hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
67679f71ef919aae1d798cf464014c5cc22d19a4
1,997
py
Python
data/transcoder_evaluation_gfg/python/MAXIMUM_TRIPLET_SUM_ARRAY_2.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
241
2021-07-20T08:35:20.000Z
2022-03-31T02:39:08.000Z
data/transcoder_evaluation_gfg/python/MAXIMUM_TRIPLET_SUM_ARRAY_2.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
49
2021-07-22T23:18:42.000Z
2022-03-24T09:15:26.000Z
data/transcoder_evaluation_gfg/python/MAXIMUM_TRIPLET_SUM_ARRAY_2.py
mxl1n/CodeGen
e5101dd5c5e9c3720c70c80f78b18f13e118335a
[ "MIT" ]
71
2021-07-21T05:17:52.000Z
2022-03-29T23:49:28.000Z
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( arr , n ) : maxA = - 100000000 maxB = - 100000000 maxC = - 100000000 for i in range ( 0 , n ) : if ( arr [ i ] > maxA ) : maxC = maxB maxB = maxA maxA = arr [ i ] elif ( arr [ i ] > maxB ) : maxC = maxB maxB = arr [ i ] elif ( arr [ i ] > maxC ) : maxC = arr [ i ] return ( maxA + maxB + maxC ) #TOFILL if __name__ == '__main__': param = [ ([4, 7, 12, 21, 22, 25, 27, 28, 28, 31, 32, 32, 41, 45, 47, 51, 53, 60, 61, 61, 63, 71, 74, 82, 83, 85, 88, 92, 96, 96],28,), ([-52, 26, 74, -62, -76],2,), ([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],11,), ([63, 71, 15, 28, 31, 84, 8, 17, 24, 42, 66, 95, 30],6,), ([-94, -92, -92, -90, -88, -88, -86, -82, -80, -78, -66, -54, -52, -52, -46, -46, -42, -36, -32, -24, -24, -14, -14, -14, -12, -10, 0, 6, 8, 20, 24, 24, 28, 38, 38, 52, 54, 56, 64, 74, 74, 76, 82, 94, 94],31,), ([0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0],30,), ([15, 19, 80],2,), ([4, 80, 18, 74, 36, -30, -72, -28, -32, -16, -8, 38, 78, -48, 98, -64, 86, -60, -44, 84, -98, 40, 14, 30, 44, 90, -30, -42, 24, -28, 24, 40, -96, 98, 90, -68, -54, -52, 62, 34, -98, 68, -56, -94, -78, -12, 28],41,), ([0, 1, 1, 1, 1, 1],3,), ([2, 18, 96, 7, 99, 83, 3, 88, 23, 77, 6, 28, 55, 49, 69, 55, 48, 76, 43, 11, 43, 44, 17, 74, 27, 64, 76, 77, 53, 26, 73, 12, 19, 62, 18, 34, 13, 31, 97, 96, 85, 27, 30, 97, 89, 25],41,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
46.44186
220
0.457687
1b5fc09b49458bd98582a37e02eea4b4155dbf0e
1,333
py
Python
f5_agent_auditor/options.py
f5devcentral/f5-agent-auditor
dce6358346bc6832c050164f27babaf5d54228cd
[ "Apache-2.0" ]
null
null
null
f5_agent_auditor/options.py
f5devcentral/f5-agent-auditor
dce6358346bc6832c050164f27babaf5d54228cd
[ "Apache-2.0" ]
null
null
null
f5_agent_auditor/options.py
f5devcentral/f5-agent-auditor
dce6358346bc6832c050164f27babaf5d54228cd
[ "Apache-2.0" ]
1
2021-07-14T02:22:10.000Z
2021-07-14T02:22:10.000Z
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from oslo_config import cfg import sys # require f5 agent is installed import f5_openstack_agent.lbaasv2.drivers.bigip.agent_manager as manager from f5_openstack_agent.lbaasv2.drivers.bigip import icontrol_driver from oslo_db import options tool_opts = [ cfg.StrOpt("f5-agent", short="ag", default=None, help=("Provide an ID of an agent")) ] cfg.CONF.register_cli_opts(tool_opts) def load_options(conf=cfg.CONF): conf.register_opts(manager.OPTS) conf.register_opts(icontrol_driver.OPTS) def load_db_options(conf=cfg.CONF): options.set_defaults(conf) def parse_options(args=sys.argv[1:], conf=cfg.CONF, project="f5-agent-auditor"): conf(args, project)
28.361702
74
0.714179
38d6b36c682bf03998ebacee2099a12e3edf6512
10,058
py
Python
3-Crossed_Wires.py
minhoryang/advent-of-code-2019
f5b468ce583a14548346f8e415d6b05589ec564f
[ "MIT" ]
null
null
null
3-Crossed_Wires.py
minhoryang/advent-of-code-2019
f5b468ce583a14548346f8e415d6b05589ec564f
[ "MIT" ]
null
null
null
3-Crossed_Wires.py
minhoryang/advent-of-code-2019
f5b468ce583a14548346f8e415d6b05589ec564f
[ "MIT" ]
null
null
null
line1 = ['R999', 'D586', 'L462', 'D725', 'L236', 'U938', 'R366', 'D306', 'R263', 'D355', 'R354', 'D332', 'L599', 'U48', 'R829', 'U210', 'R697', 'D534', 'L19', 'U991', 'L110', 'U981', 'L954', 'U323', 'R851', 'U290', 'R76', 'D513', 'R844', 'D780', 'L257', 'D24', 'L586', 'U865', 'L341', 'U572', 'L122', 'D304', 'R398', 'D641', 'L221', 'U726', 'R270', 'D321', 'R503', 'D112', 'L151', 'D179', 'R439', 'U594', 'R242', 'U1', 'L484', 'D259', 'L604', 'U760', 'R362', 'D93', 'R29', 'D647', 'R482', 'U814', 'L214', 'D510', 'R281', 'U327', 'L170', 'D993', 'R191', 'D33', 'L305', 'D657', 'L897', 'U609', 'R512', 'D866', 'R654', 'U980', 'L899', 'D602', 'L141', 'D365', 'L13', 'D584', 'L706', 'U404', 'L238', 'U720', 'L732', 'U716', 'R672', 'U979', 'L49', 'D352', 'R712', 'U396', 'L843', 'D816', 'L276', 'U906', 'L375', 'D410', 'R275', 'U664', 'R487', 'D158', 'L713', 'D451', 'L859', 'U194', 'L736', 'D51', 'R659', 'U632', 'R586', 'U342', 'L222', 'U184', 'R741', 'U989', 'L175', 'D521', 'R820', 'U183', 'L950', 'D888', 'R54', 'D149', 'R776', 'D200', 'R939', 'U529', 'L377', 'D226', 'R769', 'U395', 'R392', 'U570', 'L398', 'D358', 'L644', 'D975', 'R578', 'D687', 'L133', 'D884', 'R822', 'D226', 'L527', 'U439', 'R175', 'D388', 'L539', 'D450', 'L391', 'U392', 'L131', 'U134', 'R873', 'U741', 'R761', 'U620', 'R667', 'D31', 'R481', 'D945', 'L373', 'D463', 'R57', 'D402', 'R181', 'U340', 'L835', 'U81', 'R908', 'U257', 'R592', 'U702', 'R713', 'D352', 'R418', 'D486', 'L904', 'U866', 'R828', 'D545', 'R578', 'U469', 'L845', 'D437', 'R371', 'D246', 'L996', 'D920', 'L171', 'U83', 'R471', 'D152', 'R550', 'U344', 'L390', 'U287', 'L126', 'D883', 'L576', 'U303', 'L68', 'U854', 'L463', 'D915', 'R184', 'D282', 'L513', 'U909', 'R770', 'U638', 'L751', 'U168', 'R354', 'D480', 'R19', 'U144', 'R381', 'D554', 'R594', 'D526', 'L957', 'D464', 'R267', 'D802', 'L709', 'U306', 'L907', 'D266', 'L871', 'U286', 'R975', 'D549', 'L732', 'U721', 'R825', 'U753', 'R443', 'U465', 'L966', 'U982', 'L833', 'D62', 'L5', 'U299', 'R500', 'D168', 'R155', 'D102', 'R455', 'D855', 'L376', 'D479', 'L469', 'D6', 'R588', 'U301', 'R329', 'U19', 'L63', 'D488', 'L936', 'D238', 'L798', 'D452', 'L231', 'D652', 'R935', 'D522', 'L401', 'U234', 'L20', 'U285', 'L949', 'D88', 'L120', 'D159', 'R641', 'D960', 'L946', 'U516', 'L530', 'D447', 'R23', 'U962', 'R860', 'D352', 'R904', 'D241', 'R702', 'U108', 'L155', 'U99', 'L43', 'D401', 'R19'] line2 = ['L1008', 'U23', 'L793', 'D944', 'L109', 'U830', 'L103', 'U255', 'L391', 'D574', 'R433', 'U468', 'R800', 'D831', 'L39', 'U8', 'L410', 'D467', 'R655', 'D287', 'R550', 'U467', 'L627', 'D529', 'R361', 'D865', 'L755', 'D895', 'L148', 'U110', 'R593', 'U567', 'L646', 'D89', 'L133', 'D552', 'R576', 'U228', 'L119', 'U734', 'R591', 'U680', 'L163', 'D498', 'L394', 'U884', 'R217', 'U46', 'R684', 'D499', 'L522', 'U373', 'L322', 'U347', 'R48', 'D459', 'L692', 'U569', 'R267', 'U296', 'L949', 'U915', 'R599', 'D113', 'R770', 'U322', 'R304', 'U920', 'L880', 'D257', 'R915', 'D672', 'L950', 'U209', 'R601', 'U663', 'R461', 'D514', 'R415', 'U82', 'L396', 'U233', 'R606', 'U500', 'R70', 'D696', 'R945', 'D686', 'L405', 'U176', 'R728', 'U562', 'L710', 'D35', 'R707', 'D931', 'L857', 'U792', 'R337', 'D490', 'L963', 'U731', 'R909', 'U532', 'R375', 'D990', 'L154', 'U660', 'L17', 'U32', 'R593', 'U529', 'R136', 'U835', 'R717', 'U255', 'L93', 'D295', 'L473', 'U608', 'L109', 'D858', 'R719', 'U207', 'R60', 'D36', 'R790', 'D382', 'L684', 'D233', 'R988', 'U625', 'R410', 'U804', 'R552', 'D578', 'L440', 'D749', 'R653', 'U362', 'L900', 'U549', 'R790', 'D870', 'R672', 'U503', 'R343', 'D343', 'R738', 'D270', 'R494', 'D527', 'L182', 'U654', 'R933', 'D594', 'R447', 'U933', 'R4', 'U364', 'L309', 'U967', 'R648', 'U537', 'R990', 'U203', 'R584', 'D474', 'L852', 'U736', 'R305', 'D781', 'R774', 'D92', 'L398', 'U207', 'R472', 'D664', 'R369', 'U807', 'L474', 'U588', 'R339', 'D536', 'R305', 'D506', 'R516', 'U772', 'R177', 'U450', 'L211', 'U850', 'R777', 'U483', 'L595', 'U104', 'L916', 'U548', 'R256', 'U173', 'L27', 'D167', 'L574', 'D288', 'R569', 'U192', 'R771', 'D98', 'R432', 'U165', 'L651', 'D524', 'L582', 'D698', 'L393', 'D152', 'L280', 'U461', 'R573', 'D771', 'R833', 'D409', 'R991', 'U996', 'R780', 'U617', 'R63', 'U563', 'L844', 'D63', 'R15', 'U634', 'R643', 'D124', 'L147', 'D583', 'R716', 'D28', 'L799', 'D59', 'R819', 'D723', 'L43', 'D975', 'L755', 'D635', 'R118', 'U325', 'L969', 'D445', 'R374', 'D797', 'L821', 'U118', 'R962', 'D643', 'R127', 'U267', 'R768', 'D50', 'L343', 'U80', 'R281', 'U575', 'R618', 'D718', 'L74', 'U146', 'R242', 'D547', 'L492', 'U71', 'R826', 'D483', 'L402', 'U953', 'R184', 'U707', 'L973', 'D550', 'L593', 'U281', 'L652', 'D247', 'L254', 'D60', 'R908', 'U581', 'L731', 'D634', 'R286', 'D186', 'R9', 'D983', 'L181', 'U262', 'R241', 'D674', 'R463', 'U238', 'R600'] # matrix = (-5000, 5000) def run(line1, line2): matrix = [] collision = [] start = (0, 0) def update(pos, first=True): if not first and pos in matrix: collision.append(pos) else: matrix.append(pos) for idx, line in enumerate((line1, line2)): first = idx == 0 start = (0, 0) max = len(line) for pos_idx, direction_pos in enumerate(line): print(start, direction_pos, pos_idx, max) direction, pos = direction_pos[0], int(direction_pos[1:]) if direction == 'R': for i in range(pos): update((start[0]+i+1, start[1]), first) start = (start[0]+pos, start[1]) elif direction == 'L': for i in range(pos): update((start[0]-i-1, start[1]), first) start = (start[0]-pos, start[1]) elif direction == 'U': for i in range(pos): update((start[0], start[1]+i+1), first) start = (start[0], start[1]+pos) elif direction == 'D': for i in range(pos): update((start[0], start[1]-i-1), first) start = (start[0], start[1]-pos) else: raise Exception() return collision result = run(line1, line2) # >>> c = [(-1971, -91), (-1171, 23), (-1042, -1232), (-1436, -3231), (-1436, -2664), (-1584, -3305), (-1436, -3305), (-1194, -3231), (-1313, -2664), (-1313, -2446), (-1062, -1232), (-1042, -1231), (-415, -1231), (-681, -1730), (-722, -1730), (-885, -1730), (-900, -1581), (-900, -1519), (-965, -1357), (-1042, -1357), (-1222, -1277), (-1222, -1232), (-1174, -1232), (-1174, -1277), (-1174, -1357), (-1279, -1469), (-1866, -921), (-1801, -900), (-1620, -900), (-1599, -765), (-1801, -604), (-1910, -604), (-875, 1183), (-1179, 511), (-1189, 1183), (-875, 1383), (-788, 1383), (-728, 1306), (-103, 1306), (-33, 1306), (397, 988), (673, 988), (853, 988), (912, 478), (1128, 478), (1235, 653), (853, 1040), (673, 1040), (673, 1005), (853, 1005), (1232, 653), (1232, 478), (1232, 330), (375, 548), (397, 866), (673, 866), (712, 548), (712, 478), (507, 376), (375, 376), (181, 376), (-33, 1107), (397, 1107), (1033, 1571), (1033, 1175), (1033, 1040), (1033, 1005), (912, 649), (879, 988), (879, 1005), (879, 1040), (879, 1175), (1033, 1341), (1455, 1571), (1591, 1956), (1591, 2021), (1591, 2324), (1591, 2550), (2096, 2705), (2308, 2719), (2215, 2719), (2215, 2705), (2096, 2665), (1742, 2705), (1742, 2931), (1633, 2931), (1633, 2705), (1633, 2550), (1704, 2415), (2096, 2415), (4028, 2435), (3781, 2596), (3916, 2984), (4468, 2984), (4571, 2435), (4681, 2114), (6636, 2004), (9081, 4338), (9386, 4541), (9386, 4067), (9762, 4022), (9762, 4067), (9933, 4137), (10521, 6751), (11297, 6943), (10715, 6485), (10615, 5788), (11255, 5326), (11448, 5048), (11466, 4917), (12453, 7093), (12949, 7093), (13282, 6957), (13282, 6929), (13282, 6870), (12887, 4862), (12410, 3738), (13103, 3362), (14002, 3395), (14170, 2919), (14102, 2848), (14102, 2919), (14170, 3389), (12410, 3827), (12068, 3738), (12068, 3620), (12551, 3520), (12722, 3546), (12410, 4101), (11991, 3738), (11991, 3620), (11991, 3580), (11991, 3520), (12286, 2560)] best = 10000 for i in d: a, b = i now = abs(a) + abs(b) if best > now: best = now print(best) ################################################ def run2(line1, line2): matrix = [] counters = {} collision = [] start = (0, 0) def update(pos, counts=0, first=True): if first: if pos not in counters: counters[pos] = counts else: counters[pos] = min(counts, counters[pos]) matrix.append(pos) if not first and pos in matrix: collision.append((pos, counts + counters[pos])) for idx, line in enumerate((line1, line2)): first = idx == 0 start = (0, 0) max = len(line) counts = 0 for pos_idx, direction_pos in enumerate(line): print(start, direction_pos, pos_idx, max) direction, pos = direction_pos[0], int(direction_pos[1:]) if direction == 'R': for i in range(pos): counts += 1 update((start[0]+i+1, start[1]), counts, first) start = (start[0]+pos, start[1]) elif direction == 'L': for i in range(pos): counts += 1 update((start[0]-i-1, start[1]), counts, first) start = (start[0]-pos, start[1]) elif direction == 'U': for i in range(pos): counts += 1 update((start[0], start[1]+i+1), counts, first) start = (start[0], start[1]+pos) elif direction == 'D': for i in range(pos): counts += 1 update((start[0], start[1]-i-1), counts, first) start = (start[0], start[1]-pos) else: raise Exception() return collision result2 = run2(line1, line2) result2.sort(key=lambda _: _[1]) print(result2[0]) # ((1128, 478), 56410)
94.886792
2,384
0.491151
a58046960ca54e2a6b0218d8d088e432bb54b136
3,408
py
Python
test/resttest/comments.py
informatics-isi-edu/ermrest
1a4002c94c46b43089f704a65a6d2be8730396fd
[ "Apache-2.0" ]
4
2015-04-27T21:25:54.000Z
2022-01-15T18:56:37.000Z
test/resttest/comments.py
informatics-isi-edu/ermrest
1a4002c94c46b43089f704a65a6d2be8730396fd
[ "Apache-2.0" ]
215
2015-05-06T23:59:19.000Z
2022-02-07T23:37:56.000Z
test/resttest/comments.py
informatics-isi-edu/ermrest
1a4002c94c46b43089f704a65a6d2be8730396fd
[ "Apache-2.0" ]
8
2015-08-26T19:23:39.000Z
2018-06-13T00:18:52.000Z
import unittest import common import basics _S = 'comments' _T2b = basics._T2b _defs = basics.defs(_S) _table_defs = _defs['schemas'][_S]['tables'] def setUpModule(): r = common.primary_session.get('schema/%s' % _S) if r.status_code == 404: # idempotent because unittest can re-enter module several times... common.primary_session.post('schema', json=_defs).raise_for_status() def add_comment_tests(klass): # generate comment API tests over many resources in table resources = basics.expand_table_resources(_S, _table_defs, klass.table) for i in range(len(resources)): def make_test_absent(i): def test_absent(self): r = self.session.get(resources[i]) self.assertHttp(r, 200, 'application/json') d = r.json() if isinstance(d, list): for x in d: # foreign key resource returns a list of objects self.assertEqual(x['comment'], None) else: self.assertEqual(d['comment'], None) self.assertHttp(self.session.get('%s/comment' % resources[i]), 404) return test_absent setattr(klass, 'test_%02d_1_absent' % i, make_test_absent(i)) def make_test_apply(i): newval = 'Comment on %s.' % resources[i] def test_apply(self): self.assertHttp(self.session.put('%s/comment' % resources[i], data=newval, headers={"Content-Type": "text/plain"}), 204) return test_apply setattr(klass, 'test_%02d_2_apply' % i, make_test_apply(i)) def make_test_confirm(i): newval = 'Comment on %s.' % resources[i] def test_confirm(self): r = self.session.get(resources[i]) self.assertHttp(r, 200, 'application/json') d = r.json() if isinstance(d, list): for x in d: # foreign key resource returns a list of objects self.assertEqual(x['comment'], newval) else: self.assertEqual(d['comment'], newval) r = self.session.get('%s/comment' % resources[i]) self.assertHttp(r, 200, 'text/plain') # TODO: is this trailing newline a bug? self.assertEqual(r.text[0:-1], newval) return test_confirm setattr(klass, 'test_%02d_3_confirm' % i, make_test_confirm(i)) def make_test_delete(i): def test_delete(self): self.assertHttp(self.session.delete('%s/comment' % resources[i]), 200) self.assertHttp(self.session.get('%s/comment' % resources[i]), 404) return test_delete setattr(klass, 'test_%02d_4_delete' % i, make_test_delete(i)) def make_test_bad_apply(i): newval = [ 'Comment on %s.' % resources[i], ] def test_bad_apply(self): self.assertHttp(self.session.put('%s' % resources[i], json={"comment": newval}, headers={"Content-Type": "text/plain"}), 400) return test_bad_apply setattr(klass, 'test_%02d_5_bad_apply' % i, make_test_bad_apply(i)) return klass @add_comment_tests class Comments (common.ErmrestTest): table = _T2b if __name__ == '__main__': unittest.main(verbosity=2)
40.094118
141
0.575704
fc78e95dc653c3abc49425c5a966c38605f1c080
2,373
py
Python
tests/integration/compare_test.py
numenta/cortipy
908fc461c8116b0dfb4d66bbd91fa68b1d05d642
[ "MIT" ]
8
2015-05-13T22:04:23.000Z
2018-01-24T19:38:06.000Z
tests/integration/compare_test.py
numenta/cortipy
908fc461c8116b0dfb4d66bbd91fa68b1d05d642
[ "MIT" ]
25
2015-04-30T19:02:16.000Z
2016-02-25T22:50:03.000Z
tests/integration/compare_test.py
numenta/cortipy
908fc461c8116b0dfb4d66bbd91fa68b1d05d642
[ "MIT" ]
16
2015-04-30T15:51:33.000Z
2018-08-25T05:10:53.000Z
# The MIT License (MIT) # # Copyright (c) 2015 Numenta, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ This test verifies that compare correctly does the call to Cortical.io's API and gets a dictionary of distances """ import cortipy import unittest class CompareTest(unittest.TestCase): """Requires CORTICAL_API_KEY to be set""" def testCompare(self): """ Tests client.createClassification(). Asserts the returned object has fields with expected values for both the classifciation name and bitmap. """ client = cortipy.CorticalClient(useCache=False) bitmap1 = client.getBitmap("one")["fingerprint"]["positions"] bitmap2 = client.getBitmap("two")["fingerprint"]["positions"] distances = client.compare(bitmap1, bitmap2) types = ["cosineSimilarity", "euclideanDistance", "jaccardDistance", "overlappingAll", "overlappingLeftRight", "overlappingRightLeft", "sizeLeft", "sizeRight", "weightedScoring"] self.assertIsInstance(distances, dict, "The returned object is not a dictionary") for t in types: self.assertIn(t, distances, "No \'{}\' field in the distances".format(t)) for t in types: self.assertIsInstance(distances[t], (float, int), "No \'{}\' field in the distances".format(t)) if __name__ == '__main__': unittest.main()
35.954545
79
0.726507
1b452296748877444304f1af1613984754254bf8
2,135
py
Python
ptsites/sites/hd-space.py
czahoi/flexget_qbittorrent_mod
c001d9ece050136bbff5876697b12079a841af3e
[ "MIT" ]
null
null
null
ptsites/sites/hd-space.py
czahoi/flexget_qbittorrent_mod
c001d9ece050136bbff5876697b12079a841af3e
[ "MIT" ]
null
null
null
ptsites/sites/hd-space.py
czahoi/flexget_qbittorrent_mod
c001d9ece050136bbff5876697b12079a841af3e
[ "MIT" ]
null
null
null
from ..schema.xbtit import XBTIT from ..utils import net_utils from ..utils.value_hanlder import handle_infinite class MainClass(XBTIT): URL = 'https://hd-space.org/' SUCCEED_REGEX = 'Welcome back .*?</span> ' USER_CLASSES = { 'uploaded': [2199023255552], 'share_ratio': [4.25] } @property def details_selector(self) -> dict: selector = super().details_selector net_utils.dict_merge(selector, { 'user_id': 'index.php\\?page=usercp&amp;uid=(\\d+)', 'detail_sources': { 'default': { 'link': '/index.php?page=usercp&uid={}', 'elements': { 'bar': 'table.lista table.lista', 'table': 'body > div:nth-child(2) > table > tbody > tr > td > table > tbody > tr > td > table > tbody > tr > td > table > tbody > tr > td > table > tbody > tr > td > table:nth-child(9) > tbody > tr:nth-child(2) > td > table:nth-child(2) > tbody > tr > td:nth-child(4) > table' } } }, 'details': { 'uploaded': { 'regex': 'UP: ([\\d.]+ [ZEPTGMK]B)' }, 'downloaded': { 'regex': 'DL: ([\\d.]+ [ZEPTGMK]B)' }, 'share_ratio': { 'regex': 'Ratio: (---|[\\d.]+)', 'handle': handle_infinite }, 'points': { 'regex': 'Bonus: (---|[\\d,.]+)', 'handle': handle_infinite }, 'join_date': { 'regex': 'Joined on.{5}(.*?\\d{4})', 'handle': self.handle_join_date }, 'seeding': None, 'leeching': None, 'hr': None } }) return selector def get_messages(self, entry, config): self.get_XBTIT_message(entry, config, MESSAGES_URL_REGEX='index.php\\?page=usercp&amp;uid=\\d+&amp;do=pm&amp;action=list')
36.186441
300
0.43185
358f8bf1afe781cfae54e0bb5eb051ba80dc16cb
6,890
py
Python
core/migrations/0053_remove_wagtail_personalisation.py
uktrade/great-cms
f13fa335ddcb925bc33a5fa096fe73ef7bdd351a
[ "MIT" ]
10
2020-04-30T12:04:35.000Z
2021-07-21T12:48:55.000Z
core/migrations/0053_remove_wagtail_personalisation.py
uktrade/great-cms
f13fa335ddcb925bc33a5fa096fe73ef7bdd351a
[ "MIT" ]
1,461
2020-01-23T18:20:26.000Z
2022-03-31T08:05:56.000Z
core/migrations/0053_remove_wagtail_personalisation.py
uktrade/great-cms
f13fa335ddcb925bc33a5fa096fe73ef7bdd351a
[ "MIT" ]
3
2020-04-07T20:11:36.000Z
2020-10-16T16:22:59.000Z
# Generated by Django 2.2.18 on 2021-02-02 12:36 import wagtail.core.blocks import wagtail.core.fields import wagtail.images.blocks from django.db import migrations import core.blocks class Migration(migrations.Migration): dependencies = [ ('core', '0052_update_meta_options_for_snippets'), ] operations = [ # DELIBERATELY DISABLED AS PART OF CONTROLLED REMOVAL - NO LONGER CREATED (SEE SQUASHED MIGRATION) # migrations.RemoveField( # model_name='matchfirstcountryofinterestrule', # name='country', # ), # migrations.RemoveField( # model_name='matchfirstcountryofinterestrule', # name='segment', # ), # migrations.RemoveField( # model_name='matchfirstindustryofinterestrule', # name='segment', # ), # migrations.RemoveField( # model_name='matchproductexpertise', # name='product', # ), # migrations.RemoveField( # model_name='matchproductexpertise', # name='segment', # ), migrations.AlterField( model_name='detailpage', name='body', field=wagtail.core.fields.StreamField( [ ( 'paragraph', wagtail.core.blocks.StructBlock( [('paragraph', wagtail.core.blocks.RichTextBlock())], icon='fa-font', template='core/struct_paragraph_block.html', ), ), ( 'video', wagtail.core.blocks.StructBlock( [('video', core.blocks.MediaChooserBlock())], help_text='Video displayed within a full-page-width block', template='core/includes/_video_full_width.html', ), ), ('case_study', core.blocks.CaseStudyStaticBlock(icon='fa-book')), ( 'Step', wagtail.core.blocks.StructBlock( [ ('title', wagtail.core.blocks.CharBlock(max_length=255)), ('body', wagtail.core.blocks.RichTextBlock()), ('image', wagtail.images.blocks.ImageChooserBlock(required=False)), ], icon='cog', ), ), ( 'fictional_example', wagtail.core.blocks.StructBlock( [('fiction_body', wagtail.core.blocks.RichTextBlock(icon='openquote'))], icon='fa-commenting-o', template='learn/fictional_company_example.html', ), ), ( 'ITA_Quote', wagtail.core.blocks.StructBlock( [ ('quote', wagtail.core.blocks.RichTextBlock()), ('author', wagtail.core.blocks.CharBlock(max_length=255)), ], icon='fa-quote-left', ), ), ( 'pros_cons', wagtail.core.blocks.StructBlock( [ ( 'pros', wagtail.core.blocks.StreamBlock( [ ( 'item', wagtail.core.blocks.StructBlock( [('item', wagtail.core.blocks.CharBlock(max_length=255))], icon='fa-arrow-right', ), ) ] ), ), ( 'cons', wagtail.core.blocks.StreamBlock( [ ( 'item', wagtail.core.blocks.StructBlock( [('item', wagtail.core.blocks.CharBlock(max_length=255))], icon='fa-arrow-right', ), ) ] ), ), ], icon='fa-arrow-right', template='learn/pros_and_cons.html', ), ), ( 'choose_do_not_choose', wagtail.core.blocks.StructBlock( [ ('choose_title', wagtail.core.blocks.CharBlock(max_length=255)), ('choose_body', wagtail.core.blocks.RichTextBlock(features=())), ('do_not_choose_title', wagtail.core.blocks.CharBlock(max_length=255)), ('do_not_choose_body', wagtail.core.blocks.RichTextBlock(features=())), ] ), ), ( 'image', core.blocks.ImageBlock( help_text='Image displayed within a full-page-width block', template='core/includes/_image_full_width.html', ), ), ] ), ), # DELIBERATELY DISABLED AS PART OF CONTROLLED REMOVAL - NO LONGER CREATED (SEE SQUASHED MIGRATION) # migrations.DeleteModel( # name='MatchCountryQuerystring', # ), # migrations.DeleteModel( # name='MatchFirstCountryOfInterestRule', # ), # migrations.DeleteModel( # name='MatchFirstIndustryOfInterestRule', # ), # migrations.DeleteModel( # name='MatchProductExpertise', # ), ]
42.530864
110
0.367925
7cc6452ca6df8872233f200da00a75234ebc4e53
1,653
py
Python
marshpy/fields/path_field.py
an-otter-world/marshpy
42aed8e5f316358792356c7e550f844a08bf206e
[ "WTFPL" ]
null
null
null
marshpy/fields/path_field.py
an-otter-world/marshpy
42aed8e5f316358792356c7e550f844a08bf206e
[ "WTFPL" ]
16
2021-03-26T08:32:29.000Z
2021-03-27T10:37:24.000Z
marshpy/fields/path_field.py
an-otter-world/marshpy
42aed8e5f316358792356c7e550f844a08bf206e
[ "WTFPL" ]
null
null
null
"""Path field class & utilities.""" from gettext import gettext as _ from pathlib import Path from typing import Any from typing import Optional from marshpy.core.constants import UNDEFINED from marshpy.core.errors import ErrorCode from marshpy.core.interfaces import ILoadingContext from marshpy.core.validation import ValidateCallback from marshpy.fields.scalar_field import ScalarField class PathField(ScalarField): """Path YAML object field.""" def __init__( self, required: bool = False, validate: Optional[ValidateCallback] = None, must_exist: bool = True ): """Initialize the Path field. Args: required: See BaseField constructor. validate: See BaseField constructor. must_exist: If true, a VALIDATION_ERROR will be emmited if the file doesn't exist when the field is deserialized. """ super().__init__(required=required, validate=validate) self._must_exist = must_exist def _convert(self, context: ILoadingContext, value: str) -> Any: path = Path(value) if not path.is_absolute() and not path.exists(): location_str = context.current_location() if location_str is not None: location = Path(location_str) parent = location.parent path = parent / path if self._must_exist and not path.exists(): context.error( ErrorCode.VALIDATION_ERROR, _('Cannot find path {}.'), path ) return UNDEFINED return path
30.611111
79
0.626134
6923d1dece74e68b3979bdd00b798b38f6412719
813
py
Python
lists_and_dicts.py
acroooo/intermediate-python
e2cf1d5c397cc94fd5ce38085802d099b3633c6c
[ "MIT" ]
null
null
null
lists_and_dicts.py
acroooo/intermediate-python
e2cf1d5c397cc94fd5ce38085802d099b3633c6c
[ "MIT" ]
null
null
null
lists_and_dicts.py
acroooo/intermediate-python
e2cf1d5c397cc94fd5ce38085802d099b3633c6c
[ "MIT" ]
null
null
null
def run(): my_list = [1, 'Hi', True, 4.5] my_dict = { "first_name": "Hernan", "last_name": "Chamorro", } super_list = [ { "first_name": "Hernan", "last_name": "Chamorro",}, { "first_name": "Gustavo", "last_name": "Ramon",}, { "first_name": "Bruno", "last_name": "Facundo",}, { "first_name": "Geronimo", "last_name": "Atahualpa",}, ] super_dict = { "natural_nums": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "integer_nums": [-2, -1, 0, 1, 2, 3, 4, 5,], "floating_nums": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], } for key, value in super_dict.items(): print(key, "-", value) for dict in super_list: print(dict['first_name'], "-", dict['last_name']) if __name__ == '__main__': run()
29.035714
76
0.494465
416dca22e0655e26460b2735ef811a814b83981e
703
py
Python
src/ggrc/contributions.py
sbilly/ggrc-core
59a6825c6a8e15e42ebdb9e08d079cefd1800120
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/ggrc/contributions.py
sbilly/ggrc-core
59a6825c6a8e15e42ebdb9e08d079cefd1800120
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/ggrc/contributions.py
sbilly/ggrc-core
59a6825c6a8e15e42ebdb9e08d079cefd1800120
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2016 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Lists of ggrc contributions.""" from ggrc.notifications import common from ggrc.notifications import notification_handlers from ggrc.notifications import data_handlers CONTRIBUTED_CRON_JOBS = [ common.send_todays_digest_notifications ] NOTIFICATION_LISTENERS = [ notification_handlers.register_handlers ] def contributed_notifications(): """Get handler functions for ggrc notification file types.""" return { "Request": data_handlers.get_assignable_data, "Assessment": data_handlers.get_assignable_data, "Comment": data_handlers.get_comment_data, }
26.037037
78
0.775249
b0ce6bfbdd5c904a44a206094523a4f8298cdb36
698
py
Python
api_restful/__init__.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
1
2020-06-21T04:08:26.000Z
2020-06-21T04:08:26.000Z
api_restful/__init__.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
13
2019-10-18T17:19:32.000Z
2022-01-13T00:44:43.000Z
api_restful/__init__.py
zhanghe06/bearing_project
78a20fc321f72d3ae05c7ab7e52e01d02904e3fc
[ "MIT" ]
5
2019-02-07T03:15:16.000Z
2021-09-04T14:06:28.000Z
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: __init__.py @time: 2020-02-28 21:01 """ from flask import Flask from logging.config import dictConfig from api_restful.apis import api_bearing from api_restful.blueprints import bp_bearing from config import current_config # from api_restful.middlewares.logger_middleware import LoggerMiddleware app = Flask(__name__) # app.wsgi_app = LoggerMiddleware(app.wsgi_app) # Load Config app.config.from_object(current_config) # Register Blueprint app.register_blueprint(bp_bearing) # 配置日志 dictConfig(app.config['LOG_CONFIG']) # Add Resource Urls from api_restful import urls from api_restful.user import url
19.388889
72
0.797994
9caceeffa47b7892783b2074d1b678aa7ec6202a
359
py
Python
pybook/ch13/WirteDemo.py
YanhaoXu/python-learning
856687a71635a2ca67dab49d396c238f128e5ec0
[ "MIT" ]
2
2021-12-06T13:29:48.000Z
2022-01-20T11:39:45.000Z
pybook/ch13/WirteDemo.py
YanhaoXu/python-learning
856687a71635a2ca67dab49d396c238f128e5ec0
[ "MIT" ]
null
null
null
pybook/ch13/WirteDemo.py
YanhaoXu/python-learning
856687a71635a2ca67dab49d396c238f128e5ec0
[ "MIT" ]
null
null
null
from pybook.ch13.FIleTestConst import TEST_PATH def main(): # Open file the output outfile = open(TEST_PATH + "Presidents.txt", "w") # Write data to the file outfile.write("Bill Clinton\n") outfile.write("George Bush\n") outfile.write("Barack Obama") outfile.close() # Close the output file main() # Call the main function
21.117647
53
0.671309
f2935611bc2ce80e397bdcbced78980c0ba606cc
3,343
py
Python
tests/test_initializers.py
OliverZijia/tensorlayer2
01113b53e84a3bbb298b9c35ebd53254e487350f
[ "Apache-2.0" ]
null
null
null
tests/test_initializers.py
OliverZijia/tensorlayer2
01113b53e84a3bbb298b9c35ebd53254e487350f
[ "Apache-2.0" ]
null
null
null
tests/test_initializers.py
OliverZijia/tensorlayer2
01113b53e84a3bbb298b9c35ebd53254e487350f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import unittest os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf import tensorlayer as tl import numpy as np from tests.utils import CustomTestCase class Test_Leaky_ReLUs(CustomTestCase): @classmethod def setUpClass(cls): cls.ni = tl.layers.Input(shape=[16, 10]) cls.w_shape = (10, 5) cls.eps = 0.0 @classmethod def tearDownClass(cls): pass def init_dense(self, w_init): return tl.layers.Dense(n_units=self.w_shape[1], in_channels=self.w_shape[0], W_init=w_init) def test_zeros(self): dense = self.init_dense(tl.initializers.zeros()) self.assertEqual(np.sum(dense.weights[0].numpy() - np.zeros(shape=self.w_shape)), self.eps) nn = dense(self.ni) def test_ones(self): dense = self.init_dense(tl.initializers.ones()) self.assertEqual(np.sum(dense.weights[0].numpy() - np.ones(shape=self.w_shape)), self.eps) nn = dense(self.ni) def test_constant(self): dense = self.init_dense(tl.initializers.constant(value=5.0)) self.assertEqual(np.sum(dense.weights[0].numpy() - np.ones(shape=self.w_shape) * 5.0), self.eps) nn = dense(self.ni) # test with numpy arr arr = np.random.uniform(size=self.w_shape).astype(np.float32) dense = self.init_dense(tl.initializers.constant(value=arr)) self.assertEqual(np.sum(dense.weights[0].numpy() - arr), self.eps) nn = dense(self.ni) def test_RandomUniform(self): dense = self.init_dense(tl.initializers.random_uniform(minval=-0.1, maxval=0.1, seed=1234)) print(dense.weights[0].numpy()) nn = dense(self.ni) def test_RandomNormal(self): dense = self.init_dense(tl.initializers.random_normal(mean=0.0, stddev=0.1)) print(dense.weights[0].numpy()) nn = dense(self.ni) def test_TruncatedNormal(self): dense = self.init_dense(tl.initializers.truncated_normal(mean=0.0, stddev=0.1)) print(dense.weights[0].numpy()) nn = dense(self.ni) def test_deconv2d_bilinear_upsampling_initializer(self): rescale_factor = 2 imsize = 128 num_channels = 3 num_in_channels = 3 num_out_channels = 3 filter_shape = (5, 5, num_out_channels, num_in_channels) ni = tl.layers.Input(shape=(1, imsize, imsize, num_channels)) bilinear_init = tl.initializers.deconv2d_bilinear_upsampling_initializer(shape=filter_shape) deconv_layer = tl.layers.DeConv2dLayer(shape=filter_shape, outputs_shape=(1, imsize * rescale_factor, imsize * rescale_factor, num_out_channels), strides=(1, rescale_factor, rescale_factor, 1), W_init=bilinear_init, padding='SAME', act=None, name='g/h1/decon2d') nn = deconv_layer(ni) def test_config(self): init = tl.initializers.constant(value=5.0) new_init = tl.initializers.Constant.from_config(init.get_config()) if __name__ == '__main__': unittest.main()
35.946237
114
0.608436
2865698e096f995fee16fe0884ef4253ec40b3e3
522
py
Python
Notebook_surface/spyder_test.py
Jaknil/Anaconda-python
de80d7360c36c2abeb5ac922211e815a0e9e57ca
[ "MIT" ]
null
null
null
Notebook_surface/spyder_test.py
Jaknil/Anaconda-python
de80d7360c36c2abeb5ac922211e815a0e9e57ca
[ "MIT" ]
null
null
null
Notebook_surface/spyder_test.py
Jaknil/Anaconda-python
de80d7360c36c2abeb5ac922211e815a0e9e57ca
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt mpl.rcParams['legend.fontsize'] = 10 res = 100 # Line segments #%% fig = plt.figure() ax = fig.gca(projection='3d') theta = np.linspace(-4 * np.pi, 4 * np.pi,res) z = np.linspace(-2, 2, res) r = z**number_2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) ax.plot(x, y, z, label='parametric curve') #ax.legend() plt.show()
18.642857
46
0.662835
0e6d8448dc4a5d25b58266a9a1e2d6f7fc20c35f
703
py
Python
clmm/__init__.py
nicolahunfeld/CLMM
a431649713e56b907a7366bdf21693c30851dee7
[ "BSD-3-Clause" ]
null
null
null
clmm/__init__.py
nicolahunfeld/CLMM
a431649713e56b907a7366bdf21693c30851dee7
[ "BSD-3-Clause" ]
null
null
null
clmm/__init__.py
nicolahunfeld/CLMM
a431649713e56b907a7366bdf21693c30851dee7
[ "BSD-3-Clause" ]
null
null
null
""" CLMM is a cluster mass modeling code. """ from .gcdata import GCData from .galaxycluster import GalaxyCluster from .dataops import compute_tangential_and_cross_components, make_radial_profile from .utils import compute_radial_averages, make_bins, convert_units from .theory import ( compute_reduced_shear_from_convergence, compute_magnification_bias_from_magnification, compute_3d_density, compute_surface_density, compute_excess_surface_density, compute_critical_surface_density,compute_tangential_shear, compute_convergence, compute_reduced_tangential_shear, compute_magnification, compute_magnification_bias, Modeling, Cosmology ) from . import support __version__ = '1.1.7'
43.9375
90
0.846373
67193ce3222280f4a7e817879df26bac3cadb4d5
166
py
Python
backend/venv/lib/python3.6/site-packages/tatsu/g2e/__main__.py
HalmonLui/square-hackathon
62d5be7a229f9e39e27a546c164facd779d28aa4
[ "MIT" ]
3
2020-06-13T02:47:29.000Z
2020-06-20T17:34:15.000Z
backend/venv/lib/python3.6/site-packages/tatsu/g2e/__main__.py
HalmonLui/square-hackathon
62d5be7a229f9e39e27a546c164facd779d28aa4
[ "MIT" ]
2
2020-06-14T20:29:26.000Z
2020-06-14T20:29:34.000Z
backend/venv/lib/python3.6/site-packages/tatsu/g2e/__main__.py
HalmonLui/square-hackathon
62d5be7a229f9e39e27a546c164facd779d28aa4
[ "MIT" ]
1
2020-09-04T01:45:39.000Z
2020-09-04T01:45:39.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from . import main if __name__ == '__main__': main()
20.75
82
0.716867
028ec1ff77df315fc950da5dfc6867640b62c16d
3,891
py
Python
pymatgen/io/abinitio/tests/test_abiobjects.py
NadezhdaBzhilyanskaya/pymatgen
fae11a8142d457a649fa84ff9781eb2b39334bdc
[ "MIT" ]
1
2022-02-28T04:24:46.000Z
2022-02-28T04:24:46.000Z
pymatgen/io/abinitio/tests/test_abiobjects.py
NadezhdaBzhilyanskaya/pymatgen
fae11a8142d457a649fa84ff9781eb2b39334bdc
[ "MIT" ]
null
null
null
pymatgen/io/abinitio/tests/test_abiobjects.py
NadezhdaBzhilyanskaya/pymatgen
fae11a8142d457a649fa84ff9781eb2b39334bdc
[ "MIT" ]
null
null
null
#!/usr/bin/env python from __future__ import division, print_function import os from pymatgen.util.testing import PymatgenTest from pymatgen.core.structure import Structure from pymatgen.core.units import Ha_to_eV from pymatgen.io.abinitio.abiobjects import * test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "..", 'test_files') def cif_paths(): cifpaths = [] print(test_dir) for fname in os.listdir(test_dir): fname = os.path.join(test_dir, fname) if os.path.isfile(fname) and fname.endswith(".cif"): cifpaths.append(fname) assert cifpaths return cifpaths class SpinModeTest(PymatgenTest): def test_base(self): polarized = SpinMode.asspinmode("polarized") other_polarized = SpinMode.asspinmode("polarized") unpolarized = SpinMode.asspinmode("unpolarized") polarized.to_abivars() self.assertTrue(polarized is other_polarized) self.assertTrue(polarized == other_polarized) self.assertTrue(polarized != unpolarized) # Test pickle self.serialize_with_pickle(polarized) class SmearingTest(PymatgenTest): def test_base(self): fd1ev = Smearing.assmearing("fermi_dirac:1 eV") print(fd1ev) fd1ev.to_abivars() self.assertTrue(fd1ev) same_fd = Smearing.assmearing("fermi_dirac:"+ str(1.0/Ha_to_eV)) self.assertTrue(same_fd == fd1ev) nosmear = Smearing.nosmearing() self.assertFalse(nosmear) self.assertTrue(nosmear != fd1ev) new_fd1ev = Smearing.from_dict(fd1ev.to_dict) self.assertTrue(new_fd1ev == fd1ev) # Test pickle self.serialize_with_pickle(fd1ev) class ElectronsAlgorithmTest(PymatgenTest): def test_base(self): algo = ElectronsAlgorithm(nstep=70) print(algo.to_abivars()) # Test pickle self.serialize_with_pickle(algo) class ElectronsTest(PymatgenTest): def test_base(self): default_electrons = Electrons() self.assertTrue(default_electrons.nsppol==2) self.assertTrue(default_electrons.nspinor==1) self.assertTrue(default_electrons.nspden==2) print(default_electrons.to_abivars()) #new = Electron.from_dict(default_electrons.to_dict()) # Test pickle self.serialize_with_pickle(default_electrons, test_eq=False) class AbiStructureTest(PymatgenTest): def setUp(self): self.cif_paths = cif_paths() def test_asabistructure(self): for cif_path in self.cif_paths: print("about to init abistructure from %s " % cif_path) st = asabistructure(cif_path) self.assertTrue(st is asabistructure(st)) self.assertTrue(isinstance(st, Structure)) # TODO if not st.is_ordered: print("Unordered structures are not supported") continue print(st.to_abivars()) # Test pickle # FIXME: protocol 2 does not work due to __new__ self.serialize_with_pickle(st, protocols=[0, 1], test_eq=True) #class KSamplingTest(PymatgenTest): #class RelaxationTest(PymatgenTest): class PPModelTest(PymatgenTest): def test_base(self): godby = PPModel.asppmodel("godby:12 eV") print(godby) print(repr(godby)) godby.to_abivars() self.assertTrue(godby) same_godby = PPModel.asppmodel("godby:"+ str(12.0/Ha_to_eV)) self.assertTrue(same_godby == godby) noppm = PPModel.noppmodel() self.assertFalse(noppm) self.assertTrue(noppm != godby) new_godby = PPModel.from_dict(godby.to_dict) self.assertTrue(new_godby == godby) # Test pickle self.serialize_with_pickle(godby) if __name__ == '__main__': import unittest unittest.main()
26.469388
74
0.653559
b445c7a240a183904d3d03ac359dae79963d2bde
6,483
py
Python
TheNetwork/whisper_detector.py
llmaayanll/TheImageWhisperer
6525663aaeab5b9dfc454b69d1b17041f4003ec7
[ "MIT" ]
null
null
null
TheNetwork/whisper_detector.py
llmaayanll/TheImageWhisperer
6525663aaeab5b9dfc454b69d1b17041f4003ec7
[ "MIT" ]
null
null
null
TheNetwork/whisper_detector.py
llmaayanll/TheImageWhisperer
6525663aaeab5b9dfc454b69d1b17041f4003ec7
[ "MIT" ]
null
null
null
from __future__ import print_function import keras from keras.preprocessing.image import ImageDataGenerator from keras import optimizers import numpy as np import os import json from TheNetwork.veggie import VeGGieModel class WhisperDetector(object): """""" def __init__(self, max_num_pics_per_category=None, epochs=250, batch_size=24): self.max_num_pics_per_category = max_num_pics_per_category or float('inf') self.epochs = epochs self.batch_size = batch_size self.model = None def build(self): """Build the VeGGie architecture.""" veggie_model = VeGGieModel() self.model = veggie_model.build_veggie_model() def load_weights(self, h5_filename): """For fail-safe reasons, sometimes we train in separate epochs, and save weights between epochs.""" print("Loading weights of previously trained model.") self.model.load_weights(h5_filename) def json_filename_to_array(self, json_filename): """Load .json filename into a numpy array that fits into VeGGie network.""" a = json.load(open(json_filename)) a = np.array([[[pix for pix in row] for row in color] for color in a]) a = a.transpose(1, 2, 0) return a def folder_to_array(self, folder_path): """Load all images from a folder and put in a numpy array of one batch.""" array_list = [] for i, filename in enumerate(os.listdir(folder_path)): arr = self.json_filename_to_array(folder_path + "/" + filename) array_list.append(arr) if i > self.max_num_pics_per_category: break res = np.asarray(array_list) return res def unison_shuffled_copies(self, a, b): """Shuffle order of input photos in the batch.""" assert len(a) == len(b) p = np.random.permutation(len(a)) return a[p], b[p] def load_data(self): """ Loads the data, split between train and test sets and shuffles it """ train_path_stegged = 'C:/Users/Rey/Projects/TheImageWhisperer/Data/train/stegged' train_path_not_stegged = 'C:/Users/Rey/Projects/TheImageWhisperer/Data/train/not_stegged' test_path_stegged = 'C:/Users/Rey/Projects/TheImageWhisperer/Data/validate/stegged' test_path_not_stegged = 'C:/Users/Rey/Projects/TheImageWhisperer/Data/validate/not_stegged' x_train_stegged = self.folder_to_array(train_path_stegged) x_train_not_stegged = self.folder_to_array(train_path_not_stegged) x_test_stegged = self.folder_to_array(test_path_stegged) x_test_not_stegged = self.folder_to_array(test_path_not_stegged) x_train = np.concatenate((x_train_stegged, x_test_not_stegged), axis=0) x_test = np.concatenate((x_test_stegged, x_test_not_stegged), axis=0) y_train = np.zeros(len(x_train_stegged) + len(x_train_not_stegged)) y_test = np.zeros(len(x_test_stegged) + len(x_test_not_stegged)) y_train[:len(x_train_stegged)] = 1 y_test[:len(x_test_stegged)] = 1 x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train, x_test = self.normalize(x_train, x_test) x_train, y_train = self.unison_shuffled_copies(x_train, y_train) x_test, y_test = self.unison_shuffled_copies(x_test, y_test) return (x_train, y_train), (x_test, y_test) def normalize(self, X_train, X_test): """ this function normalize inputs for zero mean and unit variance it is used when training a model. Input: training set and test set Output: normalized training set and test set according to the trianing set statistics. """ mean = np.mean(X_train, axis=(0, 1, 2, 3)) std = np.std(X_train, axis=(0, 1, 2, 3)) X_train = (X_train - mean) / (std + 1e-7) X_test = (X_test - mean) / (std + 1e-7) return X_train, X_test def train(self): """ Train the model with new data. This is where the Transfer Learning is happening - the VGG part of the network is already trained, and now we are exposing the model to a new data set - of CIFAR10 images that a random half of them were manipulated using various steganography algorithms. """ # training parameters batch_size = self.batch_size maxepoches = self.epochs learning_rate = 0.1 lr_decay = 1e-6 lr_drop = 20 (x_train, y_train), (x_test, y_test) = self.load_data() # data augmentation - only flip as we don't want to harm the stegged data datagen = ImageDataGenerator( horizontal_flip=True, # randomly flip images vertical_flip=True) # randomly flip images datagen.fit(x_train) # optimization details sgd = optimizers.SGD(lr=learning_rate, decay=lr_decay, momentum=0.9, nesterov=True) self.model.compile(loss='mean_squared_error', optimizer=sgd, metrics=['accuracy']) # training process in a for loop with learning rate drop every 25 epoches. reduce_lr = self.reduce_lr(learning_rate, lr_drop) self.model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=x_train.shape[0] // batch_size, epochs=maxepoches, validation_data=(x_test, y_test), callbacks=[reduce_lr], verbose=2) # self.model.fit_generator(datagen.flow(x_train, y_train, # batch_size=batch_size), # steps_per_epoch=x_train.shape[0] // batch_size, # epochs=maxepoches, # validation_data=(x_test, y_test), verbose=2) self.save_trained_model('veggie.h5') def reduce_lr(self, learning_rate, lr_drop): """Keras callback to reduce learning rate as the learning progresses.""" return keras.callbacks.LearningRateScheduler( lambda epoch: learning_rate * (0.5 ** (epoch // lr_drop))) def predict(self, json_file): arr = self.json_filename_to_array(json_file) arr = np.array(arr) return self.model.predict(arr) def save_trained_model(self, h5_filename='veggie.h5'): self.model.save_weights(h5_filename)
42.372549
109
0.641678
36f9e614e5f5cfa7041a7da8060d6e22ec1c943a
1,468
py
Python
src/rdbms/setup.py
southworkscom/azure-cli-extensions
543252eb78107a98e22dcf9fdb64ab1e5887bf9f
[ "MIT" ]
null
null
null
src/rdbms/setup.py
southworkscom/azure-cli-extensions
543252eb78107a98e22dcf9fdb64ab1e5887bf9f
[ "MIT" ]
null
null
null
src/rdbms/setup.py
southworkscom/azure-cli-extensions
543252eb78107a98e22dcf9fdb64ab1e5887bf9f
[ "MIT" ]
1
2018-03-20T23:36:57.000Z
2018-03-20T23:36:57.000Z
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup, find_packages VERSION = "0.0.3" CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'License :: OSI Approved :: MIT License', ] DEPENDENCIES = [] setup( name='rdbms', version=VERSION, description='An Azure CLI Extension to manage Azure MySQL and Azure PostgreSQL resources', long_description='An Azure CLI Extension to manage Azure MySQL and Azure PostgreSQL resources', license='MIT', author='Rohit Joy', author_email='rohitjoy@microsoft.com', url='https://github.com/Azure/azure-cli-extensions', classifiers=CLASSIFIERS, packages=find_packages(exclude=["tests"]), install_requires=DEPENDENCIES )
34.952381
99
0.604905
0665626d6f957b29cb715cf3994ce2ec2ad3ceb0
63
py
Python
braingraphgeo/__init__.py
scott-trinkle/braingraphgeo
990c4956acf8fe56f9bdb8871c265c4ea28da9a9
[ "MIT" ]
null
null
null
braingraphgeo/__init__.py
scott-trinkle/braingraphgeo
990c4956acf8fe56f9bdb8871c265c4ea28da9a9
[ "MIT" ]
null
null
null
braingraphgeo/__init__.py
scott-trinkle/braingraphgeo
990c4956acf8fe56f9bdb8871c265c4ea28da9a9
[ "MIT" ]
null
null
null
from . import utils from . import vis from . import surrogates
15.75
24
0.761905
aa86ddc2d5e1404a2366a590ef65ee6a4a1f8b93
3,423
py
Python
_fpl_process.py
leoleolam/fpl_analytics
ef06e9dd929d2eed17e5481b61f1921e3092371d
[ "MIT" ]
2
2019-02-16T18:38:03.000Z
2021-09-24T16:30:10.000Z
_fpl_process.py
leoleolam/fpl_analytics
ef06e9dd929d2eed17e5481b61f1921e3092371d
[ "MIT" ]
null
null
null
_fpl_process.py
leoleolam/fpl_analytics
ef06e9dd929d2eed17e5481b61f1921e3092371d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ fpl_analytics._fpl_data This contains all utils for fpl data process """ import pandas as pd from collections import defaultdict def get_player_id(fpl_data, name): """ get player id from the first, second or web name """ return {i:fpl_data["elements"][i]["first_name"]+ fpl_data["elements"][i]["second_name"] for i in range(len(fpl_data["elements"])) if (fpl_data["elements"][i]["first_name"].upper()== name.upper() or fpl_data["elements"][i]["second_name"].upper()== name.upper() or fpl_data["elements"][i]["web_name"].upper()== name.upper())} def team_map(fpl_data): """ team mapping """ return {team["id"]: team["name"] for team in fpl_data["teams"]} def pos_map(fpl_data): """ positon mapping """ return {team["id"]: team["singular_name"] for team in fpl_data["element_types"]} def generate_pos_data(fpl_data): """ map of data per position """ res = defaultdict(list) m = pos_map(fpl_data) for data in fpl_data["elements"]: pos_key = m[data["element_type"]] res[pos_key].append(data) return res footballer_key = lambda x, m: ( f"{x['first_name']} {x['second_name']} {m[x['team']]} {x['id']}") def get_performance(fpl_data, pid): """ get player performance (by player id) from fpl_data """ return fpl_data["elements"][pid]["history"]["history_summary"] def opp_next_map(fpl_data): """ get next opponent map """ res = {} m = team_map(fpl_data) i = 0 seen = set() while len(seen)<20: fixt = fpl_data["elements"][i]["history"]["fixtures"][0] team_h = fixt["team_h"] team_a = fixt["team_a"] seen.add(team_h) seen.add(team_a) res[m[team_a]] = m[team_h] res[m[team_h]] = m[team_a] i += 1 return res def achived_from(fpl_data, pid, minutes=False): """ achieved points from fpl_data, fpl_data - dict pid - int minutes - True/False, whether to include minutes in the output series index """ p = fpl_data["elements"][pid]["history"]["history"] m=team_map(fpl_data) if minutes: return pd.Series({(m[pp["opponent_team"]], pp["minutes"]):pp["total_points"] for pp in p}).sort_index() else: return pd.Series({m[pp["opponent_team"]]:pp["total_points"] for pp in p}).sort_index() def score_detail(fpl_data): """ convert fpl_data into Series Index- multi-index of team, pos, player, opp, minutes """ l =[] basic_index = ["player", "opp", "minutes"] for i in range(len(fpl_data["elements"])): ts=achived_from(fpl_data, i, True) name = (fpl_data["elements"][i]["first_name"]+ fpl_data["elements"][i]["second_name"]) if len(ts)==0: continue ts=pd.concat([ts,], keys=[name], names=basic_index) ele = pos_map(fpl_data)[fpl_data["elements"][i]['element_type']] ts=pd.concat([ts,], keys=[ele], names=["pos"]+basic_index) team = team_map(fpl_data)[fpl_data["elements"][i]['team']] ts=pd.concat([ts,], keys=[team], names=["team", "pos"]+basic_index) l.append(ts) return pd.concat(l)
30.026316
76
0.566754
860a3d13b69b3111148a6a5b637df62dbe91b5e8
1,733
py
Python
scprojects/migrations/0016_auto_20200123_1721.py
shescoding/projects-platform-backend
b5ebce71e2377970283da0f8f3ddd7dae201c80e
[ "MIT" ]
2
2020-10-11T07:51:49.000Z
2021-05-12T15:04:38.000Z
scprojects/migrations/0016_auto_20200123_1721.py
shescoding/projects-platform-backend
b5ebce71e2377970283da0f8f3ddd7dae201c80e
[ "MIT" ]
20
2019-08-25T22:18:25.000Z
2022-02-10T09:04:47.000Z
scprojects/migrations/0016_auto_20200123_1721.py
shescoding/projects-platform-backend
b5ebce71e2377970283da0f8f3ddd7dae201c80e
[ "MIT" ]
2
2020-09-26T22:27:58.000Z
2020-10-01T17:33:43.000Z
# Generated by Django 2.2.6 on 2020-01-23 17:21 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('scprojects', '0015_project_lead'), ] operations = [ migrations.AddField( model_name='project', name='contributors', field=models.ManyToManyField(to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='userprofile', name='avatar_url', field=models.URLField(blank=True, max_length=255), ), migrations.AlterField( model_name='userprofile', name='experience_lvl', field=models.PositiveSmallIntegerField(blank=True), ), migrations.AlterField( model_name='userprofile', name='github_id', field=models.PositiveIntegerField(blank=True), ), migrations.AlterField( model_name='userprofile', name='github_url', field=models.URLField(blank=True, max_length=255), ), migrations.AlterField( model_name='userprofile', name='github_username', field=models.CharField(blank=True, max_length=255), ), migrations.AlterField( model_name='userprofile', name='gravatar_url', field=models.URLField(blank=True, max_length=255), ), migrations.AlterField( model_name='userprofile', name='position', field=models.CharField(blank=True, max_length=255), ), ]
30.946429
70
0.587421
4cb9b9575c3b5a173e3d8f6278db1e96d0ac5a27
498
py
Python
rpi/helper.py
GeorgeShao/HomeNode
259295ff8715ebe4348d5098d32fb6bbc60a8a7a
[ "MIT" ]
null
null
null
rpi/helper.py
GeorgeShao/HomeNode
259295ff8715ebe4348d5098d32fb6bbc60a8a7a
[ "MIT" ]
null
null
null
rpi/helper.py
GeorgeShao/HomeNode
259295ff8715ebe4348d5098d32fb6bbc60a8a7a
[ "MIT" ]
null
null
null
""" Helper file for random functions """ def format_serial_data(data_string): data_list = data_string.strip().replace('\n','').replace('\r','/').replace('\\','').split('/') data_dict = {} for index, value in enumerate(data_list): if index % 2 == 0 and index + 1 < len(data_list): if data_list[index + 1] != "": data_dict[data_list[index]] = float(data_list[index+1].replace('\\','').strip()) return data_dict
38.307692
102
0.546185
16d1cab34aebbde17303856576113eb5e3a47f3f
258
py
Python
Networking/Packets/Incoming/BuyResultPacket.py
henriquelino/pyrelay
b448cca3accc9a566616b756a03958ba096a5ebf
[ "MIT" ]
26
2020-07-24T05:47:02.000Z
2022-03-31T16:03:13.000Z
Networking/Packets/Incoming/BuyResultPacket.py
henriquelino/pyrelay
b448cca3accc9a566616b756a03958ba096a5ebf
[ "MIT" ]
17
2020-07-27T08:11:19.000Z
2022-03-29T05:26:16.000Z
Networking/Packets/Incoming/BuyResultPacket.py
henriquelino/pyrelay
b448cca3accc9a566616b756a03958ba096a5ebf
[ "MIT" ]
16
2021-01-20T14:30:37.000Z
2022-03-18T05:31:51.000Z
class BuyResultPacket: def __init__(self): self.type = "BUYRESULT" self.result = 0 self.resultString = "" def read(self, reader): self.result = reader.readInt32() self.resultString = reader.readStr()
25.8
45
0.581395
f4ecda7c082bcfe8f3fabaee2dfad28342f7c446
896
py
Python
Python/climbingStairs.py
dianeyeo/LeetCode
b814831e7a4296a4e95785b75ea5c540a3fca63d
[ "MIT" ]
null
null
null
Python/climbingStairs.py
dianeyeo/LeetCode
b814831e7a4296a4e95785b75ea5c540a3fca63d
[ "MIT" ]
null
null
null
Python/climbingStairs.py
dianeyeo/LeetCode
b814831e7a4296a4e95785b75ea5c540a3fca63d
[ "MIT" ]
null
null
null
""" https://leetcode.com/problems/climbing-stairs/ Difficulty: Easy You are climbing a staircase. It takes n steps to reach the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? Example 1: Input: n = 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 steps Example 2: Input: n = 3 Output: 3 Explanation: There are three ways to climb to the top. 1. 1 step + 1 step + 1 step 2. 1 step + 2 steps 3. 2 steps + 1 step Constraints: 1 <= n <= 45 """ class Solution: def climbStairs(self, n: int) -> int: # using iteration steps = [1,2] # can either take 1 or 2 steps i = 2 # steps index while i < n: steps.append(steps[i-1] + steps[i-2]) # accessing the steps[i] i += 1 return steps[n-1] # the nth number in steps
24.216216
96
0.618304
752107d49f9d1fb5b3b701b760135b110516d36e
2,296
py
Python
py/examples/header.py
orlandoojr1/wave
e86d0c87c6c67e510fb4e1fa571982ca0a09f33c
[ "Apache-2.0" ]
1
2022-03-02T21:54:36.000Z
2022-03-02T21:54:36.000Z
py/examples/header.py
orlandoojr1/wave
e86d0c87c6c67e510fb4e1fa571982ca0a09f33c
[ "Apache-2.0" ]
null
null
null
py/examples/header.py
orlandoojr1/wave
e86d0c87c6c67e510fb4e1fa571982ca0a09f33c
[ "Apache-2.0" ]
null
null
null
# Header # Use a header card to display a page #header. # --- from h2o_wave import site, ui image = 'https://images.pexels.com/photos/220453/pexels-photo-220453.jpeg?auto=compress&h=750&w=1260' commands = [ ui.command(name='profile', label='Profile', icon='Contact'), ui.command(name='preferences', label='Preferences', icon='Settings'), ui.command(name='logout', label='Logout', icon='SignOut'), ] page = site['/demo'] page['header1'] = ui.header_card( box='1 1 9 1', title='Transparent header', subtitle='And now for something completely different!', image='https://wave.h2o.ai/img/h2o-logo.svg', items=[ ui.button(name='btn1', label='Button 1'), ui.button(name='btn2', label='Button 2'), ui.button(name='btn3', label='Button 3'), ], secondary_items=[ui.textbox(name='search', icon='Search', width='300px', placeholder='Search...')], color='transparent' ) page['header2'] = ui.header_card( box='1 2 9 1', title='Card color header', subtitle='And now for something completely different!', items=[ui.menu(image=image, items=commands)], secondary_items=[ ui.button(name='btn1', label='Link 1', link=True), ui.button(name='btn2', label='Link 2', link=True), ui.button(name='btn3', label='Link 3', link=True), ], nav=[ ui.nav_group('Menu', items=[ ui.nav_item(name='#menu/spam', label='Spam'), ui.nav_item(name='#menu/ham', label='Ham'), ui.nav_item(name='#menu/eggs', label='Eggs'), ]), ui.nav_group('Help', items=[ ui.nav_item(name='#about', label='About'), ui.nav_item(name='#support', label='Support'), ]) ], color='card', ) page['header3'] = ui.header_card( box='1 3 9 1', title='Primary color header', subtitle='And now for something completely different!', icon='Cycling', icon_color='$violet', items=[ui.menu(icon='Add', items=commands)], secondary_items=[ ui.tabs(name='menu', value='email', link=True, items=[ ui.tab(name='email', label='Mail', icon='Mail'), ui.tab(name='events', label='Events', icon='Calendar'), ui.tab(name='spam', label='Spam', icon='Heart'), ]), ] ) page.save()
35.323077
103
0.598432
161e7f199ddc24a0ec1c2c2acc07b3343b47d558
13,889
py
Python
notebooks/src/code/data/base.py
verdimrc/amazon-textract-transformer-pipeline
f3ae99ec3b8808d9edf7bc5ac003494cf1548293
[ "MIT-0" ]
22
2021-11-10T17:16:10.000Z
2022-03-31T19:39:50.000Z
notebooks/src/code/data/base.py
verdimrc/amazon-textract-transformer-pipeline
f3ae99ec3b8808d9edf7bc5ac003494cf1548293
[ "MIT-0" ]
4
2021-11-03T03:45:51.000Z
2022-01-28T03:30:57.000Z
notebooks/src/code/data/base.py
verdimrc/amazon-textract-transformer-pipeline
f3ae99ec3b8808d9edf7bc5ac003494cf1548293
[ "MIT-0" ]
4
2021-12-14T22:41:40.000Z
2022-02-04T15:30:10.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 """Base/common task data utilities for Amazon Textract + LayoutLM This module defines utilities common across the different task types (e.g. MLM, NER) """ # Python Built-Ins: from dataclasses import dataclass import json from math import ceil from numbers import Real import os import re from typing import Callable, Dict, Generator, List, Optional, Tuple # External Dependencies: import numpy as np import torch from torch.utils.data import Dataset from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import EvalPrediction import trp # Local Dependencies: from ..logging_utils import getLogger logger = getLogger("data.base") @dataclass class TaskData: """Base data interface exposed by the different task types (MLM, NER, etc) to training scripts Each new task module should implement a method get_task(data_args, tokenizer) -> TaskData """ train_dataset: Dataset data_collator: Optional[Callable] = None eval_dataset: Optional[Dataset] = None metric_computer: Optional[Callable[[EvalPrediction], Dict[str, Real]]] = None class ExampleSplitterBase: """Base interface for a dataset example splitter In dense document processing individual pages may often be significantly longer than the max_seq_len of a model - rendering simple truncation of the page a poor strategy. A splitter defines a reproducible algorithm to split document/page text into multiple examples to stay within the maximum sequence length supported by the model. """ @classmethod def n_examples(cls, n_tokens: int, max_content_seq_len: int) -> int: """Calculate how many individual examples are available within a given (long) text source""" raise NotImplementedError( "ExampleSplitterBase child class %s must implement n_examples()" % cls ) @classmethod def split( cls, word_texts: List[str], tokenizer: PreTrainedTokenizerBase, max_content_seq_len: int, ) -> List[Tuple[int, int]]: """Find a set of (start, end) slices to split words for samples <= max_content_seq_len""" # How do we split a tokenized? What makes sense to return? raise NotImplementedError("ExampleSplitterBase child class %s must implement split()" % cls) class NaiveExampleSplitter(ExampleSplitterBase): """Split sequences by word, and pull final sequence start forward if it comes up <50% max len This algorithm produces examples by splitting tokens on word boundaries, extending each sample until max_content_seq_len is filled. *IF* the final generated example is less than 50% of the maximum tokens, its start index will be pulled forward to consume as many words as will fit. Apart from this, there will be no overlap between examples. """ @classmethod def n_examples(cls, n_tokens: int, max_content_seq_len: int) -> int: return int(ceil(n_tokens / max_content_seq_len)) @classmethod def split( cls, word_texts: List[str], tokenizer: PreTrainedTokenizerBase, max_content_seq_len: int, ) -> List[Tuple[int, int]]: if not (word_texts and len(word_texts)): return [] tokenized = tokenizer(word_texts, add_special_tokens=False, is_split_into_words=True) # word_ids is List[Union[None, int]] mapping token index to word_texts index. In this case, # since special tokens are turned off, there are no None entries. word_ids = np.array(tokenized.word_ids(), dtype=int) n_tokens_total = len(word_ids) # Assuming word_ids is monotonically increasing (are there languages/tokenizers where it # wouldn't?), we can find the tokens which start a new word by seeing when word_ids goes up: token_is_new_word = np.diff(word_ids, prepend=-1) # (1 if token is new word, 0 otherwise) word_start_ixs = np.squeeze(np.argwhere(token_is_new_word > 0), axis=1) ix_start_word = 0 n_words = len(word_texts) splits = [] while ix_start_word < n_words: start_token = word_start_ixs[ix_start_word] end_token = start_token ix_end_word = ix_start_word # Seek forward to include as many words as fit: while ix_end_word < n_words: next_ix_end_word = ix_end_word + 1 next_end_token = ( word_start_ixs[next_ix_end_word] if next_ix_end_word < n_words else n_tokens_total ) if next_end_token - start_token > max_content_seq_len: break else: ix_end_word = next_ix_end_word end_token = next_end_token # Extreme edge case: # If the current word was longer than max_content_seq_len by itself, we need to skip it # to avoid an infinite loop if end_token == start_token: logger.warning( "Skipping individual 'word' which is longer than max_content_seq_len. " "Something is probably wrong with your data prep. Got word '%s'" % word_texts[ix_start_word] ) ix_start_word += 1 continue # If the resultant sample is short, also seek backward to add extra context: if end_token - start_token < max_content_seq_len * 0.5: while ix_start_word > 0: next_ix_start_word = ix_start_word - 1 next_start_token = word_start_ixs[next_ix_start_word] if end_token - next_start_token > max_content_seq_len: break else: ix_start_word = next_ix_start_word start_token = next_start_token # Log the split and move on to find the next one splits.append((ix_start_word, ix_end_word)) ix_start_word = ix_end_word return splits class TextractLayoutLMDatasetBase(Dataset): """Base class for PyTorch/Hugging Face dataset using Amazon Textract for LayoutLM-based models The base dataset assumes fixed/known length, which typically requires analyzing the source data on init - but avoids the complications of shuffling iterable dataset samples in a multi-process environment, or introducing SageMaker Pipe Mode and RecordIO formats. Source data is provided as a folder of Amazon Textract result JSONs, with an optional JSONLines manifest file annotating the documents in case the task is supervised. """ def __init__( self, textract_path: str, tokenizer: PreTrainedTokenizerBase, manifest_file_path: Optional[str] = None, textract_prefix: str = "", max_seq_len: int = 512, ): """Initialize a TextractLayoutLMDatasetBase Arguments --------- textract_path : str The local folder where Amazon Textract result JSONs (OCR outputs) are stored. tokenizer : transformers.tokenization_utils_base.PreTrainedTokenizerBase The tokenizer for the model to be used. manifest_file_path : Optional[str] Local path to a JSON-Lines Augmented Manifest File: Optional for self-supervised tasks, but typically mandatory for tasks that use annotations (like entity recognition). textract_prefix : str s3://... URI root prefix against which the files in `textract_path` are relative. This is used to map `textract-ref` URIs given in the manifest file to local paths. max_seq_len : int The maximum number of tokens per sequence for the target model to be trained. """ if not os.path.isdir(textract_path): raise ValueError("textract_path '%s' is not a valid folder" % textract_path) if not textract_path.endswith("/"): textract_path = textract_path + "/" self.textract_path = textract_path if manifest_file_path: if os.path.isfile(manifest_file_path): self.manifest_file_path = manifest_file_path elif os.path.isdir(manifest_file_path): contents = os.listdir(manifest_file_path) if len(contents) == 1: self.manifest_file_path = os.path.join(manifest_file_path, contents[0]) else: json_contents = list( filter( lambda s: re.search(r"\.jsonl?$", s), map(lambda s: s.lower(), contents) ) ) if len(json_contents) == 1: self.manifest_file_path = os.path.join( manifest_file_path, json_contents[0], ) else: raise ValueError( "Data manifest folder %s must contain exactly one file or exactly one " ".jsonl/.json file ...Got %s" % (manifest_file_path, contents) ) else: raise ValueError("Data manifest '%s' is not a local file or folder") else: self.manifest_file_path = manifest_file_path self.textract_prefix = textract_prefix self.tokenizer = tokenizer self.max_seq_len = max_seq_len def textract_s3uri_to_file_path(self, s3uri: str) -> str: """Map a textract-ref S3 URI from manifest to local file path, via textract_prefix""" textract_s3key = s3uri[len("s3://") :].partition("/")[2] if not textract_s3key.startswith(self.textract_prefix): raise ValueError( "Textract S3 URI %s object key does not start with provided " "textract_prefix '%s'" % (s3uri, self.textract_prefix) ) textract_relpath = textract_s3key[len(self.textract_prefix) :] if textract_relpath.startswith("/"): # Because os.path.join('anything', '/slash/prefixed') = '/slash/prefixed' textract_relpath = textract_relpath[1:] return os.path.join(self.textract_path, textract_relpath) def dataset_inputs(self) -> Generator[dict, None, None]: """Generate the sequence of manifest items with textract-ref URIs resolved locally Whether this dataset was instantiated with a manifest file (for annotations) or just as a folder of Amazon Textract JSON files, this method will yield a sequence of dicts containing {'textract-ref': str} resolved to the *local* path of the file, plus whatever other fields were present unchanged (in a manifest). """ if self.manifest_file_path: with open(self.manifest_file_path, "r") as f: for linenum, line in enumerate(f, start=1): logger.debug("Reading manifest line %s", linenum) record = json.loads(line) if "textract-ref" not in record: raise ValueError( f"Manifest line {linenum} missing required field 'textract-ref'" ) else: textract_ref = record["textract-ref"] if textract_ref.lower().startswith("s3://"): # Map S3 URI to local path: textract_ref = self.textract_s3uri_to_file_path(textract_ref) else: # textract_fle_path in manifest isn't an S3 URI - assume rel to channel if textract_ref.startswith("/"): textract_ref = self.textract_path + textract_ref[1:] else: textract_ref = self.textract_path + textract_ref # Check the resolved file path exists: if not os.path.isfile(textract_ref): raise ValueError( "(Manifest line {}) could not find textract file {}".format( linenum, textract_ref, ) ) record["textract-ref"] = textract_ref yield record else: for currpath, _, files in os.walk(self.textract_path): for file in files: yield {"textract-ref": os.path.join(currpath, file)} @classmethod def parse_textract_file(cls, file_path: str) -> trp.Document: """Load an Amazon Textract result JSON file via the Textract Response Parser library""" with open(file_path, "r") as f: return trp.Document(json.loads(f.read())) @property def max_content_seq_len(self): """Maximum content tokens per sequence after discounting required special tokens At this base level, datasets are assumed to have 2 special tokens: <CLS> (beginning of example) and <SEP> (end of example). """ return self.max_seq_len - 2 @dataclass class DummyDataCollator: """Data collator that just stacks tensors from inputs. For use with Dataset classes where the tokenization and collation leg-work is already done and HF's default "DataCollatorWithPadding" should explicitly *not* be used. """ def __call__(self, features): return {k: torch.stack([f[k] for f in features]) for k in features[0]}
44.94822
100
0.614947
fd77ad4c2c32403dcb0f798fe9ead6ba293ba928
1,280
py
Python
setup.py
fgregg/centered-potts
8140d17dc908370aeeef01165c720861aab01c4f
[ "MIT" ]
1
2017-05-02T10:40:15.000Z
2017-05-02T10:40:15.000Z
setup.py
fgregg/pseudolikelihood
8140d17dc908370aeeef01165c720861aab01c4f
[ "MIT" ]
1
2016-10-06T22:06:38.000Z
2016-10-29T14:23:01.000Z
setup.py
fgregg/centered-potts
8140d17dc908370aeeef01165c720861aab01c4f
[ "MIT" ]
1
2019-02-12T02:13:23.000Z
2019-02-12T02:13:23.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- try: from setuptools import setup except ImportError : raise ImportError("setuptools module required, please go to https://pypi.python.org/pypi/setuptools and follow the instructions for installing setuptools") setup( name='pseudolikelihood', url='https://github.com/fgregg/psuedolikelihood', version='0.1', author='Forest Gregg', author_email='fgregg@uchicago.edu', description='Estimate models with categorical, coupled outcomes using pseudolikelihood', packages=['pseudolikelihood'], install_requires=['numpy', 'sklearn', 'scipy'], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Information Analysis'], )
38.787879
159
0.653125
9005e528d095892a0674a73bae3e4886c682c0f3
937
py
Python
src/SnapSearch/error.py
liuyu81/SnapSearch-Client-Python
41857806c2b26f0537de2dcc23a145107a4ecd04
[ "MIT" ]
null
null
null
src/SnapSearch/error.py
liuyu81/SnapSearch-Client-Python
41857806c2b26f0537de2dcc23a145107a4ecd04
[ "MIT" ]
null
null
null
src/SnapSearch/error.py
liuyu81/SnapSearch-Client-Python
41857806c2b26f0537de2dcc23a145107a4ecd04
[ "MIT" ]
1
2018-03-04T20:24:14.000Z
2018-03-04T20:24:14.000Z
# -*- coding: utf-8 -*- """ SnapSearch.error ~~~~~~~~~~~~~~~~ :copyright: 2014 by `SnapSearch <https://snapsearch.io/>`_ :license: MIT, see LICENSE for more details. :author: `LIU Yu <liuyu@opencps.net>`_ :date: 2014/03/08 """ class SnapSearchError(Exception): """ Common base class for all SnapSearch errros. """ def __init__(self, *args, **kwds): super(SnapSearchError, self).__init__(*args) self.__data = kwds pass # void return def __getattr__(self, name): if name in self.__data: return self.__data[name] return getattr(super(SnapSearchError, self), name) pass class SnapSearchConnectionError(SnapSearchError): """ Cannot communicate with SnapSearch backend service. """ pass class SnapSearchDependencyError(SnapSearchError): """ Cannot import package(s) required by SnapSearch. """ pass
21.295455
62
0.621131
b61b35930c17bb80f2c7918b376f37f9465a28ee
16
py
Python
nutcracker/tests/__init__.py
FXIhub/nutcracker
6725166fb3ac1e3ead717e5a57a76238e10a9049
[ "BSD-2-Clause" ]
3
2017-04-30T18:00:19.000Z
2017-07-10T09:25:08.000Z
nutcracker/tests/__init__.py
FXIhub/nutcracker
6725166fb3ac1e3ead717e5a57a76238e10a9049
[ "BSD-2-Clause" ]
null
null
null
nutcracker/tests/__init__.py
FXIhub/nutcracker
6725166fb3ac1e3ead717e5a57a76238e10a9049
[ "BSD-2-Clause" ]
1
2020-12-17T20:03:10.000Z
2020-12-17T20:03:10.000Z
import test_all
8
15
0.875
93cfe8ee3acd6f9808d4467df1b81e4165c51e9e
2,268
py
Python
pushCube.py
nclslbrn/blender_script
19f8809826e9cfdc79422d815614f0834fa95930
[ "MIT" ]
2
2019-11-29T23:44:05.000Z
2019-11-30T11:16:28.000Z
pushCube.py
nclslbrn/blender_script
19f8809826e9cfdc79422d815614f0834fa95930
[ "MIT" ]
null
null
null
pushCube.py
nclslbrn/blender_script
19f8809826e9cfdc79422d815614f0834fa95930
[ "MIT" ]
null
null
null
import bpy import os import sys import bmesh # noqa dir = os.path.dirname(bpy.data.filepath) print(dir) if dir not in sys.path: sys.path.append(dir) from functions.cleanScene import cleanScene # noqa: E731 from classes.Pool import Pool # noqa: E731 D = bpy.data C = bpy.context # Delete everythings in the scene cleanScene('MESH') # Your creative code here N = 52 width = Pool(maxItems=N) width.update() height = [] depth = [] for i in range(N): height.append(Pool(maxItems=N)) height[i].update() for j in range(N): depth.append(Pool(maxItems=N)) depth[i*N + j].update() # Create a default mesh = bpy.data.meshes.new('Voxel') basic_cube = bpy.data.objects.new('original-voxel', mesh) basic_cube.location = (0, 0, 0) # Add the object into the scene. # C.scene.collection.objects.link(basic_cube) # Construct the bmesh cube and assign it to the blender mesh. bm = bmesh.new() bmesh.ops.create_cube(bm, size=0.25) bm.to_mesh(mesh) bm.free() cubeID = 0 def cloneCube(position, size): clone = basic_cube.copy() clone.name = 'VoxCopy-' + str(cubeID) # clone.data = basic_cube.data.copy() clone.scale = size clone.location = position C.scene.collection.objects.link(clone) x = 1 for nX in range(N): y = 1 dx = width.items[nX] for nY in range(N): z = 1 dy = height[nX].items[nY] for nZ in range(N): dz = depth[(nY * N) + nX].items[nZ] if dx > 0 and dy > 0 and dz > 0: # top left front cloneCube((x, y, z), (dx, dy, dz)) # top right front cloneCube((-x, y, z), (dx, dy, dz)) # bottom left front cloneCube((x, -y, z), (dx, dy, dz)) # top right front cloneCube((-x, -y, z), (dx, dy, dz)) # top left back cloneCube((x, y, -z), (dx, dy, dz)) # top right back cloneCube((-x, y, -z), (dx, dy, dz)) # bottom left back cloneCube((x, -y, -z), (dx, dy, dz)) # top right back cloneCube((-x, -y, -z), (dx, dy, dz)) cubeID += 1 z -= dz y -= dy x -= dx
22.909091
61
0.541887
69e3c694af947c49135bc8343511b0d30e289759
24,587
py
Python
bindings/java/c_generator.py
nirbheek/openwebrtc
838d6eedf2b4e53224a60f3da8529e6cc621359f
[ "BSD-2-Clause" ]
null
null
null
bindings/java/c_generator.py
nirbheek/openwebrtc
838d6eedf2b4e53224a60f3da8529e6cc621359f
[ "BSD-2-Clause" ]
null
null
null
bindings/java/c_generator.py
nirbheek/openwebrtc
838d6eedf2b4e53224a60f3da8529e6cc621359f
[ "BSD-2-Clause" ]
null
null
null
# Copyright (c) 2014, Ericsson AB. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. import config from functools import partial from collections import defaultdict from itertools import imap from java_type_signatures import type_signatures from base_generator import * C = BaseGenerator( default_line_prefix=config.C_INDENTATION, ) def jni_param(param): if param.jni_type: return param.jni_type + ' ' + param.jni_name return () def c_param(param): if param.c_type: return param.c_type + ' ' + param.c_name return () def c_arg(param): if param.c_type: return param.c_name return () def jni_arg(param): if param.jni_type: return param.jni_name return () @add_to(C) class Log(C.Lines): def __init__(self, level, msg, *args): self.msg = msg self.args = args self.level = level def _make_logfunc(level): @classmethod def logfunc(cls, msg, *args): return cls(level, msg, *args) return logfunc error = _make_logfunc('error') warning = _make_logfunc('warning') debug = _make_logfunc('debug') info = _make_logfunc('info') def __iter__(self): yield 'log_%s("%s"%s);' % (self.level, self.msg, (', ' if self.args else '') + flatjoin(self.args, ', ')) @add_to(C) class Assert(C.Lines): def __init__(self, val): self.val = val def __iter__(self): yield semi('g_assert(' + flatjoin(self.val, '') + ')') @add_to(C) class Throw(C.Lines): def __init__(self, *args): self.args = args def __iter__(self): yield 'THROW(' + flatjoin(self.args, '') + ');' @add_to(C) class ExceptionCheck(C.Lines): def __init__(self, value): self.value = value def __iter__(self): yield C.If(C.Env('ExceptionCheck'), C.Log('warning', 'exception at %s:%d', '__FILE__', '__LINE__'), C.Return(self.value), ) @classmethod def default(cls, value): return cls(value.parent.return_value.default_value) @add_to(C) class CommentHeader(C.Comment): def __iter__(self): l = len(self.text) yield '/**' + l * '*' + '**/' yield '/* ' + self.text + ' */' yield '/**' + l * '*' + '**/' @add_to(C) class Function(C.FunctionBlock): modifiers = ['static'] def __init__(self, name, return_type='void', params=None, **kwargs): super(Function, self).__init__(**kwargs) self.name = name self.return_type = return_type self.params = params or [] @property def start(self): return [self.definition, '{'] @staticmethod def callback(callback, body=None, **kwargs): args = { 'return_type': callback.params.return_value.c_type, 'name': 'callback_' + callback.value.gir_type, 'params': map(c_param, callback.params), 'body': [TypeConversions.params_to_jni(callback.params, body=body or [], push_frame=True)], } if callback.params.return_value.name is not None: args['body'] += [C.Return(callback.params.return_value.c_name)] args.update(kwargs) return C.Function(**args) @add_to(C) class JniExport(C.FunctionBlock): modifiers = ['JNIEXPORT'] def __init__(self, package=None, clazz=None, subclass=None, method_name=None, return_type='void', params=None, **kwargs): super(JniExport, self).__init__(**kwargs) self.package = package self.clazz = clazz self.subclass = subclass self.method_name = method_name self.return_type = return_type self.java_params = params or [] @property def name(self): return '_'.join(prune_empty('Java', self.package.replace('.', '_'), self.clazz, self.subclass, self.method_name, )) @property def params(self): return ['JNIEnv* env'] + self.java_params @property def start(self): return [self.definition, '{'] @staticmethod def default(function, body=[], **kwargs): params = map(jni_param, function.params.java_params) if function.params.instance_param is None: params = ['jclass jclazz'] + params else: params = [jni_param(function.params.instance_param)] + params args = { 'return_type': function.params.return_value.jni_type, 'method_name': function.name, 'params': params, 'body': [C.TypeConversions.params_to_c(function.params, body=body, get_env=False)], } if function.params.return_value.name is not None: args['body'] += [C.Return(function.params.return_value.jni_name)] args.update(kwargs) return JniExport(**args) @add_to(C) class Helper(C.Call): helper_functions = {} used_helpers = [] def __init__(self, name, *args): super(Helper, self).__init__(name, *args) func = self.helper_functions.pop(name, None) if func is not None: self.used_helpers.append(func) @classmethod def add_helper(cls, name, func): cls.helper_functions[name] = func @classmethod def enumerate_used_helpers(cls): return cls.used_helpers @add_to(C) class Cache(C.Lines): cached_classes = defaultdict(partial(defaultdict, dict)) def __init__(self, *args): self.args = list(args) def __iter__(self): yield 'cache_' + flatjoin(self.args, '_') @classmethod def clazz(cls, *args): classname = flatjoin(args, '$') cls.cached_classes[type_signatures[classname]['_path']] return cls(*args) def _make_cacher(func): @classmethod def cacher(cls, *args): methodname = args[-1] signatures = type_signatures[flatjoin(args[:-1], '$')] cls.cached_classes[signatures['_path']][func][methodname] = signatures[methodname] return cls(*args) return cacher method = _make_cacher('GetMethodID') static_method = _make_cacher('GetStaticMethodID') field = _make_cacher('GetFieldID') static_field = _make_cacher('GetStaticFieldID') @classmethod def default_class(cls, clazz): cls.cached_classes[clazz.java_class_path] return cls(clazz.java_type) @classmethod def default_method(cls, func): val = func.value args = None if hasattr(val, 'outer_java_type'): args = [val.outer_java_type, val.java_type, func.name] else: args = [val.java_type, func.name] cls.cached_classes[val.java_class_path]['GetMethodID'][func.name] = func.method_signature return cls(*args) @classmethod def default_enum_member(cls, enum, member): typ = enum.type if hasattr(enum.type, 'inner_type'): typ = enum.type.inner_type cls.cached_classes[typ.java_class_path]['GetStaticFieldID'][member.name] = typ.java_signature return cls(enum.name, member.name) @classmethod def enumerate_cached_classes(cls): cache_declarations = [] jni_onload_cache = [] for classpath, clazz in Cache.cached_classes.items(): classname = classpath[classpath.rfind('/')+1:] to_cache_var = lambda *args: '_'.join(['cache'] + classname.split('$') + list(args)) classvar = to_cache_var() cache_declarations += [C.Decl('static jclass', classvar)] jni_onload_cache += [ C.Assign(classvar, C.Env('FindClass', quot(classpath))), C.ExceptionCheck('0'), C.Assign(classvar, C.Env('NewGlobalRef', classvar)), C.ExceptionCheck('0'), ] for getfunc, method in clazz.items(): var_type = 'jmethodID' if 'Method' in getfunc else 'jfieldID' for methodname, signature in method.items(): methodvar = to_cache_var(methodname) if methodname == '_constructor': methodname = '<init>' cache_declarations += [C.Decl('static ' + var_type, methodvar)] jni_onload_cache += [ C.Log('debug', 'getting %s.%s', quot(classname), quot(methodname)), C.Assign(methodvar, C.Env(getfunc, classvar, quot(methodname), quot(signature))), C.ExceptionCheck('0'), ] cache_declarations.append('') jni_onload_cache.append('') return cache_declarations[:-1], jni_onload_cache[:-1] @add_to(C) class Env(C.Lines): return_type_table = { 'V': 'Void', ';': 'Object', 'Z': 'Boolean', 'B': 'Byte', 'C': 'Char', 'S': 'Short', 'I': 'Int', 'J': 'Long', 'F': 'Float', 'D': 'Double', } def __init__(self, name, *args): self.name = name self.args = args @staticmethod def tuple_to_type(args): clazz = type_signatures[flatjoin(args[:-1], '$')] method = clazz[args[-1]] return Env.return_type_table[method[-1]] @classmethod def method(cls, name, method_tuple, *args): return cls('Call' + Env.tuple_to_type(method_tuple) + 'Method', name, C.Cache.method(*method_tuple), *args) @classmethod def static_method(cls, method_tuple, *args): return cls('CallStatic' + Env.tuple_to_type(method_tuple) + 'Method', C.Cache.clazz(method_tuple[:-1]), C.Cache.static_method(*method_tuple), *args) @classmethod def field(cls, name, field_tuple): return cls('Get' + Env.tuple_to_type(field_tuple) + 'Field', name, C.Cache.field(*field_tuple)) @classmethod def new(cls, clazz, *args): return cls('NewObject', C.Cache.clazz(clazz), C.Cache.method(clazz, '_constructor'), *args) @classmethod def throw(cls, clazz, msg): return cls('ThrowNew', C.Cache.clazz(clazz), msg) @classmethod def callback(cls, callback): type = Env.return_type_table[callback.params.return_value.java_signature[-1]] cached = None if hasattr(callback.value, 'outer_java_type'): cached = (callback.value.outer_java_type, callback.value.java_type, callback.name) else: cached = (callback.value.java_type, callback.name) return cls('Call' + type + 'Method', map(jni_arg, callback.params.closure_params), C.Cache.default_method(callback), *map(jni_arg, callback.params.java_params) ) def __iter__(self): yield semi('(*env)->{name}({args})'.format( name=self.name, args=flatjoin(['env'] + list(flatten(self.args)), ', '), )) @add_to(C) class TypeConversions(C.Lines): def __init__(self, conversions, return_conversion, body=None, get_env=True, push_frame=False, **kwargs): super(TypeConversions, self).__init__(**kwargs) self.conversions = list(conversions) self.return_conversion = return_conversion self.body = body or [] self.get_env = get_env self.push_frame = push_frame def __iter__(self): conversion = [ prune_empty([p.declarations for p in self.conversions] + [self.get_env and C.Decl('JNIEnv*', 'env')]), self.get_env and C.Assign('env', C.Call('get_jni_env')), C.If(Env('PushLocalFrame', str(config.LOCAL_FRAME_SIZE)), C.Log('warning', 'failed to push local frame at %s:%d', '__FILE__', '__LINE__') ) if self.push_frame else [], prune_empty([p.conversion for p in self.conversions]), self.body, prune_empty(p.cleanup for p in reversed(self.conversions)), Env('PopLocalFrame', 'NULL') if self.push_frame else [], ] if self.return_conversion is not None: conversion = [self.return_conversion.declarations] + conversion + [ self.return_conversion.conversion, self.return_conversion.cleanup, ] return iter(intersperse(prune_empty(conversion), '')) @staticmethod def params_to_c(params, **kwargs): ret = params.return_value return TypeConversions([param.transform_to_c() for param in params], ret.transform_to_jni() if ret.name is not None else None, **kwargs) @staticmethod def params_to_jni(params, **kwargs): ret = params.return_value return TypeConversions([param.transform_to_jni() for param in params], ret.transform_to_c() if ret.name is not None else None, **kwargs) def make_function_gen(package, classname): def gen(function): call = C.Call(function.c_name, map(c_arg, function.params)) ret = function.params.return_value if ret.name is not None: call = C.Assign(ret.c_name, call) out = JniExport.default(function, package=package, clazz=classname, body=call) if ret.name is not None: out.body = [C.Decl(ret.c_type, ret.c_name)] + out.body return out return gen def make_callback_gen(package, classname): def gen(callback): call = C.Env.callback(callback) ret = callback.params.return_value if ret.name is not None: call = C.Assign(ret.jni_name, call) out = C.Function.callback(callback, package=package, clazz=classname, body=call) if ret.name is not None: out.body = [C.Decl(ret.jni_type, ret.jni_name)] + out.body return out return gen def make_signal_accessors_gen(package, classname): def gen(signal): connect_args = map(c_arg, signal.add_listener.params) connect_args[0] = 'G_OBJECT(' + connect_args[0] + ')' connect_args.insert(1, quot(signal.signal_name)) connect_args += [C.Helper('jobject_wrapper_closure_notify').name, '0'] ret = signal.add_listener.params.return_value connecter = C.JniExport.default(signal.add_listener, package=package, clazz=classname, body=[C.Assign(ret.c_name, C.Call('g_signal_connect_data', connect_args))], ) connecter.body = [C.Decl(ret.c_type, ret.c_name)] + connecter.body disconnect_args = map(c_arg, signal.remove_listener.params) disconnect_args[0] = 'G_OBJECT(' + disconnect_args[0] + ')' disconnecter = C.JniExport.default(signal.remove_listener, package=package, clazz=classname, body=C.Call('g_signal_handler_disconnect', disconnect_args), ) return [connecter, disconnecter] return gen def gen_class(package, clazz): body = [C.CommentHeader(clazz.name)] gen_signal_accessors = make_signal_accessors_gen(package, clazz.name) for attr in ['constructors', 'functions', 'methods']: body += [C.Comment(attr) if getattr(clazz, attr) else None] body += map(make_function_gen(package, clazz.name), getattr(clazz, attr)) body += [C.Comment('signals') if clazz.signals else None] body += map(make_callback_gen(package, clazz.name), clazz.signals) body += map(gen_signal_accessors, clazz.signals) body += [C.Comment('properties') if clazz.properties else None] for prop in clazz.properties: body += [C.Comment(prop.name)] if prop.readable: # getter ret = prop.getter.params.return_value get_params = map(c_arg, prop.getter.params) + [quot(prop.name), '&' + ret.c_name, 'NULL'] func = C.JniExport.default(prop.getter, package=package, clazz=clazz.name, body=[ C.Call('g_object_get', get_params), ]) if ret.name is not None: func.body = [C.Decl(ret.c_type, ret.c_name)] + func.body body.append(func) # change listener transform = ret.transform_to_jni() func = C.Function( package=package, clazz=clazz.name, name='callback_' + prop.signal.value.gir_type, return_type=prop.signal.params.return_value.c_type, params=map(c_param, prop.signal.params), body=[TypeConversions([p.transform_to_jni() for p in prop.signal.params.params], None, push_frame=True, body=[ '(void) c_pspec;', C.Call('g_object_get', get_params), transform.conversion, C.Env.callback(prop.signal), transform.cleanup, ])], ) func.body = [ C.Decl(ret.c_type, ret.c_name), transform.declarations, ] + func.body body.append(func) body += gen_signal_accessors(prop.signal) if prop.writable: # setter ret = prop.setter.params.return_value params = map(c_arg, prop.setter.params) params.insert(1, quot(prop.name)) params.append('NULL') func = C.JniExport.default(prop.setter, package=package, clazz=clazz.name, body=[ C.Call('g_object_set', params) ]) body += [func] return intersperse(prune_empty(body), '') def gen_namespace(namespace, package): body = [] package = package + '.' + namespace.symbol_prefix body += map(make_callback_gen(package, namespace.identifier_prefix), namespace.callbacks) body += map(make_function_gen(package, namespace.identifier_prefix), namespace.functions) body += map(partial(gen_class, package), namespace.classes) return body def add_helpers(namespace): for enum in namespace.enums: C.Helper.add_helper(enum.name + '_to_java_enum', C.Function(enum.name + '_to_java_enum', return_type='jobject', params=['JNIEnv* env', enum.type.c_type + ' value'], body=[ C.Decl('jfieldID', 'fieldId'), C.Decl('jobject', 'result'), '', C.Switch('value', cases=[ (member.c_name, C.Assign('fieldId', C.Cache.default_enum_member(enum, member))) for member in enum.members ]), '', C.Assert('fieldId'), C.Assign('result', Env('GetStaticObjectField', C.Cache(enum.name), 'fieldId')), C.ExceptionCheck('NULL'), C.Return('result'), ] ) ) def gen_source(namespaces, include_headers): body = [] package = config.PACKAGE_ROOT for namespace in namespaces: add_helpers(namespace) for namespace in namespaces: body += gen_namespace(namespace, package) jobject_wrapper_struct = C.Block( _start = 'typedef union {', body = [ C.Decl('jobject', 'obj'), C.Decl('jweak', 'weak'), ], _end = '} JObjectWrapper;', ) native_destructor = [C.JniExport( package=package, clazz='NativeInstance', method_name='nativeDestructor', return_type='void', params=['jclass clazz', 'jlong instance_pointer'], body=[ C.Decl('GWeakRef*', 'ref'), C.Decl('GObject*', 'gobj'), C.Decl('JObjectWrapper*', 'wrapper'), '(void) clazz;', '', C.Assign('ref', 'instance_pointer', cast='GWeakRef*'), C.Assign('gobj', C.Call('g_weak_ref_get', 'ref')), C.Call('g_weak_ref_clear', 'ref'), C.Call('g_free', 'ref'), '', C.If('!gobj', C.Env.throw('IllegalStateException', '"GObject ref was NULL at finalization"'), C.Return()), C.Log('debug', 'unrefing GObject[%p]', 'gobj'), C.Assign('wrapper', C.Call('g_object_get_data', 'gobj', '"java_instance"'), cast='JObjectWrapper*'), C.If('wrapper', [ C.Call('g_object_set_data', 'gobj', '"java_instance"', 'NULL'), C.Helper('jobject_wrapper_destroy', 'wrapper', 'TRUE'), ]), C.Call('g_object_unref', 'gobj'), ]), ] helper_functions = Helper.enumerate_used_helpers() # cached classes need to be enumerated last cache_declarations, jni_onload_cache = C.Cache.enumerate_cached_classes() jni_onload = Function( name='JNI_OnLoad', return_type='jint', params=['JavaVM* vm', 'void* reserved'], modifiers=[], body=[ C.Decl('JNIEnv*', 'env'), '', C.Assign('jvm', 'vm'), C.Assign('env', C.Call('get_jni_env')), '', jni_onload_cache, '', C.Return('JNI_VERSION_1_6'), ] ) include_headers = ['jni.h', 'android/log.h'] + include_headers includes = '\n'.join('#include <' + h + '>' for h in include_headers) body = [ includes, HEADER, cache_declarations, GET_JNI_ENV, jni_onload, jobject_wrapper_struct, ] + helper_functions + [native_destructor] + body body = intersperse(prune_empty(body), '') return flatjoin(body, '\n') HEADER = """ #define android_assert(st) if (!(st)) {{ __android_log_write(ANDROID_LOG_ERROR, "OpenWebRTC", "Assertion failed at "G_STRINGIFY(__LINE__));}} #undef g_assert #define g_assert android_assert #define log_verbose(st, ...) __android_log_print(ANDROID_LOG_VERBOSE, "{0}", "["G_STRINGIFY(__LINE__)"]: "st, ##__VA_ARGS__); #define log_debug(st, ...) __android_log_print(ANDROID_LOG_DEBUG, "{0}", "["G_STRINGIFY(__LINE__)"]: "st, ##__VA_ARGS__); #define log_info(st, ...) __android_log_print(ANDROID_LOG_INFO, "{0}", "["G_STRINGIFY(__LINE__)"]: "st, ##__VA_ARGS__); #define log_warning(st, ...) __android_log_print(ANDROID_LOG_WARN, "{0}", "["G_STRINGIFY(__LINE__)"]: "st, ##__VA_ARGS__); #define log_error(st, ...) __android_log_print(ANDROID_LOG_ERROR, "{0}", "["G_STRINGIFY(__LINE__)"]: "st, ##__VA_ARGS__); """.format(config.LOG_TAG) GET_JNI_ENV = [ C.Decl('static JavaVM*', 'jvm'), '', C.Function('get_jni_env', return_type='JNIEnv*', params=[], body=[ C.Decl('JNIEnv*', 'env'), C.Decl('int', 'ret'), '', C.Assign('env', 'NULL'), C.Assign('ret', C.Call('(*jvm)->GetEnv', 'jvm', '(void**)&env', 'JNI_VERSION_1_6')), '', C.IfElse(ifs=['ret == JNI_EDETACHED', 'ret == JNI_EVERSION'], bodies=[ C.IfElse(ifs=['(*jvm)->AttachCurrentThread(jvm, (JNIEnv**) &env, NULL) != 0'], bodies=[ C.Log.error('JNI: failed to attach thread'), C.Log.info('JNI: successfully attached to thread'), ]), C.Log.error('JNI: version not supported'), ] ), '', C.Assert('env'), C.Return('env'), ] ), ]
35.07418
156
0.591288
f7ce2354a30ac2c192f9ee8b0bd81398ee83201c
1,913
py
Python
apps/department/models.py
xiaozhi-12121/Django_web
4d54b205542c52b8bd8309eaedc16fcdee405273
[ "Apache-2.0" ]
null
null
null
apps/department/models.py
xiaozhi-12121/Django_web
4d54b205542c52b8bd8309eaedc16fcdee405273
[ "Apache-2.0" ]
2
2020-05-12T01:15:38.000Z
2020-05-12T01:15:38.000Z
apps/department/models.py
xiaozhi-12121/Django_web
4d54b205542c52b8bd8309eaedc16fcdee405273
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # __author__ : stray_camel # __description__ : 用户部门管理等 # __REFERENCES__ : # __date__: 2020/09/28 09 from django.db import models from django.conf import settings from datetime import datetime AUTH_USER_MODEL = getattr(settings, 'AUTH_USER_MODEL', 'auth.User') class Department(models.Model): class Meta: verbose_name = """部门信息管理""" verbose_name_plural = verbose_name db_table = "department_message" parent_department = models.IntegerField( verbose_name=u"父类部门id", null=True, blank=True) name = models.CharField(max_length=20, verbose_name=u"部门名称", default="") manager = models.IntegerField(verbose_name=u"部门经理", null=True, blank=True) def __str__(self): return self.name class Staff(models.Model): class Meta: verbose_name = """员工信息管理""" verbose_name_plural = verbose_name db_table = "staff_message" department = models.IntegerField(verbose_name="部门", null=True, blank=True) name = models.CharField(max_length=20, verbose_name=u"员工姓名") email = models.EmailField( default='straycamel@straycamel.com', verbose_name=u"邮箱") gradSchool = models.CharField(max_length=20, verbose_name=u"毕业学校") address = models.CharField(max_length=50, verbose_name=u"住址", default='2') sex = models.CharField(max_length=10, choices=( ('female', u'女'), ('male', u'男')), verbose_name=u"性别") age = models.IntegerField(verbose_name=u"年龄") birthday = models.DateField(verbose_name=u"生日") tel = models.CharField(max_length=20, verbose_name=u"手机号") salary_num = models.IntegerField(default=0, verbose_name=u"薪资") add_time = models.DateTimeField(default=datetime.now, verbose_name=u"入职时间") user = models.IntegerField(blank=True, null=False) is_activate = models.BooleanField(default=True) def __str__(self): return self.name
38.26
79
0.701516
d7cc12445229b4aab2cf21a1859676a492396478
7,723
py
Python
scripts/smile.py
hummat/occupancy_networks
c7b89d58f3839fb56df53c37288d22c33529aeac
[ "MIT" ]
null
null
null
scripts/smile.py
hummat/occupancy_networks
c7b89d58f3839fb56df53c37288d22c33529aeac
[ "MIT" ]
null
null
null
scripts/smile.py
hummat/occupancy_networks
c7b89d58f3839fb56df53c37288d22c33529aeac
[ "MIT" ]
null
null
null
import os import numpy as np import torch import trimesh from im2mesh import config from im2mesh.utils import binvox_rw, voxels from im2mesh.checkpoints import CheckpointIO from im2mesh.utils.visualize import visualize_pointcloud, visualize_voxels def load_binvox(file_path: str): with open(file_path, "rb") as f: voxels_in = binvox_rw.read_as_3d_array(f) return voxels_in.data.astype(np.float32) def load_pointcloud(file_path): pointcloud_dict = np.load(file_path) return pointcloud_dict['points'].astype(np.float32) def load_mesh(file_path: str, process: bool = True, padding: float = 0.1): mesh = trimesh.load(file_path, process=False) if process: total_size = (mesh.bounds[1] - mesh.bounds[0]).max() scale = total_size / (1 - padding) centers = (mesh.bounds[1] + mesh.bounds[0]) / 2 mesh.apply_translation(-centers) mesh.apply_scale(1 / scale) return mesh def process_mesh(mesh, padding: float = 0, flip_yz: bool = False, with_transforms: bool = False): bbox = mesh.bounding_box.bounds loc = (bbox[0] + bbox[1]) / 2 scale = (bbox[1] - bbox[0]).max() / (1 - padding) mesh.apply_translation(-loc) mesh.apply_scale(1 / scale) if flip_yz: angle = 90 / 180 * np.pi R = trimesh.transformations.rotation_matrix(angle, [1, 0, 0]) mesh.apply_transform(R) if with_transforms: return mesh, loc, scale return mesh def visualize_all(file_path): visualize_pointcloud(load_pointcloud(os.path.join(file_path, "points.npz")), show=True) visualize_voxels(load_binvox(os.path.join(file_path, "model.binvox")), show=True) def visualize_from_mesh(file_path: str, flip_yz: bool = False, use_trimes: bool = False): mesh = load_mesh(file_path) mesh, loc, scale = process_mesh(mesh, flip_yz=flip_yz, with_transforms=True) pointcloud = mesh.sample(2048).astype(np.float32) if use_trimes: voxel = trimesh.exchange.binvox.voxelize_mesh(mesh, dimension=32, remove_internal=False, center=True, binvox_path="/home/matthias/Downloads/binvox") binvox = trimesh.exchange.binvox.export_binvox(voxel) # Writes in 'xzy' format by default with open("viz.binvox", "wb") as f: f.write(binvox) else: voxels_occ = voxels.voxelize_ray(mesh, 32) voxels_out = binvox_rw.Voxels(voxels_occ, (32,) * 3, translate=loc, scale=scale, axis_order="xyz") # 'xyz' means 'voxel_occ' is in this format with open("viz.binvox", "wb") as f: voxels_out.write(f) # Always writes in 'xzy' format with open("viz.binvox", "rb") as f: voxels_in = binvox_rw.read_as_3d_array(f) # Expects data in 'xzy' format (otherwise set 'fix_coords' to 'False' voxels_in = voxels_in.data.astype(np.float32) visualize_pointcloud(pointcloud, show=True) visualize_voxels(voxels_in, show=True) def from_pointcloud(visualize=False): path_prefix = "/home/matthias/Data/Ubuntu/git/occupancy_networks" default_path = os.path.join(path_prefix, "configs/default.yaml") model_path = os.path.join(path_prefix, "configs/pointcloud/onet_pretrained.yaml") cfg = config.load_config(model_path, default_path) device = torch.device("cuda") mesh = load_mesh("/home/matthias/Data/Ubuntu/data/aae_workspace/models/case.ply") # mesh = load_mesh(os.path.join(path_prefix, "data/ShapeNet.build/03797390/2_watertight/cc5b14ef71e87e9165ba97214ebde03.off")) mesh = process_mesh(mesh, flip_yz=True) points = mesh.sample(100000).astype(np.float32) side = np.random.randint(3) xb = [points[:, side].min(), points[:, side].max()] length = np.random.uniform(0.7 * (xb[1] - xb[0]), (xb[1] - xb[0])) ind = (points[:, side] - xb[0]) <= length points = points[ind] indices = np.random.randint(points.shape[0], size=300) points = points[indices, :] noise = 0.005 * np.random.randn(*points.shape) noise = noise.astype(np.float32) points = points + noise if visualize: # visualize_pointcloud(points, show=True) trimesh.PointCloud(points).show() data = {'inputs': torch.unsqueeze(torch.from_numpy(points), dim=0)} model = config.get_model(cfg, device) checkpoint_io = CheckpointIO("..", model=model) # checkpoint_io.load(os.path.join(path_prefix, cfg['test']['model_file'])) checkpoint_io.load(cfg['test']['model_file']) model.eval() print(model) generator = config.get_generator(model, cfg, device) mesh = generator.generate_mesh(data, return_stats=False) if visualize: mesh.show() else: mesh.export("smile.off") def from_voxel_grid(use_trimesh: bool = True): path_prefix = "/home/matthias/Data/Ubuntu/git/occupancy_networks" default_path = os.path.join(path_prefix, "configs/default.yaml") model_path = os.path.join(path_prefix, "configs/voxels/onet_pretrained.yaml") cfg = config.load_config(model_path, default_path) device = torch.device("cuda") # mesh = load_mesh("/home/matthias/Data/Ubuntu/data/aae_workspace/models/case.ply") # mesh = load_mesh(os.path.join(path_prefix, "data/ShapeNet.build/02876657/2_watertight/1ae823260851f7d9ea600d1a6d9f6e07.off")) # mesh, loc, scale = process_mesh(mesh, with_transforms=True, flip_yz=False) # assert mesh.is_watertight # # if use_trimesh: # voxel = trimesh.exchange.binvox.voxelize_mesh(mesh, # dimension=32, # remove_internal=False, # center=True, # binvox_path="/home/matthias/Downloads/binvox") # # binvox = trimesh.exchange.binvox.export_binvox(voxel) # with open("smile.binvox", "wb") as f: # f.write(binvox) # else: # voxels_occ = voxels.voxelize_ray(mesh, 32) # voxels_out = binvox_rw.Voxels(voxels_occ, (32,) * 3, # translate=loc, scale=scale, # axis_order="xyz") # 'xyz' means 'voxel_occ' is in this format # with open("smile.binvox", "wb") as f: # voxels_out.write(f) # Always writes in 'xzy' format # # with open("smile.binvox", "rb") as f: # voxels_in = binvox_rw.read_as_3d_array(f) # with open(os.path.join(path_prefix, "data/ShapeNet/02958343/1a0bc9ab92c915167ae33d942430658c/model.binvox"), "rb") as f: # voxels_in = binvox_rw.read_as_3d_array(f) # # voxels_in = voxels_in.data.astype(np.float32) # visualize_voxels(voxels_in, show=True) # data = {'inputs': torch.unsqueeze(torch.from_numpy(voxels_in), dim=0)} dataset = config.get_dataset('test', cfg, return_idx=True) test_loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=0, shuffle=True) data = next(iter(test_loader)) visualize_voxels(data["voxels"][0].cpu().numpy(), show=True) model = config.get_model(cfg, device, dataset) checkpoint_io = CheckpointIO("..", model=model) checkpoint_io.load(cfg['test']['model_file']) model.eval() generator = config.get_generator(model, cfg, device) mesh = generator.generate_mesh(data, return_stats=False) mesh.export("smile.off") if __name__ == "__main__": from_pointcloud(visualize=True)
39.403061
131
0.633692
a805c1bdda7c9aa19dd33076a8bc50217ba0950e
567
py
Python
zvt/recorders/sina/money_flow_recorder.py
ringwraith/zvt
ff5844ff7991132bbf38d464f29f461dba5efa14
[ "MIT" ]
1
2019-08-24T02:26:51.000Z
2019-08-24T02:26:51.000Z
zvt/recorders/sina/money_flow_recorder.py
ringwraith/zvt
ff5844ff7991132bbf38d464f29f461dba5efa14
[ "MIT" ]
null
null
null
zvt/recorders/sina/money_flow_recorder.py
ringwraith/zvt
ff5844ff7991132bbf38d464f29f461dba5efa14
[ "MIT" ]
1
2020-05-16T09:42:02.000Z
2020-05-16T09:42:02.000Z
# -*- coding: utf-8 -*- from zvt.recorders.recorder import TimeSeriesDataRecorder class MoneyFlowRecorder(TimeSeriesDataRecorder): url = 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/MoneyFlow.ssl_bkzj_zjlrqs?page=1&num=1000&sort=opendate&asc=0&bankuai=0%2Fnew_jrhy' 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/MoneyFlow.ssl_bkzj_bk?page=1&num=20&sort=netamount&asc=0&fenlei=1' 'http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/MoneyFlow.ssl_bkzj_bk?page=1&num=20&sort=netamount&asc=0&fenlei=0'
70.875
162
0.797178
8268f65c5fc0ff1344f218b5fa17ee701150edbb
1,072
py
Python
checkin.py
Andyvon230/glados_checkin_1426593702_qq_com
37e0c47aab198be2284927d9ee381fe684c17cbf
[ "MIT" ]
null
null
null
checkin.py
Andyvon230/glados_checkin_1426593702_qq_com
37e0c47aab198be2284927d9ee381fe684c17cbf
[ "MIT" ]
null
null
null
checkin.py
Andyvon230/glados_checkin_1426593702_qq_com
37e0c47aab198be2284927d9ee381fe684c17cbf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import logging import requests import os result = b'success\n' # url url = "https://glados.rocks/api/user/checkin" # cookie cookie = os.environ["COOKIE"] payload = "{\"token\":\"glados_network\"}" headers = { 'authority': 'glados.rocks', 'accept': 'application/json, text/plain, */*', 'dnt': '1', 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.80 Safari/537.36', 'content-type': 'application/json;charset=UTF-8', 'origin': 'https://glados.rocks', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://glados.rocks/console/checkin', 'accept-language': 'zh-CN,zh;q=0.9', 'cookie': cookie } def do_action(): logger = logging.getLogger() response = requests.request("POST", url, headers=headers, data = payload) result = response.text.encode('utf8') logger.info(result) print(result) return result if __name__ == '__main__': do_action()
28.972973
140
0.634328
54562e62dd3611d8d7d7adb9d186c063fde646ac
8,459
py
Python
software/scripts/epixHRGen1FD.py
ejangelico/cryo-on-epix-hr-dev
354bf205a67d3c43b4e815823dd78cec85d3b672
[ "BSD-3-Clause-LBNL" ]
1
2021-05-24T22:01:54.000Z
2021-05-24T22:01:54.000Z
software/scripts/epixHRGen1FD.py
ejangelico/cryo-on-epix-hr-dev
354bf205a67d3c43b4e815823dd78cec85d3b672
[ "BSD-3-Clause-LBNL" ]
1
2021-02-25T20:27:36.000Z
2021-03-31T17:55:08.000Z
software/scripts/epixHRGen1FD.py
ejangelico/cryo-on-epix-hr-dev
354bf205a67d3c43b4e815823dd78cec85d3b672
[ "BSD-3-Clause-LBNL" ]
4
2020-10-21T21:39:37.000Z
2021-07-24T02:19:34.000Z
#!/usr/bin/env python3 #----------------------------------------------------------------------------- # Title : ePix 10ka board instance #----------------------------------------------------------------------------- # File : epix10kaDAQ.py evolved from evalBoard.py # Author : Ryan Herbst, rherbst@slac.stanford.edu # Modified by: Dionisio Doering # Created : 2016-09-29 # Last update: 2017-02-01 #----------------------------------------------------------------------------- # Description: # Rogue interface to ePix 10ka board #----------------------------------------------------------------------------- # This file is part of the rogue_example software. It is subject to # the license terms in the LICENSE.txt file found in the top-level directory # of this distribution and at: # https://confluence.slac.stanford.edu/display/ppareg/LICENSE.html. # No part of the rogue_example software, including this file, may be # copied, modified, propagated, or distributed except according to the terms # contained in the LICENSE.txt file. #----------------------------------------------------------------------------- import threading import signal import atexit import yaml import time import sys import argparse import PyQt4.QtGui import PyQt4.QtCore import pyrogue.utilities.prbs import pyrogue.utilities.fileio import pyrogue.gui import rogue.hardware.pgp import rogue.hardware.data import surf import surf.axi import surf.protocols.ssi import ePixViewer as vi import ePixFpga as fpga from XilinxKcu1500Pgp3.XilinxKcu1500Pgp3 import * # Set the argument parser parser = argparse.ArgumentParser() # Add arguments parser.add_argument( "--type", type = str, required = True, help = "define the PCIe card type (either pgp-gen3 or kcu1500)", ) parser.add_argument( "--start_gui", type = bool, required = False, default = True, help = "true to show gui", ) parser.add_argument( "--verbose", type = bool, required = False, default = True, help = "true for verbose printout", ) # Get the arguments args = parser.parse_args() # Add PGP virtual channels if ( args.type == 'pgp-gen3' ): # Create the PGP interfaces for ePix hr camera pgpL0Vc0 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',1,0) # Data & cmds pgpL0Vc1 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',1,1) # Registers for ePix board pgpL0Vc2 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',1,2) # PseudoScope pgpL0Vc3 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',1,3) # Monitoring (Slow ADC) pgpL1Vc0 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',0,0) # Data (when using all four lanes it should be swapped back with L0) pgpL2Vc0 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',2,0) # Data pgpL3Vc0 = rogue.hardware.pgp.PgpCard('/dev/pgpcard_0',3,0) # Data print("") print("PGP Card Version: %x" % (pgpL0Vc0.getInfo().version)) elif ( args.type == 'kcu1500' ): pgpL0Vc0 = rogue.hardware.data.DataCard('/dev/datadev_0',(1*32)+0) # Data & cmds pgpL0Vc1 = rogue.hardware.data.DataCard('/dev/datadev_0',(1*32)+1) # Registers for ePix board pgpL0Vc2 = rogue.hardware.data.DataCard('/dev/datadev_0',(1*32)+2) # PseudoScope pgpL0Vc3 = rogue.hardware.data.DataCard('/dev/datadev_0',(1*32)+3) # Monitoring (Slow ADC) pgpL1Vc0 = rogue.hardware.data.DataCard('/dev/datadev_0',(0*32)+0) # Data (when using all four lanes it should be swapped back with L0) pgpL2Vc0 = rogue.hardware.data.DataCard('/dev/datadev_0',(2*32)+0) # Data pgpL3Vc0 = rogue.hardware.data.DataCard('/dev/datadev_0',(3*32)+0) # Data else: raise ValueError("Invalid type (%s)" % (args.type) ) # Add data stream to file as channel 1 File writer dataWriter = pyrogue.utilities.fileio.StreamWriter(name='dataWriter') pyrogue.streamConnect(pgpL0Vc0, dataWriter.getChannel(0x1)) cmd = rogue.protocols.srp.Cmd() pyrogue.streamConnect(cmd, pgpL0Vc0) # Create and Connect SRP to VC1 to send commands srp = rogue.protocols.srp.SrpV3() pyrogue.streamConnectBiDir(pgpL0Vc1,srp) ############################################# # Microblaze console printout ############################################# class MbDebug(rogue.interfaces.stream.Slave): def __init__(self): rogue.interfaces.stream.Slave.__init__(self) self.enable = False def _acceptFrame(self,frame): if self.enable: p = bytearray(frame.getPayload()) frame.read(p,0) print('-------- Microblaze Console --------') print(p.decode('utf-8')) ####################################### # Custom run control ####################################### class MyRunControl(pyrogue.RunControl): def __init__(self,name): pyrogue.RunControl.__init__(self,name, description='Run Controller ePix HR empty', rates={1:'1 Hz', 2:'2 Hz', 4:'4 Hz', 8:'8 Hz', 10:'10 Hz', 30:'30 Hz', 60:'60 Hz', 120:'120 Hz'}) self._thread = None def _setRunState(self,dev,var,value,changed): if changed: if self.runState.get(read=False) == 'Running': self._thread = threading.Thread(target=self._run) self._thread.start() else: self._thread.join() self._thread = None def _run(self): self.runCount.set(0) self._last = int(time.time()) while (self.runState.value() == 'Running'): delay = 1.0 / ({value: key for key,value in self.runRate.enum.items()}[self._runRate]) time.sleep(delay) self._root.ssiPrbsTx.oneShot() self._runCount += 1 if self._last != int(time.time()): self._last = int(time.time()) self.runCount._updated() ############################## # Set base ############################## class EpixBoard(pyrogue.Root): def __init__(self, guiTop, cmd, dataWriter, srp, **kwargs): super().__init__(name='ePixHRGen1',description='ePix HR No ASIC', **kwargs) #self.add(MyRunControl('runControl')) self.add(dataWriter) self.guiTop = guiTop @self.command() def Trigger(): cmd.sendCmd(0, 0) # Add Devices if ( args.type == 'kcu1500' ): coreMap = rogue.hardware.data.DataMap('/dev/datadev_0') self.add(XilinxKcu1500Pgp3(memBase=coreMap)) self.add(fpga.EpixHRGen1FD(name='EpixHRGen1', offset=0, memBase=srp, hidden=False, enabled=True)) self.add(pyrogue.RunControl(name = 'runControl', description='Run Controller ePix HR Gen1 No ASIC', cmd=self.Trigger, rates={1:'1 Hz', 2:'2 Hz', 4:'4 Hz', 8:'8 Hz', 10:'10 Hz', 30:'30 Hz', 60:'60 Hz', 120:'120 Hz'})) # debug mbcon = MbDebug() pyrogue.streamTap(pgpL0Vc0,mbcon) #pyrogue.streamTap(pgpL1Vc0,mbcon) #pyrogue.streamTap(pgpL2Vc0,mbcon) #pyrogue.streamTap(pgpL3Vc0,mbcon) mbcon1 = MbDebug() pyrogue.streamTap(pgpL1Vc0,mbcon1) mbcon2 = MbDebug() pyrogue.streamTap(pgpL2Vc0,mbcon2) mbcon3 = MbDebug() pyrogue.streamTap(pgpL3Vc0,mbcon3) if (args.verbose): dbgData = rogue.interfaces.stream.Slave() if (args.verbose): dbgData.setDebug(60, "DATA Verbose 0[{}]".format(0)) if (args.verbose): pyrogue.streamTap(pgpL0Vc0, dbgData) if (args.verbose): dbgData = rogue.interfaces.stream.Slave() if (args.verbose): dbgData.setDebug(60, "DATA Verbose 1[{}]".format(0)) if (args.verbose): pyrogue.streamTap(pgpL1Vc0, dbgData) if (args.verbose): dbgData = rogue.interfaces.stream.Slave() if (args.verbose): dbgData.setDebug(60, "DATA Verbose 2[{}]".format(0)) if (args.verbose): pyrogue.streamTap(pgpL2Vc0, dbgData) if (args.verbose): dbgData = rogue.interfaces.stream.Slave() if (args.verbose): dbgData.setDebug(60, "DATA Verbose 3[{}]".format(0)) if (args.verbose): pyrogue.streamTap(pgpL3Vc0, dbgData) # Create GUI appTop = PyQt4.QtGui.QApplication(sys.argv) guiTop = pyrogue.gui.GuiTop(group='ePixHRGEn1Gui') ePixBoard = EpixBoard(guiTop, cmd, dataWriter, srp) ePixBoard.start(pollEn=False, pyroGroup=None, pyroHost=None) guiTop.addTree(ePixBoard) guiTop.resize(800,800) # Create GUI if (args.start_gui): appTop.exec_() # Close window and stop polling def stop(): mNode.stop() ePixBoard.stop() exit() # Start with: ipython -i scripts/epix10kaDAQ.py for interactive approach print("Started rogue mesh and epics V3 server. To exit type stop()")
35.099585
224
0.623005
eddfdb42e7b9d1f96056c8395b79635da0778079
1,606
py
Python
utils.py
yjs1224/TextSteganalysis
3b391f67c37cf2dea964639d201ea5f65fdcf9ba
[ "MIT" ]
6
2021-12-17T13:39:04.000Z
2022-03-09T09:12:39.000Z
utils.py
yjs1224/TextSteganalysis
3b391f67c37cf2dea964639d201ea5f65fdcf9ba
[ "MIT" ]
1
2022-01-17T09:52:49.000Z
2022-01-22T14:05:10.000Z
utils.py
yjs1224/TextSteganalysis
3b391f67c37cf2dea964639d201ea5f65fdcf9ba
[ "MIT" ]
null
null
null
import json import sklearn.metrics as metrics class MyDict(dict): __setattr__ = dict.__setitem__ # def __setattr__(self, key, value): # try: # self[key] = value # except: # raise AttributeError(key) # __getattr__ = dict.__getitem__ def __getattr__(self, item): try: return self[item] except: raise AttributeError(item) class Config(object): def __init__(self, config_path): configs = json.load(open(config_path, "r", encoding="utf-8")) self.configs = self.dictobj2obj(configs) self.configs.state_dict = configs def dictobj2obj(self, dictobj): if not isinstance(dictobj, dict): return dictobj d = MyDict() for k, v in dictobj.items(): d[k] = self.dictobj2obj(v) return d def get_configs(self): return self.configs def compute_metrics(task_name, preds, labels, stego_label=1): assert len(preds) == len(labels), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}" if task_name in ["steganalysis", "graph_steganalysis"]: return {"accuracy": metrics.accuracy_score(labels, preds), "macro_f1":metrics.f1_score(labels, preds, average="macro"), "precision":metrics.precision_score(labels, preds, pos_label=stego_label), "recall":metrics.recall_score(labels, preds, pos_label=stego_label), "f1_score":metrics.f1_score(labels, preds, pos_label=stego_label)} else: raise KeyError(task_name)
33.458333
118
0.627646
d720407a42faf44bd067444a1b3406b9fc5ee4ad
375
py
Python
lahja/tools/benchmark/utils/config.py
vaporydev/lahja
10fb6276d2312629cdbc7367fa3a0057656b540b
[ "MIT" ]
null
null
null
lahja/tools/benchmark/utils/config.py
vaporydev/lahja
10fb6276d2312629cdbc7367fa3a0057656b540b
[ "MIT" ]
null
null
null
lahja/tools/benchmark/utils/config.py
vaporydev/lahja
10fb6276d2312629cdbc7367fa3a0057656b540b
[ "MIT" ]
null
null
null
from typing import ( Tuple, ) from lahja import ( ConnectionConfig, ) def create_consumer_endpoint_configs(num_processes: int) -> Tuple[ConnectionConfig, ...]: return tuple( ConnectionConfig.from_name(create_consumer_endpoint_name(i)) for i in range(num_processes) ) def create_consumer_endpoint_name(id: int) -> str: return f"consumer_{id}"
20.833333
98
0.725333
00c95f43de77f3d87521365358907b478be7f2df
573
py
Python
tests/test_bigdict.py
zpz/bigdict
1cd32885aa0ce908ca824411f7662fa2439af1bd
[ "MIT" ]
3
2021-07-23T03:15:19.000Z
2021-09-12T06:03:45.000Z
tests/test_bigdict.py
zpz/bigdict
1cd32885aa0ce908ca824411f7662fa2439af1bd
[ "MIT" ]
5
2021-07-08T06:48:28.000Z
2021-07-19T03:47:21.000Z
tests/test_bigdict.py
zpz/bigdict
1cd32885aa0ce908ca824411f7662fa2439af1bd
[ "MIT" ]
null
null
null
from uuid import uuid4 from bigdict import Bigdict def test_bigdict(): bd = Bigdict.new() print(bd) bd['a'] = 3 bd['b'] = 4 bd[9] = [1, 2, 'a'] bd[('a', 3)] = {'a': 3, 'b': 4} uid = str(uuid4()) bd['uid'] = uid assert len(bd) == 5 bd2 = bd.view() assert bd2['a'] == 3 assert bd2['b'] == 4 assert bd2[9] == [1, 2, 'a'] assert bd2[('a', 3)] == {'a': 3, 'b': 4} assert bd2['uid'] == uid del bd['b'] assert 'b' not in bd assert len(bd) == 4 bd.flush() assert len(bd2) == 5 bd.destroy()
17.90625
44
0.462478
e6a1ea49bd8370f359c7943e51249dae61a11c3f
1,371
py
Python
chouette_iot/metrics/plugins/__init__.py
akatashev/chouette-iot
bab56df266fffbc9d1332eebb8f2f5cafac7ba6a
[ "Apache-2.0" ]
1
2020-06-10T10:13:53.000Z
2020-06-10T10:13:53.000Z
chouette_iot/metrics/plugins/__init__.py
akatashev/chouette-iot
bab56df266fffbc9d1332eebb8f2f5cafac7ba6a
[ "Apache-2.0" ]
null
null
null
chouette_iot/metrics/plugins/__init__.py
akatashev/chouette-iot
bab56df266fffbc9d1332eebb8f2f5cafac7ba6a
[ "Apache-2.0" ]
null
null
null
""" chouette.metrics.plugins """ # pylint: disable=too-few-public-methods from typing import Dict, Optional, Type from pykka import ActorRef # type: ignore from ._collector_plugin import CollectorPluginActor from ._docker_collector import DockerCollectorPlugin from ._dramatiq_collector import DramatiqCollectorPlugin from ._host_collector import HostCollectorPlugin from ._k8s_collector import K8sCollectorPlugin from ._tegrastats_collector import TegrastatsCollectorPlugin __all__ = [ "PluginsFactory", ] class PluginsFactory: """ PluginsFactory class creates plugins actors and returns their ActorRefs. """ plugins: Dict[str, Type[CollectorPluginActor]] = { "dramatiq": DramatiqCollectorPlugin, "host": HostCollectorPlugin, "k8s": K8sCollectorPlugin, "tegrastats": TegrastatsCollectorPlugin, "docker": DockerCollectorPlugin, } @classmethod def get_plugin(cls, plugin_name: str) -> Optional[ActorRef]: """ Takes a plugin name and returns an ActorRef if such plugin exists. Args: plugin_name: Plugin name as a string. Returns: ActorRef or None. """ plugin_class = cls.plugins.get(plugin_name) if not plugin_class: return None actor_ref: ActorRef = plugin_class.get_instance() return actor_ref
28.5625
76
0.708242
24cfa13c25be758965b8305c2e91840bed929b07
7,366
py
Python
run_details/generate_run.py
sealuzh/docker-ecosystem-paper
5c8b253062796baf5d154bc6f9660a7d05d3dad5
[ "Apache-2.0" ]
5
2017-05-19T15:41:46.000Z
2021-08-03T16:52:56.000Z
run_details/generate_run.py
sealuzh/docker-ecosystem-paper
5c8b253062796baf5d154bc6f9660a7d05d3dad5
[ "Apache-2.0" ]
1
2019-11-18T09:26:23.000Z
2019-11-18T09:26:23.000Z
run_details/generate_run.py
sealuzh/docker-ecosystem-paper
5c8b253062796baf5d154bc6f9660a7d05d3dad5
[ "Apache-2.0" ]
1
2017-05-20T13:54:14.000Z
2017-05-20T13:54:14.000Z
#!/usr/bin/python # Do not judge a man by the quality of his research code… # while his intentions were good, his will broke under the # time pressure of the conference submission deadline. # ...And now stop complaining and enjoy the perils of reproducibility. (J.C.) import psycopg2 import sys def main(): # get a connection, if a connect cannot be made an exception will be raised here conn = psycopg2.connect(host=sys.argv[1], database=sys.argv[2], user=sys.argv[3], password=sys.argv[4],port=sys.argv[5]) # conn.cursor will return a cursor object, you can use this cursor to perform queries cursor = conn.cursor() run_diff_breakdown(cursor) def row_format(row): return " & ".join(row) ### RUN Diff Type queries def run_diff_breakdown(cursor): print "Breakdown of RUN Diff Type instructions" print "Breakdown of All Changes" print row_format(['All', 'Add', 'Mod', 'Rem']) diff_types = ['', 'Add', 'Update', 'Del'] top_list = [0, 1000, 100] rows = [] row_index = 0 for label, run_list in all_lists().iteritems(): rows.append([label]) for top in top_list: print label + ", Top: " + str(top) for diff_type in diff_types: value = round(run_diff_proportion(cursor, run_list, diff_type, top), 2) color = cellcolor(value) column = cellcolor_format(color) + str(value) print diff_type + ": " + str(column) rows[row_index].append(column) row_index += 1 for row in rows: print row_format(row) def cellcolor_format(color): if color == "": return "" return "\cellcolor{" + color + "} " def cellcolor(value): #\cellcolor{mid} if value < 0.01: return "" if value < 0.02: return "lowest" if value < 0.05: return "low" if value < 0.10: return "midlow" if value < 0.2: return "mid" if value < 0.4: return "midhigh" if value < 0.5: return "high" return "highest" """0.00 - white 0.01 - lowest 0.02 - 0.05 - low 0.06 - 0.10 - midlow 0.11 - 0.2 - mid 0.21 - 0.4 - midhigh 0.41 - 0.5 - high""" def run_diff_proportion(cursor, executable_list = '', diff_type = '', top = 0): population = float(run_diff_count(cursor, '', diff_type, top)) count = run_diff_count(cursor, executable_list, diff_type, top) return count / population def run_diff_count(cursor, executable_list = '', diff_type = '', top = 0): top_join, top_where = diff_top_query_sql_parts(top) diff_type_where = diff_type_query_sql_part(diff_type) executable_list_where = "" if executable_list == '' else "executable in %(executable_list)s" where = ["diff_state = 'COMMIT_COMMIT'", "instruction = 'RUN'", executable_list_where, top_where, diff_type_where] where = filter(None, where) # remove empty elements sql = "select count(*) FROM diff d join diff_type dt on d.diff_id = dt.diff_id " + top_join + " WHERE " + " and ".join(where) #use mogrify instead of execute if you want to see the resulting SQL statement if executable_list == '': #print cursor.mogrify(sql, { 'type' : diff_type + "%%"}) cursor.execute(sql, { 'type' : diff_type + "%%"}) else: cursor.execute(sql, { 'type' : diff_type + "%%",'executable_list' : tuple(executable_list), }) return cursor.fetchone()[0] def diff_type_query_sql_part(diff_type): if diff_type == '': return '' return " change_type like %(type)s " def diff_top_query_sql_parts(top): if top == 100 or top == 1000: # restrict to top100 or top1000 projects if param given top_join = " join repo_diff_type rdt on dt.diff_type_id = rdt.diff_type_id " top_where = " rdt.repo_path in (select distinct(repo_path) from top" + str(top) + ")" return top_join, top_where return "", "" ### RUN current queries def run_breakdown(cursor): print "Breakdown of RUN instructions" print "All & T1000 & T100" # get population numbers all_population = float(run_population(cursor)) t1000_population = float(run_population(cursor, 1000)) t100_population = float(run_population(cursor, 100)) #print all_population, t1000_population, t100_population sum_all = 0 sum_t1000 = 0 sum_t100 = 0 for label, run_list in all_lists().iteritems(): all = run_count(cursor, run_list) t1000 = run_count(cursor, run_list, 1000) t100 = run_count(cursor, run_list, 100) all_proportional = round(all / all_population, 3) t1000_proportional = round(t1000 / t1000_population, 3) t100_proportional = round(t100 / t100_population, 3) sum_all += all sum_t1000 += t1000 sum_t100 += t100 print row_format([label, str(all_proportional), str(t1000_proportional), str(t100_proportional)]) # 'Other' is the remaining % all_other = round((all_population - sum_all) / all_population, 3) t1000_other = round((t1000_population - sum_t1000) / t1000_population, 3) t100_other = round((t100_population - sum_t100) / t100_population, 3) print row_format(["Other", str(all_other), str(t1000_other), str(t100_other)]) def run_population(cursor, top = 0): top_join, top_where = top_query_sql_parts(top) cursor.execute("select count(*) from df_run r " + top_join + " where r.current = true " + top_where) return cursor.fetchone()[0] def run_count(cursor, executable_list, top = 0): top_join, top_where = top_query_sql_parts(top) cursor.execute("select count(*) from df_run r " + top_join + " where r.current = true and r.executable in %(executable_list)s " + top_where, { 'executable_list' : tuple(executable_list), }) return cursor.fetchone()[0] def top_query_sql_parts(top): if top == 100 or top == 1000: # restrict to top100 or top1000 projects if param given top_join = " join snapshot s on s.snap_id = r.snap_id join dockerfile d on d.dock_id = s.dock_id " top_where = " and d.repo_path in (select repo_path from top" + str(top) + ")" return top_join, top_where return "", "" def all_lists(): return { 'Dependencies' : dependencies_list(), 'Filesystem' : filesystem_list(), 'Build/Execute' : build_execute_list(), 'Environment' : environment_list(), 'Permissions' : permissions_list()} def dependencies_list(): return ['apt-get', 'npm', 'yum', 'curl', 'pip', 'wget', 'git', 'apk', 'gem', 'bower', 'add-apt-repository', 'dpkg', 'rpm', 'bundle', 'apt-key', 'pip3', 'dnf', 'conda', 'cabal', 'easy_install', 'nvm', 'lein', 'composer', 'mvn', 'apk-install', 'apt', 'pecl', 'puppet', 'svn', 'godep'] def filesystem_list(): return ['echo', 'mkdir', 'rm', 'cd', 'tar', 'sed', 'ln', 'mv', 'cp', 'unzip', 'pacman', 'touch', 'ls', 'cat', 'find'] def build_execute_list(): return ['make', 'go', './configure', '/bin/bash', 'bash', 'python', 'service', 'sh', 'cmake', 'install', 'python3'] def environment_list(): return ['set', 'export', 'source', 'virtualenv'] def permissions_list(): return ['chmod', 'chown', 'useradd', 'groupadd', 'adduser', 'usermod', 'addgroup'] if __name__ == "__main__": main()
34.420561
290
0.631686
546053bf19bbf17c5f3f43fdfa3c7d3a0af93a4b
20,773
py
Python
src/popoto/models/base.py
tomcounsell/popoto
fc36d625a35393cd6f96afee6b13e849fe9cd242
[ "MIT" ]
5
2021-11-21T01:36:02.000Z
2022-01-28T23:16:51.000Z
src/popoto/models/base.py
tomcounsell/popoto
fc36d625a35393cd6f96afee6b13e849fe9cd242
[ "MIT" ]
1
2021-12-29T13:20:17.000Z
2021-12-29T13:20:17.000Z
src/popoto/models/base.py
tomcounsell/popoto
fc36d625a35393cd6f96afee6b13e849fe9cd242
[ "MIT" ]
null
null
null
import logging import redis from .encoding import encode_popoto_model_obj from .db_key import DB_key from .query import Query from ..fields.field import Field, VALID_FIELD_TYPES from ..fields.key_field_mixin import KeyFieldMixin from ..fields.sorted_field_mixin import SortedFieldMixin from ..fields.geo_field import GeoField from ..fields.relationship import Relationship from ..redis_db import POPOTO_REDIS_DB logger = logging.getLogger('POPOTO.model_base') global RELATED_MODEL_LOAD_SEQUENCE RELATED_MODEL_LOAD_SEQUENCE = set() class ModelException(Exception): pass class ModelOptions: def __init__(self, model_name): self.model_name = model_name self.hidden_fields = dict() self.explicit_fields = dict() self.key_field_names = set() # self.auto_field_names = set() # self.list_field_names = set() # self.set_field_names = set() self.relationship_field_names = set() self.sorted_field_names = set() self.geo_field_names = set() # todo: should this be a dict of related objects or just a list of field names? # self.related_fields = {} # model becomes graph node # todo: allow customizing this in model.Meta class self.db_class_key = DB_key(self.model_name) self.db_class_set_key = DB_key("$Class", self.db_class_key) self.abstract = False self.unique_together = [] self.index_together = [] self.parents = [] self.auto_created = False self.base_meta = None def add_field(self, field_name: str, field: Field): if field_name.startswith("_") and field_name not in self.hidden_fields: self.hidden_fields[field_name] = field elif field_name not in self.explicit_fields: self.explicit_fields[field_name] = field else: raise ModelException(f"{field_name} is already a Field on the model") if isinstance(field, KeyFieldMixin): self.key_field_names.add(field_name) # if field.auto: # self.auto_field_names.add(field_name) if isinstance(field, SortedFieldMixin): self.sorted_field_names.add(field_name) if isinstance(field, GeoField): self.geo_field_names.add(field_name) # elif isinstance(field, ListField): # self.list_field_names.add(field_name) if isinstance(field, Relationship): self.relationship_field_names.add(field_name) @property def fields(self) -> dict: return {**self.explicit_fields, **self.hidden_fields} @property def field_names(self) -> list: return list(self.fields.keys()) @property def db_key_length(self): return 1 + len(self.key_field_names) def get_db_key_index_position(self, field_name): return 1 + sorted(self.key_field_names).index(field_name) class ModelBase(type): """Metaclass for all Popoto Models.""" def __new__(cls, name, bases, attrs, **kwargs): # Initialization is only performed for a Model and its subclasses parents = [b for b in bases if isinstance(b, ModelBase)] if not parents: return super().__new__(cls, name, bases, attrs, **kwargs) # logger.debug({k: v for k, v in attrs.items() if not k.startswith('__')}) module = attrs.pop('__module__') new_attrs = {'__module__': module} attr_meta = attrs.pop('Meta', None) options = ModelOptions(name) options.parents = parents for obj_name, obj in attrs.items(): if obj_name.startswith("__"): # builtin or inherited private vars and methods new_attrs[obj_name] = obj elif isinstance(obj, Field): # save field instance # attr will be overwritten as a field.type # model will handle this and set default values options.add_field(obj_name, obj) elif callable(obj) or hasattr(obj, '__func__') or hasattr(obj, '__set__'): # a callable method or property new_attrs[obj_name] = obj elif obj_name.startswith("_"): # a private static attr not to be saved in the db new_attrs[obj_name] = obj else: raise ModelException( f"public model attributes must inherit from class Field. " f"Try using a private var (eg. _{obj_name})_" ) # todo: handle multiple inheritance # for base in parents: # for field_name, field in base.auto_fields.items(): # options.add_field(field_name, field) new_class = super().__new__(cls, name, bases, new_attrs) options.abstract = getattr(attr_meta, 'abstract', False) options.meta = attr_meta or getattr(new_class, 'Meta', None) options.base_meta = getattr(new_class, '_meta', None) new_class._meta = options new_class.objects = new_class.query = Query(new_class) return new_class class Model(metaclass=ModelBase): query: Query def __init__(self, **kwargs): cls = self.__class__ # self._ttl = kwargs.get('ttl', None) # self._expire_at = kwargs.get('expire_at', None) # allow init kwargs to set any base parameters self.__dict__.update(kwargs) # add auto KeyField if needed if not len(self._meta.key_field_names): from ..fields.shortcuts import AutoKeyField self._meta.add_field('_auto_key', AutoKeyField()) # prep AutoKeys with new default ids for field in self._meta.fields.values(): if hasattr(field, 'auto') and field.auto: field.set_auto_key_value() # set defaults for field_name, field in self._meta.fields.items(): setattr(self, field_name, field.default) # set field values from init kwargs for field_name in self._meta.fields.keys() & kwargs.keys(): setattr(self, field_name, kwargs.get(field_name)) # load relationships if len(self._meta.relationship_field_names): global RELATED_MODEL_LOAD_SEQUENCE is_parent_model = len(RELATED_MODEL_LOAD_SEQUENCE) == 0 for field_name in self._meta.relationship_field_names: if f"{self.__class__.__name__}.{field_name}" in RELATED_MODEL_LOAD_SEQUENCE: continue RELATED_MODEL_LOAD_SEQUENCE.add(f"{self.__class__.__name__}.{field_name}") field_value = getattr(self, field_name) if isinstance(field_value, Model): setattr(self, field_name, field_value) elif isinstance(field_value, str): setattr( self, field_name, self._meta.fields[field_name].model.query.get(redis_key=field_value) ) # todo: lazy load the instance from the db elif not field_value: setattr(self, field_name, None) else: raise ModelException(f"{field_name} expects model instance or redis_key") if is_parent_model: RELATED_MODEL_LOAD_SEQUENCE = set() self._ttl = None # todo: set default in child Meta class self._expire_at = None # todo: datetime? or timestamp? # validate initial attributes if not self.is_valid(null_check=False): # exclude null, will validate null values on pre-save raise ModelException(f"Could not instantiate class {self}") self._redis_key = None # _db_key used by Redis cannot be known without performance cost # _db_key is predicted until synced during save() call if None not in [getattr(self, key_field_name) for key_field_name in self._meta.key_field_names]: self._redis_key = self.db_key.redis_key self.obsolete_redis_key = None # to be used when db_key changes between loading and saving the object self._db_content = dict() # empty until synced during save() call # todo: create set of possible custom field keys @property def db_key(self) -> DB_key: """ the db key must include the class name - equivalent to db table name keys append alphabetically. if another order is required, propose feature request in GitHub issue possible solutions include param on each model's KeyField order=int OR model Meta: key_order = [keyname, keyname, ] OR both """ return DB_key(self._meta.db_class_key, [ getattr(self, key_field_name) or "None" for key_field_name in sorted(self._meta.key_field_names) ]) def __repr__(self): return f"<{self.__class__.__name__} Popoto object at {self.db_key.redis_key}>" def __str__(self): return str(self.db_key) def __eq__(self, other): """ equality method instances with the same key(s) and class are considered equal except when any key(s) are None, they are not equal to anything except themselves. for evaluating all instance values against each other, use something like this: self_dict = self._meta.fields.update((k, self.__dict__[k]) for k in set(self.__dict__).intersection(self._meta.fields)) other_dict = other._meta.fields.update((k, other.__dict__[k]) for k in set(other.__dict__).intersection(other._meta.fields)) return repr(dict(sorted(self_dict))) == repr(dict(sorted(other_dict))) """ try: if isinstance(other, self.__class__): # always False if if any KeyFields are None if (None in [ self._meta.fields.get(key_field_name) for key_field_name in self._meta.key_field_names ]) or (None in [ other._meta.fields.get(key_field_name) for key_field_name in other._meta.key_field_names ]): return repr(self) == repr(other) return self.db_key == other.db_key except: return False else: return False # @property # def field_names(self): # return [ # k for k, v in self.__dict__.items() # if all([not k.startswith("_"), k + "_meta" in self.__dict__]) # ] def is_valid(self, null_check=True) -> bool: """ todo: validate values - field.type ✅ - field.null ✅ - field.max_length ✅ - ttl, expire_at - todo """ for field_name in self._meta.field_names: # type check the field values against their class specified type, unless null/None if all([ getattr(self, field_name) is not None, not isinstance(getattr(self, field_name), self._meta.fields[field_name].type) ]): try: if getattr(self, field_name) is not None: if self._meta.fields[field_name].type in VALID_FIELD_TYPES: setattr(self, field_name, self._meta.fields[field_name].type(getattr(self, field_name))) else: pass # do not force typing if custom type is defined if not isinstance(getattr(self, field_name), self._meta.fields[field_name].type): raise TypeError(f"Expected {field_name} to be type {self._meta.fields[field_name].type}. " f"It is type {type(getattr(self, field_name))}") except TypeError as e: logger.error( f"{str(e)} \n Change the value or modify type on {self.__class__.__name__}.{field_name}" ) return False # check non-nullable fields if null_check and \ self._meta.fields[field_name].null is False and \ getattr(self, field_name) is None: error = f"{field_name} is None/null. " \ f"Set a value or set null=True on {self.__class__.__name__}.{field_name}" logger.error(error) return False # validate str max_length if self._meta.fields[field_name].type == str and \ getattr(self, field_name) and \ len(getattr(self, field_name)) > self._meta.fields[field_name].max_length: error = f"{field_name} is greater than max_length={self._meta.fields[field_name].max_length}" logger.error(error) return False if self._ttl and self._expire_at: raise ModelException("Can set either ttl and expire_at. Not both.") for field_name, field_value in self.__dict__.items(): if field_name in self._meta.fields.keys(): field_class = self._meta.fields[field_name].__class__ if not field_class.is_valid(self._meta.fields[field_name], field_value, null_check=null_check): error = f"Validation on [{field_name}] Field failed" logger.error(error) return False return True def pre_save(self, pipeline: redis.client.Pipeline = None, ignore_errors: bool = False, **kwargs): """ Model instance preparation for saving. """ if not self.is_valid(): error_message = "Model instance parameters invalid. Failed to save." if ignore_errors: logger.error(error_message) else: raise ModelException(error_message) return False # run any necessary formatting on field data before saving for field_name, field in self._meta.fields.items(): setattr( self, field_name, field.format_value_pre_save(getattr(self, field_name)) ) return pipeline if pipeline else True def save(self, pipeline: redis.client.Pipeline = None, ttl=None, expire_at=None, ignore_errors: bool = False, **kwargs): """ Model instance save method. Uses Redis HSET command with key, dict of values, ttl. Also triggers all field on_save methods. """ pipeline_or_success = self.pre_save(pipeline=pipeline, ignore_errors=ignore_errors, **kwargs) if not pipeline_or_success: return pipeline or False elif pipeline: pipeline = pipeline_or_success new_db_key = DB_key(self.db_key) # todo: why have a new key?? if self._redis_key != new_db_key.redis_key: self.obsolete_redis_key = self._redis_key # todo: implement and test tll, expire_at ttl, expire_at = (ttl or self._ttl), (expire_at or self._expire_at) """ 1. save object as hashmap 2. optionally set ttl, expire_at 3. add to class set 4. if obsolete key, delete and run field on_delete methods 5. run field on_save methods 6. save private version of compiled db key """ hset_mapping = encode_popoto_model_obj(self) # 1 self._db_content = hset_mapping # 1 if isinstance(pipeline, redis.client.Pipeline): pipeline = pipeline.hset(new_db_key.redis_key, mapping=hset_mapping) # 1 # if ttl is not None: # pipeline = pipeline.expire(new_db_key, ttl) # 2 # if expire_at is not None: # pipeline = pipeline.expire_at(new_db_key, expire_at) # 2 pipeline = pipeline.sadd(self._meta.db_class_set_key.redis_key, new_db_key.redis_key) # 3 if self.obsolete_redis_key and self.obsolete_redis_key != new_db_key.redis_key: # 4 for field_name, field in self._meta.fields.items(): pipeline = field.on_delete( # 4 model_instance=self, field_name=field_name, field_value=getattr(self, field_name), pipeline=pipeline, **kwargs ) pipeline.delete(self.obsolete_redis_key) # 4 self.obsolete_redis_key = None for field_name, field in self._meta.fields.items(): # 5 pipeline = field.on_save( # 5 self, field_name=field_name, field_value=getattr(self, field_name), # ttl=ttl, expire_at=expire_at, ignore_errors=ignore_errors, pipeline=pipeline, **kwargs ) self._redis_key = new_db_key.redis_key # 6 return pipeline else: db_response = POPOTO_REDIS_DB.hset(new_db_key.redis_key, mapping=hset_mapping) # 1 # if ttl is not None: # POPOTO_REDIS_DB.expire(new_db_key, ttl) # 2 # if expire_at is not None: # POPOTO_REDIS_DB.expireat(new_db_key, ttl) # 2 POPOTO_REDIS_DB.sadd(self._meta.db_class_set_key.redis_key, new_db_key.redis_key) # 2 if self.obsolete_redis_key and self.obsolete_redis_key != new_db_key.redis_key: # 4 for field_name, field in self._meta.fields.items(): field.on_delete( # 4 model_instance=self, field_name=field_name, field_value=getattr(self, field_name), pipeline=None, **kwargs ) POPOTO_REDIS_DB.delete(self.obsolete_redis_key) # 4 self.obsolete_redis_key = None for field_name, field in self._meta.fields.items(): # 5 field.on_save( # 5 self, field_name=field_name, field_value=getattr(self, field_name), # ttl=ttl, expire_at=expire_at, ignore_errors=ignore_errors, pipeline=None, **kwargs ) self._redis_key = new_db_key.redis_key # 6 return db_response @classmethod def create(cls, pipeline: redis.client.Pipeline = None, **kwargs): instance = cls(**kwargs) pipeline_or_db_response = instance.save(pipeline=pipeline) return pipeline_or_db_response if pipeline else instance @classmethod def load(cls, db_key: str = None, **kwargs): return cls.query.get(db_key=db_key or cls(**kwargs).db_key) def delete(self, pipeline: redis.client.Pipeline = None, *args, **kwargs): """ Model instance delete method. Uses Redis DELETE command with key. Also triggers all field on_delete methods. """ delete_redis_key = self._redis_key or self.db_key.redis_key """ 1. delete object as hashmap 2. delete from class set 3. run field on_delete methods 4. reset private vars """ if pipeline is not None: pipeline = pipeline.delete(delete_redis_key) # 1 pipeline = pipeline.srem(self._meta.db_class_set_key.redis_key, delete_redis_key) # 2 for field_name, field in self._meta.fields.items(): # 3 pipeline = field.on_delete( # 3 model_instance=self, field_name=field_name, field_value=getattr(self, field_name), pipeline=pipeline, **kwargs ) self._db_content = dict() # 4 return pipeline else: db_response = POPOTO_REDIS_DB.delete(delete_redis_key) # 1 POPOTO_REDIS_DB.srem(self._meta.db_class_set_key.redis_key, delete_redis_key) # 2 for field_name, field in self._meta.fields.items(): # 3 field.on_delete( # 3 model_instance=self, field_name=field_name, field_value=getattr(self, field_name), pipeline=None, **kwargs ) self._db_content = dict() # 4 return bool(db_response > 0) @classmethod def get_info(cls): from itertools import chain query_filters = list(chain(*[ field.get_filter_query_params(field_name) for field_name, field in cls._meta.fields.items() ])) return { 'name': cls.__name__, 'fields': cls._meta.field_names, 'query_filters': query_filters, }
40.811395
132
0.595051
5b45468fc5c36bb349ea054fdcf6af5d32223e46
599
py
Python
jccli/errors.py
zaro0508/jccli
1de9a7f493d14bbbe6f3d201eb1aa989cdeec5bb
[ "Apache-2.0" ]
null
null
null
jccli/errors.py
zaro0508/jccli
1de9a7f493d14bbbe6f3d201eb1aa989cdeec5bb
[ "Apache-2.0" ]
null
null
null
jccli/errors.py
zaro0508/jccli
1de9a7f493d14bbbe6f3d201eb1aa989cdeec5bb
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ .. currentmodule:: jccli.errors.py .. moduleauthor:: zaro0508 <zaro0508@gmail.com> Exceptions """ class JcCliError(Exception): """ Base class for all JC CLI errors """ class SystemUserNotFoundError(JcCliError): """ Jumpcloud system user is not found """ class GroupNotFoundError(JcCliError): """ Jumpcloud group is not found """ class NotAMemberError(JcCliError): """ A user or system is not a member of a group """ class MissingRequiredArgumentError(JcCliError): """ Required arguments are missing """
17.114286
47
0.649416
2d5d4645026898f173e67af899229420c00e39f2
6,785
py
Python
config-dump.py
Bond-o/config-dump
f472034850c0138a798a422fc3b32e8b68b57b0f
[ "MIT" ]
null
null
null
config-dump.py
Bond-o/config-dump
f472034850c0138a798a422fc3b32e8b68b57b0f
[ "MIT" ]
null
null
null
config-dump.py
Bond-o/config-dump
f472034850c0138a798a422fc3b32e8b68b57b0f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 __author__ = "Mike Bond" __copyright__ = "Copyright (c) 2021" __license__ = "MIT" __originalDate__ = "20210805" __modifiedDate__ = "20210805" __version__ = "0.1" __maintainer__ = "Mike Bond" __status__ = "Beta" """ config-dump.py executes the snmpset binary and passes Cisco SNMP OID to download a configuration file to a TFTP server. """ """Import modules""" import argparse import os import sys import random import time from termcolor import colored """Define Color Status""" error = '\033[1m\033[31m[!]\033[0m' warning = '\033[1m\033[33m[-]\033[0m' info = '\033[1m\033[94m[*]\033[0m' complete = '\033[1m\033[92m[+]\033[0m' """ Functions """ def snmp(auth,auth_pass,protocol,proto_pass,user,target_ip,tftp_ip): """ The snmp function that uses snmpset to download a config file based on args.type selection :param: auth :param: auth_pass :param: protocol :param: proto_pass :param: user :param: target_ip :param: tftp_ip :return: """ try: random_number = str(random.randint(100,999)) if protocol is not None: command = 'snmpset -v 3 -l authpriv -a {0} -A {1} -x {2} -X {3} -u {4} {5}'\ .format(auth,auth_pass,protocol,proto_pass,user,target_ip) else: command = 'snmpset -v 3 -l authpriv -a {0} -A {1} -u {2} {3}'\ .format(auth,auth_pass,user,target_ip) ccCopyProtocol = '.1.3.6.1.4.1.9.9.96.1.1.1.1.2.{0} i 1'.format(random_number) ccCopySourceFileType = '.1.3.6.1.4.1.9.9.96.1.1.1.1.3.{0} i 4'.format(random_number) ccCopyDestFileType = '.1.3.6.1.4.1.9.9.96.1.1.1.1.4.{0} i 1'.format(random_number) ccCopyServerAddress = '.1.3.6.1.4.1.9.9.96.1.1.1.1.5.{0} a {1}'.format(random_number,tftp_ip) ccCopyFileName = '.1.3.6.1.4.1.9.9.96.1.1.1.1.6.{0} s {1}-config.txt'.format(random_number,target_ip) ccCopyEntryRowStatus = '.1.3.6.1.4.1.9.9.96.1.1.1.1.14.{0} i 4'.format(random_number) dev_null = '>/dev/null 2>&1' session = command+' '+ccCopyProtocol+' '+ccCopySourceFileType+' '+ccCopyDestFileType+' '+ccCopyServerAddress+' '+\ ccCopyFileName+' '+ccCopyEntryRowStatus+' '+dev_null results = (os.system(session)) if results == 256: print (results) print("{0} Issue with SNMP Username and/or Password!".format(error)) return None if results == 512: print("{0} No SNMP Read/Write access or issue with encryption".format(error)) return None else: time.sleep(1) command = "netstat -anup | grep 69 >/dev/null 2>&1" results = os.system(command) if results == 0: if os.path.isfile("{0}-config.txt".format(target_ip)): print ("{0} Configuration file from {1} saved as {1}-config.txt in current working directory" .format(complete,target_ip)) return None else: print ("{0} Configuration file from {1} saved as {1}-config.txt in the root of the TFTP directory" .format(complete,target_ip)) return None else: print ("{0} Configuration file from {1} may have been saved on TFTP server {2}" .format(warning,target_ip,tftp_ip)) return None except Exception as e: print ("{0}".format(error),e) return None def main(): """ The main function that checks for root and then calls the snmp function :param: :return: """ if not os.geteuid() == 0: print("{0} Execute config-dump with sudo privileges or as root".format(error)) sys.exit(-1) command = "which snmpset >/dev/null 2>&1" results = os.system(command) if results != 0: print("{0} The snmpset binary not found on this device".format(error)) sys.exit(-1) if sys.platform == 'darwin': print("{0} Script not tested on OSX".format(warning)) sys.exit(-1) if args.protocol == 'AES': # Call the Function snmp; Noted issues with snmpset for AES encryption > 128 print("{0} Authentication issues persist with AES encryption above 128".format(warning)) snmp(args.auth,args.auth_pass,args.protocol,args.proto_pass,args.user,args.target,args.tftp) return None else: # Call the Function snmp snmp(args.auth,args.auth_pass,args.protocol,args.proto_pass,args.user,args.target,args.tftp) return None def print_art(): """ The print_art function prints the ASCII Art :param: :return: """ ascii_art1 = colored(""" ,-. ,-. ,-. ," . ,-. | | | | | |- | | | `-' `-' ' ' | ' `-| ' ,| `' """,'yellow',attrs=['bold']) ascii_art2 = colored(""" | ,-| . . ,-,-. ,-. | | | | | | | | | `-^ `-^ ' ' ' |-' | ' """,'red',attrs=['bold']) desc = 'Download a Cisco Device Configuration with '+colored('SNMPv3','green')+' to a TFTP server' version = colored('\t\t Version: ','red')+colored('{0} {1}','yellow').format(__version__,__status__) print ('{0} {1}'.format(ascii_art1,ascii_art2)) print (desc,flush=True) print ('{0}\n'.format(version)) if __name__ == "__main__": # Use ArgParse with mandatory flag of -t -a -A -u -s try: # Call the 'print_art' function print_art() parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) required = parser.add_argument_group("required arguments") required.add_argument("-t", "--target", type=str, help="Target SNMP Host IP Address",required=True) required.add_argument("-a", "--auth", type=str, help="MD5 or SHA Authentication Protocol",required=True) required.add_argument("-A","--auth-pass", type=str, help="MD5 or SHA Password",required=True) required.add_argument("-u", "--user", type=str, help="Username",required=True) required.add_argument("-s", "--tftp", type=str, help="TFTP Server IP Address", required=True) parser.add_argument("-x", "--protocol", type=str, help="DES or AES Protocol") parser.add_argument("-X", "--proto-pass", type=str, help="DES or AES Password") args = parser.parse_args() # Call the 'main' function main() except KeyboardInterrupt: print("{0} User Interrupt! Quitting....\n".format(error)) sys.exit(-1) except: raise exit()
37.905028
122
0.572587
d87a8062481fbda6380f5c5a7e7cb4de861a28e9
1,327
py
Python
src/11/implementing_remote_procedure_call/jsonrpcserver.py
tuanavu/python-gitbook
948a05e065b0f40afbfd22f697dff16238163cde
[ "MIT" ]
14
2017-05-20T04:06:46.000Z
2022-01-23T06:48:45.000Z
src/11/implementing_remote_procedure_call/jsonrpcserver.py
tuanavu/python-gitbook
948a05e065b0f40afbfd22f697dff16238163cde
[ "MIT" ]
1
2021-06-10T20:17:55.000Z
2021-06-10T20:17:55.000Z
src/11/implementing_remote_procedure_call/jsonrpcserver.py
tuanavu/python-gitbook
948a05e065b0f40afbfd22f697dff16238163cde
[ "MIT" ]
15
2017-03-29T17:57:33.000Z
2021-08-24T02:20:08.000Z
# rpcserver.py import json class RPCHandler: def __init__(self): self._functions = { } def register_function(self, func): self._functions[func.__name__] = func def handle_connection(self, connection): try: while True: # Receive a message func_name, args, kwargs = json.loads(connection.recv()) # Run the RPC and send a response try: r = self._functions[func_name](*args,**kwargs) connection.send(json.dumps(r)) except Exception as e: connection.send(json.dumps(str(e))) except EOFError: pass # Example use from multiprocessing.connection import Listener from threading import Thread def rpc_server(handler, address, authkey): sock = Listener(address, authkey=authkey) while True: client = sock.accept() t = Thread(target=handler.handle_connection, args=(client,)) t.daemon = True t.start() # Some remote functions def add(x, y): return x + y def sub(x, y): return x - y # Register with a handler handler = RPCHandler() handler.register_function(add) handler.register_function(sub) # Run the server rpc_server(handler, ('localhost', 17000), authkey=b'peekaboo')
26.019608
71
0.610399
71eaab5839846340e576f1a337c25f9b0a34a8aa
2,090
py
Python
tempest/api/object_storage/test_account_services_negative.py
NetApp/tempest
dd86b1517ec5ac16c26975ed0ce0d8b7ddcac6cc
[ "Apache-2.0" ]
null
null
null
tempest/api/object_storage/test_account_services_negative.py
NetApp/tempest
dd86b1517ec5ac16c26975ed0ce0d8b7ddcac6cc
[ "Apache-2.0" ]
null
null
null
tempest/api/object_storage/test_account_services_negative.py
NetApp/tempest
dd86b1517ec5ac16c26975ed0ce0d8b7ddcac6cc
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2013 eNovance SAS <licensing@enovance.com> # # Author: Joe H. Rahme <joe.hakim.rahme@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.api.object_storage import base from tempest import clients from tempest import exceptions from tempest.test import attr class AccountNegativeTest(base.BaseObjectTest): @attr(type=['negative', 'gate']) def test_list_containers_with_non_authorized_user(self): # list containers using non-authorized user # create user self.data.setup_test_user() test_os = clients.Manager(self.data.test_user, self.data.test_password, self.data.test_tenant) test_auth_provider = test_os.auth_provider # Get auth for the test user test_auth_provider.auth_data # Get fresh auth for test user and set it to next auth request for # custom_account_client delattr(test_auth_provider, 'auth_data') test_auth_new_data = test_auth_provider.auth_data self.custom_account_client.auth_provider.set_alt_auth_data( request_part='headers', auth_data=test_auth_new_data ) params = {'format': 'json'} # list containers with non-authorized user token self.assertRaises(exceptions.Unauthorized, self.custom_account_client.list_account_containers, params=params) # delete the user which was created self.data.teardown_all()
38.703704
78
0.677033
49336efae7ad8ab0ed8d9f0b0ab614569ef39185
3,883
py
Python
dot_weechat/python/unhighlight.py
benmezger/new-dotfiles
5aa41015bd017d0e4cc39edf374ca73e8c25b8cb
[ "MIT" ]
68
2016-09-28T12:51:20.000Z
2022-02-25T15:33:16.000Z
dot_weechat/python/unhighlight.py
benmezger/new-dotfiles
5aa41015bd017d0e4cc39edf374ca73e8c25b8cb
[ "MIT" ]
null
null
null
dot_weechat/python/unhighlight.py
benmezger/new-dotfiles
5aa41015bd017d0e4cc39edf374ca73e8c25b8cb
[ "MIT" ]
2
2016-09-28T12:51:28.000Z
2022-01-11T10:26:44.000Z
# # Copyright (C) 2016 Andrew Rodgers-Schatz <me@andrew.rs> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function try: import weechat except Exception: print('This script must be run under WeeChat.') print('Get WeeChat now at: https://weechat.org/') import_ok = False import time import re SCRIPT_NAME = 'unhighlight' SCRIPT_AUTHOR = 'xiagu' SCRIPT_VERSION = '0.1.3' SCRIPT_LICENSE = 'GPL3' SCRIPT_DESC = 'Allows per-buffer specification of a regex that prevents highlights.' def matches_unhighlight_strings(msg, regex): return weechat.string_has_highlight_regex(msg, regex) def unhighlight_cb(data, modifier, modifier_data, message): """Check if the line matches the unhighlight regular expression, and if it does, clear the message and reprint it with the no_highlight tag added.""" if modifier_data.startswith('0x'): # WeeChat >= 2.9 buffer, tags = modifier_data.split(';', 1) else: # WeeChat <= 2.8 plugin, buffer_name, tags = modifier_data.split(';', 2) buffer = weechat.buffer_search(plugin, buffer_name) if 'no_highlight' in tags or 'notify_none' in tags: return message unhighlight_regex = weechat.buffer_get_string(buffer, 'localvar_unhighlight_regex') if not matches_unhighlight_strings(message, unhighlight_regex): return message # inspired by https://weechat.org/scripts/source/mass_hl_blocker.pl.html/ # this is terrible and gross but afaik there is no way to change the # highlight message once it's set and no way to interact with a message's # tags before highlights are checked. weechat.prnt_date_tags(buffer, 0, "%s,no_highlight" % tags, message) return '' def command_cb(data, buffer, args): args = args.strip().lower().split(' ') if args[0] == 'list': weechat.command('', '/set *.localvar_set_unhighlight_regex') else: weechat.command('', '/help %s' % SCRIPT_NAME) return weechat.WEECHAT_RC_OK def main(): hook = weechat.hook_modifier('weechat_print', 'unhighlight_cb', '') description = """ {script_name} lets you set up a regex for things to never highlight. To use this, set the localvar 'unhighlight_regex' on a buffer. Lines in that buffer which match will never be highlighted, even if they have your nick or match highlight_words or highlight_regex. You will need the script 'buffer_autoset.py' installed to make local variables persistent; see the examples below. Examples: Temporarily block highlights in the current buffer for lines matching 'banana': /buffer set localvar_set_unhighlight_regex banana Unhighlight SASL authentication messages for double logins: /buffer weechat /buffer set localvar_set_unhighlight_regex SaslServ /buffer_autoset add core.weechat localvar_set_unhighlight_regex SaslServ List buffers with autoset unhighlights: /{script_name} list Show this help: /{script_name} Display local variables for current buffer: /buffer localvar """.format(script_name = SCRIPT_NAME) weechat.hook_command(SCRIPT_NAME, SCRIPT_DESC, 'list', description, 'list %-', 'command_cb', '') if weechat.register(SCRIPT_NAME, SCRIPT_AUTHOR, SCRIPT_VERSION, SCRIPT_LICENSE, SCRIPT_DESC, '', ''): main()
35.3
153
0.733969
99e52c94b940ce17fd297684c6337b12ad2027f6
290
py
Python
tests/node/test_serialization.py
Vernacular-ai/lute
b943c441d7fce6f7431eb413e13577260276b469
[ "MIT" ]
1
2021-06-27T01:54:36.000Z
2021-06-27T01:54:36.000Z
tests/node/test_serialization.py
Vernacular-ai/lute
b943c441d7fce6f7431eb413e13577260276b469
[ "MIT" ]
null
null
null
tests/node/test_serialization.py
Vernacular-ai/lute
b943c441d7fce6f7431eb413e13577260276b469
[ "MIT" ]
1
2021-06-27T02:12:34.000Z
2021-06-27T02:12:34.000Z
import json from lute.node import Constant def test_serialization(): class Dummy: pass c = Constant({1: Dummy()}) c.value try: json.dumps(Dummy()) except TypeError as e: message = str(e) assert json.loads(c.dumps())["value"] == message
15.263158
52
0.589655
1c19905c43ffd32faac78173baf9d4a7c0d79cc5
3,146
py
Python
Works/L4_BabyNames/milestone1.py
jackchienchen/StanCode-SC101
7a5b9256b128e58482ca37d8f5ab76483be971be
[ "MIT" ]
2
2022-01-26T10:18:23.000Z
2022-01-26T10:18:24.000Z
Works/L4_BabyNames/milestone1.py
jackchienchen/StanCode-SC101
7a5b9256b128e58482ca37d8f5ab76483be971be
[ "MIT" ]
null
null
null
Works/L4_BabyNames/milestone1.py
jackchienchen/StanCode-SC101
7a5b9256b128e58482ca37d8f5ab76483be971be
[ "MIT" ]
null
null
null
""" File: milestone1.py Name: Jack Chen ----------------------- This file tests the milestone 1 for our babyname.py project """ import sys def add_data_for_name(name_data, year, rank, name): """ Adds the given year and rank to the associated name in the name_data dict. Input: name_data (dict): dict holding baby name data year (str): the year of the data entry to add rank (str): the rank of the data entry to add name (str): the name of the data entry to add Output: This function modifies the name_data dict to store the provided name, year, and rank. This function does not return any value. """ if name in name_data: # if the input name is already in the name_data year_d = name_data[name] if year in year_d: # if the input year is already in year_d. Then return the higher rank. if int(rank) < int(year_d[year]): year_d[year] = rank else: pass else: year_d[year] = rank else: # if the input name is NOT in the name_data year_d = {year: rank} name_data[name] = year_d # 不能使用name_data = {name: year_d} 因name_data非第一筆資料 # ------------- DO NOT EDIT THE CODE BELOW THIS LINE ---------------- # def test1(): name_data = {'Kylie': {'2010': '57'}, 'Nick': {'2010': '37'}} add_data_for_name(name_data, '2010', '208', 'Kate') print('--------------------test1----------------------') print(str(name_data)) print('-----------------------------------------------') def test2(): name_data = {'Kylie': {'2010': '57'}, 'Nick': {'2010': '37'}} add_data_for_name(name_data, '2000', '104', 'Kylie') print('--------------------test2----------------------') print(str(name_data)) print('-----------------------------------------------') def test3(): name_data = {'Kylie': {'2010': '57'}, 'Sammy': {'1980': '451', '1990': '200'}, 'Kate': {'2000': '100'}} add_data_for_name(name_data, '1990', '900', 'Sammy') add_data_for_name(name_data, '2010', '400', 'Kylie') add_data_for_name(name_data, '2000', '20', 'Kate') print('-------------------test3-----------------------') print(str(name_data)) print('-----------------------------------------------') def test4(): name_data = {'Kylie': {'2010': '57'}, 'Nick': {'2010': '37'}} add_data_for_name(name_data, '2010', '208', 'Kate') add_data_for_name(name_data, '2000', '108', 'Kate') add_data_for_name(name_data, '1990', '200', 'Sammy') add_data_for_name(name_data, '1990', '90', 'Sammy') add_data_for_name(name_data, '2000', '104', 'Kylie') print('--------------------test4----------------------') print(str(name_data)) print('-----------------------------------------------') def main(): args = sys.argv[1:] if len(args) == 1 and args[0] == 'test1': test1() elif len(args) == 1 and args[0] == 'test2': test2() elif len(args) == 1 and args[0] == 'test3': test3() elif len(args) == 1 and args[0] == 'test4': test4() if __name__ == "__main__": main()
32.43299
107
0.511443
1cbdd1d75a0efccd90f6ce4900364c4221310479
1,733
py
Python
Incident-Response/Tools/cyphon/cyphon/monitors/views.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
1
2021-07-24T17:22:50.000Z
2021-07-24T17:22:50.000Z
Incident-Response/Tools/cyphon/cyphon/monitors/views.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-28T03:40:31.000Z
2022-02-28T03:40:52.000Z
Incident-Response/Tools/cyphon/cyphon/monitors/views.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-25T08:34:51.000Z
2022-03-16T17:29:44.000Z
# -*- coding: utf-8 -*- # Copyright 2017-2019 ControlScan, Inc. # # This file is part of Cyphon Engine. # # Cyphon Engine is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, version 3 of the License. # # Cyphon Engine is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Cyphon Engine. If not, see <http://www.gnu.org/licenses/>. """ Views for Monitors. """ # third party from rest_framework import viewsets from rest_framework.response import Response from rest_framework.decorators import list_route # local from .models import Monitor from .serializers import MonitorSerializer class MonitorViewSet(viewsets.ReadOnlyModelViewSet): """ Read only viewset for Monitors. """ queryset = Monitor.objects.all() serializer_class = MonitorSerializer @list_route(methods=['get'], url_path='enabled') def enabled(self, request, *args, **kwargs): """ Returns a list of Monitors that are enabled. """ enabled_qs = Monitor.objects.find_enabled() filtered_qs = self.filter_queryset(enabled_qs) page = self.paginate_queryset(filtered_qs) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(filtered_qs, many=True) return Response(serializer.data)
32.092593
71
0.722447
4df2692e155faba8efad711cd87cac362e45ff36
12,813
py
Python
test/transaction/test_canoser.py
Xing-Huang/libra-client
bf74bc66b98a279476d751b637b1f84da84a51fe
[ "MIT" ]
null
null
null
test/transaction/test_canoser.py
Xing-Huang/libra-client
bf74bc66b98a279476d751b637b1f84da84a51fe
[ "MIT" ]
null
null
null
test/transaction/test_canoser.py
Xing-Huang/libra-client
bf74bc66b98a279476d751b637b1f84da84a51fe
[ "MIT" ]
null
null
null
from libra.transaction import * from libra.access_path import AccessPath from canoser import * #import pdb def test_access_path_canonical_serialization_example(): account_address = [ 0x9a, 0x1a, 0xd0, 0x97, 0x42, 0xd1, 0xff, 0xc6, 0x2e, 0x65, 0x9e, 0x9a, 0x77, 0x97, 0x80, 0x8b, 0x20, 0x6f, 0x95, 0x6f, 0x13, 0x1d, 0x07, 0x50, 0x94, 0x49, 0xc0, 0x1a, 0xd8, 0x22, 0x0a, 0xd4, ] input = AccessPath( account_address, [ 0x01, 0x21, 0x7d, 0xa6, 0xc6, 0xb3, 0xe1, 0x9f, 0x18, 0x25, 0xcf, 0xb2, 0x67, 0x6d, 0xae, 0xcc, 0xe3, 0xbf, 0x3d, 0xe0, 0x3c, 0xf2, 0x66, 0x47, 0xc7, 0x8d, 0xf0, 0x0b, 0x37, 0x1b, 0x25, 0xcc, 0x97, ], ) expected_output = [ 0x9A, 0x1A, 0xD0, 0x97, 0x42, 0xD1, 0xFF, 0xC6, 0x2E, 0x65, 0x9E, 0x9A, 0x77, 0x97, 0x80, 0x8B, 0x20, 0x6F, 0x95, 0x6F, 0x13, 0x1D, 0x07, 0x50, 0x94, 0x49, 0xC0, 0x1A, 0xD8, 0x22, 0x0A, 0xD4, 0x21, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x25, 0xCF, 0xB2, 0x67, 0x6D, 0xAE, 0xCC, 0xE3, 0xBF, 0x3D, 0xE0, 0x3C, 0xF2, 0x66, 0x47, 0xC7, 0x8D, 0xF0, 0x0B, 0x37, 0x1B, 0x25, 0xCC, 0x97, ] actual_output = input.serialize() assert bytes(expected_output) == actual_output def test_account_address_canonical_serialization_example(): input = [ 0xca, 0x82, 0x0b, 0xf9, 0x30, 0x5e, 0xb9, 0x7d, 0x0d, 0x78, 0x4f, 0x71, 0xb3, 0x95, 0x54, 0x57, 0xfb, 0xf6, 0x91, 0x1f, 0x53, 0x00, 0xce, 0xaa, 0x5d, 0x7e, 0x86, 0x21, 0x52, 0x9e, 0xae, 0x19, ] expected_output = [ 0xCA, 0x82, 0x0B, 0xF9, 0x30, 0x5E, 0xB9, 0x7D, 0x0D, 0x78, 0x4F, 0x71, 0xB3, 0x95, 0x54, 0x57, 0xFB, 0xF6, 0x91, 0x1F, 0x53, 0x00, 0xCE, 0xAA, 0x5D, 0x7E, 0x86, 0x21, 0x52, 0x9E, 0xAE, 0x19, ] actual_output = ArrayT(Uint8, 32, False).encode(input) assert bytes(expected_output) == actual_output def test_program_canonical_serialization_example(): input = get_common_program() expected_output = [ 0x04, 0x00, 0x00, 0x00, 0x6D, 0x6F, 0x76, 0x65, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x43, 0x41, 0x46, 0x45, 0x20, 0x44, 0x30, 0x30, 0x44, 0x02, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x63, 0x61, 0x66, 0x65, 0x20, 0x64, 0x30, 0x30, 0x64, ] actual_output = input.serialize() assert bytes(expected_output) == actual_output def test_raw_transaction_with_a_program_canonical_serialization_example(): input = RawTransaction( [ 0x3a, 0x24, 0xa6, 0x1e, 0x05, 0xd1, 0x29, 0xca, 0xce, 0x9e, 0x0e, 0xfc, 0x8b, 0xc9, 0xe3, 0x38, 0x31, 0xfe, 0xc9, 0xa9, 0xbe, 0x66, 0xf5, 0x0f, 0xd3, 0x52, 0xa2, 0x63, 0x8a, 0x49, 0xb9, 0xee, ], 32, TransactionPayload('Script', get_common_program()), 10000, 20000, 86400, ) expected_output = [ 0x3A, 0x24, 0xA6, 0x1E, 0x05, 0xD1, 0x29, 0xCA, 0xCE, 0x9E, 0x0E, 0xFC, 0x8B, 0xC9, 0xE3, 0x38, 0x31, 0xFE, 0xC9, 0xA9, 0xBE, 0x66, 0xF5, 0x0F, 0xD3, 0x52, 0xA2, 0x63, 0x8A, 0x49, 0xB9, 0xEE, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6D, 0x6F, 0x76, 0x65, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x43, 0x41, 0x46, 0x45, 0x20, 0x44, 0x30, 0x30, 0x44, 0x02, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x63, 0x61, 0x66, 0x65, 0x20, 0x64, 0x30, 0x30, 0x64, 0x10, 0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x4E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x51, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, ] actual_output = input.serialize() assert bytes(expected_output) == actual_output def test_raw_transaction_with_a_write_set_canonical_serialization_example(): input = RawTransaction.new_write_set_tx( [ 0xc3, 0x39, 0x8a, 0x59, 0x9a, 0x6f, 0x3b, 0x9f, 0x30, 0xb6, 0x35, 0xaf, 0x29, 0xf2, 0xba, 0x04, 0x6d, 0x3a, 0x75, 0x2c, 0x26, 0xe9, 0xd0, 0x64, 0x7b, 0x96, 0x47, 0xd1, 0xf4, 0xc0, 0x4a, 0xd4, ], 32, ChangeSet(get_common_write_set(), []) ) #pdb.set_trace() expected_output = [ 0xC3, 0x39, 0x8A, 0x59, 0x9A, 0x6F, 0x3B, 0x9F, 0x30, 0xB6, 0x35, 0xAF, 0x29, 0xF2, 0xBA, 0x04, 0x6D, 0x3A, 0x75, 0x2C, 0x26, 0xE9, 0xD0, 0x64, 0x7B, 0x96, 0x47, 0xD1, 0xF4, 0xC0, 0x4A, 0xD4, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0xA7, 0x1D, 0x76, 0xFA, 0xA2, 0xD2, 0xD5, 0xC3, 0x22, 0x4E, 0xC3, 0xD4, 0x1D, 0xEB, 0x29, 0x39, 0x73, 0x56, 0x4A, 0x79, 0x1E, 0x55, 0xC6, 0x78, 0x2B, 0xA7, 0x6C, 0x2B, 0xF0, 0x49, 0x5F, 0x9A, 0x21, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x25, 0xCF, 0xB2, 0x67, 0x6D, 0xAE, 0xCC, 0xE3, 0xBF, 0x3D, 0xE0, 0x3C, 0xF2, 0x66, 0x47, 0xC7, 0x8D, 0xF0, 0x0B, 0x37, 0x1B, 0x25, 0xCC, 0x97, 0x00, 0x00, 0x00, 0x00, 0xC4, 0xC6, 0x3F, 0x80, 0xC7, 0x4B, 0x11, 0x26, 0x3E, 0x42, 0x1E, 0xBF, 0x84, 0x86, 0xA4, 0xE3, 0x98, 0xD0, 0xDB, 0xC0, 0x9F, 0xA7, 0xD4, 0xF6, 0x2C, 0xCD, 0xB3, 0x09, 0xF3, 0xAE, 0xA8, 0x1F, 0x09, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xCA, 0xFE, 0xD0, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, ] actual_output = input.serialize() assert bytes(expected_output) == actual_output def test_transaction_argument_address_canonical_serialization_example(): input = TransactionArgument('Address', [ 0x2c, 0x25, 0x99, 0x17, 0x85, 0x34, 0x3b, 0x23, 0xae, 0x07, 0x3a, 0x50, 0xe5, 0xfd, 0x80, 0x9a, 0x2c, 0xd8, 0x67, 0x52, 0x6b, 0x3c, 0x1d, 0xb2, 0xb0, 0xbf, 0x5d, 0x19, 0x24, 0xc6, 0x93, 0xed, ]) expected_output= [ 0x01, 0x00, 0x00, 0x00, 0x2C, 0x25, 0x99, 0x17, 0x85, 0x34, 0x3B, 0x23, 0xAE, 0x07, 0x3A, 0x50, 0xE5, 0xFD, 0x80, 0x9A, 0x2C, 0xD8, 0x67, 0x52, 0x6B, 0x3C, 0x1D, 0xB2, 0xB0, 0xBF, 0x5D, 0x19, 0x24, 0xC6, 0x93, 0xED, ] actual_output = TransactionArgument.encode(input) assert bytes(expected_output) == actual_output def test_transaction_argument_byte_array_canonical_serialization_example(): input = TransactionArgument('ByteArray', [0xCA, 0xFE, 0xD0, 0x0D]) expected_output = [ 0x03, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xCA, 0xFE, 0xD0, 0x0D, ] actual_output = TransactionArgument.encode(input) assert bytes(expected_output) == actual_output def test_transaction_argument_string_canonical_serialization_example(): input = TransactionArgument('String', "Hello, World!") expected_output = [ 0x02, 0x00, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x00, 0x48, 0x65, 0x6C, 0x6C, 0x6F, 0x2C, 0x20, 0x57, 0x6F, 0x72, 0x6C, 0x64, 0x21, ] actual_output = TransactionArgument.encode(input) assert bytes(expected_output) == actual_output def test_transaction_argument_u64_canonical_serialization_example(): input = TransactionArgument('U64', 9_213_671_392_124_193_148) expected_output = [ 0x00, 0x00, 0x00, 0x00, 0x7C, 0xC9, 0xBD, 0xA4, 0x50, 0x89, 0xDD, 0x7F, ] actual_output = TransactionArgument.encode(input) assert bytes(expected_output) == actual_output def test_transaction_payload_with_a_program_canonical_serialization_example(): input = TransactionPayload('Script', get_common_program()) expected_output = [ 0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6D, 0x6F, 0x76, 0x65, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x43, 0x41, 0x46, 0x45, 0x20, 0x44, 0x30, 0x30, 0x44, 0x02, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x63, 0x61, 0x66, 0x65, 0x20, 0x64, 0x30, 0x30, 0x64, ] actual_output = TransactionPayload.encode(input) assert bytes(expected_output) == actual_output def test_transaction_payload_with_a_write_set_canonical_serialization_example(): input = TransactionPayload('WriteSet', ChangeSet(get_common_write_set(), [])) expected_output = [ 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0xA7, 0x1D, 0x76, 0xFA, 0xA2, 0xD2, 0xD5, 0xC3, 0x22, 0x4E, 0xC3, 0xD4, 0x1D, 0xEB, 0x29, 0x39, 0x73, 0x56, 0x4A, 0x79, 0x1E, 0x55, 0xC6, 0x78, 0x2B, 0xA7, 0x6C, 0x2B, 0xF0, 0x49, 0x5F, 0x9A, 0x21, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x25, 0xCF, 0xB2, 0x67, 0x6D, 0xAE, 0xCC, 0xE3, 0xBF, 0x3D, 0xE0, 0x3C, 0xF2, 0x66, 0x47, 0xC7, 0x8D, 0xF0, 0x0B, 0x37, 0x1B, 0x25, 0xCC, 0x97, 0x00, 0x00, 0x00, 0x00, 0xC4, 0xC6, 0x3F, 0x80, 0xC7, 0x4B, 0x11, 0x26, 0x3E, 0x42, 0x1E, 0xBF, 0x84, 0x86, 0xA4, 0xE3, 0x98, 0xD0, 0xDB, 0xC0, 0x9F, 0xA7, 0xD4, 0xF6, 0x2C, 0xCD, 0xB3, 0x09, 0xF3, 0xAE, 0xA8, 0x1F, 0x09, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xCA, 0xFE, 0xD0, 0x0D, 0x00, 0x00, 0x00, 0x00, ] actual_output = TransactionPayload.encode(input) assert bytes(expected_output) == actual_output def test_write_op_delete_canonical_serialization_example(): input = WriteOp('Deletion') expected_output = [0x00, 0x00, 0x00, 0x00] actual_output = WriteOp.encode(input) assert bytes(expected_output) == actual_output def test_write_op_value_canonical_serialization_example(): input = WriteOp('Value', [0xca, 0xfe, 0xd0, 0x0d]) expected_output = [ 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xCA, 0xFE, 0xD0, 0x0D, ] actual_output = WriteOp.encode(input) assert bytes(expected_output) == actual_output def test_write_set_canonical_serialization_example(): input = get_common_write_set() expected_output = [ 0x02, 0x00, 0x00, 0x00, 0xA7, 0x1D, 0x76, 0xFA, 0xA2, 0xD2, 0xD5, 0xC3, 0x22, 0x4E, 0xC3, 0xD4, 0x1D, 0xEB, 0x29, 0x39, 0x73, 0x56, 0x4A, 0x79, 0x1E, 0x55, 0xC6, 0x78, 0x2B, 0xA7, 0x6C, 0x2B, 0xF0, 0x49, 0x5F, 0x9A, 0x21, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x25, 0xCF, 0xB2, 0x67, 0x6D, 0xAE, 0xCC, 0xE3, 0xBF, 0x3D, 0xE0, 0x3C, 0xF2, 0x66, 0x47, 0xC7, 0x8D, 0xF0, 0x0B, 0x37, 0x1B, 0x25, 0xCC, 0x97, 0x00, 0x00, 0x00, 0x00, 0xC4, 0xC6, 0x3F, 0x80, 0xC7, 0x4B, 0x11, 0x26, 0x3E, 0x42, 0x1E, 0xBF, 0x84, 0x86, 0xA4, 0xE3, 0x98, 0xD0, 0xDB, 0xC0, 0x9F, 0xA7, 0xD4, 0xF6, 0x2C, 0xCD, 0xB3, 0x09, 0xF3, 0xAE, 0xA8, 0x1F, 0x09, 0x00, 0x00, 0x00, 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xCA, 0xFE, 0xD0, 0x0D, ] actual_output = WriteSet.encode(input) assert bytes(expected_output) == actual_output assert WriteSet.encode(input) == input.serialize() def get_common_program(): return Script( list(b"move"), [ TransactionArgument('String', "CAFE D00D"), TransactionArgument('String', "cafe d00d") ] ) def get_common_write_set(): return WriteSet([ ( AccessPath( [ 0xa7, 0x1d, 0x76, 0xfa, 0xa2, 0xd2, 0xd5, 0xc3, 0x22, 0x4e, 0xc3, 0xd4, 0x1d, 0xeb, 0x29, 0x39, 0x73, 0x56, 0x4a, 0x79, 0x1e, 0x55, 0xc6, 0x78, 0x2b, 0xa7, 0x6c, 0x2b, 0xf0, 0x49, 0x5f, 0x9a, ], [ 0x01, 0x21, 0x7D, 0xA6, 0xC6, 0xB3, 0xE1, 0x9F, 0x18, 0x25, 0xCF, 0xB2, 0x67, 0x6D, 0xAE, 0xCC, 0xE3, 0xBF, 0x3D, 0xE0, 0x3C, 0xF2, 0x66, 0x47, 0xC7, 0x8D, 0xF0, 0x0B, 0x37, 0x1B, 0x25, 0xCC, 0x97 ] ), WriteOp('Deletion') ), ( AccessPath( [ 0xc4, 0xc6, 0x3f, 0x80, 0xc7, 0x4b, 0x11, 0x26, 0x3e, 0x42, 0x1e, 0xbf, 0x84, 0x86, 0xa4, 0xe3, 0x98, 0xd0, 0xdb, 0xc0, 0x9f, 0xa7, 0xd4, 0xf6, 0x2c, 0xcd, 0xb3, 0x09, 0xf3, 0xae, 0xa8, 0x1f, ], [0x01, 0x21, 0x7d, 0xa6, 0xc6, 0xb3, 0xe1, 0x9f, 0x18], ), WriteOp('Value', [0xca, 0xfe, 0xd0, 0x0d]) ) ])
48.350943
98
0.609225
aef9edf9444ef7915b8251bf21fbfde9b9ce9770
3,421
py
Python
neural_networks/discrete_soft_actor_critic.py
FedePeralta/ASVs_Deep_Reinforcement_Learning_with_CNNs
23b9b181499a4b06f2ca2951c002359c1959e727
[ "MIT" ]
4
2021-03-22T12:42:55.000Z
2021-12-13T03:03:52.000Z
neural_networks/discrete_soft_actor_critic.py
FedePeralta/ASVs_Deep_Reinforcement_Learning_with_CNNs
23b9b181499a4b06f2ca2951c002359c1959e727
[ "MIT" ]
null
null
null
neural_networks/discrete_soft_actor_critic.py
FedePeralta/ASVs_Deep_Reinforcement_Learning_with_CNNs
23b9b181499a4b06f2ca2951c002359c1959e727
[ "MIT" ]
1
2021-03-22T12:48:21.000Z
2021-03-22T12:48:21.000Z
from abc import ABC import torch as T import torch.nn as nn import torch.nn.functional as F class Convolutional_ActorNetwork(nn.Module, ABC): """ Convolutional Neural Network for the actor. The Output corresponds with a Softmax layer representing the probability of select an action a -> P(a|s) = pi(s,action = a) """ def __init__(self, input_size, action_size): super(Convolutional_ActorNetwork, self).__init__() """ Convolutional DNN """ self.conv1 = nn.Conv2d(input_size[0], 16, 5) self.conv2 = nn.Conv2d(16, 16, 3) x_test = T.zeros(1, input_size[0], input_size[1], input_size[2]).float() fc_input_size = self.size_of_conv_out(x_test) """ Fully-connected DNN - Dense """ self.fc1 = nn.Linear(fc_input_size, 255) self.fc2 = nn.Linear(255, 255) self.fc3 = nn.Linear(255, 255) self.f_out = nn.Linear(255, action_size) # The actor return a mu and std for every possible action # def forward(self, x): """ Forward function. """ x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = T.flatten(x, start_dim=1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) P = F.softmax(self.f_out(x), dim = 1) # In the discrete actor-critic, the actor output is softmax return P def size_of_conv_out(self, x): """ Function to extract the output size of the convolutional network. :param x: Input of the convolutional network :return: Integer with the size of the input of the next layer (FC) """ x = self.conv1(x) x = self.conv2(x) x = T.flatten(x, start_dim=1) return x.shape[1] class Convolutional_CriticNetwork(nn.Module, ABC): """ Convolutional Neural Network for the Critic Q(s,a). The Output corresponds with the Q values representing the state-action discounted values. """ def __init__(self, input_size, action_size): super(Convolutional_CriticNetwork, self).__init__() """ First Convolutional part - The state is processed here""" """ Convolutional DNN """ self.conv1 = nn.Conv2d(input_size[0], 16, 5) self.conv2 = nn.Conv2d(16, 16, 3) x_test = T.zeros(1, input_size[0], input_size[1], input_size[2]).float() fc_input_size = self.size_of_conv_out(x_test) """ Fully-connected DNN - Dense """ self.fc1 = nn.Linear(fc_input_size, 255) self.fc2 = nn.Linear(255, 255) self.fc3 = nn.Linear(255, 255) self.f_out = nn.Linear(255, action_size) # The actor return a mu and std for every possible action # def size_of_conv_out(self, x): """ Function to extract the output size of the convolutional network. :param x: Input of the convolutional network :return: Integer with the size of the input of the next layer (FC) """ x = self.conv1(x) x = self.conv2(x) x = T.flatten(x, start_dim=1) return x.shape[1] def forward(self, state): """ Forward function. """ x = F.relu(self.conv1(state)) x = F.relu(self.conv2(x)) x = T.flatten(x, start_dim=1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) Q = self.f_out(x) return Q
29.491379
109
0.602163
a57e66e4cb223af8552dd8db599986960e14c875
1,064
py
Python
cart/views.py
dipikamarathe/project2
78f5ecf4dcd568ab82436ab87ec64e0676039aab
[ "MIT" ]
null
null
null
cart/views.py
dipikamarathe/project2
78f5ecf4dcd568ab82436ab87ec64e0676039aab
[ "MIT" ]
28
2020-10-26T16:51:38.000Z
2022-01-13T03:32:54.000Z
cart/views.py
dipikamarathe/project2
78f5ecf4dcd568ab82436ab87ec64e0676039aab
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect, get_object_or_404 from django.views.decorators.http import require_POST from shop.models import Product from .cart import Cart from .forms import CartAddProductForm @require_POST def cart_add(request, product_id): cart = Cart(request) product = get_object_or_404(Product, id=product_id) form = CartAddProductForm(request.POST) if form.is_valid(): cd = form.cleaned_data cart.add(product=product, quantity=cd['quantity'], override_quantity=cd['override']) return redirect('cart:cart_detail') @require_POST def cart_remove(request, product_id): cart = Cart(request) product = get_object_or_404(Product, id=product_id) cart.remove(product) return redirect('cart:cart_detail') def cart_detail(request): cart = Cart(request) for item in cart: item['update_quantity_form'] = CartAddProductForm(initial={'quantity': item['quantity'], 'override': True}) return render(request, 'cart/detail.html', {'cart': cart})
31.294118
115
0.711466
996d925dfe9d3a28280a747dac8ad15a742f43bc
1,248
py
Python
unit_test.py
gpwork4u/Facebooker
4a78c9575d5f36a402d7e489b69058d4e1692ce4
[ "MIT" ]
26
2020-05-29T02:41:05.000Z
2022-03-25T17:27:32.000Z
unit_test.py
gpwork4u/Facebooker
4a78c9575d5f36a402d7e489b69058d4e1692ce4
[ "MIT" ]
7
2020-05-28T06:09:22.000Z
2021-10-02T05:22:38.000Z
unit_test.py
gpwork4u/Facebooker
4a78c9575d5f36a402d7e489b69058d4e1692ce4
[ "MIT" ]
9
2020-05-28T05:40:25.000Z
2022-02-13T21:48:01.000Z
from Facebooker import facebook from test_constant import * import unittest class FBUnitTest(unittest.TestCase): fb = facebook.API() def __init__(self, *args): self.fb.login(EMAIL, PASSWORD) super().__init__(*args) def test_login(self): self.assertTrue(self.fb.login_check) def test_get_user_post_list(self): post_generator = self.fb.get_user_post_list(TEST_USER_ID) post_id = next(post_generator) self.assertIsNotNone(post_id) def test_get_post(self): post_info = self.fb.get_post(TEST_POST_ID) self.assertEqual(post_info.id, TEST_POST_ID) self.assertEqual(post_info.author, TEST_POST_AUTHOR) self.assertEqual(post_info.content, TEST_POST_CONTENT) def test_get_comments(self): comment = self.fb.get_comments(TEST_POST_ID)[-1] self.assertIn(comment.id, TEST_COMMNENT_ID) self.assertEqual(comment.content, TEST_COMMENT_CONTENT) def test_get_replies(self): reply = self.fb.get_replies(TEST_POST_ID, TEST_COMMNENT_ID)[-1] self.assertEqual(reply.id, TEST_REPLY_ID) self.assertEqual(reply.content, TEST_REPLY_CONTENT) if __name__ == '__main__': unittest.main()
30.439024
71
0.694712
91dca4f65187b544b704a30207422e1d0f0362f0
5,183
py
Python
kubernetes_asyncio/client/models/v1_resource_requirements.py
opsani/kubernetes_asyncio
55283bf6f3690e5c0a0c589cd752221511e2be51
[ "Apache-2.0" ]
196
2018-05-23T16:55:41.000Z
2022-03-31T10:09:40.000Z
kubernetes_asyncio/client/models/v1_resource_requirements.py
tomplus/kubernetes_asyncio
e8c8686ec11be3a5295ae9d5d8728299492a61f8
[ "Apache-2.0" ]
164
2018-05-20T20:39:03.000Z
2022-03-29T22:57:04.000Z
kubernetes_asyncio/client/models/v1_resource_requirements.py
opsani/kubernetes_asyncio
55283bf6f3690e5c0a0c589cd752221511e2be51
[ "Apache-2.0" ]
41
2018-06-08T00:39:53.000Z
2022-01-12T18:19:06.000Z
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.18.20 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes_asyncio.client.configuration import Configuration class V1ResourceRequirements(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'limits': 'dict(str, str)', 'requests': 'dict(str, str)' } attribute_map = { 'limits': 'limits', 'requests': 'requests' } def __init__(self, limits=None, requests=None, local_vars_configuration=None): # noqa: E501 """V1ResourceRequirements - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._limits = None self._requests = None self.discriminator = None if limits is not None: self.limits = limits if requests is not None: self.requests = requests @property def limits(self): """Gets the limits of this V1ResourceRequirements. # noqa: E501 Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/ # noqa: E501 :return: The limits of this V1ResourceRequirements. # noqa: E501 :rtype: dict(str, str) """ return self._limits @limits.setter def limits(self, limits): """Sets the limits of this V1ResourceRequirements. Limits describes the maximum amount of compute resources allowed. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/ # noqa: E501 :param limits: The limits of this V1ResourceRequirements. # noqa: E501 :type: dict(str, str) """ self._limits = limits @property def requests(self): """Gets the requests of this V1ResourceRequirements. # noqa: E501 Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/ # noqa: E501 :return: The requests of this V1ResourceRequirements. # noqa: E501 :rtype: dict(str, str) """ return self._requests @requests.setter def requests(self, requests): """Sets the requests of this V1ResourceRequirements. Requests describes the minimum amount of compute resources required. If Requests is omitted for a container, it defaults to Limits if that is explicitly specified, otherwise to an implementation-defined value. More info: https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/ # noqa: E501 :param requests: The requests of this V1ResourceRequirements. # noqa: E501 :type: dict(str, str) """ self._requests = requests def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1ResourceRequirements): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1ResourceRequirements): return True return self.to_dict() != other.to_dict()
34.324503
328
0.628593
692cb5888e783753383b7aca2809910c23812fa1
6,122
py
Python
bcbio/variation/realign.py
arvados/bcbio-nextgen
2a5cfa8c3a1d540bb2f2e66f51835042195cbc87
[ "MIT" ]
3
2015-11-18T07:17:54.000Z
2021-04-28T13:58:37.000Z
bcbio/variation/realign.py
yong27/bcbio-nextgen
9320479d8f21677b61ed1274b4da23d569c686ae
[ "MIT" ]
null
null
null
bcbio/variation/realign.py
yong27/bcbio-nextgen
9320479d8f21677b61ed1274b4da23d569c686ae
[ "MIT" ]
null
null
null
"""Perform realignment of BAM files around indels using the GATK toolkit. """ import os import shutil from contextlib import closing import pysam from bcbio import bam, broad from bcbio.bam import ref from bcbio.log import logger from bcbio.utils import file_exists from bcbio.distributed.transaction import file_transaction, tx_tmpdir from bcbio.pipeline.shared import subset_bam_by_region, subset_variant_regions from bcbio.provenance import do # ## GATK realignment def gatk_realigner_targets(runner, align_bam, ref_file, config, dbsnp=None, region=None, out_file=None, deep_coverage=False, variant_regions=None): """Generate a list of interval regions for realignment around indels. """ if out_file: out_file = "%s.intervals" % os.path.splitext(out_file)[0] else: out_file = "%s-realign.intervals" % os.path.splitext(align_bam)[0] # check only for file existence; interval files can be empty after running # on small chromosomes, so don't rerun in those cases if not os.path.exists(out_file): with file_transaction(config, out_file) as tx_out_file: logger.debug("GATK RealignerTargetCreator: %s %s" % (os.path.basename(align_bam), region)) params = ["-T", "RealignerTargetCreator", "-I", align_bam, "-R", ref_file, "-o", tx_out_file, "-l", "INFO", ] region = subset_variant_regions(variant_regions, region, tx_out_file) if region: params += ["-L", region, "--interval_set_rule", "INTERSECTION"] if dbsnp: params += ["--known", dbsnp] if deep_coverage: params += ["--mismatchFraction", "0.30", "--maxIntervalSize", "650"] runner.run_gatk(params, memscale={"direction": "decrease", "magnitude": 2}) return out_file def gatk_indel_realignment_cl(runner, align_bam, ref_file, intervals, tmp_dir, region=None, deep_coverage=False): """Prepare input arguments for GATK indel realignment. """ params = ["-T", "IndelRealigner", "-I", align_bam, "-R", ref_file, "-targetIntervals", intervals, ] if region: params += ["-L", region] if deep_coverage: params += ["--maxReadsInMemory", "300000", "--maxReadsForRealignment", str(int(5e5)), "--maxReadsForConsensuses", "500", "--maxConsensuses", "100"] return runner.cl_gatk(params, tmp_dir) def gatk_indel_realignment(runner, align_bam, ref_file, intervals, region=None, out_file=None, deep_coverage=False, config=None): """Perform realignment of BAM file in specified regions """ if out_file is None: out_file = "%s-realign.bam" % os.path.splitext(align_bam)[0] if not file_exists(out_file): with tx_tmpdir(config) as tmp_dir: with file_transaction(config, out_file) as tx_out_file: logger.info("GATK IndelRealigner: %s %s" % (os.path.basename(align_bam), region)) cl = gatk_indel_realignment_cl(runner, align_bam, ref_file, intervals, tmp_dir, region, deep_coverage) cl += ["-o", tx_out_file] do.run(cl, "GATK indel realignment", {}) return out_file def gatk_realigner(align_bam, ref_file, config, dbsnp=None, region=None, out_file=None, deep_coverage=False): """Realign a BAM file around indels using GATK, returning sorted BAM. """ runner = broad.runner_from_config(config) bam.index(align_bam, config) runner.run_fn("picard_index_ref", ref_file) ref.fasta_idx(ref_file) if region: align_bam = subset_bam_by_region(align_bam, region, config, out_file) bam.index(align_bam, config) if has_aligned_reads(align_bam, region): variant_regions = config["algorithm"].get("variant_regions", None) realign_target_file = gatk_realigner_targets(runner, align_bam, ref_file, config, dbsnp, region, out_file, deep_coverage, variant_regions) realign_bam = gatk_indel_realignment(runner, align_bam, ref_file, realign_target_file, region, out_file, deep_coverage, config=config) # No longer required in recent GATK (> Feb 2011) -- now done on the fly # realign_sort_bam = runner.run_fn("picard_fixmate", realign_bam) return realign_bam elif out_file: shutil.copy(align_bam, out_file) return out_file else: return align_bam # ## Utilities def has_aligned_reads(align_bam, region=None): """Check if the aligned BAM file has any reads in the region. region can be a chromosome string ("chr22"), a tuple region (("chr22", 1, 100)) or a file of regions. """ import pybedtools if region is not None: if isinstance(region, basestring) and os.path.isfile(region): regions = [tuple(r) for r in pybedtools.BedTool(region)] else: regions = [region] with closing(pysam.Samfile(align_bam, "rb")) as cur_bam: if region is not None: for region in regions: if isinstance(region, basestring): for item in cur_bam.fetch(region): return True else: for item in cur_bam.fetch(region[0], int(region[1]), int(region[2])): return True else: for item in cur_bam: if not item.is_unmapped: return True return False
42.513889
89
0.579222
9a5101c7e3e60bc47a68ef24e9d88e27c1456dc2
6,999
py
Python
pos_tagging/probe_train4.py
ecacikgoz97/Probing
5df8f9fedeffdd2c6f9328b6ff47e36adca49dbb
[ "MIT" ]
null
null
null
pos_tagging/probe_train4.py
ecacikgoz97/Probing
5df8f9fedeffdd2c6f9328b6ff47e36adca49dbb
[ "MIT" ]
null
null
null
pos_tagging/probe_train4.py
ecacikgoz97/Probing
5df8f9fedeffdd2c6f9328b6ff47e36adca49dbb
[ "MIT" ]
null
null
null
# ----------------------------------------------------------- # Date: 2021/12/19 # Author: Muge Kural # Description: Trainer of surface form pos tagging probe, saves the results under ./results directory. # ----------------------------------------------------------- import sys, argparse, random, torch, json, matplotlib, os import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch.optim.lr_scheduler import ReduceLROnPlateau, MultiStepLR from torch import optim from common.utils import * from data.data import build_data, log_data from models.gpt3 import GPT3 from common.vocab import VocabEntry from probe import MiniGPT_Probe, MiniGPT_Probe2 matplotlib.use('Agg') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_set = False if local_set == True: working_path = "/Users/emrecanacikgoz/Desktop/" else: working_path = "/kuacc/users/eacikgoz17/" def test(batches, mode, args): epoch_loss = 0; epoch_acc = 0; epoch_num_instances = 0 numbatches = len(batches) indices = list(range(numbatches)) for i, idx in enumerate(indices): # (batchsize, t) surf, surfpos = batches[idx] loss, acc = args.model.probe_loss(surf, surfpos) epoch_num_instances += surf.size(0) epoch_loss += loss.item() epoch_acc += acc nll = epoch_loss / numbatches acc = epoch_acc / epoch_num_instances args.logger.write('%s --- avg_loss: %.4f, acc: %.4f \n' % (mode, nll, acc)) return nll, acc def train(data, args): trnbatches, valbatches, tstbatches = data opt = optim.Adam(filter(lambda p: p.requires_grad, args.model.parameters()), lr=args.lr) scheduler = MultiStepLR(opt, milestones=[80,150,250,400], gamma=0.1) for name, prm in args.model.named_parameters(): args.logger.write('\n'+name+', '+str(prm.shape) + ': '+ str(prm.requires_grad)) numbatches = len(trnbatches) indices = list(range(numbatches)) random.seed(0) best_loss = 1e4 trn_loss_values = []; trn_acc_values = [] val_loss_values = []; val_acc_values = [] for epc in range(args.epochs): epoch_loss = 0; epoch_acc = 0; epoch_num_instances = 0 random.shuffle(indices) # this breaks continuity if there is for i, idx in enumerate(indices): args.model.zero_grad() # (batchsize, t) surf, surfpos = trnbatches[idx] loss, acc = args.model.probe_loss(surf, surfpos) loss.backward() opt.step() epoch_num_instances += surf.size(0) epoch_loss += loss.item() epoch_acc += acc nll = epoch_loss / numbatches acc = epoch_acc / epoch_num_instances trn_loss_values.append(nll) trn_acc_values.append(acc) args.logger.write('\nepoch: %.1d avg_loss: %.4f, acc: %.4f \n' % (epc, nll, acc)) # VAL args.model.eval() with torch.no_grad(): nll, acc = test(valbatches, "val", args) val_loss_values.append(nll) val_acc_values.append(acc) scheduler.step() if nll < best_loss: args.logger.write('update best loss \n') best_loss = nll torch.save(args.model.state_dict(), args.save_path) args.model.train() plot_curves(args.task, args.mname, args.fig, args.axs[0], trn_loss_values, val_loss_values, args.plt_style, 'loss') plot_curves(args.task, args.mname, args.fig, args.axs[1], trn_acc_values, val_acc_values, args.plt_style, 'acc') # CONFIG parser = argparse.ArgumentParser(description='') args = parser.parse_args() args.device = device args.mname = 'MiniGPT_3_500epochs_lr0001_batch32_schedulerStep' model_path = working_path + 'NLP/EXPERIMENTS/exp14/charlm_miniGPT/results/50000_instances500epochs.pt' model_vocab = working_path + 'NLP/EXPERIMENTS/exp14/charlm_miniGPT/results/surf_vocab.json' # training args.batchsize = 32; args.epochs = 500 args.opt= 'Adam'; args.lr = 0.001 args.task = 'surf2surfpos' args.seq_to_no_pad = 'surface' # data with open(model_vocab) as f: word2id = json.load(f) surf_vocab = VocabEntry(word2id) args.trndata = working_path + 'NLP/Probing/pos_tagging/data/surfpos.uniquesurfs.trn.txt' args.valdata = working_path + 'NLP/Probing/pos_tagging/data/surfpos.uniquesurfs.val.txt' args.tstdata = working_path + 'NLP/Probing/pos_tagging/data/surfpos.uniquesurfs.val.txt' args.maxtrnsize = 57769; args.maxvalsize = 10000; args.maxtstsize = 10000 rawdata, batches, vocab = build_data(args, surf_vocab) _, surfpos_vocab = vocab trndata, vlddata, tstdata = rawdata args.trnsize , args.valsize, args.tstsize = len(trndata), len(vlddata), len(tstdata) # model num_layers=3 embed_dim=128 num_heads=16 block_size=128 embedding_dropout_rate=0.15 attention_dropout_rate=0.15 residual_dropout_rate=0.15 expand_ratio = 4 args.pretrained_model = GPT3(vocab=surf_vocab, num_layers=num_layers, embed_dim=embed_dim, num_heads=num_heads, block_size=block_size, embedding_dropout_rate=embedding_dropout_rate, attention_dropout_rate=attention_dropout_rate, residual_dropout_rate=residual_dropout_rate, expand_ratio=expand_ratio ) args.pretrained_model.load_state_dict(torch.load(model_path)) args.embed = embed_dim args.model = MiniGPT_Probe2(args, surfpos_vocab) print(args.model) for param in args.model.token_embedding.parameters(): param.requires_grad = False for param in args.model.decoder1.parameters(): param.requires_grad = False for param in args.model.decoder2.parameters(): param.requires_grad = False for param in args.model.MH_attention3.parameters(): param.requires_grad = False args.model.to(args.device) print(args.model) # logging args.modelname = working_path + 'NLP/Probing/pos_tagging/results/'+args.mname+'/'+str(len(trndata))+'_instances/' try: os.makedirs(args.modelname) print("Directory " , args.modelname , " Created ") except FileExistsError: print("Directory " , args.modelname , " already exists") args.save_path = args.modelname + str(args.epochs)+'epochs.pt' args.log_path = args.modelname + str(args.epochs)+'epochs.log' args.fig_path = args.modelname + str(args.epochs)+'epochs.png' args.logger = Logger(args.log_path) with open(args.modelname+'/surf_vocab.json', 'w') as f: f.write(json.dumps(surf_vocab.word2id)) with open(args.modelname+'/surfpos_vocab.json', 'w') as f: f.write(json.dumps(surfpos_vocab.word2id)) args.logger.write('\nnumber of params: %d \n' % count_parameters(args.model)) args.logger.write(args) args.logger.write('\n') # plotting args.fig, args.axs = plt.subplots(2, sharex=True) args.plt_style = pstyle = '-' # run train(batches, args) plt.savefig(args.fig_path)
39.542373
119
0.66781
f05bb19d99e2d1c6132a3e99f6cb2134d451f693
6,086
py
Python
qa/rpc-tests/proxy_test.py
LordSoylent/dextro-1
71514bc58170e65168e72925af85c3479bec873b
[ "MIT" ]
14
2018-04-27T06:47:08.000Z
2021-06-29T21:39:38.000Z
qa/rpc-tests/proxy_test.py
LordSoylent/dextro-1
71514bc58170e65168e72925af85c3479bec873b
[ "MIT" ]
4
2018-05-21T13:14:59.000Z
2019-06-15T22:59:08.000Z
qa/rpc-tests/proxy_test.py
LordSoylent/dextro-1
71514bc58170e65168e72925af85c3479bec873b
[ "MIT" ]
24
2018-04-22T04:12:40.000Z
2020-12-08T19:26:43.000Z
#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import socket import traceback, sys from binascii import hexlify import time, os from socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework import BitcoinTestFramework from util import * ''' Test plan: - Start bitcoind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on bitcoind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create bitcoinds that connect to them - Manipulate the bitcoinds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name ''' class ProxyTest(BitcoinTestFramework): def __init__(self): # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', 13000 + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', 14000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', 15000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() self.serv3 = Socks5Server(self.conf3) self.serv3.start() def setup_nodes(self): # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost return start_nodes(4, self.options.tmpdir, extra_args=[ ['-listen', '-debug=net', '-debug=proxy', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-debug=net', '-debug=proxy', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-debug=net', '-debug=proxy', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], ['-listen', '-debug=net', '-debug=proxy', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0'] ]) def node_test(self, node, proxies, auth): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing onion connection through node node.addnode("youraddress.onion:39720", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "youraddress.onion") assert_equal(cmd.port, 39720) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), 4) # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False) if __name__ == '__main__': ProxyTest().main()
41.684932
145
0.652317
34cc15f8bce373649ab99a47c02d283759e0918f
461
py
Python
plotly/validators/ohlc/stream/_token.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/ohlc/stream/_token.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/ohlc/stream/_token.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class TokenValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='token', parent_name='ohlc.stream', **kwargs ): super(TokenValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='calc', no_blank=True, role='info', strict=True, **kwargs )
25.611111
70
0.598698
6f1d47cbac07337a28b9b63a7ee97db69afa22aa
1,355
py
Python
contratospr/contracts/search.py
jycordero/contratospr-api
6778b02b42305aa7ce65c956a0d89029ddd857a4
[ "Apache-2.0" ]
15
2019-02-26T12:40:18.000Z
2020-01-24T00:58:00.000Z
contratospr/contracts/search.py
jycordero/contratospr-api
6778b02b42305aa7ce65c956a0d89029ddd857a4
[ "Apache-2.0" ]
52
2019-02-13T03:54:34.000Z
2020-01-20T16:39:56.000Z
contratospr/contracts/search.py
jycordero/contratospr-api
6778b02b42305aa7ce65c956a0d89029ddd857a4
[ "Apache-2.0" ]
6
2019-02-18T13:59:55.000Z
2019-11-30T23:36:43.000Z
from django.contrib.postgres.fields import JSONField from django.contrib.postgres.search import SearchQuery from django.db.models.functions import Cast from ..utils.search import SearchVector from .models import Contract search_vector = ( SearchVector(Cast("document__pages", JSONField())) + SearchVector("contractors__name") + SearchVector("entity__name") + SearchVector("number") ) def index_contract(obj): instance = ( Contract.objects.select_related("document", "entity") .prefetch_related("contractors") .annotate(search=search_vector) .filter(pk=obj.pk) )[:1] contract = instance[0] contract.search_vector = contract.search return contract.save(update_fields=["search_vector"]) def search_contracts(query, service_id, service_group_id): filter_kwargs = {} if query: filter_kwargs["search_vector"] = SearchQuery(query) if service_id: filter_kwargs["service_id"] = service_id if service_group_id: filter_kwargs["service__group_id"] = service_group_id if not filter_kwargs: return [] return ( Contract.objects.select_related("document", "entity", "service") .prefetch_related("contractors") .defer("document__pages") .filter(**filter_kwargs) .order_by("-date_of_grant") )
26.568627
72
0.690037
fc27781cf09b811e761f8faae0664c359a7b6a96
92,725
py
Python
ghostwriter/reporting/views.py
unashamedgeek/Ghostwriter
a1d221d60526d16d91864e00b2dd8bcce9f326e2
[ "BSD-3-Clause" ]
null
null
null
ghostwriter/reporting/views.py
unashamedgeek/Ghostwriter
a1d221d60526d16d91864e00b2dd8bcce9f326e2
[ "BSD-3-Clause" ]
null
null
null
ghostwriter/reporting/views.py
unashamedgeek/Ghostwriter
a1d221d60526d16d91864e00b2dd8bcce9f326e2
[ "BSD-3-Clause" ]
null
null
null
"""This contains all of the views used by the Reporting application.""" # Standard Libraries import io import json import logging import logging.config import os import zipfile from asgiref.sync import async_to_sync from datetime import datetime from socket import gaierror # Django Imports from django.conf import settings from django.contrib import messages from django.contrib.auth import get_user_model from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import ( LoginRequiredMixin, PermissionRequiredMixin, UserPassesTestMixin, ) from django.core.files import File from django.core.files.base import ContentFile from django.db.models import Q from django.http import ( FileResponse, Http404, HttpResponse, HttpResponseRedirect, JsonResponse, ) from django.shortcuts import get_object_or_404, redirect, render from django.template.loader import render_to_string from django.urls import reverse, reverse_lazy from django.views import generic from django.views.generic.detail import DetailView, SingleObjectMixin from django.views.generic.edit import CreateView, DeleteView, UpdateView, View # 3rd Party Libraries from channels.layers import get_channel_layer from docx.image.exceptions import UnrecognizedImageError from docx.opc.exceptions import PackageNotFoundError as DocxPackageNotFoundError from pptx.exc import PackageNotFoundError as PptxPackageNotFoundError from xlsxwriter.workbook import Workbook # Ghostwriter Libraries from ghostwriter.commandcenter.models import ReportConfiguration from ghostwriter.modules import reportwriter from ghostwriter.modules.exceptions import MissingTemplate from ghostwriter.rolodex.models import Project, ProjectAssignment from .filters import ArchiveFilter, FindingFilter, ReportFilter from .forms import ( EvidenceForm, FindingForm, FindingNoteForm, LocalFindingNoteForm, ReportFindingLinkUpdateForm, ReportForm, ReportTemplateForm, SelectReportTemplateForm, ) from .models import ( Archive, Evidence, Finding, FindingNote, FindingType, LocalFindingNote, Report, ReportFindingLink, ReportTemplate, Severity, ) from .resources import FindingResource channel_layer = get_channel_layer() User = get_user_model() # Using __name__ resolves to ghostwriter.reporting.views logger = logging.getLogger(__name__) def get_position(report_pk, severity): findings = ReportFindingLink.objects.filter( Q(report__pk=report_pk) & Q(severity=severity) ).order_by("-position") if findings: # Set new position to be one above the last/largest position last_position = findings[0].position return last_position + 1 return 1 ################## # AJAX Functions # ################## @login_required def ajax_update_report_findings(request): """ Update the ``position`` and ``severity`` fields of all :model:`reporting.ReportFindingLink` attached to an individual :model:`reporting.Report`. """ data = {"result": "error"} if request.method == "POST" and request.is_ajax(): pos = request.POST.get("positions") report_id = request.POST.get("report") severity_class = request.POST.get("severity").replace("_severity", "") order = json.loads(pos) logger.info( "Received AJAX POST to update report %s's %s severity group findings in this order: %s", report_id, severity_class, ", ".join(order), ) try: severity = Severity.objects.get(severity__iexact=severity_class) except Severity.DoesNotExist: severity = None if severity: counter = 1 for finding_id in order: if "placeholder" not in finding_id: finding_instance = ReportFindingLink.objects.get(id=finding_id) if finding_instance: finding_instance.severity = severity finding_instance.position = counter finding_instance.save() counter += 1 else: logger.error( "Received a finding ID, %s, that did not match an existing finding", finding_id, ) else: data = {"result": "specified severity, {}, is invalid".format(severity_class)} # If all went well, return success data = {"result": "success"} else: data = {"result": "error"} return JsonResponse(data) class UpdateTemplateLintResults(LoginRequiredMixin, SingleObjectMixin, View): """ Return an updated version of the template following a request to update linter results for an individual :model:`reporting.ReportTemplate`. **Template** :template:`snippets/template_lint_results.html` """ model = ReportTemplate def get(self, *args, **kwargs): self.object = self.get_object() html = render_to_string( "snippets/template_lint_results.html", {"reporttemplate": self.object}, ) return HttpResponse(html) class AssignFinding(LoginRequiredMixin, SingleObjectMixin, View): """ Copy an individual :model:`reporting.Finding` to create a new :model:`reporting.ReportFindingLink` connected to the user's active :model:`reporting.Report`. """ model = Finding def post(self, *args, **kwargs): self.object = self.get_object() # The user must have the ``active_report`` session variable active_report = self.request.session.get("active_report", None) if active_report: try: report = Report.objects.get(pk=active_report["id"]) except Exception: message = ( "Please select a report to edit before trying to assign a finding" ) data = {"result": "error", "message": message} return JsonResponse(data) # Clone the selected object to make a new :model:`reporting.ReportFindingLink` report_link = ReportFindingLink( title=self.object.title, description=self.object.description, impact=self.object.impact, mitigation=self.object.mitigation, replication_steps=self.object.replication_steps, host_detection_techniques=self.object.host_detection_techniques, network_detection_techniques=self.object.network_detection_techniques, references=self.object.references, severity=self.object.severity, finding_type=self.object.finding_type, finding_guidance=self.object.finding_guidance, report=report, assigned_to=self.request.user, position=get_position(report.id, self.object.severity), ) report_link.save() message = "{} successfully added to your active report".format(self.object) data = {"result": "success", "message": message} logger.info( "Copied %s %s to %s %s (%s %s) by request of %s", self.object.__class__.__name__, self.object.id, report.__class__.__name__, report.id, report_link.__class__.__name__, report_link.id, self.request.user, ) else: message = "Please select a report to edit before trying to assign a finding" data = {"result": "error", "message": message} return JsonResponse(data) class LocalFindingNoteDelete(LoginRequiredMixin, SingleObjectMixin, UserPassesTestMixin, View): """ Delete an individual :model:`reporting.LocalFindingNote`. """ model = LocalFindingNote def test_func(self): self.object = self.get_object() return self.object.operator.id == self.request.user.id def handle_no_permission(self): messages.error(self.request, "You do not have permission to access that") return redirect("home:dashboard") def post(self, *args, **kwargs): self.object = self.get_object() self.object.delete() data = {"result": "success", "message": "Note successfully deleted!"} logger.info( "Deleted %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) return JsonResponse(data) class FindingNoteDelete(LoginRequiredMixin, SingleObjectMixin, UserPassesTestMixin, View): """ Delete an individual :model:`reporting.FindingNote`. """ model = FindingNote def test_func(self): self.object = self.get_object() return self.object.operator.id == self.request.user.id def handle_no_permission(self): messages.error(self.request, "You do not have permission to access that") return redirect("home:dashboard") def post(self, *args, **kwargs): self.object = self.get_object() self.object.delete() data = {"result": "success", "message": "Note successfully deleted!"} logger.info( "Deleted %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) return JsonResponse(data) class ReportFindingLinkDelete(LoginRequiredMixin, SingleObjectMixin, View): """ Delete an individual :model:`reporting.ReportFindingLink`. """ model = ReportFindingLink def post(self, *args, **kwargs): self.object = self.get_object() self.report_pk = self.get_object().report.pk self.object.delete() data = { "result": "success", "message": "Successfully deleted {finding} and cleaned up evidence".format( finding=self.object ), } logger.info( "Deleted %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) return JsonResponse(data) class ReportActivate(LoginRequiredMixin, SingleObjectMixin, View): """ Set an individual :model:`reporting.Report` as active for the current user session. """ model = Report # Set the user's session variable def post(self, *args, **kwargs): self.object = self.get_object() try: self.request.session["active_report"] = {} self.request.session["active_report"]["id"] = self.object.id self.request.session["active_report"]["title"] = self.object.title message = "{report} is now your active report and you will be redirected there in 5 seconds".format( report=self.object.title ) data = { "result": "success", "report": self.object.title, "report_url": self.object.get_absolute_url(), "message": message, } except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) data = { "result": "error", "message": "Could not set the selected report as your active report", } return JsonResponse(data) class ReportStatusToggle(LoginRequiredMixin, SingleObjectMixin, View): """ Toggle the ``complete`` field of an individual :model:`rolodex.Report`. """ model = Report def post(self, *args, **kwargs): self.object = self.get_object() try: if self.object.complete: self.object.complete = False data = { "result": "success", "message": "Report successfully marked as incomplete", "status": "Draft", "toggle": 0, } else: self.object.complete = True data = { "result": "success", "message": "Report successfully marked as complete", "status": "Complete", "toggle": 1, } self.object.save() logger.info( "Toggled status of %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) data = {"result": "error", "message": "Could not update report's status"} return JsonResponse(data) class ReportDeliveryToggle(LoginRequiredMixin, SingleObjectMixin, View): """ Toggle the ``delivered`` field of an individual :model:`rolodex.Report`. """ model = Report def post(self, *args, **kwargs): self.object = self.get_object() try: if self.object.delivered: self.object.delivered = False data = { "result": "success", "message": "Report successfully marked as not delivered", "status": "Not Delivered", "toggle": 0, } else: self.object.delivered = True data = { "result": "success", "message": "Report successfully marked as delivered", "status": "Delivered", "toggle": 1, } self.object.save() logger.info( "Toggled delivery status of %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) data = { "result": "error", "message": "Could not update report's deliveery status", } return JsonResponse(data) class ReportFindingStatusUpdate(LoginRequiredMixin, SingleObjectMixin, View): """ Update the ``complete`` field of an individual :model:`reporting.ReportFindingLink`. """ model = ReportFindingLink def post(self, *args, **kwargs): data = {} # Get ``status`` kwargs from the URL status = self.kwargs["status"] self.object = self.get_object() try: result = "success" if status.lower() == "edit": self.object.complete = False message = "Successfully flagged finding for editing" display_status = "Needs Editing" classes = "burned" elif status.lower() == "complete": self.object.complete = True message = "Successfully marking finding as complete" display_status = "Ready" classes = "healthy" else: result = "error" message = "Could not update the finding's status to: {}".format(status) display_status = "Error" classes = "burned" self.object.save() # Prepare the JSON response data data = { "result": result, "status": display_status, "classes": classes, "message": message, } logger.info( "Set status of %s %s to %s by request of %s", self.object.__class__.__name__, self.object.id, status, self.request.user, ) # Return an error message if the query for the requested status returned DoesNotExist except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) data = {"result": "error", "message": "Could not update finding's status"} return JsonResponse(data) class ReportTemplateSwap(LoginRequiredMixin, SingleObjectMixin, View): """ Update the ``template`` value for an individual :model:`reporting.Report`. """ model = Report def post(self, *args, **kwargs): self.object = self.get_object() docx_template_id = self.request.POST.get("docx_template", None) pptx_template_id = self.request.POST.get("pptx_template", None) if docx_template_id and pptx_template_id: docx_template_query = None pptx_template_query = None try: docx_template_id = int(docx_template_id) pptx_template_id = int(pptx_template_id) if docx_template_id < 0 or pptx_template_id < 0: data = { "result": "warning", "message": "Select both templates before your settings can be saved", } else: if docx_template_id >= 0: docx_template_query = ReportTemplate.objects.get( pk=docx_template_id ) self.object.docx_template = docx_template_query if pptx_template_id >= 0: pptx_template_query = ReportTemplate.objects.get( pk=pptx_template_id ) self.object.pptx_template = pptx_template_query data = { "result": "success", "message": "Template successfully swapped", } self.object.save() # Check template for linting issues try: if docx_template_query: template_status = docx_template_query.get_status() data["docx_lint_result"] = template_status if template_status != "success": if template_status == "warning": data[ "docx_lint_message" ] = "Selected Word template has warnings from linter. Check the template before generating a report." elif template_status == "error": data[ "docx_lint_message" ] = "Selected Word template has linting errors and cannot be used to generate a report." elif template_status == "failed": data[ "docx_lint_message" ] = "Selected Word template failed basic linter checks and can't be used to generate a report." else: data[ "docx_lint_message" ] = "Selected Word template has an unknown linter status. Check and lint the template before generating a report." data["docx_url"] = docx_template_query.get_absolute_url() except Exception: # pragma: no cover logger.exception("Failed to get the template status") data["docx_lint_result"] = "failed" data[ "docx_lint_message" ] = "Could not retrieve the Word template's linter status. Check and lint the template before generating a report." try: if pptx_template_query: template_status = pptx_template_query.get_status() data["pptx_lint_result"] = template_status if template_status != "success": if template_status == "warning": data[ "pptx_lint_message" ] = "Selected PowerPoint template has warnings from linter. Check the template before generating a report." elif template_status == "error": data[ "pptx_lint_message" ] = "Selected PowerPoint template has linting errors and cannot be used to generate a report." elif template_status == "failed": data[ "pptx_lint_message" ] = "Selected PowerPoint template failed basic linter checks and can't be used to generate a report." else: data[ "pptx_lint_message" ] = "Selected PowerPoint template has an unknown linter status. Check and lint the template before generating a report." data["pptx_url"] = pptx_template_query.get_absolute_url() except Exception: # pragma: no cover logger.exception("Failed to get the template status") data["pptx_lint_result"] = "failed" data[ "pptx_lint_message" ] = "Could not retrieve the PowerPoint template's linter status. Check and lint the template before generating a report." logger.info( "Swapped template for %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) except ValueError: data = { "result": "error", "message": "Submitted template ID was not an integer", } logger.error( "Received one or two invalid (non-integer) template IDs (%s & %s) from a request submitted by %s", docx_template_id, pptx_template_id, self.request.user, ) except ReportTemplate.DoesNotExist: data = { "result": "error", "message": "Submitted template ID does not exist", } logger.error( "Received one or two invalid (non-existent) template IDs (%s & %s) from a request submitted by %s", docx_template_id, pptx_template_id, self.request.user, ) except Exception: # pragma: no cover data = { "result": "error", "message": "An exception prevented the template change", } logger.exception( "Encountered an error trying to update %s %s with template IDs %s & %s from a request submitted by %s", self.object.__class__.__name__, self.object.id, docx_template_id, pptx_template_id, self.request.user, ) else: data = {"result": "error", "message": "Submitted request was incomplete"} logger.warning( "Received bad template IDs (%s & %s) from a request submitted by %s", docx_template_id, pptx_template_id, self.request.user, ) return JsonResponse(data) class ReportTemplateLint(LoginRequiredMixin, SingleObjectMixin, View): """ Check an individual :model:`reporting.ReportTemplate` for Jinja2 syntax errors and undefined variables. """ model = ReportTemplate def post(self, *args, **kwargs): self.object = self.get_object() template_loc = self.object.document.path linter = reportwriter.TemplateLinter(template_loc=template_loc) if self.object.doc_type.doc_type == "docx": results = linter.lint_docx() elif self.object.doc_type.doc_type == "pptx": results = linter.lint_pptx() else: logger.warning( "Template had an unknown filetype not supported by the linter: %s", self.object.doc_type, ) results = {} self.object.lint_result = results self.object.save() data = results if data["result"] == "success": data[ "message" ] = "Template linter returned results with no errors or warnings" elif not data["result"]: data[ "message" ] = f"Template had an unknown filetype not supported by the linter: {self.object.doc_type}" else: data[ "message" ] = "Template linter returned results with issues that require attention" return JsonResponse(data) class ReportClone(LoginRequiredMixin, SingleObjectMixin, View): """ Create an identical copy of an individual :model:`reporting.Report`. """ model = Report def get(self, *args, **kwargs): self.object = self.get_object() try: findings = ReportFindingLink.objects.select_related("report").filter( report=self.object.pk ) report_to_clone = self.object report_to_clone.title = report_to_clone.title + " Copy" report_to_clone.complete = False report_to_clone.pk = None report_to_clone.save() new_report_pk = report_to_clone.pk for finding in findings: finding.report = report_to_clone finding.pk = None finding.save() logger.info( "Cloned %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.success( self.request, "Successfully cloned your report: {}".format(self.object.title), extra_tags="alert-error", ) except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) messages.error( self.request, "Encountered an error while trying to clone your report: {}".format( exception.args ), extra_tags="alert-error", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": new_report_pk}) ) class AssignBlankFinding(LoginRequiredMixin, SingleObjectMixin, View): """ Create a blank :model:`reporting.ReportFindingLink` entry linked to an individual :model:`reporting.Report`. """ model = Report def __init__(self): self.severity = Severity.objects.order_by("weight").last() self.finding_type = FindingType.objects.all().first() super().__init__() def get(self, *args, **kwargs): self.object = self.get_object() try: report_link = ReportFindingLink( title="Blank Template", severity=self.severity, finding_type=self.finding_type, report=self.object, assigned_to=self.request.user, position=get_position(self.object.id, self.severity), ) report_link.save() logger.info( "Added a blank finding to %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.success( self.request, "Successfully added a blank finding to the report", extra_tags="alert-success", ) except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) messages.error( self.request, "Encountered an error while trying to add a blank finding to your report: {}".format( exception.args ), extra_tags="alert-error", ) return HttpResponseRedirect( reverse("reporting:report_detail", args=(self.object.id,)) ) class ConvertFinding(LoginRequiredMixin, SingleObjectMixin, View): """ Create a copy of an individual :model:`reporting.ReportFindingLink` and prepare it to be saved as a new :model:`reporting.Finding`. **Template** :template:`reporting/finding_form.html` """ model = ReportFindingLink def get(self, *args, **kwargs): self.object = self.get_object() try: finding_instance = self.object form = FindingForm( initial={ "title": finding_instance.title, "description": finding_instance.description, "impact": finding_instance.impact, "mitigation": finding_instance.mitigation, "replication_steps": finding_instance.replication_steps, "host_detection_techniques": finding_instance.host_detection_techniques, "network_detection_techniques": finding_instance.network_detection_techniques, "references": finding_instance.references, "severity": finding_instance.severity, "finding_type": finding_instance.finding_type, } ) except Exception as exception: # pragma: no cover template = "An exception of type {0} occurred. Arguments:\n{1!r}" log_message = template.format(type(exception).__name__, exception.args) logger.error(log_message) messages.error( self.request, "Encountered an error while trying to convert your finding: {}".format( exception.args ), extra_tags="alert-error", ) return render(self.request, "reporting/finding_form.html", {"form": form}) def post(self, *args, **kwargs): form = FindingForm(self.request.POST) if form.is_valid(): new_finding = form.save() new_finding_pk = new_finding.pk return HttpResponseRedirect( reverse("reporting:finding_detail", kwargs={"pk": new_finding_pk}) ) logger.warning(form.errors.as_data()) return render(self.request, "reporting/finding_form.html", {"form": form}) ################## # View Functions # ################## @login_required def index(request): """ Display the main homepage. """ return HttpResponseRedirect(reverse("home:dashboard")) @login_required def findings_list(request): """ Display a list of all :model:`reporting.Finding`. **Context** ``filter`` Instance of :filter:`reporting.FindingFilter` **Template** :template:`reporting/finding_list.html` """ # Check if a search parameter is in the request try: search_term = request.GET.get("finding_search") except Exception: search_term = "" if search_term: messages.success( request, "Displaying search results for: {}".format(search_term), extra_tags="alert-success", ) findings = ( Finding.objects.select_related("severity", "finding_type") .filter( Q(title__icontains=search_term) | Q(description__icontains=search_term) ) .order_by("severity__weight", "finding_type", "title") ) else: findings = ( Finding.objects.select_related("severity", "finding_type") .all() .order_by("severity__weight", "finding_type", "title") ) findings_filter = FindingFilter(request.GET, queryset=findings) return render(request, "reporting/finding_list.html", {"filter": findings_filter}) @login_required def reports_list(request): """ Display a list of all :model:`reporting.Report`. **Template** :template:`reporting/report_list.html` """ reports = ( Report.objects.select_related("created_by").all().order_by("complete", "title") ) reports_filter = ReportFilter(request.GET, queryset=reports) return render(request, "reporting/report_list.html", {"filter": reports_filter}) @login_required def archive_list(request): """ Display a list of all :model:`reporting.Report` marked as archived. **Context** ``filter`` Instance of :filter:`reporting.ArchiveFilter` **Template** :template:`reporting/archives.html` """ archives = ( Archive.objects.select_related("project__client") .all() .order_by("project__client") ) archive_filter = ArchiveFilter(request.GET, queryset=archives) return render(request, "reporting/archives.html", {"filter": archive_filter}) @login_required def upload_evidence_modal_success(request): """ Display message following the successful creation of an individual :model:`reporting.Evidence` using a TinyMCE URLDialog. **Template** :template:`reporting/evidence_modal_success.html` """ return render(request, "reporting/evidence_modal_success.html") def generate_report_name(report_instance): """ Generate a filename for a report based on the current time and attributes of an individual :model:`reporting.Report`. All periods and commas are removed to keep the filename browser-friendly. """ def replace_chars(report_name): return report_name.replace(".", "").replace(",", "") timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") client_name = report_instance.project.client assessment_type = report_instance.project.project_type report_name = replace_chars(f"{timestamp}_{client_name}_{assessment_type}") return report_name def zip_directory(path, zip_handler): """ Compress the target directory as a Zip file for archiving. """ # Walk the target directory abs_src = os.path.abspath(path) for root, dirs, files in os.walk(path): # Add each file to the zip file handler for file in files: absname = os.path.abspath(os.path.join(root, file)) arcname = absname[len(abs_src) + 1 :] zip_handler.write(os.path.join(root, file), "evidence/" + arcname) @login_required def archive(request, pk): """ Generate all report types for an individual :model:`reporting.Report`, collect all related :model:`reporting.Evidence` and related files, and compress the files into a single Zip file for archiving. """ try: report_instance = Report.objects.select_related("project", "project__client").get( pk=pk ) # output_path = os.path.join(settings.MEDIA_ROOT, report_instance.title) # evidence_path = os.path.join(settings.MEDIA_ROOT) archive_loc = os.path.join(settings.MEDIA_ROOT, "archives/") evidence_loc = os.path.join(settings.MEDIA_ROOT, "evidence", str(pk)) report_name = generate_report_name(report_instance) # Get the templates for Word and PowerPoint if report_instance.docx_template: docx_template = report_instance.docx_template.document.path else: docx_template = ReportTemplate.objects.get( default=True, doc_type__doc_type="docx" ).document.path if report_instance.pptx_template: pptx_template = report_instance.pptx_template.document.path else: pptx_template = ReportTemplate.objects.get( default=True, doc_type__doc_type="pptx" ).document.path engine = reportwriter.Reportwriter(report_instance, template_loc=None) json_doc, word_doc, excel_doc, ppt_doc = engine.generate_all_reports( docx_template, pptx_template ) # Convert the dict to pretty JSON output for the file pretty_json = json.dumps(json_doc, indent=4) # Create a zip file in memory and add the reports to it zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, "a") as zf: zf.writestr("report.json", pretty_json) zf.writestr("report.docx", word_doc.getvalue()) zf.writestr("report.xlsx", excel_doc.getvalue()) zf.writestr("report.pptx", ppt_doc.getvalue()) zip_directory(evidence_loc, zf) zip_buffer.seek(0) with open(os.path.join(archive_loc, report_name + ".zip"), "wb+") as archive_file: archive_file = ContentFile(zip_buffer.read(), name=report_name + ".zip") new_archive = Archive( project=report_instance.project, report_archive=File(archive_file), ) new_archive.save() messages.success( request, "Successfully archived {}".format(report_instance.title), extra_tags="alert-success", ) return HttpResponseRedirect(reverse("reporting:archived_reports")) except Report.DoesNotExist: messages.error( request, "The target report does not exist", extra_tags="alert-danger", ) except ReportTemplate.DoesNotExist: messages.error( request, "You do not have templates selected for Word and PowerPoint and have not selected default templates", extra_tags="alert-danger", ) except Exception: logger.exception("Error archiving report") messages.error( request, "Failed to generate one or more documents for the archive", extra_tags="alert-danger", ) return HttpResponseRedirect(reverse("reporting:report_detail", kwargs={"pk": pk})) @login_required def download_archive(request, pk): """ Return the target :model:`reporting.Report` archive file for download. """ archive_instance = Archive.objects.get(pk=pk) file_path = os.path.join(settings.MEDIA_ROOT, archive_instance.report_archive.path) if os.path.exists(file_path): with open(file_path, "rb") as archive_file: response = HttpResponse( archive_file.read(), content_type="application/x-zip-compressed" ) response["Content-Disposition"] = "attachment; filename=" + os.path.basename( file_path ) return response raise Http404 @login_required def export_findings_to_csv(request): """ Export all :model:`reporting.Finding` to a csv file for download. """ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") finding_resource = FindingResource() dataset = finding_resource.export() response = HttpResponse(dataset.csv, content_type="text/csv") response["Content-Disposition"] = f'attachment; filename="{timestamp}_findings.csv"' return response ################ # View Classes # ################ # CBVs related to :model:`reporting.Finding` class FindingDetailView(LoginRequiredMixin, DetailView): """ Display an individual :model:`reporting.Finding`. **Template** :template:`reporting/finding_detail.html` """ model = Finding class FindingCreate(LoginRequiredMixin, CreateView): """ Create an individual instance of :model:`reporting.Finding`. **Context** ``cancel_link`` Link for the form's Cancel button to return to clients list page **Template** :template:`reporting/finding_form.html` """ model = Finding form_class = FindingForm def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse("reporting:findings") return ctx def get_success_url(self): messages.success( self.request, "Successfully added {} to the findings library".format(self.object.title), extra_tags="alert-success", ) return reverse("reporting:finding_detail", kwargs={"pk": self.object.pk}) class FindingUpdate(LoginRequiredMixin, UpdateView): """ Update an individual instance of :model:`reporting.Finding`. **Context** ``cancel_link`` Link for the form's Cancel button to return to clients list page **Template** :template:`reporting/finding_form.html` """ model = Finding form_class = FindingForm def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse( "reporting:finding_detail", kwargs={"pk": self.object.pk} ) return ctx def get_success_url(self): messages.success( self.request, "Master record for {} was successfully updated".format( self.get_object().title ), extra_tags="alert-success", ) return reverse("reporting:finding_detail", kwargs={"pk": self.object.pk}) class FindingDelete(LoginRequiredMixin, DeleteView): """ Delete an individual instance of :model:`reporting.Finding`. **Context** ``object_type`` String describing what is to be deleted ``object_to_be_deleted`` To-be-deleted instance of :model:`reporting.Finding` ``cancel_link`` Link for the form's Cancel button to return to finding list page **Template** :template:`confirm_delete.html` """ model = Finding template_name = "confirm_delete.html" def get_success_url(self): messages.warning( self.request, "Master record for {} was successfully deleted".format( self.get_object().title ), extra_tags="alert-warning", ) return reverse_lazy("reporting:findings") def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) queryset = kwargs["object"] ctx["object_type"] = "finding master record" ctx["object_to_be_deleted"] = queryset.title ctx["cancel_link"] = reverse("reporting:findings") return ctx # CBVs related to :model:`reporting.Report` class ReportDetailView(LoginRequiredMixin, DetailView): """ Display an individual :model:`reporting.Report`. **Template** :template:`reporting/report_detail.html` """ model = Report def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) form = SelectReportTemplateForm(instance=self.object) form.fields["docx_template"].queryset = ReportTemplate.objects.filter( Q(doc_type__doc_type="docx") & Q(client=self.object.project.client) | Q(doc_type__doc_type="docx") & Q(client__isnull=True) ).select_related( "doc_type", "client", ) form.fields["pptx_template"].queryset = ReportTemplate.objects.filter( Q(doc_type__doc_type="pptx") & Q(client=self.object.project.client) | Q(doc_type__doc_type="pptx") & Q(client__isnull=True) ).select_related( "doc_type", "client", ) ctx["form"] = form return ctx class ReportCreate(LoginRequiredMixin, CreateView): """ Create an individual instance of :model:`reporting.Report`. **Context** ``project`` Instance of :model:`rolodex.Project` associated with this report ``cancel_link`` Link for the form's Cancel button to return to report list or details page **Template** :template:`reporting/report_form.html` """ model = Report form_class = ReportForm def setup(self, request, *args, **kwargs): super().setup(request, *args, **kwargs) # Check if this request is for a specific project or not self.project = "" # Determine if ``pk`` is in the kwargs if "pk" in self.kwargs: pk = self.kwargs.get("pk") # Try to get the project from :model:`rolodex.Project` if pk: try: self.project = get_object_or_404(Project, pk=self.kwargs.get("pk")) except Project.DoesNotExist: logger.info( "Received report create request for Project ID %s, but that Project does not exist", pk, ) def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({"project": self.project}) return kwargs def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["project"] = self.project if self.project: ctx["cancel_link"] = reverse( "rolodex:project_detail", kwargs={"pk": self.project.pk} ) else: ctx["cancel_link"] = reverse("reporting:reports") return ctx def get_form(self, form_class=None): form = super().get_form(form_class) if not form.fields["project"].queryset: messages.error( self.request, "There are no active projects for a new report", extra_tags="alert-error", ) return form def form_valid(self, form): form.instance.created_by = self.request.user self.request.session["active_report"] = {} self.request.session["active_report"]["title"] = form.instance.title return super().form_valid(form) def get_initial(self): if self.project: title = "{} {} ({}) Report".format( self.project.client, self.project.project_type, self.project.start_date ) return {"title": title, "project": self.project.id} return super().get_initial() def get_success_url(self): self.request.session["active_report"]["id"] = self.object.pk self.request.session.modified = True messages.success( self.request, "Successfully created new report and set it as your active report", extra_tags="alert-success", ) return reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) class ReportUpdate(LoginRequiredMixin, UpdateView): """ Update an individual instance of :model:`reporting.Report`. **Context** ``cancel_link`` Link for the form's Cancel button to return to report's detail page **Template** :template:`reporting/report_form.html` """ model = Report form_class = ReportForm def setup(self, request, *args, **kwargs): super().setup(request, *args, **kwargs) # Check if this request is for a specific project or not self.project = "update" def get_form_kwargs(self): kwargs = super().get_form_kwargs() kwargs.update({"project": self.project}) return kwargs def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["project"] = self.object.project ctx["cancel_link"] = reverse( "reporting:report_detail", kwargs={"pk": self.object.pk} ) return ctx def form_valid(self, form): self.request.session["active_report"] = {} self.request.session["active_report"]["id"] = form.instance.id self.request.session["active_report"]["title"] = form.instance.title self.request.session.modified = True return super().form_valid(form) def get_success_url(self): messages.success( self.request, "Successfully updated the report", extra_tags="alert-success" ) return reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) class ReportDelete(LoginRequiredMixin, DeleteView): """ Delete an individual instance of :model:`reporting.Report`. **Context** ``object_type`` String describing what is to be deleted ``object_to_be_deleted`` To-be-deleted instance of :model:`reporting.Report` ``cancel_link`` Link for the form's Cancel button to return to report's detail page **Template** :template:`confirm_delete.html` """ model = Report template_name = "confirm_delete.html" def get_success_url(self): # Clear user's session if deleted report is their active report if self.object.pk == self.request.session["active_report"]["id"]: self.request.session["active_report"] = {} self.request.session["active_report"]["id"] = "" self.request.session["active_report"]["title"] = "" self.request.session.modified = True messages.warning( self.request, "Successfully deleted the report and associated evidence files", extra_tags="alert-warning", ) return "{}#reports".format( reverse("rolodex:project_detail", kwargs={"pk": self.object.project.id}) ) def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) queryset = kwargs["object"] ctx["cancel_link"] = reverse( "rolodex:project_detail", kwargs={"pk": self.object.project.pk} ) ctx["object_type"] = "entire report, evidence and all" ctx["object_to_be_deleted"] = queryset.title return ctx class ReportTemplateListView(LoginRequiredMixin, generic.ListView): """ Display a list of all :model:`reporting.ReportTemplate`. **Template** :template:`reporting/report_template_list.html` """ model = ReportTemplate template_name = "reporting/report_templates_list.html" class ReportTemplateDetailView(LoginRequiredMixin, DetailView): """ Display an individual :model:`reporting.ReportTemplate`. **Template** :template:`reporting/report_template_list.html` """ model = ReportTemplate template_name = "reporting/report_template_detail.html" class ReportTemplateCreate(LoginRequiredMixin, CreateView): """ Create an individual instance of :model:`reporting.ReportTemplate`. **Context** ``cancel_link`` Link for the form's Cancel button to return to template list page **Template** :template:`report_template_form.html` """ model = ReportTemplate form_class = ReportTemplateForm template_name = "reporting/report_template_form.html" def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse("reporting:templates") return ctx def get_initial(self): date = datetime.now().strftime("%d %B %Y") initial_upload = f'<p><span class="bold">{date}</span></p><p>Initial upload</p>' return {"changelog": initial_upload} def get_success_url(self): messages.success( self.request, "Template successfully uploaded", extra_tags="alert-success", ) return reverse("reporting:template_detail", kwargs={"pk": self.object.pk}) def form_valid(self, form, **kwargs): self.object = form.save(commit=False) self.object.uploaded_by = self.request.user self.object.save() return HttpResponseRedirect(self.get_success_url()) class ReportTemplateUpdate(LoginRequiredMixin, PermissionRequiredMixin, UpdateView): """ Save an individual instance of :model:`reporting.ReportTemplate`. **Context** ``cancel_link`` Link for the form's Cancel button to return to template list page **Template** :template:`report_template_form.html` """ model = ReportTemplate form_class = ReportTemplateForm template_name = "reporting/report_template_form.html" permission_denied_message = "Only an admin can edit this template" def has_permission(self): self.object = self.get_object() if self.object.protected: return self.request.user.is_staff return self.request.user.is_active def handle_no_permission(self): self.object = self.get_object() messages.error( self.request, "That template is protected – only an admin can edit it" ) return HttpResponseRedirect( reverse( "reporting:template_detail", args=(self.object.pk,), ) ) def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse("reporting:templates") return ctx def get_success_url(self): messages.success( self.request, "Template successfully updated", extra_tags="alert-success", ) return reverse("reporting:template_detail", kwargs={"pk": self.object.pk}) def form_valid(self, form, **kwargs): self.object = form.save(commit=False) self.object.uploaded_by = self.request.user self.object.save() return HttpResponseRedirect(self.get_success_url()) class ReportTemplateDelete(LoginRequiredMixin, PermissionRequiredMixin, DeleteView): """ Delete an individual instance of :model:`reporting.ReportTemplate`. **Context** ``object_type`` String describing what is to be deleted ``object_to_be_deleted`` To-be-deleted instance of :model:`reporting.ReportTemplate` ``cancel_link`` Link for the form's Cancel button to return to template's detail page **Template** :template:`confirm_delete.html` """ model = ReportTemplate template_name = "confirm_delete.html" permission_denied_message = "Only an admin can delete this template" def has_permission(self): self.object = self.get_object() if self.object.protected: return self.request.user.is_staff return self.request.user.is_active def handle_no_permission(self): self.object = self.get_object() messages.error( self.request, "That template is protected – only an admin can edit it" ) return HttpResponseRedirect( reverse( "reporting:template_detail", args=(self.object.pk,), ) ) def get_success_url(self): message = "Successfully deleted the template and associated file" if os.path.isfile(self.object.document.path): message = "Successfully deleted the template, but could not delete the associated file" messages.success( self.request, message, extra_tags="alert-success", ) return reverse("reporting:templates") def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) queryset = kwargs["object"] ctx["cancel_link"] = reverse( "reporting:template_detail", kwargs={"pk": queryset.pk} ) ctx["object_type"] = "report template file (and associated file on disk)" ctx["object_to_be_deleted"] = queryset.filename return ctx class ReportTemplateDownload(LoginRequiredMixin, SingleObjectMixin, View): """ Return the target :model:`reporting.ReportTemplate` template file for download. """ model = ReportTemplate def get(self, *args, **kwargs): self.object = self.get_object() file_path = os.path.join(settings.MEDIA_ROOT, self.object.document.path) if os.path.exists(file_path): return FileResponse( open(file_path, "rb"), as_attachment=True, filename=os.path.basename(file_path), ) raise Http404 class GenerateReportJSON(LoginRequiredMixin, SingleObjectMixin, View): """ Generate a JSON report for an individual :model:`reporting.Report`. """ model = Report def get(self, *args, **kwargs): self.object = self.get_object() logger.info( "Generating JSON report for %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) engine = reportwriter.Reportwriter(self.object, template_loc=None) json_report = engine.generate_json() return HttpResponse(json_report, "application/json") class GenerateReportDOCX(LoginRequiredMixin, SingleObjectMixin, View): """ Generate a DOCX report for an individual :model:`reporting.Report`. """ model = Report def get(self, *args, **kwargs): self.object = self.get_object() logger.info( "Generating DOCX report for %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) try: report_name = generate_report_name(self.object) engine = reportwriter.Reportwriter(self.object, template_loc=None) # Get the template for this report if self.object.docx_template: report_template = self.object.docx_template else: report_config = ReportConfiguration.get_solo() report_template = report_config.default_docx_template if not report_template: raise MissingTemplate template_loc = report_template.document.path # Check template's linting status template_status = report_template.get_status() if template_status in ("error", "failed"): messages.error( self.request, "The selected report template has linting errors and cannot be used to render a DOCX document", extra_tags="alert-danger", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) ) # Template available and passes linting checks, so proceed with generation engine = reportwriter.Reportwriter(self.object, template_loc) docx = engine.generate_word_docx() response = HttpResponse( content_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document" ) response["Content-Disposition"] = f'attachment; filename="{report_name}.docx"' docx.save(response) # Send WebSocket message to update user's webpage try: async_to_sync(channel_layer.group_send)( "report_{}".format(self.object.pk), { "type": "status_update", "message": {"status": "success"}, }, ) except gaierror: # WebSocket are unavailable (unit testing) pass return response except ZeroDivisionError: logger.error( "DOCX generation failed for %s %s and user %s because of an attempt to divide by zero in Jinja2", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.info( self.request, "Tip: Before performing math, check if the number is greater than zero", extra_tags="alert-danger", ) messages.error( self.request, "Word document generation failed because the selected template has Jinja2 code that attempts to divide by zero", extra_tags="alert-danger", ) except MissingTemplate: logger.error( "DOCX generation failed for %s %s and user %s because no template was configured", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "You do not have a Word template selected and have not configured a default template", extra_tags="alert-danger", ) except DocxPackageNotFoundError: logger.exception( "DOCX generation failed for %s %s and user %s because the template file was missing", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Your selected Word template could not be found on the server – try uploading it again", extra_tags="alert-danger", ) except FileNotFoundError as error: logger.exception( "DOCX generation failed for %s %s and user %s because an evidence file was missing", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Halted document generation because an evidence file is missing: {}".format( error ), extra_tags="alert-danger", ) except UnrecognizedImageError as error: logger.exception( "DOCX generation failed for %s %s and user %s because of an unrecognized or corrupt image", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Encountered an error generating the document: {}".format(error) .replace('"', "") .replace("'", "`"), extra_tags="alert-danger", ) except Exception as error: logger.exception( "DOCX generation failed unexpectedly for %s %s and user %s", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Encountered an error generating the document: {}".format(error) .replace('"', "") .replace("'", "`"), extra_tags="alert-danger", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) ) class GenerateReportXLSX(LoginRequiredMixin, SingleObjectMixin, View): """ Generate an XLSX report for an individual :model:`reporting.Report`. """ model = Report def get(self, *args, **kwargs): self.object = self.get_object() logger.info( "Generating XLSX report for %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) try: report_name = generate_report_name(self.object) engine = reportwriter.Reportwriter(self.object, template_loc=None) output = io.BytesIO() workbook = Workbook(output, {"in_memory": True}) engine.generate_excel_xlsx(workbook) output.seek(0) response = HttpResponse( output.read(), content_type="application/application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", ) response["Content-Disposition"] = f'attachment; filename="{report_name}.xlsx"' output.close() return response except Exception as error: logger.exception( "XLSX generation failed unexpectedly for %s %s and user %s", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Encountered an error generating the spreadsheet: {}".format(error), extra_tags="alert-danger", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) ) class GenerateReportPPTX(LoginRequiredMixin, SingleObjectMixin, View): """ Generate a PPTX report for an individual :model:`reporting.Report`. """ model = Report def get(self, *args, **kwargs): self.object = self.get_object() logger.info( "Generating PPTX report for %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) try: report_name = generate_report_name(self.object) engine = reportwriter.Reportwriter(self.object, template_loc=None) # Get the template for this report if self.object.pptx_template: report_template = self.object.pptx_template else: report_config = ReportConfiguration.get_solo() report_template = report_config.default_pptx_template if not report_template: raise MissingTemplate template_loc = report_template.document.path # Check template's linting status template_status = report_template.get_status() if template_status in ("error", "failed"): messages.error( self.request, "The selected report template has linting errors and cannot be used to render a PPTX document", extra_tags="alert-danger", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) ) # Template available and passes linting checks, so proceed with generation engine = reportwriter.Reportwriter(self.object, template_loc) pptx = engine.generate_powerpoint_pptx() response = HttpResponse( content_type="application/application/vnd.openxmlformats-officedocument.presentationml.presentation" ) response["Content-Disposition"] = f'attachment; filename="{report_name}.pptx"' pptx.save(response) return response except MissingTemplate: logger.error( "PPTX generation failed for %s %s and user %s because no template was configured", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "You do not have a PowerPoint template selected and have not configured a default template", extra_tags="alert-danger", ) except ValueError as exception: logger.exception( "PPTX generation failed for %s %s and user %s because the template could not be loaded as a PPTX", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, f"Your selected template could not be loaded as a PowerPoint template: {exception}", extra_tags="alert-danger", ) except PptxPackageNotFoundError: logger.exception( "PPTX generation failed for %s %s and user %s because the template file was missing", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Your selected PowerPoint template could not be found on the server – try uploading it again", extra_tags="alert-danger", ) except FileNotFoundError as error: logger.exception( "PPTX generation failed for %s %s and user %s because an evidence file was missing", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Halted document generation because an evidence file is missing: {}".format( error ), extra_tags="alert-danger", ) except UnrecognizedImageError as error: logger.exception( "PPTX generation failed for %s %s and user %s because of an unrecognized or corrupt image", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Encountered an error generating the document: {}".format(error) .replace('"', "") .replace("'", "`"), extra_tags="alert-danger", ) except Exception as error: logger.exception( "PPTX generation failed unexpectedly for %s %s and user %s", self.object.__class__.__name__, self.object.id, self.request.user, ) messages.error( self.request, "Encountered an error generating the document: {}".format(error) .replace('"', "") .replace("'", "`"), extra_tags="alert-danger", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) ) class GenerateReportAll(LoginRequiredMixin, SingleObjectMixin, View): """ Generate all report types for an individual :model:`reporting.Report`. """ model = Report def get(self, *args, **kwargs): self.object = self.get_object() logger.info( "Generating PPTX report for %s %s by request of %s", self.object.__class__.__name__, self.object.id, self.request.user, ) try: report_name = generate_report_name(self.object) engine = reportwriter.Reportwriter(self.object, template_loc=None) # Get the templates for Word and PowerPoint if self.object.docx_template: docx_template = self.object.docx_template else: report_config = ReportConfiguration.get_solo() docx_template = report_config.default_docx_template if not docx_template: raise MissingTemplate docx_template = docx_template.document.path if self.object.pptx_template: pptx_template = self.object.pptx_template else: report_config = ReportConfiguration.get_solo() pptx_template = report_config.default_pptx_template if not pptx_template: raise MissingTemplate pptx_template = pptx_template.document.path # Generate all types of reports json_doc, docx_doc, xlsx_doc, pptx_doc = engine.generate_all_reports( docx_template, pptx_template ) # Convert the dict to pretty JSON output for the file pretty_json = json.dumps(json_doc, indent=4) # Create a zip file in memory and add the reports to it zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, "a") as zf: zf.writestr(f"{report_name}.json", pretty_json) zf.writestr(f"{report_name}.docx", docx_doc.getvalue()) zf.writestr(f"{report_name}.xlsx", xlsx_doc.getvalue()) zf.writestr(f"{report_name}.pptx", pptx_doc.getvalue()) zip_buffer.seek(0) # Return the buffer in the HTTP response response = HttpResponse(content_type="application/x-zip-compressed") response["Content-Disposition"] = f'attachment; filename="{report_name}.zip"' response.write(zip_buffer.read()) return response except MissingTemplate: messages.error( self.request, "You do not have a PowerPoint template selected and have not configured a default template", extra_tags="alert-danger", ) except ValueError as exception: messages.error( self.request, f"Your selected template could not be loaded as a PowerPoint template: {exception}", extra_tags="alert-danger", ) except DocxPackageNotFoundError: messages.error( self.request, "Your selected Word template could not be found on the server – try uploading it again", extra_tags="alert-danger", ) except PptxPackageNotFoundError: messages.error( self.request, "Your selected PowerPoint template could not be found on the server – try uploading it again", extra_tags="alert-danger", ) except Exception as error: messages.error( self.request, "Encountered an error generating the document: {}".format(error), extra_tags="alert-danger", ) return HttpResponseRedirect( reverse("reporting:report_detail", kwargs={"pk": self.object.pk}) ) # CBVs related to :model:`reporting.ReportFindingLink` class ReportFindingLinkUpdate(LoginRequiredMixin, UpdateView): """ Update an individual instance of :model:`reporting.ReportFindingLink`. **Context** ``cancel_link`` Link for the form's Cancel button to return to report's detail page **Template** :template:`reporting/local_edit.html.html` """ model = ReportFindingLink form_class = ReportFindingLinkUpdateForm template_name = "reporting/local_edit.html" success_url = reverse_lazy("reporting:reports") def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse( "reporting:report_detail", kwargs={"pk": self.object.report.pk} ) return ctx def form_valid(self, form): # Check if severity, position, or assigned_to has changed if "assigned_to" in form.changed_data: # Get the entries current values (those being changed) old_entry = ReportFindingLink.objects.get(pk=self.object.pk) old_assignee = old_entry.assigned_to # Notify new assignee over WebSockets if "assigned_to" in form.changed_data: new_users_assignments = {} old_users_assignments = {} # Only notify if the assignee is not the user who made the change if self.request.user != self.object.assigned_to: # Count the current user's total assignments new_users_assignments = ( ReportFindingLink.objects.select_related( "report", "report__project" ) .filter( Q(assigned_to=self.object.assigned_to) & Q(report__complete=False) & Q(complete=False) ) .count() + 1 ) old_users_assignments = ( ReportFindingLink.objects.select_related( "report", "report__project" ) .filter( Q(assigned_to=old_assignee) & Q(report__complete=False) & Q(complete=False) ) .count() - 1 ) try: # Send a message to the assigned user async_to_sync(channel_layer.group_send)( "notify_{}".format(self.object.assigned_to), { "type": "task", "message": { "message": "You have been assigned to this finding for {}:\n{}".format( self.object.report, self.object.title ), "level": "info", "title": "New Assignment", }, "assignments": new_users_assignments, }, ) except gaierror: # WebSocket are unavailable (unit testing) pass if self.request.user != old_assignee and old_users_assignments: try: # Send a message to the unassigned user async_to_sync(channel_layer.group_send)( "notify_{}".format(old_assignee), { "type": "task", "message": { "message": "You have been unassigned from this finding for {}:\n{}".format( self.object.report, self.object.title ), "level": "info", "title": "Assignment Change", }, "assignments": old_users_assignments, }, ) except gaierror: # WebSocket are unavailable (unit testing) pass return super().form_valid(form) def get_form(self, form_class=None): form = super().get_form(form_class) user_primary_keys = ProjectAssignment.objects.filter( project=self.object.report.project ).values_list("operator", flat=True) form.fields["assigned_to"].queryset = User.objects.filter( id__in=user_primary_keys ) return form def get_success_url(self): messages.success( self.request, "Successfully updated {}".format(self.get_object().title), extra_tags="alert-success", ) return reverse("reporting:report_detail", kwargs={"pk": self.object.report.id}) # CBVs related to :model:`reporting.Evidence` class EvidenceDetailView(LoginRequiredMixin, DetailView): """ Display an individual instance of :model:`reporting.Evidence`. **Template** :template:`reporting/evidence_detail.html` """ model = Evidence def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) file_content = None if os.path.isfile(self.object.document.path): if ( self.object.document.name.lower().endswith(".txt") or self.object.document.name.lower().endswith(".log") or self.object.document.name.lower().endswith(".md") ): filetype = "text" file_content = [] temp = self.object.document.read().splitlines() for line in temp: try: file_content.append(line.decode()) except Exception: file_content.append(line) elif ( self.object.document.name.lower().endswith(".jpg") or self.object.document.name.lower().endswith(".png") or self.object.document.name.lower().endswith(".jpeg") ): filetype = "image" else: filetype = "unknown" else: filetype = "text" file_content = [] file_content.append("FILE NOT FOUND") ctx["filetype"] = filetype ctx["evidence"] = self.object ctx["file_content"] = file_content return ctx class EvidenceCreate(LoginRequiredMixin, CreateView): """ Create an individual :model:`reporting.Evidence` entry linked to an individual :model:`reporting.ReportFindingLink`. **Template** :template:`reporting/evidence_form.html` """ model = Evidence form_class = EvidenceForm def get_template_names(self): if "modal" in self.kwargs: modal = self.kwargs["modal"] if modal: return ["reporting/evidence_form_modal.html"] return ["reporting/evidence_form.html"] return ["reporting/evidence_form.html"] def get_form_kwargs(self): kwargs = super().get_form_kwargs() finding_pk = self.kwargs.get("pk") self.evidence_queryset = Evidence.objects.filter(finding=finding_pk) kwargs.update({"evidence_queryset": self.evidence_queryset}) self.finding_instance = get_object_or_404(ReportFindingLink, pk=finding_pk) if "modal" in self.kwargs: kwargs.update({"is_modal": True}) return kwargs def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse( "reporting:report_detail", kwargs={"pk": self.finding_instance.report.pk} ) if "modal" in self.kwargs: friendly_names = self.evidence_queryset.values_list( "friendly_name", flat=True ) used_friendly_names = [] # Convert the queryset into a list to pass to JavaScript later for name in friendly_names: used_friendly_names.append(name) ctx["used_friendly_names"] = used_friendly_names return ctx def form_valid(self, form, **kwargs): self.object = form.save(commit=False) self.object.uploaded_by = self.request.user self.object.finding = self.finding_instance self.object.save() if os.path.isfile(self.object.document.path): messages.success( self.request, "Evidence uploaded successfully", extra_tags="alert-success", ) else: messages.error( self.request, "Evidence file failed to upload", extra_tags="alert-danger", ) return HttpResponseRedirect(self.get_success_url()) def get_success_url(self): if "modal" in self.kwargs: return reverse("reporting:upload_evidence_modal_success") return reverse("reporting:report_detail", args=(self.object.finding.report.pk,)) class EvidenceUpdate(LoginRequiredMixin, UpdateView): """ Update an individual instance of :model:`reporting.Evidence`. **Context** ``cancel_link`` Link for the form's Cancel button to return to evidence's detail page **Template** :template:`reporting/evidence_form.html` """ model = Evidence form_class = EvidenceForm def get_form_kwargs(self): kwargs = super().get_form_kwargs() evidence_queryset = Evidence.objects.filter(finding=self.object.finding.pk) kwargs.update({"evidence_queryset": evidence_queryset}) return kwargs def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse( "reporting:evidence_detail", kwargs={"pk": self.object.pk}, ) return ctx def get_success_url(self): messages.success( self.request, "Successfully updated {}".format(self.get_object().friendly_name), extra_tags="alert-success", ) return reverse( "reporting:report_detail", kwargs={"pk": self.object.finding.report.pk} ) class EvidenceDelete(LoginRequiredMixin, DeleteView): """ Delete an individual instance of :model:`reporting.Evidence`. **Context** ``object_type`` String describing what is to be deleted ``object_to_be_deleted`` To-be-deleted instance of :model:`reporting.Evidence` ``cancel_link`` Link for the form's Cancel button to return to evidence's detail page **Template** :template:`confirm_delete.html` """ model = Evidence template_name = "confirm_delete.html" def get_success_url(self): message = "Successfully deleted the evidence and associated file" if os.path.isfile(self.object.document.name): message = "Successfully deleted the evidence, but could not delete the associated file" messages.success( self.request, message, extra_tags="alert-success", ) return reverse( "reporting:report_detail", kwargs={"pk": self.object.finding.report.pk} ) def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) queryset = kwargs["object"] ctx["cancel_link"] = reverse( "reporting:evidence_detail", kwargs={"pk": queryset.pk} ) ctx["object_type"] = "evidence file (and associated file on disk)" ctx["object_to_be_deleted"] = queryset.friendly_name return ctx # CBVs related to :model:`reporting.Finding` class FindingNoteCreate(LoginRequiredMixin, CreateView): """ Create an individual instance of :model:`reporting.FindingNote`. **Context** ``cancel_link`` Link for the form's Cancel button to return to finding's detail page **Template** :template:`note_form.html` """ model = FindingNote form_class = FindingNoteForm template_name = "note_form.html" def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) finding_instance = get_object_or_404(Finding, pk=self.kwargs.get("pk")) ctx["cancel_link"] = reverse( "reporting:finding_detail", kwargs={"pk": finding_instance.pk} ) return ctx def get_success_url(self): messages.success( self.request, "Successfully added your note to this finding", extra_tags="alert-success", ) return "{}#notes".format( reverse("reporting:finding_detail", kwargs={"pk": self.object.finding.id}) ) def form_valid(self, form, **kwargs): self.object = form.save(commit=False) self.object.operator = self.request.user self.object.finding_id = self.kwargs.get("pk") self.object.save() return super().form_valid(form) class FindingNoteUpdate(LoginRequiredMixin, UserPassesTestMixin, UpdateView): """ Update an individual instance of :model:`reporting.FindingNote`. **Context** ``cancel_link`` Link for the form's Cancel button to return to finding's detail page **Template** :template:`note_form.html` """ model = FindingNote form_class = FindingNoteForm template_name = "note_form.html" def test_func(self): self.object = self.get_object() return self.object.operator.id == self.request.user.id def handle_no_permission(self): messages.error(self.request, "You do not have permission to access that") return redirect("home:dashboard") def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) ctx["cancel_link"] = reverse( "reporting:finding_detail", kwargs={"pk": self.object.finding.pk} ) return ctx def get_success_url(self): messages.success( self.request, "Successfully updated the note", extra_tags="alert-success" ) return reverse("reporting:finding_detail", kwargs={"pk": self.object.finding.pk}) # CBVs related to :model:`reporting.LocalFindingNote` class LocalFindingNoteCreate(LoginRequiredMixin, CreateView): """ Create an individual instance of :model:`reporting.LocalFindingNote`. **Context** ``cancel_link`` Link for the form's Cancel button to return to finding's detail page **Template** :template:`note_form.html` """ model = LocalFindingNote form_class = LocalFindingNoteForm template_name = "note_form.html" def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) self.finding_instance = get_object_or_404( ReportFindingLink, pk=self.kwargs.get("pk") ) ctx["cancel_link"] = reverse( "reporting:local_edit", kwargs={"pk": self.finding_instance.pk} ) return ctx def get_success_url(self): messages.success( self.request, "Successfully added your note to this finding", extra_tags="alert-success", ) return reverse("reporting:local_edit", kwargs={"pk": self.object.finding.pk}) def form_valid(self, form, **kwargs): self.object = form.save(commit=False) self.object.operator = self.request.user self.object.finding_id = self.kwargs.get("pk") self.object.save() return super().form_valid(form) class LocalFindingNoteUpdate(LoginRequiredMixin, UserPassesTestMixin, UpdateView): """ Update an individual instance of :model:`reporting.LocalFindingNote`. **Context** ``cancel_link`` Link for the form's Cancel button to return to finding's detail page **Template** :template:`note_form.html` """ model = LocalFindingNote form_class = LocalFindingNoteForm template_name = "note_form.html" def test_func(self): self.object = self.get_object() return self.object.operator.id == self.request.user.id def handle_no_permission(self): messages.error(self.request, "You do not have permission to access that") return redirect("home:dashboard") def get_context_data(self, **kwargs): ctx = super().get_context_data(**kwargs) note_instance = get_object_or_404(LocalFindingNote, pk=self.kwargs.get("pk")) ctx["cancel_link"] = reverse( "reporting:local_edit", kwargs={"pk": note_instance.finding.id} ) return ctx def get_success_url(self): messages.success( self.request, "Successfully updated the note", extra_tags="alert-success" ) return reverse("reporting:local_edit", kwargs={"pk": self.object.finding.pk})
35.229863
152
0.578291
b1c1365ed5886f806cb635c2bc0c991980ceb205
11,362
py
Python
bnpy/ioutil/ModelReader.py
co2meal/-bnpy-dev
74f69afde6c9dac8de4c074842df53ae87a15ac1
[ "BSD-3-Clause" ]
null
null
null
bnpy/ioutil/ModelReader.py
co2meal/-bnpy-dev
74f69afde6c9dac8de4c074842df53ae87a15ac1
[ "BSD-3-Clause" ]
null
null
null
bnpy/ioutil/ModelReader.py
co2meal/-bnpy-dev
74f69afde6c9dac8de4c074842df53ae87a15ac1
[ "BSD-3-Clause" ]
null
null
null
''' ModelReader.py Load bnpy models from disk See Also ------- ModelWriter.py : save bnpy models to disk. ''' import numpy as np import scipy.io import os import glob from ModelWriter import makePrefixForLap from bnpy.allocmodel import AllocModelConstructorsByName from bnpy.obsmodel import ObsModelConstructorsByName from bnpy.util import toCArray, as1D def getPrefixForLapQuery(taskpath, lapQuery): ''' Search among checkpoint laps for one nearest to query. Returns -------- prefix : str For lap 1, prefix = 'Lap0001.000'. For lap 5.5, prefix = 'Lap0005.500'. lap : int lap checkpoint for saved params closed to lapQuery ''' try: saveLaps = np.loadtxt(os.path.join(taskpath, 'laps-saved-params.txt')) except IOError: fileList = glob.glob(os.path.join(taskpath, 'Lap*TopicModel.mat')) if len(fileList) == 0: fileList = glob.glob(os.path.join(taskpath, 'Lap*.log_prob_w')) assert len(fileList) > 0 saveLaps = list() for fpath in sorted(fileList): basename = fpath.split(os.path.sep)[-1] lapstr = basename[3:11] saveLaps.append(float(lapstr)) saveLaps = np.sort(np.asarray(saveLaps)) if lapQuery is None: bestLap = saveLaps[-1] # take final saved value else: distances = np.abs(lapQuery - saveLaps) bestLap = saveLaps[np.argmin(distances)] return makePrefixForLap(bestLap), bestLap def loadModelForLap(matfilepath, lapQuery): ''' Loads saved model with lap closest to provided lapQuery. Returns ------- model : bnpy.HModel Model object for saved at checkpoint lap=bestLap. bestLap : int lap checkpoint for saved model closed to lapQuery ''' prefix, bestLap = getPrefixForLapQuery(matfilepath, lapQuery) model = load_model(matfilepath, prefix=prefix) return model, bestLap def load_model(matfilepath, prefix='Best', lap=None): ''' Load model stored to disk by ModelWriter Returns ------ model : bnpy.HModel Model object for saved at checkpoint indicated by prefix or lap. ''' # Avoids circular import import bnpy.HModel as HModel if lap is not None: prefix, _ = getPrefixForLapQuery(matfilepath, lap) try: obsModel = load_obs_model(matfilepath, prefix) allocModel = load_alloc_model(matfilepath, prefix) model = HModel(allocModel, obsModel) except IOError as e: if prefix == 'Best': matList = glob.glob(os.path.join(matfilepath, '*TopicModel.mat')) lpwList = glob.glob(os.path.join(matfilepath, '*.log_prob_w')) if len(matList) > 0: matList.sort() # ascending order, so most recent is last prefix = matList[-1].split(os.path.sep)[-1][:11] model = loadTopicModel(matfilepath, prefix=prefix) elif len(lpwList) > 0: lpwList.sort() # ascenting order prefix = lpwList[-1].split(os.path.sep)[-1][:7] else: raise e try: model = loadTopicModel(matfilepath, prefix=prefix) except IOError as e: model = loadTopicModelFromMEDLDA(matfilepath, prefix=prefix) return model def load_alloc_model(matfilepath, prefix): """ Load allocmodel stored to disk in bnpy .mat format. Parameters ------ matfilepath : str String file system path to folder where .mat files are stored. Usually this path is a "taskoutpath" like where bnpy.run saves its output. prefix : str Indicates which stored checkpoint to use. Can look like 'Lap0005.000'. Returns ------ allocModel : bnpy.allocmodel object This object has valid set of global parameters and valid hyperparameters that define its prior. """ apriorpath = os.path.join(matfilepath, 'AllocPrior.mat') amodelpath = os.path.join(matfilepath, prefix + 'AllocModel.mat') APDict = loadDictFromMatfile(apriorpath) ADict = loadDictFromMatfile(amodelpath) AllocConstr = AllocModelConstructorsByName[ADict['name']] amodel = AllocConstr(ADict['inferType'], APDict) amodel.from_dict(ADict) return amodel def load_obs_model(matfilepath, prefix): """ Load observation model object stored to disk in bnpy mat format. Parameters ------ matfilepath : str String file system path to folder where .mat files are stored. Usually this path is a "taskoutpath" like where bnpy.run saves its output. prefix : str Indicates which stored checkpoint to use. Can look like 'Lap0005.000'. Returns ------ allocModel : bnpy.allocmodel object This object has valid set of global parameters and valid hyperparameters that define its prior. """ obspriormatfile = os.path.join(matfilepath, 'ObsPrior.mat') PriorDict = loadDictFromMatfile(obspriormatfile) ObsConstr = ObsModelConstructorsByName[PriorDict['name']] obsModel = ObsConstr(**PriorDict) obsmodelpath = os.path.join(matfilepath, prefix + 'ObsModel.mat') ParamDict = loadDictFromMatfile(obsmodelpath) if obsModel.inferType == 'EM': obsModel.setEstParams(**ParamDict) else: obsModel.setPostFactors(**ParamDict) return obsModel def loadDictFromMatfile(matfilepath): ''' Load dict of numpy arrays from a .mat-format file on disk. This is a wrapper around scipy.io.loadmat, which makes the returned numpy arrays in standard aligned format. Returns -------- D : dict Each key/value pair is a parameter name and a numpy array loaded from the provided mat file. We ensure before returning that each array has properties: * C alignment * Original 2D shape has been squeezed as much as possible * (1,1) becomes a size=1 1D array * (1,N) or (N,1) become 1D arrays * flags.aligned is True * flags.owndata is True * dtype.byteorder is '=' Examples ------- >>> import scipy.io >>> Dorig = dict(scalar=5, scalar1DN1=np.asarray([3.14,])) >>> Dorig['arr1DN3'] = np.asarray([1,2,3]) >>> scipy.io.savemat('Dorig.mat', Dorig, oned_as='row') >>> D = loadDictFromMatfile('Dorig.mat') >>> D['scalar'] array(5) >>> D['scalar1DN1'] array(3.14) >>> D['arr1DN3'] array([1, 2, 3]) ''' Dtmp = scipy.io.loadmat(matfilepath) D = dict([x for x in Dtmp.items() if not x[0].startswith('__')]) for key in D: if not isinstance(D[key], np.ndarray): continue x = D[key] if x.size == 1 and isinstance(x[0], np.unicode_): D[key] = str(x[0]) continue if x.ndim == 2: x = np.squeeze(x) if str(x.dtype).count('int'): arr = toCArray(x, dtype=np.int32) else: arr = toCArray(x, dtype=np.float64) assert arr.dtype.byteorder == '=' assert arr.flags.aligned is True assert arr.flags.owndata is True D[key] = arr return D def loadWordCountMatrixForLap(matfilepath, lapQuery, toDense=True): ''' Load word counts ''' prefix, bestLap = getPrefixForLapQuery(matfilepath, lapQuery) _, WordCounts = loadTopicModel(matfilepath, prefix, returnWordCounts=1) return WordCounts def loadTopicModelFromMEDLDA(filepath, prefix=None, returnTPA=0): ''' Load topic model saved in medlda format. ''' # Avoid circular import import bnpy.HModel as HModel assert prefix is not None alphafilepath = os.path.join(filepath, prefix + '.alpha') etafilepath = os.path.join(filepath, prefix + '.eta') topicfilepath = os.path.join(filepath, prefix + '.log_prob_w') alpha = float(np.loadtxt(alphafilepath)) eta = np.loadtxt(etafilepath) logtopics = np.loadtxt(topicfilepath) topics = np.exp(logtopics) topics += 1e-9 topics /= topics.sum(axis=1)[:, np.newaxis] assert np.all(np.isfinite(topics)) if returnTPA: K = topics.shape[0] probs = 1.0 / K * np.ones(K) return topics, probs, alpha, eta infAlg = 'VB' aPriorDict = dict(alpha=alpha) amodel = AllocModelConstructorsByName[ 'FiniteTopicModel'](infAlg, aPriorDict) omodel = ObsModelConstructorsByName['Mult'](infAlg, lam=0.001, D=topics.shape[1]) hmodel = HModel(amodel, omodel) hmodel.obsModel.set_global_params(topics=topics, nTotalTokens=1000) return hmodel def loadTopicModel(matfilepath, prefix=None, returnWordCounts=0, returnTPA=0): ''' Load saved topic model ''' # avoids circular import from bnpy.HModel import HModel if len(glob.glob(os.path.join(matfilepath, "*.log_prob_w"))) > 0: return loadTopicModelFromMEDLDA(matfilepath, prefix, returnTPA=returnTPA) if prefix is not None: matfilepath = os.path.join(matfilepath, prefix + 'TopicModel.mat') Mdict = loadDictFromMatfile(matfilepath) if 'SparseWordCount_data' in Mdict: data = np.asarray(Mdict['SparseWordCount_data'], dtype=np.float64) K = int(Mdict['K']) vocab_size = int(Mdict['vocab_size']) try: indices = Mdict['SparseWordCount_indices'] indptr = Mdict['SparseWordCount_indptr'] WordCounts = scipy.sparse.csr_matrix((data, indices, indptr), shape=(K, vocab_size)) except KeyError: rowIDs = Mdict['SparseWordCount_i'] - 1 colIDs = Mdict['SparseWordCount_j'] - 1 WordCounts = scipy.sparse.csr_matrix((data, (rowIDs, colIDs)), shape=(K, vocab_size)) Mdict['WordCounts'] = WordCounts.toarray() if returnTPA: if 'WordCounts' in Mdict: topics = Mdict['WordCounts'] + Mdict['lam'] else: topics = Mdict['topics'] K = topics.shape[0] try: probs = Mdict['probs'] except KeyError: probs = (1.0 / K) * np.ones(K) try: alpha = float(Mdict['alpha']) except KeyError: if 'alpha' in os.environ: alpha = float(os.environ['alpha']) else: raise ValueError('Unknown parameter alpha') if 'eta' in Mdict: return topics, probs, alpha, as1D(toCArray(Mdict['eta'])) return topics, probs, alpha infAlg = 'VB' if 'gamma' in Mdict: aPriorDict = dict(alpha=Mdict['alpha'], gamma=Mdict['gamma']) HDPTopicModel = AllocModelConstructorsByName['HDPTopicModel'] amodel = HDPTopicModel(infAlg, aPriorDict) else: FiniteTopicModel = AllocModelConstructorsByName['FiniteTopicModel'] amodel = FiniteTopicModel(infAlg, dict(alpha=Mdict['alpha'])) omodel = ObsModelConstructorsByName['Mult'](infAlg, **Mdict) hmodel = HModel(amodel, omodel) hmodel.set_global_params(**Mdict) if returnWordCounts: return hmodel, Mdict['WordCounts'] return hmodel
34.017964
78
0.617321
fb24c6fb6c0180add67d9e0b3bd1850752dafa7d
18,370
py
Python
old/determined-xd/model_grid.py
rtu715/NAS-Bench-360
d075006848c664371855c34082b0a00cda62be67
[ "MIT" ]
10
2021-06-15T17:48:34.000Z
2022-02-23T18:34:28.000Z
old/determined-xd/model_grid.py
rtu715/NAS-Bench-360
d075006848c664371855c34082b0a00cda62be67
[ "MIT" ]
1
2021-11-12T15:12:38.000Z
2021-11-12T19:38:00.000Z
old/determined-xd/model_grid.py
rtu715/NAS-Bench-360
d075006848c664371855c34082b0a00cda62be67
[ "MIT" ]
1
2021-11-15T04:07:17.000Z
2021-11-15T04:07:17.000Z
import tempfile from typing import Any, Dict, Sequence, Tuple, Union, cast from functools import partial, reduce import operator import boto3 import os import json import numpy as np import torch import torchvision from torch import nn from torchvision import transforms import torch.nn.functional as F from determined.pytorch import DataLoader, PyTorchTrial, PyTorchTrialContext, LRScheduler #from backbone_grid_pde import Backbone_Grid from backbone_grid_unet import Backbone_Grid, Tiny_Backbone_Grid from backbone_grid_wrn import Backbone from utils_grid import LpLoss, MatReader, UnitGaussianNormalizer, LogCoshLoss from utils_grid import create_grid, calculate_mae from xd.chrysalis import Chrysalis from xd.darts import Supernet from xd.nas import MixedOptimizer from xd.ops import Conv from data_utils.protein_io import load_list from data_utils.protein_gen import PDNetDataset TorchData = Union[Dict[str, torch.Tensor], Sequence[torch.Tensor], torch.Tensor] class AttrDict(dict): '''Auxillary class for hyperparams''' def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class XDTrial(PyTorchTrial): '''The Main Class''' def __init__(self, trial_context: PyTorchTrialContext) -> None: self.context = trial_context # self.data_config = trial_context.get_data_config() self.hparams = AttrDict(trial_context.get_hparams()) self.last_epoch = 0 # Create a unique download directory for each rank so they don't overwrite each other. self.download_directory = self.download_data_from_s3() # Define loss function, pde is lploss if self.hparams.task == 'pde': self.grid, self.s = create_grid(self.hparams.sub) self.criterion = LpLoss(size_average=False) self.in_channels = 3 elif self.hparams.task == 'protein': self.criterion = nn.MSELoss(reduction='mean') #self.criterion = LogCoshLoss() #error is reported via MAE self.error = nn.L1Loss(reduction='sum') self.in_channels = 57 else: raise NotImplementedError # Changing our backbone #self.backbone = Backbone_Grid(12, 32, 5) #self.backbone = Backbone_Grid(self.in_channels, 32, 1) self.backbone = Backbone(16, 1, 2, self.in_channels, 0.0) self.chrysalis, self.original = Chrysalis.metamorphosize(self.backbone), self.backbone self.patch_modules = [(n,m) for n, m in self.chrysalis.named_modules() if hasattr(m, 'kernel_size') and type(m.kernel_size) == tuple and type(m) == Conv(len(m.kernel_size)) and m.kernel_size[0]!=1] print(self.patch_modules) ''' arch_kwargs = {'kmatrix_depth':self.hparams.kmatrix_depth, 'max_kernel_size': self.hparams.max_kernel_size, 'base': 2, 'global_biasing': False, 'channel_gating': False, 'warm_start': True} ''' arch_kwargs = { 'kmatrix_depth': self.hparams.kmatrix_depth, 'max_kernel_size': self.hparams.max_kernel_size, 'global_biasing': False, 'channel_gating': False, 'base': 2, 'fixed': (False, False, False), } #X = torch.zeros([self.context.get_per_slot_batch_size(), self.s, self.s, 3]) #named_modules = [] #for name, layer in self.chrysalis.named_modules(): #if isinstance(layer, torch.nn.Conv2d): #named_modules.append((name, layer)) if self.hparams.patch: #self.chrysalis.patch_conv(X[:1], **arch_kwargs) X, _ = next(iter(self.build_training_data_loader())) self.chrysalis.patch_conv(X[:1], named_modules=self.patch_modules, **arch_kwargs) else: self.hparams.arch_lr = 0.0 self.model = self.context.wrap_model(self.chrysalis) total_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad)/ 1e6 print('Parameter size in MB: ', total_params) total_params = sum(p.numel() for p in self.backbone.parameters() if p.requires_grad)/ 1e6 print('Parameter size in MB: ', total_params) ''' Definition of optimizers, no Adam implementation ''' if self.hparams.momentum: momentum = partial(torch.optim.SGD, momentum=self.hparams.momentum, nesterov=True) else: momentum = partial(torch.optim.SGD) opts = [ momentum(self.model.model_weights(), lr=self.hparams.learning_rate, weight_decay=self.hparams.weight_decay)] if self.hparams.arch_lr: arch_opt = torch.optim.Adam if self.hparams.arch_adam else momentum opts.append(arch_opt(self.model.arch_params(), lr=self.hparams.arch_lr, weight_decay=0.0 if self.hparams.arch_adam else self.hparams.weight_decay)) optimizer = MixedOptimizer(opts) self.opt = self.context.wrap_optimizer(optimizer) sched_groups = [self.weight_sched if g['params'][0] in set(self.model.model_weights()) else self.arch_sched for g in optimizer.param_groups] self.lr_scheduler = self.context.wrap_lr_scheduler( lr_scheduler=torch.optim.lr_scheduler.LambdaLR( optimizer, lr_lambda=sched_groups, last_epoch=self.hparams.start_epoch-1 ), step_mode=LRScheduler.StepMode.STEP_EVERY_EPOCH, ) def weight_sched(self, epoch) -> Any: # deleted scheduling for different architectures if self.hparams.epochs != 200: return 0.2 ** (epoch >= int(0.3 * self.hparams.epochs)) * 0.2 ** (epoch > int(0.6 * self.hparams.epochs)) * 0.2 ** (epoch > int(0.8 * self.hparams.epochs)) print('using original weight schedule') return 0.2 ** (epoch >= 60) * 0.2 ** (epoch >= 120) * 0.2 ** (epoch >=160) def arch_sched(self, epoch) -> Any: return 0.0 if epoch < self.hparams.warmup_epochs or epoch > self.hparams.epochs-self.hparams.cooldown_epochs else self.weight_sched(epoch) def download_data_from_s3(self): '''Download pde data/protein data from s3 to store in temp directory''' s3_bucket = self.context.get_data_config()["bucket"] download_directory = f"/tmp/data-rank{self.context.distributed.get_rank()}" os.makedirs(download_directory, exist_ok=True) if self.hparams.task == 'pde': data_files = ["piececonst_r421_N1024_smooth1.mat", "piececonst_r421_N1024_smooth2.mat"] s3_path = None elif self.hparams.task == 'protein': data_files = ['protein.zip'] data_dir = download_directory self.all_feat_paths = [data_dir + '/deepcov/features/', data_dir + '/psicov/features/', data_dir + '/cameo/features/'] self.all_dist_paths = [data_dir + '/deepcov/distance/', data_dir + '/psicov/distance/', data_dir + '/cameo/distance/'] s3_path = None else: raise NotImplementedError s3 = boto3.client("s3") for data_file in data_files: filepath = os.path.join(download_directory, data_file) s3_loc = os.path.join(s3_path, data_file) if s3_path is not None else data_file if not os.path.exists(filepath): s3.download_file(s3_bucket, s3_loc, filepath) return download_directory def build_training_data_loader(self) -> DataLoader: if self.hparams.task == 'pde': TRAIN_PATH = os.path.join(self.download_directory, 'piececonst_r421_N1024_smooth1.mat') self.reader = MatReader(TRAIN_PATH) s = self.s r = self.hparams["sub"] ntrain = 1000 ntest = 100 if self.hparams.train: x_train = self.reader.read_field('coeff')[:ntrain - ntest, ::r, ::r][:, :s, :s] y_train = self.reader.read_field('sol')[:ntrain - ntest, ::r, ::r][:, :s, :s] self.x_normalizer = UnitGaussianNormalizer(x_train) x_train = self.x_normalizer.encode(x_train) self.y_normalizer = UnitGaussianNormalizer(y_train) y_train = self.y_normalizer.encode(y_train) ntrain = ntrain - ntest x_train = torch.cat([x_train.reshape(ntrain, s, s, 1), self.grid.repeat(ntrain, 1, 1, 1)], dim=3) train_data = torch.utils.data.TensorDataset(x_train, y_train) else: x_train = self.reader.read_field('coeff')[:ntrain, ::r, ::r][:, :s, :s] y_train = self.reader.read_field('sol')[:ntrain, ::r, ::r][:, :s, :s] self.x_normalizer = UnitGaussianNormalizer(x_train) x_train = self.x_normalizer.encode(x_train) self.y_normalizer = UnitGaussianNormalizer(y_train) y_train = self.y_normalizer.encode(y_train) x_train = torch.cat([x_train.reshape(ntrain, s, s, 1), self.grid.repeat(ntrain, 1, 1, 1)], dim=3) train_data = torch.utils.data.TensorDataset(x_train, y_train) elif self.hparams.task == 'protein': os.chdir(self.download_directory) import zipfile with zipfile.ZipFile('protein.zip', 'r') as zip_ref: zip_ref.extractall() self.deepcov_list = load_list('deepcov.lst', -1) self.length_dict = {} for pdb in self.deepcov_list: (ly, seqy, cb_map) = np.load( 'deepcov/distance/' + pdb + '-cb.npy', allow_pickle=True) self.length_dict[pdb] = ly if self.hparams.train: train_pdbs = self.deepcov_list[100:] train_data = PDNetDataset(train_pdbs, self.all_feat_paths, self.all_dist_paths, 128, 10, self.context.get_per_slot_batch_size(), 57, label_engineering = '16.0') else: train_pdbs = self.deepcov_list[:] train_data = PDNetDataset(train_pdbs, self.all_feat_paths, self.all_dist_paths, 128, 10, self.context.get_per_slot_batch_size(), 57, label_engineering = '16.0') else: print('no such dataset') raise NotImplementedError train_queue = DataLoader( train_data, batch_size=self.context.get_per_slot_batch_size(), shuffle=True, num_workers=2, ) return train_queue def build_validation_data_loader(self) -> DataLoader: if self.hparams.task == 'pde': ntrain = 1000 ntest = 100 s = self.s r = self.hparams["sub"] if self.hparams.train: x_test = self.reader.read_field('coeff')[ntrain - ntest:ntrain, ::r, ::r][:, :s, :s] y_test = self.reader.read_field('sol')[ntrain - ntest:ntrain, ::r, ::r][:, :s, :s] x_test = self.x_normalizer.encode(x_test) x_test = torch.cat([x_test.reshape(ntest, s, s, 1), self.grid.repeat(ntest, 1, 1, 1)], dim=3) else: TEST_PATH = os.path.join(self.download_directory, 'piececonst_r421_N1024_smooth2.mat') reader = MatReader(TEST_PATH) x_test = reader.read_field('coeff')[:ntest, ::r, ::r][:, :s, :s] y_test = reader.read_field('sol')[:ntest, ::r, ::r][:, :s, :s] x_test = self.x_normalizer.encode(x_test) x_test = torch.cat([x_test.reshape(ntest, s, s, 1), self.grid.repeat(ntest, 1, 1, 1)], dim=3) valid_queue = DataLoader(torch.utils.data.TensorDataset(x_test, y_test), batch_size=self.context.get_per_slot_batch_size(), shuffle=False, num_workers=2,) elif self.hparams.task == 'protein': if self.hparams.train: valid_pdbs = self.deepcov_list[:100] valid_data = PDNetDataset(valid_pdbs, self.all_feat_paths, self.all_dist_paths, 128, 10, self.context.get_per_slot_batch_size(), 57, label_engineering = '16.0') valid_queue = DataLoader(valid_data, batch_size=self.hparams.eval_batch_size, shuffle=True, num_workers=2) else: psicov_list = load_list('psicov.lst') psicov_length_dict = {} for pdb in psicov_list: (ly, seqy, cb_map) = np.load('psicov/distance/' + pdb + '-cb.npy', allow_pickle=True) psicov_length_dict[pdb] = ly self.my_list = psicov_list self.length_dict = psicov_length_dict #note, when testing batch size should be different test_data = PDNetDataset(self.my_list, self.all_feat_paths, self.all_dist_paths, 512, 10, 1, 57, label_engineering = None) valid_queue = DataLoader(test_data, batch_size=2, shuffle=True, num_workers=0) else: print('no such dataset') raise NotImplementedError return valid_queue ''' Train and Evaluate Methods ''' def train_batch(self, batch: TorchData, epoch_idx: int, batch_idx: int ) -> Dict[str, torch.Tensor]: x_train, y_train = batch self.model.train() logits = self.model(x_train) if self.hparams.task == 'pde': self.y_normalizer.cuda() target = self.y_normalizer.decode(y_train) logits = self.y_normalizer.decode(logits.squeeze()) loss = self.criterion(logits.view(logits.size(0), -1), target.view(logits.size(0), -1)) mae = 0.0 elif self.hparams.task == 'protein': loss = self.criterion(logits.squeeze(), y_train.squeeze()) mae = F.l1_loss(logits.squeeze(), y_train.squeeze(), reduction='mean').item() self.context.backward(loss) self.context.step_optimizer(self.opt) return { 'loss': loss, 'MAE': mae, } def evaluate_full_dataset( self, data_loader: torch.utils.data.DataLoader ) -> Dict[str, Any]: #evaluate on test proteins, not validation procedures if self.hparams.task == 'protein' and not self.hparams.train: return self.evaluate_test_protein(data_loader) loss_sum = 0 error_sum = 0 num_batches = 0 with torch.no_grad(): for batch in data_loader: batch = self.context.to_device(batch) input, target = batch num_batches += 1 logits = self.model(input) if self.hparams.task == 'pde': self.y_normalizer.cuda() logits = self.y_normalizer.decode(logits.squeeze()) loss = self.criterion(logits.view(logits.size(0), -1), target.view(target.size(0), -1)).item() loss = loss / logits.size(0) error = 0 elif self.hparams.task == 'protein': logits = logits.squeeze() target = target.squeeze() loss = self.criterion(logits, target) mae = F.l1_loss(logits, target, reduction='mean') error_sum += mae.item() #target, logits, num = filter_MAE(target, logits, 8.0) #error = self.error(logits, target) #error = error / num loss_sum += loss results = { "validation_loss": loss_sum / num_batches, "MAE": error_sum / num_batches, } return results def evaluate_test_protein( self, data_loader: torch.utils.data.DataLoader ) -> Dict[str, Any]: '''performs evaluation on protein''' LMAX = 512 #psicov constant pad_size = 10 self.model.cuda() with torch.no_grad(): P = [] targets = [] for batch in data_loader: batch = self.context.to_device(batch) data, target = batch for i in range(data.size(0)): targets.append( np.expand_dims( target.cpu().numpy()[i].transpose(1,2,0), axis=0)) out = self.model.forward_window(data, 128) P.append(out.cpu().numpy().transpose(0,2,3,1)) # Combine P, convert to numpy P = np.concatenate(P, axis=0) Y = np.full((len(targets), LMAX, LMAX, 1), np.nan) for i, xy in enumerate(targets): Y[i, :, :, 0] = xy[0, :, :, 0] # Average the predictions from both triangles for j in range(0, len(P[0, :, 0, 0])): for k in range(j, len(P[0, :, 0, 0])): P[:, j, k, :] = (P[:, k, j, :] + P[:, j, k, :]) / 2.0 P[P < 0.01] = 0.01 # Remove padding, i.e. shift up and left by int(pad_size/2) P[:, :LMAX - pad_size, :LMAX - pad_size, :] = P[:, int(pad_size / 2): LMAX - int(pad_size / 2), int(pad_size / 2): LMAX - int(pad_size / 2), :] Y[:, :LMAX - pad_size, :LMAX - pad_size, :] = Y[:, int(pad_size / 2): LMAX - int(pad_size / 2), int(pad_size / 2): LMAX - int(pad_size / 2), :] print('') print('Evaluating distances..') lr8, mlr8, lr12, mlr12 = calculate_mae(P, Y, self.my_list, self.length_dict) return { 'mae': lr8, 'mlr8': mlr8, 'mae12': lr12, 'mlr12': mlr12, }
39.085106
167
0.566304
dcc43b5406c4cf234cc14dcbc3b846b2ca1fa52f
59,609
py
Python
src/qibo/abstractions/gates.py
daxkoh/qibo
5b98a7442cd314f095adf6217fef03308fb13ece
[ "Apache-2.0" ]
null
null
null
src/qibo/abstractions/gates.py
daxkoh/qibo
5b98a7442cd314f095adf6217fef03308fb13ece
[ "Apache-2.0" ]
null
null
null
src/qibo/abstractions/gates.py
daxkoh/qibo
5b98a7442cd314f095adf6217fef03308fb13ece
[ "Apache-2.0" ]
1
2022-03-28T17:52:46.000Z
2022-03-28T17:52:46.000Z
# -*- coding: utf-8 -*- # @authors: S. Carrazza and A. Garcia import math from abc import abstractmethod from qibo.config import raise_error, EINSUM_CHARS from typing import Dict, List, Optional, Tuple from qibo.abstractions.abstract_gates import Gate, Channel, SpecialGate, ParametrizedGate QASM_GATES = {"h": "H", "x": "X", "y": "Y", "z": "Z", "rx": "RX", "ry": "RY", "rz": "RZ", "u1": "U1", "u2": "U2", "u3": "U3", "cx": "CNOT", "swap": "SWAP", "fswap": "FSWAP", "cz": "CZ", "crx": "CRX", "cry": "CRY", "crz": "CRZ", "cu1": "CU1", "cu3": "CU3", "ccx": "TOFFOLI", "id": "I", "s": "S", "sdg": "SDG", "t": "T", "tdg": "TDG"} PARAMETRIZED_GATES = {"rx", "ry", "rz", "u1", "u2", "u3", "crx", "cry", "crz", "cu1", "cu3"} class H(Gate): """The Hadamard gate. Args: q (int): the qubit id number. """ def __init__(self, q): super(H, self).__init__() self.name = "h" self.target_qubits = (q,) self.init_args = [q] class X(Gate): """The Pauli X gate. Args: q (int): the qubit id number. """ def __init__(self, q): super(X, self).__init__() self.name = "x" self.target_qubits = (q,) self.init_args = [q] @Gate.check_controls def controlled_by(self, *q): """Fall back to CNOT and Toffoli if there is one or two controls.""" if len(q) == 1: gate = getattr(self.module, "CNOT")(q[0], self.target_qubits[0]) elif len(q) == 2: gate = getattr(self.module, "TOFFOLI")(q[0], q[1], self.target_qubits[0]) else: gate = super(X, self).controlled_by(*q) return gate def decompose(self, *free: int, use_toffolis: bool = True) -> List[Gate]: """Decomposes multi-control ``X`` gate to one-qubit, ``CNOT`` and ``TOFFOLI`` gates. Args: free: Ids of free qubits to use for the gate decomposition. use_toffolis: If ``True`` the decomposition contains only ``TOFFOLI`` gates. If ``False`` a congruent representation is used for ``TOFFOLI`` gates. See :class:`qibo.abstractions.gates.TOFFOLI` for more details on this representation. Returns: List with one-qubit, ``CNOT`` and ``TOFFOLI`` gates that have the same effect as applying the original multi-control gate. """ if set(free) & set(self.qubits): raise_error(ValueError, "Cannot decompose multi-control X gate if free " "qubits coincide with target or controls.") if self._nqubits is not None: for q in free: if q >= self.nqubits: raise_error(ValueError, "Gate acts on {} qubits but {} was given " "as free qubit.".format(self.nqubits, q)) controls = self.control_qubits target = self.target_qubits[0] m = len(controls) if m < 3: return [self.__class__(target).controlled_by(*controls)] decomp_gates = [] n = m + 1 + len(free) TOFFOLI = self.module.TOFFOLI if (n >= 2 * m - 1) and (m >= 3): gates1 = [TOFFOLI(controls[m - 2 - i], free[m - 4 - i], free[m - 3 - i] ).congruent(use_toffolis=use_toffolis) for i in range(m - 3)] gates2 = TOFFOLI(controls[0], controls[1], free[0] ).congruent(use_toffolis=use_toffolis) first_toffoli = TOFFOLI(controls[m - 1], free[m - 3], target) decomp_gates.append(first_toffoli) for gates in gates1: decomp_gates.extend(gates) decomp_gates.extend(gates2) for gates in gates1[::-1]: decomp_gates.extend(gates) elif len(free) >= 1: m1 = n // 2 free1 = controls[m1:] + (target,) + tuple(free[1:]) x1 = self.__class__(free[0]).controlled_by(*controls[:m1]) part1 = x1.decompose(*free1, use_toffolis=use_toffolis) free2 = controls[:m1] + tuple(free[1:]) controls2 = controls[m1:] + (free[0],) x2 = self.__class__(target).controlled_by(*controls2) part2 = x2.decompose(*free2, use_toffolis=use_toffolis) decomp_gates = [*part1, *part2] else: # pragma: no cover # impractical case raise_error(NotImplementedError, "X decomposition not implemented " "for zero free qubits.") decomp_gates.extend(decomp_gates) return decomp_gates class Y(Gate): """The Pauli Y gate. Args: q (int): the qubit id number. """ def __init__(self, q): super(Y, self).__init__() self.name = "y" self.target_qubits = (q,) self.init_args = [q] class Z(Gate): """The Pauli Z gate. Args: q (int): the qubit id number. """ def __init__(self, q): super(Z, self).__init__() self.name = "z" self.target_qubits = (q,) self.init_args = [q] @Gate.check_controls def controlled_by(self, *q): """Fall back to CZ if there is only one control.""" if len(q) == 1: gate = getattr(self.module, "CZ")(q[0], self.target_qubits[0]) else: gate = super(Z, self).controlled_by(*q) return gate class S(Gate): """The S gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & i \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "s" self.target_qubits = (q,) self.init_args = [q] class SDG(Gate): """The conjugate transpose of the S gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & -i \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "sdg" self.target_qubits = (q,) self.init_args = [q] class T(Gate): """The T gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & e^{i \\pi / 4} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "t" self.target_qubits = (q,) self.init_args = [q] class TDG(Gate): """The conjugate transpose of the T gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & e^{-i \\pi / 4} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. """ def __init__(self, q): super().__init__() self.name = "tdg" self.target_qubits = (q,) self.init_args = [q] class I(Gate): """The identity gate. Args: *q (int): the qubit id numbers. """ def __init__(self, *q): super(I, self).__init__() self.name = "id" self.target_qubits = tuple(q) self.init_args = q class Align(Gate): def __init__(self, *q): super(Align, self).__init__() self.name = "align" self.target_qubits = tuple(q) self.init_args = q class M(Gate): """The Measure Z gate. Args: *q (int): id numbers of the qubits to measure. It is possible to measure multiple qubits using ``gates.M(0, 1, 2, ...)``. If the qubits to measure are held in an iterable (eg. list) the ``*`` operator can be used, for example ``gates.M(*[0, 1, 4])`` or ``gates.M(*range(5))``. register_name (str): Optional name of the register to distinguish it from other registers when used in circuits. collapse (bool): Collapse the state vector after the measurement is performed. Can be used only for single shot measurements. If ``True`` the collapsed state vector is returned. If ``False`` the measurement result is returned. p0 (dict): Optional bitflip probability map. Can be: A dictionary that maps each measured qubit to the probability that it is flipped, a list or tuple that has the same length as the tuple of measured qubits or a single float number. If a single float is given the same probability will be used for all qubits. p1 (dict): Optional bitflip probability map for asymmetric bitflips. Same as ``p0`` but controls the 1->0 bitflip probability. If ``p1`` is ``None`` then ``p0`` will be used both for 0->1 and 1->0 bitflips. """ def __init__(self, *q, register_name: Optional[str] = None, collapse: bool = False, p0: Optional["ProbsType"] = None, p1: Optional["ProbsType"] = None): super(M, self).__init__() self.name = "measure" self.target_qubits = q self.register_name = register_name self.collapse = collapse self.result = None self._symbol = None self.init_args = q self.init_kwargs = {"register_name": register_name, "collapse": collapse, "p0": p0, "p1": p1} if collapse and (p0 is not None or p1 is not None): raise_error(NotImplementedError, "Bitflip measurement noise is not " "available when collapsing.") if p1 is None: p1 = p0 if p0 is None: p0 = p1 self.bitflip_map = (self._get_bitflip_map(p0), self._get_bitflip_map(p1)) @staticmethod def _get_bitflip_tuple(qubits: Tuple[int], probs: "ProbsType" ) -> Tuple[float]: if isinstance(probs, float): if probs < 0 or probs > 1: raise_error(ValueError, "Invalid bitflip probability {}." "".format(probs)) return len(qubits) * (probs,) if isinstance(probs, (tuple, list)): if len(probs) != len(qubits): raise_error(ValueError, "{} qubits were measured but the given " "bitflip probability list contains {} " "values.".format( len(qubits), len(probs))) return tuple(probs) if isinstance(probs, dict): diff = set(probs.keys()) - set(qubits) if diff: raise_error(KeyError, "Bitflip map contains {} qubits that are " "not measured.".format(diff)) return tuple(probs[q] if q in probs else 0.0 for q in qubits) raise_error(TypeError, "Invalid type {} of bitflip map.".format(probs)) @staticmethod def einsum_string(qubits, nqubits, measuring=False): """Generates einsum string for partial trace of density matrices. Args: qubits (list): Set of qubit ids that are traced out. nqubits (int): Total number of qubits in the state. measuring (bool): If True non-traced-out indices are multiplied and the output has shape (nqubits - len(qubits),). If False the output has shape 2 * (nqubits - len(qubits),). Returns: String to use in einsum for performing partial density of a density matrix. """ if (2 - int(measuring)) * nqubits > len(EINSUM_CHARS): # pragma: no cover # case not tested because it requires large instance raise_error(NotImplementedError, "Not enough einsum characters.") left_in, right_in, left_out, right_out = [], [], [], [] for i in range(nqubits): left_in.append(EINSUM_CHARS[i]) if i in qubits: right_in.append(EINSUM_CHARS[i]) else: left_out.append(EINSUM_CHARS[i]) if measuring: right_in.append(EINSUM_CHARS[i]) else: right_in.append(EINSUM_CHARS[i + nqubits]) right_out.append(EINSUM_CHARS[i + nqubits]) left_in, left_out = "".join(left_in), "".join(left_out) right_in, right_out = "".join(right_in), "".join(right_out) return f"{left_in}{right_in}->{left_out}{right_out}" def _get_bitflip_map(self, p: Optional["ProbsType"] = None ) -> Dict[int, float]: """Creates dictionary with bitflip probabilities.""" if p is None: return {q: 0 for q in self.qubits} pt = self._get_bitflip_tuple(self.qubits, p) return {q: p for q, p in zip(self.qubits, pt)} def symbol(self): """Returns symbol containing measurement outcomes for ``collapse=True`` gates.""" return self._symbol def add(self, gate: "M"): """Adds target qubits to a measurement gate. This method is only used for creating the global measurement gate used by the `models.Circuit`. The user is not supposed to use this method and a `ValueError` is raised if he does so. Args: gate: Measurement gate to add its qubits in the current gate. """ assert isinstance(gate, self.__class__) self.target_qubits += gate.target_qubits self.bitflip_map[0].update(gate.bitflip_map[0]) self.bitflip_map[1].update(gate.bitflip_map[1]) def controlled_by(self, *q): """""" raise_error(NotImplementedError, "Measurement gates cannot be controlled.") class _Rn_(ParametrizedGate): """Abstract class for defining the RX, RY and RZ rotations. Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "n" def __init__(self, q, theta, trainable=True): super(_Rn_, self).__init__(trainable) self.name = "r{}".format(self.axis) self.target_qubits = (q,) self.parameters = theta self.init_args = [q] self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" return self.__class__(self.target_qubits[0], -self.parameters) # pylint: disable=E1130 @Gate.check_controls def controlled_by(self, *q): """Fall back to CRn if there is only one control.""" if len(q) == 1: gate = getattr(self.module, "CR{}".format(self.axis.capitalize()))( q[0], self.target_qubits[0], **self.init_kwargs) else: gate = super(_Rn_, self).controlled_by(*q) return gate class RX(_Rn_): """Rotation around the X-axis of the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos \\frac{\\theta }{2} & -i\\sin \\frac{\\theta }{2} \\\\ -i\\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "x" class RY(_Rn_): """Rotation around the Y-axis of the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} \\cos \\frac{\\theta }{2} & -\\sin \\frac{\\theta }{2} \\\\ \\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "y" class RZ(_Rn_): """Rotation around the Z-axis of the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} e^{-i \\theta / 2} & 0 \\\\ 0 & e^{i \\theta / 2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "z" class _Un_(ParametrizedGate): """Abstract class for defining the U1, U2 and U3 gates. Args: q (int): the qubit id number. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 0 def __init__(self, q, trainable=True): super(_Un_, self).__init__(trainable) self.name = "u{}".format(self.order) self.nparams = self.order self.target_qubits = (q,) self.init_args = [q] self.init_kwargs = {"trainable": trainable} @Gate.check_controls def controlled_by(self, *q): """Fall back to CUn if there is only one control.""" if len(q) == 1: gate = getattr(self.module, "CU{}".format(self.order))( q[0], self.target_qubits[0], **self.init_kwargs) else: gate = super(_Un_, self).controlled_by(*q) return gate class U1(_Un_): """First general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 \\\\ 0 & e^{i \\theta} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 1 def __init__(self, q, theta, trainable=True): super(U1, self).__init__(q, trainable=trainable) self.parameters = theta self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" return self.__class__(self.target_qubits[0], -self.parameters) # pylint: disable=E1130 class U2(_Un_): """Second general unitary gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{\\sqrt{2}} \\begin{pmatrix} e^{-i(\\phi + \\lambda )/2} & -e^{-i(\\phi - \\lambda )/2} \\\\ e^{i(\\phi - \\lambda )/2} & e^{i (\\phi + \\lambda )/2} \\\\ \\end{pmatrix} Args: q (int): the qubit id number. phi (float): first rotation angle. lamb (float): second rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 2 def __init__(self, q, phi, lam, trainable=True): super(U2, self).__init__(q, trainable=trainable) self._phi, self._lam = None, None self.init_kwargs = {"phi": phi, "lam": lam, "trainable": trainable} self.parameter_names = ["phi", "lam"] self.parameters = phi, lam def _dagger(self) -> "Gate": """""" phi, lam = self.parameters phi, lam = math.pi - lam, - math.pi - phi return self.__class__(self.target_qubits[0], phi, lam) class U3(_Un_): """Third general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} e^{-i(\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) & -e^{-i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) \\\\ e^{i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) & e^{i (\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) \\\\ \\end{pmatrix} Args: q (int): the qubit id number. theta (float): first rotation angle. phi (float): second rotation angle. lamb (float): third rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 3 def __init__(self, q, theta, phi, lam, trainable=True): super(U3, self).__init__(q, trainable=trainable) self._theta, self._phi, self._lam = None, None, None self.init_kwargs = {"theta": theta, "phi": phi, "lam": lam, "trainable": trainable} self.parameter_names = ["theta", "phi", "lam"] self.parameters = theta, phi, lam def _dagger(self) -> "Gate": """""" theta, lam, phi = tuple(-x for x in self.parameters) return self.__class__(self.target_qubits[0], theta, phi, lam) class CNOT(Gate): """The Controlled-NOT gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 1 \\\\ 0 & 0 & 1 & 0 \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super(CNOT, self).__init__() self.name = "cx" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: q0, q1 = self.control_qubits[0], self.target_qubits[0] return [self.__class__(q0, q1)] class CZ(Gate): """The Controlled-Phase gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 0 & 0 & -1 \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. """ def __init__(self, q0, q1): super(CZ, self).__init__() self.name = "cz" self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] class _CRn_(ParametrizedGate): """Abstract method for defining the CRX, CRY and CRZ gates. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "n" def __init__(self, q0, q1, theta, trainable=True): super(_CRn_, self).__init__(trainable) self.name = "cr{}".format(self.axis) self.control_qubits = (q0,) self.target_qubits = (q1,) self.parameters = theta self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] return self.__class__(q0, q1, -self.parameters) # pylint: disable=E1130 class CRX(_CRn_): """Controlled rotation around the X-axis for the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & \\cos \\frac{\\theta }{2} & -i\\sin \\frac{\\theta }{2} \\\\ 0 & 0 & -i\\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "x" class CRY(_CRn_): """Controlled rotation around the Y-axis for the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & \\cos \\frac{\\theta }{2} & -\\sin \\frac{\\theta }{2} \\\\ 0 & 0 & \\sin \\frac{\\theta }{2} & \\cos \\frac{\\theta }{2} \\\\ \\end{pmatrix} Note that this differs from the :class:`qibo.abstractions.gates.RZ` gate. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "y" class CRZ(_CRn_): """Controlled rotation around the Z-axis for the Bloch sphere. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i \\theta / 2} & 0 \\\\ 0 & 0 & 0 & e^{i \\theta / 2} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ axis = "z" class _CUn_(ParametrizedGate): """Abstract method for defining the CU1, CU2 and CU3 gates. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 0 def __init__(self, q0, q1, trainable=True): super(_CUn_, self).__init__(trainable) self.name = "cu{}".format(self.order) self.nparams = self.order self.control_qubits = (q0,) self.target_qubits = (q1,) self.init_args = [q0, q1] self.init_kwargs = {"trainable": trainable} class CU1(_CUn_): """Controlled first general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 0 & 0 & e^{i \\theta } \\\\ \\end{pmatrix} Note that this differs from the :class:`qibo.abstractions.gates.CRZ` gate. Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): the rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 1 def __init__(self, q0, q1, theta, trainable=True): super(CU1, self).__init__(q0, q1, trainable=trainable) self.parameters = theta self.init_kwargs = {"theta": theta, "trainable": trainable} def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] return self.__class__(q0, q1, -self.parameters) # pylint: disable=E1130 class CU2(_CUn_): """Controlled second general unitary gate. Corresponds to the following unitary matrix .. math:: \\frac{1}{\\sqrt{2}} \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i(\\phi + \\lambda )/2} & -e^{-i(\\phi - \\lambda )/2} \\\\ 0 & 0 & e^{i(\\phi - \\lambda )/2} & e^{i (\\phi + \\lambda )/2} \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. phi (float): first rotation angle. lamb (float): second rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 2 def __init__(self, q0, q1, phi, lam, trainable=True): super(CU2, self).__init__(q0, q1, trainable=trainable) self.init_kwargs = {"phi": phi, "lam": lam, "trainable": trainable} self.parameter_names = ["phi", "lam"] self.parameters = phi, lam def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] phi, lam = self.parameters phi, lam = math.pi - lam, - math.pi - phi return self.__class__(q0, q1, phi, lam) class CU3(_CUn_): """Controlled third general unitary gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & e^{-i(\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) & -e^{-i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) \\\\ 0 & 0 & e^{i(\\phi - \\lambda )/2}\\sin\\left (\\frac{\\theta }{2}\\right ) & e^{i (\\phi + \\lambda )/2}\\cos\\left (\\frac{\\theta }{2}\\right ) \\\\ \\end{pmatrix} Args: q0 (int): the control qubit id number. q1 (int): the target qubit id number. theta (float): first rotation angle. phi (float): second rotation angle. lamb (float): third rotation angle. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ order = 3 def __init__(self, q0, q1, theta, phi, lam, trainable=True): super(CU3, self).__init__(q0, q1, trainable=trainable) self._theta, self._phi, self._lam = None, None, None self.init_kwargs = {"theta": theta, "phi": phi, "lam": lam, "trainable": trainable} self.parameter_names = ["theta", "phi", "lam"] self.parameters = theta, phi, lam def _dagger(self) -> "Gate": """""" q0 = self.control_qubits[0] q1 = self.target_qubits[0] theta, lam, phi = tuple(-x for x in self.parameters) return self.__class__(q0, q1, theta, phi, lam) class SWAP(Gate): """The swap gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. """ def __init__(self, q0, q1): super(SWAP, self).__init__() self.name = "swap" self.target_qubits = (q0, q1) self.init_args = [q0, q1] class FSWAP(Gate): """The fermionic swap gate. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 \\\\ 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & -1 \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be f-swapped id number. q1 (int): the second qubit to be f-swapped id number. """ def __init__(self, q0, q1): super(FSWAP, self).__init__() self.name = "fswap" self.target_qubits = (q0, q1) self.init_args = [q0, q1] class fSim(ParametrizedGate): """The fSim gate defined in `arXiv:2001.08343 <https://arxiv.org/abs/2001.08343>`_. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & \\cos \\theta & -i\\sin \\theta & 0 \\\\ 0 & -i\\sin \\theta & \\cos \\theta & 0 \\\\ 0 & 0 & 0 & e^{-i \\phi } \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. theta (float): Angle for the one-qubit rotation. phi (float): Angle for the ``|11>`` phase. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ # TODO: Check how this works with QASM. def __init__(self, q0, q1, theta, phi, trainable=True): super(fSim, self).__init__(trainable) self.name = "fsim" self.target_qubits = (q0, q1) self.parameter_names = ["theta", "phi"] self.parameters = theta, phi self.nparams = 2 self.init_args = [q0, q1] self.init_kwargs = {"theta": theta, "phi": phi, "trainable": trainable} def _dagger(self) -> "Gate": """""" q0, q1 = self.target_qubits return self.__class__(q0, q1, *(-x for x in self.parameters)) class GeneralizedfSim(ParametrizedGate): """The fSim gate with a general rotation. Corresponds to the following unitary matrix .. math:: \\begin{pmatrix} 1 & 0 & 0 & 0 \\\\ 0 & R_{00} & R_{01} & 0 \\\\ 0 & R_{10} & R_{11} & 0 \\\\ 0 & 0 & 0 & e^{-i \\phi } \\\\ \\end{pmatrix} Args: q0 (int): the first qubit to be swapped id number. q1 (int): the second qubit to be swapped id number. unitary (np.ndarray): Unitary that corresponds to the one-qubit rotation. phi (float): Angle for the ``|11>`` phase. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). """ def __init__(self, q0, q1, unitary, phi, trainable=True): super(GeneralizedfSim, self).__init__(trainable) self.name = "generalizedfsim" self.target_qubits = (q0, q1) self.parameter_names = ["u", "phi"] self.parameters = unitary, phi self.nparams = 5 self.init_args = [q0, q1] self.init_kwargs = {"unitary": unitary, "phi": phi, "trainable": trainable} @abstractmethod def _dagger(self) -> "Gate": # pragma: no cover """""" raise_error(NotImplementedError) @ParametrizedGate.parameters.setter def parameters(self, x): shape = tuple(x[0].shape) if shape != (2, 2): raise_error(ValueError, "Invalid rotation shape {} for generalized " "fSim gate".format(shape)) ParametrizedGate.parameters.fset(self, x) # pylint: disable=no-member class TOFFOLI(Gate): """The Toffoli gate. Args: q0 (int): the first control qubit id number. q1 (int): the second control qubit id number. q2 (int): the target qubit id number. """ def __init__(self, q0, q1, q2): super(TOFFOLI, self).__init__() self.name = "ccx" self.control_qubits = (q0, q1) self.target_qubits = (q2,) self.init_args = [q0, q1, q2] def decompose(self, *free, use_toffolis: bool = True) -> List[Gate]: c0, c1 = self.control_qubits t = self.target_qubits[0] return [self.__class__(c0, c1, t)] def congruent(self, use_toffolis: bool = True) -> List[Gate]: """Congruent representation of ``TOFFOLI`` gate. This is a helper method for the decomposition of multi-control ``X`` gates. The congruent representation is based on Sec. 6.2 of `arXiv:9503016 <https://arxiv.org/abs/quant-ph/9503016>`_. The sequence of the gates produced here has the same effect as ``TOFFOLI`` with the phase of the ``|101>`` state reversed. Args: use_toffolis: If ``True`` a single ``TOFFOLI`` gate is returned. If ``False`` the congruent representation is returned. Returns: List with ``RY`` and ``CNOT`` gates that have the same effect as applying the original ``TOFFOLI`` gate. """ if use_toffolis: return self.decompose() import importlib control0, control1 = self.control_qubits target = self.target_qubits[0] RY = self.module.RY CNOT = self.module.CNOT return [RY(target, -math.pi / 4), CNOT(control1, target), RY(target, -math.pi / 4), CNOT(control0, target), RY(target, math.pi / 4), CNOT(control1, target), RY(target, math.pi / 4)] class Unitary(ParametrizedGate): """Arbitrary unitary gate. Args: unitary: Unitary matrix as a tensor supported by the backend. Note that there is no check that the matrix passed is actually unitary. This allows the user to create non-unitary gates. *q (int): Qubit id numbers that the gate acts on. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). name (str): Optional name for the gate. """ def __init__(self, unitary, *q, trainable=True, name=None): super(Unitary, self).__init__(trainable) self.name = "Unitary" if name is None else name self.target_qubits = tuple(q) self.parameter_names = "u" self.parameters = unitary self.nparams = 4 ** len(self.target_qubits) self.init_args = [unitary] + list(q) self.init_kwargs = {"name": name, "trainable": trainable} @property def rank(self) -> int: return len(self.target_qubits) def _on_qubits(self, *q) -> "Gate": args = [self.init_args[0]] args.extend((q[i] for i in self.target_qubits)) gate = self.__class__(*args, **self.init_kwargs) if self.is_controlled_by: controls = (q[i] for i in self.control_qubits) gate = gate.controlled_by(*controls) return gate @abstractmethod def _dagger(self) -> "Gate": # pragma: no cover """""" raise_error(NotImplementedError) class VariationalLayer(ParametrizedGate): """Layer of one-qubit parametrized gates followed by two-qubit entangling gates. Performance is optimized by fusing the variational one-qubit gates with the two-qubit entangling gates that follow them and applying a single layer of two-qubit gates as 4x4 matrices. Args: qubits (list): List of one-qubit gate target qubit IDs. pairs (list): List of pairs of qubit IDs on which the two qubit gate act. one_qubit_gate: Type of one qubit gate to use as the variational gate. two_qubit_gate: Type of two qubit gate to use as entangling gate. params (list): Variational parameters of one-qubit gates as a list that has the same length as ``qubits``. These gates act before the layer of entangling gates. params2 (list): Variational parameters of one-qubit gates as a list that has the same length as ``qubits``. These gates act after the layer of entangling gates. trainable (bool): whether gate parameters can be updated using :meth:`qibo.abstractions.circuit.AbstractCircuit.set_parameters` (default is ``True``). name (str): Optional name for the gate. If ``None`` the name ``"VariationalLayer"`` will be used. Example: .. testcode:: import numpy as np from qibo.models import Circuit from qibo import gates # generate an array of variational parameters for 8 qubits theta = 2 * np.pi * np.random.random(8) # define qubit pairs that two qubit gates will act pairs = [(i, i + 1) for i in range(0, 7, 2)] # define a circuit of 8 qubits and add the variational layer c = Circuit(8) c.add(gates.VariationalLayer(range(8), pairs, gates.RY, gates.CZ, theta)) # this will create an optimized version of the following circuit c2 = Circuit(8) c.add((gates.RY(i, th) for i, th in enumerate(theta))) c.add((gates.CZ(i, i + 1) for i in range(7))) """ def __init__(self, qubits: List[int], pairs: List[Tuple[int, int]], one_qubit_gate, two_qubit_gate, params: List[float], params2: Optional[List[float]] = None, trainable: bool = True, name: Optional[str] = None): super(VariationalLayer, self).__init__(trainable) self.init_args = [qubits, pairs, one_qubit_gate, two_qubit_gate] self.init_kwargs = {"params": params, "params2": params2, "trainable": trainable, "name": name} self.name = "VariationalLayer" if name is None else name self.unitaries = [] self.additional_unitary = None self.target_qubits = tuple(qubits) self.parameter_names = [f"theta{i}" for i, _ in enumerate(params)] parameter_values = list(params) self.params = self._create_params_dict(params) self.params2 = {} if params2 is not None: self.params2 = self._create_params_dict(params2) n = len(self.parameter_names) self.parameter_names.extend([f"theta{i + n}" for i, _ in enumerate(params2)]) parameter_values.extend(params2) self.parameters = parameter_values self.nparams = len(parameter_values) self.pairs = pairs targets = set(self.target_qubits) two_qubit_targets = set(q for p in pairs for q in p) additional_targets = targets - two_qubit_targets if not additional_targets: self.additional_target = None elif len(additional_targets) == 1: self.additional_target = additional_targets.pop() else: raise_error(ValueError, "Variational layer can have at most one " "additional target for one qubit gates but " " has {}.".format(additional_targets)) self.one_qubit_gate = one_qubit_gate self.two_qubit_gate = two_qubit_gate def _create_params_dict(self, params: List[float]) -> Dict[int, float]: if len(self.target_qubits) != len(params): raise_error(ValueError, "VariationalLayer has {} target qubits but " "{} parameters were given." "".format(len(self.target_qubits), len(params))) return {q: p for q, p in zip(self.target_qubits, params)} @ParametrizedGate.parameters.setter def parameters(self, x): if self.params2: n = len(x) // 2 self.params = self._create_params_dict(x[:n]) self.params2 = self._create_params_dict(x[n:]) else: self.params = self._create_params_dict(x) ParametrizedGate.parameters.fset(self, x) # pylint: disable=no-member class Flatten(SpecialGate): """Passes an arbitrary state vector in the circuit. Args: coefficients (list): list of the target state vector components. This can also be a tensor supported by the backend. """ def __init__(self, coefficients): super(Flatten, self).__init__() self.name = "Flatten" self.coefficients = coefficients self.init_args = [coefficients] class CallbackGate(SpecialGate): """Calculates a :class:`qibo.core.callbacks.Callback` at a specific point in the circuit. This gate performs the callback calulation without affecting the state vector. Args: callback (:class:`qibo.core.callbacks.Callback`): Callback object to calculate. """ def __init__(self, callback: "Callback"): super(CallbackGate, self).__init__() self.name = callback.__class__.__name__ self.callback = callback self.init_args = [callback] @Gate.nqubits.setter def nqubits(self, n: int): Gate.nqubits.fset(self, n) # pylint: disable=no-member self.callback.nqubits = n class PartialTrace(Gate): """Collapses a density matrix by tracing out selected qubits. Works only with density matrices (not state vectors) and implements the following transformation: .. math:: \\mathcal{E}(\\rho ) = (|0\\rangle \\langle 0|) _A \\otimes \\mathrm{Tr} _A (\\rho ) where A denotes the subsystem of qubits that are traced out. Args: q (int): Qubit ids that will be traced-out and collapsed to the zero state. More than one qubits can be given. """ def __init__(self, *q): super().__init__() self.name = "PartialTrace" self.target_qubits = tuple(q) self.init_args = q self.init_kwargs = {} class KrausChannel(Channel): """General channel defined by arbitrary Kraus operators. Implements the following transformation: .. math:: \\mathcal{E}(\\rho ) = \\sum _k A_k \\rho A_k^\\dagger where A are arbitrary Kraus operators given by the user. Note that Kraus operators set should be trace preserving, however this is not checked. Simulation of this gate requires the use of density matrices. For more information on channels and Kraus operators please check `J. Preskill's notes <http://theory.caltech.edu/~preskill/ph219/chap3_15.pdf>`_. Args: ops (list): List of Kraus operators as pairs ``(qubits, Ak)`` where ``qubits`` refers the qubit ids that ``Ak`` acts on and ``Ak`` is the corresponding matrix as a ``np.ndarray`` or ``tf.Tensor``. Example: .. testcode:: import numpy as np from qibo.models import Circuit from qibo import gates # initialize circuit with 3 qubits c = Circuit(3, density_matrix=True) # define a sqrt(0.4) * X gate a1 = np.sqrt(0.4) * np.array([[0, 1], [1, 0]]) # define a sqrt(0.6) * CNOT gate a2 = np.sqrt(0.6) * np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) # define the channel rho -> 0.4 X{1} rho X{1} + 0.6 CNOT{0, 2} rho CNOT{0, 2} channel = gates.KrausChannel([((1,), a1), ((0, 2), a2)]) # add the channel to the circuit c.add(channel) """ def __init__(self, ops): super(KrausChannel, self).__init__() self.name = "KrausChannel" self.density_matrix = True if isinstance(ops[0], Gate): self.gates = tuple(ops) self.target_qubits = tuple(sorted(set( q for gate in ops for q in gate.target_qubits))) else: self.gates, self.target_qubits = self._from_matrices(ops) self.init_args = [self.gates] def _from_matrices(self, matrices): """Creates gates from qubits and matrices list.""" gatelist, qubitset = [], set() for qubits, matrix in matrices: # Check that given operators have the proper shape. rank = 2 ** len(qubits) shape = tuple(matrix.shape) if shape != (rank, rank): raise_error(ValueError, "Invalid Kraus operator shape {} for " "acting on {} qubits." "".format(shape, len(qubits))) qubitset.update(qubits) gatelist.append(self.module.Unitary(matrix, *list(qubits))) gatelist[-1].density_matrix = True return tuple(gatelist), tuple(sorted(qubitset)) class UnitaryChannel(KrausChannel): """Channel that is a probabilistic sum of unitary operations. Implements the following transformation: .. math:: \\mathcal{E}(\\rho ) = \\left (1 - \\sum _k p_k \\right )\\rho + \\sum _k p_k U_k \\rho U_k^\\dagger where U are arbitrary unitary operators and p are floats between 0 and 1. Note that unlike :class:`qibo.abstractions.gates.KrausChannel` which requires density matrices, it is possible to simulate the unitary channel using state vectors and probabilistic sampling. For more information on this approach we refer to :ref:`Using repeated execution <repeatedexec-example>`. Args: p (list): List of floats that correspond to the probability that each unitary Uk is applied. ops (list): List of operators as pairs ``(qubits, Uk)`` where ``qubits`` refers the qubit ids that ``Uk`` acts on and ``Uk`` is the corresponding matrix as a ``np.ndarray``/``tf.Tensor``. Must have the same length as the given probabilities ``p``. seed (int): Optional seed for the random number generator when sampling instead of density matrices is used to simulate this gate. """ def __init__(self, p, ops, seed=None): if len(p) != len(ops): raise_error(ValueError, "Probabilities list has length {} while " "{} gates were given." "".format(len(p), len(ops))) for pp in p: if pp < 0 or pp > 1: raise_error(ValueError, "Probabilities should be between 0 " "and 1 but {} was given.".format(pp)) super(UnitaryChannel, self).__init__(ops) self.name = "UnitaryChannel" self.probs = p self.psum = sum(p) self.seed = seed self.density_matrix = False self.init_args = [p, self.gates] self.init_kwargs = {"seed": seed} class PauliNoiseChannel(UnitaryChannel): """Noise channel that applies Pauli operators with given probabilities. Implements the following transformation: .. math:: \\mathcal{E}(\\rho ) = (1 - p_x - p_y - p_z) \\rho + p_x X\\rho X + p_y Y\\rho Y + p_z Z\\rho Z which can be used to simulate phase flip and bit flip errors. This channel can be simulated using either density matrices or state vectors and sampling with repeated execution. See :ref:`How to perform noisy simulation? <noisy-example>` for more information. Args: q (int): Qubit id that the noise acts on. px (float): Bit flip (X) error probability. py (float): Y-error probability. pz (float): Phase flip (Z) error probability. seed (int): Optional seed for the random number generator when sampling instead of density matrices is used to simulate this gate. """ def __init__(self, q, px=0, py=0, pz=0, seed=None): probs, gates = [], [] for p, gate in [(px, "X"), (py, "Y"), (pz, "Z")]: if p > 0: probs.append(p) gates.append(getattr(self.module, gate)(q)) super(PauliNoiseChannel, self).__init__(probs, gates, seed=seed) self.name = "PauliNoiseChannel" assert self.target_qubits == (q,) self.init_args = [q] self.init_kwargs = {"px": px, "py": py, "pz": pz, "seed": seed} class ResetChannel(UnitaryChannel): """Single-qubit reset channel. Implements the following transformation: .. math:: \\mathcal{E}(\\rho ) = (1 - p_0 - p_1) \\rho + p_0 (|0\\rangle \\langle 0| \\otimes \\tilde{\\rho }) + p_1 (|1\\rangle \langle 1| \otimes \\tilde{\\rho }) with .. math:: \\tilde{\\rho } = \\frac{\langle 0|\\rho |0\\rangle }{\mathrm{Tr}\langle 0|\\rho |0\\rangle} Args: q (int): Qubit id that the channel acts on. p0 (float): Probability to reset to 0. p1 (float): Probability to reset to 1. seed (int): Optional seed for the random number generator when sampling instead of density matrices is used to simulate this gate. """ def __init__(self, q, p0=0.0, p1=0.0, seed=None): probs = [p0, p1] gates = [self.module.M(q, collapse=True), self.module.X(q)] super(ResetChannel, self).__init__(probs, gates, seed=seed) self.name = "ResetChannel" assert self.target_qubits == (q,) self.init_args = [q] self.init_kwargs = {"p0": p0, "p1": p1, "seed": seed} class ThermalRelaxationChannel: """Single-qubit thermal relaxation error channel. Implements the following transformation: If :math:`T_1 \\geq T_2`: .. math:: \\mathcal{E} (\\rho ) = (1 - p_z - p_0 - p_1)\\rho + p_zZ\\rho Z + p_0 (|0\\rangle \\langle 0| \\otimes \\tilde{\\rho }) + p_1 (|1\\rangle \langle 1| \otimes \\tilde{\\rho }) with .. math:: \\tilde{\\rho } = \\frac{\langle 0|\\rho |0\\rangle }{\mathrm{Tr}\langle 0|\\rho |0\\rangle} while if :math:`T_1 < T_2`: .. math:: \\mathcal{E}(\\rho ) = \\mathrm{Tr} _\\mathcal{X}\\left [\\Lambda _{\\mathcal{X}\\mathcal{Y}}(\\rho _\\mathcal{X} ^T \\otimes \\mathbb{I}_\\mathcal{Y})\\right ] with .. math:: \\Lambda = \\begin{pmatrix} 1 - p_1 & 0 & 0 & e^{-t / T_2} \\\\ 0 & p_1 & 0 & 0 \\\\ 0 & 0 & p_0 & 0 \\\\ e^{-t / T_2} & 0 & 0 & 1 - p_0 \\end{pmatrix} where :math:`p_0 = (1 - e^{-t / T_1})(1 - \\eta )` :math:`p_1 = (1 - e^{-t / T_1})\\eta` and :math:`p_z = 1 - e^{-t / T_1} + e^{-t / T_2} - e^{t / T_1 - t / T_2}`. Here :math:`\\eta` is the ``excited_population`` and :math:`t` is the ``time``, both controlled by the user. This gate is based on `Qiskit's thermal relaxation error channel <https://qiskit.org/documentation/stubs/qiskit.providers.aer.noise.thermal_relaxation_error.html#qiskit.providers.aer.noise.thermal_relaxation_error>`_. Args: q (int): Qubit id that the noise channel acts on. t1 (float): T1 relaxation time. Should satisfy ``t1 > 0``. t2 (float): T2 dephasing time. Should satisfy ``t1 > 0`` and ``t2 < 2 * t1``. time (float): the gate time for relaxation error. excited_population (float): the population of the excited state at equilibrium. Default is 0. seed (int): Optional seed for the random number generator when sampling instead of density matrices is used to simulate this gate. """ def __init__(self, q, t1, t2, time, excited_population=0, seed=None): self.name = "ThermalRelaxationChannel" self.init_args = [q, t1, t2, time] self.init_kwargs = {"excited_population": excited_population, "seed": seed} def calculate_probabilities(self, t1, t2, time, excited_population): if excited_population < 0 or excited_population > 1: raise_error(ValueError, "Invalid excited state population {}." "".format(excited_population)) if time < 0: raise_error(ValueError, "Invalid gate_time ({} < 0)".format(time)) if t1 <= 0: raise_error(ValueError, "Invalid T_1 relaxation time parameter: " "T_1 <= 0.") if t2 <= 0: raise_error(ValueError, "Invalid T_2 relaxation time parameter: " "T_2 <= 0.") if t2 > 2 * t1: raise_error(ValueError, "Invalid T_2 relaxation time parameter: " "T_2 greater than 2 * T_1.") class _ThermalRelaxationChannelA(UnitaryChannel): """Implements thermal relaxation when T1 >= T2.""" def calculate_probabilities(self, t1, t2, time, excited_population): # pragma: no cover # function not tested because it is redefined in `qibo.core.cgates._ThermalRelaxationChannelA` return ThermalRelaxationChannel.calculate_probabilities( self, t1, t2, time, excited_population) def __init__(self, q, t1, t2, time, excited_population=0, seed=None): probs = self.calculate_probabilities(t1, t2, time, excited_population) gates = [self.module.Z(q), self.module.M(q, collapse=True), self.module.X(q)] super(_ThermalRelaxationChannelA, self).__init__( probs, gates, seed=seed) ThermalRelaxationChannel.__init__( self, q, t1, t2, time, excited_population=excited_population, seed=seed) assert self.target_qubits == (q,) class _ThermalRelaxationChannelB(Gate): """Implements thermal relaxation when T1 < T2.""" def calculate_probabilities(self, t1, t2, time, excited_population): # pragma: no cover # function not tested because it is redefined in `qibo.core.cgates._ThermalRelaxationChannelB` return ThermalRelaxationChannel.calculate_probabilities( self, t1, t2, time, excited_population) def __init__(self, q, t1, t2, time, excited_population=0, seed=None): probs = self.calculate_probabilities(t1, t2, time, excited_population) self.exp_t2, self.preset0, self.preset1 = probs # pylint: disable=E0633 super(_ThermalRelaxationChannelB, self).__init__() self.target_qubits = (q,) ThermalRelaxationChannel.__init__( self, q, t1, t2, time, excited_population=excited_population, seed=seed) # this case can only be applied to density matrices self.density_matrix = True class FusedGate(Gate): """Collection of gates that will be fused and applied as single gate during simulation. This gate is constructed automatically by :meth:`qibo.core.circuit.Circuit.fuse` and should not be used by user. :class:`qibo.abstractions.gates.FusedGate` works with arbitrary number of target qubits however the backend implementation :class:`qibo.core.gates.FusedGate` assumes two target qubits. """ def __init__(self, *q): super().__init__() self.name = "fused" self.target_qubits = tuple(q) self.init_args = list(q) self.qubit_set = set(q) self.gates = [] def add(self, gate): if not set(gate.qubits).issubset(self.qubit_set): raise_error(ValueError, "Cannot add gate that targets {} " "in fused gate acting on {}." "".format(gate.qubits, self.qubits)) if isinstance(gate, self.__class__): self.gates.extend(gate.gates) else: self.gates.append(gate) def __iter__(self): return iter(self.gates) def _dagger(self): dagger = self.__class__(*self.init_args) for gate in self.gates[::-1]: dagger.add(gate.dagger()) return dagger
35.084756
199
0.567834
08bf7ad6d99fbc2e56b9562e402bbe75f20d499f
4,634
py
Python
pos_orders_history_return/models/pos_order.py
ShaheenHossain/itpp-labs_pos-addons
8c5047af10447eb3d137c84111127fae1a8970b6
[ "MIT" ]
null
null
null
pos_orders_history_return/models/pos_order.py
ShaheenHossain/itpp-labs_pos-addons
8c5047af10447eb3d137c84111127fae1a8970b6
[ "MIT" ]
null
null
null
pos_orders_history_return/models/pos_order.py
ShaheenHossain/itpp-labs_pos-addons
8c5047af10447eb3d137c84111127fae1a8970b6
[ "MIT" ]
4
2020-08-25T01:49:14.000Z
2021-04-04T10:29:04.000Z
# -*- coding: utf-8 -*- # Copyright 2018 Dinar Gabbasov <https://it-projects.info/team/GabbasovDinar> # License MIT (https://opensource.org/licenses/MIT). import logging import psycopg2 from odoo import _, api, fields, models, tools from odoo.tools import float_is_zero _logger = logging.getLogger(__name__) class PosOrder(models.Model): _inherit = "pos.order" returned_order = fields.Boolean("Returned Order", default=False) @api.model def create_from_ui(self, orders): # Keep return orders submitted_references = [o["data"]["name"] for o in orders] pos_order = self.search([("pos_reference", "in", submitted_references)]) existing_orders = pos_order.read(["pos_reference"]) existing_references = {o["pos_reference"] for o in existing_orders} orders_to_save = [o for o in orders if o["data"]["name"] in existing_references] pos_retuned_orders = [ o for o in orders_to_save if o["data"].get("mode") and o["data"].get("mode") == "return" ] self.return_from_ui(pos_retuned_orders) return super(PosOrder, self).create_from_ui(orders) @api.multi def return_from_ui(self, orders): for tmp_order in orders: # eliminates the return of the order several times at the same time returned_order = self.search( [ ("pos_reference", "=", tmp_order["data"]["name"]), ("date_order", "=", tmp_order["data"]["creation_date"]), ("returned_order", "=", True), ] ) if not returned_order: to_invoice = tmp_order["to_invoice"] order = tmp_order["data"] if to_invoice: self._match_payment_to_invoice(order) order["returned_order"] = True pos_order = self._process_order(order) try: pos_order.action_pos_order_paid() except psycopg2.OperationalError: raise except Exception as e: _logger.error( "Could not fully process the POS Order: %s", tools.ustr(e) ) if to_invoice: pos_order.action_pos_order_invoice() pos_order.invoice_id.sudo().action_invoice_open() pos_order.account_move = pos_order.invoice_id.move_id @api.model def _process_order(self, pos_order): if pos_order.get("returned_order"): prec_acc = self.env["decimal.precision"].precision_get("Account") pos_session = self.env["pos.session"].browse(pos_order["pos_session_id"]) if pos_session.state == "closing_control" or pos_session.state == "closed": pos_order["pos_session_id"] = self._get_valid_session(pos_order).id order = self.create(self._order_fields(pos_order)) order.write({"returned_order": True}) journal_ids = set() for payments in pos_order["statement_ids"]: if not float_is_zero(payments[2]["amount"], precision_digits=prec_acc): order.add_payment(self._payment_fields(payments[2])) journal_ids.add(payments[2]["journal_id"]) if pos_session.sequence_number <= pos_order["sequence_number"]: pos_session.write({"sequence_number": pos_order["sequence_number"] + 1}) pos_session.refresh() if not float_is_zero(pos_order["amount_return"], prec_acc): cash_journal_id = pos_session.cash_journal_id.id if not cash_journal_id: cash_journal = self.env["account.journal"].search( [("id", "in", list(journal_ids))], limit=1 ) if not cash_journal: cash_journal = [ statement.journal_id for statement in pos_session.statement_ids ] cash_journal_id = cash_journal[0].id order.add_payment( { "amount": -pos_order["amount_return"], "payment_date": fields.Datetime.now(), "payment_name": _("return"), "journal": cash_journal_id, } ) return order else: return super(PosOrder, self)._process_order(pos_order)
41.375
88
0.554596
dbd14afeeaac7a4701ee03615e03bd69f9454a73
3,735
py
Python
timm/data/lmdb_loader.py
lusinlu/pytorch-image-models
7c85407bda63dd29217ee36948a0e16d20927f48
[ "Apache-2.0" ]
1
2020-06-24T07:56:21.000Z
2020-06-24T07:56:21.000Z
timm/data/lmdb_loader.py
lusinlu/pytorch-image-models
7c85407bda63dd29217ee36948a0e16d20927f48
[ "Apache-2.0" ]
null
null
null
timm/data/lmdb_loader.py
lusinlu/pytorch-image-models
7c85407bda63dd29217ee36948a0e16d20927f48
[ "Apache-2.0" ]
null
null
null
import os import sys import six import string import argparse import lmdb import pickle import msgpack import tqdm from PIL import Image import torch import torch.utils.data as data from torch.utils.data import DataLoader from torchvision.transforms import transforms from torchvision.datasets import ImageFolder from torchvision import transforms, datasets # This segfaults when imported before torch: https://github.com/apache/arrow/issues/2637 import pyarrow as pa class ImageFolderLMDB(data.Dataset): def __init__(self, db_path, transform=None, target_transform=None): self.db_path = db_path self.env = lmdb.open(db_path, subdir=os.path.isdir(db_path), readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: # self.length = txn.stat()['entries'] - 1 self.length = pa.deserialize(txn.get(b'__len__')) self.keys = pa.deserialize(txn.get(b'__keys__')) self.transform = transform self.target_transform = target_transform def __getitem__(self, index): img, target = None, None env = self.env with env.begin(write=False) as txn: byteflow = txn.get(self.keys[index]) unpacked = pa.deserialize(byteflow) # load image imgbuf = unpacked[0] buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) img = Image.open(buf).convert('RGB') # load label target = unpacked[1] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return self.length def __repr__(self): return self.__class__.__name__ + ' (' + self.db_path + ')' def raw_reader(path): with open(path, 'rb') as f: bin_data = f.read() return bin_data def dumps_pyarrow(obj): """ Serialize an object. Returns: Implementation-dependent bytes-like object """ return pa.serialize(obj).to_buffer() def folder2lmdb(path, outpath, write_frequency=5000): directory = os.path.expanduser(path) print("Loading dataset from %s" % directory) dataset = ImageFolder(directory, loader=raw_reader) data_loader = DataLoader(dataset, num_workers=16, collate_fn=lambda x: x) lmdb_path = os.path.expanduser(outpath) isdir = os.path.isdir(lmdb_path) print("Generate LMDB to %s" % lmdb_path) db = lmdb.open(lmdb_path, subdir=isdir, map_size=1099511627776 * 2, readonly=False, meminit=False, map_async=True) txn = db.begin(write=True) for idx, data in enumerate(data_loader): image, label = data[0] txn.put(u'{}'.format(idx).encode('ascii'), dumps_pyarrow((image, label))) if idx % write_frequency == 0: print("[%d/%d]" % (idx, len(data_loader))) txn.commit() txn = db.begin(write=True) # finish iterating through dataset txn.commit() keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)] with db.begin(write=True) as txn: txn.put(b'__keys__', dumps_pyarrow(keys)) txn.put(b'__len__', dumps_pyarrow(len(keys))) print("Flushing database ...") db.sync() db.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-d", "--dataset", help="Path to original image dataset folder") parser.add_argument("-o", "--outpath", help="Path to output LMDB file") args = parser.parse_args() folder2lmdb(args.dataset, args.outpath)
29.88
88
0.636948
9cc3d2f74e6fc16d20c9c59555224db3e06d7468
4,692
py
Python
Classification_emotion.py
brendaspears/Intelligent-System-Final-Project
897f098e2dc6ebbf0b60de20d37092444d52c579
[ "MIT" ]
null
null
null
Classification_emotion.py
brendaspears/Intelligent-System-Final-Project
897f098e2dc6ebbf0b60de20d37092444d52c579
[ "MIT" ]
null
null
null
Classification_emotion.py
brendaspears/Intelligent-System-Final-Project
897f098e2dc6ebbf0b60de20d37092444d52c579
[ "MIT" ]
null
null
null
from __future__ import print_function import keras from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense,Dropout,Activation,Flatten,BatchNormalization from keras.layers import Conv2D,MaxPooling2D import os num_classes = 5 img_rows,img_cols = 48,48 batch_size = 32 train_data_dir = 'C:/Users/Jennifer I/Desktop/Semester 4/Intelligent System/EmotionTest/Emotion Detector/data/train' validation_data_dir = 'C:/Users/Jennifer I/Desktop/Semester 4/Intelligent System/EmotionTest/Emotion Detector/data/val' train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=30, shear_range=0.3, zoom_range=0.3, width_shift_range=0.4, height_shift_range=0.4, horizontal_flip=True, fill_mode='nearest') validation_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_data_dir, color_mode='grayscale', target_size=(img_rows,img_cols), batch_size=batch_size, class_mode='categorical', shuffle=True) validation_generator = validation_datagen.flow_from_directory( validation_data_dir, color_mode='grayscale', target_size=(img_rows,img_cols), batch_size=batch_size, class_mode='categorical', shuffle=True) model = Sequential() # Block-1 model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1))) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(Conv2D(32,(3,3),padding='same',kernel_initializer='he_normal',input_shape=(img_rows,img_cols,1))) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) # Block-2 model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(Conv2D(64,(3,3),padding='same',kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) # Block-3 model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(Conv2D(128,(3,3),padding='same',kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) # Block-4 model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(Conv2D(256,(3,3),padding='same',kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) # Block-5 model.add(Flatten()) model.add(Dense(64,kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) # Block-6 model.add(Dense(64,kernel_initializer='he_normal')) model.add(Activation('elu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) # Block-7 model.add(Dense(num_classes,kernel_initializer='he_normal')) model.add(Activation('softmax')) print(model.summary()) from keras.optimizers import RMSprop,SGD,Adam from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau checkpoint = ModelCheckpoint('Emotions_vgg.h5', monitor='val_loss', mode='min', save_best_only=True, verbose=1) earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, restore_best_weights=True ) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, verbose=1, min_delta=0.0001) callbacks = [earlystop,checkpoint,reduce_lr] model.compile(loss='categorical_crossentropy', optimizer = Adam(lr=0.001), metrics=['accuracy']) nb_train_samples = 24176 nb_validation_samples = 3006 epochs=25 history=model.fit_generator( train_generator, steps_per_epoch=nb_train_samples//batch_size, epochs=epochs, callbacks=callbacks, validation_data=validation_generator, validation_steps=nb_validation_samples//batch_size)
22.666667
119
0.680733
294c66a9f83a6444f3a7cfdc87e65ff75f718c20
3,341
py
Python
main.py
yE-os/lenovo_auto_signin
10b26a29cc43c56a9cec6ad8ecb6a730769acf9c
[ "Apache-2.0" ]
2
2021-04-04T05:31:20.000Z
2021-04-05T23:36:01.000Z
main.py
yE-os/lenovo_auto_signin
10b26a29cc43c56a9cec6ad8ecb6a730769acf9c
[ "Apache-2.0" ]
null
null
null
main.py
yE-os/lenovo_auto_signin
10b26a29cc43c56a9cec6ad8ecb6a730769acf9c
[ "Apache-2.0" ]
null
null
null
import os import requests from bs4 import BeautifulSoup import json USERNAME = '17607096003' PASSWORD = 'yyl19980316' WID = 'wwbbcdca597778242d' SECRET = 'sqYysdzza56QTzdJBTTRhRlOUjdrGThLT8mCMqom5lU' ID = '1000002' HEADER_GET = { "user-agent": "Mozilla/5.0 (Linux; Android 11; Mi 10 Build/RKQ1.200826.002; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/86.0.4240.185 Mobile Safari/537.36/lenovoofficialapp/16112154380982287_10181446134/newversion/versioncode-124/" } HEADER_COUNT = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36", } def login(): url = "https://reg.lenovo.com.cn/auth/v3/dologin" header = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36", "Host": "reg.lenovo.com.cn", "Referer": "https://www.lenovo.com.cn/", 'Cookie': 'LA_F_T_10000001=1614393605462; LA_C_Id=_ck21022710400514675618549440548; LA_M_W_10000001=_ck21022710400514675618549440548%7C10000001%7C%7C%7C; LA_C_C_Id=_sk202102271040090.05206000.3687; _ga=GA1.3.1245350653.1614393605; leid=1.VljlpE1LZ7I; LA_F_T_10000231=1614395016398; LA_R_T_10000231=1614395016398; LA_V_T_10000231=1614395016398; LA_M_W_10000231=_ck21022710400514675618549440548%7C10000231%7C%7C%7C; LA_R_C_10000001=1; LA_R_T_10000001=1614593722192; LA_V_T_10000001=1614593722192; _gid=GA1.3.1974081891.1614593723; _gat=1; ar=1' } data = {"account": USERNAME, "password": PASSWORD, "ticket": "e40e7004-4c8a-4963-8564-31271a8337d8"} session = requests.Session() r = session.post(url, headers=header, data=data) if r.text.find("cerpreg-passport") == -1: # 若未找到相关cookie则返回空值 return None return session def signin(session): signin = session.get("https://i.lenovo.com.cn/signIn/add.jhtml?sts=e40e7004-4c8a-4963-8564-31271a8337d8",headers=HEADER_GET) check = str(signin.text) if "true" in check: if "乐豆" in check: print("签到成功") else: print("请不要重复签到") else: print("签到失败,请重试") def getContinuousDays(session): url = "https://club.lenovo.com.cn/signlist/" c = session.get(url,headers=HEADER_COUNT) soup = BeautifulSoup(c.text,"html.parser") day = soup.select("body > div.signInMiddleWrapper > div > div.signInTimeInfo > div.signInTimeInfoMiddle > p.signInTimeMiddleBtn") day = day[0].get_text() return day def getkey(): url = 'https://qyapi.weixin.qq.com/cgi-bin/gettoken?corpid=%s&corpsecret=%s'%(WID, SECRET) getkey = requests.get(url) return getkey.text def push(token,message): url = "https://qyapi.weixin.qq.com/cgi-bin/message/send?access_token=%s&debug=1"%token json = { "touser": "@all", "msgtype": "textcard", "agentid": ID, "textcard": { "title": "联想商城签到情况", "description": "%s"%message, "url": "https://www.locjj.com" }, "safe": "1" } push = requests.post(url,json=json) return push.text if __name__ == '__main__': token = json.loads(getkey())['access_token'] s = login() if not s: push(token,"登录失败,请检查账号密码") else: signin(s) day = getContinuousDays(s) print(push(token,day))
39.77381
550
0.676743
9c9210d6548dc4680abd7c7085a692c5373c4c46
4,617
py
Python
src/compas_igs/ui/Rhino/IGS/dev/IGS_unified_diagram_cmd.py
BlockResearchGroup/compas-IGS
b40698466b91c867600b94ae2530b19d336ad1b0
[ "MIT" ]
1
2021-11-03T23:22:37.000Z
2021-11-03T23:22:37.000Z
src/compas_igs/ui/Rhino/IGS/dev/IGS_unified_diagram_cmd.py
BlockResearchGroup/compas-IGS
b40698466b91c867600b94ae2530b19d336ad1b0
[ "MIT" ]
1
2021-11-10T03:27:58.000Z
2021-11-17T13:51:17.000Z
src/compas_igs/ui/Rhino/IGS/dev/IGS_unified_diagram_cmd.py
BlockResearchGroup/compas-IGS
b40698466b91c867600b94ae2530b19d336ad1b0
[ "MIT" ]
null
null
null
from __future__ import print_function from __future__ import absolute_import from __future__ import division import compas from compas.geometry import centroid_points from compas.geometry import subtract_vectors from compas.geometry import scale_vector from compas.geometry import distance_point_point_xy import scriptcontext as sc import compas_rhino from compas_igs.rhino import mesh_ud try: import Rhino import rhinoscriptsyntax as rs except ImportError: compas.raise_if_ironpython() __commandname__ = "IGS_unified_diagram" def RunCommand(is_interactive): if 'IGS' not in sc.sticky: compas_rhino.display_message('IGS has not been initialised yet.') return scene = sc.sticky['IGS']['scene'] objects = scene.find_by_name('Form') if not objects: compas_rhino.display_message("There is no FormDiagram in the scene.") return form = objects[0] objects = scene.find_by_name('Force') if not objects: compas_rhino.display_message("There is no ForceDiagram in the scene.") return force = objects[0] # translation form_center = centroid_points(form.vertex_xyz.values()) force_center = centroid_points(force.vertex_xyz.values()) translation = subtract_vectors(force_center, form_center) # get scale go = Rhino.Input.Custom.GetOption() go.SetCommandPrompt("Enter scale for unified diagram (press ESC to exit)") go.AcceptNothing(True) scale_opt = Rhino.Input.Custom.OptionDouble(0.50, 0.01, 0.99) go.AddOptionDouble("Alpha", scale_opt) # get scale and rotation def _draw_ud(form, force, translation=translation, scale=0.5): compas_rhino.clear_layer(force.layer) # 2. compute unified diagram geometries geometry = mesh_ud(form, force, translation=translation, scale=scale) if not geometry: return faces, bars = geometry # 3. draw polygons for face, face_xyz in faces.items(): count = len(face_xyz) filtered_xyz = [] for i in range(-1, count - 1): if distance_point_point_xy(face_xyz[i], face_xyz[i + 1]) < 0.01: continue filtered_xyz.append(face_xyz[i]) if len(filtered_xyz) == 2: line = {'start': filtered_xyz[0], 'end': filtered_xyz[1], 'layer': force.layer} compas_rhino.draw_lines([line]) continue compas_rhino.draw_mesh(filtered_xyz, [range(len(filtered_xyz))], layer=force.layer, name=str(face), redraw=False) # 4. draw bars bar_colors = {} for edge in force.diagram.edges_where_dual({'is_external': False}): if force.diagram.dual_edge_force(edge) > + force.settings['tol.forces']: bar_colors[edge] = force.settings['color.tension'] elif force.diagram.dual_edge_force(edge) < - force.settings['tol.forces']: bar_colors[edge] = force.settings['color.compression'] for bar, bar_xyz in bars.items(): count = len(bar_xyz) filtered_xyz = [] for i in range(-1, count - 1): if distance_point_point_xy(bar_xyz[i], bar_xyz[i + 1]) < 0.01: continue filtered_xyz.append(bar_xyz[i]) if len(filtered_xyz) == 2: line = {'start': filtered_xyz[0], 'end': filtered_xyz[1], 'layer': force.layer} compas_rhino.draw_lines([line]) continue compas_rhino.draw_mesh(filtered_xyz, [range(len(filtered_xyz))], layer=force.layer, name=str(bar), color=bar_colors[bar], redraw=False) # unified diagram while True: rs.EnableRedraw(True) opt = go.Get() scale = scale_opt.CurrentValue if not opt: print("The scale for unified diagram needs to be between 0.01 and 0.99!") if opt == Rhino.Input.GetResult.Cancel: # esc keep = rs.GetBoolean("Keep unified diagram? (press ESC to exit)", [("Copy", "No", "Yes")], (False)) scene.clear_layers() if keep and keep[0]: _draw_ud(form, force, translation=scale_vector(translation, 2.5), scale=scale) scene.update() scene.save() return _draw_ud(form, force, translation=translation, scale=scale) # ============================================================================== # Main # ============================================================================== if __name__ == '__main__': RunCommand(True)
33.948529
147
0.610136
d4c4ef0f4b28aaf8b854c1a983be675041943305
1,444
py
Python
setup.py
stweil/sbb_ner
319c29fc96667937f85d2cba111902386c95ba23
[ "Apache-2.0" ]
9
2019-08-27T16:13:17.000Z
2021-06-18T06:58:25.000Z
setup.py
stweil/sbb_ner
319c29fc96667937f85d2cba111902386c95ba23
[ "Apache-2.0" ]
2
2020-01-13T12:50:37.000Z
2022-01-28T10:51:06.000Z
setup.py
stweil/sbb_ner
319c29fc96667937f85d2cba111902386c95ba23
[ "Apache-2.0" ]
1
2019-09-07T20:40:09.000Z
2019-09-07T20:40:09.000Z
from io import open from setuptools import find_packages, setup with open('requirements.txt') as fp: install_requires = fp.read() setup( name="qurator-sbb-ner", version="0.0.1", author="The Qurator Team", author_email="qurator@sbb.spk-berlin.de", description="Qurator", long_description=open("README.md", "r", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords='qurator', license='Apache', url="https://qurator.ai", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), install_requires=install_requires, entry_points={ 'console_scripts': [ "compile_europeana_historic=qurator.sbb_ner.ground_truth.europeana_historic:main", "compile_germ_eval=qurator.sbb_ner.ground_truth.germeval:main", "compile_conll=qurator.sbb_ner.ground_truth.conll:main", "compile_wikiner=qurator.sbb_ner.ground_truth.wikiner:main", "join-gt=qurator.sbb_ner.ground_truth.join_gt:main", "bert-ner=qurator.sbb_ner.models.bert:main" ] }, python_requires='>=3.6.0', tests_require=['pytest'], classifiers=[ 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
37.025641
90
0.653047
c92f6741082316ef813f51e11ee2273268685838
8,559
py
Python
ros/src/waypoint_updater/waypoint_updater.py
anonymint/udacity-self-driving-p13-capstone
16ae005bd985dd7ef9dbd1e35047f91f0c3bdaef
[ "MIT" ]
null
null
null
ros/src/waypoint_updater/waypoint_updater.py
anonymint/udacity-self-driving-p13-capstone
16ae005bd985dd7ef9dbd1e35047f91f0c3bdaef
[ "MIT" ]
3
2018-08-20T03:42:38.000Z
2018-08-21T14:11:41.000Z
ros/src/waypoint_updater/waypoint_updater.py
anonymint/udacity-self-driving-p13-capstone
16ae005bd985dd7ef9dbd1e35047f91f0c3bdaef
[ "MIT" ]
3
2018-08-15T11:58:43.000Z
2018-08-24T04:32:58.000Z
#!/usr/bin/env python """ This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. """ import math import numpy as np import rospy from std_msgs.msg import Int32 from scipy.spatial import KDTree from geometry_msgs.msg import PoseStamped from styx_msgs.msg import Lane, Waypoint # Number of waypoints we will publish. _NUM_WAYPOINTS_AHEAD = 200 # Spin frequency in hertz. _SPIN_FREQUENCY = 50 # Waypoint cushion from targeted stopline before traffic light or obstacle. _STOP_CUSHION = 3 # Maximum deceleration _MAX_DECEL = 0.5 class WaypointUpdater(object): """ This node publishes waypoints from the car's current position to some distance ahead. """ def __init__(self): rospy.init_node('waypoint_updater') # Subscribers. rospy.Subscriber('/current_pose', PoseStamped, self.pose_callback) rospy.Subscriber('/base_waypoints', Lane, self.base_waypoints_callback) rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_callback) rospy.Subscriber('/obstacle_waypoint', Int32, self.obstacle_callback) # Publishers. self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size=1) # Member variables. self.pose = None self.base_waypoints = None self.waypoints_2d = None self.waypoints_tree = None self.traffic_light_wp_idx = None self.obstacle_wp_idx = None def spin(self, freq): """ Spins this ROS node based on the given frequency. :param freq: frequency in hertz. """ rate = rospy.Rate(freq) while not rospy.is_shutdown(): if self.pose and self.base_waypoints: # Get the closest waypoint and publish it. self.publish_waypoints(self.get_closest_waypoint_idx()) rate.sleep() def get_closest_waypoint_idx(self): """ Gets the index of the closest waypoint. :return: index of the closest waypoint. """ x = self.pose.pose.position.x y = self.pose.pose.position.y # The first 1 is for closest. The second 1 is for the index element. closest_idx = self.waypoints_tree.query([x, y], 1)[1] # Check if the closest waypoint is ahead or behind the ego car. closest_2d = self.waypoints_2d[closest_idx] prev_2d = self.waypoints_2d[closest_idx - 1] closest_vect = np.array(closest_2d) prev_vector = np.array(prev_2d) curr_vector = np.array([x, y]) if np.dot(closest_vect - prev_vector, curr_vector - closest_vect) > 0: # The closest waypoint is behind. Pick the next index. closest_idx = (closest_idx + 1) % len(self.waypoints_2d) return closest_idx def publish_waypoints(self, index): """ Publishes the waypoints to ROS. :param index of the first waypoint. """ self.final_waypoints_pub.publish(self.get_final_lane(index)) def get_final_lane(self, closest_wp_idx): """ Updates final lane's waypoints based on traffic light or obstacle waypoint index. :return: lane with waypoints updated with decelerating linear velocity. """ lane = Lane() lane.header = self.base_waypoints.header farthest_wp_idx = closest_wp_idx + _NUM_WAYPOINTS_AHEAD sliced_base_waypoints = self.base_waypoints.waypoints[closest_wp_idx:farthest_wp_idx] # Determine if vehicle is clear from traffic light and obstacle. traffic_light_clear = (self.traffic_light_wp_idx is None or self.traffic_light_wp_idx == -1 or self.traffic_light_wp_idx >= farthest_wp_idx) obstacle_clear = (self.obstacle_wp_idx is None or self.obstacle_wp_idx == -1 or self.obstacle_wp_idx >= farthest_wp_idx) if traffic_light_clear and obstacle_clear: # No traffic light or obstacle detected. lane.waypoints = sliced_base_waypoints else: if not traffic_light_clear and obstacle_clear: # Only traffic light is detected. target_wp_idx = self.traffic_light_wp_idx elif traffic_light_clear and not obstacle_clear: # Only obstacle is detected. target_wp_idx = self.obstacle_wp_idx else: # Both traffic light and obstacle are detected. target_wp_idx = min(self.traffic_light_wp_idx, self.obstacle_wp_idx) lane.waypoints = self.decelerate_waypoints(sliced_base_waypoints, target_wp_idx - closest_wp_idx) return lane @staticmethod def decelerate_waypoints(sliced_base_waypoints, stop_idx): """ Loops through base waypoints to update the linear velocity base on deceleration with respect to the targeting stop waypoint. :return: list of waypoints with updated linear velocity. """ decel_wp = [] stop_idx = max(stop_idx - _STOP_CUSHION, 0) # Loop through each base_waypoint to adjust its linear velocity x. for i, wp in enumerate(sliced_base_waypoints): p = Waypoint() # Position of waypoint won't change. p.pose = wp.pose # To decelerate from speed v to 0 in a distance of s: # s = 1/2 * a * v^2 => v = sqrt(2 * a * s) dist = WaypointUpdater.waypoint_distance(sliced_base_waypoints, i, stop_idx) vel = math.sqrt(2 * _MAX_DECEL * dist) if vel < 1.: vel = 0. WaypointUpdater.set_waypoint_velocity(p, min(vel, WaypointUpdater.get_waypoint_velocity(wp))) decel_wp.append(p) return decel_wp def pose_callback(self, pose): """ Pose subscriber callback function. """ self.pose = pose def base_waypoints_callback(self, base_waypoints): """ Base waypoints subscriber callback function. The publisher has latch set to True, which means this message will be received only once. """ # Get the waypoints in X, Y plane and set up the KDTree for efficient comparison. self.waypoints_2d = [[w.pose.pose.position.x, w.pose.pose.position.y] for w in base_waypoints.waypoints] self.waypoints_tree = KDTree(self.waypoints_2d) self.base_waypoints = base_waypoints rospy.loginfo('base_waypoints initialized') def traffic_callback(self, data): """ Traffic waypoints subscriber callback function. """ self.traffic_light_wp_idx = data.data def obstacle_callback(self, data): """ Obstacle waypoints subscriber callback function. """ self.obstacle_wp_idx = data @staticmethod def get_waypoint_velocity(waypoint): """ Get the longitudinal velocity from a waypoint. """ return waypoint.twist.twist.linear.x @staticmethod def set_waypoint_velocity(waypoint, velocity): """ Sets the longitudinal velocity on a waypoint. """ waypoint.twist.twist.linear.x = velocity @staticmethod def waypoint_distance(waypoints, wp1, wp2): """ Gets piece-wise sum of the distances between adjacent waypoints. :param waypoints: waypoint list :param wp1: start index :param wp2: end index """ dist = 0 dl = lambda a, b: math.sqrt((a.x - b.x) ** 2 + (a.y - b.y) ** 2 + (a.z - b.z) ** 2) for i in range(wp1, wp2 - 1): dist += dl(waypoints[i].pose.pose.position, waypoints[i + 1].pose.pose.position) return dist if __name__ == '__main__': try: WaypointUpdater().spin(_SPIN_FREQUENCY) except rospy.ROSInterruptException: rospy.logerr('Could not start waypoint updater node.')
36.576923
109
0.644234
63af11c7d7b62ff2ce77e12daf355833f85f46e9
7,649
py
Python
tests/modules/test_processing.py
geomatikzh/openadms-node
aedfdc0b20e5e2cd668090f97a6bbb0b9c59d658
[ "BSD-2-Clause" ]
null
null
null
tests/modules/test_processing.py
geomatikzh/openadms-node
aedfdc0b20e5e2cd668090f97a6bbb0b9c59d658
[ "BSD-2-Clause" ]
null
null
null
tests/modules/test_processing.py
geomatikzh/openadms-node
aedfdc0b20e5e2cd668090f97a6bbb0b9c59d658
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3.6 """Tests the classes of the processing modules.""" __author__ = 'Philipp Engel' __copyright__ = 'Copyright (c) 2017 Hochschule Neubrandenburg' __license__ = 'BSD-2-Clause' from typing import List import pytest from testfixtures import LogCapture from core.observation import Observation from modules.processing import (PreProcessor, ResponseValueInspector, ReturnCodeInspector, UnitConverter) @pytest.fixture(scope='module') def pre_processor(manager) -> PreProcessor: """Returns a PreProcessor object. Args: manager (Manager): Instance of ``core.Manager``. Returns: An instance of class ``module.processing.PreProcessor``. """ return PreProcessor('preProcessor', 'modules.processing.PreProcessor', manager) @pytest.fixture(scope='module') def rv_inspector(manager) -> ResponseValueInspector: """Returns a ResponseValueInspector object. Args: manager (Manager): Instance of ``core.Manager``. Returns: An instance of class ``module.processing.ResponseValueInspector``. """ return ResponseValueInspector('responseValueInspector', 'modules.processing.ResponseValueInspector', manager) @pytest.fixture(scope='module') def rc_inspector(manager) -> ReturnCodeInspector: """Returns a ReturnCodeInspector object. Args: manager (Manager): Instance of ``core.Manager``. Returns: An instance of class ``module.processing.ReturnCodeInspector``. """ return ReturnCodeInspector('returnCodeInspector', 'modules.processing.ReturnCodeInspector', manager) @pytest.fixture(scope='module') def unit_converter(manager) -> UnitConverter: """Returns a UnitConverter object. Args: manager (Manager): Instance of ``core.Manager``. Returns: An instance of class ``module.processing.UnitConverter``. """ return UnitConverter('unitConverter', 'modules.processing.UnitConverter', manager) class TestPreProcessor: """ Test for the ``module.processing.PreProcessor`` class. """ def test_process_observation(self, pre_processor: PreProcessor, observations: List[Observation]) -> None: """Tests the processing of observations.""" obs_in = observations[0] obs_out = pre_processor.process_observation(obs_in) assert obs_out.get_response_value('temperature') == 23.1 assert obs_out.get_response_value('pressure') == 1011.3 def test_is_float(self, pre_processor: PreProcessor) -> None: assert pre_processor.is_float('10.5') is True assert pre_processor.is_float('foo') is False def test_is_int(self, pre_processor: PreProcessor) -> None: assert pre_processor.is_float('10') is True assert pre_processor.is_float('10.5') is True assert pre_processor.is_float('foo') is False def test_sanitize(self, pre_processor: PreProcessor) -> None: assert pre_processor.sanitize('\n\r\t') == '\\n\\r\\t' def test_to_float(self, pre_processor: PreProcessor) -> None: assert pre_processor.to_float('10,5') == 10.5 assert pre_processor.to_float('0.9995') == 0.9995 assert pre_processor.to_float('foo') is None def test_to_int(self, pre_processor: PreProcessor) -> None: assert pre_processor.to_int('10') == 10 assert pre_processor.to_int('10.5') is None assert pre_processor.to_int('foo') is None class TestResponseValueInspector: """ Test for the ``module.processing.ResponseValueInspector`` class. """ def test_process_observation(self, rv_inspector: ResponseValueInspector, observations: List[Observation]) -> None: """Check whether valid log messages are created.""" obs = observations[1] obs_name = obs.get('name') obs_target = obs.get('target') response_name = 'slopeDist' min_val = 10.0 max_val = 100.0 valid_val = 25.0 lt_min_val = 0.0 gt_max_val = 200.0 with LogCapture() as log_capture: # Test 1 (observation undefined). obs.data['name'] = 'test' rv_inspector.process_observation(obs) # Test 2 (invalid response type). obs.data['name'] = obs_name obs.data['responseSets']['slopeDist']['value'] = 'test' rv_inspector.process_observation(obs) # Test 3 (success). obs.data['responseSets']['slopeDist']['value'] = valid_val rv_inspector.process_observation(obs) # Test 4 (response value less than minimum). obs.data['responseSets']['slopeDist']['value'] = lt_min_val rv_inspector.process_observation(obs) # Test 5 (response value greater than maximum). obs.data['responseSets']['slopeDist']['value'] = gt_max_val rv_inspector.process_observation(obs) # Capture log messages. log_capture.check( (rv_inspector.name, 'WARNING', f'Undefined observation "test" of target "{obs_target}"'), (rv_inspector.name, 'WARNING', f'Response value "{response_name}" in observation ' f'"{obs_name}" of target "{obs_target}" is not a number'), (rv_inspector.name, 'DEBUG', f'Response value "{response_name}" in observation ' f'"{obs_name}" of target "{obs_target}" is within limits'), (rv_inspector.name, 'CRITICAL', f'Response value "{response_name}" in observation ' f'"{obs_name}" of target "{obs_target}" is less than ' f'minimum ({lt_min_val} < {min_val})'), (rv_inspector.name, 'CRITICAL', f'Response value "{response_name}" in observation ' f'"{obs_name}" of target "{obs_target}" is greater than ' f'maximum ({gt_max_val} > {max_val})') ) def test_is_number(self, rv_inspector: ResponseValueInspector) -> None: assert rv_inspector.is_number('10') is True assert rv_inspector.is_number('10.5') is True assert rv_inspector.is_number('foo') is False class TestReturnCodeInspector: """ Test for the ``module.processing.ReturnCodeInspector`` class. """ def test_process_observation(self, rc_inspector: ReturnCodeInspector, observations: List[Observation]) -> None: obs = rc_inspector.process_observation(observations[1]) assert obs.data['corrupted'] is True obs.data['responseSets']['returnCode']['value'] = 0 obs = rc_inspector.process_observation(obs) assert obs.data['corrupted'] is False assert obs.data['nextReceiver'] == 1 class TestUnitConverter: def test_process_observation(self, unit_converter: UnitConverter, observations: List[Observation]) -> None: pass def test_scale(self, unit_converter: UnitConverter) -> None: assert unit_converter.scale(10, 10) == 100
34.768182
78
0.599425
f4c01d21c61a514047eaff9d29806222f40f5052
1,587
py
Python
lib/rotaryencoder.py
jacoblb64/pico_rgb_keypad_hid
3251ca6a98ef86d9f98c54f639c4d61810601a0b
[ "MIT" ]
47
2021-02-15T23:02:36.000Z
2022-03-04T21:30:03.000Z
lib/rotaryencoder.py
jacoblb64/pico_rgb_keypad_hid
3251ca6a98ef86d9f98c54f639c4d61810601a0b
[ "MIT" ]
7
2021-02-19T20:00:08.000Z
2022-01-14T10:51:12.000Z
lib/rotaryencoder.py
jacoblb64/pico_rgb_keypad_hid
3251ca6a98ef86d9f98c54f639c4d61810601a0b
[ "MIT" ]
14
2021-02-20T17:40:56.000Z
2022-01-01T19:53:38.000Z
import time import board from digitalio import DigitalInOut, Direction, Pull ROTARY_NO_MOTION = 0 ROTARY_CCW = 1 ROTARY_CW = 2 class RotaryEncoder: def timeInMillis(self): return int(time.monotonic() * 1000) def __init__(self, aPin=board.GP12, bPin=board.GP10, bluePin=board.GP14): self.encoderAPin = DigitalInOut(aPin) self.encoderAPin.direction = Direction.INPUT self.encoderAPin.pull = Pull.UP self.encoderBPin = DigitalInOut(bPin) self.encoderBPin.direction = Direction.INPUT self.encoderBPin.pull = Pull.UP self.loopTime = self.timeInMillis() self.encoderA_prev = 0 # https://www.hobbytronics.co.uk/arduino-tutorial6-rotary-encoder def read(self): event = ROTARY_NO_MOTION # get the current elapsed time currentTime = self.timeInMillis() if currentTime >= (self.loopTime + 5): # 5ms since last check of encoder = 200Hz encoderA = self.encoderAPin.value encoderB = self.encoderBPin.value if (not encoderA) and (self.encoderA_prev): # encoder A has gone from high to low # CW and CCW determined if encoderB: # B is low so counter-clockwise event = ROTARY_CW else: # encoder B is high so clockwise event = ROTARY_CCW self.encoderA_prev = encoderA # Store value of A for next time self.loopTime = currentTime return event
33.765957
77
0.604915
9f58c1ef62d38d358f3768f3c4eaccaaf713ee28
636
py
Python
{{cookiecutter.profile_name}}/lsf_status.py
iromeo/generic-enhanced
c4b6d3972346197551228030352f554e521fa82b
[ "MIT" ]
null
null
null
{{cookiecutter.profile_name}}/lsf_status.py
iromeo/generic-enhanced
c4b6d3972346197551228030352f554e521fa82b
[ "MIT" ]
null
null
null
{{cookiecutter.profile_name}}/lsf_status.py
iromeo/generic-enhanced
c4b6d3972346197551228030352f554e521fa82b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys import subprocess jobid = sys.argv[1] # print("Checking status for Job ID <" + jobid + ">...", file=sys.stderr) out = subprocess.run( # fix output format using -o because user's columns order could be custom ['bjobs', '-noheader', '-o', 'stat:', jobid], stdout=subprocess.PIPE ).stdout.decode('utf-8') state = out.strip() map_state = { "PEND": 'running', "RUN": 'running', "PROV": "running", "WAIT": 'running', "DONE": 'success', "": 'success' } # print("Job ID <" + jobid + "> state is <" + state + ">", file=sys.stderr) print(map_state.get(state, 'failed'))
22.714286
77
0.602201
72b9db5ea31fa1e37a4b9f8139106e1f4c7110cf
61,370
py
Python
test/test_site_api.py
pdeardorff-r7/vm-console-client-python
4bee83aa4db2b328ba6894cebac55743f922ce5a
[ "MIT" ]
null
null
null
test/test_site_api.py
pdeardorff-r7/vm-console-client-python
4bee83aa4db2b328ba6894cebac55743f922ce5a
[ "MIT" ]
null
null
null
test/test_site_api.py
pdeardorff-r7/vm-console-client-python
4bee83aa4db2b328ba6894cebac55743f922ce5a
[ "MIT" ]
null
null
null
# coding: utf-8 """ InsightVM API # Overview This guide documents the InsightVM Application Programming Interface (API) Version 3. This API supports the Representation State Transfer (REST) design pattern. Unless noted otherwise this API accepts and produces the `application/json` media type. This API uses Hypermedia as the Engine of Application State (HATEOAS) and is hypermedia friendly. All API connections must be made to the security console using HTTPS. ## Versioning Versioning is specified in the URL and the base path of this API is: `https://<host>:<port>/api/3/`. ## Specification An <a target=\"_blank\" href=\"https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md\">OpenAPI v2</a> specification (also known as Swagger 2) of this API is available. Tools such as <a target=\"_blank\" href=\"https://github.com/swagger-api/swagger-codegen\">swagger-codegen</a> can be used to generate an API client in the language of your choosing using this specification document. <p class=\"openapi\">Download the specification: <a class=\"openapi-button\" target=\"_blank\" download=\"\" href=\"/api/3/json\"> Download </a></p> ## Authentication Authorization to the API uses HTTP Basic Authorization (see <a target=\"_blank\" href=\"https://www.ietf.org/rfc/rfc2617.txt\">RFC 2617</a> for more information). Requests must supply authorization credentials in the `Authorization` header using a Base64 encoded hash of `\"username:password\"`. <!-- ReDoc-Inject: <security-definitions> --> ### 2FA This API supports two-factor authentication (2FA) by supplying an authentication token in addition to the Basic Authorization. The token is specified using the `Token` request header. To leverage two-factor authentication, this must be enabled on the console and be configured for the account accessing the API. ## Resources ### Naming Resource names represent nouns and identify the entity being manipulated or accessed. All collection resources are pluralized to indicate to the client they are interacting with a collection of multiple resources of the same type. Singular resource names are used when there exists only one resource available to interact with. The following naming conventions are used by this API: | Type | Case | | --------------------------------------------- | ------------------------ | | Resource names | `lower_snake_case` | | Header, body, and query parameters parameters | `camelCase` | | JSON fields and property names | `camelCase` | #### Collections A collection resource is a parent resource for instance resources, but can itself be retrieved and operated on independently. Collection resources use a pluralized resource name. The resource path for collection resources follow the convention: ``` /api/3/{resource_name} ``` #### Instances An instance resource is a \"leaf\" level resource that may be retrieved, optionally nested within a collection resource. Instance resources are usually retrievable with opaque identifiers. The resource path for instance resources follows the convention: ``` /api/3/{resource_name}/{instance_id}... ``` ## Verbs The following HTTP operations are supported throughout this API. The general usage of the operation and both its failure and success status codes are outlined below. | Verb | Usage | Success | Failure | | --------- | ------------------------------------------------------------------------------------- | ----------- | -------------------------------------------------------------- | | `GET` | Used to retrieve a resource by identifier, or a collection of resources by type. | `200` | `400`, `401`, `402`, `404`, `405`, `408`, `410`, `415`, `500` | | `POST` | Creates a resource with an application-specified identifier. | `201` | `400`, `401`, `404`, `405`, `408`, `413`, `415`, `500` | | `POST` | Performs a request to queue an asynchronous job. | `202` | `400`, `401`, `405`, `408`, `410`, `413`, `415`, `500` | | `PUT` | Creates a resource with a client-specified identifier. | `200` | `400`, `401`, `403`, `405`, `408`, `410`, `413`, `415`, `500` | | `PUT` | Performs a full update of a resource with a specified identifier. | `201` | `400`, `401`, `403`, `405`, `408`, `410`, `413`, `415`, `500` | | `DELETE` | Deletes a resource by identifier or an entire collection of resources. | `204` | `400`, `401`, `405`, `408`, `410`, `413`, `415`, `500` | | `OPTIONS` | Requests what operations are available on a resource. | `200` | `401`, `404`, `405`, `408`, `500` | ### Common Operations #### OPTIONS All resources respond to the `OPTIONS` request, which allows discoverability of available operations that are supported. The `OPTIONS` response returns the acceptable HTTP operations on that resource within the `Allow` header. The response is always a `200 OK` status. ### Collection Resources Collection resources can support the `GET`, `POST`, `PUT`, and `DELETE` operations. #### GET The `GET` operation invoked on a collection resource indicates a request to retrieve all, or some, of the entities contained within the collection. This also includes the optional capability to filter or search resources during the request. The response from a collection listing is a paginated document. See [hypermedia links](#section/Overview/Paging) for more information. #### POST The `POST` is a non-idempotent operation that allows for the creation of a new resource when the resource identifier is not provided by the system during the creation operation (i.e. the Security Console generates the identifier). The content of the `POST` request is sent in the request body. The response to a successful `POST` request should be a `201 CREATED` with a valid `Location` header field set to the URI that can be used to access to the newly created resource. The `POST` to a collection resource can also be used to interact with asynchronous resources. In this situation, instead of a `201 CREATED` response, the `202 ACCEPTED` response indicates that processing of the request is not fully complete but has been accepted for future processing. This request will respond similarly with a `Location` header with link to the job-oriented asynchronous resource that was created and/or queued. #### PUT The `PUT` is an idempotent operation that either performs a create with user-supplied identity, or a full replace or update of a resource by a known identifier. The response to a `PUT` operation to create an entity is a `201 Created` with a valid `Location` header field set to the URI that can be used to access to the newly created resource. `PUT` on a collection resource replaces all values in the collection. The typical response to a `PUT` operation that updates an entity is hypermedia links, which may link to related resources caused by the side-effects of the changes performed. #### DELETE The `DELETE` is an idempotent operation that physically deletes a resource, or removes an association between resources. The typical response to a `DELETE` operation is hypermedia links, which may link to related resources caused by the side-effects of the changes performed. ### Instance Resources Instance resources can support the `GET`, `PUT`, `POST`, `PATCH` and `DELETE` operations. #### GET Retrieves the details of a specific resource by its identifier. The details retrieved can be controlled through property selection and property views. The content of the resource is returned within the body of the response in the acceptable media type. #### PUT Allows for and idempotent \"full update\" (complete replacement) on a specific resource. If the resource does not exist, it will be created; if it does exist, it is completely overwritten. Any omitted properties in the request are assumed to be undefined/null. For \"partial updates\" use `POST` or `PATCH` instead. The content of the `PUT` request is sent in the request body. The identifier of the resource is specified within the URL (not the request body). The response to a successful `PUT` request is a `201 CREATED` to represent the created status, with a valid `Location` header field set to the URI that can be used to access to the newly created (or fully replaced) resource. #### POST Performs a non-idempotent creation of a new resource. The `POST` of an instance resource most commonly occurs with the use of nested resources (e.g. searching on a parent collection resource). The response to a `POST` of an instance resource is typically a `200 OK` if the resource is non-persistent, and a `201 CREATED` if there is a resource created/persisted as a result of the operation. This varies by endpoint. #### PATCH The `PATCH` operation is used to perform a partial update of a resource. `PATCH` is a non-idempotent operation that enforces an atomic mutation of a resource. Only the properties specified in the request are to be overwritten on the resource it is applied to. If a property is missing, it is assumed to not have changed. #### DELETE Permanently removes the individual resource from the system. If the resource is an association between resources, only the association is removed, not the resources themselves. A successful deletion of the resource should return `204 NO CONTENT` with no response body. This operation is not fully idempotent, as follow-up requests to delete a non-existent resource should return a `404 NOT FOUND`. ## Requests Unless otherwise indicated, the default request body media type is `application/json`. ### Headers Commonly used request headers include: | Header | Example | Purpose | | ------------------ | --------------------------------------------- | ---------------------------------------------------------------------------------------------- | | `Accept` | `application/json` | Defines what acceptable content types are allowed by the client. For all types, use `*/*`. | | `Accept-Encoding` | `deflate, gzip` | Allows for the encoding to be specified (such as gzip). | | `Accept-Language` | `en-US` | Indicates to the server the client's locale (defaults `en-US`). | | `Authorization ` | `Basic Base64(\"username:password\")` | Basic authentication | | `Token ` | `123456` | Two-factor authentication token (if enabled) | ### Dates & Times Dates and/or times are specified as strings in the ISO 8601 format(s). The following formats are supported as input: | Value | Format | Notes | | --------------------------- | ------------------------------------------------------ | ----------------------------------------------------- | | Date | YYYY-MM-DD | Defaults to 12 am UTC (if used for a date & time | | Date & time only | YYYY-MM-DD'T'hh:mm:ss[.nnn] | Defaults to UTC | | Date & time in UTC | YYYY-MM-DD'T'hh:mm:ss[.nnn]Z | | | Date & time w/ offset | YYYY-MM-DD'T'hh:mm:ss[.nnn][+&#124;-]hh:mm | | | Date & time w/ zone-offset | YYYY-MM-DD'T'hh:mm:ss[.nnn][+&#124;-]hh:mm[<zone-id>] | | ### Timezones Timezones are specified in the regional zone format, such as `\"America/Los_Angeles\"`, `\"Asia/Tokyo\"`, or `\"GMT\"`. ### Paging Pagination is supported on certain collection resources using a combination of two query parameters, `page` and `size`. As these are control parameters, they are prefixed with the underscore character. The page parameter dictates the zero-based index of the page to retrieve, and the `size` indicates the size of the page. For example, `/resources?page=2&size=10` will return page 3, with 10 records per page, giving results 21-30. The maximum page size for a request is 500. ### Sorting Sorting is supported on paginated resources with the `sort` query parameter(s). The sort query parameter(s) supports identifying a single or multi-property sort with a single or multi-direction output. The format of the parameter is: ``` sort=property[,ASC|DESC]... ``` Therefore, the request `/resources?sort=name,title,DESC` would return the results sorted by the name and title descending, in that order. The sort directions are either ascending `ASC` or descending `DESC`. With single-order sorting, all properties are sorted in the same direction. To sort the results with varying orders by property, multiple sort parameters are passed. For example, the request `/resources?sort=name,ASC&sort=title,DESC` would sort by name ascending and title descending, in that order. ## Responses The following response statuses may be returned by this API. | Status | Meaning | Usage | | ------ | ------------------------ |------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `200` | OK | The operation performed without error according to the specification of the request, and no more specific 2xx code is suitable. | | `201` | Created | A create request has been fulfilled and a resource has been created. The resource is available as the URI specified in the response, including the `Location` header. | | `202` | Accepted | An asynchronous task has been accepted, but not guaranteed, to be processed in the future. | | `400` | Bad Request | The request was invalid or cannot be otherwise served. The request is not likely to succeed in the future without modifications. | | `401` | Unauthorized | The user is unauthorized to perform the operation requested, or does not maintain permissions to perform the operation on the resource specified. | | `403` | Forbidden | The resource exists to which the user has access, but the operating requested is not permitted. | | `404` | Not Found | The resource specified could not be located, does not exist, or an unauthenticated client does not have permissions to a resource. | | `405` | Method Not Allowed | The operations may not be performed on the specific resource. Allowed operations are returned and may be performed on the resource. | | `408` | Request Timeout | The client has failed to complete a request in a timely manner and the request has been discarded. | | `413` | Request Entity Too Large | The request being provided is too large for the server to accept processing. | | `415` | Unsupported Media Type | The media type is not supported for the requested resource. | | `500` | Internal Server Error | An internal and unexpected error has occurred on the server at no fault of the client. | ### Security The response statuses 401, 403 and 404 need special consideration for security purposes. As necessary, error statuses and messages may be obscured to strengthen security and prevent information exposure. The following is a guideline for privileged resource response statuses: | Use Case | Access | Resource | Permission | Status | | ------------------------------------------------------------------ | ------------------ |------------------- | ------------ | ------------ | | Unauthenticated access to an unauthenticated resource. | Unauthenticated | Unauthenticated | Yes | `20x` | | Unauthenticated access to an authenticated resource. | Unauthenticated | Authenticated | No | `401` | | Unauthenticated access to an authenticated resource. | Unauthenticated | Non-existent | No | `401` | | Authenticated access to a unauthenticated resource. | Authenticated | Unauthenticated | Yes | `20x` | | Authenticated access to an authenticated, unprivileged resource. | Authenticated | Authenticated | No | `404` | | Authenticated access to an authenticated, privileged resource. | Authenticated | Authenticated | Yes | `20x` | | Authenticated access to an authenticated, non-existent resource | Authenticated | Non-existent | Yes | `404` | ### Headers Commonly used response headers include: | Header | Example | Purpose | | -------------------------- | --------------------------------- | --------------------------------------------------------------- | | `Allow` | `OPTIONS, GET` | Defines the allowable HTTP operations on a resource. | | `Cache-Control` | `no-store, must-revalidate` | Disables caching of resources (as they are all dynamic). | | `Content-Encoding` | `gzip` | The encoding of the response body (if any). | | `Location` | | Refers to the URI of the resource created by a request. | | `Transfer-Encoding` | `chunked` | Specified the encoding used to transform response. | | `Retry-After` | 5000 | Indicates the time to wait before retrying a request. | | `X-Content-Type-Options` | `nosniff` | Disables MIME type sniffing. | | `X-XSS-Protection` | `1; mode=block` | Enables XSS filter protection. | | `X-Frame-Options` | `SAMEORIGIN` | Prevents rendering in a frame from a different origin. | | `X-UA-Compatible` | `IE=edge,chrome=1` | Specifies the browser mode to render in. | ### Format When `application/json` is returned in the response body it is always pretty-printed (indented, human readable output). Additionally, gzip compression/encoding is supported on all responses. #### Dates & Times Dates or times are returned as strings in the ISO 8601 'extended' format. When a date and time is returned (instant) the value is converted to UTC. For example: | Value | Format | Example | | --------------- | ------------------------------ | --------------------- | | Date | `YYYY-MM-DD` | 2017-12-03 | | Date & Time | `YYYY-MM-DD'T'hh:mm:ss[.nnn]Z` | 2017-12-03T10:15:30Z | #### Content In some resources a Content data type is used. This allows for multiple formats of representation to be returned within resource, specifically `\"html\"` and `\"text\"`. The `\"text\"` property returns a flattened representation suitable for output in textual displays. The `\"html\"` property returns an HTML fragment suitable for display within an HTML element. Note, the HTML returned is not a valid stand-alone HTML document. #### Paging The response to a paginated request follows the format: ```json { resources\": [ ... ], \"page\": { \"number\" : ..., \"size\" : ..., \"totalResources\" : ..., \"totalPages\" : ... }, \"links\": [ \"first\" : { \"href\" : \"...\" }, \"prev\" : { \"href\" : \"...\" }, \"self\" : { \"href\" : \"...\" }, \"next\" : { \"href\" : \"...\" }, \"last\" : { \"href\" : \"...\" } ] } ``` The `resources` property is an array of the resources being retrieved from the endpoint, each which should contain at minimum a \"self\" relation hypermedia link. The `page` property outlines the details of the current page and total possible pages. The object for the page includes the following properties: - number - The page number (zero-based) of the page returned. - size - The size of the pages, which is less than or equal to the maximum page size. - totalResources - The total amount of resources available across all pages. - totalPages - The total amount of pages. The last property of the paged response is the `links` array, which contains all available hypermedia links. For paginated responses, the \"self\", \"next\", \"previous\", \"first\", and \"last\" links are returned. The \"self\" link must always be returned and should contain a link to allow the client to replicate the original request against the collection resource in an identical manner to that in which it was invoked. The \"next\" and \"previous\" links are present if either or both there exists a previous or next page, respectively. The \"next\" and \"previous\" links have hrefs that allow \"natural movement\" to the next page, that is all parameters required to move the next page are provided in the link. The \"first\" and \"last\" links provide references to the first and last pages respectively. Requests outside the boundaries of the pageable will result in a `404 NOT FOUND`. Paginated requests do not provide a \"stateful cursor\" to the client, nor does it need to provide a read consistent view. Records in adjacent pages may change while pagination is being traversed, and the total number of pages and resources may change between requests within the same filtered/queries resource collection. #### Property Views The \"depth\" of the response of a resource can be configured using a \"view\". All endpoints supports two views that can tune the extent of the information returned in the resource. The supported views are `summary` and `details` (the default). View are specified using a query parameter, in this format: ```bash /<resource>?view={viewName} ``` #### Error Any error responses can provide a response body with a message to the client indicating more information (if applicable) to aid debugging of the error. All 40x and 50x responses will return an error response in the body. The format of the response is as follows: ```json { \"status\": <statusCode>, \"message\": <message>, \"links\" : [ { \"rel\" : \"...\", \"href\" : \"...\" } ] } ``` The `status` property is the same as the HTTP status returned in the response, to ease client parsing. The message property is a localized message in the request client's locale (if applicable) that articulates the nature of the error. The last property is the `links` property. This may contain additional [hypermedia links](#section/Overview/Authentication) to troubleshoot. #### Search Criteria <a section=\"section/Responses/SearchCriteria\"></a> Multiple resources make use of search criteria to match assets. Search criteria is an array of search filters. Each search filter has a generic format of: ```json { \"field\": \"<field-name>\", \"operator\": \"<operator>\", [\"value\": \"<value>\",] [\"lower\": \"<value>\",] [\"upper\": \"<value>\"] } ``` Every filter defines two required properties `field` and `operator`. The field is the name of an asset property that is being filtered on. The operator is a type and property-specific operating performed on the filtered property. The valid values for fields and operators are outlined in the table below. Every filter also defines one or more values that are supplied to the operator. The valid values vary by operator and are outlined below. ##### Fields The following table outlines the search criteria fields and the available operators: | Field | Operators | | --------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ | | `alternate-address-type` | `in` | | `container-image` | `is` ` is not` ` starts with` ` ends with` ` contains` ` does not contain` ` is like` ` not like` | | `container-status` | `is` ` is not` | | `containers` | `are` | | `criticality-tag` | `is` ` is not` ` is greater than` ` is less than` ` is applied` ` is not applied` | | `custom-tag` | `is` ` is not` ` starts with` ` ends with` ` contains` ` does not contain` ` is applied` ` is not applied` | | `cve` | `is` ` is not` ` contains` ` does not contain` | | `cvss-access-complexity` | `is` ` is not` | | `cvss-authentication-required` | `is` ` is not` | | `cvss-access-vector` | `is` ` is not` | | `cvss-availability-impact` | `is` ` is not` | | `cvss-confidentiality-impact` | `is` ` is not` | | `cvss-integrity-impact` | `is` ` is not` | | `cvss-v3-confidentiality-impact` | `is` ` is not` | | `cvss-v3-integrity-impact` | `is` ` is not` | | `cvss-v3-availability-impact` | `is` ` is not` | | `cvss-v3-attack-vector` | `is` ` is not` | | `cvss-v3-attack-complexity` | `is` ` is not` | | `cvss-v3-user-interaction` | `is` ` is not` | | `cvss-v3-privileges-required` | `is` ` is not` | | `host-name` | `is` ` is not` ` starts with` ` ends with` ` contains` ` does not contain` ` is empty` ` is not empty` ` is like` ` not like` | | `host-type` | `in` ` not in` | | `ip-address` | `is` ` is not` ` in range` ` not in range` ` is like` ` not like` | | `ip-address-type` | `in` ` not in` | | `last-scan-date` | `is-on-or-before` ` is on or after` ` is between` ` is earlier than` ` is within the last` | | `location-tag` | `is` ` is not` ` starts with` ` ends with` ` contains` ` does not contain` ` is applied` ` is not applied` | | `mobile-device-last-sync-time` | `is-within-the-last` ` is earlier than` | | `open-ports` | `is` ` is not` ` in range` | | `operating-system` | `contains` ` does not contain` ` is empty` ` is not empty` | | `owner-tag` | `is` ` is not` ` starts with` ` ends with` ` contains` ` does not contain` ` is applied` ` is not applied` | | `pci-compliance` | `is` | | `risk-score` | `is` ` is not` ` in range` ` greater than` ` less than` | | `service-name` | `contains` ` does not contain` | | `site-id` | `in` ` not in` | | `software` | `contains` ` does not contain` | | `vAsset-cluster` | `is` ` is not` ` contains` ` does not contain` ` starts with` | | `vAsset-datacenter` | `is` ` is not` | | `vAsset-host-name` | `is` ` is not` ` contains` ` does not contain` ` starts with` | | `vAsset-power-state` | `in` ` not in` | | `vAsset-resource-pool-path` | `contains` ` does not contain` | | `vulnerability-assessed` | `is-on-or-before` ` is on or after` ` is between` ` is earlier than` ` is within the last` | | `vulnerability-category` | `is` ` is not` ` starts with` ` ends with` ` contains` ` does not contain` | | `vulnerability-cvss-v3-score` | `is` ` is not` | | `vulnerability-cvss-score` | `is` ` is not` ` in range` ` is greater than` ` is less than` | | `vulnerability-exposures` | `includes` ` does not include` | | `vulnerability-title` | `contains` ` does not contain` ` is` ` is not` ` starts with` ` ends with` | | `vulnerability-validated-status` | `are` | ##### Enumerated Properties The following fields have enumerated values: | Field | Acceptable Values | | ----------------------------------------- | ------------------------------------------------------------------------------------------------------------- | | `alternate-address-type` | 0=IPv4, 1=IPv6 | | `containers` | 0=present, 1=not present | | `container-status` | `created` `running` `paused` `restarting` `exited` `dead` `unknown` | | `cvss-access-complexity` | <ul><li><code>L</code> = Low</li><li><code>M</code> = Medium</li><li><code>H</code> = High</li></ul> | | `cvss-integrity-impact` | <ul><li><code>N</code> = None</li><li><code>P</code> = Partial</li><li><code>C</code> = Complete</li></ul> | | `cvss-confidentiality-impact` | <ul><li><code>N</code> = None</li><li><code>P</code> = Partial</li><li><code>C</code> = Complete</li></ul> | | `cvss-availability-impact` | <ul><li><code>N</code> = None</li><li><code>P</code> = Partial</li><li><code>C</code> = Complete</li></ul> | | `cvss-access-vector` | <ul><li><code>L</code> = Local</li><li><code>A</code> = Adjacent</li><li><code>N</code> = Network</li></ul> | | `cvss-authentication-required` | <ul><li><code>N</code> = None</li><li><code>S</code> = Single</li><li><code>M</code> = Multiple</li></ul> | | `cvss-v3-confidentiality-impact` | <ul><li><code>L</code> = Local</li><li><code>L</code> = Low</li><li><code>N</code> = None</li><li><code>H</code> = High</li></ul> | | `cvss-v3-integrity-impact` | <ul><li><code>L</code> = Local</li><li><code>L</code> = Low</li><li><code>N</code> = None</li><li><code>H</code> = High</li></ul> | | `cvss-v3-availability-impact` | <ul><li><code>N</code> = None</li><li><code>L</code> = Low</li><li><code>H</code> = High</li></ul> | | `cvss-v3-attack-vector` | <ul><li><code>N</code> = Network</li><li><code>A</code> = Adjacent</li><li><code>L</code> = Local</li><li><code>P</code> = Physical</li></ul> | | `cvss-v3-attack-complexity` | <ul><li><code>L</code> = Low</li><li><code>H</code> = High</li></ul> | | `cvss-v3-user-interaction` | <ul><li><code>N</code> = None</li><li><code>R</code> = Required</li></ul> | | `cvss-v3-privileges-required` | <ul><li><code>N</code> = None</li><li><code>L</code> = Low</li><li><code>H</code> = High</li></ul> | | `host-type` | 0=Unknown, 1=Guest, 2=Hypervisor, 3=Physical, 4=Mobile | | `ip-address-type` | 0=IPv4, 1=IPv6 | | `pci-compliance` | 0=fail, 1=pass | | `vulnerability-validated-status` | 0=present, 1=not present | ##### Operator Properties <a section=\"section/Responses/SearchCriteria/OperatorProperties\"></a> The following table outlines which properties are required for each operator and the appropriate data type(s): | Operator | `value` | `lower` | `upper` | | ----------------------|-----------------------|-----------------------|-----------------------| | `are` | `string` | | | | `contains` | `string` | | | | `does-not-contain` | `string` | | | | `ends with` | `string` | | | | `in` | `Array[ string ]` | | | | `in-range` | | `numeric` | `numeric` | | `includes` | `Array[ string ]` | | | | `is` | `string` | | | | `is-applied` | | | | | `is-between` | | `numeric` | `numeric` | | `is-earlier-than` | `numeric` | | | | `is-empty` | | | | | `is-greater-than` | `numeric` | | | | `is-on-or-after` | `string` (yyyy-MM-dd) | | | | `is-on-or-before` | `string` (yyyy-MM-dd) | | | | `is-not` | `string` | | | | `is-not-applied` | | | | | `is-not-empty` | | | | | `is-within-the-last` | `string` | | | | `less-than` | `string` | | | | `like` | `string` | | | | `not-contains` | `string` | | | | `not-in` | `Array[ string ]` | | | | `not-in-range` | | `numeric` | `numeric` | | `not-like` | `string` | | | | `starts-with` | `string` | | | #### Discovery Connection Search Criteria <a section=\"section/Responses/DiscoverySearchCriteria\"></a> Dynamic sites make use of search criteria to match assets from a discovery connection. Search criteria is an array of search filters. Each search filter has a generic format of: ```json { \"field\": \"<field-name>\", \"operator\": \"<operator>\", [\"value\": \"<value>\",] [\"lower\": \"<value>\",] [\"upper\": \"<value>\"] } ``` Every filter defines two required properties `field` and `operator`. The field is the name of an asset property that is being filtered on. The list of supported fields vary depending on the type of discovery connection configured for the dynamic site (e.g vSphere, ActiveSync, etc.). The operator is a type and property-specific operating performed on the filtered property. The valid values for fields outlined in the tables below and are grouped by the type of connection. Every filter also defines one or more values that are supplied to the operator. See <a href=\"#section/Responses/SearchCriteria/OperatorProperties\">Search Criteria Operator Properties</a> for more information on the valid values for each operator. ##### Fields (ActiveSync) This section documents search criteria information for ActiveSync discovery connections. The discovery connections must be one of the following types: `\"activesync-ldap\"`, `\"activesync-office365\"`, or `\"activesync-powershell\"`. The following table outlines the search criteria fields and the available operators for ActiveSync connections: | Field | Operators | | --------------------------------- | ------------------------------------------------------------- | | `last-sync-time` | `is-within-the-last` ` is-earlier-than` | | `operating-system` | `contains` ` does-not-contain` | | `user` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Fields (AWS) This section documents search criteria information for AWS discovery connections. The discovery connections must be the type `\"aws\"`. The following table outlines the search criteria fields and the available operators for AWS connections: | Field | Operators | | ----------------------- | ------------------------------------------------------------- | | `availability-zone` | `contains` ` does-not-contain` | | `guest-os-family` | `contains` ` does-not-contain` | | `instance-id` | `contains` ` does-not-contain` | | `instance-name` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `instance-state` | `in` ` not-in` | | `instance-type` | `in` ` not-in` | | `ip-address` | `in-range` ` not-in-range` ` is` ` is-not` | | `region` | `in` ` not-in` | | `vpc-id` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Fields (DHCP) This section documents search criteria information for DHCP discovery connections. The discovery connections must be the type `\"dhcp\"`. The following table outlines the search criteria fields and the available operators for DHCP connections: | Field | Operators | | --------------- | ------------------------------------------------------------- | | `host-name` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `ip-address` | `in-range` ` not-in-range` ` is` ` is-not` | | `mac-address` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Fields (Sonar) This section documents search criteria information for Sonar discovery connections. The discovery connections must be the type `\"sonar\"`. The following table outlines the search criteria fields and the available operators for Sonar connections: | Field | Operators | | ------------------- | -------------------- | | `search-domain` | `contains` ` is` | | `ip-address` | `in-range` ` is` | | `sonar-scan-date` | `is-within-the-last` | ##### Fields (vSphere) This section documents search criteria information for vSphere discovery connections. The discovery connections must be the type `\"vsphere\"`. The following table outlines the search criteria fields and the available operators for vSphere connections: | Field | Operators | | -------------------- | ------------------------------------------------------------------------------------------ | | `cluster` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `data-center` | `is` ` is-not` | | `discovered-time` | `is-on-or-before` ` is-on-or-after` ` is-between` ` is-earlier-than` ` is-within-the-last` | | `guest-os-family` | `contains` ` does-not-contain` | | `host-name` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | | `ip-address` | `in-range` ` not-in-range` ` is` ` is-not` | | `power-state` | `in` ` not-in` | | `resource-pool-path` | `contains` ` does-not-contain` | | `last-time-seen` | `is-on-or-before` ` is-on-or-after` ` is-between` ` is-earlier-than` ` is-within-the-last` | | `vm` | `is` ` is-not` ` contains` ` does-not-contain` ` starts-with` | ##### Enumerated Properties (vSphere) The following fields have enumerated values: | Field | Acceptable Values | | ------------- | ------------------------------------ | | `power-state` | `poweredOn` `poweredOff` `suspended` | ## HATEOAS This API follows Hypermedia as the Engine of Application State (HATEOAS) principals and is therefore hypermedia friendly. Hyperlinks are returned in the `links` property of any given resource and contain a fully-qualified hyperlink to the corresponding resource. The format of the hypermedia link adheres to both the <a target=\"_blank\" href=\"http://jsonapi.org\">{json:api} v1</a> <a target=\"_blank\" href=\"http://jsonapi.org/format/#document-links\">\"Link Object\"</a> and <a target=\"_blank\" href=\"http://json-schema.org/latest/json-schema-hypermedia.html\">JSON Hyper-Schema</a> <a target=\"_blank\" href=\"http://json-schema.org/latest/json-schema-hypermedia.html#rfc.section.5.2\">\"Link Description Object\"</a> formats. For example: ```json \"links\": [{ \"rel\": \"<relation>\", \"href\": \"<href>\" ... }] ``` Where appropriate link objects may also contain additional properties than the `rel` and `href` properties, such as `id`, `type`, etc. See the [Root](#tag/Root) resources for the entry points into API discovery. # noqa: E501 OpenAPI spec version: 3 Contact: support@rapid7.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.api.site_api import SiteApi # noqa: E501 from swagger_client.rest import ApiException class TestSiteApi(unittest.TestCase): """SiteApi unit test stubs""" def setUp(self): self.api = swagger_client.api.site_api.SiteApi() # noqa: E501 def tearDown(self): pass def test_add_site_tag(self): """Test case for add_site_tag Site Tag # noqa: E501 """ pass def test_add_site_user(self): """Test case for add_site_user Site Users Access # noqa: E501 """ pass def test_create_site(self): """Test case for create_site Sites # noqa: E501 """ pass def test_create_site_credential(self): """Test case for create_site_credential Site Scan Credentials # noqa: E501 """ pass def test_create_site_scan_schedule(self): """Test case for create_site_scan_schedule Site Scan Schedules # noqa: E501 """ pass def test_create_site_smtp_alert(self): """Test case for create_site_smtp_alert Site SMTP Alerts # noqa: E501 """ pass def test_create_site_snmp_alert(self): """Test case for create_site_snmp_alert Site SNMP Alerts # noqa: E501 """ pass def test_create_site_syslog_alert(self): """Test case for create_site_syslog_alert Site Syslog Alerts # noqa: E501 """ pass def test_delete_all_site_alerts(self): """Test case for delete_all_site_alerts Site Alerts # noqa: E501 """ pass def test_delete_all_site_credentials(self): """Test case for delete_all_site_credentials Site Scan Credentials # noqa: E501 """ pass def test_delete_all_site_scan_schedules(self): """Test case for delete_all_site_scan_schedules Site Scan Schedules # noqa: E501 """ pass def test_delete_all_site_smtp_alerts(self): """Test case for delete_all_site_smtp_alerts Site SMTP Alerts # noqa: E501 """ pass def test_delete_all_site_snmp_alerts(self): """Test case for delete_all_site_snmp_alerts Site SNMP Alerts # noqa: E501 """ pass def test_delete_all_site_syslog_alerts(self): """Test case for delete_all_site_syslog_alerts Site Syslog Alerts # noqa: E501 """ pass def test_delete_site(self): """Test case for delete_site Site # noqa: E501 """ pass def test_delete_site_credential(self): """Test case for delete_site_credential Site Scan Credential # noqa: E501 """ pass def test_delete_site_scan_schedule(self): """Test case for delete_site_scan_schedule Site Scan Schedule # noqa: E501 """ pass def test_delete_site_smtp_alert(self): """Test case for delete_site_smtp_alert Site SMTP Alert # noqa: E501 """ pass def test_delete_site_snmp_alert(self): """Test case for delete_site_snmp_alert Site SNMP Alert # noqa: E501 """ pass def test_delete_site_syslog_alert(self): """Test case for delete_site_syslog_alert Site Syslog Alert # noqa: E501 """ pass def test_enable_shared_credential_on_site(self): """Test case for enable_shared_credential_on_site Assigned Shared Credential Enablement # noqa: E501 """ pass def test_enable_site_credential(self): """Test case for enable_site_credential Site Credential Enablement # noqa: E501 """ pass def test_get_excluded_asset_groups(self): """Test case for get_excluded_asset_groups Site Excluded Asset Groups # noqa: E501 """ pass def test_get_excluded_targets(self): """Test case for get_excluded_targets Site Excluded Targets # noqa: E501 """ pass def test_get_included_asset_groups(self): """Test case for get_included_asset_groups Site Included Asset Groups # noqa: E501 """ pass def test_get_included_targets(self): """Test case for get_included_targets Site Included Targets # noqa: E501 """ pass def test_get_site(self): """Test case for get_site Site # noqa: E501 """ pass def test_get_site_alerts(self): """Test case for get_site_alerts Site Alerts # noqa: E501 """ pass def test_get_site_assets(self): """Test case for get_site_assets Site Assets # noqa: E501 """ pass def test_get_site_credential(self): """Test case for get_site_credential Site Scan Credential # noqa: E501 """ pass def test_get_site_credentials(self): """Test case for get_site_credentials Site Scan Credentials # noqa: E501 """ pass def test_get_site_discovery_connection(self): """Test case for get_site_discovery_connection Site Discovery Connection # noqa: E501 """ pass def test_get_site_discovery_search_criteria(self): """Test case for get_site_discovery_search_criteria Site Discovery Search Criteria # noqa: E501 """ pass def test_get_site_organization(self): """Test case for get_site_organization Site Organization Information # noqa: E501 """ pass def test_get_site_scan_engine(self): """Test case for get_site_scan_engine Site Scan Engine # noqa: E501 """ pass def test_get_site_scan_schedule(self): """Test case for get_site_scan_schedule Site Scan Schedule # noqa: E501 """ pass def test_get_site_scan_schedules(self): """Test case for get_site_scan_schedules Site Scan Schedules # noqa: E501 """ pass def test_get_site_scan_template(self): """Test case for get_site_scan_template Site Scan Template # noqa: E501 """ pass def test_get_site_shared_credentials(self): """Test case for get_site_shared_credentials Assigned Shared Credentials # noqa: E501 """ pass def test_get_site_smtp_alert(self): """Test case for get_site_smtp_alert Site SMTP Alert # noqa: E501 """ pass def test_get_site_smtp_alerts(self): """Test case for get_site_smtp_alerts Site SMTP Alerts # noqa: E501 """ pass def test_get_site_snmp_alert(self): """Test case for get_site_snmp_alert Site SNMP Alert # noqa: E501 """ pass def test_get_site_snmp_alerts(self): """Test case for get_site_snmp_alerts Site SNMP Alerts # noqa: E501 """ pass def test_get_site_syslog_alert(self): """Test case for get_site_syslog_alert Site Syslog Alert # noqa: E501 """ pass def test_get_site_syslog_alerts(self): """Test case for get_site_syslog_alerts Site Syslog Alerts # noqa: E501 """ pass def test_get_site_tags(self): """Test case for get_site_tags Site Tags # noqa: E501 """ pass def test_get_site_users(self): """Test case for get_site_users Site Users Access # noqa: E501 """ pass def test_get_sites(self): """Test case for get_sites Sites # noqa: E501 """ pass def test_get_web_auth_html_forms(self): """Test case for get_web_auth_html_forms Web Authentication HTML Forms # noqa: E501 """ pass def test_get_web_auth_http_headers(self): """Test case for get_web_auth_http_headers Web Authentication HTTP Headers # noqa: E501 """ pass def test_remove_all_excluded_asset_groups(self): """Test case for remove_all_excluded_asset_groups Site Excluded Asset Groups # noqa: E501 """ pass def test_remove_all_included_asset_groups(self): """Test case for remove_all_included_asset_groups Site Included Asset Groups # noqa: E501 """ pass def test_remove_asset_from_site(self): """Test case for remove_asset_from_site Site Asset # noqa: E501 """ pass def test_remove_excluded_asset_group(self): """Test case for remove_excluded_asset_group Site Excluded Asset Group # noqa: E501 """ pass def test_remove_included_asset_group(self): """Test case for remove_included_asset_group Site Included Asset Group # noqa: E501 """ pass def test_remove_site_assets(self): """Test case for remove_site_assets Site Assets # noqa: E501 """ pass def test_remove_site_tag(self): """Test case for remove_site_tag Site Tag # noqa: E501 """ pass def test_remove_site_user(self): """Test case for remove_site_user Site User Access # noqa: E501 """ pass def test_set_site_credentials(self): """Test case for set_site_credentials Site Scan Credentials # noqa: E501 """ pass def test_set_site_discovery_connection(self): """Test case for set_site_discovery_connection Site Discovery Connection # noqa: E501 """ pass def test_set_site_discovery_search_criteria(self): """Test case for set_site_discovery_search_criteria Site Discovery Search Criteria # noqa: E501 """ pass def test_set_site_scan_engine(self): """Test case for set_site_scan_engine Site Scan Engine # noqa: E501 """ pass def test_set_site_scan_schedules(self): """Test case for set_site_scan_schedules Site Scan Schedules # noqa: E501 """ pass def test_set_site_scan_template(self): """Test case for set_site_scan_template Site Scan Template # noqa: E501 """ pass def test_set_site_smtp_alerts(self): """Test case for set_site_smtp_alerts Site SMTP Alerts # noqa: E501 """ pass def test_set_site_snmp_alerts(self): """Test case for set_site_snmp_alerts Site SNMP Alerts # noqa: E501 """ pass def test_set_site_syslog_alerts(self): """Test case for set_site_syslog_alerts Site Syslog Alerts # noqa: E501 """ pass def test_set_site_tags(self): """Test case for set_site_tags Site Tags # noqa: E501 """ pass def test_set_site_users(self): """Test case for set_site_users Site Users Access # noqa: E501 """ pass def test_update_excluded_asset_groups(self): """Test case for update_excluded_asset_groups Site Excluded Asset Groups # noqa: E501 """ pass def test_update_excluded_targets(self): """Test case for update_excluded_targets Site Excluded Targets # noqa: E501 """ pass def test_update_included_asset_groups(self): """Test case for update_included_asset_groups Site Included Asset Groups # noqa: E501 """ pass def test_update_included_targets(self): """Test case for update_included_targets Site Included Targets # noqa: E501 """ pass def test_update_site(self): """Test case for update_site Site # noqa: E501 """ pass def test_update_site_credential(self): """Test case for update_site_credential Site Scan Credential # noqa: E501 """ pass def test_update_site_organization(self): """Test case for update_site_organization Site Organization Information # noqa: E501 """ pass def test_update_site_scan_schedule(self): """Test case for update_site_scan_schedule Site Scan Schedule # noqa: E501 """ pass def test_update_site_smtp_alert(self): """Test case for update_site_smtp_alert Site SMTP Alert # noqa: E501 """ pass def test_update_site_snmp_alert(self): """Test case for update_site_snmp_alert Site SNMP Alert # noqa: E501 """ pass def test_update_site_syslog_alert(self): """Test case for update_site_syslog_alert Site Syslog Alert # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
103.142857
48,043
0.511748
184a031b397e07a4967ebc22e6ecfb412ccd1bbd
47,359
py
Python
pirates/leveleditor/worldData/anvil_island_area_barbossa_cave.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
3
2021-02-25T06:38:13.000Z
2022-03-22T07:00:15.000Z
pirates/leveleditor/worldData/anvil_island_area_barbossa_cave.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
null
null
null
pirates/leveleditor/worldData/anvil_island_area_barbossa_cave.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
1
2021-02-25T06:38:17.000Z
2021-02-25T06:38:17.000Z
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.leveleditor.worldData.anvil_island_area_barbossa_cave from pandac.PandaModules import Point3, VBase3, Vec4, Vec3 objectStruct = {'Objects': {'1172209006.11sdnaik': {'Type': 'Island Game Area', 'Name': 'anvil_island_area_barbossa_cave', 'File': '', 'Environment': 'Cave', 'Footstep Sound': 'Sand', 'Instanced': True, 'Minimap': False, 'Objects': {'1172209074.56sdnaik': {'Type': 'Locator Node', 'Name': 'portal_interior_1', 'Hpr': VBase3(95.675, 0.0, 0.0), 'Pos': Point3(85.919, -190.083, 24.757), 'Scale': VBase3(1.0, 1.0, 1.0)}, '1172618710.78sdnaik': {'Type': 'Townsperson', 'Category': 'Cast', 'AnimSet': 'cb_apple', 'AuraFX': 'None', 'Boss': False, 'CustomModel': 'models/char/cb_2000', 'GhostColor': 'None', 'GhostFX': 0, 'Greeting Animation': '', 'HelpID': 'NONE', 'Hpr': VBase3(-111.252, 0.0, 0.0), 'Instanced World': 'None', 'Level': '37', 'Notice Animation 1': '', 'Notice Animation 2': '', 'Patrol Radius': '12.0000', 'Pos': Point3(-21.98, 19.615, 6.041), 'PoseAnim': '', 'PoseFrame': '', 'Private Status': 'All', 'PropFXLeft': 'None', 'PropFXRight': 'None', 'PropLeft': 'None', 'PropRight': 'None', 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'ShopID': 'PORT_ROYAL_DEFAULTS', 'Start State': 'Idle', 'StartFrame': '0', 'Team': 'Villager', 'TrailFX': 'None', 'TrailLeft': 'None', 'TrailRight': 'None', 'Zombie': False, 'spawnTimeAlt': '', 'spawnTimeBegin': 0.0, 'spawnTimeEnd': 0.0}, '1173468367.09kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(65.89, 0.0, 10.222), 'Pos': Point3(-22.972, 16.554, 6.811), 'Scale': VBase3(0.863, 0.863, 0.863), 'Visual': {'Model': 'models/props/treasureChest_open'}}, '1173468423.53kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(81.692, 0.0, 0.0), 'Objects': {'1173471720.95kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(175.579, 56.568, 0.0), 'Pos': Point3(-1.241, 2.011, 0.413), 'Scale': VBase3(1.362, 1.362, 1.362), 'Visual': {'Model': 'models/props/treasure_sconce'}}}, 'Pos': Point3(-21.29, 7.239, 3.606), 'Scale': VBase3(0.734, 0.734, 0.734), 'Visual': {'Model': 'models/props/treasureTrough'}}, '1173468471.78kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-27.286, 0.0, 0.0), 'Objects': {'1173471825.44kmuller': {'Type': 'Furniture - Fancy', 'DisableCollision': False, 'Hpr': VBase3(103.874, -24.165, 0.0), 'Pos': Point3(-0.17, 3.557, 0.148), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/chair_fancy'}}, '1173471860.03kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(27.286, 0.0, 0.0), 'Pos': Point3(-4.353, 2.819, 4.024), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (1.0, 0.71, 0.82, 1.0), 'Model': 'models/props/bottle_red'}}}, 'Pos': Point3(-33.657, -18.259, 3.981), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough'}}, '1173468497.0kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-52.269, 1.207, 1.067), 'Objects': {'1173471924.11kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-176.001, 0.143, -1.083), 'Pos': Point3(-1.148, -7.0, 0.554), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureChest_open'}}, '1173471969.92kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(51.827, -19.244, -1.327), 'Pos': Point3(-3.079, 0.042, 0.331), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasure_chandelier'}}, '1173472001.3kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(54.562, 6.976, -16.417), 'Pos': Point3(-1.915, 3.088, 0.404), 'Scale': VBase3(1.072, 1.072, 1.072), 'Visual': {'Model': 'models/props/bottle_green'}}, '1173473947.56kmuller': {'Type': 'Trunks', 'DisableCollision': False, 'Hpr': VBase3(-177.109, -1.995, -1.679), 'Pos': Point3(1.736, -1.62, 0.559), 'Scale': VBase3(0.761, 0.761, 0.761), 'Visual': {'Color': (0.7200000286102295, 0.699999988079071, 0.5899999737739563, 1.0), 'Model': 'models/props/Trunk_rounded_2'}}}, 'Pos': Point3(-24.383, -15.746, 3.792), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough'}}, '1173471575.44kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(56.363, 0.0, 0.0), 'Objects': {'1173471627.81kmuller': {'Type': 'Barrel', 'DisableCollision': False, 'Hpr': VBase3(-56.363, 4.799, -7.37), 'Pos': Point3(-7.898, -2.057, -0.921), 'Scale': VBase3(0.778, 0.778, 0.778), 'Visual': {'Color': (0.7099999785423279, 0.6700000166893005, 0.6000000238418579, 1.0), 'Model': 'models/props/barrel_worn'}}, '1173471671.51kmuller': {'Type': 'Wall_Hangings', 'DisableCollision': False, 'Hpr': VBase3(-161.949, 16.647, 13.013), 'Pos': Point3(4.633, 5.65, 3.513), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/seascape_battle'}}, '1173472099.22kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(-56.744, -12.669, -6.175), 'Pos': Point3(-1.816, -0.758, 0.362), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.6000000238418579, 0.7200000286102295, 0.6000000238418579, 1.0), 'Model': 'models/props/bottle_tan'}}, '1250877604.84akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(78.429, 1.866, -11.711), 'Pos': Point3(-1.296, 3.362, 0.865), 'Scale': VBase3(0.84, 0.84, 0.84), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}}, 'Pos': Point3(-33.146, -6.186, 3.947), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough'}}, '1173471597.2kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Objects': {}, 'Pos': Point3(-34.728, 2.632, 3.882), 'Scale': VBase3(1.221, 1.221, 1.221), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1173471783.73kmuller': {'Type': 'Crate', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-35.795, -19.76, 4.397), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/crates_group_2'}}, '1173472048.89kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(65.655, 0.0, 0.0), 'Pos': Point3(-29.55, 1.392, 4.183), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureChest_closed'}}, '1173472175.67kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(0.0, 0.494, 1.263), 'Objects': {'1173472214.83kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(0.0, 0.0, 0.0), 'Pos': Point3(3.135, -4.125, 0.325), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1173472843.22kmuller': {'Type': 'Barrel', 'DisableCollision': False, 'Hpr': VBase3(0.0, 1.884, 0.947), 'Pos': Point3(2.816, 3.404, 0.009), 'Scale': VBase3(0.784, 0.784, 0.784), 'Visual': {'Color': (0.7200000286102295, 0.699999988079071, 0.5899999737739563, 1.0), 'Model': 'models/props/barrel_grey'}}, '1173473890.48kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-74.672, -3.73, -2.843), 'Pos': Point3(1.553, -1.297, 0.889), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureChest_open'}}, '1173474959.44kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(0.0, 12.717, 0.0), 'Pos': Point3(-1.903, -0.442, 0.318), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/bottle_red'}}}, 'Pos': Point3(26.083, -7.65, 2.748), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough'}}, '1173472197.86kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-43.152, 0.0, 0.0), 'Objects': {'1173474384.75kmuller': {'Type': 'Trunks', 'DisableCollision': False, 'Hpr': VBase3(-24.158, 0.0, 0.0), 'Pos': Point3(-2.887, -1.469, 0.652), 'Scale': VBase3(0.789, 0.789, 0.789), 'Visual': {'Color': (0.49000000953674316, 0.47999998927116394, 0.4000000059604645, 1.0), 'Model': 'models/props/Trunk_rounded'}}, '1250877328.98akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(34.287, -13.693, -15.183), 'Pos': Point3(2.829, 1.448, -0.03), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}}, 'Pos': Point3(25.568, 3.214, 2.794), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough'}}, '1173472392.78kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-17.706, 0.035, -0.11), 'Objects': {'1250877589.53akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(134.792, 1.866, -11.711), 'Pos': Point3(-0.072, -0.955, 1.21), 'Scale': VBase3(0.84, 0.84, 0.84), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}}, 'Pos': Point3(-9.835, -31.083, 3.176), 'Scale': VBase3(1.19, 1.19, 1.19), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173472402.28kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-17.706, 0.035, 0.005), 'Pos': Point3(-10.198, -24.927, 3.4), 'Scale': VBase3(0.931, 0.931, 0.931), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1173472651.34kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-0.111, -14.424, -1.428), 'Pos': Point3(-31.521, 9.349, 8.04), 'Scale': VBase3(0.775, 0.775, 0.775), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1173472721.78kmuller': {'Type': 'Barrel', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-33.341, 6.35, 9.026), 'Scale': VBase3(0.675, 0.675, 0.675), 'Visual': {'Color': (0.7200000286102295, 0.699999988079071, 0.5899999737739563, 1.0), 'Model': 'models/props/barrel_grey'}}, '1173473917.97kmuller': {'Type': 'Wall_Hangings', 'DisableCollision': False, 'Hpr': VBase3(72.697, 33.022, 29.472), 'Pos': Point3(26.998, 6.135, 4.941), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/portrait_gov'}}, '1173474152.67kmuller': {'Type': 'Crate', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-33.123, -4.407, 4.426), 'Scale': VBase3(0.825, 0.825, 0.825), 'Visual': {'Color': (0.7099999785423279, 0.6700000166893005, 0.6000000238418579, 1.0), 'Model': 'models/props/crate_04'}}, '1173474457.5kmuller': {'Type': 'Crate', 'DisableCollision': False, 'Hpr': VBase3(30.719, 0.0, 0.0), 'Pos': Point3(25.244, -4.318, 3.273), 'Scale': VBase3(0.799, 0.799, 0.799), 'Visual': {'Color': (0.49000000953674316, 0.47999998927116394, 0.4000000059604645, 1.0), 'Model': 'models/props/crate'}}, '1173474718.7kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(170.127, 0.0, 0.0), 'Pos': Point3(-19.421, -19.11, 3.925), 'Scale': VBase3(0.738, 0.738, 0.738), 'Visual': {'Model': 'models/props/treasureChest_closed'}}, '1173475002.56kmuller': {'Type': 'Crate', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(24.603, 0.0, 0.0), 'Pos': Point3(-105.99, -27.167, 41.989), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.899999976158, 0.899999976158, 0.699999988079, 1.0), 'Model': 'models/props/crates_group_1'}}, '1173475022.66kmuller': {'Type': 'Barrel', 'DisableCollision': True, 'Holiday': '', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-101.726, -21.398, 40.132), 'Scale': VBase3(0.728, 0.728, 0.728), 'VisSize': '', 'Visual': {'Color': (0.91, 0.86, 0.65, 1.0), 'Model': 'models/props/barrel_worn'}}, '1173475076.05kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(0.175, 13.381, 11.028), 'Objects': {'1173475259.56kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(-5.229, -24.249, -12.155), 'Pos': Point3(2.971, 0.399, -0.891), 'Scale': VBase3(1.792, 1.792, 1.792), 'Visual': {'Model': 'models/props/largejug_A'}}, '1173475343.87kmuller': {'Type': 'Wall_Hangings', 'DisableCollision': False, 'Hpr': VBase3(-54.715, 21.019, -3.286), 'Pos': Point3(-0.355, -3.566, 1.789), 'Scale': VBase3(0.636, 0.636, 0.636), 'Visual': {'Model': 'models/props/seascape_port'}}}, 'Pos': Point3(-102.684, -32.061, 40.039), 'Scale': VBase3(1.572, 1.572, 1.572), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173475106.3kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-88.578, -13.952, 0.629), 'Pos': Point3(-97.499, -26.255, 38.394), 'Scale': VBase3(1.53, 1.53, 1.53), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173475150.47kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(102.4, 18.802, 4.057), 'Pos': Point3(-96.706, -21.344, 39.702), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/treasureChest_open'}}, '1173475212.69kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(2.574, -0.798, 14.081), 'Pos': Point3(-97.35, -18.315, 38.277), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173475484.11kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(0.191, -7.866, 3.947), 'Objects': {'1173475560.97kmuller': {'Type': 'Barrel', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-17.717, 8.694, -1.336), 'Pos': Point3(-4.788, -3.67, -0.11), 'Scale': VBase3(0.662, 0.662, 0.662), 'VisSize': '', 'Visual': {'Color': (0.589999973774, 0.589999973774, 0.490000009537, 1.0), 'Model': 'models/props/barrel_group_3'}}, '1173475599.84kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(161.762, -8.706, 1.257), 'Pos': Point3(-1.743, -0.101, 0.606), 'Scale': VBase3(0.724, 0.724, 0.724), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureChest_open'}}, '1173475645.34kmuller': {'Type': 'Furniture - Fancy', 'DisableCollision': False, 'Hpr': VBase3(-27.381, -30.075, -28.026), 'Pos': Point3(3.899, 1.605, 0.527), 'Scale': VBase3(0.724, 0.724, 0.724), 'Visual': {'Model': 'models/props/stool_fancy'}}, '1173475705.97kmuller': {'Type': 'Trunks', 'DisableCollision': False, 'Hpr': VBase3(-170.091, -1.954, 5.226), 'Pos': Point3(-2.933, 2.714, 0.278), 'Scale': VBase3(0.724, 0.724, 0.724), 'Visual': {'Model': 'models/props/Trunk_rounded_2'}}, '1173494051.56kmuller': {'Type': 'Trunks', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(132.966, -4.395, -7.056), 'Pos': Point3(5.434, -3.625, 0.838), 'Scale': VBase3(0.747, 0.747, 0.747), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/Trunk_rounded_2'}}}, 'Pos': Point3(-71.338, -79.459, 29.129), 'Scale': VBase3(1.38, 1.38, 1.38), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough'}}, '1173475529.08kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(0.923, 0.0, 0.0), 'Pos': Point3(-77.951, -72.216, 28.19), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173476346.23kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-61.004, -84.022, 28.875), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173476370.78kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(0.0, 10.732, 0.0), 'Pos': Point3(-64.089, -80.774, 31.04), 'Scale': VBase3(1.115, 1.115, 1.115), 'Visual': {'Model': 'models/props/bottle_green'}}, '1173476412.98kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(-8.405, 28.067, 6.498), 'Pos': Point3(-61.858, -81.625, 29.208), 'Scale': VBase3(2.558, 2.558, 2.558), 'Visual': {'Model': 'models/props/waterpitcher'}}, '1173476478.11kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(0.0, -8.664, 0.0), 'Objects': {'1173476535.72kmuller': {'Type': 'Crate', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-70.524, -1.407, 8.187), 'Pos': Point3(2.747, -5.673, 0.935), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.589999973774, 0.589999973774, 0.490000009537, 1.0), 'Model': 'models/props/crates_group_1'}}, '1173476711.03kmuller': {'Type': 'Barrel', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-0.533, 14.375, 5.277), 'Pos': Point3(-0.415, -3.12, 0.775), 'Scale': VBase3(0.943, 0.943, 0.943), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/barrel_grey'}}, '1173476839.64kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(0.0, 8.664, -10.81), 'Pos': Point3(-1.813, -0.603, 0.396), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/bottle_green'}}}, 'Pos': Point3(79.984, -90.141, 5.219), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough'}}, '1173476568.78kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-26.274, -11.342, -5.545), 'Objects': {'1173476683.0kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-103.181, -7.123, 3.621), 'Pos': Point3(-1.421, -0.953, 0.526), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureChest_open'}}}, 'Pos': Point3(78.207, -95.333, 6.207), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough'}}, '1173476595.0kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-0.003, -10.571, 1.208), 'Objects': {'1173476640.59kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(0.229, 10.568, -1.229), 'Pos': Point3(-2.054, -0.088, 2.839), 'Scale': VBase3(1.172, 1.172, 1.172), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/bottle_red'}}}, 'Pos': Point3(87.998, -95.619, 6.261), 'Scale': VBase3(1.28, 1.28, 1.28), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173476807.97kmuller': {'Type': 'Furniture - Fancy', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-105.689, -0.169, -86.025), 'Pos': Point3(80.358, -92.174, 6.756), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/chair_fancy'}}, '1173476913.16kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-0.527, -13.011, -4.646), 'Objects': {'1173476992.98kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-159.013, 0.788, 8.363), 'Pos': Point3(5.298, -0.068, 0.456), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureChest_closed'}}, '1173494163.92kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(-0.267, 13.019, 6.306), 'Pos': Point3(-1.023, 2.279, 0.473), 'Scale': VBase3(1.375, 1.375, 1.375), 'Visual': {'Color': (1.0, 0.89, 0.77, 1.0), 'Model': 'models/props/bottle_red'}}}, 'Pos': Point3(-56.248, -79.205, 10.348), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173476951.55kmuller': {'Type': 'Treasure Chest', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-0.296, -14.959, -4.882), 'Pos': Point3(-60.628, -75.756, 9.378), 'Scale': VBase3(0.807, 0.807, 0.807), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/treasureTrough_single'}}, '1173477100.75kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(0.0, 0.0, 0.901), 'Objects': {'1173477184.05kmuller': {'Type': 'Jugs_and_Jars', 'DisableCollision': False, 'Hpr': VBase3(5.719, 18.512, -32.928), 'Pos': Point3(-0.84, -0.577, 1.416), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.28999999165534973, 0.4000000059604645, 0.46000000834465027, 1.0), 'Model': 'models/props/bottle_tan'}}, '1250877310.59akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-172.606, -0.064, 15.101), 'Pos': Point3(1.441, 0.427, -0.478), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}}, 'Pos': Point3(-2.817, 26.98, 3.312), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1173477117.31kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(0.774, 22.338, 3.276), 'Scale': VBase3(0.649, 0.649, 0.649), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1173477133.91kmuller': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-7.998, 0.0, 0.0), 'Pos': Point3(-1.361, 23.038, 3.417), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/treasureChest_closed'}}, '1173494260.01kmuller': {'Type': 'Cups', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-23.149, 34.955, -16.484), 'Pos': Point3(-59.985, -74.367, 10.035), 'Scale': VBase3(1.402, 1.402, 1.402), 'VisSize': '', 'Visual': {'Model': 'models/props/beerstein'}}, '1175216546.7kmuller': {'Type': 'Tunnel Cap', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-179.257, 0.0, 0.0), 'Pos': Point3(87.158, -179.257, 26.766), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.40000000596, 0.40000000596, 0.40000000596, 1.0), 'Model': 'models/tunnels/pir_m_are_tun_caveInterior_cap'}}, '1175912064.0JB2': {'Type': 'Animal', 'Hpr': Point3(0.0, 0.0, 0.0), 'MinHP': 10, 'Patrol Radius': 12, 'Pos': Point3(-0.907, -7.683, 4.223), 'PoseAnim': '', 'PoseFrame': '', 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'Species': 'Monkey', 'Start State': 'Idle', 'StartFrame': '0', 'Team': 1, 'spawnTimeBegin': 0.0, 'spawnTimeEnd': 0.0}, '1176164583.28dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '15.0000', 'DropOff': '90.0000', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(-137.198, -12.488, -99.924), 'Intensity': '0.3939', 'LightType': 'SPOT', 'Pos': Point3(-25.129, 29.622, 13.381), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (1, 1, 1, 1), 'Model': 'models/props/light_tool_bulb'}}, '1176165564.08dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '108.8636', 'DropOff': '65.4545', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(98.927, 18.357, -92.791), 'Intensity': '0.4545', 'LightType': 'SPOT', 'Pos': Point3(-8.182, 23.236, 6.965), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (1, 1, 1, 1), 'Model': 'models/props/light_tool_bulb'}}, '1176167113.18dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '60.0000', 'DropOff': '0.0000', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(0.0, 0.0, -0.474), 'Intensity': '0.2121', 'LightType': 'POINT', 'Pos': Point3(-6.907, 19.341, 6.928), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (1.0, 0.7799999713897705, 0.5299999713897705, 1.0), 'Model': 'models/props/light_tool_bulb'}}, '1176225288.77dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '60.0000', 'DropOff': '12.2727', 'FlickRate': 0.5, 'Flickering': True, 'Hpr': VBase3(1.676, 25.173, 33.894), 'Intensity': '1.6667', 'LightType': 'POINT', 'Pos': Point3(-21.229, 19.109, 9.82), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Color': (0.9900000095367432, 0.8399999737739563, 0.5600000023841858, 1.0), 'Model': 'models/props/light_tool_bulb'}}, '1176342559.48dzlu': {'Type': 'Light - Dynamic', 'Attenuation': '0.005', 'ConeAngle': '65.9091', 'DropOff': '24.5455', 'FlickRate': 0.5, 'Flickering': False, 'Hpr': VBase3(-55.948, -11.457, -89.954), 'Intensity': '0.6061', 'LightType': 'SPOT', 'Pos': Point3(-26.332, 18.178, 11.598), 'Scale': VBase3(1.0, 1.0, 1.0), 'Visual': {'Model': 'models/props/light_tool_bulb'}}, '1177608371.49dzlu': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(-17.785, -3.09, 1.969), 'Pos': Point3(-4.896, -32.682, 3.386), 'Scale': VBase3(0.59, 0.59, 0.59), 'Visual': {'Model': 'models/props/treasureTrough_single'}}, '1178323712.0dchiappe': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(65.89, 0.0, 10.222), 'Pos': Point3(-8.318, 16.465, 3.695), 'Scale': VBase3(0.863, 0.863, 0.863), 'Visual': {'Model': 'models/props/treasureChest_open'}}, '1178323712.0dchiappe0': {'Type': 'Treasure Chest', 'DisableCollision': False, 'Hpr': VBase3(65.89, 0.0, 10.222), 'Pos': Point3(-8.318, 16.465, 3.695), 'Scale': VBase3(0.863, 0.863, 0.863), 'Visual': {'Model': 'models/props/treasureChest_open'}}, '1213983053.36aapatel': {'Type': 'Townsperson', 'Category': 'PvPRewards', 'AnimSet': 'default', 'AuraFX': 'None', 'Boss': False, 'CustomModel': 'None', 'GhostColor': 'None', 'GhostFX': 0, 'Greeting Animation': '', 'HelpID': 'NONE', 'Holiday': '', 'Hpr': VBase3(169.842, 0.0, 0.0), 'Instanced World': 'None', 'Level': '37', 'Notice Animation 1': '', 'Notice Animation 2': '', 'Patrol Radius': '12.0000', 'Pos': Point3(9.477, 14.543, 3.276), 'PoseAnim': '', 'PoseFrame': '', 'Private Status': 'All', 'PropFXLeft': 'None', 'PropFXRight': 'None', 'PropLeft': 'None', 'PropRight': 'None', 'Respawns': True, 'Scale': VBase3(1.0, 1.0, 1.0), 'ShopID': 'PRIVATEER_TATTOOS', 'Start State': 'Idle', 'StartFrame': '0', 'Team': 'Villager', 'TrailFX': 'None', 'TrailLeft': 'None', 'TrailRight': 'None', 'VisSize': '', 'Zombie': False, 'spawnTimeAlt': '', 'spawnTimeBegin': 0.0, 'spawnTimeEnd': 0.0}, '1250816577.11akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(-70.015, 67.695, 0.088), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250816607.06akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-6.294, 0.0, 0.0), 'Pos': Point3(-21.687, 79.745, -0.936), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250876943.56akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-86.964, 0.0, 0.0), 'Pos': Point3(114.079, 67.157, -0.98), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877014.44akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-86.964, 0.0, 0.0), 'Pos': Point3(93.212, -32.115, -0.131), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877050.25akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-86.964, 0.0, 0.0), 'Pos': Point3(150.027, -51.636, -1.113), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877088.86akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-158.034, 0.0, 0.0), 'Pos': Point3(72.603, -80.586, 0.284), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877112.28akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-158.034, 0.0, 0.0), 'Pos': Point3(52.532, -98.638, 10.099), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877144.7akelts': {'Type': 'Light_Fixtures', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(131.997, -11.72, 0.0), 'Pos': Point3(16.811, -90.386, 2.429), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/torch'}}, '1250877166.08akelts': {'Type': 'Light_Fixtures', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(131.997, -0.317, 0.0), 'Pos': Point3(-35.907, -92.812, -1.333), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/torch'}}, '1250877270.7akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(131.997, -0.317, 0.0), 'Pos': Point3(-18.641, 23.404, 3.92), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877286.14akelts': {'Type': 'Light_Fixtures', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-172.608, -0.18, 14.208), 'Pos': Point3(-9.33, 37.096, 2.003), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Model': 'models/props/torch'}}, '1250877376.02akelts': {'Type': 'Light_Fixtures', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-79.034, 0.0, -6.327), 'Pos': Point3(32.824, -16.682, 3.201), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/torch'}}, '1250877472.52akelts': {'Type': 'Light_Fixtures', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(117.084, 1.763, -11.659), 'Pos': Point3(7.106, -40.55, 3.447), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/props/torch'}}, '1251140212.95piwanow': {'Type': 'Effect Node', 'EffectName': 'watersplash_effect', 'Hpr': VBase3(-128.191, 0.0, 0.0), 'Pos': Point3(-85.61, 48.499, 2.16), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0, 0, 0.65, 1), 'Model': 'models/misc/smiley'}}, '1251140289.59piwanow': {'Type': 'Effect Node', 'EffectName': 'watersplash_effect', 'Hpr': VBase3(-176.566, 0.0, 0.0), 'Pos': Point3(8.715, 78.784, 2.884), 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0, 0, 0.65, 1), 'Model': 'models/misc/smiley'}}, '1251140327.19piwanow': {'Type': 'Effect Node', 'EffectName': 'watersplash_effect', 'Hpr': VBase3(152.045, 0.0, 0.0), 'Pos': Point3(74.63, 91.223, 3.637), 'Scale': VBase3(0.8, 0.8, 0.8), 'VisSize': '', 'Visual': {'Color': (0, 0, 0.65, 1), 'Model': 'models/misc/smiley'}}, '1251140366.42piwanow': {'Type': 'Effect Node', 'EffectName': 'watersplash_effect', 'Hpr': VBase3(163.301, 0.0, 0.0), 'Pos': Point3(139.836, 48.412, 2.707), 'Scale': VBase3(0.8, 0.8, 0.8), 'VisSize': '', 'Visual': {'Color': (0, 0, 0.65, 1), 'Model': 'models/misc/smiley'}}, '1251148581.42piwanow': {'Type': 'Cave_Props', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(144.817, 0.0, 0.0), 'Objects': {'1251154942.28akelts': {'Type': 'Cave_Props', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-56.912, 0.0, 0.0), 'Pos': Point3(5.302, 0.976, -0.03), 'RenderEffect': False, 'Scale': VBase3(1.0, 1.0, 1.0), 'VisSize': '', 'Visual': {'Color': (0.346, 0.432, 0.391, 1.0), 'Model': 'models/props/pir_m_prp_cav_rockGroup_i'}}}, 'Pos': Point3(8.854, 77.776, -0.496), 'RenderEffect': False, 'Scale': VBase3(1.224, 1.224, 1.224), 'VisSize': '', 'Visual': {'Color': (0.323, 0.404, 0.365, 1.0), 'Model': 'models/props/pir_m_prp_cav_rockGroup_g'}}, '1251148751.73piwanow': {'Type': 'Cave_Props', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(40.355, 7.197, -21.452), 'Pos': Point3(76.426, 90.621, -2.115), 'RenderEffect': False, 'Scale': VBase3(0.2, 0.3, 0.286), 'VisSize': '', 'Visual': {'Color': (0.32, 0.44, 0.41, 1.0), 'Model': 'models/props/pir_m_prp_cav_rockGroup_a'}}, '1251149030.66piwanow': {'Type': 'Cave_Props', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(-47.141, 0.0, 0.0), 'Pos': Point3(137.696, 40.061, -1.582), 'RenderEffect': False, 'Scale': VBase3(0.568, 0.451, 0.451), 'VisSize': '', 'Visual': {'Color': (0.279, 0.349, 0.341, 1.0), 'Model': 'models/props/pir_m_prp_cav_rockGroup_c'}}, '1251149293.97piwanow': {'Type': 'Cave_Props', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-92.315, 0.0, 0.0), 'Pos': Point3(-85.427, 47.662, -1.031), 'RenderEffect': False, 'Scale': VBase3(1.838, 1.838, 1.838), 'VisSize': '', 'Visual': {'Color': (0.27, 0.329, 0.293, 1.0), 'Model': 'models/props/pir_m_prp_cav_rockGroup_k'}}, '1251154757.73akelts': {'Type': 'Cave_Props', 'DisableCollision': True, 'Holiday': '', 'Hpr': VBase3(41.068, -6.877, -0.44), 'Pos': Point3(86.04, 90.778, -1.571), 'RenderEffect': False, 'Scale': VBase3(1.389, 2.083, 1.986), 'VisSize': '', 'Visual': {'Color': (0.324, 0.438, 0.411, 1.0), 'Model': 'models/props/pir_m_prp_cav_rockGroup_k'}}, '1251155149.92akelts': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Holiday': '', 'Hpr': Point3(0.0, 0.0, 0.0), 'Pos': Point3(82.063, 88.344, 1.109), 'Scale': VBase3(1.779, 1.779, 1.779), 'VisSize': '', 'Visual': {'Color': (1.0, 1.0, 1.0, 1.0), 'Model': 'models/misc/pir_m_prp_lev_cambarrier_sphere'}}, '1251161466.69akelts': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-72.323, 0.0, 0.0), 'Pos': Point3(119.014, 52.431, -2.076), 'Scale': VBase3(1.14, 1.354, 1.875), 'VisSize': '', 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}}, '1251161509.13akelts': {'Type': 'Collision Barrier', 'DisableCollision': False, 'Holiday': '', 'Hpr': VBase3(-59.964, 0.0, 0.0), 'Pos': Point3(130.185, 30.776, -2.195), 'Scale': VBase3(3.834, 1.354, 1.875), 'VisSize': '', 'Visual': {'Model': 'models/misc/pir_m_prp_lev_cambarrier_plane'}}}, 'Visibility': 'Grid', 'Visual': {'Model': 'models/caves/pir_m_are_cav_barbossa'}}}, 'TodSettings': {'AmbientColors': {0: Vec4(0.45, 0.53, 0.65, 1), 2: Vec4(0.537255, 0.494118, 0.627451, 1), 4: Vec4(0.4, 0.447059, 0.498039, 1), 6: Vec4(0.439216, 0.447059, 0.556863, 1), 8: Vec4(0.388235, 0.419608, 0.537255, 1), 12: Vec4(0.337255, 0.278431, 0.407843, 1), 13: Vec4(0.337255, 0.278431, 0.407843, 1), 16: Vec4(0.247059, 0.247059, 0.247059, 1), 17: Vec4(0.34, 0.28, 0.41, 1)}, 'DirectionalColors': {0: Vec4(0.55, 0.46, 0.35, 1), 2: Vec4(0.458824, 0.458824, 0.364706, 1), 4: Vec4(0.6, 0.337255, 0.0980392, 1), 6: Vec4(0.458824, 0.478431, 0.447059, 1), 8: Vec4(0.419608, 0.419608, 0.4, 1), 12: Vec4(0.658824, 0.756863, 0.0470588, 1), 13: Vec4(0.658824, 0.756863, 0.0470588, 1), 16: Vec4(0, 0, 0, 1), 17: Vec4(0.66, 0.76, 0.05, 1)}, 'FogColors': {0: Vec4(0.3, 0.2, 0.15, 0), 2: Vec4(0.6, 0.694118, 0.894118, 1), 4: Vec4(0.298039, 0.176471, 0.14902, 1), 6: Vec4(0.14902, 0.2, 0.34902, 1), 8: Vec4(0.0470588, 0.0588235, 0.168627, 1), 12: Vec4(0.0980392, 0.117647, 0.027451, 1), 13: Vec4(0.0980392, 0.117647, 0.027451, 1), 16: Vec4(0.054902, 0.0392157, 0, 1), 17: Vec4(0.1, 0.12, 0.03, 0)}, 'FogRanges': {0: 0.0001, 2: 9.999999747378752e-05, 4: 9.999999747378752e-05, 6: 9.999999747378752e-05, 8: 0.00019999999494757503, 12: 0.0002500000118743628, 13: 0.0002500000118743628, 16: 9.999999747378752e-05, 17: 0.005}, 'LinearFogRanges': {0: (0.0, 100.0), 2: (0.0, 100.0), 4: (0.0, 100.0), 6: (0.0, 100.0), 8: (0.0, 100.0), 12: (0.0, 100.0), 13: (0.0, 100.0), 16: (150.0, 300.0), 17: (0.0, 100.0)}}, 'Node Links': [], 'Layers': {}, 'ObjectIds': {'1172209006.11sdnaik': '["Objects"]["1172209006.11sdnaik"]', '1172209074.56sdnaik': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1172209074.56sdnaik"]', '1172618710.78sdnaik': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1172618710.78sdnaik"]', '1173468367.09kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468367.09kmuller"]', '1173468423.53kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468423.53kmuller"]', '1173468471.78kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468471.78kmuller"]', '1173468497.0kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468497.0kmuller"]', '1173471575.44kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471575.44kmuller"]', '1173471597.2kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471597.2kmuller"]', '1173471627.81kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471575.44kmuller"]["Objects"]["1173471627.81kmuller"]', '1173471671.51kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471575.44kmuller"]["Objects"]["1173471671.51kmuller"]', '1173471720.95kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468423.53kmuller"]["Objects"]["1173471720.95kmuller"]', '1173471783.73kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471783.73kmuller"]', '1173471825.44kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468471.78kmuller"]["Objects"]["1173471825.44kmuller"]', '1173471860.03kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468471.78kmuller"]["Objects"]["1173471860.03kmuller"]', '1173471924.11kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468497.0kmuller"]["Objects"]["1173471924.11kmuller"]', '1173471969.92kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468497.0kmuller"]["Objects"]["1173471969.92kmuller"]', '1173472001.3kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468497.0kmuller"]["Objects"]["1173472001.3kmuller"]', '1173472048.89kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472048.89kmuller"]', '1173472099.22kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471575.44kmuller"]["Objects"]["1173472099.22kmuller"]', '1173472175.67kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472175.67kmuller"]', '1173472197.86kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472197.86kmuller"]', '1173472214.83kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472175.67kmuller"]["Objects"]["1173472214.83kmuller"]', '1173472392.78kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472392.78kmuller"]', '1173472402.28kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472402.28kmuller"]', '1173472651.34kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472651.34kmuller"]', '1173472721.78kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472721.78kmuller"]', '1173472843.22kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472175.67kmuller"]["Objects"]["1173472843.22kmuller"]', '1173473890.48kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472175.67kmuller"]["Objects"]["1173473890.48kmuller"]', '1173473917.97kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173473917.97kmuller"]', '1173473947.56kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173468497.0kmuller"]["Objects"]["1173473947.56kmuller"]', '1173474152.67kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173474152.67kmuller"]', '1173474384.75kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472197.86kmuller"]["Objects"]["1173474384.75kmuller"]', '1173474457.5kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173474457.5kmuller"]', '1173474718.7kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173474718.7kmuller"]', '1173474959.44kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472175.67kmuller"]["Objects"]["1173474959.44kmuller"]', '1173475002.56kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475002.56kmuller"]', '1173475022.66kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475022.66kmuller"]', '1173475076.05kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475076.05kmuller"]', '1173475106.3kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475106.3kmuller"]', '1173475150.47kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475150.47kmuller"]', '1173475212.69kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475212.69kmuller"]', '1173475259.56kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475076.05kmuller"]["Objects"]["1173475259.56kmuller"]', '1173475343.87kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475076.05kmuller"]["Objects"]["1173475343.87kmuller"]', '1173475484.11kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475484.11kmuller"]', '1173475529.08kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475529.08kmuller"]', '1173475560.97kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475484.11kmuller"]["Objects"]["1173475560.97kmuller"]', '1173475599.84kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475484.11kmuller"]["Objects"]["1173475599.84kmuller"]', '1173475645.34kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475484.11kmuller"]["Objects"]["1173475645.34kmuller"]', '1173475705.97kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475484.11kmuller"]["Objects"]["1173475705.97kmuller"]', '1173476346.23kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476346.23kmuller"]', '1173476370.78kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476370.78kmuller"]', '1173476412.98kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476412.98kmuller"]', '1173476478.11kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476478.11kmuller"]', '1173476535.72kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476478.11kmuller"]["Objects"]["1173476535.72kmuller"]', '1173476568.78kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476568.78kmuller"]', '1173476595.0kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476595.0kmuller"]', '1173476640.59kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476595.0kmuller"]["Objects"]["1173476640.59kmuller"]', '1173476683.0kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476568.78kmuller"]["Objects"]["1173476683.0kmuller"]', '1173476711.03kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476478.11kmuller"]["Objects"]["1173476711.03kmuller"]', '1173476807.97kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476807.97kmuller"]', '1173476839.64kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476478.11kmuller"]["Objects"]["1173476839.64kmuller"]', '1173476913.16kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476913.16kmuller"]', '1173476951.55kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476951.55kmuller"]', '1173476992.98kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476913.16kmuller"]["Objects"]["1173476992.98kmuller"]', '1173477100.75kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173477100.75kmuller"]', '1173477117.31kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173477117.31kmuller"]', '1173477133.91kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173477133.91kmuller"]', '1173477184.05kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173477100.75kmuller"]["Objects"]["1173477184.05kmuller"]', '1173494051.56kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173475484.11kmuller"]["Objects"]["1173494051.56kmuller"]', '1173494163.92kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173476913.16kmuller"]["Objects"]["1173494163.92kmuller"]', '1173494260.01kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173494260.01kmuller"]', '1175216546.7kmuller': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1175216546.7kmuller"]', '1175912064.0JB2': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1175912064.0JB2"]', '1176164583.28dzlu': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1176164583.28dzlu"]', '1176165564.08dzlu': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1176165564.08dzlu"]', '1176167113.18dzlu': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1176167113.18dzlu"]', '1176225288.77dzlu': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1176225288.77dzlu"]', '1176342559.48dzlu': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1176342559.48dzlu"]', '1177608371.49dzlu': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1177608371.49dzlu"]', '1178323712.0dchiappe': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1178323712.0dchiappe"]', '1178323712.0dchiappe0': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1178323712.0dchiappe0"]', '1213983053.36aapatel': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1213983053.36aapatel"]', '1250816577.11akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250816577.11akelts"]', '1250816607.06akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250816607.06akelts"]', '1250876943.56akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250876943.56akelts"]', '1250877014.44akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877014.44akelts"]', '1250877050.25akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877050.25akelts"]', '1250877088.86akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877088.86akelts"]', '1250877112.28akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877112.28akelts"]', '1250877144.7akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877144.7akelts"]', '1250877166.08akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877166.08akelts"]', '1250877270.7akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877270.7akelts"]', '1250877286.14akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877286.14akelts"]', '1250877310.59akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173477100.75kmuller"]["Objects"]["1250877310.59akelts"]', '1250877328.98akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472197.86kmuller"]["Objects"]["1250877328.98akelts"]', '1250877376.02akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877376.02akelts"]', '1250877472.52akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1250877472.52akelts"]', '1250877589.53akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173472392.78kmuller"]["Objects"]["1250877589.53akelts"]', '1250877604.84akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1173471575.44kmuller"]["Objects"]["1250877604.84akelts"]', '1251140212.95piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251140212.95piwanow"]', '1251140289.59piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251140289.59piwanow"]', '1251140327.19piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251140327.19piwanow"]', '1251140366.42piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251140366.42piwanow"]', '1251148581.42piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251148581.42piwanow"]', '1251148751.73piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251148751.73piwanow"]', '1251149030.66piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251149030.66piwanow"]', '1251149293.97piwanow': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251149293.97piwanow"]', '1251154757.73akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251154757.73akelts"]', '1251154942.28akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251148581.42piwanow"]["Objects"]["1251154942.28akelts"]', '1251155149.92akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251155149.92akelts"]', '1251161466.69akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251161466.69akelts"]', '1251161509.13akelts': '["Objects"]["1172209006.11sdnaik"]["Objects"]["1251161509.13akelts"]'}} extraInfo = {'camPos': Point3(12.9352, 2.9029, 10.1918), 'camHpr': VBase3(15.8438, -17.1455, 0), 'focalLength': 0.639999985695, 'skyState': -2, 'fog': 1}
6,765.571429
46,900
0.651703
d22140d153ace32084ba418234769152e33d218a
1,881
py
Python
main4.py
Ethan-source/E01b-Smiles
053c5b5a7ad6f2d51c68e307e932f75efdb70c09
[ "MIT" ]
null
null
null
main4.py
Ethan-source/E01b-Smiles
053c5b5a7ad6f2d51c68e307e932f75efdb70c09
[ "MIT" ]
null
null
null
main4.py
Ethan-source/E01b-Smiles
053c5b5a7ad6f2d51c68e307e932f75efdb70c09
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import utils, open_color, arcade utils.check_version((3,7)) # Open the window. Set the window title and dimensions (width and height) arcade.open_window(800, 600, "Smiley Face Example") arcade.set_background_color(open_color.white) # Start the render process. This must be done before any drawing commands. arcade.start_render() #start at 100, go to 799, counting by 150 for x in range(100,800,150): #start at 100, go to 599, counting by 150 for y in range(100,600,150): face_x,face_y = (x,y) smile_x,smile_y = (face_x + 0,face_y - 10) eye1_x,eye1_y = (face_x - 45,face_y + 17) eye2_x,eye2_y = (face_x + 35,face_y + 17) catch1_x,catch1_y = (face_x - 41,face_y + 24) catch2_x,catch2_y = (face_x + 41,face_y + 24) # Draw the smiley face: # (x,y,radius,color) arcade.draw_circle_filled(face_x, face_y, 100, open_color.yellow_3) # (x,y,radius,color,border_thickness) arcade.draw_circle_outline(face_x, face_y, 100, open_color.black,4) #(x,y,width,height,color) arcade.draw_ellipse_filled(eye1_x,eye1_y,15,25,open_color.black) arcade.draw_ellipse_filled(eye2_x,eye2_y,15,25,open_color.black) arcade.draw_circle_filled(catch1_x,catch1_y,3,open_color.gray_2) arcade.draw_circle_filled(catch2_x,catch2_y,3,open_color.gray_2) #(x,y,width,height,color,start_degrees,end_degrees,border_thickness) arcade.draw_arc_outline(smile_x,smile_y,60,50,open_color.black,190,350,4) # Finish the render # Nothing will be drawn without this. # Must happen after all draw commands arcade.finish_render() # Keep the window up until someone closes it. arcade.run()
38.387755
89
0.645401
aee840259fc24cdc0c4d341d475eb641a20dc226
2,429
py
Python
aliyun-python-sdk-live/aliyunsdklive/request/v20161101/OpenLiveShiftRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-live/aliyunsdklive/request/v20161101/OpenLiveShiftRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-live/aliyunsdklive/request/v20161101/OpenLiveShiftRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdklive.endpoint import endpoint_data class OpenLiveShiftRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'live', '2016-11-01', 'OpenLiveShift','live') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Duration(self): return self.get_query_params().get('Duration') def set_Duration(self,Duration): self.add_query_param('Duration',Duration) def get_AppName(self): return self.get_query_params().get('AppName') def set_AppName(self,AppName): self.add_query_param('AppName',AppName) def get_StreamName(self): return self.get_query_params().get('StreamName') def set_StreamName(self,StreamName): self.add_query_param('StreamName',StreamName) def get_IgnoreTranscode(self): return self.get_query_params().get('IgnoreTranscode') def set_IgnoreTranscode(self,IgnoreTranscode): self.add_query_param('IgnoreTranscode',IgnoreTranscode) def get_DomainName(self): return self.get_query_params().get('DomainName') def set_DomainName(self,DomainName): self.add_query_param('DomainName',DomainName) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_Vision(self): return self.get_query_params().get('Vision') def set_Vision(self,Vision): self.add_query_param('Vision',Vision)
32.824324
74
0.758748
dd7f961e0e016e3cc6e342d51710107de24e8c77
1,537
py
Python
vendor/Adafruit_Python_DHT/Adafruit_Python_DHT_RPi/Master.py
hvos234/raspberrypi.home.website
72376beb55167da4b5fadda51992724451166129
[ "BSD-3-Clause" ]
null
null
null
vendor/Adafruit_Python_DHT/Adafruit_Python_DHT_RPi/Master.py
hvos234/raspberrypi.home.website
72376beb55167da4b5fadda51992724451166129
[ "BSD-3-Clause" ]
null
null
null
vendor/Adafruit_Python_DHT/Adafruit_Python_DHT_RPi/Master.py
hvos234/raspberrypi.home.website
72376beb55167da4b5fadda51992724451166129
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import sys print 'Number of arguments:', len(sys.argv), 'arguments.' print 'Argument List:', str(sys.argv) # first [0] argument is master try: fr = sys.argv[1] except IndexError: print "err;no from" sys.exit(0) try: to = sys.argv[2] except IndexError: print "err;no to" sys.exit(0) try: ac = sys.argv[3] except IndexError: print "err;no action" sys.exit(0) import Adafruit_DHT #sensor = Adafruit_DHT.DHT11 #sensor = Adafruit_DHT.DHT22 sensor = Adafruit_DHT.AM2302 pin = 4 # Try to grab a sensor reading. Use the read_retry method which will retry up # to 15 times to get a sensor reading (waiting 2 seconds between each retry). humidity, temperature = Adafruit_DHT.read_retry(sensor, pin) # Un-comment the line below to convert the temperature to Fahrenheit. # temperature = temperature * 9/5.0 + 32 # Note that sometimes you won't get a reading and # the results will be null (because Linux can't # guarantee the timing of calls to read the sensor). # If this happens try again! if humidity is not None and temperature is not None: if '1' == ac: print 'tem={0:0.2f}'.format(temperature) sys.exit(0) elif '2' == ac: print 'hum={0:0.2f}'.format(humidity) sys.exit(0) elif '3' == ac: print 'tem={0:0.2f},hum={1:0.2f}'.format(temperature, humidity) sys.exit(0) else: print 'err:action does not exist !' sys.exit(1) else: print 'err:failed to get read DHT !' sys.exit(1)
24.396825
79
0.659727
e5759a591250bd790f4694038cfc3a9a4c4d0940
4,208
py
Python
examples/plot_regression.py
lapaill/braindecode
d5d6e34baef1c8df092e77d1f3e757b53d0e69ea
[ "BSD-3-Clause" ]
301
2020-01-15T16:40:59.000Z
2022-03-31T05:28:00.000Z
examples/plot_regression.py
Mrswolf/braindecode
d1781c465239c45eccbf5f92e7d7a627ff985e16
[ "BSD-3-Clause" ]
325
2020-01-12T21:36:55.000Z
2022-03-21T11:59:01.000Z
examples/plot_regression.py
Mrswolf/braindecode
d1781c465239c45eccbf5f92e7d7a627ff985e16
[ "BSD-3-Clause" ]
98
2020-01-12T21:22:42.000Z
2022-03-24T14:36:08.000Z
""" Regression example on fake data =============================== """ # Authors: Lukas Gemein <l.gemein@gmail.com> # # License: BSD-3 import numpy as np import pandas as pd import torch from skorch.callbacks import LRScheduler from skorch.helper import predefined_split from braindecode import EEGRegressor from braindecode.preprocessing import create_fixed_length_windows from braindecode.datasets import BaseDataset, BaseConcatDataset from braindecode.training.losses import CroppedLoss from braindecode.models import Deep4Net from braindecode.models import ShallowFBCSPNet from braindecode.models.util import to_dense_prediction_model, get_output_shape from braindecode.util import set_random_seeds, create_mne_dummy_raw model_name = "shallow" # 'shallow' or 'deep' n_epochs = 3 seed = 20200220 input_window_samples = 6000 batch_size = 64 cuda = torch.cuda.is_available() device = 'cuda' if cuda else 'cpu' if cuda: torch.backends.cudnn.benchmark = True n_chans = 21 # set to how many targets you want to regress (age -> 1, [x, y, z] -> 3) n_classes = 1 set_random_seeds(seed=seed, cuda=cuda) # initialize a model, transform to dense and move to gpu if model_name == "shallow": model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, input_window_samples=input_window_samples, n_filters_time=40, n_filters_spat=40, final_conv_length=35, ) optimizer_lr = 0.000625 optimizer_weight_decay = 0 elif model_name == "deep": model = Deep4Net( in_chans=n_chans, n_classes=n_classes, input_window_samples=input_window_samples, n_filters_time=25, n_filters_spat=25, stride_before_pool=True, n_filters_2=int(n_chans * 2), n_filters_3=int(n_chans * (2 ** 2.0)), n_filters_4=int(n_chans * (2 ** 3.0)), final_conv_length=1, ) optimizer_lr = 0.01 optimizer_weight_decay = 0.0005 else: raise ValueError(f'{model_name} unknown') new_model = torch.nn.Sequential() for name, module_ in model.named_children(): if "softmax" in name: continue new_model.add_module(name, module_) model = new_model if cuda: model.cuda() to_dense_prediction_model(model) n_preds_per_input = get_output_shape(model, n_chans, input_window_samples)[2] def fake_regression_dataset(n_fake_recs, n_fake_chs, fake_sfreq, fake_duration_s): datasets = [] for i in range(n_fake_recs): train_or_eval = "eval" if i == 0 else "train" raw, save_fname = create_mne_dummy_raw( n_channels=n_fake_chs, n_times=fake_duration_s * fake_sfreq, sfreq=fake_sfreq, savedir=None) target = np.random.randint(0, 100, n_classes) if n_classes == 1: target = target[0] fake_descrition = pd.Series( data=[target, train_or_eval], index=["target", "session"]) base_ds = BaseDataset(raw, fake_descrition, target_name="target") datasets.append(base_ds) dataset = BaseConcatDataset(datasets) return dataset dataset = fake_regression_dataset( n_fake_recs=5, n_fake_chs=21, fake_sfreq=100, fake_duration_s=60) windows_dataset = create_fixed_length_windows( dataset, start_offset_samples=0, stop_offset_samples=0, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input, drop_last_window=False, drop_bad_windows=True, ) splits = windows_dataset.split("session") train_set = splits["train"] valid_set = splits["eval"] regressor = EEGRegressor( model, cropped=True, criterion=CroppedLoss, criterion__loss_function=torch.nn.functional.mse_loss, optimizer=torch.optim.AdamW, train_split=predefined_split(valid_set), optimizer__lr=optimizer_lr, optimizer__weight_decay=optimizer_weight_decay, iterator_train__shuffle=True, batch_size=batch_size, callbacks=[ "neg_root_mean_squared_error", # seems n_epochs -1 leads to desired behavior of lr=0 after end of training? ("lr_scheduler", LRScheduler('CosineAnnealingLR', T_max=n_epochs - 1)), ], device=device, ) regressor.fit(train_set, y=None, epochs=n_epochs)
29.843972
84
0.714354
6aac0d0f66d98d03d26eb51412ead3383666f8d9
2,883
py
Python
ljungbox.py
SeptumCapital/TimeSeries_Notebooks_Collections
93e22fe817a40513d06c2d1ade98bdbab7151612
[ "MIT" ]
32
2019-11-03T06:04:29.000Z
2022-03-28T21:57:25.000Z
ljungbox.py
quantsense/TimeSeries_Notebooks_Collections
fbc93689af056a007ac0366925d55cec5096da29
[ "MIT" ]
null
null
null
ljungbox.py
quantsense/TimeSeries_Notebooks_Collections
fbc93689af056a007ac0366925d55cec5096da29
[ "MIT" ]
20
2019-11-03T06:15:20.000Z
2022-02-20T06:50:37.000Z
import numpy as np import scipy.stats def sac(x, k=1): """ Sample autocorrelation (As used in statistics with normalization) http://en.wikipedia.org/wiki/Autocorrelation Parameters ---------- x : 1d numpy array Signal k : int or list of ints Lags to calculate sample autocorrelation for Returns ------- res : scalar or np array The sample autocorrelation. A scalar value if k is a scalar, and a numpy array if k is a interable. """ try: res = [] for ki in k: res.append(sac(x, ki)) return np.array(res) except: pass mx = np.mean(x) if k==0: N = np.sum((x-mx)*(x-mx)) else: N = np.sum((x[:-k]-mx)*(x[k:]-mx)) D = len(x) * np.var(x) return N/D def ljungbox(x, lags, alpha=0.1): """ The Ljung-Box test for determining if the data is independently distributed. Parameters ---------- x : 1d numpy array Signal to test lags : int Number of lags being tested Returns ------- Q : float Test statistic """ n = len(x) Q = 0 for k in range(1, lags+1): Q += (sac(x, k)**2) / (n-k) Q = n*(n+2)*Q return Q def boxpierce(x, lags, alpha=0.1): """ The Box-Pierce test for determining if the data is independently distributed. Parameters ---------- x : 1d numpy array Signal to test lags : int Number of lags being tested Returns ------- Q : float Test statistic """ n = len(x) Q = 0 for k in range(1, lags+1): Q += (sac(x, k)**2) Q = n*Q return Q def lbqtest(x, lags, alpha=0.1, method='lb'): """ The Ljung-Box test for determining if the data is independently distributed. Parameters ---------- x : 1d numpy array Signal to test lags : list of ints Lags being tested alpha : float Significance level used for the tests method : string Can be either 'lb' for Ljung-Box, or 'bp' for Box-Pierce Returns ------- h : np array Numpy array of bool values, True == H0 hypothesis rejected pV : np array Test statistics p-values Q : np array Test statistics cV : np array Critical values used for determining if H0 should be rejected. The critical values are calculated from the given alpha and lag. """ if method=='lb': findq = ljungbox else: findq = boxpierce n = len(x) Q = np.zeros(len(lags)) pV = np.zeros(len(lags)) cV = np.zeros(len(lags)) for i, lag in enumerate(lags): Q[i] = findq(x, lag) pV[i] = 1.0 - scipy.stats.chi2.cdf(Q[i], lag) cV[i] = scipy.stats.chi2.ppf(1-alpha, lag) h = Q>cV return h, pV, Q, cV
22.700787
81
0.540062
e1c50626f4231b147f570d0cf9dd643073447030
3,628
py
Python
tests/openwisp2/sample_users/tests.py
ShreeshaRelysys/openwisp-users
af5f95e89656cbf3dd32f2392ba6d0f1b2c4df96
[ "BSD-3-Clause" ]
1
2020-09-06T18:24:06.000Z
2020-09-06T18:24:06.000Z
tests/openwisp2/sample_users/tests.py
ShreeshaRelysys/openwisp-users
af5f95e89656cbf3dd32f2392ba6d0f1b2c4df96
[ "BSD-3-Clause" ]
1
2022-01-24T16:44:03.000Z
2022-01-24T16:44:03.000Z
tests/openwisp2/sample_users/tests.py
ShreeshaRelysys/openwisp-users
af5f95e89656cbf3dd32f2392ba6d0f1b2c4df96
[ "BSD-3-Clause" ]
null
null
null
from openwisp_users.tests.test_admin import ( TestBasicUsersIntegration as BaseTestBasicUsersIntegration, ) from openwisp_users.tests.test_admin import ( TestMultitenantAdmin as BaseTestMultitenantAdmin, ) from openwisp_users.tests.test_admin import TestUsersAdmin as BaseTestUsersAdmin from openwisp_users.tests.test_api.test_api import TestUsersApi as BaseTestUsersApi from openwisp_users.tests.test_api.test_authentication import ( AuthenticationTests as BaseAuthenticationTests, ) from openwisp_users.tests.test_api.test_throttling import ( RatelimitTests as BaseRatelimitTests, ) from openwisp_users.tests.test_api.test_views import ( TestRestFrameworkViews as BaseTestRestFrameworkViews, ) from openwisp_users.tests.test_backends import TestBackends as BaseTestBackends from openwisp_users.tests.test_models import TestUsers as BaseTestUsers additional_fields = [ ('social_security_number', '123-45-6789'), ('details', 'Example value for detail used during testing.'), ] class GetEditFormInlineMixin(object): """ The following code is only used in testing, please remove it or replace it with your Inline form fields data. """ def _get_org_edit_form_inline_params(self, user, organization): """ This function is created to be overridden when the user extends openwisp-users and adds inline forms in the Organization model. """ params = super()._get_user_edit_form_inline_params(user, organization) params.update( { 'organizationinlinemodel-TOTAL_FORMS': 1, 'organizationinlinemodel-INITIAL_FORMS': 0, 'organizationinlinemodel-MIN_NUM_FORMS': 0, 'organizationinlinemodel-MAX_NUM_FORMS': 1, 'organizationinlinemodel-0-details': '', 'organizationinlinemodel-0-user': str(organization.pk), } ) return params def _get_user_edit_form_inline_params(self, user, organization): """ This function is created to be overridden when the user extends openwisp-users and adds inline forms in the User model. """ params = super()._get_user_edit_form_inline_params(user, organization) params.update( { 'userinlinemodel-TOTAL_FORMS': 1, 'userinlinemodel-INITIAL_FORMS': 0, 'userinlinemodel-MIN_NUM_FORMS': 0, 'userinlinemodel-MAX_NUM_FORMS': 1, 'userinlinemodel-0-details': '', 'userinlinemodel-0-user': str(user.pk), } ) return params class TestUsersAdmin(GetEditFormInlineMixin, BaseTestUsersAdmin): app_label = 'sample_users' _additional_user_fields = additional_fields class TestBasicUsersIntegration(GetEditFormInlineMixin, BaseTestBasicUsersIntegration): app_label = 'sample_users' _additional_user_fields = additional_fields class TestMultitenantAdmin(BaseTestMultitenantAdmin): app_label = 'sample_users' class TestUsers(BaseTestUsers): pass class AuthenticationTests(BaseAuthenticationTests): pass class TestRestFrameworkViews(BaseTestRestFrameworkViews): pass class RatelimitTests(BaseRatelimitTests): pass class TestBackends(BaseTestBackends): pass class TestUsersApi(BaseTestUsersApi): pass del BaseTestUsersAdmin del BaseTestBasicUsersIntegration del BaseTestMultitenantAdmin del BaseTestUsers del BaseAuthenticationTests del BaseRatelimitTests del BaseTestRestFrameworkViews del BaseTestBackends del BaseTestUsersApi
30.233333
87
0.724366
a4195392761ccf823292c9d2d9b2c7ee62ee8047
38,712
py
Python
pySuStaIn/ZscoreSustain.py
ElsevierSoftwareX/SOFTX-D-21-00098
225e083eff46277016104ad0191b79115b9de478
[ "MIT" ]
1
2022-03-21T18:36:52.000Z
2022-03-21T18:36:52.000Z
pySuStaIn/ZscoreSustain.py
ElsevierSoftwareX/SOFTX-D-21-00098
225e083eff46277016104ad0191b79115b9de478
[ "MIT" ]
null
null
null
pySuStaIn/ZscoreSustain.py
ElsevierSoftwareX/SOFTX-D-21-00098
225e083eff46277016104ad0191b79115b9de478
[ "MIT" ]
null
null
null
### # pySuStaIn: a Python implementation of the Subtype and Stage Inference (SuStaIn) algorithm # # If you use pySuStaIn, please cite the following core papers: # 1. The original SuStaIn paper: https://doi.org/10.1038/s41467-018-05892-0 # 2. The pySuStaIn software paper: https://doi.org/10.1101/2021.06.09.447713 # # Please also cite the corresponding progression pattern model you use: # 1. The piece-wise linear z-score model (i.e. ZscoreSustain): https://doi.org/10.1038/s41467-018-05892-0 # 2. The event-based model (i.e. MixtureSustain): https://doi.org/10.1016/j.neuroimage.2012.01.062 # with Gaussian mixture modeling (i.e. 'mixture_gmm'): https://doi.org/10.1093/brain/awu176 # or kernel density estimation (i.e. 'mixture_kde'): https://doi.org/10.1002/alz.12083 # 3. The model for discrete ordinal data (i.e. OrdinalSustain): TBD # # Thanks a lot for supporting this project. # # Authors: Peter Wijeratne (p.wijeratne@ucl.ac.uk) and Leon Aksman (leon.aksman@loni.usc.edu) # Contributors: Arman Eshaghi (a.eshaghi@ucl.ac.uk), Alex Young (alexandra.young@kcl.ac.uk), Cameron Shand (c.shand@ucl.ac.uk) ### from tqdm.auto import tqdm import numpy as np from matplotlib import pyplot as plt from scipy.stats import norm from pySuStaIn.AbstractSustain import AbstractSustainData from pySuStaIn.AbstractSustain import AbstractSustain #******************************************* #The data structure class for ZscoreSustain. It holds the z-scored data that gets passed around and re-indexed in places. class ZScoreSustainData(AbstractSustainData): def __init__(self, data, numStages): self.data = data self.__numStages = numStages def getNumSamples(self): return self.data.shape[0] def getNumBiomarkers(self): return self.data.shape[1] def getNumStages(self): return self.__numStages def reindex(self, index): return ZScoreSustainData(self.data[index,], self.__numStages) #******************************************* #An implementation of the AbstractSustain class with multiple events for each biomarker based on deviations from normality, measured in z-scores. #There are a fixed number of thresholds for each biomarker, specified at initialization of the ZscoreSustain object. class ZscoreSustain(AbstractSustain): def __init__(self, data, Z_vals, Z_max, biomarker_labels, N_startpoints, N_S_max, N_iterations_MCMC, output_folder, dataset_name, use_parallel_startpoints, seed=None): # The initializer for the z-score based events implementation of AbstractSustain # Parameters: # data - !important! needs to be (positive) z-scores! # dim: number of subjects x number of biomarkers # Z_vals - a matrix specifying the z-score thresholds for each biomarker # for M biomarkers and 3 thresholds (1,2 and 3 for example) this would be a dim: M x 3 matrix # Z_max - a vector specifying the maximum z-score for each biomarker # when using z-score thresholds of 1,2,3 this would typically be 5. # for M biomarkers this would be a dim: M x 1 vector # biomarker_labels - the names of the biomarkers as a list of strings # N_startpoints - number of startpoints to use in maximum likelihood step of SuStaIn, typically 25 # N_S_max - maximum number of subtypes, should be 1 or more # N_iterations_MCMC - number of MCMC iterations, typically 1e5 or 1e6 but can be lower for debugging # output_folder - where to save pickle files, etc. # dataset_name - for naming pickle files # use_parallel_startpoints - boolean for whether or not to parallelize the maximum likelihood loop # seed - random number seed N = data.shape[1] # number of biomarkers assert (len(biomarker_labels) == N), "number of labels should match number of biomarkers" stage_zscore = Z_vals.T.flatten() #np.array([y for x in Z_vals.T for y in x]) stage_zscore = stage_zscore.reshape(1,len(stage_zscore)) IX_select = stage_zscore>0 stage_zscore = stage_zscore[IX_select] stage_zscore = stage_zscore.reshape(1,len(stage_zscore)) num_zscores = Z_vals.shape[1] IX_vals = np.array([[x for x in range(N)]] * num_zscores).T stage_biomarker_index = IX_vals.T.flatten() #np.array([y for x in IX_vals.T for y in x]) stage_biomarker_index = stage_biomarker_index.reshape(1,len(stage_biomarker_index)) stage_biomarker_index = stage_biomarker_index[IX_select] stage_biomarker_index = stage_biomarker_index.reshape(1,len(stage_biomarker_index)) self.stage_zscore = stage_zscore self.stage_biomarker_index = stage_biomarker_index self.min_biomarker_zscore = [0] * N self.max_biomarker_zscore = Z_max self.std_biomarker_zscore = [1] * N self.biomarker_labels = biomarker_labels numStages = stage_zscore.shape[1] self.__sustainData = ZScoreSustainData(data, numStages) super().__init__(self.__sustainData, N_startpoints, N_S_max, N_iterations_MCMC, output_folder, dataset_name, use_parallel_startpoints, seed) def _initialise_sequence(self, sustainData, rng): # Randomly initialises a linear z-score model ensuring that the biomarkers # are monotonically increasing # # # OUTPUTS: # S - a random linear z-score model under the condition that each biomarker # is monotonically increasing N = np.array(self.stage_zscore).shape[1] S = np.zeros(N) for i in range(N): IS_min_stage_zscore = np.array([False] * N) possible_biomarkers = np.unique(self.stage_biomarker_index) for j in range(len(possible_biomarkers)): IS_unselected = [False] * N for k in set(range(N)) - set(S[:i]): IS_unselected[k] = True this_biomarkers = np.array([(np.array(self.stage_biomarker_index)[0] == possible_biomarkers[j]).astype(int) + (np.array(IS_unselected) == 1).astype(int)]) == 2 if not np.any(this_biomarkers): this_min_stage_zscore = 0 else: this_min_stage_zscore = min(self.stage_zscore[this_biomarkers]) if (this_min_stage_zscore): temp = ((this_biomarkers.astype(int) + (self.stage_zscore == this_min_stage_zscore).astype(int)) == 2).T temp = temp.reshape(len(temp), ) IS_min_stage_zscore[temp] = True events = np.array(range(N)) possible_events = np.array(events[IS_min_stage_zscore]) this_index = np.ceil(rng.random() * ((len(possible_events)))) - 1 S[i] = possible_events[int(this_index)] S = S.reshape(1, len(S)) return S def _calculate_likelihood_stage(self, sustainData, S): ''' Computes the likelihood of a single linear z-score model using an approximation method (faster) Outputs: ======== p_perm_k - the probability of each subjects data at each stage of a particular subtype in the SuStaIn model ''' N = self.stage_biomarker_index.shape[1] S_inv = np.array([0] * N) S_inv[S.astype(int)] = np.arange(N) possible_biomarkers = np.unique(self.stage_biomarker_index) B = len(possible_biomarkers) point_value = np.zeros((B, N + 2)) # all the arange you'll need below arange_N = np.arange(N + 2) for i in range(B): b = possible_biomarkers[i] event_location = np.concatenate([[0], S_inv[(self.stage_biomarker_index == b)[0]], [N]]) event_value = np.concatenate([[self.min_biomarker_zscore[i]], self.stage_zscore[self.stage_biomarker_index == b], [self.max_biomarker_zscore[i]]]) for j in range(len(event_location) - 1): if j == 0: # FIXME: nasty hack to get Matlab indexing to match up - necessary here because indices are used for linspace limits # original #temp = np.arange(event_location[j],event_location[j+1]+2) #point_value[i,temp] = np.linspace(event_value[j],event_value[j+1],event_location[j+1]-event_location[j]+2) # fastest by a bit temp = arange_N[event_location[j]:(event_location[j + 1] + 2)] N_j = event_location[j + 1] - event_location[j] + 2 point_value[i, temp] = ZscoreSustain.linspace_local2(event_value[j], event_value[j + 1], N_j, arange_N[0:N_j]) else: # original #temp = np.arange(event_location[j] + 1, event_location[j + 1] + 2) #point_value[i, temp] = np.linspace(event_value[j],event_value[j+1],event_location[j+1]-event_location[j]+1) # fastest by a bit temp = arange_N[(event_location[j] + 1):(event_location[j + 1] + 2)] N_j = event_location[j + 1] - event_location[j] + 1 point_value[i, temp] = ZscoreSustain.linspace_local2(event_value[j], event_value[j + 1], N_j, arange_N[0:N_j]) stage_value = 0.5 * point_value[:, :point_value.shape[1] - 1] + 0.5 * point_value[:, 1:] M = sustainData.getNumSamples() #data_local.shape[0] p_perm_k = np.zeros((M, N + 1)) # optimised likelihood calc - take log and only call np.exp once after loop sigmat = np.array(self.std_biomarker_zscore) factor = np.log(1. / np.sqrt(np.pi * 2.0) * sigmat) coeff = np.log(1. / float(N + 1)) # original """ for j in range(N+1): x = (data-np.tile(stage_value[:,j],(M,1)))/sigmat p_perm_k[:,j] = coeff+np.sum(factor-.5*x*x,1) """ # faster - do the tiling once # stage_value_tiled = np.tile(stage_value, (M, 1)) # N_biomarkers = stage_value.shape[0] # for j in range(N + 1): # stage_value_tiled_j = stage_value_tiled[:, j].reshape(M, N_biomarkers) # x = (sustainData.data - stage_value_tiled_j) / sigmat #(data_local - stage_value_tiled_j) / sigmat # p_perm_k[:, j] = coeff + np.sum(factor - .5 * np.square(x), 1) # p_perm_k = np.exp(p_perm_k) # even faster - do in one go x = (sustainData.data[:, :, None] - stage_value) / sigmat[None, :, None] p_perm_k = coeff + np.sum(factor[None, :, None] - 0.5 * np.square(x), 1) p_perm_k = np.exp(p_perm_k) return p_perm_k def _optimise_parameters(self, sustainData, S_init, f_init, rng): # Optimise the parameters of the SuStaIn model M = sustainData.getNumSamples() #data_local.shape[0] N_S = S_init.shape[0] N = self.stage_zscore.shape[1] S_opt = S_init.copy() # have to copy or changes will be passed to S_init f_opt = np.array(f_init).reshape(N_S, 1, 1) f_val_mat = np.tile(f_opt, (1, N + 1, M)) f_val_mat = np.transpose(f_val_mat, (2, 1, 0)) p_perm_k = np.zeros((M, N + 1, N_S)) for s in range(N_S): p_perm_k[:, :, s] = self._calculate_likelihood_stage(sustainData, S_opt[s]) p_perm_k_weighted = p_perm_k * f_val_mat p_perm_k_norm = p_perm_k_weighted / np.sum(p_perm_k_weighted, axis=(1,2), keepdims=True) f_opt = (np.squeeze(sum(sum(p_perm_k_norm))) / sum(sum(sum(p_perm_k_norm)))).reshape(N_S, 1, 1) f_val_mat = np.tile(f_opt, (1, N + 1, M)) f_val_mat = np.transpose(f_val_mat, (2, 1, 0)) order_seq = rng.permutation(N_S) # this will produce different random numbers to Matlab for s in order_seq: order_bio = rng.permutation(N) # this will produce different random numbers to Matlab for i in order_bio: current_sequence = S_opt[s] current_location = np.array([0] * len(current_sequence)) current_location[current_sequence.astype(int)] = np.arange(len(current_sequence)) selected_event = i move_event_from = current_location[selected_event] this_stage_zscore = self.stage_zscore[0, selected_event] selected_biomarker = self.stage_biomarker_index[0, selected_event] possible_zscores_biomarker = self.stage_zscore[self.stage_biomarker_index == selected_biomarker] # slightly different conditional check to matlab version to protect python from calling min,max on an empty array min_filter = possible_zscores_biomarker < this_stage_zscore max_filter = possible_zscores_biomarker > this_stage_zscore events = np.array(range(N)) if np.any(min_filter): min_zscore_bound = max(possible_zscores_biomarker[min_filter]) min_zscore_bound_event = events[((self.stage_zscore[0] == min_zscore_bound).astype(int) + (self.stage_biomarker_index[0] == selected_biomarker).astype(int)) == 2] move_event_to_lower_bound = current_location[min_zscore_bound_event] + 1 else: move_event_to_lower_bound = 0 if np.any(max_filter): max_zscore_bound = min(possible_zscores_biomarker[max_filter]) max_zscore_bound_event = events[((self.stage_zscore[0] == max_zscore_bound).astype(int) + (self.stage_biomarker_index[0] == selected_biomarker).astype(int)) == 2] move_event_to_upper_bound = current_location[max_zscore_bound_event] else: move_event_to_upper_bound = N # FIXME: hack because python won't produce an array in range (N,N), while matlab will produce an array (N)... urgh if move_event_to_lower_bound == move_event_to_upper_bound: possible_positions = np.array([0]) else: possible_positions = np.arange(move_event_to_lower_bound, move_event_to_upper_bound) possible_sequences = np.zeros((len(possible_positions), N)) possible_likelihood = np.zeros((len(possible_positions), 1)) possible_p_perm_k = np.zeros((M, N + 1, len(possible_positions))) for index in range(len(possible_positions)): current_sequence = S_opt[s] #choose a position in the sequence to move an event to move_event_to = possible_positions[index] # move this event in its new position current_sequence = np.delete(current_sequence, move_event_from, 0) # this is different to the Matlab version, which call current_sequence(move_event_from) = [] new_sequence = np.concatenate([current_sequence[np.arange(move_event_to)], [selected_event], current_sequence[np.arange(move_event_to, N - 1)]]) possible_sequences[index, :] = new_sequence possible_p_perm_k[:, :, index] = self._calculate_likelihood_stage(sustainData, new_sequence) p_perm_k[:, :, s] = possible_p_perm_k[:, :, index] total_prob_stage = np.sum(p_perm_k * f_val_mat, 2) total_prob_subj = np.sum(total_prob_stage, 1) possible_likelihood[index] = np.sum(np.log(total_prob_subj + 1e-250)) possible_likelihood = possible_likelihood.reshape(possible_likelihood.shape[0]) max_likelihood = max(possible_likelihood) this_S = possible_sequences[possible_likelihood == max_likelihood, :] this_S = this_S[0, :] S_opt[s] = this_S this_p_perm_k = possible_p_perm_k[:, :, possible_likelihood == max_likelihood] p_perm_k[:, :, s] = this_p_perm_k[:, :, 0] S_opt[s] = this_S p_perm_k_weighted = p_perm_k * f_val_mat #adding 1e-250 fixes divide by zero problem that happens rarely #p_perm_k_norm = p_perm_k_weighted / np.tile(np.sum(np.sum(p_perm_k_weighted, 1), 1).reshape(M, 1, 1), (1, N + 1, N_S)) # the second summation axis is different to Matlab version p_perm_k_norm = p_perm_k_weighted / np.sum(p_perm_k_weighted + 1e-250, axis=(1, 2), keepdims=True) f_opt = (np.squeeze(sum(sum(p_perm_k_norm))) / sum(sum(sum(p_perm_k_norm)))).reshape(N_S, 1, 1) f_val_mat = np.tile(f_opt, (1, N + 1, M)) f_val_mat = np.transpose(f_val_mat, (2, 1, 0)) f_opt = f_opt.reshape(N_S) total_prob_stage = np.sum(p_perm_k * f_val_mat, 2) total_prob_subj = np.sum(total_prob_stage, 1) likelihood_opt = np.sum(np.log(total_prob_subj + 1e-250)) return S_opt, f_opt, likelihood_opt def _perform_mcmc(self, sustainData, seq_init, f_init, n_iterations, seq_sigma, f_sigma): # Take MCMC samples of the uncertainty in the SuStaIn model parameters N = self.stage_zscore.shape[1] N_S = seq_init.shape[0] if isinstance(f_sigma, float): # FIXME: hack to enable multiplication f_sigma = np.array([f_sigma]) samples_sequence = np.zeros((N_S, N, n_iterations)) samples_f = np.zeros((N_S, n_iterations)) samples_likelihood = np.zeros((n_iterations, 1)) samples_sequence[:, :, 0] = seq_init # don't need to copy as we don't write to 0 index samples_f[:, 0] = f_init # Reduce frequency of tqdm update to 0.1% of total for larger iteration numbers tqdm_update_iters = int(n_iterations/1000) if n_iterations > 100000 else None for i in tqdm(range(n_iterations), "MCMC Iteration", n_iterations, miniters=tqdm_update_iters): if i > 0: seq_order = self.global_rng.permutation(N_S) # this function returns different random numbers to Matlab for s in seq_order: move_event_from = int(np.ceil(N * self.global_rng.random())) - 1 current_sequence = samples_sequence[s, :, i - 1] current_location = np.array([0] * N) current_location[current_sequence.astype(int)] = np.arange(N) selected_event = int(current_sequence[move_event_from]) this_stage_zscore = self.stage_zscore[0, selected_event] selected_biomarker = self.stage_biomarker_index[0, selected_event] possible_zscores_biomarker = self.stage_zscore[self.stage_biomarker_index == selected_biomarker] # slightly different conditional check to matlab version to protect python from calling min,max on an empty array min_filter = possible_zscores_biomarker < this_stage_zscore max_filter = possible_zscores_biomarker > this_stage_zscore events = np.array(range(N)) if np.any(min_filter): min_zscore_bound = max(possible_zscores_biomarker[min_filter]) min_zscore_bound_event = events[((self.stage_zscore[0] == min_zscore_bound).astype(int) + (self.stage_biomarker_index[0] == selected_biomarker).astype(int)) == 2] move_event_to_lower_bound = current_location[min_zscore_bound_event] + 1 else: move_event_to_lower_bound = 0 if np.any(max_filter): max_zscore_bound = min(possible_zscores_biomarker[max_filter]) max_zscore_bound_event = events[((self.stage_zscore[0] == max_zscore_bound).astype(int) + (self.stage_biomarker_index[0] == selected_biomarker).astype(int)) == 2] move_event_to_upper_bound = current_location[max_zscore_bound_event] else: move_event_to_upper_bound = N # FIXME: hack because python won't produce an array in range (N,N), while matlab will produce an array (N)... urgh if move_event_to_lower_bound == move_event_to_upper_bound: possible_positions = np.array([0]) else: possible_positions = np.arange(move_event_to_lower_bound, move_event_to_upper_bound) distance = possible_positions - move_event_from if isinstance(seq_sigma, int): # FIXME: change to float this_seq_sigma = seq_sigma else: this_seq_sigma = seq_sigma[s, selected_event] # use own normal PDF because stats.norm is slow weight = AbstractSustain.calc_coeff(this_seq_sigma) * AbstractSustain.calc_exp(distance, 0., this_seq_sigma) weight /= np.sum(weight) index = self.global_rng.choice(range(len(possible_positions)), 1, replace=True, p=weight) # FIXME: difficult to check this because random.choice is different to Matlab randsample move_event_to = possible_positions[index] current_sequence = np.delete(current_sequence, move_event_from, 0) new_sequence = np.concatenate([current_sequence[np.arange(move_event_to)], [selected_event], current_sequence[np.arange(move_event_to, N - 1)]]) samples_sequence[s, :, i] = new_sequence new_f = samples_f[:, i - 1] + f_sigma * self.global_rng.standard_normal() new_f = (np.fabs(new_f) / np.sum(np.fabs(new_f))) samples_f[:, i] = new_f S = samples_sequence[:, :, i] f = samples_f[:, i] likelihood_sample, _, _, _, _ = self._calculate_likelihood(sustainData, S, f) samples_likelihood[i] = likelihood_sample if i > 0: ratio = np.exp(samples_likelihood[i] - samples_likelihood[i - 1]) if ratio < self.global_rng.random(): samples_likelihood[i] = samples_likelihood[i - 1] samples_sequence[:, :, i] = samples_sequence[:, :, i - 1] samples_f[:, i] = samples_f[:, i - 1] perm_index = np.where(samples_likelihood == max(samples_likelihood)) perm_index = perm_index[0] ml_likelihood = max(samples_likelihood) ml_sequence = samples_sequence[:, :, perm_index] ml_f = samples_f[:, perm_index] return ml_sequence, ml_f, ml_likelihood, samples_sequence, samples_f, samples_likelihood def _plot_sustain_model(self, samples_sequence, samples_f, n_samples, cval=False, subtype_order=None, biomarker_order=None, title_font_size=10): if subtype_order is None: subtype_order = self._plot_subtype_order #biomarker_order currently unused here colour_mat = np.array([[1, 0, 0], [1, 0, 1], [0, 0, 1]]) #, [0.5, 0, 1], [0, 1, 1]]) temp_mean_f = np.mean(samples_f, 1) vals = np.sort(temp_mean_f)[::-1] vals = np.array([np.round(x * 100.) for x in vals]) / 100. #ix = np.argsort(temp_mean_f)[::-1] N_S = samples_sequence.shape[0] N_bio = len(self.biomarker_labels) if N_S == 1: fig, ax = plt.subplots() total_axes = 1 elif N_S < 3: fig, ax = plt.subplots(1, N_S) total_axes = N_S elif N_S < 7: fig, ax = plt.subplots(2, int(np.ceil(N_S / 2))) total_axes = 2 * int(np.ceil(N_S / 2)) else: fig, ax = plt.subplots(3, int(np.ceil(N_S / 3))) total_axes = 3 * int(np.ceil(N_S / 3)) for i in range(total_axes): #range(N_S): if i not in range(N_S): ax.flat[i].set_axis_off() continue this_samples_sequence = samples_sequence[subtype_order[i],:,:].T markers = np.unique(self.stage_biomarker_index) N = this_samples_sequence.shape[1] confus_matrix = np.zeros((N, N)) for j in range(N): confus_matrix[j, :] = sum(this_samples_sequence == j) confus_matrix /= float(this_samples_sequence.shape[0]) zvalues = np.unique(self.stage_zscore) N_z = len(zvalues) confus_matrix_z = np.zeros((N_bio, N, N_z)) for z in range(N_z): confus_matrix_z[self.stage_biomarker_index[self.stage_zscore == zvalues[z]], :, z] = confus_matrix[(self.stage_zscore == zvalues[z])[0],:] confus_matrix_c = np.ones((N_bio, N, 3)) for z in range(N_z): this_confus_matrix = confus_matrix_z[:, :, z] this_colour = colour_mat[z, :] alter_level = this_colour == 0 this_colour_matrix = np.zeros((N_bio, N, 3)) this_colour_matrix[:, :, alter_level] = np.tile(this_confus_matrix[markers, :].reshape(N_bio, N, 1), (1, 1, sum(alter_level))) confus_matrix_c = confus_matrix_c - this_colour_matrix TITLE_FONT_SIZE = title_font_size X_FONT_SIZE = 10 #8 Y_FONT_SIZE = 10 #7 if cval == False: if n_samples != np.inf: title_i = 'Subtype ' + str(i+1) + ' (f=' + str(vals[i]) + r', n=' + str(int(np.round(vals[i] * n_samples))) + ')' else: title_i = 'Subtype ' + str(i+1) + ' (f=' + str(vals[i]) + ')' else: title_i = 'Subtype ' + str(i+1) + ' cross-validated' # must be a smarter way of doing this, but subplots(1,1) doesn't produce an array... if N_S > 1: ax_i = ax.flat[i] #ax[i] ax_i.imshow(confus_matrix_c, interpolation='nearest') #, cmap=plt.cm.Blues) ax_i.set_xticks(np.arange(N)) ax_i.set_xticklabels(range(1, N+1), rotation=45, fontsize=X_FONT_SIZE) ax_i.set_yticks(np.arange(N_bio)) ax_i.set_yticklabels([]) #['']* N_bio) if i == 0: ax_i.set_yticklabels(np.array(self.biomarker_labels, dtype='object'), ha='right', fontsize=Y_FONT_SIZE) for tick in ax_i.yaxis.get_major_ticks(): tick.label.set_color('black') #ax[i].set_ylabel('Biomarker name') #, fontsize=20) ax_i.set_xlabel('SuStaIn stage', fontsize=X_FONT_SIZE) ax_i.set_title(title_i, fontsize=TITLE_FONT_SIZE) else: #**** first plot ax.imshow(confus_matrix_c) #, interpolation='nearest')#, cmap=plt.cm.Blues) #[...,::-1] ax.set_xticks(np.arange(N)) ax.set_xticklabels(range(1, N+1), rotation=45, fontsize=X_FONT_SIZE) ax.set_yticks(np.arange(N_bio)) ax.set_yticklabels(np.array(self.biomarker_labels, dtype='object'), ha='right', fontsize=Y_FONT_SIZE) for tick in ax.yaxis.get_major_ticks(): tick.label.set_color('black') ax.set_xlabel('SuStaIn stage', fontsize=X_FONT_SIZE) ax.set_title(title_i, fontsize=TITLE_FONT_SIZE) plt.tight_layout() #if cval: # fig.suptitle('Cross validation') return fig, ax def subtype_and_stage_individuals_newData(self, data_new, samples_sequence, samples_f, N_samples): numStages_new = self.__sustainData.getNumStages() #data_new.shape[1] sustainData_newData = ZScoreSustainData(data_new, numStages_new) ml_subtype, \ prob_ml_subtype, \ ml_stage, \ prob_ml_stage, \ prob_subtype, \ prob_stage, \ prob_subtype_stage = self.subtype_and_stage_individuals(sustainData_newData, samples_sequence, samples_f, N_samples) return ml_subtype, prob_ml_subtype, ml_stage, prob_ml_stage, prob_subtype, prob_stage, prob_subtype_stage # ********************* STATIC METHODS @staticmethod def linspace_local2(a, b, N, arange_N): return a + (b - a) / (N - 1.) * arange_N # ********************* TEST METHODS @classmethod def test_sustain(cls, n_biomarkers, n_samples, n_subtypes, ground_truth_subtypes, sustain_kwargs, seed=42): # Set a global seed to propagate np.random.seed(seed) # Create Z values Z_vals = np.tile(np.arange(1, 4), (n_biomarkers, 1)) Z_vals[0, 2] = 0 Z_max = np.full((n_biomarkers,), 5) Z_max[2] = 2 ground_truth_sequences = cls.generate_random_model(Z_vals, n_subtypes) N_stages = np.sum(Z_vals > 0) + 1 ground_truth_stages_control = np.zeros((int(np.round(n_samples * 0.25)), 1)) ground_truth_stages_other = np.random.randint(1, N_stages+1, (int(np.round(n_samples * 0.75)), 1)) ground_truth_stages = np.vstack((ground_truth_stages_control, ground_truth_stages_other)).astype(int) data, data_denoised, stage_value = cls.generate_data( ground_truth_subtypes, ground_truth_stages, ground_truth_sequences, Z_vals, Z_max ) return cls( data, Z_vals, Z_max, **sustain_kwargs ) @staticmethod def generate_random_model(Z_vals, N_S, seed=None): num_biomarkers = Z_vals.shape[0] stage_zscore = Z_vals.T.flatten()#[np.newaxis, :] IX_select = np.nonzero(stage_zscore)[0] stage_zscore = stage_zscore[IX_select]#[np.newaxis, :] num_zscores = Z_vals.shape[0] stage_biomarker_index = np.tile(np.arange(num_biomarkers), (num_zscores,)) stage_biomarker_index = stage_biomarker_index[IX_select]#[np.newaxis, :] N = stage_zscore.shape[0] S = np.zeros((N_S, N)) # Moved outside loop, no need possible_biomarkers = np.unique(stage_biomarker_index) for s in range(N_S): for i in range(N): IS_min_stage_zscore = np.full(N, False) for j in possible_biomarkers: IS_unselected = np.full(N, False) # I have no idea what purpose this serves, so leaving for now for k in set(range(N)) - set(S[s][:i]): IS_unselected[k] = True this_biomarkers = np.logical_and( stage_biomarker_index == possible_biomarkers[j], np.array(IS_unselected) == 1 ) if not np.any(this_biomarkers): this_min_stage_zscore = 0 else: this_min_stage_zscore = np.min(stage_zscore[this_biomarkers]) if this_min_stage_zscore: IS_min_stage_zscore[np.logical_and( this_biomarkers, stage_zscore == this_min_stage_zscore )] = True events = np.arange(N) possible_events = events[IS_min_stage_zscore] this_index = np.ceil(np.random.rand() * len(possible_events)) - 1 S[s][i] = possible_events[int(this_index)] return S # TODO: Refactor this as above @staticmethod def generate_data(subtypes, stages, gt_ordering, Z_vals, Z_max): B = Z_vals.shape[0] stage_zscore = np.array([y for x in Z_vals.T for y in x]) stage_zscore = stage_zscore.reshape(1,len(stage_zscore)) IX_select = stage_zscore>0 stage_zscore = stage_zscore[IX_select] stage_zscore = stage_zscore.reshape(1,len(stage_zscore)) num_zscores = Z_vals.shape[1] IX_vals = np.array([[x for x in range(B)]] * num_zscores).T stage_biomarker_index = np.array([y for x in IX_vals.T for y in x]) stage_biomarker_index = stage_biomarker_index.reshape(1,len(stage_biomarker_index)) stage_biomarker_index = stage_biomarker_index[IX_select] stage_biomarker_index = stage_biomarker_index.reshape(1,len(stage_biomarker_index)) min_biomarker_zscore = [0]*B max_biomarker_zscore = Z_max std_biomarker_zscore = [1]*B N = stage_biomarker_index.shape[1] N_S = gt_ordering.shape[0] possible_biomarkers = np.unique(stage_biomarker_index) stage_value = np.zeros((B,N+2,N_S)) for s in range(N_S): S = gt_ordering[s,:] S_inv = np.array([0]*N) S_inv[S.astype(int)] = np.arange(N) for i in range(B): b = possible_biomarkers[i] event_location = np.concatenate([[0], S_inv[(stage_biomarker_index == b)[0]], [N]]) event_value = np.concatenate([[min_biomarker_zscore[i]], stage_zscore[stage_biomarker_index == b], [max_biomarker_zscore[i]]]) for j in range(len(event_location)-1): if j == 0: # FIXME: nasty hack to get Matlab indexing to match up - necessary here because indices are used for linspace limits index = np.arange(event_location[j],event_location[j+1]+2) stage_value[i,index,s] = np.linspace(event_value[j],event_value[j+1],event_location[j+1]-event_location[j]+2) else: index = np.arange(event_location[j] + 1, event_location[j + 1] + 2) stage_value[i,index,s] = np.linspace(event_value[j],event_value[j+1],event_location[j+1]-event_location[j]+1) M = stages.shape[0] data_denoised = np.zeros((M,B)) for m in range(M): data_denoised[m,:] = stage_value[:,int(stages[m]),subtypes[m]] data = data_denoised + norm.ppf(np.random.rand(B,M).T)*np.tile(std_biomarker_zscore,(M,1)) return data, data_denoised, stage_value
53.916435
217
0.535725
d7cd7de94d6bdf7c759ce0366f5c364dde3a12f5
4,365
py
Python
project/lib/i18n.py
feilaoda/FlickBoard
21e6364117e336f4eb60d83f496d9fc1cb2784ae
[ "MIT" ]
2
2016-07-21T08:52:30.000Z
2017-06-15T06:31:30.000Z
project/lib/i18n.py
feilaoda/FlickBoard
21e6364117e336f4eb60d83f496d9fc1cb2784ae
[ "MIT" ]
null
null
null
project/lib/i18n.py
feilaoda/FlickBoard
21e6364117e336f4eb60d83f496d9fc1cb2784ae
[ "MIT" ]
null
null
null
from lib.config import Config from lib.cache import SimpleCache import gettext #from lib.app.geoip import GeoIP class TranslationMixin(object): """Translation mixin class for support i18n by using methods from gettext library.""" def get_lang_by_sid(self, sid): """ Return user language code by sid. @type sid: C{str} @param sid: The session id. @rtype: C{str} @return: The language code. """ #need method to get lang from session if sid == 'zh-CN': lang = 'zh_CN' elif sid == 'zh-TW': lang = 'zh_TW' else: lang = 'en' return lang def get_lang_opts(self): """ Return language options for "gettext.translation" method. @rtype: C{dict} @return: The language options - "{'domain':str,'localedir':str,'languages':list}". """ sid = '1234561' user_lang = self.get_lang_by_sid(sid) cfg = self.get_lang_cfg() default_lang = cfg['default_lang'] languages = cfg['languages'] if not user_lang: header = self.getHeader('accept-language') if header: lst = header.split(',') user_lang = [] if len(lst) > 1: for lang in lst: if not lang[0:2] in user_lang and lang[0:2] in languages: user_lang.append(lang[0:2]) if len(user_lang) == 0: user_lang = default_lang else: user_lang = None if not user_lang: ip = self.getClientIP() country = None #gip = GeoIP.instance() #country = gip.countryCodeByIp(ip) if country: conf = Config() if country in conf['app']['country_lang']: user_lang = conf['app']['country_lang'][country] else: user_lang = default_lang else: user_lang = default_lang domain = cfg['domain'] localedir = cfg['localedir'] if isinstance(user_lang,list): languages = user_lang else: if user_lang in languages: languages = sorted(languages, key=lambda l: l!=user_lang) else: languages = sorted(languages, key=lambda l: l!=default_lang) lang_opts = {'domain':domain,'localedir':localedir,'languages':languages} return lang_opts def set_user_lang (self, lang): #have to write lang to session self.user_lang = lang def _(self, str): """ Return the localized translation of message as a Unicode string, based on the current global domain, language, and locale directory. @rtype: C{str} @return: The message as a Unicode string. """ #need get sid from session sid = '123456' user_lang = self.get_lang_by_sid(sid) sc = SimpleCache() translation = sc.get('gettext.%s' % user_lang,None) if not translation: lang_opts = self.get_lang_opts() translation = gettext.translation(lang_opts['domain'], localedir=lang_opts['localedir'],languages=lang_opts['languages'], codeset='utf-8') user_lang = lang_opts['languages'][0] sc.set('gettext.%s' % user_lang,translation) return translation.ugettext(str) def get_lang_cfg(self): """ Return default application configuration for translation methods. @rtype: C{dict} @return: The configuration - "{'domain':str,'default_lang':str, 'localedir':str,'languages':list}". """ cfg = Config() domain = cfg['app']['domain'] default_lang = cfg['app']['default_lang'] localedir = '/'.join([cfg['pathes']['base'],cfg['app']['localedir']]) languages = cfg['app']['languages'] return {'domain':domain, 'default_lang':default_lang, 'localedir':localedir,'languages':languages}
33.576923
150
0.520733
a1571c4b35cdf6d8acfc67e1718d9c4dcbc9a31b
6,041
py
Python
test_imp_rewriter.py
cshorler/py3_import_rewriter
57d3b4121fc7c245fa2442c276b466a1b5896344
[ "Python-2.0" ]
null
null
null
test_imp_rewriter.py
cshorler/py3_import_rewriter
57d3b4121fc7c245fa2442c276b466a1b5896344
[ "Python-2.0" ]
null
null
null
test_imp_rewriter.py
cshorler/py3_import_rewriter
57d3b4121fc7c245fa2442c276b466a1b5896344
[ "Python-2.0" ]
null
null
null
# # Copyright (c) 2018 - Chris HORLER # License: Python Software Foundation V2 [https://opensource.org/licenses/Python-2.0] # import ast import unittest from itertools import zip_longest import imp_rewriter class ImportRewriterTests(unittest.TestCase): def ast_eq(self, node1, node2, msg=None): """https://stackoverflow.com/a/19598419 (improved)""" if type(node1) is not type(node2): raise self.failureException(f'{node1} != {node2}, {msg}') if isinstance(node1, ast.AST): for k, v in vars(node1).items(): if k in ('lineno', 'col_offset', 'ctx'): continue if not self.ast_eq(v, getattr(node2, k), msg): raise self.failureException(f'{node1} != {node2}, {msg}') return True elif isinstance(node1, list): return all(self.ast_eq(n1, n2, msg) for n1, n2 in zip_longest(node1, node2)) elif node1 != node2: raise self.failureException(f'{node1} != {node2}, {msg}') else: return True def setUp(self): self.addTypeEqualityFunc(ast.Module, self.ast_eq) def test_basic_import(self): mod_ref = ast.parse('import dummy', '<STRING>', 'exec') mod_exp = ast.parse('import readline', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy', to_mod='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_multi_import(self): mod_ref = ast.parse('import dummy1, dummy2, dummy3', '<STRING>', 'exec') mod_exp = ast.parse('import readline\nimport dummy1, dummy3', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy2', to_mod='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_alias_basic_import(self): mod_ref = ast.parse('import dummy as magic_module', '<STRING>', 'exec') mod_exp = ast.parse('import readline as magic_module', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy', to_mod='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_alias_multi_import(self): mod_ref = ast.parse('import dummy1 as d1, dummy2 as d2, dummy3 as d3', '<STRING>', 'exec') mod_exp = ast.parse('import readline as d2\nimport dummy1 as d1, dummy3 as d3', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy2', to_mod='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_basic_importfrom(self): mod_ref = ast.parse('from dummy import magic', '<STRING>', 'exec') mod_exp = ast.parse('from rl import readline', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy', from_id='magic', to_mod='rl', to_id='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_multi_importfrom(self): mod_ref = ast.parse('from dummy import magic1, magic2, magic3', '<STRING>', 'exec') mod_exp = ast.parse('from rl import readline\nfrom dummy import magic1, magic3', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy', from_id='magic2', to_mod='rl', to_id='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_alias_basic_importfrom(self): mod_ref = ast.parse('from dummy import magic1 as m1', '<STRING>', 'exec') mod_exp = ast.parse('from readline import magic1 as m1', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy', to_mod='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_alias_multi_importfrom(self): mod_ref = ast.parse('from dummy import magic1 as m1, magic2 as m2, magic3 as m3', '<STRING>', 'exec') mod_exp = ast.parse('from rl import readline as m2\nfrom dummy import magic1 as m1, magic3 as m3', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='dummy', from_id='magic2', to_mod='rl', to_id='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_transform_import_to_importfrom(self): mod_ref = ast.parse('import readline', '<STRING>', 'exec') mod_exp = ast.parse('from rl import readline', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='readline', to_mod='rl', to_id='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_transform_importfrom_to_import(self): mod_ref = ast.parse('from rl import readline', '<STRING>', 'exec') mod_exp = ast.parse('import readline', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='rl', from_id='readline', to_mod='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') def test_transform_multi_import_to_importfrom(self): mod_ref = ast.parse('import readline, sys, io', '<STRING>', 'exec') mod_exp = ast.parse('from rl import readline\nimport sys, io', '<STRING>', 'exec') imp_rewriter.RewriteImport(from_mod='readline', to_mod='rl', to_id='readline').visit(mod_ref) ast.fix_missing_locations(mod_ref) self.assertEqual(mod_ref, mod_exp, msg='AST transform failed') if __name__ == '__main__': unittest.main()
51.632479
116
0.651879
3130e052758b750ec66b4e9377b3e35f7e13f1f3
507
py
Python
app/model/entity/estado.py
UniversidadeDeVassouras/labproghiper-2020.1-JoaoMarcosGomes-p1
89c4af4ef99c12edb7fec30ade6eba0b47412856
[ "Apache-2.0" ]
null
null
null
app/model/entity/estado.py
UniversidadeDeVassouras/labproghiper-2020.1-JoaoMarcosGomes-p1
89c4af4ef99c12edb7fec30ade6eba0b47412856
[ "Apache-2.0" ]
null
null
null
app/model/entity/estado.py
UniversidadeDeVassouras/labproghiper-2020.1-JoaoMarcosGomes-p1
89c4af4ef99c12edb7fec30ade6eba0b47412856
[ "Apache-2.0" ]
null
null
null
class Estado: def __init__(self, id, nome, sigla, iconeEstado, listaNoticias): self._id = id self._nome = nome self._sigla = sigla self._iconeEstado = iconeEstado self._listaNoticias = listaNoticias def getId(self): return self._id def getNome(self): return self._nome def getSigla(self): return self._sigla def getIcone(self): return self._iconeEstado def getNewsList(self): return self._listaNoticias
28.166667
68
0.631164
6712b0c1992f2e64bd0747fa79bc19611460e17b
309
py
Python
libnd4j/include/graph/generated/nd4j/graph/UIEventSubtype.py
mjlorenzo305/deeplearning4j
a1fcc5f19f0f637e83252b00982b3f12b401f679
[ "Apache-2.0" ]
13,006
2015-02-13T18:35:31.000Z
2022-03-18T12:11:44.000Z
libnd4j/include/graph/generated/nd4j/graph/UIEventSubtype.py
pxiuqin/deeplearning4j
e11ddf3c24d355b43d36431687b807c8561aaae4
[ "Apache-2.0" ]
5,319
2015-02-13T08:21:46.000Z
2019-06-12T14:56:50.000Z
libnd4j/include/graph/generated/nd4j/graph/UIEventSubtype.py
pxiuqin/deeplearning4j
e11ddf3c24d355b43d36431687b807c8561aaae4
[ "Apache-2.0" ]
4,719
2015-02-13T22:48:55.000Z
2022-03-22T07:25:36.000Z
# automatically generated by the FlatBuffers compiler, do not modify # namespace: graph class UIEventSubtype(object): NONE = 0 EVALUATION = 1 LOSS = 2 LEARNING_RATE = 3 TUNING_METRIC = 4 PERFORMANCE = 5 PROFILING = 6 FEATURE_LABEL = 7 PREDICTION = 8 USER_CUSTOM = 9
18.176471
68
0.660194
1041ae63887f91aa36973f8cde9f756e689327f9
9,383
py
Python
examples/ui.py
Slater-Victoroff/pyjaco
89c4e3c46399c5023b0e160005d855a01241c58a
[ "MIT" ]
38
2015-01-01T18:08:59.000Z
2022-02-18T08:57:27.000Z
examples/ui.py
dusty-phillips/pyjaco
066895ae38d1828498e529c1875cb88df6cbc54d
[ "MIT" ]
1
2020-07-15T13:30:32.000Z
2020-07-15T13:30:32.000Z
examples/ui.py
Slater-Victoroff/pyjaco
89c4e3c46399c5023b0e160005d855a01241c58a
[ "MIT" ]
12
2016-03-07T09:30:49.000Z
2021-09-05T20:38:47.000Z
import inspect import pyjaco from pyjaco.decorator import JSVar @JSVar("items") def get_toolbar(): items = [ {"text":'File', "menu": [ {"text": 'Open...'}, {"text": 'Save...'}, '-', {"text": 'Close'} ]}, {"text":'Edit', "menu": [ {'text': 'Undo'}, {'text': 'Redo'}, '-', {'text': 'Copy'}, '-', {'text': 'Delete selected objects'}, '-', {'text': 'Options'}, ]}, {"text":'View', "menu": [ {'text': 'Zoom best fit'}, {'text': 'Zoom region'}, {'text': 'Zoom in'}, {'text': 'Zoom out'}, '-', {'text': 'Fullscreen mode'}, '-', {'text': 'Scene properties'}, ]}, {"text":'Problem', "menu": [ {'text': 'Operate on nodes'}, {'text': 'Operate on edges'}, {'text': 'Operate on labels'}, {'text': 'Postprocessor'}, "-", {'text': 'Add'}, "-", {'text': 'Select region'}, {'text': 'Transform'}, '-', {'text': 'Local Values'}, {'text': 'Surface Integrals'}, {'text': 'Volume Integrals'}, {'text': 'Select by marker'}, ]}, {"text":'Tools', "menu": [ {'text': 'Chart'}, "-", {'text': 'Script editor'}, {'text': 'Run script...'}, {'text': 'Run command...'}, '-', {'text': 'Report...'}, {'text': 'Create video...'}, ]}, {"text":'Help', "menu": ( {'text': 'Help', 'handler': menu_help}, '-', {'text': 'About Mesh Editor', 'handler': menu_about}, )}, ] Toolbar({"renderTo": 'mesh-editor', "items": items}) items = [ { "icon": 'http://www.extjs.com/deploy/dev/examples/menu/list-items.gif', "cls": 'x-btn-icon', "handler": toolbar_mesh1, "tooltip": '<b>Draw Mesh I</b><br/>Show an example mesh' }, { "icon": 'http://www.extjs.com/deploy/dev/examples/menu/list-items.gif', "cls": 'x-btn-icon', "handler": toolbar_mesh2, "tooltip": '<b>Draw Mesh II</b><br/>Show an example mesh' }, { "icon": 'http://www.extjs.com/deploy/dev/examples/menu/list-items.gif', "cls": 'x-btn-icon', "handler": toolbar_mesh3, "tooltip": '<b>Draw Mesh III</b><br/>Show an example mesh' }, ] Toolbar({"renderTo": 'mesh-editor', "items": items}) @JSVar("items") def get_panel(): items = { "renderTo": 'mesh-editor', "width": '200px', "title": 'Mesh', "html": "<canvas id='canvas' width='200' height='200'></canvas>", "collapsible": true } p = Panel(items) return p def toolbar_mesh1(b, e): canvas = Canvas('canvas') canvas.fillStyle = 'rgb(255, 255, 255)' canvas.fillRect(0, 0, 200, 200) canvas.fillStyle = 'rgb(29, 65, 119)' canvas.fillText("Mesh I", 80, 10) canvas.strokeStyle = 'rgb(0, 255, 0)' canvas.beginPath() canvas.moveTo(10, 10) canvas.lineTo(20, 50) canvas.lineTo(50, 20) canvas.lineTo(100, 100) canvas.lineTo(10, 10) canvas.stroke() def toolbar_mesh2(b, e): canvas = Canvas('canvas') canvas.fillStyle = 'rgb(255, 255, 255)' canvas.fillRect(0, 0, 200, 200) canvas.fillStyle = 'rgb(29, 65, 119)' canvas.fillText("Mesh II", 80, 10) canvas.strokeStyle = 'rgb(255, 0, 0)' canvas.beginPath() canvas.moveTo(100, 100) canvas.lineTo(200, 50) canvas.lineTo(50, 20) canvas.lineTo(100, 100) canvas.lineTo(100, 10) canvas.stroke() def toolbar_mesh3(b, e): canvas = Canvas('canvas') canvas.fillStyle = 'rgb(255, 255, 255)' canvas.fillRect(0, 0, 200, 200) canvas.fillStyle = 'rgb(29, 65, 119)' canvas.fillText("Mesh III", 80, 10) canvas.strokeStyle = 'rgb(0, 0, 255)' canvas.beginPath() canvas.moveTo(50, 50) canvas.lineTo(100, 180) canvas.lineTo(20, 180) canvas.lineTo(20, 100) canvas.lineTo(50, 50) canvas.stroke() def menu_about(e, t): info_box(js("About"), js("FEMhub Mesh Editor, (c) 2010 hp-FEM group at UNR")) @JSVar("items") def menu_help(e, t): items = { "activeTab": 2, "width": 600, "height": 250, "plain": True, "defaults": {"autoScroll": True}, "items":[{ "title": 'Introduction', "html": "This is the mesh editor.<p/><br/>Browse the tabs for more help." },{ "title": 'Mesh', "html": "Create the mesh by adding points to the <b>canvas</b>." },{ "title": 'Developing', "html": "Documentation:<br/><a href='http://www.extjs.com/deploy/dev/docs/'>ExtJS</a><br/><a href='http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html'>HTML5 Canvas</a>" },{ "title": 'About', "html": "Developed by the <a href='http://hpfem.org/'>hp-FEM group</a> at UNR." }] } tabs2 = TabPanel(items) items = { "renderTo": 'mesh-editor-help', "layout": 'fit', "width": 500, "height": 300, "title": "Help", "items": tabs2 } w = Window(items) w.show() @JSVar("Ext") def initialize(): Ext.get(document.body).update("<div id='mesh-editor'></div><div id='mesh-editor-help'></div>") Ext.QuickTips.init() get_toolbar() get_panel() ######################################################################### # End of the section that works both on the desktop and in JS. # JS wrappers for Ext: class ExtObject(object): @JSVar("self._obj") def __init__(self, args): self._obj = _new(eval(js("Ext." + self.__class__.__name__)), js(args)) @JSVar("self._obj") def _js_(self): return self._obj class Window(ExtObject): @JSVar("self._obj") def show(self): self._obj.show() class Panel(ExtObject): pass class TabPanel(ExtObject): pass class Toolbar(ExtObject): pass @JSVar("Ext") def info_box(title, msg): Ext.MessageBox.show({ "title": title, "msg": msg, "buttons": Ext.MessageBox.OK, "animEl": 'mb9', "icon": Ext.MessageBox.INFO, }) class Canvas(object): @JSVar("self._obj", "dom", "Ext", "G_vmlCanvasManager") def __init__(self, id): dom = Ext.getDom(js(id)) if js(Ext.isIE): # This is needed for IE to emulate the canvas element: G_vmlCanvasManager.initElement(dom) self._obj = dom.getContext('2d') self._obj.clearRect(0, 0, 200, 200) @JSVar("self._obj") def fillRect(self, x1, y1, w, h): self._obj.fillStyle = js(self.fillStyle) self._obj.fillRect(js(x1), js(y1), js(w), js(h)) @JSVar("self._obj") def fillText(self, text, x, y): self._obj.fillStyle = js(self.fillStyle) self._obj.fillText(js(text), js(x), js(y)) @JSVar("self._obj") def beginPath(self): self._obj.strokeStyle = js(self.strokeStyle) self._obj.beginPath() @JSVar("self._obj") def moveTo(self, x, y): self._obj.moveTo(js(x), js(y)) @JSVar("self._obj") def lineTo(self, x, y): self._obj.lineTo(js(x), js(y)) @JSVar("self._obj") def stroke(self): self._obj.stroke() ################################################## # Main code that translates the above to JS def main(): funcs = [ ExtObject, Window, Panel, TabPanel, Toolbar, info_box, Canvas, menu_about, menu_help, get_toolbar, get_panel, toolbar_mesh1, toolbar_mesh2, toolbar_mesh3, initialize, ] source = "" for f in funcs: source += inspect.getsource(f) + "\n" js = pyjaco.compile_string(source) print """\ <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <!--[if IE]><script type="text/javascript" src="http://explorercanvas.googlecode.com/svn/trunk/excanvas.js"></script><![endif]--> <link rel="stylesheet" type="text/css" href="http://www.extjs.com/deploy/dev/resources/css/ext-all.css"> <script type="text/javascript" src="http://www.extjs.com/deploy/dev/adapter/ext/ext-base.js"></script> <script type="text/javascript" src="http://www.extjs.com/deploy/dev/ext-all.js"></script> <script language="JavaScript" src="../py-builtins.js"></script> <title id="page-title">Title</title> <script type="text/javascript"> function _new(cls, args) { return new cls(args); } %s Ext.onReady(initialize); </script> </head> <body></body> </html>""" % (js) if __name__ == "__main__": main()
30.267742
217
0.496217
6cd946b1e06bd7961e17e15bdae4beb6950578aa
1,346
py
Python
examples/compensated-temperature.py
iohe/bme280-python
d59fb744ef64a2c74fa24ea67ee8cda9f48d7b3b
[ "MIT" ]
44
2019-06-25T00:03:30.000Z
2022-03-25T03:04:44.000Z
examples/compensated-temperature.py
iohe/bme280-python
d59fb744ef64a2c74fa24ea67ee8cda9f48d7b3b
[ "MIT" ]
17
2019-07-24T10:57:06.000Z
2022-02-13T10:28:22.000Z
examples/compensated-temperature.py
iohe/bme280-python
d59fb744ef64a2c74fa24ea67ee8cda9f48d7b3b
[ "MIT" ]
18
2019-07-02T12:02:03.000Z
2021-11-12T07:40:34.000Z
#!/usr/bin/env python import time from bme280 import BME280 from subprocess import PIPE, Popen try: from smbus2 import SMBus except ImportError: from smbus import SMBus print("""compensated-temperature.py - Use the CPU temperature to compensate temperature readings from the BME280 sensor. Method adapted from Initial State's Enviro pHAT review: https://medium.com/@InitialState/tutorial-review-enviro-phat-for-raspberry-pi-4cd6d8c63441 Press Ctrl+C to exit! """) # Initialise the BME280 bus = SMBus(1) bme280 = BME280(i2c_dev=bus) # Gets the CPU temperature in degrees C def get_cpu_temperature(): process = Popen(['vcgencmd', 'measure_temp'], stdout=PIPE) output, _error = process.communicate() return float(output[output.index('=') + 1:output.rindex("'")]) factor = 0.6 # Smaller numbers adjust temp down, vice versa smooth_size = 10 # Dampens jitter due to rapid CPU temp changes cpu_temps = [] while True: cpu_temp = get_cpu_temperature() cpu_temps.append(cpu_temp) if len(cpu_temps) > smooth_size: cpu_temps = cpu_temps[1:] smoothed_cpu_temp = sum(cpu_temps) / float(len(cpu_temps)) raw_temp = bme280.get_temperature() comp_temp = raw_temp - ((smoothed_cpu_temp - raw_temp) / factor) print("Compensated temperature: {:05.2f} *C".format(comp_temp)) time.sleep(1.0)
27.469388
98
0.726597
f881d9dba639cc00c4ad1626a8bfd92e7a0e3b1e
946
py
Python
hesiod/cfg/cfgparser.py
lykius/hesiod
091ba1b06cfa870133415fc1df6efdd8e50a2cfe
[ "MIT" ]
19
2020-12-11T15:40:55.000Z
2022-01-17T16:55:13.000Z
hesiod/cfg/cfgparser.py
lykius/hesiod
091ba1b06cfa870133415fc1df6efdd8e50a2cfe
[ "MIT" ]
null
null
null
hesiod/cfg/cfgparser.py
lykius/hesiod
091ba1b06cfa870133415fc1df6efdd8e50a2cfe
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from pathlib import Path from typing import Any, Dict, List CFG_T = Dict[str, Any] class ConfigParser(ABC): @staticmethod @abstractmethod def get_managed_extensions() -> List[str]: """Get the file extensions managed by the parser. Returns: List of the managed extensions. """ @staticmethod @abstractmethod def read_cfg_file(cfg_file: Path) -> CFG_T: """Read config from a file using a specific protocol. Args: cfg_file: The path to the file to be read. Returns: The config read from the given file. """ @staticmethod @abstractmethod def write_cfg(cfg: CFG_T, cfg_file: Path) -> None: """Write config into the given file using a specific protocol. Args: cfg: The config to be saved. cfg_file: The path to the output file. """
24.25641
70
0.613108
ff2b2dac98f6bd2f3067a75c60815ad64324a8e4
8,461
py
Python
premise/utils.py
tngTUDOR/premise
f3ab48b590afaefe6ef431846561e934cac35de9
[ "BSD-3-Clause" ]
null
null
null
premise/utils.py
tngTUDOR/premise
f3ab48b590afaefe6ef431846561e934cac35de9
[ "BSD-3-Clause" ]
null
null
null
premise/utils.py
tngTUDOR/premise
f3ab48b590afaefe6ef431846561e934cac35de9
[ "BSD-3-Clause" ]
null
null
null
from . import DATA_DIR import csv import pandas as pd from .export import * import numpy as np from wurst import searching as ws CO2_FUELS = DATA_DIR / "fuel_co2_emission_factor.txt" LHV_FUELS = DATA_DIR / "fuels_lower_heating_value.txt" CLINKER_RATIO_ECOINVENT_36 = DATA_DIR / "cement" / "clinker_ratio_ecoinvent_36.csv" CLINKER_RATIO_ECOINVENT_35 = DATA_DIR / "cement" / "clinker_ratio_ecoinvent_35.csv" CLINKER_RATIO_REMIND = DATA_DIR / "cement" / "clinker_ratios.csv" STEEL_RECYCLING_SHARES = DATA_DIR / "steel" / "steel_recycling_shares.csv" REMIND_TO_FUELS = DATA_DIR / "steel" / "remind_fuels_correspondance.txt" EFFICIENCY_RATIO_SOLAR_PV = DATA_DIR / "renewables" / "efficiency_solar_PV.csv" def eidb_label(model, scenario, year): return "ecoinvent_" + model + "_" + scenario + "_" + str(year) def get_correspondance_remind_to_fuels(): """ Return a dictionary with REMIND fuels as keys and ecoinvent activity names and reference products as values. :return: dict :rtype: dict """ d = {} with open(REMIND_TO_FUELS) as f: r = csv.reader(f, delimiter=";") for row in r: d[row[0]] = {"fuel name": row[1], "activity name": row[2], "reference product": row[3]} return d def get_fuel_co2_emission_factors(): """ Return a dictionary with fuel names as keys and, as values: * CO_2 emission factor, in kg CO2 per MJ of lower heating value * share of biogenic CO2 Source: https://www.plateformeco2.ch/portal/documents/10279/16917/IPCC+(2006),%20Guidelines+for+National+Greenhouse+Gas+Inventories.pdf/a3838a98-5ad6-4da5-82f3-c9430007a158 :return: dict """ d = {} with open(CO2_FUELS) as f: r = csv.reader(f, delimiter=";") for row in r: d[row[0]] = {"co2": float(row[1]), "bio_share": float(row[2])} return d def get_lower_heating_values(): """ Loads a csv file into a dictionary. This dictionary contains lower heating values for a number of fuel types. Mostly taken from: https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html :return: dictionary that contains lower heating values :rtype: dict """ with open(LHV_FUELS) as f: d = dict(filter(None, csv.reader(f, delimiter=";"))) d = {k: float(v) for k, v in d.items()} return d def get_efficiency_ratio_solar_PV(year, power): """ Return a dictionary with years as keys and efficiency ratios as values :return: dict """ df = pd.read_csv( EFFICIENCY_RATIO_SOLAR_PV) return df.groupby(["power", "year"]) \ .mean()["value"] \ .to_xarray() \ .interp(year=year, power=power, kwargs={"fill_value": "extrapolate"}) def get_clinker_ratio_ecoinvent(version): """ Return a dictionary with (cement names, location) as keys and clinker-to-cement ratios as values, as found in ecoinvent. :return: dict """ if version == 3.5: fp = CLINKER_RATIO_ECOINVENT_35 else: fp = CLINKER_RATIO_ECOINVENT_36 with open(fp) as f: d = {} for val in csv.reader(f): d[(val[0], val[1])] = float(val[2]) return d def get_clinker_ratio_remind(year): """ Return an array with the average clinker-to-cement ratio per year and per region, as given by REMIND. :return: xarray :return: """ df = pd.read_csv( CLINKER_RATIO_REMIND) return df.groupby(["region", "year"]) \ .mean()["value"] \ .to_xarray() \ .interp(year=year) def get_steel_recycling_rates(year): """ Return an array with the average shares for primary (Basic oxygen furnace) and secondary (Electric furnace) steel production per year and per region, as given by: https://www.bir.org/publications/facts-figures/download/643/175/36?method=view for 2015-2019, further linearly extrapolated to 2020, 2030, 2040 and 2050. :return: xarray :return: """ df = pd.read_csv( STEEL_RECYCLING_SHARES, sep=";") return df.groupby(["region", "year", "type"]) \ .mean()[["share", "world_share"]] \ .to_xarray() \ .interp(year=year) def rev_index(inds): return {v: k for k, v in inds.items()} def create_codes_and_names_of_A_matrix(db): """ Create a dictionary a tuple (activity name, reference product, unit, location) as key, and its code as value. :return: a dictionary to map indices to activities :rtype: dict """ return { ( i["name"], i["reference product"], i["unit"], i["location"], ): i["code"] for i in db } def add_modified_tags(original_db, scenarios): """ Add a `modified` label to any activity that is new Also add a `modified` label to any exchange that has been added or that has a different value than the source database. :return: """ # Class `Export` to which the original database is passed exp = Export(original_db) # Collect a dictionary of activities {row/col index in A matrix: code} rev_ind_A = rev_index(create_codes_index_of_A_matrix(original_db)) # Retrieve list of coordinates [activity, activity, value] coords_A = exp.create_A_matrix_coordinates() # Turn it into a dictionary {(code of receiving activity, code of supplying activity): value} original = {(rev_ind_A[x[0]], rev_ind_A[x[1]]): x[2] for x in coords_A} # Collect a dictionary with activities' names and correponding codes codes_names = create_codes_and_names_of_A_matrix(original_db) # Collect list of substances rev_ind_B = rev_index(create_codes_index_of_B_matrix()) # Retrieve list of coordinates of the B matrix [activity index, substance index, value] coords_B = exp.create_B_matrix_coordinates() # Turn it into a dictionary {(activity code, substance code): value} original.update({(rev_ind_A[x[0]], rev_ind_B[x[1]]): x[2] for x in coords_B}) for s, scenario in enumerate(scenarios): print(f"Looking for differences in database {s + 1} ...") rev_ind_A = rev_index(create_codes_index_of_A_matrix(scenario["database"])) exp = Export(scenario["database"], scenario["model"], scenario["pathway"], scenario["year"], "") coords_A = exp.create_A_matrix_coordinates() new = {(rev_ind_A[x[0]], rev_ind_A[x[1]]): x[2] for x in coords_A} rev_ind_B = rev_index(create_codes_index_of_B_matrix()) coords_B = exp.create_B_matrix_coordinates() new.update({(rev_ind_A[x[0]], rev_ind_B[x[1]]): x[2] for x in coords_B}) list_new = set(i[0] for i in original.keys()) ^ set(i[0] for i in new.keys()) ds = (d for d in scenario["database"] if d["code"] in list_new) # Tag new activities for d in ds: d["modified"] = True # List codes that belong to activities that contain modified exchanges list_modified = (i[0] for i in new if i in original and new[i] != original[i]) # # Filter for activities that have modified exchanges for ds in ws.get_many( scenario["database"], ws.either(*[ws.equals("code", c) for c in set(list_modified)]) ): # Loop through biosphere exchanges and check if # the exchange also exists in the original database # and if it has the same value # if any of these two conditions is False, we tag the exchange excs = (exc for exc in ds["exchanges"] if exc["type"] == "biosphere") for exc in excs: if (ds["code"], exc["input"][0]) not in original or new[(ds["code"], exc["input"][0])] != original[(ds["code"], exc["input"][0])]: exc["modified"] = True # Same thing for technosphere exchanges, # except that we first need to look up the provider's code first excs = (exc for exc in ds["exchanges"] if exc["type"] == "technosphere") for exc in excs: if (exc["name"], exc["product"], exc["unit"], exc["location"]) in codes_names: exc_code = codes_names[(exc["name"], exc["product"], exc["unit"], exc["location"])] if new[(ds["code"], exc_code)] != original[(ds["code"], exc_code)]: exc["modified"] = True else: exc["modified"] = True return scenarios
38.811927
176
0.636686
1f69aa963cadc64c8f585a48e7a84a427e986649
6,486
py
Python
meta_agents/algos/trpo.py
zhanpenghe/meta_agents
b3b4df70bab1ebe621d48eebb4c886b85c1d8323
[ "MIT" ]
3
2020-09-26T16:17:52.000Z
2021-04-23T08:56:04.000Z
meta_agents/algos/trpo.py
zhanpenghe/meta_agents
b3b4df70bab1ebe621d48eebb4c886b85c1d8323
[ "MIT" ]
1
2019-09-03T19:57:40.000Z
2019-09-03T19:57:40.000Z
meta_agents/algos/trpo.py
zhanpenghe/meta_agents
b3b4df70bab1ebe621d48eebb4c886b85c1d8323
[ "MIT" ]
1
2020-12-09T03:06:48.000Z
2020-12-09T03:06:48.000Z
from collections import OrderedDict from dowel import logger, tabular from garage.np.algos import BatchPolopt import torch from torch.distributions.kl import kl_divergence from torch.nn.utils.convert_parameters import (vector_to_parameters, parameters_to_vector) from meta_agents.samplers.single_task_sampler import SingleTaskSampler from meta_agents.torch_utils import np_to_torch, detach_distribution from meta_agents.samplers.base import SampleProcessor def surrogate_loss(samples, policy, old_dist=None): assert isinstance(samples, dict) assert 'observations' in samples.keys() assert 'actions' in samples.keys() assert 'advantages' in samples.keys() observations = samples['observations'] actions = samples['actions'] advantages = samples['advantages'] # forward pass of policy dist = policy(observations) # currently lets just detach the logprob # as old pi if old_dist is None: old_dist = detach_distribution(dist) kl = torch.mean(kl_divergence(dist, old_dist)) log_likeli_ratio = dist.log_prob(actions) - old_dist.log_prob(actions) ratio = torch.exp(log_likeli_ratio) surr_loss = -torch.mean(ratio * advantages, dim=0) return surr_loss, old_dist, kl def conjugate_gradient(f_Ax, b, cg_iters=10, residual_tol=1e-10): p = b.clone().detach() r = b.clone().detach() x = torch.zeros_like(b).float() rdotr = torch.dot(r, r) for i in range(cg_iters): z = f_Ax(p).detach() v = rdotr / torch.dot(p, z) x += v * p r -= v * z newrdotr = torch.dot(r, r) mu = newrdotr / rdotr p = r + mu * p rdotr = newrdotr if rdotr.item() < residual_tol: break return x.detach() class TRPO(BatchPolopt): def __init__( self, policy, baseline, discount=.99, max_path_length=200, n_samples=1, # This is super weird and I don't think this # need to exist in on policy. ): super().__init__( policy=policy, baseline=baseline, discount=discount, max_path_length=max_path_length, n_samples=n_samples,) # We only use our own sampler for consistency between single task # and meta learning. self.sampler_cls = SingleTaskSampler self.preprocessor = SampleProcessor(baseline=self.baseline) def train(self, runner, batch_size): last_return = None for epoch in runner.step_epochs(): for cycle in range(self.n_samples): runner.step_path = runner.obtain_samples( runner.step_itr, batch_size) last_return = self.train_once(runner.step_itr, runner.step_path) runner.step_itr += 1 return last_return def train_once(self, itr, paths): samples_data = self.preprocessor.process_samples(paths) samples = np_to_torch(samples_data) self._trpo_step(samples, surrogate_loss, kl_divergence) def process_samples(self, itr, paths): # We will never use a `process_samples` method under a algo # since we have preprocessor in meta_agents raise NotImplementedError def _trpo_step(self, samples, loss_func, constraint, cg_damping=1e-2, ls_backtrack_ratio=.5, cg_iters=10, max_ls_steps=10, max_kl=1e-2,): old_loss, old_dist, kl_before = surrogate_loss(samples, self.policy) grads = torch.autograd.grad(old_loss, self.policy.parameters()) grads = parameters_to_vector(grads) hessian_vector_product = self.hessian_vector_product(samples, damping=cg_damping) step_direction = conjugate_gradient(hessian_vector_product, grads, cg_iters) # Compute the Lagrange multiplier shs = 0.5 * step_direction.dot(hessian_vector_product(step_direction)) lagrange_multiplier = torch.sqrt(max_kl / shs) grad_step = step_direction * lagrange_multiplier old_params = parameters_to_vector(self.policy.parameters()) # Start line search step_size = 1. backtrack_step = 0 for _ in range(max_ls_steps): vector_to_parameters(old_params - step_size * grad_step, self.policy.parameters()) loss, _, kl = surrogate_loss(samples, self.policy, old_dist=old_dist) improve = loss - old_loss if (improve.item() < 0.0) and (kl.item() < max_kl): break step_size *= ls_backtrack_ratio backtrack_step += 1 else: vector_to_parameters(old_params, self.policy.parameters()) logger.log('Failed to update parameters') tabular.record('backtrack-iters', backtrack_step) tabular.record('loss-before', old_loss.item()) tabular.record('loss-after', loss.item()) tabular.record('kl-before', kl_before.item()) tabular.record('kl-after', kl.item()) def hessian_vector_product(self, samples_data, damping=1e-2): """Hessian-vector product, based on the Perlmutter method.""" def _product(vector): kl = self.kl_divergence(samples_data) grads = torch.autograd.grad(kl, self.policy.parameters(), create_graph=True) flat_grad_kl = parameters_to_vector(grads) grad_kl_v = torch.dot(flat_grad_kl, vector) grad2s = torch.autograd.grad(grad_kl_v, self.policy.parameters()) flat_grad2_kl = parameters_to_vector(grad2s) return flat_grad2_kl + damping * vector return _product def kl_divergence(self, samples, old_dist=None): loss, old_dist_, kl = surrogate_loss(samples, self.policy) if old_dist is None: old_dist = old_dist_ inputs = samples['observations'] new_dist = self.policy(inputs) kl = torch.mean(kl_divergence(new_dist, old_dist)) return kl def adapt_policy(self, loss, step_size=1., create_graph=True): grads = torch.autograd.grad(loss, self.policy.parameters(), create_graph=create_graph) updated_params = OrderedDict() for (name, param), grad in zip(self.policy.named_parameters(), grads): updated_params[name] = param - step_size * grad return updated_params
35.637363
89
0.63984
8ea785cdecb2c63662a52ae6e5188cf60b5a24da
21,604
py
Python
weaver/processes/wps3_process.py
crim-ca/weaver
107fec5e19f20b77061b9405a764da911d2db8a2
[ "Apache-2.0" ]
16
2019-03-18T12:23:05.000Z
2022-02-25T00:39:11.000Z
weaver/processes/wps3_process.py
crim-ca/weaver
107fec5e19f20b77061b9405a764da911d2db8a2
[ "Apache-2.0" ]
346
2019-03-06T21:05:04.000Z
2022-03-31T13:38:37.000Z
weaver/processes/wps3_process.py
crim-ca/weaver
107fec5e19f20b77061b9405a764da911d2db8a2
[ "Apache-2.0" ]
5
2019-03-15T01:38:28.000Z
2021-11-11T15:38:43.000Z
import logging import warnings from copy import deepcopy from time import sleep from typing import TYPE_CHECKING from pyramid.httpexceptions import ( HTTPConflict, HTTPForbidden, HTTPInternalServerError, HTTPNotFound, HTTPOk, HTTPUnauthorized ) from pyramid.settings import asbool from weaver import status from weaver.exceptions import PackageExecutionError from weaver.execute import EXECUTE_MODE_ASYNC, EXECUTE_RESPONSE_DOCUMENT, EXECUTE_TRANSMISSION_MODE_REFERENCE from weaver.formats import CONTENT_TYPE_APP_FORM, CONTENT_TYPE_APP_JSON from weaver.processes import opensearch from weaver.processes.constants import OPENSEARCH_LOCAL_FILE_SCHEME from weaver.processes.sources import get_data_source_from_url, retrieve_data_source_url from weaver.processes.utils import map_progress from weaver.processes.wps_process_base import WpsProcessInterface from weaver.utils import ( fetch_file, get_any_id, get_any_message, get_any_value, get_job_log_msg, get_log_monitor_msg, pass_http_error, request_extra ) from weaver.visibility import VISIBILITY_PUBLIC from weaver.warning import MissingParameterWarning from weaver.wps.utils import map_wps_output_location from weaver.wps_restapi import swagger_definitions as sd if TYPE_CHECKING: from typing import List, Union from pywps.app import WPSRequest from weaver.typedefs import JSON, UpdateStatusPartialFunction LOGGER = logging.getLogger(__name__) REMOTE_JOB_PROGRESS_PROVIDER = 1 REMOTE_JOB_PROGRESS_PREPARE = 2 REMOTE_JOB_PROGRESS_DEPLOY = 3 REMOTE_JOB_PROGRESS_VISIBLE = 4 REMOTE_JOB_PROGRESS_READY = 5 REMOTE_JOB_PROGRESS_EXECUTION = 9 REMOTE_JOB_PROGRESS_MONITORING = 10 REMOTE_JOB_PROGRESS_FETCH_OUT = 90 REMOTE_JOB_PROGRESS_COMPLETED = 100 class Wps3Process(WpsProcessInterface): def __init__(self, step_payload, # type: JSON joborder, # type: JSON process, # type: str request, # type: WPSRequest update_status, # type: UpdateStatusPartialFunction ): super(Wps3Process, self).__init__(request) self.provider = None # overridden if data source properly resolved self.update_status = lambda _message, _progress, _status: update_status( self.provider, _message, _progress, _status) self.provider, self.url, self.deploy_body = self.resolve_data_source(step_payload, joborder) self.process = process def resolve_data_source(self, step_payload, joborder): try: # Presume that all EOImage given as input can be resolved to the same ADES # So if we got multiple inputs or multiple values for an input, we take the first one as reference eodata_inputs = opensearch.get_eo_images_ids_from_payload(step_payload) data_url = "" # data_source will be set to the default ADES if no EOImages (anything but `None`) if eodata_inputs: step_payload = opensearch.alter_payload_after_query(step_payload) value = joborder[eodata_inputs[0]] if isinstance(value, list): value = value[0] # Use the first value to determine the data source data_url = value["location"] reason = "(ADES based on {0})".format(data_url) else: reason = "(No EOImage -> Default ADES)" data_source = get_data_source_from_url(data_url) deploy_body = step_payload url = retrieve_data_source_url(data_source) except (IndexError, KeyError) as exc: raise PackageExecutionError("Failed to save package outputs. [{!r}]".format(exc)) self.provider = data_source # fix immediately for `update_status` self.update_status("{provider} is selected {reason}.".format(provider=data_source, reason=reason), REMOTE_JOB_PROGRESS_PROVIDER, status.STATUS_RUNNING) return data_source, url, deploy_body def get_user_auth_header(self): # TODO: find a better way to generalize this to Magpie credentials? if not asbool(self.settings.get("ades.use_auth_token", True)): return {} ades_usr = self.settings.get("ades.username", None) ades_pwd = self.settings.get("ades.password", None) ades_url = self.settings.get("ades.wso2_hostname", None) ades_client = self.settings.get("ades.wso2_client_id", None) ades_secret = self.settings.get("ades.wso2_client_secret", None) access_token = None if ades_usr and ades_pwd and ades_url and ades_client and ades_secret: ades_body = { "grant_type": "password", "client_id": ades_client, "client_secret": ades_secret, "username": ades_usr, "password": ades_pwd, "scope": "openid", } ades_headers = {"Content-Type": CONTENT_TYPE_APP_FORM, "Accept": CONTENT_TYPE_APP_JSON} ades_access_token_url = "{}/oauth2/token".format(ades_url) cred_resp = request_extra("post", ades_access_token_url, data=ades_body, headers=ades_headers, settings=self.settings) cred_resp.raise_for_status() if CONTENT_TYPE_APP_JSON not in cred_resp.headers.get("Content-Type"): raise HTTPUnauthorized("Cannot retrieve valid access token using credential or ADES configurations.") access_token = cred_resp.json().get("access_token", None) if not access_token: warnings.warn("Could not retrieve valid access token although response is expected to contain one.", MissingParameterWarning) else: warnings.warn( "Could not retrieve at least one of required login parameters: " "[ades.username, ades.password, ades.wso2_hostname, ades.wso2_client_id, ades.wso2_client_secret]", MissingParameterWarning ) return {"Authorization": "Bearer {}".format(access_token) if access_token else None} def is_deployed(self): return self.describe_process() is not None def is_visible(self): # type: (...) -> Union[bool, None] """ Gets the process visibility. :returns: True/False correspondingly for public/private if visibility is retrievable, False if authorized access but process cannot be found, None if forbidden access. """ LOGGER.debug("Get process WPS visibility request for [%s]", self.process) response = self.make_request(method="GET", url=self.url + sd.process_visibility_service.path.format(process_id=self.process), retry=False, status_code_mock=HTTPUnauthorized.code) if response.status_code in (HTTPUnauthorized.code, HTTPForbidden.code): return None if response.status_code == HTTPNotFound.code: return False if response.status_code == HTTPOk.code: json_body = response.json() # FIXME: support for Spacebel, always returns dummy visibility response, enforce deploy with `False` if json_body.get("message") == "magic!" or json_body.get("type") == "ok" or json_body.get("code") == 4: return False return json_body.get("value") == VISIBILITY_PUBLIC response.raise_for_status() def set_visibility(self, visibility): self.update_status("Updating process visibility on remote ADES.", REMOTE_JOB_PROGRESS_VISIBLE, status.STATUS_RUNNING) path = self.url + sd.process_visibility_service.path.format(process_id=self.process) user_headers = deepcopy(self.headers) user_headers.update(self.get_user_auth_header()) LOGGER.debug("Update process WPS visibility request for [%s] at [%s]", self.process, path) response = self.make_request(method="PUT", url=path, json={"value": visibility}, retry=False, status_code_mock=HTTPOk.code) response.raise_for_status() def describe_process(self): path = self.url + sd.process_service.path.format(process_id=self.process) LOGGER.debug("Describe process WPS request for [%s] at [%s]", self.process, path) response = self.make_request(method="GET", url=path, retry=False, status_code_mock=HTTPOk.code) if response.status_code == HTTPOk.code: # FIXME: Remove patch for Geomatys ADES (Missing process return a 200 InvalidParameterValue error !) if response.content.lower().find("InvalidParameterValue") >= 0: return None return response.json() elif response.status_code == HTTPNotFound.code: return None # FIXME: Remove patch for Spacebel ADES (Missing process return a 500 error) elif response.status_code == HTTPInternalServerError.code: return None response.raise_for_status() def deploy(self): self.update_status("Deploying process on remote ADES.", REMOTE_JOB_PROGRESS_DEPLOY, status.STATUS_RUNNING) path = self.url + sd.processes_service.path user_headers = deepcopy(self.headers) user_headers.update(self.get_user_auth_header()) LOGGER.debug("Deploy process WPS request for [%s] at [%s]", self.process, path) response = self.make_request(method="POST", url=path, json=self.deploy_body, retry=True, status_code_mock=HTTPOk.code) response.raise_for_status() def prepare(self): visible = self.is_visible() if not visible: # includes private visibility and non-existing cases if visible is None: LOGGER.info("Process [%s] access is unauthorized on [%s] - deploying as admin.", self.process, self.url) elif visible is False: LOGGER.info("Process [%s] is not deployed on [%s] - deploying.", self.process, self.url) # TODO: Maybe always redeploy? What about cases of outdated deployed process? try: self.deploy() except Exception as exc: # FIXME: support for Spacebel, avoid conflict error incorrectly handled, remove 500 when fixed pass_http_error(exc, [HTTPConflict, HTTPInternalServerError]) if visible: LOGGER.info("Process [%s] already deployed and visible on [%s] - executing.", self.process, self.url) else: LOGGER.info("Process [%s] enforced to public visibility.", self.process) try: self.set_visibility(visibility=VISIBILITY_PUBLIC) # TODO: support for Spacebel, remove when visibility route properly implemented on ADES except Exception as exc: pass_http_error(exc, HTTPNotFound) def execute(self, workflow_inputs, out_dir, expected_outputs): self.update_status("Preparing process on remote ADES.", REMOTE_JOB_PROGRESS_PREPARE, status.STATUS_RUNNING) self.prepare() self.update_status("Process ready for execute request on remote ADES.", REMOTE_JOB_PROGRESS_READY, status.STATUS_RUNNING) LOGGER.debug("Execute process WPS request for [%s]", self.process) execute_body_inputs = self.stage_job_inputs(workflow_inputs) execute_body_outputs = [ {"id": output, "transmissionMode": EXECUTE_TRANSMISSION_MODE_REFERENCE} for output in expected_outputs ] self.update_status("Executing job on remote ADES.", REMOTE_JOB_PROGRESS_EXECUTION, status.STATUS_RUNNING) execute_body = { "mode": EXECUTE_MODE_ASYNC, "response": EXECUTE_RESPONSE_DOCUMENT, "inputs": execute_body_inputs, "outputs": execute_body_outputs } request_url = self.url + sd.process_jobs_service.path.format(process_id=self.process) response = self.make_request(method="POST", url=request_url, json=execute_body, retry=True) if response.status_code != 201: raise Exception("Was expecting a 201 status code from the execute request : {0}".format(request_url)) job_status_uri = response.headers["Location"] job_id = self.monitor(job_status_uri) self.update_status("Fetching job outputs from remote ADES.", REMOTE_JOB_PROGRESS_FETCH_OUT, status.STATUS_RUNNING) results = self.get_job_results(job_id) self.stage_job_results(results, expected_outputs, out_dir) self.update_status("Execution on remote ADES completed.", REMOTE_JOB_PROGRESS_COMPLETED, status.STATUS_SUCCEEDED) def monitor(self, job_status_uri): job_status = self.get_job_status(job_status_uri) job_status_value = status.map_status(job_status["status"]) job_id = job_status["jobID"] self.update_status("Monitoring job on remote ADES : {0}".format(job_status_uri), REMOTE_JOB_PROGRESS_MONITORING, status.STATUS_RUNNING) while job_status_value not in status.JOB_STATUS_CATEGORIES[status.JOB_STATUS_CATEGORY_FINISHED]: sleep(5) job_status = self.get_job_status(job_status_uri) job_status_value = status.map_status(job_status["status"]) LOGGER.debug(get_log_monitor_msg(job_id, job_status_value, job_status.get("percentCompleted", 0), get_any_message(job_status), job_status.get("statusLocation"))) self.update_status(get_job_log_msg(status=job_status_value, message=get_any_message(job_status), progress=job_status.get("percentCompleted", 0), duration=job_status.get("duration", None)), # get if available map_progress(job_status.get("percentCompleted", 0), REMOTE_JOB_PROGRESS_MONITORING, REMOTE_JOB_PROGRESS_FETCH_OUT), status.STATUS_RUNNING) if job_status_value != status.STATUS_SUCCEEDED: LOGGER.debug(get_log_monitor_msg(job_id, job_status_value, job_status.get("percentCompleted", 0), get_any_message(job_status), job_status.get("statusLocation"))) raise Exception(job_status) return job_id def get_job_status(self, job_status_uri, retry=True): response = self.make_request(method="GET", url=job_status_uri, retry=True, status_code_mock=HTTPNotFound.code) # Retry on 404 since job may not be fully ready if retry and response.status_code == HTTPNotFound.code: sleep(5) return self.get_job_status(job_status_uri, retry=False) response.raise_for_status() job_status = response.json() # TODO Remove patch for Geomatys not conforming to the status schema # - jobID is missing # - handled by 'map_status': status are upper cases and succeeded process are indicated as successful job_id = job_status_uri.split("/")[-1] if "jobID" not in job_status: job_status["jobID"] = job_id job_status["status"] = status.map_status(job_status["status"]) return job_status def get_job_results(self, job_id): # type: (str) -> List[JSON] """ Obtains produced output results from successful job status ID. """ # use results endpoint instead of '/outputs' to ensure support with other result_url = self.url + sd.process_results_service.path.format(process_id=self.process, job_id=job_id) response = self.make_request(method="GET", url=result_url, retry=True) response.raise_for_status() contents = response.json() # backward compatibility for ADES that returns output IDs nested under 'outputs' if "outputs" in contents: # ensure that we don't incorrectly pick a specific output ID named 'outputs' maybe_outputs = contents["outputs"] if isinstance(maybe_outputs, dict) and get_any_id(maybe_outputs) is None: contents = maybe_outputs # backward compatibility for ADES that returns list of outputs nested under 'outputs' # (i.e.: as Weaver-specific '/outputs' endpoint) elif isinstance(maybe_outputs, list) and all(get_any_id(out) is not None for out in maybe_outputs): contents = maybe_outputs # rebuild the expected (old) list format for calling method if isinstance(contents, dict) and all(get_any_value(out) is not None for out in contents.values()): outputs = [] for out_id, out_val in contents.items(): out_val.update({"id": out_id}) outputs.append(out_val) contents = outputs return contents def stage_job_results(self, results, expected_outputs, out_dir): for result in results: res_id = get_any_id(result) # CWL expect the output file to be written matching definition in 'expected_outputs', # but this definition could be a glob pattern to match multiple file. # Therefore, we cannot rely on a specific name from it. if res_id in expected_outputs: # plan ahead when list of multiple output values could be supported result_values = get_any_value(result) if not isinstance(result_values, list): result_values = [result_values] cwl_out_dir = out_dir.rstrip("/") for value in result_values: src_name = value.split("/")[-1] dst_path = "/".join([cwl_out_dir, src_name]) # performance improvement: # Bypass download if file can be resolved as local resource (already fetched or same server). # Because CWL expects the file to be in specified 'out_dir', make a link for it to be found # even though the file is stored in the full job output location instead (already staged by step). map_path = map_wps_output_location(value, self.settings) as_link = False if map_path: LOGGER.info("Detected result [%s] from [%s] as local reference to this instance. " "Skipping fetch and using local copy in output destination: [%s]", res_id, value, dst_path) LOGGER.debug("Mapped result [%s] to local reference: [%s]", value, map_path) src_path = map_path as_link = True else: LOGGER.info("Fetching result [%s] from [%s] to CWL output destination: [%s]", res_id, value, dst_path) src_path = value fetch_file(src_path, cwl_out_dir, settings=self.settings, link=as_link) def stage_job_inputs(self, workflow_inputs): execute_body_inputs = [] for workflow_input_key, workflow_input_value in workflow_inputs.items(): if not isinstance(workflow_input_value, list): workflow_input_value = [workflow_input_value] for workflow_input_value_item in workflow_input_value: if isinstance(workflow_input_value_item, dict) and "location" in workflow_input_value_item: location = workflow_input_value_item["location"] execute_body_inputs.append({"id": workflow_input_key, "href": location}) else: execute_body_inputs.append({"id": workflow_input_key, "data": workflow_input_value_item}) for exec_input in execute_body_inputs: if "href" in exec_input and isinstance(exec_input["href"], str): LOGGER.debug("Original input location [%s] : [%s]", exec_input["id"], exec_input["href"]) if exec_input["href"].startswith("{0}://".format(OPENSEARCH_LOCAL_FILE_SCHEME)): exec_input["href"] = "file{0}".format(exec_input["href"][len(OPENSEARCH_LOCAL_FILE_SCHEME):]) LOGGER.debug("OpenSearch intermediate input [%s] : [%s]", exec_input["id"], exec_input["href"]) elif exec_input["href"].startswith("file://"): exec_input["href"] = self.host_file(exec_input["href"]) LOGGER.debug("Hosting intermediate input [%s] : [%s]", exec_input["id"], exec_input["href"]) return execute_body_inputs
51.808153
120
0.625162
452809f16a5391640b496831a5805e9ac2f05de3
57,966
py
Python
sdk/textanalytics/azure-ai-textanalytics/tests/test_batch.py
cicovica/azure-sdk-for-python
cd8bed878f8a11d081358bf67400fb01031582b6
[ "MIT" ]
null
null
null
sdk/textanalytics/azure-ai-textanalytics/tests/test_batch.py
cicovica/azure-sdk-for-python
cd8bed878f8a11d081358bf67400fb01031582b6
[ "MIT" ]
null
null
null
sdk/textanalytics/azure-ai-textanalytics/tests/test_batch.py
cicovica/azure-sdk-for-python
cd8bed878f8a11d081358bf67400fb01031582b6
[ "MIT" ]
null
null
null
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import pytest from azure.core.exceptions import HttpResponseError, ClientAuthenticationError import platform from azure.core.exceptions import HttpResponseError from azure.ai.textanalytics import ( VERSION, TextAnalyticsClient, DetectLanguageInput, TextDocumentInput, TextAnalyticsApiKeyCredential ) from testcase import TextAnalyticsTest, GlobalTextAnalyticsAccountPreparer class TestBatchTextAnalytics(TextAnalyticsTest): @pytest.mark.live_test_only def test_active_directory_auth(self): token = self.generate_oauth_token() endpoint = self.get_oauth_endpoint() text_analytics = TextAnalyticsClient(endpoint, token) docs = [{"id": "1", "text": "I should take my cat to the veterinarian."}, {"id": "2", "text": "Este es un document escrito en Español."}, {"id": "3", "text": "猫は幸せ"}, {"id": "4", "text": "Fahrt nach Stuttgart und dann zum Hotel zu Fu."}] response = text_analytics.detect_language(docs) @GlobalTextAnalyticsAccountPreparer() def test_empty_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): with self.assertRaises(TypeError): text_analytics = TextAnalyticsClient(text_analytics_account, "") @GlobalTextAnalyticsAccountPreparer() def test_bad_type_for_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): with self.assertRaises(TypeError): text_analytics = TextAnalyticsClient(text_analytics_account, []) @GlobalTextAnalyticsAccountPreparer() def test_none_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): with self.assertRaises(ValueError): text_analytics = TextAnalyticsClient(text_analytics_account, None) @GlobalTextAnalyticsAccountPreparer() def test_bad_input_to_method(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(TypeError): response = text_analytics.detect_language("hello world") @GlobalTextAnalyticsAccountPreparer() def test_successful_detect_language(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "text": "I should take my cat to the veterinarian."}, {"id": "2", "text": "Este es un document escrito en Español."}, {"id": "3", "text": "猫は幸せ"}, {"id": "4", "text": "Fahrt nach Stuttgart und dann zum Hotel zu Fu."}] response = text_analytics.detect_language(docs, show_stats=True) self.assertEqual(response[0].primary_language.name, "English") self.assertEqual(response[1].primary_language.name, "Spanish") self.assertEqual(response[2].primary_language.name, "Japanese") self.assertEqual(response[3].primary_language.name, "German") self.assertEqual(response[0].primary_language.iso6391_name, "en") self.assertEqual(response[1].primary_language.iso6391_name, "es") self.assertEqual(response[2].primary_language.iso6391_name, "ja") self.assertEqual(response[3].primary_language.iso6391_name, "de") for doc in response: self.assertIsNotNone(doc.id) self.assertIsNotNone(doc.statistics) self.assertIsNotNone(doc.primary_language.score) @GlobalTextAnalyticsAccountPreparer() def test_some_errors_detect_language(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "country_hint": "United States", "text": "I should take my cat to the veterinarian."}, {"id": "2", "text": "Este es un document escrito en Español."}, {"id": "3", "text": ""}, {"id": "4", "text": "Fahrt nach Stuttgart und dann zum Hotel zu Fu."}] response = text_analytics.detect_language(docs) self.assertTrue(response[0].is_error) self.assertFalse(response[1].is_error) self.assertTrue(response[2].is_error) self.assertFalse(response[3].is_error) @GlobalTextAnalyticsAccountPreparer() def test_all_errors_detect_language(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) text = "" for _ in range(5121): text += "x" docs = [{"id": "1", "text": ""}, {"id": "2", "text": ""}, {"id": "3", "text": ""}, {"id": "4", "text": text}] response = text_analytics.detect_language(docs) for resp in response: self.assertTrue(resp.is_error) @GlobalTextAnalyticsAccountPreparer() def test_language_detection_empty_credential_class(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.detect_language( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_language_detection_bad_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("xxxxxxxxxxxx")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.detect_language( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_language_detection_bad_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(HttpResponseError): response = text_analytics.detect_language( inputs=["Microsoft was founded by Bill Gates."], model_version="old" ) @GlobalTextAnalyticsAccountPreparer() def test_successful_recognize_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975."}, {"id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen el 4 de abril de 1975."}, {"id": "3", "language": "de", "text": "Microsoft wurde am 4. April 1975 von Bill Gates und Paul Allen gegründet."}] response = text_analytics.recognize_entities(docs, show_stats=True) for doc in response: self.assertEqual(len(doc.entities), 4) self.assertIsNotNone(doc.id) self.assertIsNotNone(doc.statistics) for entity in doc.entities: self.assertIsNotNone(entity.text) self.assertIsNotNone(entity.category) self.assertIsNotNone(entity.offset) self.assertIsNotNone(entity.length) self.assertIsNotNone(entity.score) @GlobalTextAnalyticsAccountPreparer() def test_some_errors_recognize_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975."}, {"id": "2", "language": "Spanish", "text": "Hola"}, {"id": "3", "language": "de", "text": ""}] response = text_analytics.recognize_entities(docs) self.assertFalse(response[0].is_error) self.assertTrue(response[1].is_error) self.assertTrue(response[2].is_error) @GlobalTextAnalyticsAccountPreparer() def test_all_errors_recognize_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "text": ""}, {"id": "2", "language": "Spanish", "text": "Hola"}, {"id": "3", "language": "de", "text": ""}] response = text_analytics.recognize_entities(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) self.assertTrue(response[2].is_error) @GlobalTextAnalyticsAccountPreparer() def test_entity_recognition_empty_credential_class(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.recognize_entities( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_entity_recognition_bad_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("xxxxxxxxxxxx")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.recognize_entities( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_entity_recognition_bad_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(HttpResponseError): response = text_analytics.recognize_entities( inputs=["Microsoft was founded by Bill Gates."], model_version="old" ) @GlobalTextAnalyticsAccountPreparer() def test_successful_recognize_pii_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "text": "My SSN is 555-55-5555."}, {"id": "2", "text": "Your ABA number - 111000025 - is the first 9 digits in the lower left hand corner of your personal check."}, {"id": "3", "text": "Is 998.214.865-68 your Brazilian CPF number?"}] response = text_analytics.recognize_pii_entities(docs, show_stats=True) self.assertEqual(response[0].entities[0].text, "555-55-5555") self.assertEqual(response[0].entities[0].category, "U.S. Social Security Number (SSN)") self.assertEqual(response[1].entities[0].text, "111000025") # self.assertEqual(response[1].entities[0].category, "ABA Routing Number") # Service is currently returning PhoneNumber here self.assertEqual(response[2].entities[0].text, "998.214.865-68") self.assertEqual(response[2].entities[0].category, "Brazil CPF Number") for doc in response: self.assertIsNotNone(doc.id) self.assertIsNotNone(doc.statistics) for entity in doc.entities: self.assertIsNotNone(entity.text) self.assertIsNotNone(entity.category) self.assertIsNotNone(entity.offset) self.assertIsNotNone(entity.length) self.assertIsNotNone(entity.score) @GlobalTextAnalyticsAccountPreparer() def test_some_errors_recognize_pii_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "es", "text": "hola"}, {"id": "2", "text": ""}, {"id": "3", "text": "Is 998.214.865-68 your Brazilian CPF number?"}] response = text_analytics.recognize_pii_entities(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) self.assertFalse(response[2].is_error) @GlobalTextAnalyticsAccountPreparer() def test_all_errors_recognize_pii_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "es", "text": "hola"}, {"id": "2", "text": ""}] response = text_analytics.recognize_pii_entities(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) @GlobalTextAnalyticsAccountPreparer() def test_pii_entity_recognition_empty_credential_class(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.recognize_pii_entities( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_pii_entity_recognition_bad_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("xxxxxxxxxxxx")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.recognize_pii_entities( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_pii_entity_recognition_bad_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(HttpResponseError): response = text_analytics.recognize_pii_entities( inputs=["Microsoft was founded by Bill Gates."], model_version="old" ) @GlobalTextAnalyticsAccountPreparer() def test_successful_recognize_linked_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen"}, {"id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen"}] response = text_analytics.recognize_linked_entities(docs, show_stats=True) for doc in response: self.assertEqual(len(doc.entities), 3) self.assertIsNotNone(doc.id) self.assertIsNotNone(doc.statistics) for entity in doc.entities: self.assertIsNotNone(entity.name) self.assertIsNotNone(entity.matches) self.assertIsNotNone(entity.language) self.assertIsNotNone(entity.data_source_entity_id) self.assertIsNotNone(entity.url) self.assertIsNotNone(entity.data_source) @GlobalTextAnalyticsAccountPreparer() def test_some_errors_recognize_linked_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "text": ""}, {"id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen"}] response = text_analytics.recognize_linked_entities(docs) self.assertTrue(response[0].is_error) self.assertFalse(response[1].is_error) @GlobalTextAnalyticsAccountPreparer() def test_all_errors_recognize_linked_entities(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "text": ""}, {"id": "2", "language": "Spanish", "text": "Microsoft fue fundado por Bill Gates y Paul Allen"}] response = text_analytics.recognize_linked_entities(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) @GlobalTextAnalyticsAccountPreparer() def test_linked_entity_recognition_empty_credential_class(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.recognize_linked_entities( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_linked_entity_recognition_bad_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("xxxxxxxxxxxx")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.recognize_linked_entities( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_linked_entity_recognition_bad_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(HttpResponseError): response = text_analytics.recognize_linked_entities( inputs=["Microsoft was founded by Bill Gates."], model_version="old" ) @GlobalTextAnalyticsAccountPreparer() def test_successful_extract_key_phrases(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen"}, {"id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen"}] response = text_analytics.extract_key_phrases(docs, show_stats=True) for phrases in response: self.assertIn("Paul Allen", phrases.key_phrases) self.assertIn("Bill Gates", phrases.key_phrases) self.assertIn("Microsoft", phrases.key_phrases) self.assertIsNotNone(phrases.id) self.assertIsNotNone(phrases.statistics) @GlobalTextAnalyticsAccountPreparer() def test_some_errors_extract_key_phrases(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "English", "text": "Microsoft was founded by Bill Gates and Paul Allen"}, {"id": "2", "language": "es", "text": "Microsoft fue fundado por Bill Gates y Paul Allen"}] response = text_analytics.extract_key_phrases(docs) self.assertTrue(response[0].is_error) self.assertFalse(response[1].is_error) @GlobalTextAnalyticsAccountPreparer() def test_all_errors_extract_key_phrases(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "English", "text": "Microsoft was founded by Bill Gates and Paul Allen"}, {"id": "2", "language": "es", "text": ""}] response = text_analytics.extract_key_phrases(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) @GlobalTextAnalyticsAccountPreparer() def test_key_phrases_empty_credential_class(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.extract_key_phrases( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_key_phrases_bad_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("xxxxxxxxxxxx")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.extract_key_phrases( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_key_phrases_bad_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(HttpResponseError): response = text_analytics.extract_key_phrases( inputs=["Microsoft was founded by Bill Gates."], model_version="old" ) @GlobalTextAnalyticsAccountPreparer() def test_successful_analyze_sentiment(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen."}, {"id": "2", "language": "en", "text": "I did not like the hotel we stayed it. It was too expensive."}, {"id": "3", "language": "en", "text": "The restaurant had really good food. I recommend you try it."}] response = text_analytics.analyze_sentiment(docs, show_stats=True) self.assertEqual(response[0].sentiment, "neutral") self.assertEqual(response[1].sentiment, "negative") self.assertEqual(response[2].sentiment, "positive") for doc in response: self.assertIsNotNone(doc.id) self.assertIsNotNone(doc.statistics) self.assertIsNotNone(doc.confidence_scores) self.assertIsNotNone(doc.sentences) @GlobalTextAnalyticsAccountPreparer() def test_some_errors_analyze_sentiment(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": ""}, {"id": "2", "language": "english", "text": "I did not like the hotel we stayed it. It was too expensive."}, {"id": "3", "language": "en", "text": "The restaurant had really good food. I recommend you try it."}] response = text_analytics.analyze_sentiment(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) @GlobalTextAnalyticsAccountPreparer() def test_all_errors_analyze_sentiment(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "language": "en", "text": ""}, {"id": "2", "language": "english", "text": "I did not like the hotel we stayed it. It was too expensive."}, {"id": "3", "language": "en", "text": ""}] response = text_analytics.analyze_sentiment(docs) self.assertTrue(response[0].is_error) self.assertTrue(response[1].is_error) self.assertTrue(response[2].is_error) @GlobalTextAnalyticsAccountPreparer() def test_analyze_sentiment_empty_credential_class(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.analyze_sentiment( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_analyze_sentiment_bad_credentials(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential("xxxxxxxxxxxx")) with self.assertRaises(ClientAuthenticationError): response = text_analytics.analyze_sentiment( ["This is written in English."] ) @GlobalTextAnalyticsAccountPreparer() def test_analyze_sentiment_bad_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) with self.assertRaises(HttpResponseError): response = text_analytics.analyze_sentiment( inputs=["Microsoft was founded by Bill Gates."], model_version="old" ) @GlobalTextAnalyticsAccountPreparer() def test_validate_input_string(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [ u"I should take my cat to the veterinarian.", u"Este es un document escrito en Español.", u"猫は幸せ", u"Fahrt nach Stuttgart und dann zum Hotel zu Fu.", u"" ] response = text_analytics.detect_language(docs) self.assertEqual(response[0].primary_language.name, "English") self.assertEqual(response[1].primary_language.name, "Spanish") self.assertEqual(response[2].primary_language.name, "Japanese") self.assertEqual(response[3].primary_language.name, "German") self.assertTrue(response[4].is_error) @GlobalTextAnalyticsAccountPreparer() def test_validate_language_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [ DetectLanguageInput(id="1", text="I should take my cat to the veterinarian."), DetectLanguageInput(id="2", text="Este es un document escrito en Español."), DetectLanguageInput(id="3", text="猫は幸せ"), DetectLanguageInput(id="4", text="Fahrt nach Stuttgart und dann zum Hotel zu Fu.") ] response = text_analytics.detect_language(docs) self.assertEqual(response[0].primary_language.name, "English") self.assertEqual(response[1].primary_language.name, "Spanish") self.assertEqual(response[2].primary_language.name, "Japanese") self.assertEqual(response[3].primary_language.name, "German") @GlobalTextAnalyticsAccountPreparer() def test_validate_multilanguage_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [ TextDocumentInput(id="1", text="Microsoft was founded by Bill Gates and Paul Allen."), TextDocumentInput(id="2", text="I did not like the hotel we stayed it. It was too expensive."), TextDocumentInput(id="3", text="The restaurant had really good food. I recommend you try it."), ] response = text_analytics.analyze_sentiment(docs) self.assertEqual(response[0].sentiment, "neutral") self.assertEqual(response[1].sentiment, "negative") self.assertEqual(response[2].sentiment, "positive") @GlobalTextAnalyticsAccountPreparer() def test_mixing_inputs(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [ {"id": "1", "text": "Microsoft was founded by Bill Gates and Paul Allen."}, TextDocumentInput(id="2", text="I did not like the hotel we stayed it. It was too expensive."), u"You cannot mix string input with the above inputs" ] with self.assertRaises(TypeError): response = text_analytics.analyze_sentiment(docs) @GlobalTextAnalyticsAccountPreparer() def test_out_of_order_ids(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "22", "text": ""}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] response = text_analytics.analyze_sentiment(docs) in_order = ["56", "0", "22", "19", "1"] for idx, resp in enumerate(response): self.assertEqual(resp.id, in_order[idx]) @GlobalTextAnalyticsAccountPreparer() def test_show_stats_and_model_version(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(response): self.assertIsNotNone(response.model_version) self.assertIsNotNone(response.raw_response) self.assertEqual(response.statistics.document_count, 5) self.assertEqual(response.statistics.transaction_count, 4) self.assertEqual(response.statistics.valid_document_count, 4) self.assertEqual(response.statistics.erroneous_document_count, 1) docs = [{"id": "56", "text": ":)"}, {"id": "0", "text": ":("}, {"id": "22", "text": ""}, {"id": "19", "text": ":P"}, {"id": "1", "text": ":D"}] response = text_analytics.analyze_sentiment( docs, show_stats=True, model_version="latest", response_hook=callback ) @GlobalTextAnalyticsAccountPreparer() def test_batch_size_over_limit(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [u"hello world"] * 1050 with self.assertRaises(HttpResponseError): response = text_analytics.detect_language(docs) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_country_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed it. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = text_analytics.detect_language(docs, country_hint="CA", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_dont_use_country_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed it. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = text_analytics.detect_language(docs, country_hint="", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_per_item_dont_use_country_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 2) country_str = "\"countryHint\": \"US\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 1) docs = [{"id": "1", "country_hint": "", "text": "I will go to the park."}, {"id": "2", "country_hint": "", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.detect_language(docs, response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_country_hint_and_obj_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [ DetectLanguageInput(id="1", text="I should take my cat to the veterinarian."), DetectLanguageInput(id="2", text="Este es un document escrito en Español."), DetectLanguageInput(id="3", text="猫は幸せ"), ] response = text_analytics.detect_language(docs, country_hint="CA", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_country_hint_and_dict_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.detect_language(docs, country_hint="CA", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_country_hint_and_obj_per_item_hints(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 2) country_str = "\"countryHint\": \"US\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 1) docs = [ DetectLanguageInput(id="1", text="I should take my cat to the veterinarian.", country_hint="CA"), DetectLanguageInput(id="4", text="Este es un document escrito en Español.", country_hint="CA"), DetectLanguageInput(id="3", text="猫は幸せ"), ] response = text_analytics.detect_language(docs, country_hint="US", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_country_hint_and_dict_per_item_hints(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 1) country_str = "\"countryHint\": \"US\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 2) docs = [{"id": "1", "country_hint": "US", "text": "I will go to the park."}, {"id": "2", "country_hint": "US", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.detect_language(docs, country_hint="CA", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_language_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"fr\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 3) docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed it. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = text_analytics.analyze_sentiment(docs, language="fr", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_dont_use_language_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 3) docs = [ u"This was the best day of my life.", u"I did not like the hotel we stayed it. It was too expensive.", u"The restaurant was not as good as I hoped." ] response = text_analytics.analyze_sentiment(docs, language="", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_per_item_dont_use_language_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 2) language_str = "\"language\": \"en\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 1) docs = [{"id": "1", "language": "", "text": "I will go to the park."}, {"id": "2", "language": "", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.analyze_sentiment(docs, response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_language_hint_and_obj_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"de\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 3) docs = [ TextDocumentInput(id="1", text="I should take my cat to the veterinarian."), TextDocumentInput(id="4", text="Este es un document escrito en Español."), TextDocumentInput(id="3", text="猫は幸せ"), ] response = text_analytics.analyze_sentiment(docs, language="de", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_language_hint_and_dict_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"es\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 3) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.analyze_sentiment(docs, language="es", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_language_hint_and_obj_per_item_hints(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"es\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 2) language_str = "\"language\": \"en\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 1) docs = [ TextDocumentInput(id="1", text="I should take my cat to the veterinarian.", language="es"), TextDocumentInput(id="2", text="Este es un document escrito en Español.", language="es"), TextDocumentInput(id="3", text="猫は幸せ"), ] response = text_analytics.analyze_sentiment(docs, language="en", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_whole_batch_language_hint_and_dict_per_item_hints(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): language_str = "\"language\": \"es\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 2) language_str = "\"language\": \"en\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 1) docs = [{"id": "1", "language": "es", "text": "I will go to the park."}, {"id": "2", "language": "es", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.analyze_sentiment(docs, language="en", response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_bad_document_input(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = "This is the wrong type" with self.assertRaises(TypeError): response = text_analytics.analyze_sentiment(docs) @GlobalTextAnalyticsAccountPreparer() def test_client_passed_default_country_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key), default_country_hint="CA") def callback(resp): country_str = "\"countryHint\": \"CA\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) def callback_2(resp): country_str = "\"countryHint\": \"DE\"" country = resp.http_request.body.count(country_str) self.assertEqual(country, 3) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.detect_language(docs, response_hook=callback) response = text_analytics.detect_language(docs, country_hint="DE", response_hook=callback_2) response = text_analytics.detect_language(docs, response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_client_passed_default_language_hint(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key), default_language="es") def callback(resp): language_str = "\"language\": \"es\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 3) def callback_2(resp): language_str = "\"language\": \"en\"" language = resp.http_request.body.count(language_str) self.assertEqual(language, 3) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.analyze_sentiment(docs, response_hook=callback) response = text_analytics.analyze_sentiment(docs, language="en", response_hook=callback_2) response = text_analytics.analyze_sentiment(docs, response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_rotate_subscription_key(self, resource_group, location, text_analytics_account, text_analytics_account_key): credential = TextAnalyticsApiKeyCredential(text_analytics_account_key) text_analytics = TextAnalyticsClient(text_analytics_account, credential) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.analyze_sentiment(docs) self.assertIsNotNone(response) credential.update_key("xxx") # Make authentication fail with self.assertRaises(ClientAuthenticationError): response = text_analytics.analyze_sentiment(docs) credential.update_key(text_analytics_account_key) # Authenticate successfully again response = text_analytics.analyze_sentiment(docs) self.assertIsNotNone(response) @GlobalTextAnalyticsAccountPreparer() def test_user_agent(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(resp): self.assertIn("azsdk-python-azure-ai-textanalytics/{} Python/{} ({})".format( VERSION, platform.python_version(), platform.platform()), resp.http_request.headers["User-Agent"] ) docs = [{"id": "1", "text": "I will go to the park."}, {"id": "2", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": "The restaurant had really good food."}] response = text_analytics.analyze_sentiment(docs, response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_document_attribute_error(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) docs = [{"id": "1", "text": ""}] response = text_analytics.analyze_sentiment(docs) # Attributes on DocumentError self.assertTrue(response[0].is_error) self.assertEqual(response[0].id, "1") self.assertIsNotNone(response[0].error) # Result attribute not on DocumentError, custom error message try: sentiment = response[0].sentiment except AttributeError as custom_error: self.assertEqual( custom_error.args[0], '\'DocumentError\' object has no attribute \'sentiment\'. ' 'The service was unable to process this document:\nDocument Id: 1\nError: ' 'invalidDocument - Document text is empty.\n' ) # Attribute not found on DocumentError or result obj, default behavior/message try: sentiment = response[0].attribute_not_on_result_or_error except AttributeError as default_behavior: self.assertEqual( default_behavior.args[0], '\'DocumentError\' object has no attribute \'attribute_not_on_result_or_error\'' ) @GlobalTextAnalyticsAccountPreparer() def test_text_analytics_error(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) text = "" for _ in range(5121): text += "x" docs = [{"id": "1", "text": ""}, {"id": "2", "language": "english", "text": "I did not like the hotel we stayed it."}, {"id": "3", "text": text}] # Bad model version try: result = text_analytics.analyze_sentiment(docs, model_version="bad") except HttpResponseError as err: self.assertEqual(err.error_code, "InvalidRequest") self.assertIsNotNone(err.message) # DocumentErrors doc_errors = text_analytics.analyze_sentiment(docs) self.assertEqual(doc_errors[0].error.code, "invalidDocument") self.assertIsNotNone(doc_errors[0].error.message) self.assertEqual(doc_errors[1].error.code, "unsupportedLanguageCode") self.assertIsNotNone(doc_errors[1].error.message) self.assertEqual(doc_errors[2].error.code, "invalidDocument") self.assertIsNotNone(doc_errors[2].error.message) # Missing input records docs = [] try: result = text_analytics.analyze_sentiment(docs) except HttpResponseError as err: self.assertEqual(err.error_code, "MissingInputRecords") self.assertIsNotNone(err.message) # Duplicate Ids docs = [{"id": "1", "text": "hello world"}, {"id": "1", "text": "I did not like the hotel we stayed it."}] try: result = text_analytics.analyze_sentiment(docs) except HttpResponseError as err: self.assertEqual(err.error_code, "InvalidDocument") self.assertIsNotNone(err.message) # Batch size over limit docs = [u"hello world"] * 1001 try: response = text_analytics.detect_language(docs) except HttpResponseError as err: self.assertEqual(err.error_code, "InvalidDocumentBatch") self.assertIsNotNone(err.message) # Service bug returns invalidDocument here. Uncomment after v3.0-preview.2 # docs = [{"id": "1", "country_hint": "United States", "text": "hello world"}] # # response = text_analytics.detect_language(docs) # self.assertEqual(response[0].error.code, "invalidCountryHint") # self.assertIsNotNone(response[0].error.message) @GlobalTextAnalyticsAccountPreparer() def test_text_analytics_country_hint_none(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) # service will eventually support this and we will not need to send "" for input == "none" documents = [{"id": "0", "country_hint": "none", "text": "This is written in English."}] documents2 = [DetectLanguageInput(id="1", country_hint="none", text="This is written in English.")] def callback(response): country_str = "\"countryHint\": \"\"" country = response.http_request.body.count(country_str) self.assertEqual(country, 1) # test dict result = text_analytics.detect_language(documents, response_hook=callback) # test DetectLanguageInput result2 = text_analytics.detect_language(documents2, response_hook=callback) # test per-operation result3 = text_analytics.detect_language(inputs=["this is written in english"], country_hint="none", response_hook=callback) # test client default new_client = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key), default_country_hint="none") result4 = new_client.detect_language(inputs=["this is written in english"], response_hook=callback) @GlobalTextAnalyticsAccountPreparer() def test_keyword_arguments(self, resource_group, location, text_analytics_account, text_analytics_account_key): text_analytics = TextAnalyticsClient(text_analytics_account, TextAnalyticsApiKeyCredential(text_analytics_account_key)) def callback(response): country_str = "\"countryHint\": \"ES\"" self.assertEqual(response.http_request.body.count(country_str), 1) self.assertIsNotNone(response.model_version) self.assertIsNotNone(response.statistics) def callback2(response): language_str = "\"language\": \"es\"" self.assertEqual(response.http_request.body.count(language_str), 1) self.assertIsNotNone(response.model_version) self.assertIsNotNone(response.statistics) def callback3(response): language_str = "\"language\": \"en\"" self.assertEqual(response.http_request.body.count(language_str), 1) self.assertIsNotNone(response.model_version) self.assertIsNotNone(response.statistics) res = text_analytics.detect_language( inputs=["this is written in english"], model_version="latest", show_stats=True, country_hint="ES", response_hook=callback ) res = text_analytics.recognize_entities( inputs=["Bill Gates is the CEO of Microsoft."], model_version="latest", show_stats=True, language="es", response_hook=callback2 ) res = text_analytics.recognize_linked_entities( inputs=["Bill Gates is the CEO of Microsoft."], model_version="latest", show_stats=True, language="es", response_hook=callback2 ) res = text_analytics.recognize_pii_entities( inputs=["Bill Gates is the CEO of Microsoft."], model_version="latest", show_stats=True, language="en", response_hook=callback3 ) res = text_analytics.analyze_sentiment( inputs=["Bill Gates is the CEO of Microsoft."], model_version="latest", show_stats=True, language="es", response_hook=callback2 )
52.553037
154
0.686747
73f902ac5e7eebc7b61c5dcbe4195003f461b6b3
9,190
py
Python
ga_printer.py
Tb7386/GA_Post-it_thermal_printer
8dabf33c337a96c7d40d0ba7e41eb884f14fb8b9
[ "MIT" ]
null
null
null
ga_printer.py
Tb7386/GA_Post-it_thermal_printer
8dabf33c337a96c7d40d0ba7e41eb884f14fb8b9
[ "MIT" ]
null
null
null
ga_printer.py
Tb7386/GA_Post-it_thermal_printer
8dabf33c337a96c7d40d0ba7e41eb884f14fb8b9
[ "MIT" ]
null
null
null
#Composition de la trame # | Header | Longueur de données | ?? | DATA | CRC8 | Fin de ligne | # | 51:78:XX:00 | 05 | 00 | 82:7f:7f:7e:82 | 60 | ff | # Header XX : # - bf ou a3 : Ecriture de 384 points en RAW # - a1 : Avancer le papier de DATA (ex: 01:00 avance de 1dp, 10:00 avance de 10dp) # Data (eg 82 -> 1000 0010) : # - bit[0] : 1 = Black, 0 = White # - bit[2-7] : Nombre de points from gattlib import GATTRequester, DiscoveryService from PIL import Image, ImageOps, ImageFont, ImageDraw from http.server import BaseHTTPRequestHandler, HTTPServer import time import crc8 import sys import argparse import textwrap parser = argparse.ArgumentParser(description="Print an text to a thermal printer") parser.add_argument("BTMAC", help="BT MAC address of printer (type FIND to scan BLE devices)") parser.add_argument("-t", "--text", type=str, help="Text to be printed") parser.add_argument("-p", "--port", type=str, help="HTTP port") parser.add_argument("-s", "--size", type=str, help="Font size") parser.add_argument("-d", "--device", type=str, help="Bluetooth Device (by default hci0)") args = parser.parse_args() # ------------------------------------------------------------------------------ # printer : Print text from command line or http post request # ------------------------------------------------------------------------------ def printer(text,size=50): req = bleConnect(args.BTMAC) print(text) if (req.is_connected()): printText(text, size,req) print ("Print end") req.disconnect() else: print("BLE connect error") return # ------------------------------------------------------------------------------ # imgFromString : Convert string to binary image # ------------------------------------------------------------------------------ def imgFromString(s, fontSize): # Font choice font = ImageFont.truetype("dejavu/DejaVuSansMono.ttf", fontSize) # Convert inline text to multiline s = textwrap.fill (s, width = int(384/font.getsize("1")[0])) # Get size of text size = font.getsize_multiline(s) # Fix height and width size_x = 384 #if size[0] > 384 else size[0] size_y = font.getsize_multiline(s)[1]#font.getsize(s)[1]*(s.count('\n')+1) # Create image img = Image.new("RGB", size=(size_x, size_y+10), color="white") # Draw text in image draw = ImageDraw.Draw(img) draw.text((0, 0), s, (0, 0, 0), font=font) # Convert RGB image to binary image img = ImageOps.invert(img.convert('L')) img = img.convert('1') # Save image to file #img.save('img.png') return img # ------------------------------------------------------------------------------ # binFromImg : Convert binary image to array # ------------------------------------------------------------------------------ def binFromImg(img): binImg=[] for line in range (0,img.size[1]): binImg.append(''.join(format(byte, '08b') for byte in img.tobytes()[int(line*(img.size[0]/8)):int((line*(img.size[0]/8))+img.size[0]/8)])) return binImg # ------------------------------------------------------------------------------ # dataCrc : Calcul hex CRC-8 # ------------------------------------------------------------------------------ def dataCrc(data): hash = crc8.crc8() hash.update(bytes.fromhex(data)) return str(hash.hexdigest()) # ------------------------------------------------------------------------------ # binCount : Convert binary image to array of '0' and '1' # ------------------------------------------------------------------------------ def binCount (binImg): trame=[] i=0 #read Image line by line for line in binImg: nb_zero=0 nb_one=0 trame.append('') # Read line char by char for char in line: # Bit '0' process if char == '0': # Bit '1' before if nb_one!=0: # Format '1' number to hex + 128 (First bit to print black) trame[i]+='{:02x}'.format(128+nb_one) nb_one=0 # Max number is 127 (First bit color + 127 max number = '0x7f') if nb_zero>126: trame[i]+='{:02x}'.format(nb_zero) nb_zero=0 nb_zero += 1 # Bit '1' process if char == '1': # Bit '0' before if nb_zero!=0: # Format '0' number to hex trame[i]+='{:02x}'.format(nb_zero) nb_zero=0 # Max number is 127 (First bit color + 127 max number = '0xff') if nb_one>126: trame[i]+='{:02x}'.format(128+nb_one) nb_one=0 nb_one += 1 # End of trame. If '1' or '0' before process if nb_zero!=0: trame[i]+='{:02x}'.format(nb_zero) elif nb_one!=0: trame[i]+='{:02x}'.format(128+nb_one) i+=1 return trame # ------------------------------------------------------------------------------ # bleConnect : Connect to printer mac # ------------------------------------------------------------------------------ def bleConnect(mac, device='hci0'): host = mac req = GATTRequester(host, False, device) req.connect(True) # Some config trame req.write_by_handle(0x09, bytes([1, 0])) time.sleep(0.02) req.write_by_handle(0x000e, bytes([1, 0])) time.sleep(0.02) req.write_by_handle(0x0011, bytes([2, 0])) time.sleep(0.02) req.exchange_mtu(83) time.sleep(0.02) req.write_cmd(0x0006, bytes([18, 81, 120, 168, 0, 1, 0, 0, 0, 255, 18, 81, 120, 163, 0, 1, 0, 0, 0, 255])) time.sleep(0.02) req.write_cmd(0x0006, bytes([18, 81, 120, 187, 0, 1, 0, 1, 7, 255])) time.sleep(0.02) req.write_cmd(0x0006, bytes([18, 81, 120, 163, 0, 1, 0, 0, 0, 255])) time.sleep(0.2) return req # ------------------------------------------------------------------------------ # printData : Print text # ------------------------------------------------------------------------------ def printText(text, size, req): data = binCount(binFromImg(imgFromString(text,size))) for dat in data: # Header of trame head = "5178bf00" # Format BT trame trame=head + '{:02x}'.format(len(bytes.fromhex(dat)),'x') + "00" + dat + dataCrc(dat) + "ff" print(trame) i = len(trame) # Pull 40 bytes trames while i > 0: if i > 40: req.write_cmd(0x06, bytes.fromhex(trame[len(trame)-i:len(trame)-i+40])) i -= 40 else: req.write_cmd(0x06, bytes.fromhex(trame[len(trame)-i:len(trame)])) i -= 40 time.sleep(0.01) # 90 dp moving forward paper forwardPaper(90,req) return # ------------------------------------------------------------------------------ # forwardPaper : Moving forward # ------------------------------------------------------------------------------ def forwardPaper(dp,req): head = "5178a100" data = '{:02x}'.format(dp) + '00' # Format BT trame trame=head + '{:02x}'.format(len(bytes.fromhex(data)),'x') + "00" + data + dataCrc(data) + "ff" req.write_cmd(0x06, bytes.fromhex(trame)) time.sleep(0.01) return # ------------------------------------------------------------------------------ # httpserver : Start HTTP server # ------------------------------------------------------------------------------ class S(BaseHTTPRequestHandler): def _set_response(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_POST(self): content_length = int(self.headers['Content-Length']) # <--- Gets the size of data post_data = self.rfile.read(content_length) # <--- Gets the data itself self._set_response() printer(post_data.decode('utf-8'),50 if not args.size else args.size) def httpserver(server_class=HTTPServer, handler_class=S, port=8080,): server_address = ('', port) httpd = server_class(server_address, handler_class) try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() # ------------------------------------------------------------------------------ # bleScan : Scan Bluetooth Low Energy devices # ------------------------------------------------------------------------------ def bleScan(device="hci0"): service = DiscoveryService(device) devices = service.discover(2) for address, name in devices.items(): print("name: {}, address: {}".format(name, address)) if __name__ == '__main__': if (args.BTMAC=="FIND"): bleScan(args.device if args.device else bleScan()) sys.exit() if not (args.text or args.port): print("ERROR: Please specfiy text with -t or http port server with -p argument") sys.exit(1) if args.text: printer(args.text, 50 if not args.size else args.size) if args.port: httpserver(port=int(args.port))
39.106383
146
0.484657
eaa780f42e408d1f104844df15583f70812f3421
2,648
py
Python
vcr/baselines/random-baseline/random_baseline.py
rlebras/mosaic-leaderboard-1
d36713ba59a6a28f6f5db5b09e40149a3349c78f
[ "Apache-2.0" ]
18
2019-07-12T09:06:40.000Z
2022-02-10T07:50:11.000Z
vcr/baselines/random-baseline/random_baseline.py
rlebras/mosaic-leaderboard-1
d36713ba59a6a28f6f5db5b09e40149a3349c78f
[ "Apache-2.0" ]
4
2019-08-30T21:39:04.000Z
2020-03-13T19:19:51.000Z
vcr/baselines/random-baseline/random_baseline.py
rlebras/mosaic-leaderboard-1
d36713ba59a6a28f6f5db5b09e40149a3349c78f
[ "Apache-2.0" ]
5
2019-08-05T18:47:36.000Z
2021-01-24T05:06:11.000Z
import argparse import json import os from typing import List import numpy as np # Parse the input file from JSONL to a list of dictionaries. def read_jsonl_lines(input_file: str) -> List[dict]: with open(input_file) as f: lines = f.readlines() return [json.loads(l.strip()) for l in lines] def rand_prob_vector(n=4): v = np.random.uniform(0, 100, size=n) v = v / np.sum(v) return v def main(input_dir, output_file): # Read the records from the test set. qa_test_records = read_jsonl_lines(os.path.join(input_dir, 'qa.jsonl')) qar_test_records = read_jsonl_lines(os.path.join(input_dir, 'qar.jsonl')) assert len(qa_test_records) == len(qar_test_records) # Make predictions for each example in the test set. rows = [] for qa, qar in zip(qa_test_records, qar_test_records): row = [qa['annot_id']] answer_probs = rand_prob_vector(len(qa['answer_choices'])) row.extend([str(v) for v in answer_probs]) for _ in answer_probs: row.extend([str(v) for v in rand_prob_vector(len(qar['rationale_choices']))]) rows.append(row) # Write the predictions to the output file. fields = [ "annot_id", "answer_0", "answer_1", "answer_2", "answer_3", "rationale_conditioned_on_a0_0", "rationale_conditioned_on_a0_1", "rationale_conditioned_on_a0_2", "rationale_conditioned_on_a0_3", "rationale_conditioned_on_a1_0", "rationale_conditioned_on_a1_1", "rationale_conditioned_on_a1_2", "rationale_conditioned_on_a1_3", "rationale_conditioned_on_a2_0", "rationale_conditioned_on_a2_1", "rationale_conditioned_on_a2_2", "rationale_conditioned_on_a2_3", "rationale_conditioned_on_a3_0", "rationale_conditioned_on_a3_1", "rationale_conditioned_on_a3_2", "rationale_conditioned_on_a3_3"] with open(output_file, "w") as f: f.write(",".join(fields)) f.write("\n") for row in rows: f.write(",".join(row)) f.write("\n") f.close() if __name__ == '__main__': parser = argparse.ArgumentParser( description='A random baseline.') parser.add_argument('--input-dir', type=str, required=True, help='Location of test data', default=None) parser.add_argument('--output-file', type=str, required=True, help='Location of predictions', default=None) args = parser.parse_args() print('====Input Arguments====') print(json.dumps(vars(args), indent=2, sort_keys=True)) print("=======================") main(args.input_dir, args.output_file)
34.842105
100
0.658988
cd08f2cdb5fcb184ed2fc4cd84d621c3fa58a8ea
2,031
py
Python
easy_user_input/easy_user_input.py
generic-user1/easy-user-input
ea293ac97848b036a3d48fb4e4ab8d9dece30553
[ "MIT" ]
null
null
null
easy_user_input/easy_user_input.py
generic-user1/easy-user-input
ea293ac97848b036a3d48fb4e4ab8d9dece30553
[ "MIT" ]
null
null
null
easy_user_input/easy_user_input.py
generic-user1/easy-user-input
ea293ac97848b036a3d48fb4e4ab8d9dece30553
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 #easy_user_input.easy_user_input - shortcut for easy_user_input.eui #this module maps every function from the 'easy_user_input.eui' #onto itself, allowing backwards compatibility with code using the longer name #without having to maintain multiple copies of the same file. #NOTE 1: this is a temporary feature to ease the transition into the new name #it will not be maintained and it will be removed in the next major version from typing import Tuple def inputYesNo(promptText: str = "Choose yes or no", default: bool = None): from easy_user_input.eui import inputYesNo from warnings import warn warn("easy_user_input.easy_user_input has been renamed to easy_user_input.eui and this shortcut will be removed in the future.") return inputYesNo(promptText, default) def inputChoice( choices:Tuple[str or Tuple[str, str]], promptText:str = "Please select an option", default: int = None ) -> int: from easy_user_input.eui import inputChoice from warnings import warn warn("easy_user_input.easy_user_input has been renamed to easy_user_input.eui and this shortcut will be removed in the future.") return inputChoice(choices,promptText,default) def inputStrictString(promptText: str, allowedChars: str = None, default: str or None = None) -> str: from easy_user_input.eui import inputStrictString from warnings import warn warn("easy_user_input.easy_user_input has been renamed to easy_user_input.eui and this shortcut will be removed in the future.") return inputStrictString(promptText, allowedChars, default) def inputPath( promptText: str = "Please input a valid path", existsBehavior: str = "reject", default: str or None = None ) -> str: from easy_user_input.eui import inputPath from warnings import warn warn("easy_user_input.easy_user_input has been renamed to easy_user_input.eui and this shortcut will be removed in the future.") return inputPath(promptText,existsBehavior,default)
44.152174
132
0.760709
cbfaafa5135febe520f8efd6f9a0c0a7ddb708ab
1,780
py
Python
instaclone/models.py
Lenus254/InstaClone
b008974bee486cd8ed5cc66e2dd67426f7545064
[ "MIT" ]
null
null
null
instaclone/models.py
Lenus254/InstaClone
b008974bee486cd8ed5cc66e2dd67426f7545064
[ "MIT" ]
null
null
null
instaclone/models.py
Lenus254/InstaClone
b008974bee486cd8ed5cc66e2dd67426f7545064
[ "MIT" ]
null
null
null
from email.mime import image from django.db import models from django.contrib.auth.models import User from cloudinary.models import CloudinaryField # Create your models here. class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) profile_pic = CloudinaryField('image',default='images/default.jpg', null=True) bio = models.CharField(max_length = 200) def __str__(self): return f'{self.user.username}' def save_profile(self): self.save() def delete_profile(self): self.delete() class Post(models.Model): pic = CloudinaryField('image',default='images/default.jpg' ) caption = models.CharField(blank=True,max_length = 200) profile = models.ForeignKey(Profile,on_delete=models.CASCADE) like = models.IntegerField(default=0) def __str__(self): return f'{self.profile.user.username}' def save_post(self): self.save() @property def image_url(self): if self.pic and hasattr(self.pic, 'url'): return self.pic.url class Comments(models.Model): post = models.IntegerField(default=0) username = models.CharField(blank=True,max_length = 100) comment = models.TextField() date = models.DateTimeField(auto_now_add=True) count = models.IntegerField(default=0) def __str__(self): return f'{self.username}' def save_comment(self): self.save() class Following(models.Model): username = models.CharField(blank=True,max_length = 100) followed = models.CharField(blank=True,max_length = 200) image = CloudinaryField('image' ) def __str__(self): return f'{self.username}' def save_follower(self): self.save()
27.8125
82
0.666854
12d0cb1226bd4fe8fcb1d36efe79ad4a545d8197
15,861
py
Python
runway/commands/base.py
GarisonLotus/runway
c371d952dc2500d4686f9f1359487d494c2136cd
[ "Apache-2.0" ]
null
null
null
runway/commands/base.py
GarisonLotus/runway
c371d952dc2500d4686f9f1359487d494c2136cd
[ "Apache-2.0" ]
null
null
null
runway/commands/base.py
GarisonLotus/runway
c371d952dc2500d4686f9f1359487d494c2136cd
[ "Apache-2.0" ]
null
null
null
"""runway base module.""" from __future__ import print_function from subprocess import check_call, check_output import glob import logging import os import shutil import sys import cfn_flip import yaml # from stacker.util import parse_cloudformation_template # parse_cloudformation_template wraps yaml_parse; it would be better to call it # from util but that would require sys.path shenanigans here from ..embedded.stacker.awscli_yamlhelper import yaml_parse as parse_cloudformation_template # noqa from ..util import ( change_dir, ensure_file_is_executable, get_embedded_lib_path, ignore_exit_code_0, use_embedded_pkgs, which ) from .. import __version__ as version LOGGER = logging.getLogger('runway') class Base(object): """Base class for deployer classes.""" def __init__(self, options, env_root=None, runway_config_dir=None): """Initialize base class.""" self.options = options if env_root is None: self.env_root = os.getcwd() else: self.env_root = env_root if runway_config_dir is None: self.runway_config_path = os.path.join( self.env_root, 'runway.yml' ) else: self.runway_config_path = os.path.join( runway_config_dir, 'runway.yml' ) self._runway_config = None def get_env_dirs(self): """Return list of directories in env_root.""" repo_dirs = next(os.walk(self.env_root))[1] if '.git' in repo_dirs: repo_dirs.remove('.git') # not relevant for any repo operations return repo_dirs def get_python_files_at_env_root(self): """Return list of python files in env_root.""" return glob.glob(os.path.join(self.env_root, '*.py')) def get_yaml_files_at_env_root(self): """Return list of yaml files in env_root.""" yaml_files = glob.glob( os.path.join(self.env_root, '*.yaml') ) yml_files = glob.glob( os.path.join(self.env_root, '*.yml') ) return yaml_files + yml_files def lint(self, base_dir=None, dirs_to_scan=None): """Call code linters.""" from flake8.main import application as flake8_app from yamllint.cli import run as yamllint_run if base_dir is None: base_dir = self.env_root if dirs_to_scan is None: dirs_to_scan = self.get_env_dirs() if os.path.isfile(os.path.join(base_dir, '.flake8')): # config file in env will be picked up automatically flake8_config = [] else: # no config file in env; use runway defaults flake8_config = [ ('--append-config=' + os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), # noqa 'templates', '.flake8' )) ] if os.path.isfile(os.path.join(base_dir, '.yamllint.yml')): yamllint_config = os.path.join(base_dir, '.yamllint.yml') else: yamllint_config = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'templates', '.yamllint.yml' ) with change_dir(base_dir): with ignore_exit_code_0(): LOGGER.info('Starting Flake8 linting...') flake8_run = flake8_app.Application() flake8_run.run( flake8_config + dirs_to_scan + self.get_python_files_at_env_root() # noqa pylint: disable=line-too-long ) flake8_run.exit() with ignore_exit_code_0(): LOGGER.info('Flake8 linting complete.') LOGGER.info('Starting yamllint...') yamllint_run( ["--config-file=%s" % yamllint_config] + dirs_to_scan + self.get_yaml_files_at_env_root() # noqa pylint: disable=line-too-long ) LOGGER.info('yamllint complete.') def get_cookbook_dirs(self, base_dir=None): """Find cookbook directories.""" if base_dir is None: base_dir = self.env_root cookbook_dirs = [] dirs_to_skip = set(['.git']) for root, dirs, files in os.walk(base_dir): # pylint: disable=W0612 dirs[:] = [d for d in dirs if d not in dirs_to_skip] for name in files: if name == 'metadata.rb': if 'cookbook' in os.path.basename(os.path.dirname(root)): cookbook_dirs.append(root) return cookbook_dirs def cookbook_tests(self, base_dir=None): """Run cookbook tests.""" if base_dir is None: base_dir = self.env_root cookbook_dirs = self.get_cookbook_dirs(base_dir) if cookbook_dirs: if which('foodcritic') is None or which('cookstyle') is None: LOGGER.error('"foodcritic" and/or "cookstyle" not found -- ' 'please ensure ChefDK is installed.') sys.exit(1) for path in cookbook_dirs: check_call(['foodcritic', '-f any', path]) check_call(['cookstyle', '-P', path]) def python_tests(self, base_dir=None, pylint_rc_file=None): # noqa pylint: disable=too-many-branches,too-many-locals """Run python tests.""" from pylint.lint import Run as PylintRun if base_dir is None: base_dir = self.env_root if pylint_rc_file is None: if os.path.isfile(os.path.join(base_dir, '.pylintrc')): pylint_config = [ "--rcfile=%s" % os.path.join(base_dir, '.pylintrc') ] else: # Only reporting on errors ('-E') overrides any ignored errors # set in .pylintrc, so it is only being used here when a # pylint configuration file is not being used. pylint_config = ['-E'] # Check all python files in repo dirs_to_skip = set(['.git', 'node_modules', '.serverless']) nonblueprint_files = [] blueprint_files = [] for root, dirs, files in os.walk(base_dir): dirs[:] = [d for d in dirs if d not in dirs_to_skip] for name in files: filepath = os.path.join(root, name) if name[-3:] == '.py' and ( root.endswith('blueprints') and not filepath.endswith('__init__.py')): blueprint_files.append(filepath) elif name[-3:] == '.py': nonblueprint_files.append(filepath) if nonblueprint_files + blueprint_files: LOGGER.info("Checking python files with pylint (\"No config file " "found...\" messages can be ignored)") with use_embedded_pkgs(): # for embedded stacker with ignore_exit_code_0(): LOGGER.debug("Executing pylint with the following options: \"%s\"", # noqa ' '.join(pylint_config + nonblueprint_files + blueprint_files)) # noqa pylint: disable=line-too-long PylintRun(pylint_config + nonblueprint_files + blueprint_files) # noqa LOGGER.info('pylint complete.') for filepath in blueprint_files: # Blueprints should output their template when executed ensure_file_is_executable(filepath) try: shell_out_env = os.environ.copy() if 'PYTHONPATH' in shell_out_env: shell_out_env['PYTHONPATH'] = ( "%s:%s" % (get_embedded_lib_path(), shell_out_env['PYTHONPATH']) ) else: shell_out_env['PYTHONPATH'] = get_embedded_lib_path() cfn_template = check_output( [sys.executable, filepath], env=shell_out_env ).decode() if not cfn_template: raise ValueError('Template output should not be empty!') # noqa parse_cloudformation_template(cfn_template) except: # noqa - Bare except fine in this context print("Error while checking %s for valid " "YAML/JSON output" % filepath) raise def test(self): """Execute tests.""" self.lint() self.cookbook_tests() self.python_tests() def path_only_contains_dirs(self, path): """Return boolean on whether a path only contains directories.""" pathlistdir = os.listdir(path) if pathlistdir == []: return True if any(os.path.isfile(os.path.join(path, i)) for i in pathlistdir): return False return all(self.path_only_contains_dirs(os.path.join(path, i)) for i in pathlistdir) # noqa def get_empty_dirs(self, path): """Return a list of empty directories in path.""" empty_dirs = [] for i in os.listdir(path): child_path = os.path.join(path, i) if i == '.git' or os.path.isfile(child_path) or os.path.islink(child_path): # noqa continue if self.path_only_contains_dirs(child_path): empty_dirs.append(i) return empty_dirs def generate_sample_sls_module(self, module_dir=None): """Generate skeleton Serverless sample module.""" if module_dir is None: module_dir = os.path.join(self.env_root, 'sampleapp.sls') self.generate_sample_module(module_dir) for i in ['config-dev-us-east-1.json', 'handler.py', 'package.json', 'serverless.yml']: shutil.copyfile( os.path.join(os.path.dirname(os.path.dirname(__file__)), 'templates', 'serverless', i), os.path.join(module_dir, i), ) LOGGER.info("Sample Serverless module created at %s", module_dir) def generate_sample_cdk_module(self, module_dir=None): """Generate skeleton CDK sample module.""" if module_dir is None: module_dir = os.path.join(self.env_root, 'sampleapp.cdk') self.generate_sample_module(module_dir) for i in ['cdk.json', 'index.ts', 'package.json', 'tsconfig.json']: shutil.copyfile( os.path.join(os.path.dirname(os.path.dirname(__file__)), 'templates', 'cdk', i), os.path.join(module_dir, i), ) LOGGER.info("Sample CDK module created at %s", module_dir) def generate_sample_cfn_module(self, module_dir=None): """Generate skeleton CloudFormation sample module.""" if module_dir is None: module_dir = os.path.join(self.env_root, 'sampleapp.cfn') self.generate_sample_module(module_dir) for i in ['stacks.yaml', 'dev-us-east-1.env']: shutil.copyfile( os.path.join(os.path.dirname(os.path.dirname(__file__)), 'templates', 'cfn', i), os.path.join(module_dir, i) ) os.mkdir(os.path.join(module_dir, 'templates')) with open(os.path.join(module_dir, 'templates', 'tf_state.yml'), 'w') as stream: stream.write( cfn_flip.flip( check_output( [sys.executable, os.path.join(os.path.dirname(os.path.dirname(__file__)), # noqa 'templates', 'stacker', 'tfstate_blueprints', 'tf_state.py')] ) ) ) LOGGER.info("Sample CloudFormation module created at %s", module_dir) def generate_sample_stacker_module(self, module_dir=None): """Generate skeleton Stacker sample module.""" if module_dir is None: module_dir = os.path.join(self.env_root, 'runway-sample-tfstate.cfn') self.generate_sample_module(module_dir) for i in ['stacks.yaml', 'dev-us-east-1.env']: shutil.copyfile( os.path.join(os.path.dirname(os.path.dirname(__file__)), 'templates', 'stacker', i), os.path.join(module_dir, i) ) os.mkdir(os.path.join(module_dir, 'tfstate_blueprints')) for i in ['__init__.py', 'tf_state.py']: shutil.copyfile( os.path.join(os.path.dirname(os.path.dirname(__file__)), 'templates', 'stacker', 'tfstate_blueprints', i), os.path.join(module_dir, 'tfstate_blueprints', i) ) os.chmod( # make blueprint executable os.path.join(module_dir, 'tfstate_blueprints', 'tf_state.py'), os.stat(os.path.join(module_dir, 'tfstate_blueprints', 'tf_state.py')).st_mode | 0o0111 ) LOGGER.info("Sample Stacker module created at %s", module_dir) def generate_sample_tf_module(self, module_dir=None): """Generate skeleton Terraform sample module.""" if module_dir is None: module_dir = os.path.join(self.env_root, 'sampleapp.tf') self.generate_sample_module(module_dir) for i in ['.terraform-version', 'backend-us-east-1.tfvars', 'dev-us-east-1.tfvars', 'main.tf']: shutil.copyfile( os.path.join(os.path.dirname(os.path.dirname(__file__)), 'templates', 'terraform', i), os.path.join(module_dir, i), ) LOGGER.info("Sample Terraform app created at %s", module_dir) def parse_runway_config(self): """Read and parse runway.yml.""" if not os.path.isfile(self.runway_config_path): LOGGER.error("Runway config file was not found (looking for " "%s)", self.runway_config_path) sys.exit(1) with open(self.runway_config_path) as data_file: return yaml.safe_load(data_file) @property def runway_config(self): """Return parsed runway.yml.""" if not self._runway_config: self._runway_config = self.parse_runway_config() return self._runway_config @staticmethod def version(): """Show current package version.""" print(version) @staticmethod def generate_sample_module(module_dir): """Generate skeleton sample module.""" if os.path.isdir(module_dir): LOGGER.error("Error generating sample module -- directory %s " "already exists!", module_dir) sys.exit(1) os.mkdir(module_dir)
40.669231
147
0.535149