hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
4431c36c4fd3e408f1bf638719ad1ac60b363c44
45,011
py
Python
main.py
Shabaquib/Library-Scraper-Using-BeautifulSoup
fa454521530471b48c346531c10041d45787a6a7
[ "MIT" ]
null
null
null
main.py
Shabaquib/Library-Scraper-Using-BeautifulSoup
fa454521530471b48c346531c10041d45787a6a7
[ "MIT" ]
null
null
null
main.py
Shabaquib/Library-Scraper-Using-BeautifulSoup
fa454521530471b48c346531c10041d45787a6a7
[ "MIT" ]
null
null
null
# Z library import wx from wx.lib import scrolledpanel import webbrowser import io from urllib.request import Request, urlopen from bs4 import BeautifulSoup import pyscreenshot import win32gui class PanelBase(wx.Panel): '''Base Panel class for all panels''' def __init__(self, parent, label, on_click): super(PanelBase, self).__init__(parent, id=-1) self.parent_frame = parent self.SetSize(704, 421) class MainPanel(PanelBase): def __init__(self, parent, on_click): super(MainPanel, self).__init__(parent, 'MainPanel', on_click) self.width, self.height = 704, 421 self.on_click = on_click self.Main_UI() def Main_UI(self): ''' Create the UI on start ''' self.font1 = wx.Font(15, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Times New Roman') self.main_panel_sizer = wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.main_panel_sizer) self.search_sub_sizer_1 = wx.BoxSizer(wx.HORIZONTAL) self.search_sub_sizer_2 = wx.BoxSizer(wx.HORIZONTAL) self.recom_sizer = wx.BoxSizer(wx.HORIZONTAL) self.logo_image = wx.Image(r'.\\Resources\\icons\\lib-logo.png') self.logo_image = self.logo_image.Rescale(width=220, height=80, quality=wx.IMAGE_QUALITY_NORMAL) self.search_panel = wx.Panel(self, id=-1, size=(self.width, int(3 * self.height / 10)), pos=(0, 0), style=wx.SIMPLE_BORDER) self.search_sizer = wx.BoxSizer(wx.HORIZONTAL) self.search_panel.SetSizer(self.search_sizer) self.search_panel.SetSizer(self.search_sizer) self.search_sizer.Add(self.search_sub_sizer_1, 5, wx.EXPAND, 15) self.search_sizer.Add(self.search_sub_sizer_2, 5, wx.EXPAND, 15) self.recom_panel = scrolledpanel.ScrolledPanel(self, id=-1, size=(self.width, int(7 * self.height / 10)), pos=(0, int(3 * self.height / 10)), style=wx.TAB_TRAVERSAL) print(self.search_panel.GetSize()) self.recom_panel.SetupScrolling() self.recom_panel.SetSizer(self.recom_sizer) # initialize scraping and save the page for later use self.url = "https://1lib.in/" hdr = {'User-Agent': 'Mozilla/5.0'} req = Request(self.url, headers=hdr) self.page = urlopen(req) self.page_read = self.page.read() self.page.close() self.page_soup = BeautifulSoup(self.page_read, features='html.parser') self.logo = wx.BitmapButton(self.search_panel, id=-1, bitmap=wx.Bitmap(self.logo_image), size=(230, 100), pos=(50, 0)) self.logo.SetToolTip(wx.ToolTip("Z-Library")) self.search_sub_sizer_1.Add(self.logo, 0, wx.LEFT | wx.ALIGN_CENTER_VERTICAL, 25) self.search_box = wx.TextCtrl(self.search_panel, id=-1, value="", size=(300, 25), style=wx.TE_PROCESS_ENTER) self.search_box.SetFont(self.font1) self.search_box.Bind(wx.EVT_TEXT_ENTER, self.on_click) self.search_sub_sizer_2.Add(self.search_box, 0, wx.ALIGN_CENTER_VERTICAL) self.main_panel_sizer.Add(self.search_panel, 0, wx.ALL) self.main_panel_sizer.Add(self.recom_panel, 0, wx.ALL) self.recom_UI() def recom_UI(self): '''creates the GUI holder for the recommended books in advance''' self.recom_list = [None] * 20 self.def_image = wx.Image(r".\\Resources\\icons\\book-icon.png") for x in range(20): self.recom_list[x] = wx.BitmapButton(self.recom_panel, id=-1, bitmap=wx.Bitmap(self.def_image), size=(161, 250), style=wx.BU_NOTEXT) self.recom_sizer.Add(self.recom_list[x], 0, wx.ALL, 5) self.recom_panel.Refresh() self.recom_panel.Show() self.scrape_recom() def scrape_recom(self): ''' Called just after the holder is created, this function now will scrape the data and insert it in book holders''' self.containers = self.page_soup.find_all('div', class_='brick checkBookDownloaded') print(len(self.containers)) x = 0 for container in self.containers: print(container.a['href']) print(container.a['title']) width, height = self.recom_list[x].GetSizeTuple() self.recom_list[x].SetToolTip(wx.ToolTip(container.a['title'])) self.recom_list[x].SetLabel("https://1lib.in" + str(container.a['href'])) self.recom_list[x].Bind(wx.EVT_BUTTON, self.on_click) self.img_stream = io.BytesIO(urlopen(Request(container.a.img['src'])).read()) self.image_buff = wx.Image(self.img_stream) self.image_buff = self.image_buff.Rescale(width, height, wx.IMAGE_QUALITY_NORMAL) self.recom_list[x].SetBitmap(wx.Bitmap(self.image_buff)) x += 1 class LogoPanel(PanelBase): def __init__(self, parent, on_click): super(LogoPanel, self).__init__(parent, 'LogoPanel', on_click) class DetailPanel1(PanelBase): ''' Panel class if a book is selected from the main page recommendations ''' def __init__(self, parent, on_click): super(DetailPanel1, self).__init__(parent, 'DetailPanel1', on_click) self.width, self.height = 704, 421 self.SetSize(self.width, self.height) self.on_click = on_click self.main_scrape_UI_sizer = wx.BoxSizer(wx.HORIZONTAL) self.SetSizer(self.main_scrape_UI_sizer) self.def_image = wx.Image(r".\\Resources\\icons\\book-icon.png") self.detail_panel = wx.Panel(self, id=-1, size=(int(self.width / 2) + 90, self.height), style=wx.BORDER_NONE) self.detail_sizer = wx.BoxSizer(wx.VERTICAL) self.detail_panel.SetSizer(self.detail_sizer) self.main_scrape_UI_sizer.Add(self.detail_panel) self.index_panel = scrolledpanel.ScrolledPanel(self, id=-1, size=(int(self.width / 2) - 90, self.height), style=wx.TE_BESTWRAP) self.main_scrape_UI_sizer.Add(self.index_panel) self.detail_sub_panel_11 = wx.Panel(self.detail_panel, id=-1, size=(int(self.width / 2) + 90, (self.height / 2) - 30), style=wx.NO_BORDER) self.detail_sub_panel_11_sizer = wx.BoxSizer(wx.HORIZONTAL) print(self.detail_sub_panel_11.GetClientSize()) self.detail_sub_panel_11.SetSizer(self.detail_sub_panel_11_sizer) self.detail_sub_panel_12 = wx.Panel(self.detail_panel, id=-1, size=(int(self.width / 2) + 90, (self.height / 2) + 30), style=wx.NO_BORDER) self.detail_sub_panel_12_sizer = wx.BoxSizer(wx.VERTICAL) self.detail_sub_panel_12.SetSizer(self.detail_sub_panel_12_sizer) self.detail_sizer.Add(self.detail_sub_panel_11) self.detail_sizer.Add(self.detail_sub_panel_12) # sun sizer 1 self.book_bitmap = wx.BitmapButton(self.detail_sub_panel_11, id=-1, size=(120, int((2 * self.height) / 5)), bitmap=wx.Bitmap(self.def_image), style=wx.BU_BOTTOM) self.detail_sub_panel_11_sizer.Add(self.book_bitmap, 0, wx.LEFT | wx.TOP | wx.BOTTOM, 5) self.book_detail_panel = wx.Panel(self.detail_sub_panel_11, id=-1, size=(310, int((2 * self.height) / 5)), style=wx.NO_BORDER) self.detail_sub_panel_11_sizer.Add(self.book_detail_panel, 0, wx.ALL, 5) self.book_detail_sizer = wx.BoxSizer(wx.VERTICAL) self.book_detail_panel.SetSizer(self.book_detail_sizer) self.font2 = wx.Font(14, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Arial') self.font3 = wx.Font(9, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Roboto') self.font4 = wx.Font(12, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Roboto') self.book_detail_sizer_1 = wx.BoxSizer(wx.HORIZONTAL) self.book_detail_sizer_2 = wx.BoxSizer(wx.HORIZONTAL) # objects created to hold the book details scraped from the site self.book_name = wx.StaticText(self.book_detail_panel, id=-1, label="Book") self.book_name.SetFont(self.font2) self.book_isbn = wx.StaticText(self.book_detail_panel, id=-1, label="ISBN: ") self.book_isbn_10 = wx.StaticText(self.book_detail_panel, id=-1, label="ISBN 10: ") self.book_isbn_13 = wx.StaticText(self.book_detail_panel, id=-1, label="ISBN 13: ") self.book_author = wx.StaticText(self.book_detail_panel, id=-1, label="Author: ") self.pages = wx.StaticText(self.book_detail_panel, id=-1, label=" No. of pages: ") self.book_category = wx.StaticText(self.book_detail_panel, id=-1, label="Publisher: ") self.file_type = wx.StaticText(self.book_detail_panel, id=-1, label="File: ") self.pub_year = wx.StaticText(self.book_detail_panel, id=-1, label=" Year: ") self.book_detail_sizer.Add(self.book_name, 0, flag=wx.TOP | wx.LEFT, border=5) self.book_detail_sizer.Add(self.book_isbn, flag=wx.TOP | wx.LEFT, border=5) self.book_detail_sizer.Add(self.book_isbn_10, flag=wx.TOP | wx.LEFT, border=5) self.book_detail_sizer.Add(self.book_isbn_13, flag=wx.TOP | wx.LEFT, border=5) self.book_detail_sizer_1.Add(self.book_author, 0) self.book_detail_sizer_1.Add(self.pages, 0, flag=wx.RIGHT, border=10) self.book_detail_sizer.Add(self.book_detail_sizer_1, flag=wx.TOP | wx.LEFT, border=5) self.book_detail_sizer.Add(self.book_category, flag=wx.TOP | wx.LEFT, border=5) self.book_detail_sizer_2.Add(self.file_type) self.book_detail_sizer_2.Add(self.pub_year, flag=wx.RIGHT, border=10) self.book_detail_sizer.Add(self.book_detail_sizer_2, flag=wx.TOP | wx.LEFT, border=5) self.x = " " * 15 self.descrip_label = wx.StaticText(self.detail_sub_panel_12, id=-1, label=self.x + "DESCRIPTION") self.descrip_label.SetFont(self.font4) self.book_description = wx.TextCtrl(self.detail_sub_panel_12, id=-1, value="", size=(int(self.width / 2) + 90, (self.height / 2) + 10), style=wx.TE_MULTILINE) self.book_description.SetFont(self.font3) self.detail_sub_panel_12_sizer.Add(self.descrip_label) self.detail_sub_panel_12_sizer.Add(self.book_description) self.main_list_sizer = wx.GridSizer (cols=2, vgap=5, hgap=5) self.index_panel.SetSizer(self.main_list_sizer) def scrape_detail(self, url): ''' Function to be called when the user selects a book from the main page, and the whole GUI for the detail page is ready to hold it. ''' self.url_passed = url # initialize scraping hdr = {'User-Agent': 'Mozilla/5.0'} request = Request(self.url_passed, headers=hdr) self.page_hex = urlopen(request) self.page_code = self.page_hex.read() self.page_hex.close() self.page_analytic = BeautifulSoup(self.page_code, features='html.parser') self.page_var = self.page_analytic.find('div', {"itemtype": "http://schema.org/Book"}) self.b_name = self.page_var.h1.get_text().strip() self.b_details = self.page_var.find('div', {'class': "bookDetailsBox"}) # details try: self.b_auth = self.page_analytic.find('div', {'class': "col-sm-9"}).i.get_text() print(self.b_auth) except AttributeError: self.b_auth = "--" try: self.b_isbn10 = self.b_details.find('div', {'class': "bookProperty property_isbn 10"}).find('div', { 'class': "property_value"}).get_text() print(self.b_isbn10) except AttributeError: self.b_isbn10 = "--" try: self.b_isbn = self.b_details.find('div', {'class': "bookProperty property_isbn"}).find('div', { 'class': "property_value"}).get_text() print(self.b_isbn) except AttributeError: self.b_isbn = "--" try: self.b_isbn13 = self.b_details.find('div', {'class': "bookProperty property_isbn 13"}).find('div', { 'class': "property_value"}).get_text() print(self.b_isbn13) except AttributeError: self.b_isbn13 = "--" self.b_year = self.b_details.find('div', {'class': "bookProperty property_year"}).find('div', { 'class': "property_value"}).get_text() print(self.b_year) try: self.b_pages = self.b_details.find('div', {'class': "bookProperty property_pages"}).find('div', { 'class': "property_value"}).span.get_text() print(self.b_pages) except AttributeError: self.b_pages = "--" self.b_type = self.b_details.find('div', {'class': "bookProperty property__file"}).find('div', { 'class': "property_value"}).get_text() print(self.b_type) try: self.b_pub = self.b_details.find('div', {'class': "bookProperty property_publisher"}).find('div', { 'class': "property_value"}).get_text() print(self.b_pub) except AttributeError: self.b_pub = "--" self.content_group = self.page_analytic.find ('div', {'id': "bookDescriptionBox"}) self.content_truth = False self.b_descrip = " " try: self.content = self.content_group.find_all('span') except AttributeError: print("First Test failed") self.content=[] self.content_truth = False if not self.content_truth: try: print("Second Try") self.content = self.content_group.find_all('p') if self.content: self.content_truth = True for text in self.content: self.b_descrip = self.b_descrip + str(text.get_text()) + "\n" except AttributeError: self.b_descrip = "--No Description Found--" print("Test 2 failed!!") else: for text in self.content: self.b_descrip = self.b_descrip + str(text.get_text()) + "\n" self.content_truth = True print("Content test successful") if not self.content_truth: try: print("Third test") self.content = self.content_group.get_text() self.b_descrip = " " if self.content: self.b_descrip = self.b_descrip + self.content.string except AttributeError: self.b_descrip = "--No Description Found--" self.b_map = io.BytesIO( urlopen(Request(self.page_analytic.find('div', {'class': "col-sm-3"}).a.img['src'])).read()) self.b_buffer = wx.Image(self.b_map).Rescale(width=120, height=int((2 * self.height) / 5), quality=wx.IMAGE_QUALITY_NORMAL) self.book_bitmap.SetBitmap(wx.Bitmap(self.b_buffer)) self.book_name.SetLabel(self.b_name) self.book_name.SetToolTip(wx.ToolTip(self.b_name)) self.book_isbn.SetLabel("ISBN: "+self.b_isbn) self.book_isbn_10.SetLabel("ISBN 10: "+self.b_isbn10) self.book_isbn_13.SetLabel("ISBN 13: "+self.b_isbn13) self.book_author.SetLabel("Author: "+self.b_auth) self.pages.SetLabel(" No. of pages: " + self.b_pages) self.book_category.SetLabel("Publisher: " + self.b_pub) self.file_type.SetLabel("File: " + self.b_type) self.pub_year.SetLabel(" Year: " + self.b_year) self.book_description.SetValue (self.b_descrip) self.detail_panel.Layout() self.onmainpanelclick() def onmainpanelclick(self): ''' This function can be called over and over again as the recommendations are accessed :return: ''' # checks the scrolled panel sizer if it has any children from past and removes it self.children = self.main_list_sizer.GetChildren() i = len(self.children)-1 if len(self.children) != 0: while i >= 0: win = self.main_list_sizer.GetItem(0).GetWindow() win.Destroy() i -= 1 self.main_list_sizer.Layout() else: print("Empty") self.containers = self.page_analytic.find_all('div', {'class': "brick checkBookDownloaded"}) print(self.containers) self.button_spec_1 = [None] * len(self.containers) print("Dynamic length: "+str(len(self.containers))) i = 0 for container in self.containers: print(i) self.url_param = container.a['href'] try: self.buffer = wx.Image (io.BytesIO(urlopen(Request(container.a.img['src'])).read())) self.buffer = self.buffer.Rescale(width=120, height=int ((2 * self.height) / 5), quality=wx.IMAGE_QUALITY_HIGH) except TypeError: self.buffer = self.def_image self.button_spec_1[i] = wx.BitmapButton(self.index_panel, id=-1, size=(120, int((2 * self.height) / 5)), bitmap=wx.Bitmap(self.buffer), style=wx.BU_NOTEXT) self.button_spec_1[i].SetLabel("https://1lib.in"+ self.url_param) self.button_spec_1[i].Bind(wx.EVT_BUTTON, self.on_click) self.main_list_sizer.Add(self.button_spec_1[i]) self.button_spec_1[i].SetToolTip(wx.ToolTip(container.a['title'])) i += 1 self.main_list_sizer.Layout() self.index_panel.Bind(wx.EVT_MOTION, self.OnMouse) self.index_panel.SetupScrolling() self.main_list_sizer.Layout() self.main_scrape_UI_sizer.Layout() def OnMouse(self, event): self.index_panel.SetFocus() class DetailPanel2(PanelBase): ''' This panel is responsible to show the results from search ''' def __init__(self, parent, on_click): super(DetailPanel2, self).__init__(parent, 'DetailPanel2', on_click) self.parent_frame = parent self.width, self.height = 704, 421 self.on_click = on_click self.font1 = wx.Font(10, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Calibri') self.font2 = wx.Font(10, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Lucida Console') self.go_img = wx.Image(r".\\Resources\\icons\\go_to.png") self.go_img = self.go_img.Rescale(width=28, height=28, quality=wx.IMAGE_QUALITY_HIGH) self.next_page = wx.Image(r".\\Resources\\icons\\next.png") self.next_page = self.next_page.Rescale(width=28, height=28, quality=wx.IMAGE_QUALITY_HIGH) self.prev_page = wx.Image(r".\\Resources\\icons\\prev.png") self.prev_page = self.prev_page.Rescale(width=28, height=28, quality=wx.IMAGE_QUALITY_HIGH) self.main_sizer = wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.main_sizer) self.page_index = 1 self.list_counter = 0 self.MainUI() def MainUI(self): # top panel self.main_top_panel = wx.Panel(self, id=-1, size=(self.width, self.height / 10), pos=(0, 0), style=wx.SIMPLE_BORDER) self.main_top_panel_sizer = wx.BoxSizer(wx.HORIZONTAL) self.main_top_panel.SetSizer(self.main_top_panel_sizer) self.search_box = wx.TextCtrl(self.main_top_panel, id=-1, value="", size=(400, 20), style=wx.TE_LEFT | wx.TE_PROCESS_ENTER) self.search_box.SetFont(self.font1) self.search_box.Bind(wx.EVT_TEXT_ENTER, self.on_click) self.search_button = wx.BitmapButton(self.main_top_panel, id=-1, bitmap=wx.Bitmap(self.go_img), size=(20, 20), style=wx.BU_LEFT) self.next_arrow = wx.BitmapButton(self.main_top_panel, id=-1, bitmap=wx.Bitmap(self.next_page), size=(30, 30), style=wx.BU_NOTEXT) self.next_arrow.Bind(wx.EVT_BUTTON, self.on_list1) self.prev_arrow = wx.BitmapButton(self.main_top_panel, id=-1, bitmap=wx.Bitmap(self.prev_page), size=(30, 30), style=wx.BU_NOTEXT) self.prev_arrow.Bind(wx.EVT_BUTTON, self.on_list2) self.main_top_panel_sizer.Add(self.search_box, 0, wx.LEFT | wx.TOP, 10) self.main_top_panel_sizer.Add(self.search_button, 0, wx.LEFT | wx.TOP, 10) self.main_top_panel_sizer.Add(self.prev_arrow, 0, wx.LEFT, 10) self.main_top_panel_sizer.Add(self.next_arrow, 0, wx.LEFT, 10) self.main_sizer.Add(self.main_top_panel) # bottom panel self.buffer_panel = scrolledpanel.ScrolledPanel(self, id=-1, size=(self.width, int(9 * self.height / 10)), pos=(0, 9 * self.height / 10), style=wx.TAB_TRAVERSAL) self.buffer_panel_sizer = wx.BoxSizer(wx.VERTICAL) self.buffer_panel.SetSizer(self.buffer_panel_sizer) self.main_sizer.Add(self.buffer_panel) def on_list1(self, event): ''' this function is responsible to edit the url when the user wants the next node list of the search result ''' self.page_index += 1 self.list_counter += 1 if "?page=" in self.search_box.GetValue(): self.arg = "https://1lib.in/s/"+self.search_box.GetValue()[:-1]+str(self.page_index) else: self.arg = "https://1lib.in/s/"+self.search_box.GetValue()+ "?page="+str(self.page_index) self.children = self.buffer_panel_sizer.GetChildren() i = len(self.children) - 1 if len(self.children) != 0: while i >= 0: win = self.buffer_panel_sizer.GetItem(0).GetWindow() print(win) win.Destroy() i -= 1 self.buffer_panel_sizer.Layout() else: print("Empty") self.buffer_panel_sizer.Layout() self.parent_frame.Fit() self.list_scrape(self.arg) def on_list2(self, event): ''' this function is responsible to edit the url when the user wants the previous node list of the search result ''' self.page_index -= 1 self.list_counter -= 1 if "?page=" in self.search_box.GetValue(): self.arg = "https://1lib.in/s/" + self.search_box.GetValue()[:-1] + str(self.page_index) else: self.arg = "https://1lib.in/s/" + self.search_box.GetValue() + "?page=" + str(self.page_index) self.children = self.buffer_panel_sizer.GetChildren() i = len(self.children) - 1 if len(self.children) != 0: while i >= 0: win = self.buffer_panel_sizer.GetItem(0).GetWindow() print(win) win.Destroy() i -= 1 else: print("Empty") self.buffer_panel_sizer.Layout() self.parent_frame.Fit() self.list_scrape(self.arg) def list_scrape(self, url): ''' function to scrape the search results ''' self.url_pick = url hdr = {'User-Agent': 'Mozilla/5.0'} req = Request(self.url_pick, headers=hdr) self.page = urlopen(req) self.page_pick = self.page.read() self.page.close() self.page_soup = BeautifulSoup(self.page_pick, features='html.parser') self.counter = 0 print("Counter set to: " + str(self.counter)) self.search_value = self.url_pick.split('/') self.search_box.SetValue(self.search_value[len(self.search_value) - 1]) self.page_content = self.page_soup.find_all('td', {'style': 'vertical-align: top;'}) self.scrape_creation() def scrape_creation(self): ''' function that inserts the result in the container UI ''' for i in range(len(self.page_content)): self.content_list = self.page_content[self.counter].find_all('a') self.content_list2 = self.page_content[self.counter].find_all('div', {'class': "property_value"}) self.buffer_low_panel = wx.Panel(self.buffer_panel, id=-1, size=(self.width - 30, 50), style=wx.SIMPLE_BORDER) self.buffer_top_sizer = wx.BoxSizer(wx.VERTICAL) self.buffer_low_panel.SetSizer(self.buffer_top_sizer) self.sub_1_sizer = wx.BoxSizer(wx.HORIZONTAL) self.sub_2_sizer = wx.GridSizer(cols=4, vgap=3, hgap=3) self.buffer_top_sizer.Add(self.sub_1_sizer) self.buffer_top_sizer.Add(self.sub_2_sizer) self.buffer = self.content_list[0].get_text() print(self.buffer) self.buff_label = wx.StaticText(self.buffer_low_panel, id=-1, label=self.buffer[:80]) self.buff_label.SetFont(self.font2) self.sub_1_sizer.Add(self.buff_label, 0, wx.LEFT | wx.TOP, 5) self.buffer = self.content_list[1].get_text()[:25] print(self.buffer) self.buff_auth = wx.StaticText(self.buffer_low_panel, id=-1, label="By: " + str(self.buffer)) self.sub_2_sizer.Add(self.buff_auth, 0, wx.LEFT | wx.ALIGN_CENTER_VERTICAL, 20) self.buffer = self.content_list2[0].get_text() print(self.buffer) self.buff_type = wx.StaticText(self.buffer_low_panel, id=-1, label="File type: " + str(self.buffer)) self.sub_2_sizer.Add(self.buff_type, 0, wx.LEFT | wx.ALIGN_CENTER_VERTICAL, 20) self.go_to = wx.BitmapButton(self.buffer_low_panel, id=-1, bitmap=wx.Bitmap(self.go_img), size=(30, 30), style=wx.BU_NOTEXT) self.go_to.SetLabel("https://1lib.in" + self.content_list[0]['href']) self.go_to.Bind(wx.EVT_BUTTON, self.on_click) self.sub_2_sizer.Add(self.go_to, 0, wx.LEFT, 20) self.buffer_panel_sizer.Add(self.buffer_low_panel, 0, flag=wx.TOP | wx.LEFT, border=5) self.counter += 1 self.buffer_panel_sizer.Layout() self.buffer_panel.SetupScrolling() self.buffer_panel.Show() class MePanel(PanelBase): ''' Class for displaying details of the project ''' def __init__(self, parent, on_click): super(MePanel, self).__init__(parent, "About the Dev", on_click) self.on_click = on_click self.parent_frame = parent self.width, self.height = 704, 421 self.MainUI() def MainUI(self): self.main_panel = scrolledpanel.ScrolledPanel(self, id=-1, size=(self.width, self.height), style=wx.TAB_TRAVERSAL) self.main_sizer = wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.main_sizer) self.main_sizer.Add(self.main_panel) self.panel_sizer = wx.BoxSizer(wx.VERTICAL) self.main_panel.SetSizer(self.panel_sizer) self.logo = wx.Image(r".\\Resources\\icons\\lib-logo.png") self.logo = self.logo.Rescale(width=301, height=79, quality=wx.IMAGE_QUALITY_NORMAL) self.logo_bitmap = wx.Bitmap(self.logo) self.logo_stat = wx.StaticBitmap(self.main_panel, id=-1, bitmap=self.logo_bitmap, size=(301, 79)) self.panel_sizer.Add(self.logo_stat, 0, wx.LEFT|wx.TOP, 25) self.font1 = wx.Font(15, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Calibri') self.font2 = wx.Font(11, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Calibri') self.dots = "------------------------------------------------------------" self.line = wx.StaticText(self.main_panel, id=-1, label=self.dots) self.line.SetFont(self.font1) self.line.SetLabel(self.dots) self.panel_sizer.Add(self.line, 0, wx.LEFT|wx.TOP, 25) self.text = "This application is the devloper\'s first ever interaction with wxpython\n"+ \ "(A python GUI FrameWork), and web scraping library BeautifulSoup 4.\n"+ \ "\n"+ \ "About Z library:\n"+ \ "-------------------------------------\n"+ \ "The footer in the project's pages contains the phrase \"Free ebooks since 2009.\"\n"+ \ "Z-Library is one of the more well known shadow libraries, along with Sci-Hub and\n"+ \ "Library Genesis, with publishers and government organizations usually putting the\n"+ \ "three in the same category when pursuing anti-piracy cases. UK organization The Publishers\n"+ \ "Association has attempted to enact ISP level blocks on Z-Library. In late 2015,\n"+ \ "Publisher Elsevier filed a successful court request that ordered the registrar of\n"+ \ "bookfi.org to seize the site's domain. Bookfi.org, booksc.org and b-ok.org were\n"+ \ "included in the 2017 US government report for Notorious Markets.\n"+ \ "\n" self.text1 = "About the Dev:\n"+ \ "--------------------------------------\n"+ \ "Ahsan Aquib Raushan is 20 years old undergraduate currently in India.\n"+ \ "Completing his Diploma in Computer Science from a renowned university Jamia Millia Islamia\n"+ \ "(Batch of 2020), he usually is spending his time during lockdown"+ \ " sharpening his skills in IT.\n"+ \ "You've obviously found him on Github, for connecting with him on other platforms, Look here:\n" self.text_obj1 = wx.StaticText(self.main_panel, id=-1, label="") self.text_obj1.SetFont(self.font2) self.text_obj1.SetLabel(self.text) self.text_obj2 = wx.StaticText(self.main_panel, id=-1, label="") self.text_obj2.SetFont(self.font2) self.text_obj2.SetLabel(self.text1) self.panel_sizer.Add(self.text_obj1, 0, wx.LEFT|wx.TOP, 25) self.panel_sizer.Add(self.text_obj2, 0, wx.LEFT|wx.TOP, 25 ) self.dev_panel = wx.BoxSizer(wx.HORIZONTAL) self.panel_sizer.Add(self.dev_panel) self.insta = wx.Image(r".\\Resources\\icons\\insta.png") self.insta = self.insta.Rescale(width=30, height=30, quality=wx.IMAGE_QUALITY_NORMAL) self.instagram = wx.BitmapButton(self.main_panel, id=-1, bitmap=wx.Bitmap(self.insta), size=(40, 40), style=wx.BU_NOTEXT) self.instagram.Bind(wx.EVT_BUTTON, self.on_insta) self.link = wx.Image(r".\\Resources\\icons\\link.png") self.link = self.link.Rescale(width=24, height=24, quality=wx.IMAGE_QUALITY_NORMAL) self.linkedin = wx.BitmapButton(self.main_panel, id=-1, bitmap=wx.Bitmap(self.link), size=(40, 40), style=wx.BU_NOTEXT) self.linkedin.Bind(wx.EVT_BUTTON, self.on_linkedin) self.dev_panel.Add(self.instagram, 0, wx.LEFT|wx.TOP, 25) self.dev_panel.Add(self.linkedin, 0, wx.LEFT|wx.TOP, 25) self.main_panel.SetupScrolling() self.panel_sizer.Layout() def on_insta(self, event): webbrowser.open(url="https://www.instagram.com/graciously_olive/", new=2, autoraise=True) def on_linkedin(self, event): webbrowser.open(url="https://www.linkedin.com/in/ahsan-aquib-raushan-b5b59118a/", new=2, autoraise=True) class PanelSwitcher(wx.BoxSizer): ''' Class extended from BoxSizer to hold all panels ''' def __init__(self, parent, panels): wx.BoxSizer.__init__(self) parent.SetSizer(self) self.parent = parent self.panels = panels for panel in self.panels: self.Add(panel, 1, wx.EXPAND) self.panels[0].Show() def Show(self, panel): for p in self.panels: if p == panel: p.Show() else: p.Hide() self.parent.Layout() class ShareFrame(wx.Frame): ''' Frame displayed as a card to enable sharing ''' def __init__(self, title, parent=None): super(ShareFrame, self).__init__(parent=parent, title=title, style=wx.CAPTION|wx.CLOSE_BOX) self.SetBackgroundColour('#DDB892') self.SetId(wx.ID_ANY) self.SetSize(400, 320) # Resources self.default_image = wx.Image(r".\\Resources\\mominamustehsan.png") self.default_image = self.default_image.Rescale(width=111, height=151, quality=wx.IMAGE_QUALITY_HIGH) self.font1 = wx.Font(11, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Calibri') self.font2 = wx.Font(12, wx.MODERN, wx.NORMAL, wx.NORMAL, False, u'Roboto') self.font2.MakeBold() self.MainUI() def MainUI(self): self.main_sizer = wx.BoxSizer(wx.VERTICAL) self.SetSizer(self.main_sizer) self.top_panel = wx.Panel(self, id=-1, size=(400, 53), pos=(0, 0), style=wx.NO_BORDER) self.top_panel.SetBackgroundColour('#DDB892') self.top_sizer = wx.BoxSizer(wx.HORIZONTAL) self.top_panel.SetSizer(self.top_sizer) self.middle_panel = wx.Panel(self, id=-1, size=(400, 170), pos=(0, 53), style=wx.NO_BORDER) self.middle_panel.SetBackgroundColour('#DDB892') self.middle_sizer = wx.BoxSizer(wx.HORIZONTAL) self.middle_panel.SetSizer(self.middle_sizer) self.lower_panel = wx.Panel(self, id=-1, size=(400, 56), pos=(0, 223), style=wx.NO_BORDER) self.lower_panel.SetBackgroundColour('#DDB892') self.lower_sizer = wx.BoxSizer(wx.HORIZONTAL) self.lower_panel.SetSizer(self.lower_sizer) self.main_sizer.Add(self.top_panel) self.main_sizer.Add(self.middle_panel) self.main_sizer.Add(self.lower_panel) # top panel element self.book_name = wx.StaticText(self.top_panel, id=-1, label="--Book Name--", style=wx.ST_ELLIPSIZE_END) self.book_name.SetFont(self.font2) self.top_sizer.Add(self.book_name, 0, flag=wx.TOP|wx.LEFT, border=20) # middle panel elements self.book_bitmap = wx.BitmapButton(self.middle_panel, id=-1, size=(111, 151), bitmap=wx.Bitmap(self.default_image), style=wx.BU_NOTEXT) self.middle_sizer.Add(self.book_bitmap, 0, flag=wx.LEFT | wx.TOP, border=10) self.detail_sizer = wx.BoxSizer(wx.VERTICAL) self.middle_sizer.Add(self.detail_sizer, 0, wx.LEFT, 15) # detail sizer elements self.author = wx.StaticText(self.middle_panel, id=-1, label="Author: --") self.author.SetFont(self.font1) self.isbn = wx.StaticText(self.middle_panel, id=-1, label="ISBN: --") self.isbn.SetFont(self.font1) self.isbn_10 = wx.StaticText(self.middle_panel, id=-1, label="ISBN 10: --") self.isbn_10.SetFont(self.font1) self.isbn_13 = wx.StaticText(self.middle_panel, id=-1, label="ISBN 13: --") self.isbn_13.SetFont(self.font1) self.year = wx.StaticText(self.middle_panel, id=-1, label="Year: --") self.year.SetFont(self.font1) self.file = wx.StaticText(self.middle_panel, id=-1, label="File Type: --") self.file.SetFont(self.font1) self.detail_sizer.Add(self.author, 0, flag=wx.LEFT|wx.TOP, border=5) self.detail_sizer.Add(self.isbn, 0, flag=wx.LEFT|wx.TOP, border=5) self.detail_sizer.Add(self.isbn_10, 0, flag=wx.LEFT|wx.TOP, border=5) self.detail_sizer.Add(self.isbn_13, 0, flag=wx.LEFT|wx.TOP, border=5) self.detail_sizer.Add(self.year, 0, flag=wx.LEFT|wx.TOP, border=5) self.detail_sizer.Add(self.file, 0, flag=wx.LEFT|wx.TOP, border=5) # bottom sizer elements self.share_icon = wx.Image(r".\\Resources\\icons\\share.png") self.share_icon.Rescale(width=29, height=29, quality=wx.IMAGE_QUALITY_NORMAL) self.button1 = wx.BitmapButton(self.lower_panel, id=-1, size=(35, 35), bitmap=wx.Bitmap(self.share_icon), style=wx.BU_NOTEXT) self.button1.SetToolTip(wx.ToolTip("Share as Screenshot")) self.button1.Bind(wx.EVT_BUTTON, self.on_share) self.download_icon = wx.Image(r".\\Resources\icons\\download.png") self.download_icon.Rescale(width=29, height=29, quality=wx.IMAGE_QUALITY_NORMAL) self.button2 = wx.BitmapButton(self.lower_panel, id=-1, size=(35, 35), bitmap=wx.Bitmap(self.download_icon), style=wx.BU_NOTEXT) self.button2.SetToolTip(wx.ToolTip("Download from site")) self.button2.Bind(wx.EVT_BUTTON, self.on_down) self.lower_sizer.Add(self.button1, 0, wx.ALIGN_CENTER_VERTICAL | wx.LEFT, 24) self.lower_sizer.Add(self.button2, 0, wx.ALIGN_CENTER_VERTICAL | wx.LEFT, 24) def on_share(self, event): hwnd = win32gui.FindWindow(None, "Book Details--") print(win32gui.GetWindowRect(hwnd)) left, top, right, bottom = win32gui.GetWindowRect(hwnd) self.image = pyscreenshot.grab(bbox=(left+7, top, right-7, bottom-7)) self.image.save("screenshot.png") def on_down(self, event): webbrowser.open(url=self.url_passed, new=2, autoraise=True) def scrape_detail(self, arg): # init contents self.url_passed = arg # initialize scraping hdr = {'User-Agent': 'Mozilla/5.0'} request = Request(self.url_passed, headers=hdr) self.page_hex = urlopen(request) self.page_code = self.page_hex.read() self.page_hex.close() self.page_analytic = BeautifulSoup(self.page_code, features='html.parser') self.page_var = self.page_analytic.find('div', {"itemtype": "http://schema.org/Book"}) self.b_details = self.page_var.find('div', {'class': "bookDetailsBox"}) try: self.b_name = self.page_var.h1.get_text().strip() self.book_name.SetLabel(self.b_name[:34]+ "...") self.book_name.SetToolTip(wx.ToolTip(self.b_name)) except AttributeError: pass # details try: self.b_auth = self.page_analytic.find('div', {'class': "col-sm-9"}).i.get_text() self.author.SetLabel("Author: "+self.b_auth) except AttributeError: pass try: self.b_isbn10 = self.b_details.find('div', {'class': "bookProperty property_isbn 10"}).find('div', { 'class': "property_value"}).get_text() self.isbn_10.SetLabel("ISBN 10: "+self.b_isbn10) except AttributeError: pass try: self.b_isbn = self.b_details.find('div', {'class': "bookProperty property_isbn"}).find('div', { 'class': "property_value"}).get_text() self.isbn.SetLabel("ISBN: "+self.b_isbn) except AttributeError: pass try: self.b_isbn13 = self.b_details.find('div', {'class': "bookProperty property_isbn 13"}).find('div', { 'class': "property_value"}).get_text() self.isbn_13.SetLabel("ISBN 13:"+self.b_isbn13) except AttributeError: pass try: self.b_year = self.b_details.find('div', {'class': "bookProperty property_year"}).find('div', { 'class': "property_value"}).get_text() self.year.SetLabel("Year: " + self.b_year) except AttributeError: pass self.b_type = self.b_details.find('div', {'class': "bookProperty property__file"}).find('div', { 'class': "property_value"}).get_text() self.file.SetLabel("File Type: "+self.b_type) self.b_map = io.BytesIO( urlopen(Request(self.page_analytic.find('div', {'class': "col-sm-3"}).a.img['src'])).read()) self.b_buffer = wx.Image(self.b_map).Rescale(width=111, height=151, quality=wx.IMAGE_QUALITY_NORMAL) self.book_bitmap.SetBitmap(wx.Bitmap(self.b_buffer)) self.top_panel.Update() self.middle_panel.Update() self.lower_panel.Update() class WindowFrame(wx.Frame): ''' Main frame for all panels ''' def __init__(self, parent=None): super(WindowFrame, self).__init__(parent, title='Z-library', style=wx.DEFAULT_FRAME_STYLE) self.SetSize((720, 480)) self.Centre(direction=wx.BOTH) self.SetIcon(wx.Icon(r'.\\Resources\\Icons\\Logo.png')) self.main_panel = MainPanel(self, self.on_main_panel_click) self.d1_panel = DetailPanel1(self, self.on_d1_panel_click) self.d2_panel = DetailPanel2(self, self.on_d2_panel_click) self.me_panel = MePanel(self, self.on_me_click) self.panel_switch = PanelSwitcher(self, [self.main_panel, self.d1_panel,self.d2_panel, self.me_panel]) self.Menu_ui() def Menu_ui(self): self.menubar = wx.MenuBar(style=wx.MB_DOCKABLE) self.setting = wx.Menu() self.setting.AppendSeparator() self.about_me = wx.MenuItem(self.setting, id=-1, text="About", kind=wx.ITEM_NORMAL) self.panel_changer = wx.MenuItem(self.setting, id=-1, text="Back", kind=wx.ITEM_NORMAL) self.quit = wx.MenuItem(self.setting, id=-1, text="Quit", kind=wx.ITEM_NORMAL) self.setting.Append(self.about_me) self.setting.Append(self.panel_changer) self.setting.Append(self.quit) self.menubar.Append(self.setting, "Settings") self.SetMenuBar(self.menubar) self.Bind(wx.EVT_MENU, self.on_me_click, self.about_me) self.Bind(wx.EVT_MENU, self.on_switch, self.panel_changer) self.temp = None def on_main_panel_click(self, event): arg = event.GetEventObject().GetLabel() if "mostpopular" in arg: self.panel_switch.Hide(self.main_panel) self.temp = self.main_panel self.panel_switch.Show(self.d1_panel) self.d1_panel.scrape_detail(arg) else: print("Here") arg = event.GetEventObject().GetValue() arg = "https://1lib.in/s/" + arg print("Url_accessing: " + arg) self.panel_switch.Hide(self.d1_panel) self.temp = self.main_panel self.d2_panel.list_scrape(arg) self.panel_switch.Show(self.d2_panel) def on_d1_panel_click(self, event): if "mostpopular" in event.GetEventObject().GetLabel(): self.panel_switch.Hide(self.d1_panel) self.temp = self.d1_panel self.d1_panel.scrape_detail(event.GetEventObject().GetLabel()) self.panel_switch.Show(self.d1_panel) def on_d2_panel_click(self, event): self.args = event.GetEventObject().GetLabel() self.obj = ShareFrame("Book Details--", self) self.obj.scrape_detail(self.args) self.obj.Show() def on_me_click(self, event): self.panel_switch.Hide(self.main_panel) self.temp = self.main_panel self.panel_switch.Show(self.me_panel) def on_switch(self, event): print("I am here") self.panel_switch.Show(self.temp) # Press the green button in the gutter to run the script. if __name__ == '__main__': app_obj = wx.App(redirect=False) app_obj.locale = wx.Locale(wx.LANGUAGE_ENGLISH) frame_obj = WindowFrame() frame_obj.Show() app_obj.MainLoop()
45.465657
120
0.595121
a15ac9fb6eec6ab47400f9ac96accd44eef14b72
1,232
py
Python
lib/surface/compute/ssl_certificates/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/ssl_certificates/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/surface/compute/ssl_certificates/__init__.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Commands for reading and manipulating SSL certificates.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base class SslCertificates(base.Group): """List, create, and delete Google Compute Engine SSL certificates. List, create and delete Google Compute Engine SSL certificates that can be used to configure a target HTTPS proxy. For more information, see: [](https://cloud.google.com/load-balancing/docs/ssl-certificates) """ SslCertificates.category = base.COMPUTE_LOAD_BALANCING_CATEGORY
35.2
76
0.774351
9db6e20a263980c2394a103dd73f2952c68ab86d
1,269
py
Python
kafka/producer.py
MRazaKazmi/Startup-Where
5e012be43bc2beee1e387af81bc45f1e237d6216
[ "CECILL-B" ]
null
null
null
kafka/producer.py
MRazaKazmi/Startup-Where
5e012be43bc2beee1e387af81bc45f1e237d6216
[ "CECILL-B" ]
null
null
null
kafka/producer.py
MRazaKazmi/Startup-Where
5e012be43bc2beee1e387af81bc45f1e237d6216
[ "CECILL-B" ]
null
null
null
import time import requests from kafka import KafkaProducer from json import dumps import json meetup_dot_com_rsvp_stream_api_url = "http://stream.meetup.com/2/rsvps" kafka_topic_name = "meetuprsvptopic" kafka_bootstrap_servers = 'localhost:9092' if __name__ == "__main__": print("Kafka Producer Application Started ... ") kafka_producer_obj = KafkaProducer(bootstrap_servers=kafka_bootstrap_servers, value_serializer=lambda x: dumps(x).encode('utf-8')) while True: try: stream_api_response = requests.get(meetup_dot_com_rsvp_stream_api_url, stream=True) if stream_api_response.status_code == 200: for api_response_message in stream_api_response.iter_lines(): print("Message received: ") print(api_response_message) api_response_message = json.loads(api_response_message) print("Message to be sent: ") print(api_response_message) kafka_producer_obj.send(kafka_topic_name, api_response_message) time.sleep(1) except Exception as ex: print('Connection to meetup stream api could not established.') print("Printing after while loop complete.")
40.935484
134
0.676123
7c03b7fe57db756e38060a2cc74eebd2da21a47c
42,178
py
Python
mne/viz/ica.py
bloyl/mne-python
bf945f19d221a4955b59758fdb9777d35315c042
[ "BSD-3-Clause" ]
1
2016-10-27T20:07:23.000Z
2016-10-27T20:07:23.000Z
mne/viz/ica.py
bloyl/mne-python
bf945f19d221a4955b59758fdb9777d35315c042
[ "BSD-3-Clause" ]
null
null
null
mne/viz/ica.py
bloyl/mne-python
bf945f19d221a4955b59758fdb9777d35315c042
[ "BSD-3-Clause" ]
null
null
null
"""Functions to plot ICA specific data (besides topographies).""" # Authors: Denis Engemann <denis.engemann@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Teon Brooks <teon.brooks@gmail.com> # Daniel McCloy <dan.mccloy@gmail.com> # # License: Simplified BSD from functools import partial import warnings import numpy as np from .utils import (tight_layout, _make_event_color_dict, plt_show, _convert_psds, _compute_scalings) from .topomap import _plot_ica_topomap from .epochs import plot_epochs_image from .evoked import _butterfly_on_button_press, _butterfly_onpick from ..utils import _validate_type, fill_doc from ..defaults import _handle_default from ..io.meas_info import create_info from ..io.pick import pick_types, _picks_to_idx from ..time_frequency.psd import psd_multitaper from ..utils import _reject_data_segments, verbose @fill_doc def plot_ica_sources(ica, inst, picks=None, start=None, stop=None, title=None, show=True, block=False, show_first_samp=False, show_scrollbars=True, time_format='float'): """Plot estimated latent sources given the unmixing matrix. Typical usecases: 1. plot evolution of latent sources over time based on (Raw input) 2. plot latent source around event related time windows (Epochs input) 3. plot time-locking in ICA space (Evoked input) Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA solution. inst : instance of mne.io.Raw, mne.Epochs, mne.Evoked The object to plot the sources from. %(picks_base)s all sources in the order as fitted. start, stop : float | int | None If ``inst`` is a `~mne.io.Raw` or an `~mne.Evoked` object, the first and last time point (in seconds) of the data to plot. If ``inst`` is a `~mne.io.Raw` object, ``start=None`` and ``stop=None`` will be translated into ``start=0.`` and ``stop=3.``, respectively. For `~mne.Evoked`, ``None`` refers to the beginning and end of the evoked signal. If ``inst`` is an `~mne.Epochs` object, specifies the index of the first and last epoch to show. title : str | None The window title. If None a default is provided. show : bool Show figure if True. block : bool Whether to halt program execution until the figure is closed. Useful for interactive selection of components in raw and epoch plotter. For evoked, this parameter has no effect. Defaults to False. show_first_samp : bool If True, show time axis relative to the ``raw.first_samp``. %(show_scrollbars)s %(time_format)s Returns ------- fig : instance of Figure The figure. Notes ----- For raw and epoch instances, it is possible to select components for exclusion by clicking on the line. The selected components are added to ``ica.exclude`` on close. .. versionadded:: 0.10.0 """ from ..io.base import BaseRaw from ..evoked import Evoked from ..epochs import BaseEpochs exclude = ica.exclude picks = _picks_to_idx(ica.n_components_, picks, 'all') if isinstance(inst, (BaseRaw, BaseEpochs)): fig = _plot_sources(ica, inst, picks, exclude, start=start, stop=stop, show=show, title=title, block=block, show_first_samp=show_first_samp, show_scrollbars=show_scrollbars, time_format=time_format) elif isinstance(inst, Evoked): if start is not None or stop is not None: inst = inst.copy().crop(start, stop) sources = ica.get_sources(inst) fig = _plot_ica_sources_evoked( evoked=sources, picks=picks, exclude=exclude, title=title, labels=getattr(ica, 'labels_', None), show=show, ica=ica) else: raise ValueError('Data input must be of Raw or Epochs type') return fig def _create_properties_layout(figsize=None, fig=None): """Create main figure and axes layout used by plot_ica_properties.""" import matplotlib.pyplot as plt if fig is not None and figsize is not None: raise ValueError('Cannot specify both fig and figsize.') if figsize is None: figsize = [7., 6.] if fig is None: fig = plt.figure(figsize=figsize, facecolor=[0.95] * 3) axes_params = (('topomap', [0.08, 0.5, 0.3, 0.45]), ('image', [0.5, 0.6, 0.45, 0.35]), ('erp', [0.5, 0.5, 0.45, 0.1]), ('spectrum', [0.08, 0.1, 0.32, 0.3]), ('variance', [0.5, 0.1, 0.45, 0.25])) axes = [fig.add_axes(loc, label=name) for name, loc in axes_params] return fig, axes def _plot_ica_properties(pick, ica, inst, psds_mean, freqs, n_trials, epoch_var, plot_lowpass_edge, epochs_src, set_title_and_labels, plot_std, psd_ylabel, spectrum_std, topomap_args, image_args, fig, axes, kind, dropped_indices): """Plot ICA properties (helper).""" from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable from scipy.stats import gaussian_kde topo_ax, image_ax, erp_ax, spec_ax, var_ax = axes # plotting # -------- # component topomap _plot_ica_topomap(ica, pick, show=False, axes=topo_ax, **topomap_args) # image and erp # we create a new epoch with dropped rows epoch_data = epochs_src.get_data() epoch_data = np.insert(arr=epoch_data, obj=(dropped_indices - np.arange(len(dropped_indices))).astype(int), values=0.0, axis=0) from ..epochs import EpochsArray epochs_src = EpochsArray(epoch_data, epochs_src.info, tmin=epochs_src.tmin, verbose=0) plot_epochs_image(epochs_src, picks=pick, axes=[image_ax, erp_ax], combine=None, colorbar=False, show=False, **image_args) # spectrum spec_ax.plot(freqs, psds_mean, color='k') if plot_std: spec_ax.fill_between(freqs, psds_mean - spectrum_std[0], psds_mean + spectrum_std[1], color='k', alpha=.2) if plot_lowpass_edge: spec_ax.axvline(inst.info['lowpass'], lw=2, linestyle='--', color='k', alpha=0.2) # epoch variance var_ax_divider = make_axes_locatable(var_ax) hist_ax = var_ax_divider.append_axes("right", size="33%", pad="2.5%") var_ax.scatter(range(len(epoch_var)), epoch_var, alpha=0.5, facecolor=[0, 0, 0], lw=0) # rejected epochs in red var_ax.scatter(dropped_indices, epoch_var[dropped_indices], alpha=1., facecolor=[1, 0, 0], lw=0) # compute percentage of dropped epochs var_percent = float(len(dropped_indices)) / float(len(epoch_var)) * 100. # histogram & histogram _, counts, _ = hist_ax.hist(epoch_var, orientation="horizontal", color="k", alpha=.5) # kde ymin, ymax = hist_ax.get_ylim() try: kde = gaussian_kde(epoch_var) except np.linalg.LinAlgError: pass # singular: happens when there is nothing plotted else: x = np.linspace(ymin, ymax, 50) kde_ = kde(x) kde_ /= kde_.max() or 1. kde_ *= hist_ax.get_xlim()[-1] * .9 hist_ax.plot(kde_, x, color="k") hist_ax.set_ylim(ymin, ymax) # aesthetics # ---------- topo_ax.set_title(ica._ica_names[pick]) set_title_and_labels(image_ax, kind + ' image and ERP/ERF', [], kind) # erp set_title_and_labels(erp_ax, [], 'Time (s)', 'AU') erp_ax.spines["right"].set_color('k') erp_ax.set_xlim(epochs_src.times[[0, -1]]) # remove half of yticks if more than 5 yt = erp_ax.get_yticks() if len(yt) > 5: erp_ax.yaxis.set_ticks(yt[::2]) # remove xticks - erp plot shows xticks for both image and erp plot image_ax.xaxis.set_ticks([]) yt = image_ax.get_yticks() image_ax.yaxis.set_ticks(yt[1:]) image_ax.set_ylim([-0.5, n_trials + 0.5]) # spectrum set_title_and_labels(spec_ax, 'Spectrum', 'Frequency (Hz)', psd_ylabel) spec_ax.yaxis.labelpad = 0 spec_ax.set_xlim(freqs[[0, -1]]) ylim = spec_ax.get_ylim() air = np.diff(ylim)[0] * 0.1 spec_ax.set_ylim(ylim[0] - air, ylim[1] + air) image_ax.axhline(0, color='k', linewidth=.5) # epoch variance var_ax_title = 'Dropped segments: %.2f %%' % var_percent set_title_and_labels(var_ax, var_ax_title, kind, 'Variance (AU)') hist_ax.set_ylabel("") hist_ax.set_yticks([]) set_title_and_labels(hist_ax, None, None, None) return fig def _get_psd_label_and_std(this_psd, dB, ica, num_std): """Handle setting up PSD for one component, for plot_ica_properties.""" psd_ylabel = _convert_psds(this_psd, dB, estimate='auto', scaling=1., unit='AU', first_dim='epoch') psds_mean = this_psd.mean(axis=0) diffs = this_psd - psds_mean # the distribution of power for each frequency bin is highly # skewed so we calculate std for values below and above average # separately - this is used for fill_between shade with warnings.catch_warnings(): # mean of empty slice warnings.simplefilter('ignore') spectrum_std = [ [np.sqrt((d[d < 0] ** 2).mean(axis=0)) for d in diffs.T], [np.sqrt((d[d > 0] ** 2).mean(axis=0)) for d in diffs.T]] spectrum_std = np.array(spectrum_std) * num_std return psd_ylabel, psds_mean, spectrum_std @verbose def plot_ica_properties(ica, inst, picks=None, axes=None, dB=True, plot_std=True, topomap_args=None, image_args=None, psd_args=None, figsize=None, show=True, reject='auto', reject_by_annotation=True, *, verbose=None): """Display component properties. Properties include the topography, epochs image, ERP/ERF, power spectrum, and epoch variance. Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA solution. inst : instance of Epochs or Raw The data to use in plotting properties. %(picks_base)s the first five sources. If more than one components were chosen in the picks, each one will be plotted in a separate figure. axes : list of Axes | None List of five matplotlib axes to use in plotting: [topomap_axis, image_axis, erp_axis, spectrum_axis, variance_axis]. If None a new figure with relevant axes is created. Defaults to None. dB : bool Whether to plot spectrum in dB. Defaults to True. plot_std : bool | float Whether to plot standard deviation/confidence intervals in ERP/ERF and spectrum plots. Defaults to True, which plots one standard deviation above/below for the spectrum. If set to float allows to control how many standard deviations are plotted for the spectrum. For example 2.5 will plot 2.5 standard deviation above/below. For the ERP/ERF, by default, plot the 95 percent parametric confidence interval is calculated. To change this, use ``ci`` in ``ts_args`` in ``image_args`` (see below). topomap_args : dict | None Dictionary of arguments to ``plot_topomap``. If None, doesn't pass any additional arguments. Defaults to None. image_args : dict | None Dictionary of arguments to ``plot_epochs_image``. If None, doesn't pass any additional arguments. Defaults to None. psd_args : dict | None Dictionary of arguments to ``psd_multitaper``. If None, doesn't pass any additional arguments. Defaults to None. figsize : array-like, shape (2,) | None Allows to control size of the figure. If None, the figure size defaults to [7., 6.]. show : bool Show figure if True. reject : 'auto' | dict | None Allows to specify rejection parameters used to drop epochs (or segments if continuous signal is passed as inst). If None, no rejection is applied. The default is 'auto', which applies the rejection parameters used when fitting the ICA object. %(reject_by_annotation_raw)s .. versionadded:: 0.21.0 %(verbose)s Returns ------- fig : list List of matplotlib figures. Notes ----- .. versionadded:: 0.13 """ return _fast_plot_ica_properties(ica, inst, picks=picks, axes=axes, dB=dB, plot_std=plot_std, topomap_args=topomap_args, image_args=image_args, psd_args=psd_args, figsize=figsize, show=show, reject=reject, reject_by_annotation=reject_by_annotation, verbose=verbose, precomputed_data=None) def _fast_plot_ica_properties(ica, inst, picks=None, axes=None, dB=True, plot_std=True, topomap_args=None, image_args=None, psd_args=None, figsize=None, show=True, reject='auto', precomputed_data=None, reject_by_annotation=True, *, verbose=None): """Display component properties.""" from ..preprocessing import ICA # input checks and defaults # ------------------------- _validate_type(ica, ICA, "ica", "ICA") _validate_type(plot_std, (bool, 'numeric'), 'plot_std') if isinstance(plot_std, bool): num_std = 1. if plot_std else 0. else: plot_std = True num_std = float(plot_std) # if no picks given - plot the first 5 components limit = min(5, ica.n_components_) if picks is None else len(ica.ch_names) picks = _picks_to_idx(ica.info, picks, 'all')[:limit] if axes is None: fig, axes = _create_properties_layout(figsize=figsize) else: if len(picks) > 1: raise ValueError('Only a single pick can be drawn ' 'to a set of axes.') from .utils import _validate_if_list_of_axes _validate_if_list_of_axes(axes, obligatory_len=5) fig = axes[0].get_figure() psd_args = dict() if psd_args is None else psd_args topomap_args = dict() if topomap_args is None else topomap_args image_args = dict() if image_args is None else image_args image_args["ts_args"] = dict(truncate_xaxis=False, show_sensors=False) if plot_std: from ..stats.parametric import _parametric_ci image_args["ts_args"]["ci"] = _parametric_ci elif "ts_args" not in image_args or "ci" not in image_args["ts_args"]: image_args["ts_args"]["ci"] = False for item_name, item in (("psd_args", psd_args), ("topomap_args", topomap_args), ("image_args", image_args)): _validate_type(item, dict, item_name, "dictionary") if dB is not None: _validate_type(dB, bool, "dB", "bool") # calculations # ------------ if isinstance(precomputed_data, tuple): kind, dropped_indices, epochs_src, data = precomputed_data else: kind, dropped_indices, epochs_src, data = _prepare_data_ica_properties( inst, ica, reject_by_annotation, reject) ica_data = np.swapaxes(data[:, picks, :], 0, 1) dropped_src = ica_data # spectrum Nyquist = inst.info['sfreq'] / 2. lp = inst.info['lowpass'] if 'fmax' not in psd_args: psd_args['fmax'] = min(lp * 1.25, Nyquist) plot_lowpass_edge = lp < Nyquist and (psd_args['fmax'] > lp) psds, freqs = psd_multitaper(epochs_src, picks=picks, **psd_args) def set_title_and_labels(ax, title, xlab, ylab): if title: ax.set_title(title) if xlab: ax.set_xlabel(xlab) if ylab: ax.set_ylabel(ylab) ax.axis('auto') ax.tick_params('both', labelsize=8) ax.axis('tight') # plot # ---- all_fig = list() for idx, pick in enumerate(picks): # calculate component-specific spectrum stuff psd_ylabel, psds_mean, spectrum_std = _get_psd_label_and_std( psds[:, idx, :].copy(), dB, ica, num_std) # if more than one component, spawn additional figures and axes if idx > 0: fig, axes = _create_properties_layout(figsize=figsize) # we reconstruct an epoch_variance with 0 where indexes where dropped epoch_var = np.var(ica_data[idx], axis=1) drop_var = np.var(dropped_src[idx], axis=1) drop_indices_corrected = \ (dropped_indices - np.arange(len(dropped_indices))).astype(int) epoch_var = np.insert(arr=epoch_var, obj=drop_indices_corrected, values=drop_var[dropped_indices], axis=0) # the actual plot fig = _plot_ica_properties( pick, ica, inst, psds_mean, freqs, ica_data.shape[1], epoch_var, plot_lowpass_edge, epochs_src, set_title_and_labels, plot_std, psd_ylabel, spectrum_std, topomap_args, image_args, fig, axes, kind, dropped_indices) all_fig.append(fig) plt_show(show) return all_fig def _prepare_data_ica_properties(inst, ica, reject_by_annotation=True, reject='auto'): """Prepare Epochs sources to plot ICA properties. Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA solution. inst : instance of Epochs or Raw The data to use in plotting properties. reject_by_annotation : bool, optional [description], by default True reject : str, optional [description], by default 'auto' Returns ------- kind : str "Segment" for BaseRaw and "Epochs" for BaseEpochs dropped_indices : list Dropped epochs indexes. epochs_src : instance of Epochs Segmented data of ICA sources. data : array of shape (n_epochs, n_ica_sources, n_times) A view on epochs ICA sources data. """ from ..io.base import BaseRaw from ..io import RawArray from ..epochs import BaseEpochs _validate_type(inst, (BaseRaw, BaseEpochs), "inst", "Raw or Epochs") if isinstance(inst, BaseRaw): # when auto, delegate reject to the ica from ..epochs import make_fixed_length_epochs if reject == 'auto': reject = getattr(ica, 'reject_', None) if reject is None: drop_inds = None dropped_indices = [] # break up continuous signal into segments epochs_src = make_fixed_length_epochs( ica.get_sources(inst), duration=2, preload=True, reject_by_annotation=reject_by_annotation, proj=False, verbose=False) else: data = inst.get_data() data, drop_inds = _reject_data_segments(data, ica.reject_, flat=None, decim=None, info=inst.info, tstep=2.0) inst_rejected = RawArray(data, inst.info) # break up continuous signal into segments epochs_src = make_fixed_length_epochs( ica.get_sources(inst_rejected), duration=2, preload=True, reject_by_annotation=reject_by_annotation, proj=False, verbose=False) # getting dropped epochs indexes dropped_indices = [(d[0] // len(epochs_src.times)) + 1 for d in drop_inds] kind = "Segment" else: drop_inds = None epochs_src = ica.get_sources(inst) dropped_indices = [] kind = "Epochs" return kind, dropped_indices, epochs_src, epochs_src.get_data() def _plot_ica_sources_evoked(evoked, picks, exclude, title, show, ica, labels=None): """Plot average over epochs in ICA space. Parameters ---------- evoked : instance of mne.Evoked The Evoked to be used. %(picks_base)s all sources in the order as fitted. exclude : array-like of int The components marked for exclusion. If None (default), ICA.exclude will be used. title : str The figure title. show : bool Show figure if True. labels : None | dict The ICA labels attribute. """ import matplotlib.pyplot as plt from matplotlib import patheffects if title is None: title = 'Reconstructed latent sources, time-locked' fig, axes = plt.subplots(1) ax = axes axes = [axes] times = evoked.times * 1e3 # plot unclassified sources and label excluded ones lines = list() texts = list() picks = np.sort(picks) idxs = [picks] if labels is not None: labels_used = [k for k in labels if '/' not in k] exclude_labels = list() for ii in picks: if ii in exclude: line_label = ica._ica_names[ii] if labels is not None: annot = list() for this_label in labels_used: indices = labels[this_label] if ii in indices: annot.append(this_label) if annot: line_label += (' – ' + ', '.join(annot)) # Unicode en-dash exclude_labels.append(line_label) else: exclude_labels.append(None) label_props = [('k', '-') if lb is None else ('r', '-') for lb in exclude_labels] styles = ['-', '--', ':', '-.'] if labels is not None: # differentiate categories by linestyle and components by color col_lbs = [it for it in exclude_labels if it is not None] cmap = plt.get_cmap('tab10', len(col_lbs)) unique_labels = set() for label in exclude_labels: if label is None: continue elif ' – ' in label: unique_labels.add(label.split(' – ')[1]) else: unique_labels.add('') # Determine up to 4 different styles for n categories cat_styles = dict(zip(unique_labels, map(lambda ux: styles[int(ux % len(styles))], range(len(unique_labels))))) for label_idx, label in enumerate(exclude_labels): if label is not None: color = cmap(col_lbs.index(label)) if ' – ' in label: label_name = label.split(' – ')[1] else: label_name = '' style = cat_styles[label_name] label_props[label_idx] = (color, style) for exc_label, ii in zip(exclude_labels, picks): color, style = label_props[ii] # ensure traces of excluded components are plotted on top zorder = 2 if exc_label is None else 10 lines.extend(ax.plot(times, evoked.data[ii].T, picker=True, zorder=zorder, color=color, linestyle=style, label=exc_label)) lines[-1].set_pickradius(3.) ax.set(title=title, xlim=times[[0, -1]], xlabel='Time (ms)', ylabel='(NA)') if len(exclude) > 0: plt.legend(loc='best') tight_layout(fig=fig) texts.append(ax.text(0, 0, '', zorder=3, verticalalignment='baseline', horizontalalignment='left', fontweight='bold', alpha=0)) # this is done to give the structure of a list of lists of a group of lines # in each subplot lines = [lines] ch_names = evoked.ch_names path_effects = [patheffects.withStroke(linewidth=2, foreground="w", alpha=0.75)] params = dict(axes=axes, texts=texts, lines=lines, idxs=idxs, ch_names=ch_names, need_draw=False, path_effects=path_effects) fig.canvas.mpl_connect('pick_event', partial(_butterfly_onpick, params=params)) fig.canvas.mpl_connect('button_press_event', partial(_butterfly_on_button_press, params=params)) plt_show(show) return fig def plot_ica_scores(ica, scores, exclude=None, labels=None, axhline=None, title='ICA component scores', figsize=None, n_cols=None, show=True): """Plot scores related to detected components. Use this function to asses how well your score describes outlier sources and how well you were detecting them. Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA object. scores : array-like of float, shape (n_ica_components,) | list of array Scores based on arbitrary metric to characterize ICA components. exclude : array-like of int The components marked for exclusion. If None (default), ICA.exclude will be used. labels : str | list | 'ecg' | 'eog' | None The labels to consider for the axes tests. Defaults to None. If list, should match the outer shape of ``scores``. If 'ecg' or 'eog', the ``labels_`` attributes will be looked up. Note that '/' is used internally for sublabels specifying ECG and EOG channels. axhline : float Draw horizontal line to e.g. visualize rejection threshold. title : str The figure title. figsize : tuple of int | None The figure size. If None it gets set automatically. n_cols : int | None Scores are plotted in a grid. This parameter controls how many to plot side by side before starting a new row. By default, a number will be chosen to make the grid as square as possible. show : bool Show figure if True. Returns ------- fig : instance of Figure The figure object. """ import matplotlib.pyplot as plt my_range = np.arange(ica.n_components_) if exclude is None: exclude = ica.exclude exclude = np.unique(exclude) if not isinstance(scores[0], (list, np.ndarray)): scores = [scores] n_scores = len(scores) if n_cols is None: # prefer more rows. n_rows = int(np.ceil(np.sqrt(n_scores))) n_cols = (n_scores - 1) // n_rows + 1 else: n_cols = min(n_scores, n_cols) n_rows = (n_scores - 1) // n_cols + 1 if figsize is None: figsize = (6.4 * n_cols, 2.7 * n_rows) fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize, sharex=True, sharey=True) if isinstance(axes, np.ndarray): axes = axes.flatten() else: axes = [axes] fig.suptitle(title) if labels == 'ecg': labels = [label for label in ica.labels_ if label.startswith('ecg/')] labels.sort(key=lambda l: l.split('/')[1]) # sort by index if len(labels) == 0: labels = [label for label in ica.labels_ if label.startswith('ecg')] elif labels == 'eog': labels = [label for label in ica.labels_ if label.startswith('eog/')] labels.sort(key=lambda l: l.split('/')[1]) # sort by index if len(labels) == 0: labels = [label for label in ica.labels_ if label.startswith('eog')] elif isinstance(labels, str): labels = [labels] elif labels is None: labels = (None,) * n_scores if len(labels) != n_scores: raise ValueError('Need as many labels (%i) as scores (%i)' % (len(labels), n_scores)) for label, this_scores, ax in zip(labels, scores, axes): if len(my_range) != len(this_scores): raise ValueError('The length of `scores` must equal the ' 'number of ICA components.') ax.bar(my_range, this_scores, color='gray', edgecolor='k') for excl in exclude: ax.bar(my_range[excl], this_scores[excl], color='r', edgecolor='k') if axhline is not None: if np.isscalar(axhline): axhline = [axhline] for axl in axhline: ax.axhline(axl, color='r', linestyle='--') ax.set_ylabel('score') if label is not None: if 'eog/' in label: split = label.split('/') label = ', '.join([split[0], split[2]]) elif '/' in label: label = ', '.join(label.split('/')) ax.set_title('(%s)' % label) ax.set_xlabel('ICA components') ax.set_xlim(-0.6, len(this_scores) - 0.4) tight_layout(fig=fig) adjust_top = 0.8 if len(fig.axes) == 1 else 0.9 fig.subplots_adjust(top=adjust_top) fig.canvas.draw() plt_show(show) return fig @fill_doc def plot_ica_overlay(ica, inst, exclude=None, picks=None, start=None, stop=None, title=None, show=True, n_pca_components=None): """Overlay of raw and cleaned signals given the unmixing matrix. This method helps visualizing signal quality and artifact rejection. Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA object. inst : instance of mne.io.Raw or mne.Evoked The signal to plot. If `~mne.io.Raw`, the raw data is displayed before and after cleaning. In a second panel, the cross-channel average will be displayed. Since dipolar sources will be canceled out, this representation is sensitive to artifacts. If `~mne.Evoked`, butterfly traces for signals before and after cleaning will be superimposed. exclude : array-like of int | None (default) The components marked for exclusion. If ``None`` (default), ICA.exclude will be used. %(picks_base)s all channels that were included during fitting. start, stop : float | None The first and last time point (in seconds) of the data to plot. If ``inst`` is a `~mne.io.Raw` object, ``start=None`` and ``stop=None`` will be translated into ``start=0.`` and ``stop=3.``, respectively. For `~mne.Evoked`, ``None`` refers to the beginning and end of the evoked signal. %(title_None)s %(show)s %(n_pca_components_apply)s .. versionadded:: 0.22 Returns ------- fig : instance of Figure The figure. """ # avoid circular imports from ..io.base import BaseRaw from ..evoked import Evoked from ..preprocessing.ica import _check_start_stop if ica.current_fit == 'unfitted': raise RuntimeError('You need to fit the ICA first') _validate_type(inst, (BaseRaw, Evoked), "inst", "Raw or Evoked") if title is None: title = 'Signals before (red) and after (black) cleaning' picks = ica.ch_names if picks is None else picks picks = _picks_to_idx(inst.info, picks, exclude=()) ch_types_used = inst.get_channel_types(picks=picks, unique=True) if exclude is None: exclude = ica.exclude if not isinstance(exclude, (np.ndarray, list)): raise TypeError('exclude must be of type list. Got %s' % type(exclude)) if isinstance(inst, BaseRaw): if start is None: start = 0.0 if stop is None: stop = 3.0 start_compare, stop_compare = _check_start_stop(inst, start, stop) data, times = inst[picks, start_compare:stop_compare] raw_cln = ica.apply(inst.copy(), exclude=exclude, start=start, stop=stop, n_pca_components=n_pca_components) data_cln, _ = raw_cln[picks, start_compare:stop_compare] fig = _plot_ica_overlay_raw(data=data, data_cln=data_cln, times=times, title=title, ch_types_used=ch_types_used, show=show) else: assert isinstance(inst, Evoked) inst = inst.copy().crop(start, stop) if picks is not None: with inst.info._unlock(): inst.info['comps'] = [] # can be safely disabled inst.pick_channels([inst.ch_names[p] for p in picks]) evoked_cln = ica.apply(inst.copy(), exclude=exclude, n_pca_components=n_pca_components) fig = _plot_ica_overlay_evoked(evoked=inst, evoked_cln=evoked_cln, title=title, show=show) return fig def _plot_ica_overlay_raw(data, data_cln, times, title, ch_types_used, show): """Plot evoked after and before ICA cleaning. Parameters ---------- ica : instance of mne.preprocessing.ICA The ICA object. epochs : instance of mne.Epochs The Epochs to be regarded. show : bool Show figure if True. Returns ------- fig : instance of Figure """ import matplotlib.pyplot as plt # Restore sensor space data and keep all PCA components # let's now compare the date before and after cleaning. # first the raw data assert data.shape == data_cln.shape fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) plt.suptitle(title) ax1.plot(times, data.T, color='r') ax1.plot(times, data_cln.T, color='k') ax1.set(xlabel='Time (s)', xlim=times[[0, -1]], title='Raw data') _ch_types = {'mag': 'Magnetometers', 'grad': 'Gradiometers', 'eeg': 'EEG'} ch_types = ', '.join([_ch_types[k] for k in ch_types_used]) ax2.set_title('Average across channels ({})'.format(ch_types)) ax2.plot(times, data.mean(0), color='r') ax2.plot(times, data_cln.mean(0), color='k') ax2.set(xlabel='Time (s)', xlim=times[[0, -1]]) tight_layout(fig=fig) fig.subplots_adjust(top=0.90) fig.canvas.draw() plt_show(show) return fig def _plot_ica_overlay_evoked(evoked, evoked_cln, title, show): """Plot evoked after and before ICA cleaning. Parameters ---------- evoked : instance of mne.Evoked The Evoked before IC rejection. evoked_cln : instance of mne.Evoked The Evoked after IC rejection. title : str | None The title of the figure. show : bool If True, all open plots will be shown. Returns ------- fig : instance of Figure """ import matplotlib.pyplot as plt ch_types_used = [c for c in ['mag', 'grad', 'eeg'] if c in evoked] n_rows = len(ch_types_used) ch_types_used_cln = [c for c in ['mag', 'grad', 'eeg'] if c in evoked_cln] if len(ch_types_used) != len(ch_types_used_cln): raise ValueError('Raw and clean evokeds must match. ' 'Found different channels.') fig, axes = plt.subplots(n_rows, 1) if title is None: title = 'Average signal before (red) and after (black) ICA' fig.suptitle(title) axes = axes.flatten() if isinstance(axes, np.ndarray) else axes evoked.plot(axes=axes, show=False, time_unit='s') for ax in fig.axes: for line in ax.get_lines(): line.set_color('r') fig.canvas.draw() evoked_cln.plot(axes=axes, show=False, time_unit='s') tight_layout(fig=fig) fig.subplots_adjust(top=0.90) fig.canvas.draw() plt_show(show) return fig def _plot_sources(ica, inst, picks, exclude, start, stop, show, title, block, show_scrollbars, show_first_samp, time_format): """Plot the ICA components as a RawArray or EpochsArray.""" from ._figure import _get_browser from .. import EpochsArray, BaseEpochs from ..io import RawArray, BaseRaw # handle defaults / check arg validity is_raw = isinstance(inst, BaseRaw) is_epo = isinstance(inst, BaseEpochs) sfreq = inst.info['sfreq'] color = _handle_default('color', (0., 0., 0.)) units = _handle_default('units', None) scalings = (_compute_scalings(None, inst) if is_raw else _handle_default('scalings_plot_raw')) scalings['misc'] = 5. scalings['whitened'] = 1. unit_scalings = _handle_default('scalings', None) # data if is_raw: data = ica._transform_raw(inst, 0, len(inst.times))[picks] else: data = ica._transform_epochs(inst, concatenate=True)[picks] # events if is_epo: event_id_rev = {v: k for k, v in inst.event_id.items()} event_nums = inst.events[:, 2] event_color_dict = _make_event_color_dict(None, inst.events, inst.event_id) # channel properties / trace order / picks ch_names = list(ica._ica_names) # copy ch_types = ['misc' for _ in picks] # add EOG/ECG channels if present eog_chs = pick_types(inst.info, meg=False, eog=True, ref_meg=False) ecg_chs = pick_types(inst.info, meg=False, ecg=True, ref_meg=False) for eog_idx in eog_chs: ch_names.append(inst.ch_names[eog_idx]) ch_types.append('eog') for ecg_idx in ecg_chs: ch_names.append(inst.ch_names[ecg_idx]) ch_types.append('ecg') extra_picks = np.concatenate((eog_chs, ecg_chs)).astype(int) if len(extra_picks): if is_raw: eog_ecg_data, _ = inst[extra_picks, :] else: eog_ecg_data = np.concatenate(inst.get_data(extra_picks), axis=1) data = np.append(data, eog_ecg_data, axis=0) picks = np.concatenate( (picks, ica.n_components_ + np.arange(len(extra_picks)))) ch_order = np.arange(len(picks)) n_channels = min([20, len(picks)]) ch_names_picked = [ch_names[x] for x in picks] # create info info = create_info(ch_names_picked, sfreq, ch_types=ch_types) with info._unlock(): info['meas_date'] = inst.info['meas_date'] info['bads'] = [ch_names[x] for x in exclude if x in picks] if is_raw: inst_array = RawArray(data, info, inst.first_samp) inst_array.set_annotations(inst.annotations) else: data = data.reshape(-1, len(inst), len(inst.times)).swapaxes(0, 1) inst_array = EpochsArray(data, info) # handle time dimension start = 0 if start is None else start _last = inst.times[-1] if is_raw else len(inst.events) stop = min(start + 20, _last) if stop is None else stop first_time = inst._first_time if show_first_samp else 0 if is_raw: duration = stop - start start += first_time else: n_epochs = stop - start total_epochs = len(inst) epoch_n_times = len(inst.times) n_epochs = min(n_epochs, total_epochs) n_times = total_epochs * epoch_n_times duration = n_epochs * epoch_n_times / sfreq event_times = (np.arange(total_epochs) * epoch_n_times + inst.time_as_index(0)) / sfreq # NB: this includes start and end of data: boundary_times = np.arange(total_epochs + 1) * epoch_n_times / sfreq if duration <= 0: raise RuntimeError('Stop must be larger than start.') # misc bad_color = (0.8, 0.8, 0.8) title = 'ICA components' if title is None else title params = dict(inst=inst_array, ica=ica, ica_inst=inst, info=info, # channels and channel order ch_names=np.array(ch_names_picked), ch_types=np.array(ch_types), ch_order=ch_order, picks=picks, n_channels=n_channels, picks_data=list(), # time t_start=start if is_raw else boundary_times[start], duration=duration, n_times=inst.n_times if is_raw else n_times, first_time=first_time, time_format=time_format, decim=1, # events event_times=None if is_raw else event_times, # preprocessing projs=list(), projs_on=np.array([], dtype=bool), apply_proj=False, remove_dc=True, # for EOG/ECG filter_coefs=None, filter_bounds=None, noise_cov=None, # scalings scalings=scalings, units=units, unit_scalings=unit_scalings, # colors ch_color_bad=bad_color, ch_color_dict=color, # display butterfly=False, clipping=None, scrollbars_visible=show_scrollbars, scalebars_visible=False, window_title=title) if is_epo: params.update(n_epochs=n_epochs, boundary_times=boundary_times, event_id_rev=event_id_rev, event_color_dict=event_color_dict, event_nums=event_nums, epoch_color_bad=(1, 0, 0), epoch_colors=None, xlabel='Epoch number') fig = _get_browser(**params) fig._update_picks() # update data, and plot fig._update_trace_offsets() fig._update_data() fig._draw_traces() # plot annotations (if any) if is_raw: fig._setup_annotation_colors() fig._update_annotation_segments() fig._draw_annotations() plt_show(show, block=block) return fig
37.793907
79
0.594362
072313288a0147d787e6fe2050ed7b0f6ef19dc9
1,461
py
Python
Task2G.py
bendomb/IA-Flood-Warning-System
8e476010e83b64aca8a05dc31f88fe2d6fbd3c9f
[ "MIT" ]
null
null
null
Task2G.py
bendomb/IA-Flood-Warning-System
8e476010e83b64aca8a05dc31f88fe2d6fbd3c9f
[ "MIT" ]
null
null
null
Task2G.py
bendomb/IA-Flood-Warning-System
8e476010e83b64aca8a05dc31f88fe2d6fbd3c9f
[ "MIT" ]
null
null
null
from floodsystem.stationdata import build_station_list from floodsystem.stationdata import update_water_levels from floodsystem.flood import stations_level_over_threshold from floodsystem.flood import stations_highest_rel_level from floodsystem.datafetcher import fetch_measure_levels from floodsystem.analysis import polyfit from floodsystem.plot import plot_water_level_with_fit import matplotlib.pyplot as plt import datetime import numpy as np from floodsystem.plot import plot_water_level_with_fit, plot_water_levels def run(): """Requirements for Task 2G""" # Build list of stations stations = build_station_list() # Ensure stations have up-to-date data update_water_levels(stations) # Create list of stations and their relative water levels levelstations = stations_highest_rel_level(stations, len(stations)) # Create empty arrays for different risk categories low_risk, moderate_risk, high_risk, severe_risk = [], [], [], [] # Iterate over stations for i in levelstations: # Separating into categories by relative water level if i[1]<-1: low_risk.append(i[0].name) elif i[1]<0: moderate_risk.append(i[0].name) elif i[1]<1: high_risk.append(i[0].name) else: severe_risk.append(i[0].name) print(severe_risk) if __name__ == "__main__": print("*** Task 2G: CUED Part IA Flood Warning System ***") run()
31.76087
73
0.723477
0b12c4c0045f7bb5ca3800e10d5c2ee9b9dc1ddf
23,680
py
Python
scripts/scenes.py
Mu-L/yocto-gl
c5650f26166807e7046caf5072ce803d9220ed16
[ "MIT" ]
null
null
null
scripts/scenes.py
Mu-L/yocto-gl
c5650f26166807e7046caf5072ce803d9220ed16
[ "MIT" ]
null
null
null
scripts/scenes.py
Mu-L/yocto-gl
c5650f26166807e7046caf5072ce803d9220ed16
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 -B import click, glob, os, sys, math, json, csv @click.group() def cli(): pass @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--mode', '-m', default='path') @click.option('--envname', '-e', default='') def view(directory='mcguire', scene='*', format='json', mode='path', envname=''): modes = { 'path': '--resolution 1280 --bounces 8 --clamp 10', 'embree': '--resolution 1280 --bounces 8 --clamp 10 --embreebvh', 'eyelight': '--resolution 1280 -t eyelight --bounces 8 --clamp 10', 'eyelight-quick': '--resolution 1280 --samples 16 --sampler eyelight --bounces 8 --clamp 10' } options = modes[mode] envoptions = f'--envname {envname}' if envname else '' for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue extraoptions = '' if os.path.exists(f'{dirname}/yscene_render.txt'): with open(f'{dirname}/yscene_render.txt') as f: extraoptions = f.read().strip() for filename in sorted(glob.glob(f'{dirname}/*.{format}')): if format == 'pbrt': with open(filename) as f: if 'WorldBegin' not in f.read(): continue cmd = f'../yocto-gl/bin/yscene view {options} {extraoptions} {envoptions} --scene {filename}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--mode', '-m', default='path') def render(directory='mcguire', scene='*', format='json', mode='path'): modes = { 'path': '--samples 64 --resolution 1280 --bounces 8 --clamp 10', 'path-face': '--samples 256 --resolution 1280 --bounces 8 --clamp 10', 'embree': '--samples 256 --resolution 1280 --bounces 8 --clamp 10 --embreebvh', 'eyelight': '--samples 16 --resolution 1280 --bounces 8 --clamp 10 --sampler eyelight', 'embree-face': '--samples 1024 --resolution 1280 --bounces 8 --clamp 10 --embreebvh', 'final': '--samples 4096 --resolution 1280 --bounces 8 --clamp 10 --embreebvh', } options = modes[mode] outformat = 'png' if 'eyelight' in mode else 'hdr' outprefix = 'eyelight' if 'eyelight' in mode else 'images' for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue extracams = [] if 'sanmiguel' in dirname: extracams = ['camera2', 'camera3'] if 'island' in dirname: extracams = ["beachCam", "birdseyeCam", "dunesACam", "grassCam", "palmsCam", "rootsCam", "shotCam"] if 'landscape' in dirname: extracams = ['camera2', 'camera3', 'camera4'] extraoptions = '' if os.path.exists(f'{dirname}/yscene_render.txt'): with open(f'{dirname}/yscene_render.txt') as f: extraoptions = f.read().strip() for filename in sorted(glob.glob(f'{dirname}/*.{format}')): if format == 'pbrt': with open(filename) as f: if 'WorldBegin' not in f.read(): continue basename = os.path.basename(filename).replace(f'.{format}', '') os.system(f'mkdir -p {directory}/{outprefix}-{format}') imagename = f'{directory}/{outprefix}-{format}/{basename}.{outformat}' cmd = f'../yocto-gl/bin/yscene render --output {imagename} {options} {extraoptions} {filename}' print(cmd, file=sys.stderr) os.system(cmd) for idx, cam in enumerate(extracams, 1): imagename = f'{directory}/{outprefix}-{format}/{basename}-c{idx}.{outformat}' cmd = f'../yocto-gl/bin/yscene render --output {imagename} --camera {cam} {options} {extraoptions} --scene {filename}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--mode', '-m', default='default') def info(directory='mcguire', scene='*', format='json', mode='default'): modes = { 'default': '', 'validate': '--validate' } options = modes[mode] for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue extraoptions = '' if os.path.exists(f'{dirname}/yscene_render.txt'): with open(f'{dirname}/yscene_render.txt') as f: extraoptions = f.read().strip() for filename in sorted(glob.glob(f'{dirname}/*.{format}')): if format == 'pbrt': with open(filename) as f: if 'WorldBegin' not in f.read(): continue cmd = f'../yocto-gl/bin/yscene info {options} {extraoptions} --scene {filename}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--mode', '-m', default='default') def validate(directory='mcguire', scene='*', format='json', mode='default'): modes = { 'default': '' } options = modes[mode] schema = '../yocto-gl/scripts/scene.schema.json' for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue extraoptions = '' for filename in sorted(glob.glob(f'{dirname}/*.{format}')): cmd = f'../yocto-gl/scripts/validate-scene.py {schema} {filename} {options}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--mode', '-m', default='linear') def tonemap(directory='mcguire', scene='*', format='json', mode='filmic'): modes = { 'linear': '', 'filmic': '--filmic --exposure 0.5' } options = modes[mode] outformat = 'png' outprefix = 'images' from PIL import Image, ImageFont, ImageDraw fontname1 = '~/Library/Fonts/FiraSansCondensed-Regular.ttf' fontname2 = '~/Library/Fonts/FiraSansCondensed-Regular.ttf' font1 = ImageFont.truetype(fontname1, 30) font2 = ImageFont.truetype(fontname2, 18) for filename in sorted( glob.glob(f'{directory}/{outprefix}-{format}/{scene}.hdr') + glob.glob(f'{directory}/{outprefix}-{format}/{scene}.exr')): imagename = filename.replace(f'.exr', f'.{outformat}').replace( f'.hdr', f'.{outformat}') cmd = f'../yocto-gl/bin/yimage convert --output {imagename} {options} --image {filename}' print(cmd, file=sys.stderr) os.system(cmd) img = Image.open(imagename) w, h = img.size draw = ImageDraw.Draw(img) tw, _ = draw.textsize("Yocto/GL", font=font1) draw.rectangle([w - 8, h - 32 - 8, w - 8 - 8 - tw, h - 8], (0, 0, 0)) draw.text((w - 8 - 4, h - 26 - 8 - 4), "Yocto/GL", (255, 255, 255), font=font1, anchor='rt') if directory in ['bitterli', 'disney', 'mcguire', 'pbrt3', 'yocto', 'heads', 'blender', 'fabio']: authorfilename = filename.replace('images-json/', f'{format}/').replace( '-fr.', '.').replace('-hr.', '.').replace('-c1.', '.').replace( '-c2.', '.').replace('-c3.', '.').replace('-c4.', '.').replace( '-c5.', '.').replace('-c6.', '.').replace('-c7.', '.').replace( '.hdr', '') + '/AUTHOR.txt' print(authorfilename) with open(authorfilename) as f: text = f.read().strip() tw, _ = draw.textsize(text, font=font2) draw.rectangle([8, h - 26 - 8, 8 + 8 + tw, h - 8], (0, 0, 0)) draw.text((8 + 4, h - 20 - 8 - 4), text, (255, 255, 255), font=font2) img.save(imagename) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--mode', '-m', default='jpg') def gallery(directory='mcguire', scene='*', format='json', mode='filmic'): modes = { 'jpg': '' } options = modes[mode] inprefix = 'images' outformat = 'jpg' outprefix = 'gallery' os.system(f'mkdir -p {directory}/{outprefix}-{format}') from PIL import Image for filename in sorted(glob.glob(f'{directory}/{inprefix}-{format}/{scene}.png')): imagename = filename.replace(f'{inprefix}-', f'{outprefix}-').replace('.png',f'.{outformat}') print(filename, file=sys.stderr) img = Image.open(filename) rgb_img = img.convert('RGB') rgb_img.save(imagename) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='obj') @click.option('--clean/--no-clean', '-C', default=False) def sync_images(directory='mcguire', scene='*', format='obj', clean=True): for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue for filename in sorted(glob.glob(f'{dirname}/*.{format}')): if format == 'pbrt': with open(filename) as f: if 'WorldBegin' not in f.read(): continue basename = os.path.basename(filename).replace(f'.{format}', '') os.system(f'mkdir -p {directory}/images-{format}') imagename = f'{directory}/images-{format}/ytrace-{mode}-{basename}.*' if clean: cmd = f'rm {dirname}/*.png' print(cmd, file=sys.stderr) os.system(cmd) cmd = f'rm {dirname}/*.hdr' print(cmd, file=sys.stderr) os.system(cmd) cmd = f'cp {imagename} {dirname}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='obj') @click.option('--outformat', '-F', default='json') @click.option('--mode', '-m', default='default') @click.option('--clean/--no-clean', '-C', default=False) def convert(directory='mcguire', scene='*', format='obj', outformat="json", mode='path', clean=True): modes = { 'default': '', } options = modes[mode] for dirname in sorted(glob.glob(f'{directory}/source/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue copyright_options = '' if os.path.exists(f'{dirname}/AUTHOR.txt'): with open(f'{dirname}/AUTHOR.txt') as f: copyright = f.read().strip().replace('"', '') copyright_options += f'--copyright "{copyright}"' outdirname = dirname.replace(f'/source/', f'/{outformat}/') if clean: os.system(f'rm -rf {outdirname}') os.system(f'mkdir -p {outdirname}') for auxname in ['AUTHOR.txt', 'LICENSE.txt', 'LINKS.txt', 'README.txt', 'yscene_render.txt']: if os.path.exists(f'{dirname}/{auxname}'): os.system(f'cp {dirname}/{auxname} {outdirname}/') for filename in sorted(glob.glob(f'{dirname}/*.{format}')): if format == 'pbrt': with open(filename) as f: if 'WorldBegin' not in f.read(): continue outname = filename.replace(f'/source/', f'/{outformat}/').replace( f'.{format}', f'.{outformat}') cmd = f'../yocto-gl/bin/yscene convert --output {outname} {options} {filename} {copyright_options}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='obj') @click.option('--outformat', '-F', default='json') @click.option('--mode', '-m', default='default') def copyright(directory='mcguire', scene='*', format='obj', outformat="json", mode='default'): modes = { 'default': '', } options = modes[mode] for dirname in sorted(glob.glob(f'{directory}/source/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue outdirname = dirname.replace(f'/source/', f'/{outformat}/') os.system(f'mkdir -p {outdirname}') if os.path.exists(f'{dirname}/AUTHOR.txt'): os.system(f'cp {dirname}/AUTHOR.txt {outdirname}/') if os.path.exists(f'{dirname}/LICENSE.txt'): os.system(f'cp {dirname}/LICENSE.txt {outdirname}/') if os.path.exists(f'{dirname}/LINKS.txt'): os.system(f'cp {dirname}/LINKS.txt {outdirname}/') @cli.command() @click.option('--directory', '-d', default='yuksel') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='hair') @click.option('--outformat', '-F', default='ply') @click.option('--mode', '-m', default='default') @click.option('--clean-models/--no-clean-models', '-C', default=False) def convert_hair(directory='yuksel', scene='*', format='hair', outformat="ply", mode='path', clean_models=True): modes = {'default': ''} options = modes[mode] for dirname in sorted(glob.glob(f'{directory}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue if 'ecosys' in dirname and outformat == 'obj': continue if 'landscape' in dirname and outformat == 'obj': continue if 'fractal' in dirname and outformat == 'obj': continue if 'pavilion' in dirname and outformat == 'obj': continue for filename in sorted(glob.glob(f'{dirname}/{format}/*.{format}')): outname = filename.replace(f'/{format}/', f'/json/').replace( f'.{format}', f'.{outformat}') filedir = os.path.dirname(filename) cmd = f'../yocto-gl/bin/ymshproc -o {outname} {options} {filename}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='obj') @click.option('--mode', '-m', default='default') def backup(directory='mcguire', scene='*', format='obj', mode='default'): modes = { 'default': '-r -X -q', } options = modes[mode] for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue outdir = f'{directory}/backup-{format}' basedir = f'{directory}/{format}' os.system(f'mkdir -p {outdir}') dirname = dirname.replace(basedir + '/', '') outname = dirname + '.zip' os.system(f'rm {outdir}/{outname}') cmd = f'cd {basedir}; zip {options} {outname} {dirname}; mv {outname} ../../{outdir}/' print(cmd) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='procedurals') @click.option('--mode', '-m', default='skies') @click.option('--clean/--no-clean', '-C', default=False) def make_procedurals(directory='procedurals', mode='skies', clean=False): if mode == 'skies': dirname = f'{directory}/hdr/textures' os.system(f'mkdir -p {dirname}') angles = [0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90] for name in ['sky', 'sun']: for angle in angles: jsonname = f'{dirname}/_proc.json' outname = f'{dirname}/{name}-{angle:02}.hdr' js = { 'type': 'sky', 'width': 2048, 'height': 1024, 'sun_angle': math.radians(angle), 'has_sun': 'sun' in name, 'turbidity': 3 } with open(jsonname, 'w') as f: json.dump(js, f, indent=2) cmd = f'../yocto-gl/bin/yimproc -o {outname} {jsonname}' print(cmd, file=sys.stderr) os.system(cmd) os.system(f'rm {jsonname}') else: print('unknown mode') @cli.command() def sync(): os.system( "rsync -avcm --delete --include '*/' --include '*.zip' --include '*.tgz' --include '*.pdf' --exclude='*' ./ ../yocto-scenes" ) # os.system('rsync -avc --delete ./ ../yocto-scenes') @cli.command() @click.option('--directory', '-d', default='pbrt-v3-scenes') @click.option('--scene', '-s', default='*') def pbrtparse(directory='pbrt-v3-scenes', scene='*'): broken_scenes = [ 'bunny-fur/f3-15.pbrt', "dambreak/dambreak0.pbrt", "hair/curly-hair.pbrt", "contemporary-bathroom/contemporary-bathroom.pbrt", "head/head.pbrt", "ecosys/ecosys.pbrt", "sanmiguel/sanmiguel.pbrt", "sssdragon/dragon_50.pbrt", "white-room/whiteroom-daytime.pbrt", ] scenes = [ 'barcelona-pavilion/pavilion-day.pbrt', 'barcelona-pavilion/pavilion-night.pbrt', 'bathroom/bathroom.pbrt', 'bmw-m6/bmw-m6.pbrt', 'breakfast/breakfast.pbrt', 'buddha-fractal/buddha-fractal.pbrt', 'bunny-fur/f3-15.pbrt', 'caustic-glass/glass.pbrt', "chopper-titan/chopper-titan.pbrt", "cloud/cloud.pbrt", "coffee-splash/splash.pbrt", "contemporary-bathroom/contemporary-bathroom.pbrt", "crown/crown.pbrt", "dambreak/dambreak0.pbrt", "dragon/f8-4a.pbrt", "ecosys/ecosys.pbrt", "ganesha/ganesha.pbrt", "hair/curly-hair.pbrt", "hair/sphere-hairblock.pbr", "head/head.pbrt", "killeroos/killeroo-simple.pbrt", "landscape/view-0.pbrt", "lte-orb/lte-orb-silver.pbrt", "measure-one/frame85.pbrt", "pbrt-book/book.pbrt", "sanmiguel/sanmiguel.pbrt", "simple/dof-dragons.pbrt", "smoke-plume/plume-184.pbrt", "sportscar/sportscar.pbrt", "sssdragon/dragon_50.pbrt", "structuresynth/microcity.pbrt", "transparent-machines/frame542.pbrt", "tt/tt.pbrt", "veach-bidir/bidir.pbrt", "veach-mis/mis.pbrt", "villa/villa-daylight.pbrt", "volume-caustic/caustic.pbrt", "vw-van/vw-van.pbrt", "white-room/whiteroom-daytime.pbrt", "yeahright/yeahright.pbrt", ] # for filename in scenes: # if scene != '*' and not filename.startswith(f'{scene}/'): continue # cmd = f'../yocto-gl/bin/yitrace {filename}' # print(cmd, file=sys.stderr) # os.system(cmd) for filename in scenes: if scene != '*' and not filename.startswith(f'{scene}/'): continue cmd = f'../yocto-gl/bin/yitrace {directory}/{filename}' print(cmd, file=sys.stderr) os.system(cmd) @cli.command() @click.option('--directory', '-d', default='mcguire') @click.option('--scene', '-s', default='*') @click.option('--format', '-f', default='json') @click.option('--outformat', '-F', default='csv') @click.option('--mode', '-m', default='default') def stats(directory='mcguire', scene='*', format='json', outformat="csv", mode='default'): stats = [] keys = [ 'name', 'cameras', 'environments', 'shapes', 'subdivs', 'textures', 'stextures' ] for dirname in sorted(glob.glob(f'{directory}/{format}/{scene}')): if not os.path.isdir(dirname): continue if '/_' in dirname: continue for filename in sorted(glob.glob(f'{dirname}/*.{format}')): with open(filename) as f: scene = json.load(f) stat = {} stat['name'] = filename.partition('/')[2].partition('.')[0] stat['cameras'] = len( scene['cameras']) if 'cameras' in scene else 0 stat['environments'] = len( scene['environments']) if 'environments' in scene else 0 stat['shapes'] = len(scene['shapes']) if 'shapes' in scene else 0 stat['subdivs'] = len( scene['subdivs']) if 'subdivs' in scene else 0 textures = {} for shape in scene['shapes']: for key, value in shape.items(): if '_tex' not in key: continue if value not in textures: textures[value] = 0 textures[value] += 1 stat['textures'] = len(textures) stat['stextures'] = sum(count for _, count in textures.items()) stats += [stat] os.system(f'mkdir -p {directory}/_stats-{format}') with open(f'{directory}/_stats-{format}/stats.{outformat}', 'w', newline='') as f: writer = csv.writer(f) writer.writerow(keys) for stat in stats: writer.writerow([stat[key] for key in keys]) @cli.command() @click.option('--directory', '-d', default='mcguire') def fix_objx(directory='mcguire'): for filename in glob.glob(directory + "/source/*/*.objx"): newname = filename.replace('.objx', '.obx') obx = '' with open(filename) as f: for line in f: if line.startswith('c'): tokens = line.split() for i in range(len(tokens)): if i in [0, 1, 2]: continue tokens[i] = float(tokens[i]) obx += 'newCam {}\n'.format(tokens[1]) obx += ' Ca {}\n'.format(round(tokens[3] / tokens[4], 3)) obx += ' Cl {}\n'.format(round(tokens[5] * 0.036 / tokens[3],3)) obx += ' Ct {} {} {} {} {} {} 0 1 0\n'.format(round(tokens[17], 2), round(tokens[18], 2), round(tokens[19], 2), round(tokens[17] - tokens[14] * tokens[6], 2), round(tokens[18] - tokens[15] * tokens[6], 2), round(tokens[19] - tokens[16] * tokens[6], 2)) obx += '\n'; if line.startswith('e'): tokens = line.split() for i in range(len(tokens)): if i in [0, 1, 5]: continue tokens[i] = float(tokens[i]) obx += 'newEnv {}\n'.format(tokens[1]) obx += ' Ee {} {} {}\n'.format(round(tokens[2], 1), round(tokens[3], 1), round(tokens[4], 1)) if tokens[5] != '""': obx += ' map_Ee {}\n'.format(tokens[5]) obx += ' Et {} {} {} {} {} {} 0 1 0\n'.format(round(tokens[15], 2), round(tokens[16], 2), round(tokens[17], 2), round(tokens[15] + tokens[12], 2), round(tokens[16] + tokens[13], 2), round(tokens[17] + tokens[14], 2)) obx += '\n'; with open(newname, 'wt') as f: f.write(obx) cli()
43.132969
273
0.547128
490882b05fcf6417078848aa9d3cb0d22b1c4262
5,720
py
Python
tests/test_manage_py_scan.py
JulianFeinauer/pytest-django
f27c6aa1d44beb46fefa4718fefcf541478643d7
[ "BSD-3-Clause" ]
null
null
null
tests/test_manage_py_scan.py
JulianFeinauer/pytest-django
f27c6aa1d44beb46fefa4718fefcf541478643d7
[ "BSD-3-Clause" ]
null
null
null
tests/test_manage_py_scan.py
JulianFeinauer/pytest-django
f27c6aa1d44beb46fefa4718fefcf541478643d7
[ "BSD-3-Clause" ]
null
null
null
import pytest @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_django_project_found(django_testdir) -> None: # XXX: Important: Do not chdir() to django_project_root since runpytest_subprocess # will call "python /path/to/pytest.py", which will implicitly add cwd to # the path. By instead calling "python /path/to/pytest.py # django_project_root", we avoid implicitly adding the project to sys.path # This matches the behaviour when pytest is called directly as an # executable (cwd is not added to the Python path) django_testdir.create_test_module( """ def test_foobar(): assert 1 + 1 == 2 """ ) result = django_testdir.runpytest_subprocess("django_project_root") assert result.ret == 0 outcomes = result.parseoutcomes() assert outcomes["passed"] == 1 @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_django_project_found_with_k(django_testdir, monkeypatch) -> None: """Test that cwd is checked as fallback with non-args via '-k foo'.""" testfile = django_testdir.create_test_module( """ def test_foobar(): assert True """, "sub/test_in_sub.py", ) monkeypatch.chdir(testfile.dirname) result = django_testdir.runpytest_subprocess("-k", "test_foobar") assert result.ret == 0 outcomes = result.parseoutcomes() assert outcomes["passed"] == 1 @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_django_project_found_with_k_and_cwd(django_testdir, monkeypatch) -> None: """Cover cwd not used as fallback if present already in args.""" testfile = django_testdir.create_test_module( """ def test_foobar(): assert True """, "sub/test_in_sub.py", ) monkeypatch.chdir(testfile.dirname) result = django_testdir.runpytest_subprocess(testfile.dirname, "-k", "test_foobar") assert result.ret == 0 outcomes = result.parseoutcomes() assert outcomes["passed"] == 1 @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_django_project_found_absolute(django_testdir, monkeypatch) -> None: """This only tests that "." is added as an absolute path (#637).""" django_testdir.create_test_module( """ def test_dot_not_in_syspath(): import sys assert '.' not in sys.path[:5] """ ) monkeypatch.chdir("django_project_root") # NOTE: the "." here is important to test for an absolute path being used. result = django_testdir.runpytest_subprocess("-s", ".") assert result.ret == 0 outcomes = result.parseoutcomes() assert outcomes["passed"] == 1 @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_django_project_found_invalid_settings(django_testdir, monkeypatch) -> None: monkeypatch.setenv("DJANGO_SETTINGS_MODULE", "DOES_NOT_EXIST") result = django_testdir.runpytest_subprocess("django_project_root") assert result.ret != 0 result.stderr.fnmatch_lines(["*ImportError:*DOES_NOT_EXIST*"]) result.stderr.fnmatch_lines(["*pytest-django found a Django project*"]) def test_django_project_scan_disabled_invalid_settings(django_testdir, monkeypatch) -> None: monkeypatch.setenv("DJANGO_SETTINGS_MODULE", "DOES_NOT_EXIST") django_testdir.makeini( """ [pytest] django_find_project = false """ ) result = django_testdir.runpytest_subprocess("django_project_root") assert result.ret != 0 result.stderr.fnmatch_lines(["*ImportError*DOES_NOT_EXIST*"]) result.stderr.fnmatch_lines( ["*pytest-django did not search for " "Django projects*"] ) @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_django_project_found_invalid_settings_version(django_testdir, monkeypatch) -> None: """Invalid DSM should not cause an error with --help or --version.""" monkeypatch.setenv("DJANGO_SETTINGS_MODULE", "DOES_NOT_EXIST") result = django_testdir.runpytest_subprocess("django_project_root", "--version", "--version") assert result.ret == 0 if hasattr(pytest, "version_tuple") and pytest.version_tuple >= (7, 0): version_out = result.stdout else: version_out = result.stderr version_out.fnmatch_lines(["*This is pytest version*"]) result = django_testdir.runpytest_subprocess("django_project_root", "--help") assert result.ret == 0 result.stdout.fnmatch_lines(["*usage:*"]) @pytest.mark.django_project(project_root="django_project_root", create_manage_py=True) def test_runs_without_error_on_long_args(django_testdir) -> None: django_testdir.create_test_module( """ def test_this_is_a_long_message_which_caused_a_bug_when_scanning_for_manage_py_12346712341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234112341234112451234123412341234123412341234123412341234123412341234123412341234123412341234123412341234(): assert 1 + 1 == 2 """ # noqa: E501 ) result = django_testdir.runpytest_subprocess( "-k", "this_is_a_long_message_which_caused_a_bug_when_scanning_for_manage_py_12346712341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234123412341234112341234112451234123412341234123412341234123412341234123412341234123412341234123412341234123412341234", # noqa: E501 "django_project_root", ) assert result.ret == 0
38.648649
355
0.740734
673f278418177ff9d8eaef3e77169115851cd127
14,600
py
Python
src/sentry/models/debugfile.py
learninto/sentry
4f9f564841498b3af49c1677d6b61f3e47b01923
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/debugfile.py
learninto/sentry
4f9f564841498b3af49c1677d6b61f3e47b01923
[ "BSD-3-Clause" ]
null
null
null
src/sentry/models/debugfile.py
learninto/sentry
4f9f564841498b3af49c1677d6b61f3e47b01923
[ "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import import re import os import six import uuid import time import errno import shutil import hashlib import logging import tempfile from django.db import models from symbolic import Archive, SymbolicError, ObjectErrorUnsupportedObject, normalize_debug_id from sentry import options from sentry.constants import KNOWN_DIF_FORMATS from sentry.db.models import FlexibleForeignKey, Model, sane_repr, BaseManager, JSONField from sentry.models.file import File from sentry.reprocessing import resolve_processing_issue, bump_reprocessing_revision from sentry.utils.zip import safe_extract_zip logger = logging.getLogger(__name__) ONE_DAY = 60 * 60 * 24 ONE_DAY_AND_A_HALF = int(ONE_DAY * 1.5) # How long we cache a conversion failure by checksum in cache. Currently # 10 minutes is assumed to be a reasonable value here. CONVERSION_ERROR_TTL = 60 * 10 DIF_MIMETYPES = dict((v, k) for k, v in KNOWN_DIF_FORMATS.items()) _proguard_file_re = re.compile(r"/proguard/(?:mapping-)?(.*?)\.txt$") class BadDif(Exception): pass class ProjectDebugFileManager(BaseManager): def find_missing(self, checksums, project): if not checksums: return [] checksums = [x.lower() for x in checksums] missing = set(checksums) found = ProjectDebugFile.objects.filter( file__checksum__in=checksums, project=project ).values("file__checksum") for values in found: missing.discard(values.values()[0]) return sorted(missing) def find_by_checksums(self, checksums, project): if not checksums: return [] checksums = [x.lower() for x in checksums] return ProjectDebugFile.objects.filter(file__checksum__in=checksums, project=project) def find_by_debug_ids(self, project, debug_ids, features=None): """Finds debug information files matching the given debug identifiers. If a set of features is specified, only files that satisfy all features will be returned. This does not apply to legacy debug files that were not tagged with features. Returns a dict of debug files keyed by their debug identifier. """ features = frozenset(features) if features is not None else frozenset() difs = ( ProjectDebugFile.objects.filter(project=project, debug_id__in=debug_ids) .select_related("file") .order_by("-id") ) difs_by_id = {} for dif in difs: difs_by_id.setdefault(dif.debug_id, []).append(dif) rv = {} for debug_id, group in six.iteritems(difs_by_id): with_features = [dif for dif in group if "features" in (dif.data or ())] # In case we've never computed features for any of these files, we # just take the first one and assume that it matches. if not with_features: rv[debug_id] = group[0] continue # There's at least one file with computed features. Older files are # considered redundant and will be deleted. We search for the first # file matching the given feature set. This might not resolve if no # DIF matches the given feature set. for dif in with_features: if dif.features >= features: rv[debug_id] = dif break return rv class ProjectDebugFile(Model): __core__ = False file = FlexibleForeignKey("sentry.File") object_name = models.TextField() cpu_name = models.CharField(max_length=40) project = FlexibleForeignKey("sentry.Project", null=True) debug_id = models.CharField(max_length=64, db_column="uuid") code_id = models.CharField(max_length=64, null=True) data = JSONField(null=True) objects = ProjectDebugFileManager() class Meta: index_together = (("project", "debug_id"), ("project", "code_id")) db_table = "sentry_projectdsymfile" app_label = "sentry" __repr__ = sane_repr("object_name", "cpu_name", "debug_id") @property def file_format(self): ct = self.file.headers.get("Content-Type", "unknown").lower() return KNOWN_DIF_FORMATS.get(ct, "unknown") @property def file_type(self): if self.data: return self.data.get("type") @property def file_extension(self): if self.file_format == "breakpad": return ".sym" if self.file_format == "macho": return "" if self.file_type == "exe" else ".dSYM" if self.file_format == "proguard": return ".txt" if self.file_format == "elf": return "" if self.file_type == "exe" else ".debug" if self.file_format == "pe": return ".exe" if self.file_type == "exe" else ".dll" if self.file_format == "pdb": return ".pdb" return "" @property def features(self): return frozenset((self.data or {}).get("features", [])) def delete(self, *args, **kwargs): super(ProjectDebugFile, self).delete(*args, **kwargs) self.file.delete() def clean_redundant_difs(project, debug_id): """Deletes redundant debug files from the database and file storage. A debug file is considered redundant if there is a newer file with the same debug identifier and the same or a superset of its features. """ difs = ( ProjectDebugFile.objects.filter(project=project, debug_id=debug_id) .select_related("file") .order_by("-id") ) all_features = set() for i, dif in enumerate(difs): # We always keep the latest file. If it has no features, likely the # previous files did not have features either and will be removed, or we # keep both. Subsequent uploads will remove this file later. if i > 0 and dif.features <= all_features: dif.delete() else: all_features.update(dif.features) def create_dif_from_id(project, meta, fileobj=None, file=None): """This creates a mach dsym file or proguard mapping from the given debug id and open file object to a debug file. This will not verify the debug id (intentionally so). Use `detect_dif_from_path` to do that. """ if meta.file_format == "proguard": object_name = "proguard-mapping" elif meta.file_format in ("macho", "elf", "pdb", "pe"): object_name = meta.name elif meta.file_format == "breakpad": object_name = meta.name[:-4] if meta.name.endswith(".sym") else meta.name else: raise TypeError("unknown dif type %r" % (meta.file_format,)) if file is not None: checksum = file.checksum elif fileobj is not None: h = hashlib.sha1() while True: chunk = fileobj.read(16384) if not chunk: break h.update(chunk) checksum = h.hexdigest() fileobj.seek(0, 0) else: raise RuntimeError("missing file object") dif = ( ProjectDebugFile.objects.select_related("file") .filter( project=project, debug_id=meta.debug_id, file__checksum=checksum, data__isnull=False ) .order_by("-id") .first() ) if dif is not None: return dif, False if file is None: file = File.objects.create( name=meta.debug_id, type="project.dif", headers={"Content-Type": DIF_MIMETYPES[meta.file_format]}, ) file.putfile(fileobj) else: file.type = "project.dif" file.headers["Content-Type"] = DIF_MIMETYPES[meta.file_format] file.save() dif = ProjectDebugFile.objects.create( file=file, debug_id=meta.debug_id, code_id=meta.code_id, cpu_name=meta.arch, object_name=object_name, project=project, data=meta.data, ) # The DIF we've just created might actually be removed here again. But since # this can happen at any time in near or distant future, we don't care and # assume a successful upload. The DIF will be reported to the uploader and # reprocessing can start. clean_redundant_difs(project, meta.debug_id) resolve_processing_issue(project=project, scope="native", object="dsym:%s" % meta.debug_id) return dif, True def _analyze_progard_filename(filename): match = _proguard_file_re.search(filename) if match is None: return None ident = match.group(1) try: return six.text_type(uuid.UUID(ident)) except Exception: pass class DifMeta(object): def __init__(self, file_format, arch, debug_id, path, code_id=None, name=None, data=None): self.file_format = file_format self.arch = arch self.debug_id = debug_id self.code_id = code_id self.path = path self.data = data if name is not None: self.name = os.path.basename(name) elif path is not None: self.name = os.path.basename(path) @classmethod def from_object(cls, obj, path, name=None, debug_id=None): if debug_id is not None: try: debug_id = normalize_debug_id(debug_id) except SymbolicError: debug_id = None # Only allow overrides in the debug_id's age if the rest of the debug id # matches with what we determine from the object file. We generally # trust the server more than the client. obj_id = obj.debug_id if obj_id and debug_id and obj_id[:36] == debug_id[:36]: obj_id = debug_id return cls( file_format=obj.file_format, arch=obj.arch, debug_id=obj_id, code_id=obj.code_id, path=path, # TODO: Extract the object name from the object name=name, data={"type": obj.kind, "features": list(obj.features)}, ) @property def basename(self): return os.path.basename(self.path) def detect_dif_from_path(path, name=None, debug_id=None): """This detects which kind of dif(Debug Information File) the path provided is. It returns an array since an Archive can contain more than one Object. """ # proguard files (proguard/UUID.txt) or # (proguard/mapping-UUID.txt). proguard_id = _analyze_progard_filename(path) if proguard_id is not None: data = {"features": ["mapping"]} return [ DifMeta( file_format="proguard", arch="any", debug_id=proguard_id, code_id=None, path=path, name=name, data=data, ) ] # native debug information files (MachO, ELF or Breakpad) try: archive = Archive.open(path) except ObjectErrorUnsupportedObject as e: raise BadDif("Unsupported debug information file: %s" % e) except SymbolicError as e: logger.warning("dsymfile.bad-fat-object", exc_info=True) raise BadDif("Invalid debug information file: %s" % e) else: objs = [] for obj in archive.iter_objects(): objs.append(DifMeta.from_object(obj, path, name=name, debug_id=debug_id)) return objs def create_debug_file_from_dif(to_create, project): """Create a ProjectDebugFile from a dif (Debug Information File) and return an array of created objects. """ rv = [] for meta in to_create: with open(meta.path, "rb") as f: dif, created = create_dif_from_id(project, meta, fileobj=f) if created: rv.append(dif) return rv def create_files_from_dif_zip(fileobj, project): """Creates all missing debug files from the given zip file. This returns a list of all files created. """ scratchpad = tempfile.mkdtemp() try: safe_extract_zip(fileobj, scratchpad, strip_toplevel=False) to_create = [] for dirpath, dirnames, filenames in os.walk(scratchpad): for fn in filenames: fn = os.path.join(dirpath, fn) try: difs = detect_dif_from_path(fn) except BadDif: difs = None if difs is None: difs = [] to_create = to_create + difs rv = create_debug_file_from_dif(to_create, project) # Uploading new dsysm changes the reprocessing revision bump_reprocessing_revision(project) return rv finally: shutil.rmtree(scratchpad) class DIFCache(object): @property def cache_path(self): return options.get("dsym.cache-path") def get_project_path(self, project): return os.path.join(self.cache_path, six.text_type(project.id)) def fetch_difs(self, project, debug_ids, features=None): """Given some ids returns an id to path mapping for where the debug symbol files are on the FS. """ debug_ids = [six.text_type(debug_id).lower() for debug_id in debug_ids] difs = ProjectDebugFile.objects.find_by_debug_ids(project, debug_ids, features) rv = {} for debug_id, dif in six.iteritems(difs): dif_path = os.path.join(self.get_project_path(project), debug_id) try: os.stat(dif_path) except OSError as e: if e.errno != errno.ENOENT: raise dif.file.save_to(dif_path) rv[debug_id] = dif_path return rv def clear_old_entries(self): try: cache_folders = os.listdir(self.cache_path) except OSError: return cutoff = int(time.time()) - ONE_DAY_AND_A_HALF for cache_folder in cache_folders: cache_folder = os.path.join(self.cache_path, cache_folder) try: items = os.listdir(cache_folder) except OSError: continue for cached_file in items: cached_file = os.path.join(cache_folder, cached_file) try: mtime = os.path.getmtime(cached_file) except OSError: continue if mtime < cutoff: try: os.remove(cached_file) except OSError: pass ProjectDebugFile.difcache = DIFCache()
32.087912
96
0.614589
0d1fc25a37d0f67bf67092ba7f8e4a07e534824e
377
py
Python
ancor/arch_factory.py
guybuk/ANCOR
229f8a52b81fa94cd584cbc6fc715697f98e43e2
[ "Apache-2.0" ]
34
2021-04-26T17:35:19.000Z
2022-03-30T02:41:15.000Z
ancor/arch_factory.py
sxr9607/ANCOR
229f8a52b81fa94cd584cbc6fc715697f98e43e2
[ "Apache-2.0" ]
5
2021-08-07T22:13:04.000Z
2022-02-11T10:03:15.000Z
ancor/arch_factory.py
sxr9607/ANCOR
229f8a52b81fa94cd584cbc6fc715697f98e43e2
[ "Apache-2.0" ]
6
2021-04-06T07:51:17.000Z
2021-11-20T07:01:41.000Z
from models import model_pool class ArchFactory(object): def create_arch(self, arch_name): encoder_q, encoder_k = model_pool[arch_name](), model_pool[arch_name]() k2q_mapping = {k_name: q_name for q_name, k_name in zip(encoder_q.state_dict().keys(), encoder_k.state_dict().keys())} return encoder_q, encoder_k, k2q_mapping
34.272727
89
0.676393
d0cb0fa44bd2c18c96268816cf62c6533664dfcb
2,039
py
Python
actleto/annotator/visualizers/image.py
IINemo/jupyter_al_annotator
8e4256653c220fffdd15b1fdb30be0253c3f08f7
[ "MIT" ]
22
2017-09-25T16:15:54.000Z
2022-01-07T22:27:30.000Z
actleto/annotator/visualizers/image.py
IINemo/jupyter_al_annotator
8e4256653c220fffdd15b1fdb30be0253c3f08f7
[ "MIT" ]
null
null
null
actleto/annotator/visualizers/image.py
IINemo/jupyter_al_annotator
8e4256653c220fffdd15b1fdb30be0253c3f08f7
[ "MIT" ]
9
2017-09-14T13:59:17.000Z
2022-02-22T16:15:17.000Z
import numpy as np from ipywidgets import Image as WidgImage from PIL import Image import io class ImageVisualizer(object): """Visualizer for images. This visualizer can display images (e.g., MNIST), which are stored as rows in a dataframe. """ def __init__(self, columns_range, img_shape, img_mode, preview_shape): """ImageVisualizer constructor. Args: rng (tuple): tuple (start, end) - range of columns in pandas.DataFrame, which contain image data img_shape (tuple): original image shape width x height. img_format (str): image format: "L" - black&white (MNIST); "RGB"; "CMYK"; "1". preview_shape (tuple): output image size. """ super().__init__() self._columns_range = columns_range self._img_shape = img_shape self._img_mode = img_mode self._preview_shape = preview_shape def __call__(self, dataframe, index): """Invokes the visualizer. Args: dataframe (pandas.DataFrame): the dataframe that contains the data for visualization. index (int): the positional (iloc) index of the row to visualize. Returns: tuple: The list of widgets that visualize the row with number index. """ img_array = dataframe.iloc[index][self._columns_range[0] : self._columns_range[1]].as_matrix() if img_array.shape[0] > np.product(self._img_shape): cur_img_shape = self._img_shape + (-1,) else: cur_img_shape = self._img_shape img = Image.fromarray(img_array.reshape(cur_img_shape), self._img_mode) buffer = io.BytesIO() img.convert('RGB').save(buffer, format = 'PNG') return (WidgImage(value = buffer.getvalue(), format = 'PNG', width = self._preview_shape[0], height = self._preview_shape[1]),)
35.77193
108
0.589505
254461d7eb43d99aaabb1b2199c3728476045573
1,677
py
Python
nipype/interfaces/brainsuite/tests/test_auto_Skullfinder.py
mfalkiewicz/nipype
775e21b78fb1ffa2ff9cb12e6f052868bd44d052
[ "Apache-2.0" ]
1
2015-01-19T13:12:27.000Z
2015-01-19T13:12:27.000Z
nipype/interfaces/brainsuite/tests/test_auto_Skullfinder.py
bpinsard/nipype
373bdddba9f675ef153951afa368729e2d8950d2
[ "Apache-2.0" ]
null
null
null
nipype/interfaces/brainsuite/tests/test_auto_Skullfinder.py
bpinsard/nipype
373bdddba9f675ef153951afa368729e2d8950d2
[ "Apache-2.0" ]
null
null
null
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT from __future__ import unicode_literals from ..brainsuite import Skullfinder def test_Skullfinder_inputs(): input_map = dict(args=dict(argstr='%s', ), bgLabelValue=dict(argstr='--bglabel %d', ), brainLabelValue=dict(argstr='--brainlabel %d', ), environ=dict(nohash=True, usedefault=True, ), ignore_exception=dict(deprecated='1.0.0', nohash=True, usedefault=True, ), inputMRIFile=dict(argstr='-i %s', mandatory=True, ), inputMaskFile=dict(argstr='-m %s', mandatory=True, ), lowerThreshold=dict(argstr='-l %d', ), outputLabelFile=dict(argstr='-o %s', genfile=True, ), performFinalOpening=dict(argstr='--finalOpening', ), scalpLabelValue=dict(argstr='--scalplabel %d', ), skullLabelValue=dict(argstr='--skulllabel %d', ), spaceLabelValue=dict(argstr='--spacelabel %d', ), surfaceFilePrefix=dict(argstr='-s %s', ), terminal_output=dict(deprecated='1.0.0', nohash=True, ), upperThreshold=dict(argstr='-u %d', ), verbosity=dict(argstr='-v %d', ), ) inputs = Skullfinder.input_spec() for key, metadata in list(input_map.items()): for metakey, value in list(metadata.items()): assert getattr(inputs.traits()[key], metakey) == value def test_Skullfinder_outputs(): output_map = dict(outputLabelFile=dict(), ) outputs = Skullfinder.output_spec() for key, metadata in list(output_map.items()): for metakey, value in list(metadata.items()): assert getattr(outputs.traits()[key], metakey) == value
26.203125
67
0.632081
6257dec38f889ea353ad670fc14a3418441ed5f4
37,314
py
Python
dreamcoder/program.py
Hitoshi-Nakanishi/ec2
b65905cdfb1a2451ad553fd15b937a7fc48fa9cf
[ "Unlicense" ]
null
null
null
dreamcoder/program.py
Hitoshi-Nakanishi/ec2
b65905cdfb1a2451ad553fd15b937a7fc48fa9cf
[ "Unlicense" ]
null
null
null
dreamcoder/program.py
Hitoshi-Nakanishi/ec2
b65905cdfb1a2451ad553fd15b937a7fc48fa9cf
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- from dreamcoder.type import * from dreamcoder.utilities import * from time import time import math class InferenceFailure(Exception): pass class ShiftFailure(Exception): pass class RunFailure(Exception): pass class Program(object): def __repr__(self): return str(self) def __ne__(self, o): return not (self == o) def __str__(self): return self.show(False) def canHaveType(self, t): try: context, actualType = self.inferType(Context.EMPTY, [], {}) context, t = t.instantiate(context) context.unify(t, actualType) return True except UnificationFailure as e: return False def betaNormalForm(self): n = self while True: np = n.betaReduce() if np is None: return n n = np def infer(self): try: return self.inferType(Context.EMPTY, [], {})[1].canonical() except UnificationFailure as e: raise InferenceFailure(self, e) def uncurry(self): t = self.infer() a = len(t.functionArguments()) e = self existingAbstractions = 0 while e.isAbstraction: e = e.body existingAbstractions += 1 newAbstractions = a - existingAbstractions assert newAbstractions >= 0 # e is the body stripped of abstractions. we are going to pile # some more lambdas at the front, so free variables in e # (which were bound to the stripped abstractions) need to be # shifted by the number of abstractions that we will be adding e = e.shift(newAbstractions) for n in reversed(range(newAbstractions)): e = Application(e, Index(n)) for _ in range(a): e = Abstraction(e) assert self.infer() == e.infer(), "FATAL: uncurry has a bug. %s : %s, but uncurried to %s : %s" % ( self, self.infer(), e, e.infer(), ) return e def wellTyped(self): try: self.infer() return True except InferenceFailure: return False def runWithArguments(self, xs): f = self.evaluate([]) for x in xs: f = f(x) return f def applicationParses(self): yield self, [] def applicationParse(self): return self, [] @property def closed(self): for surroundingAbstractions, child in self.walk(): if isinstance(child, FragmentVariable): return False if isinstance(child, Index) and child.free(surroundingAbstractions): return False return True @property def numberOfFreeVariables(expression): n = 0 for surroundingAbstractions, child in expression.walk(): # Free variable if isinstance(child, Index) and child.free(surroundingAbstractions): n = max(n, child.i - surroundingAbstractions + 1) return n def freeVariables(self): for surroundingAbstractions, child in self.walk(): if child.isIndex and child.i >= surroundingAbstractions: yield child.i - surroundingAbstractions @property def isIndex(self): return False @property def isUnion(self): return False @property def isApplication(self): return False @property def isAbstraction(self): return False @property def isPrimitive(self): return False @property def isInvented(self): return False @property def isHole(self): return False @staticmethod def parse(s): s = parseSExpression(s) def p(e): if isinstance(e, list): if e[0] == "#": assert len(e) == 2 return Invented(p(e[1])) if e[0] == "lambda": assert len(e) == 2 return Abstraction(p(e[1])) f = p(e[0]) for x in e[1:]: f = Application(f, p(x)) return f assert isinstance(e, str) if e[0] == "$": return Index(int(e[1:])) if e in Primitive.GLOBALS: return Primitive.GLOBALS[e] if e == "??" or e == "?": return FragmentVariable.single if e == "<HOLE>": return Hole.single raise ParseFailure((s, e)) return p(s) @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 for p in [Application, Abstraction, Index, Invented, FragmentVariable, Hole, Primitive]: try: return p._parse(s, n) except ParseFailure: continue raise ParseFailure(s) # parser helpers @staticmethod def parseConstant(s, n, *constants): for constant in constants: try: for i, c in enumerate(constant): if i + n >= len(s) or s[i + n] != c: raise ParseFailure(s) return n + len(constant) except ParseFailure: continue raise ParseFailure(s) @staticmethod def parseHumanReadable(s): s = parseSExpression(s) def p(s, environment): if isinstance(s, list) and s[0] in ["lambda", "\\"]: assert isinstance(s[1], list) and len(s) == 3 newEnvironment = list(reversed(s[1])) + environment e = p(s[2], newEnvironment) for _ in s[1]: e = Abstraction(e) return e if isinstance(s, list): a = p(s[0], environment) for x in s[1:]: a = Application(a, p(x, environment)) return a for j, v in enumerate(environment): if s == v: return Index(j) if s in Primitive.GLOBALS: return Primitive.GLOBALS[s] assert False, f"could not parse {s}" return p(s, []) class Application(Program): """Function application""" def __init__(self, f, x): self.f = f self.x = x self.hashCode = None self.isConditional = ( (not isinstance(f, int)) and f.isApplication and f.f.isApplication and f.f.f.isPrimitive and f.f.f.name == "if" ) if self.isConditional: self.falseBranch = x self.trueBranch = f.x self.branch = f.f.x else: self.falseBranch = None self.trueBranch = None self.branch = None def betaReduce(self): # See if either the function or the argument can be reduced f = self.f.betaReduce() if f is not None: return Application(f, self.x) x = self.x.betaReduce() if x is not None: return Application(self.f, x) # Neither of them could be reduced. Is this not a redex? if not self.f.isAbstraction: return None # Perform substitution b = self.f.body v = self.x return b.substitute(Index(0), v.shift(1)).shift(-1) def isBetaLong(self): return (not self.f.isAbstraction) and self.f.isBetaLong() and self.x.isBetaLong() def freeVariables(self): return self.f.freeVariables() | self.x.freeVariables() def clone(self): return Application(self.f.clone(), self.x.clone()) def annotateTypes(self, context, environment): self.f.annotateTypes(context, environment) self.x.annotateTypes(context, environment) r = context.makeVariable() context.unify(arrow(self.x.annotatedType, r), self.f.annotatedType) self.annotatedType = r.applyMutable(context) @property def isApplication(self): return True def __eq__(self, other): return isinstance(other, Application) and self.f == other.f and self.x == other.x def __hash__(self): if self.hashCode is None: self.hashCode = hash((hash(self.f), hash(self.x))) return self.hashCode """Because Python3 randomizes the hash function, we need to never pickle the hash""" def __getstate__(self): return self.f, self.x, self.isConditional, self.falseBranch, self.trueBranch, self.branch def __setstate__(self, state): try: self.f, self.x, self.isConditional, self.falseBranch, self.trueBranch, self.branch = state except ValueError: # backward compatibility assert "x" in state assert "f" in state f = state["f"] x = state["x"] self.f = f self.x = x self.isConditional = ( (not isinstance(f, int)) and f.isApplication and f.f.isApplication and f.f.f.isPrimitive and f.f.f.name == "if" ) if self.isConditional: self.falseBranch = x self.trueBranch = f.x self.branch = f.f.x else: self.falseBranch = None self.trueBranch = None self.branch = None self.hashCode = None def visit(self, visitor, *arguments, **keywords): return visitor.application(self, *arguments, **keywords) def show(self, isFunction): if isFunction: return "%s %s" % (self.f.show(True), self.x.show(False)) else: return "(%s %s)" % (self.f.show(True), self.x.show(False)) def evaluate(self, environment): if self.isConditional: if self.branch.evaluate(environment): return self.trueBranch.evaluate(environment) else: return self.falseBranch.evaluate(environment) else: return self.f.evaluate(environment)(self.x.evaluate(environment)) def inferType(self, context, environment, freeVariables): (context, ft) = self.f.inferType(context, environment, freeVariables) (context, xt) = self.x.inferType(context, environment, freeVariables) (context, returnType) = context.makeVariable() context = context.unify(ft, arrow(xt, returnType)) return (context, returnType.apply(context)) def applicationParses(self): yield self, [] for f, xs in self.f.applicationParses(): yield f, xs + [self.x] def applicationParse(self): f, xs = self.f.applicationParse() return f, xs + [self.x] def shift(self, offset, depth=0): return Application(self.f.shift(offset, depth), self.x.shift(offset, depth)) def substitute(self, old, new): if self == old: return new return Application(self.f.substitute(old, new), self.x.substitute(old, new)) def walkUncurried(self, d=0): yield d, self f, xs = self.applicationParse() yield from f.walkUncurried(d) for x in xs: yield from x.walkUncurried(d) def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self yield from self.f.walk(surroundingAbstractions) yield from self.x.walk(surroundingAbstractions) def size(self): return self.f.size() + self.x.size() @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 if n == len(s) or s[n] != "(": raise ParseFailure(s) n += 1 xs = [] while True: x, n = Program._parse(s, n) xs.append(x) while n < len(s) and s[n].isspace(): n += 1 if n == len(s): raise ParseFailure(s) if s[n] == ")": n += 1 break e = xs[0] for x in xs[1:]: e = Application(e, x) return e, n class Index(Program): """ deBruijn index: https://en.wikipedia.org/wiki/De_Bruijn_index These indices encode variables. """ def __init__(self, i): self.i = i def show(self, isFunction): return "$%d" % self.i def __eq__(self, o): return isinstance(o, Index) and o.i == self.i def __hash__(self): return self.i def visit(self, visitor, *arguments, **keywords): return visitor.index(self, *arguments, **keywords) def evaluate(self, environment): return environment[self.i] def inferType(self, context, environment, freeVariables): if self.bound(len(environment)): return (context, environment[self.i].apply(context)) else: i = self.i - len(environment) if i in freeVariables: return (context, freeVariables[i].apply(context)) context, variable = context.makeVariable() freeVariables[i] = variable return (context, variable) def clone(self): return Index(self.i) def annotateTypes(self, context, environment): self.annotatedType = environment[self.i].applyMutable(context) def shift(self, offset, depth=0): # bound variable if self.bound(depth): return self else: # free variable i = self.i + offset if i < 0: raise ShiftFailure() return Index(i) def betaReduce(self): return None def isBetaLong(self): return True def freeVariables(self): return {self.i} def substitute(self, old, new): if old == self: return new else: return self def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self def walkUncurried(self, d=0): yield d, self def size(self): return 1 def free(self, surroundingAbstractions): """Is this index a free variable, given that it has surroundingAbstractions lambda's around it?""" return self.i >= surroundingAbstractions def bound(self, surroundingAbstractions): """Is this index a bound variable, given that it has surroundingAbstractions lambda's around it?""" return self.i < surroundingAbstractions @property def isIndex(self): return True @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 if n == len(s) or s[n] != "$": raise ParseFailure(s) n += 1 j = "" while n < len(s) and s[n].isdigit(): j += s[n] n += 1 if j == "": raise ParseFailure(s) return Index(int(j)), n class Abstraction(Program): """Lambda abstraction. Creates a new function.""" def __init__(self, body): self.body = body self.hashCode = None @property def isAbstraction(self): return True def __eq__(self, o): return isinstance(o, Abstraction) and o.body == self.body def __hash__(self): if self.hashCode is None: self.hashCode = hash((hash(self.body),)) return self.hashCode """Because Python3 randomizes the hash function, we need to never pickle the hash""" def __getstate__(self): return self.body def __setstate__(self, state): self.body = state self.hashCode = None def isBetaLong(self): return self.body.isBetaLong() def freeVariables(self): return {f - 1 for f in self.body.freeVariables() if f > 0} def visit(self, visitor, *arguments, **keywords): return visitor.abstraction(self, *arguments, **keywords) def clone(self): return Abstraction(self.body.clone()) def annotateTypes(self, context, environment): v = context.makeVariable() self.body.annotateTypes(context, [v] + environment) self.annotatedType = arrow(v.applyMutable(context), self.body.annotatedType) def show(self, isFunction): return "(lambda %s)" % (self.body.show(False)) def evaluate(self, environment): return lambda x: self.body.evaluate([x] + environment) def betaReduce(self): b = self.body.betaReduce() if b is None: return None return Abstraction(b) def inferType(self, context, environment, freeVariables): (context, argumentType) = context.makeVariable() (context, returnType) = self.body.inferType(context, [argumentType] + environment, freeVariables) return (context, arrow(argumentType, returnType).apply(context)) def shift(self, offset, depth=0): return Abstraction(self.body.shift(offset, depth + 1)) def substitute(self, old, new): if self == old: return new old = old.shift(1) new = new.shift(1) return Abstraction(self.body.substitute(old, new)) def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self yield from self.body.walk(surroundingAbstractions + 1) def walkUncurried(self, d=0): yield d, self yield from self.body.walkUncurried(d + 1) def size(self): return self.body.size() @staticmethod def _parse(s, n): n = Program.parseConstant(s, n, "(\\", "(lambda", "(\u03bb") while n < len(s) and s[n].isspace(): n += 1 b, n = Program._parse(s, n) while n < len(s) and s[n].isspace(): n += 1 n = Program.parseConstant(s, n, ")") return Abstraction(b), n class Primitive(Program): GLOBALS = {} def __init__(self, name, ty, value): self.tp = ty self.name = name self.value = value if name not in Primitive.GLOBALS: Primitive.GLOBALS[name] = self @property def isPrimitive(self): return True def __eq__(self, o): return isinstance(o, Primitive) and o.name == self.name def __hash__(self): return hash(self.name) def visit(self, visitor, *arguments, **keywords): return visitor.primitive(self, *arguments, **keywords) def show(self, isFunction): return self.name def clone(self): return Primitive(self.name, self.tp, self.value) def annotateTypes(self, context, environment): self.annotatedType = self.tp.instantiateMutable(context) def evaluate(self, environment): return self.value def betaReduce(self): return None def isBetaLong(self): return True def freeVariables(self): return set() def inferType(self, context, environment, freeVariables): return self.tp.instantiate(context) def shift(self, offset, depth=0): return self def substitute(self, old, new): if self == old: return new else: return self def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self def walkUncurried(self, d=0): yield d, self def size(self): return 1 @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 name = [] while n < len(s) and not s[n].isspace() and s[n] not in "()": name.append(s[n]) n += 1 name = "".join(name) if name in Primitive.GLOBALS: return Primitive.GLOBALS[name], n raise ParseFailure(s) # TODO(@mtensor): needs to be fixed to handle both pickling lambda functions and unpickling in general. # def __getstate__(self): # return self.name # def __setstate__(self, state): # #for backwards compatibility: # if type(state) == dict: # self.__dict__ = state # else: # p = Primitive.GLOBALS[state] # self.__init__(p.name, p.tp, p.value) class Invented(Program): """New invented primitives""" def __init__(self, body): self.body = body self.tp = self.body.infer() self.hashCode = None @property def isInvented(self): return True def show(self, isFunction): return "#%s" % (self.body.show(False)) def visit(self, visitor, *arguments, **keywords): return visitor.invented(self, *arguments, **keywords) def __eq__(self, o): return isinstance(o, Invented) and o.body == self.body def __hash__(self): if self.hashCode is None: self.hashCode = hash((0, hash(self.body))) return self.hashCode """Because Python3 randomizes the hash function, we need to never pickle the hash""" def __getstate__(self): return self.body, self.tp def __setstate__(self, state): self.body, self.tp = state self.hashCode = None def clone(self): return Invented(self.body) def annotateTypes(self, context, environment): self.annotatedType = self.tp.instantiateMutable(context) def evaluate(self, e): return self.body.evaluate([]) def betaReduce(self): return self.body def isBetaLong(self): return True def freeVariables(self): return set() def inferType(self, context, environment, freeVariables): return self.tp.instantiate(context) def shift(self, offset, depth=0): return self def substitute(self, old, new): if self == old: return new else: return self def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self def walkUncurried(self, d=0): yield d, self def size(self): return 1 @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 if n < len(s) and s[n] == "#": n += 1 b, n = Program._parse(s, n) return Invented(b), n raise ParseFailure(s) class FragmentVariable(Program): def __init__(self): pass def show(self, isFunction): return "??" def __eq__(self, o): return isinstance(o, FragmentVariable) def __hash__(self): return 42 def visit(self, visitor, *arguments, **keywords): return visitor.fragmentVariable(self, *arguments, **keywords) def evaluate(self, e): raise Exception("Attempt to evaluate fragment variable") def betaReduce(self): raise Exception("Attempt to beta reduce fragment variable") def inferType(self, context, environment, freeVariables): return context.makeVariable() def shift(self, offset, depth=0): raise Exception("Attempt to shift fragment variable") def substitute(self, old, new): if self == old: return new else: return self def match(self, context, expression, holes, variableBindings, environment=[]): surroundingAbstractions = len(environment) try: context, variable = context.makeVariable() holes.append((variable, expression.shift(-surroundingAbstractions))) return context, variable except ShiftFailure: raise MatchFailure() def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self def walkUncurried(self, d=0): yield d, self def size(self): return 1 @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 n = Program.parseConstant(s, n, "??", "?") return FragmentVariable.single, n FragmentVariable.single = FragmentVariable() class Hole(Program): def __init__(self): pass def show(self, isFunction): return "<HOLE>" @property def isHole(self): return True def __eq__(self, o): return isinstance(o, Hole) def __hash__(self): return 42 def evaluate(self, e): raise Exception("Attempt to evaluate hole") def betaReduce(self): raise Exception("Attempt to beta reduce hole") def inferType(self, context, environment, freeVariables): return context.makeVariable() def shift(self, offset, depth=0): raise Exception("Attempt to shift fragment variable") def walk(self, surroundingAbstractions=0): yield surroundingAbstractions, self def walkUncurried(self, d=0): yield d, self def size(self): return 1 @staticmethod def _parse(s, n): while n < len(s) and s[n].isspace(): n += 1 n = Program.parseConstant(s, n, "<HOLE>") return Hole.single, n Hole.single = Hole() class ShareVisitor(object): def __init__(self): self.primitiveTable = {} self.inventedTable = {} self.indexTable = {} self.applicationTable = {} self.abstractionTable = {} def invented(self, e): body = e.body.visit(self) i = id(body) if i in self.inventedTable: return self.inventedTable[i] new = Invented(body) self.inventedTable[i] = new return new def primitive(self, e): if e.name in self.primitiveTable: return self.primitiveTable[e.name] self.primitiveTable[e.name] = e return e def index(self, e): if e.i in self.indexTable: return self.indexTable[e.i] self.indexTable[e.i] = e return e def application(self, e): f = e.f.visit(self) x = e.x.visit(self) fi = id(f) xi = id(x) i = (fi, xi) if i in self.applicationTable: return self.applicationTable[i] new = Application(f, x) self.applicationTable[i] = new return new def abstraction(self, e): body = e.body.visit(self) i = id(body) if i in self.abstractionTable: return self.abstractionTable[i] new = Abstraction(body) self.abstractionTable[i] = new return new def execute(self, e): return e.visit(self) class Mutator: """Perform local mutations to an expr, yielding the expr and the description length distance from the original program""" def __init__(self, grammar, fn): """Fn yields (expression, loglikelihood) from a type and loss. Therefore, loss+loglikelihood is the distance from the original program.""" self.fn = fn self.grammar = grammar self.history = [] def enclose(self, expr): for h in self.history[::-1]: expr = h(expr) return expr def invented(self, e, tp, env, is_lhs=False): deleted_ll = self.logLikelihood(tp, e, env) for expr, replaced_ll in self.fn(tp, deleted, is_left_application=is_lhs): yield self.enclose(expr), deleted_ll + replaced_ll def primitive(self, e, tp, env, is_lhs=False): deleted_ll = self.logLikelihood(tp, e, env) for expr, replaced_ll in self.fn(tp, deleted_ll, is_left_application=is_lhs): yield self.enclose(expr), deleted_ll + replaced_ll def index(self, e, tp, env, is_lhs=False): # yield from () deleted_ll = self.logLikelihood(tp, e, env) # self.grammar.logVariable for expr, replaced_ll in self.fn(tp, deleted_ll, is_left_application=is_lhs): yield self.enclose(expr), deleted_ll + replaced_ll def application(self, e, tp, env, is_lhs=False): self.history.append(lambda expr: Application(expr, e.x)) f_tp = arrow(e.x.infer(), tp) yield from e.f.visit(self, f_tp, env, is_lhs=True) self.history[-1] = lambda expr: Application(e.f, expr) x_tp = inferArg(tp, e.f.infer()) yield from e.x.visit(self, x_tp, env) self.history.pop() deleted_ll = self.logLikelihood(tp, e, env) for expr, replaced_ll in self.fn(tp, deleted_ll, is_left_application=is_lhs): yield self.enclose(expr), deleted_ll + replaced_ll def abstraction(self, e, tp, env, is_lhs=False): self.history.append(lambda expr: Abstraction(expr)) yield from e.body.visit(self, tp.arguments[1], [tp.arguments[0]] + env) self.history.pop() deleted_ll = self.logLikelihood(tp, e, env) for expr, replaced_ll in self.fn(tp, deleted_ll, is_left_application=is_lhs): yield self.enclose(expr), deleted_ll + replaced_ll def execute(self, e, tp): yield from e.visit(self, tp, []) def logLikelihood(self, tp, e, env): summary = None try: _, summary = self.grammar.likelihoodSummary(Context.EMPTY, env, tp, e, silent=True) except AssertionError as err: # print(f"closedLikelihoodSummary failed on tp={tp}, e={e}, error={err}") pass if summary is not None: return summary.logLikelihood(self.grammar) else: tmpE, depth = e, 0 while isinstance(tmpE, Abstraction): depth += 1 tmpE = tmpE.body to_introduce = len(tp.functionArguments()) - depth if to_introduce == 0: # print(f"HIT NEGATIVEINFINITY, tp={tp}, e={e}") return NEGATIVEINFINITY for i in reversed(range(to_introduce)): e = Application(e, Index(i)) for _ in range(to_introduce): e = Abstraction(e) return self.logLikelihood(tp, e, env) class RegisterPrimitives(object): def invented(self, e): e.body.visit(self) def primitive(self, e): if e.name not in Primitive.GLOBALS: Primitive(e.name, e.tp, e.value) def index(self, e): pass def application(self, e): e.f.visit(self) e.x.visit(self) def abstraction(self, e): e.body.visit(self) @staticmethod def register(e): e.visit(RegisterPrimitives()) class PrettyVisitor(object): def __init__(self, Lisp=False): self.Lisp = Lisp self.numberOfVariables = 0 self.freeVariables = {} self.variableNames = ["x", "y", "z", "u", "v", "w"] self.variableNames += [chr(ord("a") + j) for j in range(20)] self.toplevel = True def makeVariable(self): v = self.variableNames[self.numberOfVariables] self.numberOfVariables += 1 return v def invented(self, e, environment, isFunction, isAbstraction): s = e.body.visit(self, [], isFunction, isAbstraction) return s def primitive(self, e, environment, isVariable, isAbstraction): return e.name def index(self, e, environment, isVariable, isAbstraction): if e.i < len(environment): return environment[e.i] else: i = e.i - len(environment) if i in self.freeVariables: return self.freeVariables[i] else: v = self.makeVariable() self.freeVariables[i] = v return v def application(self, e, environment, isFunction, isAbstraction): self.toplevel = False s = "%s %s" % (e.f.visit(self, environment, True, False), e.x.visit(self, environment, False, False)) if isFunction: return s else: return "(" + s + ")" def abstraction(self, e, environment, isFunction, isAbstraction): toplevel = self.toplevel self.toplevel = False if not self.Lisp: # Invent a new variable v = self.makeVariable() body = e.body.visit(self, [v] + environment, False, True) if not e.body.isAbstraction: body = "." + body body = v + body if not isAbstraction: body = "λ" + body if not toplevel: body = "(%s)" % body return body else: child = e newVariables = [] while child.isAbstraction: newVariables = [self.makeVariable()] + newVariables child = child.body body = child.visit(self, newVariables + environment, False, True) body = "(λ (%s) %s)" % (" ".join(reversed(newVariables)), body) return body def prettyProgram(e, Lisp=False): return e.visit(PrettyVisitor(Lisp=Lisp), [], False, False) class EtaExpandFailure(Exception): pass class EtaLongVisitor(object): """Converts an expression into eta-longform""" def __init__(self, request=None): self.request = request self.context = None def makeLong(self, e, request): if request.isArrow(): # eta expansion return Abstraction(Application(e.shift(1), Index(0))) return None def abstraction(self, e, request, environment): if not request.isArrow(): raise EtaExpandFailure() return Abstraction(e.body.visit(self, request.arguments[1], [request.arguments[0]] + environment)) def _application(self, e, request, environment): l = self.makeLong(e, request) if l is not None: return l.visit(self, request, environment) f, xs = e.applicationParse() if f.isIndex: ft = environment[f.i].applyMutable(self.context) elif f.isInvented or f.isPrimitive: ft = f.tp.instantiateMutable(self.context) else: assert False, "Not in beta long form: %s" % e self.context.unify(request, ft.returns()) ft = ft.applyMutable(self.context) xt = ft.functionArguments() if len(xs) != len(xt): raise EtaExpandFailure() returnValue = f for x, t in zip(xs, xt): t = t.applyMutable(self.context) returnValue = Application(returnValue, x.visit(self, t, environment)) return returnValue # This procedure works by recapitulating the generative process # applications indices and primitives are all generated identically def application(self, e, request, environment): return self._application(e, request, environment) def index(self, e, request, environment): return self._application(e, request, environment) def primitive(self, e, request, environment): return self._application(e, request, environment) def invented(self, e, request, environment): return self._application(e, request, environment) def execute(self, e): assert len(e.freeVariables()) == 0 if self.request is None: eprint("WARNING: request not specified for etaexpansion") self.request = e.infer() self.context = MutableContext() el = e.visit(self, self.request, []) self.context = None # assert el.infer().canonical() == e.infer().canonical(), \ # f"Types are not preserved by ETA expansion: {e} : {e.infer().canonical()} vs {el} : {el.infer().canonical()}" return el class StripPrimitiveVisitor: """Replaces all primitives .value's w/ None. Does not destructively modify anything""" def invented(self, e): return Invented(e.body.visit(self)) def primitive(self, e): return Primitive(e.name, e.tp, None) def application(self, e): return Application(e.f.visit(self), e.x.visit(self)) def abstraction(self, e): return Abstraction(e.body.visit(self)) def index(self, e): return e class ReplacePrimitiveValueVisitor: """Intended to be used after StripPrimitiveVisitor. Replaces all primitive.value's with their corresponding entry in Primitive.GLOBALS""" def invented(self, e): return Invented(e.body.visit(self)) def primitive(self, e): return Primitive(e.name, e.tp, Primitive.GLOBALS[e.name].value) def application(self, e): return Application(e.f.visit(self), e.x.visit(self)) def abstraction(self, e): return Abstraction(e.body.visit(self)) def index(self, e): return e def strip_primitive_values(e): return e.visit(StripPrimitiveVisitor()) def unstrip_primitive_values(e): return e.visit(ReplacePrimitiveValueVisitor()) # from luke class TokeniseVisitor(object): def invented(self, e): return [e.body] def primitive(self, e): return [e.name] def index(self, e): return ["$" + str(e.i)] def application(self, e): return ["("] + e.f.visit(self) + e.x.visit(self) + [")"] def abstraction(self, e): return ["(_lambda"] + e.body.visit(self) + [")_lambda"] def tokeniseProgram(e): return e.visit(TokeniseVisitor()) def untokeniseProgram(l): lookup = {"(_lambda": "(lambda", ")_lambda": ")"} s = " ".join(lookup.get(x, x) for x in l) return Program.parse(s) if __name__ == "__main__": from dreamcoder.domains.arithmetic.arithmeticPrimitives import * e = Program.parse("(#(lambda (?? (+ 1 $0))) (lambda (?? (+ 1 $0))) (lambda (?? (+ 1 $0))) - * (+ +))") eprint(e)
28.948022
127
0.576298
d1d05ac0ceb6d4f5392bc3eff285d8d82b87c282
401
py
Python
justathaught/asgi.py
sandipsandal/Just-A-Thought
97f97404b303deb2ea7bcc86d89b2b21b3715fba
[ "Apache-2.0" ]
null
null
null
justathaught/asgi.py
sandipsandal/Just-A-Thought
97f97404b303deb2ea7bcc86d89b2b21b3715fba
[ "Apache-2.0" ]
null
null
null
justathaught/asgi.py
sandipsandal/Just-A-Thought
97f97404b303deb2ea7bcc86d89b2b21b3715fba
[ "Apache-2.0" ]
null
null
null
""" ASGI config for justathaught project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'justathaught.settings') application = get_asgi_application()
23.588235
78
0.790524
b915fbbad49b902a60b0e12b2535b74abaa191ff
601
py
Python
main.py
hectorleiva/automated-video-downloader
66466c114678e73d93b8b2370286ed59d6e558a4
[ "MIT" ]
null
null
null
main.py
hectorleiva/automated-video-downloader
66466c114678e73d93b8b2370286ed59d6e558a4
[ "MIT" ]
null
null
null
main.py
hectorleiva/automated-video-downloader
66466c114678e73d93b8b2370286ed59d6e558a4
[ "MIT" ]
null
null
null
import os import sys HERE = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(HERE, "./vendored")) from youtube_dl import main as youtube_downloader PLAYLIST_URL = os.getenv('PLAYLIST_URL') if not PLAYLIST_URL: print('Unable to continue, no PLAYLIST_URL environment variable was set') sys.exit(1) DOWNLOAD_DIR = 'downloaded-videos' youtube_downloader( [PLAYLIST_URL , '--ignore-errors' , '--download-archive' , '{}/archive.txt'.format(DOWNLOAD_DIR) , '-r' , '2M' , '-o' , '{}/%(title)s-%(id)s.%(ext)s'.format(DOWNLOAD_DIR)] )
23.115385
77
0.665557
7fc168b5a58b34558e478b50f12234b86f5996c9
1,225
py
Python
app/api/deps.py
VPPR/backend-2
454e037f67245cae102f17c902f0494013c94e82
[ "MIT" ]
1
2021-05-16T15:05:50.000Z
2021-05-16T15:05:50.000Z
app/api/deps.py
VPPR/backend-2
454e037f67245cae102f17c902f0494013c94e82
[ "MIT" ]
6
2021-02-22T06:30:49.000Z
2021-06-26T15:17:24.000Z
app/api/deps.py
VPPR/backend-2
454e037f67245cae102f17c902f0494013c94e82
[ "MIT" ]
null
null
null
from fastapi import Depends, HTTPException, status from jose import jwt from mongoengine.errors import ValidationError from app import crud from app.core.config import settings from app.core.security import oauth2_scheme from app.schema.token import TokenPayload from app.schema.user import User def get_current_user(token: str = Depends(oauth2_scheme)) -> User: try: payload = jwt.decode( token, settings.SECRET_KEY, algorithms=[settings.ALGORITHM] ) token_data = TokenPayload(**payload) except (jwt.JWTError, ValidationError) as e: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="Could not validate credentials", ) user = crud.user.get(id=token_data.subject) if not user: raise HTTPException(status_code=404, detail="User not found") if not user.is_active: raise HTTPException(status_code=409, detail="User Inactive") return user def get_current_admin(user: User = Depends(get_current_user)) -> User: if user.is_admin: return user raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="Unauthorized Resource. Access is forbidden", )
32.236842
71
0.707755
10094e5c4abe42aad43afac78c041b9b4dede7b3
5,249
py
Python
nipype/workflows/dmri/camino/group_connectivity.py
FredLoney/nipype
ceaa28dcbfe29ca4373479c897da9fc958167ccd
[ "BSD-3-Clause" ]
null
null
null
nipype/workflows/dmri/camino/group_connectivity.py
FredLoney/nipype
ceaa28dcbfe29ca4373479c897da9fc958167ccd
[ "BSD-3-Clause" ]
null
null
null
nipype/workflows/dmri/camino/group_connectivity.py
FredLoney/nipype
ceaa28dcbfe29ca4373479c897da9fc958167ccd
[ "BSD-3-Clause" ]
null
null
null
import os.path as op # system functions import nipype.interfaces.io as nio # Data i/o import nipype.interfaces.utility as util # utility import nipype.pipeline.engine as pe # pypeline engine from .connectivity_mapping import create_connectivity_pipeline def create_group_connectivity_pipeline(group_list, group_id, data_dir, subjects_dir, output_dir, template_args_dict=0): """Creates a pipeline that performs basic Camino structural connectivity processing on groups of subjects. Given a diffusion-weighted image, and text files containing the associated b-values and b-vectors, the workflow will return each subjects' connectomes in a Connectome File Format (CFF) file, for use in Connectome Viewer (http://www.cmtk.org). Example ------- >>> import nipype.interfaces.freesurfer as fs >>> import nipype.workflows.dmri.camino.group_connectivity as groupwork >>> subjects_dir = '.' >>> data_dir = '.' >>> output_dir = '.' >>> fs.FSCommand.set_default_subjects_dir(subjects_dir) >>> group_list = {} >>> group_list['group1'] = ['subj1', 'subj2'] >>> group_list['group2'] = ['subj3', 'subj4'] >>> template_args = dict(dwi=[['subject_id', 'dwi']], bvecs=[['subject_id', 'bvecs']], bvals=[['subject_id', 'bvals']]) >>> group_id = 'group1' >>> l1pipeline = groupwork.create_group_connectivity_pipeline(group_list, group_id, data_dir, subjects_dir, output_dir, template_args) >>> l1pipeline.run() # doctest: +SKIP Inputs:: group_list: Dictionary of subject lists, keyed by group name group_id: String containing the group name data_dir: Path to the data directory subjects_dir: Path to the Freesurfer 'subjects' directory output_dir: Path for the output files template_args_dict: Dictionary of template arguments for the connectivity pipeline datasource e.g. info = dict(dwi=[['subject_id', 'dwi']], bvecs=[['subject_id','bvecs']], bvals=[['subject_id','bvals']]) """ group_infosource = pe.Node(interface=util.IdentityInterface(fields=['group_id']), name="group_infosource") group_infosource.inputs.group_id = group_id subject_list = group_list[group_id] subj_infosource = pe.Node(interface=util.IdentityInterface(fields=['subject_id']), name="subj_infosource") subj_infosource.iterables = ('subject_id', subject_list) if template_args_dict == 0: info = dict(dwi=[['subject_id', 'dwi']], bvecs=[['subject_id','bvecs']], bvals=[['subject_id','bvals']]) else: info = template_args_dict datasource = pe.Node(interface=nio.DataGrabber(infields=['subject_id'], outfields=info.keys()), name = 'datasource') datasource.inputs.template = "%s/%s" datasource.inputs.base_directory = data_dir datasource.inputs.field_template = dict(dwi='%s/%s.nii') datasource.inputs.template_args = info """ Create a connectivity mapping workflow """ conmapper = create_connectivity_pipeline("nipype_conmap") conmapper.inputs.inputnode.subjects_dir = subjects_dir conmapper.base_dir = op.abspath('conmapper') datasink = pe.Node(interface=nio.DataSink(), name="datasink") datasink.inputs.base_directory = output_dir datasink.inputs.container = group_id l1pipeline = pe.Workflow(name="l1pipeline_"+group_id) l1pipeline.base_dir = output_dir l1pipeline.base_output_dir = group_id l1pipeline.connect([(subj_infosource, datasource,[('subject_id', 'subject_id')])]) l1pipeline.connect([(subj_infosource, conmapper,[('subject_id', 'inputnode.subject_id')])]) l1pipeline.connect([(datasource, conmapper, [("dwi", "inputnode.dwi"), ("bvals", "inputnode.bvals"), ("bvecs", "inputnode.bvecs"), ])]) l1pipeline.connect([(conmapper, datasink, [("outputnode.connectome", "@l1output.cff"), ("outputnode.fa", "@l1output.fa"), ("outputnode.tracts", "@l1output.tracts"), ("outputnode.trace", "@l1output.trace"), ("outputnode.cmatrix", "@l1output.cmatrix"), ("outputnode.rois", "@l1output.rois"), ("outputnode.struct", "@l1output.struct"), ("outputnode.networks", "@l1output.networks"), ("outputnode.mean_fiber_length", "@l1output.mean_fiber_length"), ("outputnode.fiber_length_std", "@l1output.fiber_length_std"), ])]) l1pipeline.connect([(group_infosource, datasink,[('group_id','@group_id')])]) return l1pipeline
53.020202
138
0.587922
ff07da283ff40192fc22fbce8e0961519722c932
6,248
py
Python
train_ptb.py
Jinrohs/deep_maker
21e62a53bc25023e5e4a95f7b33fe4ee0e46a361
[ "MIT" ]
1
2018-02-21T14:40:52.000Z
2018-02-21T14:40:52.000Z
train_ptb.py
Jinrohs/ChatelliteVoiceDeepLearning
21e62a53bc25023e5e4a95f7b33fe4ee0e46a361
[ "MIT" ]
null
null
null
train_ptb.py
Jinrohs/ChatelliteVoiceDeepLearning
21e62a53bc25023e5e4a95f7b33fe4ee0e46a361
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Sample script of recurrent neural network language model. This code is ported from following implementation written in Torch. https://github.com/tomsercu/lstm """ from __future__ import print_function import argparse import math import sys import time import numpy as np import six import six.moves.cPickle as pickle import chainer from chainer import cuda import chainer.links as L from chainer import optimizers from chainer import serializers import net parser = argparse.ArgumentParser() parser.add_argument('--initmodel', '-m', default='', help='Initialize the model from given file') parser.add_argument('--resume', '-r', default='', help='Resume the optimization from snapshot') parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)') parser.add_argument('--epoch', '-e', default=39, type=int, help='number of epochs to learn') parser.add_argument('--unit', '-u', default=650, type=int, help='number of units') parser.add_argument('--batchsize', '-b', type=int, default=128, help='learning minibatch size') parser.add_argument('--bproplen', '-l', type=int, default=35, help='length of truncated BPTT') parser.add_argument('--gradclip', '-c', type=int, default=5, help='gradient norm threshold to clip') parser.add_argument('--test', dest='test', action='store_true') parser.set_defaults(test=False) args = parser.parse_args() xp = cuda.cupy if args.gpu >= 0 else np n_epoch = args.epoch # number of epochs n_units = args.unit # number of units per layer batchsize = args.batchsize # minibatch size bprop_len = args.bproplen # length of truncated BPTT grad_clip = args.gradclip # gradient norm threshold to clip # Prepare dataset (preliminary download dataset by ./download.py) vocab = {} def load_data(filename): global vocab words = open(filename).read().replace('\n', '<eos>').strip().split() dataset = np.ndarray((len(words),), dtype=np.int32) for i, word in enumerate(words): if word not in vocab: vocab[word] = len(vocab) dataset[i] = vocab[word] return dataset train_data = load_data('ptb.train.txt') if args.test: train_data = train_data[:100] valid_data = load_data('ptb.valid.txt') if args.test: valid_data = valid_data[:100] test_data = load_data('ptb.test.txt') if args.test: test_data = test_data[:100] print('#vocab =', len(vocab)) with open('vocab.bin', 'wb') as f: pickle.dump(vocab, f) # Prepare RNNLM model, defined in net.py lm = net.RNNLM(len(vocab), n_units) model = L.Classifier(lm) model.compute_accuracy = False # we only want the perplexity for param in model.params(): data = param.data data[:] = np.random.uniform(-0.1, 0.1, data.shape) if args.gpu >= 0: cuda.get_device(args.gpu).use() model.to_gpu() # Setup optimizer #optimizer = optimizers.SGD(lr=1.) optimizer = optimizers.Adam() optimizer.setup(model) optimizer.add_hook(chainer.optimizer.GradientClipping(grad_clip)) # Init/Resume if args.initmodel: print('Load model from', args.initmodel) serializers.load_npz(args.initmodel, model) if args.resume: print('Load optimizer state from', args.resume) serializers.load_npz(args.resume, optimizer) def evaluate(dataset): # Evaluation routine evaluator = model.copy() # to use different state evaluator.predictor.reset_state() # initialize state evaluator.predictor.train = False # dropout does nothing sum_log_perp = 0 for i in six.moves.range(dataset.size - 1): x = chainer.Variable(xp.asarray(dataset[i:i + 1]), volatile='on') t = chainer.Variable(xp.asarray(dataset[i + 1:i + 2]), volatile='on') loss = evaluator(x, t) sum_log_perp += loss.data return math.exp(float(sum_log_perp) / (dataset.size - 1)) # Learning loop whole_len = train_data.shape[0] jump = whole_len // batchsize cur_log_perp = xp.zeros(()) epoch = 0 start_at = time.time() cur_at = start_at accum_loss = 0 batch_idxs = list(range(batchsize)) print('going to train {} iterations'.format(jump * n_epoch)) for i in six.moves.range(jump * n_epoch): x = chainer.Variable(xp.asarray( [train_data[(jump * j + i) % whole_len] for j in batch_idxs])) t = chainer.Variable(xp.asarray( [train_data[(jump * j + i + 1) % whole_len] for j in batch_idxs])) loss_i = model(x, t) accum_loss += loss_i cur_log_perp += loss_i.data if (i + 1) % bprop_len == 0: # Run truncated BPTT model.zerograds() accum_loss.backward() accum_loss.unchain_backward() # truncate accum_loss = 0 optimizer.update() if (i + 1) % 10000 == 0: now = time.time() throuput = 10000. / (now - cur_at) perp = math.exp(float(cur_log_perp) / 10000) print('iter {} training perplexity: {:.2f} ({:.2f} iters/sec)'.format( i + 1, perp, throuput)) cur_at = now cur_log_perp.fill(0) # Save the model and the optimizer print('save the model') serializers.save_npz('rnnlm.model', model) print('save the optimizer') serializers.save_npz('rnnlm.state', optimizer) if (i + 1) % jump == 0: epoch += 1 print('evaluate') now = time.time() perp = evaluate(valid_data) print('epoch {} validation perplexity: {:.2f}'.format(epoch, perp)) cur_at += time.time() - now # skip time of evaluation #if epoch >= 6: # optimizer.lr /= 1.2 # print('learning rate =', optimizer.lr) # Save the model and the optimizer print('save the model') serializers.save_npz('rnnlm.model', model) print('save the optimizer') serializers.save_npz('rnnlm.state', optimizer) sys.stdout.flush() ## Evaluate on test dataset #print('test') #test_perp = evaluate(test_data) #print('test perplexity:', test_perp) # Save the model and the optimizer print('save the model') serializers.save_npz('rnnlm.model', model) print('save the optimizer') serializers.save_npz('rnnlm.state', optimizer)
31.555556
78
0.65525
106a9e63aee7d5606cafb1627d4153a26109e280
1,650
py
Python
load_options_data.py
thomasvandewiel-sai/option-strategies
1d4e8dbb18b68136a5150382811929cb793aec91
[ "Apache-2.0" ]
null
null
null
load_options_data.py
thomasvandewiel-sai/option-strategies
1d4e8dbb18b68136a5150382811929cb793aec91
[ "Apache-2.0" ]
null
null
null
load_options_data.py
thomasvandewiel-sai/option-strategies
1d4e8dbb18b68136a5150382811929cb793aec91
[ "Apache-2.0" ]
null
null
null
from yahoo_fin import stock_info, options from datetime import date, datetime, timedelta import numpy as np DAYS_IN_FUTURE = 45 TICKER = "AAPL" OPTION_STRATEGY = "iron_scondor" class AnalyzeOptions: def __init__(self) -> None: # Initialize dates self.date_today = [] self.desired_option_date = [] self.nearest_date_to_target = [] self._compute_dates() def _compute_dates(self) -> None: # Get the current date self.date_today = datetime.today().strftime("%Y-%m-%d") # Convert to string self.date_today = datetime.strptime(self.date_today, "%Y-%m-%d") # Add desired number of days in the future self.desired_option_date = self.date_today + timedelta(days=DAYS_IN_FUTURE) # Compute strike nearest to set target self._get_nearest_date() def _get_fridays(self): future_strikes = self.date_today # January 1st future_strikes += timedelta(days=4 - future_strikes.weekday()) # First Sunday cnt = 0 cnt_max = np.ceil(DAYS_IN_FUTURE / 7) + 2 while cnt <= cnt_max: yield future_strikes future_strikes += timedelta(days=7) cnt += 1 return future_strikes def _get_nearest_date(self) -> None: future_strikes = self._get_fridays() self.nearest_date_to_target = min(future_strikes, key=lambda x: abs(x - self.desired_option_date)) analyze_options = AnalyzeOptions() print(analyze_options.nearest_date_to_target) # todo: # 1. Extract call and put options # 2. Get IV and calculate 95% probability trade (start with iron condor)
28.448276
106
0.664848
96cd53f9b1c52984a9fe413c2d60ad87e7afaa39
7,552
py
Python
sap/cli/gcts.py
jakub-vaclavik-sap/sapcli
a0f40c3b2363bba0d34f705d92dd420d9adf3987
[ "Apache-2.0" ]
null
null
null
sap/cli/gcts.py
jakub-vaclavik-sap/sapcli
a0f40c3b2363bba0d34f705d92dd420d9adf3987
[ "Apache-2.0" ]
null
null
null
sap/cli/gcts.py
jakub-vaclavik-sap/sapcli
a0f40c3b2363bba0d34f705d92dd420d9adf3987
[ "Apache-2.0" ]
1
2022-01-10T03:58:03.000Z
2022-01-10T03:58:03.000Z
"""gCTS methods""" import sap.cli.core import sap.cli.helpers import sap.rest.gcts def print_gcts_message(console, log, prefix=' '): """Print out the message with its protocol if it exists.""" if isinstance(log, str): message = log else: message = log.get('message', None) if message: console.printerr(prefix, message) prefix = prefix + ' ' if not isinstance(log, dict): return try: protocol = log['protocol'] except KeyError: return if isinstance(protocol, dict): protocol = [protocol] for protocol_item in protocol: print_gcts_message(console, protocol_item, prefix=prefix) def dump_gcts_messages(console, messages): """Dumps gCTS exception to console""" output = False errlog = messages.get('errorLog', None) if errlog: output = True console.printerr('Error Log:') for errmsg in errlog: print_gcts_message(console, errmsg) msglog = messages.get('log', None) if msglog: output = True console.printerr('Log:') for logmsg in msglog: print_gcts_message(console, logmsg) exception = messages.get('exception', None) if exception: output = True console.printerr('Exception:\n ', messages['exception']) if not output: console.printerr(str(messages)) def print_gcts_commit(console, commit): """Prints out gCTS commit description""" console.printout('commit', commit['id']) console.printout('Author:', commit['author'], f'<{commit["authorMail"]}>') console.printout('Date: ', commit['date']) console.printout('\n ', commit['message']) class CommandGroup(sap.cli.core.CommandGroup): """Adapter converting command line parameters to sap.rest.gcts methods calls. """ def __init__(self): super().__init__('gcts') @CommandGroup.command() # pylint: disable=unused-argument def repolist(connection, args): """ls""" console = sap.cli.core.get_console() try: response = sap.rest.gcts.simple_fetch_repos(connection) except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(console, ex.messages) return 1 for repo in response: console.printout(repo.name, repo.branch, repo.head, repo.url) return 0 @CommandGroup.argument('--heartbeat', type=int, nargs='?', default=0) @CommandGroup.argument('--vsid', type=str, nargs='?', default='6IT') @CommandGroup.argument('--starting-folder', type=str, nargs='?', default='src/') @CommandGroup.argument('--no-fail-exists', default=False, action='store_true') @CommandGroup.argument('--vcs-token', type=str, nargs='?') @CommandGroup.argument('-t', '--type', choices=['GITHUB', 'GIT'], default='GITHUB') @CommandGroup.argument('-r', '--role', choices=['SOURCE', 'TARGET'], default='SOURCE', help='SOURCE=Development, TARGET=Provided') @CommandGroup.argument('package', nargs='?') @CommandGroup.argument('url') @CommandGroup.command() def clone(connection, args): """git clone <repository> [<package>] """ package = args.package if not package: package = sap.rest.gcts.package_name_from_url(args.url) console = sap.cli.core.get_console() try: with sap.cli.helpers.ConsoleHeartBeat(console, args.heartbeat): repo = sap.rest.gcts.simple_clone(connection, args.url, package, start_dir=args.starting_folder, vcs_token=args.vcs_token, vsid=args.vsid, error_exists=not args.no_fail_exists, role=args.role, typ=args.type) except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(sap.cli.core.get_console(), ex.messages) return 1 console.printout('Cloned repository:') console.printout(' URL :', repo.url) console.printout(' branch:', repo.branch) console.printout(' HEAD :', repo.head) return 0 @CommandGroup.argument('package') @CommandGroup.argument('-l', '--list', default=False, action='store_true') @CommandGroup.command() def config(connection, args): """git config [-l] [<package>] """ console = sap.cli.core.get_console() if args.list: repo = sap.rest.gcts.Repository(connection, args.package) try: configuration = repo.configuration except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(sap.cli.core.get_console(), ex.messages) return 1 for key, value in configuration.items(): console.printout(f'{key}={value}') return 0 console.printerr('Invalid command line options\nRun: sapcli gcts config --help') return 1 @CommandGroup.argument('package') @CommandGroup.command() def delete(connection, args): """rm """ try: sap.rest.gcts.simple_delete(connection, args.package) except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(sap.cli.core.get_console(), ex.messages) return 1 sap.cli.core.printout(f'The repository "{args.package}" has been deleted') return 0 @CommandGroup.argument('--heartbeat', type=int, nargs='?', default=0) @CommandGroup.argument('branch') @CommandGroup.argument('package') @CommandGroup.command() def checkout(connection, args): """git checkout <branch> """ repo = sap.rest.gcts.Repository(connection, args.package) old_branch = repo.branch console = sap.cli.core.get_console() try: with sap.cli.helpers.ConsoleHeartBeat(console, args.heartbeat): response = sap.rest.gcts.simple_checkout(connection, args.branch, repo=repo) except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(sap.cli.core.get_console(), ex.messages) return 1 console.printout(f'The repository "{args.package}" has been set to the branch "{args.branch}"') console.printout(f'({old_branch}:{response["fromCommit"]}) -> ({args.branch}:{response["toCommit"]})') return 0 @CommandGroup.argument('package') @CommandGroup.command('log') def gcts_log(connection, args): """git log """ console = sap.cli.core.get_console() try: commits = sap.rest.gcts.simple_log(connection, name=args.package) except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(console, ex.messages) return 1 if not commits: return 0 commit_iter = iter(commits) commit = next(commit_iter) print_gcts_commit(console, commit) for commit in commit_iter: console.printout('') print_gcts_commit(console, commit) return 0 @CommandGroup.argument('--heartbeat', type=int, nargs='?', default=0) @CommandGroup.argument('package') @CommandGroup.command() def pull(connection, args): """git pull """ console = sap.cli.core.get_console() try: with sap.cli.helpers.ConsoleHeartBeat(console, args.heartbeat): response = sap.rest.gcts.simple_pull(connection, name=args.package) except sap.rest.gcts.GCTSRequestError as ex: dump_gcts_messages(sap.cli.core.get_console(), ex.messages) return 1 console.printout(f'The repository "{args.package}" has been pulled') console.printout(f'{response["fromCommit"]} -> {response["toCommit"]}') return 0
29.5
106
0.637182
ed489ed858b00ac9d511932404f571fca37caf6b
1,252
py
Python
homeassistant/helpers/__init__.py
sgrzys/AIS-home-assistant
7bfc4d6d90de75eea06702c36474d91bf38df3bf
[ "Apache-2.0" ]
7
2018-08-03T10:15:36.000Z
2019-03-25T13:31:55.000Z
homeassistant/helpers/__init__.py
sara0871/https-wakatime.com-android-studio
5a15b2c036b332c17d5f6a06664378e9273d684f
[ "Apache-2.0" ]
6
2021-02-08T20:25:50.000Z
2022-03-11T23:27:53.000Z
homeassistant/helpers/__init__.py
sara0871/https-wakatime.com-android-studio
5a15b2c036b332c17d5f6a06664378e9273d684f
[ "Apache-2.0" ]
3
2018-09-14T07:34:09.000Z
2018-09-29T12:57:10.000Z
"""Helper methods for components within Home Assistant.""" import re from typing import Any, Iterable, Tuple, Sequence, Dict from homeassistant.const import CONF_PLATFORM # pylint: disable=invalid-name ConfigType = Dict[str, Any] def config_per_platform(config: ConfigType, domain: str) -> Iterable[Tuple[Any, Any]]: """Break a component config into different platforms. For example, will find 'switch', 'switch 2', 'switch 3', .. etc Async friendly. """ for config_key in extract_domain_configs(config, domain): platform_config = config[config_key] if not platform_config: continue elif not isinstance(platform_config, list): platform_config = [platform_config] for item in platform_config: try: platform = item.get(CONF_PLATFORM) except AttributeError: platform = None yield platform, item def extract_domain_configs(config: ConfigType, domain: str) -> Sequence[str]: """Extract keys from config for given domain name. Async friendly. """ pattern = re.compile(r'^{}(| .+)$'.format(domain)) return [key for key in config.keys() if pattern.match(key)]
29.116279
77
0.646166
c138ceaa64724bb478c8a985ea110830e78e9b5e
1,869
py
Python
hassio/services/interface.py
xebbmw/hassio-supervisor
ce3f6705977e344b968f916a20e3358ce710845e
[ "Apache-2.0" ]
1
2019-09-03T14:09:06.000Z
2019-09-03T14:09:06.000Z
hassio/services/interface.py
xebbmw/hassio-supervisor
ce3f6705977e344b968f916a20e3358ce710845e
[ "Apache-2.0" ]
null
null
null
hassio/services/interface.py
xebbmw/hassio-supervisor
ce3f6705977e344b968f916a20e3358ce710845e
[ "Apache-2.0" ]
1
2019-12-11T01:02:47.000Z
2019-12-11T01:02:47.000Z
"""Interface for single service.""" from typing import Any, Dict, List, Optional import voluptuous as vol from ..addons.addon import Addon from ..const import PROVIDE_SERVICE from ..coresys import CoreSys, CoreSysAttributes class ServiceInterface(CoreSysAttributes): """Interface class for service integration.""" def __init__(self, coresys: CoreSys): """Initialize service interface.""" self.coresys: CoreSys = coresys @property def slug(self) -> str: """Return slug of this service.""" raise NotImplementedError() @property def _data(self) -> Dict[str, Any]: """Return data of this service.""" raise NotImplementedError() @property def schema(self) -> vol.Schema: """Return data schema of this service.""" raise NotImplementedError() @property def providers(self) -> List[str]: """Return name of service providers addon.""" addons = [] for addon in self.sys_addons.installed: if addon.services_role.get(self.slug) == PROVIDE_SERVICE: addons.append(addon.slug) return addons @property def enabled(self) -> bool: """Return True if the service is in use.""" return bool(self._data) def save(self) -> None: """Save changes.""" self.sys_services.data.save_data() def get_service_data(self) -> Optional[Dict[str, Any]]: """Return the requested service data.""" if self.enabled: return self._data return None def set_service_data(self, addon: Addon, data: Dict[str, Any]) -> None: """Write the data into service object.""" raise NotImplementedError() def del_service_data(self, addon: Addon) -> None: """Remove the data from service object.""" raise NotImplementedError()
29.203125
75
0.628143
04cddd2fcc4466731fcaab150e18b2f572a8bdde
1,039
py
Python
main.py
TheMody/NiceInit
3de2c75708ac7b305640266dc0511b81f3c2cad9
[ "MIT" ]
null
null
null
main.py
TheMody/NiceInit
3de2c75708ac7b305640266dc0511b81f3c2cad9
[ "MIT" ]
null
null
null
main.py
TheMody/NiceInit
3de2c75708ac7b305640266dc0511b81f3c2cad9
[ "MIT" ]
null
null
null
import argparse import os import datetime as dt import configparser from logger import Logger import shutil import sys def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--config_file', help='path_to_config_file', type=str, default="config.json") args = parser.parse_args() config = configparser.ConfigParser() config.sections() config.read(args.config_file) if config["DEFAULT"]["directory"] == "default": config["DEFAULT"]["directory"] = "results/" + dt.datetime.now().strftime("%d.%m.%Y_%H.%M.%S") os.makedirs(config["DEFAULT"]["directory"], exist_ok = True) print(config["DEFAULT"]["directory"] ) for file in os.listdir(os.getcwd()): if ".py" in file or ".json" in file: shutil.copy2(file, config["DEFAULT"]["directory"] ) sys.stdout = Logger(open(config["DEFAULT"]["directory"] +"/SysOut.txt","w")) if __name__ == '__main__': main()
29.685714
101
0.644851
28858ca166d7af857a33f6741535946bc73e5f95
36
py
Python
tests/__init__.py
rapid7/leexportpy
441db1710399d6f8dc41aaf1b474b5f8ca9d7018
[ "MIT" ]
2
2016-07-05T09:18:20.000Z
2016-07-12T19:48:37.000Z
tests/__init__.py
logentries/leexportpy
441db1710399d6f8dc41aaf1b474b5f8ca9d7018
[ "MIT" ]
7
2016-06-28T13:47:57.000Z
2016-07-22T11:13:16.000Z
tests/examples/__init__.py
rapid7/leexportpy
441db1710399d6f8dc41aaf1b474b5f8ca9d7018
[ "MIT" ]
6
2016-09-08T15:06:18.000Z
2021-01-26T10:12:32.000Z
__author__ = 'Logentries by Rapid7'
18
35
0.777778
e1f56c657cccd2bce705a98d8330a25d72cd0d6b
4,995
py
Python
data/dataconstructor.py
Skhaki18/APS360
4a386fc8ee14802bcb5ef25eefc234160673896a
[ "MIT" ]
1
2022-02-09T20:35:05.000Z
2022-02-09T20:35:05.000Z
data/dataconstructor.py
Skhaki18/APS360
4a386fc8ee14802bcb5ef25eefc234160673896a
[ "MIT" ]
null
null
null
data/dataconstructor.py
Skhaki18/APS360
4a386fc8ee14802bcb5ef25eefc234160673896a
[ "MIT" ]
null
null
null
import fiftyone as fo import fiftyone.zoo as foz import torchvision.transforms as transforms from PIL import Image import os import os.path from pycocotools.coco import COCO import torch.utils.data as data import cv2 import torch import matplotlib.pyplot as plt class CocoDetection(data.Dataset): """`MS Coco Captions <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset. Args: root (string): Root directory where images are downloaded to. annFile (string): Path to json annotation file. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, annFile, args, Live = False, transform=None, target_transform=None): self.root = root self.coco = COCO(annFile) self.filterClasses = args.config["class_type"] self.CatIds = self.coco.getCatIds(catNms=self.filterClasses) if(args.config["class_ids"] == []): temp = self.coco.getCatIds(catNms=args.config["scanner"]) args.config["class_ids"] = list(temp) self.ids = [] for i in self.CatIds: subset = self.coco.getImgIds(catIds=[i]) for i in range(len(subset)): mid = subset[i] self.ids.append(mid) self.ids = list(set(self.ids)) print("CurrentSelfIDS", self.ids) self.transform = transform self.target_transform = target_transform self.Live = Live def __getitem__(self, index): coco = self.coco img_id = self.ids[index] ann_ids = coco.getAnnIds(imgIds=img_id) target = coco.loadAnns(ann_ids) img_id = self.ids[index] path = coco.loadImgs(img_id)[0]['file_name'] base = plt.imread(os.path.join(self.root, path)) img = Image.open(os.path.join(self.root, path)) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if(self.Live): #Handles Live Annotations!!! return img, target , base boxes = [] labels = [] # Define Indices: [0:car, 1: truck, 2: bus, 3: motorcycle, 4:person] # annotation file Set = [3]#, 8, 6, 4, 1] area = 0 for i in labels: if(i["category_id"] in Set): (startX, startY, endX, endY) = i["bbox"] area += endX*endY for i in target: id = i["category_id"] if i["category_id"] in Set: labels.append(Set.index(id)) (startX, startY, endX, endY) = i["bbox"] boxes.append([round(startX), round(startY), round(startX+endX), round(startY+endY)]) # Standard One Epoch Preprocessing PyTorch Supported! boxes = torch.as_tensor(boxes, dtype=torch.float32) area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]) iscrowd = torch.zeros((boxes.shape[0],), dtype=torch.int64) labels = torch.as_tensor(labels, dtype=torch.int64) target = {} target["boxes"] = boxes target["labels"] = labels target["area"] = area target["iscrowd"] = iscrowd image_id = torch.tensor([index]) target["image_id"] = image_id return img, target def __len__(self): return len(self.ids) def downloadData(): dataset = foz.load_zoo_dataset( "coco-2017", label_types=["detections"], classes=["person", "car", "truck", "motorcycle", "bus"], seed = 420, shuffle = True, include_id = True ) dataset.persistent = True print(dataset.info) def constructData(BasePath, args, Live): transform = transforms.Compose([transforms.Resize((480, 640)),transforms.RandomRotation(10), transforms.ToTensor()]) Train = CocoDetection(root = BasePath+"train/data",annFile = BasePath+"train/labels.json", args=args, transform=transform, Live=Live) Validation = CocoDetection(root = BasePath+"validation/data",annFile = BasePath+"validation/labels.json", args=args, transform=transform, Live=Live) # Test currently disabled # Test = CocoDetection(root = BasePath+"test/data",annFile = BasePath+"test/labels.json", args=args, transform=transform) # Change here for test/validation return Train, Validation, 1 def samplingImages(dataset): print("sampled!") # Sample Visualization curretly ammended return def Data_Driver(args, Live=False): BasePath = args.config["datapath"] Train, Validation, Test = constructData(BasePath, args, Live=Live) print(len(Validation)) samplingImages(Validation) return Train, Validation, Test
31.613924
152
0.617217
5bf6bb0057f19fbf40e689fb79c1d0bfee176925
109
py
Python
lab2/text_recognizer/models/__init__.py
AleksandrLiadov/fsdl-text-recognizer-2021-labs
9495e1457fc82ab83ff7e4141939d603565eb89b
[ "MIT" ]
402
2021-01-18T12:14:08.000Z
2022-03-28T03:41:05.000Z
lab2/text_recognizer/models/__init__.py
AleksandrLiadov/fsdl-text-recognizer-2021-labs
9495e1457fc82ab83ff7e4141939d603565eb89b
[ "MIT" ]
27
2021-01-21T01:54:30.000Z
2022-03-29T21:39:41.000Z
lab2/text_recognizer/models/__init__.py
AleksandrLiadov/fsdl-text-recognizer-2021-labs
9495e1457fc82ab83ff7e4141939d603565eb89b
[ "MIT" ]
271
2021-01-21T18:07:24.000Z
2022-03-30T12:49:53.000Z
from .mlp import MLP # Hide lines below until Lab 2 from .cnn import CNN # Hide lines above until Lab 2
10.9
30
0.715596
3d06493111933d76673a5f62a23815918589a2d5
516
py
Python
src/sage/modular/modform/defaults.py
bopopescu/sage
2d495be78e0bdc7a0a635454290b27bb4f5f70f0
[ "BSL-1.0" ]
10
2018-06-01T21:54:53.000Z
2022-03-14T20:11:34.000Z
src/sage/modular/modform/defaults.py
Ivo-Maffei/sage
467fbc70a08b552b3de33d9065204ee9cbfb02c7
[ "BSL-1.0" ]
2
2018-10-30T13:40:20.000Z
2020-07-23T12:13:30.000Z
src/sage/modular/modform/defaults.py
dimpase/sage
468f23815ade42a2192b0a9cd378de8fdc594dcd
[ "BSL-1.0" ]
15
2020-07-23T10:46:25.000Z
2022-01-25T15:37:24.000Z
######################################################################### # Copyright (C) 2004--2006 William Stein <wstein@gmail.com> # # Distributed under the terms of the GNU General Public License (GPL) # # http://www.gnu.org/licenses/ ######################################################################### # The default precision for computation and display of q-expansions of # modular forms. from sage.rings.all import Integer DEFAULT_PRECISION = Integer(6) DEFAULT_VARIABLE = 'q'
34.4
73
0.505814
fb635ed11674e583064d6a3937ee133c9de6576d
3,914
py
Python
pyecodevices_rt2/ecodevices_rt2.py
pcourbin/pyecodevices_rt2
5f9e49dddde01bef933a1825230bd90759d3f41c
[ "MIT" ]
null
null
null
pyecodevices_rt2/ecodevices_rt2.py
pcourbin/pyecodevices_rt2
5f9e49dddde01bef933a1825230bd90759d3f41c
[ "MIT" ]
2
2021-04-12T22:48:48.000Z
2021-05-15T10:56:27.000Z
pyecodevices_rt2/ecodevices_rt2.py
pcourbin/pyecodevices_rt2
5f9e49dddde01bef933a1825230bd90759d3f41c
[ "MIT" ]
null
null
null
from datetime import datetime from datetime import timedelta import requests from .const import INDEX_GET_LINK from .const import PRODUCT_ENTRY from .const import PRODUCT_VALUE from .const import RESPONSE_ENTRY from .const import RESPONSE_SUCCESS_VALUE from .const import RT2_API_GET_LINK_CACHED from .exceptions import EcoDevicesRT2ConnectError from .exceptions import EcoDevicesRT2RequestError class EcoDevicesRT2: """Class representing the Ecodevices RT2 and its API""" def __init__( self, host: str, port: int = 80, apikey: str = "", timeout: int = 10, cached_ms: int = 0, ): self._host = host self._port = port self._apikey = apikey self._apiurl = "http://%s:%s/api/xdevices.json?key=%s" % ( str(host), str(port), str(apikey), ) self._timeout = timeout self._cached_ms = cached_ms self._cached = RT2_API_GET_LINK_CACHED @property def host(self): """Return the hostname.""" return self._host @property def apikey(self): """Return the apikey.""" return self._apikey @property def apiurl(self): """Return the default apiurl.""" return self._apiurl @property def cached_ms(self): """Return the maximum cached value in milliseconds.""" return self._cached_ms def _request(self, params): r = requests.get(self._apiurl, params=params, timeout=self._timeout) r.raise_for_status() content = r.json() product = content.get(PRODUCT_ENTRY, None) if product == PRODUCT_VALUE: return content else: raise EcoDevicesRT2ConnectError( "Ecodevices RT2 API wrong 'product' name\nUrl: %s \nValues: %s" % (r.request.url, content) ) def ping(self) -> bool: try: return ( self.get(INDEX_GET_LINK, command_entry=RESPONSE_ENTRY) == RESPONSE_SUCCESS_VALUE ) except: pass return False def get_all_cached(self): for complete_command in self._cached: self.get(complete_command, cached_ms=0) def get( self, command, command_value=None, command_entry=None, cached_ms: int = None ): """Get value from api : http://{host}:{port}/api/xdevices.json?key={apikey}&{command}={command_value}, then get value {command_entry} in JSON response.""" complete_command = command if command_value is not None: complete_command = command + "=" + command_value if cached_ms is None: cached_ms = self._cached_ms response = None now = datetime.now() if ( complete_command in self._cached and "last_call" in self._cached[complete_command] ): last_call = self._cached[complete_command]["last_call"] if (now - last_call) / timedelta( milliseconds=1 ) <= cached_ms and "response" in self._cached[complete_command]: response = self._cached[complete_command]["response"] if response is None: response = self._request(complete_command) if complete_command in self._cached: self._cached[complete_command]["last_call"] = now self._cached[complete_command]["response"] = response if command_entry is not None: if command_entry in response: response = response.get(command_entry) else: raise EcoDevicesRT2RequestError( "Ecodevices RT2 API error, key '%s' not in return from command: %s \nValues: %s" % (command_entry, complete_command, response) ) return response
31.564516
110
0.594532
d3d7888caa0afbcaaaf6d2fb5162cd14288e9717
18,821
py
Python
google/appengine/tools/devappserver2/instance.py
yc550370460/google_app_engine
876db682bd9d88e7b1f5403f05a0b26f2efb1c19
[ "Apache-2.0" ]
null
null
null
google/appengine/tools/devappserver2/instance.py
yc550370460/google_app_engine
876db682bd9d88e7b1f5403f05a0b26f2efb1c19
[ "Apache-2.0" ]
null
null
null
google/appengine/tools/devappserver2/instance.py
yc550370460/google_app_engine
876db682bd9d88e7b1f5403f05a0b26f2efb1c19
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Manage the lifecycle of runtime processes and dispatch requests to them.""" import collections import logging import threading import time import google from google.appengine.tools.devappserver2 import errors NORMAL_REQUEST = 0 READY_REQUEST = 1 # A warmup request i.e. /_ah/warmup. BACKGROUND_REQUEST = 2 # A request to create a background thread. SHUTDOWN_REQUEST = 3 # A request to stop the module i.e. /_ah/stop. # A request to send a command to the module for evaluation e.g. for use by # interactive shells. INTERACTIVE_REQUEST = 4 # Constants for use with FILE_CHANGE_INSTANCE_RESTART_POLICY. These constants # determine whether an instance will be restarted if a file is changed in # the application_root or any directory returned by # InstanceFactory.get_restart_directories. ALWAYS = 0 # Always restart instances. AFTER_FIRST_REQUEST = 1 # Restart instances that have received >= 1 request. NEVER = 2 # Never restart instances. class CannotAcceptRequests(errors.Error): """An Instance cannot accept a request e.g. because it is quitting.""" class CannotQuitServingInstance(errors.Error): """An Instance cannot be quit e.g. because it is handling a request.""" class InvalidInstanceId(errors.Error): """The requested instance id is not serving.""" class RuntimeProxy(object): """Abstract base class for a subclass that manages a runtime process.""" def handle(self, environ, start_response, url_map, match, request_id, request_type): """Serves this request by forwarding it to the runtime process. Args: environ: An environ dict for the request as defined in PEP-333. start_response: A function with semantics defined in PEP-333. url_map: An appinfo.URLMap instance containing the configuration for the handler matching this request. match: A re.MatchObject containing the result of the matched URL pattern. request_id: A unique string id associated with the request. request_type: The type of the request. See instance.*_REQUEST module constants. Yields: A sequence of strings containing the body of the HTTP response. """ raise NotImplementedError() def start(self): """Starts the runtime process and waits until it is ready to serve.""" raise NotImplementedError() def quit(self): """Terminates the runtime process.""" raise NotImplementedError() class Instance(object): """Handle requests through a RuntimeProxy.""" def __init__(self, request_data, instance_id, runtime_proxy, max_concurrent_requests, max_background_threads=0, expect_ready_request=False): """Initializer for Instance. Args: request_data: A wsgi_request_info.WSGIRequestInfo that will be provided with request information for use by API stubs. instance_id: A string or integer representing the unique (per module) id of the instance. runtime_proxy: A RuntimeProxy instance that will be used to handle requests. max_concurrent_requests: The maximum number of concurrent requests that the instance can handle. If the instance does not support concurrent requests then the value should be 1. max_background_threads: The maximum number of background threads that the instance can handle. If the instance does not support background threads then the value should be 0. expect_ready_request: If True then the instance will be sent a special request (i.e. /_ah/warmup or /_ah/start) before it can handle external requests. """ self._request_data = request_data self._instance_id = instance_id self._max_concurrent_requests = max_concurrent_requests self._max_background_threads = max_background_threads self._runtime_proxy = runtime_proxy self._condition = threading.Condition() self._num_outstanding_requests = 0 # Protected by self._condition. self._num_running_background_threads = 0 # Protected by self._condition. self._total_requests = 0 # Protected by self._condition. self._started = False # Protected by self._condition. self._quitting = False # Protected by self._condition. self._quit = False # Protected by self._condition. self._last_request_end_time = time.time() # Protected by self._condition. self._expecting_ready_request = expect_ready_request self._expecting_shutdown_request = False self._healthy = True # A deque containg (start_time, end_time) 2-tuples representing completed # requests. This is used to compute latency and qps statistics. self._request_history = collections.deque() # Protected by self._condition. def __repr__(self): statuses = [] if not self._started: statuses.append('not started') if self._quitting: statuses.append('quitting') if self._quit: statuses.append('quit') if self._expecting_ready_request: statuses.append('handling ready request') if statuses: status = ' [%s]' % ' '.join(statuses) else: status = '' return '<Instance %s: %d/%d, total: %d%s>' % ( self._instance_id, self._num_outstanding_requests, self._max_concurrent_requests, self._total_requests, status) @property def instance_id(self): """The unique string or integer id for the Instance.""" return self._instance_id @property def total_requests(self): """The total number requests that the Instance has handled.""" with self._condition: return self._total_requests @property def remaining_request_capacity(self): """The number of extra requests that the Instance can currently handle.""" with self._condition: return self._max_concurrent_requests - self._num_outstanding_requests @property def remaining_background_thread_capacity(self): """The number of extra background threads the Instance can handle.""" with self._condition: return self._max_background_threads - self._num_running_background_threads @property def num_outstanding_requests(self): """The number of requests that the Instance is currently handling.""" with self._condition: return self._num_outstanding_requests @property def idle_seconds(self): """The number of seconds that the Instance has been idle. Will be 0.0 if the Instance has not started. """ with self._condition: if self._num_outstanding_requests: return 0.0 elif not self._started: return 0.0 else: return time.time() - self._last_request_end_time @property def handling_ready_request(self): """True if the Instance is handling or will be sent a ready request.""" return self._expecting_ready_request def get_latency_60s(self): """Returns the average request latency over the last 60s in seconds.""" with self._condition: self._trim_request_history_to_60s() if not self._request_history: return 0.0 else: total_latency = sum( end - start for (start, end) in self._request_history) return total_latency / len(self._request_history) def get_qps_60s(self): """Returns the average queries-per-second over the last 60 seconds.""" with self._condition: self._trim_request_history_to_60s() if not self._request_history: return 0.0 else: return len(self._request_history) / 60.0 @property def has_quit(self): with self._condition: return self._quit or self._quitting or self._expecting_shutdown_request @property def can_accept_requests(self): """True if .handle() will accept requests. Does not consider outstanding request volume. """ with self._condition: return (not self._quit and not self._quitting and not self._expecting_ready_request and not self._expecting_shutdown_request and self._started and self._healthy) def _trim_request_history_to_60s(self): """Removes obsolete entries from _outstanding_request_history.""" window_start = time.time() - 60 with self._condition: while self._request_history: t, _ = self._request_history[0] if t < window_start: self._request_history.popleft() else: break def start(self): """Start the instance and the RuntimeProxy. Returns: True if the Instance was started or False, if the Instance has already been quit. """ with self._condition: if self._quit: return False self._runtime_proxy.start() with self._condition: if self._quit: self._runtime_proxy.quit() return False self._last_request_end_time = time.time() self._started = True logging.debug('Started instance: %s', self) return True def quit(self, allow_async=False, force=False, expect_shutdown=False): """Quits the instance and the RuntimeProxy. Args: allow_async: Whether to enqueue the quit after all requests have completed if the instance cannot be quit immediately. force: Whether to force the instance to quit even if the instance is currently handling a request. This overrides allow_async if True. expect_shutdown: Whether the instance will be sent a shutdown request. Raises: CannotQuitServingInstance: if the Instance is currently handling a request and allow_async is False. """ with self._condition: if self._quit: return if not self._started: self._quit = True return if expect_shutdown: self._expecting_shutdown_request = True return if (self._num_outstanding_requests or self._num_running_background_threads or self._expecting_shutdown_request): if not force: if allow_async or expect_shutdown: self._quitting = True return raise CannotQuitServingInstance() self._quit = True self._runtime_proxy.quit() self._condition.notify_all() logging.debug('Quit instance: %s', self) def reserve_background_thread(self): """Reserves a background thread slot. Raises: CannotAcceptRequests: if the Instance is already handling the maximum permissible number of background threads or is not in a state where it can handle background threads. """ with self._condition: if self._quit: raise CannotAcceptRequests('Instance has been quit') if not self._started: raise CannotAcceptRequests('Instance has not started') if not self.remaining_background_thread_capacity: raise CannotAcceptRequests( 'Instance has no additional background thread capacity') self._num_running_background_threads += 1 def handle(self, environ, start_response, url_map, match, request_id, request_type): """Handles an HTTP request by forwarding it to the RuntimeProxy. Args: environ: An environ dict for the request as defined in PEP-333. start_response: A function with semantics defined in PEP-333. url_map: An appinfo.URLMap instance containing the configuration for the handler matching this request. match: A re.MatchObject containing the result of the matched URL pattern. request_id: A unique string id associated with the request. request_type: The type of the request. See *_REQUEST module constants. Returns: An iterable over strings containing the body of the HTTP response. Raises: CannotAcceptRequests: if the Instance has quit or is already handling the maximum permissible number of concurrent requests. """ start_time = time.time() with self._condition: if self._quit: raise CannotAcceptRequests('Instance has been quit') if not self._started: raise CannotAcceptRequests('Instance has not started') if request_type not in (BACKGROUND_REQUEST, SHUTDOWN_REQUEST): if self._quitting: raise CannotAcceptRequests('Instance is shutting down') if self._expecting_ready_request and request_type != READY_REQUEST: raise CannotAcceptRequests('Instance is waiting for ready request') if not self.remaining_request_capacity: raise CannotAcceptRequests('Instance has no additional capacity') self._num_outstanding_requests += 1 self._request_data.set_request_instance(request_id, self) self._total_requests += 1 try: # Force the generator to complete so the code in the finally block runs # at the right time. return list(self._runtime_proxy.handle(environ, start_response, url_map, match, request_id, request_type)) finally: logging.debug('Request handled by %s in %0.4fs', self, time.time() - start_time) with self._condition: if request_type == READY_REQUEST: self._expecting_ready_request = False if request_type == BACKGROUND_REQUEST: self._num_running_background_threads -= 1 elif request_type != SHUTDOWN_REQUEST: self._num_outstanding_requests -= 1 self._last_request_end_time = time.time() self._trim_request_history_to_60s() self._request_history.append((start_time, self._last_request_end_time)) if request_type == READY_REQUEST: self._condition.notify(self._max_concurrent_requests) elif request_type == SHUTDOWN_REQUEST: self._expecting_shutdown_request = False self.quit(allow_async=True) elif request_type == NORMAL_REQUEST: self._condition.notify() if (not self._num_outstanding_requests and not self._num_running_background_threads): if self._quitting: self.quit() def wait(self, timeout_time): """Wait for this instance to have capacity to serve a request. Args: timeout_time: A float containing a time in seconds since the epoch to wait until before timing out. Returns: True if the instance has request capacity or False if the timeout time was reached or the instance has been quit. """ with self._condition: while (time.time() < timeout_time and not (self.remaining_request_capacity and self.can_accept_requests) and not self.has_quit): self._condition.wait(timeout_time - time.time()) return bool(self.remaining_request_capacity and self.can_accept_requests) def set_health(self, health): self._healthy = health @property def healthy(self): return self._healthy class InstanceFactory(object): """An abstract factory that creates instances for an InstancePool. Attributes: max_concurrent_requests: The maximum number of concurrent requests that Instances created by this factory can handle. If the Instances do not support concurrent requests then the value should be 1. START_URL_MAP: An apinfo.URLMap that should be used as the default /_ah/start handler if no user-specified script handler matches. WARMUP_URL_MAP: An apinfo.URLMap that should be used as the default /_ah/warmup handler if no user-specified script handler matches. """ START_URL_MAP = None WARMUP_URL_MAP = None # If True then the runtime supports interactive command evaluation e.g. for # use in interactive shells. SUPPORTS_INTERACTIVE_REQUESTS = False # Controls how instances are restarted when a file relevant to the application # is changed. Possible values: NEVER, AFTER_FIRST_RESTART, ALWAYS. FILE_CHANGE_INSTANCE_RESTART_POLICY = None def __init__(self, request_data, max_concurrent_requests, max_background_threads=0): """Initializer for InstanceFactory. Args: request_data: A wsgi_request_info.WSGIRequestInfo instance that will be populated with Instance data for use by the API stubs. max_concurrent_requests: The maximum number of concurrent requests that Instances created by this factory can handle. If the Instances do not support concurrent requests then the value should be 1. max_background_threads: The maximum number of background threads that the instance can handle. If the instance does not support background threads then the value should be 0. """ self.request_data = request_data self.max_concurrent_requests = max_concurrent_requests self.max_background_threads = max_background_threads def get_restart_directories(self): """Returns a list of directories changes in which should trigger a restart. Returns: A list of directory paths. Changes (i.e. files added, deleted or modified) in these directories will trigger the restart of all instances created with this factory. """ return [] def files_changed(self): """Called when a file relevant to the factory *might* have changed.""" def configuration_changed(self, config_changes): """Called when the configuration of the module has changed. Args: config_changes: A set containing the changes that occured. See the *_CHANGED constants in the application_configuration module. """ def new_instance(self, instance_id, expect_ready_request=False): """Create and return a new Instance. Args: instance_id: A string or integer representing the unique (per module) id of the instance. expect_ready_request: If True then the instance will be sent a special request (i.e. /_ah/warmup or /_ah/start) before it can handle external requests. Returns: The newly created instance.Instance. """ raise NotImplementedError()
36.759766
80
0.693534
59792bc47ca33ca2baec2d123501559d70c078b0
1,445
py
Python
setup.py
trondkr/xESMF
27952e1ab2f1b7b23c443953b9d1e079376efb08
[ "MIT" ]
null
null
null
setup.py
trondkr/xESMF
27952e1ab2f1b7b23c443953b9d1e079376efb08
[ "MIT" ]
null
null
null
setup.py
trondkr/xESMF
27952e1ab2f1b7b23c443953b9d1e079376efb08
[ "MIT" ]
1
2021-02-24T05:22:23.000Z
2021-02-24T05:22:23.000Z
from setuptools import setup, find_packages import os VERSION = '0.3.1' DISTNAME = 'xesmf' DESCRIPTION = "Universal Regridder for Geospatial Data" AUTHOR = 'Jiawei Zhuang' AUTHOR_EMAIL = 'jiaweizhuang@g.harvard.edu' URL = 'https://github.com/JiaweiZhuang/xESMF' LICENSE = 'MIT' PYTHON_REQUIRES = '>=3.5' # https://github.com/rtfd/readthedocs.org/issues/5512#issuecomment-475024373 on_rtd = os.environ.get('READTHEDOCS') == 'True' if on_rtd: INSTALL_REQUIRES = [] else: INSTALL_REQUIRES = ['esmpy', 'xarray', 'numpy', 'scipy'] CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering', ] def readme(): with open('README.rst') as f: return f.read() setup(name=DISTNAME, version=VERSION, license=LICENSE, author=AUTHOR, author_email=AUTHOR_EMAIL, classifiers=CLASSIFIERS, description=DESCRIPTION, long_description=readme(), python_requires=PYTHON_REQUIRES, install_requires=INSTALL_REQUIRES, url=URL, packages=find_packages())
27.788462
76
0.671972
4f655a0391166aea5b02910c861cad30b327317d
1,957
py
Python
functions_drug_features.py
pamiganderson/insight
8397288ac2aee4d98614a6a42179b8520cb1cbf4
[ "MIT" ]
null
null
null
functions_drug_features.py
pamiganderson/insight
8397288ac2aee4d98614a6a42179b8520cb1cbf4
[ "MIT" ]
null
null
null
functions_drug_features.py
pamiganderson/insight
8397288ac2aee4d98614a6a42179b8520cb1cbf4
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 26 15:54:44 2018 @author: pamelaanderson """ import numpy as np import pandas as pd def find_nti_drugs(df_merge_class): """ Determine if drugs are narrow therapeutic index """ nti_list = ['carbamazepine', 'cyclosporine', 'digoxin', 'ethosuximide', 'levothyroxine sodium', 'lithium carbonate', 'phenytoin', 'procainamide', 'theophylline anhydrous', 'warfarin sodium', 'tacrolimus'] nti_risk = [] for i, val in enumerate(df_merge_class.index.values): if val in nti_list: nti_risk.append(1) else: nti_risk.append(0) df_merge_class['nti_index'] = pd.Series(nti_risk, index=df_merge_class.index.values) return df_merge_class def find_num_act_ingredients(df_merge_class): """ Find the number of active ingredients in drugs """ path = '/Users/pamelaanderson/Documents/Insight/spending/' file_name = 'products.csv' df = pd.read_csv(path+file_name) num_act_ingredients = [] for i in df['ActiveIngredient']: num_act_ingredients.append(len(i.split(';'))) df['num_act_ingredients'] = pd.Series(num_act_ingredients) df_piv = pd.pivot_table(df, index='DrugName', values = 'num_act_ingredients', aggfunc = np.max) df_piv = df_piv.reset_index() df_piv['DrugName'] = df_piv['DrugName'].str.lower() df_piv = df_piv.set_index('DrugName') df_merge_ingre = df_merge_class.merge(df_piv, left_index=True, right_index=True, how='left') num_act_ingre = df_merge_ingre['num_act_ingredients'] num_act_ingre = num_act_ingre.fillna(1) df_merge_ingre['num_act_ingredients'] = num_act_ingre return df_merge_ingre
34.333333
88
0.610118
a90a5d223c9838f1aa357392d4b244819e4234cf
1,512
py
Python
rest-api/flask_app/config.py
sinedie/Flask-Svelte-Websockets-Nginx-Docker
76daeec2c76f9f27ca526f53393ab4363020b92b
[ "WTFPL" ]
4
2021-11-21T14:04:15.000Z
2022-03-20T15:28:14.000Z
rest-api/flask_app/config.py
sinedie/Utimate-flask-websocket-template
76daeec2c76f9f27ca526f53393ab4363020b92b
[ "WTFPL" ]
null
null
null
rest-api/flask_app/config.py
sinedie/Utimate-flask-websocket-template
76daeec2c76f9f27ca526f53393ab4363020b92b
[ "WTFPL" ]
null
null
null
import os # Flask env FLASK_ENV = os.environ.get("FLASK_ENV") SECRET_KEY = os.environ.get("SECRET_KEY") # JWT JWT_SECRET_KEY = os.environ.get("JWT_SECRET_KEY") JWT_REFRESH_TOKEN_EXPIRES = int(os.environ.get("JWT_REFRESH_TOKEN_EXPIRES")) # Postgres POSTGRES_USER = os.environ['POSTGRES_USER'] POSTGRES_PASSWORD = os.environ['POSTGRES_PASSWORD'] POSTGRES_HOST = os.environ['POSTGRES_HOST'] POSTGRES_PORT = os.environ['POSTGRES_PORT'] POSTGRES_DB = os.environ['POSTGRES_DB'] DATABASE_CONNECTION_URI = f'postgresql+psycopg2://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{POSTGRES_HOST}:{POSTGRES_PORT}/{POSTGRES_DB}' # Redis REDIS_PASSWORD = os.environ['REDIS_PASSWORD'] REDIS_HOST = os.environ['REDIS_HOST'] REDIS_PORT = os.environ['REDIS_PORT'] REDIS_DB = os.environ['REDIS_DB'] # REDIS_URI = f'redis://:{REDIS_PASSWORD}@{REDIS_HOST}:{REDIS_PORT}/{REDIS_DB}' REDIS_URI = f'redis://{REDIS_HOST}:{REDIS_PORT}/{REDIS_DB}' class Config: FLASK_ENV = FLASK_ENV DEBUG = False TESTING = False SECRET_KEY = SECRET_KEY JWT_SECRET_KEY = JWT_SECRET_KEY JWT_REFRESH_TOKEN_EXPIRES = JWT_REFRESH_TOKEN_EXPIRES SQLALCHEMY_DATABASE_URI = DATABASE_CONNECTION_URI SQLALCHEMY_TRACK_MODIFICATIONS = False REDIS_URI = REDIS_URI class DevConfig(Config): DEBUG = True class TestConfig(Config): TESTING = True class ProdConfig(Config): pass if FLASK_ENV == 'production': config = ProdConfig() elif FLASK_ENV == 'testing': config = TestConfig() else: config = DevConfig()
25.2
132
0.749339
04dd012077cc995f9628b51e95b7f7a1162fc8ff
1,261
py
Python
dumbo/hyy-python-hadoop/examples/TestText.py
arbenson/mrtsqr
006a2de645db9ad4735971cc0a77739249c1437d
[ "BSD-2-Clause" ]
11
2015-01-09T18:36:29.000Z
2022-02-09T09:02:36.000Z
python-hadoop/examples/TestText.py
streamsets/PythonSequenceFile
28350bc62442264bff79a0616474d8216718c694
[ "Apache-2.0" ]
null
null
null
python-hadoop/examples/TestText.py
streamsets/PythonSequenceFile
28350bc62442264bff79a0616474d8216718c694
[ "Apache-2.0" ]
1
2019-09-14T08:33:38.000Z
2019-09-14T08:33:38.000Z
#!/usr/bin/env python # ======================================================================== # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hadoop.io.SequenceFile import CompressionType from hadoop.io import Text from hadoop.io import SequenceFile def writeData(writer): key = Text() value = Text() key.set('Key') value.set('Value') writer.append(key, value) if __name__ == '__main__': writer = SequenceFile.createWriter('test.seq', Text, Text) writeData(writer) writer.close()
35.027778
74
0.701031
394263fbb9e84d42c2876dcabae02be673043326
688
py
Python
AzusaBot/Azusa/__init__.py
ethpch/AzusaBot_old
067e4985d4b8d60c98db758f3e103a4f409c9599
[ "MIT" ]
2
2021-09-23T14:43:00.000Z
2021-09-26T12:01:07.000Z
AzusaBot/Azusa/__init__.py
ethpch/AzusaBot_old
067e4985d4b8d60c98db758f3e103a4f409c9599
[ "MIT" ]
null
null
null
AzusaBot/Azusa/__init__.py
ethpch/AzusaBot_old
067e4985d4b8d60c98db758f3e103a4f409c9599
[ "MIT" ]
null
null
null
from os import path, sep import logging import nonebot from Azusa.log import initLogConf def init(config) -> nonebot.NoneBot: nonebot.init(config) initLogConf() logging.getLogger('Azusa').info('<Init> Azusa initializes successfully.') bot = nonebot.get_bot() bot.config.resources = path.join(path.dirname(__file__), 'resources') import Azusa.common import Azusa.data for mod in config.LOAD_MODULES: if '.' in mod: t = sep.join(mod.split('.')) else: t = mod nonebot.load_plugins( path.join(path.dirname(__file__), 'modules', t), f'Azusa.modules.{mod}' ) return bot
26.461538
77
0.617733
463b18e154cab11eb3871912f71580e7f6055d2b
5,246
py
Python
docs/source/conf.py
Pacman1984/etna
9b3ccb980e576d56858f14aca2e06ce2957b0fa9
[ "Apache-2.0" ]
96
2021-09-05T06:29:34.000Z
2021-11-07T15:22:54.000Z
docs/source/conf.py
Pacman1984/etna
9b3ccb980e576d56858f14aca2e06ce2957b0fa9
[ "Apache-2.0" ]
188
2021-09-06T15:59:58.000Z
2021-11-17T09:34:16.000Z
docs/source/conf.py
Pacman1984/etna
9b3ccb980e576d56858f14aca2e06ce2957b0fa9
[ "Apache-2.0" ]
8
2021-09-06T09:18:35.000Z
2021-11-11T21:18:39.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # Some code in conf.py and `_templates` are used from `github.com/jdb78/pytorch-forecasting/tree/v0.9.2/docs/source` under MIT License import os from pathlib import Path import shutil import sys import toml from sphinx.application import Sphinx from sphinx.ext.autosummary import Autosummary SOURCE_PATH = Path(os.path.dirname(__file__)) # noqa # docs source PROJECT_PATH = SOURCE_PATH.joinpath("../..") # noqa # project root """try: import git repo = git.Repo(PROJECT_PATH) COMMIT_SHORT_SHA = str(repo.active_branch.commit)[:8] CI_COMMIT_BRANCH = str(repo.active_branch) except: COMMIT_SHORT_SHA = os.environ["CI_COMMIT_SHORT_SHA"] CI_COMMIT_BRANCH = os.environ["CI_COMMIT_BRANCH"]""" sys.path.insert(0, str(PROJECT_PATH)) # noqa import etna # isort:skip # -- Project information ----------------------------------------------------- project = 'ETNA Time Series Library' copyright = '2021, etna-tech@tinkoff.ru' author = 'etna-tech@tinkoff.ru' # The full version, including alpha/beta/rc tags with open(PROJECT_PATH / "pyproject.toml", "r") as f: pyproject_toml = toml.load(f) """if CI_COMMIT_BRANCH == "master": release = f"ID {COMMIT_SHORT_SHA}" else: release = pyproject_toml["tool"]["poetry"]["version"]""" release = pyproject_toml["tool"]["poetry"]["version"] # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "nbsphinx", "myst_parser", "sphinx.ext.napoleon", "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.mathjax", "sphinx-mathjax-offline", "sphinx.ext.viewcode", "sphinx.ext.githubpages", ] autodoc_typehints = "both" autodoc_typehints_description_target = "all" add_module_names = False # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["**/.ipynb_checkpoints"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # setup configuration def skip(app, what, name, obj, skip, options): """ Document __init__ methods """ if name == "__init__": return True return skip apidoc_output_folder = SOURCE_PATH.joinpath("api") PACKAGES = [etna.__name__] def get_by_name(string: str): """ Import by name and return imported module/function/class Args: string (str): module/function/class to import, e.g. 'pandas.read_csv' will return read_csv function as defined by pandas Returns: imported object """ class_name = string.split(".")[-1] module_name = ".".join(string.split(".")[:-1]) if module_name == "": return getattr(sys.modules[__name__], class_name) mod = __import__(module_name, fromlist=[class_name]) return getattr(mod, class_name) class ModuleAutoSummary(Autosummary): def get_items(self, names): new_names = [] for name in names: mod = sys.modules[name] mod_items = getattr(mod, "__all__", mod.__dict__) for t in mod_items: if "." not in t and not t.startswith("_"): obj = get_by_name(f"{name}.{t}") if hasattr(obj, "__module__"): mod_name = obj.__module__ t = f"{mod_name}.{t}" if t.startswith("etna"): new_names.append(t) new_items = super().get_items(sorted(new_names, key=lambda x: x.split(".")[-1])) return new_items def setup(app: Sphinx): app.connect("autodoc-skip-member", skip) app.add_directive("moduleautosummary", ModuleAutoSummary) app.add_js_file("https://buttons.github.io/buttons.js", **{"async": "async"}) autodoc_member_order = "groupwise" autoclass_content = "both" # autosummary autosummary_generate = True shutil.rmtree(SOURCE_PATH.joinpath("api"), ignore_errors=True)
31.987805
134
0.65955
4c20617fda19b2aad3f3ad1b7c56b96e56ad0a54
32,204
py
Python
theano/sandbox/rng_mrg.py
arnaudsj/Theano
41103b5d158739e4147428ce776fb5716062d4a8
[ "BSD-3-Clause" ]
1
2015-11-05T13:58:11.000Z
2015-11-05T13:58:11.000Z
theano/sandbox/rng_mrg.py
arnaudsj/Theano
41103b5d158739e4147428ce776fb5716062d4a8
[ "BSD-3-Clause" ]
null
null
null
theano/sandbox/rng_mrg.py
arnaudsj/Theano
41103b5d158739e4147428ce776fb5716062d4a8
[ "BSD-3-Clause" ]
null
null
null
""" Implementation of MRG31k3p random number generator for Theano Generator code in SSJ package (L'Ecuyer & Simard) http://www.iro.umontreal.ca/~simardr/ssj/indexe.html """ import sys, warnings import numpy from theano import Op, Apply, shared, config, Variable from theano.tensor import (raw_random, TensorType, as_tensor_variable, get_vector_length, cast, opt, scal) from theano.tensor import zeros_like, sqrt, log, sin, cos, join, prod from theano.compile import optdb from theano.gof import local_optimizer from theano.gof.python25 import all import multinomial from theano.sandbox.cuda import cuda_available, cuda_enabled if cuda_available: from theano.sandbox.cuda import CudaNdarrayType, float32_shared_constructor def mulmod(a, b, c, m): r = numpy.int32((numpy.int64(a)*b + c) % m) if r >= 0: return r else: return r+m def matVecModM(A, s, m): # return (A * s) % m err_orig = numpy.seterr(over='ignore') try: x = numpy.zeros_like(s) for i in xrange(len(x)): for j in xrange(len(s)): x[i] = mulmod(A[i][j], s[j], x[i], m) return x finally: numpy.seterr(**err_orig) def multMatVect(v, A, m1, B, m2): #multiply the first half of v by A with a modulo of m1 #and the second half by B with a modulo of m2 r = numpy.zeros_like(v) r[:3] = matVecModM(A, v[:3], m1) r[3:] = matVecModM(B, v[3:], m2) return r #MRG31k3p #generator constants : M1 = numpy.int32(2147483647) #2^31 - 1 M2 = numpy.int32(2147462579) #2^31 - 21069 MASK12 = numpy.int32(511) #2^9 - 1 MASK13 = numpy.int32(16777215) #2^24 - 1 MASK2 = numpy.int32(65535) #2^16 - 1 MULT2 = numpy.int32(21069) NORM = 4.656612873077392578125e-10; #1./2^31 A1p0 = numpy.asarray([[0, 4194304, 129], [1, 0, 0], [0, 1, 0]]) A2p0 = numpy.asarray([[32768, 0, 32769], [1, 0, 0], [0, 1, 0]]) A1p72 = numpy.asarray([[1516919229, 758510237, 499121365], [1884998244, 1516919229, 335398200], [601897748, 1884998244, 358115744]]) A2p72 = numpy.asarray([[1228857673, 1496414766, 954677935], [1133297478, 1407477216, 1496414766], [2002613992, 1639496704, 1407477216]]) A1p134 = numpy.asarray( [[1702500920, 1849582496, 1656874625], [828554832, 1702500920, 1512419905], [1143731069, 828554832, 102237247]]) A2p134 = numpy.asarray( [[796789021, 1464208080, 607337906], [1241679051, 1431130166, 1464208080], [1401213391, 1178684362, 1431130166]]) def ff_2p134(rstate): return multMatVect(rstate, A1p134, M1, A2p134, M2) def ff_2p72(rstate): return multMatVect(rstate, A1p72, M1, A2p72, M2) def mrg_next_value(rstate, new_rstate): err_orig = numpy.seterr(over='ignore') try: x11, x12, x13, x21, x22, x23 = rstate assert type(x11) == numpy.int32 i0, i7, i9, i15, i16, i22, i24 = [numpy.int32(i) for i in (0,7, 9, 15, 16, 22, 24)] #first component y1 = (((x12 & MASK12) << i22) + (x12 >> i9) + ((x13 & MASK13) << i7) + (x13 >> i24)) assert type(y1) == numpy.int32 if (y1 < 0 or y1 >= M1): #must also check overflow y1 -= M1; y1 += x13; if (y1 < 0 or y1 >= M1): y1 -= M1; x13 = x12; x12 = x11; x11 = y1; #second component y1 = ((x21 & MASK2) << i15) + (MULT2 * (x21 >> i16)); assert type(y1) == numpy.int32 if (y1 < 0 or y1 >= M2): y1 -= M2; y2 = ((x23 & MASK2) << i15) + (MULT2 * (x23 >> i16)); assert type(y2) == numpy.int32 if (y2 < 0 or y2 >= M2): y2 -= M2; y2 += x23; if (y2 < 0 or y2 >= M2): y2 -= M2; y2 += y1; if (y2 < 0 or y2 >= M2): y2 -= M2; x23 = x22; x22 = x21; x21 = y2; # Must never return either 0 or M1+1 new_rstate[...] = [x11, x12, x13, x21, x22, x23] assert new_rstate.dtype == numpy.int32 if (x11 <= x21): return (x11 - x21 + M1) * NORM else: return (x11 - x21) * NORM finally: numpy.seterr(**err_orig) class mrg_uniform_base(Op): def __init__(self, output_type, inplace=False): Op.__init__(self) self.output_type = output_type self.inplace=inplace if inplace: self.destroy_map = {0:[0]} self.warned_numpy_version = False def __eq__(self, other): return type(self) == type(other) \ and self.output_type == other.output_type \ and self.inplace == other.inplace def __hash__(self): return hash(type(self)) ^ hash(self.output_type) ^ hash(self.inplace) def __str__(self): if self.inplace: s = "inplace" else: s = "no_inplace" return self.__class__.__name__+"{%s,%s}"%(self.output_type,s) def make_node(self, rstate, size): # error checking slightly redundant here, since # this op should not be called directly. # # call through MRG_RandomStreams instead. return Apply(self, [rstate, size], [rstate.type(), self.output_type()]) def grad(self,inputs,ograd): return [None for i in inputs] class mrg_uniform(mrg_uniform_base): #CPU VERSION @classmethod def new(cls, rstate, ndim, dtype, size): v_size = as_tensor_variable(size) if ndim is None: ndim = get_vector_length(v_size) op = cls(TensorType(dtype, (False,)*ndim)) return op(rstate, cast(v_size, 'int32')) def perform(self, node, inp, out): rstate, size = inp o_rstate, o_sample = out numpy_version=numpy.__version__.split('.') if not self.warned_numpy_version and int(numpy_version[0])<=1 and int(numpy_version[1])<3: print "Warning: you must use numpy version 1.3.0 or higher with the python version of this op. Otherwise numpy leak memory. and numpy" self.warned_numpy_version = True n_elements = 1 rstate = numpy.asarray(rstate) # bring state from GPU if necessary if not self.inplace: rstate = rstate.copy() for s in size: n_elements *= s n_streams,_ = rstate.shape rval = numpy.zeros(n_elements, dtype=self.output_type.dtype) for i in xrange(n_elements): sample = mrg_next_value(rstate[i%n_streams], rstate[i%n_streams]) rval[i] = sample o_rstate[0] = node.outputs[0].type.filter(rstate) # send to GPU if necessary o_sample[0] = node.outputs[1].type.filter(rval.reshape(size))# send to GPU if necessary def c_code(self, node, name, inp, out, sub): rstate, size = inp o_rstate, o_sample = out if self.inplace: o_rstate_requirement = 'NPY_C_CONTIGUOUS|NPY_ALIGNED' else: o_rstate_requirement = 'NPY_ENSURECOPY|NPY_C_CONTIGUOUS|NPY_ALIGNED' ndim = self.output_type.ndim o_type_num = numpy.asarray(0, dtype=self.output_type.dtype).dtype.num fail = sub['fail'] if self.output_type.dtype == 'float32': otype = 'float' NORM = '4.6566126e-10f' #numpy.float32(1.0/(2**31+65)) # this was determined by finding the biggest number such that # numpy.float32(number * M1) < 1.0 else: otype = 'double' NORM = '4.656612873077392578125e-10' return """ //////// <code generated by mrg_uniform> npy_intp odims[%(ndim)s]; int n_elements = 1; int n_streams = 0; int must_alloc_sample = ((NULL == %(o_sample)s) || (%(o_sample)s->nd != %(ndim)s)); %(otype)s * sample_data; npy_int32 * state_data; const npy_int32 i0 = 0; const npy_int32 i7 = 7; const npy_int32 i9 = 9; const npy_int32 i15 = 15; const npy_int32 i16 = 16; const npy_int32 i22 = 22; const npy_int32 i24 = 24; const npy_int32 M1 = 2147483647; //2^31 - 1 const npy_int32 M2 = 2147462579; //2^31 - 21069 const npy_int32 MASK12 = 511; //2^9 - 1 const npy_int32 MASK13 = 16777215; //2^24 - 1 const npy_int32 MASK2 = 65535; //2^16 - 1 const npy_int32 MULT2 = 21069; if (%(size)s->nd != 1) { PyErr_SetString(PyExc_ValueError, "size must be vector"); %(fail)s } if (%(size)s->dimensions[0] != %(ndim)s) { PyErr_Format(PyExc_ValueError, "size must have length %%i (not %%i)", %(ndim)s, int(%(size)s->dimensions[0])); %(fail)s } if (%(size)s->descr->type_num != PyArray_INT32) { PyErr_SetString(PyExc_ValueError, "size must be int32"); %(fail)s } for (int i = 0; i < %(ndim)s; ++i) { odims[i] = ((npy_int32*)(%(size)s->data + %(size)s->strides[0] * i))[0]; n_elements *= odims[i]; must_alloc_sample = must_alloc_sample || (%(o_sample)s->dimensions[i] != odims[i]); //fprintf(stderr, "size %%i %%i\\n", i, (int)odims[i]); // TODO CHECK STRIDES OF o_sample? } if (must_alloc_sample) { Py_XDECREF(%(o_sample)s); %(o_sample)s = (PyArrayObject*)PyArray_SimpleNew(%(ndim)s, odims, %(o_type_num)s); if(!%(o_sample)s) { PyErr_SetString(PyExc_MemoryError, "failed to alloc mrg_uniform output"); %(fail)s } } Py_XDECREF(%(o_rstate)s); %(o_rstate)s = (PyArrayObject*)PyArray_FromAny(py_%(rstate)s, NULL, 0, 0, %(o_rstate_requirement)s,NULL); if (%(o_rstate)s->nd != 2) { PyErr_SetString(PyExc_ValueError, "rstate must be matrix"); %(fail)s } if (%(o_rstate)s->dimensions[1] != 6) { PyErr_Format(PyExc_ValueError, "rstate must have 6 columns"); %(fail)s } if (%(o_rstate)s->descr->type_num != PyArray_INT32) { PyErr_SetString(PyExc_ValueError, "rstate must be int32"); %(fail)s } n_streams = %(o_rstate)s->dimensions[0]; sample_data = (%(otype)s *) %(o_sample)s->data; state_data = (npy_int32 *) %(o_rstate)s->data; for (int i = 0; i < n_elements; ++i) { npy_int32 * state_data_i = state_data + (i%%n_streams)*6; npy_int32 y1, y2, x11, x12, x13, x21, x22, x23; x11 = state_data_i[0]; x12 = state_data_i[1]; x13 = state_data_i[2]; x21 = state_data_i[3]; x22 = state_data_i[4]; x23 = state_data_i[5]; y1 = ((x12 & MASK12) << i22) + (x12 >> i9) + ((x13 & MASK13) << i7) + (x13 >> i24); if ((y1 < 0 || y1 >= M1)) //must also check overflow y1 -= M1; y1 += x13; if ((y1 < 0 or y1 >= M1)) y1 -= M1; x13 = x12; x12 = x11; x11 = y1; y1 = ((x21 & MASK2) << i15) + (MULT2 * (x21 >> i16)); if (y1 < 0 || y1 >= M2) y1 -= M2; y2 = ((x23 & MASK2) << i15) + (MULT2 * (x23 >> i16)); if (y2 < 0 || y2 >= M2) y2 -= M2; y2 += x23; if (y2 < 0 || y2 >= M2) y2 -= M2; y2 += y1; if (y2 < 0 or y2 >= M2) y2 -= M2; x23 = x22; x22 = x21; x21 = y2; if (x11 <= x21) { assert((x11 - x21 + M1) <= M1); sample_data[i] = (x11 - x21 + M1) * %(NORM)s; } else { assert(x11 - x21 <= M1); sample_data[i] = (x11 - x21) * %(NORM)s; } state_data_i[0]= x11; state_data_i[1]= x12; state_data_i[2]= x13; state_data_i[3]= x21; state_data_i[4]= x22; state_data_i[5]= x23; } //////// </ code generated by mrg_uniform> """ %locals() def c_code_cache_version(self): return (1,) class GPU_mrg_uniform(mrg_uniform_base): #GPU VERSION @classmethod def new(cls, rstate, ndim, dtype, size): v_size = as_tensor_variable(size) if ndim is None: ndim = get_vector_length(v_size) op = cls(CudaNdarrayType((False,)*ndim)) return op(rstate, cast(v_size, 'int32')) def c_support_code_apply(self, node, nodename): if self.output_type.dtype == 'float32': otype = 'float' NORM = '4.6566126e-10f' #numpy.float32(1.0/(2**31+65)) # this was determined by finding the biggest number such that # numpy.float32(number * M1) < 1.0 else: otype = 'double' NORM = '4.656612873077392578125e-10' return """ static int %(nodename)s_printed_warning = 0; static __global__ void %(nodename)s_mrg_uniform( %(otype)s*sample_data, npy_int32*state_data, const int Nsamples, const int Nstreams_used) { const npy_int32 i0 = 0; const npy_int32 i7 = 7; const npy_int32 i9 = 9; const npy_int32 i15 = 15; const npy_int32 i16 = 16; const npy_int32 i22 = 22; const npy_int32 i24 = 24; const npy_int32 M1 = 2147483647; //2^31 - 1 const npy_int32 M2 = 2147462579; //2^31 - 21069 const npy_int32 MASK12 = 511; //2^9 - 1 const npy_int32 MASK13 = 16777215; //2^24 - 1 const npy_int32 MASK2 = 65535; //2^16 - 1 const npy_int32 MULT2 = 21069; const unsigned int numThreads = blockDim.x * gridDim.x; const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x; npy_int32 y1, y2, x11, x12, x13, x21, x22, x23; if (idx < Nstreams_used) { x11 = state_data[idx*6+0]; x12 = state_data[idx*6+1]; x13 = state_data[idx*6+2]; x21 = state_data[idx*6+3]; x22 = state_data[idx*6+4]; x23 = state_data[idx*6+5]; for (int i = idx; i < Nsamples; i += Nstreams_used) { y1 = ((x12 & MASK12) << i22) + (x12 >> i9) + ((x13 & MASK13) << i7) + (x13 >> i24); y1 -= (y1 < 0 || y1 >= M1) ? M1 : 0; y1 += x13; y1 -= (y1 < 0 || y1 >= M1) ? M1 : 0; x13 = x12; x12 = x11; x11 = y1; y1 = ((x21 & MASK2) << i15) + (MULT2 * (x21 >> i16)); y1 -= (y1 < 0 || y1 >= M2) ? M2 : 0; y2 = ((x23 & MASK2) << i15) + (MULT2 * (x23 >> i16)); y2 -= (y2 < 0 || y2 >= M2) ? M2 : 0; y2 += x23; y2 -= (y2 < 0 || y2 >= M2) ? M2 : 0; y2 += y1; y2 -= (y2 < 0 or y2 >= M2) ? M2 : 0; x23 = x22; x22 = x21; x21 = y2; if (x11 <= x21) { sample_data[i] = (x11 - x21 + M1) * %(NORM)s; } else { sample_data[i] = (x11 - x21) * %(NORM)s; } } state_data[idx*6+0]= x11; state_data[idx*6+1]= x12; state_data[idx*6+2]= x13; state_data[idx*6+3]= x21; state_data[idx*6+4]= x22; state_data[idx*6+5]= x23; } } """ %locals() def c_code(self, node, nodename, inp, out, sub): rstate, size = inp o_rstate, o_sample = out inplace = int(self.inplace) ndim = self.output_type.ndim o_type_num = numpy.asarray(0, dtype=self.output_type.dtype).dtype.num fail = sub['fail'] if self.output_type.dtype == 'float32': otype = 'float' else: otype = 'double' SYNC="CNDA_THREAD_SYNC"; return """ //////// <code generated by mrg_uniform> int odims[%(ndim)s]; int n_elements = 1; int n_streams, n_streams_used_in_this_call; int must_alloc_sample = ((NULL == %(o_sample)s) || !CudaNdarray_Check(py_%(o_sample)s) || (%(o_sample)s->nd != %(ndim)s)); if (%(size)s->nd != 1) { PyErr_SetString(PyExc_ValueError, "size must be vector"); %(fail)s } if (%(size)s->dimensions[0] != %(ndim)s) { PyErr_Format(PyExc_ValueError, "size must have length %%i (not %%i)", %(ndim)s, %(size)s->dimensions[0]); %(fail)s } if (%(size)s->descr->type_num != PyArray_INT32) { PyErr_SetString(PyExc_ValueError, "size must be int32"); %(fail)s } for (int i = 0; i < %(ndim)s; ++i) { odims[i] = ((npy_int32*)(%(size)s->data + %(size)s->strides[0] * i))[0]; n_elements *= odims[i]; must_alloc_sample = (must_alloc_sample || CudaNdarray_HOST_DIMS(%(o_sample)s)[i] != odims[i]); } if (must_alloc_sample) { Py_XDECREF(%(o_sample)s); %(o_sample)s = (CudaNdarray*)CudaNdarray_NewDims(%(ndim)s, odims); if(!%(o_sample)s) { %(fail)s; } } if (!CudaNdarray_Check(py_%(rstate)s)) { PyErr_Format(PyExc_ValueError, "rstate must be cudandarray"); %(fail)s; } Py_XDECREF(%(o_rstate)s); if (%(inplace)s) { Py_INCREF(%(rstate)s); %(o_rstate)s = %(rstate)s; } else { %(o_rstate)s = (CudaNdarray*)CudaNdarray_Copy(%(rstate)s); } if (%(o_rstate)s->nd != 1) { PyErr_SetString(PyExc_ValueError, "rstate must be vector"); %(fail)s; } if (CudaNdarray_HOST_DIMS(%(o_rstate)s)[0] %% 6) { PyErr_Format(PyExc_ValueError, "rstate len must be multiple of 6"); %(fail)s; } n_streams = CudaNdarray_HOST_DIMS(%(o_rstate)s)[0]/6; n_streams_used_in_this_call = std::min(n_streams, n_elements); { unsigned int threads_per_block = std::min((unsigned int)n_streams_used_in_this_call, (unsigned int)NUM_VECTOR_OP_THREADS_PER_BLOCK); unsigned int n_blocks = std::min(ceil_intdiv((unsigned int)n_streams_used_in_this_call, threads_per_block), (unsigned int)NUM_VECTOR_OP_BLOCKS); if (threads_per_block * n_blocks < n_streams) { if (! %(nodename)s_printed_warning) fprintf(stderr, "WARNING: unused streams above %%i (Tune GPU_mrg get_n_streams)\\n", threads_per_block * n_blocks ); %(nodename)s_printed_warning = 1; } %(nodename)s_mrg_uniform<<<n_blocks,threads_per_block>>>( CudaNdarray_DEV_DATA(%(o_sample)s), (npy_int32*)CudaNdarray_DEV_DATA(%(o_rstate)s), n_elements, n_streams_used_in_this_call); } %(SYNC)s; { cudaError_t err = cudaGetLastError(); if( cudaSuccess != err) { PyErr_Format(PyExc_RuntimeError, "Cuda error: %%s: %%s.\\n", "mrg_uniform", cudaGetErrorString(err)); %(fail)s; } } //////// </ code generated by mrg_uniform> """ %locals() def c_code_cache_version(self): return (5,) def guess_n_streams(size, warn=True): """ Return a guess at a good number of streams. :param warn: If True, warn when a guess cannot be made (in which case we return 30 * 256). """ # TODO: a smart way of choosing the number of streams, see #612. # Note that this code was moved out of `MRG_RandomStreams` so that it can # be easily accessed from tests, where we want to disable the warning. if (isinstance(size, (tuple, list)) and all([isinstance(i, int) for i in size])): # We can make a guess. r = 1 for s in size: r *= s if r > 6: r = r/6 # chosen as fastest for rbm_benchmark return r else: if warn: warnings.warn(( "MRG_RandomStreams Can't determine #streams from " "size (%s), guessing 30*256") % str(size), stacklevel=3) return 30 * 256 class MRG_RandomStreams(object): """Module component with similar interface to numpy.random (numpy.random.RandomState)""" state_updates = [] """A list of pairs of the form (input_r, output_r), representing the update rules of all the random states generated by this RandomStreams""" def updates(self): return list(self.state_updates) def __init__(self, seed=12345, use_cuda=None): """ :type seed: int or list of 6 int. :param seed: a default seed to initialize the random state. If a single int is given, it will be replicated 6 times. The first 3 values of the seed must all be less than M1 = 2147483647, and not all 0; and the last 3 values must all be less than M2 = 2147462579, and not all 0. """ super(MRG_RandomStreams, self).__init__() if isinstance(seed, int): if seed == 0: raise ValueError('seed should not be 0', seed) elif seed >= M2: raise ValueError('seed should be less than %i' % M2, seed) self.rstate = numpy.asarray([seed]*6, dtype='int32') elif len(seed)==6: if seed[0] == 0 and seed[1] == 0 and seed[2] == 0: raise ValueError('The first 3 values of seed should not be all 0', seed) if seed[3] == 0 and seed[4] == 0 and seed[5] == 0: raise ValueError('The last 3 values of seed should not be all 0', seed) if seed[0] >= M1 or seed[1] >= M1 or seed[2] >= M1: raise ValueError('The first 3 values of seed should be less than %i' % M1, seed) if seed[3] >= M2 or seed[4] >= M2 or seed[5] >= M2: raise ValueError('The last 3 values of seed should be less than %i' % M2, seed) self.rstate = numpy.asarray(seed, dtype='int32') else: raise TypeError("seed should be 1 integer or 6 integers") if use_cuda is None: self.use_cuda = cuda_enabled else: self.use_cuda = use_cuda def inc_rstate(self): """Update self.rstate to be skipped 2^134 steps forward to the next stream start""" self.rstate = ff_2p134(self.rstate) assert self.rstate.dtype == numpy.int32 def get_substream_rstates(self, n_streams, inc_rstate=True): """Initialize a matrix in which each row is a MRG stream state, and they are spaced by 2**72 samples. """ assert n_streams < 2**72 assert n_streams > 0 rval = numpy.zeros((n_streams,6), dtype='int32') rval[0] = self.rstate for i in xrange(1, n_streams): rval[i] = ff_2p72(rval[i-1]) if inc_rstate: self.inc_rstate() return rval def n_streams(self, size): return guess_n_streams(size, warn=True) def pretty_return(self, node_rstate, new_rstate, sample): sample.rstate = node_rstate sample.update = (node_rstate, new_rstate) self.state_updates.append((node_rstate, new_rstate)) node_rstate.default_update = new_rstate return sample def uniform(self, size, low=0.0, high=1.0, ndim=None, dtype=None, nstreams=None): """ Sample a tensor of given size whose element from a uniform distribution between low and high. If the size argument is ambiguous on the number of dimensions, ndim may be a plain integer to supplement the missing information. :param low: Lower bound of the interval on which values are sampled. If the ``dtype`` arg is provided, ``low`` will be cast into dtype. :param high: Higher bound of the interval on which values are sampled. If the ``dtype`` arg is provided, ``high`` will be cast into dtype. :param size: Can be a list of integer or Theano variable (ex: the shape of other Theano Variable) :param dtype: The output data type. If dtype is not specified, it will be inferred from the dtype of low and high, but will be at least as precise as floatX. """ low = as_tensor_variable(low) high = as_tensor_variable(high) if dtype is None: dtype = scal.upcast(config.floatX, low.dtype, high.dtype) low = cast(low, dtype=dtype) high = cast(high, dtype=dtype) if isinstance(size, tuple): msg = "size must be a tuple of int or a Theano variable" assert all([isinstance(i,int) or isinstance(i,Variable) for i in size]), msg else: msg = "size must be a tuple of int or a Theano variable" assert isinstance(size, Variable) and size.ndim==1, msg if nstreams is None: nstreams = self.n_streams(size) if self.use_cuda and dtype=='float32': rstates = self.get_substream_rstates(nstreams) rstates = rstates.flatten() # HACK - we use fact that int32 and float32 have same size to # sneak ints into the CudaNdarray type. # these *SHOULD NEVER BE USED AS FLOATS* tmp_float_buf = numpy.frombuffer(rstates.data, dtype='float32') assert tmp_float_buf.shape == rstates.shape assert tmp_float_buf.data[:24] == rstates.data[:24] # transfer to device node_rstate = float32_shared_constructor(tmp_float_buf) assert isinstance(node_rstate.type, CudaNdarrayType) # we can't use the normal mrg_uniform constructor + later # optimization # because of the tmp_float_buf hack above. There is # currently no Theano node that will do a frombuffer # reinterpretation. u = self.pretty_return(node_rstate, *GPU_mrg_uniform.new(node_rstate, ndim, dtype, size)) else: node_rstate = shared(self.get_substream_rstates(nstreams)) u = self.pretty_return(node_rstate, *mrg_uniform.new(node_rstate, ndim, dtype, size)) r = u * (high-low) + low if u.type.broadcastable != r.type.broadcastable: raise NotImplementedError( 'Increase the size to match the broadcasting pattern of `low` and `high` arguments') assert r.dtype == dtype return r def binomial(self, size=None, n=1, p=0.5, ndim=None, dtype='int64', nstreams=None): if n == 1: if dtype == 'float32' and self.use_cuda: x = self.uniform(size=size, dtype=dtype, nstreams=nstreams) else: x = self.uniform(size=size, nstreams=nstreams) return cast(x < p, dtype) else: raise NotImplementedError("MRG_RandomStreams.binomial with n > 1") def multinomial(self, size=None, n=1, pvals=None, ndim=None, dtype='int64', nstreams=None): """ Sample `n` (currently `n` needs to be 1) times from a multinomial distribution defined by probabilities pvals. Example : pvals = [[.98,.01, .01], [.01, .98 .01]] will probably result in [[1,0,0],[0,1,0]]. .. note:: `size` and `ndim` are only there keep the same signature as other uniform, binomial, normal, etc. todo : adapt multinomial to take that into account """ if pvals is None: raise TypeError("You have to specify pvals") pvals = as_tensor_variable(pvals) if n == 1 and pvals.ndim == 2: ndim, size, bcast = raw_random._infer_ndim_bcast( ndim, size, pvals[:,0]) assert ndim==1 bcast = bcast+(pvals.type.broadcastable[-1],) unis = self.uniform(size=size, ndim=1, nstreams=nstreams) op = multinomial.MultinomialFromUniform(dtype) return op(pvals, unis) else: raise NotImplementedError(("MRG_RandomStreams.multinomial only" " implemented with n == 1 and pvals.ndim = 2")) def normal(self, size=None, avg=0.0, std=1.0, ndim=None, dtype=None, nstreams=None): """ :param size: Can be a list of integers or Theano variables (ex: the shape of another Theano Variable) :param dtype: The output data type. If dtype is not specified, it will be inferred from the dtype of low and high, but will be at least as precise as floatX. :param nstreams: Number of streams. """ # We need an even number of ]0,1[ samples. Then we split them # in two halves. First half becomes our U1's for Box-Muller, # second half our U2's. See Wikipedia page: # http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform avg = as_tensor_variable(avg) std = as_tensor_variable(std) if dtype is None: dtype = scal.upcast(config.floatX, avg.dtype, std.dtype) avg = cast(avg, dtype) std = cast(std, dtype) evened = False constant = False if isinstance(size, tuple) and all([isinstance(i,int) for i in size]): constant = True n_samples = numpy.prod(size) if n_samples % 2 == 1: n_samples += 1 evened = True else: #if even, don't change, if odd, +1 n_samples = prod(size)+(prod(size)%2) flattened = self.uniform(size=(n_samples,), dtype=dtype, nstreams=nstreams) if constant: U1 = flattened[:n_samples // 2] U2 = flattened[n_samples // 2:] else: U1 = flattened[:prod(flattened.shape) // 2] U2 = flattened[prod(flattened.shape) // 2:] #normal_samples = zeros_like(flattened) sqrt_ln_U1 = sqrt(-2.0 * log(U1)) # TypeError: 'TensorVariable' object does not support item assignment # so this doesn't work... #normal_samples[:n_samples/2] = sqrt_ln_U1 * cos(2.0*numpy.pi*U2) #normal_samples[n_samples/2:] = sqrt_ln_U1 * sin(2.0*numpy.pi*U2) # so trying this instead first_half = sqrt_ln_U1 * cos(numpy.array(2.0 * numpy.pi, dtype=dtype) * U2) second_half = sqrt_ln_U1 * sin(numpy.array(2.0 * numpy.pi, dtype=dtype)*U2) normal_samples = join(0, first_half, second_half) final_samples = None if evened: final_samples = normal_samples[:-1] elif constant: final_samples = normal_samples else: final_samples = normal_samples[:prod(size)] if size: final_samples = final_samples.reshape(size) final_samples = avg + std * final_samples assert final_samples.dtype == dtype return final_samples @local_optimizer([None]) def mrg_random_make_inplace(node): op = node.op if isinstance(op, mrg_uniform) and not op.inplace: # op might be gpu version new_op = op.__class__(op.output_type, inplace=True) return new_op.make_node(*node.inputs).outputs return False optdb.register('random_make_inplace_mrg', opt.in2out(mrg_random_make_inplace, ignore_newtrees=True), 99, 'fast_run', 'inplace')
36.022371
156
0.545025
22d1eb662ee1ea65f5c4d5921bb3c75aefa664d7
2,352
py
Python
AlgorithmQuestionAnswering/SparqlEndpoint.py
zointblackbriar/QuestionAnswering
319c3623ced22254d75c2918929a875090bd2bf5
[ "MIT" ]
1
2019-03-04T19:44:10.000Z
2019-03-04T19:44:10.000Z
AlgorithmQuestionAnswering/SparqlEndpoint.py
zointblackbriar/QuestionAnswering
319c3623ced22254d75c2918929a875090bd2bf5
[ "MIT" ]
null
null
null
AlgorithmQuestionAnswering/SparqlEndpoint.py
zointblackbriar/QuestionAnswering
319c3623ced22254d75c2918929a875090bd2bf5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 from SPARQLWrapper import SPARQLWrapper, JSON import rdflib from rdflib.graph import Graph # from rdflib.plugins import sparql # from rdflib import URIRef, Literal from rdflib.plugin import register, Serializer, Parser register('ttl', Parser, 'rdflib.plugins.parsers.notation3', 'TurtleParser') import logging # import colored_logs import time from rdflib.plugins.sparql import prepareQuery logging.info('Starting logger for ...') #or call logging.basicConfig # Set log name logger = logging.getLogger(__name__) class SPARQLEndpoint(): def __init__(self, endpoint, setQuery, paramFormat, filename=None): self._endpoint = endpoint self._setQuery = setQuery self._paramFormat = paramFormat self._filename = filename self._sparql = SPARQLWrapper(self._endpoint) def SparqlInit(self): logger.info("SparqlInit") try: results = self._sparql.query().convert() print(results) except Exception as ex: logger.exception('SparqlInit exception: ') def rdfParser(self, param_format): logger.info("RDF Parser") try: graph = Graph() #format is xml not rdf print(self._filename) graph.parse(self._filename, format=param_format) print(len(graph)) import pprint for stmt in graph: pprint.pprint(stmt) except Exception as ex: logger.exception('RDF Parser error:') def sparqlQueryForLocalSource(self): qresult = [] try: logger.info("sparqlQueryForLocalSource") print(self._paramFormat) print(self._filename) print(self._setQuery) graph = rdflib.Graph() graph.load(self._filename, format=self._paramFormat) preparedQuery = prepareQuery(self._setQuery) qresult = graph.query(preparedQuery) print(type(qresult)) for row in qresult: print(str(row)) except Exception as ex: logger.exception('Sparql for local source exception: ') return qresult def sparqlQueryRemote(self): time.sleep(5) results = self._sparql.query().convert() time.sleep(5) return results
29.772152
75
0.629252
ebb827a6dad65325cbcf822908634a155168f308
48,702
py
Python
third_party/WebKit/Tools/Scripts/webkitpy/thirdparty/irc/irclib.py
google-ar/chromium
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
777
2017-08-29T15:15:32.000Z
2022-03-21T05:29:41.000Z
third_party/WebKit/Tools/Scripts/webkitpy/thirdparty/irc/irclib.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
66
2017-08-30T18:31:18.000Z
2021-08-02T10:59:35.000Z
third_party/WebKit/Tools/Scripts/webkitpy/thirdparty/irc/irclib.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
123
2017-08-30T01:19:34.000Z
2022-03-17T22:55:31.000Z
# Copyright (C) 1999--2002 Joel Rosdahl # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # keltus <keltus@users.sourceforge.net> # # $Id: irclib.py,v 1.47 2008/09/25 22:00:59 keltus Exp $ """irclib -- Internet Relay Chat (IRC) protocol client library. This library is intended to encapsulate the IRC protocol at a quite low level. It provides an event-driven IRC client framework. It has a fairly thorough support for the basic IRC protocol, CTCP, DCC chat, but DCC file transfers is not yet supported. In order to understand how to make an IRC client, I'm afraid you more or less must understand the IRC specifications. They are available here: [IRC specifications]. The main features of the IRC client framework are: * Abstraction of the IRC protocol. * Handles multiple simultaneous IRC server connections. * Handles server PONGing transparently. * Messages to the IRC server are done by calling methods on an IRC connection object. * Messages from an IRC server triggers events, which can be caught by event handlers. * Reading from and writing to IRC server sockets are normally done by an internal select() loop, but the select()ing may be done by an external main loop. * Functions can be registered to execute at specified times by the event-loop. * Decodes CTCP tagging correctly (hopefully); I haven't seen any other IRC client implementation that handles the CTCP specification subtilties. * A kind of simple, single-server, object-oriented IRC client class that dispatches events to instance methods is included. Current limitations: * The IRC protocol shines through the abstraction a bit too much. * Data is not written asynchronously to the server, i.e. the write() may block if the TCP buffers are stuffed. * There are no support for DCC file transfers. * The author haven't even read RFC 2810, 2811, 2812 and 2813. * Like most projects, documentation is lacking... .. [IRC specifications] http://www.irchelp.org/irchelp/rfc/ """ import bisect import re import select import socket import string import sys import time import types VERSION = 0, 4, 8 DEBUG = 0 # TODO # ---- # (maybe) thread safety # (maybe) color parser convenience functions # documentation (including all event types) # (maybe) add awareness of different types of ircds # send data asynchronously to the server (and DCC connections) # (maybe) automatically close unused, passive DCC connections after a while # NOTES # ----- # connection.quit() only sends QUIT to the server. # ERROR from the server triggers the error event and the disconnect event. # dropping of the connection triggers the disconnect event. class IRCError(Exception): """Represents an IRC exception.""" pass class IRC: """Class that handles one or several IRC server connections. When an IRC object has been instantiated, it can be used to create Connection objects that represent the IRC connections. The responsibility of the IRC object is to provide an event-driven framework for the connections and to keep the connections alive. It runs a select loop to poll each connection's TCP socket and hands over the sockets with incoming data for processing by the corresponding connection. The methods of most interest for an IRC client writer are server, add_global_handler, remove_global_handler, execute_at, execute_delayed, process_once and process_forever. Here is an example: irc = irclib.IRC() server = irc.server() server.connect(\"irc.some.where\", 6667, \"my_nickname\") server.privmsg(\"a_nickname\", \"Hi there!\") irc.process_forever() This will connect to the IRC server irc.some.where on port 6667 using the nickname my_nickname and send the message \"Hi there!\" to the nickname a_nickname. """ def __init__(self, fn_to_add_socket=None, fn_to_remove_socket=None, fn_to_add_timeout=None): """Constructor for IRC objects. Optional arguments are fn_to_add_socket, fn_to_remove_socket and fn_to_add_timeout. The first two specify functions that will be called with a socket object as argument when the IRC object wants to be notified (or stop being notified) of data coming on a new socket. When new data arrives, the method process_data should be called. Similarly, fn_to_add_timeout is called with a number of seconds (a floating point number) as first argument when the IRC object wants to receive a notification (by calling the process_timeout method). So, if e.g. the argument is 42.17, the object wants the process_timeout method to be called after 42 seconds and 170 milliseconds. The three arguments mainly exist to be able to use an external main loop (for example Tkinter's or PyGTK's main app loop) instead of calling the process_forever method. An alternative is to just call ServerConnection.process_once() once in a while. """ if fn_to_add_socket and fn_to_remove_socket: self.fn_to_add_socket = fn_to_add_socket self.fn_to_remove_socket = fn_to_remove_socket else: self.fn_to_add_socket = None self.fn_to_remove_socket = None self.fn_to_add_timeout = fn_to_add_timeout self.connections = [] self.handlers = {} self.delayed_commands = [] # list of tuples in the format (time, function, arguments) self.add_global_handler("ping", _ping_ponger, -42) def server(self): """Creates and returns a ServerConnection object.""" c = ServerConnection(self) self.connections.append(c) return c def process_data(self, sockets): """Called when there is more data to read on connection sockets. Arguments: sockets -- A list of socket objects. See documentation for IRC.__init__. """ for s in sockets: for c in self.connections: if s == c._get_socket(): c.process_data() def process_timeout(self): """Called when a timeout notification is due. See documentation for IRC.__init__. """ t = time.time() while self.delayed_commands: if t >= self.delayed_commands[0][0]: self.delayed_commands[0][1](*self.delayed_commands[0][2]) del self.delayed_commands[0] else: break def process_once(self, timeout=0): """Process data from connections once. Arguments: timeout -- How long the select() call should wait if no data is available. This method should be called periodically to check and process incoming data, if there are any. If that seems boring, look at the process_forever method. """ sockets = map(lambda x: x._get_socket(), self.connections) sockets = filter(lambda x: x != None, sockets) if sockets: (i, o, e) = select.select(sockets, [], [], timeout) self.process_data(i) else: time.sleep(timeout) self.process_timeout() def process_forever(self, timeout=0.2): """Run an infinite loop, processing data from connections. This method repeatedly calls process_once. Arguments: timeout -- Parameter to pass to process_once. """ while 1: self.process_once(timeout) def disconnect_all(self, message=""): """Disconnects all connections.""" for c in self.connections: c.disconnect(message) def add_global_handler(self, event, handler, priority=0): """Adds a global handler function for a specific event type. Arguments: event -- Event type (a string). Check the values of the numeric_events dictionary in irclib.py for possible event types. handler -- Callback function. priority -- A number (the lower number, the higher priority). The handler function is called whenever the specified event is triggered in any of the connections. See documentation for the Event class. The handler functions are called in priority order (lowest number is highest priority). If a handler function returns \"NO MORE\", no more handlers will be called. """ if not event in self.handlers: self.handlers[event] = [] bisect.insort(self.handlers[event], ((priority, handler))) def remove_global_handler(self, event, handler): """Removes a global handler function. Arguments: event -- Event type (a string). handler -- Callback function. Returns 1 on success, otherwise 0. """ if not event in self.handlers: return 0 for h in self.handlers[event]: if handler == h[1]: self.handlers[event].remove(h) return 1 def execute_at(self, at, function, arguments=()): """Execute a function at a specified time. Arguments: at -- Execute at this time (standard \"time_t\" time). function -- Function to call. arguments -- Arguments to give the function. """ self.execute_delayed(at-time.time(), function, arguments) def execute_delayed(self, delay, function, arguments=()): """Execute a function after a specified time. Arguments: delay -- How many seconds to wait. function -- Function to call. arguments -- Arguments to give the function. """ bisect.insort(self.delayed_commands, (delay+time.time(), function, arguments)) if self.fn_to_add_timeout: self.fn_to_add_timeout(delay) def dcc(self, dcctype="chat"): """Creates and returns a DCCConnection object. Arguments: dcctype -- "chat" for DCC CHAT connections or "raw" for DCC SEND (or other DCC types). If "chat", incoming data will be split in newline-separated chunks. If "raw", incoming data is not touched. """ c = DCCConnection(self, dcctype) self.connections.append(c) return c def _handle_event(self, connection, event): """[Internal]""" h = self.handlers for handler in h.get("all_events", []) + h.get(event.eventtype(), []): if handler[1](connection, event) == "NO MORE": return def _remove_connection(self, connection): """[Internal]""" self.connections.remove(connection) if self.fn_to_remove_socket: self.fn_to_remove_socket(connection._get_socket()) _rfc_1459_command_regexp = re.compile("^(:(?P<prefix>[^ ]+) +)?(?P<command>[^ ]+)( *(?P<argument> .+))?") class Connection: """Base class for IRC connections. Must be overridden. """ def __init__(self, irclibobj): self.irclibobj = irclibobj def _get_socket(): raise IRCError, "Not overridden" ############################## ### Convenience wrappers. def execute_at(self, at, function, arguments=()): self.irclibobj.execute_at(at, function, arguments) def execute_delayed(self, delay, function, arguments=()): self.irclibobj.execute_delayed(delay, function, arguments) class ServerConnectionError(IRCError): pass class ServerNotConnectedError(ServerConnectionError): pass # Huh!? Crrrrazy EFNet doesn't follow the RFC: their ircd seems to # use \n as message separator! :P _linesep_regexp = re.compile("\r?\n") class ServerConnection(Connection): """This class represents an IRC server connection. ServerConnection objects are instantiated by calling the server method on an IRC object. """ def __init__(self, irclibobj): Connection.__init__(self, irclibobj) self.connected = 0 # Not connected yet. self.socket = None self.ssl = None def connect(self, server, port, nickname, password=None, username=None, ircname=None, localaddress="", localport=0, ssl=False, ipv6=False): """Connect/reconnect to a server. Arguments: server -- Server name. port -- Port number. nickname -- The nickname. password -- Password (if any). username -- The username. ircname -- The IRC name ("realname"). localaddress -- Bind the connection to a specific local IP address. localport -- Bind the connection to a specific local port. ssl -- Enable support for ssl. ipv6 -- Enable support for ipv6. This function can be called to reconnect a closed connection. Returns the ServerConnection object. """ if self.connected: self.disconnect("Changing servers") self.previous_buffer = "" self.handlers = {} self.real_server_name = "" self.real_nickname = nickname self.server = server self.port = port self.nickname = nickname self.username = username or nickname self.ircname = ircname or nickname self.password = password self.localaddress = localaddress self.localport = localport self.localhost = socket.gethostname() if ipv6: self.socket = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) else: self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: self.socket.bind((self.localaddress, self.localport)) self.socket.connect((self.server, self.port)) if ssl: self.ssl = socket.ssl(self.socket) except socket.error, x: self.socket.close() self.socket = None raise ServerConnectionError, "Couldn't connect to socket: %s" % x self.connected = 1 if self.irclibobj.fn_to_add_socket: self.irclibobj.fn_to_add_socket(self.socket) # Log on... if self.password: self.pass_(self.password) self.nick(self.nickname) self.user(self.username, self.ircname) return self def close(self): """Close the connection. This method closes the connection permanently; after it has been called, the object is unusable. """ self.disconnect("Closing object") self.irclibobj._remove_connection(self) def _get_socket(self): """[Internal]""" return self.socket def get_server_name(self): """Get the (real) server name. This method returns the (real) server name, or, more specifically, what the server calls itself. """ if self.real_server_name: return self.real_server_name else: return "" def get_nickname(self): """Get the (real) nick name. This method returns the (real) nickname. The library keeps track of nick changes, so it might not be the nick name that was passed to the connect() method. """ return self.real_nickname def process_data(self): """[Internal]""" try: if self.ssl: new_data = self.ssl.read(2**14) else: new_data = self.socket.recv(2**14) except socket.error, x: # The server hung up. self.disconnect("Connection reset by peer") return if not new_data: # Read nothing: connection must be down. self.disconnect("Connection reset by peer") return lines = _linesep_regexp.split(self.previous_buffer + new_data) # Save the last, unfinished line. self.previous_buffer = lines.pop() for line in lines: if DEBUG: print "FROM SERVER:", line if not line: continue prefix = None command = None arguments = None self._handle_event(Event("all_raw_messages", self.get_server_name(), None, [line])) m = _rfc_1459_command_regexp.match(line) if m.group("prefix"): prefix = m.group("prefix") if not self.real_server_name: self.real_server_name = prefix if m.group("command"): command = m.group("command").lower() if m.group("argument"): a = m.group("argument").split(" :", 1) arguments = a[0].split() if len(a) == 2: arguments.append(a[1]) # Translate numerics into more readable strings. if command in numeric_events: command = numeric_events[command] if command == "nick": if nm_to_n(prefix) == self.real_nickname: self.real_nickname = arguments[0] elif command == "welcome": # Record the nickname in case the client changed nick # in a nicknameinuse callback. self.real_nickname = arguments[0] if command in ["privmsg", "notice"]: target, message = arguments[0], arguments[1] messages = _ctcp_dequote(message) if command == "privmsg": if is_channel(target): command = "pubmsg" else: if is_channel(target): command = "pubnotice" else: command = "privnotice" for m in messages: if type(m) is types.TupleType: if command in ["privmsg", "pubmsg"]: command = "ctcp" else: command = "ctcpreply" m = list(m) if DEBUG: print "command: %s, source: %s, target: %s, arguments: %s" % ( command, prefix, target, m) self._handle_event(Event(command, prefix, target, m)) if command == "ctcp" and m[0] == "ACTION": self._handle_event(Event("action", prefix, target, m[1:])) else: if DEBUG: print "command: %s, source: %s, target: %s, arguments: %s" % ( command, prefix, target, [m]) self._handle_event(Event(command, prefix, target, [m])) else: target = None if command == "quit": arguments = [arguments[0]] elif command == "ping": target = arguments[0] else: target = arguments[0] arguments = arguments[1:] if command == "mode": if not is_channel(target): command = "umode" if DEBUG: print "command: %s, source: %s, target: %s, arguments: %s" % ( command, prefix, target, arguments) self._handle_event(Event(command, prefix, target, arguments)) def _handle_event(self, event): """[Internal]""" self.irclibobj._handle_event(self, event) if event.eventtype() in self.handlers: for fn in self.handlers[event.eventtype()]: fn(self, event) def is_connected(self): """Return connection status. Returns true if connected, otherwise false. """ return self.connected def add_global_handler(self, *args): """Add global handler. See documentation for IRC.add_global_handler. """ self.irclibobj.add_global_handler(*args) def remove_global_handler(self, *args): """Remove global handler. See documentation for IRC.remove_global_handler. """ self.irclibobj.remove_global_handler(*args) def action(self, target, action): """Send a CTCP ACTION command.""" self.ctcp("ACTION", target, action) def admin(self, server=""): """Send an ADMIN command.""" self.send_raw(" ".join(["ADMIN", server]).strip()) def ctcp(self, ctcptype, target, parameter=""): """Send a CTCP command.""" ctcptype = ctcptype.upper() self.privmsg(target, "\001%s%s\001" % (ctcptype, parameter and (" " + parameter) or "")) def ctcp_reply(self, target, parameter): """Send a CTCP REPLY command.""" self.notice(target, "\001%s\001" % parameter) def disconnect(self, message=""): """Hang up the connection. Arguments: message -- Quit message. """ if not self.connected: return self.connected = 0 self.quit(message) try: self.socket.close() except socket.error, x: pass self.socket = None self._handle_event(Event("disconnect", self.server, "", [message])) def globops(self, text): """Send a GLOBOPS command.""" self.send_raw("GLOBOPS :" + text) def info(self, server=""): """Send an INFO command.""" self.send_raw(" ".join(["INFO", server]).strip()) def invite(self, nick, channel): """Send an INVITE command.""" self.send_raw(" ".join(["INVITE", nick, channel]).strip()) def ison(self, nicks): """Send an ISON command. Arguments: nicks -- List of nicks. """ self.send_raw("ISON " + " ".join(nicks)) def join(self, channel, key=""): """Send a JOIN command.""" self.send_raw("JOIN %s%s" % (channel, (key and (" " + key)))) def kick(self, channel, nick, comment=""): """Send a KICK command.""" self.send_raw("KICK %s %s%s" % (channel, nick, (comment and (" :" + comment)))) def links(self, remote_server="", server_mask=""): """Send a LINKS command.""" command = "LINKS" if remote_server: command = command + " " + remote_server if server_mask: command = command + " " + server_mask self.send_raw(command) def list(self, channels=None, server=""): """Send a LIST command.""" command = "LIST" if channels: command = command + " " + ",".join(channels) if server: command = command + " " + server self.send_raw(command) def lusers(self, server=""): """Send a LUSERS command.""" self.send_raw("LUSERS" + (server and (" " + server))) def mode(self, target, command): """Send a MODE command.""" self.send_raw("MODE %s %s" % (target, command)) def motd(self, server=""): """Send an MOTD command.""" self.send_raw("MOTD" + (server and (" " + server))) def names(self, channels=None): """Send a NAMES command.""" self.send_raw("NAMES" + (channels and (" " + ",".join(channels)) or "")) def nick(self, newnick): """Send a NICK command.""" self.send_raw("NICK " + newnick) def notice(self, target, text): """Send a NOTICE command.""" # Should limit len(text) here! self.send_raw("NOTICE %s :%s" % (target, text)) def oper(self, nick, password): """Send an OPER command.""" self.send_raw("OPER %s %s" % (nick, password)) def part(self, channels, message=""): """Send a PART command.""" if type(channels) == types.StringType: self.send_raw("PART " + channels + (message and (" " + message))) else: self.send_raw("PART " + ",".join(channels) + (message and (" " + message))) def pass_(self, password): """Send a PASS command.""" self.send_raw("PASS " + password) def ping(self, target, target2=""): """Send a PING command.""" self.send_raw("PING %s%s" % (target, target2 and (" " + target2))) def pong(self, target, target2=""): """Send a PONG command.""" self.send_raw("PONG %s%s" % (target, target2 and (" " + target2))) def privmsg(self, target, text): """Send a PRIVMSG command.""" # Should limit len(text) here! self.send_raw("PRIVMSG %s :%s" % (target, text)) def privmsg_many(self, targets, text): """Send a PRIVMSG command to multiple targets.""" # Should limit len(text) here! self.send_raw("PRIVMSG %s :%s" % (",".join(targets), text)) def quit(self, message=""): """Send a QUIT command.""" # Note that many IRC servers don't use your QUIT message # unless you've been connected for at least 5 minutes! self.send_raw("QUIT" + (message and (" :" + message))) def send_raw(self, string): """Send raw string to the server. The string will be padded with appropriate CR LF. """ if self.socket is None: raise ServerNotConnectedError, "Not connected." try: if self.ssl: self.ssl.write(string + "\r\n") else: self.socket.send(string + "\r\n") if DEBUG: print "TO SERVER:", string except socket.error, x: # Ouch! self.disconnect("Connection reset by peer.") def squit(self, server, comment=""): """Send an SQUIT command.""" self.send_raw("SQUIT %s%s" % (server, comment and (" :" + comment))) def stats(self, statstype, server=""): """Send a STATS command.""" self.send_raw("STATS %s%s" % (statstype, server and (" " + server))) def time(self, server=""): """Send a TIME command.""" self.send_raw("TIME" + (server and (" " + server))) def topic(self, channel, new_topic=None): """Send a TOPIC command.""" if new_topic is None: self.send_raw("TOPIC " + channel) else: self.send_raw("TOPIC %s :%s" % (channel, new_topic)) def trace(self, target=""): """Send a TRACE command.""" self.send_raw("TRACE" + (target and (" " + target))) def user(self, username, realname): """Send a USER command.""" self.send_raw("USER %s 0 * :%s" % (username, realname)) def userhost(self, nicks): """Send a USERHOST command.""" self.send_raw("USERHOST " + ",".join(nicks)) def users(self, server=""): """Send a USERS command.""" self.send_raw("USERS" + (server and (" " + server))) def version(self, server=""): """Send a VERSION command.""" self.send_raw("VERSION" + (server and (" " + server))) def wallops(self, text): """Send a WALLOPS command.""" self.send_raw("WALLOPS :" + text) def who(self, target="", op=""): """Send a WHO command.""" self.send_raw("WHO%s%s" % (target and (" " + target), op and (" o"))) def whois(self, targets): """Send a WHOIS command.""" self.send_raw("WHOIS " + ",".join(targets)) def whowas(self, nick, max="", server=""): """Send a WHOWAS command.""" self.send_raw("WHOWAS %s%s%s" % (nick, max and (" " + max), server and (" " + server))) class DCCConnectionError(IRCError): pass class DCCConnection(Connection): """This class represents a DCC connection. DCCConnection objects are instantiated by calling the dcc method on an IRC object. """ def __init__(self, irclibobj, dcctype): Connection.__init__(self, irclibobj) self.connected = 0 self.passive = 0 self.dcctype = dcctype self.peeraddress = None self.peerport = None def connect(self, address, port): """Connect/reconnect to a DCC peer. Arguments: address -- Host/IP address of the peer. port -- The port number to connect to. Returns the DCCConnection object. """ self.peeraddress = socket.gethostbyname(address) self.peerport = port self.socket = None self.previous_buffer = "" self.handlers = {} self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.passive = 0 try: self.socket.connect((self.peeraddress, self.peerport)) except socket.error, x: raise DCCConnectionError, "Couldn't connect to socket: %s" % x self.connected = 1 if self.irclibobj.fn_to_add_socket: self.irclibobj.fn_to_add_socket(self.socket) return self def listen(self): """Wait for a connection/reconnection from a DCC peer. Returns the DCCConnection object. The local IP address and port are available as self.localaddress and self.localport. After connection from a peer, the peer address and port are available as self.peeraddress and self.peerport. """ self.previous_buffer = "" self.handlers = {} self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.passive = 1 try: self.socket.bind((socket.gethostbyname(socket.gethostname()), 0)) self.localaddress, self.localport = self.socket.getsockname() self.socket.listen(10) except socket.error, x: raise DCCConnectionError, "Couldn't bind socket: %s" % x return self def disconnect(self, message=""): """Hang up the connection and close the object. Arguments: message -- Quit message. """ if not self.connected: return self.connected = 0 try: self.socket.close() except socket.error, x: pass self.socket = None self.irclibobj._handle_event( self, Event("dcc_disconnect", self.peeraddress, "", [message])) self.irclibobj._remove_connection(self) def process_data(self): """[Internal]""" if self.passive and not self.connected: conn, (self.peeraddress, self.peerport) = self.socket.accept() self.socket.close() self.socket = conn self.connected = 1 if DEBUG: print "DCC connection from %s:%d" % ( self.peeraddress, self.peerport) self.irclibobj._handle_event( self, Event("dcc_connect", self.peeraddress, None, None)) return try: new_data = self.socket.recv(2**14) except socket.error, x: # The server hung up. self.disconnect("Connection reset by peer") return if not new_data: # Read nothing: connection must be down. self.disconnect("Connection reset by peer") return if self.dcctype == "chat": # The specification says lines are terminated with LF, but # it seems safer to handle CR LF terminations too. chunks = _linesep_regexp.split(self.previous_buffer + new_data) # Save the last, unfinished line. self.previous_buffer = chunks[-1] if len(self.previous_buffer) > 2**14: # Bad peer! Naughty peer! self.disconnect() return chunks = chunks[:-1] else: chunks = [new_data] command = "dccmsg" prefix = self.peeraddress target = None for chunk in chunks: if DEBUG: print "FROM PEER:", chunk arguments = [chunk] if DEBUG: print "command: %s, source: %s, target: %s, arguments: %s" % ( command, prefix, target, arguments) self.irclibobj._handle_event( self, Event(command, prefix, target, arguments)) def _get_socket(self): """[Internal]""" return self.socket def privmsg(self, string): """Send data to DCC peer. The string will be padded with appropriate LF if it's a DCC CHAT session. """ try: self.socket.send(string) if self.dcctype == "chat": self.socket.send("\n") if DEBUG: print "TO PEER: %s\n" % string except socket.error, x: # Ouch! self.disconnect("Connection reset by peer.") class SimpleIRCClient: """A simple single-server IRC client class. This is an example of an object-oriented wrapper of the IRC framework. A real IRC client can be made by subclassing this class and adding appropriate methods. The method on_join will be called when a "join" event is created (which is done when the server sends a JOIN messsage/command), on_privmsg will be called for "privmsg" events, and so on. The handler methods get two arguments: the connection object (same as self.connection) and the event object. Instance attributes that can be used by sub classes: ircobj -- The IRC instance. connection -- The ServerConnection instance. dcc_connections -- A list of DCCConnection instances. """ def __init__(self): self.ircobj = IRC() self.connection = self.ircobj.server() self.dcc_connections = [] self.ircobj.add_global_handler("all_events", self._dispatcher, -10) self.ircobj.add_global_handler("dcc_disconnect", self._dcc_disconnect, -10) def _dispatcher(self, c, e): """[Internal]""" m = "on_" + e.eventtype() if hasattr(self, m): getattr(self, m)(c, e) def _dcc_disconnect(self, c, e): self.dcc_connections.remove(c) def connect(self, server, port, nickname, password=None, username=None, ircname=None, localaddress="", localport=0, ssl=False, ipv6=False): """Connect/reconnect to a server. Arguments: server -- Server name. port -- Port number. nickname -- The nickname. password -- Password (if any). username -- The username. ircname -- The IRC name. localaddress -- Bind the connection to a specific local IP address. localport -- Bind the connection to a specific local port. ssl -- Enable support for ssl. ipv6 -- Enable support for ipv6. This function can be called to reconnect a closed connection. """ self.connection.connect(server, port, nickname, password, username, ircname, localaddress, localport, ssl, ipv6) def dcc_connect(self, address, port, dcctype="chat"): """Connect to a DCC peer. Arguments: address -- IP address of the peer. port -- Port to connect to. Returns a DCCConnection instance. """ dcc = self.ircobj.dcc(dcctype) self.dcc_connections.append(dcc) dcc.connect(address, port) return dcc def dcc_listen(self, dcctype="chat"): """Listen for connections from a DCC peer. Returns a DCCConnection instance. """ dcc = self.ircobj.dcc(dcctype) self.dcc_connections.append(dcc) dcc.listen() return dcc def start(self): """Start the IRC client.""" self.ircobj.process_forever() class Event: """Class representing an IRC event.""" def __init__(self, eventtype, source, target, arguments=None): """Constructor of Event objects. Arguments: eventtype -- A string describing the event. source -- The originator of the event (a nick mask or a server). target -- The target of the event (a nick or a channel). arguments -- Any event specific arguments. """ self._eventtype = eventtype self._source = source self._target = target if arguments: self._arguments = arguments else: self._arguments = [] def eventtype(self): """Get the event type.""" return self._eventtype def source(self): """Get the event source.""" return self._source def target(self): """Get the event target.""" return self._target def arguments(self): """Get the event arguments.""" return self._arguments _LOW_LEVEL_QUOTE = "\020" _CTCP_LEVEL_QUOTE = "\134" _CTCP_DELIMITER = "\001" _low_level_mapping = { "0": "\000", "n": "\n", "r": "\r", _LOW_LEVEL_QUOTE: _LOW_LEVEL_QUOTE } _low_level_regexp = re.compile(_LOW_LEVEL_QUOTE + "(.)") def mask_matches(nick, mask): """Check if a nick matches a mask. Returns true if the nick matches, otherwise false. """ nick = irc_lower(nick) mask = irc_lower(mask) mask = mask.replace("\\", "\\\\") for ch in ".$|[](){}+": mask = mask.replace(ch, "\\" + ch) mask = mask.replace("?", ".") mask = mask.replace("*", ".*") r = re.compile(mask, re.IGNORECASE) return r.match(nick) _special = "-[]\\`^{}" nick_characters = string.ascii_letters + string.digits + _special _ircstring_translation = string.maketrans(string.ascii_uppercase + "[]\\^", string.ascii_lowercase + "{}|~") def irc_lower(s): """Returns a lowercased string. The definition of lowercased comes from the IRC specification (RFC 1459). """ return s.translate(_ircstring_translation) def _ctcp_dequote(message): """[Internal] Dequote a message according to CTCP specifications. The function returns a list where each element can be either a string (normal message) or a tuple of one or two strings (tagged messages). If a tuple has only one element (ie is a singleton), that element is the tag; otherwise the tuple has two elements: the tag and the data. Arguments: message -- The message to be decoded. """ def _low_level_replace(match_obj): ch = match_obj.group(1) # If low_level_mapping doesn't have the character as key, we # should just return the character. return _low_level_mapping.get(ch, ch) if _LOW_LEVEL_QUOTE in message: # Yup, there was a quote. Release the dequoter! message = _low_level_regexp.sub(_low_level_replace, message) if _CTCP_DELIMITER not in message: return [message] else: # Split it into parts. (Does any IRC client actually *use* # CTCP stacking like this?) chunks = message.split(_CTCP_DELIMITER) messages = [] i = 0 while i < len(chunks)-1: # Add message if it's non-empty. if len(chunks[i]) > 0: messages.append(chunks[i]) if i < len(chunks)-2: # Aye! CTCP tagged data ahead! messages.append(tuple(chunks[i+1].split(" ", 1))) i = i + 2 if len(chunks) % 2 == 0: # Hey, a lonely _CTCP_DELIMITER at the end! This means # that the last chunk, including the delimiter, is a # normal message! (This is according to the CTCP # specification.) messages.append(_CTCP_DELIMITER + chunks[-1]) return messages def is_channel(string): """Check if a string is a channel name. Returns true if the argument is a channel name, otherwise false. """ return string and string[0] in "#&+!" def ip_numstr_to_quad(num): """Convert an IP number as an integer given in ASCII representation (e.g. '3232235521') to an IP address string (e.g. '192.168.0.1').""" n = long(num) p = map(str, map(int, [n >> 24 & 0xFF, n >> 16 & 0xFF, n >> 8 & 0xFF, n & 0xFF])) return ".".join(p) def ip_quad_to_numstr(quad): """Convert an IP address string (e.g. '192.168.0.1') to an IP number as an integer given in ASCII representation (e.g. '3232235521').""" p = map(long, quad.split(".")) s = str((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]) if s[-1] == "L": s = s[:-1] return s def nm_to_n(s): """Get the nick part of a nickmask. (The source of an Event is a nickmask.) """ return s.split("!")[0] def nm_to_uh(s): """Get the userhost part of a nickmask. (The source of an Event is a nickmask.) """ return s.split("!")[1] def nm_to_h(s): """Get the host part of a nickmask. (The source of an Event is a nickmask.) """ return s.split("@")[1] def nm_to_u(s): """Get the user part of a nickmask. (The source of an Event is a nickmask.) """ s = s.split("!")[1] return s.split("@")[0] def parse_nick_modes(mode_string): """Parse a nick mode string. The function returns a list of lists with three members: sign, mode and argument. The sign is \"+\" or \"-\". The argument is always None. Example: >>> irclib.parse_nick_modes(\"+ab-c\") [['+', 'a', None], ['+', 'b', None], ['-', 'c', None]] """ return _parse_modes(mode_string, "") def parse_channel_modes(mode_string): """Parse a channel mode string. The function returns a list of lists with three members: sign, mode and argument. The sign is \"+\" or \"-\". The argument is None if mode isn't one of \"b\", \"k\", \"l\", \"v\" or \"o\". Example: >>> irclib.parse_channel_modes(\"+ab-c foo\") [['+', 'a', None], ['+', 'b', 'foo'], ['-', 'c', None]] """ return _parse_modes(mode_string, "bklvo") def _parse_modes(mode_string, unary_modes=""): """[Internal]""" modes = [] arg_count = 0 # State variable. sign = "" a = mode_string.split() if len(a) == 0: return [] else: mode_part, args = a[0], a[1:] if mode_part[0] not in "+-": return [] for ch in mode_part: if ch in "+-": sign = ch elif ch == " ": collecting_arguments = 1 elif ch in unary_modes: if len(args) >= arg_count + 1: modes.append([sign, ch, args[arg_count]]) arg_count = arg_count + 1 else: modes.append([sign, ch, None]) else: modes.append([sign, ch, None]) return modes def _ping_ponger(connection, event): """[Internal]""" connection.pong(event.target()) # Numeric table mostly stolen from the Perl IRC module (Net::IRC). numeric_events = { "001": "welcome", "002": "yourhost", "003": "created", "004": "myinfo", "005": "featurelist", # XXX "200": "tracelink", "201": "traceconnecting", "202": "tracehandshake", "203": "traceunknown", "204": "traceoperator", "205": "traceuser", "206": "traceserver", "207": "traceservice", "208": "tracenewtype", "209": "traceclass", "210": "tracereconnect", "211": "statslinkinfo", "212": "statscommands", "213": "statscline", "214": "statsnline", "215": "statsiline", "216": "statskline", "217": "statsqline", "218": "statsyline", "219": "endofstats", "221": "umodeis", "231": "serviceinfo", "232": "endofservices", "233": "service", "234": "servlist", "235": "servlistend", "241": "statslline", "242": "statsuptime", "243": "statsoline", "244": "statshline", "250": "luserconns", "251": "luserclient", "252": "luserop", "253": "luserunknown", "254": "luserchannels", "255": "luserme", "256": "adminme", "257": "adminloc1", "258": "adminloc2", "259": "adminemail", "261": "tracelog", "262": "endoftrace", "263": "tryagain", "265": "n_local", "266": "n_global", "300": "none", "301": "away", "302": "userhost", "303": "ison", "305": "unaway", "306": "nowaway", "311": "whoisuser", "312": "whoisserver", "313": "whoisoperator", "314": "whowasuser", "315": "endofwho", "316": "whoischanop", "317": "whoisidle", "318": "endofwhois", "319": "whoischannels", "321": "liststart", "322": "list", "323": "listend", "324": "channelmodeis", "329": "channelcreate", "331": "notopic", "332": "currenttopic", "333": "topicinfo", "341": "inviting", "342": "summoning", "346": "invitelist", "347": "endofinvitelist", "348": "exceptlist", "349": "endofexceptlist", "351": "version", "352": "whoreply", "353": "namreply", "361": "killdone", "362": "closing", "363": "closeend", "364": "links", "365": "endoflinks", "366": "endofnames", "367": "banlist", "368": "endofbanlist", "369": "endofwhowas", "371": "info", "372": "motd", "373": "infostart", "374": "endofinfo", "375": "motdstart", "376": "endofmotd", "377": "motd2", # 1997-10-16 -- tkil "381": "youreoper", "382": "rehashing", "384": "myportis", "391": "time", "392": "usersstart", "393": "users", "394": "endofusers", "395": "nousers", "401": "nosuchnick", "402": "nosuchserver", "403": "nosuchchannel", "404": "cannotsendtochan", "405": "toomanychannels", "406": "wasnosuchnick", "407": "toomanytargets", "409": "noorigin", "411": "norecipient", "412": "notexttosend", "413": "notoplevel", "414": "wildtoplevel", "421": "unknowncommand", "422": "nomotd", "423": "noadmininfo", "424": "fileerror", "431": "nonicknamegiven", "432": "erroneusnickname", # Thiss iz how its speld in thee RFC. "433": "nicknameinuse", "436": "nickcollision", "437": "unavailresource", # "Nick temporally unavailable" "441": "usernotinchannel", "442": "notonchannel", "443": "useronchannel", "444": "nologin", "445": "summondisabled", "446": "usersdisabled", "451": "notregistered", "461": "needmoreparams", "462": "alreadyregistered", "463": "nopermforhost", "464": "passwdmismatch", "465": "yourebannedcreep", # I love this one... "466": "youwillbebanned", "467": "keyset", "471": "channelisfull", "472": "unknownmode", "473": "inviteonlychan", "474": "bannedfromchan", "475": "badchannelkey", "476": "badchanmask", "477": "nochanmodes", # "Channel doesn't support modes" "478": "banlistfull", "481": "noprivileges", "482": "chanoprivsneeded", "483": "cantkillserver", "484": "restricted", # Connection is restricted "485": "uniqopprivsneeded", "491": "nooperhost", "492": "noservicehost", "501": "umodeunknownflag", "502": "usersdontmatch", } generated_events = [ # Generated events "dcc_connect", "dcc_disconnect", "dccmsg", "disconnect", "ctcp", "ctcpreply", ] protocol_events = [ # IRC protocol events "error", "join", "kick", "mode", "part", "ping", "privmsg", "privnotice", "pubmsg", "pubnotice", "quit", "invite", "pong", ] all_events = generated_events + protocol_events + numeric_events.values()
31.199231
105
0.574802
7d39581a70eaa6c4311e994b1539716957258987
2,388
py
Python
libcst/codegen/gen_type_mapping.py
rowillia/LibCST
621d9a949a57a9100b7f2d1465ebd32aaeddb05c
[ "Apache-2.0" ]
null
null
null
libcst/codegen/gen_type_mapping.py
rowillia/LibCST
621d9a949a57a9100b7f2d1465ebd32aaeddb05c
[ "Apache-2.0" ]
null
null
null
libcst/codegen/gen_type_mapping.py
rowillia/LibCST
621d9a949a57a9100b7f2d1465ebd32aaeddb05c
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-strict from typing import List from libcst.codegen.gather import imports, nodebases, nodeuses generated_code: List[str] = [] generated_code.append("# Copyright (c) Facebook, Inc. and its affiliates.") generated_code.append("#") generated_code.append( "# This source code is licensed under the MIT license found in the" ) generated_code.append("# LICENSE file in the root directory of this source tree.") generated_code.append("") generated_code.append("# pyre-strict") generated_code.append("") generated_code.append("# This file was generated by libcst.codegen.gen_type_mapping") generated_code.append("from typing import Dict as TypingDict, Type, Union") generated_code.append("") generated_code.append("from libcst._maybe_sentinel import MaybeSentinel") generated_code.append("from libcst._removal_sentinel import RemovalSentinel") generated_code.append("from libcst._nodes.base import CSTNode") # Import the types we use. These have to be type guarded since it would # cause an import cycle otherwise. generated_code.append("") generated_code.append("") for module, objects in imports.items(): generated_code.append(f"from {module} import (") generated_code.append(f" {', '.join(sorted(list(objects)))}") generated_code.append(")") # Generate the base visit_ methods generated_code.append("") generated_code.append("") generated_code.append( "TYPED_FUNCTION_RETURN_MAPPING: TypingDict[Type[CSTNode], object] = {" ) for node in sorted(nodebases.keys(), key=lambda node: node.__name__): name = node.__name__ if name.startswith("Base"): continue valid_return_types: List[str] = [nodebases[node].__name__] node_uses = nodeuses[node] base_uses = nodeuses[nodebases[node]] if node_uses.maybe or base_uses.maybe: valid_return_types.append("MaybeSentinel") if ( node_uses.optional or node_uses.sequence or base_uses.optional or base_uses.sequence ): valid_return_types.append("RemovalSentinel") generated_code.append(f' {name}: Union[{", ".join(valid_return_types)}],') generated_code.append("}") if __name__ == "__main__": # Output the code print("\n".join(generated_code))
36.181818
85
0.7366
9043d4d356f149f3c143f3254f6afba5e8ffcaaf
676
py
Python
ThreeDEngine/util.py
MysteryCoder456/ThreeDEngine
c40bf5d751faa9016d6b3d5d11d76dbfd2e3fa75
[ "MIT" ]
8
2020-04-29T03:46:21.000Z
2020-05-01T17:43:29.000Z
ThreeDEngine/util.py
MysteryCoder456/3DEngine
c40bf5d751faa9016d6b3d5d11d76dbfd2e3fa75
[ "MIT" ]
null
null
null
ThreeDEngine/util.py
MysteryCoder456/3DEngine
c40bf5d751faa9016d6b3d5d11d76dbfd2e3fa75
[ "MIT" ]
null
null
null
from math import sqrt from glm import vec3 def average(numbers: list): """ Get the average of a list of numbers Arguments: numbers {list} -- Number list """ total_sum = 0 divisor = 0 for number in numbers: total_sum += number divisor += 1 return total_sum / divisor def dist3d(pos1: vec3, pos2: vec3): """ Get distance between 2 positions in 3D Space Arguments: pos1 {vec3} -- First position pos2 {vec3} -- Second position Returns: float -- The distance """ a = pos1.x - pos2.x b = pos1.y - pos2.y c = pos1.z - pos2.z return sqrt(a**2 + b**2 + c**2)
17.789474
48
0.565089
aac367bc7daade2b1492016649d29daf6b054361
3,430
py
Python
tripleoclient/exceptions.py
openstack/python-tripleoclient
3712cede1f859f5eb7b1d86b1721272448c219b0
[ "Apache-2.0" ]
39
2015-09-08T14:34:36.000Z
2022-02-20T21:00:44.000Z
tripleoclient/exceptions.py
openstack/python-tripleoclient
3712cede1f859f5eb7b1d86b1721272448c219b0
[ "Apache-2.0" ]
1
2021-02-28T06:06:29.000Z
2021-02-28T06:06:29.000Z
tripleoclient/exceptions.py
openstack/python-tripleoclient
3712cede1f859f5eb7b1d86b1721272448c219b0
[ "Apache-2.0" ]
33
2015-10-01T17:53:04.000Z
2022-03-10T11:50:38.000Z
# Copyright 2013 Nebula Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """Exception definitions""" class Base(Exception): """Base TripleO exception.""" class WorkflowServiceError(Base): """The service type is unknown""" class WebSocketConnectionClosed(Base): """Websocket connection is closed before wait for messages""" class NotFound(Base): """Resource not found""" class LookupError(Base): """Lookup Error""" class DeploymentError(Base): """Deployment failed""" class PlanEnvWorkflowError(Base): """Plan Environment workflow has failed""" class ConfigDownloadInProgress(Base): """Unable to deploy as config download already in progress""" msg_format = ("Config download already in progress with " "execution id {} for stack {}") def __init__(self, execution_id='', stack=''): message = self.msg_format.format(execution_id, stack) super(ConfigDownloadInProgress, self).__init__(message) class RootUserExecution(Base): """Command was executed by a root user""" class RootDeviceDetectionError(Base): """Failed to detect the root device""" class InvalidConfiguration(Base, ValueError): """Invalid parameters were specified for the deployment""" class IntrospectionError(Base): """Introspection failed""" class RegisterOrUpdateError(WorkflowServiceError): """Introspection failed""" class NodeProvideError(WorkflowServiceError): """Node Provide failed.""" class NodeConfigurationError(WorkflowServiceError): """Node Configuration failed.""" class ProfileMatchingError(Base): """Failed to validate or assign node profiles""" class PlanCreationError(Base): """Plan creation failed""" class PlanExportError(Base): """Plan export failed""" class WorkflowActionError(Base): """Workflow action failed""" msg_format = "Action {} execution failed: {}" def __init__(self, action='', output=''): message = self.msg_format.format(action, output) super(WorkflowActionError, self).__init__(message) class DownloadError(Base): """Download attempt failed""" class LogFetchError(Base): """Fetching logs failed""" class ContainerDeleteFailed(Base): """Container deletion failed""" class UndercloudUpgradeNotConfirmed(Base): """Undercloud upgrade security question not confirmed.""" class OvercloudUpdateNotConfirmed(Base): """Overcloud Update security question not confirmed.""" class OvercloudUpgradeNotConfirmed(Base): """Overcloud Update security question not confirmed.""" class CellExportError(Base): """Cell export failed""" class BannedParameters(Base): """Some of the environment parameters provided should be removed""" class HeatPodMessageQueueException(Base): """Heat messaging queue not created""" class InvalidPlaybook(Base): """Invalid playbook path specified"""
23.493151
77
0.714869
bf57511adaf8c9df7860d6b3eb64add771c54091
44,925
py
Python
models/Trading.py
Vashiru/pycryptobot
a4cf67cbb7467acc1d4aa7aab17cd65e8dbb80fe
[ "Apache-2.0" ]
1
2021-06-14T18:21:49.000Z
2021-06-14T18:21:49.000Z
models/Trading.py
Vashiru/pycryptobot
a4cf67cbb7467acc1d4aa7aab17cd65e8dbb80fe
[ "Apache-2.0" ]
null
null
null
models/Trading.py
Vashiru/pycryptobot
a4cf67cbb7467acc1d4aa7aab17cd65e8dbb80fe
[ "Apache-2.0" ]
null
null
null
"""Technical analysis on a trading Pandas DataFrame""" import warnings from re import compile from numpy import floor, maximum, mean, minimum, nan, ndarray, round from numpy import sum as np_sum from numpy import where from pandas import DataFrame, Series from datetime import datetime, timedelta from statsmodels.tsa.statespace.sarimax import SARIMAX, SARIMAXResultsWrapper from statsmodels.tools.sm_exceptions import ConvergenceWarning from models.helper.LogHelper import Logger warnings.simplefilter('ignore', ConvergenceWarning) class TechnicalAnalysis(): def __init__(self, data=DataFrame()) -> None: """Technical Analysis object model Parameters ---------- data : Pandas Time Series data[ts] = [ 'date', 'market', 'granularity', 'low', 'high', 'open', 'close', 'volume' ] """ if not isinstance(data, DataFrame): raise TypeError('Data is not a Pandas dataframe.') if 'date' not in data and 'market' not in data and 'granularity' not in data \ and 'low' not in data and 'high' not in data \ and 'open' not in data and 'close' not in data \ and 'volume' not in data: raise ValueError('Data not not contain date, market, granularity, low, high, open, close, volume') if not 'close' in data.columns: raise AttributeError("Pandas DataFrame 'close' column required.") if not data['close'].dtype == 'float64' and not data['close'].dtype == 'int64': raise AttributeError("Pandas DataFrame 'close' column not int64 or float64.") self.df = data self.levels = [] def getDataFrame(self) -> DataFrame: """Returns the Pandas DataFrame""" return self.df def addAll(self) -> None: """Adds analysis to the DataFrame""" self.addChangePct() self.addCMA() self.addSMA(20) self.addSMA(50) self.addSMA(200) self.addEMA(8) self.addEMA(12) self.addEMA(26) self.addGoldenCross() self.addDeathCross() self.addFibonacciBollingerBands() self.addRSI(14) self.addStochasticRSI(14) self.addWilliamsR(14) self.addMACD() self.addOBV() self.addElderRayIndex() self.addEMABuySignals() self.addSMABuySignals() self.addMACDBuySignals() self.addCandleAstralBuy() self.addCandleAstralSell() self.addCandleHammer() self.addCandleInvertedHammer() self.addCandleShootingStar() self.addCandleHangingMan() self.addCandleThreeWhiteSoldiers() self.addCandleThreeBlackCrows() self.addCandleDoji() self.addCandleThreeLineStrike() self.addCandleTwoBlackGapping() self.addCandleMorningStar() self.addCandleEveningStar() self.addCandleAbandonedBaby() self.addCandleMorningDojiStar() self.addCandleEveningDojiStar() """Candlestick References https://commodity.com/technical-analysis https://www.investopedia.com https://github.com/SpiralDevelopment/candlestick-patterns https://www.incrediblecharts.com/candlestick_patterns/candlestick-patterns-strongest.php """ def candleHammer(self) -> Series: """* Candlestick Detected: Hammer ("Weak - Reversal - Bullish Signal - Up""" return ((self.df['high'] - self.df['low']) > 3 * (self.df['open'] - self.df['close'])) \ & (((self.df['close'] - self.df['low']) / (.001 + self.df['high'] - self.df['low'])) > 0.6) \ & (((self.df['open'] - self.df['low']) / (.001 + self.df['high'] - self.df['low'])) > 0.6) def addCandleHammer(self) -> None: self.df['hammer'] = self.candleHammer() def candleShootingStar(self) -> Series: """* Candlestick Detected: Shooting Star ("Weak - Reversal - Bearish Pattern - Down")""" return ((self.df['open'].shift(1) < self.df['close'].shift(1)) & (self.df['close'].shift(1) < self.df['open'])) \ & (self.df['high'] - maximum(self.df['open'], self.df['close']) >= (abs(self.df['open'] - self.df['close']) * 3)) \ & ((minimum(self.df['close'], self.df['open']) - self.df['low']) <= abs(self.df['open'] - self.df['close'])) def addCandleShootingStar(self) -> None: self.df['shooting_star'] = self.candleShootingStar() def candleHangingMan(self) -> Series: """* Candlestick Detected: Hanging Man ("Weak - Continuation - Bearish Pattern - Down")""" return ((self.df['high'] - self.df['low']) > (4 * (self.df['open'] - self.df['close']))) \ & (((self.df['close'] - self.df['low']) / (.001 + self.df['high'] - self.df['low'])) >= 0.75) \ & (((self.df['open'] - self.df['low']) / (.001 + self.df['high'] - self.df['low'])) >= 0.75) \ & (self.df['high'].shift(1) < self.df['open']) \ & (self.df['high'].shift(2) < self.df['open']) def addCandleHangingMan(self) -> None: self.df['hanging_man'] = self.candleHangingMan() def candleInvertedHammer(self) -> Series: """* Candlestick Detected: Inverted Hammer ("Weak - Continuation - Bullish Pattern - Up")""" return (((self.df['high'] - self.df['low']) > 3 * (self.df['open'] - self.df['close'])) \ & ((self.df['high'] - self.df['close']) / (.001 + self.df['high'] - self.df['low']) > 0.6) \ & ((self.df['high'] - self.df['open']) / (.001 + self.df['high'] - self.df['low']) > 0.6)) def addCandleInvertedHammer(self) -> None: self.df['inverted_hammer'] = self.candleInvertedHammer() def candleThreeWhiteSoldiers(self) -> Series: """*** Candlestick Detected: Three White Soldiers ("Strong - Reversal - Bullish Pattern - Up")""" return ((self.df['open'] > self.df['open'].shift(1)) & (self.df['open'] < self.df['close'].shift(1))) \ & (self.df['close'] > self.df['high'].shift(1)) \ & (self.df['high'] - maximum(self.df['open'], self.df['close']) < (abs(self.df['open'] - self.df['close']))) \ & ((self.df['open'].shift(1) > self.df['open'].shift(2)) & (self.df['open'].shift(1) < self.df['close'].shift(2))) \ & (self.df['close'].shift(1) > self.df['high'].shift(2)) \ & (self.df['high'].shift(1) - maximum(self.df['open'].shift(1), self.df['close'].shift(1)) < (abs(self.df['open'].shift(1) - self.df['close'].shift(1)))) def addCandleThreeWhiteSoldiers(self) -> None: self.df['three_white_soldiers'] = self.candleThreeWhiteSoldiers() def candleThreeBlackCrows(self) -> Series: """* Candlestick Detected: Three Black Crows ("Strong - Reversal - Bearish Pattern - Down")""" return ((self.df['open'] < self.df['open'].shift(1)) & (self.df['open'] > self.df['close'].shift(1))) \ & (self.df['close'] < self.df['low'].shift(1)) \ & (self.df['low'] - maximum(self.df['open'], self.df['close']) < (abs(self.df['open'] - self.df['close']))) \ & ((self.df['open'].shift(1) < self.df['open'].shift(2)) & (self.df['open'].shift(1) > self.df['close'].shift(2))) \ & (self.df['close'].shift(1) < self.df['low'].shift(2)) \ & (self.df['low'].shift(1) - maximum(self.df['open'].shift(1), self.df['close'].shift(1)) < (abs(self.df['open'].shift(1) - self.df['close'].shift(1)))) def addCandleThreeBlackCrows(self) -> None: self.df['three_black_crows'] = self.candleThreeBlackCrows() def candleDoji(self) -> Series: """! Candlestick Detected: Doji ("Indecision")""" return ((abs(self.df['close'] - self.df['open']) / (self.df['high'] - self.df['low'])) < 0.1) \ & ((self.df['high'] - maximum(self.df['close'], self.df['open'])) > (3 * abs(self.df['close'] - self.df['open']))) \ & ((minimum(self.df['close'], self.df['open']) - self.df['low']) > (3 * abs(self.df['close'] - self.df['open']))) def addCandleDoji(self) -> None: self.df['doji'] = self.candleDoji() def candleThreeLineStrike(self) -> Series: """** Candlestick Detected: Three Line Strike ("Reliable - Reversal - Bullish Pattern - Up")""" return ((self.df['open'].shift(1) < self.df['open'].shift(2)) & (self.df['open'].shift(1) > self.df['close'].shift(2))) \ & (self.df['close'].shift(1) < self.df['low'].shift(2)) \ & (self.df['low'].shift(1) - maximum(self.df['open'].shift(1), self.df['close'].shift(1)) < (abs(self.df['open'].shift(1) - self.df['close'].shift(1)))) \ & ((self.df['open'].shift(2) < self.df['open'].shift(3)) & (self.df['open'].shift(2) > self.df['close'].shift(3))) \ & (self.df['close'].shift(2) < self.df['low'].shift(3)) \ & (self.df['low'].shift(2) - maximum(self.df['open'].shift(2), self.df['close'].shift(2)) < (abs(self.df['open'].shift(2) - self.df['close'].shift(2)))) \ & ((self.df['open'] < self.df['low'].shift(1)) & (self.df['close'] > self.df['high'].shift(3))) def addCandleThreeLineStrike(self) -> None: self.df['three_line_strike'] = self.candleThreeLineStrike() def candleTwoBlackGapping(self) -> Series: """*** Candlestick Detected: Two Black Gapping ("Reliable - Reversal - Bearish Pattern - Down")""" return ((self.df['open'] < self.df['open'].shift(1)) & (self.df['open'] > self.df['close'].shift(1))) \ & (self.df['close'] < self.df['low'].shift(1)) \ & (self.df['low'] - maximum(self.df['open'], self.df['close']) < (abs(self.df['open'] - self.df['close']))) \ & (self.df['high'].shift(1) < self.df['low'].shift(2)) def addCandleTwoBlackGapping(self) -> None: self.df['two_black_gapping'] = self.candleTwoBlackGapping() def candleMorningStar(self) -> Series: """*** Candlestick Detected: Morning Star ("Strong - Reversal - Bullish Pattern - Up")""" return ((maximum(self.df['open'].shift(1), self.df['close'].shift(1)) < self.df['close'].shift(2)) & (self.df['close'].shift(2) < self.df['open'].shift(2))) \ & ((self.df['close'] > self.df['open']) & (self.df['open'] > maximum(self.df['open'].shift(1), self.df['close'].shift(1)))) def addCandleMorningStar(self) -> None: self.df['morning_star'] = self.candleMorningStar() def candleEveningStar(self) -> ndarray: """*** Candlestick Detected: Evening Star ("Strong - Reversal - Bearish Pattern - Down")""" return ((minimum(self.df['open'].shift(1), self.df['close'].shift(1)) > self.df['close'].shift(2)) & (self.df['close'].shift(2) > self.df['open'].shift(2))) \ & ((self.df['close'] < self.df['open']) & (self.df['open'] < minimum(self.df['open'].shift(1), self.df['close'].shift(1)))) def addCandleEveningStar(self) -> None: self.df['evening_star'] = self.candleEveningStar() def candleAbandonedBaby(self): """** Candlestick Detected: Abandoned Baby ("Reliable - Reversal - Bullish Pattern - Up")""" return (self.df['open'] < self.df['close']) \ & (self.df['high'].shift(1) < self.df['low']) \ & (self.df['open'].shift(2) > self.df['close'].shift(2)) \ & (self.df['high'].shift(1) < self.df['low'].shift(2)) def addCandleAbandonedBaby(self) -> None: self.df['abandoned_baby'] = self.candleAbandonedBaby() def candleMorningDojiStar(self) -> Series: """** Candlestick Detected: Morning Doji Star ("Reliable - Reversal - Bullish Pattern - Up")""" return (self.df['close'].shift(2) < self.df['open'].shift(2)) \ & (abs(self.df['close'].shift(2) - self.df['open'].shift(2)) / (self.df['high'].shift(2) - self.df['low'].shift(2)) >= 0.7) \ & (abs(self.df['close'].shift(1) - self.df['open'].shift(1)) / (self.df['high'].shift(1) - self.df['low'].shift(1)) < 0.1) \ & (self.df['close'] > self.df['open']) \ & (abs(self.df['close'] - self.df['open']) / (self.df['high'] - self.df['low']) >= 0.7) \ & (self.df['close'].shift(2) > self.df['close'].shift(1)) \ & (self.df['close'].shift(2) > self.df['open'].shift(1)) \ & (self.df['close'].shift(1) < self.df['open']) \ & (self.df['open'].shift(1) < self.df['open']) \ & (self.df['close'] > self.df['close'].shift(2)) \ & ((self.df['high'].shift(1) - maximum(self.df['close'].shift(1), self.df['open'].shift(1))) > (3 * abs(self.df['close'].shift(1) - self.df['open'].shift(1)))) \ & (minimum(self.df['close'].shift(1), self.df['open'].shift(1)) - self.df['low'].shift(1)) > (3 * abs(self.df['close'].shift(1) - self.df['open'].shift(1))) def addCandleMorningDojiStar(self) -> None: self.df['morning_doji_star'] = self.candleMorningDojiStar() def candleEveningDojiStar(self) -> Series: """** Candlestick Detected: Evening Doji Star ("Reliable - Reversal - Bearish Pattern - Down")""" return (self.df['close'].shift(2) > self.df['open'].shift(2)) \ & (abs(self.df['close'].shift(2) - self.df['open'].shift(2)) / (self.df['high'].shift(2) - self.df['low'].shift(2)) >= 0.7) \ & (abs(self.df['close'].shift(1) - self.df['open'].shift(1)) / (self.df['high'].shift(1) - self.df['low'].shift(1)) < 0.1) \ & (self.df['close'] < self.df['open']) \ & (abs(self.df['close'] - self.df['open']) / (self.df['high'] - self.df['low']) >= 0.7) \ & (self.df['close'].shift(2) < self.df['close'].shift(1)) \ & (self.df['close'].shift(2) < self.df['open'].shift(1)) \ & (self.df['close'].shift(1) > self.df['open']) \ & (self.df['open'].shift(1) > self.df['open']) \ & (self.df['close'] < self.df['close'].shift(2)) \ & ((self.df['high'].shift(1) - maximum(self.df['close'].shift(1), self.df['open'].shift(1))) > (3 * abs(self.df['close'].shift(1) - self.df['open'].shift(1)))) \ & (minimum(self.df['close'].shift(1), self.df['open'].shift(1)) - self.df['low'].shift(1)) > (3 * abs(self.df['close'].shift(1) - self.df['open'].shift(1))) def addCandleEveningDojiStar(self) -> None: self.df['evening_doji_star'] = self.candleEveningDojiStar() def candleAstralBuy(self) -> Series: """*** Candlestick Detected: Astral Buy (Fibonacci 3, 5, 8)""" return (self.df['close'] < self.df['close'].shift(3)) & (self.df['low'] < self.df['low'].shift(5)) \ & (self.df['close'].shift(1) < self.df['close'].shift(4)) & (self.df['low'].shift(1) < self.df['low'].shift(6)) \ & (self.df['close'].shift(2) < self.df['close'].shift(5)) & (self.df['low'].shift(2) < self.df['low'].shift(7)) \ & (self.df['close'].shift(3) < self.df['close'].shift(6)) & (self.df['low'].shift(3) < self.df['low'].shift(8)) \ & (self.df['close'].shift(4) < self.df['close'].shift(7)) & (self.df['low'].shift(4) < self.df['low'].shift(9)) \ & (self.df['close'].shift(5) < self.df['close'].shift(8)) & (self.df['low'].shift(5) < self.df['low'].shift(10)) \ & (self.df['close'].shift(6) < self.df['close'].shift(9)) & (self.df['low'].shift(6) < self.df['low'].shift(11)) \ & (self.df['close'].shift(7) < self.df['close'].shift(10)) & (self.df['low'].shift(7) < self.df['low'].shift(12)) def addCandleAstralBuy(self) -> None: self.df['astral_buy'] = self.candleAstralBuy() def candleAstralSell(self) -> Series: """*** Candlestick Detected: Astral Sell (Fibonacci 3, 5, 8)""" return (self.df['close'] > self.df['close'].shift(3)) & (self.df['high'] > self.df['high'].shift(5)) \ & (self.df['close'].shift(1) > self.df['close'].shift(4)) & (self.df['high'].shift(1) > self.df['high'].shift(6)) \ & (self.df['close'].shift(2) > self.df['close'].shift(5)) & (self.df['high'].shift(2) > self.df['high'].shift(7)) \ & (self.df['close'].shift(3) > self.df['close'].shift(6)) & (self.df['high'].shift(3) > self.df['high'].shift(8)) \ & (self.df['close'].shift(4) > self.df['close'].shift(7)) & (self.df['high'].shift(4) > self.df['high'].shift(9)) \ & (self.df['close'].shift(5) > self.df['close'].shift(8)) & (self.df['high'].shift(5) > self.df['high'].shift(10)) \ & (self.df['close'].shift(6) > self.df['close'].shift(9)) & (self.df['high'].shift(6) > self.df['high'].shift(11)) \ & (self.df['close'].shift(7) > self.df['close'].shift(10)) & (self.df['high'].shift(7) > self.df['high'].shift(12)) def addCandleAstralSell(self) -> None: self.df['astral_sell'] = self.candleAstralSell() def changePct(self) -> DataFrame: """Close change percentage""" close_pc = self.df['close'] / self.df['close'].shift(1) - 1 close_pc = close_pc.fillna(0) return close_pc def addChangePct(self) -> None: """Adds the close percentage to the DataFrame""" self.df['close_pc'] = self.changePct() # cumulative returns self.df['close_cpc'] = (1 + self.df['close_pc']).cumprod() def cumulativeMovingAverage(self) -> float: """Calculates the Cumulative Moving Average (CMA)""" return self.df.close.expanding().mean() def addCMA(self) -> None: """Adds the Cumulative Moving Average (CMA) to the DataFrame""" self.df['cma'] = self.cumulativeMovingAverage() def exponentialMovingAverage(self, period: int) -> float: """Calculates the Exponential Moving Average (EMA)""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 5 or period > 200: raise ValueError('Period is out of range') if len(self.df) < period: raise Exception('Data range too small.') return self.df.close.ewm(span=period, adjust=False).mean() def addEMA(self, period: int) -> None: """Adds the Exponential Moving Average (EMA) the DateFrame""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 5 or period > 200: raise ValueError('Period is out of range') if len(self.df) < period: raise Exception('Data range too small.') self.df['ema' + str(period)] = self.exponentialMovingAverage(period) def calculateRelativeStrengthIndex(self, series: int, interval: int=14) -> float: """Calculates the RSI on a Pandas series of closing prices.""" if not isinstance(series, Series): raise TypeError('Pandas Series required.') if not isinstance(interval, int): raise TypeError('Interval integer required.') if(len(series) < interval): raise IndexError('Pandas Series smaller than interval.') diff = series.diff(1).dropna() sum_gains = 0 * diff sum_gains[diff > 0] = diff[diff > 0] avg_gains = sum_gains.ewm(com=interval-1, min_periods=interval).mean() sum_losses = 0 * diff sum_losses[diff < 0] = diff[diff < 0] avg_losses = sum_losses.ewm(com=interval-1, min_periods=interval).mean() rs = abs(avg_gains / avg_losses) rsi = 100 - 100 / (1 + rs) return rsi def calculateStochasticRelativeStrengthIndex(self, series: int, interval: int=14) -> float: """Calculates the Stochastic RSI on a Pandas series of RSI""" if not isinstance(series, Series): raise TypeError('Pandas Series required.') if not isinstance(interval, int): raise TypeError('Interval integer required.') if(len(series) < interval): raise IndexError('Pandas Series smaller than interval.') return (series - series.rolling(interval).min()) / (series.rolling(interval).max() - series.rolling(interval).min()) def addFibonacciBollingerBands(self, interval: int=20, multiplier: int=3) -> None: """Adds Fibonacci Bollinger Bands.""" if not isinstance(interval, int): raise TypeError('Interval integer required.') if not isinstance(multiplier, int): raise TypeError('Multiplier integer required.') tp = (self.df['high'] + self.df['low'] + self.df['close']) / 3 sma = tp.rolling(interval).mean() sd = multiplier * tp.rolling(interval).std() sma = sma.fillna(0) sd = sd.fillna(0) self.df['fbb_mid'] = sma self.df['fbb_upper0_236'] = sma + (0.236 * sd) self.df['fbb_upper0_382'] = sma + (0.382 * sd) self.df['fbb_upper0_5'] = sma + (0.5 * sd) self.df['fbb_upper0_618'] = sma + (0.618 * sd) self.df['fbb_upper0_764'] = sma + (0.764 * sd) self.df['fbb_upper1'] = sma + (1 * sd) self.df['fbb_lower0_236'] = sma - (0.236 * sd) self.df['fbb_lower0_382'] = sma - (0.382 * sd) self.df['fbb_lower0_5'] = sma - (0.5 * sd) self.df['fbb_lower0_618'] = sma - (0.618 * sd) self.df['fbb_lower0_764'] = sma - (0.764 * sd) self.df['fbb_lower1'] = sma - (1 * sd) def movingAverageConvergenceDivergence(self) -> DataFrame: """Calculates the Moving Average Convergence Divergence (MACD)""" if len(self.df) < 26: raise Exception('Data range too small.') if not self.df['ema12'].dtype == 'float64' and not self.df['ema12'].dtype == 'int64': raise AttributeError("Pandas DataFrame 'ema12' column not int64 or float64.") if not self.df['ema26'].dtype == 'float64' and not self.df['ema26'].dtype == 'int64': raise AttributeError("Pandas DataFrame 'ema26' column not int64 or float64.") df = DataFrame() df['macd'] = self.df['ema12'] - self.df['ema26'] df['signal'] = df['macd'].ewm(span=9, adjust=False).mean() return df def addMACD(self) -> None: """Adds the Moving Average Convergence Divergence (MACD) to the DataFrame""" df = self.movingAverageConvergenceDivergence() self.df['macd'] = df['macd'] self.df['signal'] = df['signal'] def onBalanceVolume(self) -> ndarray: """Calculate On-Balance Volume (OBV)""" return where(self.df['close'] == self.df['close'].shift(1), 0, where(self.df['close'] > self.df['close'].shift(1), self.df['volume'], where(self.df['close'] < self.df['close'].shift(1), -self.df['volume'], self.df.iloc[0]['volume']))).cumsum() def addOBV(self) -> None: """Add the On-Balance Volume (OBV) to the DataFrame""" self.df['obv'] = self.onBalanceVolume() self.df['obv_pc'] = self.df['obv'].pct_change() * 100 self.df['obv_pc'] = round(self.df['obv_pc'].fillna(0), 2) def relativeStrengthIndex(self, period) -> DataFrame: """Calculate the Relative Strength Index (RSI)""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 7 or period > 21: raise ValueError('Period is out of range') # calculate relative strength index rsi = self.calculateRelativeStrengthIndex(self.df['close'], period) # default to midway-50 for first entries rsi = rsi.fillna(50) return rsi def stochasticRelativeStrengthIndex(self, period) -> DataFrame: """Calculate the Stochastic Relative Strength Index (Stochastic RSI)""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 7 or period > 21: raise ValueError('Period is out of range') if 'rsi' + str(period) not in self.df: self.addRSI(period) # calculate relative strength index stochrsi = self.calculateStochasticRelativeStrengthIndex(self.df['rsi' + str(period)], period) # default to midway-50 for first entries stochrsi = stochrsi.fillna(0.5) return stochrsi def williamsR(self, period) -> DataFrame: """Calculate the Williams %R""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 7 or period > 21: raise ValueError('Period is out of range') return (self.df['high'].rolling(14).max() - self.df['close']) / (self.df['high'].rolling(14).max() - self.df['low'].rolling(14).min()) def addRSI(self, period: int) -> None: """Adds the Relative Strength Index (RSI) to the DataFrame""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 7 or period > 21: raise ValueError('Period is out of range') self.df['rsi' + str(period)] = self.relativeStrengthIndex(period) self.df['rsi' + str(period)] = self.df['rsi' + str(period)].replace(nan, 50) def addStochasticRSI(self, period: int) -> None: """Adds the Stochastic Relative Strength Index (RSI) to the DataFrame""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 7 or period > 21: raise ValueError('Period is out of range') self.df['stochrsi' + str(period)] = self.stochasticRelativeStrengthIndex(period) self.df['stochrsi' + str(period)] = self.df['stochrsi' + str(period)].replace(nan, 0.5) def addWilliamsR(self, period: int) -> None: """Adds the Willams %R to the DataFrame""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 7 or period > 21: raise ValueError('Period is out of range') self.df['williamsr' + str(period)] = self.williamsR(period) self.df['williamsr' + str(period)] = self.df['williamsr' + str(period)].replace(nan, -50) def seasonalARIMAModel(self) -> SARIMAXResultsWrapper: """Returns the Seasonal ARIMA Model for price predictions""" # hyperparameters for SARIMAX model = SARIMAX(self.df['close'], trend='n', order=(0,1,0), seasonal_order=(1,1,1,12)) return model.fit(disp=-1) def seasonalARIMAModelFittedValues(self): # TODO: annotate return type """Returns the Seasonal ARIMA Model for price predictions""" return self.seasonalARIMAModel().fittedvalues def seasonalARIMAModelPrediction(self, minutes: int=180) -> tuple: """Returns seasonal ARIMA model prediction Parameters ---------- minutes : int Number of minutes to predict """ if not isinstance(minutes, int): raise TypeError('Prediction minutes is not numeric.') if minutes < 1 or minutes > 4320: raise ValueError('Predication minutes is out of range') results_ARIMA = self.seasonalARIMAModel() start_ts = self.df.last_valid_index() end_ts = start_ts + timedelta(minutes=minutes) pred = results_ARIMA.predict(start=str(start_ts), end=str(end_ts), dynamic=True) try: if len(pred) == 0: df_last = self.df['close'].tail(1) return (str(df_last.index.values[0]).replace('T', ' ').replace('.000000000', ''), df_last.values[0]) else: df_last = pred.tail(1) return (str(df_last.index.values[0]).replace('T', ' ').replace('.000000000', ''), df_last.values[0]) except Exception: return None return None def simpleMovingAverage(self, period: int) -> float: """Calculates the Simple Moving Average (SMA)""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 5 or period > 200: raise ValueError('Period is out of range') if len(self.df) < period: raise Exception('Data range too small.') return self.df.close.rolling(period, min_periods=1).mean() def addSMA(self, period: int) -> None: """Add the Simple Moving Average (SMA) to the DataFrame""" if not isinstance(period, int): raise TypeError('Period parameter is not perioderic.') if period < 5 or period > 200: raise ValueError('Period is out of range') if len(self.df) < period: raise Exception('Data range too small.') self.df['sma' + str(period)] = self.simpleMovingAverage(period) def addGoldenCross(self) -> None: """Add Golden Cross SMA50 over SMA200""" if 'sma50' not in self.df: self.addSMA(50) if 'sma200' not in self.df: self.addSMA(200) self.df['goldencross'] = self.df['sma50'] > self.df['sma200'] def addDeathCross(self) -> None: """Add Death Cross SMA50 over SMA200""" if 'sma50' not in self.df: self.addSMA(50) if 'sma200' not in self.df: self.addSMA(200) self.df['deathcross'] = self.df['sma50'] < self.df['sma200'] def addElderRayIndex(self) -> None: """Add Elder Ray Index""" if 'ema13' not in self.df: self.addEMA(13) self.df['elder_ray_bull'] = self.df['high'] - self.df['ema13'] self.df['elder_ray_bear'] = self.df['low'] - self.df['ema13'] # bear power’s value is negative but increasing (i.e. becoming less bearish) # bull power’s value is increasing (i.e. becoming more bullish) self.df['eri_buy'] = ((self.df['elder_ray_bear'] < 0) & (self.df['elder_ray_bear'] > self.df['elder_ray_bear'].shift(1))) | ((self.df['elder_ray_bull'] > self.df['elder_ray_bull'].shift(1))) # bull power’s value is positive but decreasing (i.e. becoming less bullish) # bear power’s value is decreasing (i.e., becoming more bearish) self.df['eri_sell'] = ((self.df['elder_ray_bull'] > 0) & (self.df['elder_ray_bull'] < self.df['elder_ray_bull'].shift(1))) | ((self.df['elder_ray_bear'] < self.df['elder_ray_bear'].shift(1))) def getSupportResistanceLevels(self) -> Series: """Calculate the Support and Resistance Levels""" self.levels = [] self.__calculateSupportResistenceLevels() levels_ts = {} for level in self.levels: levels_ts[self.df.index[level[0]]] = level[1] # add the support levels to the DataFrame return Series(levels_ts) def printSupportResistanceLevel(self, price: float=0) -> None: if isinstance(price, int) or isinstance(price, float): df = self.getSupportResistanceLevels() if len(df) > 0: df_last = df.tail(1) if float(df_last[0]) < price: Logger.info(' Support level of ' + str(df_last[0]) + ' formed at ' + str(df_last.index[0])) elif float(df_last[0]) > price: Logger.info(' Resistance level of ' + str(df_last[0]) + ' formed at ' + str(df_last.index[0])) else: Logger.info(' Support/Resistance level of ' + str(df_last[0]) + ' formed at ' + str(df_last.index[0])) def getResistance(self, price: float=0) -> float: if isinstance(price, int) or isinstance(price, float): if price > 0: sr = self.getSupportResistanceLevels() for r in sr.sort_values(): if r > price: return r return price def getFibonacciUpper(self, price: float=0) -> float: if isinstance(price, int) or isinstance(price, float): if price > 0: fb = self.getFibonacciRetracementLevels() for f in fb.values(): if f > price: return f return price def getTradeExit(self, price: float=0) -> float: if isinstance(price, int) or isinstance(price, float): if price > 0: r = self.getResistance(price) f = self.getFibonacciUpper(price) if price < r and price < f: r_margin = ((r - price) / price) * 100 f_margin = ((f - price) / price) * 100 if r_margin > 1 and f_margin > 1 and r <= f: return r elif r_margin > 1 and f_margin > 1 and f <= r: return f elif r_margin > 1 and f_margin < 1: return r elif f_margin > 1 and r_margin < 1: return f return price def printSupportResistanceFibonacciLevels(self, price: float=0) -> str: if isinstance(price, int) or isinstance(price, float): if price > 0: sr = self.getSupportResistanceLevels() s = price for r in sr.sort_values(): if r > price: fb = self.getFibonacciRetracementLevels() l = price for b in fb.values(): if b > price: return 'support: ' + str(s) + ', resistance: ' + str(r) + ', fibonacci (l): ' + str(l) + ', fibonacci (u): ' + str(b) else: l = b break else: s = r if len(sr) > 1 and sr.iloc[-1] < price: fb = self.getFibonacciRetracementLevels() l = price for b in fb.values(): if b > price: return 'support: ' + str(sr.iloc[-1]) + ', fibonacci (l): ' + str(l) + ', fibonacci (u): ' + str(b) else: l = b return '' def addEMABuySignals(self) -> None: """Adds the EMA12/EMA26 buy and sell signals to the DataFrame""" if not isinstance(self.df, DataFrame): raise TypeError('Pandas DataFrame required.') if not 'close' in self.df.columns: raise AttributeError("Pandas DataFrame 'close' column required.") if not self.df['close'].dtype == 'float64' and not self.df['close'].dtype == 'int64': raise AttributeError( "Pandas DataFrame 'close' column not int64 or float64.") if not 'ema8' in self.df.columns: self.addEMA(8) if not 'ema12' in self.df.columns: self.addEMA(12) if not 'ema26' in self.df.columns: self.addEMA(26) # true if EMA8 is above the EMA12 self.df['ema8gtema12'] = self.df.ema8 > self.df.ema12 # true if the current frame is where EMA8 crosses over above self.df['ema8gtema12co'] = self.df.ema8gtema12.ne(self.df.ema8gtema12.shift()) self.df.loc[self.df['ema8gtema12'] == False, 'ema8gtema12co'] = False # true if the EMA8 is below the EMA12 self.df['ema8ltema12'] = self.df.ema8 < self.df.ema12 # true if the current frame is where EMA8 crosses over below self.df['ema8ltema12co'] = self.df.ema8ltema12.ne(self.df.ema8ltema12.shift()) self.df.loc[self.df['ema8ltema12'] == False, 'ema8ltema12co'] = False # true if EMA12 is above the EMA26 self.df['ema12gtema26'] = self.df.ema12 > self.df.ema26 # true if the current frame is where EMA12 crosses over above self.df['ema12gtema26co'] = self.df.ema12gtema26.ne(self.df.ema12gtema26.shift()) self.df.loc[self.df['ema12gtema26'] == False, 'ema12gtema26co'] = False # true if the EMA12 is below the EMA26 self.df['ema12ltema26'] = self.df.ema12 < self.df.ema26 # true if the current frame is where EMA12 crosses over below self.df['ema12ltema26co'] = self.df.ema12ltema26.ne(self.df.ema12ltema26.shift()) self.df.loc[self.df['ema12ltema26'] == False, 'ema12ltema26co'] = False def addSMABuySignals(self) -> None: """Adds the SMA50/SMA200 buy and sell signals to the DataFrame""" if not isinstance(self.df, DataFrame): raise TypeError('Pandas DataFrame required.') if not 'close' in self.df.columns: raise AttributeError("Pandas DataFrame 'close' column required.") if not self.df['close'].dtype == 'float64' and not self.df['close'].dtype == 'int64': raise AttributeError( "Pandas DataFrame 'close' column not int64 or float64.") if not 'sma50' or not 'sma200' in self.df.columns: self.addSMA(50) self.addSMA(200) # true if SMA50 is above the SMA200 self.df['sma50gtsma200'] = self.df.sma50 > self.df.sma200 # true if the current frame is where SMA50 crosses over above self.df['sma50gtsma200co'] = self.df.sma50gtsma200.ne(self.df.sma50gtsma200.shift()) self.df.loc[self.df['sma50gtsma200'] == False, 'sma50gtsma200co'] = False # true if the SMA50 is below the SMA200 self.df['sma50ltsma200'] = self.df.sma50 < self.df.sma200 # true if the current frame is where SMA50 crosses over below self.df['sma50ltsma200co'] = self.df.sma50ltsma200.ne(self.df.sma50ltsma200.shift()) self.df.loc[self.df['sma50ltsma200'] == False, 'sma50ltsma200co'] = False def addMACDBuySignals(self) -> None: """Adds the MACD/Signal buy and sell signals to the DataFrame""" if not isinstance(self.df, DataFrame): raise TypeError('Pandas DataFrame required.') if not 'close' in self.df.columns: raise AttributeError("Pandas DataFrame 'close' column required.") if not self.df['close'].dtype == 'float64' and not self.df['close'].dtype == 'int64': raise AttributeError("Pandas DataFrame 'close' column not int64 or float64.") if not 'macd' or not 'signal' in self.df.columns: self.addMACD() self.addOBV() # true if MACD is above the Signal self.df['macdgtsignal'] = self.df.macd > self.df.signal # true if the current frame is where MACD crosses over above self.df['macdgtsignalco'] = self.df.macdgtsignal.ne(self.df.macdgtsignal.shift()) self.df.loc[self.df['macdgtsignal'] == False, 'macdgtsignalco'] = False # true if the MACD is below the Signal self.df['macdltsignal'] = self.df.macd < self.df.signal # true if the current frame is where MACD crosses over below self.df['macdltsignalco'] = self.df.macdltsignal.ne(self.df.macdltsignal.shift()) self.df.loc[self.df['macdltsignal'] == False, 'macdltsignalco'] = False def getFibonacciRetracementLevels(self, price: float=0) -> dict: # validates price is numeric if not isinstance(price, int) and not isinstance(price, float): raise TypeError('Optional price is not numeric.') price_min = self.df.close.min() price_max = self.df.close.max() diff = price_max - price_min data = {} if price != 0 and (price <= price_min): data['ratio1'] = float(self.__truncate(price_min, 2)) elif price == 0: data['ratio1'] = float(self.__truncate(price_min, 2)) if price != 0 and (price > price_min) and (price <= (price_max - 0.768 * diff)): data['ratio1'] = float(self.__truncate(price_min, 2)) data['ratio0_768'] = float(self.__truncate(price_max - 0.768 * diff, 2)) elif price == 0: data['ratio0_768'] = float(self.__truncate(price_max - 0.768 * diff, 2)) if price != 0 and (price > (price_max - 0.768 * diff)) and (price <= (price_max - 0.618 * diff)): data['ratio0_768'] = float(self.__truncate(price_max - 0.768 * diff, 2)) data['ratio0_618'] = float(self.__truncate(price_max - 0.618 * diff, 2)) elif price == 0: data['ratio0_618'] = float(self.__truncate(price_max - 0.618 * diff, 2)) if price != 0 and (price > (price_max - 0.618 * diff)) and (price <= (price_max - 0.5 * diff)): data['ratio0_618'] = float(self.__truncate(price_max - 0.618 * diff, 2)) data['ratio0_5'] = float(self.__truncate(price_max - 0.5 * diff, 2)) elif price == 0: data['ratio0_5'] = float(self.__truncate(price_max - 0.5 * diff, 2)) if price != 0 and (price > (price_max - 0.5 * diff)) and (price <= (price_max - 0.382 * diff)): data['ratio0_5'] = float(self.__truncate(price_max - 0.5 * diff, 2)) data['ratio0_382'] = float(self.__truncate(price_max - 0.382 * diff, 2)) elif price == 0: data['ratio0_382'] = float(self.__truncate(price_max - 0.382 * diff, 2)) if price != 0 and (price > (price_max - 0.382 * diff)) and (price <= (price_max - 0.286 * diff)): data['ratio0_382'] = float(self.__truncate(price_max - 0.382 * diff, 2)) data['ratio0_286'] = float(self.__truncate(price_max - 0.286 * diff, 2)) elif price == 0: data['ratio0_286'] = float(self.__truncate(price_max - 0.286 * diff, 2)) if price != 0 and (price > (price_max - 0.286 * diff)) and (price <= price_max): data['ratio0_286'] = float(self.__truncate(price_max - 0.286 * diff, 2)) data['ratio0'] = float(self.__truncate(price_max, 2)) elif price == 0: data['ratio0'] = float(self.__truncate(price_max, 2)) if price != 0 and (price < (price_max + 0.272 * diff)) and (price >= price_max): data['ratio0'] = float(self.__truncate(price_max, 2)) data['ratio1_272'] = float(self.__truncate(price_max + 0.272 * diff, 2)) elif price == 0: data['ratio1_272'] = float(self.__truncate(price_max + 0.272 * diff, 2)) if price != 0 and (price < (price_max + 0.414 * diff)) and (price >= (price_max + 0.272 * diff)): data['ratio1_272'] = float(self.__truncate(price_max, 2)) data['ratio1_414'] = float(self.__truncate(price_max + 0.414 * diff, 2)) elif price == 0: data['ratio1_414'] = float(self.__truncate(price_max + 0.414 * diff, 2)) if price != 0 and (price < (price_max + 0.618 * diff)) and (price >= (price_max + 0.414 * diff)): data['ratio1_618'] = float(self.__truncate(price_max + 0.618 * diff, 2)) elif price == 0: data['ratio1_618'] = float(self.__truncate(price_max + 0.618 * diff, 2)) return data def saveCSV(self, filename: str='tradingdata.csv') -> None: """Saves the DataFrame to an uncompressed CSV.""" p = compile(r"^[\w\-. ]+$") if not p.match(filename): raise TypeError('Filename required.') if not isinstance(self.df, DataFrame): raise TypeError('Pandas DataFrame required.') try: self.df.to_csv(filename) except OSError: Logger.critical(f'Unable to save: {filename}') def __calculateSupportResistenceLevels(self): """Support and Resistance levels. (private function)""" for i in range(2, self.df.shape[0] - 2): if self.__isSupport(self.df, i): l = self.df['low'][i] if self.__isFarFromLevel(l): self.levels.append((i, l)) elif self.__isResistance(self.df, i): l = self.df['high'][i] if self.__isFarFromLevel(l): self.levels.append((i, l)) return self.levels def __isSupport(self, df, i) -> bool: """Is support level? (private function)""" c1 = df['low'][i] < df['low'][i - 1] c2 = df['low'][i] < df['low'][i + 1] c3 = df['low'][i + 1] < df['low'][i + 2] c4 = df['low'][i - 1] < df['low'][i - 2] support = c1 and c2 and c3 and c4 return support def __isResistance(self, df, i) -> bool: """Is resistance level? (private function)""" c1 = df['high'][i] > df['high'][i - 1] c2 = df['high'][i] > df['high'][i + 1] c3 = df['high'][i + 1] > df['high'][i + 2] c4 = df['high'][i - 1] > df['high'][i - 2] resistance = c1 and c2 and c3 and c4 return resistance def __isFarFromLevel(self, l) -> float: """Is far from support level? (private function)""" s = mean(self.df['high'] - self.df['low']) return np_sum([abs(l-x) < s for x in self.levels]) == 0 def __truncate(self, f, n) -> float: return floor(f * 10 ** n) / 10 ** n
45.701933
199
0.571263
c89cb6684d0be0cacbc2a151b33f7b9b6cac9277
2,638
py
Python
examples/cifar3/inference.py
riyasavla/ml601_hw9
dcec2e5644b41d85303bdaf29da8e81f8a5e29c3
[ "BSD-2-Clause" ]
null
null
null
examples/cifar3/inference.py
riyasavla/ml601_hw9
dcec2e5644b41d85303bdaf29da8e81f8a5e29c3
[ "BSD-2-Clause" ]
null
null
null
examples/cifar3/inference.py
riyasavla/ml601_hw9
dcec2e5644b41d85303bdaf29da8e81f8a5e29c3
[ "BSD-2-Clause" ]
null
null
null
import caffe import lmdb import numpy as np from caffe.proto import caffe_pb2 import scipy from scipy import io import csv import sys, getopt # mean_file = '/Users/riya/Downloads/mean.binaryproto' #'/Users/riya/caffe/examples/cifar3/mean.binaryproto' # model = "/Users/riya/Downloads/cifar10_full_iter_60000.caffemodel.h5" #'/Users/riya/caffe/examples/cifar3/cifar10_quick_iter_5000.caffemodel.h5' # deploy_net = '/Users/riya/caffe/examples/cifar3/deploy.prototxt' ch = 3 h_in = 32 w_in = 32 # Per channel ZCA whitening def my_zca(data, cov_dict): eps = 0.000000001 new_data = np.zeros(data.shape) for c in xrange(ch): channel = data[:, c, :] #print "channel" , channel.shape cov = cov_dict[str(c)] U,S,V = np.linalg.svd(cov) channel_rot = np.dot(channel, U) channel_rot_cov = (np.dot(channel_rot.T, channel_rot)/ channel_rot.shape[0]) #plt.show(imshow(np.dot(channel_rot.T, channel_rot)/ channel_rot.shape[0])) #print "CHECK DIAG ", np.array_equal(np.argmax(channel_rot_cov, axis =1), np.argmax(channel_rot_cov, axis =1)) channel_white = channel_rot / (np.sqrt(S) + eps) channel_white = np.dot(channel_white, U.T) new_data[:, c, :] = channel_white return new_data def main(argv): mean_file = '' zca_file = '' model = '' deploy_net = '' opts, args = getopt.getopt(argv,"n:z:m:d:",["mean=", "zca=", "model=","deploy="]) for opt, arg in opts: if opt in ("-n", "--mean"): mean_file = str(arg) elif opt in ("-z", "--zca"): zca_file = str(arg) elif opt in ("-m", "--model"): model = str(arg) elif opt in ("-d", "--deploy"): deploy_net = str(arg) ch = 3 h_in = 32 w_in = 32 mean = (scipy.io.loadmat(mean_file)['data']) cov_dict = scipy.io.loadmat(zca_file) net = caffe.Net(deploy_net, model, caffe.TEST) print net.blobs['data'].data.shape path = '/Users/riya/Downloads/data_mat/test_data.mat' data = scipy.io.loadmat(path)['data'] N = data.shape[0] test_data = np.zeros((N, ch*h_in*w_in)) for i in xrange(N): test_data[i] = data[i] test_data -= mean test_data = test_data.reshape((N, ch, h_in*w_in)) # Per channel ZCA whitening test_data = my_zca(test_data, cov_dict) with open('results.csv', 'wb') as csvfile: filewriter = csv.writer(csvfile, delimiter=',') for i in xrange(N): img = X = test_data[i].reshape((ch, h_in, w_in)) net.blobs['data'].data[...] = img.reshape((1, img.shape[0], img.shape[1], img.shape[2])) out = net.forward() pred_probas = out['prob'] filewriter.writerow([pred_probas.argmax()]) if __name__ == "__main__": main(sys.argv[1:])
28.673913
146
0.655042
10973174d5a35a21757b354168be7aaf62c0df8a
5,625
py
Python
src/protean/adapters/cache/memory.py
proteanhq/protean
2006832265435cad8d4f9b86d1a789d8828d2707
[ "BSD-3-Clause" ]
6
2018-09-26T04:54:09.000Z
2022-03-30T01:01:45.000Z
src/protean/adapters/cache/memory.py
proteanhq/protean
2006832265435cad8d4f9b86d1a789d8828d2707
[ "BSD-3-Clause" ]
261
2018-09-20T09:53:33.000Z
2022-03-08T17:43:04.000Z
src/protean/adapters/cache/memory.py
proteanhq/protean
2006832265435cad8d4f9b86d1a789d8828d2707
[ "BSD-3-Clause" ]
6
2018-07-22T07:09:15.000Z
2021-02-02T05:17:23.000Z
import collections import re import time from threading import RLock from typing import Optional, Union from protean.core.view import BaseView from protean.reflection import id_field try: # Python 3.8+ collectionsAbc = collections.abc except AttributeError: # pragma: no cover # Until Python 3.7 collectionsAbc = collections from protean.port.cache import BaseCache from protean.utils import Cache from protean.utils.inflection import underscore class TTLDict(collectionsAbc.MutableMapping): def __init__(self, default_ttl, *args, **kwargs): self._default_ttl = default_ttl self._values = {} self._lock = RLock() self.update(*args, **kwargs) def __repr__(self): return "<TTLDict@%#08x; ttl=%r, v=%r;>" % ( id(self), self._default_ttl, self._values, ) def set_ttl(self, key, ttl, now=None): """ Set TTL for the given key """ if now is None: now = time.time() with self._lock: _expire, value = self._values[key] self._values[key] = (now + ttl, value) def get_ttl(self, key, now=None): """ Return remaining TTL for a key """ if now is None: now = time.time() with self._lock: expire, _value = self._values[key] return expire - now def expire_at(self, key, timestamp): """ Set the key expire timestamp """ with self._lock: _expire, value = self._values[key] self._values[key] = (timestamp, value) def is_expired(self, key, now=None, remove=False): """ Check if key has expired """ with self._lock: if now is None: now = time.time() expire, _value = self._values[key] if expire is None: return False expired = expire < now if expired and remove: self.__delitem__(key) return expired def __len__(self): with self._lock: for key in self._values.keys(): self.is_expired(key, remove=True) return len(self._values) def __iter__(self): with self._lock: for key in self._values.keys(): if not self.is_expired(key): yield key def __setitem__(self, key, value): with self._lock: if self._default_ttl is None: expire = None else: expire = time.time() + self._default_ttl self._values[key] = (expire, value) def __delitem__(self, key): with self._lock: del self._values[key] def __getitem__(self, key): with self._lock: self.is_expired(key, remove=True) return self._values[key][1] class MemoryCache(BaseCache): def __init__(self, name, domain, conn_info: dict): """Initialize Cache with Connection/Adapter details""" # In case of `MemoryCache`, the `CACHE` value will always be `MEMORY`. conn_info["CACHE"] = Cache.MEMORY.value super().__init__(name, domain, conn_info) # The Data Cache self._db = TTLDict(self.conn_info.get("TTL") or 300) self._lock = RLock() def ping(self): """Always returns True for memory cache""" return True def get_connection(self): """Get the connection object for the repository""" return self._db._values def add(self, view: BaseView, ttl: Optional[Union[int, float]] = None) -> None: """Add view record to cache KEY: View ID Value: View Data (derived from `to_dict()`) TTL is in seconds. Args: view (BaseView): View Instance containing data ttl (int, float, optional): Timeout in seconds. Defaults to None. """ identifier = getattr(view, id_field(view).field_name) key = f"{underscore(view.__class__.__name__)}:::{identifier}" self._db[key] = view.to_dict() if ttl: self._db.set_ttl(key, ttl) def get(self, key): view_name = key.split(":::")[0] view_cls = self._views[view_name] value = self._db.get(key) return view_cls(value) if value else None def get_all(self, key_pattern, last_position=0, size=25): # FIXME Handle Pagination with Last Position # FIXME Handle Pagination with Size view_name = key_pattern.split(":::")[0] view_cls = self._views[view_name] key_list = self._db.keys() regex = re.compile(key_pattern) results = list(filter(regex.match, key_list)) return [view_cls(self._db.get(key)) for key in results] def count(self, key_pattern): key_list = self._db.keys() regex = re.compile(key_pattern) return len(list(filter(regex.match, key_list))) def remove(self, view): identifier = getattr(view, id_field(view).field_name) key = f"{underscore(view.__class__.__name__)}:::{identifier}" del self._db[key] def remove_by_key(self, key): del self._db[key] def remove_by_key_pattern(self, key_pattern): full_key_list = self._db.keys() regex = re.compile(key_pattern) keys_to_delete = list(filter(regex.match, full_key_list)) for key in keys_to_delete: del self._db[key] def flush_all(self): self._db = {} def set_ttl(self, key, ttl): self._db.set_ttl(key, ttl) def get_ttl(self, key): return self._db.get_ttl(key)
29.605263
83
0.588267
f7efda68c3bccc9bc78431210b23be4a7caade05
110
py
Python
src/inbus/shared/__init__.py
mlos/inbus
51778800740b18337b540e193a52f6faa7451067
[ "BSD-2-Clause" ]
1
2017-11-09T20:09:31.000Z
2017-11-09T20:09:31.000Z
src/inbus/shared/__init__.py
mlos/inbus
51778800740b18337b540e193a52f6faa7451067
[ "BSD-2-Clause" ]
null
null
null
src/inbus/shared/__init__.py
mlos/inbus
51778800740b18337b540e193a52f6faa7451067
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2017 Maarten Los # See LICENSE.rst for details.
22
32
0.654545
25e4bb46e67e751dc723c95800225006202e4f65
9,556
py
Python
sugarui/widgets/textfields.py
sugarsack/sugar-ui
0ba7b62f300adbd3290e0ef8d5cb45e26f44a446
[ "MIT" ]
null
null
null
sugarui/widgets/textfields.py
sugarsack/sugar-ui
0ba7b62f300adbd3290e0ef8d5cb45e26f44a446
[ "MIT" ]
null
null
null
sugarui/widgets/textfields.py
sugarsack/sugar-ui
0ba7b62f300adbd3290e0ef8d5cb45e26f44a446
[ "MIT" ]
null
null
null
# coding: utf-8 """ Text fields class. These are used to display some data in the tables. """ import curses import npyscreen from sugarui.windows.floating import ErrorMessageForm class ColoredTextField(npyscreen.Textfield): """ Colorised text field (highlighted data) """ syntax_highlighting = True def __init__(self, *args, **kwargs): npyscreen.Textfield.__init__(self, *args, **kwargs) self.syntax_highlighting = True self.highlight_map = {} def colorise(self): """ On the current value highlight string that has value. :param value: Value to highlight. :return: """ if self.value: hldata = [curses.A_NORMAL for _ in range(len(self.value))] for value in self.highlight_map: offset = self.value.find(value) if offset > -1: hl_colorc = self.parent.theme_manager.findPair(self, self.highlight_map[value]) hldata = hldata[:offset] + [hl_colorc for _ in range(len(value))] + hldata[offset + len(value):] self._highlightingdata = hldata del hldata def update(self, clear=True, cursor=True): """ On update. :param clear: :param cursor: :return: """ self.colorise() super(npyscreen.Textfield, self).update(clear, cursor) class VisualTextField(npyscreen.Textfield): """ Text field with colored background. """ def __init__(self, *args, **kwargs): kwargs["color"] = "CAUTIONHL" kwargs["max_height"] = 1 npyscreen.Textfield.__init__(self, *args, **kwargs) def _print(self): """ Create text content within the field. :return: """ self._field_space() width_of_char_to_print = 0 string_to_print = self._get_string_to_print() if not string_to_print: return None string_to_print = self.display_value(self.value)[ self.begin_at:self.maximum_string_length + self.begin_at - self.left_margin] column = 0 place_in_string = 0 if self.syntax_highlighting: self.update_highlighting(start=self.begin_at, end=self.maximum_string_length + self.begin_at - self.left_margin) while column <= (self.maximum_string_length - self.left_margin): if not string_to_print or place_in_string > len(string_to_print) - 1: break width_of_char_to_print = self.find_width_of_char(string_to_print[place_in_string]) if column - 1 + width_of_char_to_print > self.maximum_string_length: break try: highlight = self._highlightingdata[self.begin_at + place_in_string] except IndexError: highlight = curses.A_NORMAL self.parent.curses_pad.addstr(self.rely, self.relx + column + self.left_margin, self._print_unicode_char(string_to_print[place_in_string]), highlight) column += self.find_width_of_char(string_to_print[place_in_string]) place_in_string += 1 else: color = self._get_color() while column <= (self.maximum_string_length - self.left_margin): if not string_to_print or place_in_string > len(string_to_print) - 1: if self.highlight_whole_widget: self.parent.curses_pad.addstr(self.rely, self.relx + column + self.left_margin, ' ', color) column += width_of_char_to_print place_in_string += 1 continue else: break width_of_char_to_print = self.find_width_of_char(string_to_print[place_in_string]) if column - 1 + width_of_char_to_print > self.maximum_string_length: break self.parent.curses_pad.addstr(self.rely, self.relx + column + self.left_margin, self._print_unicode_char(string_to_print[place_in_string]), color) column += width_of_char_to_print place_in_string += 1 def _field_space(self): """ Create a field space. :return: """ line = " " * self.width self.add_line(self.rely, self.relx, line, self.make_attributes_list( line, self.parent.theme_manager.findPair( self, self.color) | curses.A_STANDOUT | curses.A_BOLD | curses.A_DIM), self.width) def _get_color(self): """ Get color. :return: """ if self.do_colors(): if self.show_bold and self.color == 'DEFAULT': color = self.parent.theme_manager.findPair(self, 'BOLD') | curses.A_BOLD elif self.show_bold: color = self.parent.theme_manager.findPair(self, self.color) | curses.A_BOLD elif self.important: color = self.parent.theme_manager.findPair(self, 'IMPORTANT') | curses.A_BOLD else: color = self.parent.theme_manager.findPair(self) else: if self.important or self.show_bold: color = curses.A_BOLD else: color = curses.A_NORMAL return color | curses.A_STANDOUT | curses.A_BOLD | curses.A_DIM class RangeVisualTextField(VisualTextField): """ Visual text field that supports integer/float ranges. """ def __init__(self, screen, value, *args, range=(0, 100), **kwargs): self.range = range self._value = value kwargs["screen"] = screen VisualTextField.__init__(self, *args, **kwargs) self.screen = screen def get_value(self): """ Get numeric value. :return: """ if self.value: try: value = (int if "." in self.value else float)(self.value) except ValueError: msg = "Value should be a number." alert = ErrorMessageForm(msg, len(msg) + 6, 6, passive_text=True, name="Error") alert.center_on_display() alert.edit() value = 0 else: value = 0 return value def check_value(self): """ Check if value is within the range. :return: """ value = self.get_value() if self.range: low, high = self.range if not low <= value <= high: if not self.editing: msg = "Value should be within the range from {} to {}.".format(*self.range) alert = ErrorMessageForm(msg, len(msg) + 6, 6, passive_text=True, name="Error") alert.center_on_display() alert.edit() def h_exit_down(self, _input): """ Exit editing mode downwards. :param _input: :return: """ super(RangeVisualTextField, self).h_exit_down(_input) self.check_value() def h_exit_up(self, _input): """ Exit editing mode upwards. :param _input: :return: """ super(RangeVisualTextField, self).h_exit_up(_input) self.check_value() def h_exit_left(self, _input): """ Exit editing mode left. :param _input: :return: """ super(RangeVisualTextField, self).h_exit_left(_input) self.check_value() def h_exit_right(self, _input): """ Exit editing mode right. :param _input: :return: """ super(RangeVisualTextField, self).h_exit_right(_input) self.check_value() def h_exit_escape(self, _input): """ Exit editing mode at ESC key. :param _input: :return: """ super(RangeVisualTextField, self).h_exit_escape(_input) self.check_value() def h_exit_mouse(self, _input): """ Exit editing mode at mouse handler clicked elsewhere. :param _input: :return: """ super(RangeVisualTextField, self).h_exit_mouse(_input) self.check_value() class ConcealedVisualTextField(VisualTextField): """ Concealed text field (for passwords and sensitive info) """ MASK_CHAR = "\u25CF" def __init__(self, screen, *args, mask=MASK_CHAR, **kwargs): self.screen = screen kwargs["screen"] = screen VisualTextField.__init__(self, *args, **kwargs) self._mask = mask or self.MASK_CHAR assert len(self._mask) == 1, "Mask is should be one character." def _print(self): """ Display value in the entry field. :return: """ self._field_space() color = self._get_color() strlen = len(self.value) if self.maximum_string_length < strlen: tmp_x = self.relx for i in range(self.maximum_string_length): self.parent.curses_pad.addch(self.rely, tmp_x, self._mask, color) tmp_x += 1 else: tmp_x = self.relx for i in range(strlen): self.parent.curses_pad.addstr(self.rely, tmp_x, self._mask, color) tmp_x += 1
32.838488
116
0.559962
ea41638d8a9db4519a4876b680772d3c3b29436f
3,112
py
Python
DataApp.py
DaniloGR91/Semana_DataScience_MinerandoDados
99b198c29b0d97e6ccaf1b07c633d0e641dae0eb
[ "MIT" ]
1
2020-05-16T22:57:32.000Z
2020-05-16T22:57:32.000Z
DataApp.py
DaniloGR91/Semana_DataScience_MinerandoDados
99b198c29b0d97e6ccaf1b07c633d0e641dae0eb
[ "MIT" ]
7
2020-05-16T17:50:23.000Z
2020-05-27T20:49:09.000Z
DataApp.py
DaniloGR91/Semana_DataScience_MinerandoDados
99b198c29b0d97e6ccaf1b07c633d0e641dae0eb
[ "MIT" ]
1
2020-05-31T14:07:51.000Z
2020-05-31T14:07:51.000Z
import pandas as pd import streamlit as st from plotly.subplots import make_subplots import plotly.graph_objects as go from sklearn.ensemble import RandomForestRegressor # Cabeçalho st.title('Boston House Prices') st.markdown('A DataApp to show and predict boston house prices') # Abrindo dataframe data = pd.read_csv('dataMLfinal.csv', index_col=0) # DataFrame st.header('DataFrame') # Escolha das colunas do dataset cols = list(data.columns) selCols = st.multiselect('Parameters for DataFrame: ', cols, default=['RM', 'LSTAT', 'MEDV']) # CheckBox para mostrar a descrição de cada coluna paramDescr = open('boston.descr.txt', 'r') if st.checkbox('Show parameters descriptions'): st.text(paramDescr.read()) else: paramDescr.close() # Visualização do DataSet st.dataframe(data[selCols]) #### Distribution #### st.header('Distribution') # Visualização do histograma e boxplot selHist = st.selectbox( 'Data for distribution visualization:', cols) # Função para definir histograma e boxplot def histBox(df, col): fig = make_subplots(rows=1, cols=2) fig.add_trace(go.Histogram( x=df[col], name='Hitrogram'), row=1, col=1) fig.add_trace(go.Box( y=df[col], name='Boxplot'), row=1, col=2) fig.update_layout(height=600, width=800, title_text=f'Distribution of {col}') return fig figHist = histBox(data, selHist) st.write(figHist) #### ScatterPlot #### st.header('ScatterPlot') # Seleção dos eixos do scatterplot selScat = [] selScat.append(st.selectbox('X axis of ScatterPlot', cols, index=4)) selScat.append(st.selectbox('Y axis of ScatterPlot', cols, index=1)) # Função para definir scatterplot def scatplot(df, col): col = col fig = go.Figure(layout={'xaxis': {'title': {'text': col[0]}}, 'yaxis': {'title': {'text': col[1]}}}) fig.add_trace(go.Scatter( x=df[col[0]], y=df[col[1]], mode='markers', name='ScatterPlot')) fig.update_layout(height=600, width=800, title_text=f'ScatterPlot of {col[0]}x{col[1]}') return fig figScat = scatplot(data, selScat) st.write(figScat) #### Modelo de Machine Learning ### # Separando x e y x = data.drop('MEDV', axis=1) y = data['MEDV'] # Treinando o modelo model = RandomForestRegressor() model.fit(x, y) #### SideBar para Predictions#### st.sidebar.header('Price Prediction') predCols = cols.copy() predCols.remove('MEDV') paramInput = [] maxParam = {} for c in predCols: if c == 'MEDV': continue maxcol = data[c].max() + data[c].quantile(0.25) param = st.sidebar.number_input(c, min_value=0.0, max_value=maxcol, value=data[c].median()) paramInput.append(param) btnPredict = st.sidebar.button('Price Predict') if btnPredict: result = model.predict([paramInput]) st.sidebar.subheader('The predicted value is:') result *= 1000 st.sidebar.markdown(f'US$ {result[0]:.2f}')
25.933333
69
0.633997
3445f04708fd647fe45afc07a37460751568d7e9
3,840
py
Python
E03 - Learning programs and models/Architectures/models/denseaspp.py
mialona/Stomatal-segmentation
149d469ec572c41a13d62149d7d62d6805d19697
[ "MIT" ]
null
null
null
E03 - Learning programs and models/Architectures/models/denseaspp.py
mialona/Stomatal-segmentation
149d469ec572c41a13d62149d7d62d6805d19697
[ "MIT" ]
null
null
null
E03 - Learning programs and models/Architectures/models/denseaspp.py
mialona/Stomatal-segmentation
149d469ec572c41a13d62149d7d62d6805d19697
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from .segbase import SegBaseModel from .fcn import _FCNHead __all__ = ['DenseASPP'] class DenseASPP(SegBaseModel): def __init__(self, nclass, backbone_name="resnet101"): self.backbone_name = backbone_name self.nclass = nclass super(DenseASPP, self).__init__(backbone_name=self.backbone_name, nclass=self.nclass, need_backbone=True) in_channels = self.backbone.last_inp_channels self.head = _DenseASPPHead(in_channels, self.nclass, norm_layer=self.norm_layer) self.__setattr__('decoder', ['head']) def forward(self, x): size = x.size()[2:] _, _, c3, c4 = self.backbone(x) x = self.head(c4) x = F.interpolate(x, size, mode='bilinear', align_corners=True) return x class _DenseASPPHead(nn.Module): def __init__(self, in_channels, nclass, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPHead, self).__init__() self.dense_aspp_block = _DenseASPPBlock(in_channels, 256, 64, norm_layer, norm_kwargs) self.block = nn.Sequential( nn.Dropout(0.1), nn.Conv2d(in_channels + 5 * 64, nclass, 1) ) def forward(self, x): x = self.dense_aspp_block(x) return self.block(x) class _DenseASPPConv(nn.Sequential): def __init__(self, in_channels, inter_channels, out_channels, atrous_rate, drop_rate=0.1, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPConv, self).__init__() self.add_module('conv1', nn.Conv2d(in_channels, inter_channels, 1)), self.add_module('bn1', norm_layer(inter_channels, **({} if norm_kwargs is None else norm_kwargs))), self.add_module('relu1', nn.ReLU(True)), self.add_module('conv2', nn.Conv2d(inter_channels, out_channels, 3, dilation=atrous_rate, padding=atrous_rate)), self.add_module('bn2', norm_layer(out_channels, **({} if norm_kwargs is None else norm_kwargs))), self.add_module('relu2', nn.ReLU(True)), self.drop_rate = drop_rate def forward(self, x): features = super(_DenseASPPConv, self).forward(x) if self.drop_rate > 0: features = F.dropout(features, p=self.drop_rate, training=self.training) return features class _DenseASPPBlock(nn.Module): def __init__(self, in_channels, inter_channels1, inter_channels2, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(_DenseASPPBlock, self).__init__() self.aspp_3 = _DenseASPPConv(in_channels, inter_channels1, inter_channels2, 3, 0.1, norm_layer, norm_kwargs) self.aspp_6 = _DenseASPPConv(in_channels + inter_channels2 * 1, inter_channels1, inter_channels2, 6, 0.1, norm_layer, norm_kwargs) self.aspp_12 = _DenseASPPConv(in_channels + inter_channels2 * 2, inter_channels1, inter_channels2, 12, 0.1, norm_layer, norm_kwargs) self.aspp_18 = _DenseASPPConv(in_channels + inter_channels2 * 3, inter_channels1, inter_channels2, 18, 0.1, norm_layer, norm_kwargs) self.aspp_24 = _DenseASPPConv(in_channels + inter_channels2 * 4, inter_channels1, inter_channels2, 24, 0.1, norm_layer, norm_kwargs) def forward(self, x): aspp3 = self.aspp_3(x) x = torch.cat([aspp3, x], dim=1) aspp6 = self.aspp_6(x) x = torch.cat([aspp6, x], dim=1) aspp12 = self.aspp_12(x) x = torch.cat([aspp12, x], dim=1) aspp18 = self.aspp_18(x) x = torch.cat([aspp18, x], dim=1) aspp24 = self.aspp_24(x) x = torch.cat([aspp24, x], dim=1) return x
39.183673
120
0.636198
521d2a8dd91ada4ec091e0ce2ca790e5f9564dfe
8,906
py
Python
apero/recipes/nirps_ha/cal_shape_nirps_ha.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
1
2021-03-09T17:49:31.000Z
2021-03-09T17:49:31.000Z
apero/recipes/nirps_ha/cal_shape_nirps_ha.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
43
2020-10-06T18:42:24.000Z
2022-03-28T21:23:10.000Z
apero/recipes/nirps_ha/cal_shape_nirps_ha.py
njcuk9999/apero-drs
83b043e9f277a011b03e0227c77307961b200901
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-03-23 at 13:01 @author: cook """ from apero import core from apero import lang from apero.core import constants from apero.core.core import drs_database from apero.io import drs_fits from apero.science.calib import general from apero.science.calib import shape # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'cal_shape_nirps_ha.py' __INSTRUMENT__ = 'NIRPS_HA' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # Get Logging function WLOG = core.wlog # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # ============================================================================= # Define functions # ============================================================================= # All recipe code goes in _main # Only change the following from here: # 1) function calls (i.e. main(arg1, arg2, **kwargs) # 2) fkwargs (i.e. fkwargs=dict(arg1=arg1, arg2=arg2, **kwargs) # 3) config_main outputs value (i.e. None, pp, reduced) # Everything else is controlled from recipe_definition def main(directory=None, files=None, **kwargs): """ Main function for cal_shape_spirou.py :param directory: string, the night name sub-directory :param files: list of strings or string, the list of fp files :param kwargs: any additional keywords :type directory: str :type files: list[str] :keyword debug: int, debug level (0 for None) :returns: dictionary of the local space :rtype: dict """ # assign function calls (must add positional) fkwargs = dict(directory=directory, files=files, **kwargs) # ---------------------------------------------------------------------- # deal with command line inputs / function call inputs recipe, params = core.setup(__NAME__, __INSTRUMENT__, fkwargs) # solid debug mode option if kwargs.get('DEBUG0000', False): return recipe, params # ---------------------------------------------------------------------- # run main bulk of code (catching all errors) llmain, success = core.run(__main__, recipe, params) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- return core.end_main(params, llmain, recipe, success) def __main__(recipe, params): """ Main code: should only call recipe and params (defined from main) :param recipe: :param params: :return: """ # ---------------------------------------------------------------------- # Main Code # ---------------------------------------------------------------------- mainname = __NAME__ + '._main()' # get files infiles = params['INPUTS']['FILES'][1] # get list of filenames (for output) rawfiles = [] for infile in infiles: rawfiles.append(infile.basename) # deal with input data from function if 'files' in params['DATA_DICT']: infiles = params['DATA_DICT']['files'] rawfiles = params['DATA_DICT']['rawfiles'] combine = params['DATA_DICT']['combine'] # combine input images if required elif params['INPUT_COMBINE_IMAGES']: # get combined file infiles = [drs_fits.combine(params, recipe, infiles, math='median')] combine = True else: combine = False # get the number of infiles num_files = len(infiles) # ---------------------------------------------------------------------- # Loop around input files # ---------------------------------------------------------------------- for it in range(num_files): # ------------------------------------------------------------------ # add level to recipe log log1 = recipe.log.add_level(params, 'num', it) # ------------------------------------------------------------------ # set up plotting (no plotting before this) recipe.plot.set_location(it) # print file iteration progress core.file_processing_update(params, it, num_files) # ge this iterations file infile = infiles[it] # get header from file instance header = infile.header # get calibrations for this data drs_database.copy_calibrations(params, header) # ------------------------------------------------------------------ # Correction of file # ------------------------------------------------------------------ props, image = general.calibrate_ppfile(params, recipe, infile) # ------------------------------------------------------------------ # Load master fp, shape dxmap and dymap # ------------------------------------------------------------------ masterfp_file, masterfp_image = shape.get_master_fp(params, header) dxmap_file, dxmap = shape.get_shapex(params, header) dymap_file, dymap = shape.get_shapey(params, header) # ---------------------------------------------------------------------- # Get transform parameters (transform image onto fpmaster) # ---------------------------------------------------------------------- # log progress WLOG(params, '', TextEntry('40-014-00033')) # transform targs = [params, recipe, masterfp_image, image] transform, xres, yres = shape.get_linear_transform_params(*targs) # ---------------------------------------------------------------------- # For debug purposes straighten the image # ---------------------------------------------------------------------- image2 = shape.ea_transform(params, image, transform, dxmap=dxmap, dymap=dymap) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- qc_params, passed = shape.shape_local_qc(params, transform, xres, yres) # update recipe log log1.add_qc(params, qc_params, passed) # ------------------------------------------------------------------ # Writing shape to file # ------------------------------------------------------------------ outfile = shape.write_shape_local_files(params, recipe, infile, combine, rawfiles, props, transform, image, image2, qc_params) # ------------------------------------------------------------------ # Move to calibDB and update calibDB # ------------------------------------------------------------------ if passed: # add shapel transforms drs_database.add_file(params, outfile) # ------------------------------------------------------------------ # plot a zoom in of non-shifted vs shifted # ------------------------------------------------------------------ pkwargs = dict(params=params, image=image, simage=image2) # debug plot recipe.plot('SHAPEL_ZOOM_SHIFT', **pkwargs) # summary plot recipe.plot('SUM_SHAPEL_ZOOM_SHIFT', **pkwargs) # ------------------------------------------------------------------ # Construct summary document # ------------------------------------------------------------------ shape.write_shape_local_summary(recipe, params, qc_params, it, transform) # ------------------------------------------------------------------ # update recipe log file # ------------------------------------------------------------------ log1.end(params) # ---------------------------------------------------------------------- # End of main code # ---------------------------------------------------------------------- return core.return_locals(params, locals()) # ============================================================================= # Start of code # ============================================================================= if __name__ == "__main__": # run main with no arguments (get from command line - sys.argv) ll = main() # ============================================================================= # End of code # =============================================================================
42.61244
80
0.422636
68071996310f09b7403db61d1e139c8acd0ec10d
4,903
py
Python
jupyter_russian/topic06_features/demo.py
salman394/AI-ml--course
2ed3a1382614dd00184e5179026623714ccc9e8c
[ "Unlicense" ]
1
2018-10-24T08:35:29.000Z
2018-10-24T08:35:29.000Z
jupyter_russian/topic06_features/demo.py
salman394/AI-ml--course
2ed3a1382614dd00184e5179026623714ccc9e8c
[ "Unlicense" ]
null
null
null
jupyter_russian/topic06_features/demo.py
salman394/AI-ml--course
2ed3a1382614dd00184e5179026623714ccc9e8c
[ "Unlicense" ]
3
2019-10-03T22:32:24.000Z
2021-01-13T10:09:22.000Z
import numpy as np import pandas as pd import json from sklearn.base import TransformerMixin EPSILON = 1e-5 class FeatureEngineer(TransformerMixin): def apply(self, df, k, condition): df[k] = df['features'].apply(condition) df[k] = df[k].astype(np.int8) def fit(self, X, y=None, **fit_params): return self def transform(self, X, y=None): df = X.copy() df.features = df.features.apply(lambda x: ' '.join([y.replace(' ', '_') for y in x])) df.features = df.features.apply(lambda x: x.lower()) df.features = df.features.apply(lambda x: x.replace('-', '_')) for k, condition in (('dishwasher', lambda x: 'dishwasher' in x), ('doorman', lambda x: 'doorman' in x or 'concierge' in x), ('pets', lambda x: "pets" in x or "pet" in x or "dog" in x or "cats" in x and "no_pets" not in x), ('air_conditioning', lambda x: 'air_conditioning' in x or 'central' in x), ('parking', lambda x: 'parking' in x), ('balcony', lambda x: 'balcony' in x or 'deck' in x or 'terrace' in x or 'patio' in x), ('bike', lambda x: 'bike' in x), ('storage', lambda x: 'storage' in x), ('outdoor', lambda x: 'outdoor' in x or 'courtyard' in x or 'garden' in x), ('roof', lambda x: 'roof' in x), ('gym', lambda x: 'gym' in x or 'fitness' in x), ('pool', lambda x: 'pool' in x), ('backyard', lambda x: 'backyard' in x), ('laundry', lambda x: 'laundry' in x), ('hardwood_floors', lambda x: 'hardwood_floors' in x), ('new_construction', lambda x: 'new_construction' in x), ('dryer', lambda x: 'dryer' in x), ('elevator', lambda x: 'elevator' in x), ('garage', lambda x: 'garage' in x), ('pre_war', lambda x: 'pre_war' in x or 'prewar' in x), ('post_war', lambda x: 'post_war' in x or 'postwar' in x), ('no_fee', lambda x: 'no_fee' in x), ('low_fee', lambda x: 'reduced_fee' in x or 'low_fee' in x), ('fire', lambda x: 'fireplace' in x), ('private', lambda x: 'private' in x), ('wheelchair', lambda x: 'wheelchair' in x), ('internet', lambda x: 'wifi' in x or 'wi_fi' in x or 'internet' in x), ('yoga', lambda x: 'yoga' in x), ('furnished', lambda x: 'furnished' in x), ('multi_level', lambda x: 'multi_level' in x), ('exclusive', lambda x: 'exclusive' in x), ('high_ceil', lambda x: 'high_ceil' in x), ('green', lambda x: 'green_b' in x), ('stainless', lambda x: 'stainless_' in x), ('simplex', lambda x: 'simplex' in x), ('public', lambda x: 'public' in x), ): self.apply(df, k, condition) df['bathrooms'] = df['bathrooms'].apply(lambda x: x if x < 5 else 5) df['bedrooms'] = df['bedrooms'].apply(lambda x: x if x < 5 else 5) df["num_photos"] = df["photos"].apply(len) df["num_features"] = df["features"].apply(len) created = pd.to_datetime(df.pop("created")) df["listing_age"] = (pd.to_datetime('today') - created).apply(lambda x: x.days) df["room_dif"] = df["bedrooms"] - df["bathrooms"] df["room_sum"] = df["bedrooms"] + df["bathrooms"] df["price_per_room"] = df["price"] / df["room_sum"].apply(lambda x: max(x, .5)) df["bedrooms_share"] = df["bedrooms"] / df["room_sum"].apply(lambda x: max(x, .5)) df['price'] = df['price'].apply(lambda x: np.log(x + EPSILON)) key_types = df.dtypes.to_dict() for k in key_types: if key_types[k].name not in ('int64', 'float64', 'int8'): df.pop(k) for k in ('latitude', 'longitude', 'listing_id'): df.pop(k) return df def encode(x): if x == 'low': return 0 elif x == 'medium': return 1 elif x == 'high': return 2 def get_data(): with open('train.json', 'r') as raw_data: data = json.load(raw_data) df = pd.DataFrame(data) target = df.pop('interest_level').apply(encode) df = FeatureEngineer().fit_transform(df) return df, target
47.144231
127
0.470936
627e1e102b5559e7cb11f8422215158fddd6f40f
28,946
py
Python
run_experiment_pcgan.py
daverics/pcmelgan
a8b193a0601354c9b2da7c2dd64cd3e2549a9275
[ "MIT" ]
4
2020-06-18T02:02:53.000Z
2022-01-22T15:54:08.000Z
run_experiment_pcgan.py
daverics/pcmelgan
a8b193a0601354c9b2da7c2dd64cd3e2549a9275
[ "MIT" ]
null
null
null
run_experiment_pcgan.py
daverics/pcmelgan
a8b193a0601354c9b2da7c2dd64cd3e2549a9275
[ "MIT" ]
4
2020-06-18T02:02:54.000Z
2022-02-02T11:54:47.000Z
import dataset import librosa from torch.utils.data import DataLoader, random_split import torch import torch.nn.functional as F from utils import * import torchvision.models as models from torch.utils.tensorboard import SummaryWriter import argparse import yaml from pathlib import Path import pandas as pd import time from networks import * # from models import * # from filter import * from torch.autograd import Variable import glob from mel2wav.modules import MelGAN_Generator, Audio2Mel LongTensor = torch.cuda.LongTensor FloatTensor = torch.cuda.FloatTensor def parse_args(): parser = argparse.ArgumentParser() # Training parameters parser.add_argument("--device", type = str, default = '0') parser.add_argument("--experiment_name", type = str, required = True) parser.add_argument("--epochs", type = int, default = 2) parser.add_argument("--batch_size", type = int, default = 128) parser.add_argument("--save_interval", type = int, default = 1) parser.add_argument("--checkpoint_interval", type = int, default = 1) parser.add_argument("--load_path", type = str, default = None) parser.add_argument("--resume_experiment", type = bool, default = False) parser.add_argument("--D_real_loss_weight", type = float, default = 1) parser.add_argument("--FD_lr", type = float, default = 4e-4) parser.add_argument("--F_lr", type = float, default = 1e-4) parser.add_argument("--G_lr", type = float, default = 1e-4) parser.add_argument("--GD_lr", type = float, default = 4e-4) parser.add_argument("--utility_loss", type = bool, default = False) # Model and loss parameters parser.add_argument("--loss", type = str, default = None) parser.add_argument("--eps", type = float, default = 1e-3) parser.add_argument("--lamb", type = float, default = 100) parser.add_argument("--entropy_loss", type = bool, default = False) parser.add_argument("--filter_receptive_field", type = int, default = 3) parser.add_argument("--n_mel_channels", type = int, default = 80) parser.add_argument("--ngf", type = int, default = 32) parser.add_argument("--n_residual_layers", type = int, default = 3) # Data parameters parser.add_argument("--sampling_rate", type = int, default = 8000) parser.add_argument("--segment_length", type = int, default = 8192) parser.add_argument("--data_path", type = str, default = '/home/edvinli/thesis_spring_2020/audio_mnist/') parser.add_argument("--meta_data_file", type = str, default = '/home/edvinli/thesis_spring_2020/audio_mnist/audioMNIST_meta.json') # Experiment parameters parser.add_argument("--seeds", type = int, nargs = '+', default = None) parser.add_argument("--num_runs", type = int, default = 3) parser.add_argument("--n_completed_runs", type = int, default = None) args = parser.parse_args() return args def main(): args = parse_args() root = Path(os.getcwd()) experiment_name = args.experiment_name dist_loss = args.loss num_runs = args.num_runs device = 'cuda:' + str(args.device) log_dir = os.path.join(root,'logs') experiment_dir = os.path.join(log_dir, experiment_name) if os.path.exists(experiment_dir) and not args.resume_experiment: print("Experiment with this name already exists, use --resume_experiment to continue.") exit() os.mkdir(experiment_dir) # Some hyper parameters num_genders = 2 num_digits = 10 lamb = args.lamb eps = args.eps # If manual seed, check the number is same as number of runs if not args.seeds == None and len(args.seeds) != num_runs: print("Number of provided seeds is not the same as number of training runs") # Meta data and list of data files annotation_file = args.meta_data_file train_file_index = librosa.util.find_files(args.data_path) # annotation_file = '/home/edvinli/thesis_spring_2020/audio_mnist/audioMNIST_meta.json' # train_file_index = librosa.util.find_files('/home/edvinli/thesis_spring_2020/audio_mnist/') split_ratio = 5 # Build indices for the data file_index, annotation_index_gender, annotation_index_digit, annotation_index_speaker_id = dataset.build_annotation_index( train_file_index, annotation_file, balanced_genders = False) test_annotation_index, train_annotation_index, test_ids, train_ids = dataset.balanced_annotation_split(file_index, annotation_index_gender, annotation_index_digit, annotation_index_speaker_id, split_ratio) # Create the dataset train_data = dataset.AnnotatedAudioDataset( train_annotation_index, args.sampling_rate, args.segment_length ) test_data = dataset.AnnotatedAudioDataset( test_annotation_index, args.sampling_rate, args.segment_length ) n_train = train_data.__len__() n_test = test_data.__len__() # Dataloaders train_loader = DataLoader(train_data, batch_size = args.batch_size, num_workers = 1, shuffle = True) test_loader = DataLoader(test_data, batch_size = 1, num_workers = 1) # Set up models that are not trained fft = Audio2Mel(sampling_rate = args.sampling_rate) Mel2Audio = MelGAN_Generator(args.n_mel_channels, args.ngf, args.n_residual_layers).to(device) fix_digit_spec_classfier = load_modified_AlexNet(num_digits).to(device) fix_gender_spec_classfier = load_modified_AlexNet(num_genders).to(device) # Pretrained Mel spectrogram inversion and digit classification Mel2Audio.load_state_dict(torch.load('mel2wav/best_netG_epoch_2120.pt')) fix_digit_spec_classfier.load_state_dict(torch.load('fixed_classifier_checkpoints/best_digit_alexnet_spectrograms_epoch_26.pt')) fix_gender_spec_classfier.load_state_dict(torch.load('fixed_classifier_checkpoints/best_gender_alexnet_epoch_29.pt')) fix_digit_spec_classfier.eval() fix_gender_spec_classfier.eval() # Loss functions dist_loss = 'l1' distortion_loss = nn.L1Loss() entropy_loss = HLoss() adversarial_loss = nn.CrossEntropyLoss() adversarial_loss_rf = nn.CrossEntropyLoss() for run in range(num_runs): run_dir = os.path.join(experiment_dir,'run_' + str(run)) checkpoint_dir = os.path.join(run_dir,'checkpoints') visuals_dir = os.path.join(run_dir,'visuals') example_dir = os.path.join(run_dir,'examples') example_audio_dir = os.path.join(example_dir, 'audio') example_spec_dir = os.path.join(example_dir, 'spectrograms') if not args.resume_experiment: os.mkdir(run_dir) os.mkdir(example_dir) os.mkdir(checkpoint_dir) os.mkdir(example_audio_dir) os.mkdir(example_spec_dir) os.mkdir(visuals_dir) # Set random seed if args.seeds == None: manualSeed = random.randint(1, 10000) # use if you want new results else: manualSeed = args.seed[str(run)] random.seed(manualSeed) torch.manual_seed(manualSeed) np.random.seed(manualSeed) #################################### # Dump arguments and create logger # #################################### with open(Path(run_dir) / "args.yml", "w") as f: yaml.dump(args, f) yaml.dump({'Seed used' : manualSeed}, f) yaml.dump({'Run number' : run}, f) writer = SummaryWriter(str(run_dir)) # Set up trainable models and optimizers netF = UNetFilter(1, 1, chs=[8, 16, 32, 64, 128], kernel_size = args.filter_receptive_field, image_width=32, image_height=80, noise_dim=10, nb_classes=2, embedding_dim=16, use_cond = False).to(device) netFD = load_modified_AlexNet(num_genders).to(device) netG = UNetFilter(1, 1, chs=[8, 16, 32, 64, 128], kernel_size = args.filter_receptive_field, image_width=32, image_height=80, noise_dim=10, nb_classes=2, embedding_dim=16, use_cond = True).to(device) netGD = load_modified_AlexNet(num_genders + 1).to(device) # Optimizers optF = torch.optim.Adam(netF.parameters(), args.F_lr, betas = (0.5, 0.9)) optFD = torch.optim.Adam(netFD.parameters(), args.FD_lr, betas = (0.5, 0.9)) optG = torch.optim.Adam(netG.parameters(), args.G_lr, betas = (0.5, 0.9)) optGD = torch.optim.Adam(netGD.parameters(), args.GD_lr, betas = (0.5, 0.9)) # Put training objects into list for loading and saving state dicts training_objects = [] training_objects.append(('netF', netF)) training_objects.append(('optF', optF)) training_objects.append(('netFD', netFD)) training_objects.append(('optFD', optFD)) training_objects.append(('netG', netG)) training_objects.append(('optG', optG)) training_objects.append(('netGD', netGD)) training_objects.append(('optGD', optGD)) training_objects.sort(key = lambda x : x[0]) # Load from checkpoints start_epoch = 0 if args.resume_experiment or not args.load_path == None: if args.resume_experiment: if args.n_completed_runs <= run: checkpoints = sorted(glob.glob(os.path.join(checkpoint_dir, '*latest*'))) start_epoch = int(checkpoints[0].split('_')[-1][:-3]) print('Resuming experiment {} from checkpoint, {} epochs completed.'.format(args.experiment_name, start_epoch)) else: checkpoint_path = os.path.join(args.load_path,'checkpoints') checkpoints = sorted(glob.glob(os.path.join(checkpoint_path,'*latest*'))) completed_epochs = int(checkpoints[0].split('_')[-1][:-3]) print('Starting from checkpoint in {}, {} epochs completed.'.format(args.load_path, completed_epochs)) for i, (_, object) in enumerate(training_objects): object.load_state_dict(torch.load(checkpoints[i])) print("GAN training initiated, {} epochs".format(args.epochs)) for epoch in range(start_epoch, args.epochs + start_epoch): # Add counters for number of correct classifications correct_FD = 0 correct_fake_GD = 0 correct_real_GD = 0 correct_gender_fake_GD = 0 correct_digit = 0 fixed_correct_gender = 0 # Add variables to add batch losses to F_distortion_loss_accum = 0 F_adversary_loss_accum = 0 FD_adversary_loss_accum = 0 G_distortion_loss_accum = 0 G_adversary_loss_accum = 0 GD_real_loss_accum = 0 GD_fake_loss_accum = 0 netF.train() netFD.train() netG.train() netGD.train() epoch_start = time.time() for i, (x, gender, digit, _) in enumerate(train_loader): digit = digit.to(device) gender = gender.to(device) x = torch.unsqueeze(x,1) spectrograms = fft(x).detach() spectrograms, means, stds = preprocess_spectrograms(spectrograms) spectrograms = torch.unsqueeze(spectrograms,1).to(device) # ----------------- # Train Filter # ----------------- optF.zero_grad() z = torch.randn(spectrograms.shape[0], 10).to(device) filter_mel = netF(spectrograms,z, gender.long()) pred_secret = netFD(filter_mel) ones = Variable(FloatTensor(gender.shape).fill_(1.0), requires_grad = True).to(device) target = ones - gender.float() target = target.view(target.size(0)) filter_distortion_loss = distortion_loss(filter_mel, spectrograms) if not args.entropy_loss: filter_adversary_loss = adversarial_loss(pred_secret, target.long()) else: filter_adversary_loss = entropy_loss(pred_secret) netF_loss = filter_adversary_loss + lamb * torch.pow(torch.relu(filter_distortion_loss - eps),2) netF_loss.backward() optF.step() # ------------------------ # Train Generator (Real/Fake) # ------------------------ optG.zero_grad() z1 = torch.randn(spectrograms.shape[0], 10).to(device) filter_mel = netF(spectrograms,z1,gender.long()) z2 = torch.randn(spectrograms.shape[0], 10).to(device) gen_secret = Variable(LongTensor(np.random.choice([0.0, 1.0], spectrograms.shape[0]))).to(device) gen_mel = netG(filter_mel, z2, gen_secret) pred_secret = netGD(gen_mel) pred_digit = fix_digit_spec_classfier(gen_mel) fixed_pred_secret = fix_gender_spec_classfier(gen_mel) generator_distortion_loss = distortion_loss(gen_mel, spectrograms) generator_adversary_loss = adversarial_loss(pred_secret, gen_secret) netG_loss = generator_adversary_loss + lamb * torch.pow(torch.relu(generator_distortion_loss - eps),2) netG_loss.backward() optG.step() # --------------------- # Train Discriminator # --------------------- optFD.zero_grad() pred_secret = netFD(filter_mel.detach()) netFD_loss = adversarial_loss(pred_secret, gender.long()) netFD_loss.backward() optFD.step() # -------------------------------- # Train Discriminator (Real/Fake) # -------------------------------- optGD.zero_grad() real_pred_secret = netGD(spectrograms) fake_pred_secret = netGD(gen_mel.detach()) fake_secret = Variable(LongTensor(fake_pred_secret.size(0)).fill_(2.0), requires_grad=False).to(device) GD_real_loss = adversarial_loss_rf(real_pred_secret, gender.long().to(device)).to(device) GD_fake_loss = adversarial_loss_rf(fake_pred_secret, fake_secret).to(device) netGD_loss = (GD_real_loss + GD_fake_loss)/2 netGD_loss.backward() optGD.step() # ---------------------------------------------- # Compute accuracies # ---------------------------------------------- # FD accuracy on original gender predicted_gender_FD = torch.argmax(pred_secret, 1) correct_FD += (predicted_gender_FD == gender.long()).sum() # GD accuracy on original gender in real and generated (fake) data, # and sampled gender in generated (fake) data predicted_fake_GD = torch.argmax(fake_pred_secret, 1) predicted_real_GD = torch.argmax(real_pred_secret,1) correct_fake_GD += (predicted_fake_GD == fake_secret).sum() correct_real_GD += (predicted_real_GD == gender).sum() correct_gender_fake_GD += (predicted_fake_GD == gen_secret).sum() # Calculate number of correct classifications for the fixed classifiers on the training set predicted_digit = torch.argmax(pred_digit.data, 1) correct_digit += (predicted_digit == digit).sum() fixed_predicted = torch.argmax(fixed_pred_secret.data, 1) fixed_correct_gender += (fixed_predicted == gender.long()).sum() # ---------------------------------------------- # Record losses # ---------------------------------------------- F_distortion_loss_accum += filter_distortion_loss.item() F_adversary_loss_accum += filter_adversary_loss.item() FD_adversary_loss_accum += netFD_loss.item() G_distortion_loss_accum += generator_distortion_loss.item() G_adversary_loss_accum += generator_adversary_loss.item() GD_real_loss_accum += GD_real_loss.item() GD_fake_loss_accum += GD_fake_loss.item() writer.add_scalar("F_distortion_loss", F_distortion_loss_accum/(i+1), epoch + 1) writer.add_scalar("F_adversary_loss", F_adversary_loss_accum/(i+1), epoch + 1) writer.add_scalar("G_distortion_loss", G_distortion_loss_accum/(i+1), epoch + 1) writer.add_scalar("G_adversary_loss", G_adversary_loss_accum/(i+1), epoch + 1) writer.add_scalar("FD_adversary_loss", FD_adversary_loss_accum/(i+1), epoch + 1) writer.add_scalar("GD_real_loss", GD_real_loss_accum/(i+1), epoch + 1) writer.add_scalar("GD_fake_loss", GD_fake_loss_accum/(i+1), epoch + 1) # ---------------------------------------------- # Record accuracies # ---------------------------------------------- FD_accuracy = 100 * correct_FD / n_train GD_accuracy_fake = 100 * correct_fake_GD / n_train GD_accuracy_real = 100 * correct_real_GD / n_train GD_accuracy_gender_fake = 100 * correct_gender_fake_GD / n_train fix_digit_spec_classfier_accuracy = 100 * correct_digit / n_train fix_gender_spec_classfier_accuracy = 100 * fixed_correct_gender / n_train writer.add_scalar("FD_accuracy", FD_accuracy, epoch + 1) writer.add_scalar("GD_accuracy_fake", GD_accuracy_fake, epoch + 1) writer.add_scalar("GD_accuracy_real", GD_accuracy_real, epoch + 1) writer.add_scalar("GD_accuracy_gender_fake", GD_accuracy_gender_fake, epoch + 1) writer.add_scalar("digit_accuracy", fix_digit_spec_classfier_accuracy, epoch + 1) writer.add_scalar("fixed_gender_accuracy_fake", fix_gender_spec_classfier_accuracy, epoch + 1) print('__________________________________________________________________________') print("Epoch {} completed | Time: {:5.2f} s ".format(epoch+1, time.time() - epoch_start)) print("netF | Adversarial loss: {:5.5f} | Distortion loss: {:5.5f}".format(F_adversary_loss_accum/(i + 1), F_distortion_loss_accum/(i + 1))) print("netFD | Filtered sample accuracy: {} %".format(FD_accuracy)) print("netG | Advsarial loss: {:5.5f} | Distortion loss: {:5.5f}".format(G_adversary_loss_accum/(i + 1), G_distortion_loss_accum/(i + 1))) print("netGD | Real samples: {} % | Fake samples: {} % | Sampled gender accuracy: {} % ".format( GD_accuracy_real, GD_accuracy_fake, GD_accuracy_gender_fake )) print("Fix Digit accuracy: {} % | Fix gender accuracy: {} %".format(fix_digit_spec_classfier_accuracy, fix_gender_spec_classfier_accuracy)) # ---------------------------------------------- # Compute test accuracy # ---------------------------------------------- if epoch % 10 == 0: test_correct_digit = 0 test_fixed_original_gender = 0 test_fixed_sampled_gender = 0 for i, (x, gender, digit, speaker_id) in enumerate(test_loader): x = torch.unsqueeze(x,1) spectrograms = fft(x).detach() spectrograms, means, stds = preprocess_spectrograms(spectrograms) spectrograms = torch.unsqueeze(spectrograms,1).to(device) gender = gender.to(device) digit = digit.to(device) z1 = torch.randn(spectrograms.shape[0], 10).to(device) filter_mel = netF(spectrograms,z1, gender.long()) z2 = torch.randn(filter_mel.shape[0], 10).to(device) gen_secret = Variable(LongTensor(np.random.choice([0.0, 1.0], filter_mel.shape[0]))).to(device) gen_mel = netG(filter_mel,z2,gen_secret) pred_digit = fix_digit_spec_classfier(gen_mel) fixed_pred_secret = fix_gender_spec_classfier(gen_mel) # Calculate utility accuracy predicted = torch.argmax(pred_digit.data,1) test_correct_digit += (predicted == digit).sum() # Calculate gender accuracy for fixed net fixed_predicted = torch.argmax(fixed_pred_secret.data,1) test_fixed_original_gender += (fixed_predicted == gender.long()).sum() test_fixed_sampled_gender += (fixed_predicted == gen_secret).sum() test_digit_accuracy = 100*test_correct_digit / n_test test_fixed_original_gender_accuracy_fake = 100*test_fixed_original_gender / n_test test_fixed_sampled_gender_accuracy_fake = 100*test_fixed_sampled_gender / n_test writer.add_scalar("test_set_digit_accuracy", test_digit_accuracy, epoch + 1) writer.add_scalar("test_set_fixed_original_gender_accuracy_fake", test_fixed_original_gender_accuracy_fake, epoch + 1) writer.add_scalar("test_set_fixed_sampled_gender_accuracy_fake", test_fixed_sampled_gender_accuracy_fake, epoch + 1) print('__________________________________________________________________________') print("## Test set statistics ##") print("Utility | Digit accuracy: {} % | Fixed sampled gender accuracy: {} % | Fixed original gender accuracy: {} % ".format(test_digit_accuracy,test_fixed_sampled_gender_accuracy_fake, test_fixed_original_gender_accuracy_fake)) # ---------------------------------------------- # Save test samples # ---------------------------------------------- if (epoch + 1) % args.save_interval == 0: print("Saving audio and spectrogram samples.") netF.eval() netG.eval() for i, (x, gender, digit, speaker_id) in enumerate(test_loader): if i % 50 == 0: x = torch.unsqueeze(x,1) spectrograms = fft(x).detach() spec_original = spectrograms spectrograms, means, stds = preprocess_spectrograms(spectrograms) spectrograms = torch.unsqueeze(spectrograms,1).to(device) gender = gender.to(device) digit = digit.to(device) z1 = torch.randn(spectrograms.shape[0], 10).to(device) filtered = netF(spectrograms,z1,gender.long()).detach() z2 = torch.randn(spectrograms.shape[0], 10).to(device) male = Variable(LongTensor(spectrograms.size(0)).fill_(1.0), requires_grad=False).to(device) female = Variable(LongTensor(spectrograms.size(0)).fill_(0.0), requires_grad=False).to(device) generated_male = netG(filtered, z2, male).detach() generated_female = netG(filtered, z2, female).detach() #Predict digit digit_male = fix_digit_spec_classfier(generated_male) pred_digit_male = torch.argmax(digit_male.data,1) digit_female = fix_digit_spec_classfier(generated_female) pred_digit_female = torch.argmax(digit_female.data,1) #Predict gender gender_male = fix_gender_spec_classfier(generated_male) pred_gender_male = torch.argmax(gender_male.data,1) gender_female = fix_gender_spec_classfier(generated_female) pred_gender_female = torch.argmax(gender_female.data,1) if pred_gender_male == 0: pred_gender_male = 'female' else: pred_gender_male = 'male' if pred_gender_female == 0: pred_gender_female = 'female' else: pred_gender_female = 'male' # Distortions filtered_distortion = distortion_loss(spectrograms,filtered) male_distortion = distortion_loss(spectrograms,generated_male).item() female_distortion = distortion_loss(spectrograms,generated_female).item() sample_distortion = distortion_loss(generated_male, generated_female).item() filtered = torch.squeeze(filtered,1).to(device) * 3 * stds.to(device) + means.to(device) generated_male = torch.squeeze(generated_male,1).to(device) * 3 * stds.to(device) + means.to(device) generated_female = torch.squeeze(generated_female,1).to(device) * 3 * stds.to(device) + means.to(device) spectrograms = spectrograms.to(device) * 3 * stds.to(device) + means.to(device) inverted_filtered = Mel2Audio(filtered).squeeze().detach().cpu() inverted_male = Mel2Audio(generated_male).squeeze().detach().cpu() inverted_female = Mel2Audio(generated_female).squeeze().detach().cpu() f_name_filtered_audio = os.path.join(example_audio_dir, 'speaker_{}_digit_{}_epoch_{}_filtered.wav'.format(speaker_id.item(), digit.item(), epoch + 1)) f_name_male_audio = os.path.join(example_audio_dir, 'speaker_{}_digit_{}_epoch_{}_sampled_gender_male_predicted_digit_{}.wav'.format(speaker_id.item(), digit.item(), epoch + 1, pred_digit_male.item())) f_name_female_audio = os.path.join(example_audio_dir, 'speaker_{}_digit_{}_epoch_{}_sampled_gender_female_predicted_digit_{}.wav'.format(speaker_id.item(), digit.item(), epoch + 1, pred_digit_female.item())) f_name_original_audio = os.path.join(example_audio_dir, 'speaker_{}_digit_{}_.wav'.format(speaker_id.item(), digit.item())) save_sample(f_name_filtered_audio, args.sampling_rate, inverted_filtered) save_sample(f_name_male_audio, args.sampling_rate, inverted_male) save_sample(f_name_female_audio, args.sampling_rate, inverted_female) save_sample(f_name_original_audio,args.sampling_rate,torch.squeeze(x)) if gender == 0: gender_title = 'female' else: gender_title = 'male' orig_title = 'Original spectrogram - Gender: {} - Digit: {}'.format(gender_title, digit.item()) filtered_title = 'Filtered spectrogram' male_title = 'Sampled/predicted gender: male / {} | Predicted digit: {} \n Distortion loss: {:5.5f} (original) | {:5.5f} (female) ({}_loss)'.format(pred_gender_male, pred_digit_male.item(), male_distortion, sample_distortion, dist_loss) female_title = 'Sampled/predicted gender: female / {} | Predicted digit: {} \n Distortion loss: {:5.5f} (original) | {:5.5f} (male) ({}_loss)'.format(pred_gender_female,pred_digit_female.item(), female_distortion, sample_distortion, dist_loss) f_name = os.path.join(example_spec_dir, 'speaker_{}_digit_{}_epoch_{}'.format( speaker_id.item(), digit.item(), epoch + 1 )) comparison_plot_pcgan(f_name, spec_original, filtered, generated_male, generated_female, orig_title, filtered_title, male_title, female_title) print("Success!") if (epoch + 1) % args.checkpoint_interval == 0: save_epoch = epoch + 1 old_checkpoints = sorted(glob.glob(os.path.join(checkpoint_dir, '*latest*'))) if old_checkpoints: for i, _ in enumerate(old_checkpoints): os.remove(old_checkpoints[i]) for name, object in training_objects: torch.save(object.state_dict(), os.path.join(checkpoint_dir, name + '_epoch_{}.pt'.format(save_epoch))) torch.save(object.state_dict(), os.path.join(checkpoint_dir, name + '_latest_epoch_{}.pt'.format(save_epoch))) print("Run number {} completed.".format(run+1)) print('__________________________________________________________________________') if __name__ == "__main__": main()
53.307551
267
0.603676
766bb0a4f6c1fd4efb75cb5f376bc4c7c224b885
263
py
Python
crossref/errors.py
ScholarTools/crossref_api_python
49282503bda1e013a6b1bddd171f1ef960bec3f5
[ "MIT" ]
null
null
null
crossref/errors.py
ScholarTools/crossref_api_python
49282503bda1e013a6b1bddd171f1ef960bec3f5
[ "MIT" ]
11
2016-03-01T21:15:33.000Z
2021-12-13T19:43:02.000Z
crossref/errors.py
ScholarTools/crossref_api_python
49282503bda1e013a6b1bddd171f1ef960bec3f5
[ "MIT" ]
1
2018-02-05T15:22:37.000Z
2018-02-05T15:22:37.000Z
# -*- coding: utf-8 -*- """ """ class CrossrefAPIError(Exception): """User errors in usage of the Crossref API""" pass class RequestError(Exception): pass class InvalidDOI(Exception): pass class UnhandledHTTPResonseFailure(Exception): pass
16.4375
50
0.684411
cce60870685cc8bed5ae5ffb2a62a752407e9461
8,626
py
Python
mingpt/model.py
mircean/minGPT
e080e9a6deb8579ca0dd5a67fc42ae54db4478e9
[ "MIT" ]
null
null
null
mingpt/model.py
mircean/minGPT
e080e9a6deb8579ca0dd5a67fc42ae54db4478e9
[ "MIT" ]
null
null
null
mingpt/model.py
mircean/minGPT
e080e9a6deb8579ca0dd5a67fc42ae54db4478e9
[ "MIT" ]
null
null
null
""" GPT model: - the initial stem consists of a combination of token encoding and a positional encoding - the meat of it is a uniform sequence of Transformer blocks - each Transformer is a sequential combination of a 1-hidden-layer MLP block and a self-attention block - all blocks feed into a central residual pathway similar to resnets - the final decoder is a linear projection into a vanilla Softmax classifier """ import math import logging import torch import torch.nn as nn from torch.nn import functional as F logger = logging.getLogger(__name__) class GPTConfig: """ base GPT config, params common to all GPT versions """ embd_pdrop = 0.1 resid_pdrop = 0.1 attn_pdrop = 0.1 def __init__(self, vocab_size, block_size, **kwargs): self.vocab_size = vocab_size self.block_size = block_size for k,v in kwargs.items(): setattr(self, k, v) class GPT1Config(GPTConfig): """ GPT-1 like network roughly 125M params """ n_layer = 12 n_head = 12 n_embd = 768 class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. It is possible to use torch.nn.MultiheadAttention here but I am including an explicit implementation here to show that there is nothing too scary here. """ def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("mask", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) self.n_head = config.n_head def forward(self, x, layer_past=None): B, T, C = x.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_drop(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_drop(self.proj(y)) return y class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.mlp = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.resid_pdrop), ) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.mlp(self.ln2(x)) return x class GPT(nn.Module): """ the full GPT language model, with a context size of block_size """ def __init__(self, config): super().__init__() # input embedding stem self.tok_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.Sequential(*[Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.block_size = config.block_size self.apply(self._init_weights) logger.info("number of parameters: %e", sum(p.numel() for p in self.parameters())) def get_block_size(self): return self.block_size def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def configure_optimizers(self, train_config): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear, ) blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # special case the position embedding parameter in the root GPT module as not decayed no_decay.add('pos_emb') # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": train_config.weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] optimizer = torch.optim.AdamW(optim_groups, lr=train_config.learning_rate, betas=train_config.betas) return optimizer def forward(self, batch): idx = batch["X"] targets = batch["Y"] if "Y" in batch else None b, t = idx.size() assert t <= self.block_size, "Cannot forward, model block size is exhausted." # forward the GPT model token_embeddings = self.tok_emb(idx) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :t, :] # each position maps to a (learnable) vector x = self.drop(token_embeddings + position_embeddings) x = self.blocks(x) x = self.ln_f(x) logits = self.head(x) # if we are given some desired targets also calculate the loss # loss = None # if targets is not None: # loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # # return logits, loss return {"Y_pred": logits, "Y_pred_softmax": nn.functional.softmax(logits, 2)}
42.70297
127
0.623348
fca1cd946326176453973ccdee2903c8957cb60b
1,392
py
Python
modules/dbnd-airflow/src/dbnd_airflow/compat/kubernetes_executor.py
kalebinn/dbnd
89b6ac3537f861784be73ffe8989bf63fca7401c
[ "Apache-2.0" ]
null
null
null
modules/dbnd-airflow/src/dbnd_airflow/compat/kubernetes_executor.py
kalebinn/dbnd
89b6ac3537f861784be73ffe8989bf63fca7401c
[ "Apache-2.0" ]
null
null
null
modules/dbnd-airflow/src/dbnd_airflow/compat/kubernetes_executor.py
kalebinn/dbnd
89b6ac3537f861784be73ffe8989bf63fca7401c
[ "Apache-2.0" ]
null
null
null
from dbnd_airflow._vendor import kubernetes_utils from dbnd_airflow.constants import AIRFLOW_ABOVE_9, AIRFLOW_ABOVE_10 if AIRFLOW_ABOVE_10: from airflow.executors.kubernetes_executor import ( AirflowKubernetesScheduler, KubernetesJobWatcher, KubernetesExecutor, KubeConfig, ) else: from airflow.contrib.executors.kubernetes_executor import ( AirflowKubernetesScheduler, KubernetesJobWatcher, KubernetesExecutor, KubeConfig, ) def make_safe_label_value(value): return kubernetes_utils.make_safe_label_value(value) def get_tuple_for_watcher_queue(pod_id, namespace, state, labels, resource_version): if AIRFLOW_ABOVE_9: return pod_id, namespace, state, labels, resource_version return pod_id, state, labels, resource_version def get_job_watcher_kwargs(dbnd_kubernetes_scheduler): kwargs = { "namespace": dbnd_kubernetes_scheduler.namespace, "watcher_queue": dbnd_kubernetes_scheduler.watcher_queue, "resource_version": dbnd_kubernetes_scheduler.current_resource_version, "worker_uuid": dbnd_kubernetes_scheduler.worker_uuid, "kube_config": dbnd_kubernetes_scheduler.kube_config, "kube_dbnd": dbnd_kubernetes_scheduler.kube_dbnd, } if AIRFLOW_ABOVE_10: kwargs.update({"multi_namespace_mode": False}) return kwargs
31.636364
84
0.751437
48ef10a6201deae718f7dde78c8ab18c48ca08a0
1,341
py
Python
venv/lib/python3.9/site-packages/google/cloud/dlp_v2/__init__.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.9/site-packages/google/cloud/dlp_v2/__init__.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
40
2019-07-16T10:04:48.000Z
2020-01-20T09:04:59.000Z
venv/lib/python3.9/site-packages/google/cloud/dlp_v2/__init__.py
qarik-hanrattyjen/apache-airflow-backport-providers-google-2021.3.3
630dcef73e6a258b6e9a52f934e2dd912ce741f8
[ "Apache-2.0" ]
2
2019-07-18T00:05:31.000Z
2019-11-27T14:17:22.000Z
# -*- coding: utf-8 -*- # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import sys import warnings from google.cloud.dlp_v2 import types from google.cloud.dlp_v2.gapic import dlp_service_client from google.cloud.dlp_v2.gapic import enums if sys.version_info[:2] == (2, 7): message = ( "A future version of this library will drop support for Python 2.7." "More details about Python 2 support for Google Cloud Client Libraries" "can be found at https://cloud.google.com/python/docs/python2-sunset/" ) warnings.warn(message, DeprecationWarning) class DlpServiceClient(dlp_service_client.DlpServiceClient): __doc__ = dlp_service_client.DlpServiceClient.__doc__ enums = enums __all__ = ("enums", "types", "DlpServiceClient")
31.928571
79
0.747204
b56d1728fad9fe7bbe0bd9a97bb5a46b1f5d6075
7,821
py
Python
data_loader.py
feelpp/brits
f1dffd6ed6d92c3a70a287155d1db3a8d4eac84f
[ "MIT" ]
null
null
null
data_loader.py
feelpp/brits
f1dffd6ed6d92c3a70a287155d1db3a8d4eac84f
[ "MIT" ]
null
null
null
data_loader.py
feelpp/brits
f1dffd6ed6d92c3a70a287155d1db3a8d4eac84f
[ "MIT" ]
null
null
null
import os import time import ujson as json import csv import numpy as np import pandas as pd import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader # Seems to be unused in the rest of the code. # class MySet(Dataset): # def __init__(self): # super(MySet, self).__init__() # self.content = open('./json/json').readlines() # indices = np.arange(len(self.content)) # val_indices = np.random.choice(indices, len(self.content) // 5) # self.val_indices = set(val_indices.tolist()) # def __len__(self): # return len(self.content) # def __getitem__(self, idx): # rec = json.loads(self.content[idx]) # if idx in self.val_indices: # rec['is_train'] = 0 # else: # rec['is_train'] = 1 # return rec # Original # class MyTrainSet(Dataset): # def __init__(self): # super(MyTrainSet, self).__init__() # self.content = open('./json/EMS/USA/USA_nitrate_2train1012.json').readlines() # indices = np.arange(len(self.content)) # val_indices = np.random.choice(indices, len(self.content) // 5) # self.val_indices = set(val_indices.tolist()) # def __len__(self): # return len(self.content) # def __getitem__(self, idx): # rec = json.loads(self.content[idx]) # # if idx in self.val_indices: # # rec['is_train'] = 0 # # else: # # rec['is_train'] = 1 # return rec # Modif class MyTrainSet(Dataset): def __init__(self): super(MyTrainSet, self).__init__() # self.content = open('./csv/ibat/preprocess/train_raw_results_demo.csv').readlines() self.path = './csv/ibat/preprocess/train_raw_results_demo.csv' self.content = pd.read_csv(self.path, header=0) # , chunksize=self.chunksize) indices = np.arange(len(self.content)) val_indices = np.random.choice(indices, len(self.content) // 5) self.val_indices = set(val_indices.tolist()) def __len__(self): return len(self.content) def __getitem__(self, idx): # rec = csv.reader (self.content[idx]) rec = self.content.iloc[[idx]] # if idx in self.val_indices: # rec['is_train'] = 0 # else: # rec['is_train'] = 1 return rec # my_train_set = MyTrainSet() # print(my_train_set[3]) # print(len(my_train_set)) # input("waiting") # Original # class MyTestSet(Dataset): # def __init__(self): # super(MyTestSet, self).__init__() # self.content = open('./json/EMS/USA/USA_nitrate_2test1012.json').readlines() # indices = np.arange(len(self.content)) # val_indices = np.random.choice(indices, len(self.content) // 5) # self.val_indices = set(val_indices.tolist()) # def __len__(self): # return len(self.content) # def __getitem__(self, idx): # rec = json.loads(self.content[idx]) # # if idx in self.val_indices: # # rec['is_train'] = 0 # # else: # # rec['is_train'] = 1 # return rec # Modif class MyTestSet(Dataset): def __init__(self): super(MyTestSet, self).__init__() # self.content = open('./json/EMS/USA/USA_nitrate_2test1012.json').readlines() self.path = './csv/ibat/preprocess/test_raw_results_demo.csv' self.content = pd.read_csv(self.path, header=0) # , chunksize=self.chunksize) indices = np.arange(len(self.content)) val_indices = np.random.choice(indices, len(self.content) // 5) self.val_indices = set(val_indices.tolist()) def __len__(self): return len(self.content) def __getitem__(self, idx): # rec = json.loads(self.content[idx]) rec = self.content.iloc[[idx]] # if idx in self.val_indices: # rec['is_train'] = 0 # else: # rec['is_train'] = 1 return rec # my_test_set = MyTestSet() # print(my_test_set[4]) # print(len(my_test_set)) # input("waiting") def collate_fn(recs): forward = list(map(lambda x: x['forward'], recs)) backward = list(map(lambda x: x['backward'], recs)) def to_tensor_dict(recs): # values = torch.FloatTensor(list(map(lambda r: r['values'], recs))) # masks = torch.FloatTensor(list(map(lambda r: r['masks'], recs))) # deltas = torch.FloatTensor(list(map(lambda r: r['deltas'], recs))) # evals = torch.FloatTensor(list(map(lambda r: r['evals'], recs))) # eval_masks = torch.FloatTensor( # list(map(lambda r: r['eval_masks'], recs))) # forwards = torch.FloatTensor(list(map(lambda r: r['forwards'], recs))) values = torch.FloatTensor(list(map(lambda r: list(map(lambda x: x['values'], r)), recs))) masks = torch.FloatTensor(list(map(lambda r: list(map(lambda x: x['masks'], r)), recs))) deltas = torch.FloatTensor(list(map(lambda r: list(map(lambda x: x['deltas'], r)), recs))) forwards = torch.FloatTensor(list(map(lambda r: list(map(lambda x: x['forwards'], r)), recs))) evals = torch.FloatTensor(list(map(lambda r: list(map(lambda x: x['evals'], r)), recs))) eval_masks = torch.FloatTensor(list(map(lambda r: list(map(lambda x: x['eval_masks'], r)), recs))) # print('values:{}'.format(values.size())) # print('!!') # print('masks:{}'.format(masks.size())) # print('deltas:{}'.format(deltas.size())) # print('forwards:{}'.format(forwards.size())) # print('evals:{}'.format(evals.size())) # print('eval_masks:{}'.format(eval_masks.size())) return { 'values': values.permute(0, 2, 1), 'forwards': forwards.permute(0, 2, 1), 'masks': masks.permute(0, 2, 1), 'deltas': deltas.permute(0, 2, 1), 'evals': evals.permute(0, 2, 1), 'eval_masks': eval_masks.permute(0, 2, 1) } ret_dict = { 'forward': to_tensor_dict(forward), 'backward': to_tensor_dict(backward) } ret_dict['labels'] = torch.FloatTensor(list(map(lambda x: x['label'], recs))) ret_dict['is_train'] = torch.FloatTensor(list(map(lambda x: x['is_train'], recs))) # print('values:{}'.format(ret_dict['forward']['values'].size())) # print('!!') # print('masks:{}'.format(masks.size())) # print('deltas:{}'.format(deltas.size())) # print('forwards:{}'.format(forwards.size())) # print('evals:{}'.format(evals.size())) # print('eval_masks:{}'.format(eval_masks.size())) return ret_dict # For now, get_loader is not used in the rest of the code # def get_loader(batch_size=64, shuffle=False): # data_set = MySet() # data_iter = DataLoader(dataset=data_set, # batch_size=batch_size, # num_workers=1, # shuffle=shuffle, # pin_memory=True, # collate_fn=collate_fn) # return data_iter def get_train_loader(batch_size=100, shuffle=False): data_set = MyTrainSet() data_iter = DataLoader(dataset=data_set, batch_size=batch_size, num_workers=1, shuffle=shuffle, pin_memory=True, collate_fn=collate_fn) return data_iter def get_test_loader(batch_size=100, shuffle=False): data_set = MyTestSet() data_iter = DataLoader(dataset=data_set, batch_size=batch_size, num_workers=1, shuffle=shuffle, pin_memory=True, collate_fn=collate_fn) return data_iter
31.663968
106
0.577803
7a6e76424eb6916e7d73e2f1d0cad23f98ffd0f7
730
py
Python
1-100/41-50/49-groupAnagram/groupAnagram.py
xuychen/Leetcode
c8bf33af30569177c5276ffcd72a8d93ba4c402a
[ "MIT" ]
null
null
null
1-100/41-50/49-groupAnagram/groupAnagram.py
xuychen/Leetcode
c8bf33af30569177c5276ffcd72a8d93ba4c402a
[ "MIT" ]
null
null
null
1-100/41-50/49-groupAnagram/groupAnagram.py
xuychen/Leetcode
c8bf33af30569177c5276ffcd72a8d93ba4c402a
[ "MIT" ]
null
null
null
class Solution(object): def groupAnagrams(self, strs): """ :type strs: List[str] :rtype: List[List[str]] """ primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, \ 59,61,67,71,73,79,83,89,97,101] dictionary = {} result = [] groups = 0 for string in strs: key = 1 for char in string: key *= primes[ord(char) - 97] index = dictionary.get(key, -1) if index == -1: dictionary[key] = groups result.append([]) groups += 1 result[index].append(string) return result
28.076923
64
0.420548
72dae11ac60386a53c9e102e2b45bf9967ce298d
893
py
Python
maro/cli/grass/image.py
KangFengjian/maro
2694a75731d5174ba5b33780670ba38d776d8c5a
[ "MIT" ]
1
2020-09-30T09:31:05.000Z
2020-09-30T09:31:05.000Z
maro/cli/grass/image.py
KangFengjian/maro
2694a75731d5174ba5b33780670ba38d776d8c5a
[ "MIT" ]
2
2020-12-15T09:13:43.000Z
2020-12-16T08:02:41.000Z
maro/cli/grass/image.py
KangFengjian/maro
2694a75731d5174ba5b33780670ba38d776d8c5a
[ "MIT" ]
1
2021-10-01T09:17:43.000Z
2021-10-01T09:17:43.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from maro.cli.grass.executors.grass_azure_executor import GrassAzureExecutor from maro.cli.utils.checkers import check_details_validity from maro.cli.utils.details import load_cluster_details from maro.cli.utils.lock import lock @check_details_validity(mode='grass') @lock def push_image(cluster_name: str, image_name: str, image_path: str, remote_context_path: str, remote_image_name: str, **kwargs): cluster_details = load_cluster_details(cluster_name=cluster_name) if cluster_details['cloud']['infra'] == 'azure': executor = GrassAzureExecutor(cluster_name=cluster_name) executor.push_image( image_name=image_name, image_path=image_path, remote_context_path=remote_context_path, remote_image_name=remote_image_name )
35.72
117
0.743561
b56bc8c26d37134baa1122e5fcbd8286e6068f7a
1,231
py
Python
data_structures/tree_based/binary_tree/test.py
kwahome/data-structures-and-algos
535b23c63bf384d63c1ebc08d1c32d3dd808297c
[ "Apache-2.0" ]
null
null
null
data_structures/tree_based/binary_tree/test.py
kwahome/data-structures-and-algos
535b23c63bf384d63c1ebc08d1c32d3dd808297c
[ "Apache-2.0" ]
null
null
null
data_structures/tree_based/binary_tree/test.py
kwahome/data-structures-and-algos
535b23c63bf384d63c1ebc08d1c32d3dd808297c
[ "Apache-2.0" ]
null
null
null
import unittest from data_structures.tree_based.binary_tree.tree import Tree class BinaryTreeTests(unittest.TestCase): def setUp(self): self.binary_tree = Tree() def tearDown(self): pass def test_tree_insert(self): data = 5 self.assertEqual(None, self.binary_tree.get_data()) self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_data()) data = 2 self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_left().get_data()) data = 1 self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_left().get_left().get_data()) data = 3 self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_left().get_right().get_data()) data = 10 self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_right().get_data()) data = 15 self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_right().get_right().get_data()) data = 9 self.binary_tree.insert(data) self.assertEqual(data, self.binary_tree.get_right().get_left().get_data())
33.27027
83
0.658002
f8a41afd5381220afe0ccd93208961196c143a6d
2,177
py
Python
openquake/hazardlib/tests/gsim/utils.py
gfzriesgos/shakyground-lfs
2caf67cc32e6800286eded2df1efb05973ccf41b
[ "BSD-3-Clause" ]
1
2019-08-01T00:28:24.000Z
2019-08-01T00:28:24.000Z
openquake/hazardlib/tests/gsim/utils.py
gfzriesgos/shakyground-lfs
2caf67cc32e6800286eded2df1efb05973ccf41b
[ "BSD-3-Clause" ]
4
2018-08-31T14:14:35.000Z
2021-10-11T12:53:13.000Z
openquake/hazardlib/tests/gsim/utils.py
gfzriesgos/shakyground-lfs
2caf67cc32e6800286eded2df1efb05973ccf41b
[ "BSD-3-Clause" ]
3
2018-08-31T14:11:00.000Z
2019-07-17T10:06:02.000Z
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2012-2018, GEM Foundation # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. import unittest import os import inspect import numpy from openquake.hazardlib.tests.gsim.check_gsim import check_gsim class BaseGSIMTestCase(unittest.TestCase): BASE_DATA_PATH = os.path.join(os.path.dirname(__file__), 'data') GSIM_CLASS = None def get_context_attributes(self, ctx): att = inspect.getmembers(ctx, lambda a: not inspect.isroutine(a)) att = [ k for k, v in att if not ('_abc' in k) and not ((k.startswith('_') and k.endswith('_'))) ] return set(att) def check(self, filename, max_discrep_percentage): gsim = self.GSIM_CLASS() filename = os.path.join(self.BASE_DATA_PATH, filename) errors, stats, sctx, rctx, dctx, ctxs = check_gsim( gsim.__class__, open(filename), max_discrep_percentage) s_att = self.get_context_attributes(sctx) r_att = self.get_context_attributes(rctx) d_att = self.get_context_attributes(dctx) self.assertEqual(gsim.REQUIRES_SITES_PARAMETERS, s_att) self.assertEqual(gsim.REQUIRES_RUPTURE_PARAMETERS, r_att) self.assertEqual(gsim.REQUIRES_DISTANCES, d_att) self.assertTrue( numpy.all(ctxs), msg='Contexts objects have been changed by method ' 'get_mean_and_stddevs') if errors: raise AssertionError(stats) print() print(stats)
38.192982
75
0.687184
d0bddc90deb43ede3aa2ab4fa1f587e59ee90a11
1,271
py
Python
test/functional/wallet_disableprivatekeys.py
farmscoins/farmcoin
dcfa0e7b33de314cfa1e4d3de1d8e2d894821d43
[ "MIT" ]
1
2019-06-11T08:21:52.000Z
2019-06-11T08:21:52.000Z
test/functional/wallet_disableprivatekeys.py
farmscoins/farmcoin
dcfa0e7b33de314cfa1e4d3de1d8e2d894821d43
[ "MIT" ]
null
null
null
test/functional/wallet_disableprivatekeys.py
farmscoins/farmcoin
dcfa0e7b33de314cfa1e4d3de1d8e2d894821d43
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test disable-privatekeys mode. """ from test_framework.test_framework import FarmcoinTestFramework from test_framework.util import ( assert_raises_rpc_error, ) class DisablePrivateKeysTest(FarmcoinTestFramework): def set_test_params(self): self.setup_clean_chain = False self.num_nodes = 1 self.supports_cli = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] self.log.info("Test disableprivatekeys creation.") self.nodes[0].createwallet('w1', True) self.nodes[0].createwallet('w2') w1 = node.get_wallet_rpc('w1') w2 = node.get_wallet_rpc('w2') assert_raises_rpc_error(-4,"Error: Private keys are disabled for this wallet", w1.getnewaddress) assert_raises_rpc_error(-4,"Error: Private keys are disabled for this wallet", w1.getrawchangeaddress) w1.importpubkey(w2.getaddressinfo(w2.getnewaddress())['pubkey']) if __name__ == '__main__': DisablePrivateKeysTest().main()
35.305556
110
0.715185
a82800f27ae80859d7c7339910172ff5a691e3d7
868
py
Python
setup.py
torchbox/django-tagging-autocomplete
43d9604cb2510cf5ba13a533660b7d14d1d5702b
[ "MIT" ]
2
2015-09-23T23:19:31.000Z
2015-09-24T00:17:45.000Z
setup.py
torchbox/django-tagging-autocomplete
43d9604cb2510cf5ba13a533660b7d14d1d5702b
[ "MIT" ]
null
null
null
setup.py
torchbox/django-tagging-autocomplete
43d9604cb2510cf5ba13a533660b7d14d1d5702b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from setuptools import setup, find_packages long_description = open('README.txt').read() setup( name='django-tagging-autocomplete', version='0.3.1', description='Autocompletion for django-tagging', long_description=long_description, author='Ludwik Trammer', author_email='ludwik@gmail.com', url='http://code.google.com/p/django-tagging-autocomplete/', packages=find_packages(), classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Framework :: Django', ], zip_safe=False, #package_data={}, #test_suite='tagging_autocomplete.tests.runtests.runtests' )
31
64
0.653226
66a84223179cfca341487381bf4f95676e3fa606
2,497
py
Python
HeVanderbiltModel/PBC[noBloch]/LatticeSolutions.py
Bellomia/pyDrude
cd2d6980008ddbe247f1aa50dc238e0d7cf0904f
[ "MIT" ]
null
null
null
HeVanderbiltModel/PBC[noBloch]/LatticeSolutions.py
Bellomia/pyDrude
cd2d6980008ddbe247f1aa50dc238e0d7cf0904f
[ "MIT" ]
null
null
null
HeVanderbiltModel/PBC[noBloch]/LatticeSolutions.py
Bellomia/pyDrude
cd2d6980008ddbe247f1aa50dc238e0d7cf0904f
[ "MIT" ]
null
null
null
def LatticeSolutions(L, a, U0, W, cutoff): # L: Total length | a: Lattice parameter | U0: Perturbation strenght | Spread: Perturbation width | cutoff: Energy cut-off print('Diagonalizing the perturbed Hamiltonian...') import numpy import pylab from cmath import sqrt, sin, cos, exp, pi from numBraKet import numBraKet as BraKet s = 10*L # Sampling grain for integrals ## Imperturbed eigenproblem: PLANE WAVES ## A = sqrt(1/L) # Normalization factor def q(n): return (2*pi*n)/L def psi0_n(x): return A*exp(1j*q(n)*x) def psi0_m(x): return A*exp(1j*q(m)*x) def eigenE0(n): return (4 * pi**2 * n**2)/(2 * L**2) n = 0 while eigenE0(n) <= cutoff: n += 1 basisDIM = n # We've established the basis dimension from the energy cut-off print('Basis dimension: ', 2*basisDIM+1) ## Periodic potential definition ## def U_lat(x): return U0*exp(-x**2/W**2) """NB: x is centered on a lattice *barrier*, not on the atomic site!!!""" def U(x): U = 0 for x_lat in range(0,L+a,a): U += U_lat(x-x_lat) return U """NB: We have choosed this particular implemention for the lattice because of the ''realistic'' surface behaviour of the solutions. x = numpy.linspace(0,L,s) f = numpy.vectorize(U, otypes=[numpy.complex]) y = f(x) pylab.fill_between(x,y, facecolor='gray', edgecolor='black', alpha=0.3)""" ## Now we proceed constructing the hamiltionian matrix H_{nm} ## H = [[0 for i in range(2*basisDIM+1)] for j in range(2*basisDIM+1)] def Ket_m(x): return U(x)*psi0_m(x) Bra_n = numpy.vectorize(psi0_n, otypes=[numpy.complex]) Ket_m = numpy.vectorize(Ket_m, otypes=[numpy.complex]) for i in range(-basisDIM, basisDIM+1): for j in range(-basisDIM, basisDIM+1): n, m = i+1, j+1 # Dumb python indexing... ## Kinetic (diagonal) part ## if i==j: H[i][i] += eigenE0(n) ## Periodic potential part ## x = numpy.linspace(0,L,s) H[i][j] += BraKet(Bra_n(x), Ket_m(x), 0, L, x) ## Perturbed solutions ## eigenvalues, eigenvectors = numpy.linalg.eigh(H) return eigenvalues, eigenvectors
29.376471
165
0.545855
484cc1a9025a7631393afd97aa749d7fe77e08c4
651
py
Python
common/BaseModel.py
maoxuelin083/restful-Blog
29a08613d71ee6c369dcec9ffb09a2a2ed837431
[ "Apache-2.0" ]
null
null
null
common/BaseModel.py
maoxuelin083/restful-Blog
29a08613d71ee6c369dcec9ffb09a2a2ed837431
[ "Apache-2.0" ]
null
null
null
common/BaseModel.py
maoxuelin083/restful-Blog
29a08613d71ee6c369dcec9ffb09a2a2ed837431
[ "Apache-2.0" ]
null
null
null
from FlaskProject.extendsions import db class BaseModels(db.Model): __abstract__ = True def save(self): try: db.session.add(self) db.session.commit() except Exception as e: print(e) return False return True def delete(self): try: db.session.delete(self) db.session.commit() except Exception as e: print(e) return False return True class BaseModelPrimaryKey(BaseModels): __abstract__ = True id = db.Column(db.Integer, primary_key=True, autoincrement=True)
23.25
68
0.551459
b1fa28d7c67325025738d91a2a05dda49060c688
228
py
Python
shoppingcart/admin.py
sa1if3/django_ecommerce
ef6a0a79d4aa0cf518f68227beb6d15fa7729458
[ "BSD-3-Clause" ]
16
2021-07-08T10:42:38.000Z
2022-02-24T05:32:59.000Z
shoppingcart/admin.py
RussQuan/django_ecommerce
84f090dd2471355a513bb13827ea17e18ce2310f
[ "BSD-3-Clause" ]
null
null
null
shoppingcart/admin.py
RussQuan/django_ecommerce
84f090dd2471355a513bb13827ea17e18ce2310f
[ "BSD-3-Clause" ]
4
2021-07-08T10:44:56.000Z
2021-07-12T03:39:40.000Z
from django.contrib import admin from .models import * # Register your models here. @admin.register(Cart) class CartAdmin(admin.ModelAdmin): list_display = ("listing","total_quantity","created_by","created_at","updated_at")
32.571429
86
0.767544
0ed5d31d6bb118b64618572ffa2026febbecd246
5,616
py
Python
poetry/templates/template_executor.py
bennylut/poetry
f35e55d697260ebcd4de03f2272eb40afc450e1d
[ "MIT" ]
10
2021-10-10T02:02:14.000Z
2022-03-01T16:45:28.000Z
poetry/templates/template_executor.py
bennylut/poetry
f35e55d697260ebcd4de03f2272eb40afc450e1d
[ "MIT" ]
2
2021-10-31T07:27:54.000Z
2021-12-05T14:14:30.000Z
poetry/templates/template_executor.py
bennylut/poetry
f35e55d697260ebcd4de03f2272eb40afc450e1d
[ "MIT" ]
1
2021-12-05T15:14:26.000Z
2021-12-05T15:14:26.000Z
import zipfile from contextlib import contextmanager from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Dict, Optional, ContextManager from poetry.core.pyproject.project import Project from poetry.core.vcs import Git from poetry.core.utils.props_ext import cached_property from poetry.core.vcs.git import GitConfig # noinspection PyPackageRequirements from protopy import doc_generator # noinspection PyPackageRequirements from protopy.engine import ProtopyEngine from poetry.console import console from poetry.managed_project import ManagedProject from typing import TYPE_CHECKING if TYPE_CHECKING: from poetry.app.relaxed_poetry import RelaxedPoetry class TemplateExecutor: def __init__(self, rp: "RelaxedPoetry"): self._rp = rp self._pengine = ProtopyEngine(console.io) @cached_property def _git(self) -> Git: return Git() def document(self, descriptor: str) -> str: with self._locate_template(descriptor) as template: if not template or not template.exists(): raise FileNotFoundError(f"could not locate template according to descriptor: {descriptor}") return doc_generator.generate(template / "proto.py", descriptor, "rp new") def execute( self, descriptor: str, out_path: Path, args: List[str], kwargs: Dict[str, str], allow_override: bool ): with self._locate_template(descriptor) as template: if not template or not template.exists(): raise FileNotFoundError(f"could not locate template according to descriptor: {descriptor}") rp_ctx = _RelaxedPoetryTemplateContext(self._rp) self._pengine.render( template, out_path, args, kwargs, {"rp": rp_ctx}, allow_overwrite=allow_override) @contextmanager def _locate_template(self, descriptor: str) -> ContextManager[Path]: if descriptor.startswith("git+"): # this is a git descriptor with _use_git_template(self._git, descriptor[len("git+"):]) as path: yield path else: descriptor_path = Path(descriptor) if descriptor_path.exists() or descriptor_path.with_suffix(".zip").exists(): # this is a path descriptor with _use_file_system(descriptor_path) as path: yield path else: with _use_template_ref(descriptor, self._rp.active_project) as path: yield path @contextmanager def _use_git_template(git: Git, repo: str): with TemporaryDirectory() as tmp: path = Path(tmp) git.clone(repo, path) yield path @contextmanager def _use_file_system(path: Path): if path.suffix == ".zip": with TemporaryDirectory() as tmp: tmp_path = Path(tmp) zipfile.ZipFile(path).extractall(tmp_path) yield tmp_path else: yield path @contextmanager def _use_builtin(name: str): try: import importlib.resources as pkg_resources except ImportError: import importlib_resources as pkg_resources with pkg_resources.path(__package__, name + ".zip") as resource_path: if not resource_path.exists(): yield None else: with _use_file_system(resource_path) as path: yield path @contextmanager def _use_template_ref(name: str, prj: ManagedProject): if prj is not None: template_path = prj.path / "etc/rp/templates" / name if template_path.exists() or template_path.with_suffix(".zip").exists(): with _use_file_system(template_path) as path: yield path return else: parent = prj.parent if parent: with _use_template_ref(name, parent) as path: yield path return with _use_builtin(name) as path: yield path class _RelaxedPoetryProjectDefaults: @cached_property def _git_config(self): return GitConfig() @cached_property def author_name(self) -> str: """ :return: the default author name """ config = self._git_config author = None if config.get("user.name"): author = config["user.name"] author_email = config.get("user.email") if author_email: author += " <{}>".format(author_email) return author @cached_property def python_requirements(self) -> str: """ :return: the default python version requirements (e.g., ^3.6) """ import platform mj, mn, _ = platform.python_version_tuple() return f"^{mj}.{mn}" # noinspection PyCompatibility @cached_property def buildsys_requirements(self) -> str: """ :return: the default build-sys (relaxed-poetry-core) requirements (e.g., >=0.1) """ try: import importlib.metadata as mtd except ModuleNotFoundError: import importlib_metadata as mtd version = mtd.version("relaxed-poetry-core") return f">={version}" class _RelaxedPoetryTemplateContext: def __init__(self, rp: "RelaxedPoetry"): self._rp = rp self.project_defaults = _RelaxedPoetryProjectDefaults() @property def active_project(self) -> Optional[Project]: if not self._rp.active_project: return None return self._rp.active_project.pyproject
30.356757
117
0.633725
2a9974268b8baf372ce5c8bbc06cff8ae82e7860
46,206
py
Python
kitsune/wiki/views.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
null
null
null
kitsune/wiki/views.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
null
null
null
kitsune/wiki/views.py
jgmize/kitsune
8f23727a9c7fcdd05afc86886f0134fb08d9a2f0
[ "BSD-3-Clause" ]
null
null
null
from datetime import datetime import json import logging import time from django.conf import settings from django.contrib import messages from django.contrib.auth.models import User from django.core.exceptions import PermissionDenied from django.db import connection from django.http import (HttpResponse, HttpResponseRedirect, Http404, HttpResponseBadRequest) from django.shortcuts import get_object_or_404, render from django.views.decorators.csrf import csrf_exempt from django.views.decorators.http import (require_GET, require_POST, require_http_methods) import jingo import waffle from mobility.decorators import mobile_template from ratelimit.decorators import ratelimit from statsd import statsd from tower import ugettext_lazy as _lazy from tower import ugettext as _ from kitsune.access.decorators import login_required from kitsune.products.models import Product, Topic from kitsune.sumo.helpers import urlparams from kitsune.sumo.redis_utils import redis_client, RedisError from kitsune.sumo.urlresolvers import reverse from kitsune.sumo.utils import (paginate, smart_int, get_next_url, user_or_ip, truncated_json_dumps) from kitsune.wiki import DOCUMENTS_PER_PAGE from kitsune.wiki.config import CATEGORIES, TEMPLATES_CATEGORY from kitsune.wiki.events import ( EditDocumentEvent, ReviewableRevisionInLocaleEvent, ApproveRevisionInLocaleEvent, ApprovedOrReadyUnion, ReadyRevisionEvent) from kitsune.wiki.forms import ( AddContributorForm, DocumentForm, RevisionForm, RevisionFilterForm, ReviewForm) from kitsune.wiki.models import Document, Revision, HelpfulVote, ImportantDate from kitsune.wiki.parser import wiki_to_html from kitsune.wiki.showfor import showfor_data from kitsune.wiki.tasks import ( send_reviewed_notification, schedule_rebuild_kb, send_contributor_notification) log = logging.getLogger('k.wiki') @require_GET @mobile_template('wiki/{mobile/}document.html') def document(request, document_slug, template=None): """View a wiki document.""" fallback_reason = None # If a slug isn't available in the requested locale, fall back to en-US: try: doc = Document.objects.get(locale=request.LANGUAGE_CODE, slug=document_slug) if (not doc.current_revision and doc.parent and doc.parent.current_revision): # This is a translation but its current_revision is None # and OK to fall back to parent (parent is approved). fallback_reason = 'translation_not_approved' elif not doc.current_revision: # No current_revision, no parent with current revision, so # nothing to show. fallback_reason = 'no_content' except Document.DoesNotExist: # Look in default language: doc = get_object_or_404(Document, locale=settings.WIKI_DEFAULT_LANGUAGE, slug=document_slug) # If there's a translation to the requested locale, take it: translation = doc.translated_to(request.LANGUAGE_CODE) if translation: url = translation.get_absolute_url() url = urlparams(url, query_dict=request.GET) return HttpResponseRedirect(url) elif doc.current_revision: # There is no translation # and OK to fall back to parent (parent is approved). fallback_reason = 'no_translation' # Obey explicit redirect pages: # Don't redirect on redirect=no (like Wikipedia), so we can link from a # redirected-to-page back to a "Redirected from..." link, so you can edit # the redirect. redirect_url = (None if request.GET.get('redirect') == 'no' else doc.redirect_url(request.LANGUAGE_CODE)) if redirect_url: url = urlparams(redirect_url, query_dict=request.GET, redirectslug=doc.slug, redirectlocale=doc.locale) return HttpResponseRedirect(url) # Get "redirected from" doc if we were redirected: redirect_slug = request.GET.get('redirectslug') redirect_locale = request.GET.get('redirectlocale') redirected_from = None if redirect_slug and redirect_locale: try: redirected_from = Document.objects.get(locale=redirect_locale, slug=redirect_slug) except Document.DoesNotExist: pass related_documents = doc.related_documents related_questions = doc.related_questions contributors = doc.contributors.all() products = doc.get_products() if len(products) < 1: product = Product.objects.filter(visible=True)[0] else: product = products[0] topics = Topic.objects.filter(product=product, visible=True, parent=None) ga_push = [] if fallback_reason is not None: ga_push.append( ['_trackEvent', 'Incomplete L10n', 'Not Localized', '%s/%s' % (doc.slug, request.LANGUAGE_CODE)]) elif doc.is_outdated(): ga_push.append( ['_trackEvent', 'Incomplete L10n', 'Not Updated', '%s/%s' % (doc.parent.slug, request.LANGUAGE_CODE)]) hide_voting = False if (doc.category == TEMPLATES_CATEGORY or waffle.switch_is_active('hide-voting')): hide_voting = True data = {'document': doc, 'redirected_from': redirected_from, 'related_documents': related_documents, 'related_questions': related_questions, 'contributors': contributors, 'fallback_reason': fallback_reason, 'is_aoa_referral': request.GET.get('ref') == 'aoa', 'topics': topics, 'product': product, 'products': products, 'hide_voting': hide_voting, 'ga_push': ga_push} data.update(showfor_data(products)) return render(request, template, data) def revision(request, document_slug, revision_id): """View a wiki document revision.""" rev = get_object_or_404(Revision, pk=revision_id, document__slug=document_slug) data = {'document': rev.document, 'revision': rev} data.update(showfor_data()) return render(request, 'wiki/revision.html', data) @require_GET def list_documents(request, category=None): """List wiki documents.""" docs = Document.objects.filter(locale=request.LANGUAGE_CODE).order_by('title') if category: docs = docs.filter(category=category) try: category_id = int(category) except ValueError: raise Http404 try: category = unicode(dict(CATEGORIES)[category_id]) except KeyError: raise Http404 docs = paginate(request, docs, per_page=DOCUMENTS_PER_PAGE) return render(request, 'wiki/list_documents.html', { 'documents': docs, 'category': category}) @login_required def new_document(request): """Create a new wiki document.""" if request.method == 'GET': doc_form = DocumentForm(initial_title=request.GET.get('title')) rev_form = RevisionForm() return render(request, 'wiki/new_document.html', { 'document_form': doc_form, 'revision_form': rev_form}) post_data = request.POST.copy() post_data.update({'locale': request.LANGUAGE_CODE}) doc_form = DocumentForm(post_data) rev_form = RevisionForm(post_data) if doc_form.is_valid() and rev_form.is_valid(): doc = doc_form.save(None) _save_rev_and_notify(rev_form, request.user, doc) return HttpResponseRedirect(reverse('wiki.document_revisions', args=[doc.slug])) return render(request, 'wiki/new_document.html', { 'document_form': doc_form, 'revision_form': rev_form}) _document_lock_key = 'sumo::wiki::document::{id}::lock' def _document_lock_check(document_id): """Check for a lock on a document. Returns the username of the user that has the page locked, or ``None`` if no user has a lock. """ try: redis = redis_client(name='default') key = _document_lock_key.format(id=document_id) return redis.get(key) except RedisError as e: statsd.incr('redis.errror') log.error('Redis error: %s' % e) return None def _document_lock_steal(document_id, user_name, expire_time=60 * 15): """Lock a document for a user. Note that this does not check if the page is already locked, and simply sets the lock on the page. """ try: redis = redis_client(name='default') key = _document_lock_key.format(id=document_id) it_worked = redis.set(key, user_name) redis.expire(key, expire_time) return it_worked except RedisError as e: statsd.incr('redis.errror') log.error('Redis error: %s' % e) return False def _document_lock_clear(document_id, user_name): """Remove a lock from a document. This would be used to indicate the given user no longer wants the page locked, so the lock should be cleared. If the `user` parameter does not match the current lock, the lock remains in place. Returns true if the lock was removed, false otherwise. """ try: redis = redis_client(name='default') key = _document_lock_key.format(id=document_id) locked_by = redis.get(key) if locked_by == user_name: return redis.delete(key) else: return False except RedisError as e: statsd.incr('redis.errror') log.error('Redis error: %s' % e) return False def _document_lock(doc_id, username): """If there is no lock, take one. Return the current state of the lock.""" locked_by = _document_lock_check(doc_id) if locked_by == username: locked = False if locked_by: try: locked = not (locked_by == username) locked_by = User.objects.get(username=locked_by) except User.DoesNotExist: # If the user doesn't exist, they shouldn't be able to enforce a lock. locked = False locked_by = None else: locked_by = username locked = False _document_lock_steal(doc_id, username) return locked, locked_by @login_required def steal_lock(request, document_slug, revision_id=None): doc = get_object_or_404( Document, locale=request.LANGUAGE_CODE, slug=document_slug) user = request.user ok = _document_lock_steal(doc.id, user.username) return HttpResponse("", status=200 if ok else 400) @require_http_methods(['GET', 'POST']) @login_required def edit_document(request, document_slug, revision_id=None): """Create a new revision of a wiki document, or edit document metadata.""" doc = get_object_or_404( Document, locale=request.LANGUAGE_CODE, slug=document_slug) user = request.user can_edit_needs_change = doc.allows(user, 'edit_needs_change') can_archive = doc.allows(user, 'archive') # If this document has a parent, then the edit is handled by the # translate view. Pass it on. if doc.parent: return translate(request, doc.parent.slug, revision_id) if revision_id: rev = get_object_or_404(Revision, pk=revision_id, document=doc) else: rev = doc.current_revision or doc.revisions.order_by('-created', '-id')[0] disclose_description = bool(request.GET.get('opendescription')) doc_form = rev_form = None if doc.allows(user, 'create_revision'): rev_form = RevisionForm( instance=rev, initial={'based_on': rev.id, 'comment': ''}) if doc.allows(user, 'edit'): doc_form = DocumentForm( initial=_document_form_initial(doc), can_archive=can_archive, can_edit_needs_change=can_edit_needs_change) if request.method == 'GET': if not (rev_form or doc_form): # You can't do anything on this page, so get lost. raise PermissionDenied else: # POST # Comparing against localized names for the Save button bothers me, so # I embedded a hidden input: which_form = request.POST.get('form') _document_lock_clear(doc.id, user.username) if which_form == 'doc': if doc.allows(user, 'edit'): post_data = request.POST.copy() post_data.update({'locale': request.LANGUAGE_CODE}) doc_form = DocumentForm( post_data, instance=doc, can_archive=can_archive, can_edit_needs_change=can_edit_needs_change) if doc_form.is_valid(): # Get the possibly new slug for the imminent redirection: doc = doc_form.save(None) # Do we need to rebuild the KB? _maybe_schedule_rebuild(doc_form) return HttpResponseRedirect( urlparams(reverse('wiki.edit_document', args=[doc.slug]), opendescription=1)) disclose_description = True else: raise PermissionDenied elif which_form == 'rev': if doc.allows(user, 'create_revision'): rev_form = RevisionForm(request.POST) rev_form.instance.document = doc # for rev_form.clean() if rev_form.is_valid(): _save_rev_and_notify(rev_form, user, doc, base_rev=rev) if 'notify-future-changes' in request.POST: EditDocumentEvent.notify(request.user, doc) return HttpResponseRedirect( reverse('wiki.document_revisions', args=[document_slug])) else: raise PermissionDenied show_revision_warning = _show_revision_warning(doc, rev) locked, locked_by = _document_lock(doc.id, user.username) return render(request, 'wiki/edit.html', { 'revision_form': rev_form, 'document_form': doc_form, 'disclose_description': disclose_description, 'document': doc, 'show_revision_warning': show_revision_warning, 'locked': locked, 'locked_by': locked_by}) @login_required @require_POST def preview_revision(request): """Create an HTML fragment preview of the posted wiki syntax.""" wiki_content = request.POST.get('content', '') statsd.incr('wiki.preview') # TODO: Get doc ID from JSON. data = {'content': wiki_to_html(wiki_content, request.LANGUAGE_CODE)} data.update(showfor_data()) return render(request, 'wiki/preview.html', data) @require_GET def document_revisions(request, document_slug, contributor_form=None): """List all the revisions of a given document.""" locale = request.GET.get('locale', request.LANGUAGE_CODE) doc = get_object_or_404( Document, locale=locale, slug=document_slug) revs = Revision.objects.filter(document=doc).order_by('-created', '-id') if request.is_ajax(): template = 'wiki/includes/revision_list.html' else: template = 'wiki/history.html' form = contributor_form or AddContributorForm() return render(request, template, { 'revisions': revs, 'document': doc, 'contributor_form': form}) @login_required def review_revision(request, document_slug, revision_id): """Review a revision of a wiki document.""" rev = get_object_or_404(Revision, pk=revision_id, document__slug=document_slug) doc = rev.document if not doc.allows(request.user, 'review_revision'): raise PermissionDenied form = ReviewForm( initial={'needs_change': doc.needs_change, 'needs_change_comment': doc.needs_change_comment}) # Don't ask significance if this doc is a translation or if it has no # former approved versions: should_ask_significance = not doc.parent and doc.current_revision based_on_revs = doc.revisions.all() last_approved_date = getattr(doc.current_revision, 'created', datetime.fromordinal(1)) based_on_revs = based_on_revs.filter(created__gt=last_approved_date) revision_contributors = list(set( based_on_revs.values_list('creator__username', flat=True))) # Don't include the reviewer in the recent contributors list. if request.user.username in revision_contributors: revision_contributors.remove(request.user.username) if request.method == 'POST': form = ReviewForm(request.POST) if form.is_valid() and not rev.reviewed: # Don't allow revisions to be reviewed twice rev.is_approved = 'approve' in request.POST rev.reviewer = request.user rev.reviewed = datetime.now() if should_ask_significance and form.cleaned_data['significance']: rev.significance = form.cleaned_data['significance'] # If document is localizable and revision was approved and # user has permission, set the is_ready_for_localization value. if (doc.allows(request.user, 'mark_ready_for_l10n') and rev.is_approved and rev.can_be_readied_for_localization()): rev.is_ready_for_localization = form.cleaned_data[ 'is_ready_for_localization'] # If the revision is ready for l10n, store the date # and the user. if rev.is_ready_for_localization: rev.readied_for_localization = rev.reviewed rev.readied_for_localization_by = rev.reviewer rev.save() # Update the needs change bit (if approved, default language and # user has permission). if (doc.locale == settings.WIKI_DEFAULT_LANGUAGE and doc.allows(request.user, 'edit_needs_change') and rev.is_approved): doc.needs_change = form.cleaned_data['needs_change'] doc.needs_change_comment = \ form.cleaned_data['needs_change_comment'] doc.save() # Send notifications of approvedness and readiness: if rev.is_ready_for_localization or rev.is_approved: events = [ApproveRevisionInLocaleEvent(rev)] if rev.is_ready_for_localization: events.append(ReadyRevisionEvent(rev)) ApprovedOrReadyUnion(*events).fire(exclude=[rev.creator, request.user]) # Send an email (not really a "notification" in the sense that # there's a Watch table entry) to revision creator. msg = form.cleaned_data['comment'] send_reviewed_notification.delay(rev, doc, msg) send_contributor_notification(based_on_revs, rev, doc, msg) # Schedule KB rebuild? statsd.incr('wiki.review') schedule_rebuild_kb() return HttpResponseRedirect(reverse('wiki.document_revisions', args=[document_slug])) if doc.parent: # A translation # For diffing the based_on revision against, to help the user see if he # translated all the recent changes: parent_revision = (rev.based_on or doc.parent.localizable_or_latest_revision()) template = 'wiki/review_translation.html' else: parent_revision = None template = 'wiki/review_revision.html' data = {'revision': rev, 'document': doc, 'form': form, 'parent_revision': parent_revision, 'revision_contributors': list(revision_contributors), 'should_ask_significance': should_ask_significance} data.update(showfor_data()) return render(request, template, data) @require_GET def compare_revisions(request, document_slug): """Compare two wiki document revisions. The ids are passed as query string parameters (to and from). """ locale = request.GET.get('locale', request.LANGUAGE_CODE) doc = get_object_or_404( Document, locale=locale, slug=document_slug) if 'from' not in request.GET or 'to' not in request.GET: raise Http404 from_id = smart_int(request.GET.get('from')) to_id = smart_int(request.GET.get('to')) revision_from = get_object_or_404(Revision, document=doc, id=from_id) revision_to = get_object_or_404(Revision, document=doc, id=to_id) if request.is_ajax(): template = 'wiki/includes/revision_diff.html' else: template = 'wiki/compare_revisions.html' return render(request, template, { 'document': doc, 'revision_from': revision_from, 'revision_to': revision_to}) @login_required def select_locale(request, document_slug): """Select a locale to translate the document to.""" doc = get_object_or_404( Document, locale=settings.WIKI_DEFAULT_LANGUAGE, slug=document_slug) return render(request, 'wiki/select_locale.html', {'document': doc}) @require_http_methods(['GET', 'POST']) @login_required def translate(request, document_slug, revision_id=None): """Create a new translation of a wiki document. * document_slug is for the default locale * translation is to the request.LANGUAGE_CODE """ # TODO: Refactor this view into two views? (new, edit) # That might help reduce the headache-inducing branchiness. parent_doc = get_object_or_404( Document, locale=settings.WIKI_DEFAULT_LANGUAGE, slug=document_slug) user = request.user if settings.WIKI_DEFAULT_LANGUAGE == request.LANGUAGE_CODE: # Don't translate to the default language. return HttpResponseRedirect(reverse( 'wiki.edit_document', locale=settings.WIKI_DEFAULT_LANGUAGE, args=[parent_doc.slug])) if not parent_doc.is_localizable: message = _lazy(u'You cannot translate this document.') return render(request, 'handlers/400.html', { 'message': message}, status=400) based_on_rev = parent_doc.localizable_or_latest_revision( include_rejected=True) disclose_description = bool(request.GET.get('opendescription')) try: doc = parent_doc.translations.get(locale=request.LANGUAGE_CODE) except Document.DoesNotExist: doc = None disclose_description = True user_has_doc_perm = not doc or doc.allows(user, 'edit') user_has_rev_perm = not doc or doc.allows(user, 'create_revision') if not user_has_doc_perm and not user_has_rev_perm: # User has no perms, bye. raise PermissionDenied doc_form = rev_form = None base_rev = None if user_has_doc_perm: doc_initial = _document_form_initial(doc) if doc else None doc_form = DocumentForm(initial=doc_initial) if user_has_rev_perm: initial = {'based_on': based_on_rev.id, 'comment': ''} if revision_id: base_rev = Revision.objects.get(pk=revision_id) initial.update(content=base_rev.content, summary=base_rev.summary, keywords=base_rev.keywords) elif not doc: initial.update(content=based_on_rev.content, summary=based_on_rev.summary, keywords=based_on_rev.keywords) # Get a revision of the translation to plonk into the page as a # starting point. Since translations are never "ready for # localization", this will first try to find an approved revision, then # an unrejected one, then give up. instance = doc and doc.localizable_or_latest_revision() rev_form = RevisionForm(instance=instance, initial=initial) base_rev = base_rev or instance if request.method == 'POST': which_form = request.POST.get('form', 'both') doc_form_invalid = False if doc is not None: _document_lock_clear(doc.id, user.username) if user_has_doc_perm and which_form in ['doc', 'both']: disclose_description = True post_data = request.POST.copy() post_data.update({'locale': request.LANGUAGE_CODE}) doc_form = DocumentForm(post_data, instance=doc) doc_form.instance.locale = request.LANGUAGE_CODE doc_form.instance.parent = parent_doc if which_form == 'both': rev_form = RevisionForm(request.POST) # If we are submitting the whole form, we need to check that # the Revision is valid before saving the Document. if doc_form.is_valid() and (which_form == 'doc' or rev_form.is_valid()): doc = doc_form.save(parent_doc) # Possibly schedule a rebuild. _maybe_schedule_rebuild(doc_form) if which_form == 'doc': url = urlparams(reverse('wiki.edit_document', args=[doc.slug]), opendescription=1) return HttpResponseRedirect(url) doc_slug = doc_form.cleaned_data['slug'] else: doc_form_invalid = True else: doc_slug = doc.slug if doc and user_has_rev_perm and which_form in ['rev', 'both']: rev_form = RevisionForm(request.POST) rev_form.instance.document = doc # for rev_form.clean() if rev_form.is_valid() and not doc_form_invalid: if 'no-update' in request.POST: # Keep the old based_on. based_on_id = base_rev.based_on_id else: # Keep what was in the form. based_on_id = None _save_rev_and_notify( rev_form, request.user, doc, based_on_id, base_rev=base_rev) if 'notify-future-changes' in request.POST: EditDocumentEvent.notify(request.user, doc) url = reverse('wiki.document_revisions', args=[doc_slug]) return HttpResponseRedirect(url) show_revision_warning = _show_revision_warning(doc, base_rev) # A list of the revisions that have been approved since the last # translation. recent_approved_revs = parent_doc.revisions.filter( is_approved=True, id__lte=based_on_rev.id) if doc and doc.current_revision and doc.current_revision.based_on_id: recent_approved_revs = recent_approved_revs.filter( id__gt=doc.current_revision.based_on_id) if doc: locked, locked_by = _document_lock(doc.id, user.username) else: locked, locked_by = False, None return render(request, 'wiki/translate.html', { 'parent': parent_doc, 'document': doc, 'document_form': doc_form, 'revision_form': rev_form, 'locale': request.LANGUAGE_CODE, 'based_on': based_on_rev, 'disclose_description': disclose_description, 'show_revision_warning': show_revision_warning, 'recent_approved_revs': recent_approved_revs, 'locked': locked, 'locked_by': locked_by}) @require_POST @login_required def watch_document(request, document_slug): """Start watching a document for edits.""" document = get_object_or_404( Document, locale=request.LANGUAGE_CODE, slug=document_slug) EditDocumentEvent.notify(request.user, document) statsd.incr('wiki.watches.document') return HttpResponseRedirect(document.get_absolute_url()) @require_POST @login_required def unwatch_document(request, document_slug): """Stop watching a document for edits.""" document = get_object_or_404( Document, locale=request.LANGUAGE_CODE, slug=document_slug) EditDocumentEvent.stop_notifying(request.user, document) return HttpResponseRedirect(document.get_absolute_url()) @require_POST @login_required def watch_locale(request): """Start watching a locale for revisions ready for review.""" ReviewableRevisionInLocaleEvent.notify(request.user, locale=request.LANGUAGE_CODE) statsd.incr('wiki.watches.locale') # A 200 so jQuery interprets it as success return HttpResponse() @require_POST @login_required def unwatch_locale(request): """Stop watching a locale for revisions ready for review.""" ReviewableRevisionInLocaleEvent.stop_notifying(request.user, locale=request.LANGUAGE_CODE) return HttpResponse() @require_POST @login_required def watch_approved(request): """Start watching approved revisions in a locale.""" if request.LANGUAGE_CODE not in settings.SUMO_LANGUAGES: raise Http404 ApproveRevisionInLocaleEvent.notify(request.user, locale=request.LANGUAGE_CODE) statsd.incr('wiki.watches.approved') return HttpResponse() @require_POST @login_required def unwatch_approved(request): """Stop watching approved revisions.""" if request.LANGUAGE_CODE not in settings.SUMO_LANGUAGES: raise Http404 ApproveRevisionInLocaleEvent.stop_notifying(request.user, locale=request.LANGUAGE_CODE) return HttpResponse() @require_POST @login_required def watch_ready(request): """Start watching ready-for-l10n revisions.""" if request.LANGUAGE_CODE != settings.WIKI_DEFAULT_LANGUAGE: raise Http404 ReadyRevisionEvent.notify(request.user) statsd.incr('wiki.watches.ready') return HttpResponse() @require_POST @login_required def unwatch_ready(request): """Stop watching ready-for-l10n revisions.""" if request.LANGUAGE_CODE != settings.WIKI_DEFAULT_LANGUAGE: raise Http404 ReadyRevisionEvent.stop_notifying(request.user) return HttpResponse() @require_GET def json_view(request): """Return some basic document info in a JSON blob.""" kwargs = {'locale': request.LANGUAGE_CODE, 'current_revision__isnull': False} if 'title' in request.GET: kwargs['title'] = request.GET['title'] elif 'slug' in request.GET: kwargs['slug'] = request.GET['slug'] else: return HttpResponseBadRequest() document = get_object_or_404(Document, **kwargs) data = json.dumps({ 'id': document.id, 'locale': document.locale, 'slug': document.slug, 'title': document.title, 'summary': document.current_revision.summary, 'url': document.get_absolute_url(), }) return HttpResponse(data, mimetype='application/json') @require_POST @csrf_exempt @ratelimit(keys=user_or_ip('document-vote'), ip=False, rate='10/d') def helpful_vote(request, document_slug): """Vote for Helpful/Not Helpful document""" if 'revision_id' not in request.POST: return HttpResponseBadRequest() revision = get_object_or_404( Revision, id=smart_int(request.POST['revision_id'])) survey = None if revision.document.category == TEMPLATES_CATEGORY: return HttpResponseBadRequest() if not revision.has_voted(request): ua = request.META.get('HTTP_USER_AGENT', '')[:1000] # 1000 max_length vote = HelpfulVote(revision=revision, user_agent=ua) if 'helpful' in request.POST: vote.helpful = True message = _('Glad to hear it &mdash; thanks for the feedback!') else: message = _('Sorry to hear that.') # If user is over the limit, don't save but pretend everything is ok. if not request.limited: if request.user.is_authenticated(): vote.creator = request.user else: vote.anonymous_id = request.anonymous.anonymous_id vote.save() statsd.incr('wiki.vote') # Send a survey if flag is enabled and vote wasn't helpful. if 'helpful' not in request.POST: survey = jingo.render_to_string( request, 'wiki/includes/unhelpful_survey.html', {'vote_id': vote.id}) # Save vote metadata: referrer and search query (if available) for name in ['referrer', 'query', 'source']: val = request.POST.get(name) if val: vote.add_metadata(name, val) else: message = _('You already voted on this Article.') if request.is_ajax(): r = {'message': message} if survey: r.update(survey=survey) return HttpResponse(json.dumps(r)) return HttpResponseRedirect(revision.document.get_absolute_url()) @require_POST @csrf_exempt def unhelpful_survey(request): """Ajax only view: Unhelpful vote survey processing.""" vote = get_object_or_404( HelpfulVote, id=smart_int(request.POST.get('vote_id'))) # Only save the survey if it was for a not helpful vote and a survey # doesn't exist for it already. if not vote.helpful and not vote.metadata.filter(key='survey').exists(): # The survey is the posted data, minus the vote_id and button value. survey = request.POST.copy() survey.pop('vote_id') survey.pop('button') # Save the survey in JSON format, taking care not to exceed 1000 chars. vote.add_metadata( 'survey', truncated_json_dumps(survey, 1000, 'comment')) return HttpResponse( json.dumps({'message': _('Thanks for making us better!')})) @require_GET def get_helpful_votes_async(request, document_slug): document = get_object_or_404( Document, locale=request.LANGUAGE_CODE, slug=document_slug) datums = [] flag_data = [] rev_data = [] revisions = set() created_list = [] dates_with_data = set() cursor = connection.cursor() cursor.execute('SELECT wiki_helpfulvote.revision_id, ' ' SUM(wiki_helpfulvote.helpful), ' ' SUM(NOT(wiki_helpfulvote.helpful)), ' ' wiki_helpfulvote.created ' 'FROM wiki_helpfulvote ' 'INNER JOIN wiki_revision ON ' ' wiki_helpfulvote.revision_id=wiki_revision.id ' 'WHERE wiki_revision.document_id=%s ' 'GROUP BY DATE(wiki_helpfulvote.created)', [document.id]) results = cursor.fetchall() for res in results: revisions.add(int(res[0])) created_list.append(res[3]) date = int(time.mktime(res[3].timetuple()) / 86400) * 86400 datums.append({ 'yes': int(res[1]), 'no': int(res[2]), 'date': date, }) dates_with_data.add(date) if not created_list: send = {'datums': [], 'annotations': []} return HttpResponse(json.dumps(send), mimetype='application/json') min_created = min(created_list) max_created = max(created_list) # Zero fill data timestamp = int(time.mktime(res[3].timetuple()) / 86400) * 86400 end = time.mktime(datetime.now().timetuple()) while timestamp <= end: if timestamp not in dates_with_data: datums.append({ 'yes': 0, 'no': 0, 'date': timestamp, }) dates_with_data.add(timestamp) timestamp += 24 * 60 * 60 for flag in ImportantDate.uncached.filter(date__gte=min_created, date__lte=max_created): flag_data.append({ 'x': int(time.mktime(flag.date.timetuple())), 'text': _(flag.text) }) for rev in Revision.objects.filter(pk__in=revisions, created__gte=min_created, created__lte=max_created): rdate = rev.reviewed or rev.created rev_data.append({ 'x': int(time.mktime(rdate.timetuple())), 'text': unicode(_('Revision %s')) % rev.created }) # Rickshaw wants data like # [{'name': 'series1', 'data': [{'x': 1362774285, 'y': 100}, ...]},] send = {'datums': datums, 'annotations': []} if flag_data: send['annotations'].append({ 'name': _('Firefox Releases'), 'slug': 'releases', 'data': flag_data, }) if rev_data: send['annotations'].append({ 'name': _('Article Revisions'), 'slug': 'revisions', 'data': rev_data, }) return HttpResponse(json.dumps(send), mimetype='application/json') @login_required def delete_revision(request, document_slug, revision_id): """Delete a revision.""" revision = get_object_or_404(Revision, pk=revision_id, document__slug=document_slug) document = revision.document if not document.allows(request.user, 'delete_revision'): raise PermissionDenied only_revision = document.revisions.count() == 1 helpful_votes = HelpfulVote.objects.filter(revision=revision.id) has_votes = helpful_votes.exists() if request.method == 'GET': # Render the confirmation page return render(request, 'wiki/confirm_revision_delete.html', { 'revision': revision, 'document': document, 'only_revision': only_revision, 'has_votes': has_votes}) # Don't delete the only revision of a document if only_revision: return HttpResponseBadRequest() log.warning('User %s is deleting revision with id=%s' % (request.user, revision.id)) revision.delete() return HttpResponseRedirect(reverse('wiki.document_revisions', args=[document.slug])) @login_required @require_POST def mark_ready_for_l10n_revision(request, document_slug, revision_id): """Mark a revision as ready for l10n.""" revision = get_object_or_404(Revision, pk=revision_id, document__slug=document_slug) if not revision.document.allows(request.user, 'mark_ready_for_l10n'): raise PermissionDenied if revision.can_be_readied_for_localization(): # We don't use update(), because that wouldn't update # Document.latest_localizable_revision. revision.is_ready_for_localization = True revision.readied_for_localization = datetime.now() revision.readied_for_localization_by = request.user revision.save() ReadyRevisionEvent(revision).fire(exclude=request.user) return HttpResponse(json.dumps({'message': revision_id})) return HttpResponseBadRequest() @login_required def delete_document(request, document_slug): """Delete a revision.""" document = get_object_or_404(Document, locale=request.LANGUAGE_CODE, slug=document_slug) # Check permission if not document.allows(request.user, 'delete'): raise PermissionDenied if request.method == 'GET': # Render the confirmation page return render(request, 'wiki/confirm_document_delete.html', { 'document': document}) # Handle confirm delete form POST log.warning('User %s is deleting document: %s (id=%s)' % (request.user, document.title, document.id)) document.delete() return render(request, 'wiki/confirm_document_delete.html', { 'document': document, 'delete_confirmed': True}) @login_required @require_POST def add_contributor(request, document_slug): """Add a contributor to a document.""" document = get_object_or_404(Document, locale=request.LANGUAGE_CODE, slug=document_slug) if not document.allows(request.user, 'edit'): raise PermissionDenied form = AddContributorForm(request.POST) if form.is_valid(): for user in form.cleaned_data['users']: document.contributors.add(user) msg = _('{users} added to the contributors successfully!').format( users=request.POST.get('users')) messages.add_message(request, messages.SUCCESS, msg) return HttpResponseRedirect(reverse('wiki.document_revisions', args=[document_slug])) msg = _('There were errors adding new contributors, see below.') messages.add_message(request, messages.ERROR, msg) return document_revisions(request, document_slug, contributor_form=form) @login_required @require_http_methods(['GET', 'POST']) def remove_contributor(request, document_slug, user_id): """Remove a contributor from a document.""" document = get_object_or_404(Document, locale=request.LANGUAGE_CODE, slug=document_slug) if not document.allows(request.user, 'edit'): raise PermissionDenied user = get_object_or_404(User, id=user_id) if request.method == 'POST': document.contributors.remove(user) msg = _('{user} removed from the contributors successfully!').format( user=user.username) messages.add_message(request, messages.SUCCESS, msg) return HttpResponseRedirect(reverse('wiki.document_revisions', args=[document_slug])) return render(request, 'wiki/confirm_remove_contributor.html', { 'document': document, 'contributor': user}) def show_translations(request, document_slug): document = get_object_or_404( Document, locale=settings.WIKI_DEFAULT_LANGUAGE, slug=document_slug) translated_locales = [] untranslated_locales = [] translated_locales.append(document.locale) translated_locales.extend(document.translations.all().values_list( 'locale', flat=True)) for locale in settings.LANGUAGE_CHOICES: if not locale[0] in translated_locales: untranslated_locales.append(locale[0]) return render(request, 'wiki/show_translations.html', { 'document': document, 'translated_locales': translated_locales, 'untranslated_locales': untranslated_locales}) def _document_form_initial(document): """Return a dict with the document data pertinent for the form.""" return {'title': document.title, 'slug': document.slug, 'category': document.category, 'is_localizable': document.is_localizable, 'is_archived': document.is_archived, 'topics': Topic.uncached.filter( document=document).values_list('id', flat=True), 'products': Product.uncached.filter( document=document).values_list('id', flat=True), 'allow_discussion': document.allow_discussion, 'needs_change': document.needs_change, 'needs_change_comment': document.needs_change_comment} def _save_rev_and_notify(rev_form, creator, document, based_on_id=None, base_rev=None): """Save the given RevisionForm and send notifications.""" new_rev = rev_form.save(creator, document, based_on_id, base_rev) statsd.incr('wiki.revision') # Enqueue notifications ReviewableRevisionInLocaleEvent(new_rev).fire(exclude=new_rev.creator) EditDocumentEvent(new_rev).fire(exclude=new_rev.creator) def _maybe_schedule_rebuild(form): """Try to schedule a KB rebuild if a title or slug has changed.""" if 'title' in form.changed_data or 'slug' in form.changed_data: schedule_rebuild_kb() def _get_next_url_fallback_localization(request): return get_next_url(request) or reverse('dashboards.localization') def _show_revision_warning(document, revision): if revision: return document.revisions.filter(created__gt=revision.created, reviewed=None).exists() return False def recent_revisions(request): # Make writable request.GET = request.GET.copy() fragment = request.GET.pop('fragment', None) form = RevisionFilterForm(request.GET) revs = Revision.objects.order_by('-created') # We are going to ignore validation errors for the most part, but # this is needed to call the functions that generate `cleaned_data` # This helps in particular when bad user names are typed in. form.is_valid() # If something has gone very wrong, `cleaned_data` won't be there. if hasattr(form, 'cleaned_data'): if form.cleaned_data.get('locale'): revs = revs.filter(document__locale=form.cleaned_data['locale']) if form.cleaned_data.get('users'): revs = revs.filter(creator__in=form.cleaned_data['users']) if form.cleaned_data.get('start'): revs = revs.filter(created__gte=form.cleaned_data['start']) if form.cleaned_data.get('end'): revs = revs.filter(created__lte=form.cleaned_data['end']) revs = paginate(request, revs) c = { 'revisions': revs, 'form': form, } if fragment: template = 'wiki/includes/recent_revisions_fragment.html' else: template = 'wiki/recent_revisions.html' return render(request, template, c) @require_GET def what_links_here(request, document_slug): """List all documents that link to a document.""" locale = request.GET.get('locale', request.LANGUAGE_CODE) doc = get_object_or_404(Document, locale=locale, slug=document_slug) links = {} for l in doc.links_to(): if doc.locale == l.linked_from.locale: if l.kind not in links: links[l.kind] = [] links[l.kind].append(l.linked_from) c = { 'document': doc, 'relations': links } return render(request, 'wiki/what_links_here.html', c)
36.788217
86
0.641432
c9f99a89abb8aad7636656b84593912ac65862a3
1,118
py
Python
cohesity_management_sdk/models/type_sql_protection_source_enum.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-09-24T17:35:53.000Z
2022-03-25T08:08:47.000Z
cohesity_management_sdk/models/type_sql_protection_source_enum.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
18
2019-03-29T19:32:29.000Z
2022-01-03T23:16:45.000Z
cohesity_management_sdk/models/type_sql_protection_source_enum.py
nick6655/management-sdk-python
88e792cb83e5c24a22af495b220c145d0c45841d
[ "Apache-2.0" ]
16
2019-02-27T06:54:12.000Z
2021-11-16T18:10:24.000Z
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. class TypeSqlProtectionSourceEnum(object): """Implementation of the 'Type_SqlProtectionSource' enum. Specifies the type of the managed Object in a SQL Protection Source. Examples of SQL Objects include 'kInstance' and 'kDatabase'. 'kInstance' indicates that SQL server instance is being protected. 'kDatabase' indicates that SQL server database is being protected. 'kAAG' indicates that SQL AAG (AlwaysOn Availability Group) is being protected. 'kAAGRootContainer' indicates that SQL AAG's root container is being protected. 'kRootContainer' indicates root container for SQL sources. Attributes: KINSTANCE: TODO: type description here. KDATABASE: TODO: type description here. KAAG: TODO: type description here. KAAGROOTCONTAINER: TODO: type description here. KROOTCONTAINER: TODO: type description here. """ KINSTANCE = 'kInstance' KDATABASE = 'kDatabase' KAAG = 'kAAG' KAAGROOTCONTAINER = 'kAAGRootContainer' KROOTCONTAINER = 'kRootContainer'
30.216216
72
0.711986
a15203fce68e0225a09484576eb0c5044acde100
1,098
py
Python
examples/animations/warping.py
colinmford/coldtype
8462dbd5f65f3ef8f3cbc8662a866b7e20ec5985
[ "Apache-2.0" ]
null
null
null
examples/animations/warping.py
colinmford/coldtype
8462dbd5f65f3ef8f3cbc8662a866b7e20ec5985
[ "Apache-2.0" ]
null
null
null
examples/animations/warping.py
colinmford/coldtype
8462dbd5f65f3ef8f3cbc8662a866b7e20ec5985
[ "Apache-2.0" ]
null
null
null
from coldtype import * from coldtype.warping import warp_fn from coldtype.fx.skia import phototype Style.RegisterShorthandPrefix("≈", "~/Type/fonts/fonts") peshka = Font.Cacheable("≈/CoFoPeshkaVariableV0.5.ttf") loop = Loop(150, 15, [ # some keyframes dict(wdth=0, wght=0, rotate=-15, leading=200, font_size=700, warp=0, blur=15), dict(wdth=1, wght=1, rotate=0, leading=10, font_size=50, warp=200, blur=5), dict(wdth=0, wght=1, rotate=15, leading=100, font_size=500, warp=50, blur=3), dict(wdth=0.5, wght=0.5, rotate=0, leading=-470, font_size=330, warp=0, blur=1) ]) @animation(timeline=loop) def warp(f): state = f.a.t.current_state(f.i, e="eeio") return ((ß:=StSt("WARP\nBLUR", peshka, ro=1, **state)) .align(f.a.r).pen() # a single, centered vector .f(Gradient.V(ß.ambit(), hsl(0.7), hsl(0.9))) #.flatten(5) # slower but preserves curves across warp .nlt(warp_fn(f.i*30, f.i, mult=int(state["warp"]))) .f(1) -.ch(phototype(f.a.r, state["blur"], cutw=50, fill=hsl(0.75))))
37.862069
62
0.615665
91274dd79740393be58a86e7b52975d4460a763b
8,823
py
Python
mlir/test/Bindings/Python/dialects/linalg/opdsl/emit_structured_generic.py
keryell/llvm-2
4dc23a26d1bd6ced23969c0525dedbddf8c6fddc
[ "Apache-2.0" ]
null
null
null
mlir/test/Bindings/Python/dialects/linalg/opdsl/emit_structured_generic.py
keryell/llvm-2
4dc23a26d1bd6ced23969c0525dedbddf8c6fddc
[ "Apache-2.0" ]
null
null
null
mlir/test/Bindings/Python/dialects/linalg/opdsl/emit_structured_generic.py
keryell/llvm-2
4dc23a26d1bd6ced23969c0525dedbddf8c6fddc
[ "Apache-2.0" ]
null
null
null
# RUN: %PYTHON %s | FileCheck %s from typing import Optional, Sequence from mlir.ir import * from mlir.dialects import builtin from mlir.dialects import linalg from mlir.dialects import std from mlir.dialects.linalg.opdsl.lang import * @linalg_structured_op def matmul_mono(A=TensorDef(T, S.M, S.K), B=TensorDef(T, S.K, S.N), C=TensorDef(T, S.M, S.N, output=True)): C[D.m, D.n] += A[D.m, D.k] * B[D.k, D.n] @linalg_structured_op def matmul_poly(A=TensorDef(TV.T1, S.M, S.K), B=TensorDef(TV.T2, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True)): C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n]) @linalg_structured_op def fill_rng_2d(A=TensorDef(T, S.M, S.N, output=True), min=CaptureDef(F64), max=CaptureDef(F64), seed=CaptureDef(I32)): multiplier = const(I32, 1103515245) increment = const(I32, 12345) temp1 = (cast(I32, index(D.m)) + seed) * multiplier + increment temp2 = (cast(I32, index(D.n)) + temp1) * multiplier + increment inv_randmax = const(F64, 2.3283064e-10) scaling = (max - min) * inv_randmax A[D.m, D.n] = cast(T, cast(F64, temp2) * scaling + min) with Context() as ctx, Location.unknown(): module = Module.create() f16 = F16Type.get() f32 = F32Type.get() f64 = F64Type.get() i8 = IntegerType.get_signless(8) i16 = IntegerType.get_signless(16) i32 = IntegerType.get_signless(32) with InsertionPoint(module.body): # Note that these all have the same indexing maps. We verify the first and # then do more permutation tests on casting and body generation # behavior. # CHECK: #[[$MAPA:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)> # CHECK: #[[$MAPB:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)> # CHECK: #[[$MAPC:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)> # CHECK-LABEL: func @test_matmul_mono # CHECK-SAME: %[[A:.+]]: tensor<4x16xf32> # CHECK-SAME: %[[B:.+]]: tensor<16x8xf32> # CHECK: %[[INITC:.+]] = linalg.init_tensor [4, 8] : tensor<4x8xf32> # CHECK: linalg.generic # CHECK-SAME: indexing_maps = [#[[$MAPA]], #[[$MAPB]], #[[$MAPC]]] # CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"] # CHECK-SAME: ins(%[[A]], %[[B]] # CHECK-SAME: outs(%[[INITC]] @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)) def test_matmul_mono(lhs, rhs): init_result = linalg.InitTensorOp([4, 8], f32) return matmul_mono(lhs, rhs, outs=[init_result.result]) # CHECK-LABEL: @test_i8i8i32_matmul # CHECK: ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: i32) # CHECK-NEXT: %[[A_CAST:.+]] = sexti %[[A_ARG]] : i8 to i32 # CHECK-NEXT: %[[B_CAST:.+]] = sexti %[[B_ARG]] : i8 to i32 # CHECK-NEXT: %[[MUL:.+]] = muli %[[A_CAST]], %[[B_CAST]] : i32 # CHECK-NEXT: %[[ADD:.+]] = addi %[[C_ARG]], %[[MUL]] : i32 # CHECK-NEXT: linalg.yield %[[ADD]] : i32 # CHECK-NEXT: -> tensor<4x8xi32> @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8), RankedTensorType.get((4, 8), i32)) def test_i8i8i32_matmul(lhs, rhs, init_result): return matmul_poly(lhs, rhs, outs=[init_result]) # CHECK-LABEL: @test_i8i16i32_matmul # CHECK: ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i16, %[[C_ARG:.+]]: i32) # CHECK-NEXT: %[[A_CAST:.+]] = sexti %[[A_ARG]] : i8 to i32 # CHECK-NEXT: %[[B_CAST:.+]] = sexti %[[B_ARG]] : i16 to i32 # CHECK-NEXT: %[[MUL:.+]] = muli %[[A_CAST]], %[[B_CAST]] : i32 # CHECK-NEXT: %[[ADD:.+]] = addi %[[C_ARG]], %[[MUL]] : i32 # CHECK-NEXT: linalg.yield %[[ADD]] : i32 # CHECK-NEXT: -> tensor<4x8xi32> @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i16), RankedTensorType.get((4, 8), i32)) def test_i8i16i32_matmul(lhs, rhs, init_result): return matmul_poly(lhs, rhs, outs=[init_result]) # CHECK-LABEL: @test_i32i32i16_matmul # CHECK: ^{{.*}}(%[[A_ARG:.+]]: i32, %[[B_ARG:.+]]: i32, %[[C_ARG:.+]]: i16) # CHECK-NEXT: %[[A_CAST:.+]] = trunci %[[A_ARG]] : i32 to i16 # CHECK-NEXT: %[[B_CAST:.+]] = trunci %[[B_ARG]] : i32 to i16 # CHECK-NEXT: %[[MUL:.+]] = muli %[[A_CAST]], %[[B_CAST]] : i16 # CHECK-NEXT: %[[ADD:.+]] = addi %[[C_ARG]], %[[MUL]] : i16 # CHECK-NEXT: linalg.yield %[[ADD]] : i16 # CHECK-NEXT: -> tensor<4x8xi16> @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), i32), RankedTensorType.get((16, 8), i32), RankedTensorType.get((4, 8), i16)) def test_i32i32i16_matmul(lhs, rhs, init_result): return matmul_poly(lhs, rhs, outs=[init_result]) # CHECK-LABEL: @test_i8i8f32_matmul # CHECK: ^{{.*}}(%[[A_ARG:.+]]: i8, %[[B_ARG:.+]]: i8, %[[C_ARG:.+]]: f32) # CHECK-NEXT: %[[A_CAST:.+]] = sitofp %[[A_ARG]] : i8 to f32 # CHECK-NEXT: %[[B_CAST:.+]] = sitofp %[[B_ARG]] : i8 to f32 # CHECK-NEXT: %[[MUL:.+]] = mulf %[[A_CAST]], %[[B_CAST]] : f32 # CHECK-NEXT: %[[ADD:.+]] = addf %[[C_ARG]], %[[MUL]] : f32 # CHECK-NEXT: linalg.yield %[[ADD]] : f32 # CHECK-NEXT: -> tensor<4x8xf32> @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), i8), RankedTensorType.get((16, 8), i8), RankedTensorType.get((4, 8), f32)) def test_i8i8f32_matmul(lhs, rhs, init_result): return matmul_poly(lhs, rhs, outs=[init_result]) # CHECK-LABEL: @test_f16f16f32_matmul # CHECK: ^{{.*}}(%[[A_ARG:.+]]: f16, %[[B_ARG:.+]]: f16, %[[C_ARG:.+]]: f32) # CHECK-NEXT: %[[A_CAST:.+]] = fpext %[[A_ARG]] : f16 to f32 # CHECK-NEXT: %[[B_CAST:.+]] = fpext %[[B_ARG]] : f16 to f32 # CHECK-NEXT: %[[MUL:.+]] = mulf %[[A_CAST]], %[[B_CAST]] : f32 # CHECK-NEXT: %[[ADD:.+]] = addf %[[C_ARG]], %[[MUL]] : f32 # CHECK-NEXT: linalg.yield %[[ADD]] : f32 # CHECK-NEXT: -> tensor<4x8xf32> @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), f16), RankedTensorType.get((16, 8), f16), RankedTensorType.get((4, 8), f32)) def test_f16f16f32_matmul(lhs, rhs, init_result): return matmul_poly(lhs, rhs, outs=[init_result]) # CHECK-LABEL: @test_f64f64f32_matmul # CHECK: ^{{.*}}(%[[A_ARG:.+]]: f64, %[[B_ARG:.+]]: f64, %[[C_ARG:.+]]: f32) # CHECK-NEXT: %[[A_CAST:.+]] = fptrunc %[[A_ARG]] : f64 to f32 # CHECK-NEXT: %[[B_CAST:.+]] = fptrunc %[[B_ARG]] : f64 to f32 # CHECK-NEXT: %[[MUL:.+]] = mulf %[[A_CAST]], %[[B_CAST]] : f32 # CHECK-NEXT: %[[ADD:.+]] = addf %[[C_ARG]], %[[MUL]] : f32 # CHECK-NEXT: linalg.yield %[[ADD]] : f32 # CHECK-NEXT: -> tensor<4x8xf32> @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), f64), RankedTensorType.get((16, 8), f64), RankedTensorType.get((4, 8), f32)) def test_f64f64f32_matmul(lhs, rhs, init_result): return matmul_poly(lhs, rhs, outs=[init_result]) # CHECK-LABEL: @test_fill_rng_2d # CHECK-SAME: %{{.*}} tensor<4x16xi32>, %[[MIN:.+]]: f64, %[[MAX:.+]]: f64, %[[SEED:.+]]: i32 # CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index # CHECK-DAG: %[[IDX1:.+]] = linalg.index 1 : index # CHECK-DAG: %[[IDX0_CAST:.+]] = index_cast %[[IDX0]] : index to i32 # CHECK-DAG: %[[IDX1_CAST:.+]] = index_cast %[[IDX1]] : index to i32 # CHECK-DAG: %[[RND0:.+]] = addi %[[IDX0_CAST]], %[[SEED]] : i32 # CHECK-DAG: %[[CST0:.+]] = constant 1103515245 : i32 # CHECK-DAG: %[[CST1:.+]] = constant 12345 : i32 # CHECK-DAG: %[[RND1:.+]] = muli %[[RND0]], %[[CST0]] : i32 # CHECK-DAG: %[[RND2:.+]] = addi %[[RND1]], %[[CST1]] : i32 # CHECK: %[[RND3:.+]] = sitofp %{{.*}} : i32 to f64 # CHECK-DAG: %[[DIFF:.+]] = subf %[[MAX]], %[[MIN]] : f64 # CHECK-DAG: %[[CST2:.+]] = constant 2.3283063999999999E-10 : f64 # CHECK-DAG: %[[FACT:.+]] = mulf %[[DIFF]], %[[CST2]] : f64 # CHECK-DAG: %[[RND4:.+]] = mulf %[[RND3]], %[[FACT]] : f64 # CHECK-DAG: %[[RND5:.+]] = addf %[[RND4]], %[[MIN]] : f64 # CHECK-DAG: %{{.*}} = fptosi %[[RND5]] : f64 to i32 @builtin.FuncOp.from_py_func(RankedTensorType.get((4, 16), i32), f64, f64, i32) def test_fill_rng_2d(init_result, min, max, seed): return fill_rng_2d(outs=[init_result], captures=[min, max, seed]) print(module)
48.745856
98
0.535872
ff41f41402ac874f70fc7c285d5ba81ee35ff4ff
655
py
Python
app/main/forms.py
agladyshev/FSND-brewlocker
17e8c0411b0f1f87c2875e7622f30a23ccf8b75c
[ "MIT" ]
null
null
null
app/main/forms.py
agladyshev/FSND-brewlocker
17e8c0411b0f1f87c2875e7622f30a23ccf8b75c
[ "MIT" ]
null
null
null
app/main/forms.py
agladyshev/FSND-brewlocker
17e8c0411b0f1f87c2875e7622f30a23ccf8b75c
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileRequired, FileAllowed from wtforms import StringField, TextAreaField, SubmitField from wtforms.validators import Required, Length, URL from wtforms import ValidationError from .. import images class ItemForm(FlaskForm): header = StringField("Your pitch here", validators=[Required()]) body = TextAreaField("Tell me everything", validators=[Required()]) img = FileField('Upload photos', validators=[ FileAllowed(images, 'Images only!')]) phone = StringField('Phone', validators=[Required(), Length(1, 20), ]) submit = SubmitField('Submit')
40.9375
74
0.732824
e73f3790370ad96d8c899fb14c1fbd21739e3196
4,410
py
Python
aleph/logic/profiles.py
aaronarnold2/aleph
1728f4db8863554d5b0722546838970e53ec72bd
[ "MIT" ]
2
2021-01-09T17:27:23.000Z
2021-01-09T17:27:25.000Z
aleph/logic/profiles.py
nabla-c0d3/aleph
d0e4e04e23cb7ee3971298e33ccb1c5171ae0779
[ "MIT" ]
null
null
null
aleph/logic/profiles.py
nabla-c0d3/aleph
d0e4e04e23cb7ee3971298e33ccb1c5171ae0779
[ "MIT" ]
null
null
null
import logging from datetime import datetime from sqlalchemy.orm import aliased from aleph.util import PairwiseDict from aleph.core import db from aleph.model import Collection, EntitySet, EntitySetItem, Judgement log = logging.getLogger(__name__) def collection_profiles(collection_id, judgements=None, deleted=False): if judgements is not None: judgements = list(map(Judgement, judgements)) entity_sets = EntitySet.by_collection_id(collection_id, types=[EntitySet.PROFILE]) for entity_set in entity_sets: items = entity_set.profile(judgements=judgements, deleted=deleted).all() if items: yield (entity_set, items) def pairwise_decisions(pairs, collection_id): left = aliased(EntitySetItem) right = aliased(EntitySetItem) q = db.session.query(left, right) q = q.filter(left.deleted_at == None, right.deleted_at == None) # noqa q = q.filter(EntitySet.collection_id == collection_id) q = q.filter(left.entityset_id == right.entityset_id) q = q.filter(db.tuple_(left.entity_id, right.entity_id).in_(pairs)) return PairwiseDict( ((l.entity_id, r.entity_id), (l.judgement + r.judgement)) for l, r in q.all() ) def profile_add_entities( entityset, entity_id, collection_id, compared_to_entity_id, judgement, authz ): pq = db.session.query(EntitySetItem) pq = pq.filter(EntitySetItem.entityset_id == entityset.id) pq = pq.filter(EntitySetItem.entity_id == entity_id) pq = pq.filter(EntitySetItem.deleted_at == None) # noqa pq.update({EntitySetItem.deleted_at: datetime.utcnow()}, synchronize_session=False) esi = EntitySetItem( entityset=entityset, entity_id=entity_id, compared_to_entity_id=compared_to_entity_id, collection_id=collection_id, added_by_id=authz.id, judgement=judgement, ) db.session.add(esi) return esi def create_profile(collection, authz): data = {"type": EntitySet.PROFILE, "label": "profile"} return EntitySet.create(data, collection, authz) def decide_xref(xref, judgement, authz): """Store user feedback from an Xref result as an profile-type EntitySet The problem here is that we're trying to translate a single pair-wise user judgement into a merge or split judgement regarding a cluster of entities. This works for most cases, with the exception that a profile, once established, cannot be split in a way that preserves what entities were linked to what other entities originally.""" if not isinstance(judgement, Judgement): judgement = Judgement(judgement) entity_id = xref.get("entity_id") collection = Collection.by_id(xref.get("collection_id")) entity_profile = EntitySet.by_entity_id( entity_id, judgements=[Judgement.POSITIVE], collection_id=collection.id, types=[EntitySet.PROFILE], ).first() match_id = xref.get("match_id") match_collection_id = xref.get("match_collection_id") match_profile = EntitySet.by_entity_id( match_id, judgements=[Judgement.POSITIVE], collection_id=collection.id, types=[EntitySet.PROFILE], ).first() # If we are undecided, and we stay undecided, not much to change. if entity_profile is None or match_profile is None: if judgement == Judgement.NO_JUDGEMENT: return if entity_profile is None: entity_profile = create_profile(collection, authz) profile_add_entities( entity_profile, entity_id, collection.id, None, Judgement.POSITIVE, authz ) if judgement is Judgement.POSITIVE and match_profile is not None: # Case 1: both entities have profiles and the match is positive entity_profile = entity_profile.merge(match_profile, authz.id) else: # Case 2: any other judgement # NOTE: Another case of NEGATIVE judgements triggering a # `split_profile` could be useful, however it isn't implemented # here so that we don't lose judgements. This however should be # strongly considered in order to reverse profile mergers. The question # is: what to do with old judgements on a pair when we do this? profile_add_entities( entity_profile, match_id, match_collection_id, entity_id, judgement, authz ) db.session.commit() return entity_profile
37.058824
87
0.703855
d863b4396abb0ffe59d743d211d8edb93c482b2e
1,071
py
Python
smsAlert/smsAlert.py
brijkishor7828/API-Integration-Sample-Code-Python
df8c276eeb221fc605848fd2af9f1795c0d31b2d
[ "0BSD" ]
null
null
null
smsAlert/smsAlert.py
brijkishor7828/API-Integration-Sample-Code-Python
df8c276eeb221fc605848fd2af9f1795c0d31b2d
[ "0BSD" ]
null
null
null
smsAlert/smsAlert.py
brijkishor7828/API-Integration-Sample-Code-Python
df8c276eeb221fc605848fd2af9f1795c0d31b2d
[ "0BSD" ]
null
null
null
# -*- coding: utf-8 -*- import json import requests class smsAlertException(Exception): def __init__(self, message): self.message = message def get_message(self): return self.message class smsAlertMsg(object): """A simple Python API for the smsAlert It includes methods for calling sms api of smsAlert """ def __init__(self, api_key, **kwargs): self.auth_key = api_key self.sender_id = kwargs.get('sender_id') or 'CVTECH' self.route = kwargs.get('route') or 'nondnd' self.sms_url = 'http://smsalert.co.in/api/push.json?' def send_sms(self, message, mobile): res = requests.get(self.sms_url, params={'apikey': self.auth_key, 'mobileno': mobile, 'text': message, 'sender': self.sender_id, 'route': self.route, 'response': 'json'}) return json.loads(res.content)
26.775
61
0.524743
a671dd7a9004808f6531650fc6d23bb866931e2e
525
py
Python
rover/core/servers/ArduinoSocketServer/misc/sqlFunctions.py
CSUFTitanRover/TitanRover2018
4926d377322a37ba644d7e852faa305fb8bb9b55
[ "Apache-2.0" ]
16
2017-09-01T23:33:17.000Z
2021-01-04T02:41:19.000Z
rover/core/servers/ArduinoSocketServer/misc/sqlFunctions.py
CSUFTitanRover/TitanRover2018
4926d377322a37ba644d7e852faa305fb8bb9b55
[ "Apache-2.0" ]
56
2017-08-30T01:14:46.000Z
2021-02-28T22:18:44.000Z
rover/core/servers/ArduinoSocketServer/misc/sqlFunctions.py
CSUFTitanRover/TitanRover2018
4926d377322a37ba644d7e852faa305fb8bb9b55
[ "Apache-2.0" ]
15
2017-09-14T19:55:55.000Z
2020-05-03T19:44:39.000Z
import sqlite3 from sqlite3 import Error def storeMessage(time, distance, messageType): conn = sqlite3.connect('telemetry.db', check_same_thread=False) c = conn.cursor() try: c.execute('''CREATE TABLE IF NOT EXISTS telemetry (time double PRIMARY KEY, distance double NOT NULL, messageType integer NOT NULL)''') args = [time, distance, messageType] c.execute('''INSERT INTO telemetry (time, distance, messageType) VALUES (?, ?, ?)''', args) conn.commit() except Error as e: print(e)
29.166667
95
0.685714
7fa0b7416a01cba57603209b516a2f4ea3a0dfcb
2,333
py
Python
tests-python/test_batch_waveforms_from_files.py
babycat-io/babycat
39ecba8469e698a990bc9dc52e5de9ae78492a60
[ "MIT" ]
8
2021-05-10T23:12:14.000Z
2022-02-23T06:54:31.000Z
tests-python/test_batch_waveforms_from_files.py
babycat-io/babycat
39ecba8469e698a990bc9dc52e5de9ae78492a60
[ "MIT" ]
13
2021-06-01T05:31:17.000Z
2022-03-25T22:24:18.000Z
tests-python/test_batch_waveforms_from_files.py
babycat-io/babycat
39ecba8469e698a990bc9dc52e5de9ae78492a60
[ "MIT" ]
1
2021-06-01T05:24:52.000Z
2021-06-01T05:24:52.000Z
""" Tests loading waveform from file. These tests mirror the ones in ``../tests/test_waveform_batch_from_files.rs`` """ from fixtures import * import babycat ALL_SAME_FILENAMES = [COF_FILENAME, COF_FILENAME, COF_FILENAME] def test_all_same_file_1(): batch = babycat.batch.waveforms_from_files(ALL_SAME_FILENAMES) for named_result in batch: assert named_result.exception is None waveform = named_result.waveform assert waveform.num_channels == COF_NUM_CHANNELS assert waveform.num_frames == COF_NUM_FRAMES assert waveform.frame_rate_hz == COF_FRAME_RATE_HZ def test_all_same_file_2(): batch = babycat.batch.waveforms_from_files( ALL_SAME_FILENAMES, end_time_milliseconds=15000 ) for named_result in batch: assert named_result.exception is None waveform = named_result.waveform assert waveform.num_channels == COF_NUM_CHANNELS assert waveform.num_frames == 661500 assert waveform.frame_rate_hz == COF_FRAME_RATE_HZ def test_all_same_file_single_threaded_1(): batch = babycat.batch.waveforms_from_files( ALL_SAME_FILENAMES, num_workers=1, ) for named_result in batch: assert named_result.exception is None waveform = named_result.waveform assert waveform.num_channels == COF_NUM_CHANNELS assert waveform.num_frames == COF_NUM_FRAMES assert waveform.frame_rate_hz == COF_FRAME_RATE_HZ def test_different_filenames_1(): batch = babycat.batch.waveforms_from_files(ALL_FILENAMES) for i, named_result in enumerate(batch): assert named_result.exception is None waveform = named_result.waveform assert ALL_NUM_CHANNELS[i] == waveform.num_channels assert ALL_NUM_FRAMES[i] == waveform.num_frames assert ALL_FRAME_RATE_HZ[i] == waveform.frame_rate_hz def test_file_not_found_error_1(): batch = babycat.batch.waveforms_from_files([COF_FILENAME, "asdfasdf"]) assert 2 == len(batch) assert batch[0].exception is None assert batch[0].waveform.num_channels == COF_NUM_CHANNELS assert batch[0].waveform.num_frames == COF_NUM_FRAMES assert batch[0].waveform.frame_rate_hz == COF_FRAME_RATE_HZ assert batch[1].waveform is None assert isinstance(batch[1].exception, FileNotFoundError)
34.820896
77
0.737248
b50ff04ac894b1b7f8cd4eae732e6c03667ca500
647
py
Python
thenewboston/utils/files.py
rajat4665/thenewboston-python
df842c793fe7bfd8731fd8746abf25747c9e569e
[ "MIT" ]
null
null
null
thenewboston/utils/files.py
rajat4665/thenewboston-python
df842c793fe7bfd8731fd8746abf25747c9e569e
[ "MIT" ]
3
2021-03-30T14:03:41.000Z
2021-09-22T19:30:31.000Z
thenewboston/utils/files.py
rajat4665/thenewboston-python
df842c793fe7bfd8731fd8746abf25747c9e569e
[ "MIT" ]
null
null
null
import json from hashlib import sha3_256 as sha3 def get_file_hash(file): """ Return hash value of file """ h = sha3() with open(file, 'rb') as file: chunk = 0 while chunk != b'': chunk = file.read(1024) h.update(chunk) return h.hexdigest() def read_json(file): """ Read JSON file """ try: with open(file, 'r') as f: data = json.load(f) except FileNotFoundError: data = None return data def write_json(file, data): """ Write JSON file """ with open(file, 'w') as f: json.dump(data, f, indent=2)
15.404762
36
0.525502
948c15483503842770b133c829cdad2605f2a828
6,633
py
Python
test/unitTests/stlOperatorTests/testTimedUntil.py
pieter-hendriks/STL-monitoring
114b73b1f4b0687b11b8842b3c4a1c8af7b0d9df
[ "MIT" ]
null
null
null
test/unitTests/stlOperatorTests/testTimedUntil.py
pieter-hendriks/STL-monitoring
114b73b1f4b0687b11b8842b3c4a1c8af7b0d9df
[ "MIT" ]
null
null
null
test/unitTests/stlOperatorTests/testTimedUntil.py
pieter-hendriks/STL-monitoring
114b73b1f4b0687b11b8842b3c4a1c8af7b0d9df
[ "MIT" ]
null
null
null
""" Test the timed until operation (both the efficient and syntax variants) """ import unittest from stl.signals import Signal, BooleanSignal from stl.utility import Interval from stl.operators import computeTimedUntil, computeSyntaxUntil, computeBooleanUntil from .untilTestData import TESTCASE1_INTERVAL_LOWERBOUND, TESTCASE1_INTERVAL_UPPERBOUND, TESTCASE1_LEFTCHILD_SIGNAL, TESTCASE1_RIGHTCHILD_SIGNAL from .untilTestData import TESTCASE2_INTERVAL_LOWERBOUND, TESTCASE2_INTERVAL_UPPERBOUND, TESTCASE2_LEFTCHILD_SIGNAL, TESTCASE2_RIGHTCHILD_SIGNAL class TimedUntilTest(unittest.TestCase): def setUp(self) -> None: super().setUp() def testEmptySignal(self): empty = Signal() nonEmpty = Signal("test", [0, 1, 2], [0, 1, 2], [1, 1, 0]) expectedResult = Signal("timedUntil") interval = Interval(0, 5) # Shouldn't matter # Test empty both self.assertEqual(computeTimedUntil(empty, empty, interval), expectedResult) self.assertEqual(computeSyntaxUntil(empty, empty, interval), expectedResult) # Test empty rhs self.assertEqual(computeTimedUntil(empty, nonEmpty, interval), expectedResult) self.assertEqual(computeSyntaxUntil(empty, nonEmpty, interval), expectedResult) # Test empty lhs self.assertEqual(computeTimedUntil(nonEmpty, empty, interval), expectedResult) self.assertEqual(computeSyntaxUntil(nonEmpty, empty, interval), expectedResult) def testBooleanEmptySignal(self): empty = BooleanSignal() nonEmpty = BooleanSignal("test", [0, 1, 2], [0, 1, 1]) expectedResult = BooleanSignal("booleanTimedUntil") interval = Interval(0, 5) # Shouldn't matter # Test empty both self.assertEqual(computeBooleanUntil(empty, empty, interval), expectedResult) # Test empty rhs self.assertEqual(computeBooleanUntil(empty, nonEmpty, interval), expectedResult) # Test empty lhs self.assertEqual(computeBooleanUntil(nonEmpty, empty, interval), expectedResult) def testSimpleSignalBoolean(self): signal = BooleanSignal('test', [0, 1], [0, 1], [1, 0]) interval = Interval(0, 1) expectedResult = BooleanSignal('booleanTimedUntil', [0], [0], [0]) self.assertEqual(computeBooleanUntil(signal, signal, interval), expectedResult) # This signal should be equal to the previous one - negative value should be converted to 0 signal = BooleanSignal('test', [0, 1], [-1, 1], [2, 0]) self.assertEqual(computeBooleanUntil(signal, signal, interval), expectedResult) # This signal should be equal to the previous one - big positive value should be converted to 1 signal = BooleanSignal('test', [0, 1], [0, 5], [5, 0]) self.assertEqual(computeBooleanUntil(signal, signal, interval), expectedResult) def testComplexSignalAlgorithmEquality(self): # Compare efficient to syntax algorithm - we don't have a predicted result for this case # That we expect to be entirely correct efficientResult = computeTimedUntil( TESTCASE1_LEFTCHILD_SIGNAL, TESTCASE1_RIGHTCHILD_SIGNAL, Interval(TESTCASE1_INTERVAL_LOWERBOUND, TESTCASE1_INTERVAL_UPPERBOUND) ) syntaxResult = computeSyntaxUntil( TESTCASE1_LEFTCHILD_SIGNAL, TESTCASE1_RIGHTCHILD_SIGNAL, Interval(TESTCASE1_INTERVAL_LOWERBOUND, TESTCASE1_INTERVAL_UPPERBOUND) ) self.assertEqual(efficientResult, syntaxResult) efficientResult = computeTimedUntil( TESTCASE2_LEFTCHILD_SIGNAL, TESTCASE2_RIGHTCHILD_SIGNAL, Interval(TESTCASE2_INTERVAL_LOWERBOUND, TESTCASE2_INTERVAL_UPPERBOUND) ) syntaxResult = computeSyntaxUntil( TESTCASE2_LEFTCHILD_SIGNAL, TESTCASE2_RIGHTCHILD_SIGNAL, Interval(TESTCASE2_INTERVAL_LOWERBOUND, TESTCASE2_INTERVAL_UPPERBOUND) ) self.assertEqual(efficientResult, syntaxResult) def testSimpleSignal(self): signal = Signal('test', [0, 1], [0, 1], [1, 0]) expectedResult = Signal('timedUntil', [0], [0], [0]) interval = Interval(0, 1) self.assertEqual(computeTimedUntil(signal, signal, interval), expectedResult) self.assertEqual(computeSyntaxUntil(signal, signal, interval), expectedResult) def testSmallSignal(self): left = Signal('test', [0, 1, 2, 3, 4], [2, 7, 5, 4, -1], [5, -2, -1, -5, 0]) right = Signal('test', [0, 1, 2, 3, 4], [-1, -1, -1, 1, 1], [0, 0, 2, 0, 0]) interval = Interval(0, 4) expectedResult = Signal('timedUntil', [0], [1], [0]) self.assertEqual(computeTimedUntil(left, right, interval), expectedResult) self.assertEqual(computeSyntaxUntil(left, right, interval), expectedResult) interval = Interval(0, 2) expectedResult = Signal('timedUntil', [0, 1, 1.6, 2], [-1, 1, 1, 1], [2, 0, 0, 0]) self.assertEqual(computeTimedUntil(left, right, interval), expectedResult) self.assertEqual(computeSyntaxUntil(left, right, interval), expectedResult) interval = Interval(2, 4) expectedResult = Signal('timedUntil', [0], [1], [0]) self.assertEqual(computeTimedUntil(left, right, interval), expectedResult) self.assertEqual(computeSyntaxUntil(left, right, interval), expectedResult) interval = Interval(1, 2) expectedResult = Signal('timedUntil', [0, 1, 1.6, 2], [-1, 1, 1, 1], [2, 0, 0, 0]) self.assertEqual(computeTimedUntil(left, right, interval), expectedResult) self.assertEqual(computeSyntaxUntil(left, right, interval), expectedResult) interval = Interval(1, 3) expectedResult = Signal('timedUntil', [0, 0.6, 1], [1, 1, 1], [0, 0, 0]) self.assertEqual(computeTimedUntil(left, right, interval), expectedResult) self.assertEqual(computeSyntaxUntil(left, right, interval), expectedResult) def testBooleanUntilLhsTimes(self): lhs = BooleanSignal("l", [0, 1], [1, 0]) rhs = BooleanSignal("r", [0, 1], [0, 1]) interval = Interval(0, 1) expected = BooleanSignal("booleanTimedUntil", [0], [1]) self.assertEqual(computeBooleanUntil(lhs, rhs, interval), expected) def testBooleanUntilRhsTimes(self): lhs = BooleanSignal("l", [0, 1], [0, 1]) rhs = BooleanSignal("r", [0, 1], [1, 0]) interval = Interval(0, 1) expected = BooleanSignal("booleanTimedUntil", [0], [0]) self.assertEqual(computeBooleanUntil(lhs, rhs, interval), expected) def testBooleanUntilLargeTimegap(self): lhs = BooleanSignal("l", [0, 0.5, 2], [1, 1, 0]) rhs = BooleanSignal("r", [0, 1.5, 2], [0, 0, 1]) interval = Interval(0, 1) expected = BooleanSignal("booleanTimedUntil", [0, 0.5, 1], [0, 0, 1]) self.assertEqual(computeBooleanUntil(lhs, rhs, interval), expected) lhs = BooleanSignal("l", [0, 0.5, 2], [1, 0, 0]) rhs = BooleanSignal("r", [0, 1.5, 2], [0, 0, 1]) interval = Interval(0, 1) expected = BooleanSignal("booleanTimedUntil", [0, 0.5, 1], [0, 0, 0]) self.assertEqual(computeBooleanUntil(lhs, rhs, interval), expected) if __name__ == "__main__": unittest.main()
46.711268
144
0.732248
83438ffa0de9a825d8bc295785047481855f9182
3,223
py
Python
aiopyfix/message.py
qwhelan/AIOPyFix
b7d172db9d30d1023e7161c35d30347bea33a085
[ "CC0-1.0" ]
12
2020-02-11T09:16:17.000Z
2021-12-29T06:31:31.000Z
aiopyfix/message.py
qwhelan/AIOPyFix
b7d172db9d30d1023e7161c35d30347bea33a085
[ "CC0-1.0" ]
2
2021-08-30T15:09:10.000Z
2021-09-16T12:55:27.000Z
aiopyfix/message.py
qwhelan/AIOPyFix
b7d172db9d30d1023e7161c35d30347bea33a085
[ "CC0-1.0" ]
8
2019-02-04T21:02:07.000Z
2021-11-07T15:14:51.000Z
from collections import OrderedDict from enum import Enum class MessageDirection(Enum): INBOUND = 0 OUTBOUND = 1 class _FIXRepeatingGroupContainer: def __init__(self): self.groups = [] def addGroup(self, group, index): if index == -1: self.groups.append(group) else: self.groups.insert(index, group) def removeGroup(self, index): del self.groups[index] def getGroup(self, index): return self.groups[index] def __str__(self): return str(len(self.groups)) + "=>" + str(self.groups) __repr__ = __str__ class FIXContext(object): def __init__(self): self.tags = OrderedDict() def setField(self, tag, value): self.tags[tag] = value def removeField(self, tag): try: del self.tags[tag] except KeyError: pass def getField(self, tag): return self.tags[tag] def addRepeatingGroup(self, tag, group, index=-1): if tag in self.tags: groupContainer = self.tags[tag] groupContainer.addGroup(group, index) else: groupContainer = _FIXRepeatingGroupContainer() groupContainer.addGroup(group, index) self.tags[tag] = groupContainer def removeRepeatingGroupByIndex(self, tag, index=-1): if self.isRepeatingGroup(tag): try: if index == -1: del self.tags[tag] pass else: groups = self.tags[tag] groups.removeGroup(index) except KeyError: pass def getRepeatingGroup(self, tag): if self.isRepeatingGroup(tag): return (len(self.tags[tag].groups), self.tags[tag].groups) return None def getRepeatingGroupByTag(self, tag, identifierTag, identifierValue): if self.isRepeatingGroup(tag): for group in self.tags[tag].groups: if identifierTag in group.tags: if group.getField(identifierTag) == identifierValue: return group return None def getRepeatingGroupByIndex(self, tag, index): if self.isRepeatingGroup(tag): return self.tags[tag].groups[index] return None def __getitem__(self, tag): return self.getField(tag) def __setitem__(self, tag, value): self.setField(tag, value) def isRepeatingGroup(self, tag): return type(self.tags[tag]) is _FIXRepeatingGroupContainer def __contains__(self, item): return item in self.tags def __str__(self): r= "" allTags = [] for tag in self.tags: allTags.append("%s=%s" % (tag, self.tags[tag])) r += "|".join(allTags) return r def __eq__(self, other): # if our string representation looks the same, the objects are equivalent return self.__str__() == other.__str__() __repr__ = __str__ class FIXMessage(FIXContext): def __init__(self, msgType): self.msgType = msgType FIXContext.__init__(self) def setMsgType(self, msgType): self.msgType = msgType
27.547009
81
0.585479
09dc5c91e56457ca79126b900d31720e868778e2
10,888
py
Python
tests/test_api.py
YixinLin294/flask_demo
34b92947632bb01e65f700a6ac175841d966e3a2
[ "MIT" ]
null
null
null
tests/test_api.py
YixinLin294/flask_demo
34b92947632bb01e65f700a6ac175841d966e3a2
[ "MIT" ]
4
2020-03-24T16:46:50.000Z
2021-06-01T23:27:42.000Z
tests/test_api.py
YixinLin294/flask_demo
34b92947632bb01e65f700a6ac175841d966e3a2
[ "MIT" ]
null
null
null
import unittest import json import re from base64 import b64encode from flask import url_for from app import create_app, db from app.models import User, Role, Post, Comment class APITestCase(unittest.TestCase): def setUp(self): self.app = create_app('testing') self.app_context = self.app.app_context() self.app_context.push() db.create_all() Role.insert_roles() self.client = self.app.test_client() def tearDown(self): db.session.remove() db.drop_all() self.app_context.pop() def get_api_headers(self, username, password): return { 'Authorization': 'Basic ' + b64encode( (username + ':' + password).encode('utf-8')).decode('utf-8'), 'Accept': 'application/json', 'Content-Type': 'application/json' } def test_404(self): response = self.client.get( '/wrong/url', headers=self.get_api_headers('email', 'password')) self.assertTrue(response.status_code == 404) json_response = json.loads(response.data.decode('utf-8')) self.assertTrue(json_response['error'] == 'not found') def test_no_auth(self): response = self.client.get(url_for('api.get_posts'), content_type='application/json') self.assertTrue(response.status_code == 200) def test_bad_auth(self): # add a user r = Role.query.filter_by(name='User').first() self.assertIsNotNone(r) u = User(email='john@example.com', password='cat', confirm=True, role=r) db.session.add(u) db.session.commit() # authenticate with bad password response = self.client.get( url_for('api.get_posts'), headers=self.get_api_headers('john@example.com', 'dog')) self.assertTrue(response.status_code == 401) def test_token_auth(self): # add a user r = Role.query.filter_by(name='User').first() self.assertIsNotNone(r) u = User(email='john@example.com', password='cat', confirmed=True, role=r) db.session.add(u) db.session.commit() # issue a request with a bad token response = self.client.get( url_for('api.get_posts'), headers=self.get_api_headers('bad-token', '')) self.assertTrue(response.status_code == 401) # get a token response = self.client.get( url_for('api.get_token'), headers=self.get_api_headers('john@example.com', 'cat')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertIsNotNone(json_response.get('token')) token = json_response['token'] # issue a request with the token response = self.client.get( url_for('api.get_posts'), headers=self.get_api_headers(token, '')) self.assertTrue(response.status_code == 200) def test_anonymous(self): response = self.client.get( url_for('api.get_posts'), headers=self.get_api_headers('', '')) self.assertTrue(response.status_code == 200) def test_unconfirmed_account(self): # add an unconfirmed user r = Role.query.filter_by(name='User').first() self.assertIsNotNone(r) u = User(email='john@example.com', password='cat', confirmed=False, role=r) db.session.add(u) db.session.commit() # get list of posts with the unconfirmed account response = self.client.get( url_for('api.get_posts'), headers=self.get_api_headers('john@example.com', 'cat')) self.assertTrue(response.status_code == 403) def test_posts(self): # add a user r = Role.query.filter_by(name='User').first() self.assertIsNotNone(r) u = User(email='john@example.com', password='cat', confirmed=True, role=r) db.session.add(u) db.session.commit() # write an empty post response = self.client.post( url_for('api.new_post'), headers=self.get_api_headers('john@example.com', 'cat'), data=json.dumps({'body': ''})) self.assertTrue(response.status_code == 400) # write a post response = self.client.post( url_for('api.new_post'), headers=self.get_api_headers( 'john@example.com', 'cat'), data=json.dumps({'body': 'body of the *blog* post'})) self.assertTrue(response.status_code == 201) url = response.headers.get('Location') self.assertIsNotNone(url) # get the new post response = self.client.get( url, headers=self.get_api_headers('john@example.com', 'cat')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertTrue(json_response['url'] == url) self.assertTrue(json_response['body'] == 'body of the *blog* post') self.assertTrue(json_response['body_html'] == '<p>body of the <em>blog</em> post</p>') json_post = json_response # get the post from the user response = self.client.get( url_for('api.get_user_posts', id=u.id), headers=self.get_api_headers('john@example.com', 'cat')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertIsNotNone(json_response.get('posts')) self.assertTrue(json_response.get('count', 0) == 1) self.assertTrue(json_response['posts'][0] == json_post) # get the post from the user as a follower response = self.client.get( url_for('api.get_user_followed_posts', id=u.id), headers=self.get_api_headers('john@example.com', 'cat')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertIsNotNone(json_response.get('posts')) self.assertTrue(json_response.get('count', 0) == 1) # edit post response = self.client.put( url, headers=self.get_api_headers('john@example.com', 'cat'), data=json.dumps({'body': 'updated body'})) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertTrue(json_response['url'] == url) self.assertTrue(json_response['body'] == 'updated body') self.assertTrue(json_response['body_html'] == '<p>updated body</p>') def test_user(self): # add two users r = Role.query.filter_by(name='User').first() self.assertIsNotNone(r) u1 = User(email='john@example.com', username='john', password='cat', confirmed=True, role=r) u2 = User(email='susan@example.com', username='susan', password='dog', confirmed=True, role=r) db.session.add_all([u1, u2]) db.session.commit() # get users response = self.client.get( url_for('api.get_user', id=u1.id), headers=self.get_api_headers('susan@example.com', 'dog')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertTrue(json_response['username'] == 'john') response = self.client.get( url_for('api.get_user', id=u2.id), headers=self.get_api_headers('susan@example.com', 'dog')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertTrue(json_response['username'] == 'susan') def test_comments(self): # add two users r = Role.query.filter_by(name='User').first() self.assertIsNotNone(r) u1 = User(email='john@example.com', username='john', password='cat', confirmed=True, role=r) u2 = User(email='susan@example.com', username='susan', password='dog', confirmed=True, role=r) db.session.add_all([u1, u2]) db.session.commit() # add a post post = Post(body='body of the post', author=u1) db.session.add(post) db.session.commit() # write a comment response = self.client.post( url_for('api.new_post_comment', id=post.id), headers=self.get_api_headers('susan@example.com', 'dog'), data=json.dumps({'body': 'Good [post](http://example.com)!'})) self.assertTrue(response.status_code == 201) json_response = json.loads(response.data.decode('utf-8')) url = response.headers.get('Location') self.assertIsNotNone(url) self.assertTrue(json_response['body'] == 'Good [post](http://example.com)!') self.assertTrue( re.sub('<.*?>', '', json_response['body_html']) == 'Good post!') # get the new comment response = self.client.get( url, headers=self.get_api_headers('john@example.com', 'cat')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertTrue(json_response['url'] == url) self.assertTrue(json_response['body'] == 'Good [post](http://example.com)!') # add another comment comment = Comment(body='Thank you!,', author=u1, post=post) db.session.add(comment) db.session.commit() # get the two comments from the post response = self.client.get( url_for('api.get_post_comments', id=post.id), headers=self.get_api_headers('susan@example.com', 'dog')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertIsNotNone(json_response.get('comments')) self.assertTrue(json_response.get('count', 0) == 2) # get all the comments response = self.client.get( url_for('api.get_comments', id=post.id), headers=self.get_api_headers('susan@example.com', 'dog')) self.assertTrue(response.status_code == 200) json_response = json.loads(response.data.decode('utf-8')) self.assertIsNotNone(json_response.get('comments')) self.assertTrue(json_response.get('count', 0) == 2)
41.086792
94
0.58165
42ad7c7ab75d523718c244b944c1efdc79535ee0
347
py
Python
CyberPi V1/Python with CyberPi 037(mkcloud 聊天机器人).py
SCSZCC/PythonWithHardware
3e5ae890cb7a8e5e2c5a636092aca9ce21728ab2
[ "MIT" ]
2
2020-08-15T02:49:19.000Z
2020-08-15T02:49:31.000Z
CyberPi V1/Python with CyberPi 037(mkcloud 聊天机器人).py
SCSZCC/PythonWithHardware
3e5ae890cb7a8e5e2c5a636092aca9ce21728ab2
[ "MIT" ]
null
null
null
CyberPi V1/Python with CyberPi 037(mkcloud 聊天机器人).py
SCSZCC/PythonWithHardware
3e5ae890cb7a8e5e2c5a636092aca9ce21728ab2
[ "MIT" ]
1
2022-02-24T05:30:30.000Z
2022-02-24T05:30:30.000Z
""" 名称:037 mkcloud上的聊天机器人-小思 硬件: 童芯派 功能介绍:简单的模拟一个登录界面 难度:⭐⭐ 支持的模式:上传、在线都支持 使用到的API及功能解读: 1. mkcloud.robot.chat(str) str:字符串,填入要聊天的内容,返回值为字符串,为机器人给出的回复。 """ # ---------程序分割线----------------程序分割线----------------程序分割线---------- import mkcloud while True: say = input("请输入要聊天内容:") response = mkcloud.robot.chat(say) print(response)
14.458333
68
0.605187
ae37a8a8de9daeb124bc8ecdc88b259511f64bef
1,684
py
Python
pangea/core/migrations/0006_auto_20200905_2245.py
LongTailBio/pangea-django
630551dded7f9e38f95eda8c36039e0de46961e7
[ "MIT" ]
null
null
null
pangea/core/migrations/0006_auto_20200905_2245.py
LongTailBio/pangea-django
630551dded7f9e38f95eda8c36039e0de46961e7
[ "MIT" ]
27
2020-03-26T02:55:12.000Z
2022-03-12T00:55:04.000Z
pangea/core/migrations/0006_auto_20200905_2245.py
LongTailBio/pangea-django
630551dded7f9e38f95eda8c36039e0de46961e7
[ "MIT" ]
1
2021-09-14T08:15:54.000Z
2021-09-14T08:15:54.000Z
# Generated by Django 3.0.3 on 2020-09-05 22:45 import django.contrib.postgres.fields.jsonb from django.db import migrations, models import django.db.models.deletion import pangea.core.encrypted_fields import uuid class Migration(migrations.Migration): dependencies = [ ('core', '0005_auto_20200822_0140'), ] operations = [ migrations.AddField( model_name='sampleanalysisresult', name='metadata', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), migrations.AddField( model_name='samplegroupanalysisresult', name='metadata', field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ), migrations.CreateModel( name='Project', fields=[ ('created_at', models.DateTimeField(blank=True, db_index=True, null=True)), ('updated_at', models.DateTimeField(blank=True, db_index=True, null=True)), ('uuid', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.TextField(unique=True)), ('description', models.TextField(default='')), ('organization', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Organization')), ('sample_groups', models.ManyToManyField(null=True, to='core.SampleGroup')), ('sub_projects', models.ManyToManyField(null=True, related_name='super_projects', to='core.Project')), ], options={ 'abstract': False, }, ), ]
38.272727
121
0.61342
46a5ec12bf67039b685787a9cb47e0727daee2f1
1,132
py
Python
src/app/modules/examples/module_random_volume.py
balintfodor/Build3D
b735129e380a414d62a1d91556f5f52674f1f6f9
[ "MIT" ]
null
null
null
src/app/modules/examples/module_random_volume.py
balintfodor/Build3D
b735129e380a414d62a1d91556f5f52674f1f6f9
[ "MIT" ]
5
2021-03-19T09:28:07.000Z
2022-03-12T00:09:14.000Z
src/app/modules/examples/module_random_volume.py
balintfodor/Build3D
b735129e380a414d62a1d91556f5f52674f1f6f9
[ "MIT" ]
1
2019-12-23T16:44:49.000Z
2019-12-23T16:44:49.000Z
import a3dc_module_interface as a3 import numpy as np def module_main(ctx): w = a3.inputs['width'] h = a3.inputs['height'] d = a3.inputs['depth'] seed = a3.inputs['seed'] np.random.seed(seed) vol = np.random.rand(w, h, d) print('your volume is ready! 🍻') a3.outputs['volume'] = a3.MultiDimImageFloat_from_ndarray(vol) config = [ a3.Parameter('width', a3.types.uint16).setIntHint('min', 1) .setIntHint('max', 2048) .setIntHint('default', 64), a3.Parameter('height', a3.types.uint16).setIntHint('min', 1) .setIntHint('max', 2048) .setIntHint('default', 64), a3.Parameter('depth', a3.types.uint16).setIntHint('min', 1) .setIntHint('max', 2048) .setIntHint('default', 16), a3.Parameter('seed', a3.types.uint16).setIntHint('default', 42), a3.Output('volume', a3.types.ImageFloat)] a3.def_process_module(config, module_main)
35.375
70
0.519435
418dd604251352a11dc8cb504b8aa278f4c82bff
10,775
py
Python
cohorts_proj/api/adapters/unm.py
gellerjulia/harmonization-website
c47b109d9110e34520ef43469b6b5ccac01cc178
[ "MIT" ]
1
2020-09-20T02:32:01.000Z
2020-09-20T02:32:01.000Z
cohorts_proj/api/adapters/unm.py
gellerjulia/harmonization-website
c47b109d9110e34520ef43469b6b5ccac01cc178
[ "MIT" ]
20
2020-04-17T14:01:41.000Z
2022-03-12T00:30:23.000Z
cohorts_proj/api/adapters/unm.py
gellerjulia/harmonization-website
c47b109d9110e34520ef43469b6b5ccac01cc178
[ "MIT" ]
3
2020-10-08T00:24:51.000Z
2021-06-02T20:07:30.000Z
import pandas as pd import numpy as np from datasets.models import RawUNM from api.dilutionproc import predict_dilution from api.analysis import add_confound import statsmodels.api as sm import statsmodels.formula.api as smf import statsmodels def get_dataframe(): """Returns a pandas DataFrame with the correct format for the generic plotting functions.""" # First is necessary to pivot the raw UNM dataset so it matches # the requested features. # This queries the RawUNM dataset and excludes some of the values # TODO - Should we drop NaN here? df = pd.DataFrame.from_records( RawUNM.objects. # exclude(Creat_Corr_Result__lt=-1000). # exclude(Creat_Corr_Result__isnull=True). values() ) df['creatininemgdl'] = df['creatininemgdl'].astype(float) df = df[~df['creatininemgdl'].isna()] covars = ['Outcome_weeks', 'age', 'ethnicity', 'race', 'education', 'BMI', 'income', 'smoking', 'parity', 'preg_complications', 'folic_acid_supp', 'fish', 'babySex', 'birthWt', 'headCirc', 'birthLen','WeightCentile', 'LGA','SGA','ga_collection','birth_year'] df['ga_collection'] = df['gestAge_collection'] # RAW SAMPLE # id PIN_Patient Member_c TimePeriod Analyte Result Creat_Corr_Result # 1 A0000M 1 1 BCD 1.877245 -99999.0 # 2 A0001M 1 1 BCD 1.458583 -99999.0 # 3 A0002M 1 1 BCD 1.694041 -99999.0 # 4 A0002M 1 1 BCD 1.401296 -99999.0 # 5 A0003M 1 1 BCD 0.763068 -99999.0 # Pivoting the table and reseting index # TODO - Do we want to plot Result or Creat_Corr_Result numerical_values = 'Result' columns_to_indexes = ['PIN_Patient', 'TimePeriod', 'Member_c', 'Outcome'] + covars categorical_to_columns = ['Analyte'] indexes_to_columns = ['PIN_Patient','Member_c', 'TimePeriod', 'Outcome'] + covars df = pd.pivot_table(df, values=numerical_values, index=columns_to_indexes, columns=categorical_to_columns) df = df.reset_index(level=indexes_to_columns) # TODO - Should we drop NaN here? # After pivot # Analyte TimePeriod Member_c BCD ... UTMO UTU UUR # PIN_Patient ... # A0000M 1 1 1.877245 ... 0.315638 1.095520 0.424221 # A0000M 3 1 1.917757 ... 0.837639 4.549155 0.067877 # A0001M 1 1 1.458583 ... 0.514317 1.262910 1.554346 # A0001M 3 1 1.365789 ... 0.143302 1.692582 0.020716 # A0002M 1 1 1.547669 ... 0.387643 0.988567 1.081877 df['CohortType'] = 'UNM' df['TimePeriod'] = pd.to_numeric(df['TimePeriod'], errors='coerce') return df def get_dataframe_nofish(): """Returns a pandas DataFrame with fish removed for cohort""" df = get_dataframe() df['fish'] = df['fish'].astype(float) neu_logic = (df['fish'] == 0) df_nofish = df[neu_logic] return df_nofish def get_dataframe_orig(): """Returns a pandas DataFrame with the correct format for the generic plotting functions.""" # First is necessary to pivot the raw UNM dataset so it matches # the requested features. # This queries the RawUNM dataset and excludes some of the values # TODO - Should we drop NaN here? df = pd.DataFrame.from_records( RawUNM.objects. # exclude(Creat_Corr_Result__lt=-1000). # exclude(Creat_Corr_Result__isnull=True). values() ) df['creatininemgdl'] = df['creatininemgdl'].astype(float) df = df[~df['creatininemgdl'].isna()] covars = ['Outcome_weeks', 'age', 'ethnicity', 'race', 'education', 'BMI', 'income', 'smoking', 'parity', 'preg_complications', 'folic_acid_supp', 'fish', 'babySex', 'birthWt', 'headCirc', 'birthLen','WeightCentile', 'LGA','SGA','ga_collection','birth_year'] df['ga_collection'] = df['gestAge_collection'] # RAW SAMPLE # id PIN_Patient Member_c TimePeriod Analyte Result Creat_Corr_Result # 1 A0000M 1 1 BCD 1.877245 -99999.0 # 2 A0001M 1 1 BCD 1.458583 -99999.0 # 3 A0002M 1 1 BCD 1.694041 -99999.0 # 4 A0002M 1 1 BCD 1.401296 -99999.0 # 5 A0003M 1 1 BCD 0.763068 -99999.0 # Pivoting the table and reseting index # TODO - Do we want to plot Result or Creat_Corr_Result numerical_values = 'Result' columns_to_indexes = ['PIN_Patient', 'TimePeriod', 'Member_c'] categorical_to_columns = ['Analyte'] indexes_to_columns = ['PIN_Patient','Member_c', 'TimePeriod'] df = pd.pivot_table(df, values=numerical_values, index=columns_to_indexes, columns=categorical_to_columns) df = df.reset_index() # TODO - Should we drop NaN here? # After pivot # Analyte TimePeriod Member_c BCD ... UTMO UTU UUR # PIN_Patient ... # A0000M 1 1 1.877245 ... 0.315638 1.095520 0.424221 # A0000M 3 1 1.917757 ... 0.837639 4.549155 0.067877 # A0001M 1 1 1.458583 ... 0.514317 1.262910 1.554346 # A0001M 3 1 1.365789 ... 0.143302 1.692582 0.020716 # A0002M 1 1 1.547669 ... 0.387643 0.988567 1.081877 df['CohortType'] = 'UNM' df['TimePeriod'] = pd.to_numeric(df['TimePeriod'], errors='coerce') return df def get_dataframe_covars(): # First is necessary to pivot the raw UNM dataset so it matches # the requested features. # This queries the RawUNM dataset and excludes some of the values # TODO - Should we drop NaN here? df = pd.DataFrame.from_records( RawUNM.objects. # exclude(Creat_Corr_Result__lt=-1000). # exclude(Creat_Corr_Result__isnull=True). values() ) df['creatininemgdl'] = df['creatininemgdl'].astype(float) df = df[~df['creatininemgdl'].isna()] df['ga_collection'] = df['gestAge_collection'] # RAW SAMPLE # id PIN_Patient Member_c TimePeriod Analyte Result Creat_Corr_Result # 1 A0000M 1 1 BCD 1.877245 -99999.0 # 2 A0001M 1 1 BCD 1.458583 -99999.0 # 3 A0002M 1 1 BCD 1.694041 -99999.0 # 4 A0002M 1 1 BCD 1.401296 -99999.0 # 5 A0003M 1 1 BCD 0.763068 -99999.0 df['CohortType'] = 'UNM' df['TimePeriod'] = pd.to_numeric(df['TimePeriod'], errors='coerce') df['Outcome'] = df['Outcome'].astype(float) df['LGA'] = df['LGA'].astype(float) df['SGA'] = df['SGA'].astype(float) covars = ['CohortType','TimePeriod','Outcome_weeks', 'age', 'ethnicity', 'race', 'education', 'BMI', 'income', 'smoking', 'parity', 'creatininemgdl', 'preg_complications', 'folic_acid_supp', 'fish', 'babySex', 'birthWt', 'headCirc', 'Outcome', 'birthLen','WeightCentile', 'LGA','SGA','ga_collection','birth_year'] adjust_types = ['age', 'ethnicity', 'race', 'education', 'BMI', 'income', 'smoking', 'parity', 'creatininemgdl', 'preg_complications', 'folic_acid_supp', 'fish', 'babySex'] for var in adjust_types: try: df[var] = df[var].astype(float) except: pass ##drop duplicates required because it was initially in long foramt per analyte/visit/participant return df[['PIN_Patient'] + covars].drop_duplicates() def get_dataframe_imputed(): """Returns a pandas DataFrame with the correct format for the generic plotting functions.""" # First is necessary to pivot the raw UNM dataset so it matches # the requested features. # This queries the RawUNM dataset and excludes some of the values # TODO - Should we drop NaN here? df = pd.DataFrame.from_records( RawUNM.objects. # exclude(Creat_Corr_Result__lt=-1000). # exclude(Creat_Corr_Result__isnull=True). values() ) covars = ['Outcome_weeks', 'age', 'ethnicity', 'race', 'education', 'BMI', 'income', 'smoking', 'parity', 'preg_complications', 'folic_acid_supp', 'fish', 'babySex', 'birthWt', 'headCirc', 'birthLen','WeightCentile', 'LGA','SGA','ga_collection','birth_year'] df['ga_collection'] = df['gestAge_collection'] # RAW SAMPLE # id PIN_Patient Member_c TimePeriod Analyte Result Creat_Corr_Result # 1 A0000M 1 1 BCD 1.877245 -99999.0 # 2 A0001M 1 1 BCD 1.458583 -99999.0 # 3 A0002M 1 1 BCD 1.694041 -99999.0 # 4 A0002M 1 1 BCD 1.401296 -99999.0 # 5 A0003M 1 1 BCD 0.763068 -99999.0 # Pivoting the table and reseting index # TODO - Do we want to plot Result or Creat_Corr_Result numerical_values = 'imputed' columns_to_indexes = ['PIN_Patient', 'TimePeriod', 'Member_c', 'Outcome'] categorical_to_columns = ['Analyte'] indexes_to_columns = ['PIN_Patient','Member_c', 'TimePeriod', 'Outcome'] + covars df = pd.pivot_table(df, values=numerical_values, index=columns_to_indexes, columns=categorical_to_columns) df = df.reset_index() # TODO - Should we drop NaN here? # After pivot # Analyte TimePeriod Member_c BCD ... UTMO UTU UUR # PIN_Patient ... # A0000M 1 1 1.877245 ... 0.315638 1.095520 0.424221 # A0000M 3 1 1.917757 ... 0.837639 4.549155 0.067877 # A0001M 1 1 1.458583 ... 0.514317 1.262910 1.554346 # A0001M 3 1 1.365789 ... 0.143302 1.692582 0.020716 # A0002M 1 1 1.547669 ... 0.387643 0.988567 1.081877 df['CohortType'] = 'UNM' df['TimePeriod'] = pd.to_numeric(df['TimePeriod'], errors='coerce') return df
37.940141
100
0.560278
e5c70e753723b9a97cfa6bf00cfc91cacef066a7
862
py
Python
Math/python/leetcode67_add_Binary.py
wenxinjie/leetcode
c459a01040c8fe0783e15a16b8d7cca4baf4612a
[ "Apache-2.0" ]
null
null
null
Math/python/leetcode67_add_Binary.py
wenxinjie/leetcode
c459a01040c8fe0783e15a16b8d7cca4baf4612a
[ "Apache-2.0" ]
null
null
null
Math/python/leetcode67_add_Binary.py
wenxinjie/leetcode
c459a01040c8fe0783e15a16b8d7cca4baf4612a
[ "Apache-2.0" ]
null
null
null
# Given two binary strings, return their sum (also a binary string). # The input strings are both non-empty and contains only characters 1 or 0. # Example 1: # Input: a = "11", b = "1" # Output: "100" # Example 2: # Input: a = "1010", b = "1011" # Output: "10101" class Solution: def addBinary(self, a, b): """ :type a: str :type b: str :rtype: str """ m, n = len(a) - 1, len(b) - 1 carry = 0 res = [] while m >= 0 or n >= 0 or carry: if m >= 0 : carry += int(a[m]) m -= 1 if n >= 0: carry += int(b[n]) n -= 1 res.append(str(carry % 2)) carry = carry // 2 ans = ("").join(res[::-1]) return ans # Time: O(n) # Space: O(n) # Difficulty: easy
22.102564
75
0.433875
ea23f1e1511e9420d2fabf753649b8833b8dfdbf
8,827
py
Python
intersight/model/storage_flex_flash_controller_list_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
5
2021-12-16T15:13:32.000Z
2022-03-29T16:09:54.000Z
intersight/model/storage_flex_flash_controller_list_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
4
2022-01-25T19:05:51.000Z
2022-03-29T20:18:37.000Z
intersight/model/storage_flex_flash_controller_list_all_of.py
CiscoDevNet/intersight-python
04b721f37c3044646a91c185c7259edfb991557a
[ "Apache-2.0" ]
2
2020-07-07T15:01:08.000Z
2022-01-31T04:27:35.000Z
""" Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. The Intersight OpenAPI document defines the complete set of properties that are returned in the HTTP response. From that perspective, a client can expect that no additional properties are returned, unless these properties are explicitly defined in the OpenAPI document. However, when a client uses an older version of the Intersight OpenAPI document, the server may send additional properties because the software is more recent than the client. In that case, the client may receive properties that it does not know about. Some generated SDKs perform a strict validation of the HTTP response body against the OpenAPI document. # noqa: E501 The version of the OpenAPI document: 1.0.9-4950 Contact: intersight@cisco.com Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from intersight.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from intersight.model.storage_flex_flash_controller import StorageFlexFlashController globals()['StorageFlexFlashController'] = StorageFlexFlashController class StorageFlexFlashControllerListAllOf(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'count': (int,), # noqa: E501 'results': ([StorageFlexFlashController], none_type,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'count': 'Count', # noqa: E501 'results': 'Results', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """StorageFlexFlashControllerListAllOf - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) count (int): The total number of 'storage.FlexFlashController' resources matching the request, accross all pages. The 'Count' attribute is included when the HTTP GET request includes the '$inlinecount' parameter.. [optional] # noqa: E501 results ([StorageFlexFlashController], none_type): The array of 'storage.FlexFlashController' resources matching the request.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
50.153409
1,678
0.643594
a1defa967f02bbb8375847a9403e6d4d5512cc2c
1,912
py
Python
crosswalk_client/methods/entity/best_match_or_create.py
The-Politico/django-crosswalk-client
57d7658ed9b91be5d1c5d48398187c7b05acfffe
[ "MIT" ]
3
2020-05-26T16:31:19.000Z
2021-12-22T16:42:10.000Z
crosswalk_client/methods/entity/best_match_or_create.py
The-Politico/django-crosswalk-client
57d7658ed9b91be5d1c5d48398187c7b05acfffe
[ "MIT" ]
6
2019-04-05T17:20:24.000Z
2019-04-13T13:33:01.000Z
crosswalk_client/methods/entity/best_match_or_create.py
The-Politico/django-crosswalk-client
57d7658ed9b91be5d1c5d48398187c7b05acfffe
[ "MIT" ]
null
null
null
from urllib.parse import urljoin import requests from crosswalk_client.encoder import encode from crosswalk_client.exceptions import BadResponse from crosswalk_client.objects.entity import EntityObject from crosswalk_client.validators.entity import ( validate_block_attrs_kwarg, validate_create_attrs_kwarg, validate_domain_kwarg, validate_required_query_arg, validate_threshold_kwarg, ) class BestMatchOrCreate(object): @validate_required_query_arg @validate_block_attrs_kwarg @validate_create_attrs_kwarg @validate_domain_kwarg @validate_threshold_kwarg def best_match_or_create( self, query, block_attrs={}, create_attrs={}, domain=None, threshold=None, scorer=None, return_canonical=True, ): if domain is None: domain = self.domain if threshold is None: threshold = self.threshold if scorer is None: scorer = self.scorer query_field = list(query.keys())[0] data = { "query_field": query_field, "query_value": query[query_field], "threshold": threshold, "block_attrs": block_attrs, "create_attrs": create_attrs, "scorer": scorer, "return_canonical": return_canonical, } response = requests.post( urljoin( self.service_address, "domains/{}/entities/best-match-or-create/".format(domain), ), headers=self.headers, data=encode(data), ) if response.status_code != requests.codes.ok: raise BadResponse( "The service responded with a {}: {}".format( response.status_code, response.content ) ) return EntityObject(response.json(), client=self)
29.875
75
0.611925
bcbdb3021669a72639707df7af5231c14fe70cb2
257
py
Python
django/stock/urls.py
nah990/StockF
58f719728f4072186459d0ca5651624eab820c5e
[ "MIT" ]
null
null
null
django/stock/urls.py
nah990/StockF
58f719728f4072186459d0ca5651624eab820c5e
[ "MIT" ]
3
2021-12-27T02:05:58.000Z
2022-03-23T00:06:14.000Z
django/stock/urls.py
nah990/StockF
58f719728f4072186459d0ca5651624eab820c5e
[ "MIT" ]
null
null
null
from django.urls import path from django.views.generic import TemplateView app_name = 'stock' urlpatterns = [ path('test', TemplateView.as_view(template_name="stock/index.html")), path('', TemplateView.as_view(template_name="stock/index.html")), ]
28.555556
73
0.747082
dc06ade5272e3478f34ba3f0439ac9ff43111ca0
1,676
py
Python
auv_control_pi/tests/test_simulator.py
adrienemery/auv-control-pi
633fe89b652b07eb6ebe03c0550daa211b122297
[ "MIT" ]
9
2016-10-02T06:59:37.000Z
2020-09-24T15:36:10.000Z
auv_control_pi/tests/test_simulator.py
adrienemery/auv-control-pi
633fe89b652b07eb6ebe03c0550daa211b122297
[ "MIT" ]
null
null
null
auv_control_pi/tests/test_simulator.py
adrienemery/auv-control-pi
633fe89b652b07eb6ebe03c0550daa211b122297
[ "MIT" ]
4
2019-01-12T23:09:34.000Z
2020-11-05T14:52:42.000Z
import pytest from pygc import great_circle from ..simulator import Navitgator, GPS, Motor, AHRS from ..components.navigation import Point, distance_to_point @pytest.fixture def sim(): starting_point = Point(50, 120) return Navitgator(gps=GPS(), current_location=starting_point, update_period=1) def test_simulator_move_to_waypoint(sim): waypoint = Point(49, 120) sim.move_to_waypoint(waypoint) assert sim._compass.heading == 180 def test_simulator_update(sim): # generate a waypoint 100 meters away due South heading = 140.0 distance = 100 result = great_circle(distance=distance, azimuth=heading, latitude=sim._current_location.lat, longitude=sim._current_location.lng) waypoint = Point(result['latitude'], result['longitude']) sim.move_to_waypoint(waypoint) sim.speed = 10 starting_point = sim._current_location # since we have an update period of 1s and speed of 10 m/s # after one update cycle we should have moved 10 meters # from our last point sim._update() distance_moved = distance_to_point(starting_point, sim._current_location) assert sim.speed == pytest.approx(distance_moved) assert heading == pytest.approx(sim._compass.heading) assert sim.arrived is False # should take 8 updates total to get within 20 meters # since we have already moved 10 meters we should only need # to move another 70 meters for x in range(7): sim._update() if x < 6: assert sim.arrived is False assert sim.arrived is True
31.622642
77
0.671241
fd45e02f1535a505a9a431d5f9baf5fec189eda6
4,688
py
Python
tamr_unify_client/base_collection.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
9
2019-08-13T11:07:06.000Z
2022-01-14T18:15:13.000Z
tamr_unify_client/base_collection.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
166
2019-08-09T18:51:05.000Z
2021-12-02T15:24:15.000Z
tamr_unify_client/base_collection.py
ianbakst/tamr-client
ae7a6190a2251d31f973f9d5a7170ac5dc097f97
[ "Apache-2.0" ]
21
2019-08-12T15:37:31.000Z
2021-06-15T14:06:23.000Z
from abc import abstractmethod from collections.abc import Iterable class BaseCollection(Iterable): """Base class for client-side collections. :param client: Delegate underlying API calls to this client. :type client: :class:`~tamr_unify_client.Client` :param api_path: API path for this collection. E.g. ``"projects/1/inputDatasets"``. :type api_path: str """ def __init__(self, client, api_path): self.client = client self.api_path = api_path @abstractmethod def by_resource_id(self, canonical_path, resource_id): """Retrieve an item in this collection by resource ID. Subclasses should override this method and pass in the specific ``canonical_path`` for that collection. :param canonical_path: The canonical (i.e. unaliased) API path for this collection. :type canonical_path: str :param resource_id: The resource ID. E.g. "1" :type resource_id: str :returns: The specified item. :rtype: The ``resource_class`` for this collection. See :func:`~tamr_unify_client.base_collection.BaseCollection.by_relative_id`. """ relative_id = canonical_path + "/" + resource_id return self.by_relative_id(relative_id) @abstractmethod def by_relative_id(self, resource_class, relative_id): """Retrieve an item in this collection by relative ID. Subclasses should override this method and pass in the specific ``resource_class`` for that collection. :param resource_class: Resource class corresponding to items in this collection. :type resource_class: Python class :param relative_id: The relative ID. E.g. "projects/1" :type relative_id: str :returns: The specified item. :rtype: ``resource_class`` """ resource_json = self.client.get(relative_id).successful().json() return resource_class.from_json( self.client, resource_json, api_path=relative_id ) @abstractmethod def stream(self, resource_class): """Stream items in this collection. Subclasses should override this method and pass in the specific ``resource_class`` for that collection. :param resource_class: Resource class corresponding to items in this collection. :type resource_class: Python class :returns: Generator that yields each item. :rtype: Python generator of ``resource_class`` """ resources = self.client.get(self.api_path).successful().json() for resource_json in resources: yield resource_class.from_json(self.client, resource_json) def __iter__(self): return self.stream() @abstractmethod def by_external_id(self, resource_class, external_id): """Retrieve an item in this collection by external ID. Subclasses should override this method and pass in the specific ``resource_class`` for that collection. :param resource_class: Resource class corresponding to items in this collection. :type resource_class: Python class :param external_id: The external ID. :type external_id: str :returns: The specified item, if found. :rtype: ``resource_class`` :raises KeyError: If no resource with the specified external_id is found :raises LookupError: If multiple resources with the specified external_id are found """ params = {"filter": "externalId==" + external_id} resources = self.client.get(self.api_path, params=params).successful().json() items = [ resource_class.from_json(self.client, resource_json) for resource_json in resources ] if len(items) == 0: raise KeyError(f'No item found with external ID "{external_id}"') elif len(items) > 1: raise LookupError( f'More than one item found with external ID "{external_id}"' ) return items[0] def delete_by_resource_id(self, resource_id): """Deletes a resource from this collection by resource ID. :param resource_id: The resource ID of the resource that will be deleted. :type resource_id: str :return: HTTP response from the server. :rtype: :class:`requests.Response` """ path = f"{self.api_path}/{resource_id}" response = self.client.delete(path).successful() return response def __repr__(self): return ( f"{self.__class__.__module__}." f"{self.__class__.__qualname__}(" f"api_path={self.api_path!r})" )
38.113821
138
0.656143
1d0f8c64fe8122e852ac6ba76fea974737e10080
672
py
Python
ExerciciosPYTHON/PythonCeV/053.py
Samuel-Melo890/Python-Desafios
2abc7734d6a6c1f5ab67421f792d6889d93bac94
[ "MIT" ]
null
null
null
ExerciciosPYTHON/PythonCeV/053.py
Samuel-Melo890/Python-Desafios
2abc7734d6a6c1f5ab67421f792d6889d93bac94
[ "MIT" ]
2
2022-03-18T16:06:07.000Z
2022-03-18T16:55:29.000Z
ExerciciosPYTHON/PythonCeV/053.py
Samuel-Melo890/Python-Desafios
2abc7734d6a6c1f5ab67421f792d6889d93bac94
[ "MIT" ]
null
null
null
print('='*8,'Detector de Palíndromo','='*8) f = str(input('Digite uma frase: ')).strip().upper().split() fj = ''.join(f) r = fj[::-1] print('A frase {}{}{} de trás para frente fica {}{}{}.'.format('\033[4m', fj, '\033[m', '\033[4m', r, '\033[m')) if fj == r: print('Portanto essa frase é um {}PALÍNDROMO{}!'.format('\033[36m' , '\033[m')) else: print('Portanto essa frase {}NÃO{} é um {}PALÍNDROMO{}!'.format('\033[31m' , '\033[m' , '\033[36m' , '\033[m')) #r = '' #for l in range(len(fj) -1, -1, -1): #r += fj[l] #print('O inverso de {} é {}.'.format(fj , r)) #if fj == r: #print('Temos um palíndromo!') #else: #print('A frase não é um palíndromo.')
35.368421
115
0.543155
d6e810f6e9e19d9716f8e921bd30fe5676f69f23
812
py
Python
example/speech-demo/tests/test_nothing.py
IIMarch/mxnet
64c35f2d41f5bad3f9cbf4d4fda9cf3bf3dadb4b
[ "Apache-2.0" ]
399
2017-05-30T05:12:48.000Z
2022-01-29T05:53:08.000Z
example/speech-demo/tests/test_nothing.py
IIMarch/mxnet
64c35f2d41f5bad3f9cbf4d4fda9cf3bf3dadb4b
[ "Apache-2.0" ]
58
2017-05-30T23:25:32.000Z
2019-11-18T09:30:54.000Z
example/speech-demo/tests/test_nothing.py
IIMarch/mxnet
64c35f2d41f5bad3f9cbf4d4fda9cf3bf3dadb4b
[ "Apache-2.0" ]
107
2017-05-30T05:53:22.000Z
2021-06-24T02:43:31.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. def test_nothing(): pass
40.6
62
0.770936
1383b333bce4199ba0c3d53c7b33217efeb2a454
268
py
Python
tests/testapp/models.py
sen-den/django-link-shortener
9dcfcf362a14b11a1fa203b376a4bd2840450b09
[ "MIT" ]
24
2018-06-09T10:00:53.000Z
2022-03-04T19:49:49.000Z
tests/testapp/models.py
sen-den/django-link-shortener
9dcfcf362a14b11a1fa203b376a4bd2840450b09
[ "MIT" ]
8
2018-06-10T20:45:20.000Z
2022-02-20T14:50:07.000Z
tests/testapp/models.py
sen-den/django-link-shortener
9dcfcf362a14b11a1fa203b376a4bd2840450b09
[ "MIT" ]
7
2019-05-22T06:25:38.000Z
2022-03-04T01:03:17.000Z
from django.contrib.auth.models import AbstractUser from django.db import models # Create your models here. class CustomUser(AbstractUser): email = models.EmailField(unique=True, error_messages={ 'unique': "A user with that email already exists." })
26.8
59
0.738806
5d06f31ba2bf9f1fb58640d75929604c576c9827
616
py
Python
bin/startup.py
tdilauro/circulation-core
8086ca8cbedd5f4b2a0c44df97889d078ff79aac
[ "Apache-2.0" ]
1
2021-11-16T00:58:43.000Z
2021-11-16T00:58:43.000Z
bin/startup.py
tdilauro/circulation-core
8086ca8cbedd5f4b2a0c44df97889d078ff79aac
[ "Apache-2.0" ]
44
2022-01-20T01:31:32.000Z
2022-03-31T01:50:41.000Z
bin/startup.py
tdilauro/circulation-core
8086ca8cbedd5f4b2a0c44df97889d078ff79aac
[ "Apache-2.0" ]
1
2021-05-12T19:11:52.000Z
2021-05-12T19:11:52.000Z
from os import path, sys # Good overview of what is going on here: # https://stackoverflow.com/questions/11536764/how-to-fix-attempted-relative-import-in-non-package-even-with-init-py # Once we have a stable package name for core, it should be easier to do away with something like this # for now we add the core component path to the sys.path when we are running these scripts component_dir = path.dirname(path.dirname(path.dirname(path.abspath(__file__)))) # Load the 'core' module as though this script were being run from # the parent component (either circulation or metadata). sys.path.append(component_dir)
51.333333
116
0.784091
8d53d257e96cfb17ba8b88d7de2e5c41fa65a818
6,628
py
Python
ews-fetch-calendar.py
chckyn/ews-orgmode
a63ee0f703912812702c17b139ba6eabc441ddfd
[ "MIT" ]
50
2015-01-19T16:45:13.000Z
2021-11-19T13:57:44.000Z
ews-fetch-calendar.py
chckyn/ews-orgmode
a63ee0f703912812702c17b139ba6eabc441ddfd
[ "MIT" ]
6
2015-03-03T07:54:23.000Z
2020-06-16T13:20:21.000Z
ews-fetch-calendar.py
chckyn/ews-orgmode
a63ee0f703912812702c17b139ba6eabc441ddfd
[ "MIT" ]
20
2015-01-10T20:41:31.000Z
2021-07-13T18:16:57.000Z
#!/usr/bin/python # This script was inspired by: # http://blogs.msdn.com/b/exchangedev/archive/2009/02/05/quick-and-dirty-unix-shell-scripting-with-ews.aspx # http://ewsmacwidget.codeplex.com/ import os from lxml import etree from datetime import datetime from datetime import date from datetime import timedelta from pytz import timezone from StringIO import StringIO import pytz import pycurl import base64 import ConfigParser # Read the config file timezoneLocation = os.getenv('TZ', 'UTC') config = ConfigParser.RawConfigParser({ 'path': '/ews/Exchange.asmx', 'username': '', 'password': '', 'auth_type': 'any', 'cainfo': '', 'timezone': timezoneLocation, 'days_history': 7, 'days_future': 30, 'max_entries': 100}) dir = os.path.dirname(os.path.realpath(__file__)) config.read(os.path.join(dir, 'config.cfg')) # Exchange user and password ewsHost = config.get('ews-orgmode', 'host') ewsUrl = config.get('ews-orgmode', 'path') ewsUser = config.get('ews-orgmode', 'username') ewsPassword = config.get('ews-orgmode', 'password') ewsAuthType = config.get('ews-orgmode', 'auth_type').lower() ewsCAInfo = config.get('ews-orgmode', 'cainfo') timezoneLocation = config.get('ews-orgmode', 'timezone') daysHistory = config.getint('ews-orgmode', 'days_history') daysFuture = config.getint('ews-orgmode', 'days_future') maxEntries = config.getint('ews-orgmode', 'max_entries') def parse_ews_date(dateStr): d = datetime.strptime(dateStr, "%Y-%m-%dT%H:%M:%SZ") exchangeTz = pytz.utc localTz = timezone(timezoneLocation) return exchangeTz.localize(d).astimezone(localTz); def format_orgmode_date(dateObj): return dateObj.strftime("%Y-%m-%d %H:%M") def format_orgmode_time(dateObj): return dateObj.strftime("%H:%M") # Helper function to write an orgmode entry def print_orgmode_entry(subject, start, end, location, response): startDate = parse_ews_date(start); endDate = parse_ews_date(end); # Check if the appointment starts and ends on the same day and use proper formatting dateStr = "" if startDate.date() == endDate.date(): dateStr = "<" + format_orgmode_date(startDate) + "-" + format_orgmode_time(endDate) + ">" else: dateStr = "<" + format_orgmode_date(startDate) + ">--<" + format_orgmode_date(endDate) + ">" if subject is not None: if dateStr != "": print "* " + dateStr + " " + subject.encode('ascii', 'ignore') else: print "* " + subject.encode('ascii', 'ignore') if location is not None: print ":PROPERTIES:" print ":LOCATION: " + location.encode('utf-8') print ":RESPONSE: " + response.encode('utf-8') print ":END:" print "" # Debug code # print_orgmode_entry("subject", "2012-07-27T11:10:53Z", "2012-07-27T11:15:53Z", "location", "participants") # exit(0) # Build the soap request # For CalendarItem documentation, http://msdn.microsoft.com/en-us/library/exchange/aa564765(v=exchg.140).aspx start = date.today() - timedelta(days=daysHistory) end = date.today() + timedelta(days=daysFuture) request = """<?xml version="1.0" encoding="utf-8"?> <soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:t="http://schemas.microsoft.com/exchange/services/2006/types"> <soap:Body> <FindItem Traversal="Shallow" xmlns="http://schemas.microsoft.com/exchange/services/2006/messages"> <ItemShape> <t:BaseShape>Default</t:BaseShape> <t:AdditionalProperties> <t:FieldURI FieldURI="calendar:MyResponseType"/> </t:AdditionalProperties> </ItemShape> <CalendarView MaxEntriesReturned="{2}" StartDate="{0}T00:00:00-08:00" EndDate="{1}T00:00:00-08:00"/> <ParentFolderIds> <t:DistinguishedFolderId Id="calendar"/> </ParentFolderIds> </FindItem> </soap:Body> </soap:Envelope>""".format(start, end, maxEntries) request_len = len(request) request = StringIO(request) # Debug code # print request.getvalue() # exit(0) h = [] h.append('Content-Type: text/xml; charset=UTF-8') h.append('Content-Length: %d' % request_len); header = StringIO() body = StringIO() c = pycurl.Curl() # Debug code # c.setopt(c.VERBOSE, 1) c.setopt(c.URL, 'https://%s%s' % (ewsHost, ewsUrl)) c.setopt(c.POST, 1) c.setopt(c.HTTPHEADER, h) if ewsAuthType == 'digest': c.setopt(c.HTTPAUTH, c.HTTPAUTH_DIGEST) elif ewsAuthType == 'basic': c.setopt(c.HTTPAUTH, c.HTTPAUTH_BASIC) elif ewsAuthType == 'ntlm': c.setopt(c.HTTPAUTH, c.HTTPAUTH_NTLM) elif ewsAuthType == 'negotiate': c.setopt(c.HTTPAUTH, c.HTTPAUTH_GSSNEGOTIATE) elif ewsAuthType == 'any': c.setopt(c.HTTPAUTH, c.HTTPAUTH_ANYSAFE) c.setopt(c.USERPWD, '%s:%s' % (ewsUser, ewsPassword)) if len(ewsCAInfo) > 0: c.setopt(c.CAINFO, ewsCAInfo) # http://stackoverflow.com/questions/27808835/fail-to-assign-io-object-to-writedata-pycurl c.setopt(c.WRITEFUNCTION, body.write) c.setopt(c.HEADERFUNCTION, header.write) c.setopt(c.READFUNCTION, request.read) c.perform() c.close() # Read the webservice response data = body.getvalue() # Debug code # print data # exit(0) # Parse the result xml root = etree.fromstring(data) xpathStr = "/s:Envelope/s:Body/m:FindItemResponse/m:ResponseMessages/m:FindItemResponseMessage/m:RootFolder/t:Items/t:CalendarItem" namespaces = { 's': 'http://schemas.xmlsoap.org/soap/envelope/', 't': 'http://schemas.microsoft.com/exchange/services/2006/types', 'm': 'http://schemas.microsoft.com/exchange/services/2006/messages', } # Print calendar elements elements = root.xpath(xpathStr, namespaces=namespaces) for element in elements: subjectElem = element.find('{http://schemas.microsoft.com/exchange/services/2006/types}Subject') if subjectElem is not None: subject = subjectElem.text else: subject = "" locationElem = element.find('{http://schemas.microsoft.com/exchange/services/2006/types}Location') if locationElem is not None: location = locationElem.text else: location = "" startElem = element.find('{http://schemas.microsoft.com/exchange/services/2006/types}Start') if startElem is not None: start = startElem.text else: start = "" endElem = element.find('{http://schemas.microsoft.com/exchange/services/2006/types}End') if endElem is not None: end = endElem.text else: end = "" responseElem = element.find('{http://schemas.microsoft.com/exchange/services/2006/types}MyResponseType') if responseElem is not None: response = responseElem.text else: response = "" print_orgmode_entry(subject, start, end, location, response)
32.174757
131
0.702625
d9f4fda51b20e161332b506d6241e4f74b1703e1
2,880
py
Python
test/test_volume.py
jonazpiazu/rocker
37a60a046fd858f4a0b812de70f88444ddae56cc
[ "Apache-2.0" ]
259
2019-01-09T06:39:04.000Z
2022-03-30T11:29:04.000Z
test/test_volume.py
jonazpiazu/rocker
37a60a046fd858f4a0b812de70f88444ddae56cc
[ "Apache-2.0" ]
150
2019-01-03T00:06:16.000Z
2022-03-17T01:44:20.000Z
test/test_volume.py
osrf/crocker
556596dc099f823a7364b61e68e68b9831eed4b3
[ "Apache-2.0" ]
37
2019-02-21T20:39:00.000Z
2022-01-03T20:02:17.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import unittest from rocker.core import list_plugins from rocker.volume_extension import Volume class VolumeTest(unittest.TestCase): def setUp(self): self._instance = Volume() self._curr_path = os.path.abspath(os.path.curdir) self._virtual_path = "/path/in/container" def _test_equals_args(self, mock_cliargs, expected): """ @type mock_cliargs: { str: [[str]] } @type expected: [[str]] """ print("DEBUG: 'mock_cliargs' {}\n\t'expected': {}".format(mock_cliargs, expected)) docker_args = self._instance.get_docker_args(mock_cliargs) print("DEBUG: Resulted docker_args: {}".format(docker_args)) for arg_expected in expected: # Whitespace at the beginning is needed. complete_expected = " {} {}".format(Volume.ARG_DOCKER_VOLUME, arg_expected[0]) self.assertTrue(complete_expected in docker_args) def test_args_single(self): """Passing source path""" arg = [[self._curr_path]] expected = [['{}:{}'.format(self._curr_path, self._curr_path)]] mock_cliargs = {Volume.name: arg} self._test_equals_args(mock_cliargs, expected) def test_args_twopaths(self): """Passing source path, dest path""" arg = ["{}:{}".format(self._curr_path, self._virtual_path)] mock_cliargs = {Volume.name: [arg]} self._test_equals_args(mock_cliargs, arg) def test_args_twopaths_opt(self): """Passing source path, dest path, and Docker's volume option""" arg = ["{}:{}:ro".format(self._curr_path, self._virtual_path)] mock_cliargs = {Volume.name: [arg]} self._test_equals_args(mock_cliargs, arg) def test_args_two_volumes(self): """Multiple volume points""" arg_first = ["{}:{}:ro".format(self._curr_path, self._virtual_path)] arg_second = ["/tmp:{}".format(os.path.join(self._virtual_path, "tmp"))] args = [arg_first, arg_second] mock_cliargs = {Volume.name: args} self._test_equals_args(mock_cliargs, args)
41.142857
90
0.678472
514dbdb6ed886c1e6bed7d80c4bba264cb875e5d
3,319
py
Python
goodbadcomment/HcpChapingGet.py
MyCodeBattle/ManyPython
eee07c96e3048248ce281a9203fc8cd1a38f3f2a
[ "MIT" ]
null
null
null
goodbadcomment/HcpChapingGet.py
MyCodeBattle/ManyPython
eee07c96e3048248ce281a9203fc8cd1a38f3f2a
[ "MIT" ]
null
null
null
goodbadcomment/HcpChapingGet.py
MyCodeBattle/ManyPython
eee07c96e3048248ce281a9203fc8cd1a38f3f2a
[ "MIT" ]
null
null
null
import pandas as pd from loguru import logger import arrow import time import json import requests import tqdm from retrying import retry headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'Cookie': 'G_zj_gsid=08890c40500a4a8ab21e0b2b9e9e47b1-gsid-', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36'} index = 1 df = pd.DataFrame() while True: reqBody = {"pageNum": index, "pageSize": 20, "createTimeFrom": 1609430400000, "createTimeTo": 1623227340000, "channelList": [], "areaList": ["ff8080815d551320015d589cc1da0014", "ff8080815d551320015d589cc1da0014$0", "ff8080815df350d4015df3d64603057a", "ff8080815df350d4015df4333f0006cb", "ff8080815df350d4015df44090fd06f5", "ff8080815df350d4015df44e7d100706", "ff8080815de36663015de3e0d0380000", "ff8080815de36663015de3ef492c0015", "ff8080815df45323015df461a0e6000b", "ff8080815df482ba015df7dceec40326", "ff8080815df45323015df46e7610001d", "ff8080815df482ba015df7eb3a8c0367", "ff8080815df45323015df47feebf0116", "ff8080815dfd3779015dfdc8850c06c5", "ff8080815dfc9cb1015dfcf0c19f109f", "bb4a9da3634a58f601636c22dc381288d", "bb4a9da3634a58f601636c22583f125b", "ff8080816f12372d016f1d5959bb7545"], "statusList": []} res = json.loads(requests.post(url = 'https://opt.zjzwfw.gov.cn/rest/api/evaluation/case/historyForHandle/list?ctoken=4300b7fc-1f14-4591-a460-b58da21841d3', json=reqBody, headers = headers).text) # print(res) if not res['data']['list']: break df = df.append(pd.DataFrame(res['data']['list']), ignore_index=True) index += 1 time.sleep(0.5) df.to_excel('好差评结果.xls', index=False) df = pd.read_excel('好差评结果.xls', dtype=str) resDf = pd.DataFrame() process = tqdm.tqdm(total=df.shape[0], ncols=200) for idx, row in df.iterrows(): res = json.loads(requests.get(url='https://opt.zjzwfw.gov.cn/rest/api/evaluation/detail?ctoken=598cd51b-5ecf-49f6-8e1d-e503d20df4de&id={}&isQueryCaseInfo=true&portalTyp=G'.format(row['evaluationId']), headers=headers).text)['data'] #申诉理由 appealReason = res['caseDTO']['appealReason'] #驳回理由 failedReason = res['caseDTO']['failedReason'] #差评人联系方式 phone = res['raterInfoDTO']['phoneNum'] #整改理由 solution = res['caseDTO']['solution'] #追评等级 plusCommentDTO = res['feedbackItemDTOList'] row['申诉理由'] = appealReason row['驳回理由'] = failedReason row['整改回复'] = solution row['差评人手机'] = phone if plusCommentDTO: plusCommentDTO = plusCommentDTO[0] row['追评等级'] = plusCommentDTO['levelDesc'] row['追评文本'] = plusCommentDTO['rateText'] resDf = resDf.append(row) time.sleep(0.3) process.update(1) resDf.to_excel('原始表咯.xls', index=False) resDf.rename(columns={'caseTime': '评价时间', 'channelDesc': '评价渠道', 'dealTime': '办结时间', 'evalutionLevel': '评价等级', 'location': '地区', 'matterName': '事项名称', 'name': '差评人姓名', 'raterText': '差评内容', 'reformTime': '整改时间', 'reformer': '整改人', 'statusString': '工单状态', 'departmentName': '部门名称', 'code': '工单编号'}, inplace=True) resDf = resDf[['工单编号', '地区', '部门名称', '事项名称', '办结时间', '评价时间', '差评内容', '评价渠道', '评价等级', '差评人姓名', '差评人手机', '申诉理由', '驳回理由', '整改回复', '整改人', '工单状态', '追评等级', '追评文本']] process.close() resDf.to_excel(f'{arrow.now().strftime("%m%d")}差评信息.xls', index=False)
46.097222
814
0.712263
02439bc423929cf57d69d44d014931c16a74ad5e
1,717
py
Python
spinoffs/inference_gym/targets/banana_test.py
KonstantinKlepikov/probability
0cc6c5febf3b10ece5bb2b9877bd695137a420ea
[ "Apache-2.0" ]
1
2020-08-28T21:01:19.000Z
2020-08-28T21:01:19.000Z
spinoffs/inference_gym/targets/banana_test.py
KonstantinKlepikov/probability
0cc6c5febf3b10ece5bb2b9877bd695137a420ea
[ "Apache-2.0" ]
null
null
null
spinoffs/inference_gym/targets/banana_test.py
KonstantinKlepikov/probability
0cc6c5febf3b10ece5bb2b9877bd695137a420ea
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 # Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for inference_gym.targets.banana.""" import tensorflow.compat.v2 as tf from spinoffs.inference_gym.internal import test_util from spinoffs.inference_gym.targets import banana @test_util.multi_backend_test(globals(), 'targets.banana_test') class BananaTest(test_util.InferenceGymTestCase): def testBasic(self): """Checks that you get finite values given unconstrained samples. We check `unnormalized_log_prob` as well as the values of the sample transformations. """ model = banana.Banana(ndims=3) self.validate_log_prob_and_transforms( model, sample_transformation_shapes=dict(identity=[3]), check_ground_truth_mean=True, check_ground_truth_standard_deviation=True, ) def testMC(self): """Checks true samples from the model against the ground truth.""" model = banana.Banana(ndims=3) self.validate_ground_truth_using_monte_carlo( model, num_samples=int(1e6), ) if __name__ == '__main__': tf.test.main()
32.396226
78
0.70763
4b92b5d50fddc227448a20d9adddc59cc2a73c4c
2,134
py
Python
pyjobs/core/management/commands/send_weekly_mailing.py
Mdslino/PyJobs
d2496d58067503c3304a6c59052238b1f097472b
[ "BSD-3-Clause" ]
132
2017-10-27T23:54:47.000Z
2022-03-15T12:10:10.000Z
pyjobs/core/management/commands/send_weekly_mailing.py
Mdslino/PyJobs
d2496d58067503c3304a6c59052238b1f097472b
[ "BSD-3-Clause" ]
129
2017-09-05T04:22:50.000Z
2022-03-12T01:06:49.000Z
pyjobs/core/management/commands/send_weekly_mailing.py
Mdslino/PyJobs
d2496d58067503c3304a6c59052238b1f097472b
[ "BSD-3-Clause" ]
82
2017-10-28T00:14:04.000Z
2021-07-27T20:00:40.000Z
import os from datetime import datetime from django.core.management.base import BaseCommand from django.db import IntegrityError from django.template.loader import get_template from django.core.mail import EmailMultiAlternatives from django.template import Context from pyjobs.core.models import Job from pyjobs.marketing.models import MailingList from pyjobs.marketing.utils import post_telegram_channel from django.conf import settings def format_owner_email(email): splited_email = email.split("@") splited_owner_email = settings.WEBSITE_OWNER_EMAIL.split("@") return "{}+{}@{}".format( splited_owner_email[0], splited_email[0], splited_owner_email[1] ) def check_today_is_the_right_day(): if datetime.today().weekday() == 2: return True return False class Command(BaseCommand): def handle(self, *args, **options): if not check_today_is_the_right_day(): return "False" emails_mailing_lists = [mailing.email for mailing in MailingList.objects.all()] if len(emails_mailing_lists) == 0: return "False" emails_mailing_replies = [ format_owner_email(email) for email in emails_mailing_lists ] to_emails = emails_mailing_replies from_emails = emails_mailing_lists jobs = list(Job.get_premium_jobs()) missing_jobs = 10 - len(jobs) jobs += list(Job.get_feed_jobs())[:missing_jobs] if len(jobs) == 0: return "False" plain_text = get_template("emails/weekly_summary.txt") subject = "[Vagas][PyJobs] Vagas Python da semana passada" context = { "dono_do_site": settings.WEBSITE_OWNER_NAME, "nome_do_site": settings.WEBSITE_NAME, "url_do_site": settings.WEBSITE_HOME_URL, "jobs": jobs, } text_content = plain_text.render(context) for email_tup in zip(to_emails, from_emails): msg = EmailMultiAlternatives( subject, text_content, email_tup[0], [email_tup[1]] ) msg.send() return "True"
27.714286
87
0.66448
b1df6c42c5729736b50609dcb895f9b2216f8075
58,316
py
Python
angr/calling_conventions.py
Alexeyan/angr
445fa2036584598d310ffd58436566847bbc7e1c
[ "BSD-2-Clause" ]
null
null
null
angr/calling_conventions.py
Alexeyan/angr
445fa2036584598d310ffd58436566847bbc7e1c
[ "BSD-2-Clause" ]
null
null
null
angr/calling_conventions.py
Alexeyan/angr
445fa2036584598d310ffd58436566847bbc7e1c
[ "BSD-2-Clause" ]
null
null
null
import logging import claripy import archinfo from typing import Union, Optional, List from .sim_type import SimTypeChar from .sim_type import SimTypePointer from .sim_type import SimTypeFixedSizeArray from .sim_type import SimTypeArray from .sim_type import SimTypeString from .sim_type import SimTypeFunction from .sim_type import SimTypeFloat from .sim_type import SimTypeDouble from .sim_type import SimTypeReg from .sim_type import SimStruct from .sim_type import parse_file from .sim_type import SimTypeTop from .state_plugins.sim_action_object import SimActionObject l = logging.getLogger(name=__name__) from .engines.soot.engine import SootMixin # TODO: This file contains explicit and implicit byte size assumptions all over. A good attempt to fix them was made. # If your architecture hails from the astral plane, and you're reading this, start fixing here. class PointerWrapper: def __init__(self, value): self.value = value class AllocHelper: def __init__(self, ptrsize, reverse_result): self.base = claripy.BVS('alloc_base', ptrsize) self.ptr = self.base self.reverse_result = reverse_result self.stores = {} def dump(self, val, state, endness='Iend_BE'): self.stores[self.ptr.cache_key] = (val, endness) out = self.ptr self.ptr += val.length // state.arch.byte_width return out.reversed if self.reverse_result else out def translate(self, val, base): return val.replace(self.base, base) def apply(self, state, base): for ptr, (val, endness) in self.stores.items(): state.memory.store(self.translate(ptr.ast, base), self.translate(val, base), endness=endness) def size(self): val = self.translate(self.ptr, claripy.BVV(0, len(self.ptr))) assert val.op == 'BVV' return abs(val.args[0]) class SimFunctionArgument: """ Represent a generic function argument. :ivar int size: The size of the argument, in number of bytes. """ def __init__(self, size): self.size = size def __ne__(self, other): return not self == other def __hash__(self): return hash(('function_argument', self.size)) def check_value(self, value): if not isinstance(value, claripy.ast.Base) and self.size is None: raise TypeError("Only claripy objects may be stored through SimFunctionArgument when size is not provided") if self.size is not None and isinstance(value, claripy.ast.Base) and self.size*8 < value.length: raise TypeError("%s doesn't fit in an argument of size %d" % (value, self.size)) def set_value(self, state, value, **kwargs): raise NotImplementedError def get_value(self, state, **kwargs): raise NotImplementedError class SimRegArg(SimFunctionArgument): """ Represents a function argument that has been passed in a register. :ivar string reg_name: The name of the represented register. :ivar int size: The size of the register, in number of bytes. """ def __init__(self, reg_name, size, alt_offsets=None): SimFunctionArgument.__init__(self, size) self.reg_name = reg_name self.alt_offsets = {} if alt_offsets is None else alt_offsets def __repr__(self): return "<%s>" % self.reg_name def __eq__(self, other): return type(other) is SimRegArg and self.reg_name == other.reg_name def __hash__(self): return hash((self.size, self.reg_name, tuple(self.alt_offsets))) def _fix_offset(self, state, size, arch=None): """ This is a hack to deal with small values being stored at offsets into large registers unpredictably """ if state is not None: arch = state.arch if arch is None: raise ValueError('Either "state" or "arch" must be specified.') offset = arch.registers[self.reg_name][0] if size in self.alt_offsets: return offset + self.alt_offsets[size] elif size < self.size and arch.register_endness == 'Iend_BE': return offset + (self.size - size) return offset def set_value(self, state, value, endness=None, size=None, **kwargs): # pylint: disable=unused-argument,arguments-differ self.check_value(value) if endness is None: endness = state.arch.register_endness if isinstance(value, int): value = claripy.BVV(value, self.size*8) if size is None: size = min(self.size, value.length // 8) offset = self._fix_offset(state, size) state.registers.store(offset, value, endness=endness, size=size) def get_value(self, state, endness=None, size=None, **kwargs): # pylint: disable=unused-argument,arguments-differ if endness is None: endness = state.arch.register_endness if size is None: size = self.size offset = self._fix_offset(state, size) return state.registers.load(offset, endness=endness, size=size) class SimStackArg(SimFunctionArgument): """ Represents a function argument that has been passed on the stack. :var int stack_offset: The position of the argument relative to the stack pointer after the function prelude. :ivar int size: The size of the argument, in number of bytes. """ def __init__(self, stack_offset, size): SimFunctionArgument.__init__(self, size) self.stack_offset = stack_offset def __repr__(self): return "[%#x]" % self.stack_offset def __eq__(self, other): return type(other) is SimStackArg and self.stack_offset == other.stack_offset def __hash__(self): return hash((self.size, self.stack_offset)) def set_value(self, state, value, endness=None, stack_base=None): # pylint: disable=arguments-differ self.check_value(value) if endness is None: endness = state.arch.memory_endness if stack_base is None: stack_base = state.regs.sp if isinstance(value, int): value = claripy.BVV(value, self.size*8) state.memory.store(stack_base + self.stack_offset, value, endness=endness, size=value.length//8) def get_value(self, state, endness=None, stack_base=None, size=None): # pylint: disable=arguments-differ if endness is None: endness = state.arch.memory_endness if stack_base is None: stack_base = state.regs.sp return state.memory.load(stack_base + self.stack_offset, endness=endness, size=size or self.size) class SimComboArg(SimFunctionArgument): def __init__(self, locations): super(SimComboArg, self).__init__(sum(x.size for x in locations)) self.locations = locations def __repr__(self): return 'SimComboArg(%s)' % repr(self.locations) def __eq__(self, other): return type(other) is SimComboArg and all(a == b for a, b in zip(self.locations, other.locations)) def set_value(self, state, value, endness=None, **kwargs): # pylint:disable=arguments-differ # TODO: This code needs to be reworked for variable byte width and the Third Endness self.check_value(value) if endness is None: endness = state.arch.memory_endness if isinstance(value, int): value = claripy.BVV(value, self.size*state.arch.byte_width) elif isinstance(value, float): if self.size not in (4, 8): raise ValueError("What do I do with a float %d bytes long" % self.size) value = claripy.FPV(value, claripy.FSORT_FLOAT if self.size == 4 else claripy.FSORT_DOUBLE) cur = 0 # TODO: I have no idea if this reversed is only supposed to be applied in LE situations for loc in reversed(self.locations): loc.set_value(state, value[cur*state.arch.byte_width + loc.size*state.arch.byte_width - 1:cur*state.arch.byte_width], endness=endness, **kwargs) cur += loc.size def get_value(self, state, endness=None, **kwargs): # pylint:disable=arguments-differ if endness is None: endness = state.arch.memory_endness vals = [] for loc in reversed(self.locations): vals.append(loc.get_value(state, endness, **kwargs)) return state.solver.Concat(*vals) class ArgSession: """ A class to keep track of the state accumulated in laying parameters out into memory """ __slots__ = ('cc', 'real_args', 'fp_iter', 'int_iter', 'both_iter', ) def __init__(self, cc): self.cc = cc self.real_args = None self.fp_iter = None self.int_iter = None self.both_iter = None # these iters should only be used if real_args are not set or real_args are intentionally ignored (e.g., when # variadic arguments are used). self.fp_iter = cc.fp_args self.int_iter = cc.int_args self.both_iter = cc.both_args if cc.args is not None: self.real_args = iter(cc.args) # TODO: use safer errors than TypeError and ValueError def next_arg(self, is_fp, size=None, ignore_real_args=False): if self.real_args is not None and not ignore_real_args: try: arg = next(self.real_args) if is_fp and self.cc.is_fp_arg(arg) is False: raise TypeError("Can't put a float here - concrete arg positions are specified") elif not is_fp and self.cc.is_fp_arg(arg) is True: raise TypeError("Can't put an int here - concrete arg positions are specified") except StopIteration: raise TypeError("Accessed too many arguments - concrete number are specified") else: try: if is_fp: arg = next(self.fp_iter) else: arg = next(self.int_iter) except StopIteration: try: arg = next(self.both_iter) except StopIteration: raise TypeError("Accessed too many arguments - exhausted all positions?") if size is not None and size > arg.size: arg = self.upsize_arg(arg, is_fp, size) return arg def upsize_arg(self, arg, is_fp, size): if not is_fp: raise ValueError("You can't fit a integral value of size %d into an argument of size %d!" % (size, arg.size)) if not isinstance(arg, SimStackArg): raise ValueError("I don't know how to handle this? please report to @rhelmot") arg_size = arg.size locations = [arg] while arg_size < size: next_arg = self.next_arg(is_fp, None) arg_size += next_arg.size locations.append(next_arg) return SimComboArg(locations) class SimCC: """ A calling convention allows you to extract from a state the data passed from function to function by calls and returns. Most of the methods provided by SimCC that operate on a state assume that the program is just after a call but just before stack frame allocation, though this may be overridden with the `stack_base` parameter to each individual method. This is the base class for all calling conventions. An instance of this class allows it to be tweaked to the way a specific function should be called. """ def __init__(self, arch: archinfo.Arch, args: Optional[List[SimFunctionArgument]]=None, ret_val: Optional[SimFunctionArgument]=None, sp_delta: Optional[int]=None, func_ty: Optional[Union[SimTypeFunction, str]]=None): """ :param arch: The Archinfo arch for this CC :param args: A list of SimFunctionArguments describing where the arguments go :param ret_val: A SimFunctionArgument describing where the return value goes :param sp_delta: The amount the stack pointer changes over the course of this function - CURRENTLY UNUSED :param func_ty: A SimTypeFunction for the function itself, or a string that can be parsed into a SimTypeFunction instance. Example func_ty strings: >>> "int func(char*, int)" >>> "int f(int, int, int*);" Function names are ignored. """ if func_ty is not None: if isinstance(func_ty, str): if not func_ty.endswith(";"): func_ty += ";" # Make pycparser happy parsed = parse_file(func_ty) parsed_decl = parsed[0] if not parsed_decl: raise ValueError('Cannot parse the provided function prototype.') _, func_ty = next(iter(parsed_decl.items())) if not isinstance(func_ty, SimTypeFunction): raise TypeError("Function prototype must be a SimTypeFunction instance or a string that can be parsed " "into a SimTypeFunction instance.") self.arch = arch self.args = args self.ret_val = ret_val self.sp_delta = sp_delta self.func_ty: Optional[SimTypeFunction] = func_ty if func_ty is None else func_ty.with_arch(arch) @classmethod def from_arg_kinds(cls, arch, fp_args, ret_fp=False, sizes=None, sp_delta=None, func_ty=None): """ Get an instance of the class that will extract floating-point/integral args correctly. :param arch: The Archinfo arch for this CC :param fp_args: A list, with one entry for each argument the function can take. True if the argument is fp, false if it is integral. :param ret_fp: True if the return value for the function is fp. :param sizes: Optional: A list, with one entry for each argument the function can take. Each entry is the size of the corresponding argument in bytes. :param sp_delta: The amount the stack pointer changes over the course of this function - CURRENTLY UNUSED :parmm func_ty: A SimType for the function itself """ basic = cls(arch, sp_delta=sp_delta, func_ty=func_ty) basic.args = basic.arg_locs(fp_args, sizes) basic.ret_val = basic.fp_return_val if ret_fp else basic.return_val return basic # # Here are all the things a subclass needs to specify! # ARG_REGS: List[SimFunctionArgument] = None # A list of all the registers used for integral args, in order (names or offsets) FP_ARG_REGS: List[SimFunctionArgument] = None # A list of all the registers used for floating point args, in order STACKARG_SP_BUFF = 0 # The amount of stack space reserved between the saved return address # (if applicable) and the arguments. Probably zero. STACKARG_SP_DIFF = 0 # The amount of stack space reserved for the return address CALLER_SAVED_REGS: List[SimFunctionArgument] = None # Caller-saved registers RETURN_ADDR: SimFunctionArgument = None # The location where the return address is stored, as a SimFunctionArgument RETURN_VAL: SimFunctionArgument = None # The location where the return value is stored, as a SimFunctionArgument OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = None # The second half of the location where a double-length return value is stored FP_RETURN_VAL: Optional[SimFunctionArgument] = None # The location where floating-point argument return values are stored ARCH = None # The archinfo.Arch class that this CC must be used for, if relevant CALLEE_CLEANUP = False # Whether the callee has to deallocate the stack space for the arguments STACK_ALIGNMENT = 1 # the alignment requirement of the stack pointer at function start BEFORE call # # Here are several things you MAY want to override to change your cc's convention # @property def int_args(self): """ Iterate through all the possible arg positions that can only be used to store integer or pointer values Does not take into account customizations. Returns an iterator of SimFunctionArguments """ if self.ARG_REGS is None: raise NotImplementedError() for reg in self.ARG_REGS: # pylint: disable=not-an-iterable yield SimRegArg(reg, self.arch.bytes) @property def both_args(self): """ Iterate through all the possible arg positions that can be used to store any kind of argument Does not take into account customizations. Returns an iterator of SimFunctionArguments """ turtle = self.STACKARG_SP_BUFF + self.STACKARG_SP_DIFF while True: yield SimStackArg(turtle, self.arch.bytes) turtle += self.arch.bytes @property def fp_args(self): """ Iterate through all the possible arg positions that can only be used to store floating point values Does not take into account customizations. Returns an iterator of SimFunctionArguments """ if self.FP_ARG_REGS is None: raise NotImplementedError() for reg in self.FP_ARG_REGS: # pylint: disable=not-an-iterable yield SimRegArg(reg, self.arch.registers[reg][1]) def is_fp_arg(self, arg): """ This should take a SimFunctionArgument instance and return whether or not that argument is a floating-point argument. Returns True for MUST be a floating point arg, False for MUST NOT be a floating point arg, None for when it can be either. """ if arg in self.int_args: return False if arg in self.fp_args or arg == self.FP_RETURN_VAL: return True return None ArgSession = ArgSession # import this from global scope so SimCC subclasses can subclass it if they like @property def arg_session(self): """ Return an arg session. A session provides the control interface necessary to describe how integral and floating-point arguments are laid out into memory. The default behavior is that there are a finite list of int-only and fp-only argument slots, and an infinite number of generic slots, and when an argument of a given type is requested, the most slot available is used. If you need different behavior, subclass ArgSession. """ return self.ArgSession(self) def stack_space(self, args): """ :param args: A list of SimFunctionArguments :returns: The number of bytes that should be allocated on the stack to store all these args, NOT INCLUDING the return address. """ out = self.STACKARG_SP_DIFF for arg in args: if isinstance(arg, SimStackArg): out = max(out, arg.stack_offset + self.arch.bytes) out += self.STACKARG_SP_BUFF return out @property def return_val(self): """ The location the return value is stored. """ # pylint: disable=unsubscriptable-object if self.ret_val is not None: return self.ret_val if self.func_ty is not None and \ self.func_ty.returnty is not None and \ self.OVERFLOW_RETURN_VAL is not None and \ self.func_ty.returnty.size is not None and \ self.func_ty.returnty.size > self.RETURN_VAL.size * self.arch.byte_width: return SimComboArg([self.RETURN_VAL, self.OVERFLOW_RETURN_VAL]) return self.RETURN_VAL @property def fp_return_val(self): return self.FP_RETURN_VAL if self.ret_val is None else self.ret_val @property def return_addr(self): """ The location the return address is stored. """ return self.RETURN_ADDR # # Useful functions! # @staticmethod def is_fp_value(val): return isinstance(val, (float, claripy.ast.FP)) or \ (isinstance(val, claripy.ast.Base) and val.op.startswith('fp')) or \ (isinstance(val, claripy.ast.Base) and val.op == 'Reverse' and val.args[0].op.startswith('fp')) def arg_locs(self, is_fp=None, sizes=None): """ Pass this a list of whether each parameter is floating-point or not, and get back a list of SimFunctionArguments. Optionally, pass a list of argument sizes (in bytes) as well. If you've customized this CC, this will sanity-check the provided locations with the given list. """ session = self.arg_session if self.func_ty is None and self.args is None: # No function prototype is provided, no args is provided. `is_fp` must be provided. if is_fp is None: raise ValueError('"is_fp" must be provided when no function prototype is available.') else: # let's rely on the func_ty or self.args for the number of arguments and whether each argument is FP or not if self.func_ty is not None: args = self.func_ty.args else: args = self.args is_fp = [ True if isinstance(arg, (SimTypeFloat, SimTypeDouble)) or self.is_fp_arg(arg) else False for arg in args ] if sizes is None: sizes = [self.arch.bytes] * len(is_fp) return [session.next_arg(ifp, size=sz) for ifp, sz in zip(is_fp, sizes)] def arg(self, state, index, stack_base=None): """ Returns a bitvector expression representing the nth argument of a function. `stack_base` is an optional pointer to the top of the stack at the function start. If it is not specified, use the current stack pointer. WARNING: this assumes that none of the arguments are floating-point and they're all single-word-sized, unless you've customized this CC. """ session = self.arg_session if self.args is None or index >= len(self.args): # self.args may not be provided, or args is incorrect or includes variadic arguments that we must get the # proper argument according to the default calling convention arg_loc = [session.next_arg(False, ignore_real_args=True) for _ in range(index + 1)][-1] else: arg_loc = self.args[index] return arg_loc.get_value(state, stack_base=stack_base) def get_args(self, state, is_fp=None, sizes=None, stack_base=None): """ `is_fp` should be a list of booleans specifying whether each corresponding argument is floating-point - True for fp and False for int. For a shorthand to assume that all the parameters are int, pass the number of parameters as an int. If you've customized this CC, you may omit this parameter entirely. If it is provided, it is used for sanity-checking. `sizes` is an optional list of argument sizes, in bytes. Be careful about using this if you've made explicit the arg locations, since it might decide to combine two locations into one if an arg is too big. `stack_base` is an optional pointer to the top of the stack at the function start. If it is not specified, use the current stack pointer. Returns a list of bitvector expressions representing the arguments of a function. """ if sizes is None and self.func_ty is not None: sizes = [arg.size for arg in self.func_ty.args] if is_fp is None: if self.args is None: if self.func_ty is None: raise ValueError("You must either customize this CC or pass a value to is_fp!") else: arg_locs = self.arg_locs([False]*len(self.func_ty.args)) else: arg_locs = self.args elif type(is_fp) is int: if self.args is not None and len(self.args) != is_fp: raise ValueError("Bad number of args requested: got %d, expected %d" % (is_fp, len(self.args))) arg_locs = self.arg_locs([False]*is_fp, sizes) else: arg_locs = self.arg_locs(is_fp, sizes) return [loc.get_value(state, stack_base=stack_base) for loc in arg_locs] def setup_callsite(self, state, ret_addr, args, stack_base=None, alloc_base=None, grow_like_stack=True): """ This function performs the actions of the caller getting ready to jump into a function. :param state: The SimState to operate on :param ret_addr: The address to return to when the called function finishes :param args: The list of arguments that that the called function will see :param stack_base: An optional pointer to use as the top of the stack, circa the function entry point :param alloc_base: An optional pointer to use as the place to put excess argument data :param grow_like_stack: When allocating data at alloc_base, whether to allocate at decreasing addresses The idea here is that you can provide almost any kind of python type in `args` and it'll be translated to a binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of the same type and size, while tuples (representing structs) can be elements of any type and size. If you'd like there to be a pointer to a given value, wrap the value in a `PointerWrapper`. Any value that can't fit in a register will be automatically put in a PointerWrapper. If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is not provided, the stack base will be used and grow_like_stack will implicitly be True. grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False so that sequential allocations happen at increasing addresses. """ # STEP 0: clerical work if isinstance(self, SimCCSoot): SootMixin.setup_callsite(state, args, ret_addr) return allocator = AllocHelper(self.arch.bits, self.arch.memory_endness == 'Iend_LE') # # STEP 1: convert all values into serialized form # this entails creating the vals list of simple values to store and also populating the allocator's # understanding of what aux data needs to be stored # This is also where we compute arg locations (arg_locs) # if self.func_ty is not None: vals = [self._standardize_value(arg, ty, state, allocator.dump) for arg, ty in zip(args, self.func_ty.args)] else: vals = [self._standardize_value(arg, None, state, allocator.dump) for arg in args] arg_session = self.arg_session arg_locs = [None]*len(args) for i, (arg, val) in enumerate(zip(args, vals)): if self.is_fp_value(arg) or \ (self.func_ty is not None and isinstance(self.func_ty.args[i], SimTypeFloat)): arg_locs[i] = arg_session.next_arg(is_fp=True, size=val.length // state.arch.byte_width) continue if val.length > state.arch.bits or (self.func_ty is None and isinstance(arg, (bytes, str, list, tuple))): vals[i] = allocator.dump(val, state) elif val.length < state.arch.bits: if self.arch.memory_endness == 'Iend_LE': vals[i] = val.concat(claripy.BVV(0, state.arch.bits - val.length)) else: vals[i] = claripy.BVV(0, state.arch.bits - val.length).concat(val) arg_locs[i] = arg_session.next_arg(is_fp=False, size=vals[i].length // state.arch.byte_width) # # STEP 2: decide on memory storage locations # implement the contract for stack_base/alloc_base/grow_like_stack # after this, stack_base should be the final stack pointer, alloc_base should be the final aux storage location, # and the stack pointer should be updated # if stack_base is None: if alloc_base is None: alloc_size = allocator.size() state.regs.sp -= alloc_size alloc_base = state.regs.sp grow_like_stack = False state.regs.sp -= self.stack_space(arg_locs) # handle alignment alignment = (state.regs.sp + self.STACKARG_SP_DIFF) % self.STACK_ALIGNMENT state.regs.sp -= alignment else: state.regs.sp = stack_base if alloc_base is None: alloc_base = stack_base + self.stack_space(arg_locs) grow_like_stack = False if grow_like_stack: alloc_base -= allocator.size() if type(alloc_base) is int: alloc_base = claripy.BVV(alloc_base, state.arch.bits) for i, val in enumerate(vals): vals[i] = allocator.translate(val, alloc_base) # # STEP 3: store everything! # allocator.apply(state, alloc_base) for loc, val in zip(arg_locs, vals): if val.length > loc.size * 8: raise ValueError("Can't fit value {} into location {}".format(repr(val), repr(loc))) loc.set_value(state, val, endness='Iend_BE', stack_base=stack_base) self.return_addr.set_value(state, ret_addr, stack_base=stack_base) def teardown_callsite(self, state, return_val=None, arg_types=None, force_callee_cleanup=False): """ This function performs the actions of the callee as it's getting ready to return. It returns the address to return to. :param state: The state to mutate :param return_val: The value to return :param arg_types: The fp-ness of each of the args. Used to calculate sizes to clean up :param force_callee_cleanup: If we should clean up the stack allocation for the arguments even if it's not the callee's job to do so TODO: support the stack_base parameter from setup_callsite...? Does that make sense in this context? Maybe it could make sense by saying that you pass it in as something like the "saved base pointer" value? """ if return_val is not None: self.set_return_val(state, return_val) ret_addr = self.return_addr.get_value(state) if state.arch.sp_offset is not None: if force_callee_cleanup or self.CALLEE_CLEANUP: if arg_types is not None: session = self.arg_session state.regs.sp += self.stack_space([session.next_arg(x) for x in arg_types]) elif self.args is not None: state.regs.sp += self.stack_space(self.args) else: l.warning("Can't perform callee cleanup when I have no idea how many arguments there are! Assuming 0") state.regs.sp += self.STACKARG_SP_DIFF else: state.regs.sp += self.STACKARG_SP_DIFF return ret_addr # pylint: disable=unused-argument def get_return_val(self, state, is_fp=None, size=None, stack_base=None): """ Get the return value out of the given state """ ty = self.func_ty.returnty if self.func_ty is not None else None if self.ret_val is not None: loc = self.ret_val elif is_fp is not None: loc = self.FP_RETURN_VAL if is_fp else self.RETURN_VAL elif ty is not None: loc = self.FP_RETURN_VAL if isinstance(ty, SimTypeFloat) else self.RETURN_VAL else: loc = self.RETURN_VAL if loc is None: raise NotImplementedError("This SimCC doesn't know how to get this value - should be implemented") val = loc.get_value(state, stack_base=stack_base, size=None if ty is None else ty.size//state.arch.byte_width) if self.is_fp_arg(loc) or self.is_fp_value(val) or isinstance(ty, SimTypeFloat): val = val.raw_to_fp() return val def set_return_val(self, state, val, is_fp=None, size=None, stack_base=None): """ Set the return value into the given state """ ty = self.func_ty.returnty if self.func_ty is not None else None try: betterval = self._standardize_value(val, ty, state, None) except AttributeError: raise ValueError("Can't fit value %s into a return value" % repr(val)) if self.ret_val is not None: loc = self.ret_val elif is_fp is not None: loc = self.fp_return_val if is_fp else self.return_val elif ty is not None: loc = self.fp_return_val if isinstance(ty, SimTypeFloat) else self.return_val else: loc = self.fp_return_val if self.is_fp_value(val) else self.return_val if loc is None: raise NotImplementedError("This SimCC doesn't know how to store this value - should be implemented") loc.set_value(state, betterval, endness='Iend_BE', stack_base=stack_base) # # Helper functions # @staticmethod def _standardize_value(arg, ty, state, alloc): check = ty is not None if check: ty = ty.with_arch(state.arch) if isinstance(arg, SimActionObject): return SimCC._standardize_value(arg.ast, ty, state, alloc) elif isinstance(arg, PointerWrapper): if check and not isinstance(ty, SimTypePointer): raise TypeError("Type mismatch: expected %s, got pointer-wrapper" % ty.name) real_value = SimCC._standardize_value(arg.value, ty.pts_to if check else None, state, alloc) return alloc(real_value, state) elif isinstance(arg, (str, bytes)): if type(arg) is str: arg = arg.encode() arg += b'\0' ref = False if check: if isinstance(ty, SimTypePointer) and \ isinstance(ty.pts_to, SimTypeChar): ref = True elif isinstance(ty, SimTypeFixedSizeArray) and \ isinstance(ty.elem_type, SimTypeChar): ref = False if len(arg) > ty.length: raise TypeError("String %s is too long for %s" % (repr(arg), ty.name)) arg = arg.ljust(ty.length, b'\0') elif isinstance(ty, SimTypeArray) and \ isinstance(ty.elem_type, SimTypeChar): ref = True if ty.length is not None: if len(arg) > ty.length: raise TypeError("String %s is too long for %s" % (repr(arg), ty.name)) arg = arg.ljust(ty.length, b'\0') elif isinstance(ty, SimTypeString): ref = False if len(arg) > ty.length + 1: raise TypeError("String %s is too long for %s" % (repr(arg), ty.name)) arg = arg.ljust(ty.length + 1, b'\0') else: raise TypeError("Type mismatch: Expected %s, got char*" % ty.name) val = SimCC._standardize_value(list(arg), SimTypeFixedSizeArray(SimTypeChar(), len(arg)), state, alloc) if ref: val = alloc(val, state) return val elif isinstance(arg, list): ref = False subty = None if check: if isinstance(ty, SimTypePointer): ref = True subty = ty.pts_to elif isinstance(ty, SimTypeFixedSizeArray): ref = False subty = ty.elem_type if len(arg) != ty.length: raise TypeError("Array %s is the wrong length for %s" % (repr(arg), ty.name)) elif isinstance(ty, SimTypeArray): ref = True subty = ty.elem_type if ty.length is not None: if len(arg) != ty.length: raise TypeError("Array %s is the wrong length for %s" % (repr(arg), ty.name)) else: raise TypeError("Type mismatch: Expected %s, got char*" % ty.name) else: types = list(map(type, arg)) if types[1:] != types[:-1]: raise TypeError("All elements of list must be of same type") val = claripy.Concat(*[SimCC._standardize_value(sarg, subty, state, alloc) for sarg in arg]) if ref: val = alloc(val, state) return val elif isinstance(arg, tuple): if check: if not isinstance(ty, SimStruct): raise TypeError("Type mismatch: Expected %s, got tuple (i.e. struct)" % ty.name) if len(arg) != len(ty.fields): raise TypeError("Wrong number of fields in struct, expected %d got %d" % (len(ty.fields), len(arg))) return claripy.Concat(*[SimCC._standardize_value(sarg, sty, state, alloc) for sarg, sty in zip(arg, ty.fields.values())]) else: return claripy.Concat(*[SimCC._standardize_value(sarg, None, state, alloc) for sarg in arg]) elif isinstance(arg, int): if check and isinstance(ty, SimTypeFloat): return SimCC._standardize_value(float(arg), ty, state, alloc) val = state.solver.BVV(arg, ty.size if check else state.arch.bits) if state.arch.memory_endness == 'Iend_LE': val = val.reversed return val elif isinstance(arg, float): sort = claripy.FSORT_FLOAT if check: if isinstance(ty, SimTypeDouble): sort = claripy.FSORT_DOUBLE elif isinstance(ty, SimTypeFloat): pass else: raise TypeError("Type mismatch: expectd %s, got float" % ty.name) else: sort = claripy.FSORT_DOUBLE if state.arch.bits == 64 else claripy.FSORT_FLOAT val = claripy.fpToIEEEBV(claripy.FPV(arg, sort)) if state.arch.memory_endness == 'Iend_LE': val = val.reversed # pylint: disable=no-member return val elif isinstance(arg, claripy.ast.FP): val = claripy.fpToIEEEBV(arg) if state.arch.memory_endness == 'Iend_LE': val = val.reversed # pylint: disable=no-member return val elif isinstance(arg, claripy.ast.Base): endswap = False bypass_sizecheck = False if check: if isinstance(ty, SimTypePointer): # we have been passed an AST as a pointer argument. is this supposed to be the pointer or the # content of the pointer? # in the future (a breaking change) we should perhaps say it ALWAYS has to be the pointer itself # but for now use the heuristic that if it's the right size for the pointer it is the pointer endswap = True elif isinstance(ty, SimTypeReg): # definitely endswap. # TODO: should we maybe pad the value to the type size here? endswap = True bypass_sizecheck = True else: # if we know nothing about the type assume it's supposed to be an int if it looks like an int endswap = True # yikes if endswap and state.arch.memory_endness == 'Iend_LE' and (bypass_sizecheck or arg.length == state.arch.bits): arg = arg.reversed return arg else: raise TypeError("I don't know how to serialize %s." % repr(arg)) def __repr__(self): return "<" + self.__class__.__name__ + '>' def __eq__(self, other): if not isinstance(other, self.__class__): return False def _compare_args(args0, args1): if args0 is None and args1 is None: return True if args0 is None or args1 is None: return False return set(args0) == set(args1) return _compare_args(self.args, other.args) and \ self.ret_val == other.ret_val and \ self.sp_delta == other.sp_delta @classmethod def _match(cls, arch, args, sp_delta): if cls.ARCH is not None and not isinstance(arch, cls.ARCH): return False if sp_delta != cls.STACKARG_SP_DIFF: return False sample_inst = cls(arch) all_fp_args = list(sample_inst.fp_args) all_int_args = list(sample_inst.int_args) both_iter = sample_inst.both_args some_both_args = [next(both_iter) for _ in range(len(args))] for arg in args: if arg not in all_fp_args and arg not in all_int_args and arg not in some_both_args: return False return True @staticmethod def find_cc(arch, args, sp_delta): """ Pinpoint the best-fit calling convention and return the corresponding SimCC instance, or None if no fit is found. :param Arch arch: An ArchX instance. Can be obtained from archinfo. :param list args: A list of arguments. :param int sp_delta: The change of stack pointer before and after the call is made. :return: A calling convention instance, or None if none of the SimCC subclasses seems to fit the arguments provided. :rtype: SimCC or None """ if arch.name not in CC: return None possible_cc_classes = CC[arch.name] for cc_cls in possible_cc_classes: if cc_cls._match(arch, args, sp_delta): return cc_cls(arch, args=args, sp_delta=sp_delta) return None def get_arg_info(self, state, is_fp=None, sizes=None): """ This is just a simple wrapper that collects the information from various locations is_fp and sizes are passed to self.arg_locs and self.get_args :param angr.SimState state: The state to evaluate and extract the values from :return: A list of tuples, where the nth tuple is (type, name, location, value) of the nth argument """ argument_locations = self.arg_locs(is_fp=is_fp, sizes=sizes) argument_values = self.get_args(state, is_fp=is_fp, sizes=sizes) if self.func_ty: argument_types = self.func_ty.args argument_names = self.func_ty.arg_names if self.func_ty.arg_names else ['unknown'] * len(self.func_ty.args) else: argument_types = [SimTypeTop] * len(argument_locations) argument_names = ['unknown'] * len(argument_locations) return list(zip(argument_types, argument_names, argument_locations, argument_values)) class SimLyingRegArg(SimRegArg): """ A register that LIES about the types it holds """ def __init__(self, name): # TODO: This looks byte-related. Make sure to use Arch.byte_width super(SimLyingRegArg, self).__init__(name, 8) def get_value(self, state, size=None, endness=None, **kwargs): # pylint:disable=arguments-differ #val = super(SimLyingRegArg, self).get_value(state, **kwargs) val = getattr(state.regs, self.reg_name) if endness and endness != state.arch.register_endness: val = val.reversed if size == 4: val = claripy.fpToFP(claripy.fp.RM.RM_NearestTiesEven, val.raw_to_fp(), claripy.FSORT_FLOAT) return val def set_value(self, state, val, size=None, endness=None, **kwargs): # pylint:disable=arguments-differ if size == 4: if state.arch.register_endness == 'IEnd_LE' and endness == 'IEnd_BE': # pylint: disable=no-member val = claripy.fpToFP(claripy.fp.RM.RM_NearestTiesEven, val.reversed.raw_to_fp(), claripy.FSORT_DOUBLE).reversed else: val = claripy.fpToFP(claripy.fp.RM.RM_NearestTiesEven, val.raw_to_fp(), claripy.FSORT_DOUBLE) if endness and endness != state.arch.register_endness: val = val.reversed setattr(state.regs, self.reg_name, val) #super(SimLyingRegArg, self).set_value(state, val, endness=endness, **kwargs) class SimCCCdecl(SimCC): ARG_REGS = [] # All arguments are passed in stack FP_ARG_REGS = [] STACKARG_SP_DIFF = 4 # Return address is pushed on to stack by call CALLER_SAVED_REGS = ['eax', 'ecx', 'edx'] RETURN_VAL = SimRegArg('eax', 4) OVERFLOW_RETURN_VAL = SimRegArg('edx', 4) FP_RETURN_VAL = SimLyingRegArg('st0') RETURN_ADDR = SimStackArg(0, 4) ARCH = archinfo.ArchX86 class SimCCStdcall(SimCCCdecl): CALLEE_CLEANUP = True class SimCCMicrosoftAMD64(SimCC): ARG_REGS = ['rcx', 'rdx', 'r8', 'r9'] FP_ARG_REGS = ['xmm0', 'xmm1', 'xmm2', 'xmm3'] STACKARG_SP_DIFF = 8 # Return address is pushed on to stack by call STACKARG_SP_BUFF = 32 # 32 bytes of shadow stack space RETURN_VAL = SimRegArg('rax', 8) OVERFLOW_RETURN_VAL = SimRegArg('rdx', 8) FP_RETURN_VAL = SimRegArg('xmm0', 32) RETURN_ADDR = SimStackArg(0, 8) ARCH = archinfo.ArchAMD64 class SimCCX86LinuxSyscall(SimCC): ARG_REGS = ['ebx', 'ecx', 'edx', 'esi', 'edi', 'ebp'] FP_ARG_REGS = [] RETURN_VAL = SimRegArg('eax', 4) RETURN_ADDR = SimRegArg('ip_at_syscall', 4) ARCH = archinfo.ArchX86 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.eax class SimCCX86WindowsSyscall(SimCC): # TODO: Make sure the information is correct ARG_REGS = [ ] FP_ARG_REGS = [ ] RETURN_VAL = SimRegArg('eax', 4) RETURN_ADDR = SimRegArg('ip_at_syscall', 4) ARCH = archinfo.ArchX86 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.eax class SimCCSystemVAMD64(SimCC): ARG_REGS = ['rdi', 'rsi', 'rdx', 'rcx', 'r8', 'r9'] FP_ARG_REGS = ['xmm0', 'xmm1', 'xmm2', 'xmm3', 'xmm4', 'xmm5', 'xmm6', 'xmm7'] STACKARG_SP_DIFF = 8 # Return address is pushed on to stack by call CALLER_SAVED_REGS = [ 'rdi', 'rsi', 'rdx', 'rcx', 'r8', 'r9', 'r10', 'r11', 'rax', ] RETURN_ADDR = SimStackArg(0, 8) RETURN_VAL = SimRegArg('rax', 8) OVERFLOW_RETURN_VAL = SimRegArg('rdx', 8) FP_RETURN_VAL = SimRegArg('xmm0', 32) ARCH = archinfo.ArchAMD64 STACK_ALIGNMENT = 16 def __init__(self, arch, args=None, ret_val=None, sp_delta=None, func_ty=None): super(SimCCSystemVAMD64, self).__init__(arch, args, ret_val, sp_delta, func_ty) # Remove the ret address on stack if self.args is not None: self.args = [ i for i in self.args if not (isinstance(i, SimStackArg) and i.stack_offset == 0x0) ] @classmethod def _match(cls, arch, args, sp_delta): if cls.ARCH is not None and not isinstance(arch, cls.ARCH): return False #if sp_delta != cls.STACKARG_SP_DIFF: # return False sample_inst = cls(arch) all_fp_args = list(sample_inst.fp_args) all_int_args = list(sample_inst.int_args) both_iter = sample_inst.both_args some_both_args = [next(both_iter) for _ in range(len(args))] for arg in args: if arg not in all_fp_args and arg not in all_int_args and arg not in some_both_args: if isinstance(arg, SimStackArg) and arg.stack_offset == 0: continue # ignore return address? return False return True class SimCCAMD64LinuxSyscall(SimCC): ARG_REGS = ['rdi', 'rsi', 'rdx', 'r10', 'r8', 'r9'] RETURN_VAL = SimRegArg('rax', 8) RETURN_ADDR = SimRegArg('ip_at_syscall', 8) ARCH = archinfo.ArchAMD64 @staticmethod def _match(arch, args, sp_delta): # pylint: disable=unused-argument # doesn't appear anywhere but syscalls return False @staticmethod def syscall_num(state): return state.regs.rax class SimCCAMD64WindowsSyscall(SimCC): # TODO: Make sure the information is correct ARG_REGS = [ ] FP_ARG_REGS = [ ] RETURN_VAL = SimRegArg('rax', 8) RETURN_ADDR = SimRegArg('ip_at_syscall', 8) ARCH = archinfo.ArchAMD64 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.rax class SimCCARM(SimCC): ARG_REGS = [ 'r0', 'r1', 'r2', 'r3' ] FP_ARG_REGS = [] # TODO: ??? CALLER_SAVED_REGS = [ 'r0', 'r1', 'r2', 'r3' ] RETURN_ADDR = SimRegArg('lr', 4) RETURN_VAL = SimRegArg('r0', 4) ARCH = archinfo.ArchARM class SimCCARMLinuxSyscall(SimCC): # TODO: Make sure all the information is correct ARG_REGS = [ 'r0', 'r1', 'r2', 'r3' ] FP_ARG_REGS = [] # TODO: ??? RETURN_ADDR = SimRegArg('ip_at_syscall', 4) RETURN_VAL = SimRegArg('r0', 4) ARCH = archinfo.ArchARM @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.r7 class SimCCAArch64(SimCC): ARG_REGS = [ 'x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7' ] FP_ARG_REGS = [] # TODO: ??? RETURN_ADDR = SimRegArg('lr', 8) RETURN_VAL = SimRegArg('x0', 8) ARCH = archinfo.ArchAArch64 class SimCCAArch64LinuxSyscall(SimCC): # TODO: Make sure all the information is correct ARG_REGS = [ 'x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7' ] FP_ARG_REGS = [] # TODO: ??? RETURN_VAL = SimRegArg('x0', 8) RETURN_ADDR = SimRegArg('ip_at_syscall', 8) ARCH = archinfo.ArchAArch64 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.x8 class SimCCO32(SimCC): ARG_REGS = [ 'a0', 'a1', 'a2', 'a3' ] FP_ARG_REGS = [] # TODO: ??? STACKARG_SP_BUFF = 16 CALLER_SAVED_REGS = [] # TODO: ??? RETURN_ADDR = SimRegArg('lr', 4) RETURN_VAL = SimRegArg('v0', 4) ARCH = archinfo.ArchMIPS32 class SimCCO32LinuxSyscall(SimCC): # TODO: Make sure all the information is correct ARG_REGS = [ 'a0', 'a1', 'a2', 'a3' ] FP_ARG_REGS = [] # TODO: ??? RETURN_VAL = SimRegArg('v0', 4) RETURN_ADDR = SimRegArg('ip_at_syscall', 4) ARCH = archinfo.ArchMIPS32 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.v0 class SimCCO64(SimCC): # TODO: add n32 and n64 ARG_REGS = [ 'a0', 'a1', 'a2', 'a3' ] FP_ARG_REGS = [] # TODO: ??? STACKARG_SP_BUFF = 32 RETURN_ADDR = SimRegArg('lr', 8) RETURN_VAL = SimRegArg('v0', 8) ARCH = archinfo.ArchMIPS64 class SimCCO64LinuxSyscall(SimCC): # TODO: Make sure all the information is correct ARG_REGS = [ 'a0', 'a1', 'a2', 'a3' ] FP_ARG_REGS = [] # TODO: ??? RETURN_VAL = SimRegArg('v0', 8) RETURN_ADDR = SimRegArg('ip_at_syscall', 8) ARCH = archinfo.ArchMIPS64 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.v0 class SimCCPowerPC(SimCC): ARG_REGS = [ 'r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10' ] FP_ARG_REGS = [] # TODO: ??? STACKARG_SP_BUFF = 8 RETURN_ADDR = SimRegArg('lr', 4) RETURN_VAL = SimRegArg('r3', 4) ARCH = archinfo.ArchPPC32 class SimCCPowerPCLinuxSyscall(SimCC): # TODO: Make sure all the information is correct ARG_REGS = ['r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10'] FP_ARG_REGS = [ ] RETURN_VAL = SimRegArg('r3', 4) RETURN_ADDR = SimRegArg('ip_at_syscall', 4) ARCH = archinfo.ArchPPC32 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.r0 class SimCCPowerPC64(SimCC): ARG_REGS = [ 'r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10' ] FP_ARG_REGS = [] # TODO: ??? STACKARG_SP_BUFF = 0x70 RETURN_ADDR = SimRegArg('lr', 8) RETURN_VAL = SimRegArg('r3', 8) ARCH = archinfo.ArchPPC64 class SimCCPowerPC64LinuxSyscall(SimCC): # TODO: Make sure all the information is correct ARG_REGS = [ ] FP_ARG_REGS = [ ] RETURN_VAL = SimRegArg('r3', 8) RETURN_ADDR = SimRegArg('ip_at_syscall', 8) ARCH = archinfo.ArchPPC64 @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.r0 class SimCCSoot(SimCC): ARCH = archinfo.ArchSoot ARG_REGS = [] class SimCCUnknown(SimCC): """ Represent an unknown calling convention. """ @staticmethod def _match(arch, args, sp_delta): # pylint: disable=unused-argument # It always returns True return True def __repr__(self): return "<SimCCUnknown - %s %s sp_delta=%d>" % (self.arch.name, self.args, self.sp_delta) class SimCCS390X(SimCC): ARG_REGS = ['r2', 'r3', 'r4', 'r5', 'r6'] FP_ARG_REGS = ['f0', 'f2', 'f4', 'f6'] STACKARG_SP_BUFF = 0xa0 RETURN_ADDR = SimRegArg('r14', 8) RETURN_VAL = SimRegArg('r2', 8) ARCH = archinfo.ArchS390X class SimCCS390XLinuxSyscall(SimCC): ARG_REGS = ['r2', 'r3', 'r4', 'r5', 'r6', 'r7'] FP_ARG_REGS = [] RETURN_VAL = SimRegArg('r2', 8) RETURN_ADDR = SimRegArg('ip_at_syscall', 8) ARCH = archinfo.ArchS390X @classmethod def _match(cls, arch, args, sp_delta): # pylint: disable=unused-argument # never appears anywhere except syscalls return False @staticmethod def syscall_num(state): return state.regs.r1 CC = { 'AMD64': [ SimCCSystemVAMD64, ], 'X86': [ SimCCCdecl, ], 'ARMEL': [ SimCCARM, ], 'ARMHF': [ SimCCARM, ], 'ARMCortexM': [ SimCCARM, ], 'MIPS32': [ SimCCO32, ], 'MIPS64': [ SimCCO64, ], 'PPC32': [ SimCCPowerPC, ], 'PPC64': [ SimCCPowerPC64, ], 'AARCH64': [ SimCCAArch64, ], 'S390X': [ SimCCS390X, ], } DEFAULT_CC = { 'AMD64': SimCCSystemVAMD64, 'X86': SimCCCdecl, 'ARMEL': SimCCARM, 'ARMHF': SimCCARM, 'ARMCortexM': SimCCARM, 'MIPS32': SimCCO32, 'MIPS64': SimCCO64, 'PPC32': SimCCPowerPC, 'PPC64': SimCCPowerPC64, 'AARCH64': SimCCAArch64, 'Soot': SimCCSoot, 'AVR': SimCCUnknown, 'MSP': SimCCUnknown, 'S390X': SimCCS390X, } def register_default_cc(arch, cc): DEFAULT_CC[arch] = cc SYSCALL_CC = { 'X86': { 'default': SimCCX86LinuxSyscall, 'Linux': SimCCX86LinuxSyscall, 'Windows': SimCCX86WindowsSyscall, 'CGC': SimCCX86LinuxSyscall, }, 'AMD64': { 'default': SimCCAMD64LinuxSyscall, 'Linux': SimCCAMD64LinuxSyscall, 'Windows': SimCCAMD64WindowsSyscall, }, 'ARMEL': { 'default': SimCCARMLinuxSyscall, 'Linux': SimCCARMLinuxSyscall, }, 'ARMCortexM': { # FIXME: TODO: This is wrong. Fill in with a real CC when we support CM syscalls 'default': SimCCARMLinuxSyscall, }, 'ARMHF': { 'default': SimCCARMLinuxSyscall, 'Linux': SimCCARMLinuxSyscall, }, 'AARCH64': { 'default': SimCCAArch64LinuxSyscall, 'Linux': SimCCAArch64LinuxSyscall, }, 'MIPS32': { 'default': SimCCO32LinuxSyscall, 'Linux': SimCCO32LinuxSyscall, }, 'MIPS64': { 'default': SimCCO64LinuxSyscall, 'Linux': SimCCO64LinuxSyscall, }, 'PPC32': { 'default': SimCCPowerPCLinuxSyscall, 'Linux': SimCCPowerPCLinuxSyscall, }, 'PPC64': { 'default': SimCCPowerPC64LinuxSyscall, 'Linux': SimCCPowerPC64LinuxSyscall, }, 'S390X': { 'default': SimCCS390XLinuxSyscall, 'Linux': SimCCS390XLinuxSyscall, }, } def register_syscall_cc(arch, os, cc): if arch not in SYSCALL_CC: SYSCALL_CC[arch] = {} SYSCALL_CC[arch][os] = cc SyscallCC = SYSCALL_CC DefaultCC = DEFAULT_CC
40.024708
156
0.617138
e07725830b72468e881c6a291346bef2ccc8e4a3
39
py
Python
tests/__init__.py
BitKnitting/FHmonitor
317bf9bacadba48c437f5478cbd8227bcc644456
[ "MIT" ]
null
null
null
tests/__init__.py
BitKnitting/FHmonitor
317bf9bacadba48c437f5478cbd8227bcc644456
[ "MIT" ]
null
null
null
tests/__init__.py
BitKnitting/FHmonitor
317bf9bacadba48c437f5478cbd8227bcc644456
[ "MIT" ]
null
null
null
"""Unit test package for FHmonitor."""
19.5
38
0.692308
289d73273919563d91698b5d38a093f11592a5a4
17,586
py
Python
keras_transformer/attention.py
ExpectationMax/keras-transformer
80094d869148bdd857036e7aee9175b82f48221b
[ "MIT" ]
3
2020-05-23T14:19:34.000Z
2021-04-27T01:20:07.000Z
keras_transformer/attention.py
ExpectationMax/keras-transformer
80094d869148bdd857036e7aee9175b82f48221b
[ "MIT" ]
null
null
null
keras_transformer/attention.py
ExpectationMax/keras-transformer
80094d869148bdd857036e7aee9175b82f48221b
[ "MIT" ]
1
2020-12-08T18:17:46.000Z
2020-12-08T18:17:46.000Z
import numpy as np # noinspection PyPep8Naming import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.layers import Layer from tensorflow.keras.utils import get_custom_objects class _BaseMultiHeadAttention(Layer): """ Base class for two types of Multi-head attention layers: Self-attention and its more general form used in decoders (the one which takes values and keys from the encoder). """ def __init__(self, num_heads: int, use_masking: bool, dropout: float = 0.0, compression_window_size: int = None, **kwargs): """ :param num_heads: number of attention heads :param use_masking: when True, forbids the attention to see the further elements in the sequence (particularly important in language modelling). :param dropout: dropout that should be applied to the attention (after the softmax). :param compression_window_size: an integer value >= 1 controlling how much we should compress the attention. For more details, read about memory-compressed self-attention in "Generating Wikipedia by summarizing long sequences" (https://arxiv.org/pdf/1801.10198.pdf). :param kwargs: any extra arguments typical for a Keras layer, such as name, etc. """ self.num_heads = num_heads self.use_masking = use_masking self.dropout = dropout if (compression_window_size is not None and compression_window_size <= 0): assert ValueError( f"Too small compression window ({compression_window_size})") self.compression_window_size = compression_window_size super().__init__(**kwargs) def get_config(self): config = super().get_config() config['num_heads'] = self.num_heads config['use_masking'] = self.use_masking config['dropout'] = self.dropout config['compression_window_size'] = self.compression_window_size return config # noinspection PyAttributeOutsideInit def build_output_params(self, d_model): self.output_weights = self.add_weight( name='output_weights', shape=(d_model, d_model), initializer='glorot_uniform', trainable=True) if self.compression_window_size is not None: self.k_conv_kernel = self.add_weight( name='k_conv_kernel', shape=(self.compression_window_size, d_model // self.num_heads, d_model // self.num_heads), initializer='glorot_uniform', trainable=True) self.k_conv_bias = self.add_weight( name='k_conv_bias', shape=(d_model // self.num_heads,), initializer='zeros', trainable=True) self.v_conv_kernel = self.add_weight( name='v_conv_kernel', shape=(self.compression_window_size, d_model // self.num_heads, d_model // self.num_heads), initializer='glorot_uniform', trainable=True) self.v_conv_bias = self.add_weight( name='v_conv_bias', shape=(d_model // self.num_heads,), initializer='zeros', trainable=True) def validate_model_dimensionality(self, d_model: int): if d_model % self.num_heads != 0: raise ValueError( f'The size of the last dimension of the input ' f'({d_model}) must be evenly divisible by the number' f'of the attention heads {self.num_heads}') def attention(self, pre_q, pre_v, pre_k, out_seq_len: int, d_model: int, mask=None, training=None): """ Calculates the output of the attention once the affine transformations of the inputs are done. Here's the shapes of the arguments: :param pre_q: (batch_size, q_seq_len, num_heads, d_model // num_heads) :param pre_v: (batch_size, v_seq_len, num_heads, d_model // num_heads) :param pre_k: (batch_size, k_seq_len, num_heads, d_model // num_heads) :param out_seq_len: the length of the output sequence :param d_model: dimensionality of the model (by the paper) :param training: Passed by Keras. Should not be defined manually. Optional scalar tensor indicating if we're in training or inference phase. """ # shaping Q and V into (batch_size, num_heads, seq_len, d_model//heads) q = K.permute_dimensions(pre_q, [0, 2, 1, 3]) v = K.permute_dimensions(pre_v, [0, 2, 1, 3]) if self.compression_window_size is None: k_transposed = K.permute_dimensions(pre_k, [0, 2, 3, 1]) else: # Memory-compressed attention described in paper # "Generating Wikipedia by Summarizing Long Sequences" # (https://arxiv.org/pdf/1801.10198.pdf) # It compresses keys and values using 1D-convolution which reduces # the size of Q * K_transposed from roughly seq_len^2 # to convoluted_seq_len^2. If we use strided convolution with # window size = 3 and stride = 3, memory requirements of such # memory-compressed attention will be 9 times smaller than # that of the original version. if self.use_masking: raise NotImplementedError( "Masked memory-compressed attention has not " "been implemented yet") k = K.permute_dimensions(pre_k, [0, 2, 1, 3]) k, v = [ K.reshape( # Step 3: Return the result to its original dimensions # (batch_size, num_heads, seq_len, d_model//heads) K.bias_add( # Step 3: ... and add bias K.conv1d( # Step 2: we "compress" K and V using strided conv K.reshape( # Step 1: we reshape K and V to # (batch + num_heads, seq_len, d_model//heads) item, (-1, K.int_shape(item)[-2], d_model // self.num_heads)), kernel, strides=self.compression_window_size, padding='valid', data_format='channels_last'), bias, data_format='channels_last'), # new shape K.concatenate([ K.shape(item)[:2], [-1, d_model // self.num_heads]])) for item, kernel, bias in ( (k, self.k_conv_kernel, self.k_conv_bias), (v, self.v_conv_kernel, self.v_conv_bias))] k_transposed = K.permute_dimensions(k, [0, 1, 3, 2]) # shaping K into (batch_size, num_heads, d_model//heads, seq_len) # for further matrix multiplication sqrt_d = K.constant(np.sqrt(d_model // self.num_heads), dtype=K.floatx()) q_shape = tf.shape(q) k_t_shape = tf.shape(k_transposed) v_shape = tf.shape(v) # before performing batch_dot all tensors are being converted to 3D # shape (batch_size * num_heads, rows, cols) to make sure batch_dot # performs identically on all backends attention_heads = K.reshape( K.batch_dot( self.apply_dropout_if_needed( K.softmax( self.mask_attention_if_needed( K.batch_dot( K.reshape( q, tf.stack((-1, q_shape[-2], q_shape[-1])) ), K.reshape( k_transposed, tf.stack( (-1, k_t_shape[-2], k_t_shape[-1])) ) ) / sqrt_d, mask=mask )), training=training), K.reshape( v, tf.stack((-1, v_shape[-2], v_shape[-1])) )), tf.stack((-1, self.num_heads, q_shape[-2], v_shape[-1]))) attention_heads_merged = K.reshape( K.permute_dimensions(attention_heads, [0, 2, 1, 3]), (-1, d_model)) if out_seq_len is None: output_shape = tf.stack([-1, tf.shape(pre_k)[1], d_model]) else: output_shape = (-1, out_seq_len, d_model) attention_out = K.reshape( K.dot(attention_heads_merged, self.output_weights), output_shape) return attention_out def apply_dropout_if_needed(self, attention_softmax, training=None): if 0.0 < self.dropout < 1.0: def dropped_softmax(): return K.dropout(attention_softmax, self.dropout) return K.in_train_phase(dropped_softmax, attention_softmax, training=training) return attention_softmax def mask_attention_if_needed(self, dot_product, mask=None): """ Makes sure that (when enabled) each position (of a decoder's self-attention) cannot attend to subsequent positions. This is achieved by assigning -inf (or some large negative number) to all invalid connections. Later softmax will turn them into zeros. We need this to guarantee that decoder's predictions are based on what has happened before the position, not after. The method does nothing if masking is turned off. :param dot_product: scaled dot-product of Q and K after reshaping them to 3D tensors (batch * num_heads, rows, cols) :param mask: Sequence mask to mask padding of shape (batch, max_seqlen) should contain true for values which should be retained (similar to output of tf.sequence_mask) """ # Always mask invalid values # Comput block matrix by outer products of masks expanded_mask = tf.cast(tf.expand_dims(mask, -1), tf.float32) input_shape = tf.shape(dot_product) attention_mask = tf.expand_dims( tf.matmul(expanded_mask, expanded_mask, transpose_b=True), 1) # In order to mask all heads of an instance, reshape first so we can # use broadcasting, then reshape back shape_with_attn_heads = tf.stack( [-1, self.num_heads, input_shape[-2], input_shape[-1]]) input_reshaped = tf.reshape(dot_product, shape_with_attn_heads) close_to_negative_inf = -1e9 if self.use_masking: # If use_masking=True additionally mask future values from # attention. last_dims = tf.shape(dot_product)[-2:] # to ensure proper broadcasting low_triangle_ones = tf.linalg.band_part( tf.ones(last_dims, dtype=tf.float32), -1, 0) low_triangle_ones = tf.expand_dims(low_triangle_ones, 0) attention_mask = attention_mask * low_triangle_ones # Use elementary operations as tf.where cannot broadcast result = ( attention_mask * input_reshaped + (attention_mask - 1) * close_to_negative_inf ) return tf.reshape(result, input_shape) class MultiHeadAttention(_BaseMultiHeadAttention): """ Multi-head attention which can use two inputs: First: from the encoder - it's used to project the keys and the values Second: from the decoder - used to project the queries. """ # noinspection PyAttributeOutsideInit def build(self, input_shape): if not (isinstance(input_shape, list) and len(input_shape) == 2): raise ValueError( 'You must call this layer passing a list of two tensors' '(for keys/values and queries)') values_dim, query_dim = input_shape[0][-1], input_shape[1][-1] if query_dim != values_dim: raise ValueError( f'Both keys/value and query inputs must be ' f'of the same dimensionality, instead of ' f'{values_dim} and {query_dim}.') d_model = query_dim self.validate_model_dimensionality(d_model) # These weights are concatenated matrices W_k and W_v which # are, in turn, concatenated W matrices of keys, and values # for each of the heads. So, essentially it's a concatenation of # W_k1, W_k2,..., W_kh, W_v1, W_v2,..., W_vh # for all h heads. self.kv_weights = self.add_weight( name='kv_weights', shape=(d_model, d_model * 2), initializer='glorot_uniform', trainable=True) self.q_weights = self.add_weight( name='q_weights', shape=(d_model, d_model), initializer='glorot_uniform', trainable=True) self.build_output_params(d_model) return super().build(input_shape) def call(self, inputs, **kwargs): if not (isinstance(inputs, list) and len(inputs) == 2): raise ValueError( 'You can call this layer only with a list of two tensors ' '(for keys/values and queries)') key_values_input, query_input = inputs _, value_seq_len, d_model = K.int_shape(key_values_input) query_seq_len = K.int_shape(inputs[1])[-2] # The first thing we need to do is to perform affine transformations # of the inputs to get the Queries, the Keys and the Values. kv = K.dot(K.reshape(key_values_input, [-1, d_model]), self.kv_weights) # splitting the keys, the values and the queries before further # processing pre_k, pre_v = [ K.reshape( # K.slice(kv, (0, i * d_model), (-1, d_model)), kv[:, i * d_model: (i + 1) * d_model], (-1, value_seq_len, self.num_heads, d_model // self.num_heads)) for i in range(2)] pre_q = K.reshape( K.dot(K.reshape(query_input, [-1, d_model]), self.q_weights), (-1, query_seq_len, self.num_heads, d_model // self.num_heads)) return self.attention(pre_q, pre_v, pre_k, query_seq_len, d_model, training=kwargs.get('training')) class MultiHeadSelfAttention(_BaseMultiHeadAttention): """ Multi-head self-attention for both encoders and decoders. Uses only one input and has implementation which is better suited for such use case that more general MultiHeadAttention class. """ # noinspection PyAttributeOutsideInit def build(self, input_shape): if not isinstance(input_shape, tuple): input_shape = tuple(input_shape) # raise ValueError('Invalid input') d_model = input_shape[-1] self.validate_model_dimensionality(d_model) # These weights are concatenated matrices W_q, W_k and W_v which # are, in turn, concatenated W matrices of keys, queries and values # for each of the heads. So, essentially it's a concatenation of # W_q1, W_q2,..., W_qh, W_k1, W_k2,..., W_kh, W_v1, W_v2,..., W_vh # for all h heads. self.qkv_weights = self.add_weight( name='qkv_weights', shape=(d_model, d_model * 3), # * 3 for q, k and v initializer='glorot_uniform', trainable=True) self.build_output_params(d_model) return super().build(input_shape) def call(self, inputs, mask=None, **kwargs): if not tf.is_tensor(inputs): raise ValueError( 'The layer can be called only with one tensor as an argument') d_model = K.int_shape(inputs)[-1] input_shape = tf.shape(inputs) # The first thing we need to do is to perform affine transformations # of the inputs to get the Queries, the Keys and the Values. qkv = K.dot(K.reshape(inputs, [-1, d_model]), self.qkv_weights) qkv_shape = tf.stack( [-1, input_shape[1], self.num_heads, d_model // self.num_heads]) # splitting the keys, the values and the queries before further # processing pre_q, pre_k, pre_v = [ tf.reshape(el, qkv_shape) for el in tf.split(qkv, 3, axis=-1)] # pre_q, pre_k, pre_v = [ # K.reshape( # # K.slice(qkv, (0, i * d_model), (-1, d_model)), # qkv[:, i * d_model:(i + 1) * d_model], # (-1, seq_len, self.num_heads, d_model // self.num_heads)) # for i in range(3)] attention_out = self.attention(pre_q, pre_v, pre_k, None, d_model, training=kwargs.get('training'), mask=mask) return attention_out def compute_output_shape(self, input_shape): return input_shape get_custom_objects().update({ 'MultiHeadSelfAttention': MultiHeadSelfAttention, 'MultiHeadAttention': MultiHeadAttention, })
46.278947
79
0.576254