hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
ed58b3e938f78591c8eb769c53b5c6fe7f3ad615
4,435
py
Python
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/show_device_detail_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
1
2021-11-03T07:54:50.000Z
2021-11-03T07:54:50.000Z
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/show_device_detail_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-meeting/huaweicloudsdkmeeting/v1/model/show_device_detail_request.py
wuchen-huawei/huaweicloud-sdk-python-v3
3683d703f4320edb2b8516f36f16d485cff08fc2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import pprint import re import six class ShowDeviceDetailRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'x_request_id': 'str', 'accept_language': 'str', 'sn': 'str' } attribute_map = { 'x_request_id': 'X-Request-Id', 'accept_language': 'Accept-Language', 'sn': 'sn' } def __init__(self, x_request_id=None, accept_language=None, sn=None): """ShowDeviceDetailRequest - a model defined in huaweicloud sdk""" self._x_request_id = None self._accept_language = None self._sn = None self.discriminator = None if x_request_id is not None: self.x_request_id = x_request_id if accept_language is not None: self.accept_language = accept_language self.sn = sn @property def x_request_id(self): """Gets the x_request_id of this ShowDeviceDetailRequest. 请求requestId,用来标识一路请求,用于问题跟踪定位,建议使用uuId,若不携带,则后台自动生成 :return: The x_request_id of this ShowDeviceDetailRequest. :rtype: str """ return self._x_request_id @x_request_id.setter def x_request_id(self, x_request_id): """Sets the x_request_id of this ShowDeviceDetailRequest. 请求requestId,用来标识一路请求,用于问题跟踪定位,建议使用uuId,若不携带,则后台自动生成 :param x_request_id: The x_request_id of this ShowDeviceDetailRequest. :type: str """ self._x_request_id = x_request_id @property def accept_language(self): """Gets the accept_language of this ShowDeviceDetailRequest. 语言参数,默认为中文zh_CN, 英文为en_US :return: The accept_language of this ShowDeviceDetailRequest. :rtype: str """ return self._accept_language @accept_language.setter def accept_language(self, accept_language): """Sets the accept_language of this ShowDeviceDetailRequest. 语言参数,默认为中文zh_CN, 英文为en_US :param accept_language: The accept_language of this ShowDeviceDetailRequest. :type: str """ self._accept_language = accept_language @property def sn(self): """Gets the sn of this ShowDeviceDetailRequest. 终端SN号,仅可包含数字、字母和下划线。 maxLength:30 minLength:1 :return: The sn of this ShowDeviceDetailRequest. :rtype: str """ return self._sn @sn.setter def sn(self, sn): """Sets the sn of this ShowDeviceDetailRequest. 终端SN号,仅可包含数字、字母和下划线。 maxLength:30 minLength:1 :param sn: The sn of this ShowDeviceDetailRequest. :type: str """ self._sn = sn def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowDeviceDetailRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.042683
84
0.580834
ca7e01d52a54225465c4be0c0ccc45e69defff7b
2,145
py
Python
tests/handlers/test_widgets.py
pkuyangchao/redash
1640b1e927a4d10ce9ae5c24b2d015734c696b08
[ "BSD-2-Clause" ]
null
null
null
tests/handlers/test_widgets.py
pkuyangchao/redash
1640b1e927a4d10ce9ae5c24b2d015734c696b08
[ "BSD-2-Clause" ]
4
2020-06-18T15:31:02.000Z
2021-03-25T23:31:41.000Z
tests/handlers/test_widgets.py
pkuyangchao/redash
1640b1e927a4d10ce9ae5c24b2d015734c696b08
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from tests import BaseTestCase from redash import models class WidgetAPITest(BaseTestCase): def create_widget(self, dashboard, visualization, width=1): data = { 'visualization_id': visualization.id, 'dashboard_id': dashboard.id, 'options': {}, 'width': width } rv = self.make_request('post', '/api/widgets', data=data) return rv def test_create_widget(self): dashboard = self.factory.create_dashboard() vis = self.factory.create_visualization() rv = self.create_widget(dashboard, vis) self.assertEquals(rv.status_code, 200) def test_wont_create_widget_for_visualization_you_dont_have_access_to(self): dashboard = self.factory.create_dashboard() vis = self.factory.create_visualization() ds = self.factory.create_data_source(group=self.factory.create_group()) vis.query_rel.data_source = ds models.db.session.add(vis.query_rel) data = { 'visualization_id': vis.id, 'dashboard_id': dashboard.id, 'options': {}, 'width': 1 } rv = self.make_request('post', '/api/widgets', data=data) self.assertEqual(rv.status_code, 403) def test_create_text_widget(self): dashboard = self.factory.create_dashboard() data = { 'visualization_id': None, 'text': 'Sample text.', 'dashboard_id': dashboard.id, 'options': {}, 'width': 2 } rv = self.make_request('post', '/api/widgets', data=data) self.assertEquals(rv.status_code, 200) self.assertEquals(rv.json['text'], 'Sample text.') def test_delete_widget(self): widget = self.factory.create_widget() rv = self.make_request('delete', '/api/widgets/{0}'.format(widget.id)) self.assertEquals(rv.status_code, 200) dashboard = models.Dashboard.get_by_slug_and_org(widget.dashboard.slug, widget.dashboard.org) self.assertEquals(dashboard.widgets.count(), 0)
31.086957
101
0.616783
0bd5a33a4c97287b15afdb330c80677ee4aaee97
7,395
py
Python
ComputerVision/CrossSections/most_recent/Measusre.python3.py
DelinLi/Phenotyping
b4c13fbfcc363d06bc58c2483bd6aca979681cc3
[ "MIT" ]
null
null
null
ComputerVision/CrossSections/most_recent/Measusre.python3.py
DelinLi/Phenotyping
b4c13fbfcc363d06bc58c2483bd6aca979681cc3
[ "MIT" ]
null
null
null
ComputerVision/CrossSections/most_recent/Measusre.python3.py
DelinLi/Phenotyping
b4c13fbfcc363d06bc58c2483bd6aca979681cc3
[ "MIT" ]
null
null
null
#using python3 #Write by Delin Li, Schnable Lab @ CAU #delin.bio@gmail.com #Start 8:00 PM Jan 05, 2018 #updated 9:30 PM Jan 18, 2018 get rid of effect of white starch #updated 6:30 PM Jan 30, 2018 adjust unit import matplotlib matplotlib.use('Agg') from scipy.spatial import distance as dist from imutils import perspective from imutils import contours from matplotlib import pyplot as plt #from pathlib import Path import imutils import numpy as np import argparse import cv2 import re import os '''functions''' def midpoint(ptA, ptB): return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) def BigArea(contours): Area=0 j=0 for i in range(0,len(contours)): c=contours[i] if cv2.contourArea(c)>Area: j=i Area=cv2.contourArea(contours[i]) return(j) def Str(c,orig): # compute the rotated bounding box of the contour box = cv2.minAreaRect(c) box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) box = np.array(box, dtype="int") # order the points in the contour such that they appear # in top-left, top-right, bottom-right, and bottom-left # order, then draw the outline of the rotated bounding # box box = perspective.order_points(box) cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2) # loop over the original points and draw them for (x, y) in box: cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1) # unpack the ordered bounding box, then compute the midpoint # between the top-left and top-right coordinates, followed by # the midpoint between bottom-left and bottom-right coordinates (tl, tr, br, bl) = box (tltrX, tltrY) = midpoint(tl, tr) (blbrX, blbrY) = midpoint(bl, br) # compute the midpoint between the top-left and top-right points, # followed by the midpoint between the top-righ and bottom-right (tlblX, tlblY) = midpoint(tl, bl) (trbrX, trbrY) = midpoint(tr, br) # draw the midpoints on the image cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) # draw lines between the midpoints cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),(255, 0, 255), 8) cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),(255, 0, 255), 8) # compute the Euclidean distance between the midpoints dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) # compute the size of the object if dA>=dB: dimA = dA * pixelsPerMetric /1000 dimB = dB * pixelsPerMetric /1000 else: dimA = dB * pixelsPerMetric /1000 dimB = dA * pixelsPerMetric /1000 # draw the object sizes on the image #cv2.putText(orig, "{:.1f}in".format(dimA), #(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX, #1.65, (255, 0, 0), 2) #cv2.putText(orig, "{:.1f}in".format(dimB), # (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, # 1.65, (255, 0, 0), 2) return(orig,dimA,dimB) '''read in parameter''' ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to the input image") ap.add_argument("-o", "--output", required=True, help="output file") args = vars(ap.parse_args()) '''read in ''' img=cv2.imread(args["image"]) #img=cv2.imread("CML191_1_4.tif") row, col =img.shape[0:2] original = img.copy() '''The marker ''' #cropped = img[54:105,44:540,] #cv2.imwrite("Marker_200um.png",cropped) #marker=cv2.imread("Marker_200um.png") #h1,w1=marker.shape[0:2] #w1: 496 200/496 #res = cv2.matchTemplate(img,marker,cv2.TM_CCOEFF_NORMED) #min_val,max_val,min_loc,max_loc = cv2.minMaxLoc(res) pixelsPerMetric= 4.032258 for i in range(50,110): for j in range(40,580): img[i,j,]=(55,36,34)#(0,0,0) '''The Seed''' B,G,R= cv2.split(img) gaussian = cv2.GaussianBlur(R.copy(), (7, 7), 1) th, binary = cv2.threshold(gaussian.copy(), 70, 255,cv2.THRESH_BINARY); kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7)) dilated = cv2.dilate(binary, kernel) ForCon=cv2.erode(dilated, None, iterations=1) _,contours, _ = cv2.findContours(ForCon.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) seed_c=contours[BigArea(contours)] #plt.imshow(binary) '''used in early version -> backup Seed = cv2.Canny(binary, 100, 200) Seed = cv2.dilate(Seed, None, iterations=1) #8 Seed = cv2.erode(Seed, None, iterations=1) #5 contours, hierarchy = cv2.findContours(Seed.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) seed_c=contours[BigArea(contours)] ''' Area_seed=cv2.contourArea(seed_c) * pixelsPerMetric * pixelsPerMetric /1000000 embryo=np.full(img.shape,255,dtype=np.uint8) embryo=cv2.drawContours(embryo, [seed_c], 0, (0, 0, 0), -1) #create a copy for ouput to show different area and size Draw_out=embryo.copy() Draw_out,l_S,s_S=Str(seed_c,Draw_out) Mask=np.full(img.shape,255,dtype=np.uint8) Mask=cv2.drawContours(Mask, [seed_c], 0, (0, 0, 0), -1) Masked=np.maximum(Mask,original) '''The germ''' #removed the effect of white starch B,G,R= cv2.split(Masked) th,RBin=cv2.threshold(R, 200, 1,cv2.THRESH_BINARY_INV) HSV=cv2.cvtColor(Masked.copy(), cv2.COLOR_BGR2HSV) th,S=cv2.threshold(HSV[:,:,1].copy() , 100, 1,cv2.THRESH_BINARY) gaussian=HSV[:,:,0].copy() th, binary = cv2.threshold(gaussian.copy(), 150, 255,cv2.THRESH_BINARY) Combine=binary * RBin * S ###### kernel = np.ones((7,7),np.uint8) # sure background area sure_bg = cv2.dilate(Combine,kernel,iterations=10) # Finding sure foreground area sure_fg = cv2.erode(sure_bg,kernel,iterations=10) _,contours, _ = cv2.findContours(sure_fg.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) germ_c=contours[BigArea(contours)] #mask the embryo as red Draw_out=cv2.drawContours(Draw_out, [germ_c], 0, (0, 0, 255), -1) ###### kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7)) Germ = cv2.dilate(Combine, kernel) #edges = cv2.Canny(Combine.copy(),100,200) #edges=cv2.dilate(edges, None, iterations=1) #edges=cv2.erode(edges, None) '''change''' _,contours, _ = cv2.findContours(Germ.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) germ_c=contours[BigArea(contours)] #mask the embryo as red Draw_out=cv2.drawContours(Draw_out, [germ_c], 0, (0, 0, 255), -1) Draw_out,l_G,s_G=Str(germ_c,Draw_out) Area_germ= cv2.contourArea(germ_c) * pixelsPerMetric * pixelsPerMetric /1000000 if Area_germ > Area_seed*0.75: print("Possible un-expected error happens that germ accounts for more than 75% of seed:",args["image"]) if Area_germ < Area_seed*0.15: print("Possible un-expected error happens that germ accounts for less than 15% of seed:",args["image"]) out=[args["image"], row, col, Area_seed,l_S,s_S, Area_germ,l_G,s_G] if os.path.exists(args["output"]) and os.path.getsize(args["output"]) > 0: with open(args["output"], "a") as fh: for item in out: fh.write("%s\t" % item) fh.write("\n") fh.close else: with open(args["output"], "a") as fh: fh.write("file\trows\tcols\tSeedArea\tSeedLength\tSeedWidth\tEmbryoArea\tEmbryoLength\tEmbryoWidth\n") for item in out: fh.write("%s\t" % item) fh.write("\n") fh.close '''output the final seed, embryo and their size''' '''Compare before and after''' outfig= "%s_%s" % ("Masked",re.sub(r'.*\/',r'',args["image"])) plt.subplot(2,1,1),plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.subplot(2,1,2),plt.imshow(cv2.cvtColor(Draw_out, cv2.COLOR_BGR2RGB)) plt.savefig(outfig)
32.721239
104
0.703989
935083c70402133eefecb16717f57860ea1ab87e
4,679
py
Python
alab_mutations.py
AlaaALatif/bjorn
3bc4c2b5b5f6b18c93513721f5df96c47ba68ec8
[ "MIT" ]
null
null
null
alab_mutations.py
AlaaALatif/bjorn
3bc4c2b5b5f6b18c93513721f5df96c47ba68ec8
[ "MIT" ]
null
null
null
alab_mutations.py
AlaaALatif/bjorn
3bc4c2b5b5f6b18c93513721f5df96c47ba68ec8
[ "MIT" ]
null
null
null
from path import Path import pandas as pd import bjorn_support as bs import mutations as bm import subprocess import shlex date = '13-01-2021' out_dir = Path(f'/home/al/analysis/alab_mutations_{date}') if not Path.isdir(out_dir): Path.mkdir(out_dir) print(f"Created results directory: {out_dir}") else: print(f"Results directory {out_dir} already exists...Continuing...") num_cpus = 25 in_alab_seqs = Path(f'/home/al/code/HCoV-19-Genomics/consensus_sequences/') in_alab_meta = Path(f'/home/al/code/HCoV-19-Genomics/metadata.csv') gisaid_seqs = out_dir/'sequences_2021-01-06_08-17_cleaned.fasta' gisaid_meta = out_dir/'metadata_2021-01-06_18-26.tsv' ref_fp = Path('/home/al/data/hcov19/NC045512.fasta') patient_zero = 'NC_045512.2' fa_fp = out_dir/'alab_seqs.fa' if not Path.isfile(fa_fp): fa_fp = bs.concat_fasta(in_alab_seqs, out_dir/'alab_seqs') print(f"Concatenated all sequences and wrote to {fa_fp}") msa_fp = Path(fa_fp.split('.')[0] + '_aligned.fa') if not Path.isfile(msa_fp): print(f"Aligning sequences with reference...") msa_fp = bs.align_fasta_reference(fa_fp, msa_fp, ref_fp=ref_fp, num_cpus=num_cpus) print(f"Multiple sequence alignment of A-lab samples with reference saved in {msa_fp}") msa2_fp = Path(fa_fp.split('.')[0] + '_aligned_absolute.fa') # if not Path.isfile(msa2_fp): # print(f"Aligning sequences without reference...") # msa2_fp = bs.align_fasta(fa_fp, msa2_fp, num_cpus=num_cpus) print(f"Multiple sequence alignment of A-lab samples without reference saved in {msa2_fp}") tree_fp = msa_fp + '.treefile' if not Path.isfile(tree_fp): print(f"Computing phylogenetic tree...") tree_fp = bs.compute_tree(msa_fp, num_cpus=num_cpus) print(f"Phylogenetic tree of A-lab samples saved in {tree_fp}") subs_long_fp = out_dir/f'alab_substitutions_long_{date}.csv' subs_long, _ = bm.identify_replacements_per_sample(msa_fp, in_alab_meta, bm.GENE2POS, data_src='alab') subs_long.to_csv(subs_long_fp, index=False) subs_wide = bm.identify_replacements(msa_fp, in_alab_meta) subs_wide_fp = out_dir/f'alab_substitutions_wide_{date}.csv' subs_wide.sort_values('num_samples', ascending=False).to_csv(subs_wide_fp, index=False) print(f"Substitution-based mutations of A-lab samples saved in {subs_wide_fp}") dels_long_fp = out_dir/f'alab_deletions_long_{date}.csv' dels_long, _ = bm.identify_deletions_per_sample(msa_fp, in_alab_meta, patient_zero, bm.GENE2POS) dels_long.to_csv(dels_long_fp, index=False) dels_wide = bm.identify_deletions(msa_fp, in_alab_meta) dels_wide_fp = out_dir/f'alab_deletions_wide_{date}.csv' dels_wide.sort_values('num_samples', ascending=False).to_csv(dels_wide_fp, index=False) print(f"Deletion-based mutations of A-lab samples saved in {dels_wide_fp}") print(f"Aligning GISAID Sequences from {gisaid_seqs}...") # gisaid_msa_fp = Path(gisaid_seqs.split('.')[0] + '_aligned.fa') # if not Path.isfile(gisaid_msa_fp): # gisaid_msa_fp = bs.align_fasta_reference(gisaid_seqs, out_filepath=gisaid_msa_fp, num_cpus=25, ref_fp=ref_fp) # print(f"Multiple sequence alignment of GISAID Sequences saved in {gisaid_msa_fp}") # print("Analyzing Mutations...") # gisaid_subs_wide_fp = out_dir/f'gisaid_substitutions_wide_{date}.csv' # if not Path.isfile(gisaid_subs_wide_fp): # print("Identifying substitution-based mutations - wide (aggregated)...") # gisaid_subs = bm.identify_replacements(gisaid_msa_fp, gisaid_meta, data_src='gisaid') # gisaid_subs.to_csv(gisaid_subs_wide_fp, index=False) # gisaid_subs_long_fp = out_dir/f'gisaid_substitutions_long_{date}.csv' # if not Path.isfile(gisaid_subs_long_fp): # print("Identifying substitution-based mutations - long...") # gisaid_subs_long, _ = bm.identify_replacements_per_sample(gisaid_msa_fp, gisaid_meta, bm.GENE2POS, data_src='gisaid') # gisaid_subs_long.to_csv(gisaid_subs_long_fp, index=False) # gisaid_dels_wide_fp = out_dir/f'gisaid_deletions_wide_{date}.csv' # if not Path.isfile(gisaid_dels_wide_fp): # print("Identifying deletion-based mutations - wide (aggregated)...") # gisaid_dels = bm.identify_deletions(gisaid_msa_fp, gisaid_meta, data_src='gisaid') # gisaid_dels.to_csv(gisaid_dels_wide_fp, index=False) # gisaid_dels_long_fp = out_dir/f'gisaid_deletions_long_{date}.csv' # if not Path.isfile(gisaid_subs_long_fp): # print("Identifying deletion-based mutations - long...") # gisaid_dels_long, _ = bm.identify_deletions_per_sample(gisaid_msa_fp, gisaid_meta, patient_zero, bm.GENE2POS, data_src='gisaid') # gisaid_dels_long.to_csv(gisaid_dels_long_fp, index=False) # print(f"Deletion-based mutations of GISAID data saved in {gisaid_subs_fp}")
55.047059
134
0.767258
3c464e25fb35f21f9c3c6110e1d400e81a5fdb08
1,467
py
Python
shlibvischeck/analysis/header.py
yugr/ShlibVisibilityChecker
da0c3ba6d67bbf67085205be76985efe0af19e38
[ "MIT" ]
27
2018-05-15T11:55:44.000Z
2022-03-02T21:10:25.000Z
shlibvischeck/analysis/header.py
yugr/ShlibVisibilityChecker
da0c3ba6d67bbf67085205be76985efe0af19e38
[ "MIT" ]
3
2018-05-21T10:49:28.000Z
2022-01-11T18:53:21.000Z
shlibvischeck/analysis/header.py
yugr/ShlibVisibilityChecker
da0c3ba6d67bbf67085205be76985efe0af19e38
[ "MIT" ]
3
2018-05-21T10:31:46.000Z
2022-01-27T21:54:07.000Z
# The MIT License (MIT) # # Copyright 2020-2022 Yury Gribov # # Use of this source code is governed by MIT license that can be # found in the LICENSE.txt file. """ APIs for analyzing C headers """ import os import os.path import re from shlibvischeck.common.process import * from shlibvischeck.common.error import error __all__ = ['read_header_api'] def read_header_api(hdr, whitelist, cflags, v=0): """ Returns functions declared in header (and included headers from whitelist). """ if not cflags: cflags = [''] # Is this a helper header and so not intended for direct inclusion? is_helper = 'private' in hdr # E.g. json_object_private.h hdr_base = os.path.basename(hdr) for filename in whitelist: with open(filename) as f: txt = f.read() if re.search(fr'^\s*#\s*include\s+[<"].*{hdr_base}[>"]', txt, re.M): is_helper = True errors = [] syms = [] for f in cflags: cmd = ['read_header_api', '--only', ' '.join(whitelist), '--cflags', f, hdr] rc, out, err = run(cmd, fatal=False) if rc == 0: syms = out.split('\n') break errors.append((' '.join(cmd), out, err)) if not syms and not is_helper: msgs = ["failed to parse:"] for cmd, out, err in errors: msgs.append(f"compiling '{cmd}':") msgs.append(err) error('\n'.join(msgs)) if v > 0 and syms: print("Public functions in header %s:\n %s" % (hdr, '\n '.join(syms))) return syms
24.45
80
0.625085
2ec8136353ae8fd5d69657fcc24d471a76ff0602
4,359
py
Python
tests/test_configs.py
q0w/aiodocker
08e8cd97cbe0fb7e38c97ac91df189e99879f885
[ "Apache-2.0" ]
330
2017-04-12T19:36:03.000Z
2022-03-29T09:24:53.000Z
tests/test_configs.py
q0w/aiodocker
08e8cd97cbe0fb7e38c97ac91df189e99879f885
[ "Apache-2.0" ]
623
2017-04-13T02:49:16.000Z
2022-03-29T12:21:48.000Z
tests/test_configs.py
romasku/aiodocker
daf32e791efea97a87744e5e66a90e478e0a8c2f
[ "Apache-2.0" ]
76
2017-04-22T08:00:18.000Z
2021-11-23T04:34:06.000Z
import pytest from aiodocker.exceptions import DockerError @pytest.fixture def tmp_config(event_loop, swarm, random_name): config = event_loop.run_until_complete( swarm.configs.create(name="config-" + random_name(), data=random_name()) ) yield config["ID"] event_loop.run_until_complete(swarm.configs.delete(config["ID"])) @pytest.mark.asyncio async def test_config_list_with_filter(swarm, tmp_config): docker_config = await swarm.configs.inspect(config_id=tmp_config) name = docker_config["Spec"]["Name"] filters = {"name": name} filtered_list = await swarm.configs.list(filters=filters) assert len(filtered_list) == 1 @pytest.mark.asyncio async def test_config_update(swarm, tmp_config): config = await swarm.configs.inspect(config_id=tmp_config) config_id = config["ID"] config = await swarm.configs.inspect(config_id) current_labels = config["Spec"]["Labels"] assert current_labels == {} version = config["Version"]["Index"] # update the config labels await swarm.configs.update( config_id=config_id, version=version, labels={"label1": "value1"} ) config = await swarm.configs.inspect(config_id) current_labels = config["Spec"]["Labels"] version = config["Version"]["Index"] assert current_labels == {"label1": "value1"} @pytest.mark.asyncio async def test_config_labels(swarm, tmp_config): config = await swarm.configs.inspect(config_id=tmp_config) config_id1 = config["ID"] config = await swarm.configs.inspect(config_id1) version = config["Version"]["Index"] await swarm.configs.update( config_id=config_id1, version=version, labels={"label1": "value1"} ) # create a config with labels name = "test_config2" config = await swarm.configs.create( name=name, data="test config2", labels={"label2": "value2"} ) config_id2 = config["ID"] config = await swarm.configs.inspect(config_id2) version = config["Version"]["Index"] current_labels = config["Spec"]["Labels"] assert current_labels == {"label2": "value2"} # search config based on labels filters = {"label": "label1=value1"} filtered_list = await swarm.configs.list(filters=filters) assert len(filtered_list) == 1 await swarm.configs.update( config_id=config_id2, version=version, labels={"label1": "value1"} ) config = await swarm.configs.inspect(config_id2) version = config["Version"]["Index"] current_labels = config["Spec"]["Labels"] assert current_labels == {"label1": "value1"} filters = {"label": "label1=value1"} filtered_list = await swarm.configs.list(filters=filters) assert len(filtered_list) == 2 await swarm.configs.delete(config_id2) @pytest.mark.asyncio async def test_config_update_error(swarm, tmp_config): config = await swarm.configs.inspect(config_id=tmp_config) config_id = config["ID"] # await asyncio.sleep(1) config = await swarm.configs.inspect(config_id) version = config["Version"]["Index"] with pytest.raises(DockerError) as error: await swarm.configs.update( config_id=config_id, version=version, name="new name" ) assert ( error.value.message == "rpc error: " "code = InvalidArgument " "desc = only updates to Labels are allowed" ) @pytest.mark.asyncio async def test_config_create_nodata_error(swarm): name = "test_config-create_nodata_error" with pytest.raises(TypeError): await swarm.configs.create(name=name) @pytest.mark.asyncio async def test_config_create_b64_error(swarm): name = "test_config-create_b64_error" not_b64 = "I'm not base64 encoded" with pytest.raises(DockerError) as error: await swarm.configs.create(name=name, data=not_b64, b64=True) assert error.value.message == "illegal base64 data at input byte 1" @pytest.mark.asyncio async def test_config_create_duplicated_error(swarm, tmp_config): config = await swarm.configs.inspect(config_id=tmp_config) name = config["Spec"]["Name"] with pytest.raises(DockerError) as error: await swarm.configs.create(name=name, data="test config") assert ( error.value.message == "rpc error: " "code = AlreadyExists " "desc = config " + name + " already exists" )
31.817518
80
0.690525
e7bc87d179881312f29567b73095edc9ccbc392d
1,392
py
Python
jrecommengine/random_ratings.py
joesonitaly/jrecommengine
f4ff432ae41bee89ad63341be6100ca1dd7ba6b5
[ "BSD-3-Clause" ]
null
null
null
jrecommengine/random_ratings.py
joesonitaly/jrecommengine
f4ff432ae41bee89ad63341be6100ca1dd7ba6b5
[ "BSD-3-Clause" ]
null
null
null
jrecommengine/random_ratings.py
joesonitaly/jrecommengine
f4ff432ae41bee89ad63341be6100ca1dd7ba6b5
[ "BSD-3-Clause" ]
null
null
null
from random import seed, randint from .config import * from .engine import * from .models import Like, Dislike, Similarity, Suggestion def setRandomRatings(): print("***** Starting *****\n") items = Item.objects.all() itemsLength = len(items) users = User.objects.all() engine = Engine() Like.objects.all().delete() Dislike.objects.all().delete() Similarity.objects.all().delete() seed() for user in users: selectedItems = [] for _ in range(0, randint(0, itemsLength)): item = items[randint(0, itemsLength - 1)] while item in selectedItems: item = items[randint(0, itemsLength - 1)] engine.likes.add(user=user, item=item) selectedItems.append(item) try: print("<Like: " + str(Like.objects.get(user=user, item=item)) + ">") except ObjectDoesNotExist: pass for _ in range(0, randint(0, itemsLength - len(selectedItems))): item = items[randint(0, itemsLength - 1)] while item in selectedItems: item = items[randint(0, itemsLength - 1)] engine.dislikes.add(user=user, item=item) selectedItems.append(item) try: print("<Dislike: " + str(Dislike.objects.get(user=user, item=item)) + ">") except ObjectDoesNotExist: pass print("\n***** Done *****")
24.421053
86
0.589799
27f67f66ff6ded739eb4bc0acc19efa43e7c9709
14,250
py
Python
src/utils.py
gtk-rs/release
7e7b65477145600b69c68557e9bf7827f46d3e2d
[ "MIT" ]
1
2020-07-05T14:41:31.000Z
2020-07-05T14:41:31.000Z
src/utils.py
gtk-rs/release
7e7b65477145600b69c68557e9bf7827f46d3e2d
[ "MIT" ]
80
2017-06-11T16:34:16.000Z
2022-02-11T09:02:12.000Z
src/utils.py
gtk-rs/release
7e7b65477145600b69c68557e9bf7827f46d3e2d
[ "MIT" ]
6
2017-05-07T20:33:04.000Z
2022-03-25T10:26:42.000Z
from os.path import join import json import subprocess import sys import time # pip3 install requests import requests # local import import consts from globals import PULL_REQUESTS from my_toml import TomlHandler def write_error(error_msg): sys.stderr.write('{}\n'.format(error_msg)) def write_msg(msg): sys.stdout.write('{}\n'.format(msg)) def convert_to_string(content): if content.__class__.__name__ == 'bytes': return content.decode('utf-8') return content def get_file_content(file_path): try: with open(file_path, 'r') as file: return file.read() except Exception as err: write_error('get_file_content failed: "{}": {}'.format(file_path, err)) return None def write_into_file(file_path, content): try: with open(file_path, 'w') as file: file.write(content) return True except Exception as err: write_error('write_into_file failed: "{}": {}'.format(file_path, err)) return False def exec_command(command, timeout=None): # pylint: disable=consider-using-with child = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = child.communicate(timeout=timeout) return (child.returncode == 0, convert_to_string(stdout), convert_to_string(stderr)) def exec_command_and_print_error(command, timeout=None): ret, stdout, stderr = exec_command(command, timeout=timeout) if not ret: write_error('Command "{}" failed:'.format(' '.join(command))) if len(stdout) > 0: write_error('=== STDOUT ===\n{}\n'.format(stdout)) if len(stderr) > 0: write_error('=== STDERR ===\n{}\n'.format(stderr)) return ret def clone_repo(repo_name, temp_dir, depth=None): repo_url = '{}/{}/{}.git'.format(consts.GIT_URL, consts.ORGANIZATION, repo_name) target_dir = join(temp_dir, repo_name) try: write_msg('=> Cloning "{}" from "{}"'.format(repo_name, repo_url)) command = ['git', 'clone', repo_url, target_dir] if depth is not None: command = ['git', 'clone', '--depth', '{}'.format(depth), repo_url, target_dir] ret, stdout, stderr = exec_command(command, timeout=300) if not ret: write_error('command "{}" failed: ===STDOUT===\n{}\n===STDERR===\n{}'.format( ' '.join(command), stdout, stderr)) return False command = ['bash', '-c', 'cd {} && git submodule update --init'.format(target_dir)] if not exec_command_and_print_error(command): input('Failed to init submodule... Press ENTER to continue') return True except subprocess.TimeoutExpired: write_error('command timed out: {}'.format(' '.join(command))) except Exception as err: write_error('command "{}" got an exception: {}'.format(' '.join(command), err)) return False def create_headers(token): headers = { 'User-Agent': 'gtk-rs', 'Accept': 'application/vnd.github.v3+json', } if token is not None: # Authentication to github. headers['Authorization'] = 'token {}'.format(token) return headers def post_content(url, token, details, method='post', header_extras=None): if header_extras is None: header_extras = {} headers = create_headers(token) for extra in header_extras: headers[extra] = header_extras[extra] try: req = None if method == 'post': req = requests.post(url, data=json.dumps(details), headers=headers) else: req = requests.put(url, data=json.dumps(details), headers=headers) try: req.raise_for_status() except Exception: write_msg('Sent by bithub api: {}'.format(req.json())) req.raise_for_status() return req.json() except Exception as err: write_error('post_content: An error occurred: {}'.format(err)) return None def get_highest_feature_version(v1_feature, v2_feature): t_v1 = v1_feature[1:].split('_') t_v2 = v2_feature[1:].split('_') i = 0 while i < len(t_v1) and i < len(t_v2): try: x1_version = int(t_v1[i]) x2_version = int(t_v2[i]) if x1_version > x2_version: return v1_feature if x1_version < x2_version: return v2_feature i += 1 except Exception: write_error('get_highest_feature_version int conversion error: int("{}") vs int("{}")' ' from "{}" and "{}"'.format(t_v1[i], t_v2[i], v1_feature, v2_feature)) break return v1_feature # This function does two things: # # 1. Check if dox feature is present or try getting the highest version feature # 2. Getting all the other features (for cairo it's very important) def get_features(path): # pylint: disable=too-many-branches features = [] highest_version = None content = get_file_content(path) if content is None: return '' toml = TomlHandler(content) dox_present = False for section in toml.sections: if section.name == 'features': for entry in section.entries: if entry['key'] in ['purge-lgpl-docs', 'default']: continue if entry['key'] == 'dox': dox_present = True if entry['key'].startswith('v'): if highest_version is None: highest_version = entry['key'] else: highest_version = get_highest_feature_version(highest_version, entry['key']) else: features.append(entry['key']) if dox_present is True: if 'dox' not in features: features.append('dox') elif highest_version is not None: write_msg("/!\\ Seems there is no dox feature so let's just use the highest version " "instead...") features.append(highest_version) else: write_msg("/!\\ That's weird: no dox or version feature. Is everything fine with this one?") return ' '.join(features) # def compare_versions(v1, v2): # v1 = v1.split('.') # v2 = v2.split('.') # # for x in range(0, min(len(v1), len(v2))): # try: # entry1 = int(v1) # entry2 = int(v2) # except Exception: # # If it cannot be converted into a number, better just compare strings then. # entry1 = v1 # entry2 = v2 # if entry1 > entry2: # return 1 # if entry1 < entry2: # return -1 # # In here, "3.2" is considered littler than "3.2.0". That's how life goes. # return len(v1) - len(v2) def commit_and_push(repo_name, temp_dir, commit_msg, target_branch): commit(repo_name, temp_dir, commit_msg) push(repo_name, temp_dir, target_branch) def commit(repo_name, temp_dir, commit_msg): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {} && git commit . -m "{}"'.format(repo_path, commit_msg)] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def push(repo_name, temp_dir, target_branch): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {} && git push origin HEAD:{}'.format(repo_path, target_branch)] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def add_to_commit(repo_name, temp_dir, files_to_add): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {} && git add {}' .format(repo_path, ' '.join(['"{}"'.format(f) for f in files_to_add]))] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def revert_changes(repo_name, temp_dir, files): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {0} && git rm -f {1} && git checkout -- {1}'.format( repo_path, ' '.join(['"{}"'.format(f) for f in files]))] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def checkout_target_branch(repo_name, temp_dir, target_branch): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {} && git checkout {}'.format(repo_path, target_branch)] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def checkout_to_new_branch(repo_name, temp_dir, target_branch): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {} && git checkout -b {}'.format(repo_path, target_branch)] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def get_last_commit_date(repo_name, temp_dir): repo_path = join(temp_dir, repo_name) success, out, err = exec_command(['bash', '-c', 'cd {} && git log --format=%at --no-merges -n 1'.format( repo_path) ]) return (success, out, err) def get_last_commit_hash(repo_path): success, out, _ = exec_command(['bash', '-c', 'cd {} && git rev-parse HEAD'.format(repo_path) ]) if success is True: return out.strip() return '' def get_repo_last_commit_hash(repo_url): success, out, _ = exec_command(['bash', '-c', 'git ls-remote {} HEAD'.format(repo_url) ]) if success is True: return out.split('\n')[0].strip().split('\t')[0].split(' ')[0] return '<unknown>' def merging_branches(repo_name, temp_dir, merge_branch): repo_path = join(temp_dir, repo_name) command = ['bash', '-c', 'cd {} && git merge "origin/{}"'.format(repo_path, merge_branch)] if not exec_command_and_print_error(command): input("Fix the error and then press ENTER") def publish_crate(repository, crate_dir_path, temp_dir, crate_name): write_msg('=> publishing crate {}'.format(crate_name)) path = join(join(temp_dir, repository), crate_dir_path) # In case we needed to fix bugs, we checkout to crate branch before publishing crate. command = [ 'bash', '-c', 'cd {} && cargo publish --no-verify'.format(path)] retry = 3 error_messages = [] final_success = False wait_time = 30 while retry > 0: ret, stdout, stderr = exec_command(command) if not ret: error_messages.append('Command "{}" failed:'.format(' '.join(command))) if len(stdout) > 0: error_messages[len(error_messages) - 1] += '\n=== STDOUT ===\n{}\n'.format(stdout) if len(stderr) > 0: error_messages[len(error_messages) - 1] += '\n=== STDERR ===\n{}\n'.format(stderr) retry -= 1 if retry > 0: write_msg("Let's sleep for {} seconds before retrying, {} retr{} remaining..." .format(wait_time, retry + 1, 'ies' if retry > 0 else 'y')) time.sleep(wait_time) else: final_success = True break if final_success is False: errors = set(error_messages) write_msg('== ERRORS ==\n{}'.format('====\n'.join(errors))) input("Something bad happened! Try to fix it and then press ENTER to continue...") write_msg('> crate {} has been published'.format(crate_name)) def create_tag_and_push(tag_name, repository, temp_dir): path = join(temp_dir, repository) command = ['bash', '-c', 'cd {0} && git tag "{1}" && git push origin "{1}"' .format(path, tag_name)] if not exec_command_and_print_error(command): input("Something bad happened! Try to fix it and then press ENTER to continue...") def create_pull_request(repo_name, from_branch, target_branch, token, add_to_list=True): req = post_content('{}/repos/{}/{}/pulls'.format(consts.GH_API_URL, consts.ORGANIZATION, repo_name), token, {'title': '[release] merging {} into {}'.format(from_branch, target_branch), 'body': 'cc @GuillaumeGomez @sdroege @bilelmoussaoui', 'base': target_branch, 'head': from_branch, 'maintainer_can_modify': True}) if req is None: write_error("Pull request from {repo}/{from_b} to {repo}/{target} couldn't be created. You " "need to do it yourself... (url provided at the end)" .format(repo=repo_name, from_b=from_branch, target=target_branch)) input("Press ENTER once done to continue...") PULL_REQUESTS.append('|=> "{}/{}/{}/compare/{}...{}?expand=1"' .format(consts.GITHUB_URL, consts.ORGANIZATION, repo_name, target_branch, from_branch)) else: write_msg("===> Pull request created: {}".format(req['html_url'])) if add_to_list is True: PULL_REQUESTS.append('> {}'.format(req['html_url'])) def check_if_up_to_date(): remote_repo = "git://github.com/gtk-rs/release.git" last_commit = get_last_commit_hash(".") remote_last_commit = get_repo_last_commit_hash(remote_repo) if last_commit != remote_last_commit: write_msg("Remote repository `{}` has a different last commit than local: `{}` != `{}`" .format(remote_repo, remote_last_commit, last_commit)) text = input("Do you want to continue anyway? [y/N] ").strip().lower() if len(text) == 0 or text != 'y': write_msg("Ok, leaving then. Don't forget to update!") return False return True
38
100
0.580982
51192872a8a5c546544ff76518e70c7314d90391
6,923
py
Python
Adversarial-Playground-Text-viz/virt/lib/python3.6/site-packages/ebcli/core/abstractcontroller.py
AnupKumarGupta/deepWordBug
c6513e6421fa5204b07652fc3f619b1018696df2
[ "Apache-2.0" ]
72
2018-07-02T07:47:15.000Z
2022-03-29T10:02:14.000Z
Adversarial-Playground-Text-viz/virt/lib/python3.6/site-packages/ebcli/core/abstractcontroller.py
AnupKumarGupta/deepWordBug
c6513e6421fa5204b07652fc3f619b1018696df2
[ "Apache-2.0" ]
5
2018-07-12T10:55:46.000Z
2018-10-25T20:33:13.000Z
virtual_env/Lib/site-packages/ebcli/core/abstractcontroller.py
laubnyc/DommesticWebsite
ea4f00ae6998fbe3a8a264d528ad13e59be1fc5b
[ "MIT" ]
29
2018-09-17T06:10:32.000Z
2022-03-19T13:15:30.000Z
# Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import textwrap import json import sys from cement.core import controller from ebcli import __version__ from ebcli.core.ebglobals import Constants from ebcli.lib import elasticbeanstalk, utils from ebcli.core import io, fileoperations from ebcli.objects.exceptions import ( NoEnvironmentForBranchError, PlatformWorkspaceNotSupportedError, ApplicationWorkspaceNotSupportedError, EBCLIException, NotInitializedError ) from ebcli.resources.strings import strings, flag_text from ebcli.objects import region from ebcli.operations import commonops class AbstractBaseController(controller.CementBaseController): """ This is an abstract base class that is useless on its own, but used by other classes to sub-class from and to share common commands and arguments. """ class Meta: label = 'abstract' stacked_on = 'base' stacked_type = 'nested' arguments = [ (['environment_name'], dict(action='store', nargs='?', default=[], help=flag_text['general.env'])), ] epilog = '' usage = 'eb {cmd} <environment_name> [options ...]' def do_command(self): pass @classmethod def validate_workspace(cls): workspace_type = fileoperations.get_workspace_type(None) is_platform_workspace_only_command = cls.Meta.__dict__.get( 'is_platform_workspace_only_command' ) requires_directory_initialization = cls.Meta.__dict__.get( 'requires_directory_initialization' ) if '--modules' in sys.argv: pass elif '--help' in sys.argv: pass elif requires_directory_initialization and not workspace_type: raise NotInitializedError(strings['exit.notsetup']) elif is_platform_workspace_only_command: if Constants.WorkSpaceTypes.APPLICATION == workspace_type: raise ApplicationWorkspaceNotSupportedError( strings['exit.applicationworkspacenotsupported'] ) @controller.expose(hide=True) def default(self): """ This command will be shared within all controllers that sub-class from here. It can also be overridden in the sub-class """ self.validate_workspace() self.do_command() self.check_for_cli_update(__version__) def check_workspace_type(self, expected_type): workspace_type = fileoperations.get_workspace_type() if workspace_type != expected_type: if Constants.WorkSpaceTypes.PLATFORM == workspace_type: raise PlatformWorkspaceNotSupportedError( strings['exit.platformworkspacenotsupported'] ) if Constants.WorkSpaceTypes.APPLICATION == workspace_type: raise ApplicationWorkspaceNotSupportedError( strings['exit.applicationworkspacenotsupported'] ) def check_for_cli_update(self, version): label = self.Meta.label if label in ('create', 'deploy', 'status', 'clone', 'config'): if cli_update_exists(version): io.log_alert(strings['base.update_available']) def get_app_name(self): app_name = fileoperations.get_application_name() return app_name def get_env_name(self, cmd_example=None, noerror=False, varname='environment_name'): env_name = getattr(self.app.pargs, varname, None) if not env_name: env_name = commonops. \ get_current_branch_environment() workspace_type = fileoperations.get_workspace_type(Constants.WorkSpaceTypes.APPLICATION) if not env_name: if Constants.WorkSpaceTypes.PLATFORM == workspace_type: raise EBCLIException(strings['platform.nobuilderenv']) if noerror: return None if not cmd_example: message = strings['branch.noenv'].replace('{cmd}', self.Meta.label) else: message = strings['branch.noenv'].replace('eb {cmd}', cmd_example) io.log_error(message) raise NoEnvironmentForBranchError() return env_name @classmethod def _add_to_handler(cls, handler): handler.register(cls) @property def _help_text(self): """ Returns the help text displayed when for the commands of the type `eb <command> <subcommand>` except where <command> is "platform". """ longest = 0 def pad(label): padlength = longest - len(label) + 2 padding = ' ' if padlength < 0: for x in range(0, longest): padding += ' ' else: for x in range(0, padlength): padding += ' ' return padding help_txt = '' for label in self._visible_commands: if len(label) > longest: longest = len(label) for label in self._visible_commands: cmd = self._dispatch_map[label] cmd_txt = ' ' cmd_name = label cmd_aliases = cmd['aliases'] if len(cmd_aliases) > 0 and cmd['aliases_only']: cmd_name = cmd_aliases.pop(0) cmd_txt += '{}'.format(cmd_name) if cmd['help']: cmd_txt += '{}{}'.format(pad(cmd_txt), cmd['help']) if len(cmd_aliases) > 0: cmd_txt += '\n{}(alias: {})'.format(pad(''), ', '.join(cmd_aliases)) cmd_txt += '\n' help_txt += cmd_txt if len(help_txt) > 0: txt = '''{} commands: {} '''.format(self._meta.description, help_txt) else: txt = self._meta.description return textwrap.dedent(txt) def cli_update_exists(current_version): try: data = utils.get_data_from_url( 'https://pypi.python.org/pypi/awsebcli/json', timeout=5) data = json.loads(data) latest = data['info']['version'] return latest != current_version except: return False
32.65566
101
0.602484
f505d3da3ebdecc63e3c211dbf9479e1ae473853
1,060
py
Python
corehq/apps/export/migrations/0011_defaultexportsettings_usecouchfiletypes.py
omari-funzone/commcare-hq
5edb462c891fc08e51c4babd7acdf12c0006a602
[ "BSD-3-Clause" ]
471
2015-01-10T02:55:01.000Z
2022-03-29T18:07:18.000Z
corehq/apps/export/migrations/0011_defaultexportsettings_usecouchfiletypes.py
omari-funzone/commcare-hq
5edb462c891fc08e51c4babd7acdf12c0006a602
[ "BSD-3-Clause" ]
14,354
2015-01-01T07:38:23.000Z
2022-03-31T20:55:14.000Z
corehq/apps/export/migrations/0011_defaultexportsettings_usecouchfiletypes.py
omari-funzone/commcare-hq
5edb462c891fc08e51c4babd7acdf12c0006a602
[ "BSD-3-Clause" ]
175
2015-01-06T07:16:47.000Z
2022-03-29T13:27:01.000Z
# Generated by Django 2.2.16 on 2021-01-12 17:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('export', '0010_defaultexportsettings'), ] operations = [ migrations.AlterField( model_name='defaultexportsettings', name='cases_filetype', field=models.CharField(choices=[('csv', 'CSV (zip file)'), ('xlsx', 'Excel 2007+'), ('xls', 'Excel (older versions)')], default='xlsx', max_length=25), ), migrations.AlterField( model_name='defaultexportsettings', name='forms_filetype', field=models.CharField(choices=[('csv', 'CSV (zip file)'), ('xlsx', 'Excel 2007+'), ('xls', 'Excel (older versions)')], default='xlsx', max_length=25), ), ]
35.333333
79
0.460377
0b6c14457bdc9c0916932d5f0e984ddaca2588a8
2,320
py
Python
CI/CA/CA.py
PiscesDream/Ideas
9ba710e62472f183ae4525f35659cd265c71392e
[ "Apache-2.0" ]
null
null
null
CI/CA/CA.py
PiscesDream/Ideas
9ba710e62472f183ae4525f35659cd265c71392e
[ "Apache-2.0" ]
null
null
null
CI/CA/CA.py
PiscesDream/Ideas
9ba710e62472f183ae4525f35659cd265c71392e
[ "Apache-2.0" ]
null
null
null
from copy import deepcopy from numpy import ones_like, array, zeros import matplotlib.pyplot as plt class CA(object): ''' Cellular Automata with: Numerical grid Circular/Null boundary Moore neighbourhood ''' def __init__(self, init, radius, rule, circular = False, Null = .0, global_update = False): ''' init: initial grid radius: sense radius rule: update rule -local update: arg is a list -global update: cur grid, arg as a 3d array circular: boundary rule ''' self.grid = init self.w, self.h = self.grid.shape self.radius = radius self.rule = rule self.circular = circular self.Null = Null self.global_update = global_update def update(self): if self.global_update: arg_grid = zeros((self.grid.shape+((2 * self.radius+1) ** 2,))) else: newgrid = ones_like(self.grid) * self.Null for x in range(self.w): for y in range(self.h): args = [] for kx in range(-self.radius, self.radius+1): for ky in range(-self.radius, self.radius+1): if 0 <= x+kx < self.w and 0 <= y+ky < self.h: args.append(self.grid[x+kx, y+ky]) else: if self.circular: args.append( self.grid[(x+kx >= self.w and (x+kx - self.w)) or (x+kx < self.w and x+kx), (y+ky >= self.h and (y+ky - self.h)) or (y+ky < self.h and y+ky)]) else: args.append(self.Null) if self.global_update: arg_grid[x][y] = args else: newgrid[x][y] = self.rule(array(args)) if self.global_update: self.grid = self.rule(self.grid, arg_grid) else: self.grid = newgrid return self.grid def get_grid(self): return self.grid def plot(self): plt.imshow(self.grid, interpolation = 'none', cmap = 'binary')#or cmap = 'gray'
35.692308
112
0.474569
5450e632b49e22219f280e4ba7d22a7767c25d54
33,394
py
Python
storm_analysis/sa_library/dao_fit_c.py
KimLab-SNU/storm-analysis-kimlab
31944769cdaa82a9ea5779b66c75d1d651852dc7
[ "CNRI-Python" ]
null
null
null
storm_analysis/sa_library/dao_fit_c.py
KimLab-SNU/storm-analysis-kimlab
31944769cdaa82a9ea5779b66c75d1d651852dc7
[ "CNRI-Python" ]
null
null
null
storm_analysis/sa_library/dao_fit_c.py
KimLab-SNU/storm-analysis-kimlab
31944769cdaa82a9ea5779b66c75d1d651852dc7
[ "CNRI-Python" ]
null
null
null
#!/usr/bin/env python """ Python interface to the dao_fit C library. Hazen """ import ctypes import math import numpy from numpy.ctypeslib import ndpointer import os import sys import storm_analysis.sa_library.ia_utilities_c as utilC import storm_analysis.sa_library.loadclib as loadclib # # The Python definitions of the C structures in sa_library/multi_fit.h # class fitData(ctypes.Structure): _fields_ = [('n_dposv', ctypes.c_int), ('n_iterations', ctypes.c_int), ('n_lost', ctypes.c_int), ('n_margin', ctypes.c_int), ('n_neg_fi', ctypes.c_int), ('n_neg_height', ctypes.c_int), ('n_non_converged', ctypes.c_int), ('n_non_decr', ctypes.c_int), ('fit_size_x', ctypes.c_int), ('fit_size_y', ctypes.c_int), ('image_size_x', ctypes.c_int), ('image_size_y', ctypes.c_int), ('jac_size', ctypes.c_int), ('max_nfit', ctypes.c_int), ('nfit', ctypes.c_int), ('roi_n_index', ctypes.c_int), ('min_height', ctypes.c_double), ('xoff', ctypes.c_double), ('yoff', ctypes.c_double), ('zoff', ctypes.c_double), ('tolerance', ctypes.c_double), ('bg_counts', ctypes.POINTER(ctypes.c_int)), ('roi_x_index', ctypes.POINTER(ctypes.c_int)), ('roi_y_index', ctypes.POINTER(ctypes.c_int)), ('stale', ctypes.POINTER(ctypes.c_int)), ('as_xi', ctypes.POINTER(ctypes.c_double)), ('bg_data', ctypes.POINTER(ctypes.c_double)), ('bg_estimate', ctypes.POINTER(ctypes.c_double)), ('err_i', ctypes.POINTER(ctypes.c_double)), ('f_data', ctypes.POINTER(ctypes.c_double)), ('rqe', ctypes.POINTER(ctypes.c_double)), ('scmos_term', ctypes.POINTER(ctypes.c_double)), ('t_fi', ctypes.POINTER(ctypes.c_double)), ('x_data', ctypes.POINTER(ctypes.c_double)), ('working_peak', ctypes.c_void_p), ('fit', ctypes.c_void_p), ('fit_model', ctypes.c_void_p), ('fn_alloc_peaks', ctypes.c_void_p), ('fn_calc_JH', ctypes.c_void_p), ('fn_calc_peak_shape', ctypes.c_void_p), ('fn_check', ctypes.c_void_p), ('fn_copy_peak', ctypes.c_void_p), ('fn_error_fn', ctypes.c_void_p), ('fn_free_peaks', ctypes.c_void_p), ('fn_peak_sum', ctypes.c_void_p), ('fn_update', ctypes.c_void_p)] def formatPeaksArbitraryPSF(peaks, peaks_type): """ Input peaks array formatter for arbitrary PSFs. Based on peaks_type, create a properly formatted ndarray to pass to the C library. This is primarily for internal use by newPeaks(). """ # These come from the finder, or the unit test code, create peaks # as (N,3) with columns x, y, z. # # Note: "testing" is designed specifically for use by the unit # tests. If you use this then initial height estimation # for the peaks is not performed. # if (peaks_type == "testing") or (peaks_type == "finder"): c_peaks = numpy.stack((peaks["x"], peaks["y"], peaks["z"]), axis = 1) # These come from pre-specified peak fitting locations, create peaks # as (N,5) with columns x, y, z, background, height. # elif (peaks_type == "text") or (peaks_type == "hdf5"): c_peaks = numpy.stack((peaks["x"], peaks["y"], peaks["z"], peaks["background"], peaks["height"]), axis = 1) else: raise MultiFitterException("Unknown peaks type '" + peaks_type + "'") return numpy.ascontiguousarray(c_peaks, dtype = numpy.float64) def formatPeaksGaussianPSF(peaks, peaks_type): """ Input peaks array formatter for Gaussian PSFs. Based on peaks_type, create a properly formatted ndarray to pass to the C library. This is primarily for internal use by newPeaks(). """ # These come from the finder, or the unit test code, create peaks # as (N,4) with columns x, y, z, and sigma. # if (peaks_type == "testing") or (peaks_type == "finder"): c_peaks = numpy.stack((peaks["x"], peaks["y"], peaks["z"], peaks["sigma"]), axis = 1) # These come from pre-specified peak fitting locations, create peaks # as (N,7) with columns x, y, z, background, height, xsigma, ysigma. # elif (peaks_type == "text") or (peaks_type == "hdf5"): c_peaks = numpy.stack((peaks["x"], peaks["y"], peaks["z"], peaks["background"], peaks["height"], peaks["xsigma"], peaks["ysigma"]), axis = 1) else: raise MultiFitterException("Unknown peaks type '" + peaks_type + "'") return numpy.ascontiguousarray(c_peaks, dtype = numpy.float64) def loadDaoFitC(): daofit = loadclib.loadCLibrary("dao_fit") # These are from sa_library/multi_fit.c daofit.mFitAnscombeTransformImage.argtypes = [ctypes.c_void_p] daofit.mFitGetFitImage.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64)] daofit.mFitGetNError.argtypes = [ctypes.c_void_p] daofit.mFitGetNError.restype = ctypes.c_int daofit.mFitGetPeakPropertyDouble.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64), ctypes.c_char_p] daofit.mFitGetPeakPropertyInt.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.int32), ctypes.c_char_p] daofit.mFitGetResidual.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64)] daofit.mFitGetUnconverged.argtypes = [ctypes.c_void_p] daofit.mFitGetUnconverged.restype = ctypes.c_int daofit.mFitIterateLM.argtypes = [ctypes.c_void_p] daofit.mFitNewBackground.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64)] daofit.mFitNewImage.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64)] daofit.mFitRemoveErrorPeaks.argtypes = [ctypes.c_void_p] daofit.mFitRemoveRunningPeaks.argtypes = [ctypes.c_void_p] daofit.mFitSetPeakStatus.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.int32)] # These are from sa_library/dao_fit.c daofit.daoCleanup.argtypes = [ctypes.c_void_p] daofit.daoInitialize.argtypes = [ndpointer(dtype=numpy.float64), ndpointer(dtype=numpy.float64), ctypes.c_double, ctypes.c_int, ctypes.c_int, ctypes.c_int] daofit.daoInitialize.restype = ctypes.POINTER(fitData) daofit.daoInitialize2DFixed.argtypes = [ctypes.c_void_p] daofit.daoInitialize2DFixedALS.argtypes = [ctypes.c_void_p] daofit.daoInitialize2DFixedLS.argtypes = [ctypes.c_void_p] daofit.daoInitialize2DFixedDWLS.argtypes = [ctypes.c_void_p] daofit.daoInitialize2DFixedFWLS.argtypes = [ctypes.c_void_p] daofit.daoInitialize2D.argtypes = [ctypes.c_void_p, ctypes.c_double, ctypes.c_double] daofit.daoInitialize2DALS.argtypes = [ctypes.c_void_p, ctypes.c_double, ctypes.c_double] daofit.daoInitialize2DLS.argtypes = [ctypes.c_void_p, ctypes.c_double, ctypes.c_double] daofit.daoInitialize2DDWLS.argtypes = [ctypes.c_void_p, ctypes.c_double, ctypes.c_double] daofit.daoInitialize2DFWLS.argtypes = [ctypes.c_void_p, ctypes.c_double, ctypes.c_double] daofit.daoInitialize3D.argtypes = [ctypes.c_void_p, ctypes.c_double, ctypes.c_double] daofit.daoInitializeZ.argtypes = [ctypes.c_void_p] daofit.daoInitializeZ.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64), ndpointer(dtype=numpy.float64), ctypes.c_double, ctypes.c_double] daofit.daoNewPeaks.argtypes = [ctypes.c_void_p, ndpointer(dtype=numpy.float64), ctypes.c_char_p, ctypes.c_int] return daofit def printFittingInfo(mfit, spacing = " "): """ Print out some of the information the C fitting library keeps track of. """ print("--- Fitting ---") print(spacing, mfit.contents.n_dposv, "fits reset due to Cholesky failure.") print(spacing, mfit.contents.n_margin, "fits reset due to image margin.") print(spacing, mfit.contents.n_neg_fi, "fits reset due to negative value in fit function.") print(spacing, mfit.contents.n_neg_height, "fits reset due to negative height.") print(spacing, mfit.contents.n_non_decr, "fits reset due to non-decreasing error (LM).") print(spacing, mfit.contents.n_non_converged, "fits did not converge.") print(spacing, mfit.contents.n_lost, "fits were lost.") class MultiFitterException(Exception): pass class MultiFitter(object): """ Base class for fitting multiple possibly overlapping localizations. This is designed to be used as follows: 1. At the start of the analysis, create a single instance of the appropriate fitting sub-class. 2. For each new image, call newImage() once. 3. Provide an estimate of the background with newBackground(). 4. Add peaks to fit with newPeaks(). 5. Call doFit() to fit the peaks. 6. Use multiple calls to getPeakProperties() to get the properties you are interested in. 7. Call cleanup() when you are done with this object and plan to throw it away. See sa_library/fitting.py for a typical work flow. As all the static variables have been removed from the C library you should be able to use several of these objects simultaneuosly for fitting. All of the parameters are optional, use None if they are not relevant. """ def __init__(self, rqe = None, scmos_cal = None, verbose = False, #(originaly False, modified by ioah) min_z = None, max_z = None, **kwds): super(MultiFitter, self).__init__(**kwds) self.clib = None self.default_tol = 1.0e-6 self.im_shape = None self.iterations = 0 self.max_z = max_z self.mfit = None self.min_z = min_z self.n_proximity = 0 self.n_significance = 0 # These are all the peak (localization) properties that the C libraries # estimate. Not all C libraries will provide estimates for all of these # properties. It is used by the getPeakProperty() method to check that # the requested property is valid. # self.peak_properties = {"background" : "float", "bg_sum" : "float", "error" : "float", "fg_sum" : "float", "height" : "float", "iterations" : "int", "jacobian" : "float", "significance" : "compound", "sum" : "float", "status" : "int", "x" : "float", "xsigma" : "float", "y" : "float", "ysigma" : "float", "z" : "float"} self.rqe = rqe self.scmos_cal = scmos_cal self.verbose = verbose def cleanup(self, spacing = " ", verbose = True): """ This just prints the analysis statistics, it does not do any actual cleanup. """ if self.mfit is not None: if verbose: printFittingInfo(self.mfit, spacing = spacing) print(spacing, self.n_proximity, "peaks lost to proximity filter.") print(spacing, self.n_significance, "peaks lost to low significance.") print(spacing, self.iterations, "fitting iterations.") def doFit(self, max_iterations = 2000): """ This is where the fitting actually happens. FIXME: Why we always do at least one iteration? I guess it doesn't matter because this should be a NOP as the C library will not do anything if all the peaks have converged. """ i = 0 self.iterate() while(self.getUnconverged() and (i < max_iterations)): if self.verbose and ((i%20)==0): print("iteration", i) self.iterate() i += 1 if self.verbose: if (i == max_iterations): print(" Failed to converge in:", i, self.getUnconverged()) else: print(" Multi-fit converged in:", i, self.getUnconverged()) print("") # Get number of fitting iterations. self.getIterations() def getFitImage(self): """ Get the fit image, i.e. f(x), an image created from drawing all of the current fits into a 2D array. """ fit_image = numpy.ascontiguousarray(numpy.zeros(self.im_shape, dtype = numpy.float64)) self.clib.mFitGetFitImage(self.mfit, fit_image) return fit_image def getIterations(self): """ Update iterations and reset C library counter. The idea anyway is that the Python counter won't overflow where as the C counter might, particularly on a 32 bit system. """ self.iterations += self.mfit.contents.n_iterations self.mfit.contents.n_iterations = 0 return self.iterations def getNError(self): """ Return the number of peaks in the C library that are in the ERROR state. """ return self.clib.mFitGetNError(self.mfit) def getNFit(self): """ Return the current number of peaks that the C library is handling. """ return self.mfit.contents.nfit def getNFitMax(self): """ Return the current maximum number of peaks. Note this is not a fixed value as the C library can dynamically increase this. This method is primarily for testing purposes. """ return self.mfit.contents.max_nfit def getPeakProperty(self, p_name): """ Return a numpy array containing the requested property. """ if not p_name in self.peak_properties: raise MultiFitterException("No such property '" + p_name + "'") # Properties that are calculated from other properties. if(self.peak_properties[p_name] == "compound"): # Return 0 length array if there are no localizations. if(self.getNFit() == 0): return numpy.zeros(0, dtype = numpy.float64) # Peak significance calculation. if(p_name == "significance"): bg_sum = self.getPeakProperty("bg_sum") fg_sum = self.getPeakProperty("fg_sum") return fg_sum/numpy.sqrt(bg_sum) # Floating point properties. elif(self.peak_properties[p_name] == "float"): if (p_name == "jacobian"): values = numpy.ascontiguousarray(numpy.zeros((self.getNFit(), self.mfit.contents.jac_size), dtype = numpy.float64)) self.clib.mFitGetPeakPropertyDouble(self.mfit, values, ctypes.c_char_p(p_name.encode())) else: values = numpy.ascontiguousarray(numpy.zeros(self.getNFit(), dtype = numpy.float64)) self.clib.mFitGetPeakPropertyDouble(self.mfit, values, ctypes.c_char_p(p_name.encode())) return values # Integer properties. elif(self.peak_properties[p_name] == "int"): values = numpy.ascontiguousarray(numpy.zeros(self.getNFit(), dtype = numpy.int32)) self.clib.mFitGetPeakPropertyInt(self.mfit, values, ctypes.c_char_p(p_name.encode())) return values def getResidual(self): """ Get the residual, the data minus the fit image, xi - f(x). """ residual = numpy.ascontiguousarray(numpy.zeros(self.im_shape, dtype = numpy.float64)) self.clib.mFitGetResidual(self.mfit, residual) return residual def getUnconverged(self): """ Return the number of fits that have not yet converged. """ return self.clib.mFitGetUnconverged(self.mfit) def incProximityCounter(self, n_inc): self.n_proximity += n_inc def incSignificanceCounter(self, n_inc): self.n_significance += n_inc def initializeC(self, image): """ This initializes the C fitting library. It needs the image in order to know what size arrays to create as we won't always have SCMOS calibration data. """ if self.scmos_cal is None: if self.verbose: print("Using zeros for sCMOS calibration data.") self.scmos_cal = numpy.ascontiguousarray(numpy.zeros(image.shape), dtype = numpy.float64) else: self.scmos_cal = numpy.ascontiguousarray(self.scmos_cal, dtype = numpy.float64) if self.rqe is None: if self.verbose: print("Using ones for relative quantum efficiency data.") self.rqe = numpy.ascontiguousarray(numpy.ones(image.shape), dtype = numpy.float64) else: self.rqe = numpy.ascontiguousarray(self.rqe, dtype = numpy.float64) if (image.shape[0] != self.scmos_cal.shape[0]) or (image.shape[1] != self.scmos_cal.shape[1]): raise MultiFitterException("Image shape and sCMOS calibration shape do not match.") if (image.shape[0] != self.rqe.shape[0]) or (image.shape[1] != self.rqe.shape[1]): raise MultiFitterException("Image shape and RQE shape do not match.") self.im_shape = self.scmos_cal.shape def isInitialized(self): return (self.mfit != None) def iterate(self): self.clib.mFitIterateLM(self.mfit) def newBackground(self, background): """ Update the current background estimate. """ if (background.shape[0] != self.im_shape[0]) or (background.shape[1] != self.im_shape[1]): raise MultiFitterException("Background image shape and the original image shape are not the same.") self.clib.mFitNewBackground(self.mfit, numpy.ascontiguousarray(background, dtype = numpy.float64)) def newImage(self, image): """ Initialize C fitter with a new image. """ if (image.shape[0] != self.im_shape[0]) or (image.shape[1] != self.im_shape[1]): raise MultiFitterException("Current image shape and the original image shape are not the same.") self.clib.mFitNewImage(self.mfit, numpy.ascontiguousarray(image, dtype = numpy.float64)) def newPeaks(self, peaks, peaks_type): """ Sub classes override this to provide analysis specific peak addition. """ raise MultiFitterException("newPeaks() method not defined.") def removeErrorPeaks(self): """ Instruct the C library to discard all the peaks in the ERROR state from the list of peaks that it is maintaining. """ self.clib.mFitRemoveErrorPeaks(self.mfit) def removeRunningPeaks(self): """ Instruct the C library to discard all the peaks in the RUNNING state from the list of peaks that it is maintaining. This is usually called at the end of the analysis after all of the peaks in the ERROR state have been removed. """ self.clib.mFitRemoveRunningPeaks(self.mfit) def rescaleZ(self, z): """ Convert Z from fitting units to microns. """ return z def setPeakStatus(self, status): """ Set the status (RUNNING, CONVERGED, ERROR) of the peaks in the C library. """ assert (status.size == self.getNFit()) self.clib.mFitSetPeakStatus(self.mfit, numpy.ascontiguousarray(status, dtype = numpy.int32)) class MultiFitterArbitraryPSF(MultiFitter): """ Base class for arbitrary PSF fitters (Spliner, PupilFn, PSFFFT) """ def formatPeaks(self, peaks, peaks_type): return formatPeaksArbitraryPSF(peaks, peaks_type) class MultiFitterGaussian(MultiFitter): """ Base class for Gaussian fitters (3D-DAOSTORM and sCMOS). """ def __init__(self, roi_size = 10, wx_params = None, wy_params = None, **kwds): super(MultiFitterGaussian, self).__init__(**kwds) self.roi_size = roi_size self.wx_params = wx_params self.wy_params = wy_params self.clib = loadDaoFitC() def cleanup(self, verbose = True): super(MultiFitterGaussian, self).cleanup(verbose = verbose) if self.mfit is not None: self.clib.daoCleanup(self.mfit) self.mfit = None def formatPeaks(self, peaks, peaks_type): return formatPeaksGaussianPSF(peaks, peaks_type) def initializeC(self, image): """ This initializes the C fitting library. """ super(MultiFitterGaussian, self).initializeC(image) self.mfit = self.clib.daoInitialize(self.rqe, self.scmos_cal, self.default_tol, self.scmos_cal.shape[1], self.scmos_cal.shape[0], self.roi_size) def newPeaks(self, peaks, peaks_type): """ Pass new peaks to add to the C library. """ c_peaks = self.formatPeaks(peaks, peaks_type) self.clib.daoNewPeaks(self.mfit, c_peaks, ctypes.c_char_p(peaks_type.encode()), c_peaks.shape[0]) class MultiFitter2DFixed(MultiFitterGaussian): """ Fit with a fixed peak width. """ def initializeC(self, image): super(MultiFitter2DFixed, self).initializeC(image) self.clib.daoInitialize2DFixed(self.mfit) class MultiFitter2DFixedALS(MultiFitterGaussian): """ Fit with a fixed peak width using the Anscombe least squares fitting error model. """ def initializeC(self, image): super(MultiFitter2DFixedALS, self).initializeC(image) self.clib.daoInitialize2DFixedALS(self.mfit) def newImage(self, image): super(MultiFitter2DFixedALS, self).newImage(image) self.clib.mFitAnscombeTransformImage(self.mfit) class MultiFitter2DFixedLS(MultiFitterGaussian): """ Fit with a fixed peak width using the Least squares fitting error model. """ def initializeC(self, image): super(MultiFitter2DFixedLS, self).initializeC(image) self.clib.daoInitialize2DFixedLS(self.mfit) class MultiFitter2DFixedDWLS(MultiFitterGaussian): """ Fit with a fixed peak width using the data weighted least squares fitting error model. """ def initializeC(self, image): super(MultiFitter2DFixedDWLS, self).initializeC(image) self.clib.daoInitialize2DFixedDWLS(self.mfit) class MultiFitter2DFixedFWLS(MultiFitterGaussian): """ Fit with a fixed peak width using the fit weighted least squares fitting error model. """ def initializeC(self, image): super(MultiFitter2DFixedFWLS, self).initializeC(image) self.clib.daoInitialize2DFixedFWLS(self.mfit) class MultiFitter2DFixedNC(MultiFitter2DFixed): """ Fit with a fixed peak width, but without correcting for RQE. More specifically we set the RQE correction to 1.0 so that the fitter will use the same RQE correction approach as the finder (the original image is divided by the RQE). At least in theory this will be slightly worse as the statistics will no longer be exactly Poisson. In practice it appears that the differences are somewhere in the 4th or 5th digit, so pretty small. This is primarily for testing. """ def __init__(self, **kwds): super(MultiFitter2DFixedNC, self).__init__(**kwds) self.rqe = None class MultiFitter2DFixedDWLSNC(MultiFitter2DFixedDWLS): """ Fit with a fixed peak width using the data weighted least squares fitting error model, but without correcting for RQE. More specifically we set the RQE correction to 1.0 so that the fitter will use the same RQE correction approach as the finder (the original image is divided by the RQE). Using this we can test the performance of the combination of mean gain and flat field correction with weighted least squares fitting as reported by other labs. We'll use the same value for all of the gains and use the RQE term as the flat field correction. This is primarily for testing. """ def __init__(self, **kwds): super(MultiFitter2DFixedDWLSNC, self).__init__(**kwds) self.rqe = None class MultiFitter2D(MultiFitterGaussian): """ Fit with a variable peak width (of the same size in X and Y). """ def __init__(self, sigma_range = None, **kwds): super(MultiFitter2D, self).__init__(**kwds) self.sigma_range = sigma_range def initializeC(self, image): super(MultiFitter2D, self).initializeC(image) width_max = 1.0/(2.0 * self.sigma_range[0] * self.sigma_range[0]) width_min = 1.0/(2.0 * self.sigma_range[1] * self.sigma_range[1]) self.clib.daoInitialize2D(self.mfit, width_min, width_max) class MultiFitter2DALS(MultiFitterGaussian): """ Fit with a variable peak width (of the same size in X and Y) using the Anscombe least squares fitting model. """ def __init__(self, sigma_range = None, **kwds): super(MultiFitter2DALS, self).__init__(**kwds) self.sigma_range = sigma_range def initializeC(self, image): super(MultiFitter2DALS, self).initializeC(image) width_max = 1.0/(2.0 * self.sigma_range[0] * self.sigma_range[0]) width_min = 1.0/(2.0 * self.sigma_range[1] * self.sigma_range[1]) self.clib.daoInitialize2DALS(self.mfit, width_min, width_max) def newImage(self, image): super(MultiFitter2DALS, self).newImage(image) self.clib.mFitAnscombeTransformImage(self.mfit) class MultiFitter2DLS(MultiFitterGaussian): """ Fit with a variable peak width (of the same size in X and Y) using the least squares fitting model. """ def __init__(self, sigma_range = None, **kwds): super(MultiFitter2DLS, self).__init__(**kwds) self.sigma_range = sigma_range def initializeC(self, image): super(MultiFitter2DLS, self).initializeC(image) width_max = 1.0/(2.0 * self.sigma_range[0] * self.sigma_range[0]) width_min = 1.0/(2.0 * self.sigma_range[1] * self.sigma_range[1]) self.clib.daoInitialize2DLS(self.mfit, width_min, width_max) class MultiFitter2DDWLS(MultiFitterGaussian): """ Fit with a variable peak width (of the same size in X and Y) using the data weighted least squares fitting model. """ def __init__(self, sigma_range = None, **kwds): super(MultiFitter2DDWLS, self).__init__(**kwds) self.sigma_range = sigma_range def initializeC(self, image): super(MultiFitter2DDWLS, self).initializeC(image) width_max = 1.0/(2.0 * self.sigma_range[0] * self.sigma_range[0]) width_min = 1.0/(2.0 * self.sigma_range[1] * self.sigma_range[1]) self.clib.daoInitialize2DDWLS(self.mfit, width_min, width_max) class MultiFitter2DFWLS(MultiFitterGaussian): """ Fit with a variable peak width (of the same size in X and Y) using the fit weighted least squares fitting model. """ def __init__(self, sigma_range = None, **kwds): super(MultiFitter2DFWLS, self).__init__(**kwds) self.sigma_range = sigma_range def initializeC(self, image): super(MultiFitter2DFWLS, self).initializeC(image) width_max = 1.0/(2.0 * self.sigma_range[0] * self.sigma_range[0]) width_min = 1.0/(2.0 * self.sigma_range[1] * self.sigma_range[1]) self.clib.daoInitialize2DFWLS(self.mfit, width_min, width_max) class MultiFitter3D(MultiFitterGaussian): """ Fit with peak width that can change independently in X and Y. """ def __init__(self, sigma_range = None, **kwds): super(MultiFitter3D, self).__init__(**kwds) self.sigma_range = sigma_range def initializeC(self, image): super(MultiFitter3D, self).initializeC(image) width_max = 1.0/(2.0 * self.sigma_range[0] * self.sigma_range[0]) width_min = 1.0/(2.0 * self.sigma_range[1] * self.sigma_range[1]) self.clib.daoInitialize3D(self.mfit, width_min, width_max) class MultiFitterZ(MultiFitterGaussian): """ Fit with peak width that varies in X and Y as a function of Z. """ def initializeC(self, image): super(MultiFitterZ, self).initializeC(image) self.clib.daoInitializeZ(self.mfit, numpy.ascontiguousarray(self.wx_params), numpy.ascontiguousarray(self.wy_params), self.min_z, self.max_z) # # The MIT License # # Copyright (c) 2018 Zhuang Lab, Harvard University # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #
39.011682
111
0.576301
8ca47055aafd0b0723958da7dab151cfb8b33fb5
8,481
py
Python
src/backend/AdcpTerminal.py
rowetechinc/River_electron
3897a8cae56241a64ea7167b3f3699fb5d392429
[ "MIT" ]
null
null
null
src/backend/AdcpTerminal.py
rowetechinc/River_electron
3897a8cae56241a64ea7167b3f3699fb5d392429
[ "MIT" ]
null
null
null
src/backend/AdcpTerminal.py
rowetechinc/River_electron
3897a8cae56241a64ea7167b3f3699fb5d392429
[ "MIT" ]
1
2020-12-22T16:57:23.000Z
2020-12-22T16:57:23.000Z
import rti_python.Comm.adcp_serial_port as adcp_serial import rti_python.Writer.rti_binary as RtiBinaryWriter import threading import time import serial import logging from obsub import event from threading import Lock from rti_python.Utilities.config import RtiConfig class AdcpTerminalVM: """ Setup a view to monitor for waves data and covert it to MATLAB format for WaveForce AutoWaves. """ def __init__(self, rti_config: RtiConfig): self.rti_config = rti_config self.rti_config.init_terminal_config() self.adcp = None self.adcp_thread = None self.adcp_thread_alive = False self.serial_recorder = None self.is_recording = False self.bytesWrittenLabel = 0 self.totalBytesWrittenLabel = 0 self.bytesWrittenLabel = "" self.MAX_SERIAL_CONSOLE_LEN = 9000 self.serialTextBrowser = "" self.thread_lock = Lock() def comm_port_list(self): """ Ste the serial ports to the list. :return: """ # Add all the found serial ports return adcp_serial.get_serial_ports() def baud_rate_list(self): """ Set the baud rates to the list. :return: """ return adcp_serial.get_baud_rates() def get_data(self): # Lock the object self.thread_lock.acquire() is_connected = False if self.adcp: is_connected = True term_data = { "isConnected": is_connected, "termData": self.serialTextBrowser, "baud": self.rti_config.config['Comm']['Baud'], "commPort": self.rti_config.config['Comm']['Port'] } # Release lock self.thread_lock.release() logging.info(term_data) return term_data def connect_serial(self, port, baud): """ Connect the serial port and the read thread. :return: """ logging.info("Serial Connect: " + port + " : " + str(baud)) self.serialTextBrowser += "Serial Connect: " + port + " : " + str(baud) # Store the configuration self.rti_config.config['Comm']['Port'] = port self.rti_config.config['Comm']['Baud'] = str(baud) self.rti_config.write() try: self.adcp = adcp_serial.AdcpSerialPort(port, baud) except ValueError as ve: self.serialTextBrowser += "Error opening serial port. " + str(ve) logging.error("Error opening serial port. " + str(ve)) return except serial.SerialException as se: self.serialTextBrowser += "Error opening serial port. " + str(se) logging.error("Error opening serial port. " + str(se)) return except Exception as e: self.serialTextBrowser += "Error opening serial port. " + str(e) logging.error("Error opening serial port. " + str(e)) return # Start the read thread self.adcp_thread_alive = True self.adcp_thread = threading.Thread(name="Serial Terminal Thread", target=thread_worker, args=(self,)) self.adcp_thread.start() def disconnect_serial(self): """ Disconnect the serial port and stop the read thread. :return: """ self.adcp_thread_alive = False if self.adcp: self.adcp.disconnect() self.adcp = None self.serialTextBrowser += "Serial Disconnect." logging.info("Serial Disconnect") def serial_break(self): """ Send a BREAK to the serial port. :return: """ # Clear the display self.serialTextBrowser = "" # Send a BREAK if self.adcp: self.adcp.send_break(1.25) logging.info("BREAK SENT") def send_cmd(self, cmd: str): """ Send a command to the ADCP. :return: """ if self.adcp: if len(cmd) > 0: self.adcp.send_cmd(cmd) logging.info("Write to serial port: " + cmd) def start_pinging(self): """ Send the command to start pinging. :return: """ if self.adcp: self.adcp.start_pinging() logging.info("Start Pinging") def stop_pinging(self): """ Send the command to stop pinging. :return: """ if self.adcp: self.serialTextBrowser = "" self.adcp.stop_pinging() logging.info("Stop Pinging") def fix_adcp_comm(self): """ If the ADCP stops communicating, try to fix the ADCP and regain communication. :return: """ if self.adcp: # Send a BREAK self.adcp.send_break(1.25) # Wait time.sleep(1.0) # Send a STOP self.adcp.stop_pinging() time.sleep(1.0) # Send command to start pinging self.adcp.start_pinging() else: logging.error("ADCP is not connected.") def shutdown(self): """ Shutdown the VM. :return: """ logging.debug("Shutdown Terminal VM") self.disconnect_serial() if self.serial_recorder: self.serial_recorder.close() def turn_on_off_record(self): if self.is_reocording: self.serial_recorder = RtiBinaryWriter.RtiBinaryWriter(folder_path=self.rti_config.config['Comm']['output_dir']) logging.debug("Start Recording") else: if self.serial_recorder: self.serial_recorder.close() logging.debug("Stop Recording") self.serial_recorder = None def record_data(self, data): if self.serial_recorder: self.serial_recorder.write(data) def update_record_count(self, file_count, total_count, file_path): """ Update the recording file sizes. :param file_count: Total file size of current file. :param total_count: Total size of all files written. :param file_path: Path of current filr. :return: """ self.bytesWrittenLabel = str(file_count) self.totalBytesWrittenLabel = str(total_count) self.bytesWrittenLabel = file_path def clear_console(self): self.serialTextBrowser = "" def clear_bulk_cmd(self): self.bulkCmdMlainTextEdit = "" def send_bulk_cmd(self, bulk_cmds: str): cmds = bulk_cmds.splitlines() for cmd in cmds: self.adcp.send_cmd(cmd + "\n") logging.debug("Write to serial port: " + cmd) time.sleep(0.25) @event def on_serial_data(self, data): """ Subscribe to receive serial data. :param data: Data from the serial port. :return: """ logging.info("Data Received") def thread_worker(vm): """ Thread worker to handle reading the serial port. :param vm: This VM to get access to the variables. :return: """ while vm.adcp_thread_alive: try: if vm.adcp.raw_serial.in_waiting: # Read the data from the serial port data = vm.adcp.read(vm.adcp.raw_serial.in_waiting) try: # Display the data as ASCII if it is a response from the ADCP # If it is raw binary ADCP data, this will fail so just display binary data ascii_data = data.decode('ascii') vm.serialTextBrowser += ascii_data logging.debug(ascii_data) except Exception: # Do nothing vm.serialTextBrowser += str(data) # Prevent overflow of buffer, if greater than buffer limit # Get the last bytes in buffer if len(vm.serialTextBrowser) > 5000: vm.serialTextBrowser = vm.serialTextBrowser[-5000] # Record data if turned on vm.record_data(data) # Publish the data vm.on_serial_data(data) time.sleep(0.01) except serial.SerialException as se: logging.error("Error using the serial port.\n" + str(se)) vm.disconnect_serial() except Exception as ex: logging.error("Error processing the data.\n" + str(ex))
29.757895
124
0.570687
7051380b739a3624583e0f99bd2dd4cb5788bd66
7,579
py
Python
tests/pytorch_pfn_extras_tests/training_tests/extensions_tests/test_evaluator.py
sergeant-wizard/pytorch-pfn-extras
221c07aedb9d88e4b96b55da49f6c104f631e01a
[ "MIT" ]
null
null
null
tests/pytorch_pfn_extras_tests/training_tests/extensions_tests/test_evaluator.py
sergeant-wizard/pytorch-pfn-extras
221c07aedb9d88e4b96b55da49f6c104f631e01a
[ "MIT" ]
null
null
null
tests/pytorch_pfn_extras_tests/training_tests/extensions_tests/test_evaluator.py
sergeant-wizard/pytorch-pfn-extras
221c07aedb9d88e4b96b55da49f6c104f631e01a
[ "MIT" ]
null
null
null
import numpy import pytest import torch import pytorch_pfn_extras as ppe class DummyModel(torch.nn.Module): def __init__(self): super().__init__() self.args = [] def forward(self, x): self.args.append(x) ppe.reporting.report({'loss': x.sum()}, self) class DummyModelTwoArgs(torch.nn.Module): def __init__(self): super().__init__() self.args = [] def forward(self, x, y): self.args.append((x, y)) ppe.reporting.report({'loss': x.sum() + y.sum()}, self) def _torch_batch_to_numpy(batch): # In Pytorch, a batch has the batch dimension. Squeeze it for comparison. assert isinstance(batch, torch.Tensor) assert batch.shape[0] == 1 return batch.squeeze(0).numpy() @pytest.fixture(scope='function') def evaluator_dummies(): data = [ numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f') for _ in range(2)] data_loader = torch.utils.data.DataLoader(data) target = DummyModel() evaluator = ppe.training.extensions.Evaluator(data_loader, target) expect_mean = numpy.mean([numpy.sum(x) for x in data]) return data, data_loader, target, evaluator, expect_mean def test_evaluate(evaluator_dummies): data, data_loader, target, evaluator, expect_mean = evaluator_dummies reporter = ppe.reporting.Reporter() reporter.add_observer('target', target) with reporter: mean = evaluator.evaluate() # No observation is reported to the current reporter. Instead the # evaluator collect results in order to calculate their mean. assert len(reporter.observation) == 0 assert len(target.args) == len(data) for i in range(len(data)): numpy.testing.assert_array_equal( _torch_batch_to_numpy(target.args[i]), data[i]) numpy.testing.assert_almost_equal( mean['target/loss'], expect_mean, decimal=4) evaluator.finalize() def test_call(evaluator_dummies): data, data_loader, target, evaluator, expect_mean = evaluator_dummies mean = evaluator() # 'main' is used by default numpy.testing.assert_almost_equal( mean['main/loss'], expect_mean, decimal=4) def test_evaluator_name(evaluator_dummies): data, data_loader, target, evaluator, expect_mean = evaluator_dummies evaluator.name = 'eval' mean = evaluator() # name is used as a prefix numpy.testing.assert_almost_equal( mean['eval/main/loss'], expect_mean, decimal=4) def test_current_report(evaluator_dummies): data, data_loader, target, evaluator, expect_mean = evaluator_dummies reporter = ppe.reporting.Reporter() with reporter: mean = evaluator() # The result is reported to the current reporter. assert reporter.observation == mean def test_evaluator_tuple_data(): data = [ (numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f'), numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f')) for _ in range(2)] data_loader = torch.utils.data.DataLoader(data) target = DummyModelTwoArgs() evaluator = ppe.training.extensions.Evaluator(data_loader, target) reporter = ppe.reporting.Reporter() reporter.add_observer('target', target) with reporter: mean = evaluator.evaluate() assert len(target.args) == len(data) for i in range(len(data)): assert len(target.args[i]) == len(data[i]) numpy.testing.assert_array_equal( _torch_batch_to_numpy(target.args[i][0]), data[i][0]) numpy.testing.assert_array_equal( _torch_batch_to_numpy(target.args[i][1]), data[i][1]) expect_mean = numpy.mean([numpy.sum(x) for x in data]) numpy.testing.assert_almost_equal( mean['target/loss'], expect_mean, decimal=4) def test_evaluator_dict_data(): data = [ {'x': numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f'), 'y': numpy.random.uniform(-1, 1, (2, 3, 4)).astype('f')} for _ in range(2)] data_loader = torch.utils.data.DataLoader(data) target = DummyModelTwoArgs() evaluator = ppe.training.extensions.Evaluator(data_loader, target) reporter = ppe.reporting.Reporter() reporter.add_observer('target', target) with reporter: mean = evaluator.evaluate() assert len(target.args) == len(data) for i in range(len(data)): numpy.testing.assert_array_equal( _torch_batch_to_numpy(target.args[i][0]), data[i]['x']) numpy.testing.assert_array_equal( _torch_batch_to_numpy(target.args[i][1]), data[i]['y']) expect_mean = numpy.mean( [numpy.sum(x['x']) + numpy.sum(x['y']) for x in data]) numpy.testing.assert_almost_equal( mean['target/loss'], expect_mean, decimal=4) def test_evaluator_with_eval_func(): data = [ numpy.random.uniform(-1, 1, (3, 4)).astype('f') for _ in range(2)] data_loader = torch.utils.data.DataLoader(data) target = DummyModel() evaluator = ppe.training.extensions.Evaluator( data_loader, {}, eval_func=target) reporter = ppe.reporting.Reporter() reporter.add_observer('target', target) with reporter: evaluator.evaluate() assert len(target.args) == len(data) for i in range(len(data)): numpy.testing.assert_array_equal( _torch_batch_to_numpy(target.args[i]), data[i]) def test_evaluator_progress_bar(): data = [ numpy.random.uniform(-1, 1, (3, 4)).astype('f') for _ in range(2)] data_loader = torch.utils.data.DataLoader(data, batch_size=1) target = DummyModel() evaluator = ppe.training.extensions.Evaluator( data_loader, {}, eval_func=target, progress_bar=True) reporter = ppe.reporting.Reporter() reporter.add_observer('target', target) with reporter: evaluator.evaluate() # Code excerpts to test IgniteEvaluator class IgniteDummyModel(torch.nn.Module): def __init__(self): super(IgniteDummyModel, self).__init__() self.count = 0. def forward(self, *args): ppe.reporting.report({'x': self.count}, self) self.count += 1. return 0. def create_dummy_evaluator(model): from ignite.engine import Engine def update_fn(engine, batch): y_pred = batch[1].clone().detach() model() # We return fake results for the reporters to # and metrics to work return (y_pred, y_pred) evaluator = Engine(update_fn) return evaluator def test_ignite_evaluator_reporting_metrics(): try: from ignite.metrics import MeanSquaredError except ImportError: pytest.skip('pytorch-ignite is not installed') # This tests verifies that either, usuer manually reported metrics # and ignite calculated ones are correctly reflected in the reporter # observation model = IgniteDummyModel() n_data = 10 x = torch.randn((n_data, 2), requires_grad=True) y = torch.randn((n_data, 2)) dataset = torch.utils.data.TensorDataset(x, y) loader = torch.utils.data.DataLoader(dataset, batch_size=3) evaluator = create_dummy_evaluator(model) # Attach metrics to the evaluator metric = MeanSquaredError() metric.attach(evaluator, 'mse') evaluator_ignite_ext = ppe.training.extensions.IgniteEvaluator( evaluator, loader, model, progress_bar=False ) reporter = ppe.reporting.Reporter() with reporter: result = evaluator_ignite_ext() # Internally reported metrics assert result['main/x'] == 1.5 # Ignite calculated metric assert result['val/mse'] == 0.0
30.560484
77
0.663808
b55331658a85a14959a5fa89815535f16352bcf6
380
py
Python
tern/utils/metadata.py
ManishaTripathy/tern
bf3da704d2731417fd070bab888be7b9685080c9
[ "BSD-2-Clause" ]
null
null
null
tern/utils/metadata.py
ManishaTripathy/tern
bf3da704d2731417fd070bab888be7b9685080c9
[ "BSD-2-Clause" ]
null
null
null
tern/utils/metadata.py
ManishaTripathy/tern
bf3da704d2731417fd070bab888be7b9685080c9
[ "BSD-2-Clause" ]
null
null
null
# # Copyright (c) 2017-2019 VMware, Inc. All Rights Reserved. # SPDX-License-Identifier: BSD-2-Clause # """ Container metadata operations """ import os import shutil from tern.utils.constants import temp_folder def clean_temp(): '''Remove the temp directory''' temp_path = os.path.abspath(temp_folder) if os.path.exists(temp_path): shutil.rmtree(temp_path)
20
59
0.718421
cecde9bd0ea13020125e0f8902020e808a6de15b
6,536
py
Python
bin/Python27/Lib/site-packages/sphinx/pycode/nodes.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
1
2021-11-06T17:09:04.000Z
2021-11-06T17:09:04.000Z
bin/Python27/Lib/site-packages/sphinx/pycode/nodes.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
1
2019-02-10T23:52:09.000Z
2019-02-10T23:52:09.000Z
bin/Python27/Lib/site-packages/sphinx/pycode/nodes.py
lefevre-fraser/openmeta-mms
08f3115e76498df1f8d70641d71f5c52cab4ce5f
[ "MIT" ]
1
2021-11-06T17:08:54.000Z
2021-11-06T17:08:54.000Z
# -*- coding: utf-8 -*- """ sphinx.pycode.nodes ~~~~~~~~~~~~~~~~~~~ Parse tree node implementations. :copyright: Copyright 2007-2017 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ if False: # For type annotation from typing import Callable # NOQA class BaseNode(object): """ Node superclass for both terminal and nonterminal nodes. """ parent = None # type: BaseNode def _eq(self, other): raise NotImplementedError def __eq__(self, other): if self.__class__ is not other.__class__: return NotImplemented return self._eq(other) def __ne__(self, other): if self.__class__ is not other.__class__: return NotImplemented return not self._eq(other) __hash__ = None # type: Callable[[object], int] def get_prev_sibling(self): """Return previous child in parent's children, or None.""" if self.parent is None: return None for i, child in enumerate(self.parent.children): if child is self: if i == 0: return None return self.parent.children[i - 1] def get_next_sibling(self): """Return next child in parent's children, or None.""" if self.parent is None: return None for i, child in enumerate(self.parent.children): if child is self: try: return self.parent.children[i + 1] except IndexError: return None def get_prev_leaf(self): """Return the leaf node that precedes this node in the parse tree.""" def last_child(node): if isinstance(node, Leaf): return node elif not node.children: return None else: return last_child(node.children[-1]) if self.parent is None: return None prev = self.get_prev_sibling() if isinstance(prev, Leaf): return prev elif prev is not None: return last_child(prev) return self.parent.get_prev_leaf() def get_next_leaf(self): """Return self if leaf, otherwise the leaf node that succeeds this node in the parse tree. """ node = self while not isinstance(node, Leaf): assert node.children node = node.children[0] return node def get_lineno(self): """Return the line number which generated the invocant node.""" return self.get_next_leaf().lineno def get_prefix(self): """Return the prefix of the next leaf node.""" # only leaves carry a prefix return self.get_next_leaf().prefix class Node(BaseNode): """ Node implementation for nonterminals. """ def __init__(self, type, children, context=None): # type of nonterminals is >= 256 # assert type >= 256, type self.type = type self.children = list(children) for ch in self.children: # assert ch.parent is None, repr(ch) ch.parent = self def __repr__(self): return '%s(%s, %r)' % (self.__class__.__name__, self.type, self.children) def __str__(self): """This reproduces the input source exactly.""" return ''.join(map(str, self.children)) def _eq(self, other): return (self.type, self.children) == (other.type, other.children) # support indexing the node directly instead of .children def __getitem__(self, index): return self.children[index] def __iter__(self): return iter(self.children) def __len__(self): return len(self.children) class Leaf(BaseNode): """ Node implementation for leaf nodes (terminals). """ prefix = '' # Whitespace and comments preceding this token in the input lineno = 0 # Line where this token starts in the input column = 0 # Column where this token tarts in the input def __init__(self, type, value, context=None): # type of terminals is below 256 # assert 0 <= type < 256, type self.type = type self.value = value if context is not None: self.prefix, (self.lineno, self.column) = context def __repr__(self): return '%s(%r, %r, %r)' % (self.__class__.__name__, self.type, self.value, self.prefix) def __str__(self): """This reproduces the input source exactly.""" return self.prefix + str(self.value) def _eq(self, other): """Compares two nodes for equality.""" return (self.type, self.value) == (other.type, other.value) def convert(grammar, raw_node): """Convert raw node to a Node or Leaf instance.""" type, value, context, children = raw_node if children or type in grammar.number2symbol: # If there's exactly one child, return that child instead of # creating a new node. if len(children) == 1: return children[0] return Node(type, children, context=context) else: return Leaf(type, value, context=context) def nice_repr(node, number2name, prefix=False): def _repr(node): if isinstance(node, Leaf): return "%s(%r)" % (number2name[node.type], node.value) else: return "%s(%s)" % (number2name[node.type], ', '.join(map(_repr, node.children))) def _prepr(node): if isinstance(node, Leaf): return "%s(%r, %r)" % (number2name[node.type], node.prefix, node.value) else: return "%s(%s)" % (number2name[node.type], ', '.join(map(_prepr, node.children))) return (prefix and _prepr or _repr)(node) class NodeVisitor(object): def __init__(self, number2name, *args): self.number2name = number2name self.init(*args) def init(self, *args): pass def visit(self, node): """Visit a node.""" method = 'visit_' + self.number2name[node.type] visitor = getattr(self, method, self.generic_visit) return visitor(node) def generic_visit(self, node): """Called if no explicit visitor function exists for a node.""" if isinstance(node, Node): for child in node: # type: ignore self.visit(child)
30.685446
77
0.575428
d6b5c58097c5f56f9a1a2bebd5d0cad47370af01
7,447
py
Python
zerver/webhooks/gogs/view.py
TylerPham2000/zulip
2e7aaba0dde5517b4a55cb0bd782f009be45e3ba
[ "Apache-2.0" ]
2
2020-11-12T12:28:46.000Z
2020-11-16T11:17:46.000Z
zerver/webhooks/gogs/view.py
TylerPham2000/zulip
2e7aaba0dde5517b4a55cb0bd782f009be45e3ba
[ "Apache-2.0" ]
1
2021-03-24T12:50:52.000Z
2021-03-24T13:11:42.000Z
zerver/webhooks/gogs/view.py
TylerPham2000/zulip
2e7aaba0dde5517b4a55cb0bd782f009be45e3ba
[ "Apache-2.0" ]
1
2021-07-22T10:14:08.000Z
2021-07-22T10:14:08.000Z
# vim:fenc=utf-8 from typing import Any, Dict, Optional from django.http import HttpRequest, HttpResponse from typing_extensions import Protocol from zerver.decorator import webhook_view from zerver.lib.exceptions import UnsupportedWebhookEventType from zerver.lib.request import REQ, has_request_variables from zerver.lib.response import json_success from zerver.lib.webhooks.common import ( check_send_webhook_message, get_http_headers_from_filename, validate_extract_webhook_http_header, ) from zerver.lib.webhooks.git import ( TOPIC_WITH_BRANCH_TEMPLATE, TOPIC_WITH_PR_OR_ISSUE_INFO_TEMPLATE, TOPIC_WITH_RELEASE_TEMPLATE, get_create_branch_event_message, get_issue_event_message, get_pull_request_event_message, get_push_commits_event_message, get_release_event_message, ) from zerver.models import UserProfile fixture_to_headers = get_http_headers_from_filename("HTTP_X_GOGS_EVENT") def get_issue_url(repo_url: str, issue_nr: int) -> str: return f"{repo_url}/issues/{issue_nr}" def format_push_event(payload: Dict[str, Any]) -> str: for commit in payload["commits"]: commit["sha"] = commit["id"] commit["name"] = commit["author"]["username"] or commit["author"]["name"].split()[0] data = { "user_name": payload["sender"]["username"], "compare_url": payload["compare_url"], "branch_name": payload["ref"].replace("refs/heads/", ""), "commits_data": payload["commits"], } return get_push_commits_event_message(**data) def format_new_branch_event(payload: Dict[str, Any]) -> str: branch_name = payload["ref"] url = "{}/src/{}".format(payload["repository"]["html_url"], branch_name) data = { "user_name": payload["sender"]["username"], "url": url, "branch_name": branch_name, } return get_create_branch_event_message(**data) def format_pull_request_event(payload: Dict[str, Any], include_title: bool = False) -> str: data = { "user_name": payload["pull_request"]["user"]["username"], "action": payload["action"], "url": payload["pull_request"]["html_url"], "number": payload["pull_request"]["number"], "target_branch": payload["pull_request"]["head_branch"], "base_branch": payload["pull_request"]["base_branch"], "title": payload["pull_request"]["title"] if include_title else None, } if payload["pull_request"]["merged"]: data["user_name"] = payload["pull_request"]["merged_by"]["username"] data["action"] = "merged" return get_pull_request_event_message(**data) def format_issues_event(payload: Dict[str, Any], include_title: bool = False) -> str: issue_nr = payload["issue"]["number"] assignee = payload["issue"]["assignee"] return get_issue_event_message( payload["sender"]["login"], payload["action"], get_issue_url(payload["repository"]["html_url"], issue_nr), issue_nr, payload["issue"]["body"], assignee=assignee["login"] if assignee else None, title=payload["issue"]["title"] if include_title else None, ) def format_issue_comment_event(payload: Dict[str, Any], include_title: bool = False) -> str: action = payload["action"] comment = payload["comment"] issue = payload["issue"] if action == "created": action = "[commented]" else: action = f"{action} a [comment]" action += "({}) on".format(comment["html_url"]) return get_issue_event_message( payload["sender"]["login"], action, get_issue_url(payload["repository"]["html_url"], issue["number"]), issue["number"], comment["body"], title=issue["title"] if include_title else None, ) def format_release_event(payload: Dict[str, Any], include_title: bool = False) -> str: data = { "user_name": payload["release"]["author"]["username"], "action": payload["action"], "tagname": payload["release"]["tag_name"], "release_name": payload["release"]["name"], "url": payload["repository"]["html_url"], } return get_release_event_message(**data) @webhook_view("Gogs") @has_request_variables def api_gogs_webhook( request: HttpRequest, user_profile: UserProfile, payload: Dict[str, Any] = REQ(argument_type="body"), branches: Optional[str] = REQ(default=None), user_specified_topic: Optional[str] = REQ("topic", default=None), ) -> HttpResponse: return gogs_webhook_main( "Gogs", "X_GOGS_EVENT", format_pull_request_event, request, user_profile, payload, branches, user_specified_topic, ) class FormatPullRequestEvent(Protocol): def __call__(self, payload: Dict[str, Any], include_title: bool) -> str: ... def gogs_webhook_main( integration_name: str, http_header_name: str, format_pull_request_event: FormatPullRequestEvent, request: HttpRequest, user_profile: UserProfile, payload: Dict[str, Any], branches: Optional[str], user_specified_topic: Optional[str], ) -> HttpResponse: repo = payload["repository"]["name"] event = validate_extract_webhook_http_header(request, http_header_name, integration_name) if event == "push": branch = payload["ref"].replace("refs/heads/", "") if branches is not None and branch not in branches.split(","): return json_success() body = format_push_event(payload) topic = TOPIC_WITH_BRANCH_TEMPLATE.format( repo=repo, branch=branch, ) elif event == "create": body = format_new_branch_event(payload) topic = TOPIC_WITH_BRANCH_TEMPLATE.format( repo=repo, branch=payload["ref"], ) elif event == "pull_request": body = format_pull_request_event( payload, include_title=user_specified_topic is not None, ) topic = TOPIC_WITH_PR_OR_ISSUE_INFO_TEMPLATE.format( repo=repo, type="PR", id=payload["pull_request"]["id"], title=payload["pull_request"]["title"], ) elif event == "issues": body = format_issues_event( payload, include_title=user_specified_topic is not None, ) topic = TOPIC_WITH_PR_OR_ISSUE_INFO_TEMPLATE.format( repo=repo, type="Issue", id=payload["issue"]["number"], title=payload["issue"]["title"], ) elif event == "issue_comment": body = format_issue_comment_event( payload, include_title=user_specified_topic is not None, ) topic = TOPIC_WITH_PR_OR_ISSUE_INFO_TEMPLATE.format( repo=repo, type="Issue", id=payload["issue"]["number"], title=payload["issue"]["title"], ) elif event == "release": body = format_release_event( payload, include_title=user_specified_topic is not None, ) topic = TOPIC_WITH_RELEASE_TEMPLATE.format( repo=repo, tag=payload["release"]["tag_name"], title=payload["release"]["name"], ) else: raise UnsupportedWebhookEventType(event) check_send_webhook_message(request, user_profile, topic, body) return json_success()
32.099138
93
0.639452
83c5fe7199ad62eaca066e134245195804caca9c
10,117
py
Python
tutorials/setup-gcp/rdbox-gui/flask_rdbox/views/entries.py
hamstick/rdbox
780928388a5e31a3180c1bea1e2c96ab15e4357c
[ "MIT" ]
278
2019-03-09T02:11:50.000Z
2022-03-30T14:54:23.000Z
tutorials/setup-gcp/rdbox-gui/flask_rdbox/views/entries.py
horacezh/rdbox
4eaefc7719283982117212b529c234ec9c5267d4
[ "MIT" ]
24
2020-05-08T00:39:23.000Z
2022-02-27T02:47:42.000Z
tutorials/setup-gcp/rdbox-gui/flask_rdbox/views/entries.py
horacezh/rdbox
4eaefc7719283982117212b529c234ec9c5267d4
[ "MIT" ]
39
2019-03-22T07:30:31.000Z
2022-03-15T07:07:37.000Z
#!/usr/bin/env python3 from flask import request, Response from flask_rdbox import app from flask_rdbox.views.utils import Utils from flask_rdbox.views.g_cloud_setupper import GCloudSetupper from googleapiclient import discovery from oauth2client.client import GoogleCredentials from os.path import expanduser import os import subprocess import json @app.route('/api/bootstrap/gcp/login/url', methods=['GET']) def getLoginURL(): gcloud_setupper = GCloudSetupper() retObj = gcloud_setupper.getURL() return json.dumps(retObj) @app.route('/api/bootstrap/gcp/login/status', methods=['GET']) def getAuthList(): try: ret = subprocess.run(['gcloud', 'auth', 'list', '--format', 'json'], timeout=30, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if ret.returncode == 0: return Response(response=str(ret.stdout.decode("utf8")), status=200) else: return Response(response=json.dumps({"msg": 'Internal Server Error.'}), status=500) except Exception as e: return Response(response=json.dumps({"msg": type(e).__name__}), status=500) @app.route('/api/bootstrap/gcp/login/token', methods=['POST']) def setLoginToken(): ret = json.loads(request.get_data()) gcloud_setupper = GCloudSetupper() code, msg = gcloud_setupper.setToken(ret['token'], ret['date']) if code == 200: subprocess.run(['bash', os.path.dirname(os.path.abspath(__file__))+'/static/hook/afterlogin.sh']) return Response(response=json.dumps({'ret': str(code), 'msg': str(msg)}), status=code) @app.route('/api/bootstrap/gcp/projects', methods=['GET']) def getProjectList(): projects = {} try: credentials = GoogleCredentials.get_application_default() service = discovery.build('cloudresourcemanager', 'v1', credentials=credentials) request = service.projects().list() while request: response = request.execute() for project in response.get('projects', []): if project.get('lifecycleState') == 'ACTIVE': projects.setdefault(project.get('projectId'), project.get('name')) request = service.projects().list_next(previous_request=request, previous_response=response) except Exception as e: return Response(response=json.dumps({"msg": type(e).__name__}), status=500) else: return Response(response=json.dumps(projects), status=200) @app.route('/api/bootstrap/gcp/compute/zones', methods=['GET']) def getZoneList(): zones = {} try: credentials = GoogleCredentials.get_application_default() service = discovery.build('compute', 'v1', credentials=credentials) req = service.zones().list(project=request.args.get('project')) while req: response = req.execute() for zone in response.get('items', []): region = zone.get('region').split('/')[-1] zones.setdefault(region, []) zones[region].append(zone.get('name')) req = service.zones().list_next(previous_request=req, previous_response=response) except Exception as e: return Response(response=json.dumps({"msg": e}), status=500) else: return Response(response=json.dumps(zones), status=200) @app.route('/api/bootstrap/gcp/compute/machine-types', methods=['GET']) def getMachineTypeList(): machines = {} try: credentials = GoogleCredentials.get_application_default() service = discovery.build('compute', 'v1', credentials=credentials) req = service.machineTypes().list(project=request.args.get('project'), zone=request.args.get('zone')) while req: response = req.execute() for machine in response.get('items', []): machines.setdefault(machine.get('name'), machine.get('description')) req = service.machineTypes().list_next(previous_request=req, previous_response=response) except Exception as e: return Response(response=json.dumps({"msg": type(e).__name__}), status=500) else: return Response(response=json.dumps(machines), status=200) @app.route('/api/bootstrap/gcp/deployment-manager/deployments/resources', methods=['GET']) def getDeploymentResourcesList(): resources = { 'done': [], 'update': [], 'error': [], 'emsg': [], 'status': [] } try: credentials = GoogleCredentials.get_application_default() service = discovery.build('deploymentmanager', 'v2', credentials=credentials) req = service.resources().list(project=request.args.get('project'), deployment=request.args.get('deployment')) total = 0 while req: response = req.execute() for resource in response.get('resources', []): total = total + 1 if 'update' in resource: if 'error' in resource.get('update'): resources['error'].append(resource.get('name')) for err in resource['update']['error'].get('errors', []): try: message = json.loads(err.get('message')) if 'ResourceErrorMessage' in message: resources['emsg'].append(message.get('ResourceErrorMessage').get('message', 'unknown')) except Exception: pass else: resources['update'].append(resource.get('name', 'unknown')) else: resources['done'].append(resource.get('name', 'unknown')) req = service.resources().list_next(previous_request=req, previous_response=response) percentage = total if total == 0 else int(len(resources['done']) / total * 100) resources['status'].append(str(percentage)) if resources['status'][0] == '100': try: process_list = Utils.find_procs_by_name('after_bootstrap.sh') if len(process_list) == 0: subprocess.Popen(['bash', os.path.dirname(os.path.abspath(__file__))+'/static/hook/after_bootstrap.sh', request.args.get('project'), request.args.get('deployment')], stderr=subprocess.PIPE, stdout=subprocess.PIPE) except Exception: pass except Exception as e: return Response(response=json.dumps({"msg": type(e).__name__}), status=500) else: return Response(response=json.dumps(resources), status=200) @app.route('/api/bootstrap/gcp/deployment-manager/deployments', methods=['POST']) def setDeploymentCreateProperties(): try: ret = json.loads(request.get_data()) secretKey = ret.pop('adminSecretKey') publicKey = ret.pop('adminPubKey') properties_str = Utils.format_properties(ret) template_path = os.path.dirname(os.path.abspath(__file__)) + '/static/deployment_manager/network-template.jinja' except Exception: return Response(response=json.dumps({"msg": 'Invalid Request.'}), status=400) try: os.mkdir(os.path.join(expanduser("~"), '.ssh'), 0o700) with open(os.path.join(expanduser("~"), '.ssh', 'id_rsa'), mode='w') as f: f.write(secretKey) with open(os.path.join(expanduser("~"), '.ssh', 'authorized_keys'), mode='w') as f: f.write(publicKey) with open(os.path.join(expanduser("~"), '.ssh', 'id_rsa.pub'), mode='w') as f: f.write(publicKey) os.chmod(os.path.join(expanduser("~"), '.ssh', 'id_rsa'), 0o600) os.chmod(os.path.join(expanduser("~"), '.ssh', 'authorized_keys'), 0o600) except Exception: pass try: ret = subprocess.run(['gcloud', 'deployment-manager', 'deployments', 'create', ret['resourcesPrefix'], '--template', template_path, '--properties', properties_str, '--project', ret['project'], '--format', 'json', '--async'], timeout=30, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if ret.returncode == 0: return Response(response=str(ret.stdout.decode("utf8")), status=200) else: if ret.stdout.decode("utf8") != '': subprocess.run(['gcloud', 'deployment-manager', 'deployments', 'delete', ret['resourcesPrefix'], '--delete-policy', 'DELETE', '--project', ret['project'], '--format', 'json', '--async'], timeout=30, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return Response(response=str(ret.stdout.decode("utf8")), status=412) else: return Response(response=json.dumps({"msg": ret.stderr.decode("utf8")}), status=400) except subprocess.TimeoutExpired as e: return Response(response=json.dumps({"msg": type(e).__name__}), status=500) except Exception as e: return Response(response=json.dumps({"msg": type(e).__name__}), status=500)
45.165179
123
0.54868
7f6a958627dfe113f67e5c361f173187a3608c59
652
py
Python
py/226. Invert Binary Tree.py
longwangjhu/LeetCode
a5c33e8d67e67aedcd439953d96ac7f443e2817b
[ "MIT" ]
3
2021-08-07T07:01:34.000Z
2021-08-07T07:03:02.000Z
py/226. Invert Binary Tree.py
longwangjhu/LeetCode
a5c33e8d67e67aedcd439953d96ac7f443e2817b
[ "MIT" ]
null
null
null
py/226. Invert Binary Tree.py
longwangjhu/LeetCode
a5c33e8d67e67aedcd439953d96ac7f443e2817b
[ "MIT" ]
null
null
null
# https://leetcode.com/problems/invert-binary-tree/ # Given the root of a binary tree, invert the tree, and return its root. ################################################################################ # divide and conquer # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def invertTree(self, root: TreeNode) -> TreeNode: if not root: return None root.left, root.right = self.invertTree(root.right), self.invertTree(root.left) return root
29.636364
87
0.558282
4b6bd0b949eafe7e684cead09c5d35eb7ce93cf8
402
py
Python
EN1/experiment 1/analyse a1.py
jvdoorn/EN
4ca3ec37ebff4d277677cfaea2b77daa60a54d82
[ "MIT" ]
null
null
null
EN1/experiment 1/analyse a1.py
jvdoorn/EN
4ca3ec37ebff4d277677cfaea2b77daa60a54d82
[ "MIT" ]
2
2022-01-13T03:44:55.000Z
2022-03-12T00:56:18.000Z
EN1/experiment 1/analyse a1.py
jvdoorn/EN
4ca3ec37ebff4d277677cfaea2b77daa60a54d82
[ "MIT" ]
null
null
null
from math import sqrt V = 1.06304 # Volts I = 9.3900 * 10 ** -3 # Amps Vf = 0.00015 * V + 0.00003 * 2 # Volts If = 0.00055 * I + 0.00005 * 2 * 10 ** -3 # Amps R = V / I # Ohms Rf = sqrt((Vf / V) ** 2 + (If / I) ** 2) # Ohms T = 30.84 + (2.232 * R) + (2.43 * 10 ** -3 * R ** 2) - (5.33 * 10 ** -6 * R ** 3) # Kelvin Tf = (Rf / R) * 2.232 + 2 * (Rf / R) * 2.43 + 3 * (Rf / R) * 5.33 # Kelvin
28.714286
91
0.430348
393ed855e5010cec8c3240d711d663701c459fa0
10,128
py
Python
chrome/common/extensions/docs/server2/new_github_file_system_test.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
chrome/common/extensions/docs/server2/new_github_file_system_test.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
chrome/common/extensions/docs/server2/new_github_file_system_test.py
kjthegod/chromium
cf940f7f418436b77e15b1ea23e6fa100ca1c91a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json from copy import deepcopy from cStringIO import StringIO from functools import partial from hashlib import sha1 from random import random import unittest from zipfile import ZipFile from caching_file_system import CachingFileSystem from file_system import FileNotFoundError, StatInfo from fake_url_fetcher import FakeURLFSFetcher, MockURLFetcher from local_file_system import LocalFileSystem from new_github_file_system import GithubFileSystem from object_store_creator import ObjectStoreCreator from test_file_system import TestFileSystem class _TestBundle(object): '''Bundles test file data with a GithubFileSystem and test utilites. Create GithubFileSystems via |CreateGfs()|, the Fetcher it uses as |fetcher|, randomly mutate its contents via |Mutate()|, and access the underlying zip data via |files|. ''' def __init__(self): self.files = { 'zipfile/': '', 'zipfile/hello.txt': 'world', 'zipfile/readme': 'test zip', 'zipfile/dir/file1': 'contents', 'zipfile/dir/file2': 'more contents' } self._test_files = { 'test_owner': { 'changing-repo': { 'commits': { 'HEAD': self._MakeShaJson(self._GenerateHash()) }, 'zipball': self._ZipFromFiles(self.files) } } } self._fake_fetcher = None def CreateGfsAndFetcher(self): fetchers = [] def create_mock_url_fetcher(base_path): assert not fetchers # Save this reference so we can replace the TestFileSystem in Mutate. self._fake_fetcher = FakeURLFSFetcher( TestFileSystem(self._test_files), base_path) fetchers.append(MockURLFetcher(self._fake_fetcher)) return fetchers[-1] # Constructing |gfs| will create a fetcher. gfs = GithubFileSystem.ForTest( 'changing-repo/', create_mock_url_fetcher, path='') assert len(fetchers) == 1 return gfs, fetchers[0] def Mutate(self): fake_version = self._GenerateHash() fake_data = self._GenerateHash() self.files['zipfile/hello.txt'] = fake_data self.files['zipfile/new-file'] = fake_data self.files['zipfile/dir/file1'] = fake_data self._test_files['test_owner']['changing-repo']['zipball'] = ( self._ZipFromFiles(self.files)) self._test_files['test_owner']['changing-repo']['commits']['HEAD'] = ( self._MakeShaJson(fake_version)) # Update the file_system used by FakeURLFSFetcher so the above mutations # propagate. self._fake_fetcher.UpdateFS(TestFileSystem(self._test_files)) return fake_version, fake_data def _GenerateHash(self): '''Generates an arbitrary SHA1 hash. ''' return sha1(str(random())).hexdigest() def _MakeShaJson(self, hash_value): commit_json = json.loads(deepcopy(LocalFileSystem('').ReadSingle( 'test_data/github_file_system/test_owner/repo/commits/HEAD').Get())) commit_json['sha'] = hash_value return json.dumps(commit_json) def _ZipFromFiles(self, file_dict): string = StringIO() zipfile = ZipFile(string, 'w') for filename, contents in file_dict.iteritems(): zipfile.writestr(filename, contents) zipfile.close() return string.getvalue() class TestGithubFileSystem(unittest.TestCase): def setUp(self): self._gfs = GithubFileSystem.ForTest( 'repo/', partial(FakeURLFSFetcher, LocalFileSystem(''))) # Start and finish the repository load. self._cgfs = CachingFileSystem(self._gfs, ObjectStoreCreator.ForTest()) def testReadDirectory(self): self._gfs.Refresh().Get() self.assertEqual( sorted(['requirements.txt', '.gitignore', 'README.md', 'src/']), sorted(self._gfs.ReadSingle('').Get())) self.assertEqual( sorted(['__init__.notpy', 'hello.notpy']), sorted(self._gfs.ReadSingle('src/').Get())) def testReadFile(self): self._gfs.Refresh().Get() expected = ( '# Compiled Python files\n' '*.pyc\n' ) self.assertEqual(expected, self._gfs.ReadSingle('.gitignore').Get()) def testMultipleReads(self): self._gfs.Refresh().Get() self.assertEqual( self._gfs.ReadSingle('requirements.txt').Get(), self._gfs.ReadSingle('requirements.txt').Get()) def testReads(self): self._gfs.Refresh().Get() expected = { 'src/': sorted(['hello.notpy', '__init__.notpy']), '': sorted(['requirements.txt', '.gitignore', 'README.md', 'src/']) } read = self._gfs.Read(['', 'src/']).Get() self.assertEqual(expected['src/'], sorted(read['src/'])) self.assertEqual(expected[''], sorted(read[''])) def testStat(self): # This is the hash value from the zip on disk. real_hash = 'c36fc23688a9ec9e264d3182905dc0151bfff7d7' self._gfs.Refresh().Get() dir_stat = StatInfo(real_hash, { 'hello.notpy': StatInfo(real_hash), '__init__.notpy': StatInfo(real_hash) }) self.assertEqual(StatInfo(real_hash), self._gfs.Stat('README.md')) self.assertEqual(StatInfo(real_hash), self._gfs.Stat('src/hello.notpy')) self.assertEqual(dir_stat, self._gfs.Stat('src/')) def testBadReads(self): self._gfs.Refresh().Get() self.assertRaises(FileNotFoundError, self._gfs.Stat, 'DONT_README.md') self.assertRaises(FileNotFoundError, self._gfs.ReadSingle('DONT_README.md').Get) def testCachingFileSystem(self): self._cgfs.Refresh().Get() initial_cgfs_read_one = self._cgfs.ReadSingle('src/hello.notpy').Get() self.assertEqual(initial_cgfs_read_one, self._gfs.ReadSingle('src/hello.notpy').Get()) self.assertEqual(initial_cgfs_read_one, self._cgfs.ReadSingle('src/hello.notpy').Get()) initial_cgfs_read_two = self._cgfs.Read( ['README.md', 'requirements.txt']).Get() self.assertEqual( initial_cgfs_read_two, self._gfs.Read(['README.md', 'requirements.txt']).Get()) self.assertEqual( initial_cgfs_read_two, self._cgfs.Read(['README.md', 'requirements.txt']).Get()) def testWithoutRefresh(self): # Without refreshing it will still read the content from blobstore, and it # does this via the magic of the FakeURLFSFetcher. self.assertEqual(['__init__.notpy', 'hello.notpy'], sorted(self._gfs.ReadSingle('src/').Get())) def testRefresh(self): test_bundle = _TestBundle() gfs, fetcher = test_bundle.CreateGfsAndFetcher() # It shouldn't fetch until Refresh does so; then it will do 2, one for the # stat, and another for the read. self.assertTrue(*fetcher.CheckAndReset()) gfs.Refresh().Get() self.assertTrue(*fetcher.CheckAndReset(fetch_count=1, fetch_async_count=1, fetch_resolve_count=1)) # Refresh is just an alias for Read(''). gfs.Refresh().Get() self.assertTrue(*fetcher.CheckAndReset()) initial_dir_read = sorted(gfs.ReadSingle('').Get()) initial_file_read = gfs.ReadSingle('dir/file1').Get() version, data = test_bundle.Mutate() # Check that changes have not effected the file system yet. self.assertEqual(initial_dir_read, sorted(gfs.ReadSingle('').Get())) self.assertEqual(initial_file_read, gfs.ReadSingle('dir/file1').Get()) self.assertNotEqual(StatInfo(version), gfs.Stat('')) gfs, fetcher = test_bundle.CreateGfsAndFetcher() gfs.Refresh().Get() self.assertTrue(*fetcher.CheckAndReset(fetch_count=1, fetch_async_count=1, fetch_resolve_count=1)) # Check that the changes have affected the file system. self.assertEqual(data, gfs.ReadSingle('new-file').Get()) self.assertEqual(test_bundle.files['zipfile/dir/file1'], gfs.ReadSingle('dir/file1').Get()) self.assertEqual(StatInfo(version), gfs.Stat('new-file')) # Regression test: ensure that reading the data after it's been mutated, # but before Refresh() has been realised, still returns the correct data. gfs, fetcher = test_bundle.CreateGfsAndFetcher() version, data = test_bundle.Mutate() refresh_future = gfs.Refresh() self.assertTrue(*fetcher.CheckAndReset(fetch_count=1, fetch_async_count=1)) self.assertEqual(data, gfs.ReadSingle('new-file').Get()) self.assertEqual(test_bundle.files['zipfile/dir/file1'], gfs.ReadSingle('dir/file1').Get()) self.assertEqual(StatInfo(version), gfs.Stat('new-file')) refresh_future.Get() self.assertTrue(*fetcher.CheckAndReset(fetch_resolve_count=1)) def testGetThenRefreshOnStartup(self): # Regression test: Test that calling Get() but never resolving the future, # then Refresh()ing the data, causes the data to be refreshed. test_bundle = _TestBundle() gfs, fetcher = test_bundle.CreateGfsAndFetcher() self.assertTrue(*fetcher.CheckAndReset()) # Get a predictable version. version, data = test_bundle.Mutate() read_future = gfs.ReadSingle('hello.txt') # Fetch for the Stat(), async-fetch for the Read(). self.assertTrue(*fetcher.CheckAndReset(fetch_count=1, fetch_async_count=1)) refresh_future = gfs.Refresh() self.assertTrue(*fetcher.CheckAndReset()) self.assertEqual(data, read_future.Get()) self.assertTrue(*fetcher.CheckAndReset(fetch_resolve_count=1)) self.assertEqual(StatInfo(version), gfs.Stat('hello.txt')) self.assertTrue(*fetcher.CheckAndReset()) # The fetch will already have been resolved, so resolving the Refresh won't # affect anything. refresh_future.Get() self.assertTrue(*fetcher.CheckAndReset()) # Read data should not have changed. self.assertEqual(data, gfs.ReadSingle('hello.txt').Get()) self.assertEqual(StatInfo(version), gfs.Stat('hello.txt')) self.assertTrue(*fetcher.CheckAndReset()) if __name__ == '__main__': unittest.main()
36.042705
79
0.678219
feaf39bbc3e4e738d1e62ba113f2f7dd2c0f48c9
2,957
py
Python
investments/src/event-profiling/eventProfiler.py
suggitpe/python
27ccc033d13774e8ea4355849374152246b3f4a4
[ "Apache-2.0" ]
null
null
null
investments/src/event-profiling/eventProfiler.py
suggitpe/python
27ccc033d13774e8ea4355849374152246b3f4a4
[ "Apache-2.0" ]
null
null
null
investments/src/event-profiling/eventProfiler.py
suggitpe/python
27ccc033d13774e8ea4355849374152246b3f4a4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import copy import datetime as dt import QSTK.qstkstudy.EventProfiler as ep import QSTK.qstkutil.DataAccess as da import QSTK.qstkutil.qsdateutil as du import numpy as np def get_data_from_market(start_of_period, end_of_period, symbols_from): daysOfMarketOpen = du.getNYSEdays(start_of_period, end_of_period, dt.timedelta(hours=16)) dataObject = da.DataAccess('Yahoo') symbols = dataObject.get_symbols_from_list(symbols_from) symbols.append('SPY') keys = create_market_keys() rawMarketData = dataObject.get_data(daysOfMarketOpen, symbols, keys) dataDictionary = dict(zip(keys, rawMarketData)) clean_dictionary_of_nans(keys, dataDictionary) return [symbols, dataDictionary] def create_market_keys(): return ['open', 'high', 'low', 'close', 'volume', 'actual_close'] # return ['actual_close'] def clean_dictionary_of_nans(keys, dataDictionary): for key in keys: dataDictionary[key] = dataDictionary[key].fillna(method='ffill') dataDictionary[key] = dataDictionary[key].fillna(method='bfill') dataDictionary[key] = dataDictionary[key].fillna(1.0) def find_events_from(symbols, dataDictionary, eventTrigger): closeData = dataDictionary['actual_close'] theMarket = closeData['SPY'] events = create_data_frame_same_size_as(closeData) timestamps = closeData.index print "Finding events" for symbol in symbols: for day in range(1, len(timestamps)): symbolPriceToday = closeData[symbol].ix[timestamps[day]] marketPriceToday = theMarket.ix[timestamps[day]] symbolPriceYesterday = closeData[symbol].ix[timestamps[day - 1]] marketPriceYesterday = theMarket.ix[timestamps[day - 1]] symbolReturnToday = (symbolPriceToday / symbolPriceYesterday) - 1 marketReturnToday = (marketPriceToday / marketPriceYesterday) - 1 if symbolPriceYesterday >= eventTrigger and symbolPriceToday < eventTrigger: events[symbol].ix[timestamps[day]] = 1 return events def create_data_frame_same_size_as(exampleDataFrame): dataFrame = copy.deepcopy(exampleDataFrame) dataFrame = dataFrame * np.NAN return dataFrame def create_the_event_profile_from(events, dataDictionary): print "Profiling the event data" ep.eventprofiler(events, dataDictionary, i_lookback=20, i_lookforward=20, s_filename="eventStudy.pdf", b_market_neutral=True, b_errorbars=True, s_market_sym='SPY') def profile_period(): start_of_period = dt.datetime(2008, 1, 1) end_of_period = dt.datetime(2009, 12, 31) symbols_from = 'sp5002012' event_trigger = 6.0 symbols, data_dictionary = get_data_from_market(start_of_period, end_of_period, symbols_from) events = find_events_from(symbols, data_dictionary, event_trigger) create_the_event_profile_from(events, data_dictionary) profile_period()
35.626506
97
0.725736
040239884f342924698073f5b3547d54965bd2a3
1,988
py
Python
logo/test.py
greschd/PhaseMap
d70586cdfd13956ff4c0073a1c26b214295dc7fc
[ "Apache-2.0" ]
2
2020-11-06T12:14:44.000Z
2021-05-24T16:41:33.000Z
logo/test.py
greschd/PhaseMap
d70586cdfd13956ff4c0073a1c26b214295dc7fc
[ "Apache-2.0" ]
1
2020-10-06T09:28:36.000Z
2020-10-06T09:28:36.000Z
logo/test.py
greschd/PhaseMap
d70586cdfd13956ff4c0073a1c26b214295dc7fc
[ "Apache-2.0" ]
1
2019-11-08T00:58:51.000Z
2019-11-08T00:58:51.000Z
#!/usr/bin/env python # © 2015-2018, ETH Zurich, Institut für Theoretische Physik # Author: Dominik Gresch <greschd@gmx.ch> import numpy as np import scipy.misc import phasemap2 as pm import matplotlib.pyplot as plt # ~ def circle(x, y): # ~ return 1 if x**2 + y**2 < 1 else 0 # ~ def wedge(x, y): # ~ return 1 if (y - abs(x)) > 0 and (x**2 + y**2 < 1) else 0 # ~ def phase(val): # ~ return [wedge(x, y) + circle(x, y) for x, y in val] def rhombus(x, y): return 1 if (abs(x) + abs(y) < 1) else 0 def circle2(x, y, r=1): return 1 if (x ** 2 + y ** 2) < r ** 2 else 0 # ~ def box(x, y, l=0.5): # ~ return 1 if (-l < x < l) and (-l < y < l) else 0 def phase(val): return [rhombus(x, y) + circle2(x, y, r=np.sqrt(0.5)) for x, y in val] # ~ def phase(val): # ~ return [rhombus(x, y) for x, y in val] if __name__ == "__main__": plt.set_cmap("viridis") res = pm.get_phase_map(phase, [(-1.1, 1.1), (-1.1, 1.1)], num_steps=6, mesh=3) A = np.zeros(res.mesh, dtype=int) - 1 for k, v in res.items(): A[k] = v B = np.zeros(res.mesh, dtype=int) - 1 for k, v in res.items(): B[k] = v for i in range(B.shape[0]): iterator = range(B.shape[1]) if i % 2 == 1: iterator = reversed(iterator) for j in iterator: if B[i, j] == -1: B[i, j] = current else: current = B[i, j] color_mapping_1 = { -1: [0, 0, 0], 0: [0x00, 0x00, 0x00], 1: [0, 0x33, 0x99], 2: [0xEE, 0x66, 0], } color_mapping_2 = { -1: [0, 0, 0], 0: [0xFF, 0xFF, 0xFF], 1: [0, 0x1F, 0x5C], 2: [0xC2, 0x3B, 5], } A = np.zeros(tuple(list(res.mesh) + [3]), dtype=int) for i, line in enumerate(B): for j, elem in enumerate(line): A[i, j] = color_mapping_1[elem] for k, v in res.items(): A[k] = color_mapping_2[v] scipy.misc.imsave("logo_out.png", A, format="png")
25.164557
82
0.512575
dc4cc12385f3e8f89cbda5eb2991736f51741197
5,750
py
Python
selfdrive/controls/lib/longitudinal_planner.py
fallen8angel/forNEXO-YONG
5661ae0fb2fefc41fda9e474e094d4b5440ecb8e
[ "MIT" ]
null
null
null
selfdrive/controls/lib/longitudinal_planner.py
fallen8angel/forNEXO-YONG
5661ae0fb2fefc41fda9e474e094d4b5440ecb8e
[ "MIT" ]
null
null
null
selfdrive/controls/lib/longitudinal_planner.py
fallen8angel/forNEXO-YONG
5661ae0fb2fefc41fda9e474e094d4b5440ecb8e
[ "MIT" ]
2
2022-02-25T03:36:09.000Z
2022-03-13T12:24:37.000Z
#!/usr/bin/env python3 import math import numpy as np from common.numpy_fast import interp import cereal.messaging as messaging from common.conversions import Conversions as CV from common.filter_simple import FirstOrderFilter from common.realtime import DT_MDL from selfdrive.modeld.constants import T_IDXS from selfdrive.controls.lib.longcontrol import LongCtrlState from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N from selfdrive.swaglog import cloudlog from common.params import Params LON_MPC_STEP = 0.2 # first step is 0.2s AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted A_CRUISE_MIN = -1.2 A_CRUISE_MAX_VALS = [1.5, 1.2, 0.8, 0.6] A_CRUISE_MAX_BP = [0., 15., 25., 40.] # Lookup table for turns _A_TOTAL_MAX_V = [1.7, 3.2] _A_TOTAL_MAX_BP = [20., 40.] def get_max_accel(v_ego): return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS) def limit_accel_in_turns(v_ego, angle_steers, a_target, CP): """ This function returns a limited long acceleration allowed, depending on the existing lateral acceleration this should avoid accelerating when losing the target in turns """ # FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel # The lookup table for turns should also be updated if we do this a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V) a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase) a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.)) return [a_target[0], min(a_target[1], a_x_allowed)] class Planner: def __init__(self, CP, init_v=0.0, init_a=0.0): self.CP = CP self.mpc = LongitudinalMpc() self.fcw = False self.a_desired = init_a self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL) self.v_desired_trajectory = np.zeros(CONTROL_N) self.a_desired_trajectory = np.zeros(CONTROL_N) self.j_desired_trajectory = np.zeros(CONTROL_N) self.solverExecutionTime = 0.0 self.use_cluster_speed = Params().get_bool('UseClusterSpeed') def update(self, sm): v_ego = sm['carState'].vEgo v_cruise_kph = sm['controlsState'].vCruise v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS # neokii if not self.use_cluster_speed: vCluRatio = sm['carState'].vCluRatio if vCluRatio > 0.5: v_cruise *= vCluRatio v_cruise = int(v_cruise * CV.MS_TO_KPH + 0.25) * CV.KPH_TO_MS long_control_state = sm['controlsState'].longControlState force_slow_decel = sm['controlsState'].forceDecel # Reset current state when not engaged, or user is controlling the speed reset_state = long_control_state == LongCtrlState.off # No change cost when user is controlling the speed, or when standstill prev_accel_constraint = not (reset_state or sm['carState'].standstill) if reset_state: self.v_desired_filter.x = v_ego self.a_desired = 0.0 # Prevent divergence, smooth in current v_ego self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego)) accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)] accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP) if force_slow_decel: # if required so, force a smooth deceleration accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL) accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1]) # clip limits, cannot init MPC outside of bounds accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05) accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05) self.mpc.set_weights(prev_accel_constraint) self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1]) self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired) self.mpc.update(sm['carState'], sm['radarState'], v_cruise) self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution) self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution) self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution) # TODO counter is only needed because radar is glitchy, remove once radar is gone self.fcw = self.mpc.crash_cnt > 5 if self.fcw: cloudlog.info("FCW triggered") # Interpolate 0.05 seconds and save as starting point for next iteration a_prev = self.a_desired self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory)) self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0 def publish(self, sm, pm): plan_send = messaging.new_message('longitudinalPlan') plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState']) longitudinalPlan = plan_send.longitudinalPlan longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2'] longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2'] longitudinalPlan.speeds = self.v_desired_trajectory.tolist() longitudinalPlan.accels = self.a_desired_trajectory.tolist() longitudinalPlan.jerks = self.j_desired_trajectory.tolist() longitudinalPlan.hasLead = sm['radarState'].leadOne.status longitudinalPlan.longitudinalPlanSource = self.mpc.source longitudinalPlan.fcw = self.fcw longitudinalPlan.solverExecutionTime = self.mpc.solve_time pm.send('longitudinalPlan', plan_send)
40.20979
108
0.749217
a0b5566b55b57f707f0f974fe105c9d22a413beb
301
py
Python
config/cfg.py
lucasxlu/CRNet
17d27e39a77181921cc2bd5a5a8866a25282b4de
[ "MIT" ]
13
2018-06-26T07:13:39.000Z
2021-11-30T02:12:38.000Z
config/cfg.py
lucasxlu/CRNet
17d27e39a77181921cc2bd5a5a8866a25282b4de
[ "MIT" ]
null
null
null
config/cfg.py
lucasxlu/CRNet
17d27e39a77181921cc2bd5a5a8866a25282b4de
[ "MIT" ]
null
null
null
from collections import OrderedDict cfg = OrderedDict() cfg['use_gpu'] = False cfg['scut_fbp_dir'] = 'E:/DataSet/Face/SCUT-FBP/Crop' cfg['batch_size'] = 16 cfg['hotornot_dir'] = 'E:/DataSet/Face/eccv2010_beauty_data_v1.0/eccv2010_beauty_data/hotornot_face' cfg['jaffe_dir'] = 'E:/DataSet/Face/jaffe'
33.444444
100
0.754153
cef5fc6d60a94799dbd665d796fbfbbed6f0c0f4
2,196
py
Python
modules/utils.py
inconvergent/differential-mesh-3d
cfa52b21d8524410c0ae2e98a6456c6520ae9ae6
[ "MIT" ]
51
2015-08-27T16:05:17.000Z
2022-03-12T21:05:21.000Z
modules/utils.py
inconvergent/differential-mesh-3d
cfa52b21d8524410c0ae2e98a6456c6520ae9ae6
[ "MIT" ]
1
2015-11-25T18:50:23.000Z
2015-11-26T22:21:10.000Z
modules/utils.py
inconvergent/differential-mesh-3d
cfa52b21d8524410c0ae2e98a6456c6520ae9ae6
[ "MIT" ]
5
2016-09-12T12:58:49.000Z
2021-05-28T23:59:11.000Z
# -*- coding: utf-8 -*- def make_info_str(args): s = '' for k in vars(args): s += '# ' + str(k) + ': ' + str(getattr(args,k)) + '\n' return s def print_stats(steps,dm, meta=False): from time import strftime from time import time if isinstance(meta, str): meta = ' | {:s}'.format(meta) else: meta = '' print( '{:s} | stp: {:d} sec: {:.2f} v: {:d} e: {:d} f: {:d}{:s}' .format( strftime('%d/%m/%y %H:%M:%S'), steps, time()-dm.get_start_time(), dm.get_vnum(), dm.get_henum(), dm.get_fnum(), meta ) ) return def get_exporter(dm, fn, nmax): from numpy import zeros from .geometry import move_scale from iutils.ioOBJ import export np_verts = zeros((nmax, 3), 'float') np_tris = zeros((nmax, 3), 'int') np_int = zeros(nmax, 'float') def e(): vnum = dm.np_get_vertices(np_verts) tnum = dm.np_get_triangles_vertices(np_tris) dm.np_get_triangles_intensity(np_int) move_scale(np_verts[:vnum, :], s=1000) export( 'thing_mesh', fn.name(), verts=np_verts[:vnum, :], tris=np_tris[:tnum, :] ) return e def get_surface_vertices(dm): res = [] for he in range(dm.get_henum()): e = dm.is_surface_edge(he) if e > 0: d = dm.get_edge_dict(he) res.append(d['first']) res.append(d['last']) return list(set(res)) def get_seed_selector(dm, t, sr=None): from numpy import array from numpy import arange from numpy import ones from numpy.random import random if sr is not None: get_mask = lambda n, sr: (random(size=n) < sr).nonzero()[0] else: get_mask = lambda n, sr: ones(n, 'bool') if t == 'surface': def f(): vertices = array(get_surface_vertices(dm)) rm = get_mask(len(vertices), sr) if len(rm) < 1: return array([]) return vertices[rm] elif t == 'random': def f(): vn = dm.get_vnum() vertices = arange(vn) rm = get_mask(len(vertices), sr) if len(rm) < 1: return array([]) return vertices[rm] else: raise ValueError('use "surface" or "random".') return f
21.742574
64
0.561931
8baa85b9e03ac5c53ebc26c6ca72de35977dbed3
1,697
py
Python
WeightController/weight/tests.py
williamHuang5468/WeightController
146673d543ed7d6a20a642a7a9203aa55cf1a935
[ "MIT" ]
null
null
null
WeightController/weight/tests.py
williamHuang5468/WeightController
146673d543ed7d6a20a642a7a9203aa55cf1a935
[ "MIT" ]
null
null
null
WeightController/weight/tests.py
williamHuang5468/WeightController
146673d543ed7d6a20a642a7a9203aa55cf1a935
[ "MIT" ]
null
null
null
from django.core.urlresolvers import resolve from django.test import TestCase from django.http import HttpRequest from django.template.loader import render_to_string from django.utils import timezone from weight.views import editorWeight from weight.models import Weight class EditorWeightTest(TestCase): def test_url(self): editorWeightPage = resolve('/') self.assertEqual(editorWeightPage.func, editorWeight) def test_response_html(self): request = HttpRequest() response = editorWeight(request) expected_html = render_to_string('editorWeight.html') self.assertEqual(response.content.decode(), expected_html) def test_save_request(self): request = HttpRequest() request.method = 'POST' request.POST['weightInput'] = '50' response = editorWeight(request) self.assertIn('50', response.content.decode()) expected_html = render_to_string( 'editorweight.html', {'new_weight': '50'} ) print(expected_html) self.assertEqual(response.content.decode(), expected_html) class WeightModelTest(TestCase): def test_save_weight(self): weight1 = Weight() weight1.weight = 100 weight1.record_date=timezone.now() weight1.save() weight2 = Weight() weight2.weight = 50 weight2.record_date=timezone.now() weight2.save() saved_weights = Weight.objects.all() self.assertEqual(saved_weights.count(), 2) weight1 = saved_weights[0] weight2 = saved_weights[1] self.assertEqual(weight1.weight, 100) self.assertEqual(weight2.weight, 50)
28.283333
66
0.668827
31f6ddc74203078749bf4bc12e4d45d6e885991a
10,001
py
Python
mesonbuild/linkers/detect.py
jpakkane/meson
ee7a7fec10298e8dabc423f6163e866d19473e7f
[ "Apache-2.0" ]
64
2015-01-09T13:45:23.000Z
2015-06-13T20:16:01.000Z
mesonbuild/linkers/detect.py
jpakkane/meson
ee7a7fec10298e8dabc423f6163e866d19473e7f
[ "Apache-2.0" ]
110
2015-01-09T01:35:56.000Z
2015-06-14T11:26:04.000Z
mesonbuild/linkers/detect.py
jpakkane/meson
ee7a7fec10298e8dabc423f6163e866d19473e7f
[ "Apache-2.0" ]
13
2015-01-05T09:08:37.000Z
2015-06-04T08:34:45.000Z
# Copyright 2012-2022 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from ..mesonlib import ( EnvironmentException, OptionKey, Popen_safe, search_version ) from .linkers import ( AppleDynamicLinker, GnuGoldDynamicLinker, GnuBFDDynamicLinker, MoldDynamicLinker, LLVMDynamicLinker, QualcommLLVMDynamicLinker, MSVCDynamicLinker, ClangClDynamicLinker, SolarisDynamicLinker, AIXDynamicLinker, OptlinkDynamicLinker, ) import re import shlex import typing as T if T.TYPE_CHECKING: from .linkers import DynamicLinker, GnuDynamicLinker from ..environment import Environment from ..compilers import Compiler from ..mesonlib import MachineChoice defaults: T.Dict[str, T.List[str]] = {} defaults['static_linker'] = ['ar', 'gar'] defaults['vs_static_linker'] = ['lib'] defaults['clang_cl_static_linker'] = ['llvm-lib'] defaults['cuda_static_linker'] = ['nvlink'] defaults['gcc_static_linker'] = ['gcc-ar'] defaults['clang_static_linker'] = ['llvm-ar'] def __failed_to_detect_linker(compiler: T.List[str], args: T.List[str], stdout: str, stderr: str) -> 'T.NoReturn': msg = 'Unable to detect linker for compiler "{} {}"\nstdout: {}\nstderr: {}'.format( ' '.join(compiler), ' '.join(args), stdout, stderr) raise EnvironmentException(msg) def guess_win_linker(env: 'Environment', compiler: T.List[str], comp_class: T.Type['Compiler'], comp_version: str, for_machine: MachineChoice, *, use_linker_prefix: bool = True, invoked_directly: bool = True, extra_args: T.Optional[T.List[str]] = None) -> 'DynamicLinker': env.coredata.add_lang_args(comp_class.language, comp_class, for_machine, env) # Explicitly pass logo here so that we can get the version of link.exe if not use_linker_prefix or comp_class.LINKER_PREFIX is None: check_args = ['/logo', '--version'] elif isinstance(comp_class.LINKER_PREFIX, str): check_args = [comp_class.LINKER_PREFIX + '/logo', comp_class.LINKER_PREFIX + '--version'] elif isinstance(comp_class.LINKER_PREFIX, list): check_args = comp_class.LINKER_PREFIX + ['/logo'] + comp_class.LINKER_PREFIX + ['--version'] check_args += env.coredata.options[OptionKey('args', lang=comp_class.language, machine=for_machine)].value override = [] # type: T.List[str] value = env.lookup_binary_entry(for_machine, comp_class.language + '_ld') if value is not None: override = comp_class.use_linker_args(value[0], comp_version) check_args += override if extra_args is not None: check_args.extend(extra_args) p, o, _ = Popen_safe(compiler + check_args) if 'LLD' in o.split('\n')[0]: if '(compatible with GNU linkers)' in o: return LLVMDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=search_version(o)) elif not invoked_directly: return ClangClDynamicLinker( for_machine, override, exelist=compiler, prefix=comp_class.LINKER_PREFIX, version=search_version(o), direct=False, machine=None) if value is not None and invoked_directly: compiler = value # We've already hanedled the non-direct case above p, o, e = Popen_safe(compiler + check_args) if 'LLD' in o.split('\n')[0]: return ClangClDynamicLinker( for_machine, [], prefix=comp_class.LINKER_PREFIX if use_linker_prefix else [], exelist=compiler, version=search_version(o), direct=invoked_directly) elif 'OPTLINK' in o: # Opltink's stdout *may* beging with a \r character. return OptlinkDynamicLinker(compiler, for_machine, version=search_version(o)) elif o.startswith('Microsoft') or e.startswith('Microsoft'): out = o or e match = re.search(r'.*(X86|X64|ARM|ARM64).*', out) if match: target = str(match.group(1)) else: target = 'x86' return MSVCDynamicLinker( for_machine, [], machine=target, exelist=compiler, prefix=comp_class.LINKER_PREFIX if use_linker_prefix else [], version=search_version(out), direct=invoked_directly) elif 'GNU coreutils' in o: import shutil fullpath = shutil.which(compiler[0]) raise EnvironmentException( f"Found GNU link.exe instead of MSVC link.exe in {fullpath}.\n" "This link.exe is not a linker.\n" "You may need to reorder entries to your %PATH% variable to resolve this.") __failed_to_detect_linker(compiler, check_args, o, e) def guess_nix_linker(env: 'Environment', compiler: T.List[str], comp_class: T.Type['Compiler'], comp_version: str, for_machine: MachineChoice, *, extra_args: T.Optional[T.List[str]] = None) -> 'DynamicLinker': """Helper for guessing what linker to use on Unix-Like OSes. :compiler: Invocation to use to get linker :comp_class: The Compiler Type (uninstantiated) :comp_version: The compiler version string :for_machine: which machine this linker targets :extra_args: Any additional arguments required (such as a source file) """ env.coredata.add_lang_args(comp_class.language, comp_class, for_machine, env) extra_args = extra_args or [] extra_args += env.coredata.options[OptionKey('args', lang=comp_class.language, machine=for_machine)].value if isinstance(comp_class.LINKER_PREFIX, str): check_args = [comp_class.LINKER_PREFIX + '--version'] + extra_args else: check_args = comp_class.LINKER_PREFIX + ['--version'] + extra_args override = [] # type: T.List[str] value = env.lookup_binary_entry(for_machine, comp_class.language + '_ld') if value is not None: override = comp_class.use_linker_args(value[0], comp_version) check_args += override _, o, e = Popen_safe(compiler + check_args) v = search_version(o + e) linker: DynamicLinker if 'LLD' in o.split('\n')[0]: linker = LLVMDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif 'Snapdragon' in e and 'LLVM' in e: linker = QualcommLLVMDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif e.startswith('lld-link: '): # The LLD MinGW frontend didn't respond to --version before version 9.0.0, # and produced an error message about failing to link (when no object # files were specified), instead of printing the version number. # Let's try to extract the linker invocation command to grab the version. _, o, e = Popen_safe(compiler + check_args + ['-v']) try: linker_cmd = re.match(r'.*\n(.*?)\nlld-link: ', e, re.DOTALL).group(1) linker_cmd = shlex.split(linker_cmd)[0] except (AttributeError, IndexError, ValueError): pass else: _, o, e = Popen_safe([linker_cmd, '--version']) v = search_version(o) linker = LLVMDynamicLinker(compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) # first is for apple clang, second is for real gcc, the third is icc elif e.endswith('(use -v to see invocation)\n') or 'macosx_version' in e or 'ld: unknown option:' in e: if isinstance(comp_class.LINKER_PREFIX, str): _, _, e = Popen_safe(compiler + [comp_class.LINKER_PREFIX + '-v'] + extra_args) else: _, _, e = Popen_safe(compiler + comp_class.LINKER_PREFIX + ['-v'] + extra_args) for line in e.split('\n'): if 'PROJECT:ld' in line: v = line.split('-')[1] break else: v = 'unknown version' linker = AppleDynamicLinker(compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif 'GNU' in o or 'GNU' in e: cls: T.Type[GnuDynamicLinker] # this is always the only thing on stdout, except for swift # which may or may not redirect the linker stdout to stderr if o.startswith('GNU gold') or e.startswith('GNU gold'): cls = GnuGoldDynamicLinker elif o.startswith('mold') or e.startswith('mold'): cls = MoldDynamicLinker else: cls = GnuBFDDynamicLinker linker = cls(compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif 'Solaris' in e or 'Solaris' in o: for line in (o+e).split('\n'): if 'ld: Software Generation Utilities' in line: v = line.split(':')[2].lstrip() break else: v = 'unknown version' linker = SolarisDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=v) elif 'ld: 0706-012 The -- flag is not recognized' in e: if isinstance(comp_class.LINKER_PREFIX, str): _, _, e = Popen_safe(compiler + [comp_class.LINKER_PREFIX + '-V'] + extra_args) else: _, _, e = Popen_safe(compiler + comp_class.LINKER_PREFIX + ['-V'] + extra_args) linker = AIXDynamicLinker( compiler, for_machine, comp_class.LINKER_PREFIX, override, version=search_version(e)) else: __failed_to_detect_linker(compiler, check_args, o, e) return linker
44.057269
114
0.656734
1e379d2843866791bef92c399963d5d15b9dc6d3
2,850
py
Python
db/country.py
testsibirtsv/opncrt
c9780696e6e3849f8711ee2c6a9c997c4ac66b41
[ "Apache-2.0" ]
null
null
null
db/country.py
testsibirtsv/opncrt
c9780696e6e3849f8711ee2c6a9c997c4ac66b41
[ "Apache-2.0" ]
null
null
null
db/country.py
testsibirtsv/opncrt
c9780696e6e3849f8711ee2c6a9c997c4ac66b41
[ "Apache-2.0" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy import Column, String, Integer from sqlalchemy.orm import relationship from models.personaldetails import PersonalDetails engine = create_engine('mysql://root@localhost/opencart') Session = sessionmaker(bind=engine) Base = declarative_base() def session_factory(): Base.metadata.create_all(engine) return Session() class Customer(Base): __tablename__ = 'oc_customer' customer_id = Column(Integer, primary_key=True) firstname = Column(String) lastname = Column(String) email = Column(String) telephone = Column(String) countries = relationship('Country') def __init__(self, firstname, lastname, email, telephone): self.firstname = firstname self.lastname = lastname self.email = email self.telephone = telephone def __repr__(self): return f'{self.firstname} {self.lastname} {self.email} {self.telephone}' class Address(Base): __tablename__ = 'oc_address' address_id = Column(Integer, primary_key=True) customer_id = Column(Integer) firstname = Column(String) lastname = Column(String) company = Column(String) address_1 = Column(String) address_2 = Column(String) city = Column(String) postcode = Column(String) country_id = Column(Integer) zone_id = Column(Integer) def __init__(self, address_id, customer_id, firstname, lastname, company, address_1, address_2, city, postcode, country_id, zone_id): self.address_id = address_id self.customer_id = customer_id self.firstname = firstname self.lastname = lastname self.company = company self.address_1 = address_1 self.address_2 = address_2 self.city = city self.postcode = postcode self.country_id = country_id self.zone_id = zone_id class Country(Base): __tablename__ = 'oc_country' country_id = Column(Integer, primary_key=True) name = Column(String) def __init__(self, name): self.name = name def __repr__(self): return f'{self.name}' class Zone(Base): __tablename__ = 'oc_zone' zone_id = Column(Integer, primary_key=True) name = Column(String) def __init__(self, name): self.name = name def __repr__(self): return f'{self.name}' def get_people(): session = session_factory() people_query = session.query(Customer) session.close() return people_query.all()
25
80
0.627018
f24f8e08b77411d6befe18236cc241505fa6537b
1,745
py
Python
tests/tf/block/test_mlp.py
Jwmc999/Transformers4Rec
e6cdf13a7c0102303c0258120274f88b2d42c9c2
[ "Apache-2.0" ]
415
2021-09-20T20:47:34.000Z
2022-03-31T16:51:03.000Z
tests/tf/block/test_mlp.py
Jwmc999/Transformers4Rec
e6cdf13a7c0102303c0258120274f88b2d42c9c2
[ "Apache-2.0" ]
128
2021-09-21T07:19:38.000Z
2022-03-31T15:08:27.000Z
tests/tf/block/test_mlp.py
Jwmc999/Transformers4Rec
e6cdf13a7c0102303c0258120274f88b2d42c9c2
[ "Apache-2.0" ]
44
2021-09-23T07:25:36.000Z
2022-03-29T04:17:53.000Z
# # Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest tf = pytest.importorskip("tensorflow") tr = pytest.importorskip("transformers4rec.tf") @pytest.mark.parametrize("dim", [32, 64]) @pytest.mark.parametrize("activation", ["relu", "tanh"]) @pytest.mark.parametrize("dropout", [None, 0.5]) @pytest.mark.parametrize( "normalization", [None, "batch_norm", tf.keras.layers.BatchNormalization()] ) def test_mlp_block_yoochoose( tabular_schema, tf_tabular_data, dim, activation, dropout, normalization ): inputs = tr.TabularFeatures.from_schema(tabular_schema, aggregation="concat") mlp = tr.MLPBlock([dim], activation=activation, dropout=dropout, normalization=normalization) body = tr.SequentialBlock([inputs, mlp]) outputs = body(tf_tabular_data) assert list(outputs.shape) == [100, dim] assert mlp.layers[0].units == dim assert mlp.layers[0].activation.__name__ == activation if dropout: assert mlp.layers[1].rate == dropout if normalization: if normalization == "batch_norm": normalization = tf.keras.layers.BatchNormalization() assert mlp.layers[-1].__class__.__name__ == normalization.__class__.__name__
35.612245
97
0.72894
2be20bb8fdbb83ef3270917ffdc80981158547e1
2,556
py
Python
azure-servicefabric/azure/servicefabric/models/node_deactivation_info.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
1
2022-03-30T22:39:15.000Z
2022-03-30T22:39:15.000Z
azure-servicefabric/azure/servicefabric/models/node_deactivation_info.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure-servicefabric/azure/servicefabric/models/node_deactivation_info.py
Christina-Kang/azure-sdk-for-python
bbf982eb06aab04b8151f69f1d230b7f5fb96ebf
[ "MIT" ]
2
2017-01-20T18:25:46.000Z
2017-05-12T21:31:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class NodeDeactivationInfo(Model): """Information about the node deactivation. This information is valid for a node that is undergoing deactivation or has already been deactivated. :param node_deactivation_intent: The intent or the reason for deactivating the node. Following are the possible values for it. Possible values include: 'Invalid', 'Pause', 'Restart', 'RemoveData', 'RemoveNode' :type node_deactivation_intent: str or ~azure.servicefabric.models.NodeDeactivationIntent :param node_deactivation_status: The status of node deactivation operation. Following are the possible values. Possible values include: 'None', 'SafetyCheckInProgress', 'SafetyCheckComplete', 'Completed' :type node_deactivation_status: str or ~azure.servicefabric.models.NodeDeactivationStatus :param node_deactivation_task: List of tasks representing the deactivation operation on the node. :type node_deactivation_task: list[~azure.servicefabric.models.NodeDeactivationTask] :param pending_safety_checks: List of pending safety checks :type pending_safety_checks: list[~azure.servicefabric.models.SafetyCheckWrapper] """ _attribute_map = { 'node_deactivation_intent': {'key': 'NodeDeactivationIntent', 'type': 'str'}, 'node_deactivation_status': {'key': 'NodeDeactivationStatus', 'type': 'str'}, 'node_deactivation_task': {'key': 'NodeDeactivationTask', 'type': '[NodeDeactivationTask]'}, 'pending_safety_checks': {'key': 'PendingSafetyChecks', 'type': '[SafetyCheckWrapper]'}, } def __init__(self, node_deactivation_intent=None, node_deactivation_status=None, node_deactivation_task=None, pending_safety_checks=None): super(NodeDeactivationInfo, self).__init__() self.node_deactivation_intent = node_deactivation_intent self.node_deactivation_status = node_deactivation_status self.node_deactivation_task = node_deactivation_task self.pending_safety_checks = pending_safety_checks
50.117647
142
0.710876
659b30042a389e6d196cc39ceae16e142e1fab05
774
py
Python
graphgallery/gallery/utils/bvat_utils.py
Aria461863631/GraphGallery
7b62f80ab36b29013bea2538a6581fc696a80201
[ "MIT" ]
null
null
null
graphgallery/gallery/utils/bvat_utils.py
Aria461863631/GraphGallery
7b62f80ab36b29013bea2538a6581fc696a80201
[ "MIT" ]
null
null
null
graphgallery/gallery/utils/bvat_utils.py
Aria461863631/GraphGallery
7b62f80ab36b29013bea2538a6581fc696a80201
[ "MIT" ]
null
null
null
""" util functions for 'Batch Virtual Adversarial Training' (BVAT) """ import tensorflow as tf def get_normalized_vector(d): d /= (1e-12 + tf.reduce_max(tf.abs(d))) d /= tf.sqrt(1e-6 + tf.reduce_sum(tf.pow(d, 2.0), 1, keepdims=True)) return d def kl_divergence_with_logit(q_logit, p_logit, mask=None): q = tf.math.softmax(q_logit) if mask is None: qlogp = tf.reduce_mean(tf.reduce_sum(q * tf.math.log_softmax(p_logit), 1)) else: mask /= tf.reduce_mean(mask) qlogp = tf.reduce_mean(tf.reduce_sum(q * tf.math.log_softmax(p_logit), 1) * mask) return -qlogp def entropy_y_x(logit): p = tf.math.softmax(logit) return -tf.reduce_mean(tf.reduce_sum(p * tf.math.log_softmax(logit), 1))
27.642857
89
0.640827
10c12946e5d2536aaca438bbdedb2473ef972577
4,203
py
Python
src/DenseCellPrint.py
KasparMatas/MLontoFPGAs
084633459dfc03c694cc0a849e883913985f4dbe
[ "Apache-2.0" ]
null
null
null
src/DenseCellPrint.py
KasparMatas/MLontoFPGAs
084633459dfc03c694cc0a849e883913985f4dbe
[ "Apache-2.0" ]
27
2018-09-27T20:35:22.000Z
2019-03-22T11:43:52.000Z
src/DenseCellPrint.py
KasparMatas/MLontoFPGAs
084633459dfc03c694cc0a849e883913985f4dbe
[ "Apache-2.0" ]
1
2022-01-22T02:51:34.000Z
2022-01-22T02:51:34.000Z
import numpy as np class DenseCellPrinter: def printWires(self, wire_widths, output_wire_names, output_file): output_file.write("wire [{}-1:0] {};\n".format(wire_widths[0], output_wire_names[0])) output_file.write("wire [{}-1:0] {};\n".format(wire_widths[1], output_wire_names[1])) output_file.write("wire [{}:0] {};\n".format(wire_widths[2], output_wire_names[2])) output_file.write("wire {};".format(output_wire_names[3])) def printInitialParameters(self, wire_widths, weight_amount, output_file): output_file.write("weight_comp_cell #(\n") output_file.write(" .DATA_WIDTH({}),\n".format(wire_widths[1])) output_file.write(" .RESULT_WIDTH({}),\n".format(wire_widths[2])) output_file.write(" .INDEX_WIDTH({}),\n".format(wire_widths[0])) output_file.write(" .WEIGHT_AMOUNT({}),\n".format(weight_amount)) def printAdditionalParameters(self, weight_zero_point, input_zero_point, output_file): output_file.write(" .WEIGHT_OFFSET({}),\n".format(int(weight_zero_point))) output_file.write(" .INPUT_OFFSET({}),\n".format(int(input_zero_point))) def formatWeights(self, weights): weightString = "" for weight in np.flip(weights): weightString += "8'd{}, ".format(int(weight)) weightString = weightString[:-2] return "{" + weightString + "}" def printWeights(self, weights, output_file): output_file.write(" .WEIGHTS({})\n".format(self.formatWeights(weights))) def printInstanceName(self, cell_index, layer_index, output_file): output_file.write(") cell_{0}_{1} (\n".format(layer_index, cell_index)) def printInputsOutputs(self, input_wire_names, output_wire_names, output_file): output_file.write(" .clk(clk),\n") output_file.write(" .input_index({}),\n".format(input_wire_names[0])) output_file.write(" .input_value({}),\n".format(input_wire_names[1])) output_file.write(" .input_result({}),\n".format(input_wire_names[2])) output_file.write(" .input_enable({}),\n".format(input_wire_names[3])) output_file.write(" .output_index({}),\n".format(output_wire_names[0])) output_file.write(" .output_value({}),\n".format(output_wire_names[1])) output_file.write(" .output_result({}),\n".format(output_wire_names[2])) output_file.write(" .output_enable({})\n".format(output_wire_names[3])) output_file.write(");\n") def generateOutputWireNames(self, cell_index, layer_index): output_wire_names = [] output_wire_names.append("index_{0}_{1}_{2}".format(layer_index, cell_index, cell_index+1)) output_wire_names.append("value_{0}_{1}_{2}".format(layer_index, cell_index, cell_index+1)) output_wire_names.append("result_{0}_{1}_{2}".format(layer_index, cell_index, cell_index+1)) output_wire_names.append("enable_{0}_{1}_{2}".format(layer_index, cell_index, cell_index+1)) return output_wire_names def printIndividualCell(self, weights, unit_index, layer_index, input_wire_names, wire_widths, output_wire_names, quantizer, output_file): self.printInitialParameters(wire_widths, len(weights[unit_index]), output_file) self.printAdditionalParameters(quantizer.quantized_weight_zeros[layer_index], quantizer.quantized_output_zeros[layer_index], output_file) self.printWeights(weights[unit_index], output_file) self.printInstanceName(unit_index, layer_index, output_file) self.printInputsOutputs(input_wire_names, output_wire_names, output_file) def printCells(self, weights, layer_index, quantizer, amount_of_units_in_a_layer, wire_widths, input_wire_names, output_file): for unit_index in range (amount_of_units_in_a_layer): output_wire_names = self.generateOutputWireNames(unit_index, layer_index) output_file.write("\n") self.printWires(wire_widths, output_wire_names, output_file) output_file.write("\n") self.printIndividualCell(weights, unit_index, layer_index, input_wire_names, wire_widths, output_wire_names, quantizer, output_file) input_wire_names = output_wire_names return input_wire_names
53.884615
116
0.707828
d3b298ff37455c0023b0de9adb43c559af64d15f
3,772
py
Python
python_experiments/cnn_model_lookback.py
AniruddhaDas1998/jelly-bean-world
c1ae093e851260c47a65794a1fab484372518a96
[ "Apache-2.0" ]
null
null
null
python_experiments/cnn_model_lookback.py
AniruddhaDas1998/jelly-bean-world
c1ae093e851260c47a65794a1fab484372518a96
[ "Apache-2.0" ]
null
null
null
python_experiments/cnn_model_lookback.py
AniruddhaDas1998/jelly-bean-world
c1ae093e851260c47a65794a1fab484372518a96
[ "Apache-2.0" ]
null
null
null
import gym import math import random import numpy as np import matplotlib import matplotlib.pyplot as plt from collections import namedtuple from itertools import count from PIL import Image import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchvision.transforms as T # code adapted from # https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class ReplayMemory(object): def __init__(self, capacity): self.capacity = capacity self.memory = [] self.position = 0 def push(self, *args): """Saves a transition.""" if len(self.memory) < self.capacity: self.memory.append(None) self.memory[self.position] = Transition(*args) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): return random.sample(self.memory, batch_size) def __len__(self): return len(self.memory) # model inspired from original JBW paper: https://arxiv.org/pdf/2002.06306.pdf class DQN_Lookback(nn.Module): def __init__(self, h, w, n_actions, lookback=1): super(DQN_Lookback, self).__init__() self.conv1 = nn.Conv2d(3*lookback, 16*lookback, kernel_size=3, stride=2) # self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16*lookback, 16*lookback, kernel_size=2, stride=1) # self.bn2 = nn.BatchNorm2d(16) OUT_DIM = 512 # Number of Linear input connections depends on output of conv2d layers # and therefore the input image size, so compute it. def conv2d_size_out(size, kernel_size = 3, stride = 2): return (size - (kernel_size - 1) - 1) // stride + 1 convw = (conv2d_size_out(conv2d_size_out(w, 3, 2), 2, 1)) convh = (conv2d_size_out(conv2d_size_out(h, 3, 2), 2, 1)) conv_output_size = convw * convh * 16*lookback self.conv_head = nn.Linear(conv_output_size, OUT_DIM) linear_input_size = 3*lookback self.sl1 = nn.Linear(linear_input_size, 32) self.scent_head = nn.Linear(32, OUT_DIM) # NOTE: these are given LSTM-like names because this model was a # placeholder/sanity-check for before the LSTM model was fully implemented self.lstm = nn.Linear( OUT_DIM+OUT_DIM, (OUT_DIM+OUT_DIM)//4, ) self.lstm_dense_action = nn.Linear((OUT_DIM+OUT_DIM)//4, n_actions) self.lstm_dense_value = nn.Linear((OUT_DIM+OUT_DIM)//4, 1) # Called with either one element to determine next action, or a batch # during optimization. Returns tensor([[left0exp,right0exp]...]). def forward(self, x, lstm_inputs): # lstm_inputs is not really used and was just a placeholder # for when the LSTM model was implemented -- can pass in anything # some of the variable names will also be LSTM-like but they're all # generally Linear layers as defined above # h_n, c_n = lstm_inputs vision_input, scent_input, moved = x v1 = F.gelu(self.conv1(vision_input.permute(0, 3, 1, 2))) v2 = F.gelu(self.conv2(v1)) v_flat = v2.view((v2.size(0), -1)) vision_out = F.gelu(self.conv_head(v_flat)) s1 = F.gelu(self.sl1(scent_input)) scent_out = F.gelu(self.scent_head(s1)) concat_vs_out = torch.cat((vision_out, scent_out), dim=-1) lstm_out = self.lstm(concat_vs_out) h_out, c_out = lstm_out, lstm_out action_logits = self.lstm_dense_action(h_out) action_values = self.lstm_dense_value(h_out) return (action_logits, action_values, (h_out, c_out))
34.290909
82
0.65562
9c693774e8ddca9ebe050f20abe3b9bb3d4c9148
5,314
py
Python
dbas/helper/tests/test_relation.py
tbsschroeder/dbas
9c86eccde65cd64bc5719573b3b8449d8f333e08
[ "MIT" ]
null
null
null
dbas/helper/tests/test_relation.py
tbsschroeder/dbas
9c86eccde65cd64bc5719573b3b8449d8f333e08
[ "MIT" ]
null
null
null
dbas/helper/tests/test_relation.py
tbsschroeder/dbas
9c86eccde65cd64bc5719573b3b8449d8f333e08
[ "MIT" ]
null
null
null
import transaction from dbas.database import DBDiscussionSession from dbas.database.discussion_model import Argument, Premise, ClickedArgument, SeenArgument from dbas.helper.relation import get_undermines_for_argument_uid, get_undercuts_for_argument_uid, \ get_rebuts_for_argument_uid, get_supports_for_argument_uid, set_new_undermine_or_support_for_pgroup, \ set_new_undercut, set_new_rebut, set_new_support from dbas.tests.utils import TestCaseWithConfig class RelationHelperTest(TestCaseWithConfig): def tearDown(self): for uid in [arg.uid for arg in DBDiscussionSession.query(Argument).filter_by(author_uid=self.user_christian.uid).all()]: DBDiscussionSession.query(ClickedArgument).filter_by(argument_uid=uid).delete() DBDiscussionSession.query(SeenArgument).filter_by(argument_uid=uid).delete() DBDiscussionSession.query(Argument).filter_by(author_uid=self.user_christian.uid).delete() DBDiscussionSession.flush() transaction.commit() super().tearDown() def test_get_undermines_for_argument_uid(self): val = get_undermines_for_argument_uid('a') self.assertIsNone(val) val = get_undermines_for_argument_uid(0) self.assertIsNone(val) val = get_undermines_for_argument_uid(100) self.assertEqual(len(val), 0) val = get_undermines_for_argument_uid(11) self.assertEqual(len(val), 1) val = get_undermines_for_argument_uid('11') self.assertEqual(len(val), 1) def test_get_undercuts_for_argument_uid(self): val = get_undercuts_for_argument_uid('a') self.assertIsNone(val) val = get_undercuts_for_argument_uid(100) self.assertIsNone(val) val = get_undercuts_for_argument_uid(0) self.assertIsNone(val) val = get_undercuts_for_argument_uid(36) self.assertGreaterEqual(len(val), 1) val = get_undercuts_for_argument_uid('36') self.assertGreaterEqual(len(val), 1) def test_get_rebuts_for_argument_uid(self): val = get_rebuts_for_argument_uid('a') self.assertIsNone(val) val = get_rebuts_for_argument_uid(0) self.assertIsNone(val) val = get_rebuts_for_argument_uid(100) self.assertIsNone(val) val = get_rebuts_for_argument_uid(62) self.assertEqual(len(val), 2) val = get_rebuts_for_argument_uid('62') self.assertEqual(len(val), 2) def test_get_supports_for_argument_uid(self): val = get_supports_for_argument_uid('a') self.assertIsNone(val) val = get_supports_for_argument_uid(0) self.assertIsNone(val) val = get_supports_for_argument_uid(100) self.assertEqual(len(val), 0) val = get_supports_for_argument_uid(3) self.assertEqual(len(val), 1) val = get_supports_for_argument_uid('3') self.assertEqual(len(val), 1) def test_set_new_undermine_or_support_for_pgroup(self): db_argument = DBDiscussionSession.query(Argument).get(1) db_premise = DBDiscussionSession.query(Premise).filter_by(premisegroup_uid=db_argument.premisegroup_uid).first() before = DBDiscussionSession.query(Argument).filter(Argument.premisegroup_uid == 1, Argument.conclusion_uid == db_premise.statement_uid).all() set_new_undermine_or_support_for_pgroup(1, db_argument, False, self.user_christian, self.issue_cat_or_dog) after = DBDiscussionSession.query(Argument).filter(Argument.premisegroup_uid == 1, Argument.conclusion_uid == db_premise.statement_uid).all() self.assertEqual(len(before), len(after)) def test_set_new_undercut(self): db_argument = DBDiscussionSession.query(Argument).get(1) before = DBDiscussionSession.query(Argument).filter_by(argument_uid=1).all() set_new_undercut(1, db_argument, self.user_christian, self.issue_cat_or_dog) after = DBDiscussionSession.query(Argument).filter_by(argument_uid=1).all() self.assertLess(len(before), len(after)) def test_set_new_rebut(self): db_argument = DBDiscussionSession.query(Argument).get(1) before = DBDiscussionSession.query(Argument).filter_by(conclusion_uid=db_argument.conclusion_uid).all() set_new_rebut(1, db_argument, self.user_christian, self.issue_cat_or_dog) after = DBDiscussionSession.query(Argument).filter_by(conclusion_uid=db_argument.conclusion_uid).all() self.assertLess(len(before), len(after)) def test_set_new_support(self): db_argument = DBDiscussionSession.query(Argument).get(1) before = DBDiscussionSession.query(Argument).filter(Argument.premisegroup_uid == 1, Argument.conclusion_uid == db_argument.conclusion_uid).all() set_new_support(1, db_argument, self.user_christian, self.issue_cat_or_dog) after = DBDiscussionSession.query(Argument).filter(Argument.premisegroup_uid == 1, Argument.conclusion_uid == db_argument.conclusion_uid).all() self.assertLess(len(before), len(after))
43.557377
120
0.695898
d7f9d21085897795b247f1d610170d15a7a39799
2,126
py
Python
setup.py
jcaberio/Murmur
ceb93292cde7ca431b4d850f50126fa5e69e433e
[ "MIT" ]
null
null
null
setup.py
jcaberio/Murmur
ceb93292cde7ca431b4d850f50126fa5e69e433e
[ "MIT" ]
null
null
null
setup.py
jcaberio/Murmur
ceb93292cde7ca431b4d850f50126fa5e69e433e
[ "MIT" ]
2
2017-05-21T17:00:29.000Z
2019-01-29T15:06:47.000Z
# -*- coding: utf-8 -*- """ Murmur Hash Library =================== Murmur Hash Library is a simple c level implementation developed for high speed hashing of in memory strings, on disk files, and the contents of zip files. As the name implies the hashes are generated via an implementation of `MurmurHash 2.0`_. A few quick NOTES and WARNINGS: The implementation of MurMur that is used in this code makes the following assumptions about your machine: 1. A 4-byte value can be read from any address without crashing 2. sizeof(int) == 4 It will also not produce the same results on little-endian and big-endian machines. I believe it would be easily possible to get around these limitations. .. _MurmurHash 2.0: http://murmurhash.googlepages.com/ """ import ez_setup ez_setup.use_setuptools() from setuptools import setup, Extension setup( name='MurmurV3', version='0.3', license='MIT', author='Jorick Caberio, Bryan McLemore', author_email='jorick.caberio@voyagerinnovation, kaelten@gmail.com', description='Provides fast murmur hashes for strings, files, and ziped files in Python 3.', url = 'https://github.com/jcaberio/MurmurV3', download_url = 'https://github.com/jcaberio/MurmurV3/tarball/0.5', zip_safe=False, # I'm not sure if it is egg safe so I'm erring on the side of caution. long_description=__doc__, ext_modules = [ Extension('murmur', [ "murmur/murmur.cpp", "murmur/unzip.c", "murmur/ioapi.c", ], depends=[ "murmur/include/crypt.h", "murmur/include/ioapi.h", "murmur/include/unzip.h", ], include_dirs=['murmur/include'], libraries=['z'], language='c++') ], platforms='any', classifiers=[ 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: C++', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries :: Python Modules' ], packages=[] )
29.123288
95
0.682973
3cb24255d1569c254e4e912b700c6012c55fe142
81,690
py
Python
tensorflow/python/keras/engine/training_test.py
Mainframed69/tensorflow
f8b5c95a7882efd58b123aeb308dfb173658a9e6
[ "Apache-2.0" ]
1
2019-07-22T02:37:51.000Z
2019-07-22T02:37:51.000Z
tensorflow/python/keras/engine/training_test.py
Mainframed69/tensorflow
f8b5c95a7882efd58b123aeb308dfb173658a9e6
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/engine/training_test.py
Mainframed69/tensorflow
f8b5c95a7882efd58b123aeb308dfb173658a9e6
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for training routines.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import logging import sys import numpy as np import six from tensorflow.python import keras from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util as tf_test_util from tensorflow.python.keras import metrics as metrics_module from tensorflow.python.keras import testing_utils from tensorflow.python.keras.callbacks import Callback from tensorflow.python.keras.engine.training_utils import weighted_masked_objective from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training.rmsprop import RMSPropOptimizer try: import scipy.sparse as scipy_sparse # pylint: disable=g-import-not-at-top except ImportError: scipy_sparse = None class TrainingTest(test.TestCase): @tf_test_util.run_in_graph_and_eager_modes def test_fit_on_arrays(self): a = keras.layers.Input(shape=(3,), name='input_a') b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(4, name='dense') c = dense(a) d = dense(b) e = keras.layers.Dropout(0.5, name='dropout')(c) model = keras.models.Model([a, b], [d, e]) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' loss_weights = [1., 0.5] model.compile( optimizer, loss, metrics=[metrics_module.CategoricalAccuracy(), 'mae'], loss_weights=loss_weights) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 4)) output_e_np = np.random.random((10, 4)) # Test fit at different verbosity model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, batch_size=5, verbose=0) model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, batch_size=5, verbose=1) model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=2, batch_size=5, verbose=2) model.train_on_batch([input_a_np, input_b_np], [output_d_np, output_e_np]) # Test model with input data as a list of lists model.fit( [np.ndarray.tolist(input_a_np), np.ndarray.tolist(input_b_np)], [output_d_np, output_e_np], epochs=2, batch_size=5, verbose=2) # Test with validation data model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], validation_data=([input_a_np, input_b_np], [output_d_np, output_e_np]), epochs=1, batch_size=5, verbose=0) model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], validation_data=([input_a_np, input_b_np], [output_d_np, output_e_np]), epochs=2, batch_size=5, verbose=1) model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], validation_data=([input_a_np, input_b_np], [output_d_np, output_e_np]), epochs=2, batch_size=5, verbose=2) # Test with validation split model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=2, batch_size=5, verbose=0, validation_split=0.2) # Test with dictionary inputs model.fit( { 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }, epochs=1, batch_size=5, verbose=0) model.fit( { 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }, epochs=1, batch_size=5, verbose=1) model.fit( { 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }, validation_data=({ 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }), epochs=1, batch_size=5, verbose=0) model.train_on_batch({ 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }) # Test with lists for loss, metrics loss = ['mae', 'mse'] model.compile( optimizer, loss, metrics=[metrics_module.CategoricalAccuracy(), 'mae']) model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, batch_size=5, verbose=0) # Test with dictionaries for loss, metrics, loss weights loss = {'dense': 'mse', 'dropout': 'mae'} loss_weights = {'dense': 1., 'dropout': 0.5} metrics = { 'dense': 'mse', 'dropout': metrics_module.CategoricalAccuracy() } model.compile(optimizer, loss, metrics=metrics, loss_weights=loss_weights) model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, batch_size=5, verbose=0) # Invalid use cases with self.assertRaises(ValueError): model.train_on_batch({'input_a': input_a_np}, [output_d_np, output_e_np]) with self.assertRaises(AttributeError): model.fit( [input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, validation_data=([input_a_np, input_b_np], 0, 0), verbose=0) with self.assertRaises(ValueError): model.train_on_batch([input_a_np], [output_d_np, output_e_np]) with self.assertRaises(AttributeError): model.train_on_batch(1, [output_d_np, output_e_np]) with self.assertRaises(ValueError): model.train_on_batch(input_a_np, [output_d_np, output_e_np]) with self.assertRaises(ValueError): bad_input = np.random.random((11, 3)) model.train_on_batch([bad_input, input_b_np], [output_d_np, output_e_np]) with self.assertRaises(ValueError): bad_target = np.random.random((11, 4)) model.train_on_batch([input_a_np, input_b_np], [bad_target, output_e_np]) # Build single-input model x = keras.layers.Input(shape=(3,), name='input_a') y = keras.layers.Dense(4)(x) model = keras.models.Model(x, y) model.compile(optimizer, loss='mse') # This will work model.fit([input_a_np], output_d_np, epochs=1) with self.assertRaises(ValueError): model.fit([input_a_np, input_a_np], output_d_np, epochs=1) # Test model on a list of floats input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 4)) model.fit([np.ndarray.tolist(input_a_np)], [np.ndarray.tolist(input_b_np)], epochs=2, batch_size=5, verbose=2) @tf_test_util.run_in_graph_and_eager_modes def test_evaluate_predict_on_arrays(self): a = keras.layers.Input(shape=(3,), name='input_a') b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(4, name='dense') c = dense(a) d = dense(b) e = keras.layers.Dropout(0.5, name='dropout')(c) model = keras.models.Model([a, b], [d, e]) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' loss_weights = [1., 0.5] model.compile( optimizer, loss, metrics=['mae', metrics_module.CategoricalAccuracy()], loss_weights=loss_weights, sample_weight_mode=None) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 4)) output_e_np = np.random.random((10, 4)) # Test evaluate at different verbosity out = model.evaluate( [input_a_np, input_b_np], [output_d_np, output_e_np], batch_size=5, verbose=0) self.assertEqual(len(out), 7) out = model.evaluate( [input_a_np, input_b_np], [output_d_np, output_e_np], batch_size=5, verbose=1) self.assertEqual(len(out), 7) out = model.evaluate( [input_a_np, input_b_np], [output_d_np, output_e_np], batch_size=5, verbose=2) self.assertEqual(len(out), 7) out = model.test_on_batch([input_a_np, input_b_np], [output_d_np, output_e_np]) self.assertEqual(len(out), 7) # Test evaluate with dictionary inputs model.evaluate( { 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }, batch_size=5, verbose=0) model.evaluate( { 'input_a': input_a_np, 'input_b': input_b_np }, { 'dense': output_d_np, 'dropout': output_e_np }, batch_size=5, verbose=1) # Test predict out = model.predict([input_a_np, input_b_np], batch_size=5) self.assertEqual(len(out), 2) out = model.predict({'input_a': input_a_np, 'input_b': input_b_np}) self.assertEqual(len(out), 2) out = model.predict_on_batch({ 'input_a': input_a_np, 'input_b': input_b_np }) self.assertEqual(len(out), 2) @tf_test_util.run_in_graph_and_eager_modes def test_activity_regularizer_fit(self): loss = {} for reg in [None, 'l2']: inputs = keras.layers.Input(shape=(10,)) x = keras.layers.Dense( 10, activation='relu', activity_regularizer=reg, kernel_initializer='ones', use_bias=False)(inputs) outputs = keras.layers.Dense(1, activation='sigmoid', kernel_initializer='ones', use_bias=False)(x) model = keras.Model(inputs, outputs) x = np.ones((10, 10), 'float32') y = np.ones((10, 1), 'float32') optimizer = RMSPropOptimizer(learning_rate=0.001) model.compile(optimizer, 'binary_crossentropy') model.fit(x, y, batch_size=2, epochs=5) loss[reg] = model.evaluate(x, y) self.assertLess(loss[None], loss['l2']) @tf_test_util.run_in_graph_and_eager_modes def test_activity_regularizer_loss_value(self): inputs = keras.layers.Input(shape=(10,)) outputs = keras.layers.Dense( 1, kernel_initializer=keras.initializers.zeros(), bias_initializer=keras.initializers.ones(), activity_regularizer='l2')( inputs) model = keras.Model(inputs, outputs) x = np.ones((10, 10), 'float32') y = np.ones((10, 1), 'float32') optimizer = RMSPropOptimizer(learning_rate=0.001) model.compile(optimizer, 'binary_crossentropy') loss = model.test_on_batch(x, y) self.assertAlmostEqual(0.01, loss, places=4) @tf_test_util.run_in_graph_and_eager_modes def test_activity_regularizer_batch_independent(self): inputs = keras.layers.Input(shape=(10,)) x = keras.layers.Dense( 10, activation='relu', activity_regularizer='l2')( inputs) outputs = keras.layers.Dense(1, activation='sigmoid')(x) model = keras.Model(inputs, outputs) optimizer = RMSPropOptimizer(learning_rate=0.001) model.compile(optimizer, 'binary_crossentropy') x = np.ones((10, 10), 'float32') y = np.ones((10, 1), 'float32') loss_small_batch = model.test_on_batch(x, y) x2 = np.ones((20, 10), 'float32') y2 = np.ones((20, 1), 'float32') loss_big_batch = model.test_on_batch(x2, y2) self.assertAlmostEqual(loss_small_batch, loss_big_batch, places=4) @tf_test_util.run_in_graph_and_eager_modes def test_activity_regularizer_in_model_call(self): class MyModel(keras.Model): def call(self, inputs): self.add_loss(inputs) return inputs x = ops.convert_to_tensor(1.) model = MyModel() _ = model(x) self.assertEqual(1, len(model.losses)) def test_training_on_sparse_data_with_dense_placeholders(self): if scipy_sparse is None: return with self.cached_session(): test_inputs = [ scipy_sparse.random(6, 3, density=0.25).tocsr() for _ in range(2) ] test_outputs = [ scipy_sparse.random(6, i, density=0.25).tocsr() for i in range(3, 5) ] in1 = keras.layers.Input(shape=(3,)) in2 = keras.layers.Input(shape=(3,)) out1 = keras.layers.Dropout(0.5, name='dropout')(in1) out2 = keras.layers.Dense(4, name='dense_1')(in2) model = keras.Model([in1, in2], [out1, out2]) model.predict(test_inputs, batch_size=2) optimizer = RMSPropOptimizer(learning_rate=0.001) model.compile( optimizer, 'mse', metrics=['mae', metrics_module.CategoricalAccuracy()]) model.fit(test_inputs, test_outputs, epochs=1, batch_size=2, validation_split=0.5) model.evaluate(test_inputs, test_outputs, batch_size=2) def test_compile_with_sparse_placeholders(self): with self.cached_session(): input_layer = keras.layers.Input(shape=(10,), sparse=True) weights = variables_lib.Variable( np.ones((10, 1)).astype(np.float32), name='weights') weights_mult = lambda x: sparse_ops.sparse_tensor_dense_matmul(x, weights) output_layer = keras.layers.Lambda(weights_mult)(input_layer) model = keras.Model([input_layer], output_layer) model.compile( loss='binary_crossentropy', optimizer=keras.optimizers.Adam(lr=0.0001), metrics=['accuracy']) def test_that_trainable_disables_updates(self): val_a = np.random.random((10, 4)) val_out = np.random.random((10, 4)) with self.cached_session(): a = keras.layers.Input(shape=(4,)) layer = keras.layers.BatchNormalization(input_shape=(4,)) b = layer(a) model = keras.Model(a, b) model.trainable = False assert not model.updates model.compile('sgd', 'mse') assert not model.updates x1 = model.predict(val_a) model.train_on_batch(val_a, val_out) x2 = model.predict(val_a) self.assertAllClose(x1, x2, atol=1e-7) model.trainable = True model.compile('sgd', 'mse') assert model.updates model.train_on_batch(val_a, val_out) x2 = model.predict(val_a) assert np.abs(np.sum(x1 - x2)) > 1e-5 layer.trainable = False model.compile('sgd', 'mse') assert not model.updates x1 = model.predict(val_a) model.train_on_batch(val_a, val_out) x2 = model.predict(val_a) self.assertAllClose(x1, x2, atol=1e-7) def test_logs_passed_to_callbacks(self): with self.cached_session(): input_dim = 5 num_classes = 1 class TestCallback(Callback): def __init__(self): super(TestCallback, self).__init__() self.epoch_end_logs = None self.batch_end_logs = None self.epoch_end_call_count = 0 self.batch_end_call_count = 0 def on_epoch_end(self, epoch, logs=None): self.epoch_end_logs = logs self.epoch_end_call_count += 1 def on_batch_end(self, batch, logs=None): self.batch_end_logs = logs self.batch_end_call_count += 1 model = testing_utils.get_small_sequential_mlp( num_hidden=10, num_classes=num_classes, input_dim=input_dim) model.compile( loss='binary_crossentropy', metrics=['acc'], weighted_metrics=['mae'], optimizer=RMSPropOptimizer(learning_rate=0.01)) np.random.seed(1337) (x_train, y_train), (_, _) = testing_utils.get_test_data( train_samples=10, test_samples=10, input_shape=(input_dim,), num_classes=num_classes) test_callback = TestCallback() model.fit( x_train, y_train, batch_size=2, epochs=2, verbose=0, callbacks=[test_callback], validation_data=(x_train, y_train)) self.assertEqual(test_callback.batch_end_call_count, 10) self.assertEqual(test_callback.epoch_end_call_count, 2) self.assertSetEqual( set(test_callback.batch_end_logs.keys()), set(['batch', 'size', 'acc', 'loss', 'weighted_mean_absolute_error'])) self.assertSetEqual( set(test_callback.epoch_end_logs.keys()), set([ 'acc', 'loss', 'weighted_mean_absolute_error', 'val_acc', 'val_loss', 'val_weighted_mean_absolute_error' ])) class TestExceptionsAndWarnings(test.TestCase): @tf_test_util.run_in_graph_and_eager_modes def test_invalid_loss(self): num_classes = 5 train_samples = 1000 test_samples = 1000 input_dim = 5 model = testing_utils.get_small_sequential_mlp( num_hidden=10, num_classes=num_classes, input_dim=input_dim) optimizer = RMSPropOptimizer(learning_rate=0.001) model.compile(optimizer, loss='categorical_crossentropy') np.random.seed(1337) (x_train, y_train), (_, _) = testing_utils.get_test_data( train_samples=train_samples, test_samples=test_samples, input_shape=(input_dim,), num_classes=num_classes) with self.assertRaises(ValueError): model.fit(x_train, np.concatenate([y_train, y_train], axis=-1)) if not context.executing_eagerly(): # TODO(psv): Investigate these use cases in eager mode. with self.assertRaises(ValueError): model.fit(x_train, y_train) with self.assertRaises(ValueError): model.compile(optimizer, loss=None) @tf_test_util.run_in_graph_and_eager_modes def test_compile_warning_for_loss_missing_output(self): with self.cached_session(): inp = keras.layers.Input(shape=(16,), name='input_a') out_1 = keras.layers.Dense(8, name='dense_1')(inp) out_2 = keras.layers.Dense(3, activation='softmax', name='dense_2')(out_1) model = keras.models.Model(inputs=[inp], outputs=[out_1, out_2]) optimizer = RMSPropOptimizer(learning_rate=0.001) with test.mock.patch.object(logging, 'warning') as mock_log: model.compile( optimizer, loss={ 'dense_2': 'categorical_crossentropy', }, metrics={ 'dense_2': 'categorical_accuracy', 'dense_1': metrics_module.CategoricalAccuracy(), }) msg = ('Output "dense_1" missing from loss dictionary. We assume this ' 'was done on purpose. The fit and evaluate APIs will not be ' 'expecting any data to be passed to "dense_1".') self.assertRegexpMatches(str(mock_log.call_args), msg) class LossWeightingTest(test.TestCase): @tf_test_util.run_in_graph_and_eager_modes def test_class_weights(self): num_classes = 5 batch_size = 5 epochs = 5 weighted_class = 3 train_samples = 1000 test_samples = 1000 input_dim = 5 learning_rate = 0.001 model = testing_utils.get_small_sequential_mlp( num_hidden=10, num_classes=num_classes, input_dim=input_dim) model.compile( loss='categorical_crossentropy', metrics=['acc', metrics_module.CategoricalAccuracy()], weighted_metrics=['mae', metrics_module.CategoricalAccuracy()], optimizer=RMSPropOptimizer(learning_rate=learning_rate)) np.random.seed(1337) (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( train_samples=train_samples, test_samples=test_samples, input_shape=(input_dim,), num_classes=num_classes) int_y_test = y_test.copy() int_y_train = y_train.copy() # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) test_ids = np.where(int_y_test == np.array(weighted_class))[0] class_weight = dict([(i, 1.) for i in range(num_classes)]) class_weight[weighted_class] = 2. sample_weight = np.ones((y_train.shape[0])) sample_weight[int_y_train == weighted_class] = 2. model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs // 3, verbose=0, class_weight=class_weight, validation_data=(x_train, y_train, sample_weight)) model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs // 2, verbose=0, class_weight=class_weight) model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs // 2, verbose=0, class_weight=class_weight, validation_split=0.1) model.train_on_batch( x_train[:batch_size], y_train[:batch_size], class_weight=class_weight) ref_score = model.evaluate(x_test, y_test, verbose=0) score = model.evaluate( x_test[test_ids, :], y_test[test_ids, :], verbose=0) self.assertLess(score[0], ref_score[0]) @tf_test_util.run_in_graph_and_eager_modes def test_sample_weights(self): num_classes = 5 batch_size = 5 epochs = 5 weighted_class = 3 train_samples = 1000 test_samples = 1000 input_dim = 5 learning_rate = 0.001 model = testing_utils.get_small_sequential_mlp( num_hidden=10, num_classes=num_classes, input_dim=input_dim) model.compile( RMSPropOptimizer(learning_rate=learning_rate), metrics=['acc', metrics_module.CategoricalAccuracy()], weighted_metrics=['mae', metrics_module.CategoricalAccuracy()], loss='categorical_crossentropy') np.random.seed(43) (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( train_samples=train_samples, test_samples=test_samples, input_shape=(input_dim,), num_classes=num_classes) int_y_test = y_test.copy() int_y_train = y_train.copy() # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) test_ids = np.where(int_y_test == np.array(weighted_class))[0] sample_weight = np.ones((y_train.shape[0])) sample_weight[int_y_train == weighted_class] = 2. model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs // 3, verbose=0, sample_weight=sample_weight) model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs // 3, verbose=0, sample_weight=sample_weight, validation_split=0.1) model.train_on_batch( x_train[:batch_size], y_train[:batch_size], sample_weight=sample_weight[:batch_size]) model.test_on_batch( x_train[:batch_size], y_train[:batch_size], sample_weight=sample_weight[:batch_size]) ref_score = model.evaluate(x_test, y_test, verbose=0) if not context.executing_eagerly(): score = model.evaluate( x_test[test_ids, :], y_test[test_ids, :], verbose=0) self.assertLess(score[0], ref_score[0]) @tf_test_util.run_in_graph_and_eager_modes def test_warning_for_concurrent_sample_and_class_weights(self): model = keras.models.Sequential() model.add(keras.layers.Dense(10, input_shape=(3,))) model.compile( loss='mse', optimizer=RMSPropOptimizer(learning_rate=0.01)) x_train = np.random.random((10, 3)) y_train = np.random.random((10, 10)) sample_weight = np.ones((y_train.shape[0])) class_weight = {0: 1., 1: 1.} with test.mock.patch.object(logging, 'warning') as mock_log: model.fit( x_train, y_train, epochs=1, verbose=0, sample_weight=sample_weight, class_weight=class_weight) msg = ('The `class_weight` argument will be ignored.') self.assertRegexpMatches(str(mock_log.call_args), msg) @tf_test_util.run_in_graph_and_eager_modes def test_temporal_sample_weights(self): num_classes = 5 batch_size = 5 epochs = 5 weighted_class = 3 train_samples = 1000 test_samples = 1000 input_dim = 5 timesteps = 3 learning_rate = 0.001 with self.cached_session(): model = keras.models.Sequential() model.add( keras.layers.TimeDistributed( keras.layers.Dense(num_classes), input_shape=(timesteps, input_dim))) model.add(keras.layers.Activation('softmax')) np.random.seed(1337) (x_train, y_train), (x_test, y_test) = testing_utils.get_test_data( train_samples=train_samples, test_samples=test_samples, input_shape=(input_dim,), num_classes=num_classes) int_y_test = y_test.copy() int_y_train = y_train.copy() # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) test_ids = np.where(int_y_test == np.array(weighted_class))[0] sample_weight = np.ones((y_train.shape[0])) sample_weight[int_y_train == weighted_class] = 2. temporal_x_train = np.reshape(x_train, (len(x_train), 1, x_train.shape[1])) temporal_x_train = np.repeat(temporal_x_train, timesteps, axis=1) temporal_x_test = np.reshape(x_test, (len(x_test), 1, x_test.shape[1])) temporal_x_test = np.repeat(temporal_x_test, timesteps, axis=1) temporal_y_train = np.reshape(y_train, (len(y_train), 1, y_train.shape[1])) temporal_y_train = np.repeat(temporal_y_train, timesteps, axis=1) temporal_y_test = np.reshape(y_test, (len(y_test), 1, y_test.shape[1])) temporal_y_test = np.repeat(temporal_y_test, timesteps, axis=1) temporal_sample_weight = np.reshape(sample_weight, (len(sample_weight), 1)) temporal_sample_weight = np.repeat( temporal_sample_weight, timesteps, axis=1) model.compile( RMSPropOptimizer(learning_rate=learning_rate), loss='binary_crossentropy', metrics=['acc', metrics_module.CategoricalAccuracy()], weighted_metrics=['mae', metrics_module.CategoricalAccuracy()], sample_weight_mode='temporal') model.fit( temporal_x_train, temporal_y_train, batch_size=batch_size, epochs=epochs // 3, verbose=0, sample_weight=temporal_sample_weight) model.fit( temporal_x_train, temporal_y_train, batch_size=batch_size, epochs=epochs // 3, verbose=0, sample_weight=temporal_sample_weight, validation_split=0.1) model.train_on_batch( temporal_x_train[:batch_size], temporal_y_train[:batch_size], sample_weight=temporal_sample_weight[:batch_size]) model.test_on_batch( temporal_x_train[:batch_size], temporal_y_train[:batch_size], sample_weight=temporal_sample_weight[:batch_size]) ref_score = model.evaluate(temporal_x_test, temporal_y_test, verbose=0) if not context.executing_eagerly(): score = model.evaluate( temporal_x_test[test_ids], temporal_y_test[test_ids], verbose=0) self.assertLess(score[0], ref_score[0]) @tf_test_util.run_in_graph_and_eager_modes def test_class_weight_invalid_use_case(self): num_classes = 5 train_samples = 1000 test_samples = 1000 input_dim = 5 timesteps = 3 learning_rate = 0.001 with self.cached_session(): model = keras.models.Sequential() model.add( keras.layers.TimeDistributed( keras.layers.Dense(num_classes), input_shape=(timesteps, input_dim))) model.add(keras.layers.Activation('softmax')) optimizer = RMSPropOptimizer(learning_rate=learning_rate) model.compile(optimizer, loss='binary_crossentropy') (x_train, y_train), _ = testing_utils.get_test_data( train_samples=train_samples, test_samples=test_samples, input_shape=(input_dim,), num_classes=num_classes) # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) class_weight = dict([(i, 1.) for i in range(num_classes)]) del class_weight[1] with self.assertRaises(ValueError): model.fit(x_train, y_train, epochs=0, verbose=0, class_weight=class_weight) with self.assertRaises(ValueError): model.compile( optimizer, loss='binary_crossentropy', sample_weight_mode=[]) # Build multi-output model x = keras.Input((3,)) y1 = keras.layers.Dense(4, name='1')(x) y2 = keras.layers.Dense(4, name='2')(x) model = keras.models.Model(x, [y1, y2]) model.compile(optimizer, loss='mse') x_np = np.random.random((10, 3)) y_np = np.random.random((10, 4)) w_np = np.random.random((10,)) # This will work model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': w_np}) # These will not with self.assertRaises(ValueError): model.fit(x_np, [y_np, y_np], epochs=1, sample_weight=[w_np]) with self.assertRaises(TypeError): model.fit(x_np, [y_np, y_np], epochs=1, sample_weight=w_np) with self.assertRaises(ValueError): bad_w_np = np.random.random((11,)) model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': bad_w_np}) with self.assertRaises(ValueError): bad_w_np = np.random.random((10, 2)) model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': bad_w_np}) with self.assertRaises(ValueError): bad_w_np = np.random.random((10, 2, 2)) model.fit(x_np, [y_np, y_np], epochs=1, sample_weight={'1': bad_w_np}) @tf_test_util.run_in_graph_and_eager_modes def test_default_sample_weight(self): """Verifies that fit works without having to set sample_weight.""" num_classes = 5 input_dim = 5 timesteps = 3 learning_rate = 0.001 with self.cached_session(): model = keras.models.Sequential() model.add( keras.layers.TimeDistributed( keras.layers.Dense(num_classes), input_shape=(timesteps, input_dim))) x = np.random.random((10, timesteps, input_dim)) y = np.random.random((10, timesteps, num_classes)) optimizer = RMSPropOptimizer(learning_rate=learning_rate) # sample_weight_mode is a list and mode value is None model.compile(optimizer, loss='mse', sample_weight_mode=[None]) model.fit(x, y, epochs=1, batch_size=10) # sample_weight_mode is a list and mode value is `temporal` model.compile(optimizer, loss='mse', sample_weight_mode=['temporal']) model.fit(x, y, epochs=1, batch_size=10) # sample_weight_mode is a dict and mode value is None model.compile( optimizer, loss='mse', sample_weight_mode={'time_distributed': None}) model.fit(x, y, epochs=1, batch_size=10) # sample_weight_mode is a dict and mode value is `temporal` model.compile( optimizer, loss='mse', sample_weight_mode={'time_distributed': 'temporal'}) model.fit(x, y, epochs=1, batch_size=10) # sample_weight_mode is a not a list/dict and mode value is None model.compile(optimizer, loss='mse', sample_weight_mode=None) model.fit(x, y, epochs=1, batch_size=10) # sample_weight_mode is a not a list/dict and mode value is `temporal` model.compile(optimizer, loss='mse', sample_weight_mode='temporal') model.fit(x, y, epochs=1, batch_size=10) class LossMaskingTest(test.TestCase): @tf_test_util.run_in_graph_and_eager_modes def test_masking_graph_sequential(self): with self.cached_session(): x = np.array([[[1], [1]], [[0], [0]]]) model = keras.models.Sequential() model.add(keras.layers.Masking(mask_value=0, input_shape=(2, 1))) model.add( keras.layers.TimeDistributed( keras.layers.Dense(1, kernel_initializer='one'))) model.compile(loss='mse', optimizer=RMSPropOptimizer(learning_rate=0.001)) y = np.array([[[1], [1]], [[1], [1]]]) loss = model.train_on_batch(x, y) self.assertEqual(float(loss), 0.) @tf_test_util.run_in_graph_and_eager_modes def test_masking_deferred_sequential(self): with self.cached_session(): x = np.array([[[1], [1]], [[0], [0]]]) model = keras.models.Sequential() model.add(keras.layers.Masking(mask_value=0)) model.add( keras.layers.TimeDistributed( keras.layers.Dense(1, kernel_initializer='one'))) model.compile(loss='mse', optimizer=RMSPropOptimizer(learning_rate=0.001)) y = np.array([[[1], [1]], [[1], [1]]]) loss = model.train_on_batch(x, y) self.assertEqual(float(loss), 0.) @tf_test_util.run_in_graph_and_eager_modes def test_masking_functional(self): with self.cached_session(): x = np.array([[[1], [1]], [[0], [0]]]) inputs = keras.layers.Input((2, 1)) outputs = keras.layers.Masking(mask_value=0)(inputs) outputs = keras.layers.TimeDistributed( keras.layers.Dense(1, kernel_initializer='one'))(outputs) model = keras.Model(inputs, outputs) model.compile(loss='mse', optimizer=RMSPropOptimizer(learning_rate=0.001)) y = np.array([[[1], [1]], [[1], [1]]]) loss = model.train_on_batch(x, y) self.assertEqual(float(loss), 0.) @tf_test_util.run_in_graph_and_eager_modes def test_mask_argument_in_layer(self): # Test that the mask argument gets correctly passed to a layer in the # functional API. class CustomMaskedLayer(keras.layers.Layer): def __init__(self): super(CustomMaskedLayer, self).__init__() self.supports_masking = True def call(self, inputs, mask=None): assert mask is not None return inputs def compute_output_shape(self, input_shape): return input_shape with self.cached_session(): x = np.random.random((5, 3)) inputs = keras.layers.Input((3,)) masked = keras.layers.Masking(mask_value=0)(inputs) outputs = CustomMaskedLayer()(masked) model = keras.Model(inputs, outputs) model.compile(loss='mse', optimizer=RMSPropOptimizer(learning_rate=0.001)) y = np.random.random((5, 3)) model.train_on_batch(x, y) def test_loss_masking(self): with self.cached_session(): weighted_loss = weighted_masked_objective(keras.losses.get('mae')) shape = (3, 4, 2) x = np.arange(24).reshape(shape) y = 2 * x # Normally the trailing 1 is added by standardize_weights weights = np.ones((3,)) mask = np.ones((3, 4)) mask[1, 0] = 0 keras.backend.eval( weighted_loss( keras.backend.variable(x), keras.backend.variable(y), keras.backend.variable(weights), keras.backend.variable(mask))) class TestDynamicTrainability(test.TestCase): def test_trainable_warning(self): with self.cached_session(): x = np.random.random((5, 3)) y = np.random.random((5, 2)) model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_dim=3)) model.trainable = False model.compile('rmsprop', 'mse') model.trainable = True model.train_on_batch(x, y) self.assertRaises(Warning) def test_trainable_argument(self): with self.cached_session(): x = np.random.random((5, 3)) y = np.random.random((5, 2)) model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_dim=3, trainable=False)) model.compile('rmsprop', 'mse') out = model.predict(x) model.train_on_batch(x, y) out_2 = model.predict(x) self.assertAllClose(out, out_2) # test with nesting inputs = keras.layers.Input(shape=(3,)) output = model(inputs) model = keras.models.Model(inputs, output) model.compile('rmsprop', 'mse') out = model.predict(x) model.train_on_batch(x, y) out_2 = model.predict(x) self.assertAllClose(out, out_2) def test_layer_trainability_switch(self): with self.cached_session(): # with constructor argument, in Sequential model = keras.models.Sequential() model.add(keras.layers.Dense(2, trainable=False, input_dim=1)) self.assertListEqual(model.trainable_weights, []) # by setting the `trainable` argument, in Sequential model = keras.models.Sequential() layer = keras.layers.Dense(2, input_dim=1) model.add(layer) self.assertListEqual(model.trainable_weights, layer.trainable_weights) layer.trainable = False self.assertListEqual(model.trainable_weights, []) # with constructor argument, in Model x = keras.layers.Input(shape=(1,)) y = keras.layers.Dense(2, trainable=False)(x) model = keras.models.Model(x, y) self.assertListEqual(model.trainable_weights, []) # by setting the `trainable` argument, in Model x = keras.layers.Input(shape=(1,)) layer = keras.layers.Dense(2) y = layer(x) model = keras.models.Model(x, y) self.assertListEqual(model.trainable_weights, layer.trainable_weights) layer.trainable = False self.assertListEqual(model.trainable_weights, []) def test_model_trainability_switch(self): with self.cached_session(): # a non-trainable model has no trainable weights x = keras.layers.Input(shape=(1,)) y = keras.layers.Dense(2)(x) model = keras.models.Model(x, y) model.trainable = False self.assertListEqual(model.trainable_weights, []) # same for Sequential model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_dim=1)) model.trainable = False self.assertListEqual(model.trainable_weights, []) def test_nested_model_trainability(self): with self.cached_session(): # a Sequential inside a Model inner_model = keras.models.Sequential() inner_model.add(keras.layers.Dense(2, input_dim=1)) x = keras.layers.Input(shape=(1,)) y = inner_model(x) outer_model = keras.models.Model(x, y) self.assertListEqual(outer_model.trainable_weights, inner_model.trainable_weights) inner_model.trainable = False self.assertListEqual(outer_model.trainable_weights, []) inner_model.trainable = True inner_model.layers[-1].trainable = False self.assertListEqual(outer_model.trainable_weights, []) # a Sequential inside a Sequential inner_model = keras.models.Sequential() inner_model.add(keras.layers.Dense(2, input_dim=1)) outer_model = keras.models.Sequential() outer_model.add(inner_model) self.assertListEqual(outer_model.trainable_weights, inner_model.trainable_weights) inner_model.trainable = False self.assertListEqual(outer_model.trainable_weights, []) inner_model.trainable = True inner_model.layers[-1].trainable = False self.assertListEqual(outer_model.trainable_weights, []) # a Model inside a Model x = keras.layers.Input(shape=(1,)) y = keras.layers.Dense(2)(x) inner_model = keras.models.Model(x, y) x = keras.layers.Input(shape=(1,)) y = inner_model(x) outer_model = keras.models.Model(x, y) self.assertListEqual(outer_model.trainable_weights, inner_model.trainable_weights) inner_model.trainable = False self.assertListEqual(outer_model.trainable_weights, []) inner_model.trainable = True inner_model.layers[-1].trainable = False self.assertListEqual(outer_model.trainable_weights, []) # a Model inside a Sequential x = keras.layers.Input(shape=(1,)) y = keras.layers.Dense(2)(x) inner_model = keras.models.Model(x, y) outer_model = keras.models.Sequential() outer_model.add(inner_model) self.assertListEqual(outer_model.trainable_weights, inner_model.trainable_weights) inner_model.trainable = False self.assertListEqual(outer_model.trainable_weights, []) inner_model.trainable = True inner_model.layers[-1].trainable = False self.assertListEqual(outer_model.trainable_weights, []) class TestTrainingWithDataTensors(test.TestCase): def test_training_and_eval_methods_on_symbolic_tensors_single_io(self): with self.cached_session(): x = keras.layers.Input(shape=(3,), name='input') y = keras.layers.Dense(4, name='dense')(x) model = keras.Model(x, y) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' model.compile( optimizer, loss, metrics=['mae', metrics_module.CategoricalAccuracy()]) inputs = keras.backend.zeros(shape=(10, 3)) targets = keras.backend.zeros(shape=(10, 4)) model.fit(inputs, targets, epochs=1, steps_per_epoch=2, verbose=0) model.evaluate(inputs, targets, steps=2, verbose=0) model.predict(inputs, steps=2) model.train_on_batch(inputs, targets) model.test_on_batch(inputs, targets) model.fit(inputs, targets, epochs=1, steps_per_epoch=2, verbose=0, validation_data=(inputs, targets), validation_steps=2) # Test with dynamic shape inputs = array_ops.placeholder_with_default( np.zeros((2, 3)), shape=tensor_shape.TensorShape([None, 3])) targets = array_ops.placeholder_with_default( np.zeros((2, 4)), shape=tensor_shape.TensorShape([None, 4])) self.assertEqual(inputs.shape.dims[0].value, None) model.fit(inputs, targets, epochs=1, steps_per_epoch=2, verbose=0) model.evaluate(inputs, targets, steps=2, verbose=0) model.predict(inputs, steps=2) model.train_on_batch(inputs, targets) model.test_on_batch(inputs, targets) model.fit(inputs, targets, epochs=1, steps_per_epoch=2, verbose=0, validation_data=(inputs, targets), validation_steps=2) def test_training_and_eval_methods_on_symbolic_tensors_multi_io(self): with self.cached_session(): a = keras.layers.Input(shape=(3,), name='input_a') b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(4, name='dense') c = dense(a) d = dense(b) e = keras.layers.Dropout(0.5, name='dropout')(c) model = keras.models.Model([a, b], [d, e]) optimizer = 'rmsprop' loss = 'mse' loss_weights = [1., 0.5] model.compile( optimizer, loss, metrics=['mae', metrics_module.CategoricalAccuracy()], loss_weights=loss_weights) input_a_tf = keras.backend.zeros(shape=(10, 3)) input_b_tf = keras.backend.zeros(shape=(10, 3)) output_d_tf = keras.backend.zeros(shape=(10, 4)) output_e_tf = keras.backend.zeros(shape=(10, 4)) model.fit( [input_a_tf, input_b_tf], [output_d_tf, output_e_tf], epochs=1, steps_per_epoch=2, verbose=0) with self.assertRaisesRegexp(ValueError, 'should specify the `steps_per_epoch`'): model.fit( [input_a_tf, input_b_tf], [output_d_tf, output_e_tf], epochs=1, batch_size=5, verbose=0) model.train_on_batch([input_a_tf, input_b_tf], [output_d_tf, output_e_tf]) # Test with dictionary inputs model.fit( {'input_a': input_a_tf, 'input_b': input_b_tf}, {'dense': output_d_tf, 'dropout': output_e_tf}, epochs=1, steps_per_epoch=2, verbose=0) model.fit( {'input_a': input_a_tf, 'input_b': input_b_tf}, {'dense': output_d_tf, 'dropout': output_e_tf}, validation_data=({'input_a': input_a_tf, 'input_b': input_b_tf}, {'dense': output_d_tf, 'dropout': output_e_tf}), epochs=1, steps_per_epoch=2, validation_steps=2, verbose=0) model.train_on_batch( {'input_a': input_a_tf, 'input_b': input_b_tf}, {'dense': output_d_tf, 'dropout': output_e_tf}) # Test with validation data model.fit( [input_a_tf, input_b_tf], [output_d_tf, output_e_tf], validation_data=([input_a_tf, input_b_tf], [output_d_tf, output_e_tf]), epochs=1, steps_per_epoch=2, validation_steps=2, verbose=0) # Test with validation split with self.assertRaisesRegexp(ValueError, 'you cannot use `validation_split`'): model.fit( [input_a_tf, input_b_tf], [output_d_tf, output_e_tf], epochs=2, steps_per_epoch=2, verbose=0, validation_split=0.2, validation_steps=2) # Test evaluation / prediction methods model.evaluate([input_a_tf, input_b_tf], [output_d_tf, output_e_tf], steps=2, verbose=0) model.predict([input_a_tf, input_b_tf], steps=2) model.test_on_batch([input_a_tf, input_b_tf], [output_d_tf, output_e_tf]) def test_model_with_input_feed_tensor(self): """We test building a model with a TF variable as input. We should be able to call fit, evaluate, predict, by only passing them data for the placeholder inputs in the model. """ with self.cached_session(): input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) output_b_np = np.random.random((10, 3)) input_v = keras.backend.variables_module.Variable( input_a_np, dtype='float32') self.evaluate(variables_lib.variables_initializer([input_v])) a = keras.Input(tensor=input_v) b = keras.Input(shape=(3,), name='input_b') a_2 = keras.layers.Dense(4, name='dense_1')(a) dp = keras.layers.Dropout(0.5, name='dropout') b_2 = dp(b) model = keras.models.Model([a, b], [a_2, b_2]) model.summary() optimizer = 'rmsprop' loss = 'mse' loss_weights = [1., 0.5] model.compile(optimizer, loss, metrics=['mean_squared_error'], loss_weights=loss_weights, sample_weight_mode=None) # test train_on_batch out = model.train_on_batch(input_b_np, [output_a_np, output_b_np]) out = model.train_on_batch({'input_b': input_b_np}, [output_a_np, output_b_np]) out = model.test_on_batch({'input_b': input_b_np}, [output_a_np, output_b_np]) out = model.predict_on_batch({'input_b': input_b_np}) # test fit out = model.fit({'input_b': input_b_np}, [output_a_np, output_b_np], epochs=1, batch_size=10) out = model.fit(input_b_np, [output_a_np, output_b_np], epochs=1, batch_size=10) # test evaluate out = model.evaluate({'input_b': input_b_np}, [output_a_np, output_b_np], batch_size=10) out = model.evaluate(input_b_np, [output_a_np, output_b_np], batch_size=10) # test predict out = model.predict({'input_b': input_b_np}, batch_size=10) out = model.predict(input_b_np, batch_size=10) self.assertEqual(len(out), 2) # Now test a model with a single input # i.e. we don't pass any data to fit the model. self.evaluate(variables_lib.variables_initializer([input_v])) a = keras.Input(tensor=input_v) a_2 = keras.layers.Dense(4, name='dense_1')(a) a_2 = keras.layers.Dropout(0.5, name='dropout')(a_2) model = keras.models.Model(a, a_2) model.summary() optimizer = 'rmsprop' loss = 'mse' model.compile(optimizer, loss, metrics=['mean_squared_error']) # test train_on_batch out = model.train_on_batch(None, output_a_np) out = model.train_on_batch(None, output_a_np) out = model.test_on_batch(None, output_a_np) out = model.predict_on_batch(None) out = model.train_on_batch([], output_a_np) out = model.train_on_batch({}, output_a_np) # test fit _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=3) _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=3) # test evaluate _ = model.evaluate(None, output_a_np, steps=3) _ = model.evaluate(None, output_a_np, steps=3) # test predict out = model.predict(None, steps=3) out = model.predict(None, steps=3) self.assertEqual(out.shape, (10 * 3, 4)) # Same, without learning phase # i.e. we don't pass any data to fit the model. self.evaluate(variables_lib.variables_initializer([input_v])) a = keras.Input(tensor=input_v) a_2 = keras.layers.Dense(4, name='dense_1')(a) model = keras.models.Model(a, a_2) model.summary() optimizer = 'rmsprop' loss = 'mse' model.compile(optimizer, loss, metrics=['mean_squared_error']) # test train_on_batch out = model.train_on_batch(None, output_a_np) out = model.train_on_batch(None, output_a_np) out = model.test_on_batch(None, output_a_np) out = model.predict_on_batch(None) out = model.train_on_batch([], output_a_np) out = model.train_on_batch({}, output_a_np) # test fit _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=10) _ = model.fit(None, output_a_np, epochs=1, steps_per_epoch=10) # test evaluate _ = model.evaluate(None, output_a_np, steps=10) _ = model.evaluate(None, output_a_np, steps=10) # test predict out = model.predict(None, steps=3) out = model.predict(None, steps=3) self.assertEqual(out.shape, (10 * 3, 4)) def test_model_with_partial_loss(self): with self.cached_session(): a = keras.Input(shape=(3,), name='input_a') a_2 = keras.layers.Dense(4, name='dense_1')(a) dp = keras.layers.Dropout(0.5, name='dropout') a_3 = dp(a_2) model = keras.models.Model(a, [a_2, a_3]) optimizer = 'rmsprop' loss = {'dropout': 'mse'} model.compile(optimizer, loss, metrics=['mae']) input_a_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) # test train_on_batch _ = model.train_on_batch(input_a_np, output_a_np) _ = model.test_on_batch(input_a_np, output_a_np) # fit _ = model.fit(input_a_np, [output_a_np]) # evaluate _ = model.evaluate(input_a_np, [output_a_np]) # Same without dropout. a = keras.Input(shape=(3,), name='input_a') a_2 = keras.layers.Dense(4, name='dense_1')(a) a_3 = keras.layers.Dense(4, name='dense_2')(a_2) model = keras.models.Model(a, [a_2, a_3]) optimizer = 'rmsprop' loss = {'dense_2': 'mse'} model.compile(optimizer, loss, metrics={'dense_1': 'mae'}) # test train_on_batch _ = model.train_on_batch(input_a_np, output_a_np) _ = model.test_on_batch(input_a_np, output_a_np) # fit _ = model.fit(input_a_np, [output_a_np]) # evaluate _ = model.evaluate(input_a_np, [output_a_np]) def test_model_with_external_loss(self): with self.cached_session(): # None loss, only regularization loss. a = keras.Input(shape=(3,), name='input_a') a_2 = keras.layers.Dense(4, name='dense_1', kernel_regularizer='l1', bias_regularizer='l2')(a) dp = keras.layers.Dropout(0.5, name='dropout') a_3 = dp(a_2) model = keras.models.Model(a, [a_2, a_3]) optimizer = 'rmsprop' loss = None model.compile(optimizer, loss, metrics=['mae']) input_a_np = np.random.random((10, 3)) # test train_on_batch out = model.train_on_batch(input_a_np, None) out = model.test_on_batch(input_a_np, None) # fit out = model.fit(input_a_np, None) # evaluate out = model.evaluate(input_a_np, None) # No dropout, external loss. a = keras.Input(shape=(3,), name='input_a') a_2 = keras.layers.Dense(4, name='dense_1')(a) a_3 = keras.layers.Dense(4, name='dense_2')(a) model = keras.models.Model(a, [a_2, a_3]) model.add_loss(keras.backend.mean(a_3 + a_2)) optimizer = 'rmsprop' loss = None model.compile(optimizer, loss, metrics=['mae']) # test train_on_batch out = model.train_on_batch(input_a_np, None) out = model.test_on_batch(input_a_np, None) # fit out = model.fit(input_a_np, None) # evaluate out = model.evaluate(input_a_np, None) # Test model with no external data at all. input_v = keras.backend.variables_module.Variable( input_a_np, dtype='float32') self.evaluate(variables_lib.variables_initializer([input_v])) a = keras.Input(tensor=input_v) a_2 = keras.layers.Dense(4, name='dense_1')(a) a_2 = keras.layers.Dropout(0.5, name='dropout')(a_2) model = keras.models.Model(a, a_2) model.add_loss(keras.backend.mean(a_2)) model.compile(optimizer='rmsprop', loss=None, metrics=['mean_squared_error']) # test train_on_batch out = model.train_on_batch(None, None) out = model.test_on_batch(None, None) out = model.predict_on_batch(None) # test fit with self.assertRaises(ValueError): out = model.fit(None, None, epochs=1, batch_size=10) out = model.fit(None, None, epochs=1, steps_per_epoch=1) # test fit with validation data with self.assertRaises(ValueError): out = model.fit(None, None, epochs=1, steps_per_epoch=None, validation_steps=2) out = model.fit(None, None, epochs=1, steps_per_epoch=2, validation_steps=2) # test evaluate with self.assertRaises(ValueError): out = model.evaluate(None, None, batch_size=10) out = model.evaluate(None, None, steps=3) # test predict with self.assertRaises(ValueError): out = model.predict(None, batch_size=10) out = model.predict(None, steps=3) self.assertEqual(out.shape, (10 * 3, 4)) # Test multi-output model with no external data at all. self.evaluate(variables_lib.variables_initializer([input_v])) a = keras.Input(tensor=input_v) a_1 = keras.layers.Dense(4, name='dense_1')(a) a_2 = keras.layers.Dropout(0.5, name='dropout')(a_1) model = keras.models.Model(a, [a_1, a_2]) model.add_loss(keras.backend.mean(a_2)) model.compile(optimizer='rmsprop', loss=None, metrics=['mean_squared_error']) # test train_on_batch out = model.train_on_batch(None, None) out = model.test_on_batch(None, None) out = model.predict_on_batch(None) # test fit with self.assertRaises(ValueError): out = model.fit(None, None, epochs=1, batch_size=10) out = model.fit(None, None, epochs=1, steps_per_epoch=1) # test fit with validation data out = model.fit(None, None, epochs=1, steps_per_epoch=2, validation_steps=2) # test evaluate with self.assertRaises(ValueError): out = model.evaluate(None, None, batch_size=10) out = model.evaluate(None, None, steps=3) # test predict with self.assertRaises(ValueError): out = model.predict(None, batch_size=10, verbose=1) out = model.predict(None, steps=3) self.assertEqual(len(out), 2) self.assertEqual(out[0].shape, (10 * 3, 4)) self.assertEqual(out[1].shape, (10 * 3, 4)) def test_target_tensors(self): with self.cached_session(): # single-output, as list model = keras.models.Sequential() model.add(keras.layers.Dense(4, input_shape=(4,), name='dense')) input_val = np.random.random((10, 4)) target_val = np.random.random((10, 4)) target = keras.backend.variable(target_val) model.compile(optimizer='rmsprop', loss='mse', target_tensors=[target]) model.train_on_batch(input_val, None) # single-output, as single tensor model.compile(optimizer='rmsprop', loss='mse', target_tensors=target) model.train_on_batch(input_val, None) # single-output, as dict model.compile(optimizer='rmsprop', loss='mse', target_tensors={'dense': target}) model.train_on_batch(input_val, None) # test invalid arguments with self.assertRaises(TypeError): model.compile(optimizer='rmsprop', loss='mse', target_tensors=set()) with self.assertRaises(ValueError): model.compile(optimizer='rmsprop', loss='mse', target_tensors=[target, target]) with self.assertRaises(ValueError): model.compile(optimizer='rmsprop', loss='mse', target_tensors={'dense2': None}) with self.assertRaises(ValueError): model.compile(optimizer='rmsprop', loss='mse', target_tensors=[target]) model.train_on_batch(input_val, target_val) # multi-output, as list input_val = np.random.random((10, 4)) target_val_a = np.random.random((10, 4)) target_val_b = np.random.random((10, 4)) target_a = keras.backend.variable(target_val_a) target_b = keras.backend.variable(target_val_b) inputs = keras.layers.Input(shape=(4,)) output_a = keras.layers.Dense(4, name='dense_a')(inputs) output_b = keras.layers.Dense(4, name='dense_b')(inputs) model = keras.models.Model(inputs, [output_a, output_b]) model.compile(optimizer='rmsprop', loss='mse', target_tensors=[target_a, target_b]) model.train_on_batch(input_val, None) # multi-output, as dict model.compile(optimizer='rmsprop', loss='mse', target_tensors={'dense_a': target_a, 'dense_b': target_b}) model.train_on_batch(input_val, None) # test with sample weights model.compile( optimizer='rmsprop', loss='mse', metrics=['mae', metrics_module.CategoricalAccuracy()], target_tensors=[target_a, target_b]) model.train_on_batch(input_val, None, sample_weight={'dense_a': np.random.random((10,))}) def test_model_custom_target_tensors(self): with self.cached_session(): a = keras.Input(shape=(3,), name='input_a') b = keras.Input(shape=(3,), name='input_b') a_2 = keras.layers.Dense(4, name='dense_1')(a) dp = keras.layers.Dropout(0.5, name='dropout') b_2 = dp(b) y = keras.backend.placeholder([10, 4], name='y') y1 = keras.backend.placeholder([10, 3], name='y1') y2 = keras.backend.placeholder([7, 5], name='y2') model = keras.models.Model([a, b], [a_2, b_2]) optimizer = 'rmsprop' loss = 'mse' loss_weights = [1., 0.5] # test list of target tensors with self.assertRaises(ValueError): model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights, sample_weight_mode=None, target_tensors=[y, y1, y2]) model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights, sample_weight_mode=None, target_tensors=[y, y1]) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) output_b_np = np.random.random((10, 3)) _ = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np], {y: np.random.random((10, 4)), y1: np.random.random((10, 3))}) # test dictionary of target_tensors with self.assertRaises(ValueError): model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights, sample_weight_mode=None, target_tensors={'does_not_exist': y2}) # test dictionary of target_tensors model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights, sample_weight_mode=None, target_tensors={'dense_1': y, 'dropout': y1}) _ = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np], {y: np.random.random((10, 4)), y1: np.random.random((10, 3))}) # test with custom TF placeholder as target pl_target_a = keras.backend.array_ops.placeholder('float32', shape=(None, 4)) model.compile(optimizer='rmsprop', loss='mse', target_tensors={'dense_1': pl_target_a}) model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) class TestTrainingWithDatasetIterators(test.TestCase): @tf_test_util.run_in_graph_and_eager_modes def test_training_and_eval_methods_on_iterators_single_io(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae', metrics_module.CategoricalAccuracy()] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) iterator = dataset.make_one_shot_iterator() model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1) model.evaluate(iterator, steps=2, verbose=1) model.predict(iterator, steps=2) model.train_on_batch(iterator) model.test_on_batch(iterator) model.predict_on_batch(iterator) # Test with validation data model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=0, validation_data=iterator, validation_steps=2) # Test with validation split with self.assertRaisesRegexp( ValueError, '`validation_split` argument is not supported ' 'when input `x` is a dataset or a dataset iterator'): model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=0, validation_split=0.5, validation_steps=2) # Test with sample weight. sample_weight = np.random.random((10,)) with self.assertRaisesRegexp( ValueError, '`sample_weight` argument is not supported ' 'when input `x` is a dataset or a dataset iterator'): model.fit( iterator, epochs=1, steps_per_epoch=2, verbose=0, sample_weight=sample_weight) # Test invalid usage with self.assertRaisesRegexp(ValueError, 'you should not specify a target'): model.fit(iterator, iterator, epochs=1, steps_per_epoch=2, verbose=0) with self.assertRaisesRegexp( ValueError, 'you should specify the `steps_per_epoch` argument'): model.fit(iterator, epochs=1, verbose=0) with self.assertRaisesRegexp(ValueError, 'you should specify the `steps` argument'): model.evaluate(iterator, verbose=0) with self.assertRaisesRegexp(ValueError, 'you should specify the `steps` argument'): model.predict(iterator, verbose=0) @tf_test_util.run_in_graph_and_eager_modes def test_get_next_op_created_once(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) iterator = dataset.make_one_shot_iterator() model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1) # Finalize graph to make sure we are not appending another iterator # get_next op in the graph. ops.get_default_graph().finalize() model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1) @tf_test_util.run_in_graph_and_eager_modes def test_iterators_running_out_of_data(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(2) dataset = dataset.batch(10) iterator = dataset.make_one_shot_iterator() with test.mock.patch.object(logging, 'warning') as mock_log: model.fit(iterator, epochs=1, steps_per_epoch=3, verbose=0) self.assertRegexpMatches( str(mock_log.call_args), 'dataset iterator ran out of data') class TestTrainingWithDataset(test.TestCase): @tf_test_util.run_in_graph_and_eager_modes def test_calling_model_on_same_dataset(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) # Call fit with validation data model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0, validation_data=dataset, validation_steps=2) # Finalize the graph to make sure new ops aren't added when calling on the # same dataset ops.get_default_graph().finalize() model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0, validation_data=dataset, validation_steps=2) @tf_test_util.run_in_graph_and_eager_modes def test_training_and_eval_methods_on_dataset(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae', metrics_module.CategoricalAccuracy()] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) model.evaluate(dataset, steps=2, verbose=1) model.predict(dataset, steps=2) model.train_on_batch(dataset) model.predict_on_batch(dataset) # Test with validation data model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0, validation_data=dataset, validation_steps=2) # Test with validation split with self.assertRaisesRegexp( ValueError, '`validation_split` argument is not supported ' 'when input `x` is a dataset or a dataset iterator'): model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0, validation_split=0.5, validation_steps=2) # Test with sample weight. sample_weight = np.random.random((10,)) with self.assertRaisesRegexp( ValueError, '`sample_weight` argument is not supported ' 'when input `x` is a dataset or a dataset iterator'): model.fit( dataset, epochs=1, steps_per_epoch=2, verbose=0, sample_weight=sample_weight) # Test invalid usage with self.assertRaisesRegexp(ValueError, 'you should not specify a target'): model.fit(dataset, dataset, epochs=1, steps_per_epoch=2, verbose=0) with self.assertRaisesRegexp( ValueError, 'you should specify the `steps_per_epoch` argument'): model.fit(dataset, epochs=1, verbose=0) with self.assertRaisesRegexp(ValueError, 'you should specify the `steps` argument'): model.evaluate(dataset, verbose=0) with self.assertRaisesRegexp(ValueError, 'you should specify the `steps` argument'): model.predict(dataset, verbose=0) @tf_test_util.run_in_graph_and_eager_modes def test_dataset_with_sample_weights(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae', metrics_module.CategoricalAccuracy()] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3), np.float32) targets = np.zeros((10, 4), np.float32) sample_weights = np.ones((10), np.float32) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets, sample_weights)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) model.evaluate(dataset, steps=2, verbose=1) model.predict(dataset, steps=2) model.train_on_batch(dataset) model.predict_on_batch(dataset) @tf_test_util.run_in_graph_and_eager_modes def test_dataset_with_sparse_labels(self): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'sparse_categorical_crossentropy' model.compile(optimizer, loss) inputs = np.zeros((10, 3)) targets = np.random.randint(0, 4, size=10, dtype=np.int32) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) def test_dataset_input_shape_validation(self): with self.cached_session(): model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3) model.compile(optimizer=RMSPropOptimizer(learning_rate=0.001), loss='mse') # User forgets to batch the dataset inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) with self.assertRaisesRegexp( ValueError, r'expected (.*?) to have shape \(3,\) but got array with shape \(1,\)' ): model.train_on_batch(dataset) # Wrong input shape inputs = np.zeros((10, 5)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) with self.assertRaisesRegexp(ValueError, r'expected (.*?) to have shape \(3,\)'): model.train_on_batch(dataset) class TestTrainingWithMetrics(test.TestCase): """Training tests related to metrics.""" @tf_test_util.run_in_graph_and_eager_modes def test_metrics_names(self): a = keras.layers.Input(shape=(3,), name='input_a') b = keras.layers.Input(shape=(3,), name='input_b') dense = keras.layers.Dense(4, name='dense') c = dense(a) d = dense(b) e = keras.layers.Dropout(0.5, name='dropout')(c) model = keras.models.Model([a, b], [d, e]) optimizer = RMSPropOptimizer(learning_rate=0.001) metrics = ['mse', metrics_module.BinaryAccuracy()] model.compile(optimizer, loss='mae', metrics=metrics) reference_metric_names = [ 'loss', 'dense_loss', 'dropout_loss', 'dense_mean_squared_error', 'dense_binary_accuracy', 'dropout_mean_squared_error', 'dropout_binary_accuracy' ] self.assertEqual(reference_metric_names, model.metrics_names) # Verify that model metric names are not altered during training. input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_d_np = np.random.random((10, 4)) output_e_np = np.random.random((10, 4)) model.fit([input_a_np, input_b_np], [output_d_np, output_e_np], epochs=1, batch_size=5) self.assertEqual(reference_metric_names, model.metrics_names) @tf_test_util.run_in_graph_and_eager_modes def test_metrics_correctness(self): model = keras.Sequential() model.add( keras.layers.Dense( 3, activation='relu', input_dim=4, kernel_initializer='ones')) model.add( keras.layers.Dense( 1, activation='sigmoid', kernel_initializer='ones')) model.compile( loss='mae', metrics=['accuracy', metrics_module.BinaryAccuracy()], optimizer=RMSPropOptimizer(learning_rate=0.001)) # verify correctness of stateful and stateless metrics. x = np.ones((100, 4)) y = np.ones((100, 1)) outs = model.evaluate(x, y) self.assertEqual(outs[1], 1.) self.assertEqual(outs[2], 1.) y = np.zeros((100, 1)) outs = model.evaluate(x, y) self.assertEqual(outs[1], 0.) self.assertEqual(outs[2], 0.) @tf_test_util.run_in_graph_and_eager_modes def test_metrics_correctness_with_iterator(self): model = keras.Sequential() model.add( keras.layers.Dense( 8, activation='relu', input_dim=4, kernel_initializer='ones')) model.add( keras.layers.Dense( 1, activation='sigmoid', kernel_initializer='ones')) model.compile( loss='binary_crossentropy', metrics=['accuracy', metrics_module.BinaryAccuracy()], optimizer=RMSPropOptimizer(learning_rate=0.001)) np.random.seed(123) x = np.random.randint(10, size=(100, 4)).astype(np.float32) y = np.random.randint(2, size=(100, 1)).astype(np.float32) dataset = dataset_ops.Dataset.from_tensor_slices((x, y)) dataset = dataset.batch(10) iterator = dataset.make_one_shot_iterator() outs = model.evaluate(iterator, steps=10) self.assertEqual(np.around(outs[1], decimals=1), 0.5) self.assertEqual(np.around(outs[2], decimals=1), 0.5) y = np.zeros((100, 1), dtype=np.float32) dataset = dataset_ops.Dataset.from_tensor_slices((x, y)) dataset = dataset.repeat(100) dataset = dataset.batch(10) iterator = dataset.make_one_shot_iterator() outs = model.evaluate(iterator, steps=10) self.assertEqual(outs[1], 0.) self.assertEqual(outs[2], 0.) @tf_test_util.run_in_graph_and_eager_modes def test_metrics_correctness_with_weighted_metrics(self): np.random.seed(1337) x = np.array([[[1.], [1.]], [[0.], [0.]]]) model = keras.models.Sequential() model.add( keras.layers.TimeDistributed( keras.layers.Dense(1, kernel_initializer='ones'), input_shape=(2, 1))) model.compile( RMSPropOptimizer(learning_rate=0.001), loss='mse', sample_weight_mode='temporal', weighted_metrics=['accuracy', 'mse']) y = np.array([[[1.], [1.]], [[1.], [1.]]]) outs = model.evaluate(x, y) self.assertEqual(outs, [0.5, 0.5, 0.5]) w = np.array([[0., 0.], [0., 0.]]) outs = model.evaluate(x, y, sample_weight=w) self.assertEqual(outs, [0., 0., 0.]) w = np.array([[3., 4.], [1., 2.]]) outs = model.evaluate(x, y, sample_weight=w) self.assertArrayNear(outs, [0.3, 0.7, 0.3], .001) # Verify that metric value is same with arbitrary weights and batch size. x = np.random.random((50, 2, 1)) y = np.random.random((50, 2, 1)) w = np.random.random((50, 2)) mse1 = model.evaluate(x, y, sample_weight=w, batch_size=5)[2] mse2 = model.evaluate(x, y, sample_weight=w, batch_size=10)[2] self.assertNear(mse1, mse2, err=1e-7) @tf_test_util.run_in_graph_and_eager_modes def test_metric_state_reset_between_fit_and_evaluate(self): model = keras.Sequential() model.add(keras.layers.Dense(3, activation='relu', input_dim=4)) model.add(keras.layers.Dense(1, activation='sigmoid')) acc_obj = metrics_module.BinaryAccuracy() model.compile( loss='mae', metrics=[acc_obj], optimizer=RMSPropOptimizer(learning_rate=0.001)) x_train = np.random.random((100, 4)) y_train = np.random.random((100, 1)) model.fit(x_train, y_train, batch_size=5, epochs=2) self.assertEqual(self.evaluate(acc_obj.count), 100) x_test = np.random.random((10, 4)) y_test = np.random.random((10, 1)) model.evaluate(x_test, y_test, batch_size=5) self.assertEqual(self.evaluate(acc_obj.count), 10) @tf_test_util.run_in_graph_and_eager_modes def test_invalid_metrics(self): num_classes = 5 input_dim = 5 model = testing_utils.get_small_sequential_mlp( num_hidden=10, num_classes=num_classes, input_dim=input_dim) with self.assertRaisesRegexp( TypeError, 'Type of `metrics` argument not understood. ' 'Expected a list or dictionary, found: '): model.compile( RMSPropOptimizer(learning_rate=0.001), loss='categorical_crossentropy', metrics=metrics_module.CategoricalAccuracy()) @tf_test_util.run_in_graph_and_eager_modes def test_metrics_masking(self): with self.cached_session(): np.random.seed(1337) model = keras.models.Sequential() model.add(keras.layers.Masking(mask_value=0, input_shape=(2, 1))) model.add( keras.layers.TimeDistributed( keras.layers.Dense(1, kernel_initializer='ones'))) model.compile( RMSPropOptimizer(learning_rate=0.001), loss='mse', weighted_metrics=['accuracy']) # verify that masking is applied. x = np.array([[[1], [1]], [[1], [1]], [[0], [0]]]) y = np.array([[[1], [1]], [[0], [1]], [[1], [1]]]) scores = model.train_on_batch(x, y) self.assertArrayNear(scores, [0.25, 0.75], 0.1) # verify that masking is combined with sample weights. w = np.array([3, 2, 4]) scores = model.train_on_batch(x, y, sample_weight=w) self.assertArrayNear(scores, [0.2, 0.8], 0.1) @tf_test_util.run_in_graph_and_eager_modes def test_logging(self): mock_stdout = io.BytesIO() if six.PY2 else io.StringIO() model = keras.models.Sequential() model.add(keras.layers.Dense(10, activation='relu')) model.add(keras.layers.Dense(1, activation='sigmoid')) model.compile( RMSPropOptimizer(learning_rate=0.001), loss='binary_crossentropy') with test.mock.patch.object(sys, 'stdout', mock_stdout): model.fit( np.ones((10, 10), 'float32'), np.ones((10, 1), 'float32'), epochs=10) self.assertTrue('Epoch 5/10' in mock_stdout.getvalue()) def test_losses_in_defun(self): with context.eager_mode(): layer = keras.layers.Dense(1, kernel_regularizer='l1') layer(array_ops.ones([1, 10])) @function.defun def get_losses(): return layer.losses self.assertAllEqual(self.evaluate(layer.losses), self.evaluate(get_losses())) if __name__ == '__main__': test.main()
36.226164
83
0.634031
6ae3e08d1649ebf34bec8054b39dec03ed2134de
5,953
py
Python
src/elevator_pitch/story.py
JnyJny/elevator-pitch-faker
4ff5015b61c2eb9fe87feab3ae72995772f43796
[ "Apache-2.0" ]
1
2019-05-01T22:41:49.000Z
2019-05-01T22:41:49.000Z
src/elevator_pitch/story.py
JnyJny/elevator-pitch-faker
4ff5015b61c2eb9fe87feab3ae72995772f43796
[ "Apache-2.0" ]
null
null
null
src/elevator_pitch/story.py
JnyJny/elevator-pitch-faker
4ff5015b61c2eb9fe87feab3ae72995772f43796
[ "Apache-2.0" ]
null
null
null
''' ''' from faker.providers import BaseProvider class StoryPitchProvider(BaseProvider): _superlatives = [ "edge-of-your-seat", "keenly observed", "lyrical", "profound", "erotic", "inspiring", "razor-sharp", "heartrending", "dream-like", "darkly comic", "uncompromising", "courageous", "compulsively readable", "unflinching", "fiercely honest", "richly drawn", "unforgettable", "riveting", "high-voltage", "psycho-sexual", "riotously funny", "passionate", "surreal", "dystopian", "hysterical", "meditative", ] _genres = [ "thriller", "meditation", "coming of age story", "family drama", "war epic", "episotolary novel", "romance", "tragedy", "story", "tour de force", "comedy", "noir", "instant classic", "fairy tale", "autobiographical novel", "romp", "fictional memoir", "trilogy", "detective novel", "page-turner", "tragicomedy", "murder mystery", "novel in stories", "historical novel", "graphic novel", "saga" ] _protagonist_descriptions = [ "depressed", "wealthy", "doomed", "exuberant", "agoraphobic", "maladjusted", "misanthropic", "alcoholic", "young", "philosophical", "hopelessly romantic", "hyper-sexual", "precocious", "unlucky", "quixotic", "desperate", "refugee", "dissatisfied", "bored", "morally compromised", "lovesick", "drug-addled", "jilted", "vengeful", "overbearing", "closeted", ] _protagonists = [ "man", "orphan", "daughter", "mother", "adoloscent", "soldier", "student", "widow", "woman", "professor", "divorcee", "adventurer", "extended family", "child", "mistress", "dictator", "vampire", "ghost", "starship captain", "doctor", "writer", "private investigator", "couple", "coven", "murder detective", "octogenarian", ] _commitments = [ "adventure", "commitment", "desire", "devotion", "dream", "effort", "strategy", "pains", "failure", "inability", "journey", "mission", "not-so-secret desire", "quest", "endeavour", "secret longing", "struggle", "vacation", "wish", "expedition", "plan", "scheme", "resolve", "project", "promise", "battle" ] _verbs = [ "re-awaken", "come to grips with", "grapple with", "understand", "explore", "accept", "overcome", "avenge", "pursue", "defend", "undertake", "discover", "contemplate", "transcend", "withdraw from", "avoid", "betray", "circumvent", "confront", "expose", "give up", "investigate", "navigate", "reconnect with", "embrace", "reconcile to" ] _conflicts = [ "fear of spiders", "adoption", "traumatic childhood", "mother's death", "sexless marriage", "Oedipal complex", "feminism", "religious upbringing", "political apathy", "biological clock", "ugly divorce", "write's block", "toxic friendships", "eating disorder", "own birth", "cancer", "23andMe results", "privilege", "untimely death", "social media addiction", "spiritual evolutin", "secret second family", "sexual awakening", "Amazon reviews", "father's murder", "disinheritance" ] _pronouns = ['his', 'her', 'their'] @property def superlative(self): return self.random_element(self._superlatives) @property def genre(self): return self.random_element(self._genres) @property def protagonist_description(self): return self.random_element(self._protagonist_descriptions) @property def protagonist(self): return self.random_element(self._protagonists) @property def commitment(self): return self.random_element(self._commitments) @property def verb(self): return self.random_element(self._verbs) @property def conflict(self): return self.random_element(self._conflicts) @property def _pronoun(self): return self.random_element(self._pronouns) def _determiner_for(self, word): return 'an' if word[0].lower() in 'aeiou' else 'a' def story_pitch(self, genre=None): ''' ''' superlative = self.superlative protagonist_description = self.protagonist_description return ' '.join([self._determiner_for(superlative).capitalize(), superlative, self.genre, 'about', self._determiner_for(protagonist_description), protagonist_description, self.protagonist + "'s", self.commitment, 'to', self.verb, self._pronoun, self.conflict]) + '.'
22.212687
72
0.478582
fa867fa04cb04002171db2da4130e77504065501
5,242
py
Python
spacy/cli/convert.py
gandersen101/spaCy
109849bd311490f17a29b320cb032e43d153f36f
[ "MIT" ]
10
2021-05-31T07:18:08.000Z
2022-03-19T09:20:11.000Z
spacy/cli/convert.py
gandersen101/spaCy
109849bd311490f17a29b320cb032e43d153f36f
[ "MIT" ]
4
2021-06-02T00:49:27.000Z
2022-01-13T01:59:34.000Z
spacy/cli/convert.py
gandersen101/spaCy
109849bd311490f17a29b320cb032e43d153f36f
[ "MIT" ]
2
2021-12-09T07:23:21.000Z
2022-03-31T06:13:10.000Z
# coding: utf8 from __future__ import unicode_literals import plac from pathlib import Path from wasabi import Printer import srsly import re from .converters import conllu2json, iob2json, conll_ner2json from .converters import ner_jsonl2json # Converters are matched by file extension except for ner/iob, which are # matched by file extension and content. To add a converter, add a new # entry to this dict with the file extension mapped to the converter function # imported from /converters. CONVERTERS = { "conllubio": conllu2json, "conllu": conllu2json, "conll": conllu2json, "ner": conll_ner2json, "iob": iob2json, "jsonl": ner_jsonl2json, } # File types FILE_TYPES = ("json", "jsonl", "msg") FILE_TYPES_STDOUT = ("json", "jsonl") @plac.annotations( input_file=("Input file", "positional", None, str), output_dir=("Output directory. '-' for stdout.", "positional", None, str), file_type=("Type of data to produce: {}".format(FILE_TYPES), "option", "t", str), n_sents=("Number of sentences per doc (0 to disable)", "option", "n", int), seg_sents=("Segment sentences (for -c ner)", "flag", "s"), model=("Model for sentence segmentation (for -s)", "option", "b", str), converter=("Converter: {}".format(tuple(CONVERTERS.keys())), "option", "c", str), lang=("Language (if tokenizer required)", "option", "l", str), morphology=("Enable appending morphology to tags", "flag", "m", bool), ) def convert( input_file, output_dir="-", file_type="json", n_sents=1, seg_sents=False, model=None, morphology=False, converter="auto", lang=None, ): """ Convert files into JSON format for use with train command and other experiment management functions. If no output_dir is specified, the data is written to stdout, so you can pipe them forward to a JSON file: $ spacy convert some_file.conllu > some_file.json """ no_print = output_dir == "-" msg = Printer(no_print=no_print) input_path = Path(input_file) if file_type not in FILE_TYPES: msg.fail( "Unknown file type: '{}'".format(file_type), "Supported file types: '{}'".format(", ".join(FILE_TYPES)), exits=1, ) if file_type not in FILE_TYPES_STDOUT and output_dir == "-": # TODO: support msgpack via stdout in srsly? msg.fail( "Can't write .{} data to stdout.".format(file_type), "Please specify an output directory.", exits=1, ) if not input_path.exists(): msg.fail("Input file not found", input_path, exits=1) if output_dir != "-" and not Path(output_dir).exists(): msg.fail("Output directory not found", output_dir, exits=1) input_data = input_path.open("r", encoding="utf-8").read() if converter == "auto": converter = input_path.suffix[1:] if converter == "ner" or converter == "iob": converter_autodetect = autodetect_ner_format(input_data) if converter_autodetect == "ner": msg.info("Auto-detected token-per-line NER format") converter = converter_autodetect elif converter_autodetect == "iob": msg.info("Auto-detected sentence-per-line NER format") converter = converter_autodetect else: msg.warn( "Can't automatically detect NER format. Conversion may not succeed. See https://spacy.io/api/cli#convert" ) if converter not in CONVERTERS: msg.fail("Can't find converter for {}".format(converter), exits=1) # Use converter function to convert data func = CONVERTERS[converter] data = func( input_data, n_sents=n_sents, seg_sents=seg_sents, use_morphology=morphology, lang=lang, model=model, no_print=no_print, ) if output_dir != "-": # Export data to a file suffix = ".{}".format(file_type) output_file = Path(output_dir) / Path(input_path.parts[-1]).with_suffix(suffix) if file_type == "json": srsly.write_json(output_file, data) elif file_type == "jsonl": srsly.write_jsonl(output_file, data) elif file_type == "msg": srsly.write_msgpack(output_file, data) msg.good( "Generated output file ({} documents): {}".format(len(data), output_file) ) else: # Print to stdout if file_type == "json": srsly.write_json("-", data) elif file_type == "jsonl": srsly.write_jsonl("-", data) def autodetect_ner_format(input_data): # guess format from the first 20 lines lines = input_data.split("\n")[:20] format_guesses = {"ner": 0, "iob": 0} iob_re = re.compile(r"\S+\|(O|[IB]-\S+)") ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$") for line in lines: line = line.strip() if iob_re.search(line): format_guesses["iob"] += 1 if ner_re.search(line): format_guesses["ner"] += 1 if format_guesses["iob"] == 0 and format_guesses["ner"] > 0: return "ner" if format_guesses["ner"] == 0 and format_guesses["iob"] > 0: return "iob" return None
35.90411
121
0.620183
816743d6042a7922263bf8fc7db0641861082ff2
6,071
py
Python
infrastructure/jtgltext.py
kyapp69/GCodeViewer
1f5b15083580896a3c5de8294c60c9654953b82b
[ "Apache-2.0" ]
3
2017-03-08T02:48:59.000Z
2018-04-22T17:59:24.000Z
infrastructure/jtgltext.py
kyapp69/GCodeViewer
1f5b15083580896a3c5de8294c60c9654953b82b
[ "Apache-2.0" ]
4
2019-11-23T01:40:22.000Z
2021-02-26T01:30:39.000Z
infrastructure/jtgltext.py
kyapp69/GCodeViewer
1f5b15083580896a3c5de8294c60c9654953b82b
[ "Apache-2.0" ]
10
2016-05-12T01:15:12.000Z
2020-02-15T09:54:48.000Z
from __future__ import division import OpenGL OpenGL.FORWARD_COMPATIBLE_ONLY = True # ^ See http://pyopengl.sourceforge.net/documentation/deprecations.html import OpenGL.GL as gl import numpy as np import ctypes import os import logging try: from shader_loader import ShaderLoader except ModuleNotFoundError: from infrastructure.shader_loader import ShaderLoader from PIL import Image class JTGLText(object): def __init__(self, resource_location, window_width, window_height): self.window_width = window_width self.window_height = window_height logging.info("X / Y : %s / %s" % (window_width, window_height)) self.text_width = 6.0 self.text_height = self.text_width * 2.0 self.kern = 1.0 self.text_size = 0 self.color_size = 0 self.last_text = '' self.last_color = [0.0, 0.0, 0.0, 1.0] self.dirty = True text_vertex_shader = os.path.join(resource_location, 'shaders', 'text_shader_vr.glsl') text_fragme_shader = os.path.join(resource_location, 'shaders', 'text_shader_fr.glsl') self._text_shader_program = ShaderLoader.load_shaders(text_vertex_shader, text_fragme_shader) font_texture_path = os.path.join(resource_location, 'textures', 'courier10.png') self.font_texture_id = self._load_font_texture(font_texture_path) self.text_vao = gl.glGenVertexArrays(1) self.text_vbo = gl.glGenBuffers(1) def viewPortChanged(self, window_width, window_height): self.window_width = window_width self.window_height = window_height logging.info("X / Y : %s / %s" % (self.window_width, self.window_height)) self.dirty = True def _load_font_texture(self, location): im = Image.open(location) image = im.tobytes("raw", "RGBA", 0, -1) texture_id = gl.glGenTextures(1) gl.glActiveTexture(gl.GL_TEXTURE1) gl.glBindTexture(gl.GL_TEXTURE_2D, texture_id) gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA, im.size[0], im.size[1], 0, gl.GL_RGBA, gl.GL_UNSIGNED_BYTE, image) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_REPEAT) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_REPEAT) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_NEAREST) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_NEAREST) return texture_id def square(self, tl, br): a = tl b = [br[0], tl[1]] c = [tl[0], br[1]] d = br return [a, b, c, c, b, d] def _load_text(self, text, color): posisitions = [] colors = [] texture_coords = [] texture_spacing = 1.0 / 510.0 y_pos = self.window_height - (self.kern + self.text_height) x_pos = self.kern for char in text: if "\n" == char: y_pos -= self.text_height + self.kern x_pos = self.kern else: x1 = x_pos y1 = y_pos + self.text_height x2 = x1 + self.text_width y2 = y_pos posisitions += self.square([x1, y1], [x2, y2]) letter_start = (ord(char) * 2.0 * texture_spacing) colors += [color for i in range(0, 6)] texture_coords += self.square([letter_start, 1], [letter_start + texture_spacing, 0]) x_pos += self.text_width + self.kern posisitions = np.array(posisitions, dtype=np.float32).flatten() colors = np.array(colors, dtype=np.float32).flatten() texture_coords = np.array(texture_coords, dtype=np.float32).flatten() gl.glBindVertexArray(self.text_vao) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.text_vbo) gl.glBufferData(gl.GL_ARRAY_BUFFER, (posisitions.size + colors.size + texture_coords.size) * 4, None, gl.GL_STATIC_DRAW) gl.glBufferSubData(gl.GL_ARRAY_BUFFER, 0, posisitions) gl.glBufferSubData(gl.GL_ARRAY_BUFFER, posisitions.size * 4, colors) gl.glBufferSubData(gl.GL_ARRAY_BUFFER, (posisitions.size + colors.size) * 4, texture_coords) self.text_size = posisitions.size self.color_size = colors.size def printgl(self, text, color=[1.0, 1.0, 1.0, 1.0]): if self.last_text != text or self.last_color != color or self.dirty: self._load_text(text, color) self.last_text = text self.last_color = color self.dirty = False gl.glUseProgram(self._text_shader_program) gl.glEnable(gl.GL_BLEND) gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA) gl.glBindVertexArray(self.text_vao) gl.glBindBuffer(gl.GL_ARRAY_BUFFER, self.text_vbo) vPosisition = gl.glGetAttribLocation(self._text_shader_program, "vPosisition") vColor = gl.glGetAttribLocation(self._text_shader_program, "vColor") vTexCoord = gl.glGetAttribLocation(self._text_shader_program, "vTexCoord") vWindow = gl.glGetUniformLocation(self._text_shader_program, 'vWindow') gl.glUniform2fv(vWindow, 1, [self.window_width, self.window_height]) gl.glEnableVertexAttribArray(vPosisition) gl.glEnableVertexAttribArray(vColor) gl.glEnableVertexAttribArray(vTexCoord) texture_data = gl.glGetUniformLocation(self._text_shader_program, "texture_data") gl.glUniform1i(texture_data, 1) gl.glActiveTexture(gl.GL_TEXTURE1) gl.glBindTexture(gl.GL_TEXTURE_2D, self.font_texture_id) gl.glVertexAttribPointer(vPosisition, 2, gl.GL_FLOAT, gl.GL_FALSE, 0, None) gl.glVertexAttribPointer(vColor, 4, gl.GL_FLOAT, gl.GL_FALSE, 0, ctypes.c_void_p(self.text_size * 4)) gl.glVertexAttribPointer(vTexCoord, 2, gl.GL_FLOAT, gl.GL_FALSE, 0, ctypes.c_void_p((self.text_size+self.color_size) * 4)) gl.glDrawArrays(gl.GL_TRIANGLES, 0, self.text_size // 2) gl.glDisable(gl.GL_BLEND)
41.582192
130
0.662659
084691bdf06b9dd6b1b3831187c4f0075270bbfd
28,960
py
Python
research/slim/nets/mobilenet_v1_test.py
jdavidagudelo/tensorflow-models
6f019beec73b01861363bf717706e27f4210b979
[ "Apache-2.0" ]
1
2021-05-17T01:42:29.000Z
2021-05-17T01:42:29.000Z
research/slim/nets/mobilenet_v1_test.py
jdavidagudelo/tensorflow-models
6f019beec73b01861363bf717706e27f4210b979
[ "Apache-2.0" ]
null
null
null
research/slim/nets/mobilenet_v1_test.py
jdavidagudelo/tensorflow-models
6f019beec73b01861363bf717706e27f4210b979
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Tests for MobileNet v1.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from research.slim.nets import mobilenet_v1 slim = tf.contrib.slim class MobilenetV1Test(tf.test.TestCase): def testBuildClassificationNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith( 'MobilenetV1/Logits/SpatialSqueeze')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertTrue('Predictions' in end_points) self.assertListEqual(end_points['Predictions'].get_shape().as_list(), [batch_size, num_classes]) def testBuildPreLogitsNetwork(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(net.op.name.startswith('MobilenetV1/Logits/AvgPool')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1, 1, 1024]) self.assertFalse('Logits' in end_points) self.assertFalse('Predictions' in end_points) def testBuildBaseNetwork(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = mobilenet_v1.mobilenet_v1_base(inputs) self.assertTrue(net.op.name.startswith('MobilenetV1/Conv2d_13')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 7, 7, 1024]) expected_endpoints = ['Conv2d_0', 'Conv2d_1_depthwise', 'Conv2d_1_pointwise', 'Conv2d_2_depthwise', 'Conv2d_2_pointwise', 'Conv2d_3_depthwise', 'Conv2d_3_pointwise', 'Conv2d_4_depthwise', 'Conv2d_4_pointwise', 'Conv2d_5_depthwise', 'Conv2d_5_pointwise', 'Conv2d_6_depthwise', 'Conv2d_6_pointwise', 'Conv2d_7_depthwise', 'Conv2d_7_pointwise', 'Conv2d_8_depthwise', 'Conv2d_8_pointwise', 'Conv2d_9_depthwise', 'Conv2d_9_pointwise', 'Conv2d_10_depthwise', 'Conv2d_10_pointwise', 'Conv2d_11_depthwise', 'Conv2d_11_pointwise', 'Conv2d_12_depthwise', 'Conv2d_12_pointwise', 'Conv2d_13_depthwise', 'Conv2d_13_pointwise'] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildOnlyUptoFinalEndpoint(self): batch_size = 5 height, width = 224, 224 endpoints = ['Conv2d_0', 'Conv2d_1_depthwise', 'Conv2d_1_pointwise', 'Conv2d_2_depthwise', 'Conv2d_2_pointwise', 'Conv2d_3_depthwise', 'Conv2d_3_pointwise', 'Conv2d_4_depthwise', 'Conv2d_4_pointwise', 'Conv2d_5_depthwise', 'Conv2d_5_pointwise', 'Conv2d_6_depthwise', 'Conv2d_6_pointwise', 'Conv2d_7_depthwise', 'Conv2d_7_pointwise', 'Conv2d_8_depthwise', 'Conv2d_8_pointwise', 'Conv2d_9_depthwise', 'Conv2d_9_pointwise', 'Conv2d_10_depthwise', 'Conv2d_10_pointwise', 'Conv2d_11_depthwise', 'Conv2d_11_pointwise', 'Conv2d_12_depthwise', 'Conv2d_12_pointwise', 'Conv2d_13_depthwise', 'Conv2d_13_pointwise'] for index, endpoint in enumerate(endpoints): with tf.Graph().as_default(): inputs = tf.random_uniform((batch_size, height, width, 3)) out_tensor, end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint=endpoint) self.assertTrue(out_tensor.op.name.startswith( 'MobilenetV1/' + endpoint)) self.assertItemsEqual(endpoints[:index + 1], end_points.keys()) def testBuildCustomNetworkUsingConvDefs(self): batch_size = 5 height, width = 224, 224 conv_defs = [ mobilenet_v1.Conv(kernel=[3, 3], stride=2, depth=32), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=64), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=128), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=512) ] inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_3_pointwise', conv_defs=conv_defs) self.assertTrue(net.op.name.startswith('MobilenetV1/Conv2d_3')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 56, 56, 512]) expected_endpoints = ['Conv2d_0', 'Conv2d_1_depthwise', 'Conv2d_1_pointwise', 'Conv2d_2_depthwise', 'Conv2d_2_pointwise', 'Conv2d_3_depthwise', 'Conv2d_3_pointwise'] self.assertItemsEqual(end_points.keys(), expected_endpoints) def testBuildAndCheckAllEndPointsUptoConv2d_13(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_13_pointwise') _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_13_pointwise', use_explicit_padding=True) endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32], 'Conv2d_1_depthwise': [batch_size, 112, 112, 32], 'Conv2d_1_pointwise': [batch_size, 112, 112, 64], 'Conv2d_2_depthwise': [batch_size, 56, 56, 64], 'Conv2d_2_pointwise': [batch_size, 56, 56, 128], 'Conv2d_3_depthwise': [batch_size, 56, 56, 128], 'Conv2d_3_pointwise': [batch_size, 56, 56, 128], 'Conv2d_4_depthwise': [batch_size, 28, 28, 128], 'Conv2d_4_pointwise': [batch_size, 28, 28, 256], 'Conv2d_5_depthwise': [batch_size, 28, 28, 256], 'Conv2d_5_pointwise': [batch_size, 28, 28, 256], 'Conv2d_6_depthwise': [batch_size, 14, 14, 256], 'Conv2d_6_pointwise': [batch_size, 14, 14, 512], 'Conv2d_7_depthwise': [batch_size, 14, 14, 512], 'Conv2d_7_pointwise': [batch_size, 14, 14, 512], 'Conv2d_8_depthwise': [batch_size, 14, 14, 512], 'Conv2d_8_pointwise': [batch_size, 14, 14, 512], 'Conv2d_9_depthwise': [batch_size, 14, 14, 512], 'Conv2d_9_pointwise': [batch_size, 14, 14, 512], 'Conv2d_10_depthwise': [batch_size, 14, 14, 512], 'Conv2d_10_pointwise': [batch_size, 14, 14, 512], 'Conv2d_11_depthwise': [batch_size, 14, 14, 512], 'Conv2d_11_pointwise': [batch_size, 14, 14, 512], 'Conv2d_12_depthwise': [batch_size, 7, 7, 512], 'Conv2d_12_pointwise': [batch_size, 7, 7, 1024], 'Conv2d_13_depthwise': [batch_size, 7, 7, 1024], 'Conv2d_13_pointwise': [batch_size, 7, 7, 1024]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) self.assertItemsEqual(endpoints_shapes.keys(), explicit_padding_end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in explicit_padding_end_points) self.assertListEqual( explicit_padding_end_points[endpoint_name].get_shape().as_list(), expected_shape) def testOutputStride16BuildAndCheckAllEndPointsUptoConv2d_13(self): batch_size = 5 height, width = 224, 224 output_stride = 16 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise') _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise', use_explicit_padding=True) endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32], 'Conv2d_1_depthwise': [batch_size, 112, 112, 32], 'Conv2d_1_pointwise': [batch_size, 112, 112, 64], 'Conv2d_2_depthwise': [batch_size, 56, 56, 64], 'Conv2d_2_pointwise': [batch_size, 56, 56, 128], 'Conv2d_3_depthwise': [batch_size, 56, 56, 128], 'Conv2d_3_pointwise': [batch_size, 56, 56, 128], 'Conv2d_4_depthwise': [batch_size, 28, 28, 128], 'Conv2d_4_pointwise': [batch_size, 28, 28, 256], 'Conv2d_5_depthwise': [batch_size, 28, 28, 256], 'Conv2d_5_pointwise': [batch_size, 28, 28, 256], 'Conv2d_6_depthwise': [batch_size, 14, 14, 256], 'Conv2d_6_pointwise': [batch_size, 14, 14, 512], 'Conv2d_7_depthwise': [batch_size, 14, 14, 512], 'Conv2d_7_pointwise': [batch_size, 14, 14, 512], 'Conv2d_8_depthwise': [batch_size, 14, 14, 512], 'Conv2d_8_pointwise': [batch_size, 14, 14, 512], 'Conv2d_9_depthwise': [batch_size, 14, 14, 512], 'Conv2d_9_pointwise': [batch_size, 14, 14, 512], 'Conv2d_10_depthwise': [batch_size, 14, 14, 512], 'Conv2d_10_pointwise': [batch_size, 14, 14, 512], 'Conv2d_11_depthwise': [batch_size, 14, 14, 512], 'Conv2d_11_pointwise': [batch_size, 14, 14, 512], 'Conv2d_12_depthwise': [batch_size, 14, 14, 512], 'Conv2d_12_pointwise': [batch_size, 14, 14, 1024], 'Conv2d_13_depthwise': [batch_size, 14, 14, 1024], 'Conv2d_13_pointwise': [batch_size, 14, 14, 1024]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) self.assertItemsEqual(endpoints_shapes.keys(), explicit_padding_end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in explicit_padding_end_points) self.assertListEqual( explicit_padding_end_points[endpoint_name].get_shape().as_list(), expected_shape) def testOutputStride8BuildAndCheckAllEndPointsUptoConv2d_13(self): batch_size = 5 height, width = 224, 224 output_stride = 8 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise') _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base( inputs, output_stride=output_stride, final_endpoint='Conv2d_13_pointwise', use_explicit_padding=True) endpoints_shapes = {'Conv2d_0': [batch_size, 112, 112, 32], 'Conv2d_1_depthwise': [batch_size, 112, 112, 32], 'Conv2d_1_pointwise': [batch_size, 112, 112, 64], 'Conv2d_2_depthwise': [batch_size, 56, 56, 64], 'Conv2d_2_pointwise': [batch_size, 56, 56, 128], 'Conv2d_3_depthwise': [batch_size, 56, 56, 128], 'Conv2d_3_pointwise': [batch_size, 56, 56, 128], 'Conv2d_4_depthwise': [batch_size, 28, 28, 128], 'Conv2d_4_pointwise': [batch_size, 28, 28, 256], 'Conv2d_5_depthwise': [batch_size, 28, 28, 256], 'Conv2d_5_pointwise': [batch_size, 28, 28, 256], 'Conv2d_6_depthwise': [batch_size, 28, 28, 256], 'Conv2d_6_pointwise': [batch_size, 28, 28, 512], 'Conv2d_7_depthwise': [batch_size, 28, 28, 512], 'Conv2d_7_pointwise': [batch_size, 28, 28, 512], 'Conv2d_8_depthwise': [batch_size, 28, 28, 512], 'Conv2d_8_pointwise': [batch_size, 28, 28, 512], 'Conv2d_9_depthwise': [batch_size, 28, 28, 512], 'Conv2d_9_pointwise': [batch_size, 28, 28, 512], 'Conv2d_10_depthwise': [batch_size, 28, 28, 512], 'Conv2d_10_pointwise': [batch_size, 28, 28, 512], 'Conv2d_11_depthwise': [batch_size, 28, 28, 512], 'Conv2d_11_pointwise': [batch_size, 28, 28, 512], 'Conv2d_12_depthwise': [batch_size, 28, 28, 512], 'Conv2d_12_pointwise': [batch_size, 28, 28, 1024], 'Conv2d_13_depthwise': [batch_size, 28, 28, 1024], 'Conv2d_13_pointwise': [batch_size, 28, 28, 1024]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) self.assertItemsEqual(endpoints_shapes.keys(), explicit_padding_end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in explicit_padding_end_points) self.assertListEqual( explicit_padding_end_points[endpoint_name].get_shape().as_list(), expected_shape) def testBuildAndCheckAllEndPointsApproximateFaceNet(self): batch_size = 5 height, width = 128, 128 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): _, end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_13_pointwise', depth_multiplier=0.75) _, explicit_padding_end_points = mobilenet_v1.mobilenet_v1_base( inputs, final_endpoint='Conv2d_13_pointwise', depth_multiplier=0.75, use_explicit_padding=True) # For the Conv2d_0 layer FaceNet has depth=16 endpoints_shapes = {'Conv2d_0': [batch_size, 64, 64, 24], 'Conv2d_1_depthwise': [batch_size, 64, 64, 24], 'Conv2d_1_pointwise': [batch_size, 64, 64, 48], 'Conv2d_2_depthwise': [batch_size, 32, 32, 48], 'Conv2d_2_pointwise': [batch_size, 32, 32, 96], 'Conv2d_3_depthwise': [batch_size, 32, 32, 96], 'Conv2d_3_pointwise': [batch_size, 32, 32, 96], 'Conv2d_4_depthwise': [batch_size, 16, 16, 96], 'Conv2d_4_pointwise': [batch_size, 16, 16, 192], 'Conv2d_5_depthwise': [batch_size, 16, 16, 192], 'Conv2d_5_pointwise': [batch_size, 16, 16, 192], 'Conv2d_6_depthwise': [batch_size, 8, 8, 192], 'Conv2d_6_pointwise': [batch_size, 8, 8, 384], 'Conv2d_7_depthwise': [batch_size, 8, 8, 384], 'Conv2d_7_pointwise': [batch_size, 8, 8, 384], 'Conv2d_8_depthwise': [batch_size, 8, 8, 384], 'Conv2d_8_pointwise': [batch_size, 8, 8, 384], 'Conv2d_9_depthwise': [batch_size, 8, 8, 384], 'Conv2d_9_pointwise': [batch_size, 8, 8, 384], 'Conv2d_10_depthwise': [batch_size, 8, 8, 384], 'Conv2d_10_pointwise': [batch_size, 8, 8, 384], 'Conv2d_11_depthwise': [batch_size, 8, 8, 384], 'Conv2d_11_pointwise': [batch_size, 8, 8, 384], 'Conv2d_12_depthwise': [batch_size, 4, 4, 384], 'Conv2d_12_pointwise': [batch_size, 4, 4, 768], 'Conv2d_13_depthwise': [batch_size, 4, 4, 768], 'Conv2d_13_pointwise': [batch_size, 4, 4, 768]} self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) self.assertItemsEqual(endpoints_shapes.keys(), explicit_padding_end_points.keys()) for endpoint_name, expected_shape in endpoints_shapes.items(): self.assertTrue(endpoint_name in explicit_padding_end_points) self.assertListEqual( explicit_padding_end_points[endpoint_name].get_shape().as_list(), expected_shape) def testModelHasExpectedNumberOfParameters(self): batch_size = 5 height, width = 224, 224 inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.conv2d, slim.separable_conv2d], normalizer_fn=slim.batch_norm): mobilenet_v1.mobilenet_v1_base(inputs) total_params, _ = slim.model_analyzer.analyze_vars( slim.get_model_variables()) self.assertAlmostEqual(3217920, total_params) def testBuildEndPointsWithDepthMultiplierLessThanOne(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) endpoint_keys = [key for key in end_points.keys() if key.startswith('Conv')] _, end_points_with_multiplier = mobilenet_v1.mobilenet_v1( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=0.5) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(0.5 * original_depth, new_depth) def testBuildEndPointsWithDepthMultiplierGreaterThanOne(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) endpoint_keys = [key for key in end_points.keys() if key.startswith('Mixed') or key.startswith('Conv')] _, end_points_with_multiplier = mobilenet_v1.mobilenet_v1( inputs, num_classes, scope='depth_multiplied_net', depth_multiplier=2.0) for key in endpoint_keys: original_depth = end_points[key].get_shape().as_list()[3] new_depth = end_points_with_multiplier[key].get_shape().as_list()[3] self.assertEqual(2.0 * original_depth, new_depth) def testRaiseValueErrorWithInvalidDepthMultiplier(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) with self.assertRaises(ValueError): _ = mobilenet_v1.mobilenet_v1( inputs, num_classes, depth_multiplier=-0.1) with self.assertRaises(ValueError): _ = mobilenet_v1.mobilenet_v1( inputs, num_classes, depth_multiplier=0.0) def testHalfSizeImages(self): batch_size = 5 height, width = 112, 112 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 4, 4, 1024]) def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testGlobalPoolUnknownImageShape(self): tf.reset_default_graph() batch_size = 1 height, width = 250, 300 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes, global_pool=True) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 8, 10, 1024]) def testUnknowBatchSize(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 inputs = tf.placeholder(tf.float32, (None, height, width, 3)) logits, _ = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [None, num_classes]) images = tf.random_uniform((batch_size, height, width, 3)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch_size, num_classes)) def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes, is_training=False) predictions = tf.argmax(logits, 1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEqual(output.shape, (batch_size,)) def testTrainEvalWithReuse(self): train_batch_size = 5 eval_batch_size = 2 height, width = 150, 150 num_classes = 1000 train_inputs = tf.random_uniform((train_batch_size, height, width, 3)) mobilenet_v1.mobilenet_v1(train_inputs, num_classes) eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3)) logits, _ = mobilenet_v1.mobilenet_v1(eval_inputs, num_classes, reuse=True) predictions = tf.argmax(logits, 1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(predictions) self.assertEqual(output.shape, (eval_batch_size,)) def testLogitsNotSqueezed(self): num_classes = 25 images = tf.random_uniform([1, 224, 224, 3]) logits, _ = mobilenet_v1.mobilenet_v1(images, num_classes=num_classes, spatial_squeeze=False) with self.test_session() as sess: tf.global_variables_initializer().run() logits_out = sess.run(logits) self.assertListEqual(list(logits_out.shape), [1, 1, 1, num_classes]) def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)]) def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet_v1.mobilenet_v1_arg_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet_v1.mobilenet_v1_arg_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) if __name__ == '__main__': tf.test.main()
54.029851
85
0.580421
9f62fc44d1f222eea6357aea9206807922f94831
5,197
py
Python
Plugins/UnrealEnginePython/Binaries/Win64/Lib/site-packages/tensorflow/python/training/adadelta.py
JustinACoder/H22-GR3-UnrealAI
361eb9ef1147f8a2991e5f98c4118cd823184adf
[ "MIT" ]
6
2022-02-04T18:12:24.000Z
2022-03-21T23:57:12.000Z
Lib/site-packages/tensorflow/python/training/adadelta.py
shfkdroal/Robot-Learning-in-Mixed-Adversarial-and-Collaborative-Settings
1fa4cd6a566c8745f455fc3d2273208f21f88ced
[ "bzip2-1.0.6" ]
null
null
null
Lib/site-packages/tensorflow/python/training/adadelta.py
shfkdroal/Robot-Learning-in-Mixed-Adversarial-and-Collaborative-Settings
1fa4cd6a566c8745f455fc3d2273208f21f88ced
[ "bzip2-1.0.6" ]
1
2022-02-08T03:53:23.000Z
2022-02-08T03:53:23.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adadelta for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import math_ops from tensorflow.python.training import optimizer from tensorflow.python.training import training_ops from tensorflow.python.util.tf_export import tf_export @tf_export("train.AdadeltaOptimizer") class AdadeltaOptimizer(optimizer.Optimizer): """Optimizer that implements the Adadelta algorithm. See [M. D. Zeiler](http://arxiv.org/abs/1212.5701) ([pdf](http://arxiv.org/pdf/1212.5701v1.pdf)) """ def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8, use_locking=False, name="Adadelta"): """Construct a new Adadelta optimizer. Args: learning_rate: A `Tensor` or a floating point value. The learning rate. To match the exact form in the original paper use 1.0. rho: A `Tensor` or a floating point value. The decay rate. epsilon: A `Tensor` or a floating point value. A constant epsilon used to better conditioning the grad update. use_locking: If `True` use locks for update operations. name: Optional name prefix for the operations created when applying gradients. Defaults to "Adadelta". @compatibility(eager) When eager execution is enabled, `learning_rate`, `rho`, and `epsilon` can each be a callable that takes no arguments and returns the actual value to use. This can be useful for changing these values across different invocations of optimizer functions. @end_compatibility """ super(AdadeltaOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._rho = rho self._epsilon = epsilon # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._rho_t = None self._epsilon_t = None def _create_slots(self, var_list): for v in var_list: self._zeros_slot(v, "accum", self._name) self._zeros_slot(v, "accum_update", self._name) def _prepare(self): lr = self._call_if_callable(self._lr) rho = self._call_if_callable(self._rho) epsilon = self._call_if_callable(self._epsilon) self._lr_t = ops.convert_to_tensor(lr, name="lr") self._rho_t = ops.convert_to_tensor(rho, name="rho") self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon") def _apply_dense(self, grad, var): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.apply_adadelta( var, accum, accum_update, math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._rho_t, var.dtype.base_dtype), math_ops.cast(self._epsilon_t, var.dtype.base_dtype), grad, use_locking=self._use_locking) def _resource_apply_dense(self, grad, var): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.resource_apply_adadelta( var.handle, accum.handle, accum_update.handle, math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._rho_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking) def _apply_sparse(self, grad, var): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.sparse_apply_adadelta( var, accum, accum_update, math_ops.cast(self._lr_t, var.dtype.base_dtype), math_ops.cast(self._rho_t, var.dtype.base_dtype), math_ops.cast(self._epsilon_t, var.dtype.base_dtype), grad.values, grad.indices, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices): accum = self.get_slot(var, "accum") accum_update = self.get_slot(var, "accum_update") return training_ops.resource_sparse_apply_adadelta( var.handle, accum.handle, accum_update.handle, math_ops.cast(self._lr_t, grad.dtype), math_ops.cast(self._rho_t, grad.dtype), math_ops.cast(self._epsilon_t, grad.dtype), grad, indices, use_locking=self._use_locking)
38.783582
81
0.676159
81ff15f0f77cc9d8494374946f86caa83e391afe
222,054
py
Python
awx/api/serializers.py
chris93111/awx
cd49213924f1cd451e5c17390b9c2b237085d1be
[ "Apache-2.0" ]
null
null
null
awx/api/serializers.py
chris93111/awx
cd49213924f1cd451e5c17390b9c2b237085d1be
[ "Apache-2.0" ]
1
2020-11-05T16:07:07.000Z
2020-11-05T16:07:07.000Z
awx/api/serializers.py
Mattlk13/awx
cd49213924f1cd451e5c17390b9c2b237085d1be
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2015 Ansible, Inc. # All Rights Reserved. # Python import copy import json import logging import re from collections import OrderedDict from datetime import timedelta # OAuth2 from oauthlib import oauth2 from oauthlib.common import generate_token # Jinja from jinja2 import sandbox, StrictUndefined from jinja2.exceptions import TemplateSyntaxError, UndefinedError, SecurityError # Django from django.conf import settings from django.contrib.auth import update_session_auth_hash from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ObjectDoesNotExist, ValidationError as DjangoValidationError from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.encoding import force_text from django.utils.text import capfirst from django.utils.timezone import now from django.utils.functional import cached_property # Django REST Framework from rest_framework.exceptions import ValidationError, PermissionDenied from rest_framework.relations import ManyRelatedField from rest_framework import fields from rest_framework import serializers from rest_framework import validators from rest_framework.utils.serializer_helpers import ReturnList # Django-Polymorphic from polymorphic.models import PolymorphicModel # AWX from awx.main.access import get_user_capabilities from awx.main.constants import ( SCHEDULEABLE_PROVIDERS, ACTIVE_STATES, CENSOR_VALUE, ) from awx.main.models import ( ActivityStream, AdHocCommand, AdHocCommandEvent, Credential, CredentialInputSource, CredentialType, CustomInventoryScript, Group, Host, Instance, InstanceGroup, Inventory, InventorySource, InventoryUpdate, InventoryUpdateEvent, Job, JobEvent, JobHostSummary, JobLaunchConfig, JobNotificationMixin, JobTemplate, Label, Notification, NotificationTemplate, OAuth2AccessToken, OAuth2Application, Organization, Project, ProjectUpdate, ProjectUpdateEvent, RefreshToken, Role, Schedule, SystemJob, SystemJobEvent, SystemJobTemplate, Team, UnifiedJob, UnifiedJobTemplate, WorkflowApproval, WorkflowApprovalTemplate, WorkflowJob, WorkflowJobNode, WorkflowJobTemplate, WorkflowJobTemplateNode, StdoutMaxBytesExceeded ) from awx.main.models.base import VERBOSITY_CHOICES, NEW_JOB_TYPE_CHOICES from awx.main.models.rbac import ( get_roles_on_resource, role_summary_fields_generator ) from awx.main.fields import ImplicitRoleField, JSONBField from awx.main.utils import ( get_type_for_model, get_model_for_type, camelcase_to_underscore, getattrd, parse_yaml_or_json, has_model_field_prefetched, extract_ansible_vars, encrypt_dict, prefetch_page_capabilities, get_external_account, truncate_stdout, ) from awx.main.utils.filters import SmartFilter from awx.main.redact import UriCleaner, REPLACE_STR from awx.main.validators import vars_validate_or_raise from awx.api.versioning import reverse from awx.api.fields import (BooleanNullField, CharNullField, ChoiceNullField, VerbatimField, DeprecatedCredentialField) logger = logging.getLogger('awx.api.serializers') # Fields that should be summarized regardless of object type. DEFAULT_SUMMARY_FIELDS = ('id', 'name', 'description')# , 'created_by', 'modified_by')#, 'type') # Keys are fields (foreign keys) where, if found on an instance, summary info # should be added to the serialized data. Values are a tuple of field names on # the related object to include in the summary data (if the field is present on # the related object). SUMMARIZABLE_FK_FIELDS = { 'organization': DEFAULT_SUMMARY_FIELDS, 'user': ('id', 'username', 'first_name', 'last_name'), 'application': ('id', 'name'), 'team': DEFAULT_SUMMARY_FIELDS, 'inventory': DEFAULT_SUMMARY_FIELDS + ('has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'has_inventory_sources', 'total_inventory_sources', 'inventory_sources_with_failures', 'organization_id', 'kind', 'insights_credential_id',), 'host': DEFAULT_SUMMARY_FIELDS, 'group': DEFAULT_SUMMARY_FIELDS, 'project': DEFAULT_SUMMARY_FIELDS + ('status', 'scm_type'), 'source_project': DEFAULT_SUMMARY_FIELDS + ('status', 'scm_type'), 'project_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed',), 'credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'kubernetes', 'credential_type_id'), 'job': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'elapsed', 'type', 'canceled_on'), 'job_template': DEFAULT_SUMMARY_FIELDS, 'workflow_job_template': DEFAULT_SUMMARY_FIELDS, 'workflow_job': DEFAULT_SUMMARY_FIELDS, 'workflow_approval_template': DEFAULT_SUMMARY_FIELDS + ('timeout',), 'workflow_approval': DEFAULT_SUMMARY_FIELDS + ('timeout',), 'schedule': DEFAULT_SUMMARY_FIELDS + ('next_run',), 'unified_job_template': DEFAULT_SUMMARY_FIELDS + ('unified_job_type',), 'last_job': DEFAULT_SUMMARY_FIELDS + ('finished', 'status', 'failed', 'license_error', 'canceled_on'), 'last_job_host_summary': DEFAULT_SUMMARY_FIELDS + ('failed',), 'last_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'current_update': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'current_job': DEFAULT_SUMMARY_FIELDS + ('status', 'failed', 'license_error'), 'inventory_source': ('source', 'last_updated', 'status'), 'custom_inventory_script': DEFAULT_SUMMARY_FIELDS, 'source_script': ('name', 'description'), 'role': ('id', 'role_field'), 'notification_template': DEFAULT_SUMMARY_FIELDS, 'instance_group': ('id', 'name', 'controller_id', 'is_containerized'), 'insights_credential': DEFAULT_SUMMARY_FIELDS, 'source_credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), 'target_credential': DEFAULT_SUMMARY_FIELDS + ('kind', 'cloud', 'credential_type_id'), 'webhook_credential': DEFAULT_SUMMARY_FIELDS, 'approved_or_denied_by': ('id', 'username', 'first_name', 'last_name'), 'credential_type': DEFAULT_SUMMARY_FIELDS, } def reverse_gfk(content_object, request): ''' Computes a reverse for a GenericForeignKey field. Returns a dictionary of the form { '<type>': reverse(<type detail>) } for example { 'organization': '/api/v2/organizations/1/' } ''' if content_object is None or not hasattr(content_object, 'get_absolute_url'): return {} return { camelcase_to_underscore(content_object.__class__.__name__): content_object.get_absolute_url(request=request) } class CopySerializer(serializers.Serializer): name = serializers.CharField() def validate(self, attrs): name = attrs.get('name') view = self.context.get('view', None) obj = view.get_object() if name == obj.name: raise serializers.ValidationError(_( 'The original object is already named {}, a copy from' ' it cannot have the same name.'.format(name) )) return attrs class BaseSerializerMetaclass(serializers.SerializerMetaclass): ''' Custom metaclass to enable attribute inheritance from Meta objects on serializer base classes. Also allows for inheriting or updating field lists from base class(es): class Meta: # Inherit all fields from base class. fields = ('*',) # Inherit all fields from base class and add 'foo'. fields = ('*', 'foo') # Inherit all fields from base class except 'bar'. fields = ('*', '-bar') # Define fields as 'foo' and 'bar'; ignore base class fields. fields = ('foo', 'bar') # Extra field kwargs dicts are also merged from base classes. extra_kwargs = { 'foo': {'required': True}, 'bar': {'read_only': True}, } # If a subclass were to define extra_kwargs as: extra_kwargs = { 'foo': {'required': False, 'default': ''}, 'bar': {'label': 'New Label for Bar'}, } # The resulting value of extra_kwargs would be: extra_kwargs = { 'foo': {'required': False, 'default': ''}, 'bar': {'read_only': True, 'label': 'New Label for Bar'}, } # Extra field kwargs cannot be removed in subclasses, only replaced. ''' @staticmethod def _is_list_of_strings(x): return isinstance(x, (list, tuple)) and all([isinstance(y, str) for y in x]) @staticmethod def _is_extra_kwargs(x): return isinstance(x, dict) and all([isinstance(k, str) and isinstance(v, dict) for k,v in x.items()]) @classmethod def _update_meta(cls, base, meta, other=None): for attr in dir(other): if attr.startswith('_'): continue val = getattr(other, attr) meta_val = getattr(meta, attr, None) # Special handling for lists/tuples of strings (field names). if cls._is_list_of_strings(val) and cls._is_list_of_strings(meta_val or []): meta_val = meta_val or [] new_vals = [] except_vals = [] if base: # Merge values from all bases. new_vals.extend([x for x in meta_val]) for v in val: if not base and v == '*': # Inherit all values from previous base(es). new_vals.extend([x for x in meta_val]) elif not base and v.startswith('-'): # Except these values. except_vals.append(v[1:]) else: new_vals.append(v) val = [] for v in new_vals: if v not in except_vals and v not in val: val.append(v) val = tuple(val) # Merge extra_kwargs dicts from base classes. elif cls._is_extra_kwargs(val) and cls._is_extra_kwargs(meta_val or {}): meta_val = meta_val or {} new_val = {} if base: for k,v in meta_val.items(): new_val[k] = copy.deepcopy(v) for k,v in val.items(): new_val.setdefault(k, {}).update(copy.deepcopy(v)) val = new_val # Any other values are copied in case they are mutable objects. else: val = copy.deepcopy(val) setattr(meta, attr, val) def __new__(cls, name, bases, attrs): meta = type('Meta', (object,), {}) for base in bases[::-1]: cls._update_meta(base, meta, getattr(base, 'Meta', None)) cls._update_meta(None, meta, attrs.get('Meta', meta)) attrs['Meta'] = meta return super(BaseSerializerMetaclass, cls).__new__(cls, name, bases, attrs) class BaseSerializer(serializers.ModelSerializer, metaclass=BaseSerializerMetaclass): class Meta: fields = ('id', 'type', 'url', 'related', 'summary_fields', 'created', 'modified', 'name', 'description') summary_fields = () summarizable_fields = () # add the URL and related resources type = serializers.SerializerMethodField() url = serializers.SerializerMethodField() related = serializers.SerializerMethodField('_get_related') summary_fields = serializers.SerializerMethodField('_get_summary_fields') # make certain fields read only created = serializers.SerializerMethodField() modified = serializers.SerializerMethodField() def __init__(self, *args, **kwargs): super(BaseSerializer, self).__init__(*args, **kwargs) # The following lines fix the problem of being able to pass JSON dict into PrimaryKeyRelatedField. data = kwargs.get('data', False) if data: for field_name, field_instance in self.fields.items(): if isinstance(field_instance, ManyRelatedField) and not field_instance.read_only: if isinstance(data.get(field_name, False), dict): raise serializers.ValidationError(_('Cannot use dictionary for %s' % field_name)) @property def version(self): return 2 def get_type(self, obj): return get_type_for_model(self.Meta.model) def get_types(self): return [self.get_type(None)] def get_type_choices(self): type_name_map = { 'job': _('Playbook Run'), 'ad_hoc_command': _('Command'), 'project_update': _('SCM Update'), 'inventory_update': _('Inventory Sync'), 'system_job': _('Management Job'), 'workflow_job': _('Workflow Job'), 'workflow_job_template': _('Workflow Template'), 'job_template': _('Job Template') } choices = [] for t in self.get_types(): name = _(type_name_map.get(t, force_text(get_model_for_type(t)._meta.verbose_name).title())) choices.append((t, name)) return choices def get_url(self, obj): if obj is None or not hasattr(obj, 'get_absolute_url'): return '' elif isinstance(obj, User): return self.reverse('api:user_detail', kwargs={'pk': obj.pk}) else: return obj.get_absolute_url(request=self.context.get('request')) def filter_field_metadata(self, fields, method): """ Filter field metadata based on the request method. This it intended to be extended by subclasses. """ return fields def _get_related(self, obj): return {} if obj is None else self.get_related(obj) def _generate_named_url(self, url_path, obj, node): url_units = url_path.split('/') named_url = node.generate_named_url(obj) url_units[4] = named_url return '/'.join(url_units) def get_related(self, obj): res = OrderedDict() view = self.context.get('view', None) if view and (hasattr(view, 'retrieve') or view.request.method == 'POST') and \ type(obj) in settings.NAMED_URL_GRAPH: original_url = self.get_url(obj) res['named_url'] = self._generate_named_url( original_url, obj, settings.NAMED_URL_GRAPH[type(obj)] ) if getattr(obj, 'created_by', None): res['created_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.created_by.pk}) if getattr(obj, 'modified_by', None): res['modified_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.modified_by.pk}) return res def _get_summary_fields(self, obj): return {} if obj is None else self.get_summary_fields(obj) def get_summary_fields(self, obj): # Return values for certain fields on related objects, to simplify # displaying lists of items without additional API requests. summary_fields = OrderedDict() for fk, related_fields in SUMMARIZABLE_FK_FIELDS.items(): try: # A few special cases where we don't want to access the field # because it results in additional queries. if fk == 'job' and isinstance(obj, UnifiedJob): continue if fk == 'project' and (isinstance(obj, InventorySource) or isinstance(obj, Project)): continue try: fkval = getattr(obj, fk, None) except ObjectDoesNotExist: continue if fkval is None: continue if fkval == obj: continue summary_fields[fk] = OrderedDict() for field in related_fields: fval = getattr(fkval, field, None) if fval is None and field == 'type': if isinstance(fkval, PolymorphicModel): fkval = fkval.get_real_instance() fval = get_type_for_model(fkval) elif fval is None and field == 'unified_job_type' and isinstance(fkval, UnifiedJobTemplate): fkval = fkval.get_real_instance() fval = get_type_for_model(fkval._get_unified_job_class()) if fval is not None: summary_fields[fk][field] = fval # Can be raised by the reverse accessor for a OneToOneField. except ObjectDoesNotExist: pass if getattr(obj, 'created_by', None): summary_fields['created_by'] = OrderedDict() for field in SUMMARIZABLE_FK_FIELDS['user']: summary_fields['created_by'][field] = getattr(obj.created_by, field) if getattr(obj, 'modified_by', None): summary_fields['modified_by'] = OrderedDict() for field in SUMMARIZABLE_FK_FIELDS['user']: summary_fields['modified_by'][field] = getattr(obj.modified_by, field) # RBAC summary fields roles = {} for field in obj._meta.get_fields(): if type(field) is ImplicitRoleField: roles[field.name] = role_summary_fields_generator(obj, field.name) if len(roles) > 0: summary_fields['object_roles'] = roles # Advance display of RBAC capabilities if hasattr(self, 'show_capabilities'): user_capabilities = self._obj_capability_dict(obj) if user_capabilities: summary_fields['user_capabilities'] = user_capabilities return summary_fields def _obj_capability_dict(self, obj): """ Returns the user_capabilities dictionary for a single item If inside of a list view, it runs the prefetching algorithm for the entire current page, saves it into context """ view = self.context.get('view', None) parent_obj = None if view and hasattr(view, 'parent_model') and hasattr(view, 'get_parent_object'): parent_obj = view.get_parent_object() if view and view.request and view.request.user: capabilities_cache = {} # if serializer has parent, it is ListView, apply page capabilities prefetch if self.parent and hasattr(self, 'capabilities_prefetch') and self.capabilities_prefetch: qs = self.parent.instance if 'capability_map' not in self.context: if hasattr(self, 'polymorphic_base'): model = self.polymorphic_base.Meta.model prefetch_list = self.polymorphic_base._capabilities_prefetch else: model = self.Meta.model prefetch_list = self.capabilities_prefetch self.context['capability_map'] = prefetch_page_capabilities( model, qs, prefetch_list, view.request.user ) if obj.id in self.context['capability_map']: capabilities_cache = self.context['capability_map'][obj.id] return get_user_capabilities( view.request.user, obj, method_list=self.show_capabilities, parent_obj=parent_obj, capabilities_cache=capabilities_cache ) else: # Contextual information to produce user_capabilities doesn't exist return {} def get_created(self, obj): if obj is None: return None elif isinstance(obj, User): return obj.date_joined elif hasattr(obj, 'created'): return obj.created return None def get_modified(self, obj): if obj is None: return None elif isinstance(obj, User): return obj.last_login # Not actually exposed for User. elif hasattr(obj, 'modified'): return obj.modified return None def get_extra_kwargs(self): extra_kwargs = super(BaseSerializer, self).get_extra_kwargs() if self.instance: read_only_on_update_fields = getattr(self.Meta, 'read_only_on_update_fields', tuple()) for field_name in read_only_on_update_fields: kwargs = extra_kwargs.get(field_name, {}) kwargs['read_only'] = True extra_kwargs[field_name] = kwargs return extra_kwargs def build_standard_field(self, field_name, model_field): # DRF 3.3 serializers.py::build_standard_field() -> utils/field_mapping.py::get_field_kwargs() short circuits # when a Model's editable field is set to False. The short circuit skips choice rendering. # # This logic is to force rendering choice's on an uneditable field. # Note: Consider expanding this rendering for more than just choices fields # Note: This logic works in conjuction with if hasattr(model_field, 'choices') and model_field.choices: was_editable = model_field.editable model_field.editable = True field_class, field_kwargs = super(BaseSerializer, self).build_standard_field(field_name, model_field) if hasattr(model_field, 'choices') and model_field.choices: model_field.editable = was_editable if was_editable is False: field_kwargs['read_only'] = True # Pass model field default onto the serializer field if field is not read-only. if model_field.has_default() and not field_kwargs.get('read_only', False): field_kwargs['default'] = field_kwargs['initial'] = model_field.get_default() # Enforce minimum value of 0 for PositiveIntegerFields. if isinstance(model_field, (models.PositiveIntegerField, models.PositiveSmallIntegerField)) and 'choices' not in field_kwargs: field_kwargs['min_value'] = 0 # Use custom boolean field that allows null and empty string as False values. if isinstance(model_field, models.BooleanField) and not field_kwargs.get('read_only', False): field_class = BooleanNullField # Use custom char or choice field that coerces null to an empty string. if isinstance(model_field, (models.CharField, models.TextField)) and not field_kwargs.get('read_only', False): if 'choices' in field_kwargs: field_class = ChoiceNullField else: field_class = CharNullField # Update the message used for the unique validator to use capitalized # verbose name; keeps unique message the same as with DRF 2.x. opts = self.Meta.model._meta.concrete_model._meta for validator in field_kwargs.get('validators', []): if isinstance(validator, validators.UniqueValidator): unique_error_message = model_field.error_messages.get('unique', None) if unique_error_message: unique_error_message = unique_error_message % { 'model_name': capfirst(opts.verbose_name), 'field_label': capfirst(model_field.verbose_name), } validator.message = unique_error_message return field_class, field_kwargs def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(BaseSerializer, self).build_relational_field(field_name, relation_info) # Don't include choices for foreign key fields. field_kwargs.pop('choices', None) return field_class, field_kwargs def get_unique_together_validators(self): # Allow the model's full_clean method to handle the unique together validation. return [] def run_validation(self, data=fields.empty): try: return super(BaseSerializer, self).run_validation(data) except ValidationError as exc: # Avoid bug? in DRF if exc.detail happens to be a list instead of a dict. raise ValidationError(detail=serializers.as_serializer_error(exc)) def get_validation_exclusions(self, obj=None): # Borrowed from DRF 2.x - return model fields that should be excluded # from model validation. cls = self.Meta.model opts = cls._meta.concrete_model._meta exclusions = [field.name for field in opts.fields] for field_name, field in self.fields.items(): field_name = field.source or field_name if field_name not in exclusions: continue if field.read_only: continue if isinstance(field, serializers.Serializer): continue exclusions.remove(field_name) # The clean_ methods cannot be ran on many-to-many models exclusions.extend([field.name for field in opts.many_to_many]) return exclusions def validate(self, attrs): attrs = super(BaseSerializer, self).validate(attrs) try: # Create/update a model instance and run it's full_clean() method to # do any validation implemented on the model class. exclusions = self.get_validation_exclusions(self.instance) obj = self.instance or self.Meta.model() for k,v in attrs.items(): if k not in exclusions: setattr(obj, k, v) obj.full_clean(exclude=exclusions) # full_clean may modify values on the instance; copy those changes # back to attrs so they are saved. for k in attrs.keys(): if k not in exclusions: attrs[k] = getattr(obj, k) except DjangoValidationError as exc: # DjangoValidationError may contain a list or dict; normalize into a # dict where the keys are the field name and the values are a list # of error messages, then raise as a DRF ValidationError. DRF would # normally convert any DjangoValidationError to a non-field specific # error message; here we preserve field-specific errors raised from # the model's full_clean method. d = exc.update_error_dict({}) for k,v in d.items(): v = v if isinstance(v, list) else [v] v2 = [] for e in v: if isinstance(e, DjangoValidationError): v2.extend(list(e)) elif isinstance(e, list): v2.extend(e) else: v2.append(e) d[k] = list(map(force_text, v2)) raise ValidationError(d) return attrs def reverse(self, *args, **kwargs): kwargs['request'] = self.context.get('request') return reverse(*args, **kwargs) @property def is_detail_view(self): if 'view' in self.context: if 'pk' in self.context['view'].kwargs: return True return False class EmptySerializer(serializers.Serializer): pass class UnifiedJobTemplateSerializer(BaseSerializer): # As a base serializer, the capabilities prefetch is not used directly _capabilities_prefetch = [ 'admin', 'execute', {'copy': ['jobtemplate.project.use', 'jobtemplate.inventory.use', 'workflowjobtemplate.organization.workflow_admin']} ] class Meta: model = UnifiedJobTemplate fields = ('*', 'last_job_run', 'last_job_failed', 'next_job_run', 'status') def get_related(self, obj): res = super(UnifiedJobTemplateSerializer, self).get_related(obj) if obj.current_job: res['current_job'] = obj.current_job.get_absolute_url(request=self.context.get('request')) if obj.last_job: res['last_job'] = obj.last_job.get_absolute_url(request=self.context.get('request')) if obj.next_schedule: res['next_schedule'] = obj.next_schedule.get_absolute_url(request=self.context.get('request')) return res def get_types(self): if type(self) is UnifiedJobTemplateSerializer: return ['project', 'inventory_source', 'job_template', 'system_job_template', 'workflow_job_template',] else: return super(UnifiedJobTemplateSerializer, self).get_types() def get_sub_serializer(self, obj): serializer_class = None if type(self) is UnifiedJobTemplateSerializer: if isinstance(obj, Project): serializer_class = ProjectSerializer elif isinstance(obj, InventorySource): serializer_class = InventorySourceSerializer elif isinstance(obj, JobTemplate): serializer_class = JobTemplateSerializer elif isinstance(obj, SystemJobTemplate): serializer_class = SystemJobTemplateSerializer elif isinstance(obj, WorkflowJobTemplate): serializer_class = WorkflowJobTemplateSerializer elif isinstance(obj, WorkflowApprovalTemplate): serializer_class = WorkflowApprovalTemplateSerializer return serializer_class def to_representation(self, obj): serializer_class = self.get_sub_serializer(obj) if serializer_class: serializer = serializer_class(instance=obj, context=self.context) # preserve links for list view if self.parent: serializer.parent = self.parent serializer.polymorphic_base = self # capabilities prefetch is only valid for these models if isinstance(obj, (JobTemplate, WorkflowJobTemplate)): serializer.capabilities_prefetch = self._capabilities_prefetch else: serializer.capabilities_prefetch = None return serializer.to_representation(obj) else: return super(UnifiedJobTemplateSerializer, self).to_representation(obj) class UnifiedJobSerializer(BaseSerializer): show_capabilities = ['start', 'delete'] event_processing_finished = serializers.BooleanField( help_text=_('Indicates whether all of the events generated by this ' 'unified job have been saved to the database.'), read_only=True ) class Meta: model = UnifiedJob fields = ('*', 'unified_job_template', 'launch_type', 'status', 'failed', 'started', 'finished', 'canceled_on', 'elapsed', 'job_args', 'job_cwd', 'job_env', 'job_explanation', 'execution_node', 'controller_node', 'result_traceback', 'event_processing_finished') extra_kwargs = { 'unified_job_template': { 'source': 'unified_job_template_id', 'label': 'unified job template', }, 'job_env': { 'read_only': True, 'label': 'job_env', } } def get_types(self): if type(self) is UnifiedJobSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job', 'workflow_job',] else: return super(UnifiedJobSerializer, self).get_types() def get_related(self, obj): res = super(UnifiedJobSerializer, self).get_related(obj) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(request=self.context.get('request')) if obj.schedule: res['schedule'] = obj.schedule.get_absolute_url(request=self.context.get('request')) if isinstance(obj, ProjectUpdate): res['stdout'] = self.reverse('api:project_update_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, InventoryUpdate): res['stdout'] = self.reverse('api:inventory_update_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, Job): res['stdout'] = self.reverse('api:job_stdout', kwargs={'pk': obj.pk}) elif isinstance(obj, AdHocCommand): res['stdout'] = self.reverse('api:ad_hoc_command_stdout', kwargs={'pk': obj.pk}) if obj.workflow_job_id: res['source_workflow_job'] = self.reverse('api:workflow_job_detail', kwargs={'pk': obj.workflow_job_id}) return res def get_summary_fields(self, obj): summary_fields = super(UnifiedJobSerializer, self).get_summary_fields(obj) if obj.spawned_by_workflow: summary_fields['source_workflow_job'] = {} try: summary_obj = obj.unified_job_node.workflow_job except UnifiedJob.unified_job_node.RelatedObjectDoesNotExist: return summary_fields for field in SUMMARIZABLE_FK_FIELDS['job']: val = getattr(summary_obj, field, None) if val is not None: summary_fields['source_workflow_job'][field] = val return summary_fields def get_sub_serializer(self, obj): serializer_class = None if type(self) is UnifiedJobSerializer: if isinstance(obj, ProjectUpdate): serializer_class = ProjectUpdateSerializer elif isinstance(obj, InventoryUpdate): serializer_class = InventoryUpdateSerializer elif isinstance(obj, Job): serializer_class = JobSerializer elif isinstance(obj, AdHocCommand): serializer_class = AdHocCommandSerializer elif isinstance(obj, SystemJob): serializer_class = SystemJobSerializer elif isinstance(obj, WorkflowJob): serializer_class = WorkflowJobSerializer elif isinstance(obj, WorkflowApproval): serializer_class = WorkflowApprovalSerializer return serializer_class def to_representation(self, obj): serializer_class = self.get_sub_serializer(obj) if serializer_class: serializer = serializer_class(instance=obj, context=self.context) # preserve links for list view if self.parent: serializer.parent = self.parent serializer.polymorphic_base = self # TODO: restrict models for capabilities prefetch, when it is added ret = serializer.to_representation(obj) else: ret = super(UnifiedJobSerializer, self).to_representation(obj) if 'elapsed' in ret: if obj and obj.pk and obj.started and not obj.finished: td = now() - obj.started ret['elapsed'] = (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / (10 ** 6 * 1.0) ret['elapsed'] = float(ret['elapsed']) return ret class UnifiedJobListSerializer(UnifiedJobSerializer): class Meta: fields = ('*', '-job_args', '-job_cwd', '-job_env', '-result_traceback', '-event_processing_finished') def get_field_names(self, declared_fields, info): field_names = super(UnifiedJobListSerializer, self).get_field_names(declared_fields, info) # Meta multiple inheritance and -field_name options don't seem to be # taking effect above, so remove the undesired fields here. return tuple(x for x in field_names if x not in ('job_args', 'job_cwd', 'job_env', 'result_traceback', 'event_processing_finished')) def get_types(self): if type(self) is UnifiedJobListSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job', 'workflow_job'] else: return super(UnifiedJobListSerializer, self).get_types() def get_sub_serializer(self, obj): serializer_class = None if type(self) is UnifiedJobListSerializer: if isinstance(obj, ProjectUpdate): serializer_class = ProjectUpdateListSerializer elif isinstance(obj, InventoryUpdate): serializer_class = InventoryUpdateListSerializer elif isinstance(obj, Job): serializer_class = JobListSerializer elif isinstance(obj, AdHocCommand): serializer_class = AdHocCommandListSerializer elif isinstance(obj, SystemJob): serializer_class = SystemJobListSerializer elif isinstance(obj, WorkflowJob): serializer_class = WorkflowJobListSerializer elif isinstance(obj, WorkflowApproval): serializer_class = WorkflowApprovalListSerializer return serializer_class def to_representation(self, obj): serializer_class = self.get_sub_serializer(obj) if serializer_class: serializer = serializer_class(instance=obj, context=self.context) ret = serializer.to_representation(obj) else: ret = super(UnifiedJobListSerializer, self).to_representation(obj) if 'elapsed' in ret: ret['elapsed'] = float(ret['elapsed']) return ret class UnifiedJobStdoutSerializer(UnifiedJobSerializer): result_stdout = serializers.SerializerMethodField() class Meta: fields = ('result_stdout',) def get_types(self): if type(self) is UnifiedJobStdoutSerializer: return ['project_update', 'inventory_update', 'job', 'ad_hoc_command', 'system_job'] else: return super(UnifiedJobStdoutSerializer, self).get_types() class UserSerializer(BaseSerializer): password = serializers.CharField(required=False, default='', write_only=True, help_text=_('Write-only field used to change the password.')) ldap_dn = serializers.CharField(source='profile.ldap_dn', read_only=True) external_account = serializers.SerializerMethodField(help_text=_('Set if the account is managed by an external service')) is_system_auditor = serializers.BooleanField(default=False) show_capabilities = ['edit', 'delete'] class Meta: model = User fields = ('*', '-name', '-description', '-modified', 'username', 'first_name', 'last_name', 'email', 'is_superuser', 'is_system_auditor', 'password', 'ldap_dn', 'last_login', 'external_account') def to_representation(self, obj): ret = super(UserSerializer, self).to_representation(obj) ret.pop('password', None) if obj and type(self) is UserSerializer: ret['auth'] = obj.social_auth.values('provider', 'uid') return ret def get_validation_exclusions(self, obj=None): ret = super(UserSerializer, self).get_validation_exclusions(obj) ret.extend(['password', 'is_system_auditor']) return ret def validate_password(self, value): if not self.instance and value in (None, ''): raise serializers.ValidationError(_('Password required for new User.')) return value def _update_password(self, obj, new_password): # For now we're not raising an error, just not saving password for # users managed by LDAP who already have an unusable password set. if getattr(settings, 'AUTH_LDAP_SERVER_URI', None): try: if obj.pk and obj.profile.ldap_dn and not obj.has_usable_password(): new_password = None except AttributeError: pass if (getattr(settings, 'SOCIAL_AUTH_GOOGLE_OAUTH2_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_ORG_KEY', None) or getattr(settings, 'SOCIAL_AUTH_GITHUB_TEAM_KEY', None) or getattr(settings, 'SOCIAL_AUTH_SAML_ENABLED_IDPS', None)) and obj.social_auth.all(): new_password = None if (getattr(settings, 'RADIUS_SERVER', None) or getattr(settings, 'TACACSPLUS_HOST', None)) and obj.enterprise_auth.all(): new_password = None if new_password: obj.set_password(new_password) obj.save(update_fields=['password']) # Cycle the session key, but if the requesting user is the same # as the modified user then inject a session key derived from # the updated user to prevent logout. This is the logic used by # the Django admin's own user_change_password view. update_session_auth_hash(self.context['request'], obj) elif not obj.password: obj.set_unusable_password() obj.save(update_fields=['password']) def get_external_account(self, obj): return get_external_account(obj) def create(self, validated_data): new_password = validated_data.pop('password', None) is_system_auditor = validated_data.pop('is_system_auditor', None) obj = super(UserSerializer, self).create(validated_data) self._update_password(obj, new_password) if is_system_auditor is not None: obj.is_system_auditor = is_system_auditor return obj def update(self, obj, validated_data): new_password = validated_data.pop('password', None) is_system_auditor = validated_data.pop('is_system_auditor', None) obj = super(UserSerializer, self).update(obj, validated_data) self._update_password(obj, new_password) if is_system_auditor is not None: obj.is_system_auditor = is_system_auditor return obj def get_related(self, obj): res = super(UserSerializer, self).get_related(obj) res.update(dict( teams = self.reverse('api:user_teams_list', kwargs={'pk': obj.pk}), organizations = self.reverse('api:user_organizations_list', kwargs={'pk': obj.pk}), admin_of_organizations = self.reverse('api:user_admin_of_organizations_list', kwargs={'pk': obj.pk}), projects = self.reverse('api:user_projects_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:user_credentials_list', kwargs={'pk': obj.pk}), roles = self.reverse('api:user_roles_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:user_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:user_access_list', kwargs={'pk': obj.pk}), tokens = self.reverse('api:o_auth2_token_list', kwargs={'pk': obj.pk}), authorized_tokens = self.reverse('api:user_authorized_token_list', kwargs={'pk': obj.pk}), personal_tokens = self.reverse('api:user_personal_token_list', kwargs={'pk': obj.pk}), )) return res def _validate_ldap_managed_field(self, value, field_name): if not getattr(settings, 'AUTH_LDAP_SERVER_URI', None): return value try: is_ldap_user = bool(self.instance and self.instance.profile.ldap_dn) except AttributeError: is_ldap_user = False if is_ldap_user: ldap_managed_fields = ['username'] ldap_managed_fields.extend(getattr(settings, 'AUTH_LDAP_USER_ATTR_MAP', {}).keys()) ldap_managed_fields.extend(getattr(settings, 'AUTH_LDAP_USER_FLAGS_BY_GROUP', {}).keys()) if field_name in ldap_managed_fields: if value != getattr(self.instance, field_name): raise serializers.ValidationError(_('Unable to change %s on user managed by LDAP.') % field_name) return value def validate_username(self, value): return self._validate_ldap_managed_field(value, 'username') def validate_first_name(self, value): return self._validate_ldap_managed_field(value, 'first_name') def validate_last_name(self, value): return self._validate_ldap_managed_field(value, 'last_name') def validate_email(self, value): return self._validate_ldap_managed_field(value, 'email') def validate_is_superuser(self, value): return self._validate_ldap_managed_field(value, 'is_superuser') class UserActivityStreamSerializer(UserSerializer): """Changes to system auditor status are shown as separate entries, so by excluding it from fields here we avoid duplication, which would carry some unintended consequences. """ class Meta: model = User fields = ('*', '-is_system_auditor') class BaseOAuth2TokenSerializer(BaseSerializer): refresh_token = serializers.SerializerMethodField() token = serializers.SerializerMethodField() ALLOWED_SCOPES = ['read', 'write'] class Meta: model = OAuth2AccessToken fields = ( '*', '-name', 'description', 'user', 'token', 'refresh_token', 'application', 'expires', 'scope', ) read_only_fields = ('user', 'token', 'expires', 'refresh_token') extra_kwargs = { 'scope': {'allow_null': False, 'required': False}, 'user': {'allow_null': False, 'required': True} } def get_token(self, obj): request = self.context.get('request', None) try: if request.method == 'POST': return obj.token else: return CENSOR_VALUE except ObjectDoesNotExist: return '' def get_refresh_token(self, obj): request = self.context.get('request', None) try: if not obj.refresh_token: return None elif request.method == 'POST': return getattr(obj.refresh_token, 'token', '') else: return CENSOR_VALUE except ObjectDoesNotExist: return None def get_related(self, obj): ret = super(BaseOAuth2TokenSerializer, self).get_related(obj) if obj.user: ret['user'] = self.reverse('api:user_detail', kwargs={'pk': obj.user.pk}) if obj.application: ret['application'] = self.reverse( 'api:o_auth2_application_detail', kwargs={'pk': obj.application.pk} ) ret['activity_stream'] = self.reverse( 'api:o_auth2_token_activity_stream_list', kwargs={'pk': obj.pk} ) return ret def _is_valid_scope(self, value): if not value or (not isinstance(value, str)): return False words = value.split() for word in words: if words.count(word) > 1: return False # do not allow duplicates if word not in self.ALLOWED_SCOPES: return False return True def validate_scope(self, value): if not self._is_valid_scope(value): raise serializers.ValidationError(_( 'Must be a simple space-separated string with allowed scopes {}.' ).format(self.ALLOWED_SCOPES)) return value def create(self, validated_data): validated_data['user'] = self.context['request'].user try: return super(BaseOAuth2TokenSerializer, self).create(validated_data) except oauth2.AccessDeniedError as e: raise PermissionDenied(str(e)) class UserAuthorizedTokenSerializer(BaseOAuth2TokenSerializer): class Meta: extra_kwargs = { 'scope': {'allow_null': False, 'required': False}, 'user': {'allow_null': False, 'required': True}, 'application': {'allow_null': False, 'required': True} } def create(self, validated_data): current_user = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=settings.OAUTH2_PROVIDER['ACCESS_TOKEN_EXPIRE_SECONDS'] ) obj = super(UserAuthorizedTokenSerializer, self).create(validated_data) obj.save() if obj.application: RefreshToken.objects.create( user=current_user, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2TokenSerializer(BaseOAuth2TokenSerializer): def create(self, validated_data): current_user = self.context['request'].user validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=settings.OAUTH2_PROVIDER['ACCESS_TOKEN_EXPIRE_SECONDS'] ) obj = super(OAuth2TokenSerializer, self).create(validated_data) if obj.application and obj.application.user: obj.user = obj.application.user obj.save() if obj.application: RefreshToken.objects.create( user=current_user, token=generate_token(), application=obj.application, access_token=obj ) return obj class OAuth2TokenDetailSerializer(OAuth2TokenSerializer): class Meta: read_only_fields = ('*', 'user', 'application') class UserPersonalTokenSerializer(BaseOAuth2TokenSerializer): class Meta: read_only_fields = ('user', 'token', 'expires', 'application') def create(self, validated_data): validated_data['token'] = generate_token() validated_data['expires'] = now() + timedelta( seconds=settings.OAUTH2_PROVIDER['ACCESS_TOKEN_EXPIRE_SECONDS'] ) validated_data['application'] = None obj = super(UserPersonalTokenSerializer, self).create(validated_data) obj.save() return obj class OAuth2ApplicationSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = OAuth2Application fields = ( '*', 'description', '-user', 'client_id', 'client_secret', 'client_type', 'redirect_uris', 'authorization_grant_type', 'skip_authorization', 'organization' ) read_only_fields = ('client_id', 'client_secret') read_only_on_update_fields = ('user', 'authorization_grant_type') extra_kwargs = { 'user': {'allow_null': True, 'required': False}, 'organization': {'allow_null': False}, 'authorization_grant_type': {'allow_null': False, 'label': _('Authorization Grant Type')}, 'client_secret': { 'label': _('Client Secret') }, 'client_type': { 'label': _('Client Type') }, 'redirect_uris': { 'label': _('Redirect URIs') }, 'skip_authorization': { 'label': _('Skip Authorization') }, } def to_representation(self, obj): ret = super(OAuth2ApplicationSerializer, self).to_representation(obj) request = self.context.get('request', None) if request.method != 'POST' and obj.client_type == 'confidential': ret['client_secret'] = CENSOR_VALUE if obj.client_type == 'public': ret.pop('client_secret', None) return ret def get_related(self, obj): res = super(OAuth2ApplicationSerializer, self).get_related(obj) res.update(dict( tokens = self.reverse('api:o_auth2_application_token_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse( 'api:o_auth2_application_activity_stream_list', kwargs={'pk': obj.pk} ) )) return res def get_modified(self, obj): if obj is None: return None return obj.updated def _summary_field_tokens(self, obj): token_list = [{'id': x.pk, 'token': CENSOR_VALUE, 'scope': x.scope} for x in obj.oauth2accesstoken_set.all()[:10]] if has_model_field_prefetched(obj, 'oauth2accesstoken_set'): token_count = len(obj.oauth2accesstoken_set.all()) else: if len(token_list) < 10: token_count = len(token_list) else: token_count = obj.oauth2accesstoken_set.count() return {'count': token_count, 'results': token_list} def get_summary_fields(self, obj): ret = super(OAuth2ApplicationSerializer, self).get_summary_fields(obj) ret['tokens'] = self._summary_field_tokens(obj) return ret class OrganizationSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Organization fields = ('*', 'max_hosts', 'custom_virtualenv',) def get_related(self, obj): res = super(OrganizationSerializer, self).get_related(obj) res.update(dict( projects = self.reverse('api:organization_projects_list', kwargs={'pk': obj.pk}), inventories = self.reverse('api:organization_inventories_list', kwargs={'pk': obj.pk}), workflow_job_templates = self.reverse('api:organization_workflow_job_templates_list', kwargs={'pk': obj.pk}), users = self.reverse('api:organization_users_list', kwargs={'pk': obj.pk}), admins = self.reverse('api:organization_admins_list', kwargs={'pk': obj.pk}), teams = self.reverse('api:organization_teams_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:organization_credential_list', kwargs={'pk': obj.pk}), applications = self.reverse('api:organization_applications_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:organization_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates = self.reverse('api:organization_notification_templates_list', kwargs={'pk': obj.pk}), notification_templates_started = self.reverse('api:organization_notification_templates_started_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:organization_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:organization_notification_templates_error_list', kwargs={'pk': obj.pk}), notification_templates_approvals = self.reverse('api:organization_notification_templates_approvals_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:organization_object_roles_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:organization_access_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:organization_instance_groups_list', kwargs={'pk': obj.pk}), )) return res def get_summary_fields(self, obj): summary_dict = super(OrganizationSerializer, self).get_summary_fields(obj) counts_dict = self.context.get('related_field_counts', None) if counts_dict is not None and summary_dict is not None: if obj.id not in counts_dict: summary_dict['related_field_counts'] = { 'inventories': 0, 'teams': 0, 'users': 0, 'job_templates': 0, 'admins': 0, 'projects': 0} else: summary_dict['related_field_counts'] = counts_dict[obj.id] return summary_dict def validate(self, attrs): obj = self.instance view = self.context['view'] obj_limit = getattr(obj, 'max_hosts', None) api_limit = attrs.get('max_hosts') if not view.request.user.is_superuser: if api_limit is not None and api_limit != obj_limit: # Only allow superusers to edit the max_hosts field raise serializers.ValidationError(_('Cannot change max_hosts.')) return super(OrganizationSerializer, self).validate(attrs) class ProjectOptionsSerializer(BaseSerializer): class Meta: fields = ('*', 'local_path', 'scm_type', 'scm_url', 'scm_branch', 'scm_refspec', 'scm_clean', 'scm_delete_on_update', 'credential', 'timeout', 'scm_revision') def get_related(self, obj): res = super(ProjectOptionsSerializer, self).get_related(obj) if obj.credential: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential.pk}) return res def validate(self, attrs): errors = {} # Don't allow assigning a local_path used by another project. # Don't allow assigning a local_path when scm_type is set. valid_local_paths = Project.get_local_path_choices() if self.instance: scm_type = attrs.get('scm_type', self.instance.scm_type) or u'' else: scm_type = attrs.get('scm_type', u'') or u'' if self.instance and not scm_type: valid_local_paths.append(self.instance.local_path) if scm_type: attrs.pop('local_path', None) if 'local_path' in attrs and attrs['local_path'] not in valid_local_paths: errors['local_path'] = _('This path is already being used by another manual project.') if attrs.get('scm_refspec') and scm_type != 'git': errors['scm_refspec'] = _('SCM refspec can only be used with git projects.') if errors: raise serializers.ValidationError(errors) return super(ProjectOptionsSerializer, self).validate(attrs) class ProjectSerializer(UnifiedJobTemplateSerializer, ProjectOptionsSerializer): status = serializers.ChoiceField(choices=Project.PROJECT_STATUS_CHOICES, read_only=True) last_update_failed = serializers.BooleanField(read_only=True) last_updated = serializers.DateTimeField(read_only=True) show_capabilities = ['start', 'schedule', 'edit', 'delete', 'copy'] capabilities_prefetch = [ 'admin', 'update', {'copy': 'organization.project_admin'} ] class Meta: model = Project fields = ('*', 'organization', 'scm_update_on_launch', 'scm_update_cache_timeout', 'allow_override', 'custom_virtualenv',) + \ ('last_update_failed', 'last_updated') # Backwards compatibility def get_related(self, obj): res = super(ProjectSerializer, self).get_related(obj) res.update(dict( teams = self.reverse('api:project_teams_list', kwargs={'pk': obj.pk}), playbooks = self.reverse('api:project_playbooks', kwargs={'pk': obj.pk}), inventory_files = self.reverse('api:project_inventories', kwargs={'pk': obj.pk}), update = self.reverse('api:project_update_view', kwargs={'pk': obj.pk}), project_updates = self.reverse('api:project_updates_list', kwargs={'pk': obj.pk}), scm_inventory_sources = self.reverse('api:project_scm_inventory_sources', kwargs={'pk': obj.pk}), schedules = self.reverse('api:project_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:project_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates_started = self.reverse('api:project_notification_templates_started_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:project_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:project_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:project_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:project_object_roles_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:project_copy', kwargs={'pk': obj.pk}) )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) # Backwards compatibility. if obj.current_update: res['current_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.current_update.pk}) if obj.last_update: res['last_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.last_update.pk}) return res def to_representation(self, obj): ret = super(ProjectSerializer, self).to_representation(obj) if 'scm_revision' in ret and obj.scm_type == '': ret['scm_revision'] = '' return ret def validate(self, attrs): def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) organization = None if 'organization' in attrs: organization = attrs['organization'] elif self.instance: organization = self.instance.organization if 'allow_override' in attrs and self.instance: # case where user is turning off this project setting if self.instance.allow_override and not attrs['allow_override']: used_by = set( JobTemplate.objects.filter( models.Q(project=self.instance), models.Q(ask_scm_branch_on_launch=True) | ~models.Q(scm_branch="") ).values_list('pk', flat=True) ) if used_by: raise serializers.ValidationError({ 'allow_override': _('One or more job templates depend on branch override behavior for this project (ids: {}).').format( ' '.join([str(pk) for pk in used_by]) )}) view = self.context.get('view', None) if not organization and not view.request.user.is_superuser: # Only allow super users to create orgless projects raise serializers.ValidationError(_('Organization is missing')) elif get_field_from_model_or_attrs('scm_type') == '': for fd in ('scm_update_on_launch', 'scm_delete_on_update', 'scm_clean'): if get_field_from_model_or_attrs(fd): raise serializers.ValidationError({fd: _('Update options must be set to false for manual projects.')}) return super(ProjectSerializer, self).validate(attrs) class ProjectPlaybooksSerializer(ProjectSerializer): playbooks = serializers.SerializerMethodField(help_text=_('Array of playbooks available within this project.')) class Meta: model = Project fields = ('playbooks',) def get_playbooks(self, obj): return obj.playbook_files if obj.scm_type else obj.playbooks @property def data(self): ret = super(ProjectPlaybooksSerializer, self).data ret = ret.get('playbooks', []) return ReturnList(ret, serializer=self) class ProjectInventoriesSerializer(ProjectSerializer): inventory_files = serializers.ReadOnlyField(help_text=_( 'Array of inventory files and directories available within this project, ' 'not comprehensive.')) class Meta: model = Project fields = ('inventory_files',) @property def data(self): ret = super(ProjectInventoriesSerializer, self).data ret = ret.get('inventory_files', []) return ReturnList(ret, serializer=self) class ProjectUpdateViewSerializer(ProjectSerializer): can_update = serializers.BooleanField(read_only=True) class Meta: fields = ('can_update',) class ProjectUpdateSerializer(UnifiedJobSerializer, ProjectOptionsSerializer): class Meta: model = ProjectUpdate fields = ('*', 'project', 'job_type', 'job_tags', '-controller_node') def get_related(self, obj): res = super(ProjectUpdateSerializer, self).get_related(obj) try: res.update(dict( project = self.reverse('api:project_detail', kwargs={'pk': obj.project.pk}), )) except ObjectDoesNotExist: pass res.update(dict( cancel = self.reverse('api:project_update_cancel', kwargs={'pk': obj.pk}), scm_inventory_updates = self.reverse('api:project_update_scm_inventory_updates', kwargs={'pk': obj.pk}), notifications = self.reverse('api:project_update_notifications_list', kwargs={'pk': obj.pk}), events = self.reverse('api:project_update_events_list', kwargs={'pk': obj.pk}), )) return res class ProjectUpdateDetailSerializer(ProjectUpdateSerializer): host_status_counts = serializers.SerializerMethodField( help_text=_('A count of hosts uniquely assigned to each status.'), ) playbook_counts = serializers.SerializerMethodField( help_text=_('A count of all plays and tasks for the job run.'), ) class Meta: model = ProjectUpdate fields = ('*', 'host_status_counts', 'playbook_counts',) def get_playbook_counts(self, obj): task_count = obj.project_update_events.filter(event='playbook_on_task_start').count() play_count = obj.project_update_events.filter(event='playbook_on_play_start').count() data = {'play_count': play_count, 'task_count': task_count} return data def get_host_status_counts(self, obj): try: counts = obj.project_update_events.only('event_data').get(event='playbook_on_stats').get_host_status_counts() except ProjectUpdateEvent.DoesNotExist: counts = {} return counts class ProjectUpdateListSerializer(ProjectUpdateSerializer, UnifiedJobListSerializer): class Meta: model = ProjectUpdate fields = ('*', '-controller_node') # field removal undone by UJ serializer class ProjectUpdateCancelSerializer(ProjectUpdateSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class BaseSerializerWithVariables(BaseSerializer): def validate_variables(self, value): return vars_validate_or_raise(value) class InventorySerializer(BaseSerializerWithVariables): show_capabilities = ['edit', 'delete', 'adhoc', 'copy'] capabilities_prefetch = [ 'admin', 'adhoc', {'copy': 'organization.inventory_admin'} ] class Meta: model = Inventory fields = ('*', 'organization', 'kind', 'host_filter', 'variables', 'has_active_failures', 'total_hosts', 'hosts_with_active_failures', 'total_groups', 'has_inventory_sources', 'total_inventory_sources', 'inventory_sources_with_failures', 'insights_credential', 'pending_deletion',) def get_related(self, obj): res = super(InventorySerializer, self).get_related(obj) res.update(dict( hosts = self.reverse('api:inventory_hosts_list', kwargs={'pk': obj.pk}), groups = self.reverse('api:inventory_groups_list', kwargs={'pk': obj.pk}), root_groups = self.reverse('api:inventory_root_groups_list', kwargs={'pk': obj.pk}), variable_data = self.reverse('api:inventory_variable_data', kwargs={'pk': obj.pk}), script = self.reverse('api:inventory_script_view', kwargs={'pk': obj.pk}), tree = self.reverse('api:inventory_tree_view', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:inventory_inventory_sources_list', kwargs={'pk': obj.pk}), update_inventory_sources = self.reverse('api:inventory_inventory_sources_update', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:inventory_activity_stream_list', kwargs={'pk': obj.pk}), job_templates = self.reverse('api:inventory_job_template_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:inventory_ad_hoc_commands_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:inventory_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:inventory_object_roles_list', kwargs={'pk': obj.pk}), instance_groups = self.reverse('api:inventory_instance_groups_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:inventory_copy', kwargs={'pk': obj.pk}) )) if obj.insights_credential: res['insights_credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.insights_credential.pk}) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def to_representation(self, obj): ret = super(InventorySerializer, self).to_representation(obj) if obj is not None and 'organization' in ret and not obj.organization: ret['organization'] = None return ret def validate_host_filter(self, host_filter): if host_filter: try: for match in JSONBField.get_lookups().keys(): if match == 'exact': # __exact is allowed continue match = '__{}'.format(match) if re.match( 'ansible_facts[^=]+{}='.format(match), host_filter ): raise models.base.ValidationError({ 'host_filter': 'ansible_facts does not support searching with {}'.format(match) }) SmartFilter().query_from_string(host_filter) except RuntimeError as e: raise models.base.ValidationError(e) return host_filter def validate(self, attrs): kind = None if 'kind' in attrs: kind = attrs['kind'] elif self.instance: kind = self.instance.kind host_filter = None if 'host_filter' in attrs: host_filter = attrs['host_filter'] elif self.instance: host_filter = self.instance.host_filter if kind == 'smart' and not host_filter: raise serializers.ValidationError({'host_filter': _( 'Smart inventories must specify host_filter')}) return super(InventorySerializer, self).validate(attrs) class InventoryScriptSerializer(InventorySerializer): class Meta: fields = () class HostSerializer(BaseSerializerWithVariables): show_capabilities = ['edit', 'delete'] capabilities_prefetch = ['inventory.admin'] has_active_failures = serializers.SerializerMethodField() has_inventory_sources = serializers.SerializerMethodField() class Meta: model = Host fields = ('*', 'inventory', 'enabled', 'instance_id', 'variables', 'has_active_failures', 'has_inventory_sources', 'last_job', 'last_job_host_summary', 'insights_system_id', 'ansible_facts_modified',) read_only_fields = ('last_job', 'last_job_host_summary', 'insights_system_id', 'ansible_facts_modified',) def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(HostSerializer, self).build_relational_field(field_name, relation_info) # Inventory is read-only unless creating a new host. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_related(self, obj): res = super(HostSerializer, self).get_related(obj) res.update(dict( variable_data = self.reverse('api:host_variable_data', kwargs={'pk': obj.pk}), groups = self.reverse('api:host_groups_list', kwargs={'pk': obj.pk}), all_groups = self.reverse('api:host_all_groups_list', kwargs={'pk': obj.pk}), job_events = self.reverse('api:host_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:host_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:host_activity_stream_list', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:host_inventory_sources_list', kwargs={'pk': obj.pk}), smart_inventories = self.reverse('api:host_smart_inventories_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:host_ad_hoc_commands_list', kwargs={'pk': obj.pk}), ad_hoc_command_events = self.reverse('api:host_ad_hoc_command_events_list', kwargs={'pk': obj.pk}), insights = self.reverse('api:host_insights', kwargs={'pk': obj.pk}), ansible_facts = self.reverse('api:host_ansible_facts_detail', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.last_job: res['last_job'] = self.reverse('api:job_detail', kwargs={'pk': obj.last_job.pk}) if obj.last_job_host_summary: res['last_job_host_summary'] = self.reverse('api:job_host_summary_detail', kwargs={'pk': obj.last_job_host_summary.pk}) return res def get_summary_fields(self, obj): d = super(HostSerializer, self).get_summary_fields(obj) try: d['last_job']['job_template_id'] = obj.last_job.job_template.id d['last_job']['job_template_name'] = obj.last_job.job_template.name except (KeyError, AttributeError): pass if has_model_field_prefetched(obj, 'groups'): group_list = sorted([{'id': g.id, 'name': g.name} for g in obj.groups.all()], key=lambda x: x['id'])[:5] else: group_list = [{'id': g.id, 'name': g.name} for g in obj.groups.all().order_by('id')[:5]] group_cnt = obj.groups.count() d.setdefault('groups', {'count': group_cnt, 'results': group_list}) d.setdefault('recent_jobs', [{ 'id': j.job.id, 'name': j.job.job_template.name if j.job.job_template is not None else "", 'status': j.job.status, 'finished': j.job.finished, } for j in obj.job_host_summaries.select_related('job__job_template').order_by('-created')[:5]]) return d def _get_host_port_from_name(self, name): # Allow hostname (except IPv6 for now) to specify the port # inline. port = None if name.count(':') == 1: name, port = name.split(':') try: port = int(port) if port < 1 or port > 65535: raise ValueError except ValueError: raise serializers.ValidationError(_(u'Invalid port specification: %s') % force_text(port)) return name, port def validate_name(self, value): name = force_text(value or '') # Validate here only, update in main validate method. host, port = self._get_host_port_from_name(name) return value def validate_inventory(self, value): if value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Host for Smart Inventory")}) return value def validate_variables(self, value): return vars_validate_or_raise(value) def validate(self, attrs): name = force_text(attrs.get('name', self.instance and self.instance.name or '')) host, port = self._get_host_port_from_name(name) if port: attrs['name'] = host variables = force_text(attrs.get('variables', self.instance and self.instance.variables or '')) vars_dict = parse_yaml_or_json(variables) vars_dict['ansible_ssh_port'] = port attrs['variables'] = json.dumps(vars_dict) return super(HostSerializer, self).validate(attrs) def to_representation(self, obj): ret = super(HostSerializer, self).to_representation(obj) if not obj: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'last_job' in ret and not obj.last_job: ret['last_job'] = None if 'last_job_host_summary' in ret and not obj.last_job_host_summary: ret['last_job_host_summary'] = None return ret def get_has_active_failures(self, obj): return bool( obj.last_job_host_summary and obj.last_job_host_summary.failed ) def get_has_inventory_sources(self, obj): return obj.inventory_sources.exists() class AnsibleFactsSerializer(BaseSerializer): class Meta: model = Host def to_representation(self, obj): return obj.ansible_facts class GroupSerializer(BaseSerializerWithVariables): show_capabilities = ['copy', 'edit', 'delete'] capabilities_prefetch = ['inventory.admin', 'inventory.adhoc'] class Meta: model = Group fields = ('*', 'inventory', 'variables') def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(GroupSerializer, self).build_relational_field(field_name, relation_info) # Inventory is read-only unless creating a new group. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_related(self, obj): res = super(GroupSerializer, self).get_related(obj) res.update(dict( variable_data = self.reverse('api:group_variable_data', kwargs={'pk': obj.pk}), hosts = self.reverse('api:group_hosts_list', kwargs={'pk': obj.pk}), potential_children = self.reverse('api:group_potential_children_list', kwargs={'pk': obj.pk}), children = self.reverse('api:group_children_list', kwargs={'pk': obj.pk}), all_hosts = self.reverse('api:group_all_hosts_list', kwargs={'pk': obj.pk}), job_events = self.reverse('api:group_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:group_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:group_activity_stream_list', kwargs={'pk': obj.pk}), inventory_sources = self.reverse('api:group_inventory_sources_list', kwargs={'pk': obj.pk}), ad_hoc_commands = self.reverse('api:group_ad_hoc_commands_list', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) return res def validate_name(self, value): if value in ('all', '_meta'): raise serializers.ValidationError(_('Invalid group name.')) return value def validate_inventory(self, value): if value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Group for Smart Inventory")}) return value def to_representation(self, obj): ret = super(GroupSerializer, self).to_representation(obj) if obj is not None and 'inventory' in ret and not obj.inventory: ret['inventory'] = None return ret class GroupTreeSerializer(GroupSerializer): children = serializers.SerializerMethodField() class Meta: model = Group fields = ('*', 'children') def get_children(self, obj): if obj is None: return {} children_qs = obj.children children_qs = children_qs.select_related('inventory') children_qs = children_qs.prefetch_related('inventory_source') return GroupTreeSerializer(children_qs, many=True).data class BaseVariableDataSerializer(BaseSerializer): class Meta: fields = ('variables',) def to_representation(self, obj): if obj is None: return {} ret = super(BaseVariableDataSerializer, self).to_representation(obj) return parse_yaml_or_json(ret.get('variables', '') or '{}') def to_internal_value(self, data): data = {'variables': json.dumps(data)} return super(BaseVariableDataSerializer, self).to_internal_value(data) class InventoryVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Inventory class HostVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Host class GroupVariableDataSerializer(BaseVariableDataSerializer): class Meta: model = Group class CustomInventoryScriptSerializer(BaseSerializer): script = serializers.CharField(trim_whitespace=False) show_capabilities = ['edit', 'delete', 'copy'] capabilities_prefetch = [ {'edit': 'admin'} ] class Meta: model = CustomInventoryScript fields = ('*', "script", "organization") def validate_script(self, value): if not value.startswith("#!"): raise serializers.ValidationError(_('Script must begin with a hashbang sequence: i.e.... #!/usr/bin/env python')) return value def to_representation(self, obj): ret = super(CustomInventoryScriptSerializer, self).to_representation(obj) if obj is None: return ret request = self.context.get('request', None) if request.user not in obj.admin_role and \ not request.user.is_superuser and \ not request.user.is_system_auditor and \ not (obj.organization is not None and request.user in obj.organization.auditor_role): ret['script'] = None return ret def get_related(self, obj): res = super(CustomInventoryScriptSerializer, self).get_related(obj) res.update(dict( object_roles = self.reverse('api:inventory_script_object_roles_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:inventory_script_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res class InventorySourceOptionsSerializer(BaseSerializer): credential = DeprecatedCredentialField( help_text=_('Cloud credential to use for inventory updates.') ) class Meta: fields = ('*', 'source', 'source_path', 'source_script', 'source_vars', 'credential', 'source_regions', 'instance_filters', 'group_by', 'overwrite', 'overwrite_vars', 'custom_virtualenv', 'timeout', 'verbosity') def get_related(self, obj): res = super(InventorySourceOptionsSerializer, self).get_related(obj) if obj.credential: # TODO: remove when 'credential' field is removed res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential}) if obj.source_script: res['source_script'] = self.reverse('api:inventory_script_detail', kwargs={'pk': obj.source_script.pk}) return res def validate_source_vars(self, value): ret = vars_validate_or_raise(value) for env_k in parse_yaml_or_json(value): if env_k in settings.INV_ENV_VARIABLE_BLACKLIST: raise serializers.ValidationError(_("`{}` is a prohibited environment variable".format(env_k))) return ret def validate(self, attrs): # TODO: Validate source, validate source_regions errors = {} source = attrs.get('source', self.instance and self.instance.source or '') source_script = attrs.get('source_script', self.instance and self.instance.source_script or '') if source == 'custom': if source_script is None or source_script == '': errors['source_script'] = _("If 'source' is 'custom', 'source_script' must be provided.") else: try: if not self.instance: dest_inventory = attrs.get('inventory', None) if not dest_inventory: errors['inventory'] = _("Must provide an inventory.") else: dest_inventory = self.instance.inventory if dest_inventory and source_script.organization != dest_inventory.organization: errors['source_script'] = _("The 'source_script' does not belong to the same organization as the inventory.") except Exception: errors['source_script'] = _("'source_script' doesn't exist.") logger.exception('Problem processing source_script validation.') if errors: raise serializers.ValidationError(errors) return super(InventorySourceOptionsSerializer, self).validate(attrs) # TODO: remove when old 'credential' fields are removed def get_summary_fields(self, obj): summary_fields = super(InventorySourceOptionsSerializer, self).get_summary_fields(obj) all_creds = [] if 'credential' in summary_fields: cred = obj.get_cloud_credential() if cred: summarized_cred = { 'id': cred.id, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': True } summary_fields['credential'] = summarized_cred all_creds.append(summarized_cred) summary_fields['credential']['credential_type_id'] = cred.credential_type_id else: summary_fields.pop('credential') summary_fields['credentials'] = all_creds return summary_fields class InventorySourceSerializer(UnifiedJobTemplateSerializer, InventorySourceOptionsSerializer): status = serializers.ChoiceField(choices=InventorySource.INVENTORY_SOURCE_STATUS_CHOICES, read_only=True) last_update_failed = serializers.BooleanField(read_only=True) last_updated = serializers.DateTimeField(read_only=True) show_capabilities = ['start', 'schedule', 'edit', 'delete'] capabilities_prefetch = [ {'admin': 'inventory.admin'}, {'start': 'inventory.update'} ] class Meta: model = InventorySource fields = ('*', 'name', 'inventory', 'update_on_launch', 'update_cache_timeout', 'source_project', 'update_on_project_update') + \ ('last_update_failed', 'last_updated') # Backwards compatibility. extra_kwargs = { 'inventory': {'required': True} } def get_related(self, obj): res = super(InventorySourceSerializer, self).get_related(obj) res.update(dict( update = self.reverse('api:inventory_source_update_view', kwargs={'pk': obj.pk}), inventory_updates = self.reverse('api:inventory_source_updates_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:inventory_source_schedules_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:inventory_source_activity_stream_list', kwargs={'pk': obj.pk}), hosts = self.reverse('api:inventory_source_hosts_list', kwargs={'pk': obj.pk}), groups = self.reverse('api:inventory_source_groups_list', kwargs={'pk': obj.pk}), notification_templates_started = self.reverse('api:inventory_source_notification_templates_started_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:inventory_source_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:inventory_source_notification_templates_error_list', kwargs={'pk': obj.pk}), )) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) if obj.source_project_id is not None: res['source_project'] = self.reverse('api:project_detail', kwargs={'pk': obj.source_project.pk}) # Backwards compatibility. if obj.current_update: res['current_update'] = self.reverse('api:inventory_update_detail', kwargs={'pk': obj.current_update.pk}) if obj.last_update: res['last_update'] = self.reverse('api:inventory_update_detail', kwargs={'pk': obj.last_update.pk}) else: res['credentials'] = self.reverse('api:inventory_source_credentials_list', kwargs={'pk': obj.pk}) return res def get_group(self, obj): # TODO: remove in 3.3 if obj.deprecated_group: return obj.deprecated_group.id return None def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(InventorySourceSerializer, self).build_relational_field(field_name, relation_info) # SCM Project and inventory are read-only unless creating a new inventory. if self.instance and field_name == 'inventory': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs # TODO: remove when old 'credential' fields are removed def build_field(self, field_name, info, model_class, nested_depth): # have to special-case the field so that DRF will not automagically make it # read-only because it's a property on the model. if field_name == 'credential': return self.build_standard_field(field_name, self.credential) return super(InventorySourceOptionsSerializer, self).build_field(field_name, info, model_class, nested_depth) def to_representation(self, obj): ret = super(InventorySourceSerializer, self).to_representation(obj) if obj is None: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None return ret def validate_source_project(self, value): if value and value.scm_type == '': raise serializers.ValidationError(_("Cannot use manual project for SCM-based inventory.")) return value def validate_update_on_project_update(self, value): if value and self.instance and self.instance.schedules.exists(): raise serializers.ValidationError(_("Setting not compatible with existing schedules.")) return value def validate_inventory(self, value): if value and value.kind == 'smart': raise serializers.ValidationError({"detail": _("Cannot create Inventory Source for Smart Inventory")}) return value # TODO: remove when old 'credential' fields are removed def create(self, validated_data): deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(InventorySourceSerializer, self).create(validated_data) if deprecated_fields: self._update_deprecated_fields(deprecated_fields, obj) return obj # TODO: remove when old 'credential' fields are removed def update(self, obj, validated_data): deprecated_fields = {} if 'credential' in validated_data: deprecated_fields['credential'] = validated_data.pop('credential') obj = super(InventorySourceSerializer, self).update(obj, validated_data) if deprecated_fields: self._update_deprecated_fields(deprecated_fields, obj) return obj # TODO: remove when old 'credential' fields are removed def _update_deprecated_fields(self, fields, obj): if 'credential' in fields: new_cred = fields['credential'] existing = obj.credentials.all() if new_cred not in existing: for cred in existing: # Remove all other cloud credentials obj.credentials.remove(cred) if new_cred: # Add new credential obj.credentials.add(new_cred) def validate(self, attrs): deprecated_fields = {} if 'credential' in attrs: # TODO: remove when 'credential' field removed deprecated_fields['credential'] = attrs.pop('credential') def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) if get_field_from_model_or_attrs('source') != 'scm': redundant_scm_fields = list(filter( lambda x: attrs.get(x, None), ['source_project', 'source_path', 'update_on_project_update'] )) if redundant_scm_fields: raise serializers.ValidationError( {"detail": _("Cannot set %s if not SCM type." % ' '.join(redundant_scm_fields))} ) attrs = super(InventorySourceSerializer, self).validate(attrs) # Check type consistency of source and cloud credential, if provided if 'credential' in deprecated_fields: # TODO: remove when v2 API is deprecated cred = deprecated_fields['credential'] attrs['credential'] = cred if cred is not None: cred = Credential.objects.get(pk=cred) view = self.context.get('view', None) if (not view) or (not view.request) or (view.request.user not in cred.use_role): raise PermissionDenied() cred_error = InventorySource.cloud_credential_validation( get_field_from_model_or_attrs('source'), cred ) if cred_error: raise serializers.ValidationError({"credential": cred_error}) return attrs class InventorySourceUpdateSerializer(InventorySourceSerializer): can_update = serializers.BooleanField(read_only=True) class Meta: fields = ('can_update',) class InventoryUpdateSerializer(UnifiedJobSerializer, InventorySourceOptionsSerializer): custom_virtualenv = serializers.ReadOnlyField() class Meta: model = InventoryUpdate fields = ('*', 'inventory', 'inventory_source', 'license_error', 'org_host_limit_error', 'source_project_update', 'custom_virtualenv', '-controller_node',) def get_related(self, obj): res = super(InventoryUpdateSerializer, self).get_related(obj) try: res.update(dict( inventory_source = self.reverse( 'api:inventory_source_detail', kwargs={'pk': obj.inventory_source.pk} ), )) except ObjectDoesNotExist: pass res.update(dict( cancel = self.reverse('api:inventory_update_cancel', kwargs={'pk': obj.pk}), notifications = self.reverse('api:inventory_update_notifications_list', kwargs={'pk': obj.pk}), events = self.reverse('api:inventory_update_events_list', kwargs={'pk': obj.pk}), )) if obj.source_project_update_id: res['source_project_update'] = self.reverse('api:project_update_detail', kwargs={'pk': obj.source_project_update.pk}) if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) res['credentials'] = self.reverse('api:inventory_update_credentials_list', kwargs={'pk': obj.pk}) return res class InventoryUpdateDetailSerializer(InventoryUpdateSerializer): source_project = serializers.SerializerMethodField( help_text=_('The project used for this job.'), method_name='get_source_project_id' ) class Meta: model = InventoryUpdate fields = ('*', 'source_project',) def get_source_project(self, obj): return getattrd(obj, 'source_project_update.unified_job_template', None) def get_source_project_id(self, obj): return getattrd(obj, 'source_project_update.unified_job_template.id', None) def get_related(self, obj): res = super(InventoryUpdateDetailSerializer, self).get_related(obj) source_project_id = self.get_source_project_id(obj) if source_project_id: res['source_project'] = self.reverse('api:project_detail', kwargs={'pk': source_project_id}) return res def get_summary_fields(self, obj): summary_fields = super(InventoryUpdateDetailSerializer, self).get_summary_fields(obj) source_project = self.get_source_project(obj) if source_project: summary_fields['source_project'] = {} for field in SUMMARIZABLE_FK_FIELDS['project']: value = getattr(source_project, field, None) if value is not None: summary_fields['source_project'][field] = value cred = obj.credentials.first() if cred: summary_fields['credential'] = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': cred.credential_type.kind == 'cloud' } return summary_fields class InventoryUpdateListSerializer(InventoryUpdateSerializer, UnifiedJobListSerializer): class Meta: model = InventoryUpdate fields = ('*', '-controller_node') # field removal undone by UJ serializer class InventoryUpdateCancelSerializer(InventoryUpdateSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class TeamSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] class Meta: model = Team fields = ('*', 'organization') def get_related(self, obj): res = super(TeamSerializer, self).get_related(obj) res.update(dict( projects = self.reverse('api:team_projects_list', kwargs={'pk': obj.pk}), users = self.reverse('api:team_users_list', kwargs={'pk': obj.pk}), credentials = self.reverse('api:team_credentials_list', kwargs={'pk': obj.pk}), roles = self.reverse('api:team_roles_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:team_object_roles_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:team_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:team_access_list', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def to_representation(self, obj): ret = super(TeamSerializer, self).to_representation(obj) if obj is not None and 'organization' in ret and not obj.organization: ret['organization'] = None return ret class RoleSerializer(BaseSerializer): class Meta: model = Role fields = ('*', '-created', '-modified') read_only_fields = ('id', 'role_field', 'description', 'name') def to_representation(self, obj): ret = super(RoleSerializer, self).to_representation(obj) if obj.object_id: content_object = obj.content_object if hasattr(content_object, 'username'): ret['summary_fields']['resource_name'] = obj.content_object.username if hasattr(content_object, 'name'): ret['summary_fields']['resource_name'] = obj.content_object.name content_model = obj.content_type.model_class() ret['summary_fields']['resource_type'] = get_type_for_model(content_model) ret['summary_fields']['resource_type_display_name'] = content_model._meta.verbose_name.title() return ret def get_related(self, obj): ret = super(RoleSerializer, self).get_related(obj) ret['users'] = self.reverse('api:role_users_list', kwargs={'pk': obj.pk}) ret['teams'] = self.reverse('api:role_teams_list', kwargs={'pk': obj.pk}) try: if obj.content_object: ret.update(reverse_gfk(obj.content_object, self.context.get('request'))) except AttributeError: # AttributeError's happen if our content_object is pointing at # a model that no longer exists. This is dirty data and ideally # doesn't exist, but in case it does, let's not puke. pass return ret class RoleSerializerWithParentAccess(RoleSerializer): show_capabilities = ['unattach'] class ResourceAccessListElementSerializer(UserSerializer): show_capabilities = [] # Clear fields from UserSerializer parent class def to_representation(self, user): ''' With this method we derive "direct" and "indirect" access lists. Contained in the direct access list are all the roles the user is a member of, and all of the roles that are directly granted to any teams that the user is a member of. The indirect access list is a list of all of the roles that the user is a member of that are ancestors of any roles that grant permissions to the resource. ''' ret = super(ResourceAccessListElementSerializer, self).to_representation(user) obj = self.context['view'].get_parent_object() if self.context['view'].request is not None: requesting_user = self.context['view'].request.user else: requesting_user = None if 'summary_fields' not in ret: ret['summary_fields'] = {} def format_role_perm(role): role_dict = { 'id': role.id, 'name': role.name, 'description': role.description} try: role_dict['resource_name'] = role.content_object.name role_dict['resource_type'] = get_type_for_model(role.content_type.model_class()) role_dict['related'] = reverse_gfk(role.content_object, self.context.get('request')) except AttributeError: pass if role.content_type is not None: role_dict['user_capabilities'] = {'unattach': requesting_user.can_access( Role, 'unattach', role, user, 'members', data={}, skip_sub_obj_read_check=False)} else: # Singleton roles should not be managed from this view, as per copy/edit rework spec role_dict['user_capabilities'] = {'unattach': False} return { 'role': role_dict, 'descendant_roles': get_roles_on_resource(obj, role)} def format_team_role_perm(naive_team_role, permissive_role_ids): ret = [] team_role = naive_team_role if naive_team_role.role_field == 'admin_role': team_role = naive_team_role.content_object.member_role for role in team_role.children.filter(id__in=permissive_role_ids).all(): role_dict = { 'id': role.id, 'name': role.name, 'description': role.description, 'team_id': team_role.object_id, 'team_name': team_role.content_object.name, 'team_organization_name': team_role.content_object.organization.name, } if role.content_type is not None: role_dict['resource_name'] = role.content_object.name role_dict['resource_type'] = get_type_for_model(role.content_type.model_class()) role_dict['related'] = reverse_gfk(role.content_object, self.context.get('request')) role_dict['user_capabilities'] = {'unattach': requesting_user.can_access( Role, 'unattach', role, team_role, 'parents', data={}, skip_sub_obj_read_check=False)} else: # Singleton roles should not be managed from this view, as per copy/edit rework spec role_dict['user_capabilities'] = {'unattach': False} ret.append({ 'role': role_dict, 'descendant_roles': get_roles_on_resource(obj, team_role)}) return ret team_content_type = ContentType.objects.get_for_model(Team) content_type = ContentType.objects.get_for_model(obj) direct_permissive_role_ids = Role.objects.filter(content_type=content_type, object_id=obj.id).values_list('id', flat=True) all_permissive_role_ids = Role.objects.filter(content_type=content_type, object_id=obj.id).values_list('ancestors__id', flat=True) direct_access_roles = user.roles \ .filter(id__in=direct_permissive_role_ids).all() direct_team_roles = Role.objects \ .filter(content_type=team_content_type, members=user, children__in=direct_permissive_role_ids) if content_type == team_content_type: # When looking at the access list for a team, exclude the entries # for that team. This exists primarily so we don't list the read role # as a direct role when a user is a member or admin of a team direct_team_roles = direct_team_roles.exclude( children__content_type=team_content_type, children__object_id=obj.id ) indirect_team_roles = Role.objects \ .filter(content_type=team_content_type, members=user, children__in=all_permissive_role_ids) \ .exclude(id__in=direct_team_roles) indirect_access_roles = user.roles \ .filter(id__in=all_permissive_role_ids) \ .exclude(id__in=direct_permissive_role_ids) \ .exclude(id__in=direct_team_roles) \ .exclude(id__in=indirect_team_roles) ret['summary_fields']['direct_access'] \ = [format_role_perm(r) for r in direct_access_roles.distinct()] \ + [y for x in (format_team_role_perm(r, direct_permissive_role_ids) for r in direct_team_roles.distinct()) for y in x] \ + [y for x in (format_team_role_perm(r, all_permissive_role_ids) for r in indirect_team_roles.distinct()) for y in x] ret['summary_fields']['indirect_access'] \ = [format_role_perm(r) for r in indirect_access_roles.distinct()] return ret class CredentialTypeSerializer(BaseSerializer): show_capabilities = ['edit', 'delete'] managed_by_tower = serializers.ReadOnlyField() class Meta: model = CredentialType fields = ('*', 'kind', 'namespace', 'name', 'managed_by_tower', 'inputs', 'injectors') def validate(self, attrs): if self.instance and self.instance.managed_by_tower: raise PermissionDenied( detail=_("Modifications not allowed for managed credential types") ) old_inputs = {} if self.instance: old_inputs = copy.deepcopy(self.instance.inputs) ret = super(CredentialTypeSerializer, self).validate(attrs) if self.instance and self.instance.credentials.exists(): if 'inputs' in attrs and old_inputs != self.instance.inputs: raise PermissionDenied( detail= _("Modifications to inputs are not allowed for credential types that are in use") ) if 'kind' in attrs and attrs['kind'] not in ('cloud', 'net'): raise serializers.ValidationError({ "kind": _("Must be 'cloud' or 'net', not %s") % attrs['kind'] }) fields = attrs.get('inputs', {}).get('fields', []) for field in fields: if field.get('ask_at_runtime', False): raise serializers.ValidationError({"inputs": _("'ask_at_runtime' is not supported for custom credentials.")}) return ret def get_related(self, obj): res = super(CredentialTypeSerializer, self).get_related(obj) res['credentials'] = self.reverse( 'api:credential_type_credential_list', kwargs={'pk': obj.pk} ) res['activity_stream'] = self.reverse( 'api:credential_type_activity_stream_list', kwargs={'pk': obj.pk} ) return res def to_representation(self, data): value = super(CredentialTypeSerializer, self).to_representation(data) # translate labels and help_text for credential fields "managed by Tower" if value.get('managed_by_tower'): value['name'] = _(value['name']) for field in value.get('inputs', {}).get('fields', []): field['label'] = _(field['label']) if 'help_text' in field: field['help_text'] = _(field['help_text']) return value def filter_field_metadata(self, fields, method): # API-created/modified CredentialType kinds are limited to # `cloud` and `net` if method in ('PUT', 'POST'): fields['kind']['choices'] = list(filter( lambda choice: choice[0] in ('cloud', 'net'), fields['kind']['choices'] )) return fields class CredentialSerializer(BaseSerializer): show_capabilities = ['edit', 'delete', 'copy', 'use'] capabilities_prefetch = ['admin', 'use'] class Meta: model = Credential fields = ('*', 'organization', 'credential_type', 'inputs', 'kind', 'cloud', 'kubernetes') extra_kwargs = { 'credential_type': { 'label': _('Credential Type'), }, } def to_representation(self, data): value = super(CredentialSerializer, self).to_representation(data) if 'inputs' in value: value['inputs'] = data.display_inputs() return value def get_related(self, obj): res = super(CredentialSerializer, self).get_related(obj) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) res.update(dict( activity_stream = self.reverse('api:credential_activity_stream_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:credential_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:credential_object_roles_list', kwargs={'pk': obj.pk}), owner_users = self.reverse('api:credential_owner_users_list', kwargs={'pk': obj.pk}), owner_teams = self.reverse('api:credential_owner_teams_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:credential_copy', kwargs={'pk': obj.pk}), input_sources = self.reverse('api:credential_input_source_sublist', kwargs={'pk': obj.pk}), credential_type = self.reverse('api:credential_type_detail', kwargs={'pk': obj.credential_type.pk}), )) parents = [role for role in obj.admin_role.parents.all() if role.object_id is not None] if parents: res.update({parents[0].content_type.name:parents[0].content_object.get_absolute_url(self.context.get('request'))}) elif len(obj.admin_role.members.all()) > 0: user = obj.admin_role.members.all()[0] res.update({'user': self.reverse('api:user_detail', kwargs={'pk': user.pk})}) return res def get_summary_fields(self, obj): summary_dict = super(CredentialSerializer, self).get_summary_fields(obj) summary_dict['owners'] = [] for user in obj.admin_role.members.all(): summary_dict['owners'].append({ 'id': user.pk, 'type': 'user', 'name': user.username, 'description': ' '.join([user.first_name, user.last_name]), 'url': self.reverse('api:user_detail', kwargs={'pk': user.pk}), }) for parent in [role for role in obj.admin_role.parents.all() if role.object_id is not None]: summary_dict['owners'].append({ 'id': parent.content_object.pk, 'type': camelcase_to_underscore(parent.content_object.__class__.__name__), 'name': parent.content_object.name, 'description': parent.content_object.description, 'url': parent.content_object.get_absolute_url(self.context.get('request')), }) return summary_dict def get_validation_exclusions(self, obj=None): ret = super(CredentialSerializer, self).get_validation_exclusions(obj) for field in ('credential_type', 'inputs'): if field in ret: ret.remove(field) return ret def validate_credential_type(self, credential_type): if self.instance and credential_type.pk != self.instance.credential_type.pk: for related_objects in ( 'ad_hoc_commands', 'insights_inventories', 'unifiedjobs', 'unifiedjobtemplates', 'projects', 'projectupdates', 'workflowjobnodes' ): if getattr(self.instance, related_objects).count() > 0: raise ValidationError( _('You cannot change the credential type of the credential, as it may break the functionality' ' of the resources using it.'), ) return credential_type class CredentialSerializerCreate(CredentialSerializer): user = serializers.PrimaryKeyRelatedField( queryset=User.objects.all(), required=False, default=None, write_only=True, allow_null=True, help_text=_('Write-only field used to add user to owner role. If provided, ' 'do not give either team or organization. Only valid for creation.')) team = serializers.PrimaryKeyRelatedField( queryset=Team.objects.all(), required=False, default=None, write_only=True, allow_null=True, help_text=_('Write-only field used to add team to owner role. If provided, ' 'do not give either user or organization. Only valid for creation.')) organization = serializers.PrimaryKeyRelatedField( queryset=Organization.objects.all(), required=False, default=None, allow_null=True, help_text=_('Inherit permissions from organization roles. If provided on creation, ' 'do not give either user or team.')) class Meta: model = Credential fields = ('*', 'user', 'team') def validate(self, attrs): owner_fields = set() for field in ('user', 'team', 'organization'): if field in attrs: if attrs[field]: owner_fields.add(field) else: attrs.pop(field) if not owner_fields: raise serializers.ValidationError({"detail": _("Missing 'user', 'team', or 'organization'.")}) if attrs.get('team'): attrs['organization'] = attrs['team'].organization return super(CredentialSerializerCreate, self).validate(attrs) def create(self, validated_data): user = validated_data.pop('user', None) team = validated_data.pop('team', None) credential = super(CredentialSerializerCreate, self).create(validated_data) if user: credential.admin_role.members.add(user) if team: if not credential.organization or team.organization.id != credential.organization.id: raise serializers.ValidationError({"detail": _("Credential organization must be set and match before assigning to a team")}) credential.admin_role.parents.add(team.admin_role) credential.use_role.parents.add(team.member_role) return credential class CredentialInputSourceSerializer(BaseSerializer): show_capabilities = ['delete'] class Meta: model = CredentialInputSource fields = ( '*', 'input_field_name', 'metadata', 'target_credential', 'source_credential', '-name', ) extra_kwargs = { 'input_field_name': {'required': True}, 'target_credential': {'required': True}, 'source_credential': {'required': True}, } def get_related(self, obj): res = super(CredentialInputSourceSerializer, self).get_related(obj) res['source_credential'] = obj.source_credential.get_absolute_url(request=self.context.get('request')) res['target_credential'] = obj.target_credential.get_absolute_url(request=self.context.get('request')) return res class UserCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-team', '-organization') class TeamCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-user', '-organization') class OrganizationCredentialSerializerCreate(CredentialSerializerCreate): class Meta: model = Credential fields = ('*', '-user', '-team') class LabelsListMixin(object): def _summary_field_labels(self, obj): label_list = [{'id': x.id, 'name': x.name} for x in obj.labels.all()[:10]] if has_model_field_prefetched(obj, 'labels'): label_ct = len(obj.labels.all()) else: if len(label_list) < 10: label_ct = len(label_list) else: label_ct = obj.labels.count() return {'count': label_ct, 'results': label_list} def get_summary_fields(self, obj): res = super(LabelsListMixin, self).get_summary_fields(obj) res['labels'] = self._summary_field_labels(obj) return res class JobOptionsSerializer(LabelsListMixin, BaseSerializer): class Meta: fields = ('*', 'job_type', 'inventory', 'project', 'playbook', 'scm_branch', 'forks', 'limit', 'verbosity', 'extra_vars', 'job_tags', 'force_handlers', 'skip_tags', 'start_at_task', 'timeout', 'use_fact_cache',) def get_related(self, obj): res = super(JobOptionsSerializer, self).get_related(obj) res['labels'] = self.reverse('api:job_template_label_list', kwargs={'pk': obj.pk}) try: if obj.inventory: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory.pk}) except ObjectDoesNotExist: setattr(obj, 'inventory', None) try: if obj.project: res['project'] = self.reverse('api:project_detail', kwargs={'pk': obj.project.pk}) except ObjectDoesNotExist: setattr(obj, 'project', None) if isinstance(obj, UnifiedJobTemplate): res['extra_credentials'] = self.reverse( 'api:job_template_extra_credentials_list', kwargs={'pk': obj.pk} ) res['credentials'] = self.reverse( 'api:job_template_credentials_list', kwargs={'pk': obj.pk} ) elif isinstance(obj, UnifiedJob): res['extra_credentials'] = self.reverse('api:job_extra_credentials_list', kwargs={'pk': obj.pk}) res['credentials'] = self.reverse('api:job_credentials_list', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(JobOptionsSerializer, self).to_representation(obj) if obj is None: return ret if 'inventory' in ret and not obj.inventory: ret['inventory'] = None if 'project' in ret and not obj.project: ret['project'] = None if 'playbook' in ret: ret['playbook'] = '' return ret def validate(self, attrs): if 'project' in self.fields and 'playbook' in self.fields: project = attrs.get('project', self.instance.project if self.instance else None) playbook = attrs.get('playbook', self.instance and self.instance.playbook or '') scm_branch = attrs.get('scm_branch', self.instance.scm_branch if self.instance else None) ask_scm_branch_on_launch = attrs.get( 'ask_scm_branch_on_launch', self.instance.ask_scm_branch_on_launch if self.instance else None) if not project: raise serializers.ValidationError({'project': _('This field is required.')}) playbook_not_found = bool( ( project and project.scm_type and (not project.allow_override) and playbook and force_text(playbook) not in project.playbook_files ) or (project and not project.scm_type and playbook and force_text(playbook) not in project.playbooks) # manual ) if playbook_not_found: raise serializers.ValidationError({'playbook': _('Playbook not found for project.')}) if project and not playbook: raise serializers.ValidationError({'playbook': _('Must select playbook for project.')}) if scm_branch and not project.allow_override: raise serializers.ValidationError({'scm_branch': _('Project does not allow overriding branch.')}) if ask_scm_branch_on_launch and not project.allow_override: raise serializers.ValidationError({'ask_scm_branch_on_launch': _('Project does not allow overriding branch.')}) ret = super(JobOptionsSerializer, self).validate(attrs) return ret class JobTemplateMixin(object): ''' Provide recent jobs and survey details in summary_fields ''' def _recent_jobs(self, obj): # Exclude "joblets", jobs that ran as part of a sliced workflow job uj_qs = obj.unifiedjob_unified_jobs.exclude(job__job_slice_count__gt=1).order_by('-created') # Would like to apply an .only, but does not play well with non_polymorphic # .only('id', 'status', 'finished', 'polymorphic_ctype_id') optimized_qs = uj_qs.non_polymorphic() return [{ 'id': x.id, 'status': x.status, 'finished': x.finished, 'canceled_on': x.canceled_on, # Make type consistent with API top-level key, for instance workflow_job 'type': x.get_real_instance_class()._meta.verbose_name.replace(' ', '_') } for x in optimized_qs[:10]] def get_summary_fields(self, obj): d = super(JobTemplateMixin, self).get_summary_fields(obj) if obj.survey_spec is not None and ('name' in obj.survey_spec and 'description' in obj.survey_spec): d['survey'] = dict(title=obj.survey_spec['name'], description=obj.survey_spec['description']) d['recent_jobs'] = self._recent_jobs(obj) return d def validate(self, attrs): webhook_service = attrs.get('webhook_service', getattr(self.instance, 'webhook_service', None)) webhook_credential = attrs.get('webhook_credential', getattr(self.instance, 'webhook_credential', None)) if webhook_credential: if webhook_credential.credential_type.kind != 'token': raise serializers.ValidationError({ 'webhook_credential': _("Must be a Personal Access Token."), }) msg = {'webhook_credential': _("Must match the selected webhook service.")} if webhook_service: if webhook_credential.credential_type.namespace != '{}_token'.format(webhook_service): raise serializers.ValidationError(msg) else: raise serializers.ValidationError(msg) return super().validate(attrs) class JobTemplateSerializer(JobTemplateMixin, UnifiedJobTemplateSerializer, JobOptionsSerializer): show_capabilities = ['start', 'schedule', 'copy', 'edit', 'delete'] capabilities_prefetch = [ 'admin', 'execute', {'copy': ['project.use', 'inventory.use']} ] status = serializers.ChoiceField(choices=JobTemplate.JOB_TEMPLATE_STATUS_CHOICES, read_only=True, required=False) class Meta: model = JobTemplate fields = ( '*', 'host_config_key', 'ask_scm_branch_on_launch', 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'survey_enabled', 'become_enabled', 'diff_mode', 'allow_simultaneous', 'custom_virtualenv', 'job_slice_count', 'webhook_service', 'webhook_credential', ) def get_related(self, obj): res = super(JobTemplateSerializer, self).get_related(obj) res.update( jobs=self.reverse('api:job_template_jobs_list', kwargs={'pk': obj.pk}), schedules=self.reverse('api:job_template_schedules_list', kwargs={'pk': obj.pk}), activity_stream=self.reverse('api:job_template_activity_stream_list', kwargs={'pk': obj.pk}), launch=self.reverse('api:job_template_launch', kwargs={'pk': obj.pk}), webhook_key=self.reverse('api:webhook_key', kwargs={'model_kwarg': 'job_templates', 'pk': obj.pk}), webhook_receiver=( self.reverse('api:webhook_receiver_{}'.format(obj.webhook_service), kwargs={'model_kwarg': 'job_templates', 'pk': obj.pk}) if obj.webhook_service else '' ), notification_templates_started=self.reverse('api:job_template_notification_templates_started_list', kwargs={'pk': obj.pk}), notification_templates_success=self.reverse('api:job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error=self.reverse('api:job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), access_list=self.reverse('api:job_template_access_list', kwargs={'pk': obj.pk}), survey_spec=self.reverse('api:job_template_survey_spec', kwargs={'pk': obj.pk}), labels=self.reverse('api:job_template_label_list', kwargs={'pk': obj.pk}), object_roles=self.reverse('api:job_template_object_roles_list', kwargs={'pk': obj.pk}), instance_groups=self.reverse('api:job_template_instance_groups_list', kwargs={'pk': obj.pk}), slice_workflow_jobs=self.reverse('api:job_template_slice_workflow_jobs_list', kwargs={'pk': obj.pk}), copy=self.reverse('api:job_template_copy', kwargs={'pk': obj.pk}), ) if obj.host_config_key: res['callback'] = self.reverse('api:job_template_callback', kwargs={'pk': obj.pk}) return res def validate(self, attrs): def get_field_from_model_or_attrs(fd): return attrs.get(fd, self.instance and getattr(self.instance, fd) or None) inventory = get_field_from_model_or_attrs('inventory') project = get_field_from_model_or_attrs('project') if get_field_from_model_or_attrs('host_config_key') and not inventory: raise serializers.ValidationError({'host_config_key': _( "Cannot enable provisioning callback without an inventory set." )}) prompting_error_message = _("Must either set a default value or ask to prompt on launch.") if project is None: raise serializers.ValidationError({'project': _("Job Templates must have a project assigned.")}) elif inventory is None and not get_field_from_model_or_attrs('ask_inventory_on_launch'): raise serializers.ValidationError({'inventory': prompting_error_message}) return super(JobTemplateSerializer, self).validate(attrs) def validate_extra_vars(self, value): return vars_validate_or_raise(value) def get_summary_fields(self, obj): summary_fields = super(JobTemplateSerializer, self).get_summary_fields(obj) all_creds = [] # Organize credential data into multitude of deprecated fields extra_creds = [] if obj.pk: for cred in obj.credentials.all(): summarized_cred = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': cred.credential_type.kind == 'cloud' } all_creds.append(summarized_cred) if cred.credential_type.kind in ('cloud', 'net'): extra_creds.append(summarized_cred) if self.is_detail_view: summary_fields['extra_credentials'] = extra_creds summary_fields['credentials'] = all_creds return summary_fields class JobTemplateWithSpecSerializer(JobTemplateSerializer): ''' Used for activity stream entries. ''' class Meta: model = JobTemplate fields = ('*', 'survey_spec') class JobSerializer(UnifiedJobSerializer, JobOptionsSerializer): passwords_needed_to_start = serializers.ReadOnlyField() artifacts = serializers.SerializerMethodField() class Meta: model = Job fields = ( '*', 'job_template', 'passwords_needed_to_start', 'allow_simultaneous', 'artifacts', 'scm_revision', 'instance_group', 'diff_mode', 'job_slice_number', 'job_slice_count', 'webhook_service', 'webhook_credential', 'webhook_guid', ) def get_related(self, obj): res = super(JobSerializer, self).get_related(obj) res.update(dict( job_events = self.reverse('api:job_job_events_list', kwargs={'pk': obj.pk}), job_host_summaries = self.reverse('api:job_job_host_summaries_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:job_activity_stream_list', kwargs={'pk': obj.pk}), notifications = self.reverse('api:job_notifications_list', kwargs={'pk': obj.pk}), labels = self.reverse('api:job_label_list', kwargs={'pk': obj.pk}), create_schedule = self.reverse('api:job_create_schedule', kwargs={'pk': obj.pk}), )) try: if obj.job_template: res['job_template'] = self.reverse('api:job_template_detail', kwargs={'pk': obj.job_template.pk}) except ObjectDoesNotExist: setattr(obj, 'job_template', None) if obj.can_cancel or True: res['cancel'] = self.reverse('api:job_cancel', kwargs={'pk': obj.pk}) try: if obj.project_update: res['project_update'] = self.reverse( 'api:project_update_detail', kwargs={'pk': obj.project_update.pk} ) except ObjectDoesNotExist: pass res['relaunch'] = self.reverse('api:job_relaunch', kwargs={'pk': obj.pk}) return res def get_artifacts(self, obj): if obj: return obj.display_artifacts() return {} def to_representation(self, obj): ret = super(JobSerializer, self).to_representation(obj) if obj is None: return ret if 'job_template' in ret and not obj.job_template: ret['job_template'] = None if 'extra_vars' in ret: ret['extra_vars'] = obj.display_extra_vars() return ret def get_summary_fields(self, obj): summary_fields = super(JobSerializer, self).get_summary_fields(obj) all_creds = [] # Organize credential data into multitude of deprecated fields extra_creds = [] if obj.pk: for cred in obj.credentials.all(): summarized_cred = { 'id': cred.pk, 'name': cred.name, 'description': cred.description, 'kind': cred.kind, 'cloud': cred.credential_type.kind == 'cloud' } all_creds.append(summarized_cred) if cred.credential_type.kind in ('cloud', 'net'): extra_creds.append(summarized_cred) if self.is_detail_view: summary_fields['extra_credentials'] = extra_creds summary_fields['credentials'] = all_creds return summary_fields class JobDetailSerializer(JobSerializer): host_status_counts = serializers.SerializerMethodField( help_text=_('A count of hosts uniquely assigned to each status.'), ) playbook_counts = serializers.SerializerMethodField( help_text=_('A count of all plays and tasks for the job run.'), ) custom_virtualenv = serializers.ReadOnlyField() class Meta: model = Job fields = ('*', 'host_status_counts', 'playbook_counts', 'custom_virtualenv') def get_playbook_counts(self, obj): task_count = obj.job_events.filter(event='playbook_on_task_start').count() play_count = obj.job_events.filter(event='playbook_on_play_start').count() data = {'play_count': play_count, 'task_count': task_count} return data def get_host_status_counts(self, obj): try: counts = obj.job_events.only('event_data').get(event='playbook_on_stats').get_host_status_counts() except JobEvent.DoesNotExist: counts = {} return counts class JobCancelSerializer(BaseSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: model = Job fields = ('can_cancel',) class JobRelaunchSerializer(BaseSerializer): passwords_needed_to_start = serializers.SerializerMethodField() retry_counts = serializers.SerializerMethodField() hosts = serializers.ChoiceField( required=False, allow_null=True, default='all', choices=[ ('all', _('No change to job limit')), ('failed', _('All failed and unreachable hosts')) ], write_only=True ) credential_passwords = VerbatimField(required=True, write_only=True) class Meta: model = Job fields = ('passwords_needed_to_start', 'retry_counts', 'hosts', 'credential_passwords',) def validate_credential_passwords(self, value): pnts = self.instance.passwords_needed_to_start missing = set(pnts) - set(key for key in value if value[key]) if missing: raise serializers.ValidationError(_( 'Missing passwords needed to start: {}'.format(', '.join(missing)) )) return value def to_representation(self, obj): res = super(JobRelaunchSerializer, self).to_representation(obj) view = self.context.get('view', None) if hasattr(view, '_raw_data_form_marker'): password_keys = dict([(p, u'') for p in self.get_passwords_needed_to_start(obj)]) res.update(password_keys) return res def get_passwords_needed_to_start(self, obj): if obj: return obj.passwords_needed_to_start return '' def get_retry_counts(self, obj): if obj.status in ACTIVE_STATES: return _('Relaunch by host status not available until job finishes running.') data = OrderedDict([]) for status in self.fields['hosts'].choices.keys(): data[status] = obj.retry_qs(status).count() return data def get_validation_exclusions(self, *args, **kwargs): r = super(JobRelaunchSerializer, self).get_validation_exclusions(*args, **kwargs) r.append('credential_passwords') return r def validate(self, attrs): obj = self.instance if obj.project is None: raise serializers.ValidationError(dict(errors=[_("Job Template Project is missing or undefined.")])) if obj.inventory is None or obj.inventory.pending_deletion: raise serializers.ValidationError(dict(errors=[_("Job Template Inventory is missing or undefined.")])) attrs = super(JobRelaunchSerializer, self).validate(attrs) return attrs class JobCreateScheduleSerializer(BaseSerializer): can_schedule = serializers.SerializerMethodField() prompts = serializers.SerializerMethodField() class Meta: model = Job fields = ('can_schedule', 'prompts',) def get_can_schedule(self, obj): ''' Need both a job template and job prompts to schedule ''' return obj.can_schedule @staticmethod def _summarize(res_name, obj): summary = {} for field in SUMMARIZABLE_FK_FIELDS[res_name]: summary[field] = getattr(obj, field, None) return summary def get_prompts(self, obj): try: config = obj.launch_config ret = config.prompts_dict(display=True) if 'inventory' in ret: ret['inventory'] = self._summarize('inventory', ret['inventory']) if 'credentials' in ret: all_creds = [self._summarize('credential', cred) for cred in ret['credentials']] ret['credentials'] = all_creds return ret except JobLaunchConfig.DoesNotExist: return {'all': _('Unknown, job may have been ran before launch configurations were saved.')} class AdHocCommandSerializer(UnifiedJobSerializer): class Meta: model = AdHocCommand fields = ('*', 'job_type', 'inventory', 'limit', 'credential', 'module_name', 'module_args', 'forks', 'verbosity', 'extra_vars', 'become_enabled', 'diff_mode', '-unified_job_template', '-description') extra_kwargs = { 'name': { 'read_only': True, }, } def get_field_names(self, declared_fields, info): field_names = super(AdHocCommandSerializer, self).get_field_names(declared_fields, info) # Meta multiple inheritance and -field_name options don't seem to be # taking effect above, so remove the undesired fields here. return tuple(x for x in field_names if x not in ('unified_job_template', 'description')) def build_standard_field(self, field_name, model_field): field_class, field_kwargs = super(AdHocCommandSerializer, self).build_standard_field(field_name, model_field) # Load module name choices dynamically from DB settings. if field_name == 'module_name': field_class = serializers.ChoiceField module_name_choices = [(x, x) for x in settings.AD_HOC_COMMANDS] module_name_default = 'command' if 'command' in [x[0] for x in module_name_choices] else '' field_kwargs['choices'] = module_name_choices field_kwargs['required'] = bool(not module_name_default) field_kwargs['default'] = module_name_default or serializers.empty field_kwargs['allow_blank'] = bool(module_name_default) field_kwargs.pop('max_length', None) return field_class, field_kwargs def get_related(self, obj): res = super(AdHocCommandSerializer, self).get_related(obj) if obj.inventory_id: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory_id}) if obj.credential_id: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential_id}) res.update(dict( events = self.reverse('api:ad_hoc_command_ad_hoc_command_events_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:ad_hoc_command_activity_stream_list', kwargs={'pk': obj.pk}), notifications = self.reverse('api:ad_hoc_command_notifications_list', kwargs={'pk': obj.pk}), )) res['cancel'] = self.reverse('api:ad_hoc_command_cancel', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:ad_hoc_command_relaunch', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(AdHocCommandSerializer, self).to_representation(obj) if 'inventory' in ret and not obj.inventory_id: ret['inventory'] = None if 'credential' in ret and not obj.credential_id: ret['credential'] = None # For the UI, only module_name is returned for name, instead of the # longer module name + module_args format. if 'name' in ret: ret['name'] = obj.module_name return ret def validate(self, attrs): ret = super(AdHocCommandSerializer, self).validate(attrs) return ret def validate_extra_vars(self, value): redacted_extra_vars, removed_vars = extract_ansible_vars(value) if removed_vars: raise serializers.ValidationError(_( "{} are prohibited from use in ad hoc commands." ).format(", ".join(sorted(removed_vars, reverse=True)))) return vars_validate_or_raise(value) class AdHocCommandDetailSerializer(AdHocCommandSerializer): host_status_counts = serializers.SerializerMethodField( help_text=_('A count of hosts uniquely assigned to each status.'), ) class Meta: model = AdHocCommand fields = ('*', 'host_status_counts',) def get_host_status_counts(self, obj): try: counts = obj.ad_hoc_command_events.only('event_data').get(event='playbook_on_stats').get_host_status_counts() except AdHocCommandEvent.DoesNotExist: counts = {} return counts class AdHocCommandCancelSerializer(AdHocCommandSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class AdHocCommandRelaunchSerializer(AdHocCommandSerializer): class Meta: fields = () def to_representation(self, obj): if obj: return dict([(p, u'') for p in obj.passwords_needed_to_start]) else: return {} class SystemJobTemplateSerializer(UnifiedJobTemplateSerializer): class Meta: model = SystemJobTemplate fields = ('*', 'job_type',) def get_related(self, obj): res = super(SystemJobTemplateSerializer, self).get_related(obj) res.update(dict( jobs = self.reverse('api:system_job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:system_job_template_schedules_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:system_job_template_launch', kwargs={'pk': obj.pk}), notification_templates_started = self.reverse('api:system_job_template_notification_templates_started_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:system_job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:system_job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), )) return res class SystemJobSerializer(UnifiedJobSerializer): result_stdout = serializers.SerializerMethodField() class Meta: model = SystemJob fields = ('*', 'system_job_template', 'job_type', 'extra_vars', 'result_stdout', '-controller_node',) def get_related(self, obj): res = super(SystemJobSerializer, self).get_related(obj) if obj.system_job_template: res['system_job_template'] = self.reverse('api:system_job_template_detail', kwargs={'pk': obj.system_job_template.pk}) res['notifications'] = self.reverse('api:system_job_notifications_list', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:system_job_cancel', kwargs={'pk': obj.pk}) res['events'] = self.reverse('api:system_job_events_list', kwargs={'pk': obj.pk}) return res def get_result_stdout(self, obj): try: return obj.result_stdout except StdoutMaxBytesExceeded as e: return _( "Standard Output too large to display ({text_size} bytes), " "only download supported for sizes over {supported_size} bytes.").format( text_size=e.total, supported_size=e.supported ) class SystemJobCancelSerializer(SystemJobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class WorkflowJobTemplateSerializer(JobTemplateMixin, LabelsListMixin, UnifiedJobTemplateSerializer): show_capabilities = ['start', 'schedule', 'edit', 'copy', 'delete'] capabilities_prefetch = [ 'admin', 'execute', {'copy': 'organization.workflow_admin'} ] limit = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) scm_branch = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) class Meta: model = WorkflowJobTemplate fields = ( '*', 'extra_vars', 'organization', 'survey_enabled', 'allow_simultaneous', 'ask_variables_on_launch', 'inventory', 'limit', 'scm_branch', 'ask_inventory_on_launch', 'ask_scm_branch_on_launch', 'ask_limit_on_launch', 'webhook_service', 'webhook_credential', ) def get_related(self, obj): res = super(WorkflowJobTemplateSerializer, self).get_related(obj) res.update( workflow_jobs = self.reverse('api:workflow_job_template_jobs_list', kwargs={'pk': obj.pk}), schedules = self.reverse('api:workflow_job_template_schedules_list', kwargs={'pk': obj.pk}), launch = self.reverse('api:workflow_job_template_launch', kwargs={'pk': obj.pk}), webhook_key=self.reverse('api:webhook_key', kwargs={'model_kwarg': 'workflow_job_templates', 'pk': obj.pk}), webhook_receiver=( self.reverse('api:webhook_receiver_{}'.format(obj.webhook_service), kwargs={'model_kwarg': 'workflow_job_templates', 'pk': obj.pk}) if obj.webhook_service else '' ), workflow_nodes = self.reverse('api:workflow_job_template_workflow_nodes_list', kwargs={'pk': obj.pk}), labels = self.reverse('api:workflow_job_template_label_list', kwargs={'pk': obj.pk}), activity_stream = self.reverse('api:workflow_job_template_activity_stream_list', kwargs={'pk': obj.pk}), notification_templates_started = self.reverse('api:workflow_job_template_notification_templates_started_list', kwargs={'pk': obj.pk}), notification_templates_success = self.reverse('api:workflow_job_template_notification_templates_success_list', kwargs={'pk': obj.pk}), notification_templates_error = self.reverse('api:workflow_job_template_notification_templates_error_list', kwargs={'pk': obj.pk}), notification_templates_approvals = self.reverse('api:workflow_job_template_notification_templates_approvals_list', kwargs={'pk': obj.pk}), access_list = self.reverse('api:workflow_job_template_access_list', kwargs={'pk': obj.pk}), object_roles = self.reverse('api:workflow_job_template_object_roles_list', kwargs={'pk': obj.pk}), survey_spec = self.reverse('api:workflow_job_template_survey_spec', kwargs={'pk': obj.pk}), copy = self.reverse('api:workflow_job_template_copy', kwargs={'pk': obj.pk}), ) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def validate_extra_vars(self, value): return vars_validate_or_raise(value) def validate(self, attrs): attrs = super(WorkflowJobTemplateSerializer, self).validate(attrs) # process char_prompts, these are not direct fields on the model mock_obj = self.Meta.model() for field_name in ('scm_branch', 'limit'): if field_name in attrs: setattr(mock_obj, field_name, attrs[field_name]) attrs.pop(field_name) # Model `.save` needs the container dict, not the pseudo fields if mock_obj.char_prompts: attrs['char_prompts'] = mock_obj.char_prompts return attrs class WorkflowJobTemplateWithSpecSerializer(WorkflowJobTemplateSerializer): ''' Used for activity stream entries. ''' class Meta: model = WorkflowJobTemplate fields = ('*', 'survey_spec') class WorkflowJobSerializer(LabelsListMixin, UnifiedJobSerializer): limit = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) scm_branch = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) class Meta: model = WorkflowJob fields = ( '*', 'workflow_job_template', 'extra_vars', 'allow_simultaneous', 'job_template', 'is_sliced_job', '-execution_node', '-event_processing_finished', '-controller_node', 'inventory', 'limit', 'scm_branch', 'webhook_service', 'webhook_credential', 'webhook_guid', ) def get_related(self, obj): res = super(WorkflowJobSerializer, self).get_related(obj) if obj.workflow_job_template: res['workflow_job_template'] = self.reverse('api:workflow_job_template_detail', kwargs={'pk': obj.workflow_job_template.pk}) res['notifications'] = self.reverse('api:workflow_job_notifications_list', kwargs={'pk': obj.pk}) if obj.job_template_id: res['job_template'] = self.reverse('api:job_template_detail', kwargs={'pk': obj.job_template_id}) res['workflow_nodes'] = self.reverse('api:workflow_job_workflow_nodes_list', kwargs={'pk': obj.pk}) res['labels'] = self.reverse('api:workflow_job_label_list', kwargs={'pk': obj.pk}) res['activity_stream'] = self.reverse('api:workflow_job_activity_stream_list', kwargs={'pk': obj.pk}) res['relaunch'] = self.reverse('api:workflow_job_relaunch', kwargs={'pk': obj.pk}) if obj.can_cancel or True: res['cancel'] = self.reverse('api:workflow_job_cancel', kwargs={'pk': obj.pk}) return res def to_representation(self, obj): ret = super(WorkflowJobSerializer, self).to_representation(obj) if obj is None: return ret if 'extra_vars' in ret: ret['extra_vars'] = obj.display_extra_vars() return ret class WorkflowJobListSerializer(WorkflowJobSerializer, UnifiedJobListSerializer): class Meta: fields = ('*', '-execution_node', '-controller_node',) class WorkflowJobCancelSerializer(WorkflowJobSerializer): can_cancel = serializers.BooleanField(read_only=True) class Meta: fields = ('can_cancel',) class WorkflowApprovalViewSerializer(UnifiedJobSerializer): class Meta: model = WorkflowApproval fields = [] class WorkflowApprovalSerializer(UnifiedJobSerializer): can_approve_or_deny = serializers.SerializerMethodField() approval_expiration = serializers.SerializerMethodField() timed_out = serializers.ReadOnlyField() class Meta: model = WorkflowApproval fields = ('*', '-controller_node', '-execution_node', 'can_approve_or_deny', 'approval_expiration', 'timed_out',) def get_approval_expiration(self, obj): if obj.status != 'pending' or obj.timeout == 0: return None return obj.created + timedelta(seconds=obj.timeout) def get_can_approve_or_deny(self, obj): request = self.context.get('request', None) allowed = request.user.can_access(WorkflowApproval, 'approve_or_deny', obj) return allowed is True and obj.status == 'pending' def get_related(self, obj): res = super(WorkflowApprovalSerializer, self).get_related(obj) if obj.workflow_approval_template: res['workflow_approval_template'] = self.reverse('api:workflow_approval_template_detail', kwargs={'pk': obj.workflow_approval_template.pk}) res['approve'] = self.reverse('api:workflow_approval_approve', kwargs={'pk': obj.pk}) res['deny'] = self.reverse('api:workflow_approval_deny', kwargs={'pk': obj.pk}) if obj.approved_or_denied_by: res['approved_or_denied_by'] = self.reverse('api:user_detail', kwargs={'pk': obj.approved_or_denied_by.pk}) return res class WorkflowApprovalActivityStreamSerializer(WorkflowApprovalSerializer): """ timed_out and status are usually read-only fields However, when we generate an activity stream record, we *want* to record these types of changes. This serializer allows us to do so. """ status = serializers.ChoiceField(choices=JobTemplate.JOB_TEMPLATE_STATUS_CHOICES) timed_out = serializers.BooleanField() class WorkflowApprovalListSerializer(WorkflowApprovalSerializer, UnifiedJobListSerializer): class Meta: fields = ('*', '-controller_node', '-execution_node', 'can_approve_or_deny', 'approval_expiration', 'timed_out',) class WorkflowApprovalTemplateSerializer(UnifiedJobTemplateSerializer): class Meta: model = WorkflowApprovalTemplate fields = ('*', 'timeout', 'name',) def get_related(self, obj): res = super(WorkflowApprovalTemplateSerializer, self).get_related(obj) if 'last_job' in res: del res['last_job'] res.update(jobs = self.reverse('api:workflow_approval_template_jobs_list', kwargs={'pk': obj.pk})) return res class LaunchConfigurationBaseSerializer(BaseSerializer): scm_branch = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) job_type = serializers.ChoiceField(allow_blank=True, allow_null=True, required=False, default=None, choices=NEW_JOB_TYPE_CHOICES) job_tags = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) limit = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) skip_tags = serializers.CharField(allow_blank=True, allow_null=True, required=False, default=None) diff_mode = serializers.NullBooleanField(required=False, default=None) verbosity = serializers.ChoiceField(allow_null=True, required=False, default=None, choices=VERBOSITY_CHOICES) exclude_errors = () class Meta: fields = ('*', 'extra_data', 'inventory', # Saved launch-time config fields 'scm_branch', 'job_type', 'job_tags', 'skip_tags', 'limit', 'skip_tags', 'diff_mode', 'verbosity') def get_related(self, obj): res = super(LaunchConfigurationBaseSerializer, self).get_related(obj) if obj.inventory_id: res['inventory'] = self.reverse('api:inventory_detail', kwargs={'pk': obj.inventory_id}) res['credentials'] = self.reverse( 'api:{}_credentials_list'.format(get_type_for_model(self.Meta.model)), kwargs={'pk': obj.pk} ) return res def _build_mock_obj(self, attrs): mock_obj = self.Meta.model() if self.instance: for field in self.instance._meta.fields: setattr(mock_obj, field.name, getattr(self.instance, field.name)) field_names = set(field.name for field in self.Meta.model._meta.fields) for field_name, value in list(attrs.items()): setattr(mock_obj, field_name, value) if field_name not in field_names: attrs.pop(field_name) return mock_obj def to_representation(self, obj): ret = super(LaunchConfigurationBaseSerializer, self).to_representation(obj) if obj is None: return ret if 'extra_data' in ret and obj.survey_passwords: ret['extra_data'] = obj.display_extra_vars() return ret def validate(self, attrs): db_extra_data = {} if self.instance: db_extra_data = parse_yaml_or_json(self.instance.extra_data) attrs = super(LaunchConfigurationBaseSerializer, self).validate(attrs) ujt = None if 'unified_job_template' in attrs: ujt = attrs['unified_job_template'] elif self.instance: ujt = self.instance.unified_job_template if ujt is None: if 'workflow_job_template' in attrs: return {'workflow_job_template': attrs['workflow_job_template']} return {} # build additional field survey_passwords to track redacted variables password_dict = {} extra_data = parse_yaml_or_json(attrs.get('extra_data', {})) if hasattr(ujt, 'survey_password_variables'): # Prepare additional field survey_passwords for save for key in ujt.survey_password_variables(): if key in extra_data: password_dict[key] = REPLACE_STR # Replace $encrypted$ submissions with db value if exists if 'extra_data' in attrs: if password_dict: if not self.instance or password_dict != self.instance.survey_passwords: attrs['survey_passwords'] = password_dict.copy() # Force dict type (cannot preserve YAML formatting if passwords are involved) # Encrypt the extra_data for save, only current password vars in JT survey # but first, make a copy or else this is referenced by request.data, and # user could get encrypted string in form data in API browser attrs['extra_data'] = extra_data.copy() encrypt_dict(attrs['extra_data'], password_dict.keys()) # For any raw $encrypted$ string, either # - replace with existing DB value # - raise a validation error # - ignore, if default present for key in password_dict.keys(): if attrs['extra_data'].get(key, None) == REPLACE_STR: if key not in db_extra_data: element = ujt.pivot_spec(ujt.survey_spec)[key] # NOTE: validation _of_ the default values of password type # questions not done here or on launch, but doing so could # leak info about values, so it should not be added if not ('default' in element and element['default']): raise serializers.ValidationError( {"extra_data": _('Provided variable {} has no database value to replace with.').format(key)}) else: attrs['extra_data'][key] = db_extra_data[key] # Build unsaved version of this config, use it to detect prompts errors mock_obj = self._build_mock_obj(attrs) accepted, rejected, errors = ujt._accept_or_ignore_job_kwargs( _exclude_errors=self.exclude_errors, **mock_obj.prompts_dict()) # Remove all unprocessed $encrypted$ strings, indicating default usage if 'extra_data' in attrs and password_dict: for key, value in attrs['extra_data'].copy().items(): if value == REPLACE_STR: if key in password_dict: attrs['extra_data'].pop(key) attrs.get('survey_passwords', {}).pop(key, None) else: errors.setdefault('extra_vars', []).append( _('"$encrypted$ is a reserved keyword, may not be used for {var_name}."'.format(key)) ) # Launch configs call extra_vars extra_data for historical reasons if 'extra_vars' in errors: errors['extra_data'] = errors.pop('extra_vars') if errors: raise serializers.ValidationError(errors) # Model `.save` needs the container dict, not the pseudo fields if mock_obj.char_prompts: attrs['char_prompts'] = mock_obj.char_prompts return attrs class WorkflowJobTemplateNodeSerializer(LaunchConfigurationBaseSerializer): success_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) failure_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) always_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) exclude_errors = ('required',) # required variables may be provided by WFJT or on launch class Meta: model = WorkflowJobTemplateNode fields = ('*', 'workflow_job_template', '-name', '-description', 'id', 'url', 'related', 'unified_job_template', 'success_nodes', 'failure_nodes', 'always_nodes', 'all_parents_must_converge',) def get_related(self, obj): res = super(WorkflowJobTemplateNodeSerializer, self).get_related(obj) res['create_approval_template'] = self.reverse('api:workflow_job_template_node_create_approval', kwargs={'pk': obj.pk}) res['success_nodes'] = self.reverse('api:workflow_job_template_node_success_nodes_list', kwargs={'pk': obj.pk}) res['failure_nodes'] = self.reverse('api:workflow_job_template_node_failure_nodes_list', kwargs={'pk': obj.pk}) res['always_nodes'] = self.reverse('api:workflow_job_template_node_always_nodes_list', kwargs={'pk': obj.pk}) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) try: res['workflow_job_template'] = self.reverse('api:workflow_job_template_detail', kwargs={'pk': obj.workflow_job_template.pk}) except WorkflowJobTemplate.DoesNotExist: pass return res def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(WorkflowJobTemplateNodeSerializer, self).build_relational_field(field_name, relation_info) # workflow_job_template is read-only unless creating a new node. if self.instance and field_name == 'workflow_job_template': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs def get_summary_fields(self, obj): summary_fields = super(WorkflowJobTemplateNodeSerializer, self).get_summary_fields(obj) if isinstance(obj.unified_job_template, WorkflowApprovalTemplate): summary_fields['unified_job_template']['timeout'] = obj.unified_job_template.timeout return summary_fields class WorkflowJobNodeSerializer(LaunchConfigurationBaseSerializer): success_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) failure_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) always_nodes = serializers.PrimaryKeyRelatedField(many=True, read_only=True) class Meta: model = WorkflowJobNode fields = ('*', 'job', 'workflow_job', '-name', '-description', 'id', 'url', 'related', 'unified_job_template', 'success_nodes', 'failure_nodes', 'always_nodes', 'all_parents_must_converge', 'do_not_run',) def get_related(self, obj): res = super(WorkflowJobNodeSerializer, self).get_related(obj) res['success_nodes'] = self.reverse('api:workflow_job_node_success_nodes_list', kwargs={'pk': obj.pk}) res['failure_nodes'] = self.reverse('api:workflow_job_node_failure_nodes_list', kwargs={'pk': obj.pk}) res['always_nodes'] = self.reverse('api:workflow_job_node_always_nodes_list', kwargs={'pk': obj.pk}) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) if obj.job: res['job'] = obj.job.get_absolute_url(self.context.get('request')) if obj.workflow_job: res['workflow_job'] = self.reverse('api:workflow_job_detail', kwargs={'pk': obj.workflow_job.pk}) return res def get_summary_fields(self, obj): summary_fields = super(WorkflowJobNodeSerializer, self).get_summary_fields(obj) if isinstance(obj.job, WorkflowApproval): summary_fields['job']['timed_out'] = obj.job.timed_out return summary_fields class WorkflowJobNodeListSerializer(WorkflowJobNodeSerializer): pass class WorkflowJobNodeDetailSerializer(WorkflowJobNodeSerializer): pass class WorkflowJobTemplateNodeDetailSerializer(WorkflowJobTemplateNodeSerializer): ''' Influence the api browser sample data to not include workflow_job_template when editing a WorkflowNode. Note: I was not able to accomplish this through the use of extra_kwargs. Maybe something to do with workflow_job_template being a relational field? ''' def build_relational_field(self, field_name, relation_info): field_class, field_kwargs = super(WorkflowJobTemplateNodeDetailSerializer, self).build_relational_field(field_name, relation_info) if self.instance and field_name == 'workflow_job_template': field_kwargs['read_only'] = True field_kwargs.pop('queryset', None) return field_class, field_kwargs class WorkflowJobTemplateNodeCreateApprovalSerializer(BaseSerializer): class Meta: model = WorkflowApprovalTemplate fields = ('timeout', 'name', 'description',) def to_representation(self, obj): return {} class JobListSerializer(JobSerializer, UnifiedJobListSerializer): pass class AdHocCommandListSerializer(AdHocCommandSerializer, UnifiedJobListSerializer): pass class SystemJobListSerializer(SystemJobSerializer, UnifiedJobListSerializer): class Meta: model = SystemJob fields = ('*', '-controller_node') # field removal undone by UJ serializer class JobHostSummarySerializer(BaseSerializer): class Meta: model = JobHostSummary fields = ('*', '-name', '-description', 'job', 'host', 'host_name', 'changed', 'dark', 'failures', 'ok', 'processed', 'skipped', 'failed', 'ignored', 'rescued') def get_related(self, obj): res = super(JobHostSummarySerializer, self).get_related(obj) res.update(dict( job=self.reverse('api:job_detail', kwargs={'pk': obj.job.pk}))) if obj.host is not None: res.update(dict( host=self.reverse('api:host_detail', kwargs={'pk': obj.host.pk}) )) return res def get_summary_fields(self, obj): d = super(JobHostSummarySerializer, self).get_summary_fields(obj) try: d['job']['job_template_id'] = obj.job.job_template.id d['job']['job_template_name'] = obj.job.job_template.name except (KeyError, AttributeError): pass return d class JobEventSerializer(BaseSerializer): event_display = serializers.CharField(source='get_event_display2', read_only=True) event_level = serializers.IntegerField(read_only=True) class Meta: model = JobEvent fields = ('*', '-name', '-description', 'job', 'event', 'counter', 'event_display', 'event_data', 'event_level', 'failed', 'changed', 'uuid', 'parent_uuid', 'host', 'host_name', 'playbook', 'play', 'task', 'role', 'stdout', 'start_line', 'end_line', 'verbosity') def get_related(self, obj): res = super(JobEventSerializer, self).get_related(obj) res.update(dict( job = self.reverse('api:job_detail', kwargs={'pk': obj.job_id}), )) res['children'] = self.reverse('api:job_event_children_list', kwargs={'pk': obj.pk}) if obj.host_id: res['host'] = self.reverse('api:host_detail', kwargs={'pk': obj.host_id}) return res def get_summary_fields(self, obj): d = super(JobEventSerializer, self).get_summary_fields(obj) try: d['job']['job_template_id'] = obj.job.job_template.id d['job']['job_template_name'] = obj.job.job_template.name except (KeyError, AttributeError): pass return d def to_representation(self, obj): data = super(JobEventSerializer, self).to_representation(obj) # Show full stdout for playbook_on_* events. if obj and obj.event.startswith('playbook_on'): return data # If the view logic says to not trunctate (request was to the detail view or a param was used) if self.context.get('no_truncate', False): return data max_bytes = settings.EVENT_STDOUT_MAX_BYTES_DISPLAY if 'stdout' in data: data['stdout'] = truncate_stdout(data['stdout'], max_bytes) return data class ProjectUpdateEventSerializer(JobEventSerializer): stdout = serializers.SerializerMethodField() event_data = serializers.SerializerMethodField() class Meta: model = ProjectUpdateEvent fields = ('*', '-name', '-description', '-job', '-job_id', '-parent_uuid', '-parent', '-host', 'project_update') def get_related(self, obj): res = super(JobEventSerializer, self).get_related(obj) res['project_update'] = self.reverse( 'api:project_update_detail', kwargs={'pk': obj.project_update_id} ) return res def get_stdout(self, obj): return UriCleaner.remove_sensitive(obj.stdout) def get_event_data(self, obj): try: return json.loads( UriCleaner.remove_sensitive( json.dumps(obj.event_data) ) ) except Exception: logger.exception("Failed to sanitize event_data") return {} class AdHocCommandEventSerializer(BaseSerializer): event_display = serializers.CharField(source='get_event_display', read_only=True) class Meta: model = AdHocCommandEvent fields = ('*', '-name', '-description', 'ad_hoc_command', 'event', 'counter', 'event_display', 'event_data', 'failed', 'changed', 'uuid', 'host', 'host_name', 'stdout', 'start_line', 'end_line', 'verbosity') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res.update(dict( ad_hoc_command = self.reverse('api:ad_hoc_command_detail', kwargs={'pk': obj.ad_hoc_command_id}), )) if obj.host: res['host'] = self.reverse('api:host_detail', kwargs={'pk': obj.host.pk}) return res def to_representation(self, obj): data = super(AdHocCommandEventSerializer, self).to_representation(obj) # If the view logic says to not trunctate (request was to the detail view or a param was used) if self.context.get('no_truncate', False): return data max_bytes = settings.EVENT_STDOUT_MAX_BYTES_DISPLAY if 'stdout' in data: data['stdout'] = truncate_stdout(data['stdout'], max_bytes) return data class InventoryUpdateEventSerializer(AdHocCommandEventSerializer): class Meta: model = InventoryUpdateEvent fields = ('*', '-name', '-description', '-ad_hoc_command', '-host', '-host_name', 'inventory_update') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res['inventory_update'] = self.reverse( 'api:inventory_update_detail', kwargs={'pk': obj.inventory_update_id} ) return res class SystemJobEventSerializer(AdHocCommandEventSerializer): class Meta: model = SystemJobEvent fields = ('*', '-name', '-description', '-ad_hoc_command', '-host', '-host_name', 'system_job') def get_related(self, obj): res = super(AdHocCommandEventSerializer, self).get_related(obj) res['system_job'] = self.reverse( 'api:system_job_detail', kwargs={'pk': obj.system_job_id} ) return res class JobLaunchSerializer(BaseSerializer): # Representational fields passwords_needed_to_start = serializers.ReadOnlyField() can_start_without_user_input = serializers.BooleanField(read_only=True) variables_needed_to_start = serializers.ReadOnlyField() credential_needed_to_start = serializers.SerializerMethodField() inventory_needed_to_start = serializers.SerializerMethodField() survey_enabled = serializers.SerializerMethodField() job_template_data = serializers.SerializerMethodField() defaults = serializers.SerializerMethodField() # Accepted on launch fields extra_vars = serializers.JSONField(required=False, write_only=True) inventory = serializers.PrimaryKeyRelatedField( queryset=Inventory.objects.all(), required=False, write_only=True ) credentials = serializers.PrimaryKeyRelatedField( many=True, queryset=Credential.objects.all(), required=False, write_only=True ) credential_passwords = VerbatimField(required=False, write_only=True) scm_branch = serializers.CharField(required=False, write_only=True, allow_blank=True) diff_mode = serializers.BooleanField(required=False, write_only=True) job_tags = serializers.CharField(required=False, write_only=True, allow_blank=True) job_type = serializers.ChoiceField(required=False, choices=NEW_JOB_TYPE_CHOICES, write_only=True) skip_tags = serializers.CharField(required=False, write_only=True, allow_blank=True) limit = serializers.CharField(required=False, write_only=True, allow_blank=True) verbosity = serializers.ChoiceField(required=False, choices=VERBOSITY_CHOICES, write_only=True) class Meta: model = JobTemplate fields = ('can_start_without_user_input', 'passwords_needed_to_start', 'extra_vars', 'inventory', 'scm_branch', 'limit', 'job_tags', 'skip_tags', 'job_type', 'verbosity', 'diff_mode', 'credentials', 'credential_passwords', 'ask_scm_branch_on_launch', 'ask_variables_on_launch', 'ask_tags_on_launch', 'ask_diff_mode_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_limit_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch', 'survey_enabled', 'variables_needed_to_start', 'credential_needed_to_start', 'inventory_needed_to_start', 'job_template_data', 'defaults', 'verbosity') read_only_fields = ( 'ask_scm_branch_on_launch', 'ask_diff_mode_on_launch', 'ask_variables_on_launch', 'ask_limit_on_launch', 'ask_tags_on_launch', 'ask_skip_tags_on_launch', 'ask_job_type_on_launch', 'ask_verbosity_on_launch', 'ask_inventory_on_launch', 'ask_credential_on_launch',) def get_credential_needed_to_start(self, obj): return False def get_inventory_needed_to_start(self, obj): return not (obj and obj.inventory) def get_survey_enabled(self, obj): if obj: return obj.survey_enabled and 'spec' in obj.survey_spec return False def get_defaults(self, obj): defaults_dict = {} for field_name in JobTemplate.get_ask_mapping().keys(): if field_name == 'inventory': defaults_dict[field_name] = dict( name=getattrd(obj, '%s.name' % field_name, None), id=getattrd(obj, '%s.pk' % field_name, None)) elif field_name == 'credentials': for cred in obj.credentials.all(): cred_dict = dict( id=cred.id, name=cred.name, credential_type=cred.credential_type.pk, passwords_needed=cred.passwords_needed ) if cred.credential_type.managed_by_tower and 'vault_id' in cred.credential_type.defined_fields: cred_dict['vault_id'] = cred.get_input('vault_id', default=None) defaults_dict.setdefault(field_name, []).append(cred_dict) else: defaults_dict[field_name] = getattr(obj, field_name) return defaults_dict def get_job_template_data(self, obj): return dict(name=obj.name, id=obj.id, description=obj.description) def validate_extra_vars(self, value): return vars_validate_or_raise(value) def validate(self, attrs): template = self.context.get('template') accepted, rejected, errors = template._accept_or_ignore_job_kwargs( _exclude_errors=['prompts'], # make several error types non-blocking **attrs) self._ignored_fields = rejected if template.inventory and template.inventory.pending_deletion is True: errors['inventory'] = _("The inventory associated with this Job Template is being deleted.") elif 'inventory' in accepted and accepted['inventory'].pending_deletion: errors['inventory'] = _("The provided inventory is being deleted.") # Prohibit providing multiple credentials of the same CredentialType.kind # or multiples of same vault id distinct_cred_kinds = [] for cred in accepted.get('credentials', []): if cred.unique_hash() in distinct_cred_kinds: errors.setdefault('credentials', []).append(_( 'Cannot assign multiple {} credentials.' ).format(cred.unique_hash(display=True))) if cred.credential_type.kind not in ('ssh', 'vault', 'cloud', 'net'): errors.setdefault('credentials', []).append(_( 'Cannot assign a Credential of kind `{}`' ).format(cred.credential_type.kind)) distinct_cred_kinds.append(cred.unique_hash()) # Prohibit removing credentials from the JT list (unsupported for now) template_credentials = template.credentials.all() if 'credentials' in attrs: removed_creds = set(template_credentials) - set(attrs['credentials']) provided_mapping = Credential.unique_dict(attrs['credentials']) for cred in removed_creds: if cred.unique_hash() in provided_mapping.keys(): continue # User replaced credential with new of same type errors.setdefault('credentials', []).append(_( 'Removing {} credential at launch time without replacement is not supported. ' 'Provided list lacked credential(s): {}.' ).format(cred.unique_hash(display=True), ', '.join([str(c) for c in removed_creds]))) # verify that credentials (either provided or existing) don't # require launch-time passwords that have not been provided if 'credentials' in accepted: launch_credentials = accepted['credentials'] else: launch_credentials = template_credentials passwords = attrs.get('credential_passwords', {}) # get from original attrs passwords_lacking = [] for cred in launch_credentials: for p in cred.passwords_needed: if p not in passwords: passwords_lacking.append(p) else: accepted.setdefault('credential_passwords', {}) accepted['credential_passwords'][p] = passwords[p] if len(passwords_lacking): errors['passwords_needed_to_start'] = passwords_lacking if errors: raise serializers.ValidationError(errors) if 'extra_vars' in accepted: extra_vars_save = accepted['extra_vars'] else: extra_vars_save = None # Validate job against JobTemplate clean_ methods accepted = super(JobLaunchSerializer, self).validate(accepted) # Preserve extra_vars as dictionary internally if extra_vars_save: accepted['extra_vars'] = extra_vars_save return accepted class WorkflowJobLaunchSerializer(BaseSerializer): can_start_without_user_input = serializers.BooleanField(read_only=True) defaults = serializers.SerializerMethodField() variables_needed_to_start = serializers.ReadOnlyField() survey_enabled = serializers.SerializerMethodField() extra_vars = VerbatimField(required=False, write_only=True) inventory = serializers.PrimaryKeyRelatedField( queryset=Inventory.objects.all(), required=False, write_only=True ) limit = serializers.CharField(required=False, write_only=True, allow_blank=True) scm_branch = serializers.CharField(required=False, write_only=True, allow_blank=True) workflow_job_template_data = serializers.SerializerMethodField() class Meta: model = WorkflowJobTemplate fields = ('ask_inventory_on_launch', 'ask_limit_on_launch', 'ask_scm_branch_on_launch', 'can_start_without_user_input', 'defaults', 'extra_vars', 'inventory', 'limit', 'scm_branch', 'survey_enabled', 'variables_needed_to_start', 'node_templates_missing', 'node_prompts_rejected', 'workflow_job_template_data', 'survey_enabled', 'ask_variables_on_launch') read_only_fields = ('ask_inventory_on_launch', 'ask_variables_on_launch') def get_survey_enabled(self, obj): if obj: return obj.survey_enabled and 'spec' in obj.survey_spec return False def get_defaults(self, obj): defaults_dict = {} for field_name in WorkflowJobTemplate.get_ask_mapping().keys(): if field_name == 'inventory': defaults_dict[field_name] = dict( name=getattrd(obj, '%s.name' % field_name, None), id=getattrd(obj, '%s.pk' % field_name, None)) else: defaults_dict[field_name] = getattr(obj, field_name) return defaults_dict def get_workflow_job_template_data(self, obj): return dict(name=obj.name, id=obj.id, description=obj.description) def validate(self, attrs): template = self.instance accepted, rejected, errors = template._accept_or_ignore_job_kwargs(**attrs) self._ignored_fields = rejected if template.inventory and template.inventory.pending_deletion is True: errors['inventory'] = _("The inventory associated with this Workflow is being deleted.") elif 'inventory' in accepted and accepted['inventory'].pending_deletion: errors['inventory'] = _("The provided inventory is being deleted.") if errors: raise serializers.ValidationError(errors) WFJT_extra_vars = template.extra_vars WFJT_inventory = template.inventory WFJT_limit = template.limit WFJT_scm_branch = template.scm_branch super(WorkflowJobLaunchSerializer, self).validate(attrs) template.extra_vars = WFJT_extra_vars template.inventory = WFJT_inventory template.limit = WFJT_limit template.scm_branch = WFJT_scm_branch return accepted class NotificationTemplateSerializer(BaseSerializer): show_capabilities = ['edit', 'delete', 'copy'] capabilities_prefetch = [{'copy': 'organization.admin'}] class Meta: model = NotificationTemplate fields = ('*', 'organization', 'notification_type', 'notification_configuration', 'messages') type_map = {"string": (str,), "int": (int,), "bool": (bool,), "list": (list,), "password": (str,), "object": (dict, OrderedDict)} def to_representation(self, obj): ret = super(NotificationTemplateSerializer, self).to_representation(obj) if 'notification_configuration' in ret: ret['notification_configuration'] = obj.display_notification_configuration() return ret def get_related(self, obj): res = super(NotificationTemplateSerializer, self).get_related(obj) res.update(dict( test = self.reverse('api:notification_template_test', kwargs={'pk': obj.pk}), notifications = self.reverse('api:notification_template_notification_list', kwargs={'pk': obj.pk}), copy = self.reverse('api:notification_template_copy', kwargs={'pk': obj.pk}), )) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res def _recent_notifications(self, obj): return [{'id': x.id, 'status': x.status, 'created': x.created} for x in obj.notifications.all().order_by('-created')[:5]] def get_summary_fields(self, obj): d = super(NotificationTemplateSerializer, self).get_summary_fields(obj) d['recent_notifications'] = self._recent_notifications(obj) return d def validate_messages(self, messages): if messages is None: return None error_list = [] collected_messages = [] def check_messages(messages): for message_type in messages: if message_type not in ('message', 'body'): error_list.append(_("Message type '{}' invalid, must be either 'message' or 'body'").format(message_type)) continue message = messages[message_type] if message is None: continue if not isinstance(message, str): error_list.append(_("Expected string for '{}', found {}, ").format(message_type, type(message))) continue if message_type == 'message': if '\n' in message: error_list.append(_("Messages cannot contain newlines (found newline in {} event)".format(event))) continue collected_messages.append(message) # Validate structure / content types if not isinstance(messages, dict): error_list.append(_("Expected dict for 'messages' field, found {}".format(type(messages)))) else: for event in messages: if event not in ('started', 'success', 'error', 'workflow_approval'): error_list.append(_("Event '{}' invalid, must be one of 'started', 'success', 'error', or 'workflow_approval'").format(event)) continue event_messages = messages[event] if event_messages is None: continue if not isinstance(event_messages, dict): error_list.append(_("Expected dict for event '{}', found {}").format(event, type(event_messages))) continue if event == 'workflow_approval': for subevent in event_messages: if subevent not in ('running', 'approved', 'timed_out', 'denied'): error_list.append(_("Workflow Approval event '{}' invalid, must be one of " "'running', 'approved', 'timed_out', or 'denied'").format(subevent)) continue subevent_messages = event_messages[subevent] if subevent_messages is None: continue if not isinstance(subevent_messages, dict): error_list.append(_("Expected dict for workflow approval event '{}', found {}").format(subevent, type(subevent_messages))) continue check_messages(subevent_messages) else: check_messages(event_messages) # Subclass to return name of undefined field class DescriptiveUndefined(StrictUndefined): # The parent class prevents _accessing attributes_ of an object # but will render undefined objects with 'Undefined'. This # prevents their use entirely. __repr__ = __str__ = StrictUndefined._fail_with_undefined_error def __init__(self, *args, **kwargs): super(DescriptiveUndefined, self).__init__(*args, **kwargs) # When an undefined field is encountered, return the name # of the undefined field in the exception message # (StrictUndefined refers to the explicitly set exception # message as the 'hint') self._undefined_hint = self._undefined_name # Ensure messages can be rendered for msg in collected_messages: env = sandbox.ImmutableSandboxedEnvironment(undefined=DescriptiveUndefined) try: env.from_string(msg).render(JobNotificationMixin.context_stub()) except TemplateSyntaxError as exc: error_list.append(_("Unable to render message '{}': {}".format(msg, exc.message))) except UndefinedError as exc: error_list.append(_("Field '{}' unavailable".format(exc.message))) except SecurityError as exc: error_list.append(_("Security error due to field '{}'".format(exc.message))) # Ensure that if a webhook body was provided, that it can be rendered as a dictionary notification_type = '' if self.instance: notification_type = getattr(self.instance, 'notification_type', '') else: notification_type = self.initial_data.get('notification_type', '') if notification_type == 'webhook': for event in messages: if not messages[event]: continue if not isinstance(messages[event], dict): continue body = messages[event].get('body', {}) if body: try: potential_body = json.loads(body) if not isinstance(potential_body, dict): error_list.append(_("Webhook body for '{}' should be a json dictionary. Found type '{}'." .format(event, type(potential_body).__name__))) except json.JSONDecodeError as exc: error_list.append(_("Webhook body for '{}' is not a valid json dictionary ({}).".format(event, exc))) if error_list: raise serializers.ValidationError(error_list) return messages def validate(self, attrs): from awx.api.views import NotificationTemplateDetail notification_type = None if 'notification_type' in attrs: notification_type = attrs['notification_type'] elif self.instance: notification_type = self.instance.notification_type else: notification_type = None if not notification_type: raise serializers.ValidationError(_('Missing required fields for Notification Configuration: notification_type')) notification_class = NotificationTemplate.CLASS_FOR_NOTIFICATION_TYPE[notification_type] missing_fields = [] incorrect_type_fields = [] password_fields_to_forward = [] error_list = [] if 'notification_configuration' not in attrs: return attrs if self.context['view'].kwargs and isinstance(self.context['view'], NotificationTemplateDetail): object_actual = self.context['view'].get_object() else: object_actual = None for field, params in notification_class.init_parameters.items(): if field not in attrs['notification_configuration']: if 'default' in params: attrs['notification_configuration'][field] = params['default'] else: missing_fields.append(field) continue field_val = attrs['notification_configuration'][field] field_type = params['type'] expected_types = self.type_map[field_type] if not type(field_val) in expected_types: incorrect_type_fields.append((field, field_type)) continue if field_type == "list" and len(field_val) < 1: error_list.append(_("No values specified for field '{}'").format(field)) continue if field_type == "password" and field_val == "$encrypted$" and object_actual is not None: password_fields_to_forward.append(field) if field == "http_method" and field_val.lower() not in ['put', 'post']: error_list.append(_("HTTP method must be either 'POST' or 'PUT'.")) if missing_fields: error_list.append(_("Missing required fields for Notification Configuration: {}.").format(missing_fields)) if incorrect_type_fields: for type_field_error in incorrect_type_fields: error_list.append(_("Configuration field '{}' incorrect type, expected {}.").format(type_field_error[0], type_field_error[1])) if error_list: raise serializers.ValidationError(error_list) # Only pull the existing encrypted passwords from the existing objects # to assign to the attribute and forward on the call stack IF AND ONLY IF # we know an error will not be raised in the validation phase. # Otherwise, the encrypted password will be exposed. for field in password_fields_to_forward: attrs['notification_configuration'][field] = object_actual.notification_configuration[field] return super(NotificationTemplateSerializer, self).validate(attrs) class NotificationSerializer(BaseSerializer): body = serializers.SerializerMethodField( help_text=_('Notification body') ) class Meta: model = Notification fields = ('*', '-name', '-description', 'notification_template', 'error', 'status', 'notifications_sent', 'notification_type', 'recipients', 'subject', 'body') def get_body(self, obj): if obj.notification_type in ('webhook', 'pagerduty'): if isinstance(obj.body, dict): if 'body' in obj.body: return obj.body['body'] elif isinstance(obj.body, str): # attempt to load json string try: potential_body = json.loads(obj.body) if isinstance(potential_body, dict): return potential_body except json.JSONDecodeError: pass return obj.body def get_related(self, obj): res = super(NotificationSerializer, self).get_related(obj) res.update(dict( notification_template = self.reverse('api:notification_template_detail', kwargs={'pk': obj.notification_template.pk}), )) return res def to_representation(self, obj): ret = super(NotificationSerializer, self).to_representation(obj) if obj.notification_type == 'webhook': ret.pop('subject') if obj.notification_type not in ('email', 'webhook', 'pagerduty'): ret.pop('body') return ret class LabelSerializer(BaseSerializer): class Meta: model = Label fields = ('*', '-description', 'organization') def get_related(self, obj): res = super(LabelSerializer, self).get_related(obj) if obj.organization: res['organization'] = self.reverse('api:organization_detail', kwargs={'pk': obj.organization.pk}) return res class SchedulePreviewSerializer(BaseSerializer): class Meta: model = Schedule fields = ('rrule',) # We reject rrules if: # - DTSTART is not include # - INTERVAL is not included # - SECONDLY is used # - TZID is used # - BYDAY prefixed with a number (MO is good but not 20MO) # - BYYEARDAY # - BYWEEKNO # - Multiple DTSTART or RRULE elements # - Can't contain both COUNT and UNTIL # - COUNT > 999 def validate_rrule(self, value): rrule_value = value multi_by_month_day = r".*?BYMONTHDAY[\:\=][0-9]+,-*[0-9]+" multi_by_month = r".*?BYMONTH[\:\=][0-9]+,[0-9]+" by_day_with_numeric_prefix = r".*?BYDAY[\:\=][0-9]+[a-zA-Z]{2}" match_count = re.match(r".*?(COUNT\=[0-9]+)", rrule_value) match_multiple_dtstart = re.findall(r".*?(DTSTART(;[^:]+)?\:[0-9]+T[0-9]+Z?)", rrule_value) match_native_dtstart = re.findall(r".*?(DTSTART:[0-9]+T[0-9]+) ", rrule_value) match_multiple_rrule = re.findall(r".*?(RRULE\:)", rrule_value) if not len(match_multiple_dtstart): raise serializers.ValidationError(_('Valid DTSTART required in rrule. Value should start with: DTSTART:YYYYMMDDTHHMMSSZ')) if len(match_native_dtstart): raise serializers.ValidationError(_('DTSTART cannot be a naive datetime. Specify ;TZINFO= or YYYYMMDDTHHMMSSZZ.')) if len(match_multiple_dtstart) > 1: raise serializers.ValidationError(_('Multiple DTSTART is not supported.')) if not len(match_multiple_rrule): raise serializers.ValidationError(_('RRULE required in rrule.')) if len(match_multiple_rrule) > 1: raise serializers.ValidationError(_('Multiple RRULE is not supported.')) if 'interval' not in rrule_value.lower(): raise serializers.ValidationError(_('INTERVAL required in rrule.')) if 'secondly' in rrule_value.lower(): raise serializers.ValidationError(_('SECONDLY is not supported.')) if re.match(multi_by_month_day, rrule_value): raise serializers.ValidationError(_('Multiple BYMONTHDAYs not supported.')) if re.match(multi_by_month, rrule_value): raise serializers.ValidationError(_('Multiple BYMONTHs not supported.')) if re.match(by_day_with_numeric_prefix, rrule_value): raise serializers.ValidationError(_("BYDAY with numeric prefix not supported.")) if 'byyearday' in rrule_value.lower(): raise serializers.ValidationError(_("BYYEARDAY not supported.")) if 'byweekno' in rrule_value.lower(): raise serializers.ValidationError(_("BYWEEKNO not supported.")) if 'COUNT' in rrule_value and 'UNTIL' in rrule_value: raise serializers.ValidationError(_("RRULE may not contain both COUNT and UNTIL")) if match_count: count_val = match_count.groups()[0].strip().split("=") if int(count_val[1]) > 999: raise serializers.ValidationError(_("COUNT > 999 is unsupported.")) try: Schedule.rrulestr(rrule_value) except Exception as e: raise serializers.ValidationError(_("rrule parsing failed validation: {}").format(e)) return value class ScheduleSerializer(LaunchConfigurationBaseSerializer, SchedulePreviewSerializer): show_capabilities = ['edit', 'delete'] timezone = serializers.SerializerMethodField() until = serializers.SerializerMethodField() class Meta: model = Schedule fields = ('*', 'unified_job_template', 'enabled', 'dtstart', 'dtend', 'rrule', 'next_run', 'timezone', 'until') def get_timezone(self, obj): return obj.timezone def get_until(self, obj): return obj.until def get_related(self, obj): res = super(ScheduleSerializer, self).get_related(obj) res.update(dict( unified_jobs = self.reverse('api:schedule_unified_jobs_list', kwargs={'pk': obj.pk}), )) if obj.unified_job_template: res['unified_job_template'] = obj.unified_job_template.get_absolute_url(self.context.get('request')) try: if obj.unified_job_template.project: res['project'] = obj.unified_job_template.project.get_absolute_url(self.context.get('request')) except ObjectDoesNotExist: pass if obj.inventory: res['inventory'] = obj.inventory.get_absolute_url(self.context.get('request')) elif obj.unified_job_template and getattr(obj.unified_job_template, 'inventory', None): res['inventory'] = obj.unified_job_template.inventory.get_absolute_url(self.context.get('request')) return res def get_summary_fields(self, obj): summary_fields = super(ScheduleSerializer, self).get_summary_fields(obj) if isinstance(obj.unified_job_template, SystemJobTemplate): summary_fields['unified_job_template']['job_type'] = obj.unified_job_template.job_type if 'inventory' in summary_fields: return summary_fields inventory = None if obj.unified_job_template and getattr(obj.unified_job_template, 'inventory', None): inventory = obj.unified_job_template.inventory else: return summary_fields summary_fields['inventory'] = dict() for field in SUMMARIZABLE_FK_FIELDS['inventory']: summary_fields['inventory'][field] = getattr(inventory, field, None) return summary_fields def validate_unified_job_template(self, value): if type(value) == InventorySource and value.source not in SCHEDULEABLE_PROVIDERS: raise serializers.ValidationError(_('Inventory Source must be a cloud resource.')) elif type(value) == Project and value.scm_type == '': raise serializers.ValidationError(_('Manual Project cannot have a schedule set.')) elif type(value) == InventorySource and value.source == 'scm' and value.update_on_project_update: raise serializers.ValidationError(_( 'Inventory sources with `update_on_project_update` cannot be scheduled. ' 'Schedule its source project `{}` instead.'.format(value.source_project.name))) return value class InstanceSerializer(BaseSerializer): consumed_capacity = serializers.SerializerMethodField() percent_capacity_remaining = serializers.SerializerMethodField() jobs_running = serializers.IntegerField( help_text=_('Count of jobs in the running or waiting state that ' 'are targeted for this instance'), read_only=True ) jobs_total = serializers.IntegerField( help_text=_('Count of all jobs that target this instance'), read_only=True ) class Meta: model = Instance read_only_fields = ('uuid', 'hostname', 'version') fields = ("id", "type", "url", "related", "uuid", "hostname", "created", "modified", 'capacity_adjustment', "version", "capacity", "consumed_capacity", "percent_capacity_remaining", "jobs_running", "jobs_total", "cpu", "memory", "cpu_capacity", "mem_capacity", "enabled", "managed_by_policy") def get_related(self, obj): res = super(InstanceSerializer, self).get_related(obj) res['jobs'] = self.reverse('api:instance_unified_jobs_list', kwargs={'pk': obj.pk}) res['instance_groups'] = self.reverse('api:instance_instance_groups_list', kwargs={'pk': obj.pk}) return res def get_consumed_capacity(self, obj): return obj.consumed_capacity def get_percent_capacity_remaining(self, obj): if not obj.capacity or obj.consumed_capacity >= obj.capacity: return 0.0 else: return float("{0:.2f}".format(((float(obj.capacity) - float(obj.consumed_capacity)) / (float(obj.capacity))) * 100)) class InstanceGroupSerializer(BaseSerializer): committed_capacity = serializers.SerializerMethodField() consumed_capacity = serializers.SerializerMethodField() percent_capacity_remaining = serializers.SerializerMethodField() jobs_running = serializers.IntegerField( help_text=_('Count of jobs in the running or waiting state that ' 'are targeted for this instance group'), read_only=True ) jobs_total = serializers.IntegerField( help_text=_('Count of all jobs that target this instance group'), read_only=True ) instances = serializers.SerializerMethodField() is_controller = serializers.BooleanField( help_text=_('Indicates whether instance group controls any other group'), read_only=True ) is_isolated = serializers.BooleanField( help_text=_('Indicates whether instances in this group are isolated.' 'Isolated groups have a designated controller group.'), read_only=True ) is_containerized = serializers.BooleanField( help_text=_('Indicates whether instances in this group are containerized.' 'Containerized groups have a designated Openshift or Kubernetes cluster.'), read_only=True ) # NOTE: help_text is duplicated from field definitions, no obvious way of # both defining field details here and also getting the field's help_text policy_instance_percentage = serializers.IntegerField( default=0, min_value=0, max_value=100, required=False, initial=0, label=_('Policy Instance Percentage'), help_text=_("Minimum percentage of all instances that will be automatically assigned to " "this group when new instances come online.") ) policy_instance_minimum = serializers.IntegerField( default=0, min_value=0, required=False, initial=0, label=_('Policy Instance Minimum'), help_text=_("Static minimum number of Instances that will be automatically assign to " "this group when new instances come online.") ) policy_instance_list = serializers.ListField( child=serializers.CharField(), required=False, label=_('Policy Instance List'), help_text=_("List of exact-match Instances that will be assigned to this group") ) class Meta: model = InstanceGroup fields = ("id", "type", "url", "related", "name", "created", "modified", "capacity", "committed_capacity", "consumed_capacity", "percent_capacity_remaining", "jobs_running", "jobs_total", "instances", "controller", "is_controller", "is_isolated", "is_containerized", "credential", "policy_instance_percentage", "policy_instance_minimum", "policy_instance_list", "pod_spec_override", "summary_fields") def get_related(self, obj): res = super(InstanceGroupSerializer, self).get_related(obj) res['jobs'] = self.reverse('api:instance_group_unified_jobs_list', kwargs={'pk': obj.pk}) res['instances'] = self.reverse('api:instance_group_instance_list', kwargs={'pk': obj.pk}) if obj.controller_id: res['controller'] = self.reverse('api:instance_group_detail', kwargs={'pk': obj.controller_id}) if obj.credential: res['credential'] = self.reverse('api:credential_detail', kwargs={'pk': obj.credential_id}) return res def validate_policy_instance_list(self, value): for instance_name in value: if value.count(instance_name) > 1: raise serializers.ValidationError(_('Duplicate entry {}.').format(instance_name)) if not Instance.objects.filter(hostname=instance_name).exists(): raise serializers.ValidationError(_('{} is not a valid hostname of an existing instance.').format(instance_name)) if Instance.objects.get(hostname=instance_name).is_isolated(): raise serializers.ValidationError(_('Isolated instances may not be added or removed from instances groups via the API.')) if self.instance and self.instance.controller_id is not None: raise serializers.ValidationError(_('Isolated instance group membership may not be managed via the API.')) if value and self.instance and self.instance.is_containerized: raise serializers.ValidationError(_('Containerized instances may not be managed via the API')) return value def validate_policy_instance_percentage(self, value): if value and self.instance and self.instance.is_containerized: raise serializers.ValidationError(_('Containerized instances may not be managed via the API')) return value def validate_policy_instance_minimum(self, value): if value and self.instance and self.instance.is_containerized: raise serializers.ValidationError(_('Containerized instances may not be managed via the API')) return value def validate_name(self, value): if self.instance and self.instance.name == 'tower' and value != 'tower': raise serializers.ValidationError(_('tower instance group name may not be changed.')) return value def validate_credential(self, value): if value and not value.kubernetes: raise serializers.ValidationError(_('Only Kubernetes credentials can be associated with an Instance Group')) return value def get_capacity_dict(self): # Store capacity values (globally computed) in the context if 'capacity_map' not in self.context: ig_qs = None jobs_qs = UnifiedJob.objects.filter(status__in=('running', 'waiting')) if self.parent: # Is ListView: ig_qs = self.parent.instance self.context['capacity_map'] = InstanceGroup.objects.capacity_values( qs=ig_qs, tasks=jobs_qs, breakdown=True) return self.context['capacity_map'] def get_consumed_capacity(self, obj): return self.get_capacity_dict()[obj.name]['running_capacity'] def get_committed_capacity(self, obj): return self.get_capacity_dict()[obj.name]['committed_capacity'] def get_percent_capacity_remaining(self, obj): if not obj.capacity: return 0.0 consumed = self.get_consumed_capacity(obj) if consumed >= obj.capacity: return 0.0 else: return float("{0:.2f}".format( ((float(obj.capacity) - float(consumed)) / (float(obj.capacity))) * 100) ) def get_instances(self, obj): return obj.instances.count() class ActivityStreamSerializer(BaseSerializer): changes = serializers.SerializerMethodField() object_association = serializers.SerializerMethodField( help_text=_("When present, shows the field name of the role or relationship that changed.")) object_type = serializers.SerializerMethodField( help_text=_("When present, shows the model on which the role or relationship was defined.")) @cached_property def _local_summarizable_fk_fields(self): summary_dict = copy.copy(SUMMARIZABLE_FK_FIELDS) # Special requests summary_dict['group'] = summary_dict['group'] + ('inventory_id',) for key in summary_dict.keys(): if 'id' not in summary_dict[key]: summary_dict[key] = summary_dict[key] + ('id',) field_list = list(summary_dict.items()) # Needed related fields that are not in the default summary fields field_list += [ ('workflow_job_template_node', ('id', 'unified_job_template_id')), ('label', ('id', 'name', 'organization_id')), ('notification', ('id', 'status', 'notification_type', 'notification_template_id')), ('o_auth2_access_token', ('id', 'user_id', 'description', 'application_id', 'scope')), ('o_auth2_application', ('id', 'name', 'description')), ('credential_type', ('id', 'name', 'description', 'kind', 'managed_by_tower')), ('ad_hoc_command', ('id', 'name', 'status', 'limit')), ('workflow_approval', ('id', 'name', 'unified_job_id')), ] return field_list class Meta: model = ActivityStream fields = ('*', '-name', '-description', '-created', '-modified', 'timestamp', 'operation', 'changes', 'object1', 'object2', 'object_association', 'action_node', 'object_type') def get_fields(self): ret = super(ActivityStreamSerializer, self).get_fields() for key, field in list(ret.items()): if key == 'changes': field.help_text = _('A summary of the new and changed values when an object is created, updated, or deleted') if key == 'object1': field.help_text = _('For create, update, and delete events this is the object type that was affected. ' 'For associate and disassociate events this is the object type associated or disassociated with object2.') if key == 'object2': field.help_text = _('Unpopulated for create, update, and delete events. For associate and disassociate ' 'events this is the object type that object1 is being associated with.') if key == 'operation': field.help_text = _('The action taken with respect to the given object(s).') return ret def get_changes(self, obj): if obj is None: return {} try: return json.loads(obj.changes) except Exception: logger.warn("Error deserializing activity stream json changes") return {} def get_object_association(self, obj): if not obj.object_relationship_type: return "" elif obj.object_relationship_type.endswith('_role'): # roles: these values look like # "awx.main.models.inventory.Inventory.admin_role" # due to historical reasons the UI expects just "role" here return "role" # default case: these values look like # "awx.main.models.organization.Organization_notification_templates_success" # so instead of splitting on period we have to take after the first underscore try: return obj.object_relationship_type.split(".")[-1].split("_", 1)[1] except Exception: logger.debug('Failed to parse activity stream relationship type {}'.format(obj.object_relationship_type)) return "" def get_object_type(self, obj): if not obj.object_relationship_type: return "" elif obj.object_relationship_type.endswith('_role'): return camelcase_to_underscore(obj.object_relationship_type.rsplit('.', 2)[-2]) # default case: these values look like # "awx.main.models.organization.Organization_notification_templates_success" # so we have to take after the last period but before the first underscore. try: cls = obj.object_relationship_type.rsplit('.', 1)[0] return camelcase_to_underscore(cls.split('_', 1)) except Exception: logger.debug('Failed to parse activity stream relationship type {}'.format(obj.object_relationship_type)) return "" def get_related(self, obj): data = {} if obj.actor is not None: data['actor'] = self.reverse('api:user_detail', kwargs={'pk': obj.actor.pk}) for fk, __ in self._local_summarizable_fk_fields: if not hasattr(obj, fk): continue m2m_list = self._get_related_objects(obj, fk) if m2m_list: data[fk] = [] id_list = [] for item in m2m_list: if getattr(item, 'id', None) in id_list: continue id_list.append(getattr(item, 'id', None)) if hasattr(item, 'get_absolute_url'): url = item.get_absolute_url(self.context.get('request')) else: view_name = fk + '_detail' url = self.reverse('api:' + view_name, kwargs={'pk': item.id}) data[fk].append(url) if fk == 'schedule': data['unified_job_template'] = item.unified_job_template.get_absolute_url(self.context.get('request')) if obj.setting and obj.setting.get('category', None): data['setting'] = self.reverse( 'api:setting_singleton_detail', kwargs={'category_slug': obj.setting['category']} ) return data def _get_related_objects(self, obj, fk): related_model = ActivityStream._meta.get_field(fk).related_model related_manager = getattr(obj, fk) if issubclass(related_model, PolymorphicModel) and hasattr(obj, '_prefetched_objects_cache'): # HACK: manually fill PolymorphicModel caches to prevent running query multiple times # unnecessary if django-polymorphic issue #68 is solved if related_manager.prefetch_cache_name not in obj._prefetched_objects_cache: obj._prefetched_objects_cache[related_manager.prefetch_cache_name] = list(related_manager.all()) return related_manager.all() def _summarize_parent_ujt(self, obj, fk, summary_fields): summary_keys = {'job': 'job_template', 'workflow_job_template_node': 'workflow_job_template', 'workflow_approval_template': 'workflow_job_template', 'workflow_approval': 'workflow_job', 'schedule': 'unified_job_template'} if fk not in summary_keys: return related_obj = getattr(obj, summary_keys[fk], None) item = {} fields = SUMMARIZABLE_FK_FIELDS[summary_keys[fk]] if related_obj is not None: summary_fields[get_type_for_model(related_obj)] = [] for field in fields: fval = getattr(related_obj, field, None) if fval is not None: item[field] = fval summary_fields[get_type_for_model(related_obj)].append(item) def get_summary_fields(self, obj): summary_fields = OrderedDict() for fk, related_fields in self._local_summarizable_fk_fields: try: if not hasattr(obj, fk): continue m2m_list = self._get_related_objects(obj, fk) if m2m_list: summary_fields[fk] = [] for thisItem in m2m_list: self._summarize_parent_ujt(thisItem, fk, summary_fields) thisItemDict = {} for field in related_fields: fval = getattr(thisItem, field, None) if fval is not None: thisItemDict[field] = fval summary_fields[fk].append(thisItemDict) except ObjectDoesNotExist: pass if obj.actor is not None: summary_fields['actor'] = dict(id = obj.actor.id, username = obj.actor.username, first_name = obj.actor.first_name, last_name = obj.actor.last_name) elif obj.deleted_actor: summary_fields['actor'] = obj.deleted_actor.copy() summary_fields['actor']['id'] = None if obj.setting: summary_fields['setting'] = [obj.setting] return summary_fields
44.950202
150
0.629779
c2a6b1c657acf2cc8ea87e3d5bcd4e1aa8479590
1,198
py
Python
main.py
franciskoinno/stock_scanner
32d000ebd407e7d1b9c9f1b661a3537731996500
[ "MIT" ]
null
null
null
main.py
franciskoinno/stock_scanner
32d000ebd407e7d1b9c9f1b661a3537731996500
[ "MIT" ]
null
null
null
main.py
franciskoinno/stock_scanner
32d000ebd407e7d1b9c9f1b661a3537731996500
[ "MIT" ]
null
null
null
from selenium import webdriver # github change # git change chrome_driver_path = r"C:\Users\Francis\Desktop\chromedriver_win32\chromedriver.exe" driver_long_lower_shadow = webdriver.Chrome(chrome_driver_path) driver_hammer = webdriver.Chrome(chrome_driver_path) driver_dragon = webdriver.Chrome(chrome_driver_path) driver_white = webdriver.Chrome(chrome_driver_path) driver_long_lower_shadow.get("https://finviz.com/screener.ashx?v=211&f=cap_smallover,fa_salesqoq_o5,sh_curvol_o50,sh_instown_o10,sh_price_o15,ta_candlestick_lls,ta_highlow52w_b0to10h,ta_sma200_sb50,ta_sma50_pa&ft=3") driver_hammer.get("https://finviz.com/screener.ashx?v=211&f=cap_smallover,fa_salesqoq_o5,sh_curvol_o50,sh_instown_o10,sh_price_o15,ta_candlestick_h,ta_highlow52w_b0to10h,ta_sma200_sb50,ta_sma50_pa&ft=3") driver_dragon.get("https://finviz.com/screener.ashx?v=211&f=cap_smallover,fa_salesqoq_o5,sh_curvol_o50,sh_instown_o10,sh_price_o15,ta_candlestick_dd,ta_highlow52w_b0to10h,ta_sma200_sb50,ta_sma50_pa&ft=3") driver_white.get("https://finviz.com/screener.ashx?v=211&f=cap_smallover,fa_salesqoq_o5,sh_curvol_o50,sh_instown_o10,sh_price_o15,ta_candlestick_mw,ta_highlow52w_b0to10h,ta_sma200_sb50,ta_sma50_pa&ft=3")
85.571429
216
0.868114
ca35f8320b6a88dba634b2c3f1faf4671c2f131e
1,556
py
Python
tests/test_data_containers/test_data.py
Rory-Sullivan/yrlocationforecast
26b66834cac4569704daf0009a9d2bba39dbfb75
[ "MIT" ]
13
2020-07-28T17:47:42.000Z
2022-03-30T13:35:12.000Z
tests/test_data_containers/test_data.py
Rory-Sullivan/yrlocationforecast
26b66834cac4569704daf0009a9d2bba39dbfb75
[ "MIT" ]
5
2020-10-14T11:10:13.000Z
2022-01-01T17:35:19.000Z
tests/test_data_containers/test_data.py
Rory-Sullivan/yrlocationforecast
26b66834cac4569704daf0009a9d2bba39dbfb75
[ "MIT" ]
6
2020-10-16T12:30:07.000Z
2022-02-18T07:13:21.000Z
"""Tests for the Data class.""" import datetime as dt import pytest from metno_locationforecast.data_containers import Place from metno_locationforecast.forecast import Forecast USER_AGENT = "testing/0.1 https://github.com/Rory-Sullivan/yrlocationforecast" SAVE_LOCATION = "./tests/test_data/" @pytest.fixture def new_york_data(): lat = 40.7 lon = -74.0 alt = 10 new_york = Place("New York", lat, lon, alt) new_york_forecast = Forecast(new_york, USER_AGENT, "compact", SAVE_LOCATION) new_york_forecast.load() return new_york_forecast.data @pytest.fixture def new_york_data_copy(): lat = 40.7 lon = -74.0 alt = 10 new_york = Place("New York", lat, lon, alt) new_york_forecast = Forecast(new_york, USER_AGENT, "compact", SAVE_LOCATION) new_york_forecast.load() return new_york_forecast.data def test_eq(new_york_data, new_york_data_copy): assert new_york_data is not new_york_data_copy assert new_york_data == new_york_data_copy def test_intervals_for(new_york_data): day = dt.date(year=2020, month=7, day=20) intervals = new_york_data.intervals_for(day) assert len(intervals) == 13 assert intervals[12].variables["wind_speed"].value == 3.5 def test_intervals_between(new_york_data): start = dt.datetime(year=2020, month=7, day=20, hour=11) end = dt.datetime(year=2020, month=7, day=20, hour=15) intervals = new_york_data.intervals_between(start, end) assert len(intervals) == 4 assert intervals[3].variables["wind_speed"].value == 4.4
25.096774
80
0.722365
2cc0268dfc638088baed7b4e0d21de82f35864c5
3,546
py
Python
tests/unit/test_models/test_submodels/test_interface/test_lead_acid.py
tobykirk/PyBaMM
c16b7df76c597468ecac1c40e768d94005f79145
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_models/test_submodels/test_interface/test_lead_acid.py
tobykirk/PyBaMM
c16b7df76c597468ecac1c40e768d94005f79145
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_models/test_submodels/test_interface/test_lead_acid.py
tobykirk/PyBaMM
c16b7df76c597468ecac1c40e768d94005f79145
[ "BSD-3-Clause" ]
null
null
null
# # Test lead acid butler volmer submodel # import pybamm import tests import unittest class TestLeadAcid(unittest.TestCase): def test_public_functions(self): param = pybamm.LeadAcidParameters() a_n = pybamm.FullBroadcast( pybamm.Scalar(0.5), ["negative electrode"], "current collector" ) a_p = pybamm.FullBroadcast( pybamm.Scalar(0.5), ["positive electrode"], "current collector" ) a = pybamm.Scalar(0.5) variables = { "Current collector current density": a, "Negative electrode potential": a_n, "Negative electrolyte potential": a_n, "Negative electrode open circuit potential": a_n, "Negative electrolyte concentration": a_n, "Negative particle surface concentration": a_n, "Negative electrode temperature": a_n, "Negative electrode surface area to volume ratio": a_n, } submodel = pybamm.interface.ButlerVolmer( param, "Negative", "lead-acid main", { "SEI film resistance": "none", "total interfacial current density as a state": "false", }, ) std_tests = tests.StandardSubModelTests(submodel, variables) std_tests.test_all() variables = { "Current collector current density": a, "Positive electrode potential": a_p, "Positive electrolyte potential": a_p, "Positive electrode open circuit potential": a_p, "Positive electrolyte concentration": a_p, "Positive particle surface concentration": a_p, "Negative electrode interfacial current density": a_n, "Negative electrode exchange current density": a_n, "Positive electrode temperature": a_p, "Negative electrode surface area to volume ratio": a_n, "Positive electrode surface area to volume ratio": a_p, "X-averaged negative electrode interfacial current density": a, "X-averaged positive electrode interfacial current density": a, "Sum of electrolyte reaction source terms": 0, "Sum of negative electrode electrolyte reaction source terms": 0, "Sum of positive electrode electrolyte reaction source terms": 0, "Sum of x-averaged negative electrode " "electrolyte reaction source terms": 0, "Sum of x-averaged positive electrode " "electrolyte reaction source terms": 0, "Sum of interfacial current densities": 0, "Sum of negative electrode interfacial current densities": 0, "Sum of positive electrode interfacial current densities": 0, "Sum of x-averaged negative electrode interfacial current densities": 0, "Sum of x-averaged positive electrode interfacial current densities": 0, } submodel = pybamm.interface.ButlerVolmer( param, "Positive", "lead-acid main", { "SEI film resistance": "none", "total interfacial current density as a state": "false", }, ) std_tests = tests.StandardSubModelTests(submodel, variables) std_tests.test_all() if __name__ == "__main__": print("Add -v for more debug output") import sys if "-v" in sys.argv: debug = True pybamm.settings.debug_mode = True unittest.main()
38.543478
84
0.604343
29f68205d6c1d06711cb5d5f6e1aa839f6133c7d
541
py
Python
blender/arm/logicnode/scene/LN_scene.py
niacdoial/armory
3f9b633fbf772017c576a3f77695a6c28d9956e1
[ "Zlib" ]
null
null
null
blender/arm/logicnode/scene/LN_scene.py
niacdoial/armory
3f9b633fbf772017c576a3f77695a6c28d9956e1
[ "Zlib" ]
null
null
null
blender/arm/logicnode/scene/LN_scene.py
niacdoial/armory
3f9b633fbf772017c576a3f77695a6c28d9956e1
[ "Zlib" ]
null
null
null
import bpy from arm.logicnode.arm_nodes import * class SceneNode(ArmLogicTreeNode): """Stores the given scene as a variable.""" bl_idname = 'LNSceneNode' bl_label = 'Scene' arm_version = 1 property0_get: PointerProperty(name='', type=bpy.types.Scene) def init(self, context): super(SceneNode, self).init(context) self.add_output('NodeSocketShader', 'Scene') def draw_buttons(self, context, layout): layout.prop_search(self, 'property0_get', bpy.data, 'scenes', icon='NONE', text='')
27.05
91
0.678373
2b7793053bdd348799f51d9f22020a406bf4a05e
49
py
Python
real_estate/src/errors.py
gutessitore/real-estate-scrapper
1ea62d71230b6a21c7e32322b0e02b67a6163849
[ "MIT" ]
1
2021-09-20T13:51:21.000Z
2021-09-20T13:51:21.000Z
real_estate/src/errors.py
gutessitore/real-estate-scrapper
1ea62d71230b6a21c7e32322b0e02b67a6163849
[ "MIT" ]
null
null
null
real_estate/src/errors.py
gutessitore/real-estate-scrapper
1ea62d71230b6a21c7e32322b0e02b67a6163849
[ "MIT" ]
5
2021-09-06T15:08:04.000Z
2021-12-05T15:43:36.000Z
class InvalidDataFrameError(Exception): pass
16.333333
39
0.795918
89c97dfef1d9556ae35ab13a5ef5bc96b336feb6
944
py
Python
tests/test_result/test_result_base.py
ksurta/returns
9746e569303f214d035462ae3dffe5c49abdcfa7
[ "BSD-2-Clause" ]
null
null
null
tests/test_result/test_result_base.py
ksurta/returns
9746e569303f214d035462ae3dffe5c49abdcfa7
[ "BSD-2-Clause" ]
null
null
null
tests/test_result/test_result_base.py
ksurta/returns
9746e569303f214d035462ae3dffe5c49abdcfa7
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import pytest from returns.result import Result @pytest.mark.parametrize('method_name', [ 'bind', 'unify', 'map', 'rescue', 'fix', 'alt', 'value_or', ]) def test_result_abstract_method(method_name): """Checks that Result itself contains abstract methods.""" method = getattr(Result, method_name) with pytest.raises(NotImplementedError): method(object, lambda to_output: to_output) @pytest.mark.parametrize('method_name', [ 'failure', 'unwrap', ]) def test_result_abstract_method_single(method_name): """Checks that Result itself contains abstract methods.""" method = getattr(Result, method_name) with pytest.raises(NotImplementedError): method(object) def test_result_types(): """Ensures that Result has two types inside a class.""" assert isinstance(Result.success_type, type) assert isinstance(Result.failure_type, type)
24.205128
62
0.691737
98234e85d4b1f5d091e20748be957a7cec3eafd2
3,484
py
Python
lvsfunc/mask.py
petzku/lvsfunc
5d49bfbdd3863636be4263382f23091b9ee20bfe
[ "MIT" ]
null
null
null
lvsfunc/mask.py
petzku/lvsfunc
5d49bfbdd3863636be4263382f23091b9ee20bfe
[ "MIT" ]
null
null
null
lvsfunc/mask.py
petzku/lvsfunc
5d49bfbdd3863636be4263382f23091b9ee20bfe
[ "MIT" ]
null
null
null
""" Wrappers and masks for denoising. """ from functools import partial from typing import Optional import vapoursynth as vs from vsutil import depth, get_depth, get_y, scale_value from . import util try: from cytoolz import functoolz except ModuleNotFoundError: try: from toolz import functoolz # type: ignore except ModuleNotFoundError: raise ModuleNotFoundError("Cannot find functoolz: Please install toolz or cytoolz") core = vs.core @functoolz.curry def adaptive_mask(clip: vs.VideoNode, luma_scaling: float = 8.0) -> vs.VideoNode: """ A wrapper to create a luma mask for denoising and/or debanding. Function is curried to allow parameter tuning when passing to denoisers that allow you to pass your own mask. Dependencies: adaptivegrain :param clip: Input clip :param luma_scaling: Luma scaling factor (Default: 8.0) :return: Luma mask """ return core.adg.Mask(clip.std.PlaneStats(), luma_scaling) @functoolz.curry def detail_mask(clip: vs.VideoNode, sigma: Optional[float] = None, rad: int = 3, radc: int = 2, brz_a: float = 0.005, brz_b: float = 0.005) -> vs.VideoNode: """ A wrapper for creating a detail mask to be used during denoising and/or debanding. The detail mask is created using debandshit's rangemask, and is then merged with Prewitt to catch lines it may have missed. Function is curried to allow parameter tuning when passing to denoisers that allow you to pass your own mask. Dependencies: VapourSynth-Bilateral (optional: sigma), debandshit :param clip: Input clip :param sigma: Sigma for Bilateral for pre-blurring (Default: False) :param rad: The luma equivalent of gradfun3's "mask" parameter :param radc: The chroma equivalent of gradfun3's "mask" parameter :param brz_a: Binarizing for the detail mask (Default: 0.05) :param brz_b: Binarizing for the edge mask (Default: 0.05) :return: Detail mask """ try: from debandshit import rangemask except ModuleNotFoundError: raise ModuleNotFoundError("detail_mask: missing dependency 'debandshit'") if clip.format is None: raise ValueError("detail_mask: 'Variable-format clips not supported'") # Handling correct value scaling if there's a assumed depth mismatch # To the me in the future, long after civilisation has fallen, make sure to check 3.10's pattern matching. if get_depth(clip) != 32: if isinstance(brz_a, float): brz_a = scale_value(brz_a, 32, get_depth(clip)) if isinstance(brz_b, float): brz_b = scale_value(brz_b, 32, get_depth(clip)) else: if isinstance(brz_a, int): brz_a = scale_value(brz_a, get_depth(clip), 32) if isinstance(brz_b, int): brz_b = scale_value(brz_b, get_depth(clip), 32) blur = (util.quick_resample(clip, partial(core.bilateral.Gaussian, sigma=sigma)) if sigma else clip) mask_a = rangemask(get_y(blur), rad=rad, radc=radc) mask_a = depth(mask_a, clip.format.bits_per_sample) mask_a = core.std.Binarize(mask_a, brz_a) mask_b = core.std.Prewitt(get_y(blur)) mask_b = core.std.Binarize(mask_b, brz_b) mask = core.std.Expr([mask_a, mask_b], 'x y max') mask = util.pick_removegrain(mask)(mask, 22) return util.pick_removegrain(mask)(mask, 11)
35.55102
110
0.677669
136037b852887597bd16d3f56881598455db2199
892
py
Python
coordinates/test_coordinates.py
ThorsHamster/find_new_hometown
862231bb1f3a0a1505d02b452adca2b45a6fc850
[ "MIT" ]
2
2020-01-07T07:28:17.000Z
2020-01-07T10:21:41.000Z
coordinates/test_coordinates.py
ThorsHamster/find_new_hometown
862231bb1f3a0a1505d02b452adca2b45a6fc850
[ "MIT" ]
30
2021-03-19T15:46:29.000Z
2021-12-21T12:22:50.000Z
coordinates/test_coordinates.py
ThorsHamster/find_new_hometown
862231bb1f3a0a1505d02b452adca2b45a6fc850
[ "MIT" ]
null
null
null
import pytest from coordinates import Coordinates @pytest.fixture def unit_under_test(): return Coordinates() class TestCoordinates: def test_longitude(self, unit_under_test): unit_under_test.longitude = 3 assert unit_under_test.longitude == 3 def test_latitude(self, unit_under_test): unit_under_test.latitude = 4 assert unit_under_test.latitude == 4 def test_both_elements_with_changes(self, unit_under_test): unit_under_test.longitude = 3 unit_under_test.latitude = 4 assert unit_under_test.longitude == 3 assert unit_under_test.latitude == 4 unit_under_test.longitude = 7 assert unit_under_test.longitude == 7 assert unit_under_test.latitude == 4 unit_under_test.latitude = 9 assert unit_under_test.longitude == 7 assert unit_under_test.latitude == 9
27.030303
63
0.702915
6507cc7a6bad8fb9aed262beaf0b810977b1ba49
2,174
py
Python
sheepdog/transactions/submission/__init__.py
jacquayj/sheepdog
6d6d98a17cab9bcc8881079ced9065036c757eee
[ "Apache-2.0" ]
null
null
null
sheepdog/transactions/submission/__init__.py
jacquayj/sheepdog
6d6d98a17cab9bcc8881079ced9065036c757eee
[ "Apache-2.0" ]
null
null
null
sheepdog/transactions/submission/__init__.py
jacquayj/sheepdog
6d6d98a17cab9bcc8881079ced9065036c757eee
[ "Apache-2.0" ]
null
null
null
import flask from sheepdog import utils from sheepdog.errors import UserError from sheepdog.globals import FLAG_IS_ASYNC from sheepdog.transactions.submission.transaction import SubmissionTransaction def handle_submission_transaction(program, project, *doc_args, **tx_kwargs): """ Create and execute a single (not bulk) transaction. Return: Tuple[flask.Response, int]: (API response json, status code) """ is_async = tx_kwargs.pop("is_async", utils.is_flag_set(FLAG_IS_ASYNC)) db_driver = tx_kwargs.pop("db_driver", flask.current_app.db) smtp_conf = None if utils.should_send_email(flask.current_app.config): smtp_conf = flask.current_app.get_smtp_conf() transaction = SubmissionTransaction( smtp_conf=smtp_conf, program=program, project=project, logger=flask.current_app.logger, index_client=flask.current_app.index_client, db_driver=db_driver, **tx_kwargs ) if is_async: session = transaction.db_driver.session_scope() with session, transaction: response = { "code": 200, "message": "Transaction submitted.", "transaction_id": transaction.transaction_id, } flask.current_app.async_pool.schedule(transaction_worker, transaction) return flask.jsonify(response), 200 else: response, code = transaction_worker(transaction) return flask.jsonify(response), code def transaction_worker(transaction): """ Perform a single transaction in the background after request context. Args: transaction: The transaction instance """ session = transaction.db_driver.session_scope(can_inherit=False) with session, transaction: try: transaction.take_action() except UserError as e: transaction.record_user_error(e) raise except Exception as e: # pylint: disable=broad-except transaction.record_internal_error(e) finally: response = transaction.json code = transaction.status_code return response, code
31.970588
78
0.671573
b73c5e4dbe02531a255424caab0a95abe2d774a7
2,853
py
Python
ed2d/material.py
explosiveduck/cubix
16e7a298a83fe53174bda8ec77dfcf6869ed5336
[ "BSD-2-Clause" ]
1
2015-11-02T02:11:18.000Z
2015-11-02T02:11:18.000Z
ed2d/material.py
explosiveduck/cubix
16e7a298a83fe53174bda8ec77dfcf6869ed5336
[ "BSD-2-Clause" ]
29
2015-06-09T19:27:49.000Z
2016-03-08T06:13:24.000Z
ed2d/material.py
explosiveduck/cubix
16e7a298a83fe53174bda8ec77dfcf6869ed5336
[ "BSD-2-Clause" ]
null
null
null
# Cook-Torance for diffuseType and Blinn-Phong # Figure out specular and frensel stuff # Emission? # Need to setup so it can send outputs to a shader # Inputs need to be defined a lot better from ed2d import texture from ed2d import files class Material(object): def __init__(self): self.diffuse = None self.idiffuse = 0 # Intensity parameter self.ambient = None self.iambient = 0 # Intensity parameter self.specular = None self.ispecular = 0 # Specular exponent self.roughness = None self.emission = None self.IOR = None # This is the diffuse textures self.albedoLayers = {} self.diffuseType = None self.specularType = None self.normalMapLayers = {} self.specularMapLayers = {} self.displacementMapLayers = {} # Assign the shader that will render the Material self.program = None def addProgram(self, program): ''' Adds a program to the Material class. ''' self.program = program def setDiffuseColor(self, r, g, b, intensity): ''' Sets the diffuse color of a material. ''' self.diffuse = [r, g, b] self.idiffuse = intensity def setAmbientColor(self, r, g, b, intensity): ''' Sets the ambient color of a material. ''' self.ambient = [r, g, b] self.iambient = intensity def setSpecularColor(self, r, g, b, roughness): ''' Sets the specular color and roughness of a material. ''' self.specular = [r, g, b] self.roughness = roughness # Leave these like this for now till I figure out the shaders def setDiffuseType(self, shader): pass def setSpecularType(self, shader): pass def addTextures(self, textureDict): ''' Will add textures to the Material. It takes a dictionary as param. ''' # Format is {A: [albedo0, albedo1, ...], N: [normal1, normal2, ...], S: [specular1, specular2, ...]} # This will replace the crap underneath this function for key, value in textureDict.iteritems(): if key is 'A': for i in range(len(value)): imagePath = files.resolve_path('data', 'images', value[i]) self.albedoLayers['Layer' + i] = texture.Texture(imagePath, self.program) if key is 'N': for i in range(len(value)): imagePath = files.resolve_path('data', 'images', value[i]) self.normalMapLayers['Layer' + i] = texture.Texture(imagePath, self.program) if key is 'S': for i in range(len(value)): imagePath = files.resolve_path('data', 'images', value[i]) self.specularMapLayers['Layer' + i] = texture.Texture(imagePath, self.program)
35.222222
108
0.594812
55c4e485c5af0d5904eb295e997cc95e12104d1b
3,406
py
Python
Modules/ThirdParty/pygccxml/src/pygccxml/declarations/mdecl_wrapper.py
nalinimsingh/ITK_4D
95a2eacaeaffe572889832ef0894239f89e3f303
[ "Apache-2.0" ]
3
2018-10-01T20:46:17.000Z
2019-12-17T19:39:50.000Z
Modules/ThirdParty/pygccxml/src/pygccxml/declarations/mdecl_wrapper.py
nalinimsingh/ITK_4D
95a2eacaeaffe572889832ef0894239f89e3f303
[ "Apache-2.0" ]
null
null
null
Modules/ThirdParty/pygccxml/src/pygccxml/declarations/mdecl_wrapper.py
nalinimsingh/ITK_4D
95a2eacaeaffe572889832ef0894239f89e3f303
[ "Apache-2.0" ]
4
2018-05-17T16:34:54.000Z
2020-09-24T02:12:40.000Z
# Copyright 2014-2016 Insight Software Consortium. # Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. # See http://www.boost.org/LICENSE_1_0.txt """ defines class :class:`mdecl_wrapper_t` that allows to work on set of declarations, as it was one declaration. The :class:`class <mdecl_wrapper_t>` allows user to not write "for" loops within the code. """ import os class call_redirector_t(object): """Internal class used to call some function of objects""" def __init__(self, name, decls): """creates call_redirector_t instance. :param name: name of method, to be called on every object in the `decls` list :param decls: list of objects """ object.__init__(self) self.name = name self.decls = decls def __call__(self, *arguments, **keywords): """calls method :attr:`call_redirector_t.name` on every object within the :attr:`call_redirector_t.decls` list""" for d in self.decls: callable_ = getattr(d, self.name) callable_(*arguments, **keywords) class mdecl_wrapper_t(object): """ multiple declarations class wrapper The main purpose of this class is to allow an user to work on many declarations, as they were only one single declaration. For example, instead of writing `for` loop like the following .. code-block:: python for c in global_namespace.classes(): c.attribute = "xxxx" you can write: .. code-block:: python global_namespace.classes().attribute = "xxxx" The same functionality could be applied on "set" methods too. """ def __init__(self, decls): """:param decls: list of declarations to operate on. :type decls: list of :class:`declaration wrappers <decl_wrapper_t>` """ object.__init__(self) self.__dict__['declarations'] = decls def __bool__(self): return bool(self.declarations) def __len__(self): """returns the number of declarations""" return len(self.declarations) def __getitem__(self, index): """provides access to declaration""" return self.declarations[index] def __iter__(self): return iter(self.declarations) def __ensure_attribute(self, name): invalid_decls = [d for d in self.declarations if not hasattr(d, name)] sep = os.linesep + ' ' if invalid_decls: raise RuntimeError(( "Next declarations don't have '%s' attribute: %s") % (name, sep.join(map(str, invalid_decls)))) def __setattr__(self, name, value): """Updates the value of attribute on all declarations. :param name: name of attribute :param value: new value of attribute """ self.__ensure_attribute(name) for d in self.declarations: setattr(d, name, value) def __getattr__(self, name): """:param name: name of method """ return call_redirector_t(name, self.declarations) def __contains__(self, item): return item in self.declarations def to_list(self): l = [] for d in self.declarations: l.append(d) return l
29.617391
79
0.612449
d698b8624bf0eb5203f5ea25c009d9993d3f53f3
2,273
py
Python
auth.py
shamspias/Raspberry-Web-UI
af956a805c32cf5045b4e6e08af5d16992e88079
[ "MIT" ]
1
2019-05-03T17:09:12.000Z
2019-05-03T17:09:12.000Z
auth.py
shamspias/Raspberry-Web-UI
af956a805c32cf5045b4e6e08af5d16992e88079
[ "MIT" ]
2
2021-05-02T11:25:09.000Z
2021-05-02T11:25:48.000Z
auth.py
shamspias/Raspberry-Web-UI
af956a805c32cf5045b4e6e08af5d16992e88079
[ "MIT" ]
null
null
null
# auth.py from flask import Blueprint, render_template, redirect, url_for, request, flash from werkzeug.security import generate_password_hash, check_password_hash from flask_login import login_user, logout_user, login_required from .models import User from . import db auth = Blueprint(name='auth', import_name=__name__) @auth.route('/login') def login(): return render_template('login.html') @auth.route('/login', methods=['POST']) def login_post(): email = request.form.get('email') password = request.form.get('password') remember = True if request.form.get('remember') else False user = User.query.filter_by(email=email).first() # check if user actually exists # take the user supplied password, hash it, and compare it to the hashed password in database if not user or not check_password_hash(user.password, password): flash('Please check your login details and try again.') return redirect(url_for('auth.login')) # if user doesn't exist or password is wrong, reload the page # if the above check passes, then we know the user has the right credentials login_user(user, remember=remember) return redirect(url_for('main.profile')) @auth.route('/signup') @login_required def signup(): return render_template('reg.html') @auth.route('/signup', methods=['POST']) @login_required def signup_post(): email = request.form.get('email') name = request.form.get('name') password = request.form.get('password') user = User.query.filter_by( email=email).first() # if this returns a user, then the email already exists in database if user: # if a user is found, we want to redirect back to signup page so user can try again flash('Email address already exists') return redirect(url_for('auth.signup')) # create new user with the form data. Hash the password so plaintext version isn't saved. new_user = User(email=email, name=name, password=generate_password_hash(password, method='sha256')) # add the new user to the database db.session.add(new_user) db.session.commit() return redirect(url_for('auth.login')) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('main.index'))
32.014085
109
0.714034
9ad9b8541a5c5ca06aacdc50b2e83e1204ec0cd9
11,142
py
Python
sdl2/sdlmixer.py
namelivia/py-sdl2
c1bdf43501224d5f0a125dbce70198100ec7be82
[ "CC0-1.0" ]
222
2017-08-19T00:51:59.000Z
2022-02-05T19:39:33.000Z
sdl2/sdlmixer.py
namelivia/py-sdl2
c1bdf43501224d5f0a125dbce70198100ec7be82
[ "CC0-1.0" ]
103
2017-08-20T17:13:05.000Z
2022-02-05T20:20:01.000Z
sdl2/sdlmixer.py
namelivia/py-sdl2
c1bdf43501224d5f0a125dbce70198100ec7be82
[ "CC0-1.0" ]
54
2017-08-20T17:13:00.000Z
2022-01-14T23:51:13.000Z
import os from ctypes import Structure, POINTER, CFUNCTYPE, c_int, c_char_p, c_void_p, \ c_double from .dll import DLL from .version import SDL_version, SDL_VERSIONNUM from .audio import AUDIO_S16LSB, AUDIO_S16MSB, SDL_MIX_MAXVOLUME from .stdinc import Uint8, Uint16, Uint32, Sint16, SDL_bool from .endian import SDL_LIL_ENDIAN, SDL_BYTEORDER from .rwops import SDL_RWops, SDL_RWFromFile from .error import SDL_SetError, SDL_GetError, SDL_ClearError __all__ = [ # Structs "Mix_Chunk", "Mix_Music", # Defines "SDL_MIXER_MAJOR_VERSION", "SDL_MIXER_MINOR_VERSION", "SDL_MIXER_PATCHLEVEL", "MIX_MAJOR_VERSION", "MIX_MINOR_VERSION", "MIX_PATCHLEVEL", "MIX_CHANNELS", "MIX_DEFAULT_FREQUENCY", "MIX_DEFAULT_FORMAT", "MIX_DEFAULT_CHANNELS", "MIX_MAX_VOLUME", "MIX_CHANNEL_POST", "MIX_EFFECTSMAXSPEED", # Enums "MIX_InitFlags", "MIX_INIT_FLAC", "MIX_INIT_MOD", "MIX_INIT_MP3", "MIX_INIT_OGG", "MIX_INIT_MID", "MIX_INIT_OPUS", "Mix_Fading", "MIX_NO_FADING", "MIX_FADING_OUT", "MIX_FADING_IN", "Mix_MusicType", "MUS_NONE", "MUS_CMD", "MUS_WAV", "MUS_MOD", "MUS_MID", "MUS_OGG", "MUS_MP3", "MUS_MP3_MAD_UNUSED", "MUS_FLAC", "MUS_MODPLUG_UNUSED", "MUS_OPUS", # Macro Functions "SDL_MIXER_VERSION", "MIX_VERSION", "SDL_MIXER_COMPILEDVERSION", "SDL_MIXER_VERSION_ATLEAST", "Mix_LoadWAV", "Mix_PlayChannel", "Mix_FadeInChannel", "Mix_Linked_Version", "Mix_Init", "Mix_Quit", "Mix_OpenAudioDevice", "Mix_OpenAudio", "Mix_AllocateChannels", "Mix_QuerySpec", "Mix_LoadWAV_RW", "Mix_LoadMUS", "Mix_LoadMUS_RW", "Mix_LoadMUSType_RW", "Mix_QuickLoad_WAV", "Mix_QuickLoad_RAW", "Mix_FreeChunk", "Mix_FreeMusic", "Mix_GetNumChunkDecoders", "Mix_GetChunkDecoder", "Mix_GetNumMusicDecoders", "Mix_HasChunkDecoder", #"Mix_HasMusicDecoder", "Mix_GetMusicDecoder", "Mix_GetMusicType", "Mix_SetPostMix", "Mix_HookMusic", "Mix_HookMusicFinished", "Mix_GetMusicHookData", "Mix_ChannelFinished", "Mix_RegisterEffect", "Mix_UnregisterEffect", "Mix_UnregisterAllEffects", "Mix_SetPanning", "Mix_SetPosition", "Mix_SetDistance", "Mix_SetReverseStereo", "Mix_ReserveChannels", "Mix_GroupChannel", "Mix_GroupChannels", "Mix_GroupAvailable", "Mix_GroupCount", "Mix_GroupOldest", "Mix_GroupNewer", "Mix_PlayChannelTimed", "Mix_PlayMusic", "Mix_FadeInMusic", "Mix_FadeInMusicPos", "Mix_FadeInChannelTimed", "Mix_Volume", "Mix_VolumeChunk", "Mix_VolumeMusic", "Mix_HaltChannel", "Mix_HaltGroup", "Mix_HaltMusic", "Mix_ExpireChannel", "Mix_FadeOutChannel", "Mix_FadeOutGroup", "Mix_FadeOutMusic", "Mix_FadingMusic", "Mix_FadingChannel", "Mix_Pause", "Mix_Resume", "Mix_Paused", "Mix_PauseMusic", "Mix_ResumeMusic", "Mix_RewindMusic", "Mix_PausedMusic", "Mix_SetMusicPosition", "Mix_Playing", "Mix_PlayingMusic", "Mix_SetMusicCMD", "Mix_SetSynchroValue", "Mix_GetSynchroValue", "Mix_SetSoundFonts", "Mix_GetSoundFonts", "Mix_EachSoundFont", "Mix_GetChunk", "Mix_CloseAudio", "Mix_SetError", "Mix_GetError", "Mix_ClearError", # Callback Functions "channel_finished", "music_finished", "mix_func", "soundfont_function", "Mix_EffectFunc_t", "Mix_EffectDone_t", # Python Functions "get_dll_file" ] try: dll = DLL("SDL2_mixer", ["SDL2_mixer", "SDL2_mixer-2.0"], os.getenv("PYSDL2_DLL_PATH")) except RuntimeError as exc: raise ImportError(exc) def get_dll_file(): """Gets the file name of the loaded SDL2_mixer library.""" return dll.libfile _bind = dll.bind_function SDL_MIXER_MAJOR_VERSION = 2 SDL_MIXER_MINOR_VERSION = 0 SDL_MIXER_PATCHLEVEL = 4 def SDL_MIXER_VERSION(x): x.major = SDL_MIXER_MAJOR_VERSION x.minor = SDL_MIXER_MINOR_VERSION x.patch = SDL_MIXER_PATCHLEVEL MIX_MAJOR_VERSION = SDL_MIXER_MAJOR_VERSION MIX_MINOR_VERSION = SDL_MIXER_MINOR_VERSION MIX_PATCHLEVEL = SDL_MIXER_PATCHLEVEL MIX_VERSION = SDL_MIXER_VERSION SDL_MIXER_COMPILEDVERSION = SDL_VERSIONNUM(SDL_MIXER_MAJOR_VERSION, SDL_MIXER_MINOR_VERSION, SDL_MIXER_PATCHLEVEL) SDL_MIXER_VERSION_ATLEAST = lambda x, y, z: (SDL_MIXER_COMPILEDVERSION >= SDL_VERSIONNUM(x, y, z)) Mix_Linked_Version = _bind("Mix_Linked_Version", None, POINTER(SDL_version)) MIX_InitFlags = c_int MIX_INIT_FLAC = 0x00000001 MIX_INIT_MOD = 0x00000002 MIX_INIT_MP3 = 0x00000008 MIX_INIT_OGG = 0x000000010 MIX_INIT_MID = 0x00000020 MIX_INIT_OPUS = 0x00000040 Mix_Init = _bind("Mix_Init", [c_int], c_int) Mix_Quit = _bind("Mix_Quit") MIX_CHANNELS = 8 MIX_DEFAULT_FREQUENCY = 22050 if SDL_BYTEORDER == SDL_LIL_ENDIAN: MIX_DEFAULT_FORMAT = AUDIO_S16LSB else: MIX_DEFAULT_FORMAT = AUDIO_S16MSB MIX_DEFAULT_CHANNELS = 2 MIX_MAX_VOLUME = SDL_MIX_MAXVOLUME class Mix_Chunk(Structure): _fields_ = [("allocated", c_int), ("abuf", POINTER(Uint8)), ("alen", Uint32), ("volume", Uint8)] Mix_Fading = c_int MIX_NO_FADING = 0 MIX_FADING_OUT = 1 MIX_FADING_IN = 2 Mix_MusicType = c_int MUS_NONE = 0 MUS_CMD = 1 MUS_WAV = 2 MUS_MOD = 3 MUS_MID = 4 MUS_OGG = 5 MUS_MP3 = 6 MUS_MP3_MAD_UNUSED = 7 MUS_FLAC = 9 MUS_MODPLUG_UNUSED = 10 MUS_OPUS = 11 class Mix_Music(c_void_p): pass Mix_OpenAudio = _bind("Mix_OpenAudio", [c_int, Uint16, c_int, c_int], c_int) Mix_OpenAudioDevice = _bind("Mix_OpenAudioDevice", [c_int, Uint16, c_int, c_int, c_char_p, c_int], c_int, added='2.0.2') Mix_AllocateChannels = _bind("Mix_AllocateChannels", [c_int], c_int) Mix_QuerySpec = _bind("Mix_QuerySpec", [POINTER(c_int), POINTER(Uint16), POINTER(c_int)], c_int) Mix_LoadWAV_RW = _bind("Mix_LoadWAV_RW", [POINTER(SDL_RWops), c_int], POINTER(Mix_Chunk)) Mix_LoadWAV = lambda fname: Mix_LoadWAV_RW(SDL_RWFromFile(fname, b"rb"), 1) Mix_LoadMUS = _bind("Mix_LoadMUS", [c_char_p], POINTER(Mix_Music)) Mix_LoadMUS_RW = _bind("Mix_LoadMUS_RW", [POINTER(SDL_RWops)], POINTER(Mix_Music)) Mix_LoadMUSType_RW = _bind("Mix_LoadMUSType_RW", [POINTER(SDL_RWops), Mix_MusicType, c_int], POINTER(Mix_Music)) Mix_QuickLoad_WAV = _bind("Mix_QuickLoad_WAV", [POINTER(Uint8)], POINTER(Mix_Chunk)) Mix_QuickLoad_RAW = _bind("Mix_QuickLoad_RAW", [POINTER(Uint8), Uint32], POINTER(Mix_Chunk)) Mix_FreeChunk = _bind("Mix_FreeChunk", [POINTER(Mix_Chunk)]) Mix_FreeMusic = _bind("Mix_FreeMusic", [POINTER(Mix_Music)]) Mix_GetNumChunkDecoders = _bind("Mix_GetNumChunkDecoders", None, c_int) Mix_GetChunkDecoder = _bind("Mix_GetChunkDecoder", [c_int], c_char_p) Mix_HasChunkDecoder = _bind("Mix_HasChunkDecoder", [c_char_p], SDL_bool, added='2.0.2') Mix_GetNumMusicDecoders = _bind("Mix_GetNumMusicDecoders", None, c_int) Mix_GetMusicDecoder = _bind("Mix_GetMusicDecoder", [c_int], c_char_p) #Mix_HasMusicDecoder = _bind("Mix_HasMusicDecoder", [c_char_p], SDL_bool) # not actually implemented in SDL_mixer Mix_GetMusicType = _bind("Mix_GetMusicType", [POINTER(Mix_Music)], Mix_MusicType) mix_func = CFUNCTYPE(None, c_void_p, POINTER(Uint8), c_int) Mix_SetPostMix = _bind("Mix_SetPostMix", [mix_func, c_void_p]) Mix_HookMusic = _bind("Mix_HookMusic", [mix_func, c_void_p]) music_finished = CFUNCTYPE(None) Mix_HookMusicFinished = _bind("Mix_HookMusicFinished", [music_finished]) Mix_GetMusicHookData = _bind("Mix_GetMusicHookData", None, c_void_p) channel_finished = CFUNCTYPE(None, c_int) Mix_ChannelFinished = _bind("Mix_ChannelFinished", [channel_finished]) MIX_CHANNEL_POST = -2 Mix_EffectFunc_t = CFUNCTYPE(None, c_int, c_void_p, c_int, c_void_p) Mix_EffectDone_t = CFUNCTYPE(None, c_int, c_void_p) Mix_RegisterEffect = _bind("Mix_RegisterEffect", [c_int, Mix_EffectFunc_t, Mix_EffectDone_t, c_void_p], c_int) Mix_UnregisterEffect = _bind("Mix_UnregisterEffect", [c_int, Mix_EffectFunc_t], c_int) Mix_UnregisterAllEffects = _bind("Mix_UnregisterAllEffects", [c_int]) MIX_EFFECTSMAXSPEED = "MIX_EFFECTSMAXSPEED" Mix_SetPanning = _bind("Mix_SetPanning", [c_int, Uint8, Uint8], c_int) Mix_SetPosition = _bind("Mix_SetPosition", [c_int, Sint16, Uint8], c_int) Mix_SetDistance = _bind("Mix_SetDistance", [c_int, Uint8]) Mix_SetReverseStereo = _bind("Mix_SetReverseStereo", [c_int, c_int], c_int) Mix_ReserveChannels = _bind("Mix_ReserveChannels", [c_int], c_int) Mix_GroupChannel = _bind("Mix_GroupChannel", [c_int, c_int], c_int) Mix_GroupChannels = _bind("Mix_GroupChannels", [c_int, c_int, c_int], c_int) Mix_GroupAvailable = _bind("Mix_GroupAvailable", [c_int], c_int) Mix_GroupCount = _bind("Mix_GroupCount", [c_int], c_int) Mix_GroupOldest = _bind("Mix_GroupOldest", [c_int], c_int) Mix_GroupNewer = _bind("Mix_GroupNewer", [c_int], c_int) Mix_PlayChannel = lambda channel, chunk, loops: Mix_PlayChannelTimed(channel, chunk, loops, -1) Mix_PlayChannelTimed = _bind("Mix_PlayChannelTimed", [c_int, POINTER(Mix_Chunk), c_int, c_int], c_int) Mix_PlayMusic = _bind("Mix_PlayMusic", [POINTER(Mix_Music), c_int], c_int) Mix_FadeInMusic = _bind("Mix_FadeInMusic", [POINTER(Mix_Music), c_int, c_int], c_int) Mix_FadeInMusicPos = _bind("Mix_FadeInMusicPos", [POINTER(Mix_Music), c_int, c_int, c_double], c_int) Mix_FadeInChannel = lambda channel, chunk, loops, ms: Mix_FadeInChannelTimed(channel, chunk, loops, ms, -1) Mix_FadeInChannelTimed = _bind("Mix_FadeInChannelTimed", [c_int, POINTER(Mix_Chunk), c_int, c_int, c_int], c_int) Mix_Volume = _bind("Mix_Volume", [c_int, c_int], c_int) Mix_VolumeChunk = _bind("Mix_VolumeChunk", [POINTER(Mix_Chunk), c_int], c_int) Mix_VolumeMusic = _bind("Mix_VolumeMusic", [c_int], c_int) Mix_HaltChannel = _bind("Mix_HaltChannel", [c_int], c_int) Mix_HaltGroup = _bind("Mix_HaltGroup", [c_int], c_int) Mix_HaltMusic = _bind("Mix_HaltMusic", None, c_int) Mix_ExpireChannel = _bind("Mix_ExpireChannel", [c_int, c_int], c_int) Mix_FadeOutChannel = _bind("Mix_FadeOutChannel", [c_int, c_int], c_int) Mix_FadeOutGroup = _bind("Mix_FadeOutGroup", [c_int, c_int], c_int) Mix_FadeOutMusic = _bind("Mix_FadeOutMusic", [c_int], c_int) Mix_FadingMusic = _bind("Mix_FadingMusic", None, Mix_Fading) Mix_FadingChannel = _bind("Mix_FadingChannel", [c_int], Mix_Fading) Mix_Pause = _bind("Mix_Pause", [c_int]) Mix_Resume = _bind("Mix_Resume", [c_int]) Mix_Paused = _bind("Mix_Paused", [c_int], c_int) Mix_PauseMusic = _bind("Mix_PauseMusic") Mix_ResumeMusic = _bind("Mix_ResumeMusic") Mix_RewindMusic = _bind("Mix_RewindMusic") Mix_PausedMusic = _bind("Mix_PausedMusic", None, c_int) Mix_SetMusicPosition = _bind("Mix_SetMusicPosition", [c_double], c_int) Mix_Playing = _bind("Mix_Playing", [c_int], c_int) Mix_PlayingMusic = _bind("Mix_PlayingMusic", None, c_int) Mix_SetMusicCMD = _bind("Mix_SetMusicCMD", [c_char_p], c_int) Mix_SetSynchroValue = _bind("Mix_SetSynchroValue", [c_int], c_int) Mix_GetSynchroValue = _bind("Mix_GetSynchroValue", None, c_int) Mix_SetSoundFonts = _bind("Mix_SetSoundFonts", [c_char_p], c_int) Mix_GetSoundFonts = _bind("Mix_GetSoundFonts", None, c_char_p) soundfont_function = CFUNCTYPE(c_int, c_char_p, c_void_p) Mix_EachSoundFont = _bind("Mix_EachSoundFont", [soundfont_function, c_void_p], c_int) Mix_GetChunk = _bind("Mix_GetChunk", [c_int], POINTER(Mix_Chunk)) Mix_CloseAudio = _bind("Mix_CloseAudio") Mix_SetError = SDL_SetError Mix_GetError = SDL_GetError Mix_ClearError = SDL_ClearError
45.851852
120
0.764315
10ef1fd4675cc6bfaccfdf1fd0f0370037027cc8
709
py
Python
Array/Medium_FindFirstandLastpositionofElementinSortedArray_34_WYH.py
LinkWoong/LC-Solutions
98b2ce55f05f6acb672f20519f79ca9f4248961d
[ "MIT" ]
4
2019-05-15T10:40:34.000Z
2020-07-27T03:05:39.000Z
Array/Medium_FindFirstandLastpositionofElementinSortedArray_34_WYH.py
LinkWoong/LC-Solutions
98b2ce55f05f6acb672f20519f79ca9f4248961d
[ "MIT" ]
2
2019-08-20T15:34:33.000Z
2019-09-20T19:41:27.000Z
Array/Medium_FindFirstandLastpositionofElementinSortedArray_34_WYH.py
LinkWoong/LC-Solutions
98b2ce55f05f6acb672f20519f79ca9f4248961d
[ "MIT" ]
null
null
null
# coding: utf-8 # In[ ]: class Solution: def searchRange(self, nums, target): #算法思路: #首先写下一个可以找到第一个出现的target的indice的binary search的方程 #在这个方程里,如果mid的大小大于或等于target,则hi变成现在的mid #如果mid的大小小于了target了,则lo变为现在的mid+1 #可以注意的是,因为我们在一个sorted list nums寻找,当这个方程的target变为target+1后 #这个方程会返回在nums中最后一个的target的indice+1 def search(n): lo, hi = 0, len(nums) while lo < hi: mid = int((lo + hi) / 2) if nums[mid] >= n: hi = mid else: lo = mid + 1 return lo lo = search(target) return [lo, search(target+1)-1] if target in nums[lo:lo+1] else [-1, -1] #注意应对nums=[]的情况
25.321429
96
0.561354
91f1d2b0a65e1f72ade4e3331f1a5becce9fe7fc
1,527
py
Python
md2ebook/md2ebook.py
brunobord/md2ebook
31e0d06b77f2d986e6af1115c9e613dfec0591a9
[ "MIT" ]
8
2015-01-14T22:15:27.000Z
2022-03-17T16:24:38.000Z
md2ebook/md2ebook.py
brunobord/md2ebook
31e0d06b77f2d986e6af1115c9e613dfec0591a9
[ "MIT" ]
1
2018-01-04T14:35:09.000Z
2018-01-04T14:35:09.000Z
md2ebook/md2ebook.py
brunobord/md2ebook
31e0d06b77f2d986e6af1115c9e613dfec0591a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python #-*- coding: utf-8 -*- """Markdown to Book. Usage: md2ebook start [<name>] [--overwrite] [--bookname=<bookname>] md2ebook build [--with-pdf] [--verbose] [--cover=<cover>] [--generator=<generator>] md2ebook check md2ebook --version Commands: start Start a blank project, using the default template build Generates HTML and EPUB. Optionally PDF check Checks for the EPUB integrity. Needs epubcheck. Options: -h --help Show this screen. --version Show version. --overwrite Will overwrite the project directory. Handle with care. --bookname=<bookname> Will set the name of the initial Markdown file. --verbose Will display ebook-convert output. --with-pdf Will generate the PDF along with the HTML and EPUB. --cover=<cover> File path or URL for a cover that would override the configuration (or default standard). --generator=<generator> Set the generator to be used at build time. So far, two generators are available: calibre and pandoc. """ from docopt import docopt from .commander import Commander from .checkers import check_dependencies def main(): "Main program" generators = check_dependencies() args = docopt(__doc__, version='md2ebook 0.0.1-dev') commander = Commander(args, generators) commander.handle() if __name__ == '__main__': main()
32.489362
79
0.629339
481ad428dd1bcfece63c5037ed0ff91800fbc4e1
754
py
Python
data_management/Excel Work/Melting DataFrames.py
TheRockerfly/JRocker-Portfolio
f1272970eb5c52e9928b72a101526adafbd77d4f
[ "MIT" ]
null
null
null
data_management/Excel Work/Melting DataFrames.py
TheRockerfly/JRocker-Portfolio
f1272970eb5c52e9928b72a101526adafbd77d4f
[ "MIT" ]
7
2021-07-03T14:41:03.000Z
2022-03-12T00:59:26.000Z
data_management/Excel Work/Melting DataFrames.py
TheRockerfly/JRocker-Python-Portfolio
be8be23195df56d8c76c59f03d1eb9d06e7a93b7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Mar 17 06:59:31 2018 @author: James """ import pandas as pd def single_melt_csv_df(file_name: str, melt_col: str, val_col: str): df = pd.read_csv(file_name) # Reset the index df_reset = df.reset_index() # Melt visitors_by_city_weekday: visitors df_melt = pd.melt(df_reset, id_vars=[melt_col], value_name=val_col) # Print visitors print(df_melt) def multi_col_melt(file_name, melt_list: list): df = pd.read_csv(file_name) # Multiple columns can be used as identifiers skinny = pd.melt(df, id_vars=melt_list) # Print skinny print(skinny) # Key-value pairs merge multi-index columns into one kv_pairs = pd.melt(df, col_level=0) print(kv_pairs)
22.176471
71
0.685676
98b887173ea2da940adff8696d56f78e7ab87f83
6,626
py
Python
Detectron2Fire/testfirepanotic.py
lkk688/CustomDetectron2
f55a7ea41b067cfc182f994a479bf5f64b4b01a3
[ "MIT" ]
null
null
null
Detectron2Fire/testfirepanotic.py
lkk688/CustomDetectron2
f55a7ea41b067cfc182f994a479bf5f64b4b01a3
[ "MIT" ]
null
null
null
Detectron2Fire/testfirepanotic.py
lkk688/CustomDetectron2
f55a7ea41b067cfc182f994a479bf5f64b4b01a3
[ "MIT" ]
null
null
null
import torch print(torch.__version__) #1.8.0+cu111 import torchvision print(torchvision.__version__) #0.9.0+cu111 # check if CUDA is available train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...') import detectron2 #detectron2 version: 0.4+cu111 #from detectron2.data import MetadataCatalog from detectron2.utils.logger import setup_logger setup_logger() # import some common libraries import numpy as np import os, json, cv2, random # import some common detectron2 utilities from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog from detectron2.structures import BoxMode from matplotlib import pyplot as plt #For training from detectron2.engine import DefaultTrainer #import json # import os # import numpy as np # import cv2 from pycocotools.coco import COCO def generate_segmentation_file(img_dir, outputpath): json_file = os.path.join(img_dir, "FireClassification.json") coco=COCO(json_file) #print(coco) cats = coco.loadCats(coco.getCatIds()) nms=[cat['name'] for cat in cats] #['Fire', 'NoFire', 'Smoke', 'BurntArea'] print('COCO categories: \n{}\n'.format(' '.join(nms))) imgIds_1 = coco.getImgIds() print(imgIds_1) for i in imgIds_1: imgIds = coco.getImgIds(imgIds = i) ##Image id part in the json img = coco.loadImgs(imgIds)[0] print(img) annIds = coco.getAnnIds(imgIds=img['id'], iscrowd=None) anns = coco.loadAnns(annIds) mask = coco.annToMask(anns[0])#(1080, 1920) for i in range(len(anns)): mask += coco.annToMask(anns[i]) print(mask) output = os.path.join(outputpath, img["file_name"]) cv2.imwrite(output, mask) def cv2_imshow(img, outputfilename='./outputs/result.png'): rgb=cv2.cvtColor(img, cv2.COLOR_BGR2RGB) fig = plt.figure(figsize = (20, 10)) plt.imshow(rgb) fig.savefig(outputfilename) def init_cfg(config_file: str): cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file(config_file)) cfg.DATASETS.TRAIN = ("firedataset_train_new",) cfg.DATASETS.TEST = () cfg.DATALOADER.NUM_WORKERS = 2 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(config_file) # Let training initialize from model zoo cfg.SOLVER.IMS_PER_BATCH = 2 cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR cfg.SOLVER.MAX_ITER = 500 # 300 iterations seems good enough for this toy dataset; you may need to train longer for a practical dataset cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # faster, and good enough for this toy dataset (default: 512) cfg.MODEL.ROI_HEADS.NUM_CLASSES = 4 # only has one class (ballon) return cfg def get_predictor(cfg, model_name: str): cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, model_name) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.1 # set the testing threshold for this model # cfg.DATASETS.TEST = ("balloon_val",) predictor = DefaultPredictor(cfg) return predictor if __name__ == "__main__": for d in ["train"]: dataroot="./Dataset/CMPE_295_All_images/" outputpath=os.path.join(dataroot, d, "segmentation") os.makedirs(outputpath, exist_ok=True) #Change path to point to the shared Images Folder /content/drive/MyDrive/Panoptic_Segmentation/CMPE_295_All_images/Images generate_segmentation_file(os.path.join(dataroot, "Images"), outputpath) #if your dataset is in COCO format, this cell can be replaced by the following three lines: from detectron2.data.datasets import register_coco_instances register_coco_instances("firedataset_train", {}, './Dataset/CMPE_295_All_images/Images/FireClassification.json', "./Dataset/CMPE_295_All_images/Images") dataset_dicts = DatasetCatalog.get("firedataset_train") ##Added the extra sem_seg_file_name in the train print(len(dataset_dicts)) for i in range(len(dataset_dicts)): tem = dataset_dicts[i]["file_name"] first, second = tem.rsplit('/', 1) dataset_dicts[i]["sem_seg_file_name"] = os.path.join(outputpath,second) from detectron2.data import MetadataCatalog ##registering again as have modified the dicts obatained from the COCO format , added the segmenattion info DatasetCatalog.register("firedataset_train_new", lambda d=d:dataset_dicts) MetadataCatalog.get("firedataset_train_new").thing_classes = ['Fire', 'NoFire', 'Smoke', 'BurntArea'] MetadataCatalog.get("firedataset_train_new").stuff_classes = ['Fire', 'NoFire', 'Smoke', 'BurntArea'] dataset_metadata = MetadataCatalog.get("firedataset_train_new") # Check whether dataset is correctly initialised #visualise_dataset("train") #dataset_dicts = get_balloon_dicts(os.path.join("balloon", d)) for d in random.sample(dataset_dicts, 3): img = cv2.imread(d["file_name"]) visualizer = Visualizer(img[:, :, ::-1], metadata=dataset_metadata, scale=0.5) vis = visualizer.draw_dataset_dict(d) cv2_imshow(vis.get_image()[:, :, ::-1],'./outputs/'+str(d["image_id"])) cfg = init_cfg("COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml") cfg.OUTPUT_DIR='./output/firepanoptic' os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=False) trainer.train() predictor = get_predictor(cfg, "model_final.pth") inputs = cv2.imread('./Dataset/CMPE_295_All_images/Images/ChoppervideoCameronPeakFirestartsnearChambersLakeinwesternLarimerCounty-223.jpg') panoptic_seg, segments_info = predictor(inputs)["panoptic_seg"] print("segments_info") print(segments_info) print("panoptic_seg") print(panoptic_seg) datasetname=cfg.DATASETS.TRAIN[0] metadata=MetadataCatalog.get(datasetname) v = Visualizer(inputs[:, :, ::-1], metadata, scale=1.2) v = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"),segments_info) cv2_imshow(v.get_image()[:, :, ::-1]) for d in random.sample(dataset_dicts, 5): img = cv2.imread(d["file_name"]) panoptic_seg, segments_info = predictor(img)["panoptic_seg"] v = Visualizer(img[:, :, ::-1], metadata=metadata, scale=0.5) v = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"),segments_info) #v = v.draw_dataset_dict(d) cv2_imshow(v.get_image()[:, :, ::-1],'./outputs/inference'+str(d["image_id"]))
42.474359
156
0.715666
f235e9a92a235f9ca68ea374ffb93efcd01376c7
2,610
py
Python
docassemble_webapp/docassemble/webapp/screenreader.py
patrickr81/docassemble
651653f6d3ab4c4c95d1defbc547ab8e15e460cc
[ "MIT" ]
1
2020-06-01T15:46:11.000Z
2020-06-01T15:46:11.000Z
docassemble_webapp/docassemble/webapp/screenreader.py
ttamg/docassemble
1429fbbddfeb60b9f8fe74c928a479236d6a6113
[ "MIT" ]
6
2021-02-08T20:44:14.000Z
2022-01-13T02:42:41.000Z
docassemble_webapp/docassemble/webapp/screenreader.py
ttamg/docassemble
1429fbbddfeb60b9f8fe74c928a479236d6a6113
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup from docassemble.base.functions import word import re __all__ = ['to_text'] def to_text(html_doc): #logmessage("Starting to_text") output = str() soup = BeautifulSoup(html_doc, 'html.parser') [s.extract() for s in soup(['style', 'script', '[document]', 'head', 'title', 'audio', 'video', 'pre', 'attribution'])] [s.extract() for s in soup.find_all(hidden)] [s.extract() for s in soup.find_all('div', {'class': 'dainvisible'})] previous = str() for s in soup.find_all(do_show): if s.name in ['input', 'textarea', 'img'] and s.has_attr('alt'): words = s.attrs['alt'] if s.has_attr('placeholder'): words += str(", ") + s.attrs['placeholder'] else: words = s.get_text() words = re.sub(r'\n\s*', ' ', words, flags=re.DOTALL) if len(words) and re.search(r'\w *$', words, re.UNICODE): words = words + str('.') if words != previous: output += str(words) + "\n" previous = words terms = dict() for s in soup.find_all('a'): if s.has_attr('class') and s.attrs['class'][0] == 'daterm' and s.has_attr('data-content') and s.string is not None: terms[s.string] = s.attrs['data-content'] if len(terms): output += word("Terms used in this question:") + "\n" for term, definition in terms.items(): output += str(term) + '. ' + str(definition) + '\n' output = re.sub(r'&amp;gt;', '>', output) output = re.sub(r'&amp;lt;', '<', output) output = re.sub(r'&gt;', '>', output) output = re.sub(r'&lt;', '<', output) output = re.sub(r'<[^>]+>', '', output) return output def hidden(element): if element.name == 'input': if element.has_attr('type'): if element.attrs['type'] == 'hidden': return True return False bad_list = ['div', 'option'] good_list = ['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'button', 'textarea', 'note'] def do_show(element): if re.match('<!--.*-->', str(element), re.DOTALL): return False if element.name in ['option'] and element.has_attr('selected'): return True if element.name in bad_list: return False if element.name in ['img', 'input'] and element.has_attr('alt'): return True if element.name in good_list: return True if element.parent and element.parent.name in good_list: return False if element.string: return True if re.match(r'\s+', element.get_text()): return False return False
35.753425
123
0.563218
0a0b9d70a707bffe8fb51de20e81ac099d504a82
472
py
Python
Chapter1/1.4.2-Default-Argument-Values.py
pankace/SICP-robably
765f516f253e96ae2c8e433722ea7cefd31b2f04
[ "MIT" ]
null
null
null
Chapter1/1.4.2-Default-Argument-Values.py
pankace/SICP-robably
765f516f253e96ae2c8e433722ea7cefd31b2f04
[ "MIT" ]
null
null
null
Chapter1/1.4.2-Default-Argument-Values.py
pankace/SICP-robably
765f516f253e96ae2c8e433722ea7cefd31b2f04
[ "MIT" ]
null
null
null
k_b = 1.38e-23 # Boltzmann's constant def pressure(v, t, n=6.022e23): """Compute the pressure in pascals of an ideal gas. v -- volume of gas, in cubic meters t -- absolute temperature in degrees kelvin n -- particles of gas (default: one mole) """ return n * k_b * t / v v, t = map(float, input("v and t\n").split()) # v = float(input("v,\\")) # t = float(input("t,\\")) print(pressure(v, t)) help(pressure) print("this is edited with n-vm")
23.6
55
0.612288
48e7623a62fdc2b842fd89213c5c79fe482eada8
7,699
py
Python
aiobotocore/paginate.py
Jastor11/aiobotocore
40427e6c45dd6b8fb75072f13cfb076cf6c4d10b
[ "Apache-2.0" ]
772
2016-02-12T13:20:26.000Z
2022-03-29T20:51:37.000Z
aiobotocore/paginate.py
Jastor11/aiobotocore
40427e6c45dd6b8fb75072f13cfb076cf6c4d10b
[ "Apache-2.0" ]
826
2016-02-14T11:31:25.000Z
2022-03-31T20:41:31.000Z
aiobotocore/paginate.py
Jastor11/aiobotocore
40427e6c45dd6b8fb75072f13cfb076cf6c4d10b
[ "Apache-2.0" ]
154
2016-04-28T16:27:33.000Z
2022-03-05T19:41:52.000Z
from botocore.exceptions import PaginationError from botocore.paginate import Paginator, PageIterator from botocore.utils import set_value_from_jmespath, merge_dicts from botocore.compat import six import jmespath import aioitertools class AioPageIterator(PageIterator): def __aiter__(self): return self.__anext__() async def __anext__(self): current_kwargs = self._op_kwargs previous_next_token = None next_token = dict((key, None) for key in self._input_token) if self._starting_token is not None: # If the starting token exists, populate the next_token with the # values inside it. This ensures that we have the service's # pagination token on hand if we need to truncate after the # first response. next_token = self._parse_starting_token()[0] # The number of items from result_key we've seen so far. total_items = 0 first_request = True primary_result_key = self.result_keys[0] starting_truncation = 0 self._inject_starting_params(current_kwargs) while True: response = await self._make_request(current_kwargs) parsed = self._extract_parsed_response(response) if first_request: # The first request is handled differently. We could # possibly have a resume/starting token that tells us where # to index into the retrieved page. if self._starting_token is not None: starting_truncation = self._handle_first_request( parsed, primary_result_key, starting_truncation) first_request = False self._record_non_aggregate_key_values(parsed) else: # If this isn't the first request, we have already sliced into # the first request and had to make additional requests after. # We no longer need to add this to truncation. starting_truncation = 0 current_response = primary_result_key.search(parsed) if current_response is None: current_response = [] num_current_response = len(current_response) truncate_amount = 0 if self._max_items is not None: truncate_amount = (total_items + num_current_response) \ - self._max_items if truncate_amount > 0: self._truncate_response(parsed, primary_result_key, truncate_amount, starting_truncation, next_token) yield response break else: yield response total_items += num_current_response next_token = self._get_next_token(parsed) if all(t is None for t in next_token.values()): break if self._max_items is not None and \ total_items == self._max_items: # We're on a page boundary so we can set the current # next token to be the resume token. self.resume_token = next_token break if previous_next_token is not None and \ previous_next_token == next_token: message = ("The same next token was received " "twice: %s" % next_token) raise PaginationError(message=message) self._inject_token_into_kwargs(current_kwargs, next_token) previous_next_token = next_token def result_key_iters(self): teed_results = aioitertools.tee(self, len(self.result_keys)) return [ResultKeyIterator(i, result_key) for i, result_key in zip(teed_results, self.result_keys)] async def build_full_result(self): complete_result = {} async for response in self: page = response # We want to try to catch operation object pagination # and format correctly for those. They come in the form # of a tuple of two elements: (http_response, parsed_responsed). # We want the parsed_response as that is what the page iterator # uses. We can remove it though once operation objects are removed. if isinstance(response, tuple) and len(response) == 2: page = response[1] # We're incrementally building the full response page # by page. For each page in the response we need to # inject the necessary components from the page # into the complete_result. for result_expression in self.result_keys: # In order to incrementally update a result key # we need to search the existing value from complete_result, # then we need to search the _current_ page for the # current result key value. Then we append the current # value onto the existing value, and re-set that value # as the new value. result_value = result_expression.search(page) if result_value is None: continue existing_value = result_expression.search(complete_result) if existing_value is None: # Set the initial result set_value_from_jmespath( complete_result, result_expression.expression, result_value) continue # Now both result_value and existing_value contain something if isinstance(result_value, list): existing_value.extend(result_value) elif isinstance(result_value, (int, float, six.string_types)): # Modify the existing result with the sum or concatenation set_value_from_jmespath( complete_result, result_expression.expression, existing_value + result_value) merge_dicts(complete_result, self.non_aggregate_part) if self.resume_token is not None: complete_result['NextToken'] = self.resume_token return complete_result async def search(self, expression): compiled = jmespath.compile(expression) async for page in self: results = compiled.search(page) if isinstance(results, list): for element in results: yield element else: yield results class AioPaginator(Paginator): PAGE_ITERATOR_CLS = AioPageIterator class ResultKeyIterator: """Iterates over the results of paginated responses. Each iterator is associated with a single result key. Iterating over this object will give you each element in the result key list. :param pages_iterator: An iterator that will give you pages of results (a ``PageIterator`` class). :param result_key: The JMESPath expression representing the result key. """ def __init__(self, pages_iterator, result_key): self._pages_iterator = pages_iterator self.result_key = result_key def __aiter__(self): return self.__anext__() async def __anext__(self): async for page in self._pages_iterator: results = self.result_key.search(page) if results is None: results = [] for result in results: yield result
43.744318
79
0.598649
74b2630b74739282d248a2e4f8b67ac66b76f158
23,705
py
Python
ansible/lib/ansible/modules/core/database/postgresql/postgresql_privs.py
kiv-box/kafka
debec1c4bc8c43776070ee447a53b55fef42bd52
[ "Apache-2.0" ]
null
null
null
ansible/lib/ansible/modules/core/database/postgresql/postgresql_privs.py
kiv-box/kafka
debec1c4bc8c43776070ee447a53b55fef42bd52
[ "Apache-2.0" ]
null
null
null
ansible/lib/ansible/modules/core/database/postgresql/postgresql_privs.py
kiv-box/kafka
debec1c4bc8c43776070ee447a53b55fef42bd52
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = """ --- module: postgresql_privs version_added: "1.2" short_description: Grant or revoke privileges on PostgreSQL database objects. description: - Grant or revoke privileges on PostgreSQL database objects. - This module is basically a wrapper around most of the functionality of PostgreSQL's GRANT and REVOKE statements with detection of changes (GRANT/REVOKE I(privs) ON I(type) I(objs) TO/FROM I(roles)) options: database: description: - Name of database to connect to. - 'Alias: I(db)' required: yes state: description: - If C(present), the specified privileges are granted, if C(absent) they are revoked. required: no default: present choices: [present, absent] privs: description: - Comma separated list of privileges to grant/revoke. - 'Alias: I(priv)' required: no type: description: - Type of database object to set privileges on. required: no default: table choices: [table, sequence, function, database, schema, language, tablespace, group] objs: description: - Comma separated list of database objects to set privileges on. - If I(type) is C(table) or C(sequence), the special value C(ALL_IN_SCHEMA) can be provided instead to specify all database objects of type I(type) in the schema specified via I(schema). (This also works with PostgreSQL < 9.0.) - If I(type) is C(database), this parameter can be omitted, in which case privileges are set for the database specified via I(database). - 'If I(type) is I(function), colons (":") in object names will be replaced with commas (needed to specify function signatures, see examples)' - 'Alias: I(obj)' required: no schema: description: - Schema that contains the database objects specified via I(objs). - May only be provided if I(type) is C(table), C(sequence) or C(function). Defaults to C(public) in these cases. required: no roles: description: - Comma separated list of role (user/group) names to set permissions for. - The special value C(PUBLIC) can be provided instead to set permissions for the implicitly defined PUBLIC group. - 'Alias: I(role)' required: yes grant_option: description: - Whether C(role) may grant/revoke the specified privileges/group memberships to others. - Set to C(no) to revoke GRANT OPTION, leave unspecified to make no changes. - I(grant_option) only has an effect if I(state) is C(present). - 'Alias: I(admin_option)' required: no choices: ['yes', 'no'] host: description: - Database host address. If unspecified, connect via Unix socket. - 'Alias: I(login_host)' default: null required: no port: description: - Database port to connect to. required: no default: 5432 unix_socket: description: - Path to a Unix domain socket for local connections. - 'Alias: I(login_unix_socket)' required: false default: null login: description: - The username to authenticate with. - 'Alias: I(login_user)' default: postgres password: description: - The password to authenticate with. - 'Alias: I(login_password))' default: null required: no notes: - Default authentication assumes that postgresql_privs is run by the C(postgres) user on the remote host. (Ansible's C(user) or C(sudo-user)). - This module requires Python package I(psycopg2) to be installed on the remote host. In the default case of the remote host also being the PostgreSQL server, PostgreSQL has to be installed there as well, obviously. For Debian/Ubuntu-based systems, install packages I(postgresql) and I(python-psycopg2). - Parameters that accept comma separated lists (I(privs), I(objs), I(roles)) have singular alias names (I(priv), I(obj), I(role)). - To revoke only C(GRANT OPTION) for a specific object, set I(state) to C(present) and I(grant_option) to C(no) (see examples). - Note that when revoking privileges from a role R, this role may still have access via privileges granted to any role R is a member of including C(PUBLIC). - Note that when revoking privileges from a role R, you do so as the user specified via I(login). If R has been granted the same privileges by another user also, R can still access database objects via these privileges. - When revoking privileges, C(RESTRICT) is assumed (see PostgreSQL docs). requirements: [psycopg2] author: "Bernhard Weitzhofer (@b6d)" """ EXAMPLES = """ # On database "library": # GRANT SELECT, INSERT, UPDATE ON TABLE public.books, public.authors # TO librarian, reader WITH GRANT OPTION - postgresql_privs: > database=library state=present privs=SELECT,INSERT,UPDATE type=table objs=books,authors schema=public roles=librarian,reader grant_option=yes # Same as above leveraging default values: - postgresql_privs: > db=library privs=SELECT,INSERT,UPDATE objs=books,authors roles=librarian,reader grant_option=yes # REVOKE GRANT OPTION FOR INSERT ON TABLE books FROM reader # Note that role "reader" will be *granted* INSERT privilege itself if this # isn't already the case (since state=present). - postgresql_privs: > db=library state=present priv=INSERT obj=books role=reader grant_option=no # REVOKE INSERT, UPDATE ON ALL TABLES IN SCHEMA public FROM reader # "public" is the default schema. This also works for PostgreSQL 8.x. - postgresql_privs: > db=library state=absent privs=INSERT,UPDATE objs=ALL_IN_SCHEMA role=reader # GRANT ALL PRIVILEGES ON SCHEMA public, math TO librarian - postgresql_privs: > db=library privs=ALL type=schema objs=public,math role=librarian # GRANT ALL PRIVILEGES ON FUNCTION math.add(int, int) TO librarian, reader # Note the separation of arguments with colons. - postgresql_privs: > db=library privs=ALL type=function obj=add(int:int) schema=math roles=librarian,reader # GRANT librarian, reader TO alice, bob WITH ADMIN OPTION # Note that group role memberships apply cluster-wide and therefore are not # restricted to database "library" here. - postgresql_privs: > db=library type=group objs=librarian,reader roles=alice,bob admin_option=yes # GRANT ALL PRIVILEGES ON DATABASE library TO librarian # Note that here "db=postgres" specifies the database to connect to, not the # database to grant privileges on (which is specified via the "objs" param) - postgresql_privs: > db=postgres privs=ALL type=database obj=library role=librarian # GRANT ALL PRIVILEGES ON DATABASE library TO librarian # If objs is omitted for type "database", it defaults to the database # to which the connection is established - postgresql_privs: > db=library privs=ALL type=database role=librarian """ try: import psycopg2 import psycopg2.extensions except ImportError: psycopg2 = None VALID_PRIVS = frozenset(('SELECT', 'INSERT', 'UPDATE', 'DELETE', 'TRUNCATE', 'REFERENCES', 'TRIGGER', 'CREATE', 'CONNECT', 'TEMPORARY', 'TEMP', 'EXECUTE', 'USAGE', 'ALL', 'USAGE')) class Error(Exception): pass # We don't have functools.partial in Python < 2.5 def partial(f, *args, **kwargs): """Partial function application""" def g(*g_args, **g_kwargs): new_kwargs = kwargs.copy() new_kwargs.update(g_kwargs) return f(*(args + g_args), **g_kwargs) g.f = f g.args = args g.kwargs = kwargs return g class Connection(object): """Wrapper around a psycopg2 connection with some convenience methods""" def __init__(self, params): self.database = params.database # To use defaults values, keyword arguments must be absent, so # check which values are empty and don't include in the **kw # dictionary params_map = { "host":"host", "login":"user", "password":"password", "port":"port", "database": "database", } kw = dict( (params_map[k], getattr(params, k)) for k in params_map if getattr(params, k) != '' ) # If a unix_socket is specified, incorporate it here. is_localhost = "host" not in kw or kw["host"] == "" or kw["host"] == "localhost" if is_localhost and params.unix_socket != "": kw["host"] = params.unix_socket self.connection = psycopg2.connect(**kw) self.cursor = self.connection.cursor() def commit(self): self.connection.commit() def rollback(self): self.connection.rollback() @property def encoding(self): """Connection encoding in Python-compatible form""" return psycopg2.extensions.encodings[self.connection.encoding] ### Methods for querying database objects # PostgreSQL < 9.0 doesn't support "ALL TABLES IN SCHEMA schema"-like # phrases in GRANT or REVOKE statements, therefore alternative methods are # provided here. def schema_exists(self, schema): query = """SELECT count(*) FROM pg_catalog.pg_namespace WHERE nspname = %s""" self.cursor.execute(query, (schema,)) return self.cursor.fetchone()[0] > 0 def get_all_tables_in_schema(self, schema): if not self.schema_exists(schema): raise Error('Schema "%s" does not exist.' % schema) query = """SELECT relname FROM pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE nspname = %s AND relkind in ('r', 'v')""" self.cursor.execute(query, (schema,)) return [t[0] for t in self.cursor.fetchall()] def get_all_sequences_in_schema(self, schema): if not self.schema_exists(schema): raise Error('Schema "%s" does not exist.' % schema) query = """SELECT relname FROM pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE nspname = %s AND relkind = 'S'""" self.cursor.execute(query, (schema,)) return [t[0] for t in self.cursor.fetchall()] ### Methods for getting access control lists and group membership info # To determine whether anything has changed after granting/revoking # privileges, we compare the access control lists of the specified database # objects before and afterwards. Python's list/string comparison should # suffice for change detection, we should not actually have to parse ACLs. # The same should apply to group membership information. def get_table_acls(self, schema, tables): query = """SELECT relacl FROM pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE nspname = %s AND relkind = 'r' AND relname = ANY (%s) ORDER BY relname""" self.cursor.execute(query, (schema, tables)) return [t[0] for t in self.cursor.fetchall()] def get_sequence_acls(self, schema, sequences): query = """SELECT relacl FROM pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE nspname = %s AND relkind = 'S' AND relname = ANY (%s) ORDER BY relname""" self.cursor.execute(query, (schema, sequences)) return [t[0] for t in self.cursor.fetchall()] def get_function_acls(self, schema, function_signatures): funcnames = [f.split('(', 1)[0] for f in function_signatures] query = """SELECT proacl FROM pg_catalog.pg_proc p JOIN pg_catalog.pg_namespace n ON n.oid = p.pronamespace WHERE nspname = %s AND proname = ANY (%s) ORDER BY proname, proargtypes""" self.cursor.execute(query, (schema, funcnames)) return [t[0] for t in self.cursor.fetchall()] def get_schema_acls(self, schemas): query = """SELECT nspacl FROM pg_catalog.pg_namespace WHERE nspname = ANY (%s) ORDER BY nspname""" self.cursor.execute(query, (schemas,)) return [t[0] for t in self.cursor.fetchall()] def get_language_acls(self, languages): query = """SELECT lanacl FROM pg_catalog.pg_language WHERE lanname = ANY (%s) ORDER BY lanname""" self.cursor.execute(query, (languages,)) return [t[0] for t in self.cursor.fetchall()] def get_tablespace_acls(self, tablespaces): query = """SELECT spcacl FROM pg_catalog.pg_tablespace WHERE spcname = ANY (%s) ORDER BY spcname""" self.cursor.execute(query, (tablespaces,)) return [t[0] for t in self.cursor.fetchall()] def get_database_acls(self, databases): query = """SELECT datacl FROM pg_catalog.pg_database WHERE datname = ANY (%s) ORDER BY datname""" self.cursor.execute(query, (databases,)) return [t[0] for t in self.cursor.fetchall()] def get_group_memberships(self, groups): query = """SELECT roleid, grantor, member, admin_option FROM pg_catalog.pg_auth_members am JOIN pg_catalog.pg_roles r ON r.oid = am.roleid WHERE r.rolname = ANY(%s) ORDER BY roleid, grantor, member""" self.cursor.execute(query, (groups,)) return self.cursor.fetchall() ### Manipulating privileges def manipulate_privs(self, obj_type, privs, objs, roles, state, grant_option, schema_qualifier=None): """Manipulate database object privileges. :param obj_type: Type of database object to grant/revoke privileges for. :param privs: Either a list of privileges to grant/revoke or None if type is "group". :param objs: List of database objects to grant/revoke privileges for. :param roles: Either a list of role names or "PUBLIC" for the implicitly defined "PUBLIC" group :param state: "present" to grant privileges, "absent" to revoke. :param grant_option: Only for state "present": If True, set grant/admin option. If False, revoke it. If None, don't change grant option. :param schema_qualifier: Some object types ("TABLE", "SEQUENCE", "FUNCTION") must be qualified by schema. Ignored for other Types. """ # get_status: function to get current status if obj_type == 'table': get_status = partial(self.get_table_acls, schema_qualifier) elif obj_type == 'sequence': get_status = partial(self.get_sequence_acls, schema_qualifier) elif obj_type == 'function': get_status = partial(self.get_function_acls, schema_qualifier) elif obj_type == 'schema': get_status = self.get_schema_acls elif obj_type == 'language': get_status = self.get_language_acls elif obj_type == 'tablespace': get_status = self.get_tablespace_acls elif obj_type == 'database': get_status = self.get_database_acls elif obj_type == 'group': get_status = self.get_group_memberships else: raise Error('Unsupported database object type "%s".' % obj_type) # Return False (nothing has changed) if there are no objs to work on. if not objs: return False # obj_ids: quoted db object identifiers (sometimes schema-qualified) if obj_type == 'function': obj_ids = [] for obj in objs: try: f, args = obj.split('(', 1) except: raise Error('Illegal function signature: "%s".' % obj) obj_ids.append('"%s"."%s"(%s' % (schema_qualifier, f, args)) elif obj_type in ['table', 'sequence']: obj_ids = ['"%s"."%s"' % (schema_qualifier, o) for o in objs] else: obj_ids = ['"%s"' % o for o in objs] # set_what: SQL-fragment specifying what to set for the target roles: # Either group membership or privileges on objects of a certain type if obj_type == 'group': set_what = ','.join(pg_quote_identifier(i, 'role') for i in obj_ids) else: # function types are already quoted above if obj_type != 'function': obj_ids = [pg_quote_identifier(i, 'table') for i in obj_ids] # Note: obj_type has been checked against a set of string literals # and privs was escaped when it was parsed set_what = '%s ON %s %s' % (','.join(privs), obj_type, ','.join(obj_ids)) # for_whom: SQL-fragment specifying for whom to set the above if roles == 'PUBLIC': for_whom = 'PUBLIC' else: for_whom = ','.join(pg_quote_identifier(r, 'role') for r in roles) status_before = get_status(objs) if state == 'present': if grant_option: if obj_type == 'group': query = 'GRANT %s TO %s WITH ADMIN OPTION' else: query = 'GRANT %s TO %s WITH GRANT OPTION' else: query = 'GRANT %s TO %s' self.cursor.execute(query % (set_what, for_whom)) # Only revoke GRANT/ADMIN OPTION if grant_option actually is False. if grant_option == False: if obj_type == 'group': query = 'REVOKE ADMIN OPTION FOR %s FROM %s' else: query = 'REVOKE GRANT OPTION FOR %s FROM %s' self.cursor.execute(query % (set_what, for_whom)) else: query = 'REVOKE %s FROM %s' self.cursor.execute(query % (set_what, for_whom)) status_after = get_status(objs) return status_before != status_after def main(): module = AnsibleModule( argument_spec = dict( database=dict(required=True, aliases=['db']), state=dict(default='present', choices=['present', 'absent']), privs=dict(required=False, aliases=['priv']), type=dict(default='table', choices=['table', 'sequence', 'function', 'database', 'schema', 'language', 'tablespace', 'group']), objs=dict(required=False, aliases=['obj']), schema=dict(required=False), roles=dict(required=True, aliases=['role']), grant_option=dict(required=False, type='bool', aliases=['admin_option']), host=dict(default='', aliases=['login_host']), port=dict(type='int', default=5432), unix_socket=dict(default='', aliases=['login_unix_socket']), login=dict(default='postgres', aliases=['login_user']), password=dict(default='', aliases=['login_password'], no_log=True) ), supports_check_mode = True ) # Create type object as namespace for module params p = type('Params', (), module.params) # param "schema": default, allowed depends on param "type" if p.type in ['table', 'sequence', 'function']: p.schema = p.schema or 'public' elif p.schema: module.fail_json(msg='Argument "schema" is not allowed ' 'for type "%s".' % p.type) # param "objs": default, required depends on param "type" if p.type == 'database': p.objs = p.objs or p.database elif not p.objs: module.fail_json(msg='Argument "objs" is required ' 'for type "%s".' % p.type) # param "privs": allowed, required depends on param "type" if p.type == 'group': if p.privs: module.fail_json(msg='Argument "privs" is not allowed ' 'for type "group".') elif not p.privs: module.fail_json(msg='Argument "privs" is required ' 'for type "%s".' % p.type) # Connect to Database if not psycopg2: module.fail_json(msg='Python module "psycopg2" must be installed.') try: conn = Connection(p) except psycopg2.Error: e = get_exception() module.fail_json(msg='Could not connect to database: %s' % e) try: # privs if p.privs: privs = frozenset(pr.upper() for pr in p.privs.split(',')) if not privs.issubset(VALID_PRIVS): module.fail_json(msg='Invalid privileges specified: %s' % privs.difference(VALID_PRIVS)) else: privs = None # objs: if p.type == 'table' and p.objs == 'ALL_IN_SCHEMA': objs = conn.get_all_tables_in_schema(p.schema) elif p.type == 'sequence' and p.objs == 'ALL_IN_SCHEMA': objs = conn.get_all_sequences_in_schema(p.schema) else: objs = p.objs.split(',') # function signatures are encoded using ':' to separate args if p.type == 'function': objs = [obj.replace(':', ',') for obj in objs] # roles if p.roles == 'PUBLIC': roles = 'PUBLIC' else: roles = p.roles.split(',') changed = conn.manipulate_privs( obj_type = p.type, privs = privs, objs = objs, roles = roles, state = p.state, grant_option = p.grant_option, schema_qualifier=p.schema ) except Error: e = get_exception() conn.rollback() module.fail_json(msg=e.message) except psycopg2.Error: e = get_exception() conn.rollback() # psycopg2 errors come in connection encoding, reencode msg = e.message.decode(conn.encoding).encode(sys.getdefaultencoding(), 'replace') module.fail_json(msg=msg) if module.check_mode: conn.rollback() else: conn.commit() module.exit_json(changed=changed) # import module snippets from ansible.module_utils.basic import * from ansible.module_utils.database import * if __name__ == '__main__': main()
36.923676
104
0.608057
7d32348501868062da1d383183f7205b82304039
35,339
py
Python
commandlineCW_ipuz.py
LSowrabbi/CWPuzzleReader
d144da9ce48a75413be2b21f8bf828cf4dbf191f
[ "BSD-3-Clause" ]
null
null
null
commandlineCW_ipuz.py
LSowrabbi/CWPuzzleReader
d144da9ce48a75413be2b21f8bf828cf4dbf191f
[ "BSD-3-Clause" ]
2
2015-12-29T17:06:38.000Z
2016-09-16T13:03:53.000Z
commandlineCW_ipuz.py
LSowrabbi/CWPuzzleReader
d144da9ce48a75413be2b21f8bf828cf4dbf191f
[ "BSD-3-Clause" ]
null
null
null
import ipuz import ipuz_Helper import json import sys unlock_state="disabled" notes_state="disabled" is_puz_rebus=False Encoding_2 = "ISO-8859-1" class File(): title=None author=None cpyrt=None notes=None width=0 height=0 solnblock=[] cellblock=[] acc=0 dwn=0 across=[] down=[] loc="" # is_multi is set to 1 in order to input rebus entries for a cell; it can be turned off only after 'enter' key is pressed is_multi=0 multi=[] across=[] down=[] cellblock=[] solnblock=[] row_cellno=[] col_cellno=[] cellno=[] pencil=[] valid=[] gext=[] time=0 time_state=0 ifil = input('Enter a file name along with path: ') ofile_txt=ifil data_file = open(ifil,'r') data = data_file.read() data_file.close() # puzzle description read from the ipuz file is stored in the 'puzzle' instance try: puzzle = ipuz.read(data) except ipuz.IPUZException: print("Sorry, File corrupted") sys.exit(0) if 'block' in puzzle: block=puzzle['block'] else: block="#" if 'empty' in puzzle: empty=puzzle['empty'] try: empty=int(empty) except ValueError: pass else: empty=0 if 'title' in puzzle: title=puzzle['title'] else: title='title' if 'author' in puzzle: author=puzzle['author'] else: author='author' if 'copyright' in puzzle: cpyrt=puzzle['copyright'] else: cpyrt='copyright' if 'notes' in puzzle: notes=puzzle['notes'] notes_state="normal" else: notes='' if 'Across' in puzzle['clues'] and 'Down' in puzzle['clues']: for i in range(0,len(puzzle['clues']['Across'])): l=puzzle['clues']['Across'][i] across.append([]) if isinstance(l,dict): across[i].append(l['number']) across[i].append(l['clue']) else: across[i].append(l[0]) across[i].append(l[1]) acc=len(across) for i in range(0,len(puzzle['clues']['Down'])): l=puzzle['clues']['Down'][i] down.append([]) if isinstance(l,dict): down[i].append(l['number']) down[i].append(l['clue']) else: down[i].append(l[0]) down[i].append(l[1]) dwn=len(down) if isinstance(puzzle['dimensions']['height'],str): height=int(puzzle['dimensions']['height']) else: height=puzzle['dimensions']['height'] if isinstance(puzzle['dimensions']['width'],str): width=int(puzzle['dimensions']['width']) else: width=puzzle['dimensions']['width'] for i in range(0,height): # current state of the grid cellblock.append([]) # stores the position of cell numbers for cells in the grid cellno.append([]) # stores all the pencil entries in the grid pencil.append([]) # stores the valid/invalid state of each entry in the grid valid.append([]) # if available, stores the solution for puzzle; else all cell entries are assigned the character 'A' solnblock.append([]) # stores details of circled, previously incorrect, incorrect or revealed entries present in the grid gext.append([]) for j in range(0,width): pencil[i].append(0) valid[i].append(0) gext[i].append(0) if isinstance(puzzle['puzzle'][i][j],dict): cellblock[i].append(puzzle['puzzle'][i][j]['cell']) else: cellblock[i].append(puzzle['puzzle'][i][j]) if cellblock[i][j]!=block and cellblock[i][j]!=empty and cellblock[i][j]!="null": row_cellno.append(i) col_cellno.append(j) cellno[i].append(cellblock[i][j]) else: cellno[i].append(0) if cellblock[i][j]==block or cellblock[i][j]=="null" or cellblock[i][j]==None: cellblock[i][j]="." solnblock[i].append(".") else: # if an unshaded cell is encountered and any entry is present in it, stores the corresponding entry in the cell if 'saved' in puzzle: if isinstance(puzzle['saved'][i][j],dict): cellblock[i][j]=puzzle['saved'][i][j]['value'] else: cellblock[i][j]=puzzle['saved'][i][j] if cellblock[i][j]==empty: cellblock[i][j]="-" else: cellblock[i][j]=cellblock[i][j].upper() else: cellblock[i][j]="-" # if an unshaded cell is encountered, stores the solution for the corresponding cell if 'solution' in puzzle: check_reveal_state="normal" if isinstance(puzzle['solution'][i][j],dict): solnblock[i].append(puzzle['solution'][i][j]['value'].upper()) else: solnblock[i].append(puzzle['solution'][i][j].upper()) else: check_reveal_state="disabled" solnblock[i].append("A") for i in range(0,height): for j in range(0,width): if(cellblock[i][j] in 'abcdefghijklmnopqrstuvwxyz'): pencil[i][j]=1 cellblock[i][j]=cellblock[i][j].upper() # calc_across and calc_down are for calculating current state of the across and down clues respectively def calc_across(ch=1): for i in range(0,acc): temp=across[i][0] c_row=row_cellno[temp-1] c_col=col_cellno[temp-1] curstr="" while((c_col<width) and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_col=c_col+1 if(ch==0): across[i].append(len(curstr)) across[i].append(curstr) else: across[i][3]=curstr def calc_down(ch=1): for i in range(0,dwn): temp=down[i][0] c_row=row_cellno[temp-1] c_col=col_cellno[temp-1] curstr="" while(c_row<height and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_row=c_row+1 if(ch==0): down[i].append(len(curstr)) down[i].append(curstr) else: down[i][3]=curstr # Notifies user if entire grid is filled with correct entries def is_sol_complete(): for i in range(0,height): for j in range(0,width): if(cellblock[i][j]=="-"): return if(cellblock[i][j]!="." and cellblock[i][j]!=":" and valid[i][j]!=3): if((is_puz_rebus==True) and (str(i)+","+str(j) in rebus_row_col)): rebus_index=rebus_row_col.index(str(i)+","+str(j)) temp_text=rebus_content[rebus_index] else: temp_text=solnblock[i][j] if(cellblock[i][j]!=temp_text): return print("Congratulations, You have successfully completed the puzzle") # displays clue and asks user to enter a solution for the corresponding clue def disp_clue(clue): if ('across' in clue): num=acc user_no=int(clue.replace(' across','')) for i in range(0,acc): if(user_no==int(across[i][0])): num=i if(num==acc): print("No such clue number exists in across cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(across[num][0])+". "+across[num][1]+" ("+str(across[num][2])+") : "+across[num][3]) getstr=input('Enter word : ') for char in getstr: if(cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":"): if(char not in "," and valid[c_row][c_col]!=3 ): if char in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz": pencil[c_row][c_col]=0 cellblock[c_row][c_col]=char.upper() else: cellblock[c_row][c_col]="-" if(valid[c_row][c_col]==2): valid[c_row][c_col]=1 c_col=c_col+1 if(c_row==height or c_col==width): break else: break curstr="" c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] while((c_col<width) and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_col=c_col+1 across[num][3]=curstr calc_down() return if ('down' in clue): num=dwn user_no=int(clue.replace(' down','')) for i in range(0,dwn): if(user_no==int(down[i][0])): num=i if(num==dwn): print("No such clue number exists in down cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(down[num][0])+". "+down[num][1]+" ("+str(down[num][2])+") : "+down[num][3]) getstr=input('Enter word : ') for char in getstr: if(cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":"): if(char not in "," and valid[c_row][c_col]!=3 ): if char in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz": pencil[c_row][c_col]=0 cellblock[c_row][c_col]=char.upper() else: cellblock[c_row][c_col]="-" if(valid[c_row][c_col]==2): valid[c_row][c_col]=1 c_row=c_row+1 if(c_row==height or c_col==width): break else: break curstr="" c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] while(c_row<height and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_row=c_row+1 down[num][3]=curstr calc_across() return print("Sorry wrong format") # function for rebus entry at a particular location in a word def disp_rebus_clue(clue): if ('across' in clue): num=acc user_no=int(clue.replace(' across','')) for i in range(0,acc): if(user_no==int(across[i][0])): num=i if(num==acc): print("No such clue number exists in across cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(across[num][0])+". "+across[num][1]+" ("+str(across[num][2])+") : "+across[num][3]) getstr=input('Enter the location where rebus has to be placed (for eg. in the word ABCDE, press 1 to place rebus at position A) : ') loc=int(getstr) if (loc>across[num][2] or loc<1): print("Sorry location index is out of range") return c_col=c_col+(loc-1) if (valid[c_row][c_col]==3): print("Sorry the cellblock at this location has already been revealed") return getstr=input('Enter the rebus word : ') text="" for char in getstr: if char in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz": text=text+char.upper() if(text==""): text="-" pencil[c_row][c_col]=0 cellblock[c_row][c_col]=text if(valid[c_row][c_col]==2): valid[c_row][c_col]=1 c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] curstr="" while((c_col<width) and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_col=c_col+1 across[num][3]=curstr calc_down() return if ('down' in clue): num=dwn user_no=int(clue.replace(' down','')) for i in range(0,dwn): if(user_no==int(down[i][0])): num=i if(num==dwn): print("No such clue number exists in down cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(down[num][0])+". "+down[num][1]+" ("+str(down[num][2])+") : "+down[num][3]) getstr=input('Enter the location where rebus has to be placed (for eg. in the word ABCDE, press 1 to place rebus at position A) : ') loc=int(getstr) if (loc>down[num][2] or loc<1): print("Sorry location index is out of range") return c_row=c_row+(loc-1) if (valid[c_row][c_col]==3): print("Sorry the cellblock at this location has already been revealed") return getstr=input('Enter the rebus word : ') text="" for char in getstr: if char in "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz": text=text+char.upper() if(text==""): text="-" pencil[c_row][c_col]=0 cellblock[c_row][c_col]=text if(valid[c_row][c_col]==2): valid[c_row][c_col]=1 c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] curstr="" while(c_row<height and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_row=c_row+1 down[num][3]=curstr calc_across() return print("Sorry wrong format") # view all across and down clues along with their current state def view_acc(): for i in range(0,acc): temp=str(across[i][0])+". "+across[i][1]+" ("+str(across[i][2])+") : "+across[i][3] print(temp) def view_dwn(): for i in range(0,dwn): temp=str(down[i][0])+". "+down[i][1]+" ("+str(down[i][2])+") : "+down[i][3] print(temp) # clears all the entries in the cells def clear_cells(): for i in range(0,height): for j in range(0,width): valid[i][j]=0 pencil[i][j]=0 if cellblock[i][j]!="." and cellblock[i][j]!=":": cellblock[i][j]="-" j=j+1 i=i+1 calc_across() calc_down() # view current state of the puzzle def view_cur(): temp="" for i in range(0,height): temp="" for j in range(0,width): temp=temp+" "+cellblock[i][j] j=j+1 print(temp) i=i+1 # checks the letter in the given row and column of grid with the corresponding letter in the solution def check(c_row,c_col): global valid valid_count=True if(cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":" and valid[c_row][c_col]!=3): if((is_puz_rebus==True) and (str(c_row)+","+str(c_col) in rebus_row_col)): rebus_index=rebus_row_col.index(str(c_row)+","+str(c_col)) temp_text=rebus_content[rebus_index] else: temp_text=solnblock[c_row][c_col] if(cellblock[c_row][c_col]==temp_text or cellblock[c_row][c_col]=="-"): valid_count=True else: valid_count=False valid[c_row][c_col]=2 return valid_count # checks the validity of a single letter in a word for a given clue def check_one(): clue= input('Enter clue number (for e.g "1 across"): ') if ('across' in clue): num=acc user_no=int(clue.replace(' across','')) for i in range(0,acc): if(user_no==int(across[i][0])): num=i if(num==acc): print("No such clue number exists in across cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(across[num][0])+". "+across[num][1]+" ("+str(across[num][2])+") : "+across[num][3]) getstr=input('Enter the location which has to be checked in the word (for eg. in the word ABCDE, press 1 to check the letter in position A) : ') loc=int(getstr) if (loc>across[num][2] or loc<1): print("Sorry location index is out of range") return c_col=c_col+(loc-1) v=check(c_row,c_col) if (v==True): print("The letter is correct") else: print("Sorry, the letter seems to be incorrect") return if ('down' in clue): num=dwn user_no=int(clue.replace(' down','')) for i in range(0,dwn): if(user_no==int(down[i][0])): num=i if(num==dwn): print("No such clue number exists in down cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(down[num][0])+". "+down[num][1]+" ("+str(down[num][2])+") : "+down[num][3]) getstr=input('Enter the location which has to be checked in the word (for eg. in the word ABCDE, press 1 to check the letter in position A) : ') loc=int(getstr) if (loc>down[num][2] or loc<1): print("Sorry location index is out of range") return c_row=c_row+(loc-1) v=check(c_row,c_col) if (v==True): print("The letter is correct") else: print("Sorry, the letter seems to be incorrect") return print("Sorry wrong format") # checks the validity of a word for a given clue def check_word(): ck_val=True ad=0 clue = input('Enter clue number (for e.g "1 across"): ') if ('across' in clue): num=acc user_no=int(clue.replace(' across','')) for i in range(0,acc): if(user_no==int(across[i][0])): num=i if(num==acc): print("No such clue number exists in across cluelist") return ad=1 if ('down' in clue): num=dwn user_no=int(clue.replace(' down','')) for i in range(0,dwn): if(user_no==int(down[i][0])): num=i if(num==dwn): print("No such clue number exists in down cluelist") return ad=2 if (ad==0): print("Sorry wrong format!") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] text="" while(cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":"): val=check(c_row,c_col) if (val==True): if (cellblock[c_row][c_col]=="-"): text=text+" - " else: text=text+" "+cellblock[c_row][c_col]+","+"Correct " else: text=text+" "+cellblock[c_row][c_col]+","+"Wrong " ck_val=ck_val and val if(ad==1): c_col=c_col+1 else: c_row=c_row+1 if (c_row == height or c_col==width): break if(ck_val==True): print("No incorrect letters found!") else: print("Sorry there are some incorrect letters in the word") print(text) return # checks the validity of the entire grid def check_all(): ck_val=True text="" for i in range(0,height): for j in range(0,width): val=check(i,j) if (val==True): if (cellblock[i][j]=="-" or (cellblock[i][j]=="." or cellblock[i][j]==":" )): text=text+" "+cellblock[i][j]+" " else: text=text+" "+cellblock[i][j]+","+"Correct " else: text=text+" "+cellblock[i][j]+","+"Wrong " ck_val=ck_val and val j=j+1 text=text+"\n" i=i+1 if(ck_val==True): print("No incorrect letters found!") else: print("Sorry there are some incorrect entries in the grid") print(text) return # reveals the solution for the given row and column of grid def reveal(i,j): global valid correct_entry=False if((is_puz_rebus==True) and (str(i)+","+str(j) in rebus_row_col)): rebus_index=rebus_row_col.index(str(i)+","+str(j)) correct_entry=(rebus_content[rebus_index]==cellblock[i][j]) else: correct_entry=(solnblock[i][j]==cellblock[i][j]) if(not(correct_entry)): if solnblock[i][j]!="." and solnblock[i][j]!=":": pencil[i][j]=0 valid[i][j]=3 if((is_puz_rebus==True) and (str(i)+","+str(j) in rebus_row_col)): rebus_index=rebus_row_col.index(str(i)+","+str(j)) cellblock[i][j]=rebus_content[rebus_index] else: cellblock[i][j]=solnblock[i][j] # reveals a single letter in a word for a given clue def reveal_one(): clue = input('Enter clue number (for e.g "1 across"): ') if ('across' in clue): num=acc user_no=int(clue.replace(' across','')) for i in range(0,acc): if(user_no==int(across[i][0])): num=i if(num==acc): print("No such clue number exists in across cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(across[num][0])+". "+across[num][1]+" ("+str(across[num][2])+") : "+across[num][3]) getstr=input('Enter the location which has to be revealed in the word (for eg. in the word ABCDE, press 1 to reveal the letter in position A) : ') loc=int(getstr) if (loc>across[num][2] or loc<1): print("Sorry location index is out of range") return c_col=c_col+(loc-1) reveal(c_row,c_col) print("The letter at the given location is : "+cellblock[c_row][c_col]) curstr="" c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] while((c_col<width) and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_col=c_col+1 across[num][3]=curstr calc_down() return if ('down' in clue): num=dwn user_no=int(clue.replace(' down','')) for i in range(0,dwn): if(user_no==int(down[i][0])): num=i if(num==dwn): print("No such clue number exists in down cluelist") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] print(str(down[num][0])+". "+down[num][1]+" ("+str(down[num][2])+") : "+down[num][3]) getstr=input('Enter the location which has to be checked in the word (for eg. in the word ABCDE, press 1 to reveal the letter in position A): ') loc=int(getstr) if (loc>down[num][2] or loc<1): print("Sorry location index is out of range") return c_row=c_row+(loc-1) reveal(c_row,c_col) print("The letter at the given location is : "+cellblock[c_row][c_col]) curstr="" c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] while(c_row<height and (cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":")): curstr=curstr+cellblock[c_row][c_col] c_row=c_row+1 down[num][3]=curstr calc_across() return print("Sorry wrong format") # reveals the word for a given clue def reveal_word(): ck_val=True ad=0 clue = input('Enter clue number (for e.g "1 across"):') if ('across' in clue): num=acc user_no=int(clue.replace(' across','')) for i in range(0,acc): if(user_no==int(across[i][0])): num=i if(num==acc): print("No such clue number exists in across cluelist") return ad=1 if ('down' in clue): num=dwn user_no=int(clue.replace(' down','')) for i in range(0,dwn): if(user_no==int(down[i][0])): num=i if(num==dwn): print("No such clue number exists in down cluelist") return ad=2 if (ad==0): print("Sorry wrong format!") return c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] text="" while(cellblock[c_row][c_col]!="." and cellblock[c_row][c_col]!=":"): reveal(c_row,c_col) text=text+cellblock[c_row][c_col] if(ad==1): c_col=c_col+1 else: c_row=c_row+1 if (c_row == height or c_col==width): break if(ad==1): print("The word for the clue '"+across[num][1]+"' is : "+text) else: print("The word for the clue '"+down[num][1]+"' is : "+text) c_row=row_cellno[user_no-1] c_col=col_cellno[user_no-1] if(ad==1): across[num][3]=text calc_down() else: down[num][3]=text calc_across() return # reveals the complete solution def reveal_sol(): text="" for i in range(0,height): for j in range(0,width): reveal(i,j) text=text+" "+cellblock[i][j] j=j+1 text=text+"\n" i=i+1 print("Solution Grid : ") print(text) calc_across() calc_down() return # in locked puzzles, this function checks the validity of the key entered by the user. def check_key(key): global check_reveal_state,unlock_state,soln_state,checksum_sol ab=unscramble_solution(soln.decode(Encoding_2), width, height, int(key)) temp="" c=0 for j in range(0,width): c=j for i in range(0,height): if(ab[c]!=":" and ab[c]!="."): temp=temp+ab[c] c=c+width data=temp.encode(Encoding_2) cksum=0 for c in data: if (cksum & 0x0001): cksum = ((cksum >> 1) | 0x8000) else: cksum = (cksum >> 1) cksum = (cksum + c) & 0xffff if (cksum==checksum_sol[0]): print("The solution for the puzzle has been unlocked") check_reveal_state="normal" unlock_state="disabled" soln_state[0]=0 checksum_sol[0]=0 temp=0 for i in range(0,height): for j in range(0,width): solnblock[i][j]=ab[temp] temp=temp+1 else: print("Sorry, Wrong key!") # in locked puzzles, this function gets the key from the user, to unlock the solution. def unlock_soln(): global key key = input("Enter the 4 digit key : ") check_key(key) # overrides the IPUZ file with the current state of the puzzle def save_sol(): temp_l=[] for i in range(0,height): if 'saved' not in puzzle: temp_l.append([]) for j in range(0,width): if cellblock[i][j]==".": if 'saved' in puzzle: if isinstance(puzzle['saved'][i][j],dict): puzzle['saved'][i][j]['value']=block else: puzzle['saved'][i][j]=block else: temp_l[i].append(block) elif cellblock[i][j]=="-": if 'saved' in puzzle: if isinstance(puzzle['saved'][i][j],dict): puzzle['saved'][i][j]['value']=empty else: puzzle['saved'][i][j]=empty else: temp_l[i].append(empty) else: if 'saved' in puzzle: if isinstance(puzzle['saved'][i][j],dict): puzzle['saved'][i][j]['value']=cellblock[i][j] else: puzzle['saved'][i][j]=cellblock[i][j] else: temp_l[i].append(cellblock[i][j]) if 'saved' not in puzzle: puzzle['saved']=temp_l data = ipuz.write(puzzle, jsonp=True, callback_name="ipuz_function") ofile=open(ifil,mode='w') ofile.write(data) ofile.close() # saves the current state of the puzzle in binary format def save_puz(): getloc=ofile_txt.split("/") st=getloc[len(getloc)-1] op=ofile_txt.replace(st,"") split1=st.split(".") newst="" for i in range(0,(len(split1)-1)): newst=newst+split1[i] op=op+newst+".puz" if 'title' in puzzle: File.title=puzzle['title'] else: File.title='title' if 'author' in puzzle: File.author=puzzle['author'] else: File.author='author' if 'copyright' in puzzle: File.cpyrt=puzzle['copyright'] else: File.cpyrt='copyright' if 'notes' in puzzle: File.notes=puzzle['notes'] else: File.notes='' File.width=width File.height=height File.solnblock=solnblock File.cellblock=cellblock File.acc=acc File.dwn=dwn File.across=across File.down=down File.loc=op ipuz_Helper.filewrite(File) # saves the current state of the puzzle as a text file def save_txt(): getloc=ofile_txt.split("/") st=getloc[len(getloc)-1] op=ofile_txt.replace(st,"") split1=st.split(".") newst="" for i in range(0,(len(split1)-1)): newst=newst+split1[i] op=op+newst+".txt" col_space=[] max_col=0 ofl=open(op,mode='wb') ofl.write(("\n ").encode(Encoding_2)) ofl.write(title) for j in range (0,width): for i in range (0,height): if (len(cellblock[i][j])>max_col): max_col=len(cellblock[i][j]) col_space.append(max_col) max_col=0 ofl.write(("\n\n\n Current State of the puzzle:\n\n ").encode(Encoding_2)) for i in range(0,height): ofl.write(("\n ").encode(Encoding_2)) ad_space=0 for j in range(0,width): if(cellblock[i][j]!=":"): ofl.write(cellblock[i][j].encode(Encoding_2)) else: ofl.write(".".encode(Encoding_2)) ad_space=col_space[j]-len(cellblock[i][j]) if ad_space>0: for k in range(0,ad_space): ofl.write((" ").encode(Encoding_2)) ofl.write((" ").encode(Encoding_2)) ofl.write(("\n\n CLUES\n").encode(Encoding_2)) ofl.write("\n Across : \n".encode(Encoding_2)) calc_across() calc_down() for i in range(0,acc): ct=across[i][0] r=row_cellno[ct-1] c=col_cellno[ct-1] temp=str(across[i][0])+". "+across[i][1]+" <"+across[i][3]+">" ofl.write(("\n ").encode(Encoding_2)) ofl.write(temp.encode(Encoding_2)) ofl.write("\n\n Down :\n".encode(Encoding_2)) for i in range(0,dwn): ct=down[i][0] r=row_cellno[ct-1] c=col_cellno[ct-1] temp=str(down[i][0])+". "+down[i][1]+" <"+down[i][3]+">" ofl.write(("\n ").encode(Encoding_2)) ofl.write(temp.encode(Encoding_2)) ofl.close() time_state=1 ip=1 calc_across(0) calc_down(0) # performs actions corresponding to the option selected by the user print('Enter 1 to Display the option menu anytime') while(ip!=0): ip = input('Enter your option: ') if(ip=="1"): if(unlock_state=="disabled"): print(" 2 : Enter word for a clue (While entering letters for the word, press ',' key to repeat letters from the previous entry of the word eg. A,,DE)\n 3 : Enter rebus for a cell\n 4 : View all across clues\n 5 : View all down clues\n 6 : Clear cells\n 7 : Save\n 8 : View current state of the grid\n 9 : Check a letter, word or entire grid\n 10 : Reveal letter, word or entire solution grid") else: print(" 2 : Enter word for a clue\n 3 : Enter rebus for a cell\n 4 : View all across clues\n 5 : View all down clues\n 6 : Clear cells\n 7 : Save\n 8 : View current state of the grid\n 11 : Unlock solution") if(notes_state=="normal"): print(" 12 : Display notepad\n 0 : Exit") else: print(" 0 : Exit") if(ip=="2"): clue= input('Enter clue number (for e.g "1 across"): ') disp_clue(clue) is_sol_complete() if(ip=="3"): clue= input('Enter clue number (for e.g "1 across"): ') disp_rebus_clue(clue) is_sol_complete() if(ip=="4"): print('Across:') view_acc() if(ip=="5"): print('Down:') view_dwn() if(ip=="6"): clear_cells() print('Cells Cleared!!') if(ip=="7"): choice=input(' 1 : Save work\n 2 : Save as .puz file\n 3 : Copy work to a text file\n') if choice=="1": save_sol() print("Saved Work Succesfully!") if choice=="2": save_puz() print("Saved Work Succesfully!") if choice=="3": save_txt() print("Saved as text file succesfully!") if(ip=="8"): print('Current Block:') view_cur() if(ip=="9"): if(unlock_state=="disabled"): print('Enter your choice for checking blocks:') choice=input(' 1 : Check letter\n 2 : Check word\n 3 : Check entire grid\n') if choice=="1": check_one() if choice=="2": check_word() if choice=="3": check_all() else: print("Sorry you must unlock the solution first to check or reveal the grid") if(ip=="10"): if(unlock_state=="disabled"): print('Enter your choice for revealing blocks:') choice=input(' 1 : Reveal letter\n 2 : Reveal word\n 3 : Reveal entire grid\n') if choice=="1": reveal_one() is_sol_complete() if choice=="2": reveal_word() is_sol_complete() if choice=="3": reveal_sol() is_sol_complete() else: print("Sorry you must unlock the solution first to check or reveal the grid") if(ip=="11"): if(unlock_state=="normal"): print('Unlock Solution:') unlock_soln() else: print("The solution has already been unlocked!") if(ip=="12"): if(notes_state=="normal"): print(notes.decode(Encoding_2)) else: print("There are no notes available for this puzzle") if(ip=="0"): print("Thank you!!") break
35.659939
411
0.520728
65999305203d3d2680af5ebe52efe2f85a197696
1,843
py
Python
ants/contrib/downloadermiddleware/robotstxt.py
wcong/scale-crawl
52918d18c94a9a69c3b2495286e3384ba57ad6f8
[ "BSD-3-Clause" ]
18
2015-01-16T02:25:03.000Z
2018-11-18T03:47:07.000Z
ants/contrib/downloadermiddleware/robotstxt.py
wcong/ants
52918d18c94a9a69c3b2495286e3384ba57ad6f8
[ "BSD-3-Clause" ]
15
2015-01-12T02:28:23.000Z
2015-02-03T03:41:07.000Z
ants/contrib/downloadermiddleware/robotstxt.py
wcong/scale-crawl
52918d18c94a9a69c3b2495286e3384ba57ad6f8
[ "BSD-3-Clause" ]
5
2015-01-22T12:38:38.000Z
2019-06-07T14:35:07.000Z
""" This is a middleware to respect robots.txt policies. To activate it you must enable this middleware and enable the ROBOTSTXT_OBEY setting. """ import robotparser from ants.utils import log from ants.utils.exceptions import NotConfigured, IgnoreRequest from ants.http import Request from ants.utils.httpobj import urlparse_cached class RobotsTxtMiddleware(object): DOWNLOAD_PRIORITY = 1000 def __init__(self, crawler): if not crawler.settings.getbool('ROBOTSTXT_OBEY'): raise NotConfigured self.crawler = crawler self._useragent = crawler.settings.get('USER_AGENT') self._parsers = {} self._spider_netlocs = set() @classmethod def from_crawler(cls, crawler): return cls(crawler) def process_request(self, request, spider): useragent = self._useragent rp = self.robot_parser(request, spider) if rp and not rp.can_fetch(useragent, request.url): log.spider_log("Forbidden by robots.txt:" + request.url, level=log.DEBUG) raise IgnoreRequest def robot_parser(self, request, spider): url = urlparse_cached(request) netloc = url.netloc if netloc not in self._parsers: self._parsers[netloc] = None robotsurl = "%s://%s/robots.txt" % (url.scheme, url.netloc) robotsreq = Request(robotsurl, priority=self.DOWNLOAD_PRIORITY) dfd = self.crawler.engine.download(robotsreq, spider) dfd.addCallback(self._parse_robots) self._spider_netlocs.add(netloc) return self._parsers[netloc] def _parse_robots(self, response): rp = robotparser.RobotFileParser(response.url) rp.parse(response.body.splitlines()) self._parsers[urlparse_cached(response).netloc] = rp
33.509091
76
0.668475
0d6620cb94fa427f4e13aeeb6f3f58590c26aebe
48
py
Python
src/synpp/__init__.py
Nitnelav/synpp
b2b2136a99701ce77fd4fea939f8efb521f67c21
[ "MIT" ]
6
2020-04-01T12:06:20.000Z
2021-11-02T19:10:27.000Z
src/synpp/__init__.py
Nitnelav/synpp
b2b2136a99701ce77fd4fea939f8efb521f67c21
[ "MIT" ]
26
2019-12-08T12:25:39.000Z
2022-02-28T07:24:56.000Z
src/synpp/__init__.py
Nitnelav/synpp
b2b2136a99701ce77fd4fea939f8efb521f67c21
[ "MIT" ]
8
2020-06-19T15:49:46.000Z
2021-07-06T10:15:37.000Z
from .pipeline import * from .parallel import *
16
23
0.75
e3c2608f7e0f3c8385f9c53bc261be6e2e352e43
35,913
py
Python
EMS/scoreManagement/views.py
jlbbj111/2019-Software-Engineering-Curriculum-Design
a55deabaf00220c5ffb531c6e40ed9edb8063062
[ "MIT" ]
45
2019-03-22T23:01:45.000Z
2021-11-09T01:32:12.000Z
EMS/scoreManagement/views.py
LHMdanchaofan/2019-Software-Engineering-Curriculum-Design
a55deabaf00220c5ffb531c6e40ed9edb8063062
[ "MIT" ]
9
2019-03-25T03:27:57.000Z
2021-06-10T21:27:21.000Z
EMS/scoreManagement/views.py
LHMdanchaofan/2019-Software-Engineering-Curriculum-Design
a55deabaf00220c5ffb531c6e40ed9edb8063062
[ "MIT" ]
13
2019-03-28T13:44:05.000Z
2021-05-23T06:45:03.000Z
from django.shortcuts import render, redirect, Http404 from django.utils.datastructures import MultiValueDictKeyError from django.views.decorators.csrf import csrf_exempt from django.http import JsonResponse, HttpResponseRedirect from django.db.models import Q from datetime import datetime import pandas as pd from backstage.models import Student, Teacher, College, Major, MajorPlan, ClassRoom, AdmClass, User from courseScheduling.models import Teaching, Course, MajorPlan, MajorCourses, Teacher, Teacher_Schedule_result from courseSelection.models import CourseSelected from scoreManagement.models import CourseScore, EvaluationForm from .utils import get_semester def welcome(request): students = Student.objects.all() teachers = Teacher.objects.all() colleges = College.objects.all() majors = Major.objects.all() major_plans = MajorPlan.objects.all() class_rooms = ClassRoom.objects.all() context = { 'students': students, 'teachers': teachers, } return render(request, 'scoreManage/student_score_manage.html', context) def adm_all_course_score(request): try: username = request.session['username'] adm = User.objects.get(username=username) if not adm.is_superuser: return render(request, 'errors/403page.html') else: all_colleges = College.objects.all() all_majors = Major.objects.all() all_course_score = CourseSelected.objects.filter(is_finish=True) all_years = [y['teaching__mcno__year'] for y in CourseScore.objects.values("teaching__mcno__year").distinct()] all_semester = [y['teaching__mcno__semester'] for y in CourseScore.objects.values("teaching__mcno__semester").distinct()] try: sear_year = request.GET['sear_year'] sear_semester = request.GET['sear_semester'] tch_sch_list = Teacher_Schedule_result.objects.filter(tno__mcno__year=sear_year, tno__mcno__semester=sear_semester) all_course_score = CourseSelected.objects.filter(cno__in=tch_sch_list) context = { "all_course_score": all_course_score, "all_years": all_years, "all_semester": all_semester, "all_colleges": all_colleges, "all_majors": all_majors, "sear_year": sear_year, "sear_semester": sear_semester, } return render(request, 'scoreManage/adm_score_manage.html', context) except Exception: context = { "all_course_score": all_course_score, "all_years": all_years, "all_semester": all_semester, "all_colleges": all_colleges, "all_majors": all_majors, } return render(request, 'scoreManage/adm_score_manage.html', context) except: return render(request, 'errors/500page.html') def score_home_page(request): if request.session['user_type'] == '学生': return render(request, 'scoreManage/student_score_manage.html') elif request.session['user_type'] == '教师': return render(request, 'scoreManage/teacher_score_manage.html') else: return render(request, 'scoreManage/adm_score_manage.html') def student_view_score(request): if request.session['user_type'] != '学生': return render(request, 'errors/403page.html') sno = request.session['username'] student = Student.objects.get(username=sno) course_score = CourseScore.objects.filter(sno=student) years = [c['teaching__mcno__year'] for c in course_score.values("teaching__mcno__year").distinct()] semesters = [s['teaching__mcno__semester'] for s in course_score.values("teaching__mcno__semester").distinct()] context = { "my_course_score": course_score, "years": years, "semesters": semesters } return render(request, "scoreManage/student_view_score.html", context) def student_own_study(request): if request.session['user_type'] != '学生': redirect("scoreManagement:welcome") sno = request.session['username'] student = Student.objects.get(username=sno) course_list = \ CourseScore.objects.filter(sno=student). \ order_by("teaching__mcno__year", "teaching__mcno__semester") year_semester = \ course_list.values_list("teaching__mcno__year", "teaching__mcno__semester"). \ distinct() # 总学分 sum = Student.objects.get(username=sno).score_got # 毕业所需学分 sum_req = student.in_cls.major.score_grad # 总绩点 gpa = 0 for course_list_item in course_list: a = course_list_item.teaching.mcno.cno.score b = course_list_item.score if b >= 90: gpa = gpa + a / sum * 4 elif 80 <= b < 90: gpa = gpa + a / sum * 3 elif 70 <= b < 80: gpa = gpa + a / sum * 2 elif 60 <= b < 70: gpa = gpa + a / sum * 1 else: gpa = gpa # 每个学期的平均绩点 semester_GPA_list = [] # 每个学期的总学分 semester_sum_list = [] # 每个学期选课的数量 semester_num_list = [] for year_semester_item in year_semester: semester_course = \ course_list.filter( Q(teaching__mcno__year=year_semester_item[0]), Q(teaching__mcno__semester=year_semester_item[1]) ) semester_num_list.append(semester_course.count()) semester_sum = 0 semester_GPA = 0 for year_semester_course_item in semester_course: a = year_semester_course_item.teaching.mcno.cno.score semester_sum = semester_sum + a semester_sum_list.append(semester_sum) for year_semester_course_item in semester_course: a = year_semester_course_item.teaching.mcno.cno.score b = year_semester_course_item.score if b >= 90: semester_GPA = semester_GPA + a / semester_sum * 4 elif 80 <= b < 90: semester_GPA = semester_GPA + a / semester_sum * 3 elif 70 <= b < 80: semester_GPA = semester_GPA + a / semester_sum * 2 elif 60 <= b < 70: semester_GPA = semester_GPA + a / semester_sum * 1 else: semester_GPA = semester_GPA semester_GPA_list.append(semester_GPA) context = { "student_name": student.name, "my_scoresum": sum, "my_gpa": round(gpa, 2), "my_year_semester": year_semester, "semester_GPA": semester_GPA_list, "semester_scoresum": semester_sum_list, "my_score_gg": sum_req, "my_score_g": round(sum / sum_req, 2), "semester_num": semester_num_list, } return render(request, "scoreManage/student_own_study.html", context) def std_view_major_course(request): if request.session['user_type'] != '学生': return render(request, 'errors/403page.html') sno = request.session['username'] student = Student.objects.get(username=sno) # my_major_plan = student.in_cls.major all_major_course = MajorCourses.objects.all() all_college = College.objects.all() all_course_type = Course.objects.values("course_type").distinct() all_year = MajorCourses.objects.values("year").order_by("year").distinct() all_major = Major.objects.all() context = {"all_major_course": all_major_course, "all_college": all_college, "all_course": all_course_type, "all_year": all_year, "student": student, "all_major": all_major } return render(request, "scoreManage/student_major_course.html", context) def std_view_major_plan(request): if request.session['user_type'] != '学生': return render(request, 'errors/403page.html') sno = request.session['username'] student = Student.objects.get(username=sno) all_major_plan = MajorPlan.objects.all() all_college = College.objects.all() all_year = MajorPlan.objects.values("year").order_by("year").distinct() college_id = request.GET.get('stat_type_id', None) all_major = Major.objects.all() context = { "all_major_plan": all_major_plan, "all_college": all_college, "all_year": all_year, "student": student, "all_major": all_major } return render(request, "scoreManage/student_major_plan.html", context) def teacher_view_major_course(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') all_major_course = MajorCourses.objects.all() all_college = College.objects.all() all_course_type = Course.objects.values("course_type").distinct() all_year = MajorCourses.objects.values("year").order_by("year").distinct() all_major = Major.objects.all() context = {"all_major_course": all_major_course, "all_college": all_college, "all_course": all_course_type, "all_year": all_year, "all_major": all_major } return render(request, "scoreManage/teacher_major_course.html", context) def teacher_view_major_plan(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') all_major_plan = MajorPlan.objects.all() all_college = College.objects.all() all_year = MajorPlan.objects.values("year").order_by("year").distinct() all_major = Major.objects.all() context = { "all_major_plan": all_major_plan, "all_college": all_college, "all_year": all_year, "all_major": all_major } return render(request, "scoreManage/teacher_major_plan.html", context) def adm_view_major_course(request): username = request.session['username'] adm = User.objects.get(username=username) if not adm.is_superuser: return render(request, 'errors/403page.html') all_major_plan = MajorPlan.objects.all() all_course = Course.objects.all() all_major_course = MajorCourses.objects.all() all_college = College.objects.all() all_course_type = Course.objects.values("course_type").distinct() all_year = MajorCourses.objects.values("year").order_by("year").distinct() all_major = Major.objects.all() context = {"all_major_course": all_major_course, "all_college": all_college, "all_course_type": all_course_type, "all_year": all_year, "all_major": all_major, "all_major_plan": all_major_plan, "all_course": all_course, } return render(request, "scoreManage/adm_major_course.html", context) def adm_view_major_plan(request): username = request.session['username'] adm = User.objects.get(username=username) if not adm.is_superuser: return render(request, 'errors/403page.html') all_major_plan = MajorPlan.objects.all() all_college = College.objects.all() all_year = MajorPlan.objects.values("year").order_by("year").distinct() all_major = Major.objects.all() context = { "all_major_plan": all_major_plan, "all_college": all_college, "all_year": all_year, "all_major": all_major } return render(request, "scoreManage/adm_major_plan.html", context) # 学生评教 def assess_teacher(request): if request.session['user_type'] != '学生': redirect("scoreManagement:welcome") # 判断该学生是否已经全部提交过 def judge(s): items = EvaluationForm.objects.filter(student_id=s) if len(items) != 0: for item in items: if item.is_finish == False: return False # 该学生还未提交 else: return True # 该学生已经提交 else: return False log = [] stuno = request.session['username'] sno_id = stuno[4:] # 得到学生id stu = Student.objects.filter(username=stuno) courses = CourseScore.objects.filter(sno=sno_id) # 从选课表中找出该学生修的课程 num1 = 0 sum = 0 for item1 in courses: teachings = Teaching.objects.filter(id=item1.teaching_id) for item2 in teachings: if item2.mcno.year == 2017 and item2.mcno.semester == 1: # print(item2) # print(item2.tno.name) # print(item2.mcno.cno.cname) # print(item2.mcno.cno.course_type) temp = dict() temp['student'] = stuno temp['sno'] = stu # 学生 temp['cno'] = item2.mcno.cno # 课程 # print(item2.mcno.cno) temp['course'] = item2.mcno.id temp['tno'] = item2.tno # 教师 temp['teacher'] = item2.tno_id # print(item2.tno_id) temp['state'] = False temp['r1'] = 0 temp['r2'] = 0 temp['r3'] = 0 temp['r4'] = 0 temp['r5'] = 0 temp['r6'] = 0 temp['r7'] = 0 temp['r8'] = 0 temp['text'] = "无" temp['flag'] = False try: temp1 = EvaluationForm.objects.get( student_id=sno_id, course_id=item2.mcno.id, teacher_id=item2.tno_id) temp['r1'] = temp1.item1 temp['r2'] = temp1.item2 temp['r3'] = temp1.item3 temp['r4'] = temp1.item4 temp['r5'] = temp1.item5 temp['r6'] = temp1.item6 temp['r7'] = temp1.item7 temp['r8'] = temp1.item8 temp['text'] = temp1.description temp['flag'] = temp1.is_finish # print("!!!") # if temp1.is_finish == True: temp['state'] = True num1 += 1 except: temp['state'] = False # print("???") pass temp['tname'] = item2.tno.name temp['cname'] = item2.mcno.cno.cname # print(item2.tno.id) temp['type'] = item2.mcno.cno.course_type # if temp1.is_finish == True: # temp['state'] = "提交" # else: # temp['state'] = "未提交" sum += 1 log.append(temp) # print(log) num2 = sum - num1 flag = judge(sno_id) context = {'log': log, 'num1': num1, 'num2': num2, 'flag': flag} return render(request, 'scoreManage/assess_teacher.html', context=context) # 学生提交评价信息 def submit_result(request): if request.session['user_type'] != '学生': redirect("scoreManagement:welcome") print("!!!") # 得到各个等级对应的分数 def getScore(s): if s == 'A': return 100 elif s == 'B': return 90 elif s == 'C': return 70 elif s == 'D': return 60 elif s == 'E': return 50 # if 'submit_result' in request.POST: if request.GET: r1 = request.GET.get('r1') r2 = request.GET.get('r2') r3 = request.GET.get('r3') r4 = request.GET.get('r4') r5 = request.GET.get('r5') r6 = request.GET.get('r6') r7 = request.GET.get('r7') r8 = request.GET.get('r8') text = request.GET.get('message') if text == "": text = "无" item_sno = request.GET.get('item_sno') item_tno = request.GET.get('item_tno') item_cno = request.GET.get('item_cno') r1 = getScore(r1) r2 = getScore(r2) r3 = getScore(r3) r4 = getScore(r4) r5 = getScore(r5) r6 = getScore(r6) r7 = getScore(r7) r8 = getScore(r8) print(r1, r2, r3, r4, r5, r6, r7, r8, text) sum = r1 + r2 + r3 + r4 + r5 + r6 + r7 + r8 ave = sum * 1.0 / 8 # print(ave) # print(type(item_sno), type(item_tno), type(item_cno)) # 学生对象 student = Student.objects.get(username=item_sno) # print(student) # 教师对象 # print(item_tno) teacher = Teacher.objects.get(id=item_tno) # print(teacher) # 课程对象 course = MajorCourses.objects.get(id=item_cno) # print(course) print("!!!") try: EvaluationForm.objects.get( student=student, course=course, teacher=teacher) EvaluationForm.objects.filter(student=student, course=course, teacher=teacher).update( item1=r1, item2=r2, item3=r3, item4=r4, item5=r5, item6=r6, item7=r7, item8=r8, description=text, sum=ave, is_finish=False) except: EvaluationForm.objects.create(student=student, course=course, teacher=teacher, item1=r1, item2=r2, item3=r3, item4=r4, item5=r5, item6=r6, item7=r7, item8=r8, description=text, sum=ave, is_finish=False) return redirect('scoreManagement:assess_teacher') # # 最终的提交,提交后不可更改 @csrf_exempt def submit_all(request): try: if request.session['user_type'] != '学生': return render(request, 'errors/403page.html') if request.GET: item_sno = request.session['username'] # 学生对象 student = Student.objects.get(username=item_sno) # 更改评价表的is_finish字段 EvaluationForm.objects.filter(student=student).update(is_finish=True) return redirect('scoreManagement:assess_teacher') except: return render(request, 'errors/500page.html') def teacher_view_teaching(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') tno = request.session['username'] teacher = Teacher.objects.get(username=tno) teaching_list = Teaching.objects.filter(tno=teacher) years = [y['mcno__year'] for y in teaching_list.values('mcno__year').distinct()] semesters = [s['mcno__semester'] for s in teaching_list.values('mcno__semester').distinct()] context = { 'teaching_list': teaching_list, 'years': years, 'semesters': semesters } if request.method == 'GET': try: other_tno = request.GET['seacher_tno'] except MultiValueDictKeyError: return render(request, "scoreManage/teacher_view_teaching.html", context) try: other_teacher = Teacher.objects.get(username=other_tno) except Teacher.DoesNotExist: return render(request, "scoreManage/teacher_view_teaching.html", context) other_teaching_list = Teaching.objects.filter(tno=other_teacher) other_years = [y['mcno__year'] for y in other_teaching_list.values('mcno__year').distinct()] other_semesters = [s['mcno__semester'] for s in other_teaching_list.values('mcno__semester').distinct()] result = { "is_find": True, "other_tno": other_tno, "other_years": other_years, "other_semesters": other_semesters, "other_teaching_list": other_teaching_list, 'teaching_list': teaching_list, 'years': years, 'semesters': semesters } return render(request, "scoreManage/teacher_view_teaching.html", result) return render(request, "scoreManage/teacher_view_teaching.html", context) # 授课老师录入成绩 def teacher_upload_score(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') tno = request.session['username'] teacher = Teacher.objects.get(username=tno) my_courses = Teaching.objects.filter(tno=teacher) return render(request, 'scoreManage/teacher_upload_score.html') # 管理员查看教学评价情况 def adm_view_teacher_evaluation(request): username = request.session['username'] adm = User.objects.get(username=username) if not adm.is_superuser: return render(request, 'errors/403page.html') evaluation_sets = EvaluationForm.objects.all() context = { 'evaluation_sets': evaluation_sets } return render(request, 'scoreManage/adm_view_teacher_evaluation.html', context) # 获取到老师教的课 def get_all_teaching(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') tno = request.session['username'] teacher = Teacher.objects.get(username=tno) this_year = datetime.now().year this_semester = get_semester(datetime.now().month) teaching_list = Teaching.objects.filter(tno=teacher, mcno__year=this_year, mcno__semester=this_semester) tch_sch_list = Teacher_Schedule_result.objects.filter(tno__in=teaching_list) all_year = [year[0] for year in teaching_list.values_list('mcno__year').distinct()] all_semester = [semester[0] for semester in teaching_list.values_list('mcno__semester').distinct()] context = { 'teaching_list': teaching_list, 'tch_sch_list': tch_sch_list, 'all_year': all_year, 'all_semester': all_semester, 'this_year': this_year, 'this_semester': this_semester, } return render(request, 'scoreManage/teacher_view_stu_score.html', context) def show_student_score(request, cno, course_type): user = request.session["username"] teacher = Teacher.objects.get(username=user) class_no = Course.objects.get(cno=cno, course_type=course_type) major_courses = MajorCourses.objects.get(cno=class_no) teaching = Teaching.objects.get(mcno=major_courses, tno=teacher) teacher_schedule_result = Teacher_Schedule_result.objects.filter(tno=teaching) if not teacher_schedule_result: return render(request, "scoreManage/tch_view_stu_score_detail.html") else: teacher_schedule_result = teacher_schedule_result[0] course_selected = CourseSelected.objects.filter(cno=teacher_schedule_result) adm_id_list = course_selected.values('sno__in_cls').distinct() adm_class_list = [] for adm_id in adm_id_list: adm_class_list.append(AdmClass.objects.get(id=adm_id['sno__in_cls'])) context = { 'course_selected': course_selected, 'adm_class_list': adm_class_list } return render(request, "scoreManage/tch_view_stu_score_detail.html", context) def teacher_view_stu_score(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') tno = request.session['username'] teacher = Teacher.objects.get(username=tno) if request.method == 'GET': try: year = request.GET['year'] semester = request.GET['semester'] if year == '无' or semester == '无': return render(request, 'scoreManage/teacher_view_stu_score.html') teaching_list = Teaching.objects.filter(tno=teacher, mcno__year=year, mcno__semester=semester) except MultiValueDictKeyError: year = datetime.now().year month = datetime.now().month if month == 7: semester = 3 elif 3 <= month <= 6: semester = 2 else: semester = 1 teaching_list = Teaching.objects.filter(tno=teacher, mcno__year=year, mcno__semester=semester) else: year = datetime.now().year month = datetime.now().month if month == 7: semester = 3 elif 3 <= month <= 6: semester = 2 else: semester = 1 teaching_list = Teaching.objects.filter(tno=teacher, mcno__year=year, mcno__semester=semester) all_teaching_list = Teaching.objects.filter(tno=teacher) schedule_result = Teacher_Schedule_result.objects.filter(tno__in=teaching_list) course_list = CourseSelected.objects.filter(cno__in=schedule_result) adm_id_list = course_list.values('sno__in_cls').distinct() adm_class_list = [] for adm_id in adm_id_list: adm_class_list.append(AdmClass.objects.get(id=adm_id['sno__in_cls'])) all_year = [year[0] for year in all_teaching_list.values_list('mcno__year').distinct()] all_semester = [semester[0] for semester in all_teaching_list.values_list('mcno__semester').distinct()] context = { 'course_list': course_list, 'adm_class_list': adm_class_list, 'all_year': all_year, 'all_semester': all_semester, 'teaching_list': teaching_list, } return render(request, 'scoreManage/teacher_view_stu_score.html', context) def adm_change_score(request): if request.is_ajax(): if len(request.GET): cs_id = request.GET.get('cs_id') sno = request.GET.get('sno') common = float(request.GET.get('common')) final_score = float(request.GET.get('final_score')) cs = CourseSelected.objects.get(id=cs_id) cs.common_score = common cs.final_score = final_score cs.save() n_commen = common n_final = final_score score = cs.score result = { 'n_commen': n_commen, 'n_final': n_final, 'score': score, } return JsonResponse(result) return redirect("scoreManagement:adm_all_course_score") def adm_change_major_plan(request): if request.is_ajax(): if len(request.GET): year = request.GET.get('year') major_name = request.GET.get('major') people_num = request.GET.get('people_num') lowest_score = request.GET.get('lowest_score') stu_method = request.GET.get('stu_method') course_num = request.GET.get('course_num') adm_class_num = request.GET.get('adm_class_num') major = Major.objects.get(mno=major_name.split('-')[0]) major_plan = MajorPlan.objects.get(major=major, year=year) # make change major_plan.cls_num = adm_class_num major_plan.people_num = people_num major_plan.score_grad = lowest_score major_plan.stu_years = stu_method major_plan.course_num = course_num major_plan.save() new_people_num = major_plan.people_num new_score_grad = major_plan.score_grad new_clsw_num = major_plan.cls_num new_stu_years = major_plan.stu_years new_course_num = major_plan.course_num data = { 'new_people_num': new_people_num, 'new_score_grad': new_score_grad, 'new_clsw_num': new_clsw_num, 'new_stu_years': new_stu_years, 'new_course_num': new_course_num, } return JsonResponse(data) # 管理员修改专业课程,只修改部分属性 def adm_change_major_course(request): if request.is_ajax(): if len(request.GET): major = request.GET.get('major') year = request.GET.get('year') semester = request.GET.get('semester') cno = request.GET.get('cno') teach_hours = request.GET.get('teach_hours') exp_hours = request.GET.get('exp_hours') exam_method = request.GET.get('exam_method') major_plan = MajorPlan.objects.get(major__mno=major.split('-')[1], year=major.split('-')[0]) # 获取到MajorCourse对象 print(cno) major_course = MajorCourses.objects.get(cno__cno=cno, mno=major_plan) major_course.year = year major_course.semester = semester major_course.hour_class = teach_hours major_course.hour_other = exp_hours major_course.hour_total = teach_hours + exp_hours major_course.exam_method = (exam_method == '考试') major_course.save() return JsonResponse({}) # 管理员添加专业课程信息 def adm_add_major_course(request): if request.is_ajax(): if len(request.GET): major_str = request.GET.get('major_str').split('-') year = request.GET.get('year') semester = request.GET.get('semester') major_course = request.GET.get('major_course') teach_hour = request.GET.get('teach_hour') exp_hour = request.GET.get('exp_hour') hour_total = teach_hour + exp_hour exam_method = request.GET.get('exam_method') exam_method = (exam_method == '考试') major = MajorPlan.objects.get(major__mno=major_str[1], year=major_str[0]) course = Course.objects.filter(cno=major_course)[0] MajorCourses.objects.update_or_create( cno=course, mno=major, year=year, semester=semester, hour_total=hour_total, hour_class=teach_hour, hour_other=exp_hour, exam_method=exam_method ) return JsonResponse({}) # 管理员删除专业课程MajorCourse信息 def adm_delete_major_course(request): if request.is_ajax(): if len(request.GET): major_plan_str = request.GET.get('major_plan').split('-') cno = request.GET.get('cno') ctype = request.GET.get('ctype') course = Course.objects.get(cno=cno, course_type=ctype) major_plan = MajorPlan.objects.get(year=major_plan_str[0], major__mno=major_plan_str[1]) major_course = MajorCourses.objects.get(cno=course, mno=major_plan) major_course.delete() return JsonResponse({}) # 管理员添加课程Course def adm_add_course(request): if request.is_ajax(): if len(request.GET): add_college = request.GET.get('add_college') cno = request.GET.get('cno') cname = request.GET.get('cname') ctype = request.GET.get('ctype') cscore = request.GET.get('cscore') college = College.objects.get(name=add_college) Course.objects.update_or_create(cno=cno, cname=cname, college=college, course_type=ctype, score=cscore) return JsonResponse({}) # 管理员修改课程Course def adm_change_course(request): if request.is_ajax(): if len(request.GET): cno = request.GET.get('cno') ctype = request.GET.get('ctype') n_op_college = request.GET.get('n_op_college') n_cno = request.GET.get('n_cno') n_cname = request.GET.get('n_cname') n_ctype = request.GET.get('n_ctype') n_cscore = request.GET.get('n_cscore') course = Course.objects.get(cno=cno, course_type=ctype) try: college = College.objects.get(name=n_op_college) course.college = college course.course_type = n_ctype course.cno = n_cno course.cname = n_cname course.score = n_cscore course.save() except College.DoesNotExist: return JsonResponse({"exception": '学院不存在'}) return JsonResponse({}) # 管理员删除课程Course def adm_delete_course(request): if request.is_ajax(): if len(request.GET): cno = request.GET.get('cno') ctype = request.GET.get('ctype') cname = request.GET.get('cname') try: course = Course.objects.get(cno=cno, course_type=ctype, cname=cname) course.delete() except Course.DoesNotExist: print(cno, ctype, cname) return JsonResponse({}) # 获取到老师教了并且排了的课 def get_all_course_selected(request): if request.session['user_type'] != '教师': return render(request, 'errors/403page.html') tno = request.session['username'] teacher = Teacher.objects.get(username=tno) this_year = datetime.now().year this_semester = get_semester(datetime.now().month) teaching_list = Teaching.objects.filter(tno=teacher, mcno__year=this_year, mcno__semester=this_semester) tch_sch_list = Teacher_Schedule_result.objects.filter(tno__in=teaching_list) all_year = [year[0] for year in teaching_list.values_list('mcno__year').distinct()] all_semester = [semester[0] for semester in teaching_list.values_list('mcno__semester').distinct()] context = { 'teaching_list': teaching_list, 'tch_sch_list': tch_sch_list, 'all_year': all_year, 'all_semester': all_semester, 'this_year': this_year, 'this_semester': this_semester, } return render(request, 'scoreManage/teacher_upload_score.html', context) def upload_student_score(request, tch_sch_id): tch_sch = Teacher_Schedule_result.objects.get(id=tch_sch_id) weight = tch_sch.tno.weight course_selected_list = CourseSelected.objects.filter(cno_id=tch_sch_id) context = { 'course_selected_list': course_selected_list, 'weight': weight, 'tch_sch': tch_sch_id, } return render(request, "scoreManage/tch_upload_score_detail.html", context) # 教师添加单个学生成绩 def tch_add_score(request): if request.is_ajax(): if len(request.GET): cs_id = request.GET.get('cs_id') com_score = float(request.GET.get('com_score')) fin_score = float(request.GET.get('fin_score')) weight = float(request.GET.get('weight')) cs = CourseSelected.objects.get(id=cs_id) cs.common_score = com_score cs.final_score = fin_score cs.score = com_score * (1 - weight) + fin_score * weight score = round(cs.score, 2) cs.is_finish = True cs.save() return JsonResponse({"score": score}) # 修改成绩权重 def tch_change_score_weight(request): if request.is_ajax(): if len(request.GET): old_weight = float(request.GET.get('old_weight')) final_weight = float(request.GET.get('final_weight')) tch_sch_id = request.GET.get('tch_sch_id') print(old_weight, final_weight) if old_weight == final_weight: return JsonResponse({"no_need": "yes"}) course_selected_list = CourseSelected.objects.filter(cno_id=tch_sch_id) course_selected_list[0].cno.tno.weight = final_weight course_selected_list[0].cno.tno.save() for c in course_selected_list: c.cno.tno.weight = final_weight c.cno.tno.save() c.score = c.common_score * (1 - final_weight) + c.final_score * final_weight c.save() return JsonResponse({"succ": "yes"}) # 处理批量上传的文件 @csrf_exempt def handle_batch_score(request): if request.method == 'POST': f = request.FILES.get('fileUpload') excel_data = pd.read_excel(f) excel_data.columns = excel_data.iloc[0] excel_data = excel_data.drop(0) tch_id = 0 try: for _, row in excel_data.iterrows(): cs_id, sno, comm, final, wei = row['编号'], row['学号'], row['平时分'], row['考试分'], row['考试权重'] cs = CourseSelected.objects.get(id=cs_id) tch_id = cs.cno_id cs.common_score = comm cs.final_score = final cs.score = comm * (1 - wei) + final * wei cs.is_finish = True cs.save() except: return render(request, "errors/500page.html") return redirect("scoreManagement:upload_student_score", tch_id)
38.699353
119
0.605408
760cd1e6d299c97d3889f21718bdfb6fbe4793fe
102
py
Python
skyjump/__main__.py
Akida31/skyjump
d51270ae9c67e213761a9bd294b2643912a205d5
[ "MIT" ]
null
null
null
skyjump/__main__.py
Akida31/skyjump
d51270ae9c67e213761a9bd294b2643912a205d5
[ "MIT" ]
null
null
null
skyjump/__main__.py
Akida31/skyjump
d51270ae9c67e213761a9bd294b2643912a205d5
[ "MIT" ]
null
null
null
""" entrypoint of the simple skyjump game """ from skyjump.game import Game game = Game() game.run()
12.75
37
0.705882
9b601b1abd013c3a71b7bf2ca36358c2010630b2
1,305
py
Python
create_plugin/create_plugin.py
you0708/volatility
f7f41705c015ee1bd92c729508e627118130953e
[ "Apache-2.0" ]
7
2018-05-19T00:27:11.000Z
2021-06-07T15:36:49.000Z
create_plugin/create_plugin.py
you0708/volatility
f7f41705c015ee1bd92c729508e627118130953e
[ "Apache-2.0" ]
null
null
null
create_plugin/create_plugin.py
you0708/volatility
f7f41705c015ee1bd92c729508e627118130953e
[ "Apache-2.0" ]
1
2021-06-07T15:36:50.000Z
2021-06-07T15:36:50.000Z
#!/usr/bin/env python import subprocess import os, sys import glob import argparse from collections import namedtuple PLUGIN_DIR = None TEMPLATE_FILE = 'malware_template.py' parser = argparse.ArgumentParser(description='Create initial Volatiliy plugin script for malware detection') parser.add_argument('MALWARE_NAME', help='Malware name') parser.add_argument('-o', '--outdir', action='store', dest='outdir', default=None, help='Specify output directory') args = parser.parse_args() def main(): Malware_Name = args.MALWARE_NAME MALWARE_NAME = args.MALWARE_NAME.upper() malware_name = args.MALWARE_NAME.lower() print('[*] initialize {}.py'.format(malware_name)) with open(TEMPLATE_FILE, 'rb') as fp: out_data = fp.read() out_data = out_data.replace('Malware_Name', Malware_Name) out_data = out_data.replace('MALWARE_NAME', MALWARE_NAME) out_data = out_data.replace('malware_name', malware_name) if args.outdir: out_file = args.outdir + '/' + malware_name + '.py' elif PLUGIN_DIR: out_file = PLUGIN_DIR + '/' + malware_name + '.py' else: out_file = './' + malware_name + '.py' with open(out_file, 'w') as fp: fp.write(out_data) print('[*] saved as {}'.format(out_file)) if __name__ == '__main__': main()
31.829268
115
0.689655
2df7784e18309b2f63c791a1f11b08e20ddfaae5
184
py
Python
FileOpt.py
zhongguohb2018/dytt_spider88
c85c14f5d274cfe585ecb9efa06e69446ea8d354
[ "Apache-2.0" ]
null
null
null
FileOpt.py
zhongguohb2018/dytt_spider88
c85c14f5d274cfe585ecb9efa06e69446ea8d354
[ "Apache-2.0" ]
null
null
null
FileOpt.py
zhongguohb2018/dytt_spider88
c85c14f5d274cfe585ecb9efa06e69446ea8d354
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- #FileOpt.py #文件操作 class FileOptBase: def __init__(self): print("FileOptBase_init") def FileOptPrint(self): print("FileOptBase")
15.333333
29
0.663043
53b33d122706f6d48844b0d787032374cddcc8ae
1,403
py
Python
tripleo_ansible/roles/tripleo_nvdimm/molecule/default/tests/test_default.py
smolar/tripleo-ansible
7bd37f019870c032bea71f22b305832932d81424
[ "Apache-2.0" ]
22
2018-08-29T12:33:15.000Z
2022-03-30T00:17:25.000Z
tripleo_ansible/roles/tripleo_nvdimm/molecule/default/tests/test_default.py
smolar/tripleo-ansible
7bd37f019870c032bea71f22b305832932d81424
[ "Apache-2.0" ]
1
2020-02-07T20:54:34.000Z
2020-02-07T20:54:34.000Z
tripleo_ansible/roles/tripleo_nvdimm/molecule/default/tests/test_default.py
smolar/tripleo-ansible
7bd37f019870c032bea71f22b305832932d81424
[ "Apache-2.0" ]
19
2019-07-16T04:42:00.000Z
2022-03-30T00:17:29.000Z
# Copyright 2020 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import json import pytest import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_ndctl_is_installed(host): ndctl = host.package("ndctl") assert ndctl.is_installed def test_namespace_is_created(host): if not host.check_output('lsmod | grep libnvdimm | cut -d " " -f 1'): pytest.skip("Skipping because this needs NVDIMM hardware") pmem_ns = os.environ['TRIPLEO_NVDIMM_PMEM_NAMESPACES'] ndctl_list_output = host.check_output('ndctl list') namespaces = {ns.get('name') for ns in json.loads(ndctl_list_output)} wanted_ns = [ns_name.split(':')[1] for ns_name in pmem_ns.split(',')] for ns in wanted_ns: assert ns in namespaces
34.219512
75
0.741269
724078238973707bd28bdf9f28779811754ff571
709
py
Python
contrib/seeds/makeseeds.py
BulcoinProject/BULC
3be8ab73cc1d7ba8dfd6190648ba462f34ffde9c
[ "MIT" ]
null
null
null
contrib/seeds/makeseeds.py
BulcoinProject/BULC
3be8ab73cc1d7ba8dfd6190648ba462f34ffde9c
[ "MIT" ]
null
null
null
contrib/seeds/makeseeds.py
BulcoinProject/BULC
3be8ab73cc1d7ba8dfd6190648ba462f34ffde9c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Generate pnSeed[] from Pieter's DNS seeder # NSEEDS=600 import re import sys from subprocess import check_output def main(): lines = sys.stdin.readlines() ips = [] pattern = re.compile(r"^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3}):50307") for line in lines: m = pattern.match(line) if m is None: continue ip = 0 for i in range(0,4): ip = ip + (int(m.group(i+1)) << (8*(i))) if ip == 0: continue ips.append(ip) for row in range(0, min(NSEEDS,len(ips)), 8): print " " + ", ".join([ "0x%08x"%i for i in ips[row:row+8] ]) + "," if __name__ == '__main__': main()
21.484848
78
0.509168
0c8671094dc4082f803cd673e34660a1b6b77dea
70
py
Python
samples/basic/hello.py
tsdking/pythonnote
197ef8f989ee8e880bd7f891b546b19ba1c6106d
[ "Apache-2.0" ]
null
null
null
samples/basic/hello.py
tsdking/pythonnote
197ef8f989ee8e880bd7f891b546b19ba1c6106d
[ "Apache-2.0" ]
null
null
null
samples/basic/hello.py
tsdking/pythonnote
197ef8f989ee8e880bd7f891b546b19ba1c6106d
[ "Apache-2.0" ]
1
2022-01-14T13:18:51.000Z
2022-01-14T13:18:51.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- print('Hello, world')
14
23
0.585714
7fd3d7dfb293f85eba82ba9fc3bfaffd9c316bf1
2,778
py
Python
setup.py
emedgene/smart_open
5f730f2e3b2167c9f00e6767c71b31de95af027f
[ "MIT" ]
null
null
null
setup.py
emedgene/smart_open
5f730f2e3b2167c9f00e6767c71b31de95af027f
[ "MIT" ]
null
null
null
setup.py
emedgene/smart_open
5f730f2e3b2167c9f00e6767c71b31de95af027f
[ "MIT" ]
1
2020-02-16T11:32:33.000Z
2020-02-16T11:32:33.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2015 Radim Rehurek <me@radimrehurek.com> # # This code is distributed under the terms and conditions # from the MIT License (MIT). import io import os import sys from setuptools import setup, find_packages def read(fname): return io.open(os.path.join(os.path.dirname(__file__), fname), encoding='utf-8').read() # # This code intentially duplicates a similar function in __init__.py. The # alternative would be to somehow import that module to access the function, # which would be too messy for a setup.py script. # def _get_version(): curr_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(curr_dir, 'smart_open', 'VERSION')) as fin: return fin.read().strip() tests_require = [ 'mock', 'moto==1.3.4', 'pathlib2', 'responses', # Temporary pin boto3 & botocore, because moto doesn't work with new version # See https://github.com/spulec/moto/issues/1793 and https://github.com/RaRe-Technologies/smart_open/issues/227 'boto3 < 1.8.0', # 'botocore < 1.11.0' # Not used directly but allows boto GCE plugins to load. # https://github.com/GoogleCloudPlatform/compute-image-packages/issues/262 'google-compute-engine==2.8.12' ] install_requires = [ 'boto >= 2.32', 'requests', 'boto3', ] if sys.version_info[0] == 2: install_requires.append('bz2file') setup( name='smart_open', version=_get_version(), description='Utils for streaming large files (S3, HDFS, gzip, bz2...)', long_description=read('README.rst'), packages=find_packages(), package_data={ "smart_open": ["VERSION"], "smart_open.tests": ["test_data/*gz"], }, author='Radim Rehurek', author_email='me@radimrehurek.com', maintainer='Radim Rehurek', maintainer_email='me@radimrehurek.com', url='https://github.com/piskvorky/smart_open', download_url='http://pypi.python.org/pypi/smart_open', keywords='file streaming, s3, hdfs', license='MIT', platforms='any', install_requires=install_requires, tests_require=tests_require, extras_require={ 'test': tests_require, }, test_suite="smart_open.tests", classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: System :: Distributed Computing', 'Topic :: Database :: Front-Ends', ], )
27.50495
115
0.651908
013440d89aa4768fef4e9b046491f19071c90238
1,331
py
Python
python/subscribe-to-send-grid/main.py
paarthchhabra/demos-for-functions
1794614ae22c11603ac4db3a76751d5d89b464cb
[ "MIT" ]
1
2022-01-31T18:17:56.000Z
2022-01-31T18:17:56.000Z
python/subscribe-to-send-grid/main.py
paarthchhabra/demos-for-functions
1794614ae22c11603ac4db3a76751d5d89b464cb
[ "MIT" ]
2
2022-03-11T08:32:38.000Z
2022-03-11T14:42:33.000Z
python/subscribe-to-send-grid/main.py
paarthchhabra/demos-for-functions
1794614ae22c11603ac4db3a76751d5d89b464cb
[ "MIT" ]
null
null
null
#Importing the required libraries import os import json import requests from appwrite.client import Client #Initialise the Appwrite Client SDK for Python client = Client() (client .set_endpoint(os.environ.get('APPWRITE_ENDPOINT')) #Your API Endpoint .set_project(os.environ.get('APPWRITE_FUNCTION_PROJECT_ID')) #Your Project ID available by default .set_key(os.environ.get('APPWRITE_API_KEY')) #Your secret API Key ) # #Initialise the Sendgrid Client SDK # sg = sendgrid.SendGridAPIClient(api_key=os.environ.get('SENDGRID_API_KEY')) #Your Sendgrid API Key # Get the name and email of the new user from Appwrite's Environment variables payload = json.loads(os.environ.get('APPWRITE_FUNCTION_DATA')) recipient_id = payload['email'] print('recipient id: ', recipient_id) list_id = os.environ.get('SENDGRID_LIST_ID') # The Newsletter ID to which the new user has to be added print('list id: ', list_id) url = "https://api.sendgrid.com/v3/marketing/contacts" data = { "list_ids": [ list_id ], "contacts": [ { "email": recipient_id, "custom_fields": {} } ] } headers = { 'authorization': "Bearer "+os.environ.get('SENDGRID_API_KEY'), 'content-type': "application/json" } response = requests.request("PUT", url, data=json.dumps(data), headers=headers) print(response.text)
25.596154
102
0.724267
70ecf56e2f208a8bd6c3126d0caf58a9e26725be
4,260
py
Python
dvc/utils/collections.py
Sayanta66/dvc
0d484d45f710b39c6baf541ac4d23aa983792aae
[ "Apache-2.0" ]
1
2021-07-20T05:33:18.000Z
2021-07-20T05:33:18.000Z
dvc/utils/collections.py
Sayanta66/dvc
0d484d45f710b39c6baf541ac4d23aa983792aae
[ "Apache-2.0" ]
null
null
null
dvc/utils/collections.py
Sayanta66/dvc
0d484d45f710b39c6baf541ac4d23aa983792aae
[ "Apache-2.0" ]
1
2021-08-05T07:15:30.000Z
2021-08-05T07:15:30.000Z
import inspect import os from collections.abc import Mapping from functools import wraps from typing import Callable, Dict, Iterable, List, TypeVar, Union from pygtrie import StringTrie as _StringTrie class PathStringTrie(_StringTrie): """Trie based on platform-dependent separator for pathname components.""" def __init__(self, *args, **kwargs): kwargs["separator"] = os.sep super().__init__(*args, **kwargs) def apply_diff(src, dest): """Recursively apply changes from src to dest. Preserves dest type and hidden info in dest structure, like ruamel.yaml leaves when parses files. This includes comments, ordering and line foldings. Used in Stage load/dump cycle to preserve comments and custom formatting. """ Seq = (list, tuple) Container = (Mapping, list, tuple) def is_same_type(a, b): return any( isinstance(a, t) and isinstance(b, t) for t in [str, Mapping, Seq, bool] ) if isinstance(src, Mapping) and isinstance(dest, Mapping): for key, value in src.items(): if isinstance(value, Container) and is_same_type( value, dest.get(key) ): apply_diff(value, dest[key]) elif key not in dest or value != dest[key]: dest[key] = value for key in set(dest) - set(src): del dest[key] elif isinstance(src, Seq) and isinstance(dest, Seq): if len(src) != len(dest): dest[:] = src else: for i, value in enumerate(src): if isinstance(value, Container) and is_same_type( value, dest[i] ): apply_diff(value, dest[i]) elif value != dest[i]: dest[i] = value else: raise AssertionError( "Can't apply diff from {} to {}".format( src.__class__.__name__, dest.__class__.__name__ ) ) def ensure_list(item: Union[Iterable[str], str, None]) -> List[str]: if item is None: return [] if isinstance(item, str): return [item] return list(item) _KT = TypeVar("_KT") _VT = TypeVar("_VT") def chunk_dict(d: Dict[_KT, _VT], size: int = 1) -> List[Dict[_KT, _VT]]: from funcy import chunks return [{key: d[key] for key in chunk} for chunk in chunks(size, d)] class _NamespacedDict(dict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.__dict__ = self def validate(*validators: Callable, post: bool = False): """ Validate and transform arguments and results from function calls. The validators functions are passed a dictionary of arguments, which supports dot notation access too. The key is derived from the function signature, and hence is the name of the argument, whereas the value is the one passed to the function (if it is not passed, default value from keyword arguments are provided). >>> def validator(args): ... assert args["l"] >= 0 and args.b >= 0 and args.h >= 0 >>> @validate(validator) ... def cuboid_area(l, b, h=1): ... return 2*(l*b + l*h + b*h) >>> cuboid_area(5, 20) 250 >>> cuboid_area(-1, -2) Traceback (most recent call last): ... AssertionError """ def wrapped(func: Callable): sig = inspect.signature(func) @wraps(func) def inner(*args, **kwargs): ba = sig.bind(*args, **kwargs) ba.apply_defaults() ba.arguments = _NamespacedDict(ba.arguments) if not post: for validator in validators: validator(ba.arguments) result = func(*ba.args, **ba.kwargs) if post: for validator in validators: result = validator(result) return result return inner return wrapped def nested_contains(dictionary: Dict, phrase: str) -> bool: for key, val in dictionary.items(): if key == phrase and val: return True if isinstance(val, dict): if nested_contains(val, phrase): return True return False
28.783784
77
0.585681
c75da67ca0c4ed0be023582392d5e5cbfb5bfe03
5,997
py
Python
extensions/information/user.py
kamfretoz/XJ9
b5daaf297dc538ae250f69ace16a4855c797e4e7
[ "WTFPL" ]
7
2022-01-26T13:31:17.000Z
2022-03-11T16:34:07.000Z
extensions/information/user.py
kamfretoz/XJ9
b5daaf297dc538ae250f69ace16a4855c797e4e7
[ "WTFPL" ]
null
null
null
extensions/information/user.py
kamfretoz/XJ9
b5daaf297dc538ae250f69ace16a4855c797e4e7
[ "WTFPL" ]
2
2022-01-26T06:05:44.000Z
2022-03-07T18:48:32.000Z
from datetime import datetime from lightbulb.ext import filament import hikari import lightbulb user_plugin = lightbulb.Plugin("user", "User lookup commands") @user_plugin.command @lightbulb.option("target", "The member to get information about.", hikari.Member, required=False) @lightbulb.command("memberinfo", "Get info on a server member.", aliases=["mi","profile","minfo"], ephemeral=True, auto_defer=True) @lightbulb.implements(lightbulb.PrefixCommand, lightbulb.SlashCommand) @filament.utils.pass_options async def member_info(ctx: lightbulb.Context, target) -> None: target = ctx.get_guild().get_member(target or ctx.user) if not target: await ctx.respond("That user is not in the server, use the userinfo command instead.") return created_at = int(target.created_at.timestamp()) joined_at = int(target.joined_at.timestamp()) roles = (await target.fetch_roles())[1:] # All but @everyone emb = hikari.Embed( title=f"User Info - {target.display_name}", description=f"ID: `{target.id}`", colour=target.accent_color, timestamp=datetime.now().astimezone(), ) emb.set_footer( text=f"Requested by {ctx.member.display_name}", icon=ctx.member.avatar_url or ctx.member.default_avatar_url, ) emb.set_thumbnail(target.avatar_url or target.default_avatar_url) emb.add_field( "Bot?", str(target.is_bot), inline=False, ) emb.add_field( "Created account on", f"<t:{created_at}:d>\n(<t:{created_at}:R>)", inline=False, ) emb.add_field( "Joined server on", f"<t:{joined_at}:d>\n(<t:{joined_at}:R>)", inline=False, ) emb.add_field( "Roles", ", ".join(r.mention for r in roles) or "No Roles.", inline=False, ) emb.add_field( "Mention", target.mention, inline=False ) await ctx.respond(emb) @user_plugin.command @lightbulb.option("user", "The member to get information about.", hikari.User, required=False) @lightbulb.command("userinfo", "Get info on any user", aliases=["ui","uprofile","uinfo"], ephemeral=True, auto_defer=True) @lightbulb.implements(lightbulb.PrefixCommand, lightbulb.SlashCommand) @filament.utils.pass_options async def user_info(ctx: lightbulb.Context, user) -> None: target = await ctx.bot.rest.fetch_user(user = user or ctx.user) if not target: await ctx.respond("Cannot find that user.") return created_at = int(target.created_at.timestamp()) emb = hikari.Embed( title=f"User Info - {target}", description=f"ID: `{target.id}`", colour=target.accent_color, timestamp=datetime.now().astimezone(), ) emb.add_field(name="Is bot?", value=target.is_bot, inline=False) emb.set_thumbnail(target.avatar_url or target.default_avatar_url) if target.banner_url: emb.set_image(target.banner_url) emb.add_field( "Created account on", f"<t:{created_at}:d>\n(<t:{created_at}:R>)", inline=False, ) emb.add_field(name="Mention", value=target.mention, inline=False) await ctx.respond(embed=emb) @user_plugin.command @lightbulb.add_cooldown(3, 3, lightbulb.UserBucket) @lightbulb.option("target", "The member to get the banner.", hikari.User, required=False) @lightbulb.command("banner", "Get a member's banner.", auto_defer = True, ephemeral = True) @lightbulb.implements(lightbulb.PrefixCommand, lightbulb.SlashCommand) @filament.utils.pass_options async def user_banner(ctx: lightbulb.Context, target: hikari.User): """Show the banner of a user, if any""" target = await ctx.bot.rest.fetch_user(target or ctx.user) if not target: await ctx.respond("That user is not in the server.") return banner = target.banner_url # If statement because the user may not have a banner if banner: bnr = hikari.Embed( description=f"**{target.mention}**'s Banner", title="Banner Viewer", color=target.accent_colour, timestamp=datetime.now().astimezone(), ) bnr.set_image(banner) await ctx.respond(embed=bnr) else: await ctx.respond(embed=hikari.Embed(description="This User has no banner set.")) @user_plugin.command @lightbulb.option("server", "Get the server avatar instead?", bool, required = False, default = False) @lightbulb.option("target", "The member to get the avatar.", hikari.User , required=False) @lightbulb.command("avatar", "Get a member's avatar.", auto_defer=True, aliases=["pp", "pfp","ava","icon"], ephemeral=True) @lightbulb.implements(lightbulb.PrefixCommand, lightbulb.SlashCommand) @filament.utils.pass_options async def user_avatar(ctx: lightbulb.Context, target: hikari.User, server: bool): """Show avatar of a user, if any""" target = await ctx.bot.rest.fetch_user(target or ctx.user) if not target: await ctx.respond("That user is not in the server.") return if server: try: pfp = target.guild_avatar_url except AttributeError: return await ctx.respond("That user doesn't have server-specific avatar.") else: pfp = target.avatar_url or target.default_avatar_url # If statement because the user may not have a custom avatar if pfp: ava = hikari.Embed( description=f"**{target.mention}**'s Avatar", title="Avatar Viewer", color=target.accent_colour, timestamp=datetime.now().astimezone(), ) ava.set_image(pfp) await ctx.respond(embed=ava) else: await ctx.respond(embed=hikari.Embed(description="This User has no avatar set.")) def load(bot) -> None: bot.add_plugin(user_plugin) def unload(bot) -> None: bot.remove_plugin(user_plugin)
36.791411
131
0.653327
a37dd584f8b3ad912e49fc84a98c4a958da3054a
4,844
py
Python
RecoTauTag/TauTagTools/test/training/training_control_plots.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
RecoTauTag/TauTagTools/test/training/training_control_plots.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
RecoTauTag/TauTagTools/test/training/training_control_plots.py
pasmuss/cmssw
566f40c323beef46134485a45ea53349f59ae534
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import sys import re import os input_file = sys.argv[1] output_dir = sys.argv[2] sys.argv[:] = [] if not os.path.exists(output_dir): os.makedirs(output_dir) import ROOT ROOT.gROOT.SetBatch(True) ROOT.gROOT.SetStyle("Plain") ROOT.gStyle.SetPalette(1) def get_by_type(directory, type): for key in directory.GetListOfKeys(): object = key.ReadObj() if isinstance(object, type): yield object def gini_index(signal, background): signal_integral = signal.GetIntegral() background_integral = background.GetIntegral() total = signal.Integral() + background.Integral() linear = ROOT.TGraph(signal.GetNbinsX()+1) signal_fraction = ROOT.TGraph(signal.GetNbinsX()+1) for ibin in range(0, signal.GetNbinsX()+1): total_fraction_of_sample = ( signal_integral[ibin] + background_integral[ibin])/2.0 linear.SetPoint( ibin, total_fraction_of_sample, total_fraction_of_sample) total_fraction_of_signal = signal_integral[ibin] signal_fraction.SetPoint( ibin, total_fraction_of_sample, total_fraction_of_signal) return 0.5-signal_fraction.Integral() colors = { 'Signal' : ROOT.EColor.kRed, 'Background' : ROOT.EColor.kBlue, } if __name__ == "__main__": # Exit gracefully if not os.path.exists(input_file): print "WARNING: no training control plot .root file found!" sys.exit(0) file = ROOT.TFile(input_file) correlation_canvas = ROOT.TCanvas("corr", "corr", 2000, 1000) correlation_canvas.Divide(2) signal_correlation = file.Get("CorrelationMatrixS") background_correlation = file.Get("CorrelationMatrixB") background_correlation.SetMarkerColor(ROOT.EColor.kBlack) for index, plot in enumerate([signal_correlation, background_correlation]): correlation_canvas.cd(index+1) plot.SetMarkerColor(ROOT.EColor.kBlack) plot.Draw("col") plot.Draw("text, same") plot.GetXaxis().SetLabelSize(0.03) plot.GetYaxis().SetLabelSize(0.03) ROOT.gPad.SetMargin(0.2, 0.1, 0.2, 0.1) correlation_canvas.SaveAs(os.path.join( output_dir, "correlations.png")) method_canvas = ROOT.TCanvas("method", "method", 800, 800) method_canvas.cd() # Find the MVA result directory for method_dir in [dir for dir in get_by_type(file, ROOT.TDirectory) if 'Method_' in dir.GetName()]: method_canvas.SetLogy(False) # Strip prefix method_type = method_dir.GetName().replace('Method_', '') print method_type result_dir = method_dir.Get(method_type) signal_mva_out = result_dir.Get("MVA_%s_S" % method_type) background_mva_out = result_dir.Get("MVA_%s_B" % method_type) signal_mva_out.SetLineColor(colors['Signal']) background_mva_out.SetLineColor(colors['Background']) stack = ROOT.THStack("stack", "MVA Output") stack.Add(signal_mva_out, "HIST") stack.Add(background_mva_out, "HIST") stack.Draw("nostack") method_canvas.SaveAs(os.path.join( output_dir, "%s_mva_output.png" % method_type)) perf_curve = result_dir.Get("MVA_%s_effBvsS" % method_type) perf_curve.Draw() perf_curve.SetMinimum(1e-4) method_canvas.SetLogy(True) method_canvas.SaveAs(os.path.join(output_dir, "%s_performance.png" % method_type)) input_var_dir = file.Get("InputVariables_NoTransform") if not input_var_dir: input_var_dir = file.Get("InputVariables_Id") matcher = re.compile("(?P<name>[^_]*)__(?P<type>[A-Za-z0-9]*)_Id") input_distributions = {} for histo in get_by_type(input_var_dir, ROOT.TH1F): rawname = histo.GetName() match = matcher.match(rawname) name = match.group('name') type = match.group('type') histo.Scale(1.0/histo.Integral()) histo.SetLineColor(colors[type]) histo_info = input_distributions.setdefault(name, {}) histo_info[type] = histo variable_canvas = ROOT.TCanvas("var", "var", 1000, 1000) for variable, histograms in input_distributions.iteritems(): maximum = max(histograms[type].GetMaximum() for type in ['Signal', 'Background']) for type in ['Signal', 'Background']: histograms[type].SetLineWidth(2) # Tgraph integral not in ROOT 5.27? gini = gini_index(histograms['Signal'], histograms['Background']) histograms['Signal'].SetMaximum(1.2*maximum) histograms['Signal'].SetTitle(variable + " gini: %0.2f" % gini) histograms['Signal'].Draw() histograms['Background'].Draw('same') variable_canvas.SaveAs(os.path.join( output_dir, variable + ".png"))
36.69697
79
0.655656
e2a929c10517315c0dc12d94a7c27f71db0d5e6b
1,602
py
Python
content_bruter.py
n1cfury/BlackHatPython
26f6e9bce7e13879f0c2d9760d210c222d5e9e3a
[ "MIT" ]
10
2018-08-14T22:28:07.000Z
2020-10-23T16:21:48.000Z
content_bruter.py
n1cfury/BlackHatPython
26f6e9bce7e13879f0c2d9760d210c222d5e9e3a
[ "MIT" ]
1
2018-08-01T05:45:53.000Z
2018-08-01T05:47:45.000Z
content_bruter.py
n1cfury/BlackHatPython
26f6e9bce7e13879f0c2d9760d210c222d5e9e3a
[ "MIT" ]
4
2018-05-18T08:46:29.000Z
2020-05-07T03:28:03.000Z
import urllib2, threading, Queue, urllib threads = 50 target_url = "http://testphp.vulnweb.com" wordlist_file = "/tmp/all.txt" #from SVNDigger resume = None user_agent = "Mozilla/5.0 (X11; Linux x86_64; rv:19.0) Gecko/ 20100101 Firefox/19.0" def banner(): print "[***] Directory Brute Force p67 [***]" def build_wordlist(wordlist_file): fd - open(wordlist_file, "rb") raw_words = df.readlines() fd.close() found_resume = False words = Queue.Queue() for word in raw_words: word = word.rstrip() if resume is not None: if found_resume: words.put(word) else: if word == reusme: found_resume = True print "Resuming wordlist from: %s" % resume else: words.put(word) return words def dir_bruter(word_queue, extensions=None): while not word_queue.empty(): attempt = word+queue.get() attempt_list=[] if "." not in attempt: attempt_list.append("/%s/" %attempt) else: attempt_list.append("/%s" %attempt) if extensions: for extension in extensions: attempt_list.append("/%s%s" % (attempt, extension)) for brute in attempt_list: url = "%s%s" % (target_url, urllib.quote(brute)) try: headers = {} headers["User-Agent"] = user_agent r = urllib2.Request(url, headers=headers) response = urllib2.urlopen(r) if len(response.read()): print "[%d] => %s" % (resposne.code, url) except urllib2.URLError, e: if hasattr(e, 'code') and e.code != 404: print "!!! %d => %s" % (response.code, url) pass def main(): banner() dir_bruter(word_queue, extensions=None) if __name__ == '__main__': main()
26.262295
84
0.654806
5adc86a52bcf2b64cb53e0bf9d1951cec1b54bde
175
py
Python
turbustat/tests/setup_package.py
CFD-UTSA/Turbulence-stars
354d02e38d15e3b0d1f751b43f430dbd3a14c250
[ "MIT" ]
42
2016-04-07T20:49:59.000Z
2022-03-28T12:54:13.000Z
turbustat/tests/setup_package.py
CFD-UTSA/Turbulence-stars
354d02e38d15e3b0d1f751b43f430dbd3a14c250
[ "MIT" ]
131
2015-03-05T21:42:27.000Z
2021-07-22T14:59:04.000Z
turbustat/tests/setup_package.py
CFD-UTSA/Turbulence-stars
354d02e38d15e3b0d1f751b43f430dbd3a14c250
[ "MIT" ]
21
2015-06-10T17:10:06.000Z
2022-02-28T15:59:42.000Z
def get_package_data(): return { _ASTROPY_PACKAGE_NAME_ + '.tests': ['data/*.fits', 'data/*.npz', 'coveragerc'] }
25
72
0.44
de6b16cc981079b5bbfe45ba3d44ce5f61318ece
33,782
py
Python
fairseq/data/multilingual/multilingual_data_manager.py
ypsoh/fairseq
578ee3d456034f12af13e446bba9447844374356
[ "MIT" ]
651
2015-03-14T23:18:44.000Z
2022-01-19T14:08:28.000Z
fairseq/data/multilingual/multilingual_data_manager.py
ypsoh/fairseq
578ee3d456034f12af13e446bba9447844374356
[ "MIT" ]
362
2015-01-26T16:20:28.000Z
2022-01-26T06:19:23.000Z
fairseq/data/multilingual/multilingual_data_manager.py
ypsoh/fairseq
578ee3d456034f12af13e446bba9447844374356
[ "MIT" ]
169
2015-09-28T17:06:28.000Z
2021-12-18T16:02:49.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os import numpy as np from collections import OrderedDict import json from fairseq import options from fairseq.options import eval_str_dict, csv_str_list from fairseq.data import ( Dictionary, AppendTokenDataset, ConcatDataset, data_utils, indexed_dataset, LanguagePairDataset, PrependTokenDataset, StripTokenDataset, TruncateDataset, SampledMultiDataset, TransformEosLangPairDataset, SampledMultiEpochDataset, ) from fairseq.data.multilingual.sampled_multi_dataset import CollateFormat from fairseq.file_io import PathManager logger = logging.getLogger(__name__) def _lang_token(lang: str, style='__{}__'): return style.format(lang) def _lang_token_index(dic: Dictionary, lang: str, style='__{}__'): """Return language token index.""" idx = dic.index(_lang_token(lang, style)) assert idx != dic.unk_index, \ 'cannot find language token for lang {}'.format(lang) return idx def _lang_id(dic: Dictionary, lang: str): """Return language ID index.""" idx = dic.index(lang) assert idx != dic.unk_index, \ 'cannot find language ID for lang {}'.format(lang) return idx def load_sampling_weights(from_file): with open(from_file) as f: weights = json.load(f) return weights class MultilingualDatasetManager(object): def __init__(self, args, lang_pairs, langs, dicts, sampling_method): super().__init__() self.args = args self.seed = args.seed self.lang_pairs = lang_pairs self.langs = langs self.dicts = dicts self.lang_dict = self.create_lang_dictionary(self.langs) self.sampling_method = sampling_method self.sampling_scheduler = None self._has_sharded_data = False self._num_shards = {} @classmethod def setup_data_manager(cls, args, lang_pairs, langs, dicts, sampling_method): return MultilingualDatasetManager(args, lang_pairs, langs, dicts, sampling_method) @staticmethod def add_args(parser): parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner') parser.add_argument('--lang-dict', default=None, type=str, help='language dictionary path with a list of ' 'languages which can appear in lang-pairs') parser.add_argument('--lang-tok-style', default='multilingual', type=str, choices=['multilingual', 'mbart'], help='language token styles') parser.add_argument('--load-alignments', action='store_true', help='load the binarized alignments') parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL', help='pad the source on the left') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--truncate-source', action='store_true', default=False, help='truncate source to max-source-positions') parser.add_argument('--encoder-langtok', default=None, type=str, choices=['src', 'tgt'], metavar='SRCTGT', help='prepend to the beginning of source sentence the source or target ' 'language token. (src/tgt)') parser.add_argument('--decoder-langtok', action='store_true', help='prepend to the beginning of target sentence the target language token') parser.add_argument('--lang-tok-replacing-bos-eos', action='store_true', default=False) parser.add_argument('--enable-lang-ids', default=False, action='store_true', help='whether to include language IDs in samples') parser.add_argument('--enable-reservsed-directions-shared-datasets', default=False, action='store_true', help='whether to allow datasets be used in reversed directions') parser.add_argument('--extra-data', help='a dictionary of data name to this path, \ e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}', type=lambda uf: eval_str_dict(uf, type=str), default=None) parser.add_argument('--extra-lang-pairs', help='a dictionary of data name to the language pairs they serve, \ e.g. {"mined": comma-separated-lang-pairs, "denoised": comma-separated-lang-pairs}', type=lambda uf: eval_str_dict(uf, type=str), default=None) parser.add_argument('--langtoks-specs', help='a list of comma separated data types that a set of language tokens to be specialized for, \ e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to \ distinguish languages in different training data types. If not specified, default language \ tokens per languages will be added', default='main', type=csv_str_list, ) parser.add_argument('--langtoks', help='a dictionary of how to add language tokens, \ e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main": \ ("src", "tgt")}, or {"mined": ("src.mined", "tgt")}', default=None, type=lambda uf: eval_str_dict(uf, type=str), ) parser.add_argument('--sampling-weights-from-file', help='a file contain a python dictionary of how to sample data sets, \ e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \ "mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }', default=None, type=str, ) parser.add_argument('--sampling-weights', help='a dictionary of how to sample data sets, \ e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \ "mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }', default=None, type=lambda uf: eval_str_dict(uf, type=str), ) parser.add_argument('--virtual-epoch-size', default=1000000, type=int, help='virtual epoch size to speed up data loading') parser.add_argument('--virtual-data-size', default=None, type=int, help='virtual data size of the whole joint dataset to speed' 'up data loading and have specific dynamic sampling strategy interval') @classmethod def load_langs(cls, args, **kwargs): if args.lang_dict is None: logger.warning( 'External language dictionary is not provided; ' 'use lang-pairs to infer the set of supported languages. ' 'The language ordering is not stable which might cause ' 'misalignment in pretraining and finetuning.') # infer from lang_pairs as it is langs = list({x for lang_pair in args.lang_pairs for x in lang_pair.split('-')}) langs = sorted(langs) logger.info(f'inferred language list: {langs}') else: with PathManager.open(args.lang_dict, "r", encoding="utf-8") as f: langs = [lang.strip() for lang in f.readlines() if lang.strip()] logger.info(f'loaded language list from {args.lang_dict} as they are ordered in file') return langs def has_sharded_data(self, split): return split == 'train' and self._has_sharded_data def _shared_collater(self): return ( not (self.args.extra_data and 'mono_dae' in self.args.extra_data) and (not self.args.lang_tok_replacing_bos_eos) ) @classmethod def prepare(cls, load_dictionary, args, **kargs): args.left_pad_source = options.eval_bool(args.left_pad_source) args.left_pad_target = options.eval_bool(args.left_pad_target) if not hasattr(args, 'shuffle_instance'): args.shuffle_instance = False if args.langtoks is None: args.langtoks = {} if 'main' not in args.langtoks: src_langtok_spec = args.encoder_langtok if args.encoder_langtok else None tgt_langtok_spec = 'tgt' if args.decoder_langtok else None args.langtoks['main'] = (src_langtok_spec, tgt_langtok_spec) def check_langs(langs, pairs): messages = [] for src, tgt in pairs: if src not in langs or tgt not in langs: messages.append(f'language pair {src}-{tgt} contains languages ' 'that are not in the language dictionary') if len(messages) > 0: raise ValueError(' '.join(messages) + f"; langs: {langs}") if args.lang_pairs is None: raise ValueError('--lang-pairs is required. List all the language pairs in the training objective.') if isinstance(args.lang_pairs, str): args.lang_pairs = args.lang_pairs.split(',') if args.source_lang is not None or args.target_lang is not None: training = False else: training = True sorted_langs = cls.load_langs(args, **kargs) check_langs( sorted_langs, ([p.split('-') for p in args.lang_pairs] if training else [(args.source_lang, args.target_lang)]) ) # load dictionaries if training: extra_lang_pairs = ( list({p for _, v in args.extra_lang_pairs.items() for p in v.split(',')}) if args.extra_lang_pairs else [] ) langs_to_load_dicts = sorted({x for p in args.lang_pairs + extra_lang_pairs for x in p.split('-')}) else: langs_to_load_dicts = sorted([args.source_lang, args.target_lang]) dicts = OrderedDict() supported_langtok_specs = args.langtoks_specs for lang in langs_to_load_dicts: paths = args.data.split(os.pathsep) assert len(paths) > 0 dicts[lang] = load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(lang))) if len(dicts) > 0: assert dicts[lang].pad() == dicts[langs_to_load_dicts[0]].pad() assert dicts[lang].eos() == dicts[langs_to_load_dicts[0]].eos() assert dicts[lang].unk() == dicts[langs_to_load_dicts[0]].unk() # keep the langs consistent for all experiments with the same lang dict # for finetuning regardless of whether lang_tok is required or not just add the tokens to the dicts for spec in supported_langtok_specs: for lang_to_add in sorted_langs: dicts[lang].add_symbol( MultilingualDatasetManager.get_lang_tok(lang_to_add, args, spec) ) if args.lang_tok_style == 'mbart' or (args.extra_data and 'mono_dae' in args.extra_data): dicts[lang].add_symbol('<mask>') logger.info('[{}] dictionary: {} types'.format(lang, len(dicts[lang]))) return sorted_langs, dicts, training TOKEN_STYLES = { 'mbart': '[{}]', 'multilingual': '__{}__' } @classmethod def create_lang_dictionary(cls, langs): unk = '<unk>' # hack to remove symbols other than unk as they are not needed by lang dict lang_dict = Dictionary( pad=unk, eos=unk, unk=unk, bos=unk, ) for lang in langs: lang_dict.add_symbol(lang) return lang_dict @classmethod def get_lang_tok_style(cls, args): return cls.TOKEN_STYLES[args.lang_tok_style] @classmethod def get_lang_tok(cls, lang, args, spec=''): if spec is None: return None if spec.endswith('dae'): lang = f'{lang}_dae' elif spec.endswith('mined'): lang = f'{lang}_mined' return _lang_token(lang, cls.get_lang_tok_style(args)) @classmethod def get_langtok_index(cls, lang_tok, dic): idx = dic.index(lang_tok) assert idx != dic.unk_index, \ 'cannot find language token {} in the dictionary'.format(lang_tok) return idx def get_encoder_langtok(self, src_lang, tgt_lang, spec=None): if spec is None: return None if spec and spec.startswith('src'): if src_lang is None: return None langtok = self.get_lang_tok(src_lang, self.args, spec) else: if tgt_lang is None: return None langtok = self.get_lang_tok(tgt_lang, self.args, spec) return self.get_langtok_index(langtok, self.dicts[src_lang if src_lang else tgt_lang]) def get_decoder_langtok(self, tgt_lang, spec=None): if spec is None: return None langtok = self.get_lang_tok(tgt_lang, self.args, spec) return self.get_langtok_index(langtok, self.dicts[tgt_lang]) @classmethod def load_data(cls, path, vdict, impl): dataset = data_utils.load_indexed_dataset(path, vdict, impl) return dataset @classmethod def split_exists(cls, split, src, tgt, lang, data_path, dataset_impl): filename = os.path.join(data_path, '{}.{}-{}.{}'.format(split, src, tgt, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) @classmethod def mono_split_exists(cls, split, lang, data_path, dataset_impl): filename = os.path.join(data_path, '{}.{}'.format(split, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) def load_lang_dataset( self, data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, max_source_positions, prepend_bos=False, load_alignments=False, truncate_source=False, ): src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') # infer langcode if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl): prefix = os.path.join(data_path, '{}.{}-{}.'.format(split_k, src, tgt)) elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl): prefix = os.path.join(data_path, '{}.{}-{}.'.format(split_k, tgt, src)) else: if k > 0: break else: logger.error(f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}") raise FileNotFoundError('Dataset not found: {} ({})'.format(split, data_path)) src_dataset = self.load_data(prefix + src, src_dict, dataset_impl) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_datasets.append( self.load_data(prefix + tgt, tgt_dict, dataset_impl) ) logger.info('{} {} {}-{} {} examples'.format( data_path, split_k, src, tgt, len(src_datasets[-1]) )) if not combine: break assert len(src_datasets) == len(tgt_datasets) if len(src_datasets) == 1: src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0] else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) align_dataset = None if load_alignments: align_path = os.path.join(data_path, '{}.align.{}-{}'.format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset(align_path, None, dataset_impl) return src_dataset, tgt_dataset, align_dataset def load_langpair_dataset( self, data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos=False, load_alignments=False, truncate_source=False, src_dataset_transform_func=lambda dataset: dataset, tgt_dataset_transform_func=lambda dataset: dataset, src_lang_id=None, tgt_lang_id=None, langpairs_sharing_datasets=None, ): if langpairs_sharing_datasets is not None: src_dataset = langpairs_sharing_datasets.get((data_path, split, src), 'NotInCache') tgt_dataset = langpairs_sharing_datasets.get((data_path, split, tgt), 'NotInCache') align_dataset = langpairs_sharing_datasets.get((data_path, split, src, tgt), 'NotInCache') # a hack: any one is not in cache, we need to reload them if ( langpairs_sharing_datasets is None or src_dataset == 'NotInCache' or tgt_dataset == 'NotInCache' or align_dataset == 'NotInCache' or split != 'train' ): # source and target datasets can be reused in reversed directions to save memory # reversed directions of valid and test data will not share source and target datasets src_dataset, tgt_dataset, align_dataset = self.load_lang_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, max_source_positions=max_source_positions, prepend_bos=prepend_bos, load_alignments=load_alignments, truncate_source=truncate_source, ) src_dataset = src_dataset_transform_func(src_dataset) tgt_dataset = tgt_dataset_transform_func(tgt_dataset) if langpairs_sharing_datasets is not None: langpairs_sharing_datasets[(data_path, split, src)] = src_dataset langpairs_sharing_datasets[(data_path, split, tgt)] = tgt_dataset langpairs_sharing_datasets[(data_path, split, src, tgt)] = align_dataset return LanguagePairDataset( src_dataset, src_dataset.sizes, src_dict, tgt_dataset, tgt_dataset.sizes, tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, align_dataset=align_dataset, src_lang_id=src_lang_id, tgt_lang_id=tgt_lang_id, ) def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None): if self.args.lang_tok_replacing_bos_eos: # it is handled by self.alter_dataset_langtok # TODO: Unifiy with alter_dataset_langtok return dataset if spec is None: return dataset tok = self.get_encoder_langtok(src_lang, tgt_lang, spec) if tok: return PrependTokenDataset(dataset, tok) return dataset def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None): if self.args.lang_tok_replacing_bos_eos: # TODO: Unifiy with alter_dataset_langtok # It is handled by self.alter_dataset_langtok. # The complication in self.alter_dataset_langtok # makes a unified framework difficult. return dataset # if not self.args.decoder_langtok: if not spec: return dataset tok = self.get_decoder_langtok(target_lang, spec) if tok: return PrependTokenDataset(dataset, tok) return dataset def alter_dataset_langtok(self, lang_pair_dataset, src_eos=None, src_lang=None, tgt_eos=None, tgt_lang=None, src_langtok_spec=None, tgt_langtok_spec=None, ): if src_langtok_spec is None and tgt_langtok_spec is None: return lang_pair_dataset new_src_eos = None if src_langtok_spec is not None and src_eos is not None \ and (src_lang is not None or tgt_lang is not None): new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang, src_langtok_spec) else: src_eos = None new_tgt_bos = None if tgt_langtok_spec and tgt_eos is not None and tgt_lang is not None: new_tgt_bos = self.get_decoder_langtok(tgt_lang, tgt_langtok_spec) else: tgt_eos = None return TransformEosLangPairDataset( lang_pair_dataset, src_eos=src_eos, new_src_eos=new_src_eos, tgt_bos=tgt_eos, new_tgt_bos=new_tgt_bos, ) def load_a_dataset( self, split, data_path, src, src_dict, tgt, tgt_dict, combine, prepend_bos=False, langpairs_sharing_datasets=None, data_category=None, **extra_kwargs, ): dataset_impl = self.args.dataset_impl upsample_primary = self.args.upsample_primary left_pad_source = self.args.left_pad_source left_pad_target = self.args.left_pad_target max_source_positions = self.args.max_source_positions max_target_positions = self.args.max_target_positions load_alignments = self.args.load_alignments truncate_source = self.args.truncate_source src_dataset_transform_func = self.src_dataset_tranform_func tgt_dataset_transform_func = self.tgt_dataset_tranform_func enable_lang_ids = self.args.enable_lang_ids lang_dictionary = self.lang_dict src_langtok_spec, tgt_langtok_spec = extra_kwargs['langtok_spec'] src_langtok = self.get_encoder_langtok(src, tgt, src_langtok_spec) tgt_langtok = self.get_decoder_langtok(tgt, tgt_langtok_spec) logger.info(f'{data_category}:{src}-{tgt} src_langtok: {src_langtok}; tgt_langtok: {tgt_langtok}') langpair_ds = self.load_langpair_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos, load_alignments, truncate_source, src_dataset_transform_func=lambda dataset: src_dataset_transform_func(src, tgt, dataset, src_langtok_spec), tgt_dataset_transform_func=lambda dataset: tgt_dataset_transform_func(src, tgt, dataset, tgt_langtok_spec), src_lang_id=_lang_id(lang_dictionary, src) if enable_lang_ids and lang_dictionary is not None else None, tgt_lang_id=_lang_id(lang_dictionary, tgt) if enable_lang_ids and lang_dictionary is not None else None, langpairs_sharing_datasets=langpairs_sharing_datasets, ) if langpair_ds.tgt_sizes is None: # hack to use src_sizes as the sizes for the whole pair dataset for ConcatDataset langpair_ds.sizes = langpair_ds.src_sizes else: # use the max of two sides to define the size to help max positions filtering langpair_ds.sizes = np.vstack([langpair_ds.src_sizes, langpair_ds.tgt_sizes]).max(axis=0) assert langpair_ds.sizes.shape == langpair_ds.src_sizes.shape # TODO: handle modified lang toks for mined data and dae data if self.args.lang_tok_replacing_bos_eos: ds = self.alter_dataset_langtok( langpair_ds, src_eos=self.dicts[src if src else tgt].eos(), src_lang=src, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, src_langtok_spec=src_langtok_spec, tgt_langtok_spec=tgt_langtok_spec, ) else: ds = langpair_ds return ds def load_split_langpair_datasets( self, split, data_param_list, ): datasets = [] langpairs_sharing_datasets = {} if self.args.enable_reservsed_directions_shared_datasets else None for param in data_param_list: ds = self.load_a_dataset(split=split, langpairs_sharing_datasets=langpairs_sharing_datasets, **param) datasets.append(ds) return datasets def get_data_paths_and_lang_pairs(self, split): datapaths = { 'main': self.args.data, } lang_pairs = { 'main': self.lang_pairs } if split == 'train': # only training data can have extra data and extra language pairs if self.args.extra_data: extra_datapaths = self.args.extra_data datapaths.update(extra_datapaths) if self.args.extra_lang_pairs: extra_lang_pairs = {k: v.split(',') for k, v in self.args.extra_lang_pairs.items()} lang_pairs.update(extra_lang_pairs) return datapaths, lang_pairs def get_split_data_param_list(self, split, epoch, shard_epoch=None): def get_epoch(epoch, shard_epoch): return epoch if shard_epoch is None else shard_epoch # TODO: to extend with extra datasets and keys and loop over different shard data paths param_list = [] data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split) logger.info(f'langtoks settings: {self.args.langtoks}') for data_category, paths in data_paths.items(): if data_category not in lang_pairs: continue # paths = self.args.data.split(os.pathsep) paths = paths.split(os.pathsep) assert len(paths) > 0 if len(paths) > 1: self._has_sharded_data = True self._num_shards[data_category] = len(paths) # epoch starts with 1 now: data_path = paths[(get_epoch(epoch, shard_epoch) - 1) % len(paths)] if data_category in self.args.langtoks: lang_tok_spec = self.args.langtoks[data_category] else: # default to None lang_tok_spec = (None, None) # infer langcode lang_dirs = [lang_pair.split('-') for lang_pair in lang_pairs[data_category]] lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs] for src, tgt in lang_dirs: assert src is not None or data_category == 'mono_dae', (f'error: src={src}, ' 'tgt={tgt} for data_category={data_category}') # logger.info(f"preparing param for {data_category}: {src} - {tgt}") param_list.append( { 'key': f'{data_category}:{src}-{tgt}', 'data_path': data_path, 'split': split, 'src': src, 'src_dict': self.dicts[src] if src and data_category != 'mono_dae' else None, 'tgt': tgt, 'tgt_dict': self.dicts[tgt], 'data_category': data_category, 'langtok_spec': lang_tok_spec, } ) return param_list def get_train_sampling_ratios(self, datasets, epoch=1): data_sizes = [len(d) for _, d in datasets] sampling_func = self.sampling_method.sampling_method_selector() sample_ratios = sampling_func(data_sizes) if sampling_func is not None else None return sample_ratios def get_sampling_ratios(self, data_param_list, datasets, epoch): if self.args.sampling_weights_from_file: weights = load_sampling_weights(self.args.sampling_weights_from_file) sample_ratios = [weights[k] for k, _ in datasets] logger.info('| ignoring --sampling-weights when loadding sampling weights ' f'from file {self.args.sampling_weights_from_file}') elif self.args.sampling_weights: sample_ratios = [self.args.sampling_weights[k] for k, _ in datasets] else: # TODO: modify to provide sampling function more information other than sizes sample_ratios = self.get_train_sampling_ratios(datasets, epoch) if sample_ratios is not None: logger.info('| Upsample ratios: {}'.format( list(zip(map(lambda x: x['key'], data_param_list), sample_ratios)) )) assert len(sample_ratios) == len(datasets) return sample_ratios def load_split_datasets( self, split, training, epoch=1, combine=False, shard_epoch=None, **kwargs, ): data_param_list = self.get_split_data_param_list( split, epoch, shard_epoch=shard_epoch, ) langpairs_sharing_datasets = {} if self.args.enable_reservsed_directions_shared_datasets else None datasets = [ ( param['key'], self.load_a_dataset( combine=combine, langpairs_sharing_datasets=langpairs_sharing_datasets, **param ), ) for param in data_param_list ] return datasets, data_param_list def load_into_sampled_multi_epoch_dataset( self, split, datasets, data_param_list, epoch, shard_epoch=None ): sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch) return SampledMultiEpochDataset( OrderedDict(datasets), epoch=epoch, shard_epoch=shard_epoch, # valid and test datasets will be degerate to concating datasets: sampling_ratios=sample_ratios, eval_key=None, batch_by_size=True, collate_format=CollateFormat.single, virtual_size=self.args.virtual_data_size, split=split, virtual_epoch_size=self.args.virtual_epoch_size, # if not using lang_tok altering, simplified to use the same collater shared_collater=self._shared_collater(), ) def load_into_concat_dataset(self, split, datasets, data_param_list): if self.args.lang_tok_replacing_bos_eos: # TODO: to investigate why TransformEosLangPairDataset doesn't work with ConcatDataset return SampledMultiDataset( OrderedDict(datasets), sampling_ratios=None, eval_key=None, batch_by_size=True, collate_format=CollateFormat.single, virtual_size=None, split=split, ) return ConcatDataset([d for _, d in datasets]) def load_sampled_multi_epoch_dataset( self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs ): datasets, data_param_list = self.load_split_datasets( split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs ) if training and split == 'train': return self.load_into_sampled_multi_epoch_dataset( split, datasets, data_param_list, epoch, shard_epoch=shard_epoch) else: return self.load_into_concat_dataset(split, datasets, data_param_list)
44.803714
125
0.596146
8d1026852d02d44189001ca0094c6536d918dfbd
811
py
Python
data_types_continued.py
KennethBui/astr-119-session-3
b66417d2c68e56f54d8cafba318284f6f147e0be
[ "MIT" ]
null
null
null
data_types_continued.py
KennethBui/astr-119-session-3
b66417d2c68e56f54d8cafba318284f6f147e0be
[ "MIT" ]
1
2018-10-10T22:33:34.000Z
2018-10-10T22:33:34.000Z
data_types_continued.py
KennethBui/astr-119-session-3
b66417d2c68e56f54d8cafba318284f6f147e0be
[ "MIT" ]
1
2018-10-18T01:42:03.000Z
2018-10-18T01:42:03.000Z
#string s = "I am a string." print(type(s)) #will say str #Boolean yes = True #Booleaan True print(type(yes)) no = False #Boolean False print(type(no)) # List -- ordered and changeable alpha_list = ["a", "b", "c"] #list initialization print(type(alpha_list)) #will say list print(type(alpha_list[0])) #will say string alpha_list.append("d") #wil add "d" to the list end print(alpha_list) #will print list #Tuple -- ordered and unchangeable alpha_tuple = ("a", "b", "c") #tuple initialization print(type(alpha_tuple)) #will say tuple try: #attempt the following line alpha_tuple[2] = "d" #wont work and will raise TypeError except TypeError: #when we get a TypeError print("We can't add elements to tuples!") #print this message print(alpha_tuple) #will print tuple
26.16129
62
0.686806
74127d2936cfd1b9570a617f6456b639db78de5c
1,998
py
Python
tests/step_defs/events/test_event_delete_cancel.py
pbraiders/pomponne-test-bdd
7f2973936318221f54e65e0f8bd839cad7216fa4
[ "MIT" ]
1
2021-03-30T14:41:29.000Z
2021-03-30T14:41:29.000Z
tests/step_defs/events/test_event_delete_cancel.py
pbraiders/pomponne-test-bdd
7f2973936318221f54e65e0f8bd839cad7216fa4
[ "MIT" ]
null
null
null
tests/step_defs/events/test_event_delete_cancel.py
pbraiders/pomponne-test-bdd
7f2973936318221f54e65e0f8bd839cad7216fa4
[ "MIT" ]
null
null
null
# coding=utf-8 """Event deletion, cancel cases.""" from functools import partial from pytest_bdd import ( given, scenario, then, when, ) from pbraiders.contact import ContactFakerFactory # pylint: disable=import-error from pbraiders.event import EventFakerFactory # pylint: disable=import-error from pbraiders.pages.events import EventPage # pylint: disable=import-error from pbraiders.pages.events.actions import EventDeleteAction # pylint: disable=import-error from pbraiders.pages import new_event # pylint: disable=import-error from pbraiders.pages import sign_in # pylint: disable=import-error scenario = partial(scenario, 'events/event_delete_cancel.feature') @scenario('Not deleting an event') def test_not_deleting_an_event() -> None: """Not deleting an event.""" @given('I am on a event page', target_fixture="page_event") def page_event(the_config, the_browser, the_faker, the_database) -> EventPage: """I am on a event page.""" # Create new event p_contact = ContactFakerFactory(_faker=the_faker).initialize(config={}) p_event = EventFakerFactory(_faker=the_faker).initialize(config={}) assert sign_in(driver=the_browser, config=the_config, user="simple") is True assert new_event(driver=the_browser, config=the_config['urls'], contact=p_contact, event=p_event) is True # Access the event page p_page = EventPage(_driver=the_browser, _config=the_config['urls'], _event=p_event, _contact=p_contact) assert p_page.visit() is True return p_page @when('I cancel the deletion of the event') def cancel_delete_event(page_event) -> None: """I cancel the deletion of the event.""" p_action = EventDeleteAction(_page=page_event) p_action.delete().cancel() @then('I should still access into the event page') def still_access(page_event) -> None: """I should still access into the event page.""" assert page_event.visit() is True
35.052632
109
0.720721
9a7982eb4aea23a4e077c9cd9038a141322318d3
225
py
Python
Beecrowd/Python/ex1052.py
yurifalves/Exercises
a4e84ac76b9432f6c2efdeef6e5e2a093c39882d
[ "MIT" ]
null
null
null
Beecrowd/Python/ex1052.py
yurifalves/Exercises
a4e84ac76b9432f6c2efdeef6e5e2a093c39882d
[ "MIT" ]
null
null
null
Beecrowd/Python/ex1052.py
yurifalves/Exercises
a4e84ac76b9432f6c2efdeef6e5e2a093c39882d
[ "MIT" ]
null
null
null
meses = {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May', 6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October', 11: 'November', 12: 'December'} mes = int(input()) print(meses[mes])
37.5
71
0.524444
c3f07b5a2242cd236396071ab999f8226205519c
11,398
py
Python
pylot/control/mpc/utils.py
alvkao58/pylot
ab49647236fcbc8aa08ec9650e0596e778e9ef85
[ "Apache-2.0" ]
null
null
null
pylot/control/mpc/utils.py
alvkao58/pylot
ab49647236fcbc8aa08ec9650e0596e778e9ef85
[ "Apache-2.0" ]
null
null
null
pylot/control/mpc/utils.py
alvkao58/pylot
ab49647236fcbc8aa08ec9650e0596e778e9ef85
[ "Apache-2.0" ]
null
null
null
import numpy as np import bisect global_config = { 'vehicle': { # configured for lincoln mkz 'length': 4.93, 'width': 1.86, 'offset': 1.0, 'wheel_length': 0.3, 'wheel_width': 0.2, 'track': 0.7, 'wheelbase': 2.85, 'max_steer': np.deg2rad(37.5), 'min_steer': np.deg2rad(-37.5), 'max_steer_speed': np.deg2rad(22.5), 'min_steer_speed': np.deg2rad(-22.5), 'max_vel': 20, 'min_vel': 0, 'max_accel': 3.0, 'min_accel': -5.0, }, 'controller': { 'R': np.diag([0.01, 0.10]), # Input cost 'Rd': np.diag([0.01, 1.0]), # Input difference cost 'Q': np.diag([1.0, 1.0, 0.01, 0.01]), # State cost 'Qf': np.diag([1.0, 1.0, 0.01, 0.01]), # Terminal state cost 'goal_threshold': 1.0, # Threshold for goal test [m] 'expiration_time': 100.0, # Expiration time [s] 'max_iteration': 5, # Max step iterations 'convergence_threshold': 0.1, # Threshold for convergence test 'horizon': 5, # Horizon 'index_horizon': 5, # Index horizon }, } def compute_curvature(vel, accel, yaw): dx = vel * np.tan(yaw) ddx = accel * np.tan(yaw) dy = vel * np.tan(yaw) ddy = accel * np.tan(yaw) return (ddy * dx - ddx * dy) / ((dx**2 + dy**2)**(3 / 2)) def normalize_yaw(yaw_list): if len(yaw_list) > 1: for i in range(len(yaw_list) - 1): delta_yaw = yaw_list[i + 1] - yaw_list[i] while delta_yaw >= np.pi / 2.0: yaw_list[i + 1] -= np.pi * 2.0 delta_yaw = yaw_list[i + 1] - yaw_list[i] while delta_yaw <= -np.pi / 2.0: yaw_list[i + 1] += np.pi * 2.0 delta_yaw = yaw_list[i + 1] - yaw_list[i] return yaw_list def zero_to_2_pi(angle): return (angle + 360) % 360 class CubicSpline1D: """ 1-dimensional cubic spline class. For technical details see: http://mathworld.wolfram.com/CubicSpline.html """ def __init__(self, x, y): """ Construct the 1-dimensional cubic spline. :param x: list List of x values. :param y: list List of y values. """ self.a = [item for item in y] self.b, self.c, self.d, self.w = [], [], [], [] self.x = x self.y = y self.nx = len(x) h = np.diff(x) matrix_a = self._matrix_a(h) matrix_b = self._matrix_b(h) self.c = np.linalg.solve(matrix_a, matrix_b) for i in range(self.nx - 1): self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i])) tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \ (self.c[i + 1] + 2.0 * self.c[i]) / 3.0 self.b.append(tb) def calc_der0(self, t): """ Calculate the 1st derivative evaluated at t. :param t: float Position along the 1-dimensional spline. :return: float 1st derivative evaluated at t. """ if t < self.x[0]: return None elif t > self.x[-1]: return None i = self._search_index(t) dx = t - self.x[i] result = \ self.a[i] + self.b[i] * dx + \ self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0 return result def calc_der1(self, t): """ Calculate the 2nd derivative evaluated at t. :param t: float Position along the 1-dimensional spline. :return: float 2nd derivative evaluated at t. """ if t < self.x[0]: return None elif t > self.x[-1]: return None i = self._search_index(t) dx = t - self.x[i] result = \ self.b[i] + 2.0 * self.c[i] * dx + \ 3.0 * self.d[i] * dx ** 2.0 return result def calc_der2(self, t): """ Calculate the 3rd derivative evaluated at t. :param t: float Position along the 1-dimensional spline. :return: float 3rd derivative evaluated at t. """ if t < self.x[0]: return None elif t > self.x[-1]: return None i = self._search_index(t) dx = t - self.x[i] result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx return result def _search_index(self, x): """ Search the spline for index closest to x. :param x: float Position along the 1-dimensional spline. :return: int Index closest to x. """ return bisect.bisect(self.x, x) - 1 def _matrix_a(self, h): """ Create the constants matrix a used in spline construction. :param h: np.ndarray List of deltas between values. :return: np.ndarray Constants matrix. """ matrix_a = np.zeros((self.nx, self.nx)) matrix_a[0, 0] = 1.0 for i in range(self.nx - 1): if i != (self.nx - 2): matrix_a[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1]) matrix_a[i + 1, i] = h[i] matrix_a[i, i + 1] = h[i] matrix_a[0, 1] = 0.0 matrix_a[self.nx - 1, self.nx - 2] = 0.0 matrix_a[self.nx - 1, self.nx - 1] = 1.0 return matrix_a def _matrix_b(self, h): """ Create the 1st derivative matrix b used in spline construction. :param h: np.ndarray List of deltas between values :return: np.ndarray 1st derivative matrix """ matrix_b = np.zeros(self.nx) for i in range(self.nx - 2): matrix_b[i + 1] = \ 3.0 * (self.a[i + 2] - self.a[i + 1]) / \ h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i] return matrix_b class CubicSpline2D: """ 2-dimensional cubic spline class. For technical details see: http://mathworld.wolfram.com/CubicSpline.html """ def __init__(self, x, y, delta_s=1): """ Construct the 2-dimensional cubic spline. :param x: list List of x values. :param y: list List of y values :param delta_s: float. Distance between interpolated points. """ self.delta_s = delta_s # [m] self.s = self._calc_s(x, y) self.sx = CubicSpline1D(self.s, x) self.sy = CubicSpline1D(self.s, y) def calc_x(self, s): """ Calculate the x position along the spline at given s. :param s: float s position along the 2-dimensional spline. :return: float x position along the 2-dimensional spline. """ return self.sx.calc_der0(s) def calc_y(self, s): """ Calculate the y position along the spline at given s. :param s: float s position along the 2-dimensional spline. :return: float y position along the 2-dimensional spline. """ return self.sy.calc_der0(s) def calc_position(self, s): """ Calculate the x, y position along the spline at given s. :param s: float s position along the 2-dimensional spline. :return: (float, float) x, y position along the 2-dimensional spline. """ x = self.sx.calc_der0(s) y = self.sy.calc_der0(s) return x, y def calc_curvature(self, s): """ Calculate the curvature along the spline at given s. :param s: float s position along the 2-dimensional spline. :return: float Curvature along the 2-dimensional spline. """ dx = self.sx.calc_der1(s) ddx = self.sx.calc_der2(s) dy = self.sy.calc_der1(s) ddy = self.sy.calc_der2(s) k = (ddy * dx - ddx * dy) / ((dx**2 + dy**2)**(3 / 2)) return k def calc_yaw(self, s): """ Calculate the yaw in radians along the spline at given s. :param s: float s position along the 2-dimensional spline. :return: float Yaw along the 2-dimensional spline. """ dx = self.sx.calc_der1(s) dy = self.sy.calc_der1(s) yaw = np.arctan2(dy, dx) return yaw def _calc_s(self, x, y): """ Calculate the s values for interpolation given x, y. :param x: list List of x values. :param y: list List of y values. :return: np.ndarray List of s values for interpolation. """ dx = np.diff(x) dy = np.diff(y) self.ds = [np.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)] s = [0] s.extend(np.cumsum(self.ds)) s = np.unique(s) return s class Vehicle: def __init__(self, config): self.config = config self.time = None # Time [s] self.distance = None # Arc distance [m] self.x = None # X coordinate [m] self.y = None # Y coordinate [m] self.curvature = None # Curvature [1/m] self.vel = None # Tangential velocity [m/s] self.yaw = None # Yaw [rad] self.accel = None # Acceleration [m/s2] self.steer = None # Steering [rad] def update(self, time, distance, x, y, curvature, vel, yaw, accel, steer): self.time = time self.distance = distance self.x = x self.y = y self.curvature = curvature self.vel = vel self.yaw = yaw self.accel = accel self.steer = steer def get_position(self): return np.asarray([self.x, self.y]) def get_state(self): return np.asarray([self.x, self.y, self.vel, self.yaw]) class Trajectory: def __init__(self, t_list, s_list, x_list, y_list, k_list, vel_list, yaw_list, accel_list=None, steer_list=None): self.t_list = list(t_list) # Time [s] self.s_list = list(s_list) # Arc distance list [m] self.x_list = list(x_list) # X coordinate list [m] self.y_list = list(y_list) # Y coordinate list [m] self.k_list = list(k_list) # Curvature list [1/m] self.vel_list = list(vel_list) # Tangential velocity list [m/s] self.yaw_list = list(normalize_yaw(yaw_list)) # Yaw list [rad] if accel_list is not None: self.accel_list = list(accel_list) # Acceleration list [m/s2] else: self.accel_list = accel_list if steer_list is not None: self.steer_list = list(steer_list) # Steering list [rad] else: self.steer_list = steer_list def append_vel(self, vel): self.vel_list.append(vel) def append(self, t, s, x, y, k, vel, yaw, accel=None, steer=None): self.t_list.append(t) self.s_list.append(s) self.x_list.append(x) self.y_list.append(y) self.k_list.append(k) self.vel_list.append(vel) self.yaw_list.append(yaw) if accel is not None: self.accel_list.append(accel) if steer is not None: self.steer_list.append(steer)
30.31383
110
0.514038
b163b1a2e3e2ccbe768741b38d78254078171083
7,153
py
Python
test/azure/AcceptanceTests/test_paging.py
tasherif-msft/autorest.python
5b0121bcfa802aedaeda36990e8bcaa2b7e26b14
[ "MIT" ]
null
null
null
test/azure/AcceptanceTests/test_paging.py
tasherif-msft/autorest.python
5b0121bcfa802aedaeda36990e8bcaa2b7e26b14
[ "MIT" ]
null
null
null
test/azure/AcceptanceTests/test_paging.py
tasherif-msft/autorest.python
5b0121bcfa802aedaeda36990e8bcaa2b7e26b14
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the ""Software""), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # -------------------------------------------------------------------------- import unittest import subprocess import sys import isodate import tempfile import json from uuid import uuid4 from datetime import date, datetime, timedelta import os from os.path import dirname, pardir, join, realpath from paging import AutoRestPagingTestService from custombaseurlpaging import AutoRestParameterizedHostTestPagingClient from azure.core.exceptions import HttpResponseError import pytest @pytest.fixture def client(credential, authentication_policy): with AutoRestPagingTestService(credential, base_url="http://localhost:3000", authentication_policy=authentication_policy) as client: yield client @pytest.fixture def custom_url_client(credential, authentication_policy): with AutoRestParameterizedHostTestPagingClient(credential, host="host:3000", authentication_policy=authentication_policy) as client: yield client class TestPaging(object): def test_get_no_item_name_pages(self, client): pages = client.paging.get_no_item_name_pages() items = [i for i in pages] assert len(items) == 1 assert items[0].properties.id == 1 assert items[0].properties.name == "Product" def test_get_null_next_link_name_pages(self, client): pages = client.paging.get_null_next_link_name_pages() items = [i for i in pages] assert len(items) == 1 assert items[0].properties.id == 1 assert items[0].properties.name == "Product" def test_get_single_pages_with_cb(self, client): def cb(list_of_obj): for obj in list_of_obj: obj.marked = True return list_of_obj pages = client.paging.get_single_pages(cls=cb) assert all(obj.marked for obj in pages) def test_get_single_pages(self, client): pages = client.paging.get_single_pages() items = [i for i in pages] assert len(items) == 1 assert items[0].properties.id == 1 assert items[0].properties.name == "Product" def test_get_multiple_pages(self, client): pages = client.paging.get_multiple_pages() items = [i for i in pages] assert len(items) == 10 def test_query_params(self, client): pages = client.paging.get_with_query_params(required_query_parameter='100') items = [i for i in pages] assert len(items) == 2 def test_get_odata_multiple_pages(self, client): pages = client.paging.get_odata_multiple_pages() items = [i for i in pages] assert len(items) == 10 def test_get_multiple_pages_retry_first(self, client): pages = client.paging.get_multiple_pages_retry_first() items = [i for i in pages] assert len(items) == 10 def test_get_multiple_pages_retry_second(self, client): pages = client.paging.get_multiple_pages_retry_second() items = [i for i in pages] assert len(items) == 10 def test_get_multiple_pages_with_offset(self, client): from paging.models import PagingGetMultiplePagesWithOffsetOptions options = PagingGetMultiplePagesWithOffsetOptions(offset=100) pages = client.paging.get_multiple_pages_with_offset(paging_get_multiple_pages_with_offset_options=options) items = [i for i in pages] assert len(items) == 10 assert items[-1].properties.id == 110 def test_get_single_pages_failure(self, client): pages = client.paging.get_single_pages_failure() with pytest.raises(HttpResponseError): list(pages) def test_get_multiple_pages_failure(self, client): pages = client.paging.get_multiple_pages_failure() with pytest.raises(HttpResponseError): list(pages) def test_get_multiple_pages_failure_uri(self, client): pages = client.paging.get_multiple_pages_failure_uri() with pytest.raises(HttpResponseError): list(pages) def test_paging_fragment_path(self, client): pages = client.paging.get_multiple_pages_fragment_next_link("1.6", "test_user") items = [i for i in pages] assert len(items) == 10 with pytest.raises(AttributeError): # Be sure this method is not generated (Transform work) client.paging.get_multiple_pages_fragment_next_link_next() # pylint: disable=E1101 def test_custom_url_get_pages_partial_url(self, custom_url_client): paged = list(custom_url_client.paging.get_pages_partial_url("local")) assert len(paged) == 2 assert paged[0].properties.id == 1 assert paged[1].properties.id == 2 def test_custom_url_get_pages_partial_url_operation(self, custom_url_client): paged = list(custom_url_client.paging.get_pages_partial_url_operation("local")) assert len(paged) == 2 assert paged[0].properties.id == 1 assert paged[1].properties.id == 2 def test_get_multiple_pages_lro(self, client): """LRO + Paging at the same time. """ poller = client.paging.begin_get_multiple_pages_lro() pager = poller.result() items = list(pager) assert len(items) == 10 assert items[0].properties.id == 1 assert items[1].properties.id == 2 def test_item_name_with_xms_client_name(self, client): pages = client.paging.get_paging_model_with_item_name_with_xms_client_name() items = [i for i in pages] assert len(items) == 1 def test_models(self): from paging.models import OperationResult if sys.version_info >= (3,5): from paging.models._models_py3 import OperationResult as OperationResultPy3 assert OperationResult == OperationResultPy3 else: from paging.models._models import OperationResult as OperationResultPy2 assert OperationResult == OperationResultPy2
38.875
136
0.691598
d9a739e3665ea89c2643020d55818e6fdcbe8066
1,140
py
Python
tests/period/test_add_subtract.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
5,049
2016-07-04T07:16:34.000Z
2022-03-31T07:41:48.000Z
tests/period/test_add_subtract.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
536
2016-07-05T22:46:29.000Z
2022-03-22T12:41:54.000Z
tests/period/test_add_subtract.py
shammellee/pendulum
bb179c8fb6ef92b7bfc471a46338abbfac9fafca
[ "MIT" ]
373
2016-07-05T19:51:51.000Z
2022-03-23T16:57:46.000Z
# -*- coding: utf-8 -*- import pendulum def test_dst_add(): start = pendulum.datetime(2017, 3, 7, tz="America/Toronto") end = start.add(days=6) period = end - start new_end = start + period assert new_end == end def test_dst_add_non_variable_units(): start = pendulum.datetime(2013, 3, 31, 1, 30, tz="Europe/Paris") end = start.add(hours=1) period = end - start new_end = start + period assert new_end == end def test_dst_subtract(): start = pendulum.datetime(2017, 3, 7, tz="America/Toronto") end = start.add(days=6) period = end - start new_start = end - period assert new_start == start def test_naive_subtract(): start = pendulum.naive(2013, 3, 31, 1, 30) end = start.add(hours=1) period = end - start new_end = start + period assert new_end == end def test_negative_difference_subtract(): start = pendulum.datetime(2018, 5, 28, 12, 34, 56, 123456) end = pendulum.datetime(2018, 1, 1) print((start - end).in_words()) period = end - start print(period.in_words()) new_end = start + period assert new_end == end
21.509434
68
0.635088
de8d1e6cd2d374fc0cf0b5ca9dd5474e02cf4423
4,765
py
Python
applications/DamApplication/python_scripts/check_and_prepare_model_process_dam_mechanical.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
778
2017-01-27T16:29:17.000Z
2022-03-30T03:01:51.000Z
applications/DamApplication/python_scripts/check_and_prepare_model_process_dam_mechanical.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
6,634
2017-01-15T22:56:13.000Z
2022-03-31T15:03:36.000Z
applications/DamApplication/python_scripts/check_and_prepare_model_process_dam_mechanical.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
224
2017-02-07T14:12:49.000Z
2022-03-06T23:09:34.000Z
import KratosMultiphysics def Factory(settings, Model): if not isinstance(settings, Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return CheckAndPrepareModelProcessDamMechanical(Model, settings["Parameters"]) ## All the processes python should be derived from "Process" class CheckAndPrepareModelProcessDamMechanical(KratosMultiphysics.Process): """Prepare the computing model part. The computing model part is created if it does not exist. Nodes and elements from the domain sub model parts are added to the computing model part. Conditions are added from the processes sub model parts. """ def __init__(self, main_model_part, Parameters ): KratosMultiphysics.Process.__init__(self) self.main_model_part = main_model_part self.mechanical_model_part_name = Parameters["mechanical_model_part_name"].GetString() self.mechanical_domain_sub_model_part_list = Parameters["mechanical_domain_sub_model_part_list"] self.mechanical_loads_sub_model_part_list = Parameters["mechanical_loads_sub_model_part_list"] self.body_domain_sub_model_part_list = Parameters["body_domain_sub_model_part_list"] self.body_domain_sub_sub_model_part_list = Parameters["body_domain_sub_sub_model_part_list"] self.loads_sub_model_part_list = Parameters["loads_sub_model_part_list"] self.loads_sub_sub_model_part_list = Parameters["loads_sub_sub_model_part_list"] def Execute(self): # Construct the computing model part: a model part which contains the mesh to compute self.main_model_part.CreateSubModelPart(self.mechanical_model_part_name) mechanical_model_part = self.main_model_part.GetSubModelPart(self.mechanical_model_part_name) mechanical_model_part.ProcessInfo = self.main_model_part.ProcessInfo mechanical_model_part.Properties = self.main_model_part.Properties mechanical_model_part.Set(KratosMultiphysics.ACTIVE) domain_parts = [] for i in range(self.mechanical_domain_sub_model_part_list.size()): domain_parts.append(self.main_model_part.GetSubModelPart(self.mechanical_domain_sub_model_part_list[i].GetString())) # Adding Nodes to Computing Model Part list_of_ids = set() for part in domain_parts: for node in part.Nodes: list_of_ids.add(node.Id) mechanical_model_part.AddNodes(list(list_of_ids)) # Adding Elements to Computing Model Part list_of_ids = set() for part in domain_parts: for elem in part.Elements: list_of_ids.add(elem.Id) mechanical_model_part.AddElements(list(list_of_ids)) # Adding Conditions to Computing Model Part domain_conditions = [] for i in range(self.mechanical_loads_sub_model_part_list.size()): domain_conditions.append(self.main_model_part.GetSubModelPart(self.mechanical_loads_sub_model_part_list[i].GetString())) list_of_ids = set() for part in domain_conditions: for cond in part.Conditions: list_of_ids.add(cond.Id) mechanical_model_part.AddConditions(list(list_of_ids)) # Adding Computing Sub Sub Model Parts # Body - Joints for i in range(self.body_domain_sub_model_part_list.size()): body_sub_model_part = self.main_model_part.GetSubModelPart(self.body_domain_sub_model_part_list[i].GetString()) mechanical_model_part.CreateSubModelPart(self.body_domain_sub_sub_model_part_list[i].GetString()) body_sub_sub_model_part = mechanical_model_part.GetSubModelPart(self.body_domain_sub_sub_model_part_list[i].GetString()) list_of_ids = set() for node in body_sub_model_part.Nodes: list_of_ids.add(node.Id) body_sub_sub_model_part.AddNodes(list(list_of_ids)) list_of_ids = set() for elem in body_sub_model_part.Elements: list_of_ids.add(elem.Id) body_sub_sub_model_part.AddElements(list(list_of_ids)) # Arc-Length for i in range(self.loads_sub_model_part_list.size()): load_sub_model_part = self.main_model_part.GetSubModelPart(self.loads_sub_model_part_list[i].GetString()) mechanical_model_part.CreateSubModelPart(self.loads_sub_sub_model_part_list[i].GetString()) load_sub_sub_model_part = mechanical_model_part.GetSubModelPart(self.loads_sub_sub_model_part_list[i].GetString()) list_of_ids = set() for node in load_sub_model_part.Nodes: list_of_ids.add(node.Id) load_sub_sub_model_part.AddNodes(list(list_of_ids))
56.72619
132
0.729906
d074e1506989e513f365df6336cc7359802542be
1,462
py
Python
src/ikea_api/endpoints/item/item_ingka.py
sqr/ikea-api-client
687cbb532b3e59001437373b9c44af504c8c4baf
[ "MIT" ]
null
null
null
src/ikea_api/endpoints/item/item_ingka.py
sqr/ikea-api-client
687cbb532b3e59001437373b9c44af504c8c4baf
[ "MIT" ]
null
null
null
src/ikea_api/endpoints/item/item_ingka.py
sqr/ikea-api-client
687cbb532b3e59001437373b9c44af504c8c4baf
[ "MIT" ]
null
null
null
from __future__ import annotations from requests import Session from ikea_api.constants import Constants, Secrets from ikea_api.endpoints.item import generic_item_fetcher from ikea_api.errors import ItemFetchError def _fetch_items_specs(session: Session, items: list[str]): url = ( "https://api.ingka.ikea.com/salesitem/communications/" + Constants.COUNTRY_CODE + "/" + Constants.LANGUAGE_CODE ) params = {"itemNos": ",".join(items)} response = session.get(url, params=params) r_json = response.json() if "data" not in r_json and "error" in r_json: err_msg = None if "message" in r_json["error"]: error = r_json["error"] r_err_msg = error["message"] if r_err_msg == "no item numbers were found": try: err_msg = error["details"][0]["value"]["keys"] except (KeyError, TypeError): pass if not err_msg: err_msg = r_err_msg else: err_msg = r_json["error"] raise ItemFetchError(err_msg) return r_json def fetch(items: str | list[str]): headers = { "Accept": "*/*", "Referer": f"{Constants.BASE_URL}/{Constants.COUNTRY_CODE}/{Constants.LANGUAGE_CODE}/order/delivery/", "x-client-id": Secrets.item_ingka_x_client_id, } return generic_item_fetcher(items, headers, _fetch_items_specs, 50)
31.782609
110
0.610807
b78cac078e3f40e2d39ee8077dd56d77d4b01178
29,253
py
Python
ignite_trainer/_trainer.py
jinczing/AudioCLIP
b080fc946599290c91f9d3b203295e5968af1bf6
[ "MIT" ]
304
2021-06-28T09:59:13.000Z
2022-03-30T17:33:52.000Z
ignite_trainer/_trainer.py
AK391/AudioCLIP
45327aa203839bfeb58681dd36c04fd493ee72f4
[ "MIT" ]
5
2021-07-07T06:12:34.000Z
2021-07-23T15:44:06.000Z
ignite_trainer/_trainer.py
AK391/AudioCLIP
45327aa203839bfeb58681dd36c04fd493ee72f4
[ "MIT" ]
34
2021-06-29T11:50:19.000Z
2022-03-02T12:01:36.000Z
import io import os import glob import json import time import tqdm import signal import argparse import numpy as np import torch import torch.utils.data import torchvision as tv import ignite.engine as ieng import ignite.metrics as imet import ignite.handlers as ihan from typing import Any from typing import Dict from typing import List from typing import Type from typing import Union from typing import Optional from termcolor import colored from collections import defaultdict from collections.abc import Iterable from ignite_trainer import _utils from ignite_trainer import _visdom from ignite_trainer import _interfaces VISDOM_HOST = 'localhost' VISDOM_PORT = 8097 VISDOM_ENV_PATH = os.path.join(os.path.expanduser('~'), 'logs') BATCH_TRAIN = 128 BATCH_TEST = 1024 WORKERS_TRAIN = 0 WORKERS_TEST = 0 EPOCHS = 100 LOG_INTERVAL = 50 SAVED_MODELS_PATH = os.path.join(os.path.expanduser('~'), 'saved_models') def run(experiment_name: str, visdom_host: str, visdom_port: int, visdom_env_path: str, model_class: str, model_args: Dict[str, Any], optimizer_class: str, optimizer_args: Dict[str, Any], dataset_class: str, dataset_args: Dict[str, Any], batch_train: int, batch_test: int, workers_train: int, workers_test: int, transforms: List[Dict[str, Union[str, Dict[str, Any]]]], epochs: int, log_interval: int, saved_models_path: str, performance_metrics: Optional = None, scheduler_class: Optional[str] = None, scheduler_args: Optional[Dict[str, Any]] = None, model_suffix: Optional[str] = None, setup_suffix: Optional[str] = None, orig_stdout: Optional[io.TextIOBase] = None, skip_train_val: bool = False): with _utils.tqdm_stdout(orig_stdout) as orig_stdout: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') num_gpus = torch.cuda.device_count() if num_gpus > 1: experiment_name = f'{experiment_name}-x{num_gpus}' transforms_train = list() transforms_test = list() for idx, transform in enumerate(transforms): use_train = transform.get('train', True) use_test = transform.get('test', True) transform = _utils.load_class(transform['class'])(**transform['args']) if use_train: transforms_train.append(transform) if use_test: transforms_test.append(transform) transforms[idx]['train'] = use_train transforms[idx]['test'] = use_test transforms_train = tv.transforms.Compose(transforms_train) transforms_test = tv.transforms.Compose(transforms_test) Dataset: Type = _utils.load_class(dataset_class) train_loader, eval_loader = _utils.get_data_loaders( Dataset, dataset_args, batch_train, batch_test, workers_train, workers_test, transforms_train, transforms_test ) Network: Type = _utils.load_class(model_class) model: _interfaces.AbstractNet = Network(**model_args) if hasattr(train_loader.dataset, 'class_weights'): model.register_buffer('class_weights', train_loader.dataset.class_weights.clone().exp(), persistent=False) if hasattr(train_loader.dataset, 'label_to_class_idx'): model.label_to_class_idx = {idx: lb for idx, lb in train_loader.dataset.label_to_class_idx.items()} model = torch.nn.DataParallel(model, device_ids=range(num_gpus)) model = model.to(device) # disable all parameters for p in model.parameters(): p.requires_grad = False # enable only audio-related parameters for p in model.module.audio.parameters(): p.requires_grad = True # disable fbsp-parameters for p in model.module.audio.fbsp.parameters(): p.requires_grad = False # disable logit scaling model.module.logit_scale_ai.requires_grad = False model.module.logit_scale_at.requires_grad = False # add only enabled parameters to optimizer's list param_groups = [ {'params': [p for p in model.module.parameters() if p.requires_grad]} ] # enable fbsp-parameters for p in model.module.audio.fbsp.parameters(): p.requires_grad = True # enable logit scaling model.module.logit_scale_ai.requires_grad = True model.module.logit_scale_at.requires_grad = True # add fbsp- and logit scaling parameters to a separate group without weight decay param_groups.append({ 'params': [ p for p in model.module.audio.fbsp.parameters() ] + [ model.module.logit_scale_ai, model.module.logit_scale_at ], 'weight_decay': 0.0 }) Optimizer: Type = _utils.load_class(optimizer_class) optimizer: torch.optim.Optimizer = Optimizer( param_groups, **{**optimizer_args, **{'lr': optimizer_args['lr'] * num_gpus}} ) if scheduler_class is not None: Scheduler: Type = _utils.load_class(scheduler_class) if scheduler_args is None: scheduler_args = dict() scheduler: Optional[torch.optim.lr_scheduler._LRScheduler] = Scheduler(optimizer, **scheduler_args) else: scheduler = None model_short_name = ''.join([c for c in Network.__name__ if c == c.upper()]) model_name = '{}{}'.format( model_short_name, '-{}'.format(model_suffix) if model_suffix is not None else '' ) visdom_env_name = '{}_{}_{}{}'.format( Dataset.__name__, experiment_name, model_name, '-{}'.format(setup_suffix) if setup_suffix is not None else '' ) vis, vis_pid = _visdom.get_visdom_instance(visdom_host, visdom_port, visdom_env_name, visdom_env_path) prog_bar_epochs = tqdm.tqdm(total=epochs, desc='Epochs', file=orig_stdout, dynamic_ncols=True, unit='epoch') prog_bar_iters = tqdm.tqdm(desc='Batches', file=orig_stdout, dynamic_ncols=True) num_params_total = sum(p.numel() for p in model.parameters()) num_params_train = sum(p.numel() for grp in optimizer.param_groups for p in grp['params']) params_total_label = '' params_train_label = '' if num_params_total > 1e6: num_params_total /= 1e6 params_total_label = 'M' elif num_params_total > 1e3: num_params_total /= 1e3 params_total_label = 'k' if num_params_train > 1e6: num_params_train /= 1e6 params_train_label = 'M' elif num_params_train > 1e3: num_params_train /= 1e3 params_train_label = 'k' tqdm.tqdm.write(f'\n{Network.__name__}\n') tqdm.tqdm.write('Total number of parameters: {:.2f}{}'.format(num_params_total, params_total_label)) tqdm.tqdm.write('Number of trainable parameters: {:.2f}{}'.format(num_params_train, params_train_label)) def training_step(engine: ieng.Engine, batch) -> torch.Tensor: model.train() model.epoch = engine.state.epoch model.batch_idx = (engine.state.iteration - 1) % len(train_loader) model.num_batches = len(train_loader) optimizer.zero_grad() audio, image, text = batch if audio is not None: audio = audio.to(device) if image is not None: image = image.to(device) batch_indices = torch.arange(audio.shape[0], dtype=torch.int64, device=device) _, loss = model(audio, image, text, batch_indices) if loss.ndim > 0: loss = loss.mean() loss.backward(retain_graph=False) optimizer.step(None) return loss.item() def eval_step(_: ieng.Engine, batch) -> _interfaces.TensorPair: model.eval() with torch.no_grad(): audio, _, text = batch ((audio_features, _, _), _), _ = model( audio=audio, batch_indices=torch.arange(audio.shape[0], dtype=torch.int64, device=device) ) audio_features = audio_features.unsqueeze(1) ((_, _, text_features), _), _ = model( text=[ [eval_loader.dataset.class_idx_to_label[class_idx]] for class_idx in sorted(eval_loader.dataset.class_idx_to_label.keys()) ], batch_indices=torch.arange( len(eval_loader.dataset.class_idx_to_label), dtype=torch.int64, device=device ) ) text_features = text_features.unsqueeze(1).transpose(0, 1) logit_scale_at = torch.clamp(model.module.logit_scale_at.exp(), min=1.0, max=100.0) y_pred = (logit_scale_at * audio_features @ text_features.transpose(-1, -2)).squeeze(1) y = torch.zeros( audio.shape[0], len(eval_loader.dataset.class_idx_to_label), dtype=torch.int8, device=device ) for item_idx, labels in enumerate(text): class_ids = list(sorted([ eval_loader.dataset.label_to_class_idx[lb] for lb in labels ])) y[item_idx][class_ids] = 1 if model.module.multilabel: y_pred = torch.sigmoid(y_pred / logit_scale_at - 0.5) else: y_pred = torch.softmax(y_pred, dim=-1) y = y.argmax(dim=-1) return y_pred, y trainer = ieng.Engine(training_step) validator_train = ieng.Engine(eval_step) validator_eval = ieng.Engine(eval_step) # placeholder for summary window vis.text( text='', win=experiment_name, env=visdom_env_name, opts={'title': 'Summary', 'width': 940, 'height': 416}, append=vis.win_exists(experiment_name, visdom_env_name) ) default_metrics = { "Loss": { "window_name": None, "x_label": "#Epochs", "y_label": model.loss_fn_name if not isinstance(model, torch.nn.DataParallel) else model.module.loss_fn_name, "width": 940, "height": 416, "lines": [ { "line_label": "SMA", "object": imet.RunningAverage(output_transform=lambda x: x), "test": False, "update_rate": "iteration" } ] } } performance_metrics = {**default_metrics, **performance_metrics} checkpoint_metrics = list() for scope_name, scope in performance_metrics.items(): scope['window_name'] = scope.get('window_name', scope_name) or scope_name for line in scope['lines']: if 'object' not in line: line['object']: imet.Metric = _utils.load_class(line['class'])(**line['args']) line['metric_label'] = '{}: {}'.format(scope['window_name'], line['line_label']) line['update_rate'] = line.get('update_rate', 'epoch') line_suffixes = list() if line['update_rate'] == 'iteration': line['object'].attach(trainer, line['metric_label']) line['train'] = False line['test'] = False line_suffixes.append(' Train.') if line.get('train', True): line['object'].attach(validator_train, line['metric_label']) line_suffixes.append(' Train.') if line.get('test', True): line['object'].attach(validator_eval, line['metric_label']) line_suffixes.append(' Eval.') if line.get('is_checkpoint', False): checkpoint_metrics.append(line['metric_label']) for line_suffix in line_suffixes: _visdom.plot_line( vis=vis, window_name=scope['window_name'], env=visdom_env_name, line_label=line['line_label'] + line_suffix, x_label=scope['x_label'], y_label=scope['y_label'], width=scope['width'], height=scope['height'], draw_marker=(line['update_rate'] == 'epoch') ) if checkpoint_metrics: score_name = 'performance' def get_score(engine: ieng.Engine) -> float: current_mode = getattr(engine.state.dataloader.iterable.dataset, dataset_args['training']['key']) val_mode = dataset_args['training']['no'] score = 0.0 if current_mode == val_mode: for metric_name in checkpoint_metrics: try: score += engine.state.metrics[metric_name] except KeyError: pass return score model_saver = ihan.ModelCheckpoint( os.path.join(saved_models_path, visdom_env_name), filename_prefix=visdom_env_name, score_name=score_name, score_function=get_score, n_saved=3, save_as_state_dict=True, require_empty=False, create_dir=True ) validator_eval.add_event_handler(ieng.Events.EPOCH_COMPLETED, model_saver, {model_name: model}) if not skip_train_val: @trainer.on(ieng.Events.STARTED) def engine_started(engine: ieng.Engine): log_validation(engine, False) @trainer.on(ieng.Events.EPOCH_STARTED) def reset_progress_iterations(engine: ieng.Engine): prog_bar_iters.clear() prog_bar_iters.n = 0 prog_bar_iters.last_print_n = 0 prog_bar_iters.start_t = time.time() prog_bar_iters.last_print_t = time.time() prog_bar_iters.total = len(engine.state.dataloader) @trainer.on(ieng.Events.ITERATION_COMPLETED) def log_training(engine: ieng.Engine): prog_bar_iters.update(1) num_iter = (engine.state.iteration - 1) % len(train_loader) + 1 early_stop = np.isnan(engine.state.output) or np.isinf(engine.state.output) if num_iter % log_interval == 0 or num_iter == len(train_loader) or early_stop: tqdm.tqdm.write( 'Epoch[{}] Iteration[{}/{}] Loss: {:.4f}'.format( engine.state.epoch, num_iter, len(train_loader), engine.state.output ) ) x_pos = engine.state.epoch + num_iter / len(train_loader) - 1 for scope_name, scope in performance_metrics.items(): for line in scope['lines']: if line['update_rate'] == 'iteration': line_label = '{} Train.'.format(line['line_label']) line_value = engine.state.metrics[line['metric_label']] if engine.state.epoch >= 1: _visdom.plot_line( vis=vis, window_name=scope['window_name'], env=visdom_env_name, line_label=line_label, x_label=scope['x_label'], y_label=scope['y_label'], x=np.full(1, x_pos), y=np.full(1, line_value) ) if early_stop: tqdm.tqdm.write(colored('Early stopping due to invalid loss value.', 'red')) trainer.terminate() def log_validation(engine: ieng.Engine, train: bool = True): if train: run_type = 'Train.' data_loader = train_loader validator = validator_train else: run_type = 'Eval.' data_loader = eval_loader validator = validator_eval prog_bar_validation = tqdm.tqdm( data_loader, desc=f'Validation {run_type}', file=orig_stdout, dynamic_ncols=True, leave=False ) validator.run(prog_bar_validation) prog_bar_validation.clear() prog_bar_validation.close() tqdm_info = [ 'Epoch: {}'.format(engine.state.epoch) ] for scope_name, scope in performance_metrics.items(): for line in scope['lines']: if line['update_rate'] == 'epoch': try: line_label = '{} {}'.format(line['line_label'], run_type) line_value = validator.state.metrics[line['metric_label']] _visdom.plot_line( vis=vis, window_name=scope['window_name'], env=visdom_env_name, line_label=line_label, x_label=scope['x_label'], y_label=scope['y_label'], x=np.full(1, engine.state.epoch), y=np.full(1, line_value), draw_marker=True ) tqdm_info.append('{}: {:.4f}'.format(line_label, line_value)) except KeyError: pass tqdm.tqdm.write('{} results - {}'.format(run_type, '; '.join(tqdm_info))) if not skip_train_val: @trainer.on(ieng.Events.EPOCH_COMPLETED) def log_validation_train(engine: ieng.Engine): log_validation(engine, True) @trainer.on(ieng.Events.EPOCH_COMPLETED) def log_validation_eval(engine: ieng.Engine): log_validation(engine, False) if engine.state.epoch == 1: summary = _utils.build_summary_str( experiment_name=experiment_name, model_short_name=model_name, model_class=model_class, model_args=model_args, optimizer_class=optimizer_class, optimizer_args=optimizer_args, dataset_class=dataset_class, dataset_args=dataset_args, transforms=transforms, epochs=epochs, batch_train=batch_train, log_interval=log_interval, saved_models_path=saved_models_path, scheduler_class=scheduler_class, scheduler_args=scheduler_args ) _visdom.create_summary_window( vis=vis, visdom_env_name=visdom_env_name, experiment_name=experiment_name, summary=summary ) vis.save([visdom_env_name]) prog_bar_epochs.update(1) if scheduler is not None: scheduler.step(engine.state.epoch) trainer.run(train_loader, max_epochs=epochs) if vis_pid is not None: tqdm.tqdm.write('Stopping visdom') os.kill(vis_pid, signal.SIGTERM) del vis del train_loader del eval_loader prog_bar_iters.clear() prog_bar_iters.close() prog_bar_epochs.clear() prog_bar_epochs.close() tqdm.tqdm.write('\n') def main(): with _utils.tqdm_stdout() as orig_stdout: parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, required=True) parser.add_argument('-H', '--visdom-host', type=str, required=False) parser.add_argument('-P', '--visdom-port', type=int, required=False) parser.add_argument('-E', '--visdom-env-path', type=str, required=False) parser.add_argument('-b', '--batch-train', type=int, required=False) parser.add_argument('-B', '--batch-test', type=int, required=False) parser.add_argument('-w', '--workers-train', type=int, required=False) parser.add_argument('-W', '--workers-test', type=int, required=False) parser.add_argument('-e', '--epochs', type=int, required=False) parser.add_argument('-L', '--log-interval', type=int, required=False) parser.add_argument('-M', '--saved-models-path', type=str, required=False) parser.add_argument('-R', '--random-seed', type=int, required=False) parser.add_argument('-s', '--suffix', type=str, required=False) parser.add_argument('-S', '--skip-train-val', action='store_true', default=False) args, unknown_args = parser.parse_known_args() if args.batch_test is None: args.batch_test = args.batch_train if args.random_seed is not None: args.suffix = '{}r-{}'.format( '{}_'.format(args.suffix) if args.suffix is not None else '', args.random_seed ) np.random.seed(args.random_seed) torch.random.manual_seed(args.random_seed) if torch.cuda.is_available(): torch.cuda.manual_seed(args.random_seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False configs_found = list(sorted(glob.glob(os.path.expanduser(args.config)))) prog_bar_exps = tqdm.tqdm( configs_found, desc='Experiments', unit='setup', file=orig_stdout, dynamic_ncols=True ) for config_path in prog_bar_exps: config = json.load(open(config_path)) if unknown_args: tqdm.tqdm.write('\nParsing additional arguments...') args_not_found = list() for arg in unknown_args: if arg.startswith('--'): keys = arg.strip('-').split('.') section = config found = True for key in keys: if key in section: section = section[key] else: found = False break if found: override_parser = argparse.ArgumentParser() section_nargs = None section_type = type(section) if section is not None else str if section_type is bool: if section_type is bool: def infer_bool(x: str) -> bool: return x.lower() not in ('0', 'false', 'no') section_type = infer_bool if isinstance(section, Iterable) and section_type is not str: section_nargs = '+' section_type = {type(value) for value in section} if len(section_type) == 1: section_type = section_type.pop() else: section_type = str override_parser.add_argument(arg, nargs=section_nargs, type=section_type) overridden_args, _ = override_parser.parse_known_args(unknown_args) overridden_args = vars(overridden_args) overridden_key = arg.strip('-') overriding_value = overridden_args[overridden_key] section = config old_value = None for i, key in enumerate(keys, 1): if i == len(keys): old_value = section[key] section[key] = overriding_value else: section = section[key] tqdm.tqdm.write( colored(f'Overriding "{overridden_key}": {old_value} -> {overriding_value}', 'magenta') ) else: args_not_found.append(arg) if args_not_found: tqdm.tqdm.write( colored( '\nThere are unrecognized arguments to override: {}'.format( ', '.join(args_not_found) ), 'red' ) ) config = defaultdict(None, config) experiment_name = config['Setup']['name'] visdom_host = _utils.arg_selector( args.visdom_host, config['Visdom']['host'], VISDOM_HOST ) visdom_port = int(_utils.arg_selector( args.visdom_port, config['Visdom']['port'], VISDOM_PORT )) visdom_env_path = _utils.arg_selector( args.visdom_env_path, config['Visdom']['env_path'], VISDOM_ENV_PATH ) batch_train = int(_utils.arg_selector( args.batch_train, config['Setup']['batch_train'], BATCH_TRAIN )) batch_test = int(_utils.arg_selector( args.batch_test, config['Setup']['batch_test'], BATCH_TEST )) workers_train = _utils.arg_selector( args.workers_train, config['Setup']['workers_train'], WORKERS_TRAIN ) workers_test = _utils.arg_selector( args.workers_test, config['Setup']['workers_test'], WORKERS_TEST ) epochs = _utils.arg_selector( args.epochs, config['Setup']['epochs'], EPOCHS ) log_interval = _utils.arg_selector( args.log_interval, config['Setup']['log_interval'], LOG_INTERVAL ) saved_models_path = _utils.arg_selector( args.saved_models_path, config['Setup']['saved_models_path'], SAVED_MODELS_PATH ) model_class = config['Model']['class'] model_args = config['Model']['args'] optimizer_class = config['Optimizer']['class'] optimizer_args = config['Optimizer']['args'] if 'Scheduler' in config: scheduler_class = config['Scheduler']['class'] scheduler_args = config['Scheduler']['args'] else: scheduler_class = None scheduler_args = None dataset_class = config['Dataset']['class'] dataset_args = config['Dataset']['args'] transforms = config['Transforms'] performance_metrics = config['Metrics'] tqdm.tqdm.write(f'\nStarting experiment "{experiment_name}"\n') run( experiment_name=experiment_name, visdom_host=visdom_host, visdom_port=visdom_port, visdom_env_path=visdom_env_path, model_class=model_class, model_args=model_args, optimizer_class=optimizer_class, optimizer_args=optimizer_args, dataset_class=dataset_class, dataset_args=dataset_args, batch_train=batch_train, batch_test=batch_test, workers_train=workers_train, workers_test=workers_test, transforms=transforms, epochs=epochs, log_interval=log_interval, saved_models_path=saved_models_path, performance_metrics=performance_metrics, scheduler_class=scheduler_class, scheduler_args=scheduler_args, model_suffix=config['Setup']['suffix'], setup_suffix=args.suffix, orig_stdout=orig_stdout, skip_train_val=args.skip_train_val ) prog_bar_exps.close() tqdm.tqdm.write('\n')
38.289267
125
0.534919
b0971c2dafa16c01eaa3e3bfd01d9066ecf3379c
837
py
Python
watch/urls.py
MachokaDaisy/py-go
0c280b84a52aee23c36cc8387ff4fa466077aa62
[ "MIT" ]
1
2020-10-11T23:58:36.000Z
2020-10-11T23:58:36.000Z
watch/urls.py
MachokaDaisy/py-go
0c280b84a52aee23c36cc8387ff4fa466077aa62
[ "MIT" ]
null
null
null
watch/urls.py
MachokaDaisy/py-go
0c280b84a52aee23c36cc8387ff4fa466077aa62
[ "MIT" ]
null
null
null
"""watch URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path('',include('hood.urls')), path('accounts/',include('allauth.urls')), ]
34.875
77
0.698925
b7aa422747d2a9f29daa0d2d90fc8e86ad1d2748
260
py
Python
test/test_del_contact.py
k0Bas/python_training
80d0bb6f91376f7e90052a2d0619419cbf27f9d9
[ "Apache-2.0" ]
null
null
null
test/test_del_contact.py
k0Bas/python_training
80d0bb6f91376f7e90052a2d0619419cbf27f9d9
[ "Apache-2.0" ]
null
null
null
test/test_del_contact.py
k0Bas/python_training
80d0bb6f91376f7e90052a2d0619419cbf27f9d9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from model.group_contact import GroupContact def test_delete_first_contact(app): if app.contact.count(app) == 0: app.contact.create(GroupContact(firstname="first", lastname="last")) app.contact.delete_first_contact(app)
37.142857
76
0.726923
95ae67f522cd186caf90f0e00dc72bb148bf7aa8
570
py
Python
setup.py
gsgoncalves/tfrecord
b5d0bddf0cbe14e6aea9a1585d186e36a847248a
[ "MIT" ]
9
2020-12-30T02:05:58.000Z
2022-03-31T02:05:06.000Z
setup.py
gsgoncalves/tfrecord
b5d0bddf0cbe14e6aea9a1585d186e36a847248a
[ "MIT" ]
null
null
null
setup.py
gsgoncalves/tfrecord
b5d0bddf0cbe14e6aea9a1585d186e36a847248a
[ "MIT" ]
2
2021-06-20T04:56:49.000Z
2022-03-10T01:35:24.000Z
import sys from distutils.core import setup from setuptools import find_packages # List of runtime dependencies required by this built package install_requires = [] if sys.version_info <= (2, 7): install_requires += ['future', 'typing'] install_requires += ["numpy", "protobuf"] setup( name="tfrecord", version="1.11", description="TFRecord reader", author="Vahid Kazemi", author_email="vkazemi@gmail.com", url="https://github.com/vahidk/tfrecord", packages=find_packages(), license="MIT", install_requires=install_requires )
23.75
61
0.707018
6277363797a60096da5285c39ded74900d4f61ae
559
py
Python
extract_layers.py
bmtgoncalves/TorinoCourse
7c365dcd1211817a8b4d85e178dcb20a84d142d9
[ "MIT" ]
5
2017-05-03T14:33:27.000Z
2020-05-26T20:43:26.000Z
extract_layers.py
bmtgoncalves/TorinoCourse
7c365dcd1211817a8b4d85e178dcb20a84d142d9
[ "MIT" ]
null
null
null
extract_layers.py
bmtgoncalves/TorinoCourse
7c365dcd1211817a8b4d85e178dcb20a84d142d9
[ "MIT" ]
2
2019-03-21T03:41:20.000Z
2019-11-17T07:58:51.000Z
import json import sys data = json.load(open('GeoJSON/NUTS_RG_20M_2013.geojson')) encoder = json.JSONEncoder() for layer in range(0, 5): countries = {} countries["crs"] = data["crs"] countries["type"] = data["type"] countries["features"] = [] for feat in data["features"]: if feat["properties"]["STAT_LEVL_"] == layer: countries["features"].append(feat) if len(countries["features"]) > 0: output = encoder.encode(countries) fp = open("GeoJSON/layer_%02u.geojson" % layer, "w") print(output, file=fp) fp.close()
22.36
58
0.642218
f371aae739291aa9e510fa3911c3df784746e7a1
239
py
Python
application/admin/tasks.py
oceanio/flask-boot
df115a7591218d69b4d5b71617e922a516b88df9
[ "Apache-2.0" ]
null
null
null
application/admin/tasks.py
oceanio/flask-boot
df115a7591218d69b4d5b71617e922a516b88df9
[ "Apache-2.0" ]
null
null
null
application/admin/tasks.py
oceanio/flask-boot
df115a7591218d69b4d5b71617e922a516b88df9
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- from application import celery, mail from . import security @celery.task def send_security_email(msg): mail.send(msg) @security.send_mail_task def delay_security_email(msg): send_security_email.delay(msg)
18.384615
36
0.753138
9b5b1c845746b2cbe247a9e9e8f65f9bea1fc9cd
1,503
py
Python
qas_experimental_evaluation_project/utils.py
andreportela/qas_intrusion_detection
3daed80e075991185c814de5ef95f50686fc626b
[ "MIT" ]
null
null
null
qas_experimental_evaluation_project/utils.py
andreportela/qas_intrusion_detection
3daed80e075991185c814de5ef95f50686fc626b
[ "MIT" ]
null
null
null
qas_experimental_evaluation_project/utils.py
andreportela/qas_intrusion_detection
3daed80e075991185c814de5ef95f50686fc626b
[ "MIT" ]
null
null
null
import os, time, datetime, subprocess, signal def log_info(task, pid): print(f"{task} pid({pid}) at {datetime.datetime.now()}") def get_total_time_str(minutes=0, seconds=0): seconds_waited_str = f"{seconds} seconds" minutes_waited_str = f"{minutes} minutes" if minutes and seconds: return "". join([minutes_waited_str, " and ", seconds_waited_str]) elif minutes: return minutes_waited_str else: return seconds_waited_str def wait(minutes=0, seconds=0): wait_time_str = get_total_time_str(minutes, seconds) total_seconds_to_wait = (minutes * 60) + seconds print(f"pid({os.getpid()}) waiting for {wait_time_str} at {datetime.datetime.now()}") for seconds_remaining in range(total_seconds_to_wait, 0, -1): print(f"{seconds_remaining} seconds remaining...") time.sleep(1) print(f"pid({os.getpid()}) resumed for {wait_time_str} at {datetime.datetime.now()}") def run(server_args): return subprocess.Popen(server_args) def kill(process, name): process_obj = process[name]["process"] log_info(f"[killing {name} child]", process_obj.pid) process_obj.send_signal(signal.SIGTERM) def run_and_log(server_cmd, process_name): log_info(f"[starting {process_name} main]", os.getpid()) process = run(server_cmd) log_info(f"[starting {process_name} child]", process.pid) return process def execute_command(commands, name): commands[name]['process'] = run_and_log(commands[name]['cmd'], name)
35.785714
89
0.701264
03533b261e0fa400c87687e1e00807eb27533aec
2,008
py
Python
model/gumbel_masks.py
slachapelle/anon_disentanglement_via_mechanism_sparsity
677f7e160f3532e1357a3c7f35f9f8f8529b389a
[ "Apache-2.0" ]
6
2021-11-23T17:23:25.000Z
2022-03-22T21:15:01.000Z
model/gumbel_masks.py
slachapelle/anon_disentanglement_via_mechanism_sparsity
677f7e160f3532e1357a3c7f35f9f8f8529b389a
[ "Apache-2.0" ]
null
null
null
model/gumbel_masks.py
slachapelle/anon_disentanglement_via_mechanism_sparsity
677f7e160f3532e1357a3c7f35f9f8f8529b389a
[ "Apache-2.0" ]
null
null
null
import math import torch class GumbelSigmoid(torch.nn.Module): def __init__(self, shape, freeze=False, drawhard=True, tau=1): super(GumbelSigmoid, self).__init__() self.shape = shape self.freeze=freeze self.drawhard = drawhard self.log_alpha = torch.nn.Parameter(torch.zeros(self.shape)) self.tau = tau # useful to make sure these parameters will be pushed to the GPU self.uniform = torch.distributions.uniform.Uniform(0, 1) self.register_buffer("fixed_mask", torch.ones(shape)) self.reset_parameters() def forward(self, bs): if self.freeze: y = self.fixed_mask.unsqueeze(0).expand((bs,) + self.shape) return y else: shape = tuple([bs] + list(self.shape)) logistic_noise = self.sample_logistic(shape).type(self.log_alpha.type()).to(self.log_alpha.device) y_soft = torch.sigmoid((self.log_alpha + logistic_noise) / self.tau) if self.drawhard: y_hard = (y_soft > 0.5).type(y_soft.type()) # This weird line does two things: # 1) at forward, we get a hard sample. # 2) at backward, we differentiate the gumbel sigmoid y = y_hard.detach() - y_soft.detach() + y_soft else: y = y_soft return y def get_proba(self): """Returns probability of getting one""" if self.freeze: return self.fixed_mask else: return torch.sigmoid(self.log_alpha) def reset_parameters(self): torch.nn.init.constant_(self.log_alpha, 5) # 5) # will yield a probability ~0.99. Inspired by DCDI def sample_logistic(self, shape): u = self.uniform.sample(shape) return torch.log(u) - torch.log(1 - u) def threshold(self): proba = self.get_proba() self.fixed_mask.copy_((proba > 0.5).type(proba.type())) self.freeze = True
34.033898
110
0.592629
4b328b421fb9c09622f3eb53a7b30a1093d3e18c
91,859
py
Python
pika/connection.py
hugovk/pika
03542ef616a2a849e8bfb0845427f50e741ea0c6
[ "BSD-3-Clause" ]
null
null
null
pika/connection.py
hugovk/pika
03542ef616a2a849e8bfb0845427f50e741ea0c6
[ "BSD-3-Clause" ]
null
null
null
pika/connection.py
hugovk/pika
03542ef616a2a849e8bfb0845427f50e741ea0c6
[ "BSD-3-Clause" ]
null
null
null
"""Core connection objects""" # disable too-many-lines # pylint: disable=C0302 import abc import ast import copy import functools import logging import math import numbers import platform import socket import warnings import ssl from pika import __version__ from pika import callback as pika_callback import pika.channel from pika import credentials as pika_credentials from pika import exceptions from pika import frame from pika import heartbeat as pika_heartbeat from pika import spec import pika.compat from pika.compat import (xrange, basestring, # pylint: disable=W0622 url_unquote, dictkeys, dict_itervalues, dict_iteritems) BACKPRESSURE_WARNING = ("Pika: Write buffer exceeded warning threshold at " "%i bytes and an estimated %i frames behind") PRODUCT = "Pika Python Client Library" LOGGER = logging.getLogger(__name__) class Parameters(object): # pylint: disable=R0902 """Base connection parameters class definition """ # Declare slots to protect against accidental assignment of an invalid # attribute __slots__ = ( '_backpressure_detection', '_blocked_connection_timeout', '_channel_max', '_client_properties', '_connection_attempts', '_credentials', '_frame_max', '_heartbeat', '_host', '_locale', '_port', '_retry_delay', '_socket_timeout', '_stack_timeout', '_ssl_options', '_virtual_host', '_tcp_options' ) DEFAULT_USERNAME = 'guest' DEFAULT_PASSWORD = 'guest' DEFAULT_BACKPRESSURE_DETECTION = False DEFAULT_BLOCKED_CONNECTION_TIMEOUT = None DEFAULT_CHANNEL_MAX = pika.channel.MAX_CHANNELS DEFAULT_CLIENT_PROPERTIES = None DEFAULT_CREDENTIALS = pika_credentials.PlainCredentials(DEFAULT_USERNAME, DEFAULT_PASSWORD) DEFAULT_CONNECTION_ATTEMPTS = 1 DEFAULT_FRAME_MAX = spec.FRAME_MAX_SIZE DEFAULT_HEARTBEAT_TIMEOUT = None # None accepts server's proposal DEFAULT_HOST = 'localhost' DEFAULT_LOCALE = 'en_US' DEFAULT_PORT = 5672 DEFAULT_RETRY_DELAY = 2.0 DEFAULT_SOCKET_TIMEOUT = 10.0 # socket.connect() timeout DEFAULT_STACK_TIMEOUT = 15.0 # full-stack TCP/[SSl]/AMQP bring-up timeout DEFAULT_SSL = False DEFAULT_SSL_OPTIONS = None DEFAULT_SSL_PORT = 5671 DEFAULT_VIRTUAL_HOST = '/' DEFAULT_TCP_OPTIONS = None DEFAULT_HEARTBEAT_INTERVAL = DEFAULT_HEARTBEAT_TIMEOUT # DEPRECATED def __init__(self): self._backpressure_detection = None self.backpressure_detection = self.DEFAULT_BACKPRESSURE_DETECTION # If not None, blocked_connection_timeout is the timeout, in seconds, # for the connection to remain blocked; if the timeout expires, the # connection will be torn down, triggering the connection's # on_close_callback self._blocked_connection_timeout = None self.blocked_connection_timeout = ( self.DEFAULT_BLOCKED_CONNECTION_TIMEOUT) self._channel_max = None self.channel_max = self.DEFAULT_CHANNEL_MAX self._client_properties = None self.client_properties = self.DEFAULT_CLIENT_PROPERTIES self._connection_attempts = None self.connection_attempts = self.DEFAULT_CONNECTION_ATTEMPTS self._credentials = None self.credentials = self.DEFAULT_CREDENTIALS self._frame_max = None self.frame_max = self.DEFAULT_FRAME_MAX self._heartbeat = None self.heartbeat = self.DEFAULT_HEARTBEAT_TIMEOUT self._host = None self.host = self.DEFAULT_HOST self._locale = None self.locale = self.DEFAULT_LOCALE self._port = None self.port = self.DEFAULT_PORT self._retry_delay = None self.retry_delay = self.DEFAULT_RETRY_DELAY self._socket_timeout = None self.socket_timeout = self.DEFAULT_SOCKET_TIMEOUT self._stack_timeout = None self.stack_timeout = self.DEFAULT_STACK_TIMEOUT self._ssl_options = None self.ssl_options = self.DEFAULT_SSL_OPTIONS self._virtual_host = None self.virtual_host = self.DEFAULT_VIRTUAL_HOST self._tcp_options = None self.tcp_options = self.DEFAULT_TCP_OPTIONS def __repr__(self): """Represent the info about the instance. :rtype: str """ return ('<%s host=%s port=%s virtual_host=%s ssl=%s>' % (self.__class__.__name__, self.host, self.port, self.virtual_host, bool(self.ssl_options))) @property def backpressure_detection(self): """ :returns: boolean indicating whether backpressure detection is enabled. Defaults to `DEFAULT_BACKPRESSURE_DETECTION`. """ return self._backpressure_detection @backpressure_detection.setter def backpressure_detection(self, value): """ :param bool value: boolean indicating whether to enable backpressure detection """ if not isinstance(value, bool): raise TypeError('backpressure_detection must be a bool, ' 'but got %r' % (value,)) self._backpressure_detection = value @property def blocked_connection_timeout(self): """ :returns: None or float blocked connection timeout. Defaults to `DEFAULT_BLOCKED_CONNECTION_TIMEOUT`. """ return self._blocked_connection_timeout @blocked_connection_timeout.setter def blocked_connection_timeout(self, value): """ :param value: If not None, blocked_connection_timeout is the timeout, in seconds, for the connection to remain blocked; if the timeout expires, the connection will be torn down, triggering the connection's on_close_callback """ if value is not None: if not isinstance(value, numbers.Real): raise TypeError('blocked_connection_timeout must be a Real ' 'number, but got %r' % (value,)) if value < 0: raise ValueError('blocked_connection_timeout must be >= 0, but ' 'got %r' % (value,)) self._blocked_connection_timeout = value @property def channel_max(self): """ :returns: max preferred number of channels. Defaults to `DEFAULT_CHANNEL_MAX`. :rtype: int """ return self._channel_max @channel_max.setter def channel_max(self, value): """ :param int value: max preferred number of channels, between 1 and `channel.MAX_CHANNELS`, inclusive """ if not isinstance(value, numbers.Integral): raise TypeError('channel_max must be an int, but got %r' % (value,)) if value < 1 or value > pika.channel.MAX_CHANNELS: raise ValueError('channel_max must be <= %i and > 0, but got %r' % (pika.channel.MAX_CHANNELS, value)) self._channel_max = value @property def client_properties(self): """ :returns: None or dict of client properties used to override the fields in the default client poperties reported to RabbitMQ via `Connection.StartOk` method. Defaults to `DEFAULT_CLIENT_PROPERTIES`. """ return self._client_properties @client_properties.setter def client_properties(self, value): """ :param value: None or dict of client properties used to override the fields in the default client poperties reported to RabbitMQ via `Connection.StartOk` method. """ if not isinstance(value, (dict, type(None),)): raise TypeError('client_properties must be dict or None, ' 'but got %r' % (value,)) # Copy the mutable object to avoid accidental side-effects self._client_properties = copy.deepcopy(value) @property def connection_attempts(self): """ :returns: number of socket connection attempts. Defaults to `DEFAULT_CONNECTION_ATTEMPTS`. See also `retry_delay`. """ return self._connection_attempts @connection_attempts.setter def connection_attempts(self, value): """ :param int value: number of socket connection attempts of at least 1. See also `retry_delay`. """ if not isinstance(value, numbers.Integral): raise TypeError('connection_attempts must be an int') if value < 1: raise ValueError('connection_attempts must be > 0, but got %r' % (value,)) self._connection_attempts = value @property def credentials(self): """ :rtype: one of the classes from `pika.credentials.VALID_TYPES`. Defaults to `DEFAULT_CREDENTIALS`. """ return self._credentials @credentials.setter def credentials(self, value): """ :param value: authentication credential object of one of the classes from `pika.credentials.VALID_TYPES` """ if not isinstance(value, tuple(pika_credentials.VALID_TYPES)): raise TypeError('Credentials must be an object of type: %r, but ' 'got %r' % (pika_credentials.VALID_TYPES, value)) # Copy the mutable object to avoid accidental side-effects self._credentials = copy.deepcopy(value) @property def frame_max(self): """ :returns: desired maximum AMQP frame size to use. Defaults to `DEFAULT_FRAME_MAX`. """ return self._frame_max @frame_max.setter def frame_max(self, value): """ :param int value: desired maximum AMQP frame size to use between `spec.FRAME_MIN_SIZE` and `spec.FRAME_MAX_SIZE`, inclusive """ if not isinstance(value, numbers.Integral): raise TypeError('frame_max must be an int, but got %r' % (value,)) if value < spec.FRAME_MIN_SIZE: raise ValueError('Min AMQP 0.9.1 Frame Size is %i, but got %r' % (spec.FRAME_MIN_SIZE, value,)) elif value > spec.FRAME_MAX_SIZE: raise ValueError('Max AMQP 0.9.1 Frame Size is %i, but got %r' % (spec.FRAME_MAX_SIZE, value,)) self._frame_max = value @property def heartbeat(self): """ :returns: AMQP connection heartbeat timeout value for negotiation during connection tuning or callable which is invoked during connection tuning. None to accept broker's value. 0 turns heartbeat off. Defaults to `DEFAULT_HEARTBEAT_TIMEOUT`. :rtype: integer, None or callable """ return self._heartbeat @heartbeat.setter def heartbeat(self, value): """ :param int|None|callable value: Controls AMQP heartbeat timeout negotiation during connection tuning. An integer value always overrides the value proposed by broker. Use 0 to deactivate heartbeats and None to always accept the broker's proposal. If a callable is given, it will be called with the connection instance and the heartbeat timeout proposed by broker as its arguments. The callback should return a non-negative integer that will be used to override the broker's proposal. """ if value is not None: if not isinstance(value, numbers.Integral) and not callable(value): raise TypeError('heartbeat must be an int or a callable function, but got %r' % (value,)) if not callable(value) and value < 0: raise ValueError('heartbeat must >= 0, but got %r' % (value,)) self._heartbeat = value @property def host(self): """ :returns: hostname or ip address of broker. Defaults to `DEFAULT_HOST`. :rtype: str """ return self._host @host.setter def host(self, value): """ :param str value: hostname or ip address of broker """ if not isinstance(value, basestring): raise TypeError('host must be a str or unicode str, but got %r' % (value,)) self._host = value @property def locale(self): """ :returns: locale value to pass to broker; e.g., 'en_US'. Defaults to `DEFAULT_LOCALE`. :rtype: str """ return self._locale @locale.setter def locale(self, value): """ :param str value: locale value to pass to broker; e.g., "en_US" """ if not isinstance(value, basestring): raise TypeError('locale must be a str, but got %r' % (value,)) self._locale = value @property def port(self): """ :returns: port number of broker's listening socket. Defaults to `DEFAULT_PORT`. :rtype: int """ return self._port @port.setter def port(self, value): """ :param int value: port number of broker's listening socket """ try: self._port = int(value) except (TypeError, ValueError): raise TypeError('port must be an int, but got %r' % (value,)) @property def retry_delay(self): """ :returns: interval between socket connection attempts; see also `connection_attempts`. Defaults to `DEFAULT_RETRY_DELAY`. :rtype: float """ return self._retry_delay @retry_delay.setter def retry_delay(self, value): """ :param int | float value: interval between socket connection attempts; see also `connection_attempts`. """ if not isinstance(value, numbers.Real): raise TypeError('retry_delay must be a float or int, but got %r' % (value,)) self._retry_delay = value @property def socket_timeout(self): """ :returns: socket connect timeout in seconds. Defaults to `DEFAULT_SOCKET_TIMEOUT`. The value None disables this timeout. :rtype: float | None """ return self._socket_timeout @socket_timeout.setter def socket_timeout(self, value): """ :param int | float | None value: positive socket connect timeout in seconds. None to disable this timeout. """ if value is not None: if not isinstance(value, numbers.Real): raise TypeError('socket_timeout must be a float or int, ' 'but got %r' % (value,)) if value <= 0: raise ValueError('socket_timeout must be > 0, but got %r' % (value,)) value = float(value) self._socket_timeout = value @property def stack_timeout(self): """ :returns: full protocol stack TCP/[SSL]/AMQP bring-up timeout in seconds. Defaults to `DEFAULT_STACK_TIMEOUT`. The value None disables this timeout. :rtype: float """ return self._stack_timeout @stack_timeout.setter def stack_timeout(self, value): """ :param int | float | None value: positive full protocol stack TCP/[SSL]/AMQP bring-up timeout in seconds. It's recommended to set this value higher than `socket_timeout`. None to disable this timeout. """ if value is not None: if not isinstance(value, numbers.Real): raise TypeError('stack_timeout must be a float or int, ' 'but got %r' % (value,)) if value <= 0: raise ValueError('stack_timeout must be > 0, but got %r' % (value,)) value = float(value) self._stack_timeout = value @property def ssl_options(self): """ :returns: None for plaintext or `pika.SSLOptions` instance for SSL/TLS. :rtype: `pika.SSLOptions`|None """ return self._ssl_options @ssl_options.setter def ssl_options(self, value): """ :param `pika.SSLOptions`|None value: None for plaintext or `pika.SSLOptions` instance for SSL/TLS. Defaults to None. """ if not isinstance(value, (SSLOptions, type(None))): raise TypeError( 'ssl_options must be None or SSLOptions but got %r' % (value, )) self._ssl_options = value @property def virtual_host(self): """ :returns: rabbitmq virtual host name. Defaults to `DEFAULT_VIRTUAL_HOST`. """ return self._virtual_host @virtual_host.setter def virtual_host(self, value): """ :param str value: rabbitmq virtual host name """ if not isinstance(value, basestring): raise TypeError('virtual_host must be a str, but got %r' % (value,)) self._virtual_host = value @property def tcp_options(self): """ :returns: None or a dict of options to pass to the underlying socket :rtype: dict|None """ return self._tcp_options @tcp_options.setter def tcp_options(self, value): """ :param dict|None value: None or a dict of options to pass to the underlying socket. Currently supported are TCP_KEEPIDLE, TCP_KEEPINTVL, TCP_KEEPCNT and TCP_USER_TIMEOUT. Availability of these may depend on your platform. """ if not isinstance(value, (dict, type(None))): raise TypeError('tcp_options must be a dict or None, but got %r' % (value,)) self._tcp_options = value class ConnectionParameters(Parameters): """Connection parameters object that is passed into the connection adapter upon construction. """ # Protect against accidental assignment of an invalid attribute __slots__ = () class _DEFAULT(object): """Designates default parameter value; internal use""" pass def __init__(self, # pylint: disable=R0913,R0914,R0912 host=_DEFAULT, port=_DEFAULT, virtual_host=_DEFAULT, credentials=_DEFAULT, channel_max=_DEFAULT, frame_max=_DEFAULT, heartbeat=_DEFAULT, ssl_options=_DEFAULT, connection_attempts=_DEFAULT, retry_delay=_DEFAULT, socket_timeout=_DEFAULT, stack_timeout=_DEFAULT, locale=_DEFAULT, backpressure_detection=_DEFAULT, blocked_connection_timeout=_DEFAULT, client_properties=_DEFAULT, tcp_options=_DEFAULT, **kwargs): """Create a new ConnectionParameters instance. See `Parameters` for default values. :param str host: Hostname or IP Address to connect to :param int port: TCP port to connect to :param str virtual_host: RabbitMQ virtual host to use :param pika.credentials.Credentials credentials: auth credentials :param int channel_max: Maximum number of channels to allow :param int frame_max: The maximum byte size for an AMQP frame :param int|None|callable value: Controls AMQP heartbeat timeout negotiation during connection tuning. An integer value always overrides the value proposed by broker. Use 0 to deactivate heartbeats and None to always accept the broker's proposal. If a callable is given, it will be called with the connection instance and the heartbeat timeout proposed by broker as its arguments. The callback should return a non-negative integer that will be used to override the broker's proposal. :param `pika.SSLOptions`|None ssl_options: None for plaintext or `pika.SSLOptions` instance for SSL/TLS. Defaults to None. :param int connection_attempts: Maximum number of retry attempts :param int|float retry_delay: Time to wait in seconds, before the next :param int|float socket_timeout: Positive socket connect timeout in seconds. :param int|float stack_timeout: Positive full protocol stack (TCP/[SSL]/AMQP) bring-up timeout in seconds. It's recommended to set this value higher than `socket_timeout`. :param str locale: Set the locale value :param bool backpressure_detection: DEPRECATED in favor of `Connection.Blocked` and `Connection.Unblocked`. See `Connection.add_on_connection_blocked_callback`. :param blocked_connection_timeout: If not None, the value is a non-negative timeout, in seconds, for the connection to remain blocked (triggered by Connection.Blocked from broker); if the timeout expires before connection becomes unblocked, the connection will be torn down, triggering the adapter-specific mechanism for informing client app about the closed connection: passing `ConnectionBlockedTimeout` exception to on_close_callback in asynchronous adapters or raising it in `BlockingConnection`. :type blocked_connection_timeout: None, int, float :param client_properties: None or dict of client properties used to override the fields in the default client properties reported to RabbitMQ via `Connection.StartOk` method. :param heartbeat_interval: DEPRECATED; use `heartbeat` instead, and don't pass both :param tcp_options: None or a dict of TCP options to set for socket """ super(ConnectionParameters, self).__init__() if backpressure_detection is not self._DEFAULT: self.backpressure_detection = backpressure_detection if blocked_connection_timeout is not self._DEFAULT: self.blocked_connection_timeout = blocked_connection_timeout if channel_max is not self._DEFAULT: self.channel_max = channel_max if client_properties is not self._DEFAULT: self.client_properties = client_properties if connection_attempts is not self._DEFAULT: self.connection_attempts = connection_attempts if credentials is not self._DEFAULT: self.credentials = credentials if frame_max is not self._DEFAULT: self.frame_max = frame_max if heartbeat is not self._DEFAULT: self.heartbeat = heartbeat try: heartbeat_interval = kwargs.pop('heartbeat_interval') except KeyError: # Good, this one is deprecated pass else: warnings.warn('heartbeat_interval is deprecated, use heartbeat', DeprecationWarning, stacklevel=2) if heartbeat is not self._DEFAULT: raise TypeError('heartbeat and deprecated heartbeat_interval ' 'are mutually-exclusive') self.heartbeat = heartbeat_interval if host is not self._DEFAULT: self.host = host if locale is not self._DEFAULT: self.locale = locale if retry_delay is not self._DEFAULT: self.retry_delay = retry_delay if socket_timeout is not self._DEFAULT: self.socket_timeout = socket_timeout if stack_timeout is not self._DEFAULT: self.stack_timeout = stack_timeout if ssl_options is not self._DEFAULT: self.ssl_options = ssl_options # Set port after SSL status is known if port is not self._DEFAULT: self.port = port else: self.port = self.DEFAULT_SSL_PORT if self.ssl_options else self.DEFAULT_PORT if virtual_host is not self._DEFAULT: self.virtual_host = virtual_host if tcp_options is not self._DEFAULT: self.tcp_options = tcp_options if kwargs: raise TypeError('Unexpected kwargs: %r' % (kwargs,)) class URLParameters(Parameters): """Connect to RabbitMQ via an AMQP URL in the format:: amqp://username:password@host:port/<virtual_host>[?query-string] Ensure that the virtual host is URI encoded when specified. For example if you are using the default "/" virtual host, the value should be `%2f`. See `Parameters` for default values. Valid query string values are: - backpressure_detection: DEPRECATED in favor of `Connection.Blocked` and `Connection.Unblocked`. See `Connection.add_on_connection_blocked_callback`. - channel_max: Override the default maximum channel count value - client_properties: dict of client properties used to override the fields in the default client properties reported to RabbitMQ via `Connection.StartOk` method - connection_attempts: Specify how many times pika should try and reconnect before it gives up - frame_max: Override the default maximum frame size for communication - heartbeat: Desired connection heartbeat timeout for negotiation. If not present the broker's value is accepted. 0 turns heartbeat off. - locale: Override the default `en_US` locale value - ssl_options: None for plaintext; for SSL: dict of public ssl context-related arguments that may be passed to :meth:`ssl.SSLSocket` as kwargs, except `sock`, `server_side`,`do_handshake_on_connect`, `family`, `type`, `proto`, `fileno`. - retry_delay: The number of seconds to sleep before attempting to connect on connection failure. - socket_timeout: Socket connect timeout value in seconds (float or int) - stack_timeout: Positive full protocol stack (TCP/[SSL]/AMQP) bring-up timeout in seconds. It's recommended to set this value higher than `socket_timeout`. - blocked_connection_timeout: Set the timeout, in seconds, that the connection may remain blocked (triggered by Connection.Blocked from broker); if the timeout expires before connection becomes unblocked, the connection will be torn down, triggering the connection's on_close_callback - tcp_options: Set the tcp options for the underlying socket. :param str url: The AMQP URL to connect to """ # Protect against accidental assignment of an invalid attribute __slots__ = ('_all_url_query_values',) # The name of the private function for parsing and setting a given URL query # arg is constructed by catenating the query arg's name to this prefix _SETTER_PREFIX = '_set_url_' def __init__(self, url): """Create a new URLParameters instance. :param str url: The URL value """ super(URLParameters, self).__init__() self._all_url_query_values = None # Handle the Protocol scheme # # Fix up scheme amqp(s) to http(s) so urlparse won't barf on python # prior to 2.7. On Python 2.6.9, # `urlparse('amqp://127.0.0.1/%2f?socket_timeout=1')` produces an # incorrect path='/%2f?socket_timeout=1' if url[0:4].lower() == 'amqp': url = 'http' + url[4:] parts = pika.compat.urlparse(url) if parts.scheme == 'https': # Create default context which will get overridden by the # ssl_options URL arg, if any self.ssl_options = pika.SSLOptions( context=ssl.create_default_context()) elif parts.scheme == 'http': self.ssl_options = None elif parts.scheme: raise ValueError('Unexpected URL scheme %r; supported scheme ' 'values: amqp, amqps' % (parts.scheme,)) if parts.hostname is not None: self.host = parts.hostname # Take care of port after SSL status is known if parts.port is not None: self.port = parts.port else: self.port = (self.DEFAULT_SSL_PORT if self.ssl_options else self.DEFAULT_PORT) if parts.username is not None: self.credentials = pika_credentials.PlainCredentials(url_unquote(parts.username), url_unquote(parts.password)) # Get the Virtual Host if len(parts.path) > 1: self.virtual_host = url_unquote(parts.path.split('/')[1]) # Handle query string values, validating and assigning them self._all_url_query_values = pika.compat.url_parse_qs(parts.query) for name, value in dict_iteritems(self._all_url_query_values): try: set_value = getattr(self, self._SETTER_PREFIX + name) except AttributeError: raise ValueError('Unknown URL parameter: %r' % (name,)) try: (value,) = value except ValueError: raise ValueError('Expected exactly one value for URL parameter ' '%s, but got %i values: %s' % ( name, len(value), value)) set_value(value) def _set_url_backpressure_detection(self, value): """Deserialize and apply the corresponding query string arg""" try: backpressure_detection = {'t': True, 'f': False}[value] except KeyError: raise ValueError('Invalid backpressure_detection value: %r' % (value,)) self.backpressure_detection = backpressure_detection def _set_url_blocked_connection_timeout(self, value): """Deserialize and apply the corresponding query string arg""" try: blocked_connection_timeout = float(value) except ValueError as exc: raise ValueError('Invalid blocked_connection_timeout value %r: %r' % (value, exc,)) self.blocked_connection_timeout = blocked_connection_timeout def _set_url_channel_max(self, value): """Deserialize and apply the corresponding query string arg""" try: channel_max = int(value) except ValueError as exc: raise ValueError('Invalid channel_max value %r: %r' % (value, exc,)) self.channel_max = channel_max def _set_url_client_properties(self, value): """Deserialize and apply the corresponding query string arg""" self.client_properties = ast.literal_eval(value) def _set_url_connection_attempts(self, value): """Deserialize and apply the corresponding query string arg""" try: connection_attempts = int(value) except ValueError as exc: raise ValueError('Invalid connection_attempts value %r: %r' % (value, exc,)) self.connection_attempts = connection_attempts def _set_url_frame_max(self, value): """Deserialize and apply the corresponding query string arg""" try: frame_max = int(value) except ValueError as exc: raise ValueError('Invalid frame_max value %r: %r' % (value, exc,)) self.frame_max = frame_max def _set_url_heartbeat(self, value): """Deserialize and apply the corresponding query string arg""" if 'heartbeat_interval' in self._all_url_query_values: raise ValueError('Deprecated URL parameter heartbeat_interval must ' 'not be specified together with heartbeat') try: heartbeat_timeout = int(value) except ValueError as exc: raise ValueError('Invalid heartbeat value %r: %r' % (value, exc,)) self.heartbeat = heartbeat_timeout def _set_url_heartbeat_interval(self, value): """Deserialize and apply the corresponding query string arg""" warnings.warn('heartbeat_interval is deprecated, use heartbeat', DeprecationWarning, stacklevel=2) if 'heartbeat' in self._all_url_query_values: raise ValueError('Deprecated URL parameter heartbeat_interval must ' 'not be specified together with heartbeat') try: heartbeat_timeout = int(value) except ValueError as exc: raise ValueError('Invalid heartbeat_interval value %r: %r' % (value, exc,)) self.heartbeat = heartbeat_timeout def _set_url_locale(self, value): """Deserialize and apply the corresponding query string arg""" self.locale = value def _set_url_retry_delay(self, value): """Deserialize and apply the corresponding query string arg""" try: retry_delay = float(value) except ValueError as exc: raise ValueError('Invalid retry_delay value %r: %r' % (value, exc,)) self.retry_delay = retry_delay def _set_url_socket_timeout(self, value): """Deserialize and apply the corresponding query string arg""" try: socket_timeout = float(value) except ValueError as exc: raise ValueError('Invalid socket_timeout value %r: %r' % (value, exc,)) self.socket_timeout = socket_timeout def _set_url_stack_timeout(self, value): """Deserialize and apply the corresponding query string arg""" try: stack_timeout = float(value) except ValueError as exc: raise ValueError('Invalid stack_timeout value %r: %r' % (value, exc,)) self.stack_timeout = stack_timeout def _set_url_ssl_options(self, value): """Deserialize and apply the corresponding query string arg """ options = ast.literal_eval(value) if options is None: if self.ssl_options is not None: raise ValueError( 'Specified ssl_options=None URL arg is inconsistent with ' 'the specified https URL scheme.') else: # Convert options to pika.SSLOptions via ssl.SSLSocket() sock = socket.socket() try: ssl_sock = ssl.SSLSocket(sock=sock, **options) try: self.ssl_options = pika.SSLOptions( context=ssl_sock.context, server_hostname=ssl_sock.server_hostname) finally: ssl_sock.close() finally: sock.close() def _set_url_tcp_options(self, value): """Deserialize and apply the corresponding query string arg""" self.tcp_options = ast.literal_eval(value) class SSLOptions(object): """Class used to provide parameters for optional fine grained control of SSL socket wrapping. """ # Protect against accidental assignment of an invalid attribute __slots__ = ('context', 'server_hostname') def __init__(self, context, server_hostname=None): """ :param ssl.SSLContext context: SSLContext instance :param str|None server_hostname: SSLContext.wrap_socket, used to enable SNI """ if not isinstance(context, ssl.SSLContext): raise TypeError( 'context must be of ssl.SSLContext type, but got {!r}'.format( context)) self.context = context self.server_hostname = server_hostname class Connection(pika.compat.AbstractBase): """This is the core class that implements communication with RabbitMQ. This class should not be invoked directly but rather through the use of an adapter such as SelectConnection or BlockingConnection. """ # Disable pylint messages concerning "method could be a funciton" # pylint: disable=R0201 ON_CONNECTION_BACKPRESSURE = '_on_connection_backpressure' ON_CONNECTION_CLOSED = '_on_connection_closed' ON_CONNECTION_ERROR = '_on_connection_error' ON_CONNECTION_OPEN_OK = '_on_connection_open_ok' CONNECTION_CLOSED = 0 CONNECTION_INIT = 1 CONNECTION_PROTOCOL = 2 CONNECTION_START = 3 CONNECTION_TUNE = 4 CONNECTION_OPEN = 5 CONNECTION_CLOSING = 6 # client-initiated close in progress _STATE_NAMES = { CONNECTION_CLOSED: 'CLOSED', CONNECTION_INIT: 'INIT', CONNECTION_PROTOCOL: 'PROTOCOL', CONNECTION_START: 'START', CONNECTION_TUNE: 'TUNE', CONNECTION_OPEN: 'OPEN', CONNECTION_CLOSING: 'CLOSING' } def __init__(self, parameters=None, on_open_callback=None, on_open_error_callback=None, on_close_callback=None, internal_connection_workflow=True): """Connection initialization expects an object that has implemented the Parameters class and a callback function to notify when we have successfully connected to the AMQP Broker. Available Parameters classes are the ConnectionParameters class and URLParameters class. :param pika.connection.Parameters parameters: Read-only connection parameters. :param method on_open_callback: Called when the connection is opened: on_open_callback(connection) :param None | method on_open_error_callback: Called if the connection can't be established or connection establishment is interrupted by `Connection.close()`: on_open_error_callback(Connection, exception). :param None | method on_close_callback: Called when a previously fully open connection is closed: `on_close_callback(Connection, exception)`, where `exception` is either an instance of `exceptions.ConnectionClosed` if closed by user or broker or exception of another type that describes the cause of connection failure. :param bool internal_connection_workflow: True for autonomous connection establishment which is default; False for externally-managed connection workflow via the `create_connection()` factory. """ self.connection_state = self.CONNECTION_CLOSED # Determines whether we invoke the on_open_error_callback or # on_close_callback. So that we don't lose track when state transitions # to CONNECTION_CLOSING as the result of Connection.close() call during # opening. self._opened = False # Value to pass to on_open_error_callback or on_close_callback when # connection fails to be established or becomes closed self._error = None # type: Exception # Used to hold timer if configured for Connection.Blocked timeout self._blocked_conn_timer = None self._heartbeat_checker = None # Set our configuration options if parameters is not None: # NOTE: Work around inability to copy ssl.SSLContext contained in # our SSLOptions; ssl.SSLContext fails to implement __getnewargs__ saved_ssl_options = parameters.ssl_options parameters.ssl_options = None try: self.params = copy.deepcopy(parameters) self.params.ssl_options = saved_ssl_options finally: parameters.ssl_options = saved_ssl_options else: self.params = ConnectionParameters() self._internal_connection_workflow = internal_connection_workflow # Define our callback dictionary self.callbacks = pika_callback.CallbackManager() # Attributes that will be properly initialized by _init_connection_state # and/or during connection handshake. self.server_capabilities = None self.server_properties = None self._body_max_length = None self.known_hosts = None self._frame_buffer = None self._channels = None self._backpressure_multiplier = None self._init_connection_state() # Add the on connection error callback self.callbacks.add(0, self.ON_CONNECTION_ERROR, on_open_error_callback or self._default_on_connection_error, False) # On connection callback if on_open_callback: self.add_on_open_callback(on_open_callback) # On connection callback if on_close_callback: self.add_on_close_callback(on_close_callback) self._set_connection_state(self.CONNECTION_INIT) if self._internal_connection_workflow: # Kick off full-stack connection establishment. It will complete # asynchronously. self._adapter_connect_stream() else: # Externally-managed connection workflow will proceed asynchronously # using adapter-specific mechanism LOGGER.debug('Using external connection workflow.') def _init_connection_state(self): """Initialize or reset all of the internal state variables for a given connection. On disconnect or reconnect all of the state needs to be wiped. """ # TODO: probably don't need the state recovery logic since we don't # test re-connection sufficiently (if at all), and users should # just create a new instance of Connection when needed. # So, just merge the pertinent logic into the constructor. # Connection state self._set_connection_state(self.CONNECTION_CLOSED) # Negotiated server properties self.server_properties = None # Inbound buffer for decoding frames self._frame_buffer = bytes() # Dict of open channels self._channels = dict() # Data used for Heartbeat checking and back-pressure detection self.bytes_sent = 0 self.bytes_received = 0 self.frames_sent = 0 self.frames_received = 0 self._heartbeat_checker = None # Default back-pressure multiplier value self._backpressure_multiplier = 10 # When closing, holds reason why self._error = None # Our starting point once connected, first frame received self._add_connection_start_callback() # Add a callback handler for the Broker telling us to disconnect. # NOTE: As of RabbitMQ 3.6.0, RabbitMQ broker may send Connection.Close # to signal error during connection setup (and wait a longish time # before closing the TCP/IP stream). Earlier RabbitMQ versions # simply closed the TCP/IP stream. self.callbacks.add(0, spec.Connection.Close, self._on_connection_close_from_broker) if self.params.blocked_connection_timeout is not None: if self._blocked_conn_timer is not None: # Blocked connection timer was active when teardown was # initiated self._adapter_remove_timeout(self._blocked_conn_timer) self._blocked_conn_timer = None self.add_on_connection_blocked_callback( self._on_connection_blocked) self.add_on_connection_unblocked_callback( self._on_connection_unblocked) def add_backpressure_callback(self, callback): """Call method "callback" when pika believes backpressure is being applied. :param method callback: The method to call """ if not callable(callback): raise TypeError('callback should be a function or method.') self.callbacks.add(0, self.ON_CONNECTION_BACKPRESSURE, callback, False) def add_on_close_callback(self, callback): """Add a callback notification when the connection has closed. The callback will be passed the connection and an exception instance. The exception will either be an instance of `exceptions.ConnectionClosed` if a fully-open connection was closed by user or broker or exception of another type that describes the cause of connection closure/failure. :param method callback: Callback to call on close, having the signature: callback(pika.connection.Connection, exception) """ if not callable(callback): raise TypeError('callback should be a function or method.') self.callbacks.add(0, self.ON_CONNECTION_CLOSED, callback, False) def add_on_connection_blocked_callback(self, callback): """RabbitMQ AMQP extension - Add a callback to be notified when the connection gets blocked (`Connection.Blocked` received from RabbitMQ) due to the broker running low on resources (memory or disk). In this state RabbitMQ suspends processing incoming data until the connection is unblocked, so it's a good idea for publishers receiving this notification to suspend publishing until the connection becomes unblocked. See also `Connection.add_on_connection_unblocked_callback()` See also `ConnectionParameters.blocked_connection_timeout`. :param method callback: Callback to call on `Connection.Blocked`, having the signature `callback(connection, pika.frame.Method)`, where the method frame's `method` member is of type `pika.spec.Connection.Blocked` """ if not callable(callback): raise TypeError('callback should be a function or method.') self.callbacks.add(0, spec.Connection.Blocked, functools.partial(callback, self), one_shot=False) def add_on_connection_unblocked_callback(self, callback): """RabbitMQ AMQP extension - Add a callback to be notified when the connection gets unblocked (`Connection.Unblocked` frame is received from RabbitMQ) letting publishers know it's ok to start publishing again. :param method callback: Callback to call on `Connection.Unblocked`, having the signature `callback(connection, pika.frame.Method)`, where the method frame's `method` member is of type `pika.spec.Connection.Unblocked` """ if not callable(callback): raise TypeError('callback should be a function or method.') self.callbacks.add(0, spec.Connection.Unblocked, functools.partial(callback, self), one_shot=False) def add_on_open_callback(self, callback): """Add a callback notification when the connection has opened. The callback will be passed the connection instance as its only arg. :param method callback: Callback to call when open """ if not callable(callback): raise TypeError('callback should be a function or method.') self.callbacks.add(0, self.ON_CONNECTION_OPEN_OK, callback, False) def add_on_open_error_callback(self, callback, remove_default=True): """Add a callback notification when the connection can not be opened. The callback method should accept the connection instance that could not connect, and either a string or an exception as its second arg. :param method callback: Callback to call when can't connect, having the signature _(Connection, Exception) :param bool remove_default: Remove default exception raising callback """ if not callable(callback): raise TypeError('callback should be a function or method.') if remove_default: self.callbacks.remove(0, self.ON_CONNECTION_ERROR, self._default_on_connection_error) self.callbacks.add(0, self.ON_CONNECTION_ERROR, callback, False) def channel(self, channel_number=None, on_open_callback=None): """Create a new channel with the next available channel number or pass in a channel number to use. Must be non-zero if you would like to specify but it is recommended that you let Pika manage the channel numbers. :param int channel_number: The channel number to use, defaults to the next available. :param method on_open_callback: The callback when the channel is opened. The callback will be invoked with the `Channel` instance as its only argument. :rtype: pika.channel.Channel """ if not self.is_open: raise exceptions.ConnectionWrongStateError( 'Channel allocation requires an open connection: %s' % self) if not channel_number: channel_number = self._next_channel_number() self._channels[channel_number] = self._create_channel(channel_number, on_open_callback) self._add_channel_callbacks(channel_number) self._channels[channel_number].open() return self._channels[channel_number] def close(self, reply_code=200, reply_text='Normal shutdown'): """Disconnect from RabbitMQ. If there are any open channels, it will attempt to close them prior to fully disconnecting. Channels which have active consumers will attempt to send a Basic.Cancel to RabbitMQ to cleanly stop the delivery of messages prior to closing the channel. :param int reply_code: The code number for the close :param str reply_text: The text reason for the close :raises pika.exceptions.ConnectionWrongStateError: if connection is closed or closing. """ if self.is_closing or self.is_closed: msg = ( 'Illegal close({}, {!r}) request on {} because it ' 'was called while connection state={}.'.format( reply_code, reply_text, self, self._STATE_NAMES[self.connection_state])) LOGGER.error(msg) raise exceptions.ConnectionWrongStateError(msg) # NOTE The connection is either in opening or open state # Initiate graceful closing of channels that are OPEN or OPENING if self._channels: self._close_channels(reply_code, reply_text) prev_state = self.connection_state # Transition to closing self._set_connection_state(self.CONNECTION_CLOSING) LOGGER.info("Closing connection (%s): %r", reply_code, reply_text) if not self._opened: # It was opening, but not fully open yet, so we won't attempt # graceful AMQP Connection.Close. LOGGER.info('Connection.close() is terminating stream and ' 'bypassing graceful AMQP close, since AMQP is still ' 'opening.') error = exceptions.ConnectionOpenAborted( 'Connection.close() called before connection ' 'finished opening: prev_state={} ({}): {!r}'.format( self._STATE_NAMES[prev_state], reply_code, reply_text)) self._terminate_stream(error) else: self._error = exceptions.ConnectionClosedByClient(reply_code, reply_text) # If there are channels that haven't finished closing yet, then # _on_close_ready will finally be called from _on_channel_cleanup once # all channels have been closed if not self._channels: # We can initiate graceful closing of the connection right away, # since no more channels remain self._on_close_ready() else: LOGGER.info( 'Connection.close is waiting for %d channels to close: %s', len(self._channels), self) def set_backpressure_multiplier(self, value=10): """Alter the backpressure multiplier value. We set this to 10 by default. This value is used to raise warnings and trigger the backpressure callback. :param int value: The multiplier value to set """ self._backpressure_multiplier = value # # Connection state properties # @property def is_closed(self): """ Returns a boolean reporting the current connection state. """ return self.connection_state == self.CONNECTION_CLOSED @property def is_closing(self): """ Returns True if connection is in the process of closing due to client-initiated `close` request, but closing is not yet complete. """ return self.connection_state == self.CONNECTION_CLOSING @property def is_open(self): """ Returns a boolean reporting the current connection state. """ return self.connection_state == self.CONNECTION_OPEN # # Properties that reflect server capabilities for the current connection # @property def basic_nack(self): """Specifies if the server supports basic.nack on the active connection. :rtype: bool """ return self.server_capabilities.get('basic.nack', False) @property def consumer_cancel_notify(self): """Specifies if the server supports consumer cancel notification on the active connection. :rtype: bool """ return self.server_capabilities.get('consumer_cancel_notify', False) @property def exchange_exchange_bindings(self): """Specifies if the active connection supports exchange to exchange bindings. :rtype: bool """ return self.server_capabilities.get('exchange_exchange_bindings', False) @property def publisher_confirms(self): """Specifies if the active connection can use publisher confirmations. :rtype: bool """ return self.server_capabilities.get('publisher_confirms', False) @abc.abstractmethod def _adapter_add_timeout(self, deadline, callback): """Adapters should override to call the callback after the specified number of seconds have elapsed, using a timer, or a thread, or similar. :param float | int deadline: The number of seconds to wait to call callback :param method callback: The callback will be called without args. :return: Handle that can be passed to `_adapter_remove_timeout()` to cancel the callback. """ raise NotImplementedError @abc.abstractmethod def _adapter_remove_timeout(self, timeout_id): """Adapters should override: Remove a timeout :param opaque timeout_id: The timeout handle to remove """ raise NotImplementedError @abc.abstractmethod def _adapter_add_callback_threadsafe(self, callback): """Requests a call to the given function as soon as possible in the context of this connection's IOLoop thread. NOTE: This is the only thread-safe method offered by the connection. All other manipulations of the connection must be performed from the connection's thread. :param method callback: The callback method; must be callable. """ raise NotImplementedError # # Internal methods for managing the communication process # @abc.abstractmethod def _adapter_connect_stream(self): """Subclasses should override to initiate stream connection workflow asynchronously. Upon failed or aborted completion, they must invoke `Connection._on_stream_terminated()`. NOTE: On success, the stack will be up already, so there is no corresponding callback. """ raise NotImplementedError @abc.abstractmethod def _adapter_disconnect_stream(self): """Asynchronously bring down the streaming transport layer and invoke `Connection._on_stream_terminated()` asynchronously when complete. :raises: NotImplementedError """ raise NotImplementedError @abc.abstractmethod def _adapter_emit_data(self, data): """Take ownership of data and send it to AMQP server as soon as possible. Subclasses must override this :param bytes data: """ raise NotImplementedError @abc.abstractmethod def _adapter_get_write_buffer_size(self): """ Subclasses must override this :return: Current size of output data buffered by the transport :rtype: int """ raise NotImplementedError def _add_channel_callbacks(self, channel_number): """Add the appropriate callbacks for the specified channel number. :param int channel_number: The channel number for the callbacks """ # pylint: disable=W0212 # This permits us to garbage-collect our reference to the channel # regardless of whether it was closed by client or broker, and do so # after all channel-close callbacks. self._channels[channel_number]._add_on_cleanup_callback( self._on_channel_cleanup) def _add_connection_start_callback(self): """Add a callback for when a Connection.Start frame is received from the broker. """ self.callbacks.add(0, spec.Connection.Start, self._on_connection_start) def _add_connection_tune_callback(self): """Add a callback for when a Connection.Tune frame is received.""" self.callbacks.add(0, spec.Connection.Tune, self._on_connection_tune) def _check_for_protocol_mismatch(self, value): """Invoked when starting a connection to make sure it's a supported protocol. :param pika.frame.Method value: The frame to check :raises: ProtocolVersionMismatch """ if ((value.method.version_major, value.method.version_minor) != spec.PROTOCOL_VERSION[0:2]): raise exceptions.ProtocolVersionMismatch(frame.ProtocolHeader(), value) @property def _client_properties(self): """Return the client properties dictionary. :rtype: dict """ properties = { 'product': PRODUCT, 'platform': 'Python %s' % platform.python_version(), 'capabilities': { 'authentication_failure_close': True, 'basic.nack': True, 'connection.blocked': True, 'consumer_cancel_notify': True, 'publisher_confirms': True }, 'information': 'See http://pika.rtfd.org', 'version': __version__ } if self.params.client_properties: properties.update(self.params.client_properties) return properties def _close_channels(self, reply_code, reply_text): """Initiate graceful closing of channels that are in OPEN or OPENING states, passing reply_code and reply_text. :param int reply_code: The code for why the channels are being closed :param str reply_text: The text reason for why the channels are closing """ assert self.is_open, str(self) for channel_number in dictkeys(self._channels): chan = self._channels[channel_number] if not (chan.is_closing or chan.is_closed): chan.close(reply_code, reply_text) def _connect(self): """Attempt to connect to RabbitMQ :rtype: bool """ warnings.warn('This method is deprecated, use Connection.connect', DeprecationWarning) def _create_channel(self, channel_number, on_open_callback): """Create a new channel using the specified channel number and calling back the method specified by on_open_callback :param int channel_number: The channel number to use :param method on_open_callback: The callback when the channel is opened. The callback will be invoked with the `Channel` instance as its only argument. """ LOGGER.debug('Creating channel %s', channel_number) return pika.channel.Channel(self, channel_number, on_open_callback) def _create_heartbeat_checker(self): """Create a heartbeat checker instance if there is a heartbeat interval set. :rtype: pika.heartbeat.Heartbeat|None """ if self.params.heartbeat is not None and self.params.heartbeat > 0: LOGGER.debug('Creating a HeartbeatChecker: %r', self.params.heartbeat) return pika_heartbeat.HeartbeatChecker(self, self.params.heartbeat) return None def _remove_heartbeat(self): """Stop the heartbeat checker if it exists """ if self._heartbeat_checker: self._heartbeat_checker.stop() self._heartbeat_checker = None def _deliver_frame_to_channel(self, value): """Deliver the frame to the channel specified in the frame. :param pika.frame.Method value: The frame to deliver """ if not value.channel_number in self._channels: # This should never happen and would constitute breach of the # protocol LOGGER.critical( 'Received %s frame for unregistered channel %i on %s', value.NAME, value.channel_number, self) return # pylint: disable=W0212 self._channels[value.channel_number]._handle_content_frame(value) def _detect_backpressure(self): """Attempt to calculate if TCP backpressure is being applied due to our outbound buffer being larger than the average frame size over a window of frames. """ avg_frame_size = self.bytes_sent / self.frames_sent buffer_size = self._adapter_get_write_buffer_size() if buffer_size > (avg_frame_size * self._backpressure_multiplier): LOGGER.warning(BACKPRESSURE_WARNING, buffer_size, int(buffer_size / avg_frame_size)) self.callbacks.process(0, self.ON_CONNECTION_BACKPRESSURE, self) def _ensure_closed(self): """If the connection is not closed, close it.""" if self.is_open: self.close() def _get_body_frame_max_length(self): """Calculate the maximum amount of bytes that can be in a body frame. :rtype: int """ return ( self.params.frame_max - spec.FRAME_HEADER_SIZE - spec.FRAME_END_SIZE ) def _get_credentials(self, method_frame): """Get credentials for authentication. :param pika.frame.MethodFrame method_frame: The Connection.Start frame :rtype: tuple(str, str) """ (auth_type, response) = self.params.credentials.response_for( method_frame.method) if not auth_type: raise exceptions.AuthenticationError(self.params.credentials.TYPE) self.params.credentials.erase_credentials() return auth_type, response def _has_pending_callbacks(self, value): """Return true if there are any callbacks pending for the specified frame. :param pika.frame.Method value: The frame to check :rtype: bool """ return self.callbacks.pending(value.channel_number, value.method) def _is_method_frame(self, value): """Returns true if the frame is a method frame. :param pika.frame.Frame value: The frame to evaluate :rtype: bool """ return isinstance(value, frame.Method) def _is_protocol_header_frame(self, value): """Returns True if it's a protocol header frame. :rtype: bool """ return isinstance(value, frame.ProtocolHeader) def _next_channel_number(self): """Return the next available channel number or raise an exception. :rtype: int """ limit = self.params.channel_max or pika.channel.MAX_CHANNELS if len(self._channels) >= limit: raise exceptions.NoFreeChannels() for num in xrange(1, len(self._channels) + 1): if num not in self._channels: return num return len(self._channels) + 1 def _on_channel_cleanup(self, channel): """Remove the channel from the dict of channels when Channel.CloseOk is sent. If connection is closing and no more channels remain, proceed to `_on_close_ready`. :param pika.channel.Channel channel: channel instance """ try: del self._channels[channel.channel_number] LOGGER.debug('Removed channel %s', channel.channel_number) except KeyError: LOGGER.error('Channel %r not in channels', channel.channel_number) if self.is_closing: if not self._channels: # Initiate graceful closing of the connection self._on_close_ready() else: # Once Connection enters CLOSING state, all remaining channels # should also be in CLOSING state. Deviation from this would # prevent Connection from completing its closing procedure. channels_not_in_closing_state = [ chan for chan in dict_itervalues(self._channels) if not chan.is_closing] if channels_not_in_closing_state: LOGGER.critical( 'Connection in CLOSING state has non-CLOSING ' 'channels: %r', channels_not_in_closing_state) def _on_close_ready(self): """Called when the Connection is in a state that it can close after a close has been requested by client. This happens after all of the channels are closed that were open when the close request was made. """ if self.is_closed: LOGGER.warning('_on_close_ready invoked when already closed') return # NOTE: Assuming self._error is instance of exceptions.ConnectionClosed self._send_connection_close(self._error.reply_code, self._error.reply_text) def _on_stream_connected(self): """Invoked when the socket is connected and it's time to start speaking AMQP with the broker. """ self._set_connection_state(self.CONNECTION_PROTOCOL) # Start the communication with the RabbitMQ Broker self._send_frame(frame.ProtocolHeader()) def _on_blocked_connection_timeout(self): """ Called when the "connection blocked timeout" expires. When this happens, we tear down the connection """ self._blocked_conn_timer = None self._terminate_stream( exceptions.ConnectionBlockedTimeout( 'Blocked connection timeout expired.')) def _on_connection_blocked(self, _connection, method_frame): """Handle Connection.Blocked notification from RabbitMQ broker :param pika.frame.Method method_frame: method frame having `method` member of type `pika.spec.Connection.Blocked` """ LOGGER.warning('Received %s from broker', method_frame) if self._blocked_conn_timer is not None: # RabbitMQ is not supposed to repeat Connection.Blocked, but it # doesn't hurt to be careful LOGGER.warning('_blocked_conn_timer %s already set when ' '_on_connection_blocked is called', self._blocked_conn_timer) else: self._blocked_conn_timer = self._adapter_add_timeout( self.params.blocked_connection_timeout, self._on_blocked_connection_timeout) def _on_connection_unblocked(self, _connection, method_frame): """Handle Connection.Unblocked notification from RabbitMQ broker :param pika.frame.Method method_frame: method frame having `method` member of type `pika.spec.Connection.Blocked` """ LOGGER.info('Received %s from broker', method_frame) if self._blocked_conn_timer is None: # RabbitMQ is supposed to pair Connection.Blocked/Unblocked, but it # doesn't hurt to be careful LOGGER.warning('_blocked_conn_timer was not active when ' '_on_connection_unblocked called') else: self._adapter_remove_timeout(self._blocked_conn_timer) self._blocked_conn_timer = None def _on_connection_close_from_broker(self, method_frame): """Called when the connection is closed remotely via Connection.Close frame from broker. :param pika.frame.Method method_frame: The Connection.Close frame """ LOGGER.debug('_on_connection_close_from_broker: frame=%s', method_frame) self._terminate_stream( exceptions.ConnectionClosedByBroker(method_frame.method.reply_code, method_frame.method.reply_text)) def _on_connection_close_ok(self, method_frame): """Called when Connection.CloseOk is received from remote. :param pika.frame.Method method_frame: The Connection.CloseOk frame """ LOGGER.debug('_on_connection_close_ok: frame=%s', method_frame) self._terminate_stream(None) def _default_on_connection_error(self, _connection_unused, error): """Default behavior when the connecting connection cannot connect and user didn't supply own `on_connection_error` callback. :raises: the given error """ raise error def _on_connection_open_ok(self, method_frame): """ This is called once we have tuned the connection with the server and called the Connection.Open on the server and it has replied with Connection.Ok. """ self._opened = True self.known_hosts = method_frame.method.known_hosts # We're now connected at the AMQP level self._set_connection_state(self.CONNECTION_OPEN) # Call our initial callback that we're open self.callbacks.process(0, self.ON_CONNECTION_OPEN_OK, self, self) def _on_connection_start(self, method_frame): """This is called as a callback once we have received a Connection.Start from the server. :param pika.frame.Method method_frame: The frame received :raises: UnexpectedFrameError """ self._set_connection_state(self.CONNECTION_START) try: if self._is_protocol_header_frame(method_frame): raise exceptions.UnexpectedFrameError(method_frame) self._check_for_protocol_mismatch(method_frame) self._set_server_information(method_frame) self._add_connection_tune_callback() self._send_connection_start_ok(*self._get_credentials(method_frame)) except Exception as error: # pylint: disable=W0703 LOGGER.exception('Error processing Connection.Start.') self._terminate_stream(error) @staticmethod def _negotiate_integer_value(client_value, server_value): """Negotiates two values. If either of them is 0 or None, returns the other one. If both are positive integers, returns the smallest one. :param int client_value: The client value :param int server_value: The server value :rtype: int """ if client_value is None: client_value = 0 if server_value is None: server_value = 0 # this is consistent with how Java client and Bunny # perform negotiation, see pika/pika#874 if client_value == 0 or server_value == 0: val = max(client_value, server_value) else: val = min(client_value, server_value) return val @staticmethod def _tune_heartbeat_timeout(client_value, server_value): """ Determine heartbeat timeout per AMQP 0-9-1 rules Per https://www.rabbitmq.com/resources/specs/amqp0-9-1.pdf, > Both peers negotiate the limits to the lowest agreed value as follows: > - The server MUST tell the client what limits it proposes. > - The client responds and **MAY reduce those limits** for its connection If the client specifies a value, it always takes precedence. :param client_value: None to accept server_value; otherwise, an integral number in seconds; 0 (zero) to disable heartbeat. :param server_value: integral value of the heartbeat timeout proposed by broker; 0 (zero) to disable heartbeat. :returns: the value of the heartbeat timeout to use and return to broker """ if client_value is None: # Accept server's limit timeout = server_value else: timeout = client_value return timeout def _on_connection_tune(self, method_frame): """Once the Broker sends back a Connection.Tune, we will set our tuning variables that have been returned to us and kick off the Heartbeat monitor if required, send our TuneOk and then the Connection. Open rpc call on channel 0. :param pika.frame.Method method_frame: The frame received """ self._set_connection_state(self.CONNECTION_TUNE) # Get our max channels, frames and heartbeat interval self.params.channel_max = Connection._negotiate_integer_value( self.params.channel_max, method_frame.method.channel_max) self.params.frame_max = Connection._negotiate_integer_value( self.params.frame_max, method_frame.method.frame_max) if callable(self.params.heartbeat): ret_heartbeat = self.params.heartbeat(self, method_frame.method.heartbeat) if ret_heartbeat is None or callable(ret_heartbeat): # Enforce callback-specific restrictions on callback's return value raise TypeError('heartbeat callback must not return None ' 'or callable, but got %r' % (ret_heartbeat,)) # Leave it to hearbeat setter deal with the rest of the validation self.params.heartbeat = ret_heartbeat # Negotiate heatbeat timeout self.params.heartbeat = self._tune_heartbeat_timeout( client_value=self.params.heartbeat, server_value=method_frame.method.heartbeat) # Calculate the maximum pieces for body frames self._body_max_length = self._get_body_frame_max_length() # Create a new heartbeat checker if needed self._heartbeat_checker = self._create_heartbeat_checker() # Send the TuneOk response with what we've agreed upon self._send_connection_tune_ok() # Send the Connection.Open RPC call for the vhost self._send_connection_open() def _on_data_available(self, data_in): """This is called by our Adapter, passing in the data from the socket. As long as we have buffer try and map out frame data. :param str data_in: The data that is available to read """ self._frame_buffer += data_in while self._frame_buffer: consumed_count, frame_value = self._read_frame() if not frame_value: return self._trim_frame_buffer(consumed_count) self._process_frame(frame_value) def _terminate_stream(self, error): """Deactivate heartbeat instance if activated already, and initiate termination of the stream (TCP) connection asynchronously. When connection terminates, the appropriate user callback will be invoked with the given error: "on open error" or "on connection closed". :param Exception | None error: exception instance describing the reason for termination; None for normal closing, such as upon receipt of Connection.CloseOk. """ assert isinstance(error, (type(None), Exception)), \ 'error arg is neither None nor instance of Exception: {!r}.'.format( error) if error is not None: # Save the exception for user callback once the stream closes self._error = error else: assert self._error is not None, ( '_terminate_stream() expected self._error to be set when ' 'passed None error arg.') # So it won't mess with the stack self._remove_heartbeat() # Begin disconnection of stream or termination of connection workflow self._adapter_disconnect_stream() def _on_stream_terminated(self, error): """Handle termination of stack (including TCP layer) or failure to establish the stack. Notify registered ON_CONNECTION_ERROR or ON_CONNECTION_CLOSED callbacks, depending on whether the connection was opening or open. :param Exception | None error: None means that the transport was aborted internally and exception in `self._error` represents the cause. Otherwise it's an exception object that describes the unexpected loss of connection. """ LOGGER.info('AMQP stack terminated, failed to connect, or aborted: ' 'error-arg=%r; pending-error=%r', error, self._error) if error is not None: if self._error is not None: LOGGER.debug('_on_stream_terminated(): overriding ' 'pending-error=%r with %r', self._error, error) self._error = error else: assert self._error is not None, ( '_on_stream_terminated() expected self._error to be populated ' 'with reason for terminating stack.') # Stop the heartbeat checker if it exists self._remove_heartbeat() # Remove connection management callbacks self._remove_callbacks(0, [spec.Connection.Close, spec.Connection.Start]) if self.params.blocked_connection_timeout is not None: self._remove_callbacks(0, [spec.Connection.Blocked, spec.Connection.Unblocked]) if not self._opened and isinstance(self._error, exceptions.StreamLostError): # Heuristically deduce error based on connection state if self.connection_state == self.CONNECTION_PROTOCOL: LOGGER.error('Probably incompatible Protocol Versions') self._error = exceptions.IncompatibleProtocolError( repr(self._error)) elif self.connection_state == self.CONNECTION_START: LOGGER.error('Connection closed while authenticating indicating a ' 'probable authentication error') self._error = exceptions.ProbableAuthenticationError( repr(self._error)) elif self.connection_state == self.CONNECTION_TUNE: LOGGER.error('Connection closed while tuning the connection ' 'indicating a probable permission error when ' 'accessing a virtual host') self._error = exceptions.ProbableAccessDeniedError( repr(self._error)) elif self.connection_state not in [self.CONNECTION_OPEN, self.CONNECTION_CLOSED, self.CONNECTION_CLOSING]: LOGGER.warning('Unexpected connection state on disconnect: %i', self.connection_state) # Transition to closed state self._set_connection_state(self.CONNECTION_CLOSED) # Inform our channel proxies, if any are still around for channel in dictkeys(self._channels): if channel not in self._channels: continue # pylint: disable=W0212 self._channels[channel]._on_close_meta(self._error) # Inform interested parties if not self._opened: LOGGER.info('Connection setup terminated due to %r', self._error) self.callbacks.process(0, self.ON_CONNECTION_ERROR, self, self, self._error) else: LOGGER.info('Stack terminated due to %r', self._error) self.callbacks.process(0, self.ON_CONNECTION_CLOSED, self, self, self._error) # Reset connection properties self._init_connection_state() def _process_callbacks(self, frame_value): """Process the callbacks for the frame if the frame is a method frame and if it has any callbacks pending. :param pika.frame.Method frame_value: The frame to process :rtype: bool """ if (self._is_method_frame(frame_value) and self._has_pending_callbacks(frame_value)): self.callbacks.process(frame_value.channel_number, # Prefix frame_value.method, # Key self, # Caller frame_value) # Args return True return False def _process_frame(self, frame_value): """Process an inbound frame from the socket. :param frame_value: The frame to process :type frame_value: pika.frame.Frame | pika.frame.Method """ # Will receive a frame type of -1 if protocol version mismatch if frame_value.frame_type < 0: return # Keep track of how many frames have been read self.frames_received += 1 # Process any callbacks, if True, exit method if self._process_callbacks(frame_value): return # If a heartbeat is received, update the checker if isinstance(frame_value, frame.Heartbeat): if self._heartbeat_checker: self._heartbeat_checker.received() else: LOGGER.warning('Received heartbeat frame without a heartbeat ' 'checker') # If the frame has a channel number beyond the base channel, deliver it elif frame_value.channel_number > 0: self._deliver_frame_to_channel(frame_value) def _read_frame(self): """Try and read from the frame buffer and decode a frame. :rtype tuple: (int, pika.frame.Frame) """ return frame.decode_frame(self._frame_buffer) def _remove_callbacks(self, channel_number, method_classes): """Remove the callbacks for the specified channel number and list of method frames. :param int channel_number: The channel number to remove the callback on :param sequence method_classes: The method classes (derived from `pika.amqp_object.Method`) for the callbacks """ for method_cls in method_classes: self.callbacks.remove(str(channel_number), method_cls) def _rpc(self, channel_number, method, callback=None, acceptable_replies=None): """Make an RPC call for the given callback, channel number and method. acceptable_replies lists out what responses we'll process from the server with the specified callback. :param int channel_number: The channel number for the RPC call :param pika.amqp_object.Method method: The method frame to call :param method callback: The callback for the RPC response :param list acceptable_replies: The replies this RPC call expects """ # Validate that acceptable_replies is a list or None if acceptable_replies and not isinstance(acceptable_replies, list): raise TypeError('acceptable_replies should be list or None') # Validate the callback is callable if callback is not None: if not callable(callback): raise TypeError('callback should be None, function or method.') for reply in acceptable_replies: self.callbacks.add(channel_number, reply, callback) # Send the rpc call to RabbitMQ self._send_method(channel_number, method) def _send_connection_close(self, reply_code, reply_text): """Send a Connection.Close method frame. :param int reply_code: The reason for the close :param str reply_text: The text reason for the close """ self._rpc(0, spec.Connection.Close(reply_code, reply_text, 0, 0), self._on_connection_close_ok, [spec.Connection.CloseOk]) def _send_connection_open(self): """Send a Connection.Open frame""" self._rpc(0, spec.Connection.Open(self.params.virtual_host, insist=True), self._on_connection_open_ok, [spec.Connection.OpenOk]) def _send_connection_start_ok(self, authentication_type, response): """Send a Connection.StartOk frame :param str authentication_type: The auth type value :param str response: The encoded value to send """ self._send_method(0, spec.Connection.StartOk(self._client_properties, authentication_type, response, self.params.locale)) def _send_connection_tune_ok(self): """Send a Connection.TuneOk frame""" self._send_method(0, spec.Connection.TuneOk(self.params.channel_max, self.params.frame_max, self.params.heartbeat)) def _send_frame(self, frame_value): """This appends the fully generated frame to send to the broker to the output buffer which will be then sent via the connection adapter. :param frame_value: The frame to write :type frame_value: pika.frame.Frame|pika.frame.ProtocolHeader :raises: exceptions.ConnectionClosed """ if self.is_closed: LOGGER.error('Attempted to send frame when closed') raise exceptions.ConnectionWrongStateError( 'Attempted to send a frame on closed connection.') marshaled_frame = frame_value.marshal() self._output_marshaled_frames([marshaled_frame]) def _send_method(self, channel_number, method, content=None): """Constructs a RPC method frame and then sends it to the broker. :param int channel_number: The channel number for the frame :param pika.amqp_object.Method method: The method to send :param tuple content: If set, is a content frame, is tuple of properties and body. """ if content: self._send_message(channel_number, method, content) else: self._send_frame(frame.Method(channel_number, method)) def _send_message(self, channel_number, method_frame, content): """Publish a message. :param int channel_number: The channel number for the frame :param pika.object.Method method_frame: The method frame to send :param tuple content: A content frame, which is tuple of properties and body. """ length = len(content[1]) marshaled_body_frames = [] # Note: we construct the Method, Header and Content objects, marshal them # *then* output in case the marshaling operation throws an exception frame_method = frame.Method(channel_number, method_frame) frame_header = frame.Header(channel_number, length, content[0]) marshaled_body_frames.append(frame_method.marshal()) marshaled_body_frames.append(frame_header.marshal()) if content[1]: chunks = int(math.ceil(float(length) / self._body_max_length)) for chunk in xrange(0, chunks): start = chunk * self._body_max_length end = start + self._body_max_length if end > length: end = length frame_body = frame.Body(channel_number, content[1][start:end]) marshaled_body_frames.append(frame_body.marshal()) self._output_marshaled_frames(marshaled_body_frames) def _set_connection_state(self, connection_state): """Set the connection state. :param int connection_state: The connection state to set """ LOGGER.debug('New Connection state: %s (prev=%s)', self._STATE_NAMES[connection_state], self._STATE_NAMES[self.connection_state]) self.connection_state = connection_state def _set_server_information(self, method_frame): """Set the server properties and capabilities :param spec.connection.Start method_frame: The Connection.Start frame """ self.server_properties = method_frame.method.server_properties self.server_capabilities = self.server_properties.get('capabilities', dict()) if hasattr(self.server_properties, 'capabilities'): del self.server_properties['capabilities'] def _trim_frame_buffer(self, byte_count): """Trim the leading N bytes off the frame buffer and increment the counter that keeps track of how many bytes have been read/used from the socket. :param int byte_count: The number of bytes consumed """ self._frame_buffer = self._frame_buffer[byte_count:] self.bytes_received += byte_count def _output_marshaled_frames(self, marshaled_frames): """Output list of marshaled frames to buffer and update stats :param list marshaled_frames: A list of frames marshaled to bytes """ for marshaled_frame in marshaled_frames: self.bytes_sent += len(marshaled_frame) self.frames_sent += 1 self._adapter_emit_data(marshaled_frame) if self.params.backpressure_detection: self._detect_backpressure()
37.973956
95
0.628039
b5f8055db652d9af9b348c5374a593a428c9675d
2,059
py
Python
05 Supervised/BurstyBTM/script/eta.py
Cal-Fang/Defund-the-Police-Survey-Project
209ad907cddd2c3b3616f5dd2fc2e06f5449b2c7
[ "MIT" ]
null
null
null
05 Supervised/BurstyBTM/script/eta.py
Cal-Fang/Defund-the-Police-Survey-Project
209ad907cddd2c3b3616f5dd2fc2e06f5449b2c7
[ "MIT" ]
null
null
null
05 Supervised/BurstyBTM/script/eta.py
Cal-Fang/Defund-the-Police-Survey-Project
209ad907cddd2c3b3616f5dd2fc2e06f5449b2c7
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 # compute eta(the bursty probability) for each biterm in each day import sys # read the day frequency for each biterm # Input format: w1 w2 freq # compute and output the etas in a day def proc_day(bdf_pt, day, res_pt): etas = {} for l in open(bdf_pt): b, df = l.strip().split('\t') df = [s.split(':') for s in df.split()] df = dict([(int(d), int(f)) for d, f in df]) if not df.has_key(day): continue etas[b] = computeEta(df, day) write_etas(etas, res_pt) # Given the day frequencies of a biterm, compute its eta in `day` # df {day:freq, ...} # return eta def computeEta(df, day): eps = 0.01 # epsilon in the paper # avgf = sum(df.values()) / float(len(df)) avgf = sum([f for d, f in df.items() if d >= day - 10 and d <= day]) / float(min(day+1, 10)) if avgf < 5: return eps else: return max(df[day] - avgf - 5, eps) / df[day] # write the frequency of biterms # format: wi wj freq def write_etas(etas, res_pt): print 'write:', res_pt wf = open(res_pt, 'w') for b, eta in sorted(etas.items(), key=lambda d:d[1], reverse=True): print >> wf, '%s\t%f' % (b, eta) if __name__ == '__main__': if len(sys.argv) < 3: print 'Compute the bursty probability (eta) for each biterm in each day' print 'Usage: python %s <n_day> <bf_dir> <res_dir>' % sys.argv[0] print '\tn_day number of days to be processed (count from 0)' print '\tbf_pt input docs, each line is a biterm with its daily frequency. Line format: "w1 w2 day:freq day:freq ..."' print '\tres_dir output the eta of the biterms. Line format: "w1 w2 eta"' exit(1) n_day = int(sys.argv[1]) bdf_pt = sys.argv[2] eta_dir = sys.argv[3] for day in range(1, n_day): eta_pt = eta_dir + '%d.txt' % day proc_day(bdf_pt, day, eta_pt)
36.122807
132
0.558038