), JMESPathCheck('elasticPoolId', None), JMESPathCheck('edition', 'Premium'), JMESPathCheck('sku.tier', 'Premium'), JMESPathCheck('zoneRedundant', True)]) # Test running update on zoned database with no zone resilience set. Expect zone resilience to stay true. self.cmd('sql db update -g {} -s {} -n {} --service-objective {}' .format(rg, server, database_name_4, 'P2'), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', database_name_4), JMESPathCheck('elasticPoolId', None), JMESPathCheck('status', 'Online'), JMESPathCheck('requestedServiceObjectiveName', 'P2'), JMESPathCheck('zoneRedundant', True)]) @ResourceGroupPreparer(location='centralus') @SqlServerPreparer(location='centralus') @AllowLargeResponse() def test_sql_zone_resilient_pool(self, resource_group, resource_group_location, server): pool_name = "createUnzonedUpdateToZonedPool" pool_name_2 = "createZonedUpdateToUnzonedPool" pool_name_3 = "updateNoParamForUnzonedPool" pool_name_4 = "updateNoParamForZonedPool" rg = resource_group # Test creating pool with zone resilience set to false. Expect regular pool created. self.cmd('sql elastic-pool create -g {} --server {} --name {} --edition {} --z {}' .format(rg, server, pool_name, "Premium", False)) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name), JMESPathCheck('state', 'Ready'), JMESPathCheck('edition', 'Premium'), JMESPathCheck('zoneRedundant', False)]) # Test running update on regular pool with zone resilience set to true. Expect zone resilience to update to true self.cmd('sql elastic-pool update -g {} -s {} -n {} --z' .format(rg, server, pool_name)) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name), JMESPathCheck('zoneRedundant', True)]) # Test creating pool with zone resilience set to true. Expect zone resilient pool created. self.cmd('sql elastic-pool create -g {} --server {} --name {} --edition {} --zone-redundant' .format(rg, server, pool_name_2, "Premium")) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name_2), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name_2), JMESPathCheck('state', 'Ready'), JMESPathCheck('edition', 'Premium'), JMESPathCheck('zoneRedundant', True)]) # Test running update on zoned pool with zone resilience set to false. Expect zone resilience to update to false self.cmd('sql elastic-pool update -g {} -s {} -n {} --zone-redundant {}' .format(rg, server, pool_name_2, False)) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name_2), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name_2), JMESPathCheck('zoneRedundant', False)]) # Create pool with no zone resilience set. Expect regular pool created. self.cmd('sql elastic-pool create -g {} --server {} --name {} --edition {}' .format(rg, server, pool_name_3, "Premium")) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name_3), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name_3), JMESPathCheck('state', 'Ready'), JMESPathCheck('edition', 'Premium'), JMESPathCheck('zoneRedundant', False)]) # Test running update on regular pool with no zone resilience set. Expect zone resilience to stay false self.cmd('sql elastic-pool update -g {} -s {} -n {} --dtu {}' .format(rg, server, pool_name_3, 250)) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name_3), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name_3), JMESPathCheck('dtu', 250), JMESPathCheck('zoneRedundant', False)]) # Create pool with zone resilience set. Expect zone resilient pool created. self.cmd('sql elastic-pool create -g {} --server {} --name {} --edition {} --zone-redundant' .format(rg, server, pool_name_4, "Premium")) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name_4), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name_4), JMESPathCheck('state', 'Ready'), JMESPathCheck('edition', 'Premium'), JMESPathCheck('zoneRedundant', True)]) # Test running update on zoned pool with no zone resilience set. Expect zone resilience to stay true self.cmd('sql elastic-pool update -g {} -s {} -n {} --dtu {}' .format(rg, server, pool_name_4, 250, True)) self.cmd('sql elastic-pool show -g {} --server {} --name {}' .format(rg, server, pool_name_4), checks=[ JMESPathCheck('resourceGroup', rg), JMESPathCheck('name', pool_name_4), JMESPathCheck('dtu', 250), JMESPathCheck('zoneRedundant', True)]) class SqlManagedInstanceMgmtScenarioTest(ScenarioTest): @record_only() def test_sql_managed_instance_mgmt(self): managed_instance_name_1 = self.create_random_name(managed_instance_name_prefix, managed_instance_name_max_length) managed_instance_name_2 = self.create_random_name(managed_instance_name_prefix, managed_instance_name_max_length) admin_login = 'admin123' admin_passwords = ['SecretPassword123', 'SecretPassword456'] is_playback = os.path.exists(self.recording_file) if is_playback: subnet = '/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/cl_one/providers/Microsoft.Network/virtualNetworks/cl_initial/subnets/CLean' else: subnet = '/subscriptions/ee5ea899-0791-418f-9270-77cd8273794b/resourceGroups/cl_one/providers/Microsoft.Network/virtualNetworks/cl_initial/subnets/CooL' license_type = 'LicenseIncluded' loc = 'westcentralus' v_cores = 8 storage_size_in_gb = '64' edition = 'GeneralPurpose' family = 'Gen4' resource_group_1 = "cl_one" user = admin_login # test create sql managed_instance with minimal required parameters managed_instance_1 = self.cmd('sql mi create -g {} -n {} -l {} ' '-u {} -p {} --subnet {} --license-type {} --capacity {} --storage {} --edition {} --family {}' .format(resource_group_1, managed_instance_name_1, loc, user, admin_passwords[0], subnet, license_type, v_cores, storage_size_in_gb, edition, family), checks=[ JMESPathCheck('name', managed_instance_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('vCores', v_cores), JMESPathCheck('storageSizeInGb', storage_size_in_gb), JMESPathCheck('licenseType', license_type), JMESPathCheck('sku.tier', edition), JMESPathCheck('sku.family', family), JMESPathCheck('sku.capacity', v_cores), JMESPathCheck('identity', None)]).get_output_in_json() # test show sql managed instance 1 self.cmd('sql mi show -g {} -n {}' .format(resource_group_1, managed_instance_name_1), checks=[ JMESPathCheck('name', managed_instance_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user)]) # test show sql managed instance 1 using id self.cmd('sql mi show --id {}' .format(managed_instance_1['id']), checks=[ JMESPathCheck('name', managed_instance_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user)]) # test update sql managed_instance self.cmd('sql mi update -g {} -n {} --admin-password {} -i' .format(resource_group_1, managed_instance_name_1, admin_passwords[1]), checks=[ JMESPathCheck('name', managed_instance_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('identity.type', 'SystemAssigned')]) # test update without identity parameter, validate identity still exists # also use --id instead of -g/-n self.cmd('sql mi update --id {} --admin-password {}' .format(managed_instance_1['id'], admin_passwords[0]), checks=[ JMESPathCheck('name', managed_instance_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('identity.type', 'SystemAssigned')]) # test create another sql managed instance, with identity this time self.cmd('sql mi create -g {} -n {} -l {} -i ' '--admin-user {} --admin-password {} --subnet {} --license-type {} --capacity {} --storage {} --edition {} --family {}' .format(resource_group_1, managed_instance_name_2, loc, user, admin_passwords[0], subnet, license_type, v_cores, storage_size_in_gb, edition, family), checks=[ JMESPathCheck('name', managed_instance_name_2), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('vCores', v_cores), JMESPathCheck('storageSizeInGb', storage_size_in_gb), JMESPathCheck('licenseType', license_type), JMESPathCheck('sku.tier', edition), JMESPathCheck('sku.family', family), JMESPathCheck('sku.capacity', v_cores), JMESPathCheck('identity.type', 'SystemAssigned')]) # test show sql managed instance 2 self.cmd('sql mi show -g {} -n {}' .format(resource_group_1, managed_instance_name_2), checks=[ JMESPathCheck('name', managed_instance_name_2), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user)]) # test list sql managed_instance in the subscription should be at least 2 self.cmd('sql mi list', checks=[JMESPathCheckGreaterThan('length(@)', 1)]) # test delete sql managed instance self.cmd('sql mi delete --id {} --yes' .format(managed_instance_1['id']), checks=NoneCheck()) self.cmd('sql mi delete -g {} -n {} --yes' .format(resource_group_1, managed_instance_name_2), checks=NoneCheck()) # test show sql managed instance doesn't return anything self.cmd('sql mi show -g {} -n {}' .format(resource_group_1, managed_instance_name_1), expect_failure=True) # test show sql managed instance doesn't return anything self.cmd('sql mi show -g {} -n {}' .format(resource_group_1, managed_instance_name_2), expect_failure=True) class SqlManagedInstanceDbMgmtScenarioTest(ScenarioTest): @record_only() def test_sql_managed_db_mgmt(self): database_name = "cliautomationdb01" database_name_restored = "restoredcliautomationdb01" managed_instance_name_1 = self.create_random_name(managed_instance_name_prefix, managed_instance_name_max_length) admin_login = 'admin123' admin_passwords = ['SecretPassword123', 'SecretPassword456'] is_playback = os.path.exists(self.recording_file) if is_playback: subnet = '/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/cl_one/providers/Microsoft.Network/virtualNetworks/cl_initial/subnets/CLean' else: subnet = '/subscriptions/ee5ea899-0791-418f-9270-77cd8273794b/resourceGroups/cl_one/providers/Microsoft.Network/virtualNetworks/cl_initial/subnets/CooL' license_type = 'LicenseIncluded' loc = 'westcentralus' v_cores = 8 storage_size_in_gb = '64' edition = 'GeneralPurpose' family = 'Gen4' resource_group_1 = "cl_one" collation = "Latin1_General_100_CS_AS_SC" user = admin_login # Prepare managed instance for test managed_instance_1 = self.cmd('sql mi create -g {} -n {} -l {} ' '-u {} -p {} --subnet {} --license-type {} --capacity {} --storage {} --edition {} --family {}' .format(resource_group_1, managed_instance_name_1, loc, user, admin_passwords[0], subnet, license_type, v_cores, storage_size_in_gb, edition, family), checks=[ JMESPathCheck('name', managed_instance_name_1), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('administratorLogin', user), JMESPathCheck('vCores', v_cores), JMESPathCheck('storageSizeInGb', storage_size_in_gb), JMESPathCheck('licenseType', license_type), JMESPathCheck('sku.tier', edition), JMESPathCheck('sku.family', family), JMESPathCheck('sku.capacity', v_cores), JMESPathCheck('identity', None)]).get_output_in_json() # test sql db commands db1 = self.cmd('sql midb create -g {} --mi {} -n {} --collation {}' .format(resource_group_1, managed_instance_name_1, database_name, collation), checks=[ JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('name', database_name), JMESPathCheck('location', loc), JMESPathCheck('collation', collation), JMESPathCheck('status', 'Online')]).get_output_in_json() time.sleep(300) # Sleeping 5 minutes should be enough for the restore to be possible (Skipped under playback mode) # test sql db restore command db1 = self.cmd('sql midb restore -g {} --mi {} -n {} --dest-name {} --time {}' .format(resource_group_1, managed_instance_name_1, database_name, database_name_restored, datetime.utcnow().isoformat()), checks=[ JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('name', database_name_restored), JMESPathCheck('location', loc), JMESPathCheck('status', 'Online')]).get_output_in_json() self.cmd('sql midb list -g {} --managed-instance {}' .format(resource_group_1, managed_instance_name_1), checks=[JMESPathCheck('length(@)', 2)]) # Show by group/managed_instance/database-name self.cmd('sql midb show -g {} --managed-instance {} -n {}' .format(resource_group_1, managed_instance_name_1, database_name), checks=[ JMESPathCheck('name', database_name), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('location', loc), JMESPathCheck('collation', collation), JMESPathCheck('status', 'Online')]) # Show by id self.cmd('sql midb show --id {}' .format(db1['id']), checks=[ JMESPathCheck('name', database_name_restored), JMESPathCheck('resourceGroup', resource_group_1), JMESPathCheck('location', loc), JMESPathCheck('collation', collation), JMESPathCheck('status', 'Online')]) # Delete by group/server/name self.cmd('sql midb delete -g {} --managed-instance {} -n {} --yes' .format(resource_group_1, managed_instance_name_1, database_name), checks=[NoneCheck()]) # test show sql managed db doesn't return anything self.cmd('sql midb show -g {} --managed-instance {} -n {}' .format(resource_group_1, managed_instance_name_1, database_name), expect_failure=True) self.cmd('sql mi delete --id {} --yes' .format(managed_instance_1['id']), checks=NoneCheck()) class SqlFailoverGroupMgmtScenarioTest(ScenarioTest): # create 2 servers in the same resource group, and 1 server in a different resource group @ResourceGroupPreparer(parameter_name="resource_group_1", parameter_name_for_location="resource_group_location_1") @ResourceGroupPreparer(parameter_name="resource_group_2", parameter_name_for_location="resource_group_location_2") @SqlServerPreparer(parameter_name="server_name_1", resource_group_parameter_name="resource_group_1", location='westus') @SqlServerPreparer(parameter_name="server_name_2", resource_group_parameter_name="resource_group_2", location='eastus') def test_sql_failover_group_mgmt(self, resource_group_1, resource_group_location_1, resource_group_2, resource_group_location_2, server_name_1, server_name_2): # helper class so that it's clear which servers are in which groups class ServerInfo(object): # pylint disable=too-few-public-methods def __init__(self, name, group, location): self.name = name self.group = group self.location = location from azure.cli.core.commands.client_factory import get_subscription_id s1 = ServerInfo(server_name_1, resource_group_1, resource_group_location_1) s2 = ServerInfo(server_name_2, resource_group_2, resource_group_location_2) failover_group_name = "fgclitest1070" database_name = "db1" server2_id = "/subscriptions/{}/resourceGroups/{}/providers/Microsoft.Sql/servers/{}".format( get_subscription_id(self.cli_ctx), resource_group_2, server_name_2) # Create database on primary server self.cmd('sql db create -g {} --server {} --name {}' .format(s1.group, s1.name, database_name), checks=[ JMESPathCheck('resourceGroup', s1.group), JMESPathCheck('name', database_name) ]) # Create Failover Group self.cmd('sql failover-group create -n {} -g {} -s {} --partner-resource-group {} --partner-server {} --failover-policy Automatic --grace-period 2' .format(failover_group_name, s1.group, s1.name, s2.group, s2.name), checks=[ JMESPathCheck('name', failover_group_name), JMESPathCheck('resourceGroup', s1.group), JMESPathCheck('partnerServers[0].id', server2_id), JMESPathCheck('readWriteEndpoint.failoverPolicy', 'Automatic'), JMESPathCheck('readWriteEndpoint.failoverWithDataLossGracePeriodMinutes', 120), JMESPathCheck('readOnlyEndpoint.failoverPolicy', 'Disabled'), JMESPathCheck('length(databases)', 0) ]) # List of all failover groups on the primary server self.cmd('sql failover-group list -g {} -s {}' .format(s1.group, s1.name), checks=[ JMESPathCheck('length(@)', 1), JMESPathCheck('[0].name', failover_group_name), JMESPathCheck('[0].replicationRole', 'Primary') ]) # Get Failover Group on a partner server and check if role is secondary self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s2.group, s2.name, failover_group_name), checks=[ JMESPathCheck('name', failover_group_name), JMESPathCheck('readWriteEndpoint.failoverPolicy', 'Automatic'), JMESPathCheck('readWriteEndpoint.failoverWithDataLossGracePeriodMinutes', 120), JMESPathCheck('readOnlyEndpoint.failoverPolicy', 'Disabled'), JMESPathCheck('replicationRole', 'Secondary'), JMESPathCheck('length(databases)', 0) ]) # Update Failover Group self.cmd('sql failover-group update -g {} -s {} -n {} --grace-period 3 --add-db {}' .format(s1.group, s1.name, failover_group_name, database_name), checks=[ JMESPathCheck('readWriteEndpoint.failoverPolicy', 'Automatic'), JMESPathCheck('readWriteEndpoint.failoverWithDataLossGracePeriodMinutes', 180), JMESPathCheck('readOnlyEndpoint.failoverPolicy', 'Disabled'), JMESPathCheck('length(databases)', 1) ]) # Check if properties got propagated to secondary server self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s2.group, s2.name, failover_group_name), checks=[ JMESPathCheck('name', failover_group_name), JMESPathCheck('readWriteEndpoint.failoverPolicy', 'Automatic'), JMESPathCheck('readWriteEndpoint.failoverWithDataLossGracePeriodMinutes', 180), JMESPathCheck('readOnlyEndpoint.failoverPolicy', 'Disabled'), JMESPathCheck('replicationRole', 'Secondary'), JMESPathCheck('length(databases)', 1) ]) # Check if database is created on partner side self.cmd('sql db list -g {} -s {}' .format(s2.group, s2.name), checks=[ JMESPathCheck('length(@)', 2) ]) # Failover Failover Group self.cmd('sql failover-group set-primary -g {} -s {} -n {}' .format(s2.group, s2.name, failover_group_name)) # The failover operation is completed when new primary is promoted to primary role # But there is a async part to make old primary a new secondary # And we have to wait for this to complete if we are recording the test if self.in_recording: time.sleep(30) # Check the roles of failover groups to confirm failover happened self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s2.group, s2.name, failover_group_name), checks=[ JMESPathCheck('replicationRole', 'Primary') ]) self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s1.group, s1.name, failover_group_name), checks=[ JMESPathCheck('replicationRole', 'Secondary') ]) # Fail back to original server self.cmd('sql failover-group set-primary --allow-data-loss -g {} -s {} -n {}' .format(s1.group, s1.name, failover_group_name)) # The failover operation is completed when new primary is promoted to primary role # But there is a async part to make old primary a new secondary # And we have to wait for this to complete if we are recording the test if self.in_recording: time.sleep(30) # Check the roles of failover groups to confirm failover happened self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s2.group, s2.name, failover_group_name), checks=[ JMESPathCheck('replicationRole', 'Secondary') ]) self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s1.group, s1.name, failover_group_name), checks=[ JMESPathCheck('replicationRole', 'Primary') ]) # Do no-op failover to the same server self.cmd('sql failover-group set-primary -g {} -s {} -n {}' .format(s1.group, s1.name, failover_group_name)) # Check the roles of failover groups to confirm failover didn't happen self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s2.group, s2.name, failover_group_name), checks=[ JMESPathCheck('replicationRole', 'Secondary') ]) self.cmd('sql failover-group show -g {} -s {} -n {}' .format(s1.group, s1.name, failover_group_name), checks=[ JMESPathCheck('replicationRole', 'Primary') ]) # Remove database from failover group self.cmd('sql failover-group update -g {} -s {} -n {} --remove-db {}' .format(s1.group, s1.name, failover_group_name, database_name), checks=[ JMESPathCheck('readWriteEndpoint.failoverPolicy', 'Automatic'), JMESPathCheck('readWriteEndpoint.failoverWithDataLossGracePeriodMinutes', 180), JMESPathCheck('readOnlyEndpoint.failoverPolicy', 'Disabled'), JMESPathCheck('length(databases)', 0) ]) # Check if database got removed self.cmd('sql db show -g {} -s {} -n {}' .format(s2.group, s2.name, database_name), checks=[ JMESPathCheck('[0].failoverGroupId', 'None') ]) # Drop failover group self.cmd('sql failover-group delete -g {} -s {} -n {}' .format(s1.group, s1.name, failover_group_name)) # Check if failover group really got dropped self.cmd('sql failover-group list -g {} -s {}' .format(s1.group, s1.name), checks=[ JMESPathCheck('length(@)', 0) ]) self.cmd('sql failover-group list -g {} -s {}' .format(s2.group, s2.name), checks=[ JMESPathCheck('length(@)', 0) ])
51.598857
316
0.566283
08cb8cf06f6c9990f32354dde49cad203252d2cf
9,926
py
Python
src/sage/tests/arxiv_0812_2725.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
3
2019-07-15T13:48:24.000Z
2019-11-08T12:31:43.000Z
src/sage/tests/arxiv_0812_2725.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
2
2018-10-30T13:40:20.000Z
2020-07-23T12:13:30.000Z
src/sage/tests/arxiv_0812_2725.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
3
2020-03-29T17:13:36.000Z
2021-05-03T18:11:28.000Z
r""" Sage code for computing k-distant crossing numbers. This code accompanies the article :arxiv:`0812.2725`. It is being submitted because of a suggestion from http://groups.google.com/group/sage-support/msg/3ea7ed2eeab0824a. Right now, this code only computes k-dcrossings. If you are only interested in the distribution, this is good enough because the extended Kasraoui-Zeng involution tells us the distribution of k-dcrossings and k-dnestings is symmetric. It would be nice, though, to have a function which actually performed that involution. AUTHORS: - Dan Drake (2008-12-15): initial version. EXAMPLES: The example given in the paper. Note that in this format, we omit fixed points since they cannot create any sort of crossing. :: sage: from sage.tests.arxiv_0812_2725 import * sage: dcrossing([(1,5), (2,4), (4,9), (6,12), (7,10), (10,11)]) 3 """ #***************************************************************************** # Copyright (C) 2008 Dan Drake <ddrake@member.ams.org> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or (at # your option) any later version. # # See http://www.gnu.org/licenses/. #***************************************************************************** from six.moves import range from sage.combinat.set_partition import SetPartitions as SetPartitions def CompleteMatchings(n): """ Return a generator for the complete matchings of the set [1..n]. INPUT: n -- nonnegative integer OUTPUT: A generator for the complete matchings of the set [1..n], or, what is basically the same thing, complete matchings of the graph K_n. Each complete matching is represented by a list of 2-element tuples. EXAMPLES: There are 3 complete matchings on 4 vertices:: sage: from sage.tests.arxiv_0812_2725 import * sage: [m for m in CompleteMatchings(4)] [[(3, 4), (1, 2)], [(2, 4), (1, 3)], [(2, 3), (1, 4)]] There are no complete matchings on an odd number of vertices; the number of complete matchings on an even number of vertices is a double factorial:: sage: from sage.tests.arxiv_0812_2725 import * sage: [len([m for m in CompleteMatchings(n)]) for n in [0..8]] [1, 0, 1, 0, 3, 0, 15, 0, 105] The exact behavior of CompleteMatchings(n) if n is not a nonnegative integer depends on what [1..n] returns, and also on what range(1, len([1..n])) is. """ for m in matchingsset(list(range(1, n + 1))): yield m def matchingsset(L): """ Return a generator for complete matchings of the sequence L. This is not really meant to be called directly, but rather by CompleteMatchings(). INPUT: L -- a sequence. Lists, tuples, et cetera; anything that supports len() and slicing should work. OUTPUT: A generator for complete matchings on K_n, where n is the length of L and vertices are labeled by elements of L. Each matching is represented by a list of 2-element tuples. EXAMPLES:: sage: from sage.tests.arxiv_0812_2725 import * sage: [m for m in matchingsset(('a', 'b', 'c', 'd'))] [[('c', 'd'), ('a', 'b')], [('b', 'd'), ('a', 'c')], [('b', 'c'), ('a', 'd')]] There's only one matching of the empty set/list/tuple: the empty matching. :: sage: [m for m in matchingsset(())] [[]] """ if not L: yield [] else: for k in range(1, len(L)): for m in matchingsset(L[1: k] + L[k + 1:]): yield m + [(L[0], L[k])] def dcrossing(m_): """ Return the largest k for which the given matching or set partition has a k-distant crossing. INPUT: m -- a matching or set partition, as a list of 2-element tuples representing the edges. You'll need to call setp_to_edges() on the objects returned by SetPartitions() to put them into the proper format. OUTPUT: The largest k for which the object has a k-distant crossing. Matchings and set partitions with no crossings at all yield -1. EXAMPLES: The main example from the paper:: sage: from sage.tests.arxiv_0812_2725 import * sage: dcrossing(setp_to_edges(Set(map(Set, [[1,5],[2,4,9],[3],[6,12],[7,10,11],[8]])))) 3 A matching example:: sage: from sage.tests.arxiv_0812_2725 import * sage: dcrossing([(4, 7), (3, 6), (2, 5), (1, 8)]) 2 TESTS: The empty matching and set partition are noncrossing:: sage: dcrossing([]) -1 sage: dcrossing(Set([])) -1 One edge:: sage: dcrossing([Set((1,2))]) -1 sage: dcrossing(Set([Set((1,2))])) -1 Set partition with block of size >= 3 is always at least 0-dcrossing:: sage: dcrossing(setp_to_edges(Set([Set((1,2,3))]))) 0 """ d = -1 m = list(m_) while len(m): e1_ = m.pop() for e2_ in m: e1, e2 = sorted(e1_), sorted(e2_) if (e1[0] < e2[0] and e2[0] <= e1[1] and e1[1] < e2[1] and e1[1] - e2[0] > d): d = e1[1] - e2[0] if (e2[0] < e1[0] and e1[0] <= e2[1] and e2[1] < e1[1] and e2[1] - e1[0] > d): d = e2[1] - e1[0] return d def setp_to_edges(p): """ Transform a set partition into a list of edges. INPUT: p -- a Sage set partition. OUTPUT: A list of non-loop edges of the set partition. As this code just works with crossings, we can ignore the loops. EXAMPLES: The main example from the paper:: sage: from sage.tests.arxiv_0812_2725 import * sage: sorted(setp_to_edges(Set(map(Set, [[1,5],[2,4,9],[3],[6,12],[7,10,11],[8]])))) [[1, 5], [2, 4], [4, 9], [6, 12], [7, 10], [10, 11]] """ q = [sorted(list(b)) for b in p] ans = [] for b in q: for n in range(len(b) - 1): ans.append(b[n: n + 2]) return ans def dcrossvec_setp(n): """ Return a list with the distribution of k-dcrossings on set partitions of [1..n]. INPUT: n -- a nonnegative integer. OUTPUT: A list whose k'th entry is the number of set partitions p for which dcrossing(p) = k. For example, let L = dcrossvec_setp(3). We have L = [1, 0, 4]. L[0] is 1 because there's 1 partition of [1..3] that has 0-dcrossing: [(1, 2, 3)]. One tricky bit is that noncrossing matchings get put at the end, because L[-1] is the last element of the list. Above, we have L[-1] = 4 because the other four set partitions are all d-noncrossing. Because of this, you should not think of the last element of the list as having index n-1, but rather -1. EXAMPLES:: sage: from sage.tests.arxiv_0812_2725 import * sage: dcrossvec_setp(3) [1, 0, 4] sage: dcrossvec_setp(4) [5, 1, 0, 9] The one set partition of 1 element is noncrossing, so the last element of the list is 1:: sage: dcrossvec_setp(1) [1] """ vec = [0] * n for p in SetPartitions(n): vec[dcrossing(setp_to_edges(p))] += 1 return vec def dcrossvec_cm(n): """ Return a list with the distribution of k-dcrossings on complete matchings on n vertices. INPUT: n -- a nonnegative integer. OUTPUT: A list whose k'th entry is the number of complete matchings m for which dcrossing(m) = k. For example, let L = dcrossvec_cm(4). We have L = [0, 1, 0, 2]. L[1] is 1 because there's one matching on 4 vertices that is 1-dcrossing: [(2, 4), (1, 3)]. L[0] is zero because dcrossing() returns the *largest* k for which the matching has a dcrossing, and 0-dcrossing is equivalent to 1-dcrossing for complete matchings. One tricky bit is that noncrossing matchings get put at the end, because L[-1] is the last element of the list. Because of this, you should not think of the last element of the list as having index n-1, but rather -1. If n is negative, you get silly results. Don't use them in your next paper. :) EXAMPLES: The single complete matching on 2 vertices has no crossings, so the only nonzero entry of the list (the last entry) is 1:: sage: from sage.tests.arxiv_0812_2725 import * sage: dcrossvec_cm(2) [0, 1] Similarly, the empty matching has no crossings:: sage: dcrossvec_cm(0) [1] For odd n, there are no complete matchings, so the list has all zeros:: sage: dcrossvec_cm(5) [0, 0, 0, 0, 0] sage: dcrossvec_cm(4) [0, 1, 0, 2] """ vec = [0] * max(n, 1) for m in CompleteMatchings(n): vec[dcrossing(m)] += 1 return vec def tablecolumn(n, k): """ Return column n of Table 1 or 2 from the paper :arxiv:`0812.2725`. INPUT: n -- positive integer. k -- integer for which table you want: Table 1 is complete matchings, Table 2 is set partitions. OUTPUT: The n'th column of the table as a list. This is basically just the partial sums of dcrossvec_{cm,setp}(n). table2column(1, 2) incorrectly returns [], instead of [1], but you probably don't need this function to work through n = 1. EXAMPLES: Complete matchings:: sage: from sage.tests.arxiv_0812_2725 import * sage: tablecolumn(2, 1) [1] sage: tablecolumn(6, 1) [5, 5, 11, 14, 15] Set partitions:: sage: tablecolumn(5, 2) [21, 42, 51, 52] sage: tablecolumn(2, 2) [2] """ if k == 1: v = dcrossvec_cm(n) else: v = dcrossvec_setp(n) i = v[-1] return [i + sum(v[:k]) for k in range(len(v) - 1)]
27.803922
95
0.597925
cb95708b21e8a539d8d229f7db0e554aa99bbe3d
277
py
Python
giico/quality_control_and_material_testing/doctype/water_absorption_test_for_concrete_cube/water_absorption_test_for_concrete_cube.py
thispl/giico
14c5631639ab56a586a7962be9871d722c20e205
[ "MIT" ]
null
null
null
giico/quality_control_and_material_testing/doctype/water_absorption_test_for_concrete_cube/water_absorption_test_for_concrete_cube.py
thispl/giico
14c5631639ab56a586a7962be9871d722c20e205
[ "MIT" ]
null
null
null
giico/quality_control_and_material_testing/doctype/water_absorption_test_for_concrete_cube/water_absorption_test_for_concrete_cube.py
thispl/giico
14c5631639ab56a586a7962be9871d722c20e205
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, VHRS and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class Waterabsorptiontestforconcretecube(Document): pass
25.181818
51
0.790614
23d09c166eab13c4ebf076f881703686dc6bfa5f
525
py
Python
algs/0028_Implement_strStr.py
torpedoallen/leetcodes
1c5042aa82c4d959383562bd77fd8829c002375d
[ "MIT" ]
null
null
null
algs/0028_Implement_strStr.py
torpedoallen/leetcodes
1c5042aa82c4d959383562bd77fd8829c002375d
[ "MIT" ]
null
null
null
algs/0028_Implement_strStr.py
torpedoallen/leetcodes
1c5042aa82c4d959383562bd77fd8829c002375d
[ "MIT" ]
null
null
null
class Solution(object): def strStr(self, haystack, needle): """ :type haystack: str :type needle: str :rtype: int """ m = len(haystack) n = len(needle) i, j = 0, 0 if n == 0: return 0 while i < m: if haystack[i] == needle[j]: j += 1 if j == n: return i - j + 1 else: i = i - j j = 0 i += 1 return -1
21.875
40
0.337143
2b6b383d6ee0db4e68cb33b81d02c2fa3766087f
568
py
Python
app/regTest/regTestMaster.py
fkwai/geolearn
30cb4353d22af5020a48100d07ab04f465a315b0
[ "MIT" ]
null
null
null
app/regTest/regTestMaster.py
fkwai/geolearn
30cb4353d22af5020a48100d07ab04f465a315b0
[ "MIT" ]
null
null
null
app/regTest/regTestMaster.py
fkwai/geolearn
30cb4353d22af5020a48100d07ab04f465a315b0
[ "MIT" ]
2
2021-04-04T02:45:59.000Z
2022-03-19T09:41:39.000Z
from hydroDL import pathSMAP, master import os optData = master.updateOpt( master.default.optDataCsv, path=pathSMAP['DB_L3_NA'], subset='CONUSv4f1', dateRange=[20150401, 20160401]) optModel = master.default.optLstm optLoss = master.default.optLoss optTrain = master.default.optTrainSMAP out = os.path.join(pathSMAP['Out_L3_Global'], 'regTest') masterDict = master.wrapMaster(out, optData, optModel, optLoss, optTrain) # master.train(masterDict, overwrite=True) pred = master.test( out, tRange=[20160401, 20170401], subset='CONUSv4f1', epoch=500)
31.555556
73
0.753521
dbefcddbdd01a5456f57137ee460cc0520ac1ab7
719
py
Python
readthedocs/core/management/commands/set_metadata.py
kennethlarsen/readthedocs.org
735d630d83f79ae24772d10e66fd35b8f5675a30
[ "MIT" ]
2
2018-01-14T14:04:00.000Z
2021-02-07T19:25:45.000Z
readthedocs/core/management/commands/set_metadata.py
Alig1493/readthedocs.org
c37b00995c1bbc5ee51d3552ef176546373bb912
[ "MIT" ]
4
2021-03-31T20:17:21.000Z
2021-12-13T20:49:19.000Z
readthedocs/core/management/commands/set_metadata.py
Alig1493/readthedocs.org
c37b00995c1bbc5ee51d3552ef176546373bb912
[ "MIT" ]
6
2019-02-13T16:08:41.000Z
2020-03-12T14:17:14.000Z
"""Generate metadata for all projects""" from __future__ import absolute_import import logging from django.core.management.base import BaseCommand from readthedocs.projects import tasks from readthedocs.projects.models import Project from readthedocs.core.utils import broadcast log = logging.getLogger(__name__) class Command(BaseCommand): help = __doc__ def handle(self, *args, **options): queryset = Project.objects.all() for p in queryset: log.info("Generating metadata for %s", p) try: broadcast(type='app', task=tasks.update_static_metadata, args=[p.pk]) except Exception: log.exception('Build failed for %s', p)
26.62963
85
0.684284
bd247e2379b92bff04067e6132c256328e63c183
9,085
py
Python
infoblox_netmri/client.py
rexyim/infoblox-netmri
193eabce5db11113f5e991b6cdee1ddc005827ed
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/client.py
rexyim/infoblox-netmri
193eabce5db11113f5e991b6cdee1ddc005827ed
[ "Apache-2.0" ]
null
null
null
infoblox_netmri/client.py
rexyim/infoblox-netmri
193eabce5db11113f5e991b6cdee1ddc005827ed
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Infoblox Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import logging import re from os.path import isfile import requests from requests.exceptions import HTTPError logger = logging.getLogger("infoblox_netmri") class InfobloxNetMRI(object): def __init__(self, host, username, password, api_version="auto", use_ssl=True, ssl_verify=False, http_pool_connections=5, http_pool_maxsize=10, max_retries=5): # Process ssl parameters if use_ssl: self.protocol = "https" if isinstance(ssl_verify, bool): self.ssl_verify = ssl_verify else: opt = str(ssl_verify).lower() if opt in ['yes', 'on', 'true']: self.ssl_verify = True elif opt in ['no', 'off', 'false']: self.ssl_verify = False elif isfile(ssl_verify): self.ssl_verify = ssl_verify else: raise ValueError("ssl_verify is not a valid boolean value," "nor a valid path to a CA bundle file") else: self.protocol = "http" self.ssl_verify = False # Process host if re.match(r"^[\w.-]+$", host): self.host = host else: raise ValueError("Hostname is not a valid hostname") # Authentication parameters self.username = username self.password = password self._is_authenticated = False # HTTP session settings self.session = requests.Session() adapter = requests.adapters.HTTPAdapter( max_retries=max_retries, pool_connections=http_pool_connections, pool_maxsize=http_pool_maxsize) self.session.mount('http://', adapter) self.session.mount('https://', adapter) self.session.verify = self.ssl_verify # API version if re.match(r'^(?:\d+\.)?(?:\d+\.)?(?:\*|\d+)$', api_version): self.api_version = api_version elif api_version.lower() == "auto": self.api_version = self._get_api_version() else: raise ValueError("Incorrect API version") logger.debug("Using API version %s" % self.api_version) def _make_request(self, url, method="get", data=None, extra_headers=None): """Prepares the request, checks for authentication and retries in case of issues Args: url (str): URL of the request method (str): Any of "get", "post", "delete" data (any): Possible extra data to send with the request extra_headers (dict): Possible extra headers to send along in the request Returns: dict """ attempts = 0 while attempts < 1: # Authenticate first if not authenticated already if not self._is_authenticated: self._authenticate() # Make the request and check for authentication errors # This allows us to catch session timeouts for long standing connections try: return self._send_request(url, method, data, extra_headers) except HTTPError as e: if e.response.status_code == 403: logger.info("Authenticated session against NetMRI timed out. Retrying.") self._is_authenticated = False attempts += 1 else: # re-raise other HTTP errors raise def _send_request(self, url, method="get", data=None, extra_headers=None): """Performs a given request and returns a json object Args: url (str): URL of the request method (str): Any of "get", "post", "delete" data (any): Possible extra data to send with the request extra_headers (dict): Possible extra headers to send along in the request Returns: dict """ headers = {'Content-type': 'application/json'} if isinstance(extra_headers, dict): headers.update(extra_headers) if not data or "password" not in data: logger.debug("Sending {method} request to {url} with data {data}".format( method=method.upper(), url=url, data=data) ) r = self.session.request(method, url, headers=headers, data=data) r.raise_for_status() return r.json() def _get_api_version(self): """Fetches the most recent API version Returns: str """ url = "{base_url}/api/server_info".format(base_url=self._base_url()) server_info = self._make_request(url=url, method="get") return server_info["latest_api_version"] def _authenticate(self): """ Perform an authentication against NetMRI""" url = "{base_url}/api/authenticate".format(base_url=self._base_url()) data = json.dumps({'username': self.username, "password": self.password}) # Bypass authentication check in make_request by using _send_request logger.debug("Authenticating against NetMRI") self._send_request(url, method="post", data=data) self._is_authenticated = True def _controller_name(self, objtype): """Determines the controller name for the object's type Args: objtype (str): The object type Returns: A string with the controller name """ # would be better to use inflect.pluralize here, but would add a dependency if objtype.endswith('y'): return objtype[:-1] + 'ies' if objtype[-1] in 'sx' or objtype[-2:] in ['sh', 'ch']: return objtype + 'es' if objtype.endswith('an'): return objtype[:-2] + 'en' return objtype + 's' def _base_url(self): """Generate the base URL for the connection with NetMRI Returns: A string containing the base URL """ return "{proto}://{host}".format( proto=self.protocol, host=self.host ) def _object_url(self, objtype, objid): """Generate the URL for the specified object Args: objtype (str): The object's type objid (int): The objects ID Returns: A string containing the URL of the object """ return "{base_url}/api/{api_version}/{controller}/{obj_id}".format( base_url=self._base_url(), api_version=self.api_version, controller=self._controller_name(objtype), obj_id=objid ) def _method_url(self, method_name): """Generate the URL for the requested method Args: method_name (str): Name of the method Returns: A string containing the URL of the method """ return "{base_url}/api/{api}/{method}".format( base_url=self._base_url(), api=self.api_version, method=method_name ) def api_request(self, method_name, params): """Execute an arbitrary method. Args: method_name (str): include the controller name: 'devices/search' params (dict): the method parameters Returns: A dict with the response Raises: requests.exceptions.HTTPError """ url = self._method_url(method_name) data = json.dumps(params) return self._make_request(url=url, method="post", data=data) def show(self, objtype, objid): """Query for a specific resource by ID Args: objtype (str): object type, e.g. 'device', 'interface' objid (int): object ID (DeviceID, etc.) Returns: A dict with that object Raises: requests.exceptions.HTTPError """ url = self._object_url(objtype, int(objid)) return self._make_request(url, method="get") def delete(self, objtype, objid): """Destroy a specific resource by ID Args: objtype (str): object type, e.g. 'script' objid (int): object ID Returns: A dict with the response Raises: requests.exceptions.HTTPError """ url = self._object_url(objtype, int(objid)) return self._make_request(url, method="delete")
34.942308
92
0.581948
7a4329648f63e6390349705354abc6f220b89103
5,260
py
Python
quark/plugin_modules/ip_addresses.py
sumanthns/quark
4f0d00608827271439ee0c2dfc22729dbbb17763
[ "Apache-2.0" ]
null
null
null
quark/plugin_modules/ip_addresses.py
sumanthns/quark
4f0d00608827271439ee0c2dfc22729dbbb17763
[ "Apache-2.0" ]
null
null
null
quark/plugin_modules/ip_addresses.py
sumanthns/quark
4f0d00608827271439ee0c2dfc22729dbbb17763
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Openstack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron.common import exceptions from neutron.openstack.common import importutils from neutron.openstack.common import log as logging from oslo.config import cfg import webob from quark.db import api as db_api from quark import exceptions as quark_exceptions from quark import plugin_views as v CONF = cfg.CONF LOG = logging.getLogger(__name__) ipam_driver = (importutils.import_class(CONF.QUARK.ipam_driver))() def get_ip_addresses(context, **filters): LOG.info("get_ip_addresses for tenant %s" % context.tenant_id) filters["_deallocated"] = False addrs = db_api.ip_address_find(context, scope=db_api.ALL, **filters) return [v._make_ip_dict(ip) for ip in addrs] def get_ip_address(context, id): LOG.info("get_ip_address %s for tenant %s" % (id, context.tenant_id)) addr = db_api.ip_address_find(context, id=id, scope=db_api.ONE) if not addr: raise quark_exceptions.IpAddressNotFound(addr_id=id) return v._make_ip_dict(addr) def create_ip_address(context, ip_address): LOG.info("create_ip_address for tenant %s" % context.tenant_id) port = None ip_dict = ip_address["ip_address"] port_ids = ip_dict.get('port_ids') network_id = ip_dict.get('network_id') device_ids = ip_dict.get('device_ids') ip_version = ip_dict.get('version') ip_address = ip_dict.get('ip_address') ports = [] if device_ids and not network_id: raise exceptions.BadRequest( resource="ip_addresses", msg="network_id is required if device_ids are supplied.") with context.session.begin(): if network_id and device_ids: for device_id in device_ids: port = db_api.port_find( context, network_id=network_id, device_id=device_id, tenant_id=context.tenant_id, scope=db_api.ONE) ports.append(port) elif port_ids: for port_id in port_ids: port = db_api.port_find(context, id=port_id, tenant_id=context.tenant_id, scope=db_api.ONE) ports.append(port) if not ports: raise exceptions.PortNotFound(port_id=port_ids, net_id=network_id) address = ipam_driver.allocate_ip_address( context, port['network_id'], port['id'], CONF.QUARK.ipam_reuse_after, ip_version, ip_addresses=[ip_address]) for port in ports: port["ip_addresses"].append(address) return v._make_ip_dict(address) def _get_deallocated_override(): """This function exists to mock and for future requirements if needed.""" return '2000-01-01 00:00:00' def update_ip_address(context, id, ip_address): LOG.info("update_ip_address %s for tenant %s" % (id, context.tenant_id)) with context.session.begin(): address = db_api.ip_address_find( context, id=id, tenant_id=context.tenant_id, scope=db_api.ONE) if not address: raise exceptions.NotFound( message="No IP address found with id=%s" % id) reset = ip_address['ip_address'].get('reset_allocation_time', False) if reset and address['deallocated'] == 1: if context.is_admin: LOG.info("IP's deallocated time being manually reset") address['deallocated_at'] = _get_deallocated_override() else: msg = "Modification of reset_allocation_time requires admin" raise webob.exc.HTTPForbidden(detail=msg) old_ports = address['ports'] port_ids = ip_address['ip_address'].get('port_ids') if port_ids is None: return v._make_ip_dict(address) for port in old_ports: port['ip_addresses'].remove(address) if port_ids: ports = db_api.port_find( context, tenant_id=context.tenant_id, id=port_ids, scope=db_api.ALL) # NOTE: could be considered inefficient because we're converting # to a list to check length. Maybe revisit if len(ports) != len(port_ids): raise exceptions.NotFound( message="No ports not found with ids=%s" % port_ids) for port in ports: port['ip_addresses'].extend([address]) else: address["deallocated"] = 1 return v._make_ip_dict(address)
35.782313
78
0.629278
546cdb12f3d0c9420cf10d3d2377f9daac941819
259
py
Python
college/college/doctype/achievements/achievements.py
ashithamudraje/college
fcfb5fa47c8815d659821390ea9c85d598d34c19
[ "MIT" ]
1
2019-09-08T19:27:27.000Z
2019-09-08T19:27:27.000Z
college/college/doctype/achievements/achievements.py
ashithamudraje/college
fcfb5fa47c8815d659821390ea9c85d598d34c19
[ "MIT" ]
null
null
null
college/college/doctype/achievements/achievements.py
ashithamudraje/college
fcfb5fa47c8815d659821390ea9c85d598d34c19
[ "MIT" ]
4
2019-09-23T16:42:12.000Z
2020-05-01T06:56:57.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2019, mvit ise and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class Achievements(Document): pass
23.545455
49
0.772201
16e1c91e5ea464a94a33aed016e7e63e90194e53
1,632
py
Python
fleet-server/init-fleet.py
cekay79/otel-with-java
2de11eac1192d6f44badd93e227ecd7641331db8
[ "Apache-2.0" ]
null
null
null
fleet-server/init-fleet.py
cekay79/otel-with-java
2de11eac1192d6f44badd93e227ecd7641331db8
[ "Apache-2.0" ]
null
null
null
fleet-server/init-fleet.py
cekay79/otel-with-java
2de11eac1192d6f44badd93e227ecd7641331db8
[ "Apache-2.0" ]
null
null
null
import os import requests from requests.auth import HTTPBasicAuth es_url = os.getenv("ELASTICSEARCH_HOST") kb_url = os.getenv("KIBANA_HOST") es_user = os.getenv("ELASTICSEARCH_USERNAME") es_pass = os.getenv("ELASTICSEARCH_PASSWORD") basic_auth = HTTPBasicAuth(es_user, es_pass) default_headers = { "Content-Type": "application/json", "kbn-xsrf": "true" } wait = True while wait: try: res = requests.get( url=es_url, auth=basic_auth, headers=default_headers ) if res.status_code == 200: wait = False except: print("Waiting for Elasticsearch") token_url = "{}/_security/oauth2/token".format(es_url) data_json = {"grant_type": "client_credentials"} res = requests.post( url=token_url, auth=basic_auth, json=data_json, headers=default_headers ) es_access_token = res.json()['access_token'] service_toke_url = "{}/_security/service/elastic/fleet-server/credential/token".format(es_url) data_json = {"grant_type": "client_credentials"} default_headers['Authorization'] = "Bearer {}".format(es_access_token) res = requests.post( url=service_toke_url, headers=default_headers ) fleet_service_token = res.json()['token']['value'] print("ES_ACCESS_TOKEN={}".format(es_access_token)) print("FLEET_SERVICE_TOKEN={}".format(fleet_service_token)) with open("/out/environment", "w") as f: f.write("export ES_ACCESS_TOKEN={}\n".format(es_access_token)) f.write("export FLEET_SERVER_SERVICE_TOKEN={}\n".format(fleet_service_token)) f.write("export KIBANA_FLEET_SERVICE_TOKEN={}\n".format(fleet_service_token))
29.672727
94
0.710784
b2842cd5d8466b5c8ac9d5a60b454d7f89044c12
3,659
py
Python
smoothauth/smoothauth/settings/base.py
kellerjustin/smoothauth
0ba343e999851e43416f203c0489e7b72e3dc30a
[ "MIT" ]
null
null
null
smoothauth/smoothauth/settings/base.py
kellerjustin/smoothauth
0ba343e999851e43416f203c0489e7b72e3dc30a
[ "MIT" ]
null
null
null
smoothauth/smoothauth/settings/base.py
kellerjustin/smoothauth
0ba343e999851e43416f203c0489e7b72e3dc30a
[ "MIT" ]
null
null
null
""" Django settings for smoothauth project. Generated by 'django-admin startproject' using Django 2.0.5. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os from django.core.exceptions import ImproperlyConfigured # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ def get_env_variable(var_name): """Get the env variable or return exception.""" try: return os.environ[var_name] except KeyError: error_msg = 'Set the {} environment variable'.format(var_name) raise ImproperlyConfigured(error_msg) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = get_env_variable('SMOOTHAUTH_SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'api.apps.ApiConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'smoothauth.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'smoothauth.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.' 'password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' REST_FRAMEWORK = { 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination', 'PAGE_SIZE': 10 }
25.061644
79
0.68762
3fa7a31c4d6a485804c49317e7c90ba2097a41f4
3,738
py
Python
rl_visualization/app.py
LucasAlegre/rl-visualization
b20506c3417190576156e77a9dac5d872b99ffa3
[ "MIT" ]
null
null
null
rl_visualization/app.py
LucasAlegre/rl-visualization
b20506c3417190576156e77a9dac5d872b99ffa3
[ "MIT" ]
null
null
null
rl_visualization/app.py
LucasAlegre/rl-visualization
b20506c3417190576156e77a9dac5d872b99ffa3
[ "MIT" ]
null
null
null
from flask import Flask, send_file, make_response, render_template, request import os from datetime import datetime from threading import Lock mutex = Lock() class Plot: def __init__(self, title, url): self.title = title self.url = url def start_app(env): app = Flask(__name__) BASE_URL = "http://localhost:5000/" plots_url = { 'Q-table': 'plots/q-table', 'Visit Count': 'plots/visitcount', 'Rewards': 'plots/rewards', 'Episode Rewards': 'plots/episoderewards', #'Epsilon': 'plots/epsilon', 'Features Distributions': 'plots/featuresdistribution', 'Actions Distributions': 'plots/actionsdistribution' } for plot in env.user_plots.keys(): plots_url[plot] = 'userplots/' + plot.lowercase @app.route('/') def index(): delay = request.args.get('delay') if delay is not None: env.delay = int(delay) for plot in env.user_plots.keys(): plots_url[plot] = 'userplots/' + plot plots = env.get_available_plots() return render_template('index.html', base_url=BASE_URL, plots=[Plot(p, plots_url[p]) for p in plots], refresh_time=env.refresh_time) @app.route('/userplots/<userplot>', methods=['GET']) def user_plot(userplot): mutex.acquire() bytes_obj = env.get_userplot(userplot) mutex.release() return send_file(bytes_obj, attachment_filename=userplot+'.png', mimetype='image/png') @app.route('/plots/visitcount', methods=['GET']) def visitcount(): mutex.acquire() bytes_obj = env.get_visitcount() mutex.release() return send_file(bytes_obj, attachment_filename='visitcount.png', mimetype='image/png') @app.route('/plots/q-table', methods=['GET']) def q_table(): mutex.acquire() bytes_obj = env.get_qtable_png() mutex.release() return send_file(bytes_obj, attachment_filename='qtable.png', mimetype='image/png') @app.route('/plots/rewards', methods=['GET']) def rewards(): mutex.acquire() bytes_obj = env.get_rewards() mutex.release() return send_file(bytes_obj, attachment_filename='rewards.png', mimetype='image/png') @app.route('/plots/episoderewards', methods=['GET']) def episoderewards(): mutex.acquire() bytes_obj = env.get_episoderewards() mutex.release() return send_file(bytes_obj, attachment_filename='episoderewards.png', mimetype='image/png') """ @app.route('/plots/epsilon', methods=['GET']) def epsilon(): mutex.acquire() bytes_obj = env.get_epsilon() mutex.release() return send_file(bytes_obj, attachment_filename='epsilon.png', mimetype='image/png')""" @app.route('/plots/featuresdistribution', methods=['GET']) def featuresdistribution(): mutex.acquire() bytes_obj = env.get_featuresdistribution() mutex.release() return send_file(bytes_obj, attachment_filename='featuresdistribution.png', mimetype='image/png') @app.route('/plots/actionsdistribution', methods=['GET']) def actionsdistribution(): mutex.acquire() bytes_obj = env.get_actionsdistribution() mutex.release() return send_file(bytes_obj, attachment_filename='actionsdistribution.png', mimetype='image/png') """for plot in env.user_plots: app.add_url_rule( rule='/plots/'+plot.lowercase(), endpoint='plots/user_func', ) """ app.jinja_env.auto_reload = True app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 app.config['TEMPLATES_AUTO_RELOAD'] = True app.run(debug=False)
31.948718
140
0.635902
0d89c3b50ec89219d4182093f496e5b181bb25e5
3,502
py
Python
bot/modules/message_filter.py
monkeydg/POG-bot
97ced2c4b8f8709887b3d0828484e1dd1128dc1f
[ "MIT" ]
2
2020-09-24T14:56:50.000Z
2021-04-15T16:12:36.000Z
bot/modules/message_filter.py
monkeydg/POG-bot
97ced2c4b8f8709887b3d0828484e1dd1128dc1f
[ "MIT" ]
12
2021-04-28T15:33:34.000Z
2022-03-29T10:10:05.000Z
bot/modules/message_filter.py
monkeydg/POG-bot
97ced2c4b8f8709887b3d0828484e1dd1128dc1f
[ "MIT" ]
6
2020-08-01T13:38:40.000Z
2020-08-14T20:35:17.000Z
"""Tiny module used as a slight spam protector """ from display import AllStrings as disp, ContextWrapper from discord import DMChannel, NotFound import modules.config as cfg from modules.loader import is_all_locked from modules.roles import is_admin from asyncio import sleep import modules.spam_checker as spam_checker from modules.dm_handler import on_dm class FakeMember: def __init__(self, id): self.id = id self.name = "Unknown" @property def mention(self): return f'<@{self.id}>' async def on_message(client, message): # if bot, do nothing if message.author == client.user: return # if dm, send in staff if isinstance(message.channel, DMChannel): await on_dm(message) return # If message not in the bot's area of action if message.channel.id not in cfg.channels_list: return if len(message.content) == 0: return if message.content == cfg.emojis['info']: message.content = "=info" if message.content[0] != cfg.general["command_prefix"]: return # If bot is locked if is_all_locked(): if not is_admin(message.author): return # Admins can still use bot when locked # Save actual author actual_author = message.author # Check if too many requests from this user: if await spam_checker.is_spam(message.author, message.channel): return try: # Make the message lower-case: if not message.content.lower().startswith("=rename"): message.content = message.content.lower() message.content = message.content.replace(",", " ").replace("/", " ").replace(";", " ") # Split on whitespaces args = message.content.split() new_args = list() for arg in args: if '@' in arg: continue try: arg_int = int(arg) except ValueError: pass else: if arg_int >= 21154535154122752: # minimum number for discord id member = message.channel.guild.get_member(arg_int) if member: message.mentions.append(member) continue try: member = await message.channel.guild.fetch_member(arg_int) except NotFound: message.mentions.append(FakeMember(arg_int)) continue if member: message.mentions.append(member) continue new_args.append(arg) message.content = " ".join(new_args) # Check for =as command if is_admin(message.author) and message.content[0:3] == "=as": try: message.author = message.mentions[0] del message.mentions[0] i = message.content[1:].index('=') message.content = message.content[i+1:] except (ValueError, IndexError): ctx = ContextWrapper.wrap(message.channel, author=actual_author) await disp.WRONG_USAGE.send(ctx, "as") spam_checker.unlock(actual_author.id) return await client.process_commands(message) # if not spam, processes # Call finished, we can release user await sleep(0.5) finally: spam_checker.unlock(actual_author.id)
29.677966
95
0.573101
b6e978b75b76a8aaefe3d4a7b3caaf2ccdb70186
389
py
Python
apps/reporting/migrations/0007_alter_pentestreport_options.py
blockomat2100/vulnman
835ff3aae1168d8e2fa5556279bc86efd2e46472
[ "MIT" ]
3
2021-12-22T07:02:24.000Z
2022-01-27T20:19:11.000Z
apps/reporting/migrations/0007_alter_pentestreport_options.py
vulnman/vulnman
d48ee022bc0e4368060a990a527b1c7a5e437504
[ "MIT" ]
44
2021-12-14T07:24:29.000Z
2022-03-23T07:01:16.000Z
apps/reporting/migrations/0007_alter_pentestreport_options.py
blockomat2100/vulnman
835ff3aae1168d8e2fa5556279bc86efd2e46472
[ "MIT" ]
1
2022-01-21T16:29:56.000Z
2022-01-21T16:29:56.000Z
# Generated by Django 4.0.3 on 2022-04-11 04:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('reporting', '0006_alter_reportsection_unique_together_and_more'), ] operations = [ migrations.AlterModelOptions( name='pentestreport', options={'ordering': ['-date_created']}, ), ]
21.611111
75
0.632391
cb98f04c0131b0dfd861a3e1cce5b5e31bf5b8da
243
py
Python
example.py
JLyons1985/SmartMirrorServer
417540280dee57b7e39004e6891f13835aa15ced
[ "MIT" ]
null
null
null
example.py
JLyons1985/SmartMirrorServer
417540280dee57b7e39004e6891f13835aa15ced
[ "MIT" ]
null
null
null
example.py
JLyons1985/SmartMirrorServer
417540280dee57b7e39004e6891f13835aa15ced
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- # Just importing Forsimatic class from forismatic import Forismatic # Initializing manager f = Forismatic() # Getting Quote object & printing quote and author q = f.get_quote() print(u'%s\t%s' % (q.quote, q.author))
22.090909
50
0.703704
75dd9ca179c269e38b861c3eece4cc7f9a2e059f
2,208
py
Python
mkdocs_combine/page.py
kellpossible/mkdocs-combine
b9db94978ac960aa160abdc268906a65f8625f5e
[ "Apache-2.0" ]
null
null
null
mkdocs_combine/page.py
kellpossible/mkdocs-combine
b9db94978ac960aa160abdc268906a65f8625f5e
[ "Apache-2.0" ]
3
2018-04-19T23:41:12.000Z
2018-04-25T05:32:57.000Z
mkdocs_combine/page.py
kellpossible/mkdocs-combine
b9db94978ac960aa160abdc268906a65f8625f5e
[ "Apache-2.0" ]
null
null
null
from mkdocs_combine.slugify import slugify class Page(object): def __init__(self, title, parent=None, file_path=None, is_section=False): self.title = title self.parent = parent self.file_path = file_path self.is_section = is_section self.heading_index = {} self.headings = [] def get_slug(self): slugs = [] current_page = self while(current_page is not None): slugs.insert(0, slugify(current_page.get_title())) current_page = current_page.get_parent() if len(slugs) == 0: return None slug = "--".join(slugs) return slug def get_is_section(): return self.is_section def get_title(self): return self.title def get_parent(self): return self.parent def get_file_path(self): return self.file_path def add_heading(self, heading): if len(self.headings) == 0: # title heading self.heading_index[self.get_slug()] = heading else: while heading.get_unique_title_slug() in self.heading_index: title_id = heading.get_unique_title_id() heading.set_unique_title_id(title_id + 1) self.headings.append(heading) self.heading_index[heading.get_unique_title_slug()] = heading def get_heading(self, heading_slug): if heading_slug in self.heading_index: return self.heading_index[heading_slug] if len(self.headings) > 0: # title heading return self.headings[0] return None def get_headings(self): return self.headings def get_heading_index(self): return self.heading_index def is_page_heading(self, heading): return self.headings[0] == heading def get_level(self): level = 0 current_page = self while(current_page is not None): level += 1 current_page = current_page.get_parent() return level def __repr__(self): return "Page(title: {}, file_path: {})".format(self.get_title(), self.get_file_path())
27.259259
94
0.595562
e5008cefdfa2ac8cd4c08e26f69df0de4f813ec5
5,577
py
Python
scripts/pipeline/predict.py
seanliu96/WRMCQA
8bb6cc79262cd82a490c8d3bad6bb7252e9d4f09
[ "BSD-3-Clause" ]
null
null
null
scripts/pipeline/predict.py
seanliu96/WRMCQA
8bb6cc79262cd82a490c8d3bad6bb7252e9d4f09
[ "BSD-3-Clause" ]
null
null
null
scripts/pipeline/predict.py
seanliu96/WRMCQA
8bb6cc79262cd82a490c8d3bad6bb7252e9d4f09
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2018-present, HKUST-KnowComp. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Run predictions using the full WRMCQA retriever-reader pipeline.""" import torch import os import time try: import ujson as json except ImportError: import json import argparse import logging from wrmcqa import pipeline from wrmcqa.retriever import utils from multiprocessing import cpu_count logger = logging.getLogger() logger.setLevel(logging.INFO) fmt = logging.Formatter('%(asctime)s: [ %(message)s ]', '%m/%d/%Y %I:%M:%S %p') console = logging.StreamHandler() console.setFormatter(fmt) logger.addHandler(console) parser = argparse.ArgumentParser() parser.add_argument('dataset', type=str) parser.add_argument('--out-dir', type=str, default='/tmp', help=("Directory to write prediction file to " "(<dataset>-<model>-pipeline.preds)")) parser.add_argument('--reader-model', type=str, default=None, help="Path to trained Document Reader model") parser.add_argument('--retriever-model', type=str, default=None, help="Path to Document Retriever model (tfidf)") parser.add_argument('--doc-db', type=str, default=None, help='Path to Document DB') parser.add_argument('--embedding-file', type=str, default=None, help=("Expand dictionary to use all pretrained " "embeddings in this file")) parser.add_argument('--char-embedding-file', type=str, default=None, help=("Expand char dictionary to use all pretrained " "embeddings in this file")) parser.add_argument('--candidate-file', type=str, default=None, help=("List of candidates to restrict predictions to, " "one candidate per line")) parser.add_argument('--n-docs', type=int, default=5, help="Number of docs to retrieve per query") parser.add_argument('--top-n', type=int, default=1, help="Number of predictions to make per query") parser.add_argument('--tokenizer', type=str, default=None, help=("String option specifying tokenizer type to use " "(e.g. 'spacy')")) parser.add_argument('--no-cuda', action='store_true', help="Use CPU only") parser.add_argument('--gpu', type=int, default=-1, help="Specify GPU device id to use") parser.add_argument('--parallel', action='store_true', help='Use data parallel (split across gpus)') parser.add_argument('--use-ala', action='store_true', help='Use Answer Ranking Algorithm') parser.add_argument('--num-workers', type=int, default=int(cpu_count()/2), help='Number of CPU processes (for tokenizing, etc)') parser.add_argument('--batch-size', type=int, default=32, help='Document paragraph batching size') parser.add_argument('--predict-batch-size', type=int, default=32, help='Question batching size') args = parser.parse_args() t0 = time.time() args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: torch.cuda.set_device(args.gpu) logger.info('CUDA enabled (GPU %d)' % args.gpu) else: logger.info('Running on CPU only.') if args.candidate_file: logger.info('Loading candidates from %s' % args.candidate_file) candidates = set() with open(args.candidate_file) as f: for line in f: line = utils.normalize(line.strip()).lower() candidates.add(line) logger.info('Loaded %d candidates.' % len(candidates)) else: candidates = None logger.info('Initializing pipeline...') WRMCQA = pipeline.WRMCQA( reader_model=args.reader_model, embedding_file=args.embedding_file, char_embedding_file=args.char_embedding_file, tokenizer=args.tokenizer, fixed_candidates=candidates, batch_size=args.batch_size, cuda=args.cuda, data_parallel=args.parallel, num_workers=args.num_workers, db_config={'options': {'db_path': args.doc_db}}, ranker_config={'options': {'tfidf_path': args.retriever_model, 'strict': False}}, use_ala=args.use_ala ) # ------------------------------------------------------------------------------ # Read in dataset and make predictions # ------------------------------------------------------------------------------ logger.info('Loading queries from %s' % args.dataset) queries = [] for line in open(args.dataset): data = json.loads(line) queries.append(data['question']) model = os.path.splitext(os.path.basename(args.reader_model or 'default'))[0] basename = os.path.splitext(os.path.basename(args.dataset))[0] outfile = os.path.join(args.out_dir, basename + '-' + model + '-pipeline.preds') logger.info('Writing results to %s' % outfile) with open(outfile, 'w') as f: batches = [queries[i: i + args.predict_batch_size] for i in range(0, len(queries), args.predict_batch_size)] for i, batch in enumerate(batches): logger.info( '-' * 25 + ' Batch %d/%d ' % (i + 1, len(batches)) + '-' * 25 ) predictions = WRMCQA.process_batch( batch, n_docs=args.n_docs, top_n=args.top_n, ) for p in predictions: f.write(json.dumps(p) + '\n') logger.info('Total time: %.2f' % (time.time() - t0))
39.274648
80
0.622736
02666c424e9566ff49d457724093a3bf5eb4b6a6
3,125
py
Python
deps/lib/python3.5/site-packages/Crypto/PublicKey/__init__.py
jfarmer08/hassio
792a6071a97bb33857c14c9937946233c620035c
[ "MIT" ]
2
2020-05-16T08:38:34.000Z
2020-10-01T01:32:57.000Z
venv/Lib/site-packages/Crypto/PublicKey/__init__.py
Team20s/blockchain_python
438eb4540198693f4f592541d671a2056adb8a42
[ "Apache-2.0" ]
51
2019-10-08T01:53:02.000Z
2021-06-04T22:02:21.000Z
venv/Lib/site-packages/Crypto/PublicKey/__init__.py
Team20s/blockchain_python
438eb4540198693f4f592541d671a2056adb8a42
[ "Apache-2.0" ]
2
2019-10-10T17:06:33.000Z
2020-06-16T05:34:13.000Z
# -*- coding: utf-8 -*- # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== from Crypto.Util.asn1 import (DerSequence, DerInteger, DerBitString, DerObjectId, DerNull) def _expand_subject_public_key_info(encoded): """Parse a SubjectPublicKeyInfo structure. It returns a triple with: * OID (string) * encoded public key (bytes) * Algorithm parameters (bytes or None) """ # # SubjectPublicKeyInfo ::= SEQUENCE { # algorithm AlgorithmIdentifier, # subjectPublicKey BIT STRING # } # # AlgorithmIdentifier ::= SEQUENCE { # algorithm OBJECT IDENTIFIER, # parameters ANY DEFINED BY algorithm OPTIONAL # } # spki = DerSequence().decode(encoded, nr_elements=2) algo = DerSequence().decode(spki[0], nr_elements=(1,2)) algo_oid = DerObjectId().decode(algo[0]) spk = DerBitString().decode(spki[1]).value if len(algo) == 1: algo_params = None else: try: DerNull().decode(algo[1]) algo_params = None except: algo_params = algo[1] return algo_oid.value, spk, algo_params def _create_subject_public_key_info(algo_oid, secret_key, params=None): if params is None: params = DerNull() spki = DerSequence([ DerSequence([ DerObjectId(algo_oid), params]), DerBitString(secret_key) ]) return spki.encode() def _extract_subject_public_key_info(x509_certificate): """Extract subjectPublicKeyInfo from a DER X.509 certificate.""" certificate = DerSequence().decode(x509_certificate, nr_elements=3) tbs_certificate = DerSequence().decode(certificate[0], nr_elements=list(range(6, 11))) index = 5 try: tbs_certificate[0] + 1 # Version not present version = 1 except TypeError: version = DerInteger(explicit=0).decode(tbs_certificate[0]).value if version not in (2, 3): raise ValueError("Incorrect X.509 certificate version") index = 6 return tbs_certificate[index]
32.552083
74
0.61696
ce3d4289981f151f29cf3046f5a84389c87159cf
3,121
py
Python
implementations/tests/tests_df/test_reviews_accepted_github.py
alexmwebber01/wg-evolution
1815e2c1f5fead082c676111952cb7b1d646e403
[ "MIT" ]
null
null
null
implementations/tests/tests_df/test_reviews_accepted_github.py
alexmwebber01/wg-evolution
1815e2c1f5fead082c676111952cb7b1d646e403
[ "MIT" ]
null
null
null
implementations/tests/tests_df/test_reviews_accepted_github.py
alexmwebber01/wg-evolution
1815e2c1f5fead082c676111952cb7b1d646e403
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2019 CHAOSS # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Authors: # Aniruddha Karajgi <akarajgi0@gmail.com> # import unittest import json from pandas.util.testing import assert_frame_equal from implementations.code_df.reviews_accepted_github import ReviewsAcceptedGitHub def read_file(path): """ Given a line-by-line JSON file, this function converts it to a Python dictionary and returns all such lines as a list. :param path: the path to the JSON file :returns items: a list of dictionaries read from the JSON file """ items = list() with open(path, 'r') as raw_data: for line in raw_data: line = json.loads(line) items.append(line) return items class TestReviewsAcceptedGitHub(unittest.TestCase): def setUp(self): """ Run before each test to read the test data file """ self.items = read_file('data/test_pulls_data.json') def test_compute(self): """ Test the compute method of a ReviewsAcceptedGitHub object with default parameters. """ reviews = ReviewsAcceptedGitHub(self.items) expected_count = 18 count = reviews.compute() self.assertEqual(expected_count, count) def test__agg(self): """ Test the _agg method of a ReviewsAcceptedGitHub object with default parameters when re-sampling on a weekly basis. """ reviews_accepted = ReviewsAcceptedGitHub(self.items) reviews_accepted.df = reviews_accepted.df.set_index('created_date') test_df = reviews_accepted.df.copy(deep=True) test_df = test_df[test_df['merged']] test_df = test_df.resample('W')['category'].agg(['count']) reviews_accepted.df = reviews_accepted._agg(reviews_accepted.df, 'W') assert_frame_equal(test_df, reviews_accepted.df) def test__get_params(self): """ Test whether the _get_params method correctly returns the expected parameters for plotting a timeseries plot for the Reviews Accepted metric. """ changes = ReviewsAcceptedGitHub(self.items) params = changes._get_params() expected_params = { 'x': None, 'y': 'count', 'title': "Trends in Reviews Accepted", 'use_index': True } self.assertEqual(expected_params, params) if __name__ == '__main__': unittest.main(verbosity=2)
28.898148
81
0.666773
8867edde9e0284d99c1c203428f77759455c7f6f
6,066
py
Python
dvc/system.py
chlin501/dvc
8798d8531ef1e57744954ac789e60ee9be313aba
[ "Apache-2.0" ]
null
null
null
dvc/system.py
chlin501/dvc
8798d8531ef1e57744954ac789e60ee9be313aba
[ "Apache-2.0" ]
null
null
null
dvc/system.py
chlin501/dvc
8798d8531ef1e57744954ac789e60ee9be313aba
[ "Apache-2.0" ]
null
null
null
import errno import logging import os import platform import shutil import sys from dvc.compat import fspath from dvc.exceptions import DvcException logger = logging.getLogger(__name__) if platform.system() == "Windows" and sys.version_info < (3, 8): try: import speedcopy speedcopy.patch_copyfile() except ImportError: pass class System(object): @staticmethod def is_unix(): return os.name != "nt" @staticmethod def copy(src, dest): src, dest = fspath(src), fspath(dest) return shutil.copyfile(src, dest) @staticmethod def hardlink(source, link_name): source, link_name = fspath(source), fspath(link_name) try: os.link(source, link_name) except OSError as exc: raise DvcException("failed to link") from exc @staticmethod def symlink(source, link_name): source, link_name = fspath(source), fspath(link_name) try: os.symlink(source, link_name) except OSError as exc: raise DvcException("failed to symlink") from exc @staticmethod def _reflink_darwin(src, dst): import ctypes LIBC = "libc.dylib" LIBC_FALLBACK = "/usr/lib/libSystem.dylib" try: clib = ctypes.CDLL(LIBC) except OSError as exc: logger.debug( "unable to access '{}' (errno '{}'). " "Falling back to '{}'.".format(LIBC, exc.errno, LIBC_FALLBACK) ) if exc.errno != errno.ENOENT: raise # NOTE: trying to bypass System Integrity Protection (SIP) clib = ctypes.CDLL(LIBC_FALLBACK) if not hasattr(clib, "clonefile"): return -1 clonefile = clib.clonefile clonefile.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_int] clonefile.restype = ctypes.c_int return clonefile( ctypes.c_char_p(src.encode("utf-8")), ctypes.c_char_p(dst.encode("utf-8")), ctypes.c_int(0), ) @staticmethod def _reflink_windows(src, dst): return -1 @staticmethod def _reflink_linux(src, dst): import os import fcntl FICLONE = 0x40049409 try: ret = 255 with open(src, "r") as s, open(dst, "w+") as d: ret = fcntl.ioctl(d.fileno(), FICLONE, s.fileno()) finally: if ret != 0: os.unlink(dst) return ret @staticmethod def reflink(source, link_name): source, link_name = fspath(source), fspath(link_name) system = platform.system() try: if system == "Windows": ret = System._reflink_windows(source, link_name) elif system == "Darwin": ret = System._reflink_darwin(source, link_name) elif system == "Linux": ret = System._reflink_linux(source, link_name) else: ret = -1 except IOError: ret = -1 if ret != 0: raise DvcException("reflink is not supported") @staticmethod def _getdirinfo(path): from collections import namedtuple from win32file import ( CreateFileW, GetFileInformationByHandle, FILE_FLAG_BACKUP_SEMANTICS, FILE_FLAG_OPEN_REPARSE_POINT, FILE_SHARE_READ, OPEN_EXISTING, ) # NOTE: use FILE_FLAG_OPEN_REPARSE_POINT to open symlink itself and not # the target See https://docs.microsoft.com/en-us/windows/desktop/api/ # fileapi/nf-fileapi-createfilew#symbolic-link-behavior flags = FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OPEN_REPARSE_POINT hfile = CreateFileW( path, 0, FILE_SHARE_READ, None, OPEN_EXISTING, flags, None ) # See BY_HANDLE_FILE_INFORMATION structure from fileapi.h Info = namedtuple( "BY_HANDLE_FILE_INFORMATION", [ "dwFileAttributes", "ftCreationTime", "ftLastAccessTime", "ftLastWriteTime", "dwVolumeSerialNumber", "nFileSizeHigh", "nFileSizeLow", "nNumberOfLinks", "nFileIndexHigh", "nFileIndexLow", ], ) return Info(*GetFileInformationByHandle(hfile)) @staticmethod def inode(path): path = fspath(path) if System.is_unix(): import ctypes inode = os.lstat(path).st_ino # NOTE: See https://bugs.python.org/issue29619 and # https://stackoverflow.com/questions/34643289/ # pythons-os-stat-is-returning-wrong-inode-value inode = ctypes.c_ulong(inode).value else: # getdirinfo from ntfsutils works on both files and dirs info = System._getdirinfo(path) inode = abs( hash( ( info.dwVolumeSerialNumber, info.nFileIndexHigh, info.nFileIndexLow, ) ) ) assert inode >= 0 assert inode < 2 ** 64 return inode @staticmethod def is_symlink(path): path = fspath(path) if System.is_unix(): return os.path.islink(path) # https://docs.microsoft.com/en-us/windows/desktop/fileio/ # file-attribute-constants from winnt import FILE_ATTRIBUTE_REPARSE_POINT if os.path.lexists(path): info = System._getdirinfo(path) return info.dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT return False @staticmethod def is_hardlink(path): path = fspath(path) if System.is_unix(): return os.stat(path).st_nlink > 1 info = System._getdirinfo(path) return info.nNumberOfLinks > 1
28.478873
79
0.559677
2d7022267b7063be3474c3cf926a3ba78afe4094
11,914
py
Python
flowd/flow_app.py
rexengineering/metaflow
fcba7cd6aaccd3806ce7d6a4a8aaeef350bbeaf8
[ "Apache-2.0" ]
null
null
null
flowd/flow_app.py
rexengineering/metaflow
fcba7cd6aaccd3806ce7d6a4a8aaeef350bbeaf8
[ "Apache-2.0" ]
null
null
null
flowd/flow_app.py
rexengineering/metaflow
fcba7cd6aaccd3806ce7d6a4a8aaeef350bbeaf8
[ "Apache-2.0" ]
null
null
null
import asyncio from collections import defaultdict import base64 import logging import json from async_timeout import timeout from quart import request, jsonify from flowlib.etcd_utils import get_etcd, transition_state from flowlib.quart_app import QuartApp from flowlib.workflow import Workflow, get_workflows from flowlib.config import ( INSTANCE_FAIL_ENDPOINT_PATH, WF_MAP_ENDPOINT_PATH ) from flowlib.constants import ( BStates, flow_result, WorkflowInstanceKeys, Headers, ) from flowlib.token_api import TokenPool TIMEOUT_SECONDS = 10 def convert_envoy_hdr_msg_to_dict(headers_bytes): headers_str = base64.b64decode(headers_bytes).decode() hdrs = {} for header in headers_str.split('\n'): # note: Envoy puts a `:` at the start of the path, authority, and host headers for # some reason. header = header.lstrip(':') hdr_key = header[:header.find(':')] hdr_val = header[header.find(':') + 1:] if len(hdr_key) > 0: hdrs[hdr_key] = hdr_val return hdrs def process_data(encoded_str, data_should_be_json): """Accepts a string of b64-encoded data. Tries the following steps, saving the result each time. If any of the steps fails, it returns the most recent success. If no processing step succeeds (i.e. the result of decoding the data not an ascii-representable string), then we just return the original input: the base64-encoded string. Steps: 1. Try to decode the base64-encoded string into something ascii-readable. 2. If data_should_be_json, then we try to load the json into a python dict. """ result = encoded_str # Step 1: Try to make it a human-readable string try: decoded_bytes = base64.b64decode(encoded_str) if decoded_bytes.isascii(): decoded_str = decoded_bytes.decode() result = decoded_str if data_should_be_json: result = json.loads(result) elif data_should_be_json: logging.warning( f"Should've been able to json load this but it wasn't even ascii: {encoded_str}" ) except json.decoder.JSONDecodeError as exn: logging.exception( f"Should've been able to json load the data but couldn't: {encoded_str}", exc_info=exn, ) except Exception as exn: logging.exception( f"Caught an unexpected exception processing `{encoded_str}`:", exc_info=exn, ) return result class FlowApp(QuartApp): def __init__(self, **kws): super().__init__(__name__, **kws) self.etcd = get_etcd() self.app.route('/health', methods=['GET'])(self.health) self.app.route('/', methods=['POST'])(self.root_route) self.app.route(INSTANCE_FAIL_ENDPOINT_PATH, methods=(['POST']))(self.fail_route) self.app.route(WF_MAP_ENDPOINT_PATH, methods=['GET', 'POST'])(self.wf_map) async def health(self): self.etcd.get('Is The Force With Us?') return flow_result(0, "Ok.") async def root_route(self): # When there is a flow ID in the headers, store the result in etcd and # change the state to completed. if Headers.X_HEADER_FLOW_ID in request.headers: flow_id = request.headers[Headers.X_HEADER_FLOW_ID] keys = WorkflowInstanceKeys(flow_id) good_states = {BStates.STARTING, BStates.RUNNING} if self.etcd.get(keys.state)[0] in good_states: if transition_state(self.etcd, keys.state, good_states, BStates.COMPLETED): self.etcd.put(keys.result, await request.data) else: logging.error( f'Race on {keys.state}; state changed out of known' ' good state before state transition could occur!' ) return 'Hello there!\n' async def fail_route(self): # When there is a flow ID in the headers, store the result in etcd and # change the state to ERROR. if Headers.X_HEADER_WORKFLOW_ID not in request.headers or Headers.X_HEADER_FLOW_ID not in request.headers: return jsonify(flow_result(-1, "Didn't provide workflow headers"), 400) flow_id = request.headers[Headers.X_HEADER_FLOW_ID] wf_id = request.headers[Headers.X_HEADER_WORKFLOW_ID] timer_pool_id = request.headers.get(Headers.X_HEADER_TOKEN_POOL_ID) workflow = Workflow.from_id(wf_id) keys = WorkflowInstanceKeys(flow_id) state_key = keys.state good_states = {BStates.STARTING, BStates.RUNNING} if self.etcd.get(state_key)[0] in good_states: # As per spec, if we have a recoverable workflow we go to STOPPING --> STOPPED. # Otherwise, we go straight to ERROR. if workflow.process.properties.is_recoverable: if not transition_state(self.etcd, state_key, good_states, BStates.STOPPING): logging.error( f'Race on {state_key}; state changed out of known' ' good state before state transition could occur!' ) else: if not transition_state(self.etcd, state_key, good_states, BStates.ERROR): logging.error( f'Race on {state_key}; state changed out of known' ' good state before state transition could occur!' ) if timer_pool_id is not None: # if we're tracking tokens, we're not any more as the workflow instance # is being failed. for pool_name in timer_pool_id.split(','): logging.info(f'Erasing token pool {pool_name}') TokenPool.erase(pool_name) incoming_data = None try: with timeout(TIMEOUT_SECONDS): incoming_data = await request.data except asyncio.exceptions.TimeoutError as exn: logging.exception( f"Timed out waiting for error data on flow id {flow_id}.", exc_info=exn ) self.etcd.put(state_key, BStates.ERROR) return jsonify(flow_result(-1, "Could not load promised data."), 400) try: payload = json.loads(incoming_data.decode()) self._put_payload(payload, keys, workflow) except Exception as exn: logging.exception( f"Failed processing instance error payload:", exc_info=exn, ) self.etcd.put(keys.result, incoming_data) self.etcd.put(keys.content_type, 'application/octet-stream') if workflow.process.properties.is_recoverable: self.etcd.replace(state_key, BStates.STOPPING, BStates.STOPPED) return 'Another happy landing (https://i.gifer.com/PNk.gif)' def wf_map(self): """Get a map from workflow ID's to workflow deployment ID's. Note that this mapping does not assume the workflow ID is "baked" into the workflow deployment ID, which it presently is. """ etcd = get_etcd(is_not_none=True) wf_map = {} for workflow in get_workflows(): if etcd.get(workflow.keys.state)[0] == BStates.RUNNING: wf_id = workflow.process.xmldict['@id'] if wf_id not in wf_map: wf_map[wf_id] = [] wf_did = workflow.id start_event_urls = [ start_event.k8s_url for start_event in workflow.process.start_events ] wf_map[wf_id].append({ 'id': wf_did, 'start_event_urls': start_event_urls, 'user_opaque_metadata': workflow.properties.user_opaque_metadata, }) return flow_result(0, 'Ok', wf_map=wf_map) def _put_payload(self, payload: dict, keys: WorkflowInstanceKeys, workflow: Workflow): """Accepts incoming JSON and saves the error payload. Error data from Envoy looks slightly different than error data from flowpost(), simply because it's harder to manipulate data within the confines of the Envoy codebase. Therefore, we have a separate helper method _put_payload_from_envoy() that cleans up and stores the data. If the `from_flowpost` key is in the result, we don't use that helper; otherwise, we know the data came from Envoy, and we do use the helper. """ if payload.get('from_envoy', True): self._put_payload_from_envoy(payload, keys, workflow) else: self.etcd.put(keys.result, json.dumps(payload)) self.etcd.put(keys.content_type, 'application/json') def _put_payload_from_envoy( self, payload: dict, keys: WorkflowInstanceKeys, workflow: Workflow ): """Take all of the incoming data from envoy and make it as close to JSON as we can. The error data from BAVS looks like: { 'input_headers_encoded': base64-encoded dump of headers of request to the task 'input_data_encoded': base64-encoded dump of request data to the task 'output_headers_encoded': (optional) base64-encoded dump of task response headers 'output_data_encoded': (optional) base64-encoded dump of task response data 'error_msg': human-readable error message 'error_code': enum of { 'CONNECTION_ERROR', 'TASK_ERROR', 'CONTEXT_INPUT_ERROR', 'CONTEXT_OUTPUT_ERROR' } } For the input/output headers/data, we first try to decode them if they're not binary data (since BAVS just encodes to avoid having to deal with escaping, etc.). If we can successfully decode into a string, we then check if content-type is json, and if so, we make it a dict. Finally, after processing, we dump the whole dict into the `result` key, and since we're putting a `json.dumps()` into the `result` key, we put `application/json` into the `content-type` key so that consumers of the result payload may know how to process the data. """ input_is_json = False output_is_json = False result = {} if 'error_msg' in payload: result['error_msg'] = payload['error_msg'] if 'error_code' in payload: result['error_code'] = payload['error_code'] if 'input_headers_encoded' in payload: hdrs = convert_envoy_hdr_msg_to_dict(payload['input_headers_encoded']) result['input_headers'] = hdrs if Headers.X_HEADER_TASK_ID.lower() in hdrs: task_id = hdrs[Headers.X_HEADER_TASK_ID.lower()] bpmn_component = workflow.process.component_map[task_id] result['failed_task_id'] = task_id result['failed_task_name'] = bpmn_component.name input_is_json = (hdrs.get('content-type')) == 'application/json' if 'input_data_encoded' in payload: result['input_data'] = process_data(payload['input_data_encoded'], input_is_json) if 'output_headers_encoded' in payload: hdrs = convert_envoy_hdr_msg_to_dict(payload['output_headers_encoded']) output_is_json = (hdrs.get('content-type')) == 'application/json' result['output_headers'] = hdrs if 'output_data_encoded' in payload: result['output_data'] = process_data(payload['output_data_encoded'], output_is_json) self.etcd.put(keys.result, json.dumps(result)) self.etcd.put(keys.content_type, 'application/json')
44.289963
114
0.622461
d309124d54f64ca84afb15ca65b8dc2409c3cae1
90,045
py
Python
trimesh/base.py
gustavla/trimesh
d7ea008595f78b411bef3b770cedc94914ff954f
[ "MIT" ]
null
null
null
trimesh/base.py
gustavla/trimesh
d7ea008595f78b411bef3b770cedc94914ff954f
[ "MIT" ]
null
null
null
trimesh/base.py
gustavla/trimesh
d7ea008595f78b411bef3b770cedc94914ff954f
[ "MIT" ]
null
null
null
# flake8: noqa """ github.com/mikedh/trimesh ---------------------------- Library for importing, exporting and doing simple operations on triangular meshes. """ import numpy as np import copy from . import ray from . import util from . import units from . import poses from . import graph from . import sample from . import repair from . import convex from . import remesh from . import bounds from . import caching from . import inertia from . import nsphere from . import boolean from . import grouping from . import geometry from . import permutate from . import proximity from . import triangles from . import collision from . import curvature from . import smoothing from . import comparison from . import registration from . import decomposition from . import intersections from . import transformations from .visual import create_visual from .exchange.export import export_mesh from .constants import log, log_time, tol from .scene import Scene from .parent import Geometry class Trimesh(Geometry): def __init__(self, vertices=None, faces=None, face_normals=None, vertex_normals=None, face_colors=None, vertex_colors=None, face_attributes=None, vertex_attributes=None, metadata=None, process=True, validate=False, use_embree=True, initial_cache=None, visual=None, **kwargs): """ A Trimesh object contains a triangular 3D mesh. Parameters ------------ vertices : (n, 3) float Array of vertex locations faces : (m, 3) or (m, 4) int Array of triangular or quad faces (triangulated on load) face_normals : (m, 3) float Array of normal vectors corresponding to faces vertex_normals : (n, 3) float Array of normal vectors for vertices metadata : dict Any metadata about the mesh process : bool if True, Nan and Inf values will be removed immediately and vertices will be merged validate : bool If True, degenerate and duplicate faces will be removed immediately, and some functions will alter the mesh to ensure consistent results. use_embree : bool If True try to use pyembree raytracer. If pyembree is not available it will automatically fall back to a much slower rtree/numpy implementation initial_cache : dict A way to pass things to the cache in case expensive things were calculated before creating the mesh object. visual : ColorVisuals or TextureVisuals Assigned to self.visual """ if initial_cache is None: initial_cache = {} # self._data stores information about the mesh which # CANNOT be regenerated. # in the base class all that is stored here is vertex and # face information # any data put into the store is converted to a TrackedArray # which is a subclass of np.ndarray that provides md5 and crc # methods which can be used to detect changes in the array. self._data = caching.DataStore() # self._cache stores information about the mesh which CAN be # regenerated from self._data, but may be slow to calculate. # In order to maintain consistency # the cache is cleared when self._data.crc() changes self._cache = caching.Cache( id_function=self._data.fast_hash, force_immutable=True) self._cache.update(initial_cache) # if validate we are allowed to alter the mesh silently # to ensure valid results self._validate = bool(validate) # check for None only to avoid warning messages in subclasses if vertices is not None: # (n, 3) float, set of vertices self.vertices = vertices if faces is not None: # (m, 3) int of triangle faces, references self.vertices self.faces = faces # hold visual information about the mesh (vertex and face colors) if visual is None: self.visual = create_visual( face_colors=face_colors, vertex_colors=vertex_colors, mesh=self) else: self.visual = visual # normals are accessed through setters/properties and are regenerated # if dimensions are inconsistent, but can be set by the constructor # to avoid a substantial number of cross products if face_normals is not None: self.face_normals = face_normals # (n, 3) float of vertex normals, can be created from face normals if vertex_normals is not None: self.vertex_normals = vertex_normals # embree is a much, much faster raytracer written by Intel # if you have pyembree installed you should use it # although both raytracers were designed to have a common API if ray.has_embree and use_embree: self.ray = ray.ray_pyembree.RayMeshIntersector(self) else: # create a ray-mesh query object for the current mesh # initializing is very inexpensive and object is convenient to have. # On first query expensive bookkeeping is done (creation of r-tree), # and is cached for subsequent queries self.ray = ray.ray_triangle.RayMeshIntersector(self) # a quick way to get permuted versions of the current mesh self.permutate = permutate.Permutator(self) # convenience class for nearest point queries self.nearest = proximity.ProximityQuery(self) # store metadata about the mesh in a dictionary self.metadata = dict() # update the mesh metadata with passed metadata if isinstance(metadata, dict): self.metadata.update(metadata) elif metadata is not None: raise ValueError( 'metadata should be a dict or None, got %s' % str(metadata)) # Set the default center of mass and density self._density = 1.0 self._center_mass = None # store per-face and per-vertex attributes which will # be updated when an update_faces call is made self.face_attributes = {} self.vertex_attributes = {} # use update to copy items if face_attributes is not None: self.face_attributes.update(face_attributes) if vertex_attributes is not None: self.vertex_attributes.update(vertex_attributes) # process will remove NaN and Inf values and merge vertices # if validate, will remove degenerate and duplicate faces if process or validate: self.process() # save reference to kwargs self._kwargs = kwargs def process(self): """ Do the bare minimum processing to make a mesh useful. Does this by: 1) removing NaN and Inf values 2) merging duplicate vertices If self._validate: 3) Remove triangles which have one edge of their rectangular 2D oriented bounding box shorter than tol.merge 4) remove duplicated triangles Returns ------------ self: trimesh.Trimesh Current mesh """ # if there are no vertices or faces exit early if self.is_empty: return self # avoid clearing the cache during operations with self._cache: self.remove_infinite_values() self.merge_vertices() # if we're cleaning remove duplicate # and degenerate faces if self._validate: self.remove_duplicate_faces() self.remove_degenerate_faces() # since none of our process operations moved vertices or faces # we can keep face and vertex normals in the cache without recomputing # if faces or vertices have been removed, normals are validated before # being returned so there is no danger of inconsistent dimensions self._cache.clear(exclude=['face_normals', 'vertex_normals']) self.metadata['processed'] = True return self def md5(self): """ An MD5 of the core geometry information for the mesh, faces and vertices. Generated from TrackedArray which subclasses np.ndarray to monitor array for changes and returns a correct lazily evaluated md5 so it only has to recalculate the hash occasionally, rather than on every call. Returns ---------- md5 : string MD5 of everything in the DataStore """ md5 = self._data.md5() return md5 def crc(self): """ A zlib.adler32 checksum for the current mesh data. This is about 5x faster than an MD5, and the checksum is checked every time something is requested from the cache so it gets called a lot. Returns ---------- crc : int Checksum of current mesh data """ return self._data.fast_hash() @property def faces(self): """ The faces of the mesh. This is regarded as core information which cannot be regenerated from cache, and as such is stored in self._data which tracks the array for changes and clears cached values of the mesh if this is altered. Returns ---------- faces : (n, 3) int Representing triangles which reference self.vertices """ return self._data.get('faces', np.empty(shape=(0, 3), dtype=int)) @faces.setter def faces(self, values): """ Set the vertex indexes that make up triangular faces. Parameters -------------- values : (n, 3) int Indexes of self.vertices """ if values is None or len(values) == 0: if 'faces' in self._data: del self._data['faces'] return values = np.asanyarray(values, dtype=np.int64) # automatically triangulate quad faces if util.is_shape(values, (-1, 4)): log.info('triangulating quad faces') values = geometry.triangulate_quads(values) self._data['faces'] = values @caching.cache_decorator def faces_sparse(self): """ A sparse matrix representation of the faces. Returns ---------- sparse : scipy.sparse.coo_matrix Has properties: dtype : bool shape : (len(self.vertices), len(self.faces)) """ sparse = geometry.index_sparse( columns=len(self.vertices), indices=self.faces) return sparse @property def face_normals(self): """ Return the unit normal vector for each face. If a face is degenerate and a normal can't be generated a zero magnitude unit vector will be returned for that face. Returns ----------- normals : (len(self.faces), 3) np.float64 Normal vectors of each face """ # check shape of cached normals cached = self._cache['face_normals'] if np.shape(cached) == np.shape(self._data['faces']): return cached log.debug('generating face normals') # use cached triangle cross products to generate normals # this will always return the correct shape but some values # will be zero or an arbitrary vector if the inputs had # a cross product below machine epsilon normals, valid = triangles.normals( triangles=self.triangles, crosses=self.triangles_cross) # if all triangles are valid shape is correct if valid.all(): # put calculated face normals into cache manually self._cache['face_normals'] = normals return normals # make a padded list of normals for correct shape padded = np.zeros((len(self.triangles), 3), dtype=np.float64) padded[valid] = normals # put calculated face normals into cache manually self._cache['face_normals'] = padded return padded @face_normals.setter def face_normals(self, values): """ Assign values to face normals. Parameters ------------- values : (len(self.faces), 3) float Unit face normals """ # if nothing passed exit if values is None: return # make sure candidate face normals are C- contiguous float values = np.asanyarray( values, order='C', dtype=np.float64) # face normals need to correspond to faces if len(values) == 0 or values.shape != self.faces.shape: log.warning('face_normals incorrect shape, ignoring!') return # check if any values are larger than tol.merge # don't set the normals if they are all zero ptp = values.ptp() if not np.isfinite(ptp): log.warning('face_normals contain NaN, ignoring!') return if ptp < tol.merge: log.warning('face_normals all zero, ignoring!') return # make sure the first few normals match the first few triangles check, valid = triangles.normals( self.vertices.view(np.ndarray)[self.faces[:20]]) compare = np.zeros((len(valid), 3)) compare[valid] = check if not np.allclose(compare, values[:20]): log.debug("face_normals didn't match triangles, ignoring!") return # otherwise store face normals self._cache['face_normals'] = values @property def vertices(self): """ The vertices of the mesh. This is regarded as core information which cannot be generated from cache and as such is stored in self._data which tracks the array for changes and clears cached values of the mesh if this is altered. Returns ---------- vertices : (n, 3) float Points in cartesian space referenced by self.faces """ return self._data['vertices'] @vertices.setter def vertices(self, values): """ Assign vertex values to the mesh. Parameters -------------- values : (n, 3) float Points in space """ self._data['vertices'] = np.asanyarray( values, order='C', dtype=np.float64) @caching.cache_decorator def vertex_normals(self): """ The vertex normals of the mesh. If the normals were loaded we check to make sure we have the same number of vertex normals and vertices before returning them. If there are no vertex normals defined or a shape mismatch we calculate the vertex normals from the mean normals of the faces the vertex is used in. Returns ---------- vertex_normals : (n, 3) float Represents the surface normal at each vertex. Where n == len(self.vertices) """ # make sure we have faces_sparse assert hasattr(self.faces_sparse, 'dot') vertex_normals = geometry.weighted_vertex_normals( vertex_count=len(self.vertices), faces=self.faces, face_normals=self.face_normals, face_angles=self.face_angles) return vertex_normals @vertex_normals.setter def vertex_normals(self, values): """ Assign values to vertex normals Parameters ------------- values : (len(self.vertices), 3) float Unit normal vectors for each vertex """ if values is not None: values = np.asanyarray(values, order='C', dtype=np.float64) if values.shape == self.vertices.shape: # check to see if they assigned all zeros if values.ptp() < tol.merge: log.warning( 'vertex_normals are all set to zero!') self._cache['vertex_normals'] = values @caching.cache_decorator def vertex_faces(self): """ A representation of the face indices that correspond to each vertex. Returns ---------- vertex_faces : (n,m) int Each row contains the face indices that correspond to the given vertex, padded with -1 up to the max number of faces corresponding to any one vertex Where n == len(self.vertices), m == max number of faces for a single vertex """ vertex_faces = geometry.vertex_face_indices( vertex_count=len(self.vertices), faces=self.faces, faces_sparse=self.faces_sparse) return vertex_faces @caching.cache_decorator def bounds(self): """ The axis aligned bounds of the faces of the mesh. Returns ----------- bounds : (2, 3) float or None Bounding box with [min, max] coordinates If mesh is empty will return None """ # return bounds including ONLY referenced vertices in_mesh = self.vertices[self.referenced_vertices] # don't crash if we have no vertices referenced if len(in_mesh) == 0: return None # get mesh bounds with min and max mesh_bounds = np.array([in_mesh.min(axis=0), in_mesh.max(axis=0)]) return mesh_bounds @caching.cache_decorator def extents(self): """ The length, width, and height of the axis aligned bounding box of the mesh. Returns ----------- extents : (3, ) float or None Array containing axis aligned [length, width, height] If mesh is empty returns None """ # if mesh is empty return None if self.bounds is None: return None extents = self.bounds.ptp(axis=0) extents.flags.writeable = False return extents @caching.cache_decorator def scale(self): """ A metric for the overall scale of the mesh, the length of the diagonal of the axis aligned bounding box of the mesh. Returns ---------- scale : float The length of the meshes AABB diagonal """ # if mesh is empty just return no scale if self.extents is None: return 1.0 # make sure we are returning python floats scale = float((self.extents ** 2).sum() ** .5) return scale @caching.cache_decorator def centroid(self): """ The point in space which is the average of the triangle centroids weighted by the area of each triangle. This will be valid even for non- watertight meshes, unlike self.center_mass Returns ---------- centroid : (3, ) float The average vertex weighted by face area """ # use the centroid of each triangle weighted by # the area of the triangle to find the overall centroid centroid = np.average(self.triangles_center, axis=0, weights=self.area_faces) centroid.flags.writeable = False return centroid @property def center_mass(self): """ The point in space which is the center of mass/volume. If the current mesh is not watertight, this is meaningless garbage unless it was explicitly set. Returns ----------- center_mass : (3, ) float Volumetric center of mass of the mesh """ center_mass = self.mass_properties['center_mass'] return center_mass @center_mass.setter def center_mass(self, cm): self._center_mass = cm self._cache.delete('mass_properties') @property def density(self): """ The density of the mesh. Returns ----------- density : float The density of the mesh. """ density = self.mass_properties['density'] return density @density.setter def density(self, value): """ Set the density of the mesh. Parameters ------------- density : float Specify the density of the mesh to be used in inertia calculations """ self._density = float(value) self._cache.delete('mass_properties') @property def volume(self): """ Volume of the current mesh calculated using a surface integral. If the current mesh isn't watertight this is garbage. Returns --------- volume : float Volume of the current mesh """ volume = self.mass_properties['volume'] return volume @property def mass(self): """ Mass of the current mesh, based on specified density and volume. If the current mesh isn't watertight this is garbage. Returns --------- mass : float Mass of the current mesh """ mass = self.mass_properties['mass'] return mass @property def moment_inertia(self): """ Return the moment of inertia matrix of the current mesh. If mesh isn't watertight this is garbage. Returns --------- inertia : (3, 3) float Moment of inertia of the current mesh """ inertia = self.mass_properties['inertia'] return inertia @caching.cache_decorator def principal_inertia_components(self): """ Return the principal components of inertia Ordering corresponds to mesh.principal_inertia_vectors Returns ---------- components : (3, ) float Principal components of inertia """ # both components and vectors from inertia matrix components, vectors = inertia.principal_axis(self.moment_inertia) # store vectors in cache for later self._cache['principal_inertia_vectors'] = vectors return components @property def principal_inertia_vectors(self): """ Return the principal axis of inertia. Ordering corresponds to mesh.principal_inertia_components Returns ---------- vectors : (3, 3) float Three vectors pointing along the principal axis of inertia directions """ populate = self.principal_inertia_components return self._cache['principal_inertia_vectors'] @caching.cache_decorator def principal_inertia_transform(self): """ A transform which moves the current mesh so the principal inertia vectors are on the X,Y, and Z axis, and the centroid is at the origin. Returns ---------- transform : (4, 4) float Homogeneous transformation matrix """ order = np.argsort(self.principal_inertia_components)[1:][::-1] vectors = self.principal_inertia_vectors[order] vectors = np.vstack((vectors, np.cross(*vectors))) transform = np.eye(4) transform[:3, :3] = vectors transform = transformations.transform_around( matrix=transform, point=self.centroid) transform[:3, 3] -= self.centroid return transform @caching.cache_decorator def symmetry(self): """ Check whether a mesh has rotational symmetry. Returns ----------- symmetry: None No rotational symmetry 'radial' Symmetric around an axis 'spherical' Symmetric around a point """ symmetry, axis, section = inertia.radial_symmetry(self) self._cache['symmetry_axis'] = axis self._cache['symmetry_section'] = section return symmetry @property def symmetry_axis(self): """ If a mesh has rotational symmetry, return the axis. Returns ------------ axis: (3, ) float Axis around which a 2D profile was revolved to generate this mesh """ if self.symmetry is not None: return self._cache['symmetry_axis'] @property def symmetry_section(self): """ If a mesh has rotational symmetry, return the two vectors which make up a section coordinate frame. Returns ---------- section: (2, 3) float, vectors to take a section along """ if self.symmetry is not None: return self._cache['symmetry_section'] @caching.cache_decorator def triangles(self): """ Actual triangles of the mesh (points, not indexes) Returns --------- triangles : (n, 3, 3) float Points of triangle vertices """ # use of advanced indexing on our tracked arrays will # trigger a change flag which means the MD5 will have to be # recomputed. We can escape this check by viewing the array. triangles = self.vertices.view(np.ndarray)[self.faces] # make triangles (which are derived from faces/vertices) not writeable triangles.flags.writeable = False return triangles @caching.cache_decorator def triangles_tree(self): """ An R-tree containing each face of the mesh. Returns ---------- tree : rtree.index Each triangle in self.faces has a rectangular cell """ tree = triangles.bounds_tree(self.triangles) return tree @caching.cache_decorator def triangles_center(self): """ The center of each triangle (barycentric [1/3, 1/3, 1/3]) Returns --------- triangles_center : (len(self.faces), 3) float Center of each triangular face """ triangles_center = self.triangles.mean(axis=1) return triangles_center @caching.cache_decorator def triangles_cross(self): """ The cross product of two edges of each triangle. Returns --------- crosses : (n, 3) float Cross product of each triangle """ crosses = triangles.cross(self.triangles) return crosses @caching.cache_decorator def edges(self): """ Edges of the mesh (derived from faces). Returns --------- edges : (n, 2) int List of vertex indices making up edges """ edges, index = geometry.faces_to_edges(self.faces.view(np.ndarray), return_index=True) self._cache['edges_face'] = index return edges @caching.cache_decorator def edges_face(self): """ Which face does each edge belong to. Returns --------- edges_face : (n, ) int Index of self.faces """ populate = self.edges return self._cache['edges_face'] @caching.cache_decorator def edges_unique(self): """ The unique edges of the mesh. Returns ---------- edges_unique : (n, 2) int Vertex indices for unique edges """ unique, inverse = grouping.unique_rows(self.edges_sorted) edges_unique = self.edges_sorted[unique] # edges_unique will be added automatically by the decorator # additional terms generated need to be added to the cache manually self._cache['edges_unique_idx'] = unique self._cache['edges_unique_inverse'] = inverse return edges_unique @caching.cache_decorator def edges_unique_length(self): """ How long is each unique edge. Returns ---------- length : (len(self.edges_unique), ) float Length of each unique edge """ vector = np.subtract(*self.vertices[self.edges_unique.T]) length = util.row_norm(vector) return length @caching.cache_decorator def edges_unique_inverse(self): """ Return the inverse required to reproduce self.edges_sorted from self.edges_unique. Useful for referencing edge properties: mesh.edges_unique[mesh.edges_unique_inverse] == m.edges_sorted Returns ---------- inverse : (len(self.edges), ) int Indexes of self.edges_unique """ populate = self.edges_unique return self._cache['edges_unique_inverse'] @caching.cache_decorator def edges_sorted(self): """ Edges sorted along axis 1 Returns ---------- edges_sorted : (n, 2) Same as self.edges but sorted along axis 1 """ edges_sorted = np.sort(self.edges, axis=1) return edges_sorted @caching.cache_decorator def edges_sorted_tree(self): """ A KDTree for mapping edges back to edge index. Returns ------------ tree : scipy.spatial.cKDTree Tree when queried with edges will return their index in mesh.edges_sorted """ from scipy.spatial import cKDTree return cKDTree(self.edges_sorted) @caching.cache_decorator def edges_sparse(self): """ Edges in sparse bool COO graph format where connected vertices are True. Returns ---------- sparse: (len(self.vertices), len(self.vertices)) bool Sparse graph in COO format """ sparse = graph.edges_to_coo(self.edges, count=len(self.vertices)) return sparse @caching.cache_decorator def body_count(self): """ How many connected groups of vertices exist in this mesh. Note that this number may differ from result in mesh.split, which is calculated from FACE rather than vertex adjacency. Returns ----------- count : int Number of connected vertex groups """ # labels are (len(vertices), int) OB count, labels = graph.csgraph.connected_components( self.edges_sparse, directed=False, return_labels=True) self._cache['vertices_component_label'] = labels return count @caching.cache_decorator def faces_unique_edges(self): """ For each face return which indexes in mesh.unique_edges constructs that face. Returns --------- faces_unique_edges : (len(self.faces), 3) int Indexes of self.edges_unique that construct self.faces Examples --------- In [0]: mesh.faces[0:2] Out[0]: TrackedArray([[ 1, 6946, 24224], [ 6946, 1727, 24225]]) In [1]: mesh.edges_unique[mesh.faces_unique_edges[0:2]] Out[1]: array([[[ 1, 6946], [ 6946, 24224], [ 1, 24224]], [[ 1727, 6946], [ 1727, 24225], [ 6946, 24225]]]) """ # make sure we have populated unique edges populate = self.edges_unique # we are relying on the fact that edges are stacked in triplets result = self._cache['edges_unique_inverse'].reshape((-1, 3)) return result @caching.cache_decorator def euler_number(self): """ Return the Euler characteristic (a topological invariant) for the mesh In order to guarantee correctness, this should be called after remove_unreferenced_vertices Returns ---------- euler_number : int Topological invariant """ euler = int(self.referenced_vertices.sum() - len(self.edges_unique) + len(self.faces)) return euler @caching.cache_decorator def referenced_vertices(self): """ Which vertices in the current mesh are referenced by a face. Returns ------------- referenced : (len(self.vertices), ) bool Which vertices are referenced by a face """ referenced = np.zeros(len(self.vertices), dtype=np.bool) referenced[self.faces] = True return referenced @property def units(self): """ Definition of units for the mesh. Returns ---------- units : str Unit system mesh is in, or None if not defined """ if 'units' in self.metadata: return self.metadata['units'] else: return None @units.setter def units(self, value): value = str(value).lower() self.metadata['units'] = value def convert_units(self, desired, guess=False): """ Convert the units of the mesh into a specified unit. Parameters ------------ desired : string Units to convert to (eg 'inches') guess : boolean If self.units are not defined should we guess the current units of the document and then convert? """ units._convert_units(self, desired, guess) return self def merge_vertices(self, digits=None, textured=True): """ If a mesh has vertices that are closer than trimesh.constants.tol.merge reindex faces to reference the same index for both vertices. Parameters -------------- digits : int If specified overrides tol.merge textured : bool If True avoids merging vertices with different UV coordinates. No effect on untextured meshes. """ grouping.merge_vertices(self, digits=digits, textured=textured) def update_vertices(self, mask, inverse=None): """ Update vertices with a mask. Parameters ------------ vertex_mask : (len(self.vertices)) bool Array of which vertices to keep inverse : (len(self.vertices)) int Array to reconstruct vertex references such as output by np.unique """ # if the mesh is already empty we can't remove anything if self.is_empty: return # make sure mask is a numpy array mask = np.asanyarray(mask) if ((mask.dtype.name == 'bool' and mask.all()) or len(mask) == 0 or self.is_empty): # mask doesn't remove any vertices so exit early return # create the inverse mask if not passed if inverse is None: inverse = np.zeros(len(self.vertices), dtype=np.int64) if mask.dtype.kind == 'b': inverse[mask] = np.arange(mask.sum()) elif mask.dtype.kind == 'i': inverse[mask] = np.arange(len(mask)) else: inverse = None # re- index faces from inverse if inverse is not None and util.is_shape(self.faces, (-1, 3)): self.faces = inverse[self.faces.reshape(-1)].reshape((-1, 3)) # update the visual object with our mask self.visual.update_vertices(mask) # get the normals from cache before dumping cached_normals = self._cache['vertex_normals'] # apply to face_attributes count = len(self.vertices) for key, value in self.vertex_attributes.items(): try: # covers un-len'd objects as well if len(value) != count: raise TypeError() except TypeError: continue # apply the mask to the attribute self.vertex_attributes[key] = value[mask] # actually apply the mask self.vertices = self.vertices[mask] # if we had passed vertex normals try to save them if util.is_shape(cached_normals, (-1, 3)): try: self.vertex_normals = cached_normals[mask] except BaseException: pass def update_faces(self, mask): """ In many cases, we will want to remove specific faces. However, there is additional bookkeeping to do this cleanly. This function updates the set of faces with a validity mask, as well as keeping track of normals and colors. Parameters ------------ valid : (m) int or (len(self.faces)) bool Mask to remove faces """ # if the mesh is already empty we can't remove anything if self.is_empty: return mask = np.asanyarray(mask) if mask.dtype.name == 'bool' and mask.all(): # mask removes no faces so exit early return # try to save face normals before dumping cache cached_normals = self._cache['face_normals'] faces = self._data['faces'] # if Trimesh has been subclassed and faces have been moved # from data to cache, get faces from cache. if not util.is_shape(faces, (-1, 3)): faces = self._cache['faces'] # apply to face_attributes count = len(self.faces) for key, value in self.face_attributes.items(): try: # covers un-len'd objects as well if len(value) != count: raise TypeError() except TypeError: continue # apply the mask to the attribute self.face_attributes[key] = value[mask] # actually apply the mask self.faces = faces[mask] # apply to face colors self.visual.update_faces(mask) # if our normals were the correct shape apply them if util.is_shape(cached_normals, (-1, 3)): self.face_normals = cached_normals[mask] def remove_infinite_values(self): """ Ensure that every vertex and face consists of finite numbers. This will remove vertices or faces containing np.nan and np.inf Alters ---------- self.faces : masked to remove np.inf/np.nan self.vertices : masked to remove np.inf/np.nan """ if util.is_shape(self.faces, (-1, 3)): # (len(self.faces), ) bool, mask for faces face_mask = np.isfinite(self.faces).all(axis=1) self.update_faces(face_mask) if util.is_shape(self.vertices, (-1, 3)): # (len(self.vertices), ) bool, mask for vertices vertex_mask = np.isfinite(self.vertices).all(axis=1) self.update_vertices(vertex_mask) def remove_duplicate_faces(self): """ On the current mesh remove any faces which are duplicates. Alters ---------- self.faces : removes duplicates """ unique, inverse = grouping.unique_rows(np.sort(self.faces, axis=1)) self.update_faces(unique) def rezero(self): """ Translate the mesh so that all vertex vertices are positive. Alters ---------- self.vertices : Translated to first octant (all values > 0) """ self.apply_translation(self.bounds[0] * -1.0) @log_time def split(self, only_watertight=True, adjacency=None, **kwargs): """ Returns a list of Trimesh objects, based on face connectivity. Splits into individual components, sometimes referred to as 'bodies' Parameters ------------ only_watertight : bool Only return watertight meshes and discard remainder adjacency : None or (n, 2) int Override face adjacency with custom values Returns --------- meshes : (n, ) trimesh.Trimesh Separate bodies from original mesh """ meshes = graph.split(self, only_watertight=only_watertight, adjacency=adjacency, **kwargs) return meshes @caching.cache_decorator def face_adjacency(self): """ Find faces that share an edge, which we call here 'adjacent'. Returns ---------- adjacency : (n, 2) int Pairs of faces which share an edge Examples --------- In [1]: mesh = trimesh.load('models/featuretype.STL') In [2]: mesh.face_adjacency Out[2]: array([[ 0, 1], [ 2, 3], [ 0, 3], ..., [1112, 949], [3467, 3475], [1113, 3475]]) In [3]: mesh.faces[mesh.face_adjacency[0]] Out[3]: TrackedArray([[ 1, 0, 408], [1239, 0, 1]], dtype=int64) In [4]: import networkx as nx In [5]: graph = nx.from_edgelist(mesh.face_adjacency) In [6]: groups = nx.connected_components(graph) """ adjacency, edges = graph.face_adjacency( mesh=self, return_edges=True) self._cache['face_adjacency_edges'] = edges return adjacency @caching.cache_decorator def face_adjacency_edges(self): """ Returns the edges that are shared by the adjacent faces. Returns -------- edges : (n, 2) int Vertex indices which correspond to face_adjacency """ # this value is calculated as a byproduct of the face adjacency populate = self.face_adjacency return self._cache['face_adjacency_edges'] @caching.cache_decorator def face_adjacency_edges_tree(self): """ A KDTree for mapping edges back face adjacency index. Returns ------------ tree : scipy.spatial.cKDTree Tree when queried with SORTED edges will return their index in mesh.face_adjacency """ from scipy.spatial import cKDTree return cKDTree(self.face_adjacency_edges) @caching.cache_decorator def face_adjacency_angles(self): """ Return the angle between adjacent faces Returns -------- adjacency_angle : (n, ) float Angle between adjacent faces Each value corresponds with self.face_adjacency """ pairs = self.face_normals[self.face_adjacency] angles = geometry.vector_angle(pairs) return angles @caching.cache_decorator def face_adjacency_projections(self): """ The projection of the non- shared vertex of a triangle onto its adjacent face Returns ---------- projections : (len(self.face_adjacency), ) float Dot product of vertex onto plane of adjacent triangle. """ projections = convex.adjacency_projections(self) return projections @caching.cache_decorator def face_adjacency_convex(self): """ Return faces which are adjacent and locally convex. What this means is that given faces A and B, the one vertex in B that is not shared with A, projected onto the plane of A has a projection that is zero or negative. Returns ---------- are_convex : (len(self.face_adjacency), ) bool Face pairs that are locally convex """ are_convex = self.face_adjacency_projections < tol.merge return are_convex @caching.cache_decorator def face_adjacency_unshared(self): """ Return the vertex index of the two vertices not in the shared edge between two adjacent faces Returns ----------- vid_unshared : (len(mesh.face_adjacency), 2) int Indexes of mesh.vertices """ vid_unshared = graph.face_adjacency_unshared(self) return vid_unshared @caching.cache_decorator def face_adjacency_radius(self): """ The approximate radius of a cylinder that fits inside adjacent faces. Returns ------------ radii : (len(self.face_adjacency), ) float Approximate radius formed by triangle pair """ radii, span = graph.face_adjacency_radius(mesh=self) self._cache['face_adjacency_span'] = span return radii @caching.cache_decorator def face_adjacency_span(self): """ The approximate perpendicular projection of the non- shared vertices in a pair of adjacent faces onto the shared edge of the two faces. Returns ------------ span : (len(self.face_adjacency), ) float Approximate span between the non- shared vertices """ populate = self.face_adjacency_radius return self._cache['face_adjacency_span'] @caching.cache_decorator def vertex_adjacency_graph(self): """ Returns a networkx graph representing the vertices and their connections in the mesh. Returns --------- graph: networkx.Graph Graph representing vertices and edges between them where vertices are nodes and edges are edges Examples ---------- This is useful for getting nearby vertices for a given vertex, potentially for some simple smoothing techniques. mesh = trimesh.primitives.Box() graph = mesh.vertex_adjacency_graph graph.neighbors(0) > [1, 2, 3, 4] """ adjacency_g = graph.vertex_adjacency_graph(mesh=self) return adjacency_g @caching.cache_decorator def vertex_neighbors(self): """ The vertex neighbors of each vertex of the mesh, determined from the cached vertex_adjacency_graph, if already existent. Returns ---------- vertex_neighbors : (len(self.vertices), ) int Represents immediate neighbors of each vertex along the edge of a triangle Examples ---------- This is useful for getting nearby vertices for a given vertex, potentially for some simple smoothing techniques. >>> mesh = trimesh.primitives.Box() >>> mesh.vertex_neighbors[0] [1, 2, 3, 4] """ graph = self.vertex_adjacency_graph neighbors = [list(graph.neighbors(i)) for i in range(len(self.vertices))] return np.array(neighbors) @caching.cache_decorator def is_winding_consistent(self): """ Does the mesh have consistent winding or not. A mesh with consistent winding has each shared edge going in an opposite direction from the other in the pair. Returns -------- consistent : bool Is winding is consistent or not """ if self.is_empty: return False # consistent winding check is populated into the cache by is_watertight populate = self.is_watertight return self._cache['is_winding_consistent'] @caching.cache_decorator def is_watertight(self): """ Check if a mesh is watertight by making sure every edge is included in two faces. Returns ---------- is_watertight : bool Is mesh watertight or not """ if self.is_empty: return False watertight, winding = graph.is_watertight( edges=self.edges, edges_sorted=self.edges_sorted) self._cache['is_winding_consistent'] = winding return watertight @caching.cache_decorator def is_volume(self): """ Check if a mesh has all the properties required to represent a valid volume, rather than just a surface. These properties include being watertight, having consistent winding and outward facing normals. Returns --------- valid : bool Does the mesh represent a volume """ valid = bool(self.is_watertight and self.is_winding_consistent and np.isfinite(self.center_mass).all() and self.volume > 0.0) return valid @caching.cache_decorator def is_empty(self): """ Does the current mesh have data defined. Returns -------- empty : bool If True, no data is set on the current mesh """ return self._data.is_empty() @caching.cache_decorator def is_convex(self): """ Check if a mesh is convex or not. Returns ---------- is_convex: bool Is mesh convex or not """ if self.is_empty: return False is_convex = bool(convex.is_convex(self)) return is_convex @caching.cache_decorator def kdtree(self): """ Return a scipy.spatial.cKDTree of the vertices of the mesh. Not cached as this lead to observed memory issues and segfaults. Returns --------- tree : scipy.spatial.cKDTree Contains mesh.vertices """ from scipy.spatial import cKDTree tree = cKDTree(self.vertices.view(np.ndarray)) return tree def remove_degenerate_faces(self, height=tol.merge): """ Remove degenerate faces (faces without 3 unique vertex indices) from the current mesh. If a height is specified, it will remove any face with a 2D oriented bounding box with one edge shorter than that height. If not specified, it will remove any face with a zero normal. Parameters ------------ height : float If specified removes faces with an oriented bounding box shorter than this on one side. Returns ------------- nondegenerate : (len(self.faces), ) bool Mask used to remove faces """ nondegenerate = triangles.nondegenerate( self.triangles, areas=self.area_faces, height=height) self.update_faces(nondegenerate) return nondegenerate @caching.cache_decorator def facets(self): """ Return a list of face indices for coplanar adjacent faces. Returns --------- facets : (n, ) sequence of (m, ) int Groups of indexes of self.faces """ facets = graph.facets(self) return facets @caching.cache_decorator def facets_area(self): """ Return an array containing the area of each facet. Returns --------- area : (len(self.facets), ) float Total area of each facet (group of faces) """ # avoid thrashing the cache inside a loop area_faces = self.area_faces # sum the area of each group of faces represented by facets # use native python sum in tight loop as opposed to array.sum() # as in this case the lower function call overhead of # native sum provides roughly a 50% speedup areas = np.array([sum(area_faces[i]) for i in self.facets], dtype=np.float64) return areas @caching.cache_decorator def facets_normal(self): """ Return the normal of each facet Returns --------- normals: (len(self.facets), 3) float A unit normal vector for each facet """ if len(self.facets) == 0: return np.array([]) area_faces = self.area_faces # the face index of the largest face in each facet index = np.array([i[area_faces[i].argmax()] for i in self.facets]) # (n, 3) float, unit normal vectors of facet plane normals = self.face_normals[index] # (n, 3) float, points on facet plane origins = self.vertices[self.faces[:, 0][index]] # save origins in cache self._cache['facets_origin'] = origins return normals @caching.cache_decorator def facets_origin(self): """ Return a point on the facet plane. Returns ------------ origins : (len(self.facets), 3) float A point on each facet plane """ populate = self.facets_normal return self._cache['facets_origin'] @caching.cache_decorator def facets_boundary(self): """ Return the edges which represent the boundary of each facet Returns --------- edges_boundary : sequence of (n, 2) int Indices of self.vertices """ # make each row correspond to a single face edges = self.edges_sorted.reshape((-1, 6)) # get the edges for each facet edges_facet = [edges[i].reshape((-1, 2)) for i in self.facets] edges_boundary = np.array([i[grouping.group_rows(i, require_count=1)] for i in edges_facet]) return edges_boundary @caching.cache_decorator def facets_on_hull(self): """ Find which facets of the mesh are on the convex hull. Returns --------- on_hull : (len(mesh.facets), ) bool is A facet on the meshes convex hull or not """ # if no facets exit early if len(self.facets) == 0: return np.array([], dtype=np.bool) # facets plane, origin and normal normals = self.facets_normal origins = self.facets_origin # (n, 3) convex hull vertices convex = self.convex_hull.vertices.view(np.ndarray).copy() # boolean mask for which facets are on convex hull on_hull = np.zeros(len(self.facets), dtype=np.bool) for i, normal, origin in zip(range(len(normals)), normals, origins): # a facet plane is on the convex hull if every vertex # of the convex hull is behind that plane # which we are checking with dot products dot = np.dot(normal, (convex - origin).T) on_hull[i] = (dot < tol.merge).all() return on_hull @log_time def fix_normals(self, multibody=None): """ Find and fix problems with self.face_normals and self.faces winding direction. For face normals ensure that vectors are consistently pointed outwards, and that self.faces is wound in the correct direction for all connected components. Parameters ------------- multibody : None or bool Fix normals across multiple bodies if None automatically pick from body_count """ if multibody is None: multibody = self.body_count > 1 repair.fix_normals(self, multibody=multibody) def fill_holes(self): """ Fill single triangle and single quad holes in the current mesh. Returns ---------- watertight : bool Is the mesh watertight after the function completes """ return repair.fill_holes(self) def register(self, other, **kwargs): """ Align a mesh with another mesh or a PointCloud using the principal axes of inertia as a starting point which is refined by iterative closest point. Parameters ------------ mesh : trimesh.Trimesh object Mesh to align with other other : trimesh.Trimesh or (n, 3) float Mesh or points in space samples : int Number of samples from mesh surface to align icp_first : int How many ICP iterations for the 9 possible combinations of icp_final : int How many ICP itertations for the closest candidate from the wider search Returns ----------- mesh_to_other : (4, 4) float Transform to align mesh to the other object cost : float Average square distance per point """ mesh_to_other, cost = registration.mesh_other(mesh=self, other=other, **kwargs) return mesh_to_other, cost def compute_stable_poses(self, center_mass=None, sigma=0.0, n_samples=1, threshold=0.0): """ Computes stable orientations of a mesh and their quasi-static probabilites. This method samples the location of the center of mass from a multivariate gaussian (mean at com, cov equal to identity times sigma) over n_samples. For each sample, it computes the stable resting poses of the mesh on a a planar workspace and evaluates the probabilities of landing in each pose if the object is dropped onto the table randomly. This method returns the 4x4 homogeneous transform matrices that place the shape against the planar surface with the z-axis pointing upwards and a list of the probabilities for each pose. The transforms and probabilties that are returned are sorted, with the most probable pose first. Parameters ------------ center_mass : (3, ) float The object center of mass (if None, this method assumes uniform density and watertightness and computes a center of mass explicitly) sigma : float The covariance for the multivariate gaussian used to sample center of mass locations n_samples : int The number of samples of the center of mass location threshold : float The probability value at which to threshold returned stable poses Returns ------- transforms : (n, 4, 4) float The homogeneous matrices that transform the object to rest in a stable pose, with the new z-axis pointing upwards from the table and the object just touching the table. probs : (n, ) float A probability ranging from 0.0 to 1.0 for each pose """ return poses.compute_stable_poses(mesh=self, center_mass=center_mass, sigma=sigma, n_samples=n_samples, threshold=threshold) def subdivide(self, face_index=None): """ Subdivide a mesh, with each subdivided face replaced with four smaller faces. Parameters ------------ face_index: (m, ) int or None If None all faces of mesh will be subdivided If (m, ) int array of indices: only specified faces will be subdivided. Note that in this case the mesh will generally no longer be manifold, as the additional vertex on the midpoint will not be used by the adjacent faces to the faces specified, and an additional postprocessing step will be required to make resulting mesh watertight """ # subdivide vertex attributes vertex_attributes = {} if (hasattr(self.visual, 'uv') and np.shape(self.visual.uv)[0] == len(self.vertices)): # only subdivide if vertex_attributes['uv'] = self.visual.uv # perform the subdivision with vertex attributes vertices, faces, attr = remesh.subdivide( vertices=self.vertices, faces=self.faces, face_index=face_index, vertex_attributes=vertex_attributes) # if we had texture reconstruct it here visual = None if 'uv' in attr: # get a copy of the current visuals visual = self.visual.copy() # assign the subdivided UV's and remove them visual.uv = attr.pop('uv') # create a new mesh result = Trimesh( vertices=vertices, faces=faces, visual=visual, vertex_attributes=attr, process=False) return result @log_time def smoothed(self, angle=None, facet_minlen=4): """ Return a version of the current mesh which will render nicely, without changing source mesh. Parameters ------------- angle : float or None Angle in radians face pairs with angles smaller than this will appear smoothed facet_minlen : int or None Minimum length of facets to consider Returns --------- smoothed : trimesh.Trimesh Non watertight version of current mesh which will render nicely with smooth shading """ # smooth should be recomputed if visuals change self.visual._verify_crc() cached = self.visual._cache['smoothed'] if cached is not None: return cached # run smoothing smoothed = graph.smoothed( self, angle=angle, facet_minlen=facet_minlen) self.visual._cache['smoothed'] = smoothed return smoothed @property def visual(self): """ Get the stored visuals for the current mesh. Returns ------------- visual : ColorVisuals or TextureVisuals Contains visual information about the mesh """ if hasattr(self, '_visual'): return self._visual return None @visual.setter def visual(self, value): """ When setting a visual object, always make sure that `visual.mesh` points back to the source mesh. Parameters -------------- visual : ColorVisuals or TextureVisuals Contains visual information about the mesh """ value.mesh = self self._visual = value def section(self, plane_normal, plane_origin): """ Returns a 3D cross section of the current mesh and a plane defined by origin and normal. Parameters ------------ plane_normal: (3) vector for plane normal Normal vector of section plane plane_origin : (3, ) float Point on the cross section plane Returns --------- intersections: Path3D or None Curve of intersection """ # turn line segments into Path2D/Path3D objects from .exchange.load import load_path # return a single cross section in 3D lines, face_index = intersections.mesh_plane( mesh=self, plane_normal=plane_normal, plane_origin=plane_origin, return_faces=True) # if the section didn't hit the mesh return None if len(lines) == 0: return None # otherwise load the line segments into a Path3D object path = load_path(lines) # add the face index info into metadata path.metadata['face_index'] = face_index return path def section_multiplane(self, plane_origin, plane_normal, heights): """ Return multiple parallel cross sections of the current mesh in 2D. Parameters ------------ plane_normal: (3) vector for plane normal Normal vector of section plane plane_origin : (3, ) float Point on the cross section plane heights : (n, ) float Each section is offset by height along the plane normal. Returns --------- paths : (n, ) Path2D or None 2D cross sections at specified heights. path.metadata['to_3D'] contains transform to return 2D section back into 3D space. """ # turn line segments into Path2D/Path3D objects from .exchange.load import load_path # do a multiplane intersection lines, transforms, faces = intersections.mesh_multiplane( mesh=self, plane_normal=plane_normal, plane_origin=plane_origin, heights=heights) # turn the line segments into Path2D objects paths = [None] * len(lines) for index, L, T in zip(range(len(lines)), lines, transforms): if len(L) > 0: paths[index] = load_path( L, metadata={'to_3D': T}) return paths def slice_plane(self, plane_origin, plane_normal, **kwargs): """ Slice the mesh with a plane, returning a new mesh that is the portion of the original mesh to the positive normal side of the plane Parameters ------------ plane_normal: (3) vector for plane normal Normal vector of slicing plane plane_origin : (3, ) float Point on the slicing plane Returns --------- new_mesh: trimesh.Trimesh or None Subset of current mesh that intersects the half plane to the positive normal side of the plane """ # return a new mesh new_mesh = intersections.slice_mesh_plane( mesh=self, plane_normal=plane_normal, plane_origin=plane_origin, **kwargs) return new_mesh @caching.cache_decorator def convex_hull(self): """ Returns a Trimesh object representing the convex hull of the current mesh. Returns -------- convex : trimesh.Trimesh Mesh of convex hull of current mesh """ hull = convex.convex_hull(self) return hull def sample(self, count, return_index=False): """ Return random samples distributed across the surface of the mesh Parameters ------------ count : int Number of points to sample return_index : bool If True will also return the index of which face each sample was taken from. Returns --------- samples : (count, 3) float Points on surface of mesh face_index : (count, ) int Index of self.faces """ samples, index = sample.sample_surface(mesh=self, count=count) if return_index: return samples, index return samples def remove_unreferenced_vertices(self): """ Remove all vertices in the current mesh which are not referenced by a face. """ referenced = np.zeros(len(self.vertices), dtype=np.bool) referenced[self.faces] = True inverse = np.zeros(len(self.vertices), dtype=np.int64) inverse[referenced] = np.arange(referenced.sum()) self.update_vertices(mask=referenced, inverse=inverse) def unmerge_vertices(self): """ Removes all face references so that every face contains three unique vertex indices and no faces are adjacent. """ # new faces are incrementing so every vertex is unique faces = np.arange(len(self.faces) * 3, dtype=np.int64).reshape((-1, 3)) # use update_vertices to apply mask to # all properties that are per-vertex self.update_vertices(self.faces.reshape(-1)) # set faces to incrementing indexes self.faces = faces # keep face normals as the haven't changed self._cache.clear(exclude=['face_normals']) def apply_transform(self, matrix): """ Transform mesh by a homogeneous transformation matrix. Does the bookkeeping to avoid recomputing things so this function should be used rather than directly modifying self.vertices if possible. Parameters ------------ matrix : (4, 4) float Homogeneous transformation matrix """ # get c-order float64 matrix matrix = np.asanyarray( matrix, order='C', dtype=np.float64) # only support homogeneous transformations if matrix.shape != (4, 4): raise ValueError('Transformation matrix must be (4, 4)!') # exit early if we've been passed an identity matrix # np.allclose is surprisingly slow so do this test elif util.allclose(matrix, np.eye(4), 1e-8): log.debug('apply_transform passed identity matrix') return self # new vertex positions new_vertices = transformations.transform_points( self.vertices, matrix=matrix) # check to see if the matrix has rotation # rather than just translation has_rotation = not util.allclose( matrix[:3, :3], np.eye(3), atol=1e-6) # overridden center of mass if self._center_mass is not None: self._center_mass = transformations.transform_points( np.array([self._center_mass, ]), matrix)[0] # preserve face normals if we have them stored new_face_normals = None if has_rotation and 'face_normals' in self._cache: # transform face normals by rotation component new_face_normals = util.unitize( transformations.transform_points( self.face_normals, matrix=matrix, translate=False)) # preserve vertex normals if we have them stored new_vertex_normals = None if has_rotation and 'vertex_normals' in self._cache: new_vertex_normals = util.unitize( transformations.transform_points( self.vertex_normals, matrix=matrix, translate=False)) # if transformation flips winding of triangles if has_rotation and transformations.flips_winding(matrix): log.debug('transform flips winding') # fliplr will make array non C contiguous # which will cause hashes to be more # expensive than necessary so wrap self.faces = np.ascontiguousarray( np.fliplr(self.faces)) # assign the new values self.vertices = new_vertices # may be None if we didn't have them previously self.face_normals = new_face_normals self.vertex_normals = new_vertex_normals # preserve normals and topology in cache # while dumping everything else self._cache.clear(exclude=[ 'face_normals', # transformed by us 'vertex_normals' # also transformed by us 'face_adjacency', # topological 'face_adjacency_edges', 'face_adjacency_unshared', 'edges', 'edges_sorted', 'edges_unique', 'edges_sparse', 'body_count', 'faces_unique_edges', 'euler_number', ]) # set the cache ID with the current hash value self._cache.id_set() log.debug('mesh transformed by matrix') return self def voxelized(self, pitch, method='subdivide', **kwargs): """ Return a VoxelGrid object representing the current mesh discretized into voxels at the specified pitch Parameters ------------ pitch : float The edge length of a single voxel method: implementation key. See `trimesh.voxel.creation.voxelizers` **kwargs: additional kwargs passed to the specified implementation. Returns ---------- voxelized : VoxelGrid object Representing the current mesh """ from .voxel import creation return creation.voxelize( mesh=self, pitch=pitch, method=method, **kwargs) def outline(self, face_ids=None, **kwargs): """ Given a list of face indexes find the outline of those faces and return it as a Path3D. The outline is defined here as every edge which is only included by a single triangle. Note that this implies a non-watertight mesh as the outline of a watertight mesh is an empty path. Parameters ------------ face_ids : (n, ) int Indices to compute the outline of. If None, outline of full mesh will be computed. **kwargs: passed to Path3D constructor Returns ---------- path : Path3D Curve in 3D of the outline """ from .path.exchange.misc import faces_to_path from .path.exchange.load import _create_path path = _create_path(**faces_to_path(self, face_ids, **kwargs)) return path @caching.cache_decorator def area(self): """ Summed area of all triangles in the current mesh. Returns --------- area : float Surface area of mesh """ area = self.area_faces.sum() return area @caching.cache_decorator def area_faces(self): """ The area of each face in the mesh. Returns --------- area_faces : (n, ) float Area of each face """ area_faces = triangles.area(crosses=self.triangles_cross, sum=False) return area_faces @caching.cache_decorator def mass_properties(self): """ Returns the mass properties of the current mesh. Assumes uniform density, and result is probably garbage if mesh isn't watertight. Returns ---------- properties : dict With keys: 'volume' : in global units^3 'mass' : From specified density 'density' : Included again for convenience (same as kwarg density) 'inertia' : Taken at the center of mass and aligned with global coordinate system 'center_mass' : Center of mass location, in global coordinate system """ mass = triangles.mass_properties(triangles=self.triangles, crosses=self.triangles_cross, density=self._density, center_mass=self._center_mass, skip_inertia=False) # if magical clean- up mode is enabled # and mesh is watertight/wound correctly but with negative # volume it means that every triangle is probably facing # inwards, so we invert it in- place without dumping cache if (self._validate and self.is_watertight and self.is_winding_consistent and np.linalg.det(mass['inertia']) < 0.0 and mass['mass'] < 0.0 and mass['volume'] < 0.0): # negate mass properties so we don't need to recalculate mass['inertia'] = -mass['inertia'] mass['mass'] = -mass['mass'] mass['volume'] = -mass['volume'] # invert the faces and normals of the mesh self.invert() return mass def invert(self): """ Invert the mesh in- place by reversing the winding of every face and negating normals without dumping the cache. Alters --------- self.faces : columns reversed self.face_normals : negated if defined self.vertex_normals : negated if defined """ with self._cache: if 'face_normals' in self._cache: self.face_normals = self._cache['face_normals'] * -1.0 if 'vertex_normals' in self._cache: self.vertex_normals = self._cache['vertex_normals'] * -1.0 self.faces = np.fliplr(self.faces) # save our normals self._cache.clear(exclude=['face_normals', 'vertex_normals']) def scene(self, **kwargs): """ Returns a Scene object containing the current mesh. Returns --------- scene : trimesh.scene.scene.Scene Contains just the current mesh """ return Scene(self, **kwargs) def show(self, **kwargs): """ Render the mesh in an opengl window. Requires pyglet. Parameters ------------ smooth : bool Run smooth shading on mesh or not, large meshes will be slow Returns ----------- scene : trimesh.scene.Scene Scene with current mesh in it """ scene = self.scene() return scene.show(**kwargs) def submesh(self, faces_sequence, **kwargs): """ Return a subset of the mesh. Parameters ------------ faces_sequence : sequence (m, ) int Face indices of mesh only_watertight : bool Only return submeshes which are watertight append : bool Return a single mesh which has the faces appended. if this flag is set, only_watertight is ignored Returns --------- if append : trimesh.Trimesh object else : list of trimesh.Trimesh objects """ return util.submesh(mesh=self, faces_sequence=faces_sequence, **kwargs) @caching.cache_decorator def identifier(self): """ Return a float vector which is unique to the mesh and is robust to rotation and translation. Returns ----------- identifier : (6, ) float Identifying properties of the current mesh """ identifier = comparison.identifier_simple(self) return identifier @caching.cache_decorator def identifier_md5(self): """ An MD5 of the rotation invariant identifier vector Returns --------- hashed : str MD5 hash of the identifier vector """ hashed = comparison.identifier_hash(self.identifier) return hashed def export(self, file_obj=None, file_type=None, **kwargs): """ Export the current mesh to a file object. If file_obj is a filename, file will be written there. Supported formats are stl, off, ply, collada, json, dict, glb, dict64, msgpack. Parameters ------------ file_obj: open writeable file object str, file name where to save the mesh None, if you would like this function to return the export blob file_type: str Which file type to export as. If file name is passed this is not required """ return export_mesh(mesh=self, file_obj=file_obj, file_type=file_type, **kwargs) def to_dict(self): """ Return a dictionary representation of the current mesh, with keys that can be used as the kwargs for the Trimesh constructor, eg: a = Trimesh(**other_mesh.to_dict()) Returns ---------- result : dict With keys that match trimesh constructor """ result = self.export(file_type='dict') return result def convex_decomposition(self, maxhulls=20, **kwargs): """ Compute an approximate convex decomposition of a mesh. testVHACD Parameters which can be passed as kwargs: Name Default ----------------------------------------------------- resolution 100000 max. concavity 0.001 plane down-sampling 4 convex-hull down-sampling 4 alpha 0.05 beta 0.05 maxhulls 10 pca 0 mode 0 max. vertices per convex-hull 64 min. volume to add vertices to convex-hulls 0.0001 convex-hull approximation 1 OpenCL acceleration 1 OpenCL platform ID 0 OpenCL device ID 0 output output.wrl log log.txt Parameters ------------ maxhulls : int Maximum number of convex hulls to return **kwargs : testVHACD keyword arguments Returns ------- meshes : list of trimesh.Trimesh List of convex meshes that approximate the original """ result = decomposition.convex_decomposition(self, maxhulls=maxhulls, **kwargs) return result def union(self, other, engine=None, **kwargs): """ Boolean union between this mesh and n other meshes Parameters ------------ other : Trimesh or (n, ) Trimesh Other meshes to union engine : None or str Which backend to use Returns --------- union : trimesh.Trimesh Union of self and other Trimesh objects """ result = boolean.union( meshes=np.append(self, other), engine=engine, **kwargs) return result def difference(self, other, engine=None, **kwargs): """ Boolean difference between this mesh and n other meshes Parameters ------------ other : trimesh.Trimesh, or list of trimesh.Trimesh objects Meshes to difference Returns --------- difference : trimesh.Trimesh Difference between self and other Trimesh objects """ result = boolean.difference(meshes=np.append(self, other), engine=engine, **kwargs) return result def intersection(self, other, engine=None, **kwargs): """ Boolean intersection between this mesh and n other meshes Parameters ------------ other : trimesh.Trimesh, or list of trimesh.Trimesh objects Meshes to calculate intersections with Returns --------- intersection : trimesh.Trimesh Mesh of the volume contained by all passed meshes """ result = boolean.intersection(meshes=np.append(self, other), engine=engine, **kwargs) return result def contains(self, points): """ Given an array of points determine whether or not they are inside the mesh. This raises an error if called on a non- watertight mesh. Parameters ------------ points : (n, 3) float Points in cartesian space Returns --------- contains : (n, ) bool Whether or not each point is inside the mesh """ if not self.is_watertight: log.warning('Mesh is non- watertight for contained point query!') contains = self.ray.contains_points(points) return contains @caching.cache_decorator def face_angles(self): """ Returns the angle at each vertex of a face. Returns -------- angles : (len(self.faces), 3) float Angle at each vertex of a face """ angles = triangles.angles(self.triangles) return angles @caching.cache_decorator def face_angles_sparse(self): """ A sparse matrix representation of the face angles. Returns ---------- sparse : scipy.sparse.coo_matrix Float sparse matrix with with shape: (len(self.vertices), len(self.faces)) """ angles = curvature.face_angles_sparse(self) return angles @caching.cache_decorator def vertex_defects(self): """ Return the vertex defects, or (2*pi) minus the sum of the angles of every face that includes that vertex. If a vertex is only included by coplanar triangles, this will be zero. For convex regions this is positive, and concave negative. Returns -------- vertex_defect : (len(self.vertices), ) float Vertex defect at the every vertex """ defects = curvature.vertex_defects(self) return defects @caching.cache_decorator def vertex_degree(self): """ Return the number of faces each vertex is included in. Returns ---------- degree : (len(self.vertices), ) int Number of faces each vertex is included in """ # get degree through sparse matrix degree = np.array(self.faces_sparse.sum(axis=1)).flatten() return degree @caching.cache_decorator def face_adjacency_tree(self): """ An R-tree of face adjacencies. Returns -------- tree: rtree.index Where each edge in self.face_adjacency has a rectangular cell """ # the (n,6) interleaved bounding box for every line segment segment_bounds = np.column_stack(( self.vertices[self.face_adjacency_edges].min(axis=1), self.vertices[self.face_adjacency_edges].max(axis=1))) tree = util.bounds_tree(segment_bounds) return tree def copy(self, include_cache=False): """ Safely return a copy of the current mesh. By default, copied meshes will have emptied cache to avoid memory issues and so may be slow on initial operations until caches are regenerated. Current object will *never* have its cache cleared. Parameters ------------ include_cache : bool If True, will shallow copy cached data to new mesh Returns --------- copied : trimesh.Trimesh Copy of current mesh """ # start with an empty mesh copied = Trimesh() # always deepcopy vertex and face data copied._data.data = copy.deepcopy(self._data.data) # copy visual information copied.visual = self.visual.copy() # get metadata copied.metadata = copy.deepcopy(self.metadata) # get center_mass and density if self._center_mass is not None: copied.center_mass = self.center_mass copied._density = self._density # make sure cache ID is set initially copied._cache.verify() if include_cache: # shallow copy cached items into the new cache # since the data didn't change here when the # data in the new mesh is changed these items # will be dumped in the new mesh but preserved # in the original mesh copied._cache.cache.update(self._cache.cache) return copied def __deepcopy__(self, *args): # interpret deep copy as "get rid of cached data" return self.copy(include_cache=False) def __copy__(self, *args): # interpret shallow copy as "keep cached data" return self.copy(include_cache=True) def eval_cached(self, statement, *args): """ Evaluate a statement and cache the result before returning. Statements are evaluated inside the Trimesh object, and Parameters ------------ statement : str Statement of valid python code *args : list Available inside statement as args[0], etc Returns ----------- result : result of running eval on statement with args Examples ----------- r = mesh.eval_cached('np.dot(self.vertices, args[0])', [0, 0, 1]) """ statement = str(statement) key = 'eval_cached_' + statement key += '_'.join(str(i) for i in args) if key in self._cache: return self._cache[key] result = eval(statement) self._cache[key] = result return result def __hash__(self): """ Return the MD5 hash of the mesh as an integer. Returns ---------- hashed : int MD5 of mesh data """ hashed = int(self.md5(), 16) return hashed def __add__(self, other): """ Concatenate the mesh with another mesh. Parameters ------------ other : trimesh.Trimesh object Mesh to be concatenated with self Returns ---------- concat : trimesh.Trimesh Mesh object of combined result """ concat = util.concatenate(self, other) return concat
31.829268
86
0.568382
50044b50485811b6c39fb2f2ca8a7410bffafd5a
164
py
Python
demo2/handlers/nav/NavHandler.py
philipgold/replace-nested-conditional-with-polymorphism-demo
c0a530e7c69a8946338a46fde8c67ea8fe85a77e
[ "MIT" ]
null
null
null
demo2/handlers/nav/NavHandler.py
philipgold/replace-nested-conditional-with-polymorphism-demo
c0a530e7c69a8946338a46fde8c67ea8fe85a77e
[ "MIT" ]
null
null
null
demo2/handlers/nav/NavHandler.py
philipgold/replace-nested-conditional-with-polymorphism-demo
c0a530e7c69a8946338a46fde8c67ea8fe85a77e
[ "MIT" ]
null
null
null
from demo2.handlers.EventHandler import EventHandler class NavHandler(EventHandler): def __init__(self, handler_type='nav'): self.type = handler_type
23.428571
52
0.756098
80fc8323a06b4c7405fe6eb79660d815d13aae93
3,872
py
Python
tortoise/tests/fields/test_m2m.py
Quinn-Fang/tortoise-orm
2874c1adec8306925ee2c966241fa34710a84ef3
[ "Apache-2.0" ]
null
null
null
tortoise/tests/fields/test_m2m.py
Quinn-Fang/tortoise-orm
2874c1adec8306925ee2c966241fa34710a84ef3
[ "Apache-2.0" ]
5
2020-03-24T17:23:14.000Z
2021-12-13T20:12:49.000Z
tortoise/tests/fields/test_m2m.py
Quinn-Fang/tortoise-orm
2874c1adec8306925ee2c966241fa34710a84ef3
[ "Apache-2.0" ]
null
null
null
from tortoise.contrib import test from tortoise.exceptions import OperationalError from tortoise.tests import testmodels class TestManyToManyField(test.TestCase): async def test_empty(self): await testmodels.M2MOne.create() async def test__add(self): one = await testmodels.M2MOne.create(name="One") two = await testmodels.M2MTwo.create(name="Two") await one.two.add(two) self.assertEqual(await one.two, [two]) self.assertEqual(await two.one, [one]) async def test__add__nothing(self): one = await testmodels.M2MOne.create(name="One") await one.two.add() async def test__add__reverse(self): one = await testmodels.M2MOne.create(name="One") two = await testmodels.M2MTwo.create(name="Two") await two.one.add(one) self.assertEqual(await one.two, [two]) self.assertEqual(await two.one, [one]) async def test__add__many(self): one = await testmodels.M2MOne.create(name="One") two = await testmodels.M2MTwo.create(name="Two") await one.two.add(two) await one.two.add(two) await two.one.add(one) self.assertEqual(await one.two, [two]) self.assertEqual(await two.one, [one]) async def test__add__two(self): one = await testmodels.M2MOne.create(name="One") two1 = await testmodels.M2MTwo.create(name="Two") two2 = await testmodels.M2MTwo.create(name="Two") await one.two.add(two1, two2) self.assertEqual(await one.two, [two1, two2]) self.assertEqual(await two1.one, [one]) self.assertEqual(await two2.one, [one]) async def test__remove(self): one = await testmodels.M2MOne.create(name="One") two1 = await testmodels.M2MTwo.create(name="Two") two2 = await testmodels.M2MTwo.create(name="Two") await one.two.add(two1, two2) await one.two.remove(two1) self.assertEqual(await one.two, [two2]) self.assertEqual(await two1.one, []) self.assertEqual(await two2.one, [one]) async def test__remove__many(self): one = await testmodels.M2MOne.create(name="One") two1 = await testmodels.M2MTwo.create(name="Two1") two2 = await testmodels.M2MTwo.create(name="Two2") two3 = await testmodels.M2MTwo.create(name="Two3") await one.two.add(two1, two2, two3) await one.two.remove(two1, two2) self.assertEqual(await one.two, [two3]) self.assertEqual(await two1.one, []) self.assertEqual(await two2.one, []) self.assertEqual(await two3.one, [one]) async def test__remove__blank(self): one = await testmodels.M2MOne.create(name="One") with self.assertRaisesRegex(OperationalError, r"remove\(\) called on no instances"): await one.two.remove() async def test__clear(self): one = await testmodels.M2MOne.create(name="One") two1 = await testmodels.M2MTwo.create(name="Two") two2 = await testmodels.M2MTwo.create(name="Two") await one.two.add(two1, two2) await one.two.clear() self.assertEqual(await one.two, []) self.assertEqual(await two1.one, []) self.assertEqual(await two2.one, []) async def test__uninstantiated_add(self): one = testmodels.M2MOne(name="One") two = await testmodels.M2MTwo.create(name="Two") with self.assertRaisesRegex( OperationalError, r"You should first call .save\(\) on <M2MOne>" ): await one.two.add(two) async def test__add_uninstantiated(self): one = testmodels.M2MOne(name="One") two = await testmodels.M2MTwo.create(name="Two") with self.assertRaisesRegex( OperationalError, r"You should first call .save\(\) on <M2MOne>" ): await two.one.add(one)
39.510204
92
0.641529
9264958936764a57e060a5f74f1f3b42d87c9011
9,955
py
Python
engine/app.py
FeatureCloud/fc-survival-svm
0a05d148509418091bddb33ad412a43a9e204a69
[ "Apache-2.0" ]
null
null
null
engine/app.py
FeatureCloud/fc-survival-svm
0a05d148509418091bddb33ad412a43a9e204a69
[ "Apache-2.0" ]
null
null
null
engine/app.py
FeatureCloud/fc-survival-svm
0a05d148509418091bddb33ad412a43a9e204a69
[ "Apache-2.0" ]
null
null
null
import datetime import logging import threading import time import traceback from time import sleep import textwrap from typing import Dict, List, Tuple PARTICIPANT = (True, False) COORDINATOR = (False, True) BOTH = (True, True) STATE_RUNNING = 'running' STATE_ERROR = 'error' STATE_ACTION = 'action_required' def data_to_bytes(d): return class App: def __init__(self): self.id = None self.coordinator = None self.clients = None self.thread = None self.status_available = False self.status_finished = False self.status_message = None self.status_progress = None self.status_state = None self.status_destination = None self.status_smpc = None self.data_incoming = [] self.data_outgoing = [] self.outgoing_lock: threading.Lock = threading.Lock() self.default_smpc = {'operation': 'add', 'serialization': 'json', 'shards': 0, 'exponent': 8} self.current_state: AppState or None = None self.states: Dict[str, AppState] = {} self.transitions: Dict[str, Tuple[AppState, AppState, bool, bool]] = {} # name => (source, target, participant, coordinator) self.transition_log: List[Tuple[datetime.datetime, str]] = [] self.internal = {} def handle_setup(self, client_id, coordinator, clients): # This method is called once upon startup and contains information about the execution context of this instance self.id = client_id self.coordinator = coordinator self.clients = clients self.log(f'id: {self.id}') self.log(f'coordinator: {self.coordinator}') self.log(f'clients: {self.clients}') self.current_state = self.states.get('initial') if not self.current_state: raise RuntimeError('initial state not found') self.thread = threading.Thread(target=self.guarded_run) self.thread.start() def guarded_run(self): try: self.run() except Exception as e: # catch all # noqa self.log(traceback.format_exc()) sleep(10) self.status_message = 'ERROR. See log for stack trace.' self.status_state = STATE_ERROR self.status_finished = True def run(self): self.internal['_tic_total'] = time.perf_counter() while True: self.log(f'state: {self.current_state.name}') transition = self.current_state.run() if not transition: self.status_progress = 1.0 self.log(f'done') sleep(10) self.status_finished = True return self.log(f'transition: {transition}') self.transition(f'{self.current_state.name}_{transition}') sleep(1) def register(self): for s in self.states: state = self.states[s] state.register() def handle_incoming(self, data, client): # This method is called when new data arrives self.log(f"HANDLE INCOMING", level=logging.DEBUG) self.data_incoming.append((data.read(), client)) def handle_outgoing(self): # This method is called when data is requested if len(self.data_outgoing) == 0: return None data = self.data_outgoing[0] self.data_outgoing = self.data_outgoing[1:] if len(self.data_outgoing) == 0: self.status_available = False self.status_destination = None self.status_smpc = None else: self.status_available = True self.status_smpc = self.default_smpc if self.data_outgoing[0][1] else None self.status_destination = self.data_outgoing[0][2] self.log(f'OUTGOING: {data}', level=logging.DEBUG) self.outgoing_lock.release() return data[0] def _register_state(self, name, state, participant, coordinator, **kwargs): if self.transitions.get(name): raise RuntimeError(f'state {name} already exists') si = state(**kwargs) si.app = self si.name = name si.participant = participant si.coordinator = coordinator self.states[si.name] = si def register_transition(self, name: str, source: str, target: str, participant=True, coordinator=True): if not participant and not coordinator: raise RuntimeError('either participant or coordinator must be True') if self.transitions.get(name): raise RuntimeError(f'transition {name} already exists') source_state = self.states.get(source) if not source_state: raise RuntimeError(f'source state {source} not found') if participant and not source_state.participant: raise RuntimeError(f'source state {source} not accessible for participants') if coordinator and not source_state.coordinator: raise RuntimeError(f'source state {source} not accessible for the coordinator') target_state = self.states.get(target) if not target_state: raise RuntimeError(f'target state {target} not found') if participant and not target_state.participant: raise RuntimeError(f'target state {target} not accessible for participants') if coordinator and not target_state.coordinator: raise RuntimeError(f'target state {target} not accessible for the coordinator') self.transitions[name] = (source_state, target_state, participant, coordinator) def transition(self, name): transition = self.transitions.get(name) if not transition: raise RuntimeError(f'transition {name} not found') if transition[0] != self.current_state: raise RuntimeError(f'current state unequal to source state') if not transition[2] and not self.coordinator: raise RuntimeError(f'cannot perform transition {name} as participant') if not transition[3] and self.coordinator: raise RuntimeError(f'cannot perform transition {name} as coordinator') self.transition_log.append((datetime.datetime.now(), name)) self.current_state = transition[1] def log(self, msg, level=logging.INFO): logging.log(level, '\n'.join(['', *textwrap.wrap(str(msg), 120)])) class AppState: def __init__(self): self.app = None self.name = None self.participant = None self.coordinator = None def register(self): pass def run(self) -> str or None: pass def register_transition(self, target: str, role=BOTH, name: str or None = None): if not name: name = target participant, coordinator = role self.app.register_transition(f'{self.name}_{name}', self.name, target, participant, coordinator) def gather_data(self): return self.await_data(len(self.app.clients), unwrap=False) def await_data(self, n: int = 1, unwrap: bool = True): while True: self.app.log(f'INCOMING: ({len(self.app.data_incoming)}) {self.app.data_incoming}') if len(self.app.data_incoming) >= n: data = self.app.data_incoming[:n] self.app.data_incoming = self.app.data_incoming[n:] if unwrap and n == 1: return data[0][0] else: return data sleep(1) def send_data_to_participant(self, data, destination): if destination == self.app.id: self.app.data_incoming.append((data, self.app.id)) else: self.app.outgoing_lock.acquire() self.app.data_outgoing.append((data, False, destination)) self.app.status_destination = destination self.app.status_smpc = None self.app.status_available = True def send_data_to_coordinator(self, data, send_to_self=True, use_smpc=False): if self.app.coordinator and not use_smpc: if send_to_self: self.app.data_incoming.append((data, self.app.id)) else: self.app.outgoing_lock.acquire() self.app.data_outgoing.append((data, use_smpc, None)) self.app.status_destination = None self.app.status_smpc = self.app.default_smpc if use_smpc else None self.app.status_available = True def broadcast_data(self, data, send_to_self=True): if not self.app.coordinator: raise RuntimeError('only the coordinator can broadcast data') self.app.outgoing_lock.acquire() self.app.data_outgoing.append((data, False, None)) self.app.status_destination = None self.app.status_smpc = None self.app.status_available = True if send_to_self: self.app.data_incoming.append((data, self.app.id)) def update(self, message=None, progress=None, state=None): if message and len(message) > 40: self.app.log(f"Truncated a long message. Original message: {message!r}", logging.DEBUG) message = message[:39] if progress is not None and (progress < 0 or progress > 1): raise RuntimeError('progress must be between 0 and 1') if state is not None and state != STATE_RUNNING and state != STATE_ERROR and state != STATE_ACTION: raise RuntimeError('invalid state') self.app.status_message = message self.app.status_progress = progress self.app.status_state = state def app_state(app: App, name: str, role=BOTH, **kwargs): participant, coordinator = role if not participant and not coordinator: raise RuntimeError('either participant or coordinator must be True') def func(state_class): app._register_state(name, state_class, participant, coordinator, **kwargs) return state_class return func
36.734317
133
0.630236
4b2bc3ab15b47083c90deac84f7031d3ba7a0aea
14,652
py
Python
helper-scripts/hdf5_to_counts_table.py
GordonLab/riesling-pipeline
384f41dc964db0f59b3992f775e87c651e846f2b
[ "MIT" ]
9
2017-10-25T18:27:23.000Z
2020-10-15T08:06:42.000Z
helper-scripts/hdf5_to_counts_table.py
GordonLab/riesling-pipeline
384f41dc964db0f59b3992f775e87c651e846f2b
[ "MIT" ]
null
null
null
helper-scripts/hdf5_to_counts_table.py
GordonLab/riesling-pipeline
384f41dc964db0f59b3992f775e87c651e846f2b
[ "MIT" ]
4
2016-11-05T23:21:48.000Z
2020-02-25T12:35:33.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This script exists to convert .hdf5 files into counts tables readable by R. # # It is useful for performing differential accessibility analyses (e.g. with # DESeq2) on hdf5 counts data from RIESLING, ROSE, or bamliquidator. # # # Unfortunately, we can't use the rhdf5 package, since it doesn't support the # datatypes used by our .hdf5 files. # # # Copyright (c) 2014-2016 Nick Semenkovich <semenko@alum.mit.edu>. # https://nick.semenkovich.com/ # # Developed for the Gordon Lab, Washington University in St. Louis (WUSTL) # http://gordonlab.wustl.edu/ # # This software is released under the MIT License: # http://opensource.org/licenses/MIT # # Source: https://github.com/GordonLab/riesling-pipeline from __future__ import absolute_import, division, print_function, unicode_literals __author__ = 'Nick Semenkovich <semenko@alum.mit.edu>' __copyright__ = 'Gordon Lab at Washington University in St. Louis' __license__ = 'MIT' __version__ = '1.0.3' import argparse import csv import fnmatch import operator import os import pybedtools import tables import _logshim import _script_helpers from collections import deque, OrderedDict CONFIG = _script_helpers.get_config() # TODO: Modularize this function. This code is repeated in a *lot* of scripts. def get_input_files(input_path): """ Generate a list of all input files. :param input_files: A directory with .h5 files. (e.g. /tmp/) :return: a list of all .h5 files with absolute paths. (e.g. ['/tmp/a.h5'] ) """ if not os.path.isdir(input_path): raise ValueError("Input must be a directory. You gave: %s" % (input_path)) # Adapted from: # https://stackoverflow.com/questions/2186525/use-a-glob-to-find-files-recursively-in-python all_files = [] for root, _, filenames in os.walk(input_path): for filename in fnmatch.filter(filenames, '*.h5'): all_files.append(os.path.join(root, filename)) if len(all_files) == 0: raise ValueError("Input directory contains no .h5 files!") return all_files def flatten_tsv(filename): """ Flaten a TSV file -- parse and concatenate identical row names, by summing their values. """ flatlog = _logshim.getLogger('flatten_tsv') flatlog.debug('Flattening input file: %s' % (filename)) data_dict = OrderedDict() with open(filename, 'r') as tsv_ro_fh: tsv_input = csv.reader(tsv_ro_fh, delimiter=str("\t")) header = next(tsv_input, None) for row in tsv_input: row_key = row[0] these_row_values_as_int = map(int, row[1:]) if row_key in data_dict: # Add the current row values to the existing values data_dict[row_key] = map(operator.add, data_dict[row_key], these_row_values_as_int) else: data_dict[row_key] = these_row_values_as_int # Write back the parsed dict with open(filename, 'wb') as tsv_rw_fh: tsv_writer = csv.writer(tsv_rw_fh, delimiter=str("\t")) tsv_writer.writerow(header) for key, val in data_dict.iteritems(): tsv_writer.writerow([key] + val) def parse_h5files(input_files, annotationBedTool, overwrite, flatten, density, normalized, sizescaled): h5logger = _logshim.getLogger('parse_h5files') assert(not (density and normalized)) total_file_count = len(input_files) h5logger.info('Parsing a total of: %d file(s)' % (total_file_count)) output_suffix_list = ['tsv'] annotating_regions = False if annotationBedTool: annotating_regions = True output_suffix_list.append('annotated') if normalized: output_suffix_list.append('normalized') elif density: output_suffix_list.append('density') elif sizescaled: output_suffix_list.append('sizescaled') output_suffix = '.'.join(reversed(output_suffix_list)) # Cache regions that we're annotating, maybe. region_annotation_cache = {} for this_file_count, file in enumerate(input_files): h5logger.info('\tParsing: %s (%d/%d)' % (file, this_file_count + 1, total_file_count)) output_filename = file + '.' + output_suffix if not overwrite and os.path.isfile(output_filename): h5logger.warn('Skipping this .h5 as output .tsv already exists: %s' % (output_filename)) continue # TODO: Modularize H5FD_CORE (the in-memory driver?) with tables.open_file(file, mode="r", driver="H5FD_CORE") as h5_object: assert(h5_object.title.startswith("bam liquidator genome read counts")) # Some sanity checking assert(h5_object.root.file_names[0] == "*") bam_filename_header = h5_object.root.file_names[1:] bam_filename_header.insert(0, 'region') # Note: len(files) = len(file_names) - 1, since file_names has a 'wildcard' first entry. number_of_regions = int(len(h5_object.root.region_counts) / len(h5_object.root.files)) # We expect this .h5 object's region_counts to contain: # /region_counts (Table(SIZE,)) 'region counts' # description := { # "file_key": UInt32Col(shape=(), dflt=0, pos=0), # "chromosome": StringCol(itemsize=64, shape=(), dflt='', pos=1), # "region_name": StringCol(itemsize=64, shape=(), dflt='', pos=2), # "start": UInt64Col(shape=(), dflt=0, pos=3), # "stop": UInt64Col(shape=(), dflt=0, pos=4), # "strand": StringCol(itemsize=1, shape=(), dflt='', pos=5), # "count": UInt64Col(shape=(), dflt=0, pos=6), # "normalized_count": Float64Col(shape=(), dflt=0.0, pos=7)} # byteorder := 'little' # chunkshape := (NNN,) counts = h5_object.root.region_counts with open(output_filename, 'wb') as tsv_output: tsvwriter = csv.writer(tsv_output, delimiter=str("\t")) tsvwriter.writerow(bam_filename_header) if annotating_regions: h5logger.debug('Generating .bed annotations from provided genome.') region_to_gene = {} # Perform one annotation rapidly for all regions in the .hdf5 hdf5_positions_only = [] for region_number in range(0, number_of_regions): hdf5_positions_only.append(counts[region_number][1] + ' ' + str(counts[region_number][3]) + ' ' + str(counts[region_number][4])) hdf5_positions_only_hashkey = ''.join(hdf5_positions_only) if hdf5_positions_only_hashkey in region_annotation_cache: # The genome doesn't change mid run, so we cache only on hdf5_positions region_to_gene = region_annotation_cache[hdf5_positions_only_hashkey] h5logger.debug('Annotation from cache.') else: hdf5_stub_bed = pybedtools.BedTool('\n'.join(hdf5_positions_only), from_string=True) annotated_bed = hdf5_stub_bed.closest(annotationBedTool, t='first') for locus in annotated_bed: region_to_gene[locus.chrom + ':' + str(locus.start) + '-' + str(locus.end)] = locus.fields[11].split('"')[1] region_annotation_cache[hdf5_positions_only_hashkey] = region_to_gene h5logger.debug('Annotation completed.') # We're going to aggressively access the hdf5 at a bunch of fixed offsets. # rowarray = [counts[number_of_regions*0 + i], counts[number_of_regions*1 + i] + counts[number_of_regions*2 + i] ...] number_of_files = len(h5_object.root.files) working_deque = deque(maxlen=number_of_files + 1) # Here, we loop over every "region"/locus (every entry in the first column of the .tsv) # And then (within this loop) jump to each individual "file" (the hdf5 can contain multiple # separate samples) to build the data for every row. for region_number in range(0, number_of_regions): # Prefix the row with chrN:bpSTART-pbEND e.g. chr4:100-2000 locus_name = counts[region_number][1] + ':' + str(counts[region_number][3]) + '-' + str(counts[region_number][4]) # Sanity checking, in case the input is nuts feature_width = counts[region_number][4] - counts[region_number][3] assert(feature_width > 0) # DESeq2 requires each region have a unique name. # You can either append a unique value, or aggregate identical loci. # We address this later by re-opening and aggregating. if annotating_regions: working_deque.append(region_to_gene[locus_name]) else: working_deque.append(locus_name) #rowarray = [counts[region_number][1] + ':' + str(counts[region_number][3]) + '-' + str(counts[region_number][4])] for file_number in range(0, number_of_files): if normalized: # Standard normalized (counts/mreads) # bamliquidator gives us (counts/mreads)/width so we multiply by width working_deque.append(int(counts[number_of_regions * file_number + region_number][7] * feature_width)) elif density: # (counts/mreads)/width # We upscale the fractional normalized count values by an arbitrary amount, # because subsequent analyses like integers. working_deque.append(int(counts[number_of_regions * file_number + region_number][7] * 10000)) elif sizescaled: # counts/width # We upscale the fractional normalized count values by an arbitrary amount, # because subsequent analyses like integers. working_deque.append(int(counts[number_of_regions * file_number + region_number][6] / feature_width * 100)) else: working_deque.append(int(counts[number_of_regions * file_number + region_number][6])) tsvwriter.writerow(working_deque) if flatten: flatten_tsv(output_filename) h5logger.info('Completed.') def main(): # Parse & interpret command line flags. parser = argparse.ArgumentParser(description='Convert hdf5 tables from bamliquidator format to CSV counts tables ' 'for use in R and elsewhere. (Necessary as rhdf5 doesn\'t support our data structure.)', epilog="Written by Nick Semenkovich <semenko@alum.mit.edu> for the Gordon Lab at " "Washington University in St. Louis: http://gordonlab.wustl.edu.", usage='%(prog)s [options]', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input-path', '-i', dest="input_path", metavar='input_dir/', type=str, help='Input path with .h5 files.', required=True) parser.add_argument("--overwrite", dest="overwrite", default=False, action='store_true', help='Regenerate and overwrite output .tsv files, even if they already exist.') parser.add_argument('--call-genes', dest="call_genes", default=False, action='store_true', help='Instead of a .tsv (with positions as keys), make a .annotated.tsv with nearby genes.') parser.add_argument('--normalized', dest="normalized", default=False, action='store_true', help='Store the normalized counts (counts/total reads) instead of the raw read counts.') parser.add_argument('--density', dest="density", default=False, action='store_true', help='Store the width-normalized density (counts/total reads/region size) instead of the raw read counts.') parser.add_argument('--sizescaled', dest="sizescaled", default=False, action='store_true', help='Store the size scaled counts (counts/feature size) instead of the raw read counts.') # Useful for EdgeR/DESeq2, etc. where every locus/position/gene-name must be unique. parser.add_argument('--flatten', dest="flatten", default=False, action='store_true', help='Aggregate identical locus IDs and sum their values. ' 'Think carefully before you sum non-normalized values!') genome_choices = sorted(CONFIG['gffs'].keys()) parser.add_argument('--genome', '-g', dest="genome", metavar='genome', type=str, default=None, choices=genome_choices, help='Genome to use for annotation, one of: %s' % (', '.join(genome_choices)), required=False) parser.add_argument("--verbose", "-v", dest="verbose", default=False, action='store_true') parser.add_argument("--no-log", "-nl", dest="nolog", default=False, action='store_true', help="Do not create a log file.") args = parser.parse_args() if args.call_genes and not args.genome: parser.error('--genome is when requesting --call_genes') assert((args.density + args.normalized + args.sizescaled) <= 1) annotationBedTool = None if args.call_genes: genome_gff = CONFIG['gffs'][args.genome] assert(os.access(genome_gff, os.R_OK)) annotationBedTool = pybedtools.BedTool(genome_gff) # Output path is input path. This also checks that the path is writeable. output_path = _script_helpers.setup_output_path(args.input_path) _logshim.startLogger(verbose=args.verbose, noFileLog=args.nolog, outPath=output_path) input_files = get_input_files(args.input_path) parse_h5files(input_files, annotationBedTool=annotationBedTool, overwrite=args.overwrite, flatten=args.flatten, density=args.density, normalized=args.normalized, sizescaled=args.sizescaled) if __name__ == '__main__': main()
44.944785
152
0.615616
b07a4c63f95ed515799ea6d5ab0e381da738a3cf
1,964
py
Python
cogs/utils/DataBase/rep.py
rax-v/Central-Spreader-Bot
560e3207d42cbeef7e4904ef9679d1faf005d595
[ "Apache-2.0" ]
null
null
null
cogs/utils/DataBase/rep.py
rax-v/Central-Spreader-Bot
560e3207d42cbeef7e4904ef9679d1faf005d595
[ "Apache-2.0" ]
null
null
null
cogs/utils/DataBase/rep.py
rax-v/Central-Spreader-Bot
560e3207d42cbeef7e4904ef9679d1faf005d595
[ "Apache-2.0" ]
null
null
null
from datetime import datetime, timedelta from json import dumps class Rep(object): def __init__(self, bot, rep_id: int, user_id: int, author_id: int, repped_at: datetime = datetime.utcnow(), extra_info: dict = None): self.bot = bot self.rep_id = rep_id # In most cases this is the id of the message that posted this. self.user_id = user_id # The user that recieved +1 rep. self.author_id = author_id # The user that gave +1 rep. self.repped_at = repped_at self.extra_info = dumps(extra_info) async def post(self, assure_24h: bool = True): """We shouldn't have to check for duplicate reps either. -> Unless someone mis-uses this. If a conflict somehow still occurs nothing will happen. ( hopefully :shrug: ) :param assure_24h: if True, this will only post the rep if the latest rep for this user_id is more than 24 hours ago. :return: If posting is successful, returns None. If post is on cooldown, returns a datetime object on when the last rep was added. """ if assure_24h: query = """SELECT * FROM reps WHERE author_id = $1 ORDER BY repped_at DESC LIMIT 1""" record = await self.bot.db.fetch(query, self.author_id) if record: rep = Rep(bot=self.bot, **record[0]) if (rep.repped_at + timedelta(days=1)) > datetime.utcnow(): return rep.repped_at query = """INSERT INTO reps ( rep_id, user_id, author_id, repped_at, extra_info ) VALUES ( $1, $2, $3, $4, $5 ) ON CONFLICT DO NOTHING""" await self.bot.db.execute(query, self.rep_id, self.user_id, self.author_id, self.repped_at, f"{self.extra_info}") return None
43.644444
93
0.570774