hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
5c629102950de0908ab0512a2741f2b444ea39e8
12,653
py
Python
site-packages/osc_lib/tests/cli/test_parseractions.py
hariza17/freezer_libraries
e0bd890eba5e7438976fb3b4d66c41c128bab790
[ "PSF-2.0" ]
null
null
null
site-packages/osc_lib/tests/cli/test_parseractions.py
hariza17/freezer_libraries
e0bd890eba5e7438976fb3b4d66c41c128bab790
[ "PSF-2.0" ]
null
null
null
site-packages/osc_lib/tests/cli/test_parseractions.py
hariza17/freezer_libraries
e0bd890eba5e7438976fb3b4d66c41c128bab790
[ "PSF-2.0" ]
null
null
null
# Copyright 2012-2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import argparse from osc_lib.cli import parseractions from osc_lib.tests import utils class TestKeyValueAction(utils.TestCase): def setUp(self): super(TestKeyValueAction, self).setUp() self.parser = argparse.ArgumentParser() # Set up our typical usage self.parser.add_argument( '--property', metavar='<key=value>', action=parseractions.KeyValueAction, default={'green': '20%', 'format': '#rgb'}, help='Property to store for this volume ' '(repeat option to set multiple properties)', ) def test_good_values(self): results = self.parser.parse_args([ '--property', 'red=', '--property', 'green=100%', '--property', 'blue=50%', ]) actual = getattr(results, 'property', {}) # All should pass through unmolested expect = {'red': '', 'green': '100%', 'blue': '50%', 'format': '#rgb'} self.assertEqual(expect, actual) def test_error_values(self): data_list = [ ['--property', 'red', ], ['--property', '=', ], ['--property', '=red', ] ] for data in data_list: self.assertRaises(argparse.ArgumentTypeError, self.parser.parse_args, data) class TestMultiKeyValueAction(utils.TestCase): def setUp(self): super(TestMultiKeyValueAction, self).setUp() self.parser = argparse.ArgumentParser() # Set up our typical usage self.parser.add_argument( '--test', metavar='req1=xxx,req2=yyy', action=parseractions.MultiKeyValueAction, dest='test', default=None, required_keys=['req1', 'req2'], optional_keys=['opt1', 'opt2'], help='Test' ) def test_good_values(self): results = self.parser.parse_args([ '--test', 'req1=aaa,req2=bbb', '--test', 'req1=,req2=', ]) actual = getattr(results, 'test', []) expect = [ {'req1': 'aaa', 'req2': 'bbb'}, {'req1': '', 'req2': ''}, ] self.assertItemsEqual(expect, actual) def test_empty_required_optional(self): self.parser.add_argument( '--test-empty', metavar='req1=xxx,req2=yyy', action=parseractions.MultiKeyValueAction, dest='test_empty', default=None, required_keys=[], optional_keys=[], help='Test' ) results = self.parser.parse_args([ '--test-empty', 'req1=aaa,req2=bbb', '--test-empty', 'req1=,req2=', ]) actual = getattr(results, 'test_empty', []) expect = [ {'req1': 'aaa', 'req2': 'bbb'}, {'req1': '', 'req2': ''}, ] self.assertItemsEqual(expect, actual) def test_error_values_with_comma(self): data_list = [ ['--test', 'mmm,nnn=zzz', ], ['--test', 'nnn=zzz,=', ], ['--test', 'nnn=zzz,=zzz', ] ] for data in data_list: self.assertRaises(argparse.ArgumentTypeError, self.parser.parse_args, data) def test_error_values_without_comma(self): self.assertRaises( argparse.ArgumentTypeError, self.parser.parse_args, [ '--test', 'mmmnnn', ] ) def test_missing_key(self): self.assertRaises( argparse.ArgumentTypeError, self.parser.parse_args, [ '--test', 'req2=ddd', ] ) def test_invalid_key(self): self.assertRaises( argparse.ArgumentTypeError, self.parser.parse_args, [ '--test', 'req1=aaa,req2=bbb,aaa=req1', ] ) def test_required_keys_not_list(self): self.assertRaises( TypeError, self.parser.add_argument, '--test-required-dict', metavar='req1=xxx,req2=yyy', action=parseractions.MultiKeyValueAction, dest='test_required_dict', default=None, required_keys={'aaa': 'bbb'}, optional_keys=['opt1', 'opt2'], help='Test' ) def test_optional_keys_not_list(self): self.assertRaises( TypeError, self.parser.add_argument, '--test-optional-dict', metavar='req1=xxx,req2=yyy', action=parseractions.MultiKeyValueAction, dest='test_optional_dict', default=None, required_keys=['req1', 'req2'], optional_keys={'aaa': 'bbb'}, help='Test' ) class TestMultiKeyValueCommaAction(utils.TestCase): def setUp(self): super(TestMultiKeyValueCommaAction, self).setUp() self.parser = argparse.ArgumentParser() # Typical usage self.parser.add_argument( '--test', metavar='req1=xxx,yyy', action=parseractions.MultiKeyValueCommaAction, dest='test', default=None, required_keys=['req1'], optional_keys=['opt2'], help='Test', ) def test_mkvca_required(self): results = self.parser.parse_args([ '--test', 'req1=aaa,bbb', ]) actual = getattr(results, 'test', []) expect = [ {'req1': 'aaa,bbb'}, ] self.assertItemsEqual(expect, actual) results = self.parser.parse_args([ '--test', 'req1=', ]) actual = getattr(results, 'test', []) expect = [ {'req1': ''}, ] self.assertItemsEqual(expect, actual) results = self.parser.parse_args([ '--test', 'req1=aaa,bbb', '--test', 'req1=', ]) actual = getattr(results, 'test', []) expect = [ {'req1': 'aaa,bbb'}, {'req1': ''}, ] self.assertItemsEqual(expect, actual) def test_mkvca_optional(self): results = self.parser.parse_args([ '--test', 'req1=aaa,bbb', ]) actual = getattr(results, 'test', []) expect = [ {'req1': 'aaa,bbb'}, ] self.assertItemsEqual(expect, actual) results = self.parser.parse_args([ '--test', 'req1=aaa,bbb', '--test', 'req1=,opt2=ccc', ]) actual = getattr(results, 'test', []) expect = [ {'req1': 'aaa,bbb'}, {'req1': '', 'opt2': 'ccc'}, ] self.assertItemsEqual(expect, actual) try: results = self.parser.parse_args([ '--test', 'req1=aaa,bbb', '--test', 'opt2=ccc', ]) self.fail('ArgumentTypeError should be raised') except argparse.ArgumentTypeError as e: self.assertEqual( 'Missing required keys req1.\nRequired keys are: req1', str(e), ) def test_mkvca_multiples(self): results = self.parser.parse_args([ '--test', 'req1=aaa,bbb,opt2=ccc', ]) actual = getattr(results, 'test', []) expect = [{ 'req1': 'aaa,bbb', 'opt2': 'ccc', }] self.assertItemsEqual(expect, actual) def test_mkvca_no_required_optional(self): self.parser.add_argument( '--test-empty', metavar='req1=xxx,yyy', action=parseractions.MultiKeyValueCommaAction, dest='test_empty', default=None, required_keys=[], optional_keys=[], help='Test', ) results = self.parser.parse_args([ '--test-empty', 'req1=aaa,bbb', ]) actual = getattr(results, 'test_empty', []) expect = [ {'req1': 'aaa,bbb'}, ] self.assertItemsEqual(expect, actual) results = self.parser.parse_args([ '--test-empty', 'xyz=aaa,bbb', ]) actual = getattr(results, 'test_empty', []) expect = [ {'xyz': 'aaa,bbb'}, ] self.assertItemsEqual(expect, actual) def test_mkvca_invalid_key(self): try: self.parser.parse_args([ '--test', 'req1=aaa,bbb=', ]) self.fail('ArgumentTypeError should be raised') except argparse.ArgumentTypeError as e: self.assertIn( 'Invalid keys bbb specified.\nValid keys are:', str(e), ) try: self.parser.parse_args([ '--test', 'nnn=aaa', ]) self.fail('ArgumentTypeError should be raised') except argparse.ArgumentTypeError as e: self.assertIn( 'Invalid keys nnn specified.\nValid keys are:', str(e), ) def test_mkvca_value_no_key(self): try: self.parser.parse_args([ '--test', 'req1=aaa,=bbb', ]) self.fail('ArgumentTypeError should be raised') except argparse.ArgumentTypeError as e: self.assertEqual( "A key must be specified before '=': =bbb", str(e), ) try: self.parser.parse_args([ '--test', '=nnn', ]) self.fail('ArgumentTypeError should be raised') except argparse.ArgumentTypeError as e: self.assertEqual( "A key must be specified before '=': =nnn", str(e), ) try: self.parser.parse_args([ '--test', 'nnn', ]) self.fail('ArgumentTypeError should be raised') except argparse.ArgumentTypeError as e: self.assertIn( 'A key=value pair is required:', str(e), ) def test_mkvca_required_keys_not_list(self): self.assertRaises( TypeError, self.parser.add_argument, '--test-required-dict', metavar='req1=xxx', action=parseractions.MultiKeyValueCommaAction, dest='test_required_dict', default=None, required_keys={'aaa': 'bbb'}, optional_keys=['opt1', 'opt2'], help='Test', ) def test_mkvca_optional_keys_not_list(self): self.assertRaises( TypeError, self.parser.add_argument, '--test-optional-dict', metavar='req1=xxx', action=parseractions.MultiKeyValueCommaAction, dest='test_optional_dict', default=None, required_keys=['req1', 'req2'], optional_keys={'aaa': 'bbb'}, help='Test', ) class TestNonNegativeAction(utils.TestCase): def setUp(self): super(TestNonNegativeAction, self).setUp() self.parser = argparse.ArgumentParser() # Set up our typical usage self.parser.add_argument( '--foo', metavar='<foo>', type=int, action=parseractions.NonNegativeAction, ) def test_negative_values(self): self.assertRaises( argparse.ArgumentTypeError, self.parser.parse_args, "--foo -1".split() ) def test_zero_values(self): results = self.parser.parse_args( '--foo 0'.split() ) actual = getattr(results, 'foo', None) self.assertEqual(actual, 0) def test_positive_values(self): results = self.parser.parse_args( '--foo 1'.split() ) actual = getattr(results, 'foo', None) self.assertEqual(actual, 1)
29.494172
78
0.512606
f8cd39e556009aa435acb8857309b318c7a0e36c
2,369
py
Python
src/primaires/scripting/actions/interrompre.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
src/primaires/scripting/actions/interrompre.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
src/primaires/scripting/actions/interrompre.py
stormi/tsunami
bdc853229834b52b2ee8ed54a3161a1a3133d926
[ "BSD-3-Clause" ]
null
null
null
# -*-coding:Utf-8 -* # Copyright (c) 2012 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant l'action interrompre.""" from primaires.scripting.action import Action from primaires.scripting.exceptions import InterrompreCommande class ClasseAction(Action): """Interrompt le script et ce que fait le joueur. Utilisée dans un script de salle sort.avant par exemple, cette action empêche le joueur de se déplacer. """ @classmethod def init_types(cls): cls.ajouter_types(cls.interrompre) cls.ajouter_types(cls.interrompre_msg, "str") @staticmethod def interrompre(): """Interrompt le script.""" raise InterrompreCommande @staticmethod def interrompre_msg(message): """Interrompt le script en renvoyant le message au joueur.""" raise InterrompreCommande(message)
40.152542
79
0.747573
b2de191335c4557c3479be2cfd98c0e0ebeeded3
2,124
py
Python
pypowerbi/import_class.py
brunompacheco/pypowerbi
647951b7b0127a83c98427b0d58e380dc622e3b8
[ "MIT" ]
null
null
null
pypowerbi/import_class.py
brunompacheco/pypowerbi
647951b7b0127a83c98427b0d58e380dc622e3b8
[ "MIT" ]
null
null
null
pypowerbi/import_class.py
brunompacheco/pypowerbi
647951b7b0127a83c98427b0d58e380dc622e3b8
[ "MIT" ]
null
null
null
# -*- coding: future_fstrings -*- from .dataset import Dataset from .report import Report class Import: # json keys id_key = 'id' name_key = 'name' created_timedate_key = 'createdDateTime' datasets_key = 'datasets' import_state_key = 'importState' reports_key = 'reports' updated_datetime_key = 'updatedDateTime' source_key = 'source' connection_type_key = 'connectionType' value_key = 'value' # import state values import_state_succeeded = 'Succeeded' import_state_publishing = 'Publishing' def __init__(self, import_id, name=None, created_datetime=None, datasets=None, import_state=None, reports=None, updated_datetime=None, source=None, connection_type=None): self.id = import_id self.name = name self.created_datetime = created_datetime self.datasets = datasets self.import_state = import_state self.reports = reports self.updated_datetime = updated_datetime self.source = source self.connection_type = connection_type @classmethod def from_dict(cls, dictionary): import_id = dictionary.get(cls.id_key) if import_id is None: raise RuntimeError("Import dictionary has no id key") name = dictionary.get(cls.name_key) created_datetime = dictionary.get(cls.created_timedate_key) if cls.datasets_key in dictionary: datasets = [Dataset.from_dict(x) for x in dictionary.get(cls.datasets_key)] else: datasets = None import_state = dictionary.get(cls.import_state_key) if cls.reports_key in dictionary: reports = [Report.from_dict(x) for x in dictionary.get(cls.reports_key)] else: reports = None updated_datetime = dictionary.get(cls.updated_datetime_key) source = dictionary.get(cls.source_key) connection_type = dictionary.get(cls.connection_type_key) return cls(import_id, name, created_datetime, datasets, import_state, reports, updated_datetime, source, connection_type)
33.714286
101
0.673258
87ef3df3ce4e823c45042f9e8658d3a6423f98c0
8,582
py
Python
assopy/forms.py
zevaverbach/epcon
8352c030ee0d4197f559cdb58a54ee45c7a4471a
[ "BSD-2-Clause" ]
null
null
null
assopy/forms.py
zevaverbach/epcon
8352c030ee0d4197f559cdb58a54ee45c7a4471a
[ "BSD-2-Clause" ]
null
null
null
assopy/forms.py
zevaverbach/epcon
8352c030ee0d4197f559cdb58a54ee45c7a4471a
[ "BSD-2-Clause" ]
null
null
null
from django import forms from django.conf import settings as dsettings from django.utils.translation import ugettext as _ from assopy import models from assopy import settings from conference import models as cmodels import logging log = logging.getLogger('assopy.forms') # autostrip - http://djangosnippets.org/snippets/956/ # il motivo per questo abominio? # http://code.djangoproject.com/ticket/6362 def autostrip(cls): fields = [(key, value) for key, value in cls.base_fields.items() if isinstance(value, forms.CharField)] for field_name, field_object in fields: def get_clean_func(original_clean): return lambda value: original_clean(value and value.strip()) clean_func = get_clean_func(getattr(field_object, 'clean')) setattr(field_object, 'clean', clean_func) return cls PRIVACY_POLICY_CHECKBOX = """ I consent to the use of my data subject to the <a href='/privacy/'>EuroPython data privacy policy</a> """.strip() PRIVACY_POLICY_ERROR = """ You need to consent to use of your data before we can continue """.strip() class Profile(forms.ModelForm): first_name = forms.CharField( label=_('First Name'), help_text=_('Please do not enter a company name here.<br />You will be able to specify billing details during the checkout.'), max_length=32,) last_name = forms.CharField( label=_('Last Name'), max_length=32,) class Meta: model = models.AssopyUser fields = ('first_name', 'last_name') def __init__(self, *args, **kwargs): o = kwargs.get('instance') if o: initial = kwargs.get('initial', {}) if 'first_name' not in initial: initial['first_name'] = o.user.first_name if 'last_name' not in initial: initial['last_name'] = o.user.last_name kwargs['initial'] = initial super(Profile, self).__init__(*args, **kwargs) def save(self, commit=True): data = self.cleaned_data self.instance.user.first_name = data['first_name'] self.instance.user.last_name = data['last_name'] u = super(Profile, self).save(commit=commit) if commit: self.instance.user.save() return u Profile = autostrip(Profile) class BillingData(forms.ModelForm): class Meta: model = models.AssopyUser exclude = ('user', 'token', 'assopy_id') def _required(self, name): data = self.cleaned_data.get(name, '') try: data = data.strip() except: pass if not data: raise forms.ValidationError('this field is required') return data clean_country = lambda self: self._required('country') clean_address = lambda self: self._required('address') def clean_card_name(self): data = self.cleaned_data.get('card_name', '') if not data: return self.instance.name() else: return data BillingData = autostrip(BillingData) class FormTickets(forms.Form): payment = forms.ChoiceField(choices=(('paypal', 'PayPal'),('bank', 'Bank'))) order_type = forms.ChoiceField( choices=( ('non-deductible', _('Personal Purchase')), ('deductible', _('Company Purchase'))), initial='non-deductible') def __init__(self, *args, **kwargs): super(FormTickets, self).__init__(*args, **kwargs) for t in self.available_fares(): field = forms.IntegerField( label=t.name, min_value=0, required=False, ) field.fare = t self.fields[t.code] = field def available_fares(self): return cmodels.Fare.objects.available() def clean(self): fares = dict( (x.code, x) for x in self.available_fares() ) data = self.cleaned_data o = [] total = 0 for k, q in data.items(): if k not in fares: continue if not q: continue total += q f = fares[k] if not f.valid(): self._errors[k] = self.error_class(['Invalid fare']) del data[k] continue o.append((f, {'qty': q})) data['tickets'] = o return data class RefundItemForm(forms.Form): reason = forms.CharField( label=_("Reason"), max_length=200, help_text=_("""Please enter the reason of your refund request"""), widget=forms.Textarea) paypal = forms.EmailField( label=_("Your paypal address"), help_text=_("""If you prefer to receive payment via paypal"""), required=False) bank = forms.CharField( label=_("Bank routing information"), help_text=_("""Please specify IBAN, BIC and bank address (if in Europe) or any needed information for a worldwide transfer"""), required=False, widget=forms.Textarea) def __init__(self, item, *args, **kw): super(RefundItemForm, self).__init__(*args, **kw) self.item = item def clean(self): data = self.cleaned_data if self.item.refund_type() == 'payment': if not data.get('paypal') and not data.get('bank'): raise forms.ValidationError('Please specify at least one of the paypal account or the bank details') return data if 'paypal.standard.ipn' in dsettings.INSTALLED_APPS: from paypal.standard.forms import PayPalPaymentsForm from paypal.standard.widgets import ValueHiddenInput from paypal.standard.conf import POSTBACK_ENDPOINT, SANDBOX_POSTBACK_ENDPOINT class PayPalForm(PayPalPaymentsForm): #Do not prompt buyers for a shipping address. #Allowable values are: # #0 – prompt for an address, but do not require one #1 – do not prompt for an address #2 – prompt for an address, and require one no_shipping = forms.IntegerField(initial=1) address_override = forms.IntegerField(initial=0) def __init__(self, order, *args, **kwargs): from django.db import models initial = settings.PAYPAL_DEFAULT_FORM_CONTEXT(order) initial.update({'cmd':self.CMD_CHOICES[1][0]}) kwargs['initial'] = initial super(PayPalForm, self).__init__(*args, **kwargs) items = list(order.orderitem_set \ .filter(price__gte=0).values('code','description','price') \ .annotate(count=models.Count('price')) \ .order_by('-price')) discount = order.total(apply_discounts=False) - order.total() if discount > 0: self.fields['discount_amount_cart'] = forms.IntegerField( widget=ValueHiddenInput(), initial= discount ) self.fields['upload'] = forms.IntegerField( widget=ValueHiddenInput(), initial=1 ) for n, item in enumerate(items, start=1): self.fields['item_name_%d' % n ] = forms.CharField( widget=ValueHiddenInput(), initial=settings.PAYPAL_ITEM_NAME(item) ) self.fields['quantity_%d' % n ] = forms.CharField( widget=ValueHiddenInput(), initial=item['count'] ) self.fields['amount_%d' % n ] = forms.CharField( widget=ValueHiddenInput(), initial=item['price'] ) def paypal_url(self): return SANDBOX_POSTBACK_ENDPOINT if getattr(dsettings, 'PAYPAL_TEST') else POSTBACK_ENDPOINT def as_url_args(self): import urllib.request, urllib.parse, urllib.error data = dict( [(f.field.widget.attrs.get('name', f.html_name), f.value()) for f in self if f.value()] ) return urllib.parse.urlencode(data)
36.832618
135
0.557795
21c57f3283299ea716976a14b65ae63d5e4926ce
26,862
py
Python
djangobb_forum/migrations/0001_initial.py
dboczek/DjangoBB
80c42274839714f0cc6c4529ba1b44ae5e4e03c1
[ "BSD-3-Clause" ]
15
2015-02-26T13:59:30.000Z
2021-11-08T09:50:47.000Z
djangobb_forum/migrations/0001_initial.py
dboczek/DjangoBB
80c42274839714f0cc6c4529ba1b44ae5e4e03c1
[ "BSD-3-Clause" ]
52
2015-01-08T21:57:43.000Z
2021-03-25T07:39:20.000Z
djangobb_forum/migrations/0001_initial.py
dboczek/DjangoBB
80c42274839714f0cc6c4529ba1b44ae5e4e03c1
[ "BSD-3-Clause" ]
18
2015-01-20T00:11:28.000Z
2021-09-04T18:03:14.000Z
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Category' db.create_table('djangobb_forum_category', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=80)), ('position', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), )) db.send_create_signal('djangobb_forum', ['Category']) # Adding M2M table for field groups on 'Category' db.create_table('djangobb_forum_category_groups', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('category', models.ForeignKey(orm['djangobb_forum.category'], null=False)), ('group', models.ForeignKey(orm['auth.group'], null=False)) )) db.create_unique('djangobb_forum_category_groups', ['category_id', 'group_id']) # Adding model 'Forum' db.create_table('djangobb_forum_forum', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('category', self.gf('django.db.models.fields.related.ForeignKey')(related_name='forums', to=orm['djangobb_forum.Category'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=80)), ('position', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('description', self.gf('django.db.models.fields.TextField')(default='', blank=True)), ('updated', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('post_count', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('topic_count', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('last_post', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='last_forum_post', null=True, to=orm['djangobb_forum.Post'])), )) db.send_create_signal('djangobb_forum', ['Forum']) # Adding M2M table for field moderators on 'Forum' db.create_table('djangobb_forum_forum_moderators', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('forum', models.ForeignKey(orm['djangobb_forum.forum'], null=False)), ('user', models.ForeignKey(orm['auth.user'], null=False)) )) db.create_unique('djangobb_forum_forum_moderators', ['forum_id', 'user_id']) # Adding model 'Topic' db.create_table('djangobb_forum_topic', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('forum', self.gf('django.db.models.fields.related.ForeignKey')(related_name='topics', to=orm['djangobb_forum.Forum'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=255)), ('created', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('views', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('sticky', self.gf('django.db.models.fields.BooleanField')(default=False)), ('closed', self.gf('django.db.models.fields.BooleanField')(default=False)), ('post_count', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('last_post', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='last_topic_post', null=True, to=orm['djangobb_forum.Post'])), )) db.send_create_signal('djangobb_forum', ['Topic']) # Adding M2M table for field subscribers on 'Topic' db.create_table('djangobb_forum_topic_subscribers', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('topic', models.ForeignKey(orm['djangobb_forum.topic'], null=False)), ('user', models.ForeignKey(orm['auth.user'], null=False)) )) db.create_unique('djangobb_forum_topic_subscribers', ['topic_id', 'user_id']) # Adding model 'Post' db.create_table('djangobb_forum_post', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('topic', self.gf('django.db.models.fields.related.ForeignKey')(related_name='posts', to=orm['djangobb_forum.Topic'])), ('user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='posts', to=orm['auth.User'])), ('created', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('updated', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('updated_by', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True, blank=True)), ('markup', self.gf('django.db.models.fields.CharField')(default='bbcode', max_length=15)), ('body', self.gf('django.db.models.fields.TextField')()), ('body_html', self.gf('django.db.models.fields.TextField')()), ('user_ip', self.gf('django.db.models.fields.IPAddressField')(max_length=15, null=True, blank=True)), )) db.send_create_signal('djangobb_forum', ['Post']) # Adding model 'Reputation' db.create_table('djangobb_forum_reputation', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('from_user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='reputations_from', to=orm['auth.User'])), ('to_user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='reputations_to', to=orm['auth.User'])), ('post', self.gf('django.db.models.fields.related.ForeignKey')(related_name='post', to=orm['djangobb_forum.Post'])), ('time', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('sign', self.gf('django.db.models.fields.IntegerField')(default=0)), ('reason', self.gf('django.db.models.fields.TextField')(max_length=1000)), )) db.send_create_signal('djangobb_forum', ['Reputation']) # Adding unique constraint on 'Reputation', fields ['from_user', 'post'] db.create_unique('djangobb_forum_reputation', ['from_user_id', 'post_id']) # Adding model 'Profile' db.create_table('djangobb_forum_profile', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('djangobb_forum.fields.AutoOneToOneField')(related_name='forum_profile', unique=True, to=orm['auth.User'])), ('status', self.gf('django.db.models.fields.CharField')(max_length=30, blank=True)), ('site', self.gf('django.db.models.fields.URLField')(max_length=200, blank=True)), ('jabber', self.gf('django.db.models.fields.CharField')(max_length=80, blank=True)), ('icq', self.gf('django.db.models.fields.CharField')(max_length=12, blank=True)), ('msn', self.gf('django.db.models.fields.CharField')(max_length=80, blank=True)), ('aim', self.gf('django.db.models.fields.CharField')(max_length=80, blank=True)), ('yahoo', self.gf('django.db.models.fields.CharField')(max_length=80, blank=True)), ('location', self.gf('django.db.models.fields.CharField')(max_length=30, blank=True)), ('signature', self.gf('django.db.models.fields.TextField')(default='', max_length=1024, blank=True)), ('time_zone', self.gf('django.db.models.fields.FloatField')(default=3.0)), ('language', self.gf('django.db.models.fields.CharField')(default='', max_length=5)), ('avatar', self.gf('djangobb_forum.fields.ExtendedImageField')(default='', max_length=100, blank=True)), ('theme', self.gf('django.db.models.fields.CharField')(default='default', max_length=80)), ('show_avatar', self.gf('django.db.models.fields.BooleanField')(default=True)), ('show_signatures', self.gf('django.db.models.fields.BooleanField')(default=True)), ('privacy_permission', self.gf('django.db.models.fields.IntegerField')(default=1)), ('markup', self.gf('django.db.models.fields.CharField')(default='bbcode', max_length=15)), ('post_count', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), )) db.send_create_signal('djangobb_forum', ['Profile']) # Adding model 'PostTracking' db.create_table('djangobb_forum_posttracking', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('djangobb_forum.fields.AutoOneToOneField')(to=orm['auth.User'], unique=True)), ('topics', self.gf('djangobb_forum.fields.JSONField')(null=True)), ('last_read', self.gf('django.db.models.fields.DateTimeField')(null=True)), )) db.send_create_signal('djangobb_forum', ['PostTracking']) # Adding model 'Report' db.create_table('djangobb_forum_report', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('reported_by', self.gf('django.db.models.fields.related.ForeignKey')(related_name='reported_by', to=orm['auth.User'])), ('post', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['djangobb_forum.Post'])), ('zapped', self.gf('django.db.models.fields.BooleanField')(default=False)), ('zapped_by', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='zapped_by', null=True, to=orm['auth.User'])), ('created', self.gf('django.db.models.fields.DateTimeField')(blank=True)), ('reason', self.gf('django.db.models.fields.TextField')(default='', max_length='1000', blank=True)), )) db.send_create_signal('djangobb_forum', ['Report']) # Adding model 'Ban' db.create_table('djangobb_forum_ban', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.OneToOneField')(related_name='ban_users', unique=True, to=orm['auth.User'])), ('ban_start', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now)), ('ban_end', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('reason', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal('djangobb_forum', ['Ban']) # Adding model 'Attachment' db.create_table('djangobb_forum_attachment', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('post', self.gf('django.db.models.fields.related.ForeignKey')(related_name='attachments', to=orm['djangobb_forum.Post'])), ('size', self.gf('django.db.models.fields.IntegerField')()), ('content_type', self.gf('django.db.models.fields.CharField')(max_length=255)), ('path', self.gf('django.db.models.fields.CharField')(max_length=255)), ('name', self.gf('django.db.models.fields.TextField')()), ('hash', self.gf('django.db.models.fields.CharField')(default='', max_length=40, db_index=True, blank=True)), )) db.send_create_signal('djangobb_forum', ['Attachment']) def backwards(self, orm): # Removing unique constraint on 'Reputation', fields ['from_user', 'post'] db.delete_unique('djangobb_forum_reputation', ['from_user_id', 'post_id']) # Deleting model 'Category' db.delete_table('djangobb_forum_category') # Removing M2M table for field groups on 'Category' db.delete_table('djangobb_forum_category_groups') # Deleting model 'Forum' db.delete_table('djangobb_forum_forum') # Removing M2M table for field moderators on 'Forum' db.delete_table('djangobb_forum_forum_moderators') # Deleting model 'Topic' db.delete_table('djangobb_forum_topic') # Removing M2M table for field subscribers on 'Topic' db.delete_table('djangobb_forum_topic_subscribers') # Deleting model 'Post' db.delete_table('djangobb_forum_post') # Deleting model 'Reputation' db.delete_table('djangobb_forum_reputation') # Deleting model 'Profile' db.delete_table('djangobb_forum_profile') # Deleting model 'PostTracking' db.delete_table('djangobb_forum_posttracking') # Deleting model 'Report' db.delete_table('djangobb_forum_report') # Deleting model 'Ban' db.delete_table('djangobb_forum_ban') # Deleting model 'Attachment' db.delete_table('djangobb_forum_attachment') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'djangobb_forum.attachment': { 'Meta': {'object_name': 'Attachment'}, 'content_type': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'hash': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '40', 'db_index': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.TextField', [], {}), 'path': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'post': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'attachments'", 'to': "orm['djangobb_forum.Post']"}), 'size': ('django.db.models.fields.IntegerField', [], {}) }, 'djangobb_forum.ban': { 'Meta': {'object_name': 'Ban'}, 'ban_end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'ban_start': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'reason': ('django.db.models.fields.TextField', [], {}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'ban_users'", 'unique': 'True', 'to': "orm['auth.User']"}) }, 'djangobb_forum.category': { 'Meta': {'ordering': "['position']", 'object_name': 'Category'}, 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['auth.Group']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'position': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}) }, 'djangobb_forum.forum': { 'Meta': {'ordering': "['position']", 'object_name': 'Forum'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'forums'", 'to': "orm['djangobb_forum.Category']"}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_post': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'last_forum_post'", 'null': 'True', 'to': "orm['djangobb_forum.Post']"}), 'moderators': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'position': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'post_count': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'topic_count': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'djangobb_forum.post': { 'Meta': {'ordering': "['created']", 'object_name': 'Post'}, 'body': ('django.db.models.fields.TextField', [], {}), 'body_html': ('django.db.models.fields.TextField', [], {}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'markup': ('django.db.models.fields.CharField', [], {'default': "'bbcode'", 'max_length': '15'}), 'topic': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'posts'", 'to': "orm['djangobb_forum.Topic']"}), 'updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'posts'", 'to': "orm['auth.User']"}), 'user_ip': ('django.db.models.fields.IPAddressField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}) }, 'djangobb_forum.posttracking': { 'Meta': {'object_name': 'PostTracking'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_read': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'topics': ('djangobb_forum.fields.JSONField', [], {'null': 'True'}), 'user': ('djangobb_forum.fields.AutoOneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) }, 'djangobb_forum.profile': { 'Meta': {'object_name': 'Profile'}, 'aim': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}), 'avatar': ('djangobb_forum.fields.ExtendedImageField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'icq': ('django.db.models.fields.CharField', [], {'max_length': '12', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'jabber': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '5'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'markup': ('django.db.models.fields.CharField', [], {'default': "'bbcode'", 'max_length': '15'}), 'msn': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}), 'post_count': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'privacy_permission': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'show_avatar': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'show_signatures': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'signature': ('django.db.models.fields.TextField', [], {'default': "''", 'max_length': '1024', 'blank': 'True'}), 'site': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'theme': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '80'}), 'time_zone': ('django.db.models.fields.FloatField', [], {'default': '3.0'}), 'user': ('djangobb_forum.fields.AutoOneToOneField', [], {'related_name': "'forum_profile'", 'unique': 'True', 'to': "orm['auth.User']"}), 'yahoo': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}) }, 'djangobb_forum.report': { 'Meta': {'object_name': 'Report'}, 'created': ('django.db.models.fields.DateTimeField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'post': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['djangobb_forum.Post']"}), 'reason': ('django.db.models.fields.TextField', [], {'default': "''", 'max_length': "'1000'", 'blank': 'True'}), 'reported_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'reported_by'", 'to': "orm['auth.User']"}), 'zapped': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'zapped_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'zapped_by'", 'null': 'True', 'to': "orm['auth.User']"}) }, 'djangobb_forum.reputation': { 'Meta': {'unique_together': "(('from_user', 'post'),)", 'object_name': 'Reputation'}, 'from_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'reputations_from'", 'to': "orm['auth.User']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'post': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'post'", 'to': "orm['djangobb_forum.Post']"}), 'reason': ('django.db.models.fields.TextField', [], {'max_length': '1000'}), 'sign': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'to_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'reputations_to'", 'to': "orm['auth.User']"}) }, 'djangobb_forum.topic': { 'Meta': {'ordering': "['-updated']", 'object_name': 'Topic'}, 'closed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'forum': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'topics'", 'to': "orm['djangobb_forum.Forum']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_post': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'last_topic_post'", 'null': 'True', 'to': "orm['djangobb_forum.Post']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'post_count': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'sticky': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'subscribers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'subscriptions'", 'blank': 'True', 'to': "orm['auth.User']"}), 'updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'views': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}) } } complete_apps = ['djangobb_forum']
72.016086
187
0.597684
5fab3c8a29e9b481a9c96cefec36989f38582e2d
2,600
py
Python
test/connectivity/acts/framework/acts/signals.py
Keneral/atools
055e76621340c7dced125e9de56e2645b5e1cdfb
[ "Unlicense" ]
null
null
null
test/connectivity/acts/framework/acts/signals.py
Keneral/atools
055e76621340c7dced125e9de56e2645b5e1cdfb
[ "Unlicense" ]
null
null
null
test/connectivity/acts/framework/acts/signals.py
Keneral/atools
055e76621340c7dced125e9de56e2645b5e1cdfb
[ "Unlicense" ]
1
2018-02-24T19:13:01.000Z
2018-02-24T19:13:01.000Z
#!/usr/bin/env python3.4 # # Copyright 2016 - The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module is where all the test signal classes and related utilities live. """ import functools import json def generated_test(func): """A decorator used to suppress result reporting for the test case that kicks off a group of generated test cases. Returns: What the decorated function returns. """ @functools.wraps(func) def wrapper(*args, **kwargs): func(*args, **kwargs) raise TestSilent( "Result reporting for %s is suppressed" % func.__name__) return wrapper class TestSignalError(Exception): """Raised when an error occurs inside a test signal.""" class TestSignal(Exception): """Base class for all test result control signals.""" def __init__(self, details, extras=None): if not isinstance(details, str): raise TestSignalError("Message has to be a string.") super(TestSignal, self).__init__(details) self.details = details try: json.dumps(extras) self.extras = extras except TypeError: raise TestSignalError(("Extras must be json serializable. %s " "is not.") % extras) def __str__(self): return "Details=%s, Extras=%s" % (self.details, self.extras) class TestFailure(TestSignal): """Raised when a test has failed.""" class TestPass(TestSignal): """Raised when a test has passed.""" class TestSkip(TestSignal): """Raised when a test has been skipped.""" class TestSilent(TestSignal): """Raised when a test should not be reported. This should only be used for generated test cases. """ class TestAbortClass(TestSignal): """Raised when all subsequent test cases within the same test class should be aborted. """ class TestAbortAll(TestSignal): """Raised when all subsequent test cases should be aborted.""" class ControllerError(Exception): """Raised when an error occured in controller classes."""
32.911392
79
0.682308
28fd9c30761c9ec1c19d28fef061abe87cba3c94
206
py
Python
cogdl/loggers/base_logger.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
1,072
2019-08-02T05:46:21.000Z
2022-03-31T07:51:53.000Z
cogdl/loggers/base_logger.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
96
2019-08-05T17:27:22.000Z
2022-03-03T08:36:57.000Z
cogdl/loggers/base_logger.py
li-ziang/cogdl
60022d3334e3abae2d2a505e6e049a26acf10f39
[ "MIT" ]
299
2019-08-08T07:33:10.000Z
2022-03-31T09:30:07.000Z
class Logger: def __init__(self, log_path): self.log_path = log_path def start(self): pass def note(self, metrics, step=None): pass def finish(self): pass
15.846154
39
0.567961
86712c56c66b3441805ad088ef0b8c8ce0b28bc0
10,074
py
Python
src/MainPanel.py
DaniW42/Hector9000
b9161c71ae23f1671787298f8fae6c503b50d6e6
[ "MIT" ]
7
2019-07-22T10:09:59.000Z
2019-11-16T12:28:38.000Z
src/MainPanel.py
assgex/Hector9000
b9161c71ae23f1671787298f8fae6c503b50d6e6
[ "MIT" ]
null
null
null
src/MainPanel.py
assgex/Hector9000
b9161c71ae23f1671787298f8fae6c503b50d6e6
[ "MIT" ]
7
2019-07-22T19:56:17.000Z
2019-11-16T10:48:39.000Z
import time import json from kivy.core.text import Label from drinks import drink_list, ingredients from kivy.properties import StringProperty, ListProperty from kivy.uix.progressbar import ProgressBar from functools import partial from kivy.uix.label import Label from kivy.uix.boxlayout import BoxLayout from kivy.uix.popup import Popup from kivy.uix.button import Button from kivy.uix.screenmanager import ScreenManager, Screen, FadeTransition from kivy.uix.image import Image from kivy.clock import Clock from database import Database from HectorConfig import config from pygame import mixer from HectorHardware import HectorHardware ## Für LND-Script (if file exists) from pathlib import Path import subprocess ## logging import logging log_format = "%(asctime)s::%(levelname)s::%(name)s::"\ "%(filename)s::%(lineno)d::%(message)s" logging.basicConfig(filename="/home/pi/log/cocktail.log", level='DEBUG', format=log_format) ###TODO: put log location into config class MainPanel(Screen): buttonText = ListProperty([StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty()]) image = ListProperty([StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty(), StringProperty()]) buttonColor = ListProperty([ListProperty(), ListProperty(), ListProperty(), ListProperty(), ListProperty(), ListProperty(), ListProperty(), ListProperty()]) db = None drinkOnScreen = None screenPage = None maxScreenPage = None lightning = True def __init__(self, **kwargs): super(MainPanel, self).__init__(**kwargs) self.db = Database("h9k") self.db.createIfNotExists() self.screenPage = 1 items = len(drink_list) % 8 self.maxScreenPage = (len(drink_list) // 8) if items > 0: self.maxScreenPage += 1 self.drinkOnScreen = list() self.drinkOnScreen = drink_list[:8] self.fillButtons(self.drinkOnScreen) self.initVent() def initVent(self): print("Prepare vets.") h = HectorHardware(config) h.light_on() time.sleep(1) h.arm_in() h.pump_stop() for vnum in range(24): print("Vent %d closing..." % (vnum,)) time.sleep(1) h.valve_close(vnum) h.light_off() def isalcoholic(self, drink): for ing, _ in drink["recipe"]: if ingredients[ing][1]: return True return False def fillButtons(self, drinks): countDrinksOnScreen = len(drinks) count = 0 while count < countDrinksOnScreen: self.buttonText[count] = drinks[count]['name'] self.image[count] = drinks[count]['image'] if self.buttonText[count].startswith("..."): self.buttonColor[count] = [.3, .3, .3, 1] elif self.isalcoholic(drinks[count]): self.buttonColor[count] = [1, 0, 0, 1] else: # non-alcoholic self.buttonColor[count] = [0, 1, 0, 1] count += 1 while count < 8: self.buttonText[count] = '' self.buttonColor[count] = [1, 1, 1, 1] count += 1 def choiceDrink(self, *args): self.readPumpConfiguration() if len(self.drinkOnScreen) -1 < args[0]: print("no drinks found.") return ## Start Script to create Invoice if self.lightning: print("start lnd-invoicetoqr.sh") subprocess.call("lnd/lnd-invoicetoqr.sh") print("end lnd-invoicetoqr.sh") root = BoxLayout(orientation='vertical') root2 = BoxLayout() if self.lightning: root2.add_widget(Image(source='lnd/temp/tempQRCode.png')) else: root2.add_widget(Image(source='img/empty-glass.png')) list_ing = "Ingredients:\n" for ing in self.drinkOnScreen[args[0]]["recipe"]: list_ing = list_ing + ingredients[ing[0]][0] + ": " + str(ing[1]) + "\n" root2.add_widget( Label(text=list_ing + '\nPlease be sure\nthat a glass with min 200 ml \nis placed onto the black fixture.', font_size='20sp')) root.add_widget(root2) if not self.lightning: contentOK = Button(text='OK', font_size=60, size_hint_y=0.15) root.add_widget(contentOK) contentCancel = Button(text='Cancel', font_size=60, size_hint_y=0.15) root.add_widget(contentCancel) popup = Popup(title=self.drinkOnScreen[args[0]]["name"], content=root, auto_dismiss=False) def closeme(button): popup.dismiss() Clock.schedule_once(partial(self.doGiveDrink, args[0]), .01) if not self.lightning: contentOK.bind(on_press=closeme) def cancelme(button): popup.dismiss() contentCancel.bind(on_press=cancelme) ## Beginn Function to periodically check the payment using lnd-checkinvoice1.sh def checkPayment(parent): print("start check script") ## while loop to check if lnd-checkinvoice1.sh returns SETTLED, if not wait for a second and start over paymentSettled = False counter = 0 while paymentSettled == False: ## run lnd-checkinvoice1.sh and write output to variable s s = subprocess.check_output(["sh","lnd/lnd-checkinvoice1.sh"]) print(s) counter +=1 print( counter ) ## check if s is 'SETTLED', if so, close popup and start doGiveDrink if (b'SETTLED' in s): paymentSettled = True popup.dismiss() Clock.schedule_once(partial(self.doGiveDrink, args[0]), .01) elif (counter > 60): paymentSettled = True popup.dismiss() Clock.schedule_once( partial( self.doGiveDrink, args[0] ), .01 ) else: ## if not 'SETTLED' wait a second and start over paymentSettled = False time.sleep(1) pass pass print("end check script") ## End Function to periodically check the payment using lnd-checkinvoice1.sh ## start 'checkPayment-loop' when loading popup if self.lightning: popup.bind(on_open=checkPayment) popup.open() def doGiveDrink(self, drink, intervaltime): root = BoxLayout(orientation='vertical') content = Label(text='Take a break -- \nYour \n\n' + self.drinkOnScreen[drink]["name"]+'\n\nwill be mixed.', font_size='40sp') root.add_widget(content) popup = Popup(title='Life, the Universe, and Everything. There is an answer.', content=root, auto_dismiss=False) if (self.drinkOnScreen[drink]["sound"]): mixer.init() mixer.music.load(self.drinkOnScreen[drink]["sound"]) mixer.music.play() def makeDrink(parentwindow): drinks = self.drinkOnScreen[drink] hector = HectorHardware(config) hector.light_on() time.sleep(1) hector.arm_out() for ingridient in drinks["recipe"]: hector.valve_dose(pumpList[ingridient[0]], ingridient[1]) time.sleep(.1) print("IndexPumpe: ", pumpList[ingridient[0]]) print("Ingredient: ", ingridient[0]) print("Output in ml: ", ingridient[1]) self.db.countUpIngredient(ingridient[0],ingridient[1]) time.sleep(1) self.db.countUpDrink(drinks["name"]) hector.arm_in() hector.light_off() hector.finger(1) hector.ping(3) hector.finger(0) print(drinks["name"]) parentwindow.dismiss() popup.bind(on_open=makeDrink) popup.open() def back(self): if self.screenPage == 1: self.screenPage = self.maxScreenPage else: self.screenPage -= 1 self.drinkOnScreen = drink_list[(self.screenPage * 8) - 8:8 * self.screenPage] self.fillButtons(self.drinkOnScreen) def forward(self): if self.screenPage == self.maxScreenPage: self.screenPage = 1 else: self.screenPage += 1 i = (self.screenPage * 8) - 8 self.drinkOnScreen = drink_list[i:8 * self.screenPage] self.fillButtons(self.drinkOnScreen) def readPumpConfiguration(self): x = json.load(open('servo_config.json')) global pumpList pumpList = {} for key in x: chan = x[key] pumpList[chan['value']] = chan['channel'] return pumpList pass
34.737931
139
0.528588
59120d373ccf4335d60fb9ded6693a446f8df97a
442
py
Python
DjangoCRUD/venv/Scripts/pip3.7-script.py
Dawwie/Django
8c0382d5e44e125d9c5b52742f8dc07008e0b8b7
[ "MIT" ]
null
null
null
DjangoCRUD/venv/Scripts/pip3.7-script.py
Dawwie/Django
8c0382d5e44e125d9c5b52742f8dc07008e0b8b7
[ "MIT" ]
null
null
null
DjangoCRUD/venv/Scripts/pip3.7-script.py
Dawwie/Django
8c0382d5e44e125d9c5b52742f8dc07008e0b8b7
[ "MIT" ]
null
null
null
#!"E:\Pobrane\Programowanie\Pycharm 2018.3.4\Projects\DjangoCRUD\venv\Scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip3.7' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip3.7')() )
34
89
0.674208
af60024a11b9bc4bbb464de703d547517d2906f0
5,176
py
Python
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/plugin/raw/plugin.py
Alibloke/holland
e630b511a95ed8e36205e8300e632018918223ff
[ "BSD-3-Clause" ]
null
null
null
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/plugin/raw/plugin.py
Alibloke/holland
e630b511a95ed8e36205e8300e632018918223ff
[ "BSD-3-Clause" ]
null
null
null
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/plugin/raw/plugin.py
Alibloke/holland
e630b511a95ed8e36205e8300e632018918223ff
[ "BSD-3-Clause" ]
null
null
null
"""MySQL LVM snapshot backups""" import os import logging from holland.core.util.path import directory_size from holland.core.backup import BackupError from holland.lib.lvm import LogicalVolume, CallbackFailuresError, LVMCommandError, relpath, getmount from holland.lib.mysql.client import MySQLError from holland.lib.mysql.client.base import MYSQL_CLIENT_CONFIG_STRING from holland.backup.mysql_lvm.plugin.common import build_snapshot, connect_simple, _dry_run from holland.backup.mysql_lvm.plugin.raw.util import setup_actions from holland.lib.compression import COMPRESSION_CONFIG_STRING LOG = logging.getLogger(__name__) CONFIGSPEC = ( """ [mysql-lvm] # default: mysql lv + _snapshot snapshot-name = string(default=None) # default: minimum of 20% of mysql lv or mysql vg free size snapshot-size = string(default=None) # default: temporary directory snapshot-mountpoint = string(default=None) # default: no innodb-recovery = boolean(default=no) # ignore errors due to strange innodb configurations force-innodb-backup = boolean(default=no) # default: flush tables with read lock by default lock-tables = boolean(default=yes) # default: do an extra (non-locking) flush tables before # run flush tables with read lock extra-flush-tables = boolean(default=yes) # default: create tar file from snapshot archive-method = option(dir,tar,default="tar") [mysqld] mysqld-exe = force_list(default=list('mysqld', '/usr/libexec/mysqld')) user = string(default='mysql') innodb-buffer-pool-size = string(default=128M) tmpdir = string(default=None) [tar] exclude = force_list(default='mysql.sock') post-args = string(default=None) pre-args = string(default=None) """ + MYSQL_CLIENT_CONFIG_STRING + COMPRESSION_CONFIG_STRING ) CONFIGSPEC = CONFIGSPEC.splitlines() class MysqlLVMBackup(object): """ A Holland Backup plugin suitable for performing LVM snapshots of a filesystem underlying a live MySQL instance. This plugin produces tar archives of a MySQL data directory. """ CONFIGSPEC = CONFIGSPEC def __init__(self, name, config, target_directory, dry_run=False): self.config = config self.config.validate_config(self.configspec()) LOG.debug("Validated config: %r", self.config) self.name = name self.target_directory = target_directory self.dry_run = dry_run self.client = connect_simple(self.config["mysql:client"]) def estimate_backup_size(self): """Estimate the backup size this plugin will produce This is currently the total directory size of the MySQL datadir """ try: self.client.connect() datadir = self.client.show_variable("datadir") self.client.disconnect() except MySQLError as exc: raise BackupError("[%d] %s" % exc.args) return directory_size(datadir) def configspec(self): """INI Spec for the configuration values this plugin supports""" return self.CONFIGSPEC def backup(self): """Run a backup by running through a LVM snapshot against the device the MySQL datadir resides on """ # connect to mysql and lookup what we're supposed to snapshot try: self.client.connect() datadir = os.path.realpath(self.client.show_variable("datadir")) except MySQLError as exc: raise BackupError("[%d] %s" % exc.args) LOG.info("Backing up %s via snapshot", datadir) # lookup the logical volume mysql's datadir sits on try: volume = LogicalVolume.lookup_from_fspath(datadir) except LookupError as exc: raise BackupError("Failed to lookup logical volume for %s: %s" % (datadir, str(exc))) except Exception as ex: raise BackupError("Failed to lookup logical volume for %s: %s" % (datadir, str(ex))) # create a snapshot manager snapshot = build_snapshot(self.config["mysql-lvm"], volume, suppress_tmpdir=self.dry_run) # calculate where the datadirectory on the snapshot will be located rpath = relpath(datadir, getmount(datadir)) snap_datadir = os.path.abspath(os.path.join(snapshot.mountpoint, rpath)) # setup actions to perform at each step of the snapshot process setup_actions( snapshot=snapshot, config=self.config, client=self.client, snap_datadir=snap_datadir, spooldir=self.target_directory, ) if self.dry_run: return _dry_run(self.target_directory, volume, snapshot, datadir) try: snapshot.start(volume) except CallbackFailuresError as exc: for callback, error in exc.errors: LOG.error("%s: %s", callback, error) raise BackupError("Error occurred during snapshot process. Aborting.") except LVMCommandError as exc: # Something failed in the snapshot process raise BackupError(str(exc)) except BaseException as ex: LOG.debug(ex) return None
34.738255
100
0.676198
604d14b1570f4a4b1b1d12c13fef9048767d1fba
84
py
Python
main.py
us-upal/The_Self_Taught_Programmer
1ccdd519a964c01ec1c892a22fd5b8c4cce2267f
[ "MIT" ]
null
null
null
main.py
us-upal/The_Self_Taught_Programmer
1ccdd519a964c01ec1c892a22fd5b8c4cce2267f
[ "MIT" ]
null
null
null
main.py
us-upal/The_Self_Taught_Programmer
1ccdd519a964c01ec1c892a22fd5b8c4cce2267f
[ "MIT" ]
null
null
null
print("hello world") for _ in range(10): print("hello world") #hello world *10
28
41
0.654762
6c3df2671a95387912ef92ea0bc0da5afe6d1312
7,656
py
Python
tests/python/topi/python/test_topi_math.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
4,640
2017-08-17T19:22:15.000Z
2019-11-04T15:29:46.000Z
tests/python/topi/python/test_topi_math.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2,863
2017-08-17T19:55:50.000Z
2019-11-04T17:18:41.000Z
tests/python/topi/python/test_topi_math.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1,352
2017-08-17T19:30:38.000Z
2019-11-04T16:09:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import numpy as np import pytest import scipy from scipy import special import tvm import tvm.testing import tvm.topi.testing from tvm import te, topi from tvm.topi import utils def test_util(): x = tvm.tir.const(100, "int32") assert utils.get_const_int(x) == 100 assert utils.get_const_tuple((x, x)) == (100, 100) ewise_operations = { "floor": {"topi": topi.floor, "ref": np.floor, "input_range": (-100, 100)}, "ceil": {"topi": topi.ceil, "ref": np.ceil, "input_range": (-100, 100)}, "sign": { "topi": topi.sign, "ref": np.sign, "input_range": (-100, 100), "skip_name_check": True, }, "trunc": {"topi": topi.trunc, "ref": np.trunc, "input_range": (-100, 100)}, "fabs": {"topi": topi.abs, "ref": np.fabs, "input_range": (-100, 100)}, "round": {"topi": topi.round, "ref": np.round, "input_range": (-100, 100), "check_round": True}, "exp": {"topi": topi.exp, "ref": np.exp, "input_range": (-1, 1)}, "tanh": { "topi": topi.tanh, "ref": np.tanh, "input_range": (-10, 10), "shape": (128, 128), "dtype": ["float32", "float64"], }, "sigmoid": { "topi": topi.sigmoid, "ref": lambda x: 1 / (1 + np.exp(-x)), "input_range": (-1, 1), }, "log": {"topi": topi.log, "ref": np.log, "input_range": (0, 100)}, "sqrt": {"topi": topi.sqrt, "ref": np.sqrt, "input_range": (0, 100)}, "rsqrt": { "topi": topi.rsqrt, "ref": lambda x: np.ones_like(x) / np.sqrt(x), "input_range": (0, 100), "skip_name_check": True, }, "cos": {"topi": topi.cos, "ref": np.cos, "input_range": (-2.0 * np.pi, 2.0 * np.pi)}, "tan": { "topi": topi.tan, "ref": np.tan, "input_range": (-2.0 * np.pi, 2.0 * np.pi), "dtypes": ["float32", "float64"], }, "sin": {"topi": topi.sin, "ref": np.sin, "input_range": (-2.0 * np.pi, 2.0 * np.pi)}, "erf": {"topi": topi.erf, "ref": scipy.special.erf, "input_range": (-0.1, 0.1)}, "isnan": { "topi": topi.isnan, "ref": np.isnan, "input_range": (-1, 1), "replace_with_nan": True, }, "isfinite": { "topi": topi.isfinite, "ref": np.isfinite, "input_range": (0, 1), "shape": (8, 8), "skip_name_check": True, "replace_with_nan": True, "replace_with_inf": True, "dtypes": ["float32", "float64", "int32", "int16"], }, "isinf": { "topi": topi.isinf, "ref": np.isinf, "input_range": (0, 1), "shape": (8, 8), "skip_name_check": True, "replace_with_nan": True, "replace_with_inf": True, "dtypes": ["float32", "float64", "int32", "int16"], }, "fast_exp": { "topi": topi.fast_exp, "ref": np.exp, "skip_name_check": True, "input_range": (-88, 88), "step": 0.01, }, "fast_erf": { "topi": topi.fast_erf, "ref": scipy.special.erf, "skip_name_check": True, "input_range": (-10, 10), "step": 0.01, "dtypes": ["float32", "float16"], "cast_output": True, "tolerance": [1e-5, 1e-1], }, "fast_tanh": { "topi": topi.fast_tanh, "ref": np.tanh, "skip_name_check": True, "input_range": (-10, 10), "step": 0.01, }, } topi_name, dtype, tolerance = tvm.testing.parameters( *[ (name, dtype, config.get("tolerance", [1e-5] * len(dtype))[i]) for name, config in ewise_operations.items() for i, dtype in enumerate(config.get("dtypes", ["float32"])) ] ) @tvm.testing.fixture(cache_return_value=True) def ewise_ref_data(topi_name, dtype): config = ewise_operations[topi_name] input_range = config["input_range"] shape = config.get("shape", (20, 3)) a_np = np.random.uniform(*input_range, size=shape).astype(dtype) if dtype.startswith("float"): if config.get("replace_with_nan", False): a_np.ravel()[np.random.choice(a_np.size, int(a_np.size * 0.5), replace=False)] = np.nan if config.get("replace_with_inf", False): a_np.ravel()[ np.random.choice(a_np.size, int(a_np.size * 0.5), replace=False) ] = np.infty # avoid round check too close to boundary if topi_name == "round": a_np += ((np.abs(np.fmod(a_np, 1)) - 0.5) < 1e-6) * 1e-4 b_np = config["ref"](a_np) if config.get("cast_output", False): b_np = b_np.astype(dtype) return a_np, b_np def test_ewise(target, dev, topi_name, dtype, tolerance, ewise_ref_data): target = tvm.target.Target(target) if target.kind.name == "vulkan" and topi_name in ["tan", "erf", "isnan", "isfinite", "isinf"]: pytest.xfail(f"Vulkan runtime doesn't support {topi_name} yet") topi_op = ewise_operations[topi_name]["topi"] skip_name_check = ewise_operations[topi_name].get("skip_name_check", False) m = te.var("m") l = te.var("l") A = te.placeholder((m, l), dtype=dtype, name="A") B = topi_op(A) assert tuple(B.shape) == tuple(A.shape) if not skip_name_check: assert B.op.body[0].op.name == "tir." + topi_name a_np, b_np = ewise_ref_data with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(B) foo = tvm.build(s, [A, B], target, name=topi_name) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(np.zeros_like(b_np), dev) foo(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=tolerance, atol=tolerance) from_dtype, to_dtype = tvm.testing.parameters( ("int32", "float32"), ("int32", "float64"), ("int32", "bool"), ("float32", "int32"), ("float32", "float64"), ("float32", "bool"), ("bool", "float32"), ("bool", "int32"), ) @tvm.testing.fixture(cache_return_value=True) def cast_ref_data(from_dtype, to_dtype): shape = (5, 4) input_range = (-100, 100) if from_dtype == "bool": a_np = np.random.choice([True, False], size=shape) else: a_np = np.random.uniform(*input_range, size=shape).astype(from_dtype) if to_dtype == "bool": a_np = a_np - a_np[2, 3] b_np = a_np.astype(to_dtype) return a_np, b_np def test_cast(target, dev, cast_ref_data, from_dtype, to_dtype): m = te.var("m") l = te.var("l") A = te.placeholder((m, l), dtype=from_dtype, name="A") B = topi.cast(A, to_dtype) a_np, b_np = cast_ref_data with tvm.target.Target(target): s = tvm.topi.testing.get_injective_schedule(target)(B) foo = tvm.build(s, [A, B], target) a = tvm.nd.array(a_np, dev) b = tvm.nd.empty(b_np.shape, dtype=to_dtype, device=dev) foo(a, b) tvm.testing.assert_allclose(b.numpy(), b_np) if __name__ == "__main__": tvm.testing.main()
30.995951
100
0.583072
30521fbaa38774fdb0ed7cb902a10df1ad93eeac
2,833
py
Python
test/functional/wallet_zapwallettxes.py
BioA3/BioA3
a7ad7021121aaa468b11a9925972e315cea70f50
[ "MIT" ]
null
null
null
test/functional/wallet_zapwallettxes.py
BioA3/BioA3
a7ad7021121aaa468b11a9925972e315cea70f50
[ "MIT" ]
null
null
null
test/functional/wallet_zapwallettxes.py
BioA3/BioA3
a7ad7021121aaa468b11a9925972e315cea70f50
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the zapwallettxes functionality. - start two bioa3d nodes - create two transactions on node 0 - one is confirmed and one is unconfirmed. - restart node 0 and verify that both the confirmed and the unconfirmed transactions are still available. - restart node 0 with zapwallettxes and persistmempool, and verify that both the confirmed and the unconfirmed transactions are still available. - restart node 0 with just zapwallettxes and verify that the confirmed transactions are still available, but that the unconfirmed transaction has been zapped. """ from test_framework.test_framework import BioA3TestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, wait_until, ) class ZapWalletTXesTest (BioA3TestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.sync_all() self.nodes[1].generate(101) self.sync_all() assert_equal(self.nodes[0].getbalance(), 250) # This transaction will be confirmed txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 10) self.sync_all() self.nodes[0].generate(1) self.sync_all() # This transaction will not be confirmed txid2 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 20) # Confirmed and unconfirmed transactions are now in the wallet. assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) assert_equal(self.nodes[0].gettransaction(txid2)['txid'], txid2) # Stop-start node0. Both confirmed and unconfirmed transactions remain in the wallet. self.stop_node(0) self.start_node(0) assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) assert_equal(self.nodes[0].gettransaction(txid2)['txid'], txid2) # Stop node0 and restart with zapwallettxes and persistmempool. The unconfirmed # transaction is zapped from the wallet, but is re-added when the mempool is reloaded. self.stop_node(0) self.start_node(0, ["-zapwallettxes=2"]) # tx1 is still be available because it was confirmed assert_equal(self.nodes[0].gettransaction(txid1)['txid'], txid1) # This will raise an exception because the unconfirmed transaction has been zapped assert_raises_rpc_error(-5, 'Invalid or non-wallet transaction id', self.nodes[0].gettransaction, txid2) if __name__ == '__main__': ZapWalletTXesTest().main()
39.901408
112
0.710201
d2c8effd068b1b2ba95997af01aa12a589157d2f
540
py
Python
rockstreet/artista/models.py
CeMenezesJunior/DevWebDjango
7b442411b6444f1c7c3c781ef8e5fdad73a476e0
[ "MIT" ]
null
null
null
rockstreet/artista/models.py
CeMenezesJunior/DevWebDjango
7b442411b6444f1c7c3c781ef8e5fdad73a476e0
[ "MIT" ]
null
null
null
rockstreet/artista/models.py
CeMenezesJunior/DevWebDjango
7b442411b6444f1c7c3c781ef8e5fdad73a476e0
[ "MIT" ]
null
null
null
from django.db import models from django.urls import reverse class Artista(models.Model): nome = models.CharField(max_length=70, db_index=True, unique=True) descricao = models.CharField(max_length=100) imagem = models.CharField(max_length=100, blank=True) slug = models.SlugField(max_length=70) class Meta: db_table='artista' ordering = ('nome',) def __str__(self): return self.nome def get_absolute_url(self): return reverse('artista:artistadetail',args=[self.id,self.slug])
28.421053
72
0.696296
7db30ba28ce1598afe6c3a63c621d97ccd5e96f6
2,663
py
Python
astropy/io/misc/tests/test_pickle_helpers.py
REMeyer/astropy
28c49fb618538a01812e586cd07bccdf0591a6c6
[ "BSD-3-Clause" ]
3
2018-03-20T15:09:16.000Z
2021-05-27T11:17:33.000Z
astropy/io/misc/tests/test_pickle_helpers.py
REMeyer/astropy
28c49fb618538a01812e586cd07bccdf0591a6c6
[ "BSD-3-Clause" ]
null
null
null
astropy/io/misc/tests/test_pickle_helpers.py
REMeyer/astropy
28c49fb618538a01812e586cd07bccdf0591a6c6
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from .. import fnpickle, fnunpickle from ....extern.six.moves import range def test_fnpickling_simple(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' basic operation by pickling and unpickling a string, using both a filename and a file. """ fn = str(tmpdir.join('test1.pickle')) obj1 = 'astring' fnpickle(obj1, fn) res = fnunpickle(fn) assert obj1 == res # try without cPickle fnpickle(obj1, fn, usecPickle=False) res = fnunpickle(fn, usecPickle=False) assert obj1 == res # now try with a file-like object instead of a string with open(fn, 'wb') as f: fnpickle(obj1, f) with open(fn, 'rb') as f: res = fnunpickle(f) assert obj1 == res # same without cPickle with open(fn, 'wb') as f: fnpickle(obj1, f, usecPickle=False) with open(fn, 'rb') as f: res = fnunpickle(f, usecPickle=False) assert obj1 == res class ToBePickled(object): def __init__(self, item): self.item = item def __eq__(self, other): if isinstance(other, ToBePickled): return self.item == other.item else: return False def test_fnpickling_class(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' ability to pickle and unpickle custom classes. """ fn = str(tmpdir.join('test2.pickle')) obj1 = 'astring' obj2 = ToBePickled(obj1) fnpickle(obj2, fn) res = fnunpickle(fn) assert res == obj2 def test_fnpickling_protocol(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' ability to pickle and unpickle pickle files from all protcols. """ import pickle obj1 = 'astring' obj2 = ToBePickled(obj1) for p in range(pickle.HIGHEST_PROTOCOL + 1): fn = str(tmpdir.join('testp{}.pickle'.format(p))) fnpickle(obj2, fn, protocol=p) res = fnunpickle(fn) assert res == obj2 def test_fnpickling_many(tmpdir): """ Tests the `fnpickle` and `fnupickle` functions' ability to pickle and unpickle multiple objects from a single file. """ fn = str(tmpdir.join('test3.pickle')) # now try multiples obj3 = 328.3432 obj4 = 'blahblahfoo' fnpickle(obj3, fn) fnpickle(obj4, fn, append=True) res = fnunpickle(fn, number=-1) assert len(res) == 2 assert res[0] == obj3 assert res[1] == obj4 fnpickle(obj4, fn, append=True) res = fnunpickle(fn, number=2) assert len(res) == 2 with pytest.raises(EOFError): fnunpickle(fn, number=5)
24.431193
70
0.626361
7b3300e3157bb51fc605dcb61fda49d5f9e9378d
49,454
py
Python
src/full_node/full_node_api.py
nup002/chia-blockchain
93adb84f29c60bf06d30493c104be9329d7886dc
[ "Apache-2.0" ]
null
null
null
src/full_node/full_node_api.py
nup002/chia-blockchain
93adb84f29c60bf06d30493c104be9329d7886dc
[ "Apache-2.0" ]
null
null
null
src/full_node/full_node_api.py
nup002/chia-blockchain
93adb84f29c60bf06d30493c104be9329d7886dc
[ "Apache-2.0" ]
null
null
null
import asyncio import dataclasses import time import src.server.ws_connection as ws from typing import AsyncGenerator, List, Optional, Tuple, Callable, Dict from chiabip158 import PyBIP158 from blspy import G2Element, AugSchemeMPL from src.consensus.block_creation import create_unfinished_block from src.consensus.pot_iterations import ( calculate_ip_iters, calculate_sp_iters, calculate_iterations_quality, ) from src.full_node.full_node import FullNode from src.full_node.mempool_check_conditions import get_puzzle_and_solution_for_coin from src.full_node.signage_point import SignagePoint from src.consensus.sub_block_record import SubBlockRecord from src.protocols import ( farmer_protocol, full_node_protocol, timelord_protocol, wallet_protocol, ) from src.protocols.full_node_protocol import RejectSubBlocks from src.protocols.wallet_protocol import RejectHeaderRequest, PuzzleSolutionResponse, RejectHeaderBlocks from src.server.outbound_message import Message, NodeType, OutboundMessage from src.types.coin import Coin, hash_coin_list from src.types.end_of_slot_bundle import EndOfSubSlotBundle from src.types.full_block import FullBlock from src.types.header_block import HeaderBlock from src.types.mempool_inclusion_status import MempoolInclusionStatus from src.types.mempool_item import MempoolItem from src.types.pool_target import PoolTarget from src.types.program import Program from src.types.sized_bytes import bytes32 from src.types.spend_bundle import SpendBundle from src.types.unfinished_block import UnfinishedBlock from src.util.api_decorators import api_request, peer_required from src.util.errors import Err from src.util.ints import uint64, uint128, uint8, uint32 from src.types.peer_info import PeerInfo from src.util.merkle_set import MerkleSet OutboundMessageGenerator = AsyncGenerator[OutboundMessage, None] class FullNodeAPI: full_node: FullNode def __init__(self, full_node): self.full_node = full_node def _set_state_changed_callback(self, callback: Callable): self.full_node.state_changed_callback = callback @property def server(self): return self.full_node.server @property def log(self): return self.full_node.log @peer_required @api_request async def request_peers(self, _request: full_node_protocol.RequestPeers, peer: ws.WSChiaConnection): if peer.peer_server_port is None: return None peer_info = PeerInfo(peer.peer_host, peer.peer_server_port) if self.full_node.full_node_peers is not None: msg = await self.full_node.full_node_peers.request_peers(peer_info) return msg @peer_required @api_request async def respond_peers( self, request: full_node_protocol.RespondPeers, peer: ws.WSChiaConnection ) -> Optional[Message]: if self.full_node.full_node_peers is not None: if peer.connection_type is NodeType.INTRODUCER: is_full_node = False else: is_full_node = True await self.full_node.full_node_peers.respond_peers(request, peer.get_peer_info(), is_full_node) if peer.connection_type is NodeType.INTRODUCER: await peer.close() return None @peer_required @api_request async def new_peak(self, request: full_node_protocol.NewPeak, peer: ws.WSChiaConnection) -> Optional[Message]: """ A peer notifies us that they have added a new peak to their blockchain. If we don't have it, we can ask for it. """ return await self.full_node.new_peak(request, peer) @api_request async def new_transaction(self, transaction: full_node_protocol.NewTransaction) -> Optional[Message]: """ A peer notifies us of a new transaction. Requests a full transaction if we haven't seen it previously, and if the fees are enough. """ # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None # Ignore if already seen if self.full_node.mempool_manager.seen(transaction.transaction_id): return None if self.full_node.mempool_manager.is_fee_enough(transaction.fees, transaction.cost): request_tx = full_node_protocol.RequestTransaction(transaction.transaction_id) msg = Message("request_transaction", request_tx) return msg return None @api_request async def request_transaction(self, request: full_node_protocol.RequestTransaction) -> Optional[Message]: """ Peer has requested a full transaction from us. """ # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None spend_bundle = self.full_node.mempool_manager.get_spendbundle(request.transaction_id) if spend_bundle is None: return None transaction = full_node_protocol.RespondTransaction(spend_bundle) msg = Message("respond_transaction", transaction) self.log.info(f"sending transaction (tx_id: {spend_bundle.name()}) to peer") return msg @peer_required @api_request async def respond_transaction( self, tx: full_node_protocol.RespondTransaction, peer: ws.WSChiaConnection ) -> Optional[Message]: """ Receives a full transaction from peer. If tx is added to mempool, send tx_id to others. (new_transaction) """ # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.blockchain.lock: # Ignore if we have already added this transaction if self.full_node.mempool_manager.get_spendbundle(tx.transaction.name()) is not None: return None cost, status, error = await self.full_node.mempool_manager.add_spendbundle(tx.transaction) if status == MempoolInclusionStatus.SUCCESS: self.log.info(f"Added transaction to mempool: {tx.transaction.name()}") fees = tx.transaction.fees() assert fees >= 0 assert cost is not None new_tx = full_node_protocol.NewTransaction( tx.transaction.name(), cost, uint64(tx.transaction.fees()), ) message = Message("new_transaction", new_tx) await self.server.send_to_all_except([message], NodeType.FULL_NODE, peer.peer_node_id) else: self.log.warning( f"Was not able to add transaction with id {tx.transaction.name()}, {status} error: {error}" ) return None @api_request async def request_proof_of_weight(self, request: full_node_protocol.RequestProofOfWeight) -> Optional[Message]: if request.tip not in self.full_node.blockchain.sub_blocks: self.log.error(f"got weight proof request for unknown peak {request.tip}") return None if request.tip in self.full_node.pow_creation: event = self.full_node.pow_creation[request.tip] await event.wait() wp = await self.full_node.weight_proof_handler.get_proof_of_weight(request.tip) else: event = asyncio.Event() self.full_node.pow_creation[request.tip] = event wp = await self.full_node.weight_proof_handler.get_proof_of_weight(request.tip) event.set() tips = list(self.full_node.pow_creation.keys()) if len(tips) > 4: # Remove old from cache for i in range(0, 4): self.full_node.pow_creation.pop(tips[i]) if wp is None: self.log.error(f"failed creating weight proof for peak {request.tip}") return None return Message("respond_proof_of_weight", full_node_protocol.RespondProofOfWeight(wp, request.tip)) @api_request @peer_required async def respond_proof_of_weight( self, response: full_node_protocol.RespondProofOfWeight, peer: ws.WSChiaConnection, ) -> Optional[Message]: if peer.peer_node_id not in self.full_node.pow_pending: self.log.warning("weight proof not in pending request list") return None validated, fork_point = self.full_node.weight_proof_handler.validate_weight_proof(response.wp) if not validated: raise Exception("bad weight proof, disconnecting peer") # get tip params tip_weight = response.wp.recent_chain_data[-1].reward_chain_sub_block.weight tip_height = response.wp.recent_chain_data[-1].reward_chain_sub_block.sub_block_height self.full_node.sync_store.add_potential_peak(response.tip, tip_height, tip_weight) self.full_node.sync_store.add_potential_fork_point(response.tip, fork_point) return Message( "request_sub_block", full_node_protocol.RequestSubBlock(uint32(tip_height), True), ) @api_request async def request_sub_block(self, request: full_node_protocol.RequestSubBlock) -> Optional[Message]: if request.sub_height not in self.full_node.blockchain.sub_height_to_hash: return None block: Optional[FullBlock] = await self.full_node.block_store.get_full_block( self.full_node.blockchain.sub_height_to_hash[request.sub_height] ) if block is not None: if not request.include_transaction_block: block = dataclasses.replace(block, transactions_generator=None) msg = Message("respond_sub_block", full_node_protocol.RespondSubBlock(block)) return msg return None @api_request async def request_sub_blocks(self, request: full_node_protocol.RequestSubBlocks) -> Optional[Message]: if request.end_sub_height < request.start_sub_height or request.end_sub_height - request.start_sub_height > 32: return None for i in range(request.start_sub_height, request.end_sub_height + 1): if i not in self.full_node.blockchain.sub_height_to_hash: reject = RejectSubBlocks(request.start_sub_height, request.end_sub_height) msg = Message("reject_sub_blocks", reject) return msg blocks = [] for i in range(request.start_sub_height, request.end_sub_height + 1): block: Optional[FullBlock] = await self.full_node.block_store.get_full_block( self.full_node.blockchain.sub_height_to_hash[uint32(i)] ) if block is None: reject = RejectSubBlocks(request.start_sub_height, request.end_sub_height) msg = Message("reject_sub_blocks", reject) return msg if not request.include_transaction_block: block = dataclasses.replace(block, transactions_generator=None) blocks.append(block) msg = Message( "respond_sub_blocks", full_node_protocol.RespondSubBlocks(request.start_sub_height, request.end_sub_height, blocks), ) return msg @api_request async def reject_sub_blocks(self, request: full_node_protocol.RequestSubBlocks): self.log.info(f"reject_sub_blocks {request.start_sub_height} {request.end_sub_height}") pass @api_request async def respond_sub_blocks(self, request: full_node_protocol.RespondSubBlocks): pass @api_request @peer_required async def respond_sub_block( self, respond_sub_block: full_node_protocol.RespondSubBlock, peer: ws.WSChiaConnection, ) -> Optional[Message]: """ Receive a full block from a peer full node (or ourselves). """ if self.full_node.sync_store.get_sync_mode(): return await self.full_node.respond_sub_block(respond_sub_block, peer) else: async with self.full_node.timelord_lock: return await self.full_node.respond_sub_block(respond_sub_block, peer) @api_request async def new_unfinished_sub_block( self, new_unfinished_sub_block: full_node_protocol.NewUnfinishedSubBlock ) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_unfinished_block(new_unfinished_sub_block.unfinished_reward_hash) is not None ): return None msg = Message( "request_unfinished_sub_block", full_node_protocol.RequestUnfinishedSubBlock(new_unfinished_sub_block.unfinished_reward_hash), ) return msg @api_request async def request_unfinished_sub_block( self, request_unfinished_sub_block: full_node_protocol.RequestUnfinishedSubBlock ) -> Optional[Message]: unfinished_block: Optional[UnfinishedBlock] = self.full_node.full_node_store.get_unfinished_block( request_unfinished_sub_block.unfinished_reward_hash ) if unfinished_block is not None: msg = Message( "respond_unfinished_sub_block", full_node_protocol.RespondUnfinishedSubBlock(unfinished_block), ) return msg return None @peer_required @api_request async def respond_unfinished_sub_block( self, respond_unfinished_sub_block: full_node_protocol.RespondUnfinishedSubBlock, peer: ws.WSChiaConnection, ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None await self.full_node.respond_unfinished_sub_block(respond_unfinished_sub_block, peer) return None @api_request async def new_signage_point_or_end_of_sub_slot( self, new_sp: full_node_protocol.NewSignagePointOrEndOfSubSlot ) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_signage_point_by_index( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion, ) is not None ): return None if self.full_node.full_node_store.have_newer_signage_point( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion ): return None if new_sp.index_from_challenge == 0 and new_sp.prev_challenge_hash is not None: if self.full_node.full_node_store.get_sub_slot(new_sp.prev_challenge_hash) is None: # If this is an end of sub slot, and we don't have the prev, request the prev instead full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.prev_challenge_hash, uint8(0), new_sp.last_rc_infusion ) return Message("request_signage_point_or_end_of_sub_slot", full_node_request) if new_sp.index_from_challenge > 0: if ( new_sp.challenge_hash != self.full_node.constants.FIRST_CC_CHALLENGE and self.full_node.full_node_store.get_sub_slot(new_sp.challenge_hash) is None ): # If this is a normal signage point,, and we don't have the end of sub slot, request the end of sub slot full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.challenge_hash, uint8(0), new_sp.last_rc_infusion ) return Message("request_signage_point_or_end_of_sub_slot", full_node_request) # Otherwise (we have the prev or the end of sub slot), request it normally full_node_request = full_node_protocol.RequestSignagePointOrEndOfSubSlot( new_sp.challenge_hash, new_sp.index_from_challenge, new_sp.last_rc_infusion ) return Message("request_signage_point_or_end_of_sub_slot", full_node_request) @api_request async def request_signage_point_or_end_of_sub_slot( self, request: full_node_protocol.RequestSignagePointOrEndOfSubSlot ) -> Optional[Message]: if request.index_from_challenge == 0: sub_slot: Optional[Tuple[EndOfSubSlotBundle, int, uint128]] = self.full_node.full_node_store.get_sub_slot( request.challenge_hash ) if sub_slot is not None: return Message( "respond_end_of_sub_slot", full_node_protocol.RespondEndOfSubSlot(sub_slot[0]), ) else: if self.full_node.full_node_store.get_sub_slot(request.challenge_hash) is None: if request.challenge_hash != self.full_node.constants.FIRST_CC_CHALLENGE: self.log.warning(f"Don't have challenge hash {request.challenge_hash}") sp: Optional[SignagePoint] = self.full_node.full_node_store.get_signage_point_by_index( request.challenge_hash, request.index_from_challenge, request.last_rc_infusion, ) if sp is not None: assert ( sp.cc_vdf is not None and sp.cc_proof is not None and sp.rc_vdf is not None and sp.rc_proof is not None ) full_node_response = full_node_protocol.RespondSignagePoint( request.index_from_challenge, sp.cc_vdf, sp.cc_proof, sp.rc_vdf, sp.rc_proof, ) return Message("respond_signage_point", full_node_response) else: self.log.warning(f"Don't have signage point {request}") return None @peer_required @api_request async def respond_signage_point( self, request: full_node_protocol.RespondSignagePoint, peer: ws.WSChiaConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None async with self.full_node.timelord_lock: # Already have signage point if ( self.full_node.full_node_store.get_signage_point(request.challenge_chain_vdf.output.get_hash()) is not None ): return None peak = self.full_node.blockchain.get_peak() if peak is not None and peak.sub_block_height > self.full_node.constants.MAX_SUB_SLOT_SUB_BLOCKS: sub_slot_iters = peak.sub_slot_iters difficulty = uint64(peak.weight - self.full_node.blockchain.sub_blocks[peak.prev_hash].weight) next_sub_slot_iters = self.full_node.blockchain.get_next_slot_iters(peak.header_hash, True) next_difficulty = self.full_node.blockchain.get_next_difficulty(peak.header_hash, True) sub_slots_for_peak = await self.full_node.blockchain.get_sp_and_ip_sub_slots(peak.header_hash) assert sub_slots_for_peak is not None ip_sub_slot: Optional[EndOfSubSlotBundle] = sub_slots_for_peak[1] else: sub_slot_iters = self.full_node.constants.SUB_SLOT_ITERS_STARTING difficulty = self.full_node.constants.DIFFICULTY_STARTING next_sub_slot_iters = sub_slot_iters next_difficulty = difficulty ip_sub_slot = None added = self.full_node.full_node_store.new_signage_point( request.index_from_challenge, self.full_node.blockchain.sub_blocks, self.full_node.blockchain.get_peak(), next_sub_slot_iters, SignagePoint( request.challenge_chain_vdf, request.challenge_chain_proof, request.reward_chain_vdf, request.reward_chain_proof, ), ) if added: self.log.info( f"⏲️ Finished signage point {request.index_from_challenge}/" f"{self.full_node.constants.NUM_SPS_SUB_SLOT}: " f"{request.challenge_chain_vdf.output.get_hash()} " ) sub_slot_tuple = self.full_node.full_node_store.get_sub_slot(request.challenge_chain_vdf.challenge) if sub_slot_tuple is not None: prev_challenge = sub_slot_tuple[0].challenge_chain.challenge_chain_end_of_slot_vdf.challenge else: prev_challenge = None # Notify nodes of the new signage point broadcast = full_node_protocol.NewSignagePointOrEndOfSubSlot( prev_challenge, request.challenge_chain_vdf.challenge, request.index_from_challenge, request.reward_chain_vdf.challenge, ) msg = Message("new_signage_point_or_end_of_sub_slot", broadcast) await self.server.send_to_all_except([msg], NodeType.FULL_NODE, peer.peer_node_id) if peak is not None and peak.sub_block_height > self.full_node.constants.MAX_SUB_SLOT_SUB_BLOCKS: # Makes sure to potentially update the difficulty if we are past the peak (into a new sub-slot) assert ip_sub_slot is not None if request.challenge_chain_vdf.challenge != ip_sub_slot.challenge_chain.get_hash(): difficulty = next_difficulty sub_slot_iters = next_sub_slot_iters # Notify farmers of the new signage point broadcast_farmer = farmer_protocol.NewSignagePoint( request.challenge_chain_vdf.challenge, request.challenge_chain_vdf.output.get_hash(), request.reward_chain_vdf.output.get_hash(), difficulty, sub_slot_iters, request.index_from_challenge, ) msg = Message("new_signage_point", broadcast_farmer) await self.server.send_to_all([msg], NodeType.FARMER) else: self.log.warning( f"Signage point {request.index_from_challenge} not added, CC challenge: " f"{request.challenge_chain_vdf.challenge}, RC challenge: {request.reward_chain_vdf.challenge}" ) return None @peer_required @api_request async def respond_end_of_sub_slot( self, request: full_node_protocol.RespondEndOfSubSlot, peer: ws.WSChiaConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None msg, _ = await self.full_node.respond_end_of_sub_slot(request, peer) return msg @peer_required @api_request async def request_mempool_transactions( self, request: full_node_protocol.RequestMempoolTransactions, peer: ws.WSChiaConnection, ) -> Optional[Message]: received_filter = PyBIP158(bytearray(request.filter)) items: List[MempoolItem] = await self.full_node.mempool_manager.get_items_not_in_filter(received_filter) for item in items: transaction = full_node_protocol.RespondTransaction(item.spend_bundle) msg = Message("respond_transaction", transaction) await peer.send_message(msg) return None # FARMER PROTOCOL @api_request async def declare_proof_of_space(self, request: farmer_protocol.DeclareProofOfSpace) -> Optional[Message]: """ Creates a block body and header, with the proof of space, coinbase, and fee targets provided by the farmer, and sends the hash of the header data back to the farmer. """ async with self.full_node.timelord_lock: if request.pool_target is None or request.pool_signature is None: raise ValueError("Adaptable pool protocol not yet available.") sp_vdfs: Optional[SignagePoint] = self.full_node.full_node_store.get_signage_point( request.challenge_chain_sp ) if sp_vdfs is None: self.log.warning(f"Received proof of space for an unknown signage point {request.challenge_chain_sp}") return None if request.signage_point_index > 0: assert sp_vdfs.rc_vdf is not None if sp_vdfs.rc_vdf.output.get_hash() != request.reward_chain_sp: self.log.info( f"Received proof of space for a potentially old signage point {request.challenge_chain_sp}. " f"Current sp: {sp_vdfs.rc_vdf.output.get_hash()}" ) return None if request.signage_point_index == 0: cc_challenge_hash: bytes32 = request.challenge_chain_sp else: assert sp_vdfs.cc_vdf is not None cc_challenge_hash = sp_vdfs.cc_vdf.challenge pos_sub_slot: Optional[Tuple[EndOfSubSlotBundle, int, uint128]] = None if request.challenge_hash != self.full_node.constants.FIRST_CC_CHALLENGE: # Checks that the proof of space is a response to a recent challenge and valid SP pos_sub_slot = self.full_node.full_node_store.get_sub_slot(cc_challenge_hash) if pos_sub_slot is None: self.log.warning(f"Received proof of space for an unknown sub slot: {request}") return None total_iters_pos_slot: uint128 = pos_sub_slot[2] else: total_iters_pos_slot = uint128(0) assert cc_challenge_hash == request.challenge_hash # Now we know that the proof of space has a signage point either: # 1. In the previous sub-slot of the peak (overflow) # 2. In the same sub-slot as the peak # 3. In a future sub-slot that we already know of # Checks that the proof of space is valid quality_string: Optional[bytes32] = request.proof_of_space.verify_and_get_quality_string( self.full_node.constants, cc_challenge_hash, request.challenge_chain_sp ) assert quality_string is not None and len(quality_string) == 32 # Grab best transactions from Mempool for given tip target async with self.full_node.blockchain.lock: peak: Optional[SubBlockRecord] = self.full_node.blockchain.get_peak() if peak is None: spend_bundle: Optional[SpendBundle] = None else: spend_bundle = await self.full_node.mempool_manager.create_bundle_from_mempool(peak.header_hash) def get_plot_sig(to_sign, _) -> G2Element: if to_sign == request.challenge_chain_sp: return request.challenge_chain_sp_signature elif to_sign == request.reward_chain_sp: return request.reward_chain_sp_signature return G2Element.infinity() def get_pool_sig(_1, _2) -> G2Element: return request.pool_signature prev_sb: Optional[SubBlockRecord] = self.full_node.blockchain.get_peak() # Finds the previous sub block from the signage point, ensuring that the reward chain VDF is correct if prev_sb is not None: if request.signage_point_index == 0: if pos_sub_slot is None: self.log.warning("Pos sub slot is None") return None rc_challenge = pos_sub_slot[0].reward_chain.end_of_slot_vdf.challenge else: assert sp_vdfs.rc_vdf is not None rc_challenge = sp_vdfs.rc_vdf.challenge # Backtrack through empty sub-slots for eos, _, _ in reversed(self.full_node.full_node_store.finished_sub_slots): if eos is not None and eos.reward_chain.get_hash() == rc_challenge: rc_challenge = eos.reward_chain.end_of_slot_vdf.challenge found = False attempts = 0 while prev_sb is not None and attempts < 10: if prev_sb.reward_infusion_new_challenge == rc_challenge: found = True break if prev_sb.finished_reward_slot_hashes is not None and len(prev_sb.finished_reward_slot_hashes) > 0: if prev_sb.finished_reward_slot_hashes[-1] == rc_challenge: # This sub-block includes a sub-slot which is where our SP vdf starts. Go back one more # to find the prev sub block prev_sb = self.full_node.blockchain.sub_blocks.get(prev_sb.prev_hash, None) found = True break prev_sb = self.full_node.blockchain.sub_blocks.get(prev_sb.prev_hash, None) attempts += 1 if not found: self.log.warning("Did not find a previous block with the correct reward chain hash") return None try: finished_sub_slots: List[EndOfSubSlotBundle] = self.full_node.full_node_store.get_finished_sub_slots( prev_sb, self.full_node.blockchain.sub_blocks, cc_challenge_hash ) if ( len(finished_sub_slots) > 0 and pos_sub_slot is not None and finished_sub_slots[-1] != pos_sub_slot[0] ): self.log.error("Have different sub-slots than is required to farm this sub-block") return None except ValueError as e: self.log.warning(f"Value Error: {e}") return None if prev_sb is None: pool_target = PoolTarget( self.full_node.constants.GENESIS_PRE_FARM_POOL_PUZZLE_HASH, uint32(0), ) else: pool_target = request.pool_target if peak is None or peak.sub_block_height <= self.full_node.constants.MAX_SUB_SLOT_SUB_BLOCKS: difficulty = self.full_node.constants.DIFFICULTY_STARTING sub_slot_iters = self.full_node.constants.SUB_SLOT_ITERS_STARTING else: difficulty = uint64(peak.weight - self.full_node.blockchain.sub_blocks[peak.prev_hash].weight) sub_slot_iters = peak.sub_slot_iters for sub_slot in finished_sub_slots: if sub_slot.challenge_chain.new_difficulty is not None: difficulty = sub_slot.challenge_chain.new_difficulty if sub_slot.challenge_chain.new_sub_slot_iters is not None: sub_slot_iters = sub_slot.challenge_chain.new_sub_slot_iters required_iters: uint64 = calculate_iterations_quality( quality_string, request.proof_of_space.size, difficulty, request.challenge_chain_sp, ) sp_iters: uint64 = calculate_sp_iters(self.full_node.constants, sub_slot_iters, request.signage_point_index) ip_iters: uint64 = calculate_ip_iters( self.full_node.constants, sub_slot_iters, request.signage_point_index, required_iters, ) self.log.info("Starting to make the unfinished sub-block") unfinished_block: UnfinishedBlock = create_unfinished_block( self.full_node.constants, total_iters_pos_slot, sub_slot_iters, request.signage_point_index, sp_iters, ip_iters, request.proof_of_space, cc_challenge_hash, request.farmer_puzzle_hash, pool_target, get_plot_sig, get_pool_sig, sp_vdfs, uint64(int(time.time())), b"", spend_bundle, prev_sb, self.full_node.blockchain.sub_blocks, finished_sub_slots, ) self.log.info("Made the unfinished sub-block") if prev_sb is not None: height: uint32 = uint32(prev_sb.sub_block_height + 1) else: height = uint32(0) self.full_node.full_node_store.add_candidate_block(quality_string, height, unfinished_block) foliage_sb_data_hash = unfinished_block.foliage_sub_block.foliage_sub_block_data.get_hash() if unfinished_block.is_block(): foliage_block_hash = unfinished_block.foliage_sub_block.foliage_block_hash else: foliage_block_hash = bytes([0] * 32) message = farmer_protocol.RequestSignedValues( quality_string, foliage_sb_data_hash, foliage_block_hash, ) return Message("request_signed_values", message) @api_request async def signed_values(self, farmer_request: farmer_protocol.SignedValues) -> Optional[Message]: """ Signature of header hash, by the harvester. This is enough to create an unfinished block, which only needs a Proof of Time to be finished. If the signature is valid, we call the unfinished_block routine. """ candidate: Optional[UnfinishedBlock] = self.full_node.full_node_store.get_candidate_block( farmer_request.quality_string ) if candidate is None: self.log.warning(f"Quality string {farmer_request.quality_string} not found in database") return None if not AugSchemeMPL.verify( candidate.reward_chain_sub_block.proof_of_space.plot_public_key, candidate.foliage_sub_block.foliage_sub_block_data.get_hash(), farmer_request.foliage_sub_block_signature, ): self.log.warning("Signature not valid. There might be a collision in plots. Ignore this during tests.") return None fsb2 = dataclasses.replace( candidate.foliage_sub_block, foliage_sub_block_signature=farmer_request.foliage_sub_block_signature, ) if candidate.is_block(): fsb2 = dataclasses.replace(fsb2, foliage_block_signature=farmer_request.foliage_block_signature) new_candidate = dataclasses.replace(candidate, foliage_sub_block=fsb2) if not self.full_node.has_valid_pool_sig(new_candidate): self.log.warning("Trying to make a pre-farm block but height is not 0") return None # Propagate to ourselves (which validates and does further propagations) request = full_node_protocol.RespondUnfinishedSubBlock(new_candidate) await self.full_node.respond_unfinished_sub_block(request, None, True) return None # TIMELORD PROTOCOL @api_request async def new_infusion_point_vdf(self, request: timelord_protocol.NewInfusionPointVDF) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None # Lookup unfinished blocks return await self.full_node.new_infusion_point_vdf(request) @peer_required @api_request async def new_signage_point_vdf( self, request: timelord_protocol.NewSignagePointVDF, peer: ws.WSChiaConnection ) -> None: if self.full_node.sync_store.get_sync_mode(): return None full_node_message = full_node_protocol.RespondSignagePoint( request.index_from_challenge, request.challenge_chain_sp_vdf, request.challenge_chain_sp_proof, request.reward_chain_sp_vdf, request.reward_chain_sp_proof, ) await self.respond_signage_point(full_node_message, peer) @peer_required @api_request async def new_end_of_sub_slot_vdf( self, request: timelord_protocol.NewEndOfSubSlotVDF, peer: ws.WSChiaConnection ) -> Optional[Message]: if self.full_node.sync_store.get_sync_mode(): return None if ( self.full_node.full_node_store.get_sub_slot(request.end_of_sub_slot_bundle.challenge_chain.get_hash()) is not None ): return None # Calls our own internal message to handle the end of sub slot, and potentially broadcasts to other peers. full_node_message = full_node_protocol.RespondEndOfSubSlot(request.end_of_sub_slot_bundle) msg, added = await self.full_node.respond_end_of_sub_slot(full_node_message, peer) if not added: self.log.error( f"Was not able to add end of sub-slot: " f"{request.end_of_sub_slot_bundle.challenge_chain.challenge_chain_end_of_slot_vdf.challenge}. " f"Re-sending new-peak to timelord" ) await self.full_node.send_peak_to_timelords() return None else: return msg @api_request async def request_sub_block_header(self, request: wallet_protocol.RequestSubBlockHeader) -> Optional[Message]: if request.sub_height not in self.full_node.blockchain.sub_height_to_hash: msg = Message("reject_sub_block_header", RejectHeaderRequest(request.sub_height)) return msg block: Optional[FullBlock] = await self.full_node.block_store.get_full_block( self.full_node.blockchain.sub_height_to_hash[request.sub_height] ) if block is not None: header_block: HeaderBlock = await block.get_block_header() msg = Message( "respond_sub_block_header", wallet_protocol.RespondSubBlockHeader(header_block), ) return msg return None @api_request async def request_additions(self, request: wallet_protocol.RequestAdditions) -> Optional[Message]: block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(request.header_hash) if ( block is None or block.is_block() is False or block.sub_block_height not in self.full_node.blockchain.sub_height_to_hash ): reject = wallet_protocol.RejectAdditionsRequest(request.sub_height, request.header_hash) msg = Message("reject_additions_request", reject) return msg assert block is not None and block.foliage_block is not None _, additions = await block.tx_removals_and_additions() puzzlehash_coins_map: Dict[bytes32, List[Coin]] = {} for coin in additions + list(block.get_included_reward_coins()): if coin.puzzle_hash in puzzlehash_coins_map: puzzlehash_coins_map[coin.puzzle_hash].append(coin) else: puzzlehash_coins_map[coin.puzzle_hash] = [coin] coins_map: List[Tuple[bytes32, List[Coin]]] = [] proofs_map: List[Tuple[bytes32, bytes, Optional[bytes]]] = [] if request.puzzle_hashes is None: for puzzle_hash, coins in puzzlehash_coins_map.items(): coins_map.append((puzzle_hash, coins)) response = wallet_protocol.RespondAdditions(block.sub_block_height, block.header_hash, coins_map, None) else: # Create addition Merkle set addition_merkle_set = MerkleSet() # Addition Merkle set contains puzzlehash and hash of all coins with that puzzlehash for puzzle, coins in puzzlehash_coins_map.items(): addition_merkle_set.add_already_hashed(puzzle) addition_merkle_set.add_already_hashed(hash_coin_list(coins)) assert addition_merkle_set.get_root() == block.foliage_block.additions_root for puzzle_hash in request.puzzle_hashes: result, proof = addition_merkle_set.is_included_already_hashed(puzzle_hash) if puzzle_hash in puzzlehash_coins_map: coins_map.append((puzzle_hash, puzzlehash_coins_map[puzzle_hash])) hash_coin_str = hash_coin_list(puzzlehash_coins_map[puzzle_hash]) result_2, proof_2 = addition_merkle_set.is_included_already_hashed(hash_coin_str) assert result assert result_2 proofs_map.append((puzzle_hash, proof, proof_2)) else: coins_map.append((puzzle_hash, [])) assert not result proofs_map.append((puzzle_hash, proof, None)) response = wallet_protocol.RespondAdditions( block.sub_block_height, block.header_hash, coins_map, proofs_map ) msg = Message("respond_additions", response) return msg @api_request async def request_removals(self, request: wallet_protocol.RequestRemovals) -> Optional[Message]: block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(request.header_hash) if ( block is None or block.is_block() is False or block.sub_block_height != request.sub_height or block.sub_block_height not in self.full_node.blockchain.sub_height_to_hash or self.full_node.blockchain.sub_height_to_hash[block.sub_block_height] != block.header_hash ): reject = wallet_protocol.RejectRemovalsRequest(request.sub_height, request.header_hash) msg = Message("reject_removals_request", reject) return msg assert block is not None and block.foliage_block is not None all_removals, _ = await block.tx_removals_and_additions() coins_map: List[Tuple[bytes32, Optional[Coin]]] = [] proofs_map: List[Tuple[bytes32, bytes]] = [] # If there are no transactions, respond with empty lists if block.transactions_generator is None: proofs: Optional[List] if request.coin_names is None: proofs = None else: proofs = [] response = wallet_protocol.RespondRemovals(block.height, block.header_hash, [], proofs) elif request.coin_names is None or len(request.coin_names) == 0: for removal in all_removals: cr = await self.full_node.coin_store.get_coin_record(removal) assert cr is not None coins_map.append((cr.coin.name(), cr.coin)) response = wallet_protocol.RespondRemovals(block.height, block.header_hash, coins_map, None) else: assert block.transactions_generator removal_merkle_set = MerkleSet() for coin_name in all_removals: removal_merkle_set.add_already_hashed(coin_name) assert removal_merkle_set.get_root() == block.foliage_block.removals_root for coin_name in request.coin_names: result, proof = removal_merkle_set.is_included_already_hashed(coin_name) proofs_map.append((coin_name, proof)) if coin_name in all_removals: cr = await self.full_node.coin_store.get_coin_record(coin_name) assert cr is not None coins_map.append((coin_name, cr.coin)) assert result else: coins_map.append((coin_name, None)) assert not result response = wallet_protocol.RespondRemovals(block.height, block.header_hash, coins_map, proofs_map) msg = Message("respond_removals", response) return msg @api_request async def send_transaction(self, request: wallet_protocol.SendTransaction) -> Optional[Message]: # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): return None # Ignore if syncing if self.full_node.sync_store.get_sync_mode(): status = MempoolInclusionStatus.FAILED error: Optional[Err] = Err.UNKNOWN else: async with self.full_node.blockchain.lock: cost, status, error = await self.full_node.mempool_manager.add_spendbundle(request.transaction) if status == MempoolInclusionStatus.SUCCESS: self.log.info(f"Added transaction to mempool: {request.transaction.name()}") # Only broadcast successful transactions, not pending ones. Otherwise it's a DOS # vector. fees = request.transaction.fees() assert fees >= 0 assert cost is not None new_tx = full_node_protocol.NewTransaction( request.transaction.name(), cost, uint64(request.transaction.fees()), ) msg = Message("new_transaction", new_tx) await self.full_node.server.send_to_all([msg], NodeType.FULL_NODE) else: self.log.warning( f"Wasn't able to add transaction with id {request.transaction.name()}, " f"status {status} error: {error}" ) error_name = error.name if error is not None else None if status == MempoolInclusionStatus.SUCCESS: response = wallet_protocol.TransactionAck(request.transaction.name(), status, error_name) else: # If if failed/pending, but it previously succeeded (in mempool), this is idempotence, return SUCCESS if self.full_node.mempool_manager.get_spendbundle(request.transaction.name()) is not None: response = wallet_protocol.TransactionAck( request.transaction.name(), MempoolInclusionStatus.SUCCESS, None ) else: response = wallet_protocol.TransactionAck(request.transaction.name(), status, error_name) msg = Message("transaction_ack", response) return msg @api_request async def request_puzzle_solution(self, request: wallet_protocol.RequestPuzzleSolution) -> Optional[Message]: coin_name = request.coin_name sub_height = request.sub_height coin_record = await self.full_node.coin_store.get_coin_record(coin_name) reject = wallet_protocol.RejectPuzzleSolution(coin_name, sub_height) reject_msg = Message("reject_puzzle_solution", reject) if coin_record is None or coin_record.spent_block_index != sub_height: return reject_msg header_hash = self.full_node.blockchain.sub_height_to_hash[sub_height] block: Optional[FullBlock] = await self.full_node.block_store.get_full_block(header_hash) if block is None or block.transactions_generator is None: return reject_msg error, puzzle, solution = get_puzzle_and_solution_for_coin(block.transactions_generator, coin_name) if error is not None: return reject_msg pz = Program.to(puzzle) sol = Program.to(solution) wrapper = PuzzleSolutionResponse(coin_name, sub_height, pz, sol) response = wallet_protocol.RespondPuzzleSolution(wrapper) response_msg = Message("respond_puzzle_solution", response) return response_msg @api_request async def request_header_blocks(self, request: wallet_protocol.RequestHeaderBlocks) -> Optional[Message]: if request.end_sub_height < request.start_sub_height or request.end_sub_height - request.start_sub_height > 32: return None for i in range(request.start_sub_height, request.end_sub_height + 1): if i not in self.full_node.blockchain.sub_height_to_hash: reject = RejectHeaderBlocks(request.start_sub_height, request.end_sub_height) msg = Message("reject_header_blocks_request", reject) return msg blocks: List[HeaderBlock] = [] for i in range(request.start_sub_height, request.end_sub_height + 1): block: Optional[FullBlock] = await self.full_node.block_store.get_full_block( self.full_node.blockchain.sub_height_to_hash[uint32(i)] ) if block is None: reject = RejectHeaderBlocks(request.start_sub_height, request.end_sub_height) msg = Message("reject_header_blocks_request", reject) return msg blocks.append(await block.get_block_header()) msg = Message( "respond_header_blocks", wallet_protocol.RespondHeaderBlocks(request.start_sub_height, request.end_sub_height, blocks), ) return msg
46.089469
120
0.641182
5d0b5298314e4d455126348b27873ae058700386
3,618
py
Python
python/tink/integration/gcpkms/_gcp_kms_aead_test.py
sgammon/tink
852e689f057794beb4784833d1af71c4a25920af
[ "Apache-2.0" ]
null
null
null
python/tink/integration/gcpkms/_gcp_kms_aead_test.py
sgammon/tink
852e689f057794beb4784833d1af71c4a25920af
[ "Apache-2.0" ]
null
null
null
python/tink/integration/gcpkms/_gcp_kms_aead_test.py
sgammon/tink
852e689f057794beb4784833d1af71c4a25920af
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tink.python.tink.integration.gcp_kms_aead.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl.testing import absltest from tink import core from tink.integration import gcpkms from tink.testing import helper CREDENTIAL_PATH = os.path.join(helper.get_tink_src_path(), 'testdata/credential.json') KEY_URI = 'gcp-kms://projects/tink-test-infrastructure/locations/global/keyRings/unit-and-integration-testing/cryptoKeys/aead-key' LOCAL_KEY_URI = 'gcp-kms://projects/tink-test-infrastructure/locations/europe-west1/keyRings/unit-and-integration-test/cryptoKeys/aead-key' BAD_KEY_URI = 'aws-kms://arn:aws:kms:us-east-2:235739564943:key/3ee50705-5a82-4f5b-9753-05c4f473922f' if 'TEST_SRCDIR' in os.environ: # Set root certificates for gRPC in Bazel Test which are needed on MacOS os.environ['GRPC_DEFAULT_SSL_ROOTS_FILE_PATH'] = os.path.join( os.environ['TEST_SRCDIR'], 'google_root_pem/file/downloaded') class GcpKmsAeadTest(absltest.TestCase): def test_encrypt_decrypt(self): gcp_client = gcpkms.GcpKmsClient(KEY_URI, CREDENTIAL_PATH) aead = gcp_client.get_aead(KEY_URI) plaintext = b'helloworld' ciphertext = aead.encrypt(plaintext, b'') self.assertEqual(plaintext, aead.decrypt(ciphertext, b'')) plaintext = b'hello' associated_data = b'world' ciphertext = aead.encrypt(plaintext, associated_data) self.assertEqual(plaintext, aead.decrypt(ciphertext, associated_data)) def test_encrypt_decrypt_localized_uri(self): gcp_client = gcpkms.GcpKmsClient(LOCAL_KEY_URI, CREDENTIAL_PATH) aead = gcp_client.get_aead(LOCAL_KEY_URI) plaintext = b'helloworld' ciphertext = aead.encrypt(plaintext, b'') self.assertEqual(plaintext, aead.decrypt(ciphertext, b'')) plaintext = b'hello' associated_data = b'world' ciphertext = aead.encrypt(plaintext, associated_data) self.assertEqual(plaintext, aead.decrypt(ciphertext, associated_data)) def test_encrypt_with_bad_uri(self): with self.assertRaises(core.TinkError): gcp_client = gcpkms.GcpKmsClient(KEY_URI, CREDENTIAL_PATH) gcp_client.get_aead(BAD_KEY_URI) def test_corrupted_ciphertext(self): gcp_client = gcpkms.GcpKmsClient(KEY_URI, CREDENTIAL_PATH) aead = gcp_client.get_aead(KEY_URI) plaintext = b'helloworld' ciphertext = aead.encrypt(plaintext, b'') self.assertEqual(plaintext, aead.decrypt(ciphertext, b'')) # Corrupt each byte once and check that decryption fails # NOTE: Only starting at 4th byte here, as the 3rd byte is malleable # (see b/146633745). for byte_idx in range(3, len(ciphertext)): tmp_ciphertext = list(ciphertext) tmp_ciphertext[byte_idx] ^= 1 corrupted_ciphertext = bytes(tmp_ciphertext) with self.assertRaises(core.TinkError): aead.decrypt(corrupted_ciphertext, b'') if __name__ == '__main__': # TODO(b/154273145): re-enable this. pass # absltest.main()
38.084211
139
0.74848
54c6751d9c4902ab65bd45b764554dfb87a3ccc7
2,259
py
Python
github_comparison/settings.py
osama-mohamed/github_comparison_django
5cf13c0891e492ec2322d6cd813d2b50cab362d1
[ "MIT" ]
3
2018-05-02T20:37:11.000Z
2020-10-15T17:19:26.000Z
github_comparison/settings.py
osama-mohamed/github_comparison_django
5cf13c0891e492ec2322d6cd813d2b50cab362d1
[ "MIT" ]
1
2019-06-10T21:35:13.000Z
2019-06-10T21:35:13.000Z
github_comparison/settings.py
osama-mohamed/github_comparison_django
5cf13c0891e492ec2322d6cd813d2b50cab362d1
[ "MIT" ]
null
null
null
import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = 'b#b94r&k^ek8f#=c3y&p=%0pv5h@vyhsrt_*8xm8p4z4eik34k' DEBUG = False ALLOWED_HOSTS = ['localhost'] INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'github.apps.GithubConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'github_comparison.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'github_comparison.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'short', 'HOST': 'localhost', 'PORT': '3306', 'USER': 'OSAMA', 'PASSWORD': 'OSAMA', } } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/'
25.1
91
0.653386
f5e9c2739af7a1ae8b2c52614e46816aeb558de3
4,344
py
Python
cifar10_train.py
dotrungkien/face_recognition
52c552c4f73850e62db88d0dc7271d73e4150180
[ "MIT" ]
null
null
null
cifar10_train.py
dotrungkien/face_recognition
52c552c4f73850e62db88d0dc7271d73e4150180
[ "MIT" ]
null
null
null
cifar10_train.py
dotrungkien/face_recognition
52c552c4f73850e62db88d0dc7271d73e4150180
[ "MIT" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A binary to train CIFAR-10 using a single GPU. Accuracy: cifar10_train.py achieves ~86% accuracy after 100K steps (256 epochs of data) as judged by cifar10_eval.py. Speed: With batch_size 128. System | Step Time (sec/batch) | Accuracy ------------------------------------------------------------------ 1 Tesla K20m | 0.35-0.60 | ~86% at 60K steps (5 hours) 1 Tesla K40m | 0.25-0.35 | ~86% at 100K steps (4 hours) Usage: Please see the tutorial and website for how to download the CIFAR-10 data set, compile the program and train the model. http://tensorflow.org/tutorials/deep_cnn/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import time import tensorflow as tf import cifar10 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', 'tmp/cifar10_train', """Directory where to write event logs """ """and checkpoint.""") tf.app.flags.DEFINE_integer('max_steps', 10000, """Number of batches to run.""") tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""") tf.app.flags.DEFINE_integer('log_frequency', 10, """How often to log results to the console.""") def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.contrib.framework.get_or_create_global_step() # Get images and labels for CIFAR-10. images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) def main(argv=None): # pylint: disable=unused-argument #cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) train() if __name__ == '__main__': tf.app.run()
36.504202
80
0.645718
6058642bb2e5bb521e6a47ffad5125dcb052fb19
3,596
py
Python
gmane.py
rovelee/gmane
47d00d7ad5ce8b7c1fe472e3f7bcd642aee2c437
[ "MIT" ]
null
null
null
gmane.py
rovelee/gmane
47d00d7ad5ce8b7c1fe472e3f7bcd642aee2c437
[ "MIT" ]
null
null
null
gmane.py
rovelee/gmane
47d00d7ad5ce8b7c1fe472e3f7bcd642aee2c437
[ "MIT" ]
null
null
null
import re import sqlite3 import ssl import time from urllib.request import urlopen from gtools import parsemaildate # 数据测试网站域名 baseurl = 'http://mbox.dr-chuck.net/sakai.devel/' # 无视ssl认证错误 ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # 连接数据库,如果不存在则在目录下创建一个 conn = sqlite3.connect('content.sqlite') cur = conn.cursor() # 如果表Message不存在则创建表 sql_create = '''CREATE TABLE IF NOT EXISTS Messages (id INTEGER UNIQUE, email TEXT, sent_at TEXT, subject TEXT, headers TEXT, body TEXT)''' cur.execute(sql_create) # 查询要开始爬取的初始id sql_query = 'SELECT max(id) FROM Messages' cur.execute(sql_query) try: row = cur.fetchone() if row is not None: start = row[0] except Exception as e: print('Database select start id false with:', e) if start is None: start = 0 many = 0 fail = 0 count = 0 # 添加数据 while True: # 如果爬取数据错误大于五则退出循环 if fail > 5: break # 输入要爬取的数据数量 if many < 1: sval = input('How many messages:') if len(sval) < 1: break try: many = int(sval) except: print('Type number!') continue # 开始爬取数据 many -= 1 start += 1 url = baseurl + str(start) + '/' + str(start+1) # 获取页面内容 text = 'None' try: # 打开超过30秒超时 document = urlopen(url, None, 30, context=ctx) text = document.read().decode() # 处理各种错误: # 页面代码不等于200,意味着连接错误 if document.getcode() != 200: print("Error code=", document.getcode(), url) break # 使用Ctrl+c退出 except KeyboardInterrupt: print('') print('Program interrupted by user...') break # 其他异常 except Exception as e: print("Unable to retrieve or parse page", url) print("Error", e) fail = fail + 1 continue # 如果text不是以From开头,则数据内容异常 if not text.startswith('From'): print(text) print("Did not find From ") fail = fail + 1 if fail > 5: break continue # 找到head和body的位置 pos = text.find("\n\n") if pos > 0: header = text[:pos] body = text[pos+2:] else: # 数据内容异常 print(text) print("Could not find break between headers and body") fail += 1 continue # 开始处理数据 count += 1 # 使用正则查找email、sent_at、subject的值 # From: "Glenn R. Golden" <ggolden@umich.edu> emails = re.findall('From: .* <(.+@.+)>', header) if len(emails) == 1: email = emails[0] email = email.strip().lower() else: emails = re.findall('From: .* (.+@.+) ', header) if len(emails) == 1: email = emails[0] email = email.strip().lower() date = None y = re.findall('Date: .*, (.*)', header) if len(y) == 1: tdate = y[0] tdate = tdate[:26] try: sent_at = parsemaildate(tdate) except: print(text) print("Parse fail", tdate) fail = fail + 1 if fail > 5: break continue subject = None z = re.findall('Subject: (.*)', header) if len(z) == 1: subject = z[0].strip().lower(); # Reset the fail counter fail = 0 print(" ",start, email, sent_at, subject) cur.execute('''INSERT OR IGNORE INTO Messages (id, email, sent_at, subject, headers, body) VALUES ( ?, ?, ?, ?, ?, ? )''', (start, email, sent_at, subject, header, body)) if count % 50 == 0: conn.commit() if count % 100 == 0: time.sleep(1) conn.commit() cur.close()
25.323944
94
0.555617
7ac63e86f253fc09da9092a43d2a4f568107587f
1,791
py
Python
administration/src/embedded/mfrc_service.py
shivamvku/flakrfid
559198d23907eea6e87f38fac1c5fb5c2b6fbca8
[ "MIT" ]
null
null
null
administration/src/embedded/mfrc_service.py
shivamvku/flakrfid
559198d23907eea6e87f38fac1c5fb5c2b6fbca8
[ "MIT" ]
1
2019-05-13T16:19:36.000Z
2019-05-19T11:21:22.000Z
administration/src/embedded/mfrc_service.py
shivamvku/flakrfid
559198d23907eea6e87f38fac1c5fb5c2b6fbca8
[ "MIT" ]
null
null
null
def load_src(name, fdir, fpath): import os, imp res_full_path = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))), fdir, fpath) return imp.load_source(name, res_full_path) load_src("MFRC522", "rfid_python_lib", "MFRC522.py") import MFRC522 import time class ServiceMFRC: def __init__(self): self.continue_reading = True self.MIFAREReader = MFRC522.MFRC522() self.message = "" self.counter = 30 def end_read(self): self.continue_reading = False self.counter = -1 print "Ctrl+C captured, ending read." self.MIFAREReader.GPIO_CLEEN() def do_read(self): self.continue_reading = True while self.continue_reading and self.counter > 0: # print('Reader TTL: %s' % self.counter) (status, TagType) = self.MIFAREReader.MFRC522_Request(self.MIFAREReader.PICC_REQIDL) if status == self.MIFAREReader.MI_OK: self.message += "Card detected. " (status, backData) = self.MIFAREReader.MFRC522_Anticoll() if status == self.MIFAREReader.MI_OK: self.message += ( "Card read UID: " + str(backData[0]) + "," + str(backData[1]) + "," + str(backData[2]) + "," + str( backData[3]) + "," + str(backData[4]) ) self.end_read() return { 'message': self.message, 'data': reduce(lambda x, y: str(x) + str(y), backData) } self.counter -= 1 time.sleep(0.5) print('No tag data found...') return { 'message': 'No tag data detected...', 'data': '00000000' }
35.117647
119
0.546622
cde50345c13d57d925371087799b61ab1bb4b186
20,791
py
Python
src/onegov/winterthur/daycare.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/winterthur/daycare.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/winterthur/daycare.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
import chameleon import textwrap import yaml from babel.numbers import format_decimal from cached_property import cached_property from collections import defaultdict from collections import OrderedDict from decimal import Decimal, localcontext from onegov.core.utils import Bunch from onegov.core.utils import normalize_for_url from onegov.directory import DirectoryCollection from onegov.form import Form from onegov.org.models import Organisation from onegov.org.models.directory import ExtendedDirectoryEntryCollection from onegov.winterthur import _ from ordered_set import OrderedSet from wtforms.fields import Field, BooleanField, SelectField from wtforms.fields.html5 import DecimalField from wtforms.validators import NumberRange, InputRequired, ValidationError from wtforms.widgets.core import HTMLString SERVICE_DAYS = { 'mo': 0, 'di': 1, 'mi': 2, 'do': 3, 'fr': 4, 'sa': 5, 'so': 6, } SERVICE_DAYS_LABELS = { 0: _("Monday"), 1: _("Tuesday"), 2: _("Wednesday"), 3: _("Thursday"), 4: _("Friday"), 5: _("Saturday"), 6: _("Sunday"), } # http://babel.pocoo.org/en/latest/numbers.html#pattern-syntax FORMAT = '#,##0.00########' def round_to(n, precision): assert isinstance(precision, str) precision = Decimal(precision) correction = Decimal('0.5') if n >= 0 else Decimal('-0.5') return int(n / precision + correction) * precision def format_precise(amount): if not amount: return '0.00' with localcontext() as ctx: ctx.prec = 28 return format_decimal(amount, format=FORMAT, locale='de_CH') def format_1_cent(amount): return format_precise(round_to(amount, '0.01')) def format_5_cents(amount): return format_precise(round_to(amount, '0.05')) class Daycare(object): def __init__(self, id, title, rate, weeks): self.id = id self.title = title self.rate = Decimal(rate) self.weeks = weeks @property def factor(self): return Decimal(self.weeks) / Decimal('12') class Services(object): def __init__(self, definition): if definition: self.available = OrderedDict(self.parse_definition(definition)) else: self.available = OrderedDict() self.selected = defaultdict(set) @classmethod def from_org(cls, org): if 'daycare_settings' not in org.meta: return cls(None) if 'services' not in org.meta['daycare_settings']: return cls(None) return cls(org.meta['daycare_settings']['services']) @classmethod def from_session(cls, session): return cls.from_org(session.query(Organisation).one()) @staticmethod def parse_definition(definition): for service in yaml.safe_load(definition): service_id = normalize_for_url(service['titel']) days = (d.strip() for d in service['tage'].split(',')) yield service_id, Bunch( id=service_id, title=service['titel'], percentage=Decimal(service['prozent']), days=OrderedSet(SERVICE_DAYS[d.lower()[:2]] for d in days), ) def select(self, service_id, day): self.selected[service_id].add(day) def deselect(self, service_id, day): self.selected[service_id].remove(day) def is_selected(self, service_id, day): if service_id not in self.selected: return False return day in self.selected[service_id] @property def total(self): """ Returns the total percentage of used services. """ return sum( self.available[s].percentage * len(self.selected[s]) for s in self.selected ) class Result(object): def __init__(self, title, amount=None, note=None, operation=None, important=False, currency='CHF', output_format=None): self.title = title self.amount = amount self.note = textwrap.dedent(note or '').strip(' \n') self.operation = operation self.important = important self.currency = currency self.output_format = output_format or format_1_cent def __bool__(self): return bool(self.amount) @property def readable_amount(self): return self.output_format(self.amount) class Block(object): def __init__(self, id, title): self.id = id self.title = title self.results = [] self.total = Decimal(0) def op(self, title, amount=None, note=None, operation=None, important=False, currency='CHF', output_format=None, total_places=2, amount_places=2): if amount == 0: amount = Decimal('0') def limit_total(total): return total.quantize(Decimal(f'0.{"0" * (total_places - 1)}1')) def limit_amount(amount): return amount.quantize(Decimal(f'0.{"0" * (amount_places - 1)}1')) if operation is None: assert amount is not None self.total = amount elif operation == '+': assert amount is not None self.total += amount elif operation == '=': amount = self.total if amount is None else amount self.total = max(amount, Decimal('0')) elif operation == '-': assert amount is not None self.total -= amount elif operation in ('*', 'x', '×', '⋅'): assert amount is not None self.total *= amount elif operation in ('/', '÷'): assert amount is not None self.total /= amount # limit the amount and the total after the operation, not before self.total = limit_total(self.total) amount = limit_amount(amount) self.results.append(Result( title=title, amount=amount, note=note, operation=operation, important=important, currency=currency, output_format=output_format, )) return self.total class DirectoryDaycareAdapter(object): def __init__(self, directory): self.directory = directory @cached_property def fieldmap(self): fieldmap = { 'daycare_rate': None, 'daycare_weeks': None, 'daycare_url': None, } for field in self.directory.basic_fields: if 'tarif' in field.label.lower(): fieldmap['daycare_rate'] = field.id continue if 'woche' in field.label.lower(): fieldmap['daycare_weeks'] = field.id continue if 'web' in field.label.lower(): fieldmap['daycare_url'] = field.id continue return fieldmap def as_daycare(self, entry): return Daycare( id=entry.id, title=entry.title, rate=entry.values[self.fieldmap['daycare_rate']], weeks=entry.values[self.fieldmap['daycare_weeks']], ) class Settings(object): def __init__(self, organisation): settings = organisation.meta.get('daycare_settings', {}) for key, value in settings.items(): setattr(self, key, value) def is_valid(self): keys = ( 'directory', 'max_income', 'max_rate', 'max_subsidy', 'max_wealth', 'min_income', 'min_rate', 'rebate', 'services', 'wealth_premium', ) for key in keys: if not hasattr(self, key): return False return True def factor(self, daycare): min_day_rate = daycare.rate - self.min_rate min_day_rate = min(min_day_rate, self.max_subsidy) factor = min_day_rate / (self.max_income - self.min_income) factor = factor.quantize(Decimal('0.000000001')) return factor class DaycareSubsidyCalculator(object): def __init__(self, session): self.session = session @cached_property def organisation(self): return self.session.query(Organisation).one() @cached_property def settings(self): return Settings(self.organisation) @cached_property def directory(self): return DirectoryCollection(self.session).by_id(self.settings.directory) @cached_property def daycares(self): adapter = DirectoryDaycareAdapter(self.directory) items = ExtendedDirectoryEntryCollection(self.directory).query() items = (i for i in items if i.access == 'public') items = {i.id.hex: adapter.as_daycare(i) for i in items} return items def daycare_by_title(self, title): return next(d for d in self.daycares.values() if d.title == title) def calculate(self, *args, **kwargs): return self.calculate_precisely(*args, **kwargs) def calculate_precisely(self, daycare, services, income, wealth, rebate): """ Creates a detailed calculation of the subsidy paid by Winterthur. The reslt is a list of tables with explanations. :param daycare: The selected daycare (a :class:`Daycare` instance). :param services: Services used (a :class:`Services` instance) :param income: The income as a decimal. :param wealth: The wealth as decimal. :param rebate: True if a rebate is applied Note, due to the specific nature of the content here, which is probably not going to be translated, we use German. For consistency we want to limit this, but with Winterthur these kinds of things crop up as the wording is quite specific and adding translations would just make this a lot harder. """ cfg = self.settings fmt = format_precise # Base Rate # --------- base = Block('base', "Berechnungsgrundlage für die Elternbeiträge") base.op( title="Steuerbares Einkommen", amount=income, note=""" Steuerbares Einkommen gemäss letzter Veranlagung. """) base.op( title="Vermögenszuschlag", amount=max( (wealth - cfg.max_wealth) * cfg.wealth_premium / Decimal('100'), 0), operation="+", note=f""" Der Vermögenszuschlag beträgt {fmt(cfg.wealth_premium).rstrip('0').rstrip('.')}% des Vermögens, für das tatsächlich Steuern anfallen (ab {fmt(cfg.max_wealth)} CHF). """) base.op( title="Massgebendes Gesamteinkommen", operation="=") base.op( title="Abzüglich Minimaleinkommen", operation="-", amount=cfg.min_income) base.op( title="Berechnungsgrundlage", operation="=") # Gross Contribution # ------------------ gross = Block('gross', "Berechnung des Brutto-Elternbeitrags") gross.op( title="Übertrag", amount=base.total) gross.op( title="Faktor", amount=cfg.factor(daycare), currency=None, operation="×", note=""" Ihr Elternbeitrag wird aufgrund eines Faktors berechnet (Kita-Reglement Art. 20 Abs 3). """, output_format=format_precise, amount_places=10) gross.op( title="Einkommensabhängiger Elternbeitragsbestandteil", operation="=") gross.op( title="Mindestbeitrag Eltern", amount=cfg.min_rate, operation="+") gross.op( title="Elternbeitrag brutto", operation="=", amount=min(gross.total, daycare.rate)) # Rebate # ------ rebate = gross.total * cfg.rebate / 100 if rebate else 0 net = Block('net', "Berechnung des Rabatts") net.op( title="Übertrag", amount=gross.total) net.op( title="Rabatt", amount=rebate, operation="-", note=f""" Bei einem Betreuungsumfang von insgesamt mehr als 2 ganzen Tagen pro Woche gilt ein Rabatt von {fmt(cfg.rebate).rstrip('0').rstrip('.')}%. """) net.op( title="Elternbeitrag netto", operation="=", amount=max(cfg.min_rate, gross.total - rebate)) # Actual contribution # ------------------- actual = Block('actual', ( "Berechnung des Elternbeitrags und des " "städtischen Beitrags pro Tag" )) actual.op( title="Übertrag", amount=net.total) actual.op( title="Zusatzbeitrag Eltern", amount=max(daycare.rate - cfg.max_rate, 0), operation="+", note=f""" Zusatzbeitrag für Kitas, deren Tagestarif über {cfg.max_rate} CHF liegt. """) parent_share_per_day = actual.op( title="Elternbeitrag pro Tag", operation="=", note=""" Ihr Beitrag pro Tag (100%) und Kind. """, important=True) city_share_per_day = actual.op( title="Städtischer Beitrag pro Tag", amount=max(daycare.rate - parent_share_per_day, Decimal('0.00')), important=True, note=""" Städtischer Beitrag für Ihr Kind pro Tag. """) # Monthly contribution # -------------------- monthly = Block( 'monthly', ( "Berechnung des Elternbeitrags und des städtischen " "Beitrags pro Monat" ) ) monthly.op( title="Wochentarif", amount=parent_share_per_day * services.total / 100, note=""" Wochentarif: Elternbeiträge der gewählten Betreuungstage. """) monthly.op( title="Faktor", amount=daycare.factor, currency=None, operation="×", note=""" Faktor für jährliche Öffnungswochen Ihrer Kita. """, output_format=format_precise, amount_places=4) parent_share_per_month = monthly.op( title="Elternbeitrag pro Monat", operation="=", important=True, output_format=format_5_cents) city_share_per_month = monthly.op( title="Städtischer Beitrag pro Monat", amount=city_share_per_day * services.total / 100 * daycare.factor, important=True, output_format=format_5_cents) # Services table # -------------- def services_table(): total = Decimal(0) total_percentage = Decimal(0) for day in SERVICE_DAYS.values(): for service_id in services.selected: if day in services.selected[service_id]: service = services.available[service_id] cost = parent_share_per_day * service.percentage / 100 total += cost total_percentage += service.percentage label = SERVICE_DAYS_LABELS[day] yield (label, service.title, format_5_cents(cost)) yield (_("Total"), None, format_5_cents(total)) total = round_to(parent_share_per_month, '0.05')\ + round_to(city_share_per_month, '0.05') return Bunch( blocks=(base, gross, net, actual, monthly), parent_share_per_month=format_5_cents(parent_share_per_month), city_share_per_month=format_5_cents(city_share_per_month), total_per_month=format_5_cents(total), agenda=tuple(services_table()), ) class DaycareServicesWidget(object): template = chameleon.PageTemplate(""" <table class="daycare-services"> <thead> <tr> <th></th> <th tal:repeat="service this.services.available.values()"> <div class="daycare-services-title"> ${service.title} </div> <div class="daycare-services-percentage"> ${service.percentage}% </div> </th> </tr> </thead> <tbody> <tr tal:repeat="day this.days"> <th> <strong class="show-for-small-only"> ${this.day_label(day)[:2]} </strong> <strong class="show-for-medium-up"> ${this.day_label(day)} </strong> </th> <td tal:repeat="svc this.services.available.values()"> <label> <input type="checkbox" id="${svc.id}-${day}" name="${this.field.name}" value="${svc.id}-${day}" tal:attributes=" checked this.is_selected(svc, day) " /> </label> </td> </tr> </tbody> </table """) def __call__(self, field, **kwargs): self.field = field self.services = field.services return HTMLString(self.template.render(this=self)) def is_selected(self, service, day): return self.services.is_selected(service.id, day) def day_label(self, day): return self.field.meta.request.translate(SERVICE_DAYS_LABELS[day]) @property def days(self): days = OrderedSet() for service in self.services.available.values(): for day in service.days: days.add(day) return days class DaycareServicesField(Field): widget = DaycareServicesWidget() @cached_property def services(self): return Services.from_session(self.meta.request.session) def process_formdata(self, valuelist): for value in valuelist: service_id, day = value.rsplit('-', maxsplit=1) self.services.select(service_id, int(day)) def pre_validate(self, form): for day in SERVICE_DAYS.values(): days = sum( 1 for id in self.services.available if self.services.is_selected(id, day) ) if days > 1: raise ValidationError(_("Each day may only be selected once.")) class DaycareSubsidyCalculatorForm(Form): daycare = SelectField( label=_("Select Daycare"), validators=(InputRequired(), ), choices=(), ) services = DaycareServicesField( label=_("Care"), validators=(InputRequired(), )) income = DecimalField( label=_("Definite Taxable income"), validators=(InputRequired(), NumberRange(min=0))) wealth = DecimalField( label=_("Definite Taxable wealth"), validators=(InputRequired(), NumberRange(min=0))) rebate = BooleanField( label=_("Rebate"), description=_( "Does at least one child in your household attend the same " "daycare for more than two whole days a week?" )) def on_request(self): self.daycare.choices = tuple(self.daycare_choices) @property def daycare_choices(self): def choice(daycare): label = _(( "${title} / day rate CHF ${rate} / " "${weeks} weeks open per year" ), mapping={ 'title': daycare.title, 'rate': daycare.rate, 'weeks': daycare.weeks }) return (daycare.id.hex, self.request.translate(label)) for daycare in self.model.daycares.values(): yield choice(daycare) @property def selected_daycare(self): for daycare in self.model.daycares.values(): if daycare.id.hex == self.daycare.data: return daycare
28.876389
79
0.547304
d54b5accf069f15dabd1388e391b4b8ccf41319e
24,131
py
Python
models/relu_not_concat.py
dishen12/RFB_aspp
d968ad3cca1ff048212bc2d0c179557edfd1241c
[ "MIT" ]
null
null
null
models/relu_not_concat.py
dishen12/RFB_aspp
d968ad3cca1ff048212bc2d0c179557edfd1241c
[ "MIT" ]
null
null
null
models/relu_not_concat.py
dishen12/RFB_aspp
d968ad3cca1ff048212bc2d0c179557edfd1241c
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from layers import * import torchvision.transforms as transforms import torchvision.models as models import torch.backends.cudnn as cudnn import os class BasicConv(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False): super(BasicConv, self).__init__() self.out_channels = out_planes self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None self.relu = nn.ReLU(inplace=True) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class Aspp_b_2_mid_concat_relu(nn.Module): """ 串联加并联的操作的aspp,每层延伸出去,相当于一个fpn,注意,此处每层都添加了BN,没有加relu,只在最后添加了relu """ def __init__(self,in_planes,out_planes,stride=1,scale=0.1,rate=[6,3,2,1]): #rate 1 2 5 9 # 2 4 10 18 # 3 6 15 27 super(Aspp_b_2_mid_concat_relu,self).__init__() self.scale = scale self.out_channels = out_planes self.rate = rate inter_planes = in_planes // 8 # 后边这个值,考虑微调 原来是8 if(len(rate)==4): self.branch0 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[0], dilation=rate[0], relu=False) ) self.branch0_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[0], dilation=2*rate[0], relu=False) self.branch0_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[0], dilation=3*rate[0], relu=False) self.branch1 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[1], dilation=rate[1], relu=False)) self.branch1_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[1], dilation=2*rate[1], relu=False) self.branch1_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[1], dilation=3*rate[1], relu=False) self.branch2 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[2], dilation=rate[2], relu=False)) self.branch2_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[2], dilation=2*rate[2], relu=False) self.branch2_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[2], dilation=3*rate[2], relu=False) self.branch3 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[3], dilation=rate[3], relu=False)) self.branch3_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[3], dilation=2*rate[3], relu=False) self.branch3_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[3], dilation=3*rate[3], relu=False) self.ConvLinear = BasicConv(24*inter_planes,out_planes,kernel_size=1,stride=1,relu=False) self.shortcut = BasicConv(in_planes,out_planes,kernel_size=1,stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) elif(len(rate)==3): self.branch0 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[0], dilation=rate[0], relu=False) ) self.branch0_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[0], dilation=2*rate[0], relu=False) self.branch0_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[0], dilation=3*rate[0], relu=False) self.branch1 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[1], dilation=rate[1], relu=False)) self.branch1_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[1], dilation=2*rate[1], relu=False) self.branch1_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[1], dilation=3*rate[1], relu=False) self.branch2 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[2], dilation=rate[2], relu=False)) self.branch2_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[0], dilation=2*rate[2], relu=False) self.branch2_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[0], dilation=3*rate[2], relu=False) self.ConvLinear = BasicConv(18*inter_planes,out_planes,kernel_size=1,stride=1,relu=False) self.shortcut = BasicConv(in_planes,out_planes,kernel_size=1,stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) else: print("error! the rate is incorrect!") def forward(self,x): # some thing there if(len(self.rate)==4): x0 = self.branch0(x) x0_r = self.relu(x0) x01 = self.branch0_1(x0_r) x01_r = self.relu(x01) x02 = self.branch0_2(x01_r) #print("0",x0.size(),x01.size(),x02.size()) x1 = self.branch1(x) x1_r = self.relu(x1) x11 = self.branch1_1(x1_r) x11_r = self.relu(x11) x12 = self.branch1_2(x11_r) #print("1",x1.size(),x11.size(),x12.size()) x2 = self.branch2(x) x2_r = self.relu(x2) #print("x2",x2.size()) x21 = self.branch2_1(x2_r) x21_r = self.relu(x21) #print("x21",x21.size()) x22 = self.branch2_2(x21_r) #print("x22",x22.size()) #print("2",x2.size(),x21.size(),x22.size()) x3 = self.branch3(x) x3_r = self.relu(x3) x31 = self.branch3_1(x3_r) x31_r = self.relu(x31) x32 = self.branch3_2(x31_r) #print("3",x3.size(),x31.size(),x32.size()) #mid concat out1 = torch.cat((x0,x1,x2,x3),1) #out1 = self.relu(out1) out2 = torch.cat((x01,x11,x21,x31),1) #out2 = self.relu(out2) out3 = torch.cat((x02,x12,x22,x32),1) #out3 = self.relu(out3) out = torch.cat((out1,out2,out3),1) #out = torch.cat((x0,x01,x02,x1,x11,x12,x2,x21,x22,x3,x31,x32),1) out = self.ConvLinear(out) short = self.shortcut(x) #print("the size of shortcut is:",short.size()) out = out*self.scale + short out = self.relu(out) return out elif(len(self.rate)==3): x0 = self.branch0(x) x01 = self.branch0_1(x0) x02 = self.branch0_2(x01) x1 = self.branch1(x) x11 = self.branch1_1(x1) x12 = self.branch1_2(x11) x2 = self.branch2(x) x21 = self.branch2_1(x2) x22 = self.branch2_2(x21) out = torch.cat((x0,x01,x02,x1,x11,x12,x2,x21,x22),1) out = self.ConvLinear(out) short = self.shortcut(x) out = out*self.scale + short out = self.relu(out) return out else: print("error!") return class Aspp_b_2(nn.Module): """ 串联加并联的操作的aspp,每层延伸出去,相当于一个fpn,注意,此处每层都添加了BN,没有加relu,只在最后添加了relu """ def __init__(self,in_planes,out_planes,stride=1,scale=0.1,rate=[6,3,2,1]): #rate 1 2 5 9 # 2 4 10 18 # 3 6 15 27 super(Aspp_b_2,self).__init__() self.scale = scale self.out_channels = out_planes self.rate = rate inter_planes = in_planes // 8 # 后边这个值,考虑微调 原来是8 if(len(rate)==4): self.branch0 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[0], dilation=rate[0], relu=False) ) self.branch0_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[0], dilation=2*rate[0], relu=False) self.branch0_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[0], dilation=3*rate[0], relu=False) self.branch1 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[1], dilation=rate[1], relu=False)) self.branch1_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[1], dilation=2*rate[1], relu=False) self.branch1_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[1], dilation=3*rate[1], relu=False) self.branch2 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[2], dilation=rate[2], relu=False)) self.branch2_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[2], dilation=2*rate[2], relu=False) self.branch2_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[2], dilation=3*rate[2], relu=False) self.branch3 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[3], dilation=rate[3], relu=False)) self.branch3_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[3], dilation=2*rate[3], relu=False) self.branch3_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[3], dilation=3*rate[3], relu=False) self.ConvLinear = BasicConv(24*inter_planes,out_planes,kernel_size=1,stride=1,relu=False) self.shortcut = BasicConv(in_planes,out_planes,kernel_size=1,stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) elif(len(rate)==3): self.branch0 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[0], dilation=rate[0], relu=False) ) self.branch0_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[0], dilation=2*rate[0], relu=False) self.branch0_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[0], dilation=3*rate[0], relu=False) self.branch1 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[1], dilation=rate[1], relu=False)) self.branch1_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[1], dilation=2*rate[1], relu=False) self.branch1_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[1], dilation=3*rate[1], relu=False) self.branch2 = nn.Sequential( BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride), BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=rate[2], dilation=rate[2], relu=False)) self.branch2_1 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*rate[0], dilation=2*rate[2], relu=False) self.branch2_2 = BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=3*rate[0], dilation=3*rate[2], relu=False) self.ConvLinear = BasicConv(18*inter_planes,out_planes,kernel_size=1,stride=1,relu=False) self.shortcut = BasicConv(in_planes,out_planes,kernel_size=1,stride=stride, relu=False) self.relu = nn.ReLU(inplace=False) else: print("error! the rate is incorrect!") def forward(self,x): # some thing there if(len(self.rate)==4): x0 = self.branch0(x) x01 = self.branch0_1(x0) x02 = self.branch0_2(x01) #print("0",x0.size(),x01.size(),x02.size()) x1 = self.branch1(x) x11 = self.branch1_1(x1) x12 = self.branch1_2(x11) #print("1",x1.size(),x11.size(),x12.size()) x2 = self.branch2(x) #print("x2",x2.size()) x21 = self.branch2_1(x2) #print("x21",x21.size()) x22 = self.branch2_2(x21) #print("x22",x22.size()) #print("2",x2.size(),x21.size(),x22.size()) x3 = self.branch3(x) x31 = self.branch3_1(x3) x32 = self.branch3_2(x31) #print("3",x3.size(),x31.size(),x32.size()) out = torch.cat((x0,x01,x02,x1,x11,x12,x2,x21,x22,x3,x31,x32),1) out = self.ConvLinear(out) short = self.shortcut(x) #print("the size of shortcut is:",short.size()) out = out*self.scale + short out = self.relu(out) return out elif(len(self.rate)==3): x0 = self.branch0(x) x01 = self.branch0_1(x0) x02 = self.branch0_2(x01) x1 = self.branch1(x) x11 = self.branch1_1(x1) x12 = self.branch1_2(x11) x2 = self.branch2(x) x21 = self.branch2_1(x2) x22 = self.branch2_2(x21) out = torch.cat((x0,x01,x02,x1,x11,x12,x2,x21,x22),1) out = self.ConvLinear(out) short = self.shortcut(x) out = out*self.scale + short out = self.relu(out) return out else: print("error!") return class RFBNet(nn.Module): """RFB Net for object detection The network is based on the SSD architecture. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1711.07767.pdf for more details on RFB Net. Args: phase: (string) Can be "test" or "train" base: VGG16 layers for input, size of either 300 or 512 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, size, base, extras, head, num_classes,Rate=[9,5,2,1]): super(RFBNet, self).__init__() self.phase = phase self.num_classes = num_classes self.size = size if size == 300: self.indicator = 3 elif size == 512: self.indicator = 5 else: print("Error: Sorry only SSD300 and SSD512 are supported!") return # vgg network self.base = nn.ModuleList(base) # conv_4 #self.Norm = BasicRFB_a(512,512,stride = 1,scale=1.0) self.Norm = Aspp_b_2_mid_concat_relu(512,512,stride=1,scale=1,rate=Rate) #self.aspp_a_7 = Aspp_b_2(1024,1024,stride=1,scale=1,rate=Rate) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if self.phase == 'test': self.softmax = nn.Softmax(dim=-1) def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3*batch,300,300]. Return: Depending on phase: test: list of concat outputs from: 1: softmax layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() # apply vgg up to conv4_3 relu for k in range(23): x = self.base[k](x) #s = self.Norm(x) s = self.Norm(x) sources.append(s) # apply vgg up to fc7 for k in range(23, len(self.base)): x = self.base[k](x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = v(x) if k < self.indicator or k%2 ==0: sources.append(x) # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) #print([o.size() for o in loc]) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if self.phase == "test": output = ( loc.view(loc.size(0), -1, 4), # loc preds self.softmax(conf.view(-1, self.num_classes)), # conf preds ) else: output = ( loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), ) return output def load_weights(self, base_file): other, ext = os.path.splitext(base_file) if ext == '.pkl' or '.pth': print('Loading weights into state dict...') self.load_state_dict(torch.load(base_file)) print('Finished!') else: print('Sorry only .pth and .pkl files supported.') # This function is derived from torchvision VGG make_layers() # https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] return layers base = { '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], '512': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], } def add_extras(size, cfg, i, batch_norm=False,Rate=[6,3,2,1]): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': if in_channels == 256 and size == 512: layers += [Aspp_b_2_mid_concat_relu(in_channels,cfg[k+1],stride=2,scale=1,rate=Rate)] else: layers += [Aspp_b_2_mid_concat_relu(in_channels,cfg[k+1],stride=2,scale=1,rate=Rate)] else: layers += [Aspp_b_2_mid_concat_relu(in_channels,v,scale=1,rate=Rate)] in_channels = v if size == 512: layers += [BasicConv(256,128,kernel_size=1,stride=1)] layers += [BasicConv(128,256,kernel_size=4,stride=1,padding=1)] elif size ==300: layers += [BasicConv(256,128,kernel_size=1,stride=1)] layers += [BasicConv(128,256,kernel_size=3,stride=1)] layers += [BasicConv(256,128,kernel_size=1,stride=1)] layers += [BasicConv(128,256,kernel_size=3,stride=1)] else: print("Error: Sorry only RFBNet300 and RFBNet512 are supported!") return return layers extras = { '300': [1024, 'S', 512, 'S', 256], '512': [1024, 'S', 512, 'S', 256, 'S', 256,'S',256], } def multibox(size, vgg, extra_layers, cfg, num_classes): loc_layers = [] conf_layers = [] vgg_source = [-2] for k, v in enumerate(vgg_source): if k == 0: loc_layers += [nn.Conv2d(512, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers +=[nn.Conv2d(512, cfg[k] * num_classes, kernel_size=3, padding=1)] else: loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] i = 1 indicator = 0 if size == 300: indicator = 3 elif size == 512: indicator = 5 else: print("Error: Sorry only RFBNet300 and RFBNet512 are supported!") return for k, v in enumerate(extra_layers): if k < indicator or k%2== 0: loc_layers += [nn.Conv2d(v.out_channels, cfg[i] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(v.out_channels, cfg[i] * num_classes, kernel_size=3, padding=1)] i +=1 return vgg, extra_layers, (loc_layers, conf_layers) mbox = { '300': [6, 6, 6, 6, 4, 4], # number of boxes per feature map location '512': [6, 6, 6, 6, 6, 4, 4], } def build_net(phase, size=300, num_classes=21,rate="6,3,2,1"): Rate = [int(i) for i in rate.strip().split(",")] print("the rate is ",Rate) if phase != "test" and phase != "train": print("Error: Phase not recognized") return if size != 300 and size != 512: print("Error: Sorry only RFBNet300 and RFBNet512 are supported!") return return RFBNet(phase, size, *multibox(size, vgg(base[str(size)], 3), add_extras(size, extras[str(size)], 1024,Rate=Rate), mbox[str(size)], num_classes), num_classes,Rate)
47.974155
154
0.583482
a0704cc67924ee3176fe445c007dcfedda0569d7
4,583
py
Python
yardstick/benchmark/runners/iteration.py
mythwm/yardstick-wm
319ced11df92456b42c80cfd6e53c66dbd22a746
[ "Apache-2.0" ]
1
2019-12-08T21:57:31.000Z
2019-12-08T21:57:31.000Z
yardstick/benchmark/runners/iteration.py
mythwm/yardstick-wm
319ced11df92456b42c80cfd6e53c66dbd22a746
[ "Apache-2.0" ]
null
null
null
yardstick/benchmark/runners/iteration.py
mythwm/yardstick-wm
319ced11df92456b42c80cfd6e53c66dbd22a746
[ "Apache-2.0" ]
null
null
null
# Copyright 2014: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # yardstick comment: this is a modified copy of # rally/rally/benchmark/runners/constant.py """A runner that runs a configurable number of times before it returns """ from __future__ import absolute_import import os import multiprocessing import logging import traceback import time from yardstick.benchmark.runners import base LOG = logging.getLogger(__name__) def _worker_process(queue, cls, method_name, scenario_cfg, context_cfg, aborted, output_queue): sequence = 1 runner_cfg = scenario_cfg['runner'] interval = runner_cfg.get("interval", 1) iterations = runner_cfg.get("iterations", 1) run_step = runner_cfg.get("run_step", "setup,run,teardown") delta = runner_cfg.get("delta", 2) LOG.info("worker START, iterations %d times, class %s", iterations, cls) runner_cfg['runner_id'] = os.getpid() benchmark = cls(scenario_cfg, context_cfg) if "setup" in run_step: benchmark.setup() method = getattr(benchmark, method_name) sla_action = None if "sla" in scenario_cfg: sla_action = scenario_cfg["sla"].get("action", "assert") if "run" in run_step: while True: LOG.debug("runner=%(runner)s seq=%(sequence)s START", {"runner": runner_cfg["runner_id"], "sequence": sequence}) data = {} errors = "" try: result = method(data) except AssertionError as assertion: # SLA validation failed in scenario, determine what to do now if sla_action == "assert": raise elif sla_action == "monitor": LOG.warning("SLA validation failed: %s", assertion.args) errors = assertion.args elif sla_action == "rate-control": try: scenario_cfg['options']['rate'] except KeyError: scenario_cfg.setdefault('options', {}) scenario_cfg['options']['rate'] = 100 scenario_cfg['options']['rate'] -= delta sequence = 1 continue except Exception as e: errors = traceback.format_exc() LOG.exception(e) raise else: if result: output_queue.put(result) time.sleep(interval) benchmark_output = { 'timestamp': time.time(), 'sequence': sequence, 'data': data, 'errors': errors } queue.put(benchmark_output) LOG.debug("runner=%(runner)s seq=%(sequence)s END", {"runner": runner_cfg["runner_id"], "sequence": sequence}) sequence += 1 if (errors and sla_action is None) or \ (sequence > iterations or aborted.is_set()): LOG.info("worker END") break if "teardown" in run_step: benchmark.teardown() class IterationRunner(base.Runner): """Run a scenario for a configurable number of times If the scenario ends before the time has elapsed, it will be started again. Parameters iterations - amount of times the scenario will be run for type: int unit: na default: 1 interval - time to wait between each scenario invocation type: int unit: seconds default: 1 sec """ __execution_type__ = 'Iteration' def _run_benchmark(self, cls, method, scenario_cfg, context_cfg): self.process = multiprocessing.Process( target=_worker_process, args=(self.result_queue, cls, method, scenario_cfg, context_cfg, self.aborted, self.output_queue)) self.process.start()
31.826389
78
0.580624
13046201545d50b8d73d5fb76826c76a83d51425
2,363
py
Python
www/mf.py
MAGENTAFACES/MAGENTAFACES
96908a8233efbe2e7eaa9e4221928cd63035ad00
[ "MIT" ]
null
null
null
www/mf.py
MAGENTAFACES/MAGENTAFACES
96908a8233efbe2e7eaa9e4221928cd63035ad00
[ "MIT" ]
null
null
null
www/mf.py
MAGENTAFACES/MAGENTAFACES
96908a8233efbe2e7eaa9e4221928cd63035ad00
[ "MIT" ]
null
null
null
import os from jinja2 import Environment, FileSystemLoader from markdown import markdown from random import random from werkzeug.exceptions import HTTPException, NotFound from werkzeug.routing import Map, Rule from werkzeug.wrappers import Request, Response from werkzeug.wsgi import SharedDataMiddleware class MagentaFaces(object): def __init__(self): path = os.path.join(os.path.dirname(__file__), 'templates') self.jenv = Environment(loader=FileSystemLoader(path), autoescape=False) self.url_map = Map([Rule('/', endpoint='mf')]) def mf(self, request, **context): path = os.path.join(os.path.dirname(__file__), 'prose') hlist = [] for x in range(0,15): h = "h%04d.md" % x hlist.append(h) f = open(os.path.join(path, hlist[int(random() * (len(hlist)))]), 'r') try: head = unicode(f.read(), 'utf-8') finally: f.close() blam = ['diz', 'daz', 'dux'] html = blam[int(random() * 3)] + '.html' prlist = [] for x in range(0,31): p = "p%04d.md" % x prlist.append(p) f = open(os.path.join(path, prlist[int(random() * len(prlist))]), 'r') try: data = unicode(f.read(), 'utf-8') finally: f.close() prose = markdown(data) return self.render_template(html, head=head, prose=prose) def render_template(self, template_name, **context): t = self.jenv.get_template(template_name) return Response(t.render(context), mimetype='text/html') def dispatch(self, request): adapter = self.url_map.bind_to_environ(request.environ) try: endpoint, values = adapter.match() return getattr(self, endpoint)(request, **values) except NotFound, e: return self.render_template("daz.html", head="these faces are magenta", prose='and so are we') except HTTPException, e: return e def wsgi_app(self, environ, start_response): request = Request(environ) response = self.dispatch(request) return response(environ, start_response) def __call__(self, environ, start_response): return self.wsgi_app(environ, start_response) def make_app(with_static=True): app = MagentaFaces() if with_static: app.wsgi_app = SharedDataMiddleware(app.wsgi_app, { '/static': os.path.join(os.path.dirname(__file__), 'static') }) return app if __name__ == '__main__': from werkzeug.serving import run_simple app = make_app() run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)
29.5375
97
0.703766
f67b41f7e7c050f6c19852a8d7fc25e955f3354a
460
py
Python
leetCode/algorithms/medium/flatten_nested_list_iterator.py
ferhatelmas/algo
a7149c7a605708bc01a5cd30bf5455644cefd04d
[ "WTFPL" ]
25
2015-01-21T16:39:18.000Z
2021-05-24T07:01:24.000Z
leetCode/algorithms/medium/flatten_nested_list_iterator.py
gauravsingh58/algo
397859a53429e7a585e5f6964ad24146c6261326
[ "WTFPL" ]
2
2020-09-30T19:39:36.000Z
2020-10-01T17:15:16.000Z
leetCode/algorithms/medium/flatten_nested_list_iterator.py
ferhatelmas/algo
a7149c7a605708bc01a5cd30bf5455644cefd04d
[ "WTFPL" ]
15
2015-01-21T16:39:27.000Z
2020-10-01T17:00:22.000Z
from collections import deque class NestedIterator(object): def __init__(self, nestedList): self.q = deque([]) self.processList(nestedList) def processList(self, ls): for e in ls: if e.isInteger(): self.q.append(e.getInteger()) else: self.processList(e.getList()) def next(self): return self.q.popleft() def hasNext(self): return bool(self.q)
21.904762
45
0.56087
2d140b44032324330d071a467d267e5f9a15ed3c
24,945
py
Python
eosim/gui/visualize/vis2dframe.py
EarthObservationSimulator/eosim-gui
3067026f5f32be214e9ec2c4461a734ad25bb6a4
[ "Apache-2.0" ]
null
null
null
eosim/gui/visualize/vis2dframe.py
EarthObservationSimulator/eosim-gui
3067026f5f32be214e9ec2c4461a734ad25bb6a4
[ "Apache-2.0" ]
null
null
null
eosim/gui/visualize/vis2dframe.py
EarthObservationSimulator/eosim-gui
3067026f5f32be214e9ec2c4461a734ad25bb6a4
[ "Apache-2.0" ]
null
null
null
""" .. module:: vis2dframe :synopsis: *Module to handle visualization with X-Y plots.* The module contains the class ``Vis2DFrame`` to build the frame in which the user enters the plotting parameters. A time-interval of interest is to be specified, and the X, Y data corresponding to this time-interval shall be plotted. A single x-variable (belonging to a satellite) is selected (see the class ``Plot2DVisVars`` for list of possible variables). Multiple y-variables may be selected to be plotted on the same figure. The module currently only allows plotting of satellite orbit-propagation parameters (and hence association of only the satellite (no need of sensor) with the variable is sufficient). """ from tkinter import ttk import tkinter as tk import tkinter.filedialog, tkinter.messagebox from eosim import config import orbitpy, instrupy import pandas as pd import numpy as np from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) # Implement the default Matplotlib key bindings. from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure import logging logger = logging.getLogger(__name__) class Plot2DVisVars(instrupy.util.EnumEntity): """ This class holds and handles the variables which can be plotted (either on x or y axis). The class-variables are all the variables make up all the possible variables which can be plotted. The class also includes two functions which aid in the retrieval of the variable-data from the OrbitPy datafiles. """ TIME = "Time" ALT = "Altitude [km]" INC = "Inclination [deg]" TA = "True Anomaly [km]" RAAN = "RAAN [deg]" AOP = "AOP [deg]" ECC = "ECC" SPD = "ECI Speed [km/s]" ECIX = "ECI X-position [km]" ECIY = "ECI Y-position [km]" ECIZ = "ECI Z-position [km]" VX = "ECI X Velocity [km/s]" VY = "ECI Y Velocity [km/s]" VZ = "ECI Z Velocity [km/s]" LAT = "Latitude [deg]" LON = "Longitude [deg]" @classmethod def get_orbitpy_file_column_header(cls, var): """ Function returns the OrbitPy column header (label) corresponding to the input variable. If not present, ``False`` is returned indicating a "derived" variable. """ if(var==cls.ECIX): return "x [km]" elif(var==cls.ECIY): return "y [km]" elif(var==cls.ECIZ): return "z [km]" elif(var==cls.VX): return "vx [km/s]" elif(var==cls.VY): return "vy [km/s]" elif(var==cls.VZ): return "vz [km/s]" elif(var==cls.INC): return "inc [deg]" elif(var==cls.RAAN): return "raan [deg]" elif(var==cls.AOP): return "aop [deg]" elif(var==cls.TA): return "ta [deg]" elif(var==cls.ECC): return "ecc" else: return False # could be a derived variable @classmethod def get_data_from_orbitpy_file(cls, sat_df, sat_id, var, step_size, epoch_JDUT1): """ Extract the variable data from the input orbit-propagation data. :param sat_df: Dataframe corresponding to the orbit-propagation data. :paramtype sat_df: :class:`pandas.DataFrame` :param sat_id: Satellite identifier. :paramtype sat_id: str or int :param var: Variable of interest to be plotted (on either the X or Y axis). :paramtype var: class-variable of the ``Plot2DVisVars`` class. :param step_size: step-size :paramtype step_size: float :param epoch_JDUT1: Epoch in Julian Date UT1 at which the input data is referenced. :paramtype epoch_JDUT1: float :return: Tuple containing the variable plot-name (label) and the corresponding data to be plotted. :rtype: tuple """ _header = Plot2DVisVars.get_orbitpy_file_column_header(var) if(_header is not False): if _header == sat_df.index.name: data = sat_df.index else: data = sat_df[_header] else: # a derived variable if(var == cls.TIME): data = np.array(sat_df.index) * step_size # index = "time index" _header = 'time [s]' elif(var == cls.ALT): sat_dist = [] sat_dist = np.array(sat_df["x [km]"])*np.array(sat_df["x [km]"]) + np.array(sat_df["y [km]"])*np.array(sat_df["y [km]"]) + np.array(sat_df["z [km]"])*np.array(sat_df["z [km]"]) sat_dist = np.sqrt(sat_dist) data = np.array(sat_dist) - instrupy.util.Constants.radiusOfEarthInKM _header = 'alt [km]' elif(var==cls.SPD): data = np.array(sat_df["vx [km/s]"])*np.array(sat_df["vx [km/s]"]) + np.array(sat_df["vy [km/s]"])*np.array(sat_df["vy [km/s]"]) + np.array(sat_df["vz [km/s]"])*np.array(sat_df["vz [km/s]"]) data = np.sqrt(data) _header = 'speed [km/s]' elif(var==cls.LAT): lat = np.zeros((len(sat_df["x [km]"]), 1)) # make empty result array sat_df_index = list(sat_df.index) sat_df_x = list(sat_df["x [km]"]) sat_df_y = list(sat_df["y [km]"]) sat_df_z = list(sat_df["z [km]"]) for k in range(0,len(sat_df["x [km]"])): time = epoch_JDUT1 + sat_df_index[k] * step_size * 1/86400 [lat[k], _x, _y] = instrupy.util.GeoUtilityFunctions.eci2geo([sat_df_x[k], sat_df_y[k], sat_df_z[k]], time) data = lat _header = 'latitude [deg]' elif(var==cls.LON): lon = np.zeros((len(sat_df["x [km]"]), 1)) # make empty result array sat_df_index = list(sat_df.index) sat_df_x = list(sat_df["x [km]"]) sat_df_y = list(sat_df["y [km]"]) sat_df_z = list(sat_df["z [km]"]) for k in range(0,len(sat_df["x [km]"])): time = epoch_JDUT1 + sat_df_index[k] * step_size * 1/86400 [lon[k], _x, _y] = instrupy.util.GeoUtilityFunctions.eci2geo([sat_df_x[k], sat_df_y[k], sat_df_z[k]], time) data = lon _header = 'longitude [deg]' return (str(sat_id)+'.'+_header, data) class TwoDimVisPlotAttributes(): """ Container class to hold and handle the plot attributes which are specified by the user. """ def __init__(self, x_sat_id=None, x_var=None, y_sat_id=None, y_var=None, time_start=None, time_end=None): self.x_sat_id = x_sat_id if x_sat_id is not None else None # x-variable satellite-identifier self.x_var = x_var if x_var is not None else None # x-variable self.y_sat_id = y_sat_id if y_sat_id is not None else list() # y-variable satellite-identifier. Is a list to accommodate multiple plots over the same x-axis. self.y_var = y_var if y_var is not None else list() # y-variable. Is a list to accommodate multiple plots over the same x-axis. self.time_start = time_start if time_start is not None else None self.time_end = time_end if time_end is not None else None def update_x_variables(self, x_sat_id, x_var): self.x_sat_id = x_sat_id self.x_var = x_var def update_y_variables(self, y_sat_id, y_var): self.y_sat_id.append(y_sat_id) self.y_var.append(y_var) def reset_y_variables(self): self.y_sat_id = list() self.y_var = list() def update_time_interval(self, time_start, time_end): self.time_start = time_start self.time_end = time_end def get_x_variables(self): return [self.x_sat_id, self.x_var] def get_y_variables(self): return [self.y_sat_id, self.y_var] def get_time_interval(self): return [self.time_start, self.time_end] class Vis2DFrame(ttk.Frame): """ Primary class to create the frame and the widgets.""" def __init__(self, win, tab): self.two_dim_vis_plt_attr = TwoDimVisPlotAttributes() # instance variable storing the 2D plot attributes # 2d plots frame vis_2d_frame = ttk.Frame(tab) vis_2d_frame.pack(expand = True, fill ="both", padx=10, pady=10) vis_2d_frame.rowconfigure(0,weight=1) vis_2d_frame.rowconfigure(1,weight=1) vis_2d_frame.columnconfigure(0,weight=1) vis_2d_frame.columnconfigure(1,weight=1) vis_2d_time_frame = ttk.LabelFrame(vis_2d_frame, text='Set Time Interval', labelanchor='n') vis_2d_time_frame.grid(row=0, column=0, sticky='nswe', rowspan=2, padx=(40,0)) vis_2d_time_frame.rowconfigure(0,weight=1) vis_2d_time_frame.rowconfigure(1,weight=1) vis_2d_time_frame.rowconfigure(2,weight=1) vis_2d_time_frame.columnconfigure(0,weight=1) vis_2d_time_frame.columnconfigure(1,weight=1) vis_2d_xaxis_frame = ttk.LabelFrame(vis_2d_frame, text='Set X-variable', labelanchor='n') vis_2d_xaxis_frame.grid(row=0, column=1, sticky='nswe') vis_2d_xaxis_frame.columnconfigure(0,weight=1) vis_2d_xaxis_frame.columnconfigure(1,weight=1) vis_2d_xaxis_frame.rowconfigure(0,weight=1) vis_2d_yaxis_frame = ttk.LabelFrame(vis_2d_frame, text='Set Y-variable(s)', labelanchor='n') vis_2d_yaxis_frame.grid(row=1, column=1, sticky='nswe') vis_2d_yaxis_frame.columnconfigure(0,weight=1) vis_2d_yaxis_frame.columnconfigure(1,weight=1) vis_2d_yaxis_frame.rowconfigure(0,weight=1) vis_2d_plot_frame = ttk.Frame(vis_2d_frame) vis_2d_plot_frame.grid(row=2, column=0, columnspan=2, sticky='nswe', pady=(10,2)) vis_2d_plot_frame.columnconfigure(0,weight=1) vis_2d_plot_frame.columnconfigure(1,weight=1) vis_2d_plot_frame.rowconfigure(0,weight=1) # 2D vis frame ttk.Label(vis_2d_time_frame, text="Time (hh:mm:ss) from mission-epoch", wraplength="110", justify='center').grid(row=0, column=0,columnspan=2,ipady=5) ttk.Label(vis_2d_time_frame, text="From").grid(row=1, column=0, sticky='ne') self.vis_2d_time_from_entry = ttk.Entry(vis_2d_time_frame, width=10, takefocus = False) self.vis_2d_time_from_entry.grid(row=1, column=1, sticky='nw', padx=10) self.vis_2d_time_from_entry.insert(0,'00:00:00') self.vis_2d_time_from_entry.bind("<FocusIn>", lambda args: self.vis_2d_time_from_entry.delete('0', 'end')) ttk.Label(vis_2d_time_frame, text="To").grid(row=2, column=0, sticky='ne') self.vis_2d_time_to_entry = ttk.Entry(vis_2d_time_frame, width=10, takefocus = False) self.vis_2d_time_to_entry.grid(row=2, column=1, sticky='nw', padx=10) self.vis_2d_time_to_entry.insert(0,'10:00:00') self.vis_2d_time_to_entry.bind("<FocusIn>", lambda args: self.vis_2d_time_to_entry.delete('0', 'end')) vis_2d_x_sel_var_btn = ttk.Button(vis_2d_xaxis_frame, text="X.Var", command=self.click_select_xvar_btn) vis_2d_x_sel_var_btn.grid(row=0, column=0) self.vis_2d_x_sel_var_disp = tk.Text(vis_2d_xaxis_frame, state='disabled',height = 1, width = 3, background="light grey") self.vis_2d_x_sel_var_disp.grid(row=0, column=1, sticky='nsew', padx=20, pady=20) vis_2d_y_sel_var_btn = ttk.Button(vis_2d_yaxis_frame, text="Y.Var(s)", command=self.click_select_yvar_btn) vis_2d_y_sel_var_btn.grid(row=0, column=0) self.vis_2d_y_sel_var_disp = tk.Text(vis_2d_yaxis_frame, state='disabled',height = 2, width = 3, background="light grey") self.vis_2d_y_sel_var_disp.grid(row=0, column=1, sticky='nsew', padx=20, pady=20) plot_btn = ttk.Button(vis_2d_plot_frame, text="Plot", command=lambda: self.click_plot_btn(plot=True)) plot_btn.grid(row=0, column=0, sticky='e', padx=20) export_btn = ttk.Button(vis_2d_plot_frame, text="Export", command=lambda: self.click_plot_btn(export=True)) export_btn.grid(row=0, column=1, sticky='w', padx=20) def click_select_xvar_btn(self): """ Create window to ask what should be the x-variable. Only 1 x-variable selection per plot is allowed (for obvious reasons).""" select_xvar_win = tk.Toplevel() select_xvar_win.rowconfigure(0,weight=1) select_xvar_win.rowconfigure(1,weight=1) select_xvar_win.columnconfigure(0,weight=1) select_xvar_win.columnconfigure(1,weight=1) select_sat_win_frame = ttk.LabelFrame(select_xvar_win, text='Select Satellite') select_sat_win_frame.grid(row=0, column=0, padx=10, pady=10) select_var_frame = ttk.LabelFrame(select_xvar_win, text='Select Variable') select_var_frame.grid(row=0, column=1, padx=10, pady=10) okcancel_frame = ttk.Label(select_xvar_win) okcancel_frame.grid(row=1, column=0, columnspan=2, padx=10, pady=10) # place the widgets in the frame available_sats = [x._id for x in config.mission.spacecraft]# get all available satellite-ids for which outputs are available sats_combo_box = ttk.Combobox(select_sat_win_frame, values=available_sats) sats_combo_box.grid(row=0, column=0) sats_combo_box = ttk.Combobox(select_sat_win_frame, values=available_sats) sats_combo_box.current(0) sats_combo_box.grid(row=0, column=0) self._2dvis_xvar= tk.StringVar() # using self so that the variable is retained even after exit from the function, make sure variable name is unique j = 0 k = 0 for _var in list(Plot2DVisVars): var_rbtn = ttk.Radiobutton(select_var_frame, text=_var, variable=self._2dvis_xvar, value=_var) var_rbtn.grid(row=j, column=k, sticky='w') j = j + 1 if(j==5): j=0 k=k+1 def click_ok_btn(): self.two_dim_vis_plt_attr.update_x_variables(sats_combo_box.get(), self._2dvis_xvar.get()) [sats, xvars] = self.two_dim_vis_plt_attr.get_x_variables() # write the selected variable in the display window for user xvars_str = str(sats + '.' + xvars) self.vis_2d_x_sel_var_disp.configure(state='normal') self.vis_2d_x_sel_var_disp.delete(1.0,'end') self.vis_2d_x_sel_var_disp.insert(1.0, xvars_str) self.vis_2d_x_sel_var_disp.configure(state='disabled') select_xvar_win.destroy() ok_btn = ttk.Button(okcancel_frame, text="Ok", command=click_ok_btn, width=15) ok_btn.grid(row=0, column=0, sticky ='e') cancel_btn = ttk.Button(okcancel_frame, text="Exit", command=select_xvar_win.destroy, width=15) cancel_btn.grid(row=0, column=1, sticky ='w') def click_select_yvar_btn(self): """ Create window to ask what should be the y-variable(s). Multiple variables can be configured.""" # reset any previously configured y-variables self.two_dim_vis_plt_attr.reset_y_variables() # create window to ask which satellite select_yvar_win = tk.Toplevel() select_yvar_win.rowconfigure(0,weight=1) select_yvar_win.rowconfigure(1,weight=1) select_yvar_win.columnconfigure(0,weight=1) select_yvar_win.columnconfigure(1,weight=1) select_sat_win_frame = ttk.LabelFrame(select_yvar_win, text='Select Satellite') select_sat_win_frame.grid(row=0, column=0, padx=10, pady=10) select_var_frame = ttk.LabelFrame(select_yvar_win, text='Select Variable') select_var_frame.grid(row=0, column=1, padx=10, pady=10) okcancel_frame = ttk.Label(select_yvar_win) okcancel_frame.grid(row=1, column=0, columnspan=2, padx=10, pady=10) # place the widgets in the frame available_sats = [x._id for x in config.mission.spacecraft]# get all available satellite-ids for which outputs are available sats_combo_box = ttk.Combobox(select_sat_win_frame, values=available_sats) sats_combo_box.current(0) sats_combo_box.grid(row=0, column=0) self._2dvis_yvar= tk.StringVar() # using self so that the variable is retained even after exit from the function, make sure variable name is unique j = 0 k = 0 for _var in list(Plot2DVisVars): var_rbtn = ttk.Radiobutton(select_var_frame, text=_var, variable=self._2dvis_yvar, value=_var) var_rbtn.grid(row=j, column=k, sticky='w') j = j + 1 if(j==5): j=0 k=k+1 def click_ok_btn(): self.two_dim_vis_plt_attr.update_y_variables(sats_combo_box.get(), self._2dvis_yvar.get()) def click_exit_btn(): self.vis_2d_y_sel_var_disp.configure(state='normal') self.vis_2d_y_sel_var_disp.delete(1.0,'end') # write the selected variable in the display window for user [sats, yvars] = self.two_dim_vis_plt_attr.get_y_variables() yvars_str = [str(sats[k]+'.'+yvars[k]) for k in range(0,len(sats))] self.vis_2d_y_sel_var_disp.insert(1.0,' '.join(yvars_str)) self.vis_2d_y_sel_var_disp.configure(state='disabled') select_yvar_win.destroy() ok_btn = ttk.Button(okcancel_frame, text="Add", command=click_ok_btn, width=15) ok_btn.grid(row=0, column=0, sticky ='e') cancel_btn = ttk.Button(okcancel_frame, text="Exit", command=click_exit_btn, width=15) cancel_btn.grid(row=0, column=1, sticky ='w') def update_time_interval_in_attributes_variable(self): """ Update the time-interval of interest from the user-input.""" # read the plotting time interval time_start = str(self.vis_2d_time_from_entry.get()).split(":") # split and reverse list time_start.reverse() # convert to seconds x = 0 for k in range(0,len(time_start)): x = x + float(time_start[k]) * (60**k) time_start_s = x time_end = str(self.vis_2d_time_to_entry.get()).split(":") # split and reverse list time_end.reverse() # convert to seconds x = 0 for k in range(0,len(time_end)): x = x + float(time_end[k]) * (60**k) time_end_s = x self.two_dim_vis_plt_attr.update_time_interval(time_start_s, time_end_s) def click_plot_btn(self, export=False, plot=False): """ Make X-Y scatter plots of the variables indicated in :code:`two_dim_vis_plt_attr` instance variable. """ # get the time-interval of interest self.update_time_interval_in_attributes_variable() [time_start_s, time_end_s] = self.two_dim_vis_plt_attr.get_time_interval() # get the x-axis data [x_sat_id, x_var] = self.two_dim_vis_plt_attr.get_x_variables() # search for the orbit-propagation data corresponding to the satellite with identifier = x_sat_id x_sat_prop_out_info = orbitpy.util.OutputInfoUtility.locate_output_info_object_in_list(out_info_list=config.mission.outputInfo, out_info_type=orbitpy.util.OutputInfoUtility.OutputInfoType.PropagatorOutputInfo, spacecraft_id=x_sat_id ) x_sat_state_fp = x_sat_prop_out_info.stateCartFile x_sat_kepstate_fp = x_sat_prop_out_info.stateKeplerianFile # read the epoch and time-step size and fix the start and stop indices (epoch_JDUT1, step_size, duration) = orbitpy.util.extract_auxillary_info_from_state_file(x_sat_state_fp) logger.debug("epoch_JDUT1 is " + str(epoch_JDUT1)) logger.debug("step_size is " + str(step_size)) time_start_index = int(time_start_s/step_size) time_end_index = int(time_end_s/step_size) # Get the orbit-propagation data. # Cartesian ECI state file x_sat_state_df = pd.read_csv(x_sat_state_fp,skiprows = [0,1,2,3]) x_sat_state_df.set_index('time index', inplace=True) # Keplerian state file x_sat_kepstate_df = pd.read_csv(x_sat_kepstate_fp,skiprows = [0,1,2,3]) x_sat_kepstate_df.set_index('time index', inplace=True) # check if the user-specified time interval is within bounds min_time_index = min(x_sat_state_df.index) max_time_index = max(x_sat_state_df.index) if(time_start_index < min_time_index or time_start_index > max_time_index or time_end_index < min_time_index or time_end_index > max_time_index or time_start_index > time_end_index): logger.info("Please enter valid time-interval.") return # get data only in the relevant time-interval x_sat_state_df = x_sat_state_df.iloc[time_start_index:time_end_index] x_sat_kepstate_df = x_sat_kepstate_df.iloc[time_start_index:time_end_index] x_sat_df = pd.concat([x_sat_state_df, x_sat_kepstate_df], axis=1) # make empty dataframe to store the plot related data plt_data = pd.DataFrame(index=x_sat_state_df.index) # extract the x-variable from the orbit-propagation data (_xvarname, _xdata) = Plot2DVisVars.get_data_from_orbitpy_file(sat_df=x_sat_df, sat_id=x_sat_id, var=x_var, step_size=step_size, epoch_JDUT1=epoch_JDUT1) plt_data[_xvarname] = _xdata # iterate over the list of y-vars [y_sat_id, y_var] = self.two_dim_vis_plt_attr.get_y_variables() num_y_vars = len(y_var) for k in range(0,num_y_vars): # extract the y-variable data from of the particular satellite # search for the orbit-propagation data corresponding to the satellite with identifier = y_sat_id[k] y_sat_prop_out_info = orbitpy.util.OutputInfoUtility.locate_output_info_object_in_list(out_info_list=config.mission.outputInfo, out_info_type=orbitpy.util.OutputInfoUtility.OutputInfoType.PropagatorOutputInfo, spacecraft_id=y_sat_id[k] ) y_sat_state_fp = y_sat_prop_out_info.stateCartFile y_sat_kepstate_fp = y_sat_prop_out_info.stateKeplerianFile # load the cartesian eci state data, get data only in the relevant time-interval y_sat_state_df = pd.read_csv(y_sat_state_fp, skiprows = [0,1,2,3]) y_sat_state_df.set_index('time index', inplace=True) y_sat_state_df = y_sat_state_df.iloc[time_start_index:time_end_index] # load the keplerian state data, get data only in the relevant time-interval y_sat_kepstate_df = pd.read_csv(y_sat_kepstate_fp, skiprows = [0,1,2,3]) y_sat_kepstate_df.set_index('time index', inplace=True) y_sat_kepstate_df = y_sat_kepstate_df.iloc[time_start_index:time_end_index] y_sat_df = pd.concat([y_sat_state_df, y_sat_kepstate_df], axis=1) # add new column with the y-data (_yvarname, _ydata) = Plot2DVisVars.get_data_from_orbitpy_file(sat_df=y_sat_df, sat_id=y_sat_id[k], var=y_var[k], step_size=step_size, epoch_JDUT1=epoch_JDUT1) plt_data[_yvarname] = _ydata if(export is True): vis2d_data_fp = tkinter.filedialog.asksaveasfile() plt_data.to_csv(vis2d_data_fp) if(plot is True): fig_win = tk.Toplevel() fig = Figure(figsize=(5, 4), dpi=100) ax = fig.add_subplot(111) _lgnd=[] for k in range(0,num_y_vars): ax.scatter(plt_data.iloc[:,0],plt_data.iloc[:,k+1]) _lgnd.append(plt_data.columns[k+1]) # pylint: disable=E1136 # pylint/issues/3139 ax.set_xlabel(plt_data.columns[0]) # pylint: disable=E1136 # pylint/issues/3139 ax.set_ylabel('Y-axis') ax.legend(_lgnd) canvas = FigureCanvasTkAgg(fig, master=fig_win) # A tk.DrawingArea. canvas.draw() canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1) toolbar = NavigationToolbar2Tk(canvas, fig_win) toolbar.update() canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1)
49.39604
206
0.636119
6eee5a86a178cbf54d0b8ca80443d611ab78f80f
11,832
py
Python
pywren/state.py
Pkanjan37/Lightweight_big_data_framework_serverless
4a1489429a71d488f449f9dffbeca85ead31db14
[ "Apache-2.0" ]
null
null
null
pywren/state.py
Pkanjan37/Lightweight_big_data_framework_serverless
4a1489429a71d488f449f9dffbeca85ead31db14
[ "Apache-2.0" ]
null
null
null
pywren/state.py
Pkanjan37/Lightweight_big_data_framework_serverless
4a1489429a71d488f449f9dffbeca85ead31db14
[ "Apache-2.0" ]
null
null
null
# # Copyright 2018 PyWren Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import from __future__ import print_function import logging import time import enum from tblib import pickling_support try: from six import reraise from six.moves import cPickle as pickle except: import pickle from pywren import wrenconfig from pywren.storage import storage, storage_utils from pywren.jobrunner import stepFunctionbuilder pickling_support.install() logger = logging.getLogger(__name__) class JobState(enum.Enum): new = 1 invoked = 2 running = 3 success = 4 error = 5 class ResponseStateFuture: """ Object representing the result of a PyWren invocation. Returns the status of the execution and the result when available. """ GET_RESULT_SLEEP_SECS = 4 def __init__(self, input_set, storage_path,statemachine_arn,storage_instance,output_path,intermediate_bucket=None,output_path_list=None): self.input_set = input_set self._exception = Exception() self._return_val = None self._traceback = None self._call_invoker_result = None self.run_status = None self.invoke_status = None self.status_query_count = 0 self.storage = storage_instance self.storage_path = storage_path self.output_bucket = "output-bucky" self.intermediate_bucket = intermediate_bucket self.statemachine_arn=statemachine_arn if output_path_list == None: self.output_path = output_path else: self.output_path = output_path_list def _set_state(self, new_state): ## FIXME add state machine self._state = new_state def _set_sm_arn(self,stateMachine): self.statemachine_arn = stateMachine def _get_sm_arn(): return self.statemachine_arn def _get_output_pth(self): return self.output_path def _get_intermediate_bucket(self): return self.intermediate_bucket def cancel(self, storage_handler=None): # TODO Figure out a better way for this function to have # access to a custom storage handler if storage_handler is None: storage_config = wrenconfig.extract_storage_config(wrenconfig.default()) storage_handler = storage.Storage(storage_config) storage_handler.put_cancelled(self.callset_id, self.call_id, "CANCEL") def cancelled(self): raise NotImplementedError("Cannot cancel dispatched jobs") def running(self): raise NotImplementedError() def done(self): if self._state in [JobState.success, JobState.error]: return True return self.result(check_only=True) def succeeded(self): return self._state == JobState.success def errored(self): return self._state == JobState.error def result_state(self,Mode="ALL"): stepFunc = stepFunctionbuilder.StateFunctionWrapper() succ,fail,undone = stepFunc.wait(self.statemachine_arn,self.input_set,stepFunc.ALL_COMPLETED) print("State succ<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<") print(succ) print(len(succ)) print("State fail<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<") print(fail) print(len(fail)) print("State undone<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<") print(undone) print(len(undone)) if Mode=="ALL": if(len(succ)>0 and len(fail)<1): print("Suppose to be here????????????") print(self.output_path) output = self.storage.get_state_output(self.output_path,Mode) else: print("ORRRRRRRRRRR here????????????") output = stepFunc.buildStateChecker(self.statemachine_arn) else: if(len(succ)>0): print("Suppose to be here????????????") print(self.output_path) output = self.storage.get_state_output(self.output_path,Mode) else: print("ORRRRRRRRRRR here????????????") output = stepFunc.buildStateChecker(self.statemachine_arn) return output def wait_state(self): stepFunc = stepFunctionbuilder.StateFunctionWrapper() succ,fail,undone = stepFunc.wait(self.statemachine_arn,self.input_set,stepFunc.ALL_COMPLETED) return "Complete" def result(self, timeout=None, check_only=False, throw_except=True, storage_handler=None): """ check_only = True implies we only check if the job is completed. # FIXME check_only is the worst API and should be refactored # out to be part of done() From the python docs: Return the value returned by the call. If the call hasn't yet completed then this method will wait up to timeout seconds. If the call hasn't completed in timeout seconds then a TimeoutError will be raised. timeout can be an int or float.If timeout is not specified or None then there is no limit to the wait time. Return the value returned by the call. If the call raised an exception, this method will raise the same exception If the future is cancelled before completing then CancelledError will be raised. :param timeout: This method will wait up to timeout seconds before raising a TimeoutError if function hasn't completed. If None, wait indefinitely. Default None. :param check_only: Return None immediately if job is not complete. Default False. :param throw_except: Reraise exception if call raised. Default true. :param storage_handler: Storage handler to poll cloud storage. Default None. :return: Result of the call. :raises CancelledError: If the job is cancelled before completed. :raises TimeoutError: If job is not complete after `timeout` seconds. """ if self._state == JobState.new: raise ValueError("job not yet invoked") if check_only: if self._state == JobState.success or self._state == JobState.error: return True if self._state == JobState.success: return self._return_val if self._state == JobState.error: if throw_except: raise self._exception else: return None if storage_handler is None: storage_config = wrenconfig.extract_storage_config(wrenconfig.default()) storage_handler = storage.Storage(storage_config) storage_utils.check_storage_path(storage_handler.get_storage_config(), self.storage_path) call_status = storage_handler.get_call_status(self.callset_id, self.call_id) self.status_query_count += 1 ## FIXME implement timeout if timeout is not None: raise NotImplementedError() if check_only: if call_status is None: return False else: return True while call_status is None: time.sleep(self.GET_RESULT_SLEEP_SECS) call_status = storage_handler.get_call_status(self.callset_id, self.call_id) self.status_query_count += 1 self._invoke_metadata['status_done_timestamp'] = time.time() self._invoke_metadata['status_query_count'] = self.status_query_count self.run_status = call_status # this is the remote status information self.invoke_status = self._invoke_metadata # local status information if call_status['exception'] is not None: # the wrenhandler had an exception exception_str = call_status['exception'] exception_args = call_status['exception_args'] if exception_args[0] == "WRONGVERSION": if throw_except: raise Exception("Pywren version mismatch: remote " + \ "expected version {}, local library is version {}".format( exception_args[2], exception_args[3])) return None elif exception_args[0] == "OUTATIME": if throw_except: raise Exception("process ran out of time") return None elif exception_args[0] == "CANCELLED": if throw_except: raise Exception("job was cancelled") elif exception_args[0] == "RETCODE": if throw_except: raise Exception("python process failed, returned a non-zero return code" "(check stdout for information)") return None else: if throw_except: if 'exception_traceback' in call_status: logger.error(call_status['exception_traceback']) raise Exception(exception_str, *exception_args) return None # FIXME this shouldn't be called if check_only is True call_output_time = time.time() call_invoker_result = pickle.loads(storage_handler.get_call_output( self.callset_id, self.call_id)) call_output_time_done = time.time() self._invoke_metadata['download_output_time'] = call_output_time_done - call_output_time self._invoke_metadata['download_output_timestamp'] = call_output_time_done call_success = call_invoker_result['success'] logger.info("ResponseFuture.result() {} {} call_success {}".format(self.callset_id, self.call_id, call_success)) self._call_invoker_result = call_invoker_result if call_success: self._return_val = call_invoker_result['result'] self._set_state(JobState.success) return self._return_val else: self._set_state(JobState.error) self._exception = call_invoker_result['result'] self._traceback = (call_invoker_result['exc_type'], call_invoker_result['exc_value'], call_invoker_result['exc_traceback']) if throw_except: if call_invoker_result.get('pickle_fail', False): logging.warning( "there was an error pickling. The original exception: " + \ "{}\nThe pickling exception: {}".format( call_invoker_result['exc_value'], str(call_invoker_result['pickle_exception']))) reraise(Exception, call_invoker_result['exc_value'], call_invoker_result['exc_traceback']) else: # reraise the exception reraise(*self._traceback) else: return None # nothing, don't raise, no value def exception(self, timeout=None): raise NotImplementedError() def add_done_callback(self, fn): raise NotImplementedError()
37.443038
141
0.61452
db8cb334a4c58b04bf31a26064c4ed311a5bde4e
3,140
py
Python
src/train.py
joelsjoyt/Animal-Classifier
dd4e93a5e50631a82dd2284dea18cb32d8927b82
[ "MIT" ]
4
2020-11-09T03:48:30.000Z
2021-07-12T23:54:45.000Z
src/train.py
joelsjoyt/Animal-Classifier
dd4e93a5e50631a82dd2284dea18cb32d8927b82
[ "MIT" ]
null
null
null
src/train.py
joelsjoyt/Animal-Classifier
dd4e93a5e50631a82dd2284dea18cb32d8927b82
[ "MIT" ]
null
null
null
import torch import copy from torch import nn, optim from torch.optim import lr_scheduler import time def train(dataloaders, dataset_sizes, model, device): def train_model(model, criterion, optimizer, scheduler, num_epochs=10): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print("Start of an epoch") print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': print("Train") model.train() # Set model to training mode else: print("Validation") model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0.0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model # Training Hyperparameters print("Prefered epochs is 20") num_epochs = int(input("Enter your desired epochs: \t")) model = model.to(device) loss_fn = nn.CrossEntropyLoss() # Optimisation of model parameters optimizer_ft = optim.Adam(model.parameters(), lr=0.001) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) model_ft = train_model(model, loss_fn, optimizer_ft, exp_lr_scheduler, num_epochs) return model_ft, optimizer_ft
35.681818
86
0.53121
37f9ff8bc26db8542a141dff508c61498bb0d17f
7,134
py
Python
src/datadog_api_client/v2/model/role_relationships.py
rchenzheng/datadog-api-client-python
2e86ac098c6f0c7fdd90ed218224587c0f8eafef
[ "Apache-2.0" ]
null
null
null
src/datadog_api_client/v2/model/role_relationships.py
rchenzheng/datadog-api-client-python
2e86ac098c6f0c7fdd90ed218224587c0f8eafef
[ "Apache-2.0" ]
null
null
null
src/datadog_api_client/v2/model/role_relationships.py
rchenzheng/datadog-api-client-python
2e86ac098c6f0c7fdd90ed218224587c0f8eafef
[ "Apache-2.0" ]
null
null
null
# Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. import re # noqa: F401 import sys # noqa: F401 from datadog_api_client.v2.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from datadog_api_client.v2.model.relationship_to_permissions import RelationshipToPermissions from datadog_api_client.v2.model.relationship_to_users import RelationshipToUsers globals()["RelationshipToPermissions"] = RelationshipToPermissions globals()["RelationshipToUsers"] = RelationshipToUsers class RoleRelationships(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = {} validations = {} additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { "permissions": (RelationshipToPermissions,), # noqa: E501 "users": (RelationshipToUsers,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { "permissions": "permissions", # noqa: E501 "users": "users", # noqa: E501 } _composed_schemas = {} required_properties = set( [ "_data_store", "_check_type", "_spec_property_naming", "_path_to_item", "_configuration", "_visited_composed_classes", ] ) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """RoleRelationships - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) permissions (RelationshipToPermissions): [optional] # noqa: E501 users (RelationshipToUsers): [optional] # noqa: E501 """ _check_type = kwargs.pop("_check_type", True) _spec_property_naming = kwargs.pop("_spec_property_naming", False) _path_to_item = kwargs.pop("_path_to_item", ()) _configuration = kwargs.pop("_configuration", None) _visited_composed_classes = kwargs.pop("_visited_composed_classes", ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if ( var_name not in self.attribute_map and self._configuration is not None and self._configuration.discard_unknown_keys and self.additional_properties_type is None ): # discard variable. continue setattr(self, var_name, var_value)
40.534091
108
0.59672
e2c841234a29fb6b2b0ca97b7d50bec9c98f2c8e
171
py
Python
sample_user_model/sample_user_model/routes.py
JSchatzman/sample_user_model
9a15b1940ab340c717aeab053f75ff66c183abbc
[ "MIT" ]
null
null
null
sample_user_model/sample_user_model/routes.py
JSchatzman/sample_user_model
9a15b1940ab340c717aeab053f75ff66c183abbc
[ "MIT" ]
null
null
null
sample_user_model/sample_user_model/routes.py
JSchatzman/sample_user_model
9a15b1940ab340c717aeab053f75ff66c183abbc
[ "MIT" ]
null
null
null
def includeme(config): config.add_static_view('static', 'static', cache_max_age=3600) config.add_route('home', '/') config.add_route('register', '/register')
28.5
66
0.690058
22f12f269dc7aabd06fe7da78fb8c701a8b9ff06
1,681
py
Python
test/test_user_api.py
MPW1412/kimai-python
7c89b0866b85fbc4b1092b30eca21f1be48db533
[ "MIT" ]
6
2019-12-19T16:01:58.000Z
2022-01-19T18:10:16.000Z
test/test_user_api.py
MPW1412/kimai-python
7c89b0866b85fbc4b1092b30eca21f1be48db533
[ "MIT" ]
4
2020-05-16T23:33:15.000Z
2021-07-06T20:53:32.000Z
test/test_user_api.py
MPW1412/kimai-python
7c89b0866b85fbc4b1092b30eca21f1be48db533
[ "MIT" ]
3
2020-05-16T23:14:13.000Z
2021-06-30T08:53:11.000Z
# coding: utf-8 """ Kimai 2 - API Docs JSON API for the Kimai 2 time-tracking software. Read more about its usage in the [API documentation](https://www.kimai.org/documentation/rest-api.html) and then download a [Swagger file](doc.json) for import e.g. in Postman. Be aware: it is not yet considered stable and BC breaks might happen. # noqa: E501 OpenAPI spec version: 0.5 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import kimai_python from kimai_python.api.user_api import UserApi # noqa: E501 from kimai_python.rest import ApiException class TestUserApi(unittest.TestCase): """UserApi unit test stubs""" def setUp(self): self.api = kimai_python.api.user_api.UserApi() # noqa: E501 def tearDown(self): pass def test_api_users_get(self): """Test case for api_users_get Returns the collection of all registered users # noqa: E501 """ pass def test_api_users_id_get(self): """Test case for api_users_id_get Return one user entity # noqa: E501 """ pass def test_api_users_id_patch(self): """Test case for api_users_id_patch Update an existing user # noqa: E501 """ pass def test_api_users_me_get(self): """Test case for api_users_me_get Return the current user entity # noqa: E501 """ pass def test_api_users_post(self): """Test case for api_users_post Creates a new user # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
24.014286
314
0.650208
122103829b1db813c327eb1e4aa94407c1218f89
3,450
py
Python
grr/test/grr_response_test/lib/api_helpers.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
grr/test/grr_response_test/lib/api_helpers.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
grr/test/grr_response_test/lib/api_helpers.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Helper API-client-based functions for self-contained tests.""" import time from typing import Tuple import requests from grr_api_client import api from grr_response_core import config from grr_response_core.lib import config_lib class Error(Exception): """Module-specific base error class.""" class APIEndpointTimeoutError(Error): """Raised when API endpoint doesn't come online in time.""" class ClientEnrollmentTimeoutError(Error): """Raised when a client does not enroll in time.""" class ClientVersionTimeoutError(Error): """Raised then a client doesn't report a specific version in time.""" def GetFleetspeakPortsFromConfig(config_path: str) -> Tuple[int, int]: """Gets Fleetspeak frontend and admin ports from GRR config.""" conf = config_lib.LoadConfig(config.CONFIG.MakeNewConfig(), config_path) frontend_port = int( conf["Server.fleetspeak_message_listen_address"].rsplit(":")[-1]) admin_port = int(conf["Server.fleetspeak_server"].rsplit(":")[-1]) return frontend_port, admin_port def GetAdminUIPortFromConfig(config_path: str) -> int: """Gets the AdminUI.port setting from a given config file.""" conf = config_lib.LoadConfig(config.CONFIG.MakeNewConfig(), config_path) return conf["AdminUI.port"] _WAIT_TIMEOUT_SECS = 150 _CHECK_INTERVAL = 1 def WaitForAPIEndpoint(port: int) -> api.GrrApi: """Waits for API endpoint to come online.""" api_endpoint = "http://localhost:%d" % port start_time = time.time() while time.time() - start_time < _WAIT_TIMEOUT_SECS: try: grrapi = api.InitHttp(api_endpoint=api_endpoint) grrapi.ListGrrBinaries() return grrapi except (requests.exceptions.ConnectionError, ConnectionRefusedError): print("Connection error (%s), waiting..." % api_endpoint) time.sleep(_CHECK_INTERVAL) continue raise APIEndpointTimeoutError("API endpoint %s didn't come up." % api_endpoint) def WaitForClientToEnroll(grrapi: api.GrrApi) -> str: """Waits for an already started client to enroll. If the client doesn't enroll within ~100 seconds, main process gets killed. Args: grrapi: GRR API object. Returns: A string with an enrolled client's id. Raises: ClientEnrollmentTimeoutError: if the client fails to enroll in time. """ start_time = time.time() while time.time() - start_time < _WAIT_TIMEOUT_SECS: clients = list(grrapi.SearchClients(query=".")) if clients: return clients[0].client_id print("No clients enrolled, waiting...") time.sleep(_CHECK_INTERVAL) raise ClientEnrollmentTimeoutError("Client didn't enroll.") def KillClient(grrapi: api.GrrApi, client_id: str): """Kills a given client.""" f = grrapi.Client(client_id).CreateFlow("Kill") f.WaitUntilDone(timeout=60) def WaitForClientVersionGreaterThan(api_client_obj, min_version): """Waits until the client version becomes greater than a given value.""" start_time = time.time() while time.time() - start_time < _WAIT_TIMEOUT_SECS: version = api_client_obj.Get().data.agent_info.client_version if version > min_version: print("Got expected client version %d." % version) return version print("Got client version: %d, must be > %d" % (version, min_version)) time.sleep(_CHECK_INTERVAL) raise ClientVersionTimeoutError( "Timed out while waiting for the client version > %d." % min_version)
29.487179
77
0.722029
91bc6586e6b2b8170f0592ddaad2568d3354ef3b
8,849
py
Python
tracking/TrackerEnvironment.py
jccaicedo/localization-agent
d280acf355307b74e68dca9ec80ab293f0d18642
[ "MIT" ]
8
2016-11-20T19:43:45.000Z
2020-12-09T04:58:05.000Z
tracking/TrackerEnvironment.py
jccaicedo/localization-agent
d280acf355307b74e68dca9ec80ab293f0d18642
[ "MIT" ]
45
2015-05-04T20:41:05.000Z
2017-07-17T12:04:13.000Z
tracking/TrackerEnvironment.py
jccaicedo/localization-agent
d280acf355307b74e68dca9ec80ab293f0d18642
[ "MIT" ]
9
2016-11-20T19:43:46.000Z
2020-09-01T21:01:54.000Z
__author__ = "Juan C. Caicedo, caicedo@illinois.edu" from pybrain.utilities import Named from pybrain.rl.environments.environment import Environment import BoxSearchState as bs import ConvNet as cn import random import numpy as np import json import utils as cu import libDetection as det import RLConfig as config def sigmoid(x, a=1.0, b=0.0): return 1.0/(1.0 + np.exp(-a*x + b)) def tanh(x, a=5, b=0.5, c=2.0): return c*np.tanh(a*x + b) TEST_TIME_OUT = config.geti('testTimeOut') class BoxSearchEnvironment(Environment, Named): def __init__(self, imageList, mode, groundTruthFile=None): self.mode = mode self.cnn = cn.ConvNet() self.testRecord = None self.idx = -1 self.imageList = [x.strip() for x in open(imageList)] self.groundTruth = cu.loadBoxIndexFile(groundTruthFile) #self.imageList = self.rankImages() #self.imageList = self.imageList[0:10] allImgs = set([x.strip() for x in open(config.get('allImagesList'))]) self.negativeSamples = list(allImgs.difference(set(self.groundTruth.keys()))) self.negativeEpisode = False if self.mode == 'train': self.negativeProbability = config.getf('negativeEpisodeProb') random.shuffle(self.imageList) self.loadNextEpisode() def performAction(self, action): self.state.performAction(action) def loadNextEpisode(self): self.episodeDone = False self.negativeEpisode = False if self.selectNegativeSample(): return # Save actions performed during this episode if self.mode == 'test' and self.testRecord != None: with open(config.get('testMemory') + self.imageList[self.idx] + '.txt', 'w') as outfile: json.dump(self.testRecord, outfile) # Load a new episode self.idx += 1 if self.idx < len(self.imageList): # Initialize state previousImageName = str(int(self.imageList[self.idx])-1) print 'Preparing starting image {}'.format(previousImageName) self.cnn.prepareImage(previousImageName) print 'Initial box for {} at {}'.format(previousImageName, self.groundTruth[previousImageName]) self.startingActivations = self.cnn.getActivations( self.groundTruth[previousImageName][0]) self.cnn.prepareImage(self.imageList[self.idx]) self.state = bs.BoxSearchState(self.imageList[self.idx], groundTruth=self.groundTruth) print 'Environment::LoadNextEpisode => Image',self.idx,self.imageList[self.idx],'('+str(self.state.visibleImage.size[0])+','+str(self.state.visibleImage.size[1])+')' else: if self.mode == 'train': random.shuffle(self.imageList) self.idx = -1 self.loadNextEpisode() else: print 'No more images available' # Restart record for new episode if self.mode == 'test': self.testRecord = {'boxes':[], 'actions':[], 'values':[], 'rewards':[], 'scores':[]} def selectNegativeSample(self): if self.mode == 'train' and random.random() < self.negativeProbability: idx = random.randint(0,len(self.negativeSamples)-1) self.cnn.prepareImage(self.negativeSamples[idx]) self.state = bs.BoxSearchState(self.negativeSamples[idx], groundTruth=self.groundTruth) print 'Environment::LoadNextEpisode => Random Negative:',idx,self.negativeSamples[idx] self.negativeEpisode = True def updatePostReward(self, reward, allDone, cover): if self.mode == 'test': self.testRecord['boxes'].append( self.state.box ) self.testRecord['actions'].append( self.state.actionChosen ) self.testRecord['values'].append( self.state.actionValue ) self.testRecord['rewards'].append( reward ) self.testRecord['scores'].append( self.scores[:] ) if self.state.actionChosen == bs.PLACE_LANDMARK: #negImg = random.randint(0,len(self.negativeSamples)-1) self.cnn.coverRegion(self.state.box) #, self.negativeSamples[negImg]) self.state.reset() if self.state.stepsWithoutLandmark > TEST_TIME_OUT: self.state.reset() elif self.mode == 'train': # We do not cover false landmarks during training if self.state.actionChosen == bs.PLACE_LANDMARK and len(cover) > 0: # During training we only cover a carefully selected part of the ground truth box to avoid conflicts with other boxes. #negImg = random.randint(0,len(self.negativeSamples)-1) self.cnn.coverRegion(cover) #, self.negativeSamples[negImg]) self.state.reset() if allDone: self.episodeDone = True # Terminate episode with a single detected instance #if self.state.actionChosen == bs.PLACE_LANDMARK: # self.episodeDone = True def getSensors(self): # Make a vector represenation of the action that brought the agent to this state (9 features) prevAction = np.zeros( (bs.NUM_ACTIONS) ) prevAction[self.state.actionChosen] = 1.0 # Compute features of visible region (4096 + 21) activations = self.cnn.getActivations(self.state.box) # Concatenate all info in the state representation vector print activations[config.get('convnetLayer')].shape, prevAction.shape, self.startingActivations[config.get('convnetLayer')].shape state = np.hstack( (activations[config.get('convnetLayer')], self.startingActivations[config.get('convnetLayer')], prevAction) ) self.scores = activations['prob'].tolist() return {'image':self.imageList[self.idx], 'state':state, 'negEpisode':self.negativeEpisode} def sampleAction(self): return self.state.sampleNextAction() def rankImages(self): keys = self.groundTruth.keys() keys.sort() # Rank by number of objects in the scene (from many to few) objectCounts = [len(self.groundTruth[k]) for k in keys] countRank = np.argsort(objectCounts)[::-1] countDist = dict([(i,0) for i in range(max(objectCounts)+1)]) for o in objectCounts: countDist[o] += 1 print 'Distribution of object counts (# objects vs # images):',countDist print 'Images with largest number of objects:',[keys[i] for i in countRank[0:10]] # Rank by object size (from small to large) minObjectArea = [ min(map(det.area, self.groundTruth[k])) for k in keys ] smallRank = np.argsort(minObjectArea) intervals = [ (500*400/i) for i in range(1,21) ] sizeDist = dict([ (i,0) for i in intervals ]) for a in minObjectArea: counted = False for r in intervals: if a >= r: sizeDist[r] += 1 counted = True break if not counted: sizeDist[r] += 1 print 'Distribution of smallest objects area (area vs # images):',[ (i,sizeDist[i]) for i in intervals] print 'Images with the smallest objects:',[keys[i] for i in smallRank[0:10]] # Rank by object size (from large to small) maxObjectArea = [ max(map(det.area, self.groundTruth[k])) for k in keys ] bigRank = np.argsort(minObjectArea) intervals = [ (500*400/i) for i in range(1,21) ] sizeDist = dict([ (i,0) for i in intervals ]) for a in maxObjectArea: counted = False for r in intervals: if a >= r: sizeDist[r] += 1 counted = True break if not counted: sizeDist[r] += 1 print 'Distribution of biggest objects area (area vs # images):',[ (i,sizeDist[i]) for i in intervals] print 'Images with the biggest objects:',[keys[i] for i in bigRank[0:10]] # Rank images by instance occlusion (from very occluded to isolated) maxInstanceOcclusion = [] for k in keys: if len(self.groundTruth[k]) == 1: maxInstanceOcclusion.append(0) else: maxIoU = 0 for i in range(len(self.groundTruth[k])): for j in range(i+1,len(self.groundTruth[k])): iou = det.IoU(self.groundTruth[k][i], self.groundTruth[k][j]) if iou > maxIoU: maxIoU = iou maxInstanceOcclusion.append(maxIoU) occlusionRank = np.argsort(maxInstanceOcclusion)[::-1] intervals = [ 1.0/i for i in range(1,21) ] occlusionDist = dict([(i,0) for i in intervals]) for o in maxInstanceOcclusion: counted = False for r in intervals: if o >= r: occlusionDist[r] += 1 counted = True break if not counted: occlusionDist[r] += 1 print 'Distribution of object occlusion (occlusion vs # images):',[(i,occlusionDist[i]) for i in intervals] print 'Images with the most occluded objects:',[keys[i] for i in occlusionRank[0:10]] # Rank combination rank = dict([(k,0) for k in keys]) for i in range(len(keys)): rank[ keys[ countRank[i] ] ] += i rank[ keys[ smallRank[i]] ] += i rank[ keys[ occlusionRank[i] ] ] += i values = [ rank[i] for i in keys ] complexityRank = np.argsort(values) print 'More complex images:',[keys[i] for i in complexityRank[0:10]] return [keys[i] for i in occlusionRank]
42.748792
171
0.666177
5320632097d6db84757136f5e591e5df0e7bb5f1
3,624
py
Python
tests/test_visitors/test_ast/test_naming/test_naming.py
nixphix/wemake-python-styleguide
95f16ff9394393444685391f957fdce04a6177d6
[ "MIT" ]
null
null
null
tests/test_visitors/test_ast/test_naming/test_naming.py
nixphix/wemake-python-styleguide
95f16ff9394393444685391f957fdce04a6177d6
[ "MIT" ]
null
null
null
tests/test_visitors/test_ast/test_naming/test_naming.py
nixphix/wemake-python-styleguide
95f16ff9394393444685391f957fdce04a6177d6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pytest from wemake_python_styleguide.constants import VARIABLE_NAMES_BLACKLIST from wemake_python_styleguide.violations.naming import ( ConsecutiveUnderscoresInNameViolation, PrivateNameViolation, TooShortNameViolation, UnderscoredNumberNameViolation, WrongVariableNameViolation, ) from wemake_python_styleguide.visitors.ast.naming import WrongNameVisitor @pytest.mark.parametrize('wrong_name', VARIABLE_NAMES_BLACKLIST) def test_wrong_variable_name( assert_errors, assert_error_text, parse_ast_tree, naming_template, default_options, mode, wrong_name, ): """Ensures that wrong names are not allowed.""" tree = parse_ast_tree(mode(naming_template.format(wrong_name))) visitor = WrongNameVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [WrongVariableNameViolation]) assert_error_text(visitor, wrong_name) def test_short_variable_name( assert_errors, assert_error_text, parse_ast_tree, naming_template, default_options, mode, ): """Ensures that short names are not allowed.""" short_name = 'y' tree = parse_ast_tree(mode(naming_template.format(short_name))) visitor = WrongNameVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [TooShortNameViolation]) assert_error_text(visitor, short_name) def test_private_variable_name( assert_errors, assert_error_text, parse_ast_tree, naming_template, default_options, mode, ): """Ensures that private names are not allowed.""" private_name = '__private' tree = parse_ast_tree(mode(naming_template.format(private_name))) visitor = WrongNameVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [PrivateNameViolation]) assert_error_text(visitor, private_name) @pytest.mark.parametrize('underscored_name', [ 'with__underscore', 'mutliple__under__score', 'triple___underscore', ]) def test_underscored_variable_name( assert_errors, assert_error_text, parse_ast_tree, naming_template, default_options, mode, underscored_name, ): """Ensures that underscored names are not allowed.""" tree = parse_ast_tree(mode(naming_template.format(underscored_name))) visitor = WrongNameVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [ConsecutiveUnderscoresInNameViolation]) assert_error_text(visitor, underscored_name) @pytest.mark.parametrize('number_suffix', [ 'number_5', 'between_45_letters', 'with_multiple_groups_4_5', ]) def test_number_prefix_variable_name( assert_errors, assert_error_text, parse_ast_tree, naming_template, default_options, mode, number_suffix, ): """Ensures that number suffix names are not allowed.""" tree = parse_ast_tree(mode(naming_template.format(number_suffix))) visitor = WrongNameVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [UnderscoredNumberNameViolation]) assert_error_text(visitor, number_suffix) @pytest.mark.parametrize('correct_name', [ 'snake_case', '_protected_or_unused', 'with_number5', 'xy', ]) def test_naming_correct( assert_errors, parse_ast_tree, naming_template, default_options, mode, correct_name, ): """Ensures that correct names are allowed.""" tree = parse_ast_tree(mode(naming_template.format(correct_name))) visitor = WrongNameVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
25.342657
73
0.738687
7b3c549cf71f430d1e220ce54ae69ab8e0ae4c6d
369
py
Python
modules/visual_feature_refinement.py
codeboy5/cvpr20-scatter-text-recognizer
4bd6cfbd4d7f64ce11864514f6b6b0646267c285
[ "Apache-2.0" ]
63
2020-10-16T09:28:05.000Z
2022-03-27T15:52:16.000Z
modules/visual_feature_refinement.py
codeboy5/cvpr20-scatter-text-recognizer
4bd6cfbd4d7f64ce11864514f6b6b0646267c285
[ "Apache-2.0" ]
7
2020-09-18T03:31:05.000Z
2022-03-03T00:20:27.000Z
modules/visual_feature_refinement.py
codeboy5/cvpr20-scatter-text-recognizer
4bd6cfbd4d7f64ce11864514f6b6b0646267c285
[ "Apache-2.0" ]
8
2020-09-18T03:13:55.000Z
2022-02-27T13:34:33.000Z
import torch import torch.nn as nn class Refinement(nn.Module): def __init__(self, input_size, output_size): super(Refinement, self).__init__() self.iid = nn.Linear(input_size, input_size) self.decoder = nn.Linear(input_size, output_size) def forward(self, input): x = self.iid(input) x = self.decoder(x) return x
33.545455
57
0.653117
68e2a50b61ebabbea8046d574da99ea24f3147b2
1,309
py
Python
pype/plugins/blender/create/create_action.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
pype/plugins/blender/create/create_action.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
pype/plugins/blender/create/create_action.py
tokejepsen/pype
8f2b2b631cc5d3ad93eeb5ad3bc6110d32466ed3
[ "MIT" ]
null
null
null
"""Create an animation asset.""" import bpy from avalon import api from avalon.blender import Creator, lib import pype.blender.plugin class CreateAction(Creator): """Action output for character rigs""" name = "actionMain" label = "Action" family = "action" icon = "male" def process(self): asset = self.data["asset"] subset = self.data["subset"] name = pype.blender.plugin.asset_name(asset, subset) collection = bpy.data.collections.new(name=name) bpy.context.scene.collection.children.link(collection) self.data['task'] = api.Session.get('AVALON_TASK') lib.imprint(collection, self.data) if (self.options or {}).get("useSelection"): for obj in lib.get_selection(): if (obj.animation_data is not None and obj.animation_data.action is not None): empty_obj = bpy.data.objects.new(name=name, object_data=None) empty_obj.animation_data_create() empty_obj.animation_data.action = obj.animation_data.action empty_obj.animation_data.action.name = name collection.objects.link(empty_obj) return collection
31.926829
79
0.594347
0131760fe6f56c145398edf040ce388f908f65b2
1,513
py
Python
devt/generate_A1_SourceCode.py
mdstepha/SimIMA
f4ef42022a8503de3dd657c673e34598f29ae807
[ "MIT" ]
null
null
null
devt/generate_A1_SourceCode.py
mdstepha/SimIMA
f4ef42022a8503de3dd657c673e34598f29ae807
[ "MIT" ]
null
null
null
devt/generate_A1_SourceCode.py
mdstepha/SimIMA
f4ef42022a8503de3dd657c673e34598f29ae807
[ "MIT" ]
null
null
null
#!/usr/local/bin/python3 # This script creates file 'A1_SourceCode.tex' in current directory (for thesis writing) import os classes = os.listdir('../src/classes') classes = [x for x in classes if x.endswith('.m')] classes.sort() funns = os.listdir('../src/functions') + os.listdir('../src/functions/devt') funns = [x for x in funns if x.endswith('.m')] funns = funns + ['getSimvmaPath.m', 'initialize.m', 'sl_customization.m'] funns.sort() content = """\chapter{Source Code} \label{chapter:appendix-source-code} This appendix presents the MATLAB implementation of various classes and functions used in the project. """ content += "\n\n\section{Class Definitions}\n\label{section:class-definitions}\n" for i, x in enumerate(classes): # print(x) # if i!=0: # content += f"\n\\newpage" x = x[:-2] # removing trailing .m x_latex = x.replace('_', '\_') content += f"\n\lstinputlisting[caption={{{x_latex}.m class definition}}, captionpos=t,label={{lst:code-{x}}}]{{Codes/classes/{x}.m}}" content += "\n\n\\newpage\n\section{Function Definitions}\n\label{section:function-definitions}\n" for i, x in enumerate(funns): # print(x) # if i!=0: # content += f"\n\\newpage" x = x[:-2] # removing trailing .m x_latex = x.replace('_', '\_') content += f"\n\lstinputlisting[caption={{{x_latex}.m function definition}}, captionpos=t,label={{lst:code-{x}}}]{{Codes/functions/{x}.m}}" with open('A1_SourceCode.tex', 'w') as file: file.write(content)
32.891304
143
0.656312
bf95387b6930a49fb7d5548f274fbcd4f4426c9d
4,963
py
Python
applications/RANSApplication/tests/test_RANSApplication_mpi.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
778
2017-01-27T16:29:17.000Z
2022-03-30T03:01:51.000Z
applications/RANSApplication/tests/test_RANSApplication_mpi.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
6,634
2017-01-15T22:56:13.000Z
2022-03-31T15:03:36.000Z
applications/RANSApplication/tests/test_RANSApplication_mpi.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
224
2017-02-07T14:12:49.000Z
2022-03-06T23:09:34.000Z
# Importing the Kratos Library import KratosMultiphysics as KM if not KM.IsDistributedRun(): raise Exception("This test script can only be executed in MPI!") # Import Kratos "wrapper" for unittests import KratosMultiphysics.KratosUnittest as KratosUnittest # Import the tests or test_classes to create the suits # process test_classes from custom_process_tests import CustomProcessTest # flow solver test_classes from incompressible_potential_flow_solver_formulation_tests import IncompressiblePotentialFlowSolverFormulationTest from monolithic_velocity_pressure_formulation_tests import MonolithicVelocityPressureFormulationTest from fractional_step_velocity_pressure_formulation_tests import FractionalStepVelocityPressureFormulationTest # turbulence model test_classes ### k-epsilon test_classes from monolithic_k_epsilon_formulation_tests import MonolithicKEpsilonTest from fractional_step_k_epsilon_formulation_tests import FractionalStepKEpsilonTest ### k_omega test_classes from monolithic_k_omega_formulation_tests import MonolithicKOmegaTest from fractional_step_k_omega_formulation_tests import FractionalStepKOmegaTest ### k_omega test_classes from monolithic_k_omega_sst_formulation_tests import MonolithicKOmegaSSTTest from fractional_step_k_omega_sst_formulation_tests import FractionalStepKOmegaSSTTest def AssembleTestSuites(): ''' Populates the test suites to run. Populates the test suites to run. At least, it should pupulate the suites: "small", "nighlty" and "all" Return ------ suites: A dictionary of suites The set of suites with its test_cases added. ''' suites = KratosUnittest.KratosSuites ### Small MPI tests ######################################################## smallMPISuite = suites['mpi_small'] # adding custom process tests # smallMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([CustomProcessTest])) # add symbolic mpi small tests for mpi small suite # smallMPISuite.addTest(FractionalStepKOmegaSSTTest("testRfcVelocityTransient")) # smallMPISuite.addTest(MonolithicKOmegaSSTTest("testRfcVelocityTransient")) # smallMPISuite.addTest(FractionalStepKOmegaSSTTest("testVMSRfcVelocityTransient")) # smallMPISuite.addTest(MonolithicKOmegaSSTTest("testVMSRfcVelocityTransient")) # smallMPISuite.addTest(MonolithicKOmegaSSTTest("testQSVMSRfcVelocityTransient")) ### Nightly MPI tests ###################################################### nightlyMPISuite = suites['mpi_nightly'] nightlyMPISuite.addTests(smallMPISuite) # adding incompressible potential flow solver tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([IncompressiblePotentialFlowSolverFormulationTest])) # adding monolithic flow solver tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([MonolithicVelocityPressureFormulationTest])) # adding fractional step flow solver tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([FractionalStepVelocityPressureFormulationTest])) # adding monolithic k-epsilon high re tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([MonolithicKEpsilonTest])) # adding fractional step k-epsilon high re tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([FractionalStepKEpsilonTest])) # adding monolithic k-omega high re tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([MonolithicKOmegaTest])) # adding fractional step k-omega high re tests # nightlyMPISuite.addTests(KratosUnittest.TestLoader().loadTestsFromTestCases([FractionalStepKOmegaTest])) # adding monolithic k-omega-sst high re tests # nightlyMPISuite.addTest(MonolithicKOmegaSSTTest("testAfcTkeSteady")) # nightlyMPISuite.addTest(MonolithicKOmegaSSTTest("testAfcVelocitySteady")) # nightlyMPISuite.addTest(MonolithicKOmegaSSTTest("testRfcTkeSteady")) # nightlyMPISuite.addTest(MonolithicKOmegaSSTTest("testRfcVelocitySteady")) # nightlyMPISuite.addTest(MonolithicKOmegaSSTTest("testRfcTkeTransient")) # adding fractional step k-omega-sst high re tests # nightlyMPISuite.addTest(FractionalStepKOmegaSSTTest("testAfcTkeSteady")) # nightlyMPISuite.addTest(FractionalStepKOmegaSSTTest("testAfcVelocitySteady")) # nightlyMPISuite.addTest(FractionalStepKOmegaSSTTest("testRfcTkeSteady")) # nightlyMPISuite.addTest(FractionalStepKOmegaSSTTest("testRfcVelocitySteady")) # nightlyMPISuite.addTest(FractionalStepKOmegaSSTTest("testRfcTkeTransient")) ### Full MPI set ########################################################### allMPISuite = suites['mpi_all'] allMPISuite.addTests(nightlyMPISuite) # already contains the smallMPISuite return suites if __name__ == '__main__': KratosUnittest.runTests(AssembleTestSuites())
46.820755
134
0.786218
24e003b9a40db41e449ba30125d64451acb784a3
1,075
py
Python
backend/auth.py
tagboy07/cs498-Final
13cb3d2fd8785e5169bc756bc12f3cecddca4776
[ "MIT" ]
null
null
null
backend/auth.py
tagboy07/cs498-Final
13cb3d2fd8785e5169bc756bc12f3cecddca4776
[ "MIT" ]
null
null
null
backend/auth.py
tagboy07/cs498-Final
13cb3d2fd8785e5169bc756bc12f3cecddca4776
[ "MIT" ]
null
null
null
import ldap import sys from bottle import post, request, run # Connect to UIUC ActiveDirectory over StartTLS ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER) ldap.set_option(ldap.OPT_REFERRALS, 0) def login(): l = ldap.initialize("ldap://ad.uillinois.edu") l.set_option(ldap.OPT_REFERRALS, 0) l.set_option(ldap.OPT_PROTOCOL_VERSION, 3) l.set_option(ldap.OPT_X_TLS,ldap.OPT_X_TLS_DEMAND) l.set_option( ldap.OPT_X_TLS_DEMAND, True ) l.set_option( ldap.OPT_DEBUG_LEVEL, 255 ) l.start_tls_s() username = 'CN=' + 'mcheung3' + ',OU=People,DC=ad,DC=uillinois,DC=edu' password = 'test' try: l.simple_bind_s(username, password) except ldap.INVALID_CREDENTIALS: # -1 means the username or password was incorrect l.unbind_s(); return "-1" except ldap.LDAPError, e: # -2 means there was some other error print(e) l.unbind_s(); return "-2" # 0 means login successful l.unbind_s(); return "0" if(login() != "0"): sys.exit("Login Failed")
29.054054
74
0.667907
dee5205fe92f111267c24401200767028e1eb64b
837
py
Python
packs/asserts/actions/object_key_number_equals.py
AnushkaKamerkar/st2tests
19988c079ac39963bce160c616cacdb7915038e8
[ "Apache-2.0" ]
4
2015-08-26T12:06:30.000Z
2017-11-04T16:15:07.000Z
packs/asserts/actions/object_key_number_equals.py
AnushkaKamerkar/st2tests
19988c079ac39963bce160c616cacdb7915038e8
[ "Apache-2.0" ]
90
2015-06-06T01:16:20.000Z
2021-10-30T12:10:39.000Z
packs/asserts/actions/object_key_number_equals.py
AnushkaKamerkar/st2tests
19988c079ac39963bce160c616cacdb7915038e8
[ "Apache-2.0" ]
14
2015-06-15T01:48:04.000Z
2022-01-06T03:23:45.000Z
import sys from st2actions.runners.pythonrunner import Action __all__ = [ 'AssertObjectKeyIntEquals' ] class AssertObjectKeyIntEquals(Action): def run(self, object, key, value): if not isinstance(object, dict): raise ValueError('object shoud be of type "dict".') if key not in object: sys.stderr.write('KEY %s DOESN\'T EXIST.' % key) raise ValueError('Key %s doesn\'t exist in object %s' % (key, object)) result = (int(object[key]) == int(value)) if result: sys.stdout.write('EQUAL.') else: sys.stdout.write('NOT EQUAL.') sys.stderr.write(' Expected: %s, Original: %s' % (value, object[key])) raise ValueError('Value not equal. Expected "%s", got "%s". ' % (value, object[key])) return result
33.48
97
0.591398
528943c7b0c216aceee95fa9ff5f7d73e56f8d6a
1,427
py
Python
core/migrations/0006_auto_20190421_1833.py
MakuZo/nutrigo
e50e10d497bcf9e01294565d42012d777f5c98d0
[ "MIT" ]
30
2019-03-28T18:01:58.000Z
2022-02-26T02:19:28.000Z
core/migrations/0006_auto_20190421_1833.py
MakuZo/nutrigo
e50e10d497bcf9e01294565d42012d777f5c98d0
[ "MIT" ]
8
2019-06-06T19:33:08.000Z
2022-02-10T13:10:34.000Z
core/migrations/0006_auto_20190421_1833.py
MakuZo/nutrigo
e50e10d497bcf9e01294565d42012d777f5c98d0
[ "MIT" ]
10
2019-04-04T19:19:28.000Z
2021-06-05T05:29:40.000Z
# Generated by Django 2.1.7 on 2019-04-21 16:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("core", "0005_foodnutrition")] operations = [ migrations.RenameField( model_name="foodweight", old_name="weight", new_name="value" ), migrations.RemoveField(model_name="food", name="desc_long"), migrations.RemoveField(model_name="food", name="desc_short"), migrations.RemoveField(model_name="food", name="manufac_name"), migrations.RemoveField(model_name="food", name="refuse_perc"), migrations.RemoveField(model_name="food", name="sci_name"), migrations.RemoveField(model_name="foodnutrition", name="max_val"), migrations.RemoveField(model_name="foodnutrition", name="min_val"), migrations.RemoveField(model_name="foodweight", name="data_points"), migrations.RemoveField(model_name="foodweight", name="deviation"), migrations.RemoveField(model_name="foodweight", name="seq"), migrations.AddField( model_name="food", name="description", field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AddField( model_name="food", name="name", field=models.CharField(default="null", max_length=100), preserve_default=False, ), ]
39.638889
76
0.650315
e895b2704b40fe4c08535dffa7787d4280f042fd
13,234
py
Python
server/ahj_app/tests/test_admin.py
reepoi/ahj-registry
d4498bccfe114b19acca4f931d29f30fbc65a803
[ "MIT" ]
null
null
null
server/ahj_app/tests/test_admin.py
reepoi/ahj-registry
d4498bccfe114b19acca4f931d29f30fbc65a803
[ "MIT" ]
null
null
null
server/ahj_app/tests/test_admin.py
reepoi/ahj-registry
d4498bccfe114b19acca4f931d29f30fbc65a803
[ "MIT" ]
null
null
null
from django.contrib.auth import hashers from django.http import QueryDict import ahj_app.admin.actions as admin_actions import ahj_app.admin.form as admin_form from django.utils import timezone from fixtures import * import pytest import datetime from ahj_app.models import AHJ, User, APIToken, AHJUserMaintains, Edit, Location, Address from ahj_app.models_field_enums import LocationDeterminationMethod from ahj_app.views_edits import apply_edits @pytest.mark.django_db def test_get_value_or_primary_key(): ldm = LocationDeterminationMethod.objects.create(Value='GPS') location = Location.objects.create(Description='desc', LocationDeterminationMethod=ldm) address = Address.objects.create(LocationID=location) assert admin_actions.get_value_or_primary_key(location, 'Description') == 'desc' assert admin_actions.get_value_or_primary_key(location, 'LocationDeterminationMethod') == 'GPS' assert admin_actions.get_value_or_primary_key(address, 'LocationID') == location.LocationID assert admin_actions.get_value_or_primary_key(address, 'AddressType') == '' @pytest.mark.parametrize( 'password', [ ('new_user_password') ] ) @pytest.mark.django_db def test_reset_password(password, create_user): user = create_user() admin_actions.reset_password(user, password) salt = user.password.split('$')[2] assert hashers.make_password(password, salt) == user.password @pytest.mark.django_db def test_partition_by_field_users_by_api_token(create_user): for x in range(0, 10): if x % 2 == 0: create_user().api_token.delete() else: create_user() user_queryset = User.objects.all() those_with_field_value, those_without_field_value = admin_actions.partition_by_field(user_queryset, 'api_token', None) assert None in those_with_field_value.values_list('api_token', flat=True) assert None not in those_without_field_value.values_list('api_token', flat=True) @pytest.mark.django_db def test_process_generate_api_token_data(create_user): form_prefix = 'form-{0}' post_data_dict = {} post_query_dict = dict_make_query_dict(post_data_dict) users = [] dates = [] for x in range(5): user = create_user() date = timezone.now() + datetime.timedelta(days=x) date_strs = str(date.date()).split('-') post_query_dict.update({'user_to_form': f'{user.UserID}.{form_prefix.format(x)}', f'{form_prefix.format(x)}-ExpirationDate_year': date_strs[0], f'{form_prefix.format(x)}-ExpirationDate_month': date_strs[1], f'{form_prefix.format(x)}-ExpirationDate_day': date_strs[2]}) users.append(user) dates.append(date) results = admin_actions.process_generate_api_token_data(post_query_dict) for x in range(len(users)): assert results[x]['user'].UserID == users[x].UserID assert results[x]['expires'].date() == dates[x].date() @pytest.mark.parametrize( 'form_value, expected_output', [ ('On', True), ('Off', False), ('DoNothing', None) ] ) def test_set_toggle(form_value, expected_output): assert admin_actions.set_toggle(form_value) == expected_output @pytest.mark.parametrize( 'form_value, expected_output', [ ('on', True), ('off', False), ('other_value', False) ] ) def test_set_delete(form_value, expected_output): assert admin_actions.set_delete(form_value) == expected_output @pytest.mark.parametrize( 'delete', [ True, False, None ] ) @pytest.mark.django_db def test_delete_toggle_api_token_is_deleted(delete, create_user_with_active_api_token): user = create_user_with_active_api_token() admin_actions.delete_toggle_api_token(user, delete=delete) assert APIToken.objects.filter(user=user).exists() != (delete if delete is not None else False) @pytest.mark.parametrize( 'toggle', [ True, False, None ] ) @pytest.mark.django_db def test_delete_toggle_api_token_is_toggled(toggle, create_user_with_active_api_token): user = create_user_with_active_api_token() admin_actions.delete_toggle_api_token(user, toggle=toggle) assert APIToken.objects.get(user=user).is_active == (toggle if toggle is not None else True) @pytest.mark.django_db def test_delete_toggle_api_token_user_has_no_api_token(create_user): user = create_user() user.api_token.delete() admin_actions.delete_toggle_api_token(user, toggle=True, delete=False) assert not APIToken.objects.filter(user=user).exists() def dict_make_query_dict(given_dict): qd = QueryDict('', mutable=True) qd.update(given_dict) return qd @pytest.mark.parametrize( 'expect_toggle, expect_delete', [ (None, None), (None, True), (None, False), (True, None), (True, True), (True, False), (False, None), (False, True), (False, False) ] ) @pytest.mark.django_db def test_process_delete_toggle_api_token_data(expect_toggle, expect_delete, create_user): if expect_toggle: toggle_text = 'On' elif expect_toggle is False: toggle_text = 'Off' else: toggle_text = 'DoNothing' if expect_delete: delete_text = 'on' else: delete_text = '' users = [] form_prefix = 'form-{0}' post_data_dict = {} post_query_dict = dict_make_query_dict(post_data_dict) for x in range(5): user = create_user() users.append(user) post_query_dict.update({'user_to_form': f'{user.UserID}.{form_prefix.format(x)}', f'{form_prefix.format(x)}-toggle': toggle_text, f'{form_prefix.format(x)}-delete_token': delete_text}) results = admin_actions.process_delete_toggle_api_token_data(post_query_dict) for x in range(len(users)): assert results[x]['user'].UserID == users[x].UserID assert results[x]['toggle'] == expect_toggle assert results[x]['delete'] == (expect_delete if expect_delete is not None else False) @pytest.mark.parametrize( 'num_existing, num_kept, num_new', [ # Remove all (3, 0, 0), # Keep all (3, 3, 0), # Add all new (0, 0, 3), # Remove one (3, 2, 0), # Remove one, add new one (3, 2, 1), # Add one (2, 2, 1) ] ) @pytest.mark.django_db def test_assign_ahj_official_status(num_existing, num_kept, num_new, ahj_obj_factory, create_user): """ num_existing: number of AHJs a user is an AHJ Official of num_kept: number of AHJs a user is still an AHJ Official of num_new: number of AHJs a user is newly assigned as an AHJ Official of """ user = create_user() num_existing_ahjs = [] num_kept_ahjs = [] num_new_ahjs = [] # Add the starting relations for what the user is an AHJ Official of for x in range(num_existing): ahj = ahj_obj_factory() num_existing_ahjs.append(ahj) AHJUserMaintains.objects.create(UserID=user, AHJPK=ahj, MaintainerStatus=True) # Track what AHJs the user will should still be an AHJ Official of for x in range(num_kept): num_kept_ahjs.append(num_existing_ahjs[x]) # Track the AHJs the user is newly assigned to be an AHJ Official of for x in range(num_new): ahj = ahj_obj_factory() num_new_ahjs.append(ahj) # Test applying the changes admin_form.assign_ahj_official_status(user, num_kept_ahjs + num_new_ahjs) all_time_assigned_ahjs = AHJUserMaintains.objects.filter(UserID=user) assigned_ahjs = all_time_assigned_ahjs.filter(MaintainerStatus=True).values_list('AHJPK', flat=True) former_ahjs = all_time_assigned_ahjs.filter(MaintainerStatus=False).values_list('AHJPK', flat=True) for ahj in num_kept_ahjs + num_new_ahjs: assert ahj.AHJPK in assigned_ahjs for ahj in (num_existing_ahjs[num_kept:] if num_kept < len(num_existing_ahjs) else []): assert ahj.AHJPK in former_ahjs @pytest.mark.django_db def test_assign_ahj_official_status__reassign_ahj(create_user, ahj_obj): user = create_user() assignment = AHJUserMaintains.objects.create(UserID=user, AHJPK=ahj_obj, MaintainerStatus=False) admin_form.assign_ahj_official_status(user, [ahj_obj]) assignment = AHJUserMaintains.objects.get(MaintainerID=assignment.MaintainerID) assert assignment.MaintainerStatus is True @pytest.mark.parametrize( 'date_str', [ str(timezone.now()), str(timezone.make_aware(datetime.datetime(1, 1, 1))), '' ] ) @pytest.mark.django_db def test_set_date_from_str(date_str): try: date = timezone.make_aware(datetime.datetime.strptime(date_str, '%Y-%m-%d')) except ValueError: date = None result = admin_actions.set_date_from_str(date_str) assert result == date @pytest.mark.parametrize( 'date_effective', [ timezone.now(), timezone.now() + datetime.timedelta(days=1), timezone.make_aware(datetime.datetime(1, 1, 1)) ] ) @pytest.mark.django_db def test_process_approve_edits_data(date_effective, create_user, ahj_obj): form_prefix = 'form-{0}' post_data_dict = {} post_query_dict = dict_make_query_dict(post_data_dict) edits = [] approving_user = create_user() for x in range(5): user = create_user() edit = Edit.objects.create(AHJPK=ahj_obj, ChangedBy=user, EditType='A', SourceTable='AHJ', SourceColumn='BuildingCode', SourceRow=ahj_obj.pk, DateRequested=timezone.now()) edits.append(edit) date_strs = str(date_effective.date()).split('-') post_query_dict.update({'edit_to_form': f'{edit.EditID}.{form_prefix.format(x)}', f'{form_prefix.format(x)}-DateEffective_year': date_strs[0], f'{form_prefix.format(x)}-DateEffective_month': date_strs[1], f'{form_prefix.format(x)}-DateEffective_day': date_strs[2]}) results = admin_actions.process_approve_edits_data(post_query_dict, approving_user) for x in range(len(edits)): assert results[x]['edit'].EditID == edits[x].EditID assert results[x]['approved_by'].UserID == approving_user.UserID if date_effective <= timezone.now(): date_effective = timezone.now() assert results[x]['date_effective'].date() == date_effective.date() assert results[x]['apply_now'] == (date_effective.date() == datetime.date.today()) @pytest.mark.django_db def test_process_approve_edits_data_invalid_date_effective(create_user, ahj_obj): form_prefix = 'form-{0}' post_data_dict = {} post_query_dict = dict_make_query_dict(post_data_dict) edits = [] approving_user = create_user() for x in range(5): user = create_user() edit = Edit.objects.create(AHJPK=ahj_obj, ChangedBy=user, EditType='U', SourceTable='AHJ', SourceColumn='AHJName', SourceRow=ahj_obj.pk, NewValue='NewName', DateRequested=timezone.now()) edits.append(edit) post_query_dict.update({'edit_to_form': f'{edit.EditID}.{form_prefix.format(x)}', f'{form_prefix.format(x)}-DateEffective_year': '', f'{form_prefix.format(x)}-DateEffective_month': '', f'{form_prefix.format(x)}-DateEffective_day': ''}) results = admin_actions.process_approve_edits_data(post_query_dict, approving_user) assert len(results) == 0 @pytest.mark.parametrize( 'apply_now', [ True, False ] ) @pytest.mark.django_db def test_approve_edit(apply_now, create_user, ahj_obj): user = create_user() edit = Edit.objects.create(AHJPK=ahj_obj, ChangedBy=user, EditType='U', SourceTable='AHJ', SourceColumn='AHJName', SourceRow=ahj_obj.pk, NewValue='NewName', DateRequested=timezone.now()) admin_actions.approve_edit(edit, user, timezone.now(), apply_now) edit = Edit.objects.get(EditID=edit.EditID) ahj = AHJ.objects.get(AHJPK=ahj_obj.pk) assert edit.ApprovedBy.UserID == user.UserID assert edit.DateEffective.date() == datetime.date.today() assert edit.ReviewStatus == 'A' if apply_now: assert ahj.AHJName == 'NewName' else: ahj = AHJ.objects.get(AHJPK=ahj_obj.pk) assert ahj.AHJName != 'NewName' # NOTE: apply_edits is tested separately in test_view_edits.py apply_edits() ahj = AHJ.objects.get(AHJPK=ahj_obj.pk) assert ahj.AHJName == 'NewName' @pytest.mark.django_db def test_build_url_parameters_for_change_list_filtering(ahj_obj_factory): ahj1 = ahj_obj_factory() ahj2 = ahj_obj_factory() ahj3 = ahj_obj_factory() assert admin_actions.build_url_parameters_for_change_list_filtering(AHJ.objects.all(), [admin_actions.field_key_pair('AHJPK', 'AHJPK')]) == f'?AHJPK={ahj1.pk},{ahj2.pk},{ahj3.pk}&'
37.490085
184
0.671301
9856b2314e979ad4ba4dcd46636e42a1351b7f99
24,654
py
Python
src/som/compiler/ast/parser.py
smarr/RTruffleSOM
1efc698577830ff3fcd1607e7155d9c6423e8804
[ "MIT" ]
9
2015-02-03T23:24:23.000Z
2020-06-28T23:49:59.000Z
src/som/compiler/ast/parser.py
SOM-st/RTruffleSOM
1efc698577830ff3fcd1607e7155d9c6423e8804
[ "MIT" ]
null
null
null
src/som/compiler/ast/parser.py
SOM-st/RTruffleSOM
1efc698577830ff3fcd1607e7155d9c6423e8804
[ "MIT" ]
2
2016-08-28T23:25:20.000Z
2016-08-30T16:49:50.000Z
from rpython.rlib.rbigint import rbigint from rpython.rlib.rstring import ParseStringOverflowError from rtruffle.source_section import SourceSection from ..parse_error import ParseError, ParseErrorSymList from ...interpreter.ast.nodes.block_node import BlockNode, BlockNodeWithContext from ...interpreter.ast.nodes.global_read_node import UninitializedGlobalReadNode from ...interpreter.ast.nodes.literal_node import LiteralNode from ...interpreter.ast.nodes.message.uninitialized_node import UninitializedMessageNode from ...interpreter.ast.nodes.return_non_local_node import ReturnNonLocalNode from ...interpreter.ast.nodes.sequence_node import SequenceNode from ..lexer import Lexer from ..symbol import Symbol from .method_generation_context import MethodGenerationContext class Parser(object): _single_op_syms = [Symbol.Not, Symbol.And, Symbol.Or, Symbol.Star, Symbol.Div, Symbol.Mod, Symbol.Plus, Symbol.Equal, Symbol.More, Symbol.Less, Symbol.Comma, Symbol.At, Symbol.Per, Symbol.NONE] _binary_op_syms = [Symbol.Or, Symbol.Comma, Symbol.Minus, Symbol.Equal, Symbol.Not, Symbol.And, Symbol.Or, Symbol.Star, Symbol.Div, Symbol.Mod, Symbol.Plus, Symbol.Equal, Symbol.More, Symbol.Less, Symbol.Comma, Symbol.At, Symbol.Per, Symbol.NONE] _keyword_selector_syms = [Symbol.Keyword, Symbol.KeywordSequence] def __init__(self, reader, file_name, universe): self._universe = universe self._source_reader = reader self._file_name = file_name self._lexer = Lexer(reader) self._sym = Symbol.NONE self._text = None self._next_sym = Symbol.NONE self._get_symbol_from_lexer() def classdef(self, cgenc): cgenc.set_name(self._universe.symbol_for(self._text)) self._expect(Symbol.Identifier) self._expect(Symbol.Equal) self._superclass(cgenc) self._expect(Symbol.NewTerm) self._instance_fields(cgenc) while (self._sym_is_identifier() or self._sym == Symbol.Keyword or self._sym == Symbol.OperatorSequence or self._sym_in(self._binary_op_syms)): mgenc = MethodGenerationContext(self._universe) mgenc.set_holder(cgenc) mgenc.add_argument("self") method_body = self._method(mgenc) cgenc.add_instance_method(mgenc.assemble(method_body)) if self._accept(Symbol.Separator): cgenc.set_class_side(True) self._class_fields(cgenc) while (self._sym_is_identifier() or self._sym == Symbol.Keyword or self._sym == Symbol.OperatorSequence or self._sym_in(self._binary_op_syms)): mgenc = MethodGenerationContext(self._universe) mgenc.set_holder(cgenc) mgenc.add_argument("self") method_body = self._method(mgenc) cgenc.add_class_method(mgenc.assemble(method_body)) self._expect(Symbol.EndTerm) def _superclass(self, cgenc): if self._sym == Symbol.Identifier: super_name = self._universe.symbol_for(self._text) self._accept(Symbol.Identifier) else: super_name = self._universe.symbol_for("Object") cgenc.set_super_name(super_name) # Load the super class, if it is not nil (break the dependency cycle) if super_name.get_embedded_string() != "nil": super_class = self._universe.load_class(super_name) if not super_class: raise ParseError("Super class %s could not be loaded" % super_name.get_embedded_string(), Symbol.NONE, self) cgenc.set_instance_fields_of_super( super_class.get_instance_fields()) cgenc.set_class_fields_of_super( super_class.get_class(self._universe).get_instance_fields()) else: # TODO: figure out what this is #raise Exception("What is going on here, not in Java, and I don't think we still got a 'class' field") # WARNING: # We hardcode here the field names for Class # since Object class superclass = Class # We avoid here any kind of dynamic solution to avoid further # complexity. However, that makes it static, it is going to make it # harder to change the definition of Class and Object field_names_of_class = ["class", "superClass", "name", "instanceFields", "instanceInvokables"] field_names = self._universe.new_array_with_strings(field_names_of_class) cgenc.set_class_fields_of_super(field_names) def _sym_in(self, symbol_list): return self._sym in symbol_list def _sym_is_identifier(self): return self._sym == Symbol.Identifier or self._sym == Symbol.Primitive def _accept(self, s): if self._sym == s: self._get_symbol_from_lexer() return True return False def _accept_one_of(self, symbol_list): if self._sym_in(symbol_list): self._get_symbol_from_lexer() return True return False def _expect(self, s): if self._accept(s): return True raise ParseError("Unexpected symbol. Expected %(expected)s, but found " "%(found)s", s, self) def _expect_one_of(self, symbol_list): if self._accept_one_of(symbol_list): return True raise ParseErrorSymList("Unexpected symbol. Expected one of " "%(expected)s, but found %(found)s", symbol_list, self) def _instance_fields(self, cgenc): if self._accept(Symbol.Or): while self._sym_is_identifier(): var = self._variable() cgenc.add_instance_field(self._universe.symbol_for(var)) self._expect(Symbol.Or) def _class_fields(self, cgenc): if self._accept(Symbol.Or): while self._sym_is_identifier(): var = self._variable() cgenc.add_class_field(self._universe.symbol_for(var)) self._expect(Symbol.Or) def _get_source_section(self, coord): return SourceSection( self._source_reader, "method", coord, self._lexer.get_number_of_characters_read(), self._file_name) def _assign_source(self, node, coord): node.assign_source_section(self._get_source_section(coord)) return node def _method(self, mgenc): self._pattern(mgenc) self._expect(Symbol.Equal) if self._sym == Symbol.Primitive: mgenc.set_primitive() return self._primitive_block() else: return self._method_block(mgenc) def _primitive_block(self): self._expect(Symbol.Primitive) return None def _pattern(self, mgenc): if self._sym_is_identifier(): self._unary_pattern(mgenc) elif self._sym == Symbol.Keyword: self._keyword_pattern(mgenc) else: self._binary_pattern(mgenc) def _unary_pattern(self, mgenc): mgenc.set_signature(self._unary_selector()) def _binary_pattern(self, mgenc): mgenc.set_signature(self._binary_selector()) mgenc.add_argument_if_absent(self._argument()) def _keyword_pattern(self, mgenc): kw = self._keyword() mgenc.add_argument_if_absent(self._argument()) while self._sym == Symbol.Keyword: kw += self._keyword() mgenc.add_argument_if_absent(self._argument()) mgenc.set_signature(self._universe.symbol_for(kw)) def _method_block(self, mgenc): self._expect(Symbol.NewTerm) method_body = self._block_contents(mgenc) self._expect(Symbol.EndTerm) return method_body def _unary_selector(self): return self._universe.symbol_for(self._identifier()) def _binary_selector(self): s = self._text if self._accept(Symbol.Or): pass elif self._accept(Symbol.Comma): pass elif self._accept(Symbol.Minus): pass elif self._accept(Symbol.Equal): pass elif self._accept_one_of(self._single_op_syms): pass elif self._accept(Symbol.OperatorSequence): pass else: self._expect(Symbol.NONE) return self._universe.symbol_for(s) def _identifier(self): s = self._text is_primitive = self._accept(Symbol.Primitive) if not is_primitive: self._expect(Symbol.Identifier) return s def _keyword(self): s = self._text self._expect(Symbol.Keyword) return s def _argument(self): return self._variable() def _block_contents(self, mgenc): if self._accept(Symbol.Or): self._locals(mgenc) self._expect(Symbol.Or) return self._block_body(mgenc) def _locals(self, mgenc): while self._sym_is_identifier(): mgenc.add_local_if_absent(self._variable()) def _block_body(self, mgenc): coordinate = self._lexer.get_source_coordinate() expressions = [] while True: if self._accept(Symbol.Exit): expressions.append(self._result(mgenc)) return self._create_sequence_node(coordinate, expressions) elif self._sym == Symbol.EndBlock: return self._create_sequence_node(coordinate, expressions) elif self._sym == Symbol.EndTerm: # the end of the method has been found (EndTerm) - make it # implicitly return "self" self_exp = self._variable_read(mgenc, "self") self_coord = self._lexer.get_source_coordinate() self._assign_source(self_exp, self_coord) expressions.append(self_exp) return self._create_sequence_node(coordinate, expressions) expressions.append(self._expression(mgenc)) self._accept(Symbol.Period) def _create_sequence_node(self, coordinate, expressions): if not expressions: nil_exp = UninitializedGlobalReadNode( self._universe.symbol_for("nil"), self._universe) return self._assign_source(nil_exp, coordinate) if len(expressions) == 1: return expressions[0] return SequenceNode(expressions[:], self._get_source_section(coordinate)) def _result(self, mgenc): exp = self._expression(mgenc) coord = self._lexer.get_source_coordinate() self._accept(Symbol.Period) if mgenc.is_block_method(): node = ReturnNonLocalNode(mgenc.get_outer_self_context_level(), exp, self._universe) mgenc.make_catch_non_local_return() return self._assign_source(node, coord) else: return exp def _expression(self, mgenc): self._peek_for_next_symbol_from_lexer() if self._next_sym == Symbol.Assign: return self._assignation(mgenc) else: return self._evaluation(mgenc) def _assignation(self, mgenc): return self._assignments(mgenc) def _assignments(self, mgenc): coord = self._lexer.get_source_coordinate() if not self._sym_is_identifier(): raise ParseError("Assignments should always target variables or" " fields, but found instead a %(found)s", Symbol.Identifier, self) variable = self._assignment() self._peek_for_next_symbol_from_lexer() if self._next_sym == Symbol.Assign: value = self._assignments(mgenc) else: value = self._evaluation(mgenc) exp = self._variable_write(mgenc, variable, value) return self._assign_source(exp, coord) def _assignment(self): var_name = self._variable() self._expect(Symbol.Assign) return var_name def _evaluation(self, mgenc): exp = self._primary(mgenc) if (self._sym_is_identifier() or self._sym == Symbol.Keyword or self._sym == Symbol.OperatorSequence or self._sym_in(self._binary_op_syms)): exp = self._messages(mgenc, exp) return exp def _primary(self, mgenc): if self._sym_is_identifier(): coordinate = self._lexer.get_source_coordinate() var_name = self._variable() var_read = self._variable_read(mgenc, var_name) return self._assign_source(var_read, coordinate) if self._sym == Symbol.NewTerm: return self._nested_term(mgenc) if self._sym == Symbol.NewBlock: coordinate = self._lexer.get_source_coordinate() bgenc = MethodGenerationContext(self._universe) bgenc.set_is_block_method(True) bgenc.set_holder(mgenc.get_holder()) bgenc.set_outer(mgenc) block_body = self._nested_block(bgenc) block_method = bgenc.assemble(block_body) mgenc.add_embedded_block_method(block_method) if bgenc.requires_context(): result = BlockNodeWithContext(block_method, self._universe) else: result = BlockNode(block_method, self._universe) return self._assign_source(result, coordinate) return self._literal() def _variable(self): return self._identifier() def _messages(self, mgenc, receiver): msg = receiver while self._sym_is_identifier(): msg = self._unary_message(msg) while (self._sym == Symbol.OperatorSequence or self._sym_in(self._binary_op_syms)): msg = self._binary_message(mgenc, msg) if self._sym == Symbol.Keyword: msg = self._keyword_message(mgenc, msg) return msg def _unary_message(self, receiver): coord = self._lexer.get_source_coordinate() selector = self._unary_selector() msg = UninitializedMessageNode(selector, self._universe, receiver, []) return self._assign_source(msg, coord) def _binary_message(self, mgenc, receiver): coord = self._lexer.get_source_coordinate() selector = self._binary_selector() operand = self._binary_operand(mgenc) msg = UninitializedMessageNode(selector, self._universe, receiver, [operand]) return self._assign_source(msg, coord) def _binary_operand(self, mgenc): operand = self._primary(mgenc) while self._sym_is_identifier(): operand = self._unary_message(operand) return operand def _keyword_message(self, mgenc, receiver): coord = self._lexer.get_source_coordinate() arguments = [] keyword = [] while self._sym == Symbol.Keyword: keyword.append(self._keyword()) arguments.append(self._formula(mgenc)) selector = self._universe.symbol_for("".join(keyword)) msg = UninitializedMessageNode(selector, self._universe, receiver, arguments[:]) return self._assign_source(msg, coord) def _formula(self, mgenc): operand = self._binary_operand(mgenc) while (self._sym == Symbol.OperatorSequence or self._sym_in(self._binary_op_syms)): operand = self._binary_message(mgenc, operand) return operand def _nested_term(self, mgenc): self._expect(Symbol.NewTerm) exp = self._expression(mgenc) self._expect(Symbol.EndTerm) return exp def _literal(self): coord = self._lexer.get_source_coordinate() if self._sym == Symbol.Pound: self._peek_for_next_symbol_from_lexer_if_necessary() if self._next_sym == Symbol.NewTerm: val = self._literal_array() else: val = self._literal_symbol() elif self._sym == Symbol.STString: val = self._literal_string() else: is_negative = self._is_negative_number() if self._sym == Symbol.Integer: val = self._literal_integer(is_negative) elif self._sym != Symbol.Double: raise ParseError("Unexpected symbol. Expected %(expected)s, " "but found %(found)s", self._sym, self) else: val = self._literal_double(is_negative) lit = LiteralNode(val) self._assign_source(lit, coord) return lit def _is_negative_number(self): is_negative = False if self._sym == Symbol.Minus: self._expect(Symbol.Minus) is_negative = True return is_negative def _literal_number(self): if self._sym == Symbol.Minus: return self._negative_decimal() else: return self._literal_decimal(False) def _literal_decimal(self, negate_value): if self._sym == Symbol.Integer: return self._literal_integer(negate_value) else: if self._sym == Symbol.Double: return self._literal_double(negate_value) else: raise ParseError("Could not parse double. " "Expected a number but got '%s'" % self._text, Symbol.Double, self) def _negative_decimal(self): self._expect(Symbol.Minus) return self._literal_decimal(True) def _literal_integer(self, negate_value): try: i = int(self._text) if negate_value: i = 0 - i result = self._universe.new_integer(i) except ParseStringOverflowError: bigint = rbigint.fromstr(self._text) if negate_value: bigint.sign = -1 result = self._universe.new_biginteger(bigint) except ValueError: raise ParseError("Could not parse integer. " "Expected a number but got '%s'" % self._text, Symbol.NONE, self) self._expect(Symbol.Integer) return result def _literal_double(self, negate_value): try: f = float(self._text) if negate_value: f = 0.0 - f except ValueError: raise ParseError("Could not parse double. " "Expected a number but got '%s'" % self._text, Symbol.NONE, self) self._expect(Symbol.Double) return self._universe.new_double(f) def _literal_symbol(self): self._expect(Symbol.Pound) if self._sym == Symbol.STString: s = self._string() return self._universe.symbol_for(s) else: return self._selector() def _literal_string(self): s = self._string() return self._universe.new_string(s) def _literal_array(self): literals = [] self._expect(Symbol.Pound) self._expect(Symbol.NewTerm) while self._sym != Symbol.EndTerm: literals.append(self._get_object_for_current_literal()) self._expect(Symbol.EndTerm) return self._universe.new_array_from_list(literals[:]) def _get_object_for_current_literal(self): if self._sym == Symbol.Pound: self._peek_for_next_symbol_from_lexer_if_necessary() if self._next_sym == Symbol.NewTerm: return self._literal_array() else: return self._literal_symbol() elif self._sym == Symbol.STString: return self._literal_string() elif self._sym == Symbol.Integer: return self._literal_integer(self._is_negative_number()) elif self._sym == Symbol.Double: return self._literal_double(self._is_negative_number()) else: raise ParseError("Could not parse literal array value", Symbol.NONE, self) def _selector(self): if (self._sym == Symbol.OperatorSequence or self._sym_in(self._single_op_syms)): return self._binary_selector() if (self._sym == Symbol.Keyword or self._sym == Symbol.KeywordSequence): return self._keyword_selector() return self._unary_selector() def _keyword_selector(self): s = self._text self._expect_one_of(self._keyword_selector_syms) symb = self._universe.symbol_for(s) return symb def _string(self): s = self._text self._expect(Symbol.STString) return s def _nested_block(self, mgenc): self._expect(Symbol.NewBlock) mgenc.add_argument_if_absent("$blockSelf") if self._sym == Symbol.Colon: self._block_pattern(mgenc) # generate Block signature block_sig = ("$blockMethod@" + str(self._lexer.get_current_line_number()) + "@" + str(self._lexer.get_current_column())) arg_size = mgenc.get_number_of_arguments() block_sig += ":" * (arg_size - 1) mgenc.set_signature(self._universe.symbol_for(block_sig)) expressions = self._block_contents(mgenc) self._expect(Symbol.EndBlock) return expressions def _block_pattern(self, mgenc): self._block_arguments(mgenc) self._expect(Symbol.Or) def _block_arguments(self, mgenc): self._expect(Symbol.Colon) mgenc.add_argument_if_absent(self._argument()) while self._sym == Symbol.Colon: self._accept(Symbol.Colon) mgenc.add_argument_if_absent(self._argument()) def _variable_read(self, mgenc, variable_name): # 'super' needs to be handled separately if variable_name == "super": variable = mgenc.get_variable("self") return variable.get_super_read_node( mgenc.get_outer_self_context_level(), mgenc.get_holder().get_name(), mgenc.get_holder().is_class_side(), self._universe) # first lookup in local variables, or method arguments variable = mgenc.get_variable(variable_name) if variable: return variable.get_read_node( mgenc.get_context_level(variable_name)) # otherwise, it might be an object field var_symbol = self._universe.symbol_for(variable_name) field_read = mgenc.get_object_field_read(var_symbol) if field_read: return field_read # nope, so, it is a global? return mgenc.get_global_read(var_symbol) def _variable_write(self, mgenc, variable_name, exp): if variable_name == "self": raise ParseError( "It is not possible to write to `self`, it is a pseudo variable", Symbol.NONE, self) if variable_name == "super": raise ParseError( "It is not possible to write to `super`, it is a pseudo variable", Symbol.NONE, self) variable = mgenc.get_variable(variable_name) if variable: return variable.get_write_node( mgenc.get_context_level(variable_name), exp) field_name = self._universe.symbol_for(variable_name) field_write = mgenc.get_object_field_write(field_name, exp) if field_write: return field_write else: raise RuntimeError("Neither a variable nor a field found in current" " scope that is named " + variable_name + ".") def _get_symbol_from_lexer(self): self._sym = self._lexer.get_sym() self._text = self._lexer.get_text() def _peek_for_next_symbol_from_lexer_if_necessary(self): if not self._lexer.get_peek_done(): self._peek_for_next_symbol_from_lexer() def _peek_for_next_symbol_from_lexer(self): self._next_sym = self._lexer.peek()
36.578635
114
0.608786
c365690a70ec83486147a8b1088f84d257cfa741
888
py
Python
tests/test_pylint.py
sea-kg/roadmapgen2d
9c707402c89e6f7a443284ea8e9275ffa9ab10fb
[ "MIT" ]
1
2021-05-25T18:46:15.000Z
2021-05-25T18:46:15.000Z
tests/test_pylint.py
sea-kg/roadmapgen2d
9c707402c89e6f7a443284ea8e9275ffa9ab10fb
[ "MIT" ]
7
2021-05-25T06:19:57.000Z
2021-05-27T03:04:56.000Z
tests/test_pylint.py
sea-kg/roadmapgen2d
9c707402c89e6f7a443284ea8e9275ffa9ab10fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Test server api leaks""" # Copyright (c) 2020 Evgenii Sopov <mrseakg@gmail.com> # pylint: disable=relative-beyond-top-level,wrong-import-position,import-error import os from subprocess import Popen,PIPE,STDOUT def test_pylint_library(): """ Test pylint library """ current_dir = os.path.dirname(os.path.abspath(__file__)) list_files_for_pylint = [ '../roadmapgen2d/', ] for _filepath in list_files_for_pylint: _filepath = os.path.join(current_dir, _filepath) with Popen( ["python3", "-m", "pylint", _filepath], stderr=STDOUT, stdout=PIPE ) as p_out: output = p_out.communicate()[0] exit_code = p_out.returncode if exit_code != 0: print(output.decode("utf-8")) assert exit_code == 0
29.6
78
0.609234
10da9bd3eaea1e2e851ed298018810388f8ca7fb
3,524
py
Python
source/intapi/views.py
mverleg/svsite
5c9dbcacf81020cf0c1960e337bdd33113acd597
[ "BSD-3-Clause" ]
null
null
null
source/intapi/views.py
mverleg/svsite
5c9dbcacf81020cf0c1960e337bdd33113acd597
[ "BSD-3-Clause" ]
142
2015-06-05T07:53:09.000Z
2020-03-31T18:37:07.000Z
source/intapi/views.py
mdilli/svsite
5c9dbcacf81020cf0c1960e337bdd33113acd597
[ "BSD-3-Clause" ]
null
null
null
from json import dumps from collections import OrderedDict from django.conf import settings from django.contrib.auth import authenticate, get_user_model from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from base.views import render_cms_special from member.models import Team def api_view(func): def func_with_header(request, *args, **kwargs): if not getattr(settings, 'INTEGRATION_KEYS', None): return HttpResponse('integration key not set on the server; service cannot be used', status=501) if request.method != 'POST': return HttpResponse('send a POST request', status=405) if 'key' not in request.POST: return HttpResponse('your request does not include an integration key', status=400) if request.POST['key'].strip() not in settings.INTEGRATION_KEYS: return HttpResponse('incorrect key', status=403) data = func(request, *args, **kwargs) resp = HttpResponse(dumps(data, indent=2, sort_keys=False), content_type='application/json') resp['Allow'] = 'POST' return resp return func_with_header def api_info(request): return render_cms_special(request, 'api_info.html', { 'DOMAIN': settings.SITE_URL, 'INTEGRATION_KEYS_COUNT': len(getattr(settings, 'INTEGRATION_KEYS', ())), 'INTEGRATION_ALLOW_EMAIL': getattr(settings, 'INTEGRATION_ALLOW_EMAIL', None), }) @csrf_exempt @api_view def user_list_api(request): users = get_user_model().objects.filter(is_active=True) if 'email' in request.POST: if not getattr(settings, 'INTEGRATION_ALLOW_EMAIL', False): return HttpResponse('email listing is turned off on the server; service cannot be used', status=501) return OrderedDict((user.username, user.email) for user in users) return list(user.username for user in users) @csrf_exempt @api_view def team_list_api(request): teams = Team.objects.filter(listed=True) return list(team.name for team in teams) @csrf_exempt @api_view def user_details_api(request): if 'username' not in request.POST and 'password' not in request.POST: return HttpResponse('your request does not include `username` and `password`', status=400) user = authenticate(username=request.POST['username'], password=request.POST['password']) if not user: if not get_user_model().objects.filter(username=request.POST['username']): return HttpResponse('user `{0:s}` does not exist'.format(request.POST['username']), status=404) return HttpResponse('incorrect password', status=403) if not user.is_active: return HttpResponse('the account `{0:s}` has been disabled'.format(user.username), status=403) bday = None if user.birthday: bday = user.birthday.strftime('%Y-%m-%d') return OrderedDict(( ('username', user.username), ('first_name', user.first_name), ('last_name', user.last_name), ('email', user.email), ('birthday', bday), ('teams', {role.team.name: role.title for role in user.role_throughs}), )) @csrf_exempt @api_view def team_details_api(request): if 'teamname' not in request.POST: return HttpResponse('your request does not include team `name`', status=400) try: team = Team.objects.get(name=request.POST['teamname']) except Team.DoesNotExist: return HttpResponse('team `{0:s}` does not exist'.format(request.POST['teamname']), status=404) return OrderedDict(( ('hidden', not team.listed), ('teamname', team.name), ('description', team.description), ('leaders', [admin.username for admin in team.admins.all()]), ('members', {role.member.username: role.title for role in team.role_throughs}), ))
35.959184
103
0.745176
c9bb49cc7cc98186ee794cc20d3353327d510211
112
py
Python
readthedocs/builds/signals.py
gr2m/readthedocs.org
38e73cd73efb76461d28a5d9737731b7d7349297
[ "MIT" ]
1
2019-01-05T09:49:52.000Z
2019-01-05T09:49:52.000Z
readthedocs/builds/signals.py
himynamesdave/readthedocs.org
38e73cd73efb76461d28a5d9737731b7d7349297
[ "MIT" ]
null
null
null
readthedocs/builds/signals.py
himynamesdave/readthedocs.org
38e73cd73efb76461d28a5d9737731b7d7349297
[ "MIT" ]
1
2019-01-05T09:49:54.000Z
2019-01-05T09:49:54.000Z
"""Build signals""" import django.dispatch build_complete = django.dispatch.Signal(providing_args=['build'])
16
65
0.758929
024759a66f11aa1c7a72889c02dc189c270c559e
7,986
py
Python
qa/rpc-tests/txn_clone.py
otherdeniz/othercoin
611af232c0cd2025c4464c0444b650bc6c2444f6
[ "MIT" ]
null
null
null
qa/rpc-tests/txn_clone.py
otherdeniz/othercoin
611af232c0cd2025c4464c0444b650bc6c2444f6
[ "MIT" ]
null
null
null
qa/rpc-tests/txn_clone.py
otherdeniz/othercoin
611af232c0cd2025c4464c0444b650bc6c2444f6
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test proper accounting with an equivalent malleability clone # from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class TxnMallTest(BitcoinTestFramework): def add_options(self, parser): parser.add_option("--mineblock", dest="mine_block", default=False, action="store_true", help="Test double-spend of 1-confirmed transaction") def setup_network(self): # Start with split network: return super(TxnMallTest, self).setup_network(True) def run_test(self): # All nodes should start with 12,500 OTC: starting_balance = 12500 for i in range(4): assert_equal(self.nodes[i].getbalance(), starting_balance) self.nodes[i].getnewaddress("") # bug workaround, coins generated assigned to first getnewaddress! # Assign coins to foo and bar accounts: self.nodes[0].settxfee(.001) node0_address_foo = self.nodes[0].getnewaddress("foo") fund_foo_txid = self.nodes[0].sendfrom("", node0_address_foo, 12190) fund_foo_tx = self.nodes[0].gettransaction(fund_foo_txid) node0_address_bar = self.nodes[0].getnewaddress("bar") fund_bar_txid = self.nodes[0].sendfrom("", node0_address_bar, 290) fund_bar_tx = self.nodes[0].gettransaction(fund_bar_txid) assert_equal(self.nodes[0].getbalance(""), starting_balance - 12190 - 290 + fund_foo_tx["fee"] + fund_bar_tx["fee"]) # Coins are sent to node1_address node1_address = self.nodes[1].getnewaddress("from0") # Send tx1, and another transaction tx2 that won't be cloned txid1 = self.nodes[0].sendfrom("foo", node1_address, 400, 0) txid2 = self.nodes[0].sendfrom("bar", node1_address, 200, 0) # Construct a clone of tx1, to be malleated rawtx1 = self.nodes[0].getrawtransaction(txid1,1) clone_inputs = [{"txid":rawtx1["vin"][0]["txid"],"vout":rawtx1["vin"][0]["vout"]}] clone_outputs = {rawtx1["vout"][0]["scriptPubKey"]["addresses"][0]:rawtx1["vout"][0]["value"], rawtx1["vout"][1]["scriptPubKey"]["addresses"][0]:rawtx1["vout"][1]["value"]} clone_raw = self.nodes[0].createrawtransaction(clone_inputs, clone_outputs) # 3 hex manipulations on the clone are required # manipulation 1. sequence is at version+#inputs+input+sigstub posseq = 2*(4+1+36+1) seqbe = '%08x' % rawtx1["vin"][0]["sequence"] clone_raw = clone_raw[:posseq] + seqbe[6:8] + seqbe[4:6] + seqbe[2:4] + seqbe[0:2] + clone_raw[posseq + 8:] # manipulation 2. createrawtransaction randomizes the order of its outputs, so swap them if necessary. # output 0 is at version+#inputs+input+sigstub+sequence+#outputs # 400 OTC serialized is 00902f5009000000 pos0 = 2*(4+1+36+1+4+1) hex400 = "00902f5009000000" output_len = 16 + 2 + 2 * int("0x" + clone_raw[pos0 + 16 : pos0 + 16 + 2], 0) if (rawtx1["vout"][0]["value"] == 400 and clone_raw[pos0 : pos0 + 16] != hex400 or rawtx1["vout"][0]["value"] != 400 and clone_raw[pos0 : pos0 + 16] == hex400): output0 = clone_raw[pos0 : pos0 + output_len] output1 = clone_raw[pos0 + output_len : pos0 + 2 * output_len] clone_raw = clone_raw[:pos0] + output1 + output0 + clone_raw[pos0 + 2 * output_len:] # manipulation 3. locktime is after outputs poslt = pos0 + 2 * output_len ltbe = '%08x' % rawtx1["locktime"] clone_raw = clone_raw[:poslt] + ltbe[6:8] + ltbe[4:6] + ltbe[2:4] + ltbe[0:2] + clone_raw[poslt + 8:] # Use a different signature hash type to sign. This creates an equivalent but malleated clone. # Don't send the clone anywhere yet tx1_clone = self.nodes[0].signrawtransaction(clone_raw, None, None, "ALL|ANYONECANPAY") assert_equal(tx1_clone["complete"], True) # Have node0 mine a block, if requested: if (self.options.mine_block): self.nodes[0].generate(1) sync_blocks(self.nodes[0:2]) tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Node0's balance should be starting balance, plus 500OTC for another # matured block, minus tx1 and tx2 amounts, and minus transaction fees: expected = starting_balance + fund_foo_tx["fee"] + fund_bar_tx["fee"] if self.options.mine_block: expected += 500 expected += tx1["amount"] + tx1["fee"] expected += tx2["amount"] + tx2["fee"] assert_equal(self.nodes[0].getbalance(), expected) # foo and bar accounts should be debited: assert_equal(self.nodes[0].getbalance("foo", 0), 12190 + tx1["amount"] + tx1["fee"]) assert_equal(self.nodes[0].getbalance("bar", 0), 290 + tx2["amount"] + tx2["fee"]) if self.options.mine_block: assert_equal(tx1["confirmations"], 1) assert_equal(tx2["confirmations"], 1) # Node1's "from0" balance should be both transaction amounts: assert_equal(self.nodes[1].getbalance("from0"), -(tx1["amount"] + tx2["amount"])) else: assert_equal(tx1["confirmations"], 0) assert_equal(tx2["confirmations"], 0) # Send clone and its parent to miner self.nodes[2].sendrawtransaction(fund_foo_tx["hex"]) txid1_clone = self.nodes[2].sendrawtransaction(tx1_clone["hex"]) # ... mine a block... self.nodes[2].generate(1) # Reconnect the split network, and sync chain: connect_nodes(self.nodes[1], 2) self.nodes[2].sendrawtransaction(fund_bar_tx["hex"]) self.nodes[2].sendrawtransaction(tx2["hex"]) self.nodes[2].generate(1) # Mine another block to make sure we sync sync_blocks(self.nodes) # Re-fetch transaction info: tx1 = self.nodes[0].gettransaction(txid1) tx1_clone = self.nodes[0].gettransaction(txid1_clone) tx2 = self.nodes[0].gettransaction(txid2) # Verify expected confirmations assert_equal(tx1["confirmations"], -2) assert_equal(tx1_clone["confirmations"], 2) assert_equal(tx2["confirmations"], 1) # Check node0's total balance; should be same as before the clone, + 1000 OTC for 2 matured, # less possible orphaned matured subsidy expected += 1000 if (self.options.mine_block): expected -= 500 assert_equal(self.nodes[0].getbalance(), expected) assert_equal(self.nodes[0].getbalance("*", 0), expected) # Check node0's individual account balances. # "foo" should have been debited by the equivalent clone of tx1 assert_equal(self.nodes[0].getbalance("foo"), 12190 + tx1["amount"] + tx1["fee"]) # "bar" should have been debited by (possibly unconfirmed) tx2 assert_equal(self.nodes[0].getbalance("bar", 0), 290 + tx2["amount"] + tx2["fee"]) # "" should have starting balance, less funding txes, plus subsidies assert_equal(self.nodes[0].getbalance("", 0), starting_balance - 12190 + fund_foo_tx["fee"] - 290 + fund_bar_tx["fee"] + 1000) # Node1's "from0" account balance assert_equal(self.nodes[1].getbalance("from0", 0), -(tx1["amount"] + tx2["amount"])) if __name__ == '__main__': TxnMallTest().main()
48.108434
115
0.609191
18262cb6008bbf0c7cb73cf9e8ea28e9667ec828
509
py
Python
lib/steps/ImportProject.py
lastcolour/Tacos
fe2b65250bfa74613151ae2dc6a91eb30f254844
[ "MIT" ]
null
null
null
lib/steps/ImportProject.py
lastcolour/Tacos
fe2b65250bfa74613151ae2dc6a91eb30f254844
[ "MIT" ]
null
null
null
lib/steps/ImportProject.py
lastcolour/Tacos
fe2b65250bfa74613151ae2dc6a91eb30f254844
[ "MIT" ]
null
null
null
from .Step import Step class ImportProject(Step): def __init__(self): Step.__init__(self) self._projectFile = None def serialize(self, jsonData): self._projectFile = jsonData["project_file"] def run(self): from lib.ProjectBuilder import ProjectBuilder builder = ProjectBuilder() project = builder.build(self._projectFile, None) if not project: return False project.setParent(self._project) return project.run()
28.277778
56
0.646365
84020389b1d419e11037ac2e589f70408ba5da57
26,113
py
Python
keras_wrapper/utils.py
PRHLT/multimodal_keras_wrapper
0a088f36e5d4251ce465974f07d1a7f21b80203e
[ "MIT" ]
7
2018-04-08T03:06:24.000Z
2019-04-24T07:56:38.000Z
keras_wrapper/utils.py
PRHLT/multimodal_keras_wrapper
0a088f36e5d4251ce465974f07d1a7f21b80203e
[ "MIT" ]
null
null
null
keras_wrapper/utils.py
PRHLT/multimodal_keras_wrapper
0a088f36e5d4251ce465974f07d1a7f21b80203e
[ "MIT" ]
7
2017-12-04T09:06:35.000Z
2021-04-19T07:47:46.000Z
# -*- coding: utf-8 -*- import copy import sys from six import iteritems import numpy as np import logging logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(message)s', datefmt='%d/%m/%Y %H:%M:%S') logger = logging.getLogger(__name__) if sys.version_info.major == 2: from itertools import imap as map def checkParameters(input_params, default_params, hard_check=False): """Validates a set of input parameters and uses the default ones if not specified. :param input_params: Input parameters. :param default_params: Default parameters :param hard_check: If True, raise exception if a parameter is not valid. :return: """ valid_params = [key for key in default_params] params = dict() # Check input parameters' validity for key, val in iteritems(input_params): if key in valid_params: params[key] = val elif hard_check: raise ValueError("Parameter '" + key + "' is not a valid parameter.") # Use default parameters if not provided for key, default_val in iteritems(default_params): if key not in params: params[key] = default_val return params class MultiprocessQueue(): """ Wrapper class for encapsulating the behaviour of some multiprocessing communication structures. See how Queues and Pipes work in the following link https://docs.python.org/2/library/multiprocessing.html#multiprocessing-examples """ def __init__(self, manager, multiprocess_type='Queue'): if multiprocess_type != 'Queue' and multiprocess_type != 'Pipe': raise NotImplementedError( 'Not valid multiprocessing queue of type ' + multiprocess_type) self.type = multiprocess_type if multiprocess_type == 'Queue': self.queue = eval('manager.' + multiprocess_type + '()') else: self.queue = eval(multiprocess_type + '()') def put(self, elem): if self.type == 'Queue': self.queue.put(elem) elif self.type == 'Pipe': self.queue[1].send(elem) def get(self): if self.type == 'Queue': return self.queue.get() elif self.type == 'Pipe': return self.queue[0].recv() def qsize(self): if self.type == 'Queue': return self.queue.qsize() elif self.type == 'Pipe': return -1 def empty(self): if self.type == 'Queue': return self.queue.empty() elif self.type == 'Pipe': return not self.queue[0].poll() def bbox(img, mode='max'): """ Returns a bounding box covering all the non-zero area in the image. :param img: Image on which print the bounding box :param mode: "width_height" returns width in [2] and height in [3], "max" returns xmax in [2] and ymax in [3] :return: """ rows = np.any(img, axis=1) cols = np.any(img, axis=0) y, ymax = np.where(rows)[0][[0, -1]] x, xmax = np.where(cols)[0][[0, -1]] if mode == 'width_height': return x, y, xmax - x, ymax - y elif mode == 'max': return x, y, xmax, ymax def simplifyDataset(ds, id_classes, n_classes=50): """ :param ds: :param id_classes: :param n_classes: :return: """ logger.info("Simplifying %s from %d to %d classes." % (str(ds.name), len(ds.classes), n_classes)) ds.classes[id_classes] = ds.classes[id_classes][:n_classes] id_labels = ds.ids_outputs[ds.types_outputs.index('categorical')] # reduce each data split for s in ['train', 'val', 'test']: kept_Y = dict() kept_X = dict() labels_set = getattr(ds, 'Y_' + s)[id_labels] for i, y in list(enumerate(labels_set)): if y < n_classes: for id_out in ds.ids_outputs: y_split = getattr(ds, 'Y_' + s) sample = y_split[id_out][i] try: kept_Y[id_out].append(sample) except Exception: kept_Y[id_out] = [] kept_Y[id_out].append(sample) for id_in in ds.ids_inputs: # exec ('sample = ds.X_' + s + '[id_in][i]') x_split = getattr(ds, 'X_' + s) sample = x_split[id_in][i] try: kept_X[id_in].append(sample) except Exception: kept_X[id_in] = [] kept_X[id_in].append(sample) setattr(ds, 'X_' + s, copy.copy(kept_X)) setattr(ds, 'Y_' + s, copy.copy(kept_Y)) setattr(ds, 'len_' + s, len(kept_Y[id_labels])) def average_models(models, output_model, weights=None, custom_objects=None): from keras_wrapper.saving import loadModel, saveModel if not isinstance(models, list): raise AssertionError('You must give a list of models to average.') if len(models) == 0: raise AssertionError('You provided an empty list of models to average!') model_weights = np.asarray([1. / len(models)] * len(models), dtype=np.float32) if (weights is None) or (weights == []) else np.asarray(weights, dtype=np.float32) if len(model_weights) != len(models): raise AssertionError( 'You must give a list of weights of the same size than the list of models.') loaded_models = [loadModel(m, -1, full_path=True, custom_objects=custom_objects) for m in models] # Check that all models are compatible if not all([hasattr(loaded_model, 'model') for loaded_model in loaded_models]): raise AssertionError('Not all models have the attribute "model".') if not (all([hasattr(loaded_model, 'model_init') for loaded_model in loaded_models]) or all( [not hasattr(loaded_model, 'model_init') for loaded_model in loaded_models])): raise AssertionError('Not all models have the attribute "model_init".') if not (all([hasattr(loaded_model, 'model_next') for loaded_model in loaded_models]) or all( [not hasattr(loaded_model, 'model_next') for loaded_model in loaded_models])): raise AssertionError('Not all models have the attribute "model_next".') # Check all layers are the same if not (all([[str(loaded_models[0].model.weights[i]) == str(loaded_model.model.weights[i]) for i in range(len(loaded_models[0].model.weights))] for loaded_model in loaded_models])): raise AssertionError('Not all models have the same weights!') if hasattr(loaded_models[0], 'model_init') and getattr(loaded_models[0], 'model_init') is not None: if not all([[str(loaded_models[0].model.weights[i]) == str(loaded_model.model.weights[i]) for i in range(len(loaded_models[0].model_init.weights))] for loaded_model in loaded_models]): raise AssertionError('Not all model_inits have the same weights!') if hasattr(loaded_models[0], 'model_next') and getattr(loaded_models[0], 'model_next') is not None: if not all([[str(loaded_models[0].model_next.weights[i]) == str(loaded_model.model_next.weights[i]) for i in range(len(loaded_models[0].model_next.weights))] for loaded_model in loaded_models]): raise AssertionError('Not all model_nexts have the same weights!') # Retrieve weights, weigh them and overwrite in model[0]. current_weights = loaded_models[0].model.get_weights() loaded_models[0].model.set_weights( [current_weights[matrix_index] * model_weights[0] for matrix_index in range(len(current_weights))]) # We have model_init if hasattr(loaded_models[0], 'model_init') and getattr(loaded_models[0], 'model_init') is not None: current_weights = loaded_models[0].model_init.get_weights() loaded_models[0].model_init.set_weights( [current_weights[matrix_index] * model_weights[0] for matrix_index in range(len(current_weights))]) # We have model_next if hasattr(loaded_models[0], 'model_next') and getattr(loaded_models[0], 'model_next') is not None: current_weights = loaded_models[0].model_next.get_weights() loaded_models[0].model_next.set_weights( [current_weights[matrix_index] * model_weights[0] for matrix_index in range(len(current_weights))]) # Weighted sum of all models for m in range(1, len(models)): current_weights = loaded_models[m].model.get_weights() prev_weights = loaded_models[0].model.get_weights() loaded_models[0].model.set_weights( [current_weights[matrix_index] * model_weights[m] + prev_weights[matrix_index] for matrix_index in range(len(current_weights))]) # We have model_init if hasattr(loaded_models[0], 'model_init') and getattr(loaded_models[0], 'model_init') is not None: current_weights = loaded_models[m].model_init.get_weights() prev_weights = loaded_models[0].model_init.get_weights() loaded_models[0].model_init.set_weights( [current_weights[matrix_index] * model_weights[m] + prev_weights[matrix_index] for matrix_index in range(len(current_weights))]) # We have model_next if hasattr(loaded_models[0], 'model_next') and getattr(loaded_models[0], 'model_next') is not None: current_weights = loaded_models[m].model_next.get_weights() prev_weights = loaded_models[0].model_next.get_weights() loaded_models[0].model_next.set_weights( [current_weights[matrix_index] * model_weights[m] + prev_weights[matrix_index] for matrix_index in range(len(current_weights))]) # Save averaged model saveModel(loaded_models[0], -1, path=output_model, full_path=True, store_iter=False) # Text-related utils def one_hot_2_indices(preds, pad_sequences=True, verbose=0): """ Converts a one-hot codification into a index-based one :param preds: Predictions codified as one-hot vectors. :param pad_sequences: Whether we should pad sequence or not :param verbose: Verbosity level, by default 0. :return: List of convertedpredictions """ if verbose > 0: logger.info('Converting one hot prediction into indices...') preds = list(map(lambda x: np.argmax(x, axis=1), preds)) if pad_sequences: preds = [pred[:sum([int(elem > 0) for elem in pred]) + 1] for pred in preds] return preds def indices_2_one_hot(indices, n): """ Converts a list of indices into one hot codification :param indices: list of indices :param n: integer. Size of the vocabulary :return: numpy array with shape (len(indices), n) """ one_hot = np.zeros((len(indices), n), dtype=np.int8) for i in range(len(indices)): if indices[i] >= n: raise ValueError("Index out of bounds when converting to one hot") one_hot[i, indices[i]] = 1 return one_hot # From keras.utils.np_utils def to_categorical(y, num_classes=None): """Converts a class vector (integers) to binary class matrix. E.g. for use with categorical_crossentropy. # Arguments y: class vector to be converted into a matrix (integers from 0 to num_classes). num_classes: total number of classes. # Returns A binary matrix representation of the input. """ y = np.array(y, dtype='int') input_shape = y.shape if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: input_shape = tuple(input_shape[:-1]) y = y.ravel() if not num_classes: num_classes = np.max(y) + 1 n = y.shape[0] categorical = np.zeros((n, num_classes)) categorical[np.arange(n), y] = 1 output_shape = input_shape + (num_classes,) categorical = np.reshape(categorical, output_shape) return categorical def categorical_probas_to_classes(p): return np.argmax(p, axis=1) # ------------------------------------------------------- # # DECODING FUNCTIONS # Functions for decoding predictions # ------------------------------------------------------- # def decode_predictions_one_hot(preds, index2word, pad_sequences=True, verbose=0): """ Decodes predictions following a one-hot codification. :param preds: Predictions codified as one-hot vectors. :param index2word: Mapping from word indices into word characters. :param verbose: Verbosity level, by default 0. :return: List of decoded predictions """ if verbose > 0: logger.info('Decoding one hot prediction ...') preds = list(map(lambda prediction: np.argmax(prediction, axis=1), preds)) PAD = '<pad>' flattened_answer_pred = [list(map(lambda index: index2word[index], pred)) for pred in preds] answer_pred_matrix = np.asarray(flattened_answer_pred) answer_pred = [] for a_no in answer_pred_matrix: end_token_pos = [j for j, x in list(enumerate(a_no)) if x == PAD] end_token_pos = None if len(end_token_pos) == 0 or not pad_sequences else end_token_pos[0] a_no = [a.decode('utf-8') if isinstance(a, str) and sys.version_info.major == 2 else a for a in a_no] tmp = u' '.join(a_no[:end_token_pos]) answer_pred.append(tmp) return answer_pred def decode_predictions(preds, temperature, index2word, sampling_type, verbose=0): """ Decodes predictions :param preds: Predictions codified as the output of a softmax activation function. :param temperature: Temperature for sampling. :param index2word: Mapping from word indices into word characters. :param sampling_type: 'max_likelihood' or 'multinomial'. :param verbose: Verbosity level, by default 0. :return: List of decoded predictions. """ if verbose > 0: logger.info('Decoding prediction ...') flattened_preds = preds.reshape(-1, preds.shape[-1]) flattened_answer_pred = list(map(lambda index: index2word[index], sampling(scores=flattened_preds, sampling_type=sampling_type, temperature=temperature))) answer_pred_matrix = np.asarray(flattened_answer_pred).reshape(preds.shape[:-1]) answer_pred = [] EOS = '<eos>' PAD = '<pad>' for a_no in answer_pred_matrix: if len(a_no.shape) > 1: # only process word by word if our prediction has more than one output init_token_pos = 0 end_token_pos = [j for j, x in list(enumerate(a_no)) if x == EOS or x == PAD] end_token_pos = None if len(end_token_pos) == 0 else end_token_pos[0] a_no = [a.decode('utf-8') if isinstance(a, str) and sys.version_info.major == 2 else a for a in a_no] tmp = u' '.join(a_no[init_token_pos:end_token_pos]) else: tmp = a_no[:-1] answer_pred.append(tmp) return answer_pred def decode_categorical(preds, index2word, verbose=0): """ Decodes predictions :param preds: Predictions codified as the output of a softmax activation function. :param index2word: Mapping from word indices into word characters. :return: List of decoded predictions. """ if verbose > 0: logger.info('Decoding prediction ...') word_indices = categorical_probas_to_classes(preds) return [index2word.get(word) for word in word_indices] def decode_multilabel(preds, index2word, min_val=0.5, get_probs=False, verbose=0): """ Decodes predictions :param preds: Predictions codified as the output of a softmax activation function. :param index2word: Mapping from word indices into word characters. :param min_val: Minimum value needed for considering a positive prediction. :param get_probs: additionally return probability for each predicted label :param verbose: Verbosity level, by default 0. :return: List of decoded predictions. """ if verbose > 0: logger.info('Decoding prediction ...') answer_pred = [] probs_pred = [] for pred in preds: current_pred = [] current_probs = [] for ind, word in list(enumerate(pred)): if word >= min_val: current_pred.append(index2word[ind]) current_probs.append(word) answer_pred.append(current_pred) probs_pred.append(current_probs) if get_probs: return answer_pred, probs_pred else: return answer_pred def replace_unknown_words(src_word_seq, trg_word_seq, hard_alignment, unk_symbol, glossary=None, heuristic=0, mapping=None, verbose=0): """ Replaces unknown words from the target sentence according to some heuristic. Borrowed from: https://github.com/sebastien-j/LV_groundhog/blob/master/experiments/nmt/replace_UNK.py :param src_word_seq: Source sentence words :param trg_word_seq: Hypothesis words :param hard_alignment: Target-Source alignments :param glossary: Hard-coded substitutions. :param unk_symbol: Symbol in trg_word_seq to replace :param heuristic: Heuristic (0, 1, 2) :param mapping: External alignment dictionary :param verbose: Verbosity level :return: trg_word_seq with replaced unknown words """ trans_words = trg_word_seq new_trans_words = [] mapping = mapping or {} for j in range(len(trans_words)): current_word = trans_words[j] if glossary is not None and glossary.get( src_word_seq[hard_alignment[j]]) is not None: current_word = glossary.get(src_word_seq[hard_alignment[j]]) new_trans_words.append(current_word) elif current_word == unk_symbol: current_src = src_word_seq[hard_alignment[j]] if isinstance(current_src, str) and sys.version_info.major == 2: current_src = current_src.decode('utf-8') if heuristic == 0: # Copy (ok when training with large vocabularies on en->fr, en->de) new_trans_words.append(current_src) elif heuristic == 1: # Use the most likely translation (with t-table). If not found, copy the source word. # Ok for small vocabulary (~30k) models if mapping.get(current_src) is not None: new_trans_words.append(mapping[current_src]) else: new_trans_words.append(current_src) elif heuristic == 2: # Use t-table if the source word starts with a lowercase letter. Otherwise copy # Sometimes works better than other heuristics if mapping.get(current_src) is not None and current_src[0].islower(): new_trans_words.append(mapping[current_src]) else: new_trans_words.append(current_src) else: new_trans_words.append(current_word) return new_trans_words def decode_predictions_beam_search(preds, index2word, glossary=None, alphas=None, heuristic=0, x_text=None, unk_symbol='<unk>', pad_sequences=False, mapping=None, verbose=0): """ Decodes predictions from the BeamSearch method. :param preds: Predictions codified as word indices. :param index2word: Mapping from word indices into word characters. :param alphas: Attention model weights: Float matrix with shape (I, J) (I: number of target items; J: number of source items). :param heuristic: Replace unknown words heuristic (0, 1 or 2) :param x_text: Source text (for unk replacement) :param unk_symbol: Unknown words symbol :param pad_sequences: Whether we should make a zero-pad on the input sequence. :param mapping: Source-target dictionary (for unk_replace heuristics 1 and 2) :param verbose: Verbosity level, by default 0. :return: List of decoded predictions """ if verbose > 0: logger.info('Decoding beam search prediction ...') if alphas is not None: if x_text is None: raise AssertionError('When using POS_UNK, you must provide the input ' 'text to decode_predictions_beam_search!') if verbose > 0: logger.info('Using heuristic %d' % heuristic) if pad_sequences: preds = [pred[:sum([int(elem > 0) for elem in pred]) + 1] for pred in preds] flattened_predictions = [list(map(lambda x: index2word[x], pred)) for pred in preds] final_predictions = [] if alphas is not None: x_text = list(map(lambda x: x.split(), x_text)) hard_alignments = list( map(lambda alignment, x_sentence: np.argmax( alignment[:, :max(1, len(x_sentence))], axis=1), alphas, x_text)) for i, a_no in list(enumerate(flattened_predictions)): if unk_symbol in a_no or glossary is not None: a_no = replace_unknown_words(x_text[i], a_no, hard_alignments[i], unk_symbol, glossary=glossary, heuristic=heuristic, mapping=mapping, verbose=verbose) a_no = [a.decode('utf-8') if isinstance(a, str) and sys.version_info.major == 2 else a for a in a_no] tmp = u' '.join(a_no[:-1]) final_predictions.append(tmp) else: for a_no in flattened_predictions: a_no = [a.decode('utf-8') if isinstance(a, str) and sys.version_info.major == 2 else a for a in a_no] tmp = u' '.join(a_no[:-1]) final_predictions.append(tmp) return final_predictions def sampling(scores, sampling_type='max_likelihood', temperature=1.): """ Sampling words (each sample is drawn from a categorical distribution). Or picks up words that maximize the likelihood. :param scores: array of size #samples x #classes; every entry determines a score for sample i having class j :param sampling_type: :param temperature: Predictions temperature. The higher, the flatter probabilities. Hence more random outputs. :return: set of indices chosen as output, a vector of size #samples """ if isinstance(scores, dict): scores = scores['output'] if sampling_type == 'multinomial': preds = np.asarray(scores).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) elif sampling_type == 'max_likelihood': return np.argmax(scores, axis=-1) else: raise NotImplementedError() # Data structures-related utils def flatten_list_of_lists(list_of_lists): """ Flattens a list of lists :param list_of_lists: List of lists :return: Flatten list of lists """ return [item for sublist in list_of_lists for item in sublist] def flatten(my_list): """ Flatten a list (more general than flatten_list_of_lists, but also more inefficient :param my_list: :return: """ if not my_list: return my_list return flatten(my_list[0]) + (flatten(my_list[1:]) if len(my_list) > 1 else []) if isinstance(my_list, list) else [ my_list] def key_with_max_val(d): """ a) create a list of the dict's keys and values; b) return the key with the max value""" d = dict((k, v) for k, v in iteritems(d) if isinstance(v, (int, float, complex))) v = list(d.values()) k = list(d.keys()) if d == {}: return -1 else: return k[v.index(max(v))] def print_dict(d, header=''): """ Formats a dictionary for printing. :param d: Dictionary to print. :return: String containing the formatted dictionary. """ obj_str = str(header) + '{ \n\t' obj_str += "\n\t".join([str(key) + ": " + str(d[key]) for key in sorted(d.keys())]) obj_str += '\n' obj_str += '}' return obj_str
39.745814
130
0.588443
9d57d560c7b9f4c6c832dde6698cab1565aa0fb1
829
py
Python
configloader/image/setup.py
SGeetansh/dffml
04647bdcadef2f7e7b59cdd8ac1e89f17ef1095b
[ "MIT" ]
1
2019-03-11T17:24:17.000Z
2019-03-11T17:24:17.000Z
configloader/image/setup.py
SGeetansh/dffml
04647bdcadef2f7e7b59cdd8ac1e89f17ef1095b
[ "MIT" ]
24
2020-05-20T23:29:57.000Z
2021-04-14T04:18:21.000Z
configloader/image/setup.py
SGeetansh/dffml
04647bdcadef2f7e7b59cdd8ac1e89f17ef1095b
[ "MIT" ]
1
2020-05-06T19:07:02.000Z
2020-05-06T19:07:02.000Z
import os import importlib.util from setuptools import setup # Boilerplate to load commonalities spec = importlib.util.spec_from_file_location( "setup_common", os.path.join(os.path.dirname(__file__), "setup_common.py") ) common = importlib.util.module_from_spec(spec) spec.loader.exec_module(common) common.KWARGS["install_requires"] += [ "opencv-python>=4.2.0.34", # See https://github.com/intel/dffml/issues/816 "numpy>=1.16.2,<1.19.0", ] common.KWARGS["entry_points"] = { "dffml.configloader": [ f"png = {common.IMPORT_NAME}.configloader:PNGConfigLoader", f"jpg = {common.IMPORT_NAME}.configloader:JPGConfigLoader", f"jpeg = {common.IMPORT_NAME}.configloader:JPEGConfigLoader", f"tiff = {common.IMPORT_NAME}.configloader:TIFFConfigLoader", ] } setup(**common.KWARGS)
30.703704
78
0.71532
1581b5edf184ae04f6cd66fd8365e2cb0c9587d4
2,946
py
Python
octopusapi/__init__.py
marcelocure/octopusapi
0d761b73460ae6ad761ba1479141322f078fd1b7
[ "MIT" ]
null
null
null
octopusapi/__init__.py
marcelocure/octopusapi
0d761b73460ae6ad761ba1479141322f078fd1b7
[ "MIT" ]
null
null
null
octopusapi/__init__.py
marcelocure/octopusapi
0d761b73460ae6ad761ba1479141322f078fd1b7
[ "MIT" ]
1
2016-02-26T19:28:08.000Z
2016-02-26T19:28:08.000Z
import metadata import json import config import logging from wsgiref import simple_server import falcon from middleware import AuthMiddleware, RequireJSON, JSONTranslator, StorageError, max_body __version__ = metadata.version __author__ = metadata.authors[0] __license__ = metadata.license __copyright__ = metadata.copyright class Field(object): def __init__(self, name, type, description, valid_values=None): self.name = name self.type = type self.description = description self.valid_values = valid_values class Resource(object): def __init__(self, name, fields, get=None, post=None, put=None, delete=None, links=[]): self.name = name self.fields = fields self.links = links self.get = get self.post = post self.put = put self.delete = delete self.allowed_methods = [] if self.get: self.allowed_methods.append('get') if self.post: self.allowed_methods.append('post') if self.put: self.allowed_methods.append('put') if self.delete: self.allowed_methods.append('delete') def validate_contract(self, req): fields = map(lambda field: field.name, self.fields) request_fields = req.context['doc'][self.name].keys() result = filter(lambda key: key in fields, request_fields) all_fields_informed = lambda result: len(result) == len(self.fields) if not all_fields_informed(result): raise falcon.HTTPBadRequest('Invalid input fields', 'The fields contained in the request body are not valid.') def on_get(self, req, resp, id=None): if not self.get: raise falcon.HTTPMethodNotAllowed(self.allowed_methods) self.get(req, resp) def on_put(self, req, resp, id=None): if not self.put: raise falcon.HTTPMethodNotAllowed(self.allowed_methods) self.put(req, resp) def on_delete(self, req, resp, id=None): if not self.delete: raise falcon.HTTPMethodNotAllowed(self.allowed_methods) self.delete(req, resp) @falcon.before(max_body(64 * 1024)) def on_post(self, req, resp): if not self.post: raise falcon.HTTPMethodNotAllowed(self.allowed_methods) self.validate_contract(req) self.post(req, resp) class OctopusApp(object): def __init__(self, app_name, resources, config): self.resources = resources self.app_name = app_name self.config = config def validate_resource(self, resource): if not(resource.on_get or resource.on_post or resource.on_put or resource.on_delete): raise Exception('Resource {0} has no HTTP verb handling') pass def load_resource(self, app, resource): self.validate_resource(resource) app.add_route('/{0}/{1}/'.format(self.app_name, resource.name), resource) def run_server(self): app = falcon.API(middleware=[AuthMiddleware(), RequireJSON(), JSONTranslator()]) map(lambda resource: self.load_resource(app, resource), self.resources) app.add_error_handler(StorageError, StorageError.handle) httpd = simple_server.make_server(self.config.host, self.config.port, app) httpd.serve_forever()
28.601942
113
0.746096
52e08d231e314618d47a232ea302aa0d28587cc7
3,513
py
Python
tests/sim_norm.py
jschiavon/optispd
fb3f904a1f1099d31cbcaf27dfc63e5a9e77c9f5
[ "MIT" ]
null
null
null
tests/sim_norm.py
jschiavon/optispd
fb3f904a1f1099d31cbcaf27dfc63e5a9e77c9f5
[ "MIT" ]
null
null
null
tests/sim_norm.py
jschiavon/optispd
fb3f904a1f1099d31cbcaf27dfc63e5a9e77c9f5
[ "MIT" ]
null
null
null
import jax.numpy as jnp from jax import jit, random, grad from jax.scipy.special import logsumexp from jax.scipy.stats import multivariate_normal as mvn from jax.scipy.stats import norm from jax.ops import index_update, index from jax.config import config config.update('jax_enable_x64', True) from scipy.optimize import minimize from time import time from tqdm import tqdm import pandas as pd from optispd.minimizer import minimizer from optispd.manifold import SPD, Euclidean, Product seed = 0 rng = random.PRNGKey(seed) N = 1000 tol = 1e-4 ps = [2, 5, 10, 25, 50, 75, 100] n_rep = 50 def ll(X, y): datapart = jnp.trace(jnp.linalg.solve(X, jnp.matmul(y.T, y))) return 0.5 * (N * jnp.linalg.slogdet(X)[1] + datapart) def ll_chol(X, y): p = y.shape[-1] cov = index_update( jnp.zeros(shape=(p, p)), jnp.triu_indices(p), X).T logdet = 2 + jnp.sum(jnp.diag(cov)) sol = jnp.linalg.solve(cov, y.T) return 0.5 * (N * logdet + jnp.einsum('ij,ij', sol, sol)) def optimization(kind='rcg', man=None, fun=None, gra=None, init=None, mle=0): if kind == 'rcg': optim = minimizer(man, method='rcg', tol=tol, verbosity=0) res = optim.solve(fun, gra, init) return res.nit, res.time, jnp.abs(res.fun - mle) if kind == 'rlbfgs': optim = minimizer(man, method='rlbfgs', tol=tol, verbosity=0) res = optim.solve(fun, gra, init) return res.nit, res.time, jnp.abs(res.fun - mle) if kind == 'chol': # print('start cholesky opt') start = time() init = jnp.linalg.cholesky(init) init = init.T[jnp.triu_indices_from(init)] res = minimize(fun, init, method='cg', jac=gra, tol=tol, options={'maxiter':1000}) # print('finished cholesky opt') return res['nit'], time() - start, jnp.abs(res['fun'] - mle) def run(manifold, p, k): k, key = random.split(k) tmean = random.normal(key, shape=(p,)) k, key = random.split(k) tcov = random.normal(key, shape=(p, p)) tcov = tcov @ tcov.T k, key = random.split(k) data = random.multivariate_normal(key, mean=tmean, cov=tcov, shape=(N,)) s_mu = jnp.mean(data, axis=0) s_cov = jnp.dot((data - s_mu).T, data - s_mu) / N MLE = jnp.append(jnp.append(s_cov + jnp.outer(s_mu, s_mu), jnp.array([s_mu]), axis=0), jnp.array([jnp.append(s_mu, 1)]).T, axis=1) mle_chol = jnp.linalg.cholesky(MLE) mle_chol = mle_chol.T[jnp.triu_indices_from(mle_chol)] data = jnp.concatenate([data.T, jnp.ones(shape=(1, N))], axis=0).T fun = jit(lambda x: ll(x, data)) gra = jit(grad(fun)) init = jnp.identity(p + 1) ll_mle = fun(MLE) res_cg = optimization('rcg', manifold, fun=fun, gra=gra, init=init, mle=ll_mle) res_bfgs = optimization('rlbfgs', manifold, fun=fun, gra=gra, init=init, mle=ll_mle) fun = jit(lambda x: ll_chol(x, data)) gra = jit(grad(fun)) ll_mle_chol = fun(mle_chol) res_cho = optimization('chol', fun=fun, gra=gra, init=init, mle=ll_mle_chol) return p, *res_cg, *res_bfgs, *res_cho res = [] for p in tqdm(ps): man = SPD(p+1) rng, *keys = random.split(rng, n_rep + 1) for key in tqdm(keys): res.append(run(man, p, key)) df = pd.DataFrame(data=res, columns=['p', 'cg_it', 'cg_time', 'cg_fun', 'bfgs_it', 'bfgs_time', 'bfgs_fun', 'chol_it', 'chol_time', 'chol_fun']) df.to_csv('simulations/normal.csv', index=False)
30.284483
90
0.615998
4cb79754ef8fd992dd652fb7579469e249d73aa3
1,998
py
Python
app/backend/src/couchers/servicers/jail.py
a-ch-chu/couchers
a3f6d619854b94e7f1144807f60f50f81bfa38c9
[ "MIT" ]
null
null
null
app/backend/src/couchers/servicers/jail.py
a-ch-chu/couchers
a3f6d619854b94e7f1144807f60f50f81bfa38c9
[ "MIT" ]
null
null
null
app/backend/src/couchers/servicers/jail.py
a-ch-chu/couchers
a3f6d619854b94e7f1144807f60f50f81bfa38c9
[ "MIT" ]
null
null
null
import logging import grpc from couchers import errors from couchers.db import session_scope from couchers.models import User from couchers.utils import create_coordinate from pb import jail_pb2, jail_pb2_grpc logger = logging.getLogger(__name__) class Jail(jail_pb2_grpc.JailServicer): """ The Jail servicer. API calls allowed for users who need to complete some tasks before being fully active """ def _get_jail_info(self, user): res = jail_pb2.JailInfoRes( has_not_accepted_tos=user.accepted_tos != 1, has_not_added_location=user.is_missing_location, ) # if any of the bools in res are true, we're jailed jailed = False for field in res.DESCRIPTOR.fields: if getattr(res, field.name): jailed = True res.jailed = jailed # double check assert user.is_jailed == jailed return res def JailInfo(self, request, context): with session_scope() as session: user = session.query(User).filter(User.id == context.user_id).one() return self._get_jail_info(user) def AcceptTOS(self, request, context): with session_scope() as session: user = session.query(User).filter(User.id == context.user_id).one() if user.accepted_tos == 1 and not request.accept: context.abort(grpc.StatusCode.FAILED_PRECONDITION, errors.CANT_UNACCEPT_TOS) user.accepted_tos = 1 if request.accept else 0 session.commit() return self._get_jail_info(user) def SetLocation(self, request, context): with session_scope() as session: user = session.query(User).filter(User.id == context.user_id).one() user.city = request.city user.geom = create_coordinate(request.lat, request.lng) user.geom_radius = request.radius session.commit() return self._get_jail_info(user)
29.382353
92
0.645145
915983776fa36363096ca91f25c8f88dedf7160e
23,710
py
Python
cinder/tests/unit/api/test_common.py
UbuntuEvangelist/cinder
cbb55074de48176cbaa3f31a5b1d595b8aad7aa8
[ "Apache-2.0" ]
null
null
null
cinder/tests/unit/api/test_common.py
UbuntuEvangelist/cinder
cbb55074de48176cbaa3f31a5b1d595b8aad7aa8
[ "Apache-2.0" ]
1
2021-03-21T11:38:29.000Z
2021-03-21T11:38:29.000Z
cinder/tests/unit/api/test_common.py
UbuntuEvangelist/cinder
cbb55074de48176cbaa3f31a5b1d595b8aad7aa8
[ "Apache-2.0" ]
15
2017-01-12T10:35:10.000Z
2019-04-19T08:22:10.000Z
# Copyright 2010 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Test suites for 'common' code used throughout the OpenStack HTTP API. """ import mock from testtools import matchers import webob import webob.exc from oslo_config import cfg from cinder.api import common from cinder import test NS = "{http://docs.openstack.org/compute/api/v1.1}" ATOMNS = "{http://www.w3.org/2005/Atom}" CONF = cfg.CONF class LimiterTest(test.TestCase): """Unit tests for the `cinder.api.common.limited` method. This method takes in a list of items and, depending on the 'offset' and 'limit' GET params, returns a subset or complete set of the given items. """ def setUp(self): """Run before each test.""" super(LimiterTest, self).setUp() self.tiny = list(range(1)) self.small = list(range(10)) self.medium = list(range(1000)) self.large = list(range(10000)) def test_limiter_offset_zero(self): """Test offset key works with 0.""" req = webob.Request.blank('/?offset=0') self.assertEqual(self.tiny, common.limited(self.tiny, req)) self.assertEqual(self.small, common.limited(self.small, req)) self.assertEqual(self.medium, common.limited(self.medium, req)) self.assertEqual(self.large[:1000], common.limited(self.large, req)) def test_limiter_offset_medium(self): """Test offset key works with a medium sized number.""" req = webob.Request.blank('/?offset=10') self.assertEqual([], common.limited(self.tiny, req)) self.assertEqual(self.small[10:], common.limited(self.small, req)) self.assertEqual(self.medium[10:], common.limited(self.medium, req)) self.assertEqual(self.large[10:1010], common.limited(self.large, req)) def test_limiter_offset_over_max(self): """Test offset key works with a number over 1000 (max_limit).""" req = webob.Request.blank('/?offset=1001') self.assertEqual([], common.limited(self.tiny, req)) self.assertEqual([], common.limited(self.small, req)) self.assertEqual([], common.limited(self.medium, req)) self.assertEqual( self.large[1001:2001], common.limited(self.large, req)) def test_limiter_offset_blank(self): """Test offset key works with a blank offset.""" req = webob.Request.blank('/?offset=') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_offset_bad(self): """Test offset key works with a BAD offset.""" req = webob.Request.blank(u'/?offset=\u0020aa') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_nothing(self): """Test request with no offset or limit.""" req = webob.Request.blank('/') self.assertEqual(self.tiny, common.limited(self.tiny, req)) self.assertEqual(self.small, common.limited(self.small, req)) self.assertEqual(self.medium, common.limited(self.medium, req)) self.assertEqual(self.large[:1000], common.limited(self.large, req)) def test_limiter_limit_zero(self): """Test limit of zero.""" req = webob.Request.blank('/?limit=0') self.assertEqual(self.tiny, common.limited(self.tiny, req)) self.assertEqual(self.small, common.limited(self.small, req)) self.assertEqual(self.medium, common.limited(self.medium, req)) self.assertEqual(self.large[:1000], common.limited(self.large, req)) def test_limiter_limit_bad(self): """Test with a bad limit.""" req = webob.Request.blank(u'/?limit=hello') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_limit_medium(self): """Test limit of 10.""" req = webob.Request.blank('/?limit=10') self.assertEqual(self.tiny, common.limited(self.tiny, req)) self.assertEqual(self.small, common.limited(self.small, req)) self.assertEqual(self.medium[:10], common.limited(self.medium, req)) self.assertEqual(self.large[:10], common.limited(self.large, req)) def test_limiter_limit_over_max(self): """Test limit of 3000.""" req = webob.Request.blank('/?limit=3000') self.assertEqual(self.tiny, common.limited(self.tiny, req)) self.assertEqual(self.small, common.limited(self.small, req)) self.assertEqual(self.medium, common.limited(self.medium, req)) self.assertEqual(self.large[:1000], common.limited(self.large, req)) def test_limiter_limit_and_offset(self): """Test request with both limit and offset.""" items = list(range(2000)) req = webob.Request.blank('/?offset=1&limit=3') self.assertEqual(items[1:4], common.limited(items, req)) req = webob.Request.blank('/?offset=3&limit=0') self.assertEqual(items[3:1003], common.limited(items, req)) req = webob.Request.blank('/?offset=3&limit=1500') self.assertEqual(items[3:1003], common.limited(items, req)) req = webob.Request.blank('/?offset=3000&limit=10') self.assertEqual([], common.limited(items, req)) def test_limiter_custom_max_limit(self): """Test a max_limit other than 1000.""" items = list(range(2000)) req = webob.Request.blank('/?offset=1&limit=3') self.assertEqual( items[1:4], common.limited(items, req, max_limit=2000)) req = webob.Request.blank('/?offset=3&limit=0') self.assertEqual( items[3:], common.limited(items, req, max_limit=2000)) req = webob.Request.blank('/?offset=3&limit=2500') self.assertEqual( items[3:], common.limited(items, req, max_limit=2000)) req = webob.Request.blank('/?offset=3000&limit=10') self.assertEqual([], common.limited(items, req, max_limit=2000)) def test_limiter_negative_limit(self): """Test a negative limit.""" req = webob.Request.blank('/?limit=-3000') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) def test_limiter_negative_offset(self): """Test a negative offset.""" req = webob.Request.blank('/?offset=-30') self.assertRaises( webob.exc.HTTPBadRequest, common.limited, self.tiny, req) class PaginationParamsTest(test.TestCase): """Unit tests for `cinder.api.common.get_pagination_params` method. This method takes in a request object and returns 'marker' and 'limit' GET params. """ def test_nonnumerical_limit(self): """Test nonnumerical limit param.""" req = webob.Request.blank('/?limit=hello') self.assertRaises( webob.exc.HTTPBadRequest, common.get_pagination_params, req.GET.copy()) @mock.patch.object(common, 'CONF') def test_no_params(self, mock_cfg): """Test no params.""" mock_cfg.osapi_max_limit = 100 req = webob.Request.blank('/') expected = (None, 100, 0) self.assertEqual(expected, common.get_pagination_params(req.GET.copy())) def test_valid_marker(self): """Test valid marker param.""" marker = '263abb28-1de6-412f-b00b-f0ee0c4333c2' req = webob.Request.blank('/?marker=' + marker) expected = (marker, CONF.osapi_max_limit, 0) self.assertEqual(expected, common.get_pagination_params(req.GET.copy())) def test_valid_limit(self): """Test valid limit param.""" req = webob.Request.blank('/?limit=10') expected = (None, 10, 0) self.assertEqual(expected, common.get_pagination_params(req.GET.copy())) def test_invalid_limit(self): """Test invalid limit param.""" req = webob.Request.blank('/?limit=-2') self.assertRaises( webob.exc.HTTPBadRequest, common.get_pagination_params, req.GET.copy()) def test_valid_limit_and_marker(self): """Test valid limit and marker parameters.""" marker = '263abb28-1de6-412f-b00b-f0ee0c4333c2' req = webob.Request.blank('/?limit=20&marker=%s' % marker) expected = (marker, 20, 0) self.assertEqual(expected, common.get_pagination_params(req.GET.copy())) class SortParamUtilsTest(test.TestCase): def test_get_sort_params_defaults(self): """Verifies the default sort key and direction.""" sort_keys, sort_dirs = common.get_sort_params({}) self.assertEqual(['created_at'], sort_keys) self.assertEqual(['desc'], sort_dirs) def test_get_sort_params_override_defaults(self): """Verifies that the defaults can be overriden.""" sort_keys, sort_dirs = common.get_sort_params({}, default_key='key1', default_dir='dir1') self.assertEqual(['key1'], sort_keys) self.assertEqual(['dir1'], sort_dirs) def test_get_sort_params_single_value_sort_param(self): """Verifies a single sort key and direction.""" params = {'sort': 'key1:dir1'} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1'], sort_keys) self.assertEqual(['dir1'], sort_dirs) def test_get_sort_params_single_value_old_params(self): """Verifies a single sort key and direction.""" params = {'sort_key': 'key1', 'sort_dir': 'dir1'} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1'], sort_keys) self.assertEqual(['dir1'], sort_dirs) def test_get_sort_params_single_with_default_sort_param(self): """Verifies a single sort value with a default direction.""" params = {'sort': 'key1'} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1'], sort_keys) # Direction should be defaulted self.assertEqual(['desc'], sort_dirs) def test_get_sort_params_single_with_default_old_params(self): """Verifies a single sort value with a default direction.""" params = {'sort_key': 'key1'} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1'], sort_keys) # Direction should be defaulted self.assertEqual(['desc'], sort_dirs) def test_get_sort_params_multiple_values(self): """Verifies multiple sort parameter values.""" params = {'sort': 'key1:dir1,key2:dir2,key3:dir3'} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1', 'key2', 'key3'], sort_keys) self.assertEqual(['dir1', 'dir2', 'dir3'], sort_dirs) def test_get_sort_params_multiple_not_all_dirs(self): """Verifies multiple sort keys without all directions.""" params = {'sort': 'key1:dir1,key2,key3:dir3'} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1', 'key2', 'key3'], sort_keys) # Second key is missing the direction, should be defaulted self.assertEqual(['dir1', 'desc', 'dir3'], sort_dirs) def test_get_sort_params_multiple_override_default_dir(self): """Verifies multiple sort keys and overriding default direction.""" params = {'sort': 'key1:dir1,key2,key3'} sort_keys, sort_dirs = common.get_sort_params(params, default_dir='foo') self.assertEqual(['key1', 'key2', 'key3'], sort_keys) self.assertEqual(['dir1', 'foo', 'foo'], sort_dirs) def test_get_sort_params_params_modified(self): """Verifies that the input sort parameter are modified.""" params = {'sort': 'key1:dir1,key2:dir2,key3:dir3'} common.get_sort_params(params) self.assertEqual({}, params) params = {'sort_key': 'key1', 'sort_dir': 'dir1'} common.get_sort_params(params) self.assertEqual({}, params) def test_get_sort_params_random_spaces(self): """Verifies that leading and trailing spaces are removed.""" params = {'sort': ' key1 : dir1,key2: dir2 , key3 '} sort_keys, sort_dirs = common.get_sort_params(params) self.assertEqual(['key1', 'key2', 'key3'], sort_keys) self.assertEqual(['dir1', 'dir2', 'desc'], sort_dirs) def test_get_params_mix_sort_and_old_params(self): """An exception is raised if both types of sorting params are given.""" for params in ({'sort': 'k1', 'sort_key': 'k1'}, {'sort': 'k1', 'sort_dir': 'd1'}, {'sort': 'k1', 'sort_key': 'k1', 'sort_dir': 'd2'}): self.assertRaises(webob.exc.HTTPBadRequest, common.get_sort_params, params) class MiscFunctionsTest(test.TestCase): def test_remove_major_version_from_href(self): fixture = 'http://www.testsite.com/v1/images' expected = 'http://www.testsite.com/images' actual = common.remove_version_from_href(fixture) self.assertEqual(expected, actual) def test_remove_version_from_href(self): fixture = 'http://www.testsite.com/v1.1/images' expected = 'http://www.testsite.com/images' actual = common.remove_version_from_href(fixture) self.assertEqual(expected, actual) def test_remove_version_from_href_2(self): fixture = 'http://www.testsite.com/v1.1/' expected = 'http://www.testsite.com/' actual = common.remove_version_from_href(fixture) self.assertEqual(expected, actual) def test_remove_version_from_href_3(self): fixture = 'http://www.testsite.com/v10.10' expected = 'http://www.testsite.com' actual = common.remove_version_from_href(fixture) self.assertEqual(expected, actual) def test_remove_version_from_href_4(self): fixture = 'http://www.testsite.com/v1.1/images/v10.5' expected = 'http://www.testsite.com/images/v10.5' actual = common.remove_version_from_href(fixture) self.assertEqual(expected, actual) def test_remove_version_from_href_bad_request(self): fixture = 'http://www.testsite.com/1.1/images' self.assertRaises(ValueError, common.remove_version_from_href, fixture) def test_remove_version_from_href_bad_request_2(self): fixture = 'http://www.testsite.com/v/images' self.assertRaises(ValueError, common.remove_version_from_href, fixture) def test_remove_version_from_href_bad_request_3(self): fixture = 'http://www.testsite.com/v1.1images' self.assertRaises(ValueError, common.remove_version_from_href, fixture) class TestCollectionLinks(test.TestCase): """Tests the _get_collection_links method.""" def _validate_next_link(self, item_count, osapi_max_limit, limit, should_link_exist): req = webob.Request.blank('/?limit=%s' % limit if limit else '/') link_return = [{"rel": "next", "href": "fake_link"}] self.flags(osapi_max_limit=osapi_max_limit) if limit is None: limited_list_size = min(item_count, osapi_max_limit) else: limited_list_size = min(item_count, osapi_max_limit, limit) limited_list = [{"uuid": str(i)} for i in range(limited_list_size)] builder = common.ViewBuilder() def get_pagination_params(params, max_limit=CONF.osapi_max_limit, original_call=common.get_pagination_params): return original_call(params, max_limit) def _get_limit_param(params, max_limit=CONF.osapi_max_limit, original_call=common._get_limit_param): return original_call(params, max_limit) with mock.patch.object(common, 'get_pagination_params', get_pagination_params), \ mock.patch.object(common, '_get_limit_param', _get_limit_param), \ mock.patch.object(common.ViewBuilder, '_generate_next_link', return_value=link_return) as href_link_mock: results = builder._get_collection_links(req, limited_list, mock.sentinel.coll_key, item_count, "uuid") if should_link_exist: href_link_mock.assert_called_once_with(limited_list, "uuid", req, mock.sentinel.coll_key) self.assertThat(results, matchers.HasLength(1)) else: self.assertFalse(href_link_mock.called) self.assertThat(results, matchers.HasLength(0)) def test_items_equals_osapi_max_no_limit(self): item_count = 5 osapi_max_limit = 5 limit = None should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_equals_osapi_max_greater_than_limit(self): item_count = 5 osapi_max_limit = 5 limit = 4 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_equals_osapi_max_equals_limit(self): item_count = 5 osapi_max_limit = 5 limit = 5 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_equals_osapi_max_less_than_limit(self): item_count = 5 osapi_max_limit = 5 limit = 6 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_less_than_osapi_max_no_limit(self): item_count = 5 osapi_max_limit = 7 limit = None should_link_exist = False self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_limit_less_than_items_less_than_osapi_max(self): item_count = 5 osapi_max_limit = 7 limit = 4 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_limit_equals_items_less_than_osapi_max(self): item_count = 5 osapi_max_limit = 7 limit = 5 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_less_than_limit_less_than_osapi_max(self): item_count = 5 osapi_max_limit = 7 limit = 6 should_link_exist = False self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_less_than_osapi_max_equals_limit(self): item_count = 5 osapi_max_limit = 7 limit = 7 should_link_exist = False self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_less_than_osapi_max_less_than_limit(self): item_count = 5 osapi_max_limit = 7 limit = 8 should_link_exist = False self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_greater_than_osapi_max_no_limit(self): item_count = 5 osapi_max_limit = 3 limit = None should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_limit_less_than_items_greater_than_osapi_max(self): item_count = 5 osapi_max_limit = 3 limit = 2 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_greater_than_osapi_max_equals_limit(self): item_count = 5 osapi_max_limit = 3 limit = 3 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_greater_than_limit_greater_than_osapi_max(self): item_count = 5 osapi_max_limit = 3 limit = 4 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_items_equals_limit_greater_than_osapi_max(self): item_count = 5 osapi_max_limit = 3 limit = 5 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) def test_limit_greater_than_items_greater_than_osapi_max(self): item_count = 5 osapi_max_limit = 3 limit = 6 should_link_exist = True self._validate_next_link(item_count, osapi_max_limit, limit, should_link_exist) class LinkPrefixTest(test.TestCase): def test_update_link_prefix(self): vb = common.ViewBuilder() result = vb._update_link_prefix("http://192.168.0.243:24/", "http://127.0.0.1/volume") self.assertEqual("http://127.0.0.1/volume", result) result = vb._update_link_prefix("http://foo.x.com/v1", "http://new.prefix.com") self.assertEqual("http://new.prefix.com/v1", result) result = vb._update_link_prefix( "http://foo.x.com/v1", "http://new.prefix.com:20455/new_extra_prefix") self.assertEqual("http://new.prefix.com:20455/new_extra_prefix/v1", result) class RequestUrlTest(test.TestCase): def test_get_request_url_no_forward(self): app_url = 'http://127.0.0.1/v2;param?key=value#frag' request = type('', (), { 'application_url': app_url, 'headers': {} }) result = common.get_request_url(request) self.assertEqual(app_url, result) def test_get_request_url_forward(self): request = type('', (), { 'application_url': 'http://127.0.0.1/v2;param?key=value#frag', 'headers': {'X-Forwarded-Host': '192.168.0.243:24'} }) result = common.get_request_url(request) self.assertEqual('http://192.168.0.243:24/v2;param?key=value#frag', result)
41.378709
79
0.624926
526f85faefffb7a27b2a9d26caa193a6161572c1
731
py
Python
docs/conf.py
ewerybody/svg.charts
eb77a381f0721b3d59ae9461765ac9e9cffef586
[ "MIT" ]
null
null
null
docs/conf.py
ewerybody/svg.charts
eb77a381f0721b3d59ae9461765ac9e9cffef586
[ "MIT" ]
null
null
null
docs/conf.py
ewerybody/svg.charts
eb77a381f0721b3d59ae9461765ac9e9cffef586
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 extensions = ['sphinx.ext.autodoc', 'jaraco.packaging.sphinx', 'rst.linker'] master_doc = "index" link_files = { '../CHANGES.rst': dict( using=dict(GH='https://github.com'), replace=[ dict( pattern=r'(Issue #|\B#)(?P<issue>\d+)', url='{package_url}/issues/{issue}', ), dict( pattern=r'^(?m)((?P<scm_version>v?\d+(\.\d+){1,2}))\n[-=]+\n', with_scm='{text}\n{rev[timestamp]:%d %b %Y}\n', ), dict( pattern=r'PEP[- ](?P<pep_number>\d+)', url='https://www.python.org/dev/peps/pep-{pep_number:0>4}/', ), ], ) }
28.115385
78
0.44186
4abf42ec5755348ef4414f50a7e108aacf831343
101,692
py
Python
pysnmp/TIMETRA-LOG-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/TIMETRA-LOG-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/TIMETRA-LOG-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module TIMETRA-LOG-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TIMETRA-LOG-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:09:43 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint", "SingleValueConstraint", "ValueRangeConstraint") InetAddress, InetAddressType = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddress", "InetAddressType") SnmpSecurityLevel, SnmpMessageProcessingModel, SnmpAdminString = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpSecurityLevel", "SnmpMessageProcessingModel", "SnmpAdminString") snmpNotifyEntry, = mibBuilder.importSymbols("SNMP-NOTIFICATION-MIB", "snmpNotifyEntry") ModuleCompliance, ObjectGroup, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "ObjectGroup", "NotificationGroup") sysDescr, sysObjectID = mibBuilder.importSymbols("SNMPv2-MIB", "sysDescr", "sysObjectID") MibIdentifier, Counter32, iso, NotificationType, TimeTicks, Unsigned32, Counter64, Bits, Gauge32, ModuleIdentity, IpAddress, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "MibIdentifier", "Counter32", "iso", "NotificationType", "TimeTicks", "Unsigned32", "Counter64", "Bits", "Gauge32", "ModuleIdentity", "IpAddress", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity") StorageType, TruthValue, DateAndTime, TextualConvention, DisplayString, TimeStamp, RowStatus = mibBuilder.importSymbols("SNMPv2-TC", "StorageType", "TruthValue", "DateAndTime", "TextualConvention", "DisplayString", "TimeStamp", "RowStatus") TFilterAction, TFilterActionOrDefault = mibBuilder.importSymbols("TIMETRA-FILTER-MIB", "TFilterAction", "TFilterActionOrDefault") tmnxSRConfs, timetraSRMIBModules, tmnxSRNotifyPrefix, tmnxSRObjs = mibBuilder.importSymbols("TIMETRA-GLOBAL-MIB", "tmnxSRConfs", "timetraSRMIBModules", "tmnxSRNotifyPrefix", "tmnxSRObjs") TItemDescription, TQueueId, TQueueIdOrAll, TmnxOperState, TmnxActionType, TmnxAccPlcyQECounters, THsmdaCounterIdOrZeroOrAll, TmnxAdminState, TmnxAccPlcyOECounters, TmnxAccPlcyQICounters, TNamedItem, TmnxAccPlcyAACounters, TNamedItemOrEmpty, THsmdaCounterIdOrZero, TmnxAccPlcyOICounters = mibBuilder.importSymbols("TIMETRA-TC-MIB", "TItemDescription", "TQueueId", "TQueueIdOrAll", "TmnxOperState", "TmnxActionType", "TmnxAccPlcyQECounters", "THsmdaCounterIdOrZeroOrAll", "TmnxAdminState", "TmnxAccPlcyOECounters", "TmnxAccPlcyQICounters", "TNamedItem", "TmnxAccPlcyAACounters", "TNamedItemOrEmpty", "THsmdaCounterIdOrZero", "TmnxAccPlcyOICounters") timetraLogMIBModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 6527, 1, 1, 3, 12)) timetraLogMIBModule.setRevisions(('2011-02-01 00:00', '2009-02-28 00:00', '2008-01-01 00:00', '2007-01-01 00:00', '2006-03-15 00:00', '2005-01-24 00:00', '2004-05-27 00:00', '2004-01-15 00:00', '2003-08-15 00:00', '2003-01-20 00:00', '2001-11-10 00:00',)) if mibBuilder.loadTexts: timetraLogMIBModule.setLastUpdated('201102010000Z') if mibBuilder.loadTexts: timetraLogMIBModule.setOrganization('Alcatel-Lucent') tmnxLogObjs = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12)) tmnxLogNotificationObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1)) tmnxLogNotifyPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12)) tmnxLogNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0)) tmnxLogConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12)) class TmnxPerceivedSeverity(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6)) namedValues = NamedValues(("none", 0), ("cleared", 1), ("indeterminate", 2), ("critical", 3), ("major", 4), ("minor", 5), ("warning", 6)) class TmnxSyslogId(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(1, 10) class TmnxSyslogIdOrEmpty(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(ValueRangeConstraint(0, 0), ValueRangeConstraint(1, 10), ) class TmnxSyslogFacility(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)) namedValues = NamedValues(("kernel", 0), ("user", 1), ("mail", 2), ("systemd", 3), ("auth", 4), ("syslogd", 5), ("printer", 6), ("netnews", 7), ("uucp", 8), ("cron", 9), ("authpriv", 10), ("ftp", 11), ("ntp", 12), ("logaudit", 13), ("logalert", 14), ("cron2", 15), ("local0", 16), ("local1", 17), ("local2", 18), ("local3", 19), ("local4", 20), ("local5", 21), ("local6", 22), ("local7", 23)) class TmnxUdpPort(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 65535) class TmnxSyslogSeverity(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7)) namedValues = NamedValues(("emergency", 0), ("alert", 1), ("critical", 2), ("error", 3), ("warning", 4), ("notice", 5), ("info", 6), ("debug", 7)) class TmnxLogFileId(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(0, 99) class TmnxLogFileType(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(0, 1, 2)) namedValues = NamedValues(("none", 0), ("eventLog", 1), ("accountingPolicy", 2)) class TmnxLogIdIndex(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ValueRangeConstraint(1, 100) class TmnxCFlash(TextualConvention, Unsigned32): status = 'current' class TmnxLogFilterId(TextualConvention, Unsigned32): status = 'current' subtypeSpec = Unsigned32.subtypeSpec + ValueRangeConstraint(0, 1001) class TmnxLogFilterEntryId(TextualConvention, Unsigned32): status = 'current' subtypeSpec = Unsigned32.subtypeSpec + ValueRangeConstraint(1, 999) class TmnxLogFilterOperator(TextualConvention, Integer32): status = 'current' subtypeSpec = Integer32.subtypeSpec + ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7)) namedValues = NamedValues(("off", 1), ("equal", 2), ("notEqual", 3), ("lessThan", 4), ("lessThanOrEqual", 5), ("greaterThan", 6), ("greaterThanOrEqual", 7)) class TmnxEventNumber(TextualConvention, Unsigned32): status = 'current' tmnxLogMaxLogs = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 2), Unsigned32().clone(15)).setUnits('logs').setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogMaxLogs.setStatus('current') tmnxLogFileIdTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3), ) if mibBuilder.loadTexts: tmnxLogFileIdTable.setStatus('current') tmnxLogFileIdEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogFileId")) if mibBuilder.loadTexts: tmnxLogFileIdEntry.setStatus('current') tmnxLogFileId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 1), TmnxLogFileId()) if mibBuilder.loadTexts: tmnxLogFileId.setStatus('current') tmnxLogFileIdRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdRowStatus.setStatus('current') tmnxLogFileIdStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 3), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdStorageType.setStatus('current') tmnxLogFileIdRolloverTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(5, 10080)).clone(1440)).setUnits('minutes').setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdRolloverTime.setStatus('current') tmnxLogFileIdRetainTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 500)).clone(12)).setUnits('hours').setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdRetainTime.setStatus('current') tmnxLogFileIdAdminLocation = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 6), TmnxCFlash()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdAdminLocation.setStatus('current') tmnxLogFileIdOperLocation = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 7), TmnxCFlash()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogFileIdOperLocation.setStatus('current') tmnxLogFileIdDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 8), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdDescription.setStatus('current') tmnxLogFileIdLogType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 9), TmnxLogFileType()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogFileIdLogType.setStatus('current') tmnxLogFileIdLogId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 99))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogFileIdLogId.setStatus('current') tmnxLogFileIdPathName = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 11), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogFileIdPathName.setStatus('current') tmnxLogFileIdCreateTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 12), DateAndTime()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogFileIdCreateTime.setStatus('current') tmnxLogFileIdBackupLoc = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 3, 1, 13), TmnxCFlash()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFileIdBackupLoc.setStatus('current') tmnxLogApTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4), ) if mibBuilder.loadTexts: tmnxLogApTable.setStatus('current') tmnxLogApEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogApPolicyId")) if mibBuilder.loadTexts: tmnxLogApEntry.setStatus('current') tmnxLogApPolicyId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 99))) if mibBuilder.loadTexts: tmnxLogApPolicyId.setStatus('current') tmnxLogApRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApRowStatus.setStatus('current') tmnxLogApStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 3), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApStorageType.setStatus('current') tmnxLogApAdminStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 4), TmnxAdminState().clone('outOfService')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApAdminStatus.setStatus('current') tmnxLogApOperStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 5), TmnxOperState()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApOperStatus.setStatus('current') tmnxLogApInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 120)).clone(5)).setUnits('minutes').setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApInterval.setStatus('current') tmnxLogApDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 7), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApDescription.setStatus('current') tmnxLogApDefault = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 8), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApDefault.setStatus('current') tmnxLogApRecord = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61))).clone(namedValues=NamedValues(("none", 0), ("svcIngressOctet", 1), ("svcEgressOctet", 2), ("svcIngressPkt", 3), ("svcEgressPkt", 4), ("netIngressOctet", 5), ("netEgressOctet", 6), ("netIngressPkt", 7), ("netEgressPkt", 8), ("compactSvcInOctet", 9), ("combinedSvcIngress", 10), ("combinedNetInEgOctet", 11), ("combinedSvcInEgOctet", 12), ("completeSvcInEg", 13), ("combinedSvcSdpInEg", 14), ("completeSvcSdpInEg", 15), ("completeSubscrIngrEgr", 16), ("bsxProtocol", 17), ("bsxApplication", 18), ("bsxAppGroup", 19), ("bsxSubscriberProtocol", 20), ("bsxSubscriberApplication", 21), ("bsxSubscriberAppGroup", 22), ("customRecordSubscriber", 23), ("customRecordService", 24), ("customRecordAa", 25), ("queueGroupOctets", 26), ("queueGroupPackets", 27), ("combinedQueueGroup", 28), ("combinedMplsLspIngress", 29), ("combinedMplsLspEgress", 30), ("combinedLdpLspEgress", 31), ("saa", 32), ("video", 33), ("kpiSystem", 34), ("kpiBearerMgmt", 35), ("kpiBearerTraffic", 36), ("kpiRefPoint", 37), ("kpiPathMgmt", 38), ("kpiIom3", 39), ("kciSystem", 40), ("kciBearerMgmt", 41), ("kciPathMgmt", 42), ("completeKpi", 43), ("completeKci", 44), ("kpiBearerGroup", 45), ("kpiRefPathGroup", 46), ("kpiKciBearerMgmt", 47), ("kpiKciPathMgmt", 48), ("kpiKciSystem", 49), ("completeKpiKci", 50), ("aaPerformance", 51), ("netInfIngressOct", 52), ("netInfIngressPkt", 53), ("combinedNetInfIngress", 54), ("accessEgressPkt", 55), ("accessEgressOct", 56), ("combinedAccessEgress", 57), ("combinedNetEgress", 58), ("combinedSvcEgress", 59), ("combinedSvcInEgPkt", 60), ("combinedNetInEgPkt", 61))).clone('none')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApRecord.setStatus('current') tmnxLogApToFileId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 10), TmnxLogFileId()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApToFileId.setStatus('current') tmnxLogApPortType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 11), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14))).clone(namedValues=NamedValues(("none", 0), ("access", 1), ("network", 2), ("sdp", 3), ("subscriber", 4), ("appAssure", 5), ("qgrp", 6), ("saa", 7), ("mplsLspIngr", 8), ("mplsLspEgr", 9), ("ldpLspEgr", 10), ("video", 11), ("mobileGateway", 12), ("networkIf", 13), ("accessport", 14)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApPortType.setStatus('current') tmnxLogApDefaultInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 12), TruthValue().clone('true')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApDefaultInterval.setStatus('current') tmnxLogApDataLossCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApDataLossCount.setStatus('current') tmnxLogApLastDataLossTimeStamp = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 14), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApLastDataLossTimeStamp.setStatus('current') tmnxLogApToFileType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 4, 1, 15), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1))).clone(namedValues=NamedValues(("fileId", 0), ("noFile", 1))).clone('fileId')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApToFileType.setStatus('current') tmnxLogIdTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5), ) if mibBuilder.loadTexts: tmnxLogIdTable.setStatus('current') tmnxLogIdEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogIdIndex")) if mibBuilder.loadTexts: tmnxLogIdEntry.setStatus('current') tmnxLogIdIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 1), TmnxLogIdIndex()) if mibBuilder.loadTexts: tmnxLogIdIndex.setStatus('current') tmnxLogIdRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdRowStatus.setStatus('current') tmnxLogIdStorageType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 3), StorageType().clone('nonVolatile')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdStorageType.setStatus('current') tmnxLogIdAdminStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 4), TmnxAdminState().clone('inService')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdAdminStatus.setStatus('current') tmnxLogIdOperStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 5), TmnxOperState()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogIdOperStatus.setStatus('current') tmnxLogIdDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 6), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdDescription.setStatus('current') tmnxLogIdFilterId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 7), TmnxLogFilterId()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdFilterId.setStatus('current') tmnxLogIdSource = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 8), Bits().clone(namedValues=NamedValues(("main", 0), ("security", 1), ("change", 2), ("debugTrace", 3), ("li", 4)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdSource.setStatus('current') tmnxLogIdDestination = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("none", 0), ("console", 1), ("syslog", 2), ("snmpTraps", 3), ("file", 4), ("memory", 5))).clone('none')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdDestination.setStatus('current') tmnxLogIdFileId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 10), TmnxLogFileId()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdFileId.setStatus('current') tmnxLogIdSyslogId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 11), TmnxSyslogIdOrEmpty()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdSyslogId.setStatus('current') tmnxLogIdMaxMemorySize = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 12), Unsigned32().subtype(subtypeSpec=ConstraintsUnion(ValueRangeConstraint(0, 0), ValueRangeConstraint(50, 3000), )).clone(100)).setUnits('events').setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdMaxMemorySize.setStatus('current') tmnxLogIdConsoleSession = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 13), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdConsoleSession.setStatus('current') tmnxLogIdForwarded = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 14), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogIdForwarded.setStatus('current') tmnxLogIdDropped = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 15), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogIdDropped.setStatus('current') tmnxLogIdTimeFormat = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 5, 1, 16), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("utc", 1), ("local", 2))).clone('utc')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogIdTimeFormat.setStatus('current') tmnxLogFilterTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6), ) if mibBuilder.loadTexts: tmnxLogFilterTable.setStatus('current') tmnxLogFilterEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogFilterId")) if mibBuilder.loadTexts: tmnxLogFilterEntry.setStatus('current') tmnxLogFilterId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6, 1, 1), TmnxLogFilterId().subtype(subtypeSpec=ValueRangeConstraint(1, 1001))) if mibBuilder.loadTexts: tmnxLogFilterId.setStatus('current') tmnxLogFilterRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterRowStatus.setStatus('current') tmnxLogFilterDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6, 1, 3), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterDescription.setStatus('current') tmnxLogFilterDefaultAction = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6, 1, 4), TFilterAction().clone('forward')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterDefaultAction.setStatus('current') tmnxLogFilterInUse = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 6, 1, 5), TruthValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogFilterInUse.setStatus('current') tmnxLogFilterParamsTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7), ) if mibBuilder.loadTexts: tmnxLogFilterParamsTable.setStatus('current') tmnxLogFilterParamsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogFilterId"), (0, "TIMETRA-LOG-MIB", "tmnxLogFilterParamsIndex")) if mibBuilder.loadTexts: tmnxLogFilterParamsEntry.setStatus('current') tmnxLogFilterParamsIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 1), TmnxLogFilterEntryId()) if mibBuilder.loadTexts: tmnxLogFilterParamsIndex.setStatus('current') tmnxLogFilterParamsRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsRowStatus.setStatus('current') tmnxLogFilterParamsDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 3), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsDescription.setStatus('current') tmnxLogFilterParamsAction = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 4), TFilterActionOrDefault().clone('default')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsAction.setStatus('current') tmnxLogFilterParamsApplication = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 5), TNamedItemOrEmpty().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsApplication.setStatus('current') tmnxLogFilterParamsApplOperator = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 6), TmnxLogFilterOperator().clone('off')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsApplOperator.setStatus('current') tmnxLogFilterParamsNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 7), TmnxEventNumber()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsNumber.setStatus('current') tmnxLogFilterParamsNumberOperator = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 8), TmnxLogFilterOperator().clone('off')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsNumberOperator.setStatus('current') tmnxLogFilterParamsSeverity = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 9), TmnxPerceivedSeverity().clone('none')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsSeverity.setStatus('current') tmnxLogFilterParamsSeverityOperator = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 10), TmnxLogFilterOperator().clone('off')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsSeverityOperator.setStatus('current') tmnxLogFilterParamsSubject = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 11), TNamedItemOrEmpty().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsSubject.setStatus('current') tmnxLogFilterParamsSubjectOperator = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 12), TmnxLogFilterOperator().clone('off')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsSubjectOperator.setStatus('current') tmnxLogFilterParamsSubjectRegexp = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 13), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsSubjectRegexp.setStatus('current') tmnxLogFilterParamsRouter = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 14), TNamedItemOrEmpty().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsRouter.setStatus('current') tmnxLogFilterParamsRouterOperator = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 15), TmnxLogFilterOperator().clone('off')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsRouterOperator.setStatus('current') tmnxLogFilterParamsRouterRegexp = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 7, 1, 16), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogFilterParamsRouterRegexp.setStatus('current') tmnxSyslogTargetTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8), ) if mibBuilder.loadTexts: tmnxSyslogTargetTable.setStatus('current') tmnxSyslogTargetEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxSyslogTargetIndex")) if mibBuilder.loadTexts: tmnxSyslogTargetEntry.setStatus('current') tmnxSyslogTargetIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 1), TmnxSyslogId()) if mibBuilder.loadTexts: tmnxSyslogTargetIndex.setStatus('current') tmnxSyslogTargetRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetRowStatus.setStatus('current') tmnxSyslogTargetDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 3), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetDescription.setStatus('current') tmnxSyslogTargetAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 4), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetAddress.setStatus('obsolete') tmnxSyslogTargetUdpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 5), TmnxUdpPort().clone(514)).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetUdpPort.setStatus('current') tmnxSyslogTargetFacility = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 6), TmnxSyslogFacility().clone('local7')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetFacility.setStatus('current') tmnxSyslogTargetSeverity = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 7), TmnxSyslogSeverity().clone('info')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetSeverity.setStatus('current') tmnxSyslogTargetMessagePrefix = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 8), TNamedItemOrEmpty().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetMessagePrefix.setStatus('current') tmnxSyslogTargetMessagesDropped = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSyslogTargetMessagesDropped.setStatus('current') tmnxSyslogTargetAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 10), InetAddressType().clone('unknown')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetAddrType.setStatus('current') tmnxSyslogTargetAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 8, 1, 11), InetAddress().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(4, 4), ValueSizeConstraint(16, 16), ValueSizeConstraint(20, 20), )).clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSyslogTargetAddr.setStatus('current') tmnxEventAppTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 9), ) if mibBuilder.loadTexts: tmnxEventAppTable.setStatus('current') tmnxEventAppEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 9, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxEventAppIndex")) if mibBuilder.loadTexts: tmnxEventAppEntry.setStatus('current') tmnxEventAppIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 9, 1, 1), Unsigned32()) if mibBuilder.loadTexts: tmnxEventAppIndex.setStatus('current') tmnxEventAppName = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 9, 1, 2), TNamedItem()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxEventAppName.setStatus('current') tmnxEventTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10), ) if mibBuilder.loadTexts: tmnxEventTable.setStatus('current') tmnxEventEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxEventAppIndex"), (0, "TIMETRA-LOG-MIB", "tmnxEventID")) if mibBuilder.loadTexts: tmnxEventEntry.setStatus('current') tmnxEventID = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 1), Unsigned32()) if mibBuilder.loadTexts: tmnxEventID.setStatus('current') tmnxEventName = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 2), TNamedItem()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxEventName.setStatus('current') tmnxEventSeverity = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 3), TmnxPerceivedSeverity()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventSeverity.setStatus('current') tmnxEventControl = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 4), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventControl.setStatus('current') tmnxEventCounter = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxEventCounter.setStatus('current') tmnxEventDropCount = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxEventDropCount.setStatus('current') tmnxEventReset = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 7), TmnxActionType().clone('notApplicable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventReset.setStatus('current') tmnxEventThrottle = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 10, 1, 8), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventThrottle.setStatus('current') tmnxSnmpTrapGroupTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11), ) if mibBuilder.loadTexts: tmnxSnmpTrapGroupTable.setStatus('obsolete') tmnxSnmpTrapGroupEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxStgIndex"), (0, "TIMETRA-LOG-MIB", "tmnxStgDestAddress"), (0, "TIMETRA-LOG-MIB", "tmnxStgDestPort")) if mibBuilder.loadTexts: tmnxSnmpTrapGroupEntry.setStatus('obsolete') tmnxStgIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 1), TmnxLogIdIndex()) if mibBuilder.loadTexts: tmnxStgIndex.setStatus('obsolete') tmnxStgDestAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 2), IpAddress().clone(hexValue="00000000")) if mibBuilder.loadTexts: tmnxStgDestAddress.setStatus('obsolete') tmnxStgDestPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 3), TmnxUdpPort().clone(162)) if mibBuilder.loadTexts: tmnxStgDestPort.setStatus('obsolete') tmnxStgRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStgRowStatus.setStatus('obsolete') tmnxStgDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 5), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStgDescription.setStatus('obsolete') tmnxStgVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 6), SnmpMessageProcessingModel().clone(3)).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStgVersion.setStatus('obsolete') tmnxStgNotifyCommunity = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 32)).clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStgNotifyCommunity.setStatus('obsolete') tmnxStgSecurityLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 11, 1, 8), SnmpSecurityLevel().clone('noAuthNoPriv')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStgSecurityLevel.setStatus('obsolete') tmnxEventTest = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 12), TmnxActionType().clone('notApplicable')).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventTest.setStatus('current') tmnxEventThrottleLimit = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 13), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 20000)).clone(2000)).setUnits('events').setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventThrottleLimit.setStatus('current') tmnxEventThrottleInterval = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 14), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 1200)).clone(1)).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventThrottleInterval.setStatus('current') tmnxSnmpSetErrsMax = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 15), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSnmpSetErrsMax.setStatus('current') tmnxSnmpSetErrsTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16), ) if mibBuilder.loadTexts: tmnxSnmpSetErrsTable.setStatus('current') tmnxSnmpSetErrsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxSseAddressType"), (0, "TIMETRA-LOG-MIB", "tmnxSseAddress"), (0, "TIMETRA-LOG-MIB", "tmnxSseSnmpPort"), (0, "TIMETRA-LOG-MIB", "tmnxSseRequestId")) if mibBuilder.loadTexts: tmnxSnmpSetErrsEntry.setStatus('current') tmnxSseAddressType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 1), InetAddressType()) if mibBuilder.loadTexts: tmnxSseAddressType.setStatus('current') tmnxSseAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 2), InetAddress().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(4, 4), ValueSizeConstraint(16, 16), ))) if mibBuilder.loadTexts: tmnxSseAddress.setStatus('current') tmnxSseSnmpPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 3), TmnxUdpPort()) if mibBuilder.loadTexts: tmnxSseSnmpPort.setStatus('current') tmnxSseRequestId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 4), Unsigned32()) if mibBuilder.loadTexts: tmnxSseRequestId.setStatus('current') tmnxSseVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 5), SnmpMessageProcessingModel()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseVersion.setStatus('current') tmnxSseSeverityLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 6), TmnxPerceivedSeverity()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseSeverityLevel.setStatus('current') tmnxSseModuleId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseModuleId.setStatus('current') tmnxSseModuleName = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 8), TNamedItem()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseModuleName.setStatus('current') tmnxSseErrorCode = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseErrorCode.setStatus('current') tmnxSseErrorName = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 10), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseErrorName.setStatus('current') tmnxSseErrorMsg = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 11), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseErrorMsg.setStatus('current') tmnxSseExtraText = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 12), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 320))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseExtraText.setStatus('current') tmnxSseTimestamp = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 16, 1, 13), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxSseTimestamp.setStatus('current') tmnxSnmpTrapLogTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 17), ) if mibBuilder.loadTexts: tmnxSnmpTrapLogTable.setStatus('current') tmnxSnmpTrapLogEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 17, 1), ) snmpNotifyEntry.registerAugmentions(("TIMETRA-LOG-MIB", "tmnxSnmpTrapLogEntry")) tmnxSnmpTrapLogEntry.setIndexNames(*snmpNotifyEntry.getIndexNames()) if mibBuilder.loadTexts: tmnxSnmpTrapLogEntry.setStatus('current') tmnxSnmpTrapLogDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 17, 1, 1), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxSnmpTrapLogDescription.setStatus('current') tmnxSnmpTrapDestTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18), ) if mibBuilder.loadTexts: tmnxSnmpTrapDestTable.setStatus('current') tmnxSnmpTrapDestEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxStdIndex"), (1, "TIMETRA-LOG-MIB", "tmnxStdName")) if mibBuilder.loadTexts: tmnxSnmpTrapDestEntry.setStatus('current') tmnxStdIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 1), TmnxLogIdIndex()) if mibBuilder.loadTexts: tmnxStdIndex.setStatus('current') tmnxStdName = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 2), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(1, 28))) if mibBuilder.loadTexts: tmnxStdName.setStatus('current') tmnxStdRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdRowStatus.setStatus('current') tmnxStdRowLastChanged = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 4), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxStdRowLastChanged.setStatus('current') tmnxStdDestAddrType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 5), InetAddressType().clone('unknown')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdDestAddrType.setStatus('current') tmnxStdDestAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 6), InetAddress().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(4, 4), ValueSizeConstraint(16, 16), ValueSizeConstraint(20, 20), )).clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdDestAddr.setStatus('current') tmnxStdDestPort = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 7), TmnxUdpPort().clone(162)).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdDestPort.setStatus('current') tmnxStdDescription = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 8), TItemDescription().clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdDescription.setStatus('current') tmnxStdVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 9), SnmpMessageProcessingModel().clone(3)).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdVersion.setStatus('current') tmnxStdNotifyCommunity = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 10), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 31)).clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdNotifyCommunity.setStatus('current') tmnxStdSecurityLevel = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 11), SnmpSecurityLevel().clone('noAuthNoPriv')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdSecurityLevel.setStatus('current') tmnxStdReplay = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 12), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxStdReplay.setStatus('current') tmnxStdReplayStart = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 13), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxStdReplayStart.setStatus('current') tmnxStdReplayLastTime = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 18, 1, 14), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxStdReplayLastTime.setStatus('current') tmnxStdMaxTargets = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 19), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(10, 100)).clone(25)).setUnits('trap-targets').setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxStdMaxTargets.setStatus('current') tmnxLogApCustRecordTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20), ) if mibBuilder.loadTexts: tmnxLogApCustRecordTable.setStatus('current') tmnxLogApCustRecordEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1), ) tmnxLogApEntry.registerAugmentions(("TIMETRA-LOG-MIB", "tmnxLogApCustRecordEntry")) tmnxLogApCustRecordEntry.setIndexNames(*tmnxLogApEntry.getIndexNames()) if mibBuilder.loadTexts: tmnxLogApCustRecordEntry.setStatus('current') tmnxLogApCrLastChanged = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 1), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApCrLastChanged.setStatus('current') tmnxLogApCrSignChangeDelta = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 2), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeDelta.setStatus('current') tmnxLogApCrSignChangeQueue = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 3), TQueueIdOrAll()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeQueue.setStatus('current') tmnxLogApCrSignChangeOCntr = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 4), THsmdaCounterIdOrZeroOrAll()).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeOCntr.setStatus('current') tmnxLogApCrSignChangeQICounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 5), TmnxAccPlcyQICounters().clone(hexValue="0")).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeQICounters.setStatus('current') tmnxLogApCrSignChangeQECounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 6), TmnxAccPlcyQECounters().clone(hexValue="0")).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeQECounters.setStatus('current') tmnxLogApCrSignChangeOICounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 7), TmnxAccPlcyOICounters().clone(hexValue="0")).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeOICounters.setStatus('current') tmnxLogApCrSignChangeOECounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 8), TmnxAccPlcyOECounters().clone(hexValue="0")).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeOECounters.setStatus('current') tmnxLogApCrSignChangeAACounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 9), TmnxAccPlcyAACounters().clone(hexValue="0")).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrSignChangeAACounters.setStatus('current') tmnxLogApCrAACounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 20, 1, 10), TmnxAccPlcyAACounters().clone(hexValue="0")).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogApCrAACounters.setStatus('current') tmnxLogApCustRecordQueueTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21), ) if mibBuilder.loadTexts: tmnxLogApCustRecordQueueTable.setStatus('current') tmnxLogApCustRecordQueueEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogApPolicyId"), (0, "TIMETRA-LOG-MIB", "tmnxLogApCrQueueId")) if mibBuilder.loadTexts: tmnxLogApCustRecordQueueEntry.setStatus('current') tmnxLogApCrQueueId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21, 1, 1), TQueueId().subtype(subtypeSpec=ValueRangeConstraint(1, 32))) if mibBuilder.loadTexts: tmnxLogApCrQueueId.setStatus('current') tmnxLogApCrQueueRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApCrQueueRowStatus.setStatus('current') tmnxLogApCrQueueLastChanged = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21, 1, 3), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApCrQueueLastChanged.setStatus('current') tmnxLogApCrQueueICounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21, 1, 4), TmnxAccPlcyQICounters().clone(hexValue="0")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApCrQueueICounters.setStatus('current') tmnxLogApCrQueueECounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 21, 1, 5), TmnxAccPlcyQECounters().clone(hexValue="0")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApCrQueueECounters.setStatus('current') tmnxLogApCrOverrideCntrTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22), ) if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrTable.setStatus('current') tmnxLogApCrOverrideCntrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogApPolicyId"), (0, "TIMETRA-LOG-MIB", "tmnxLogApCrOverrideCntrId")) if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrEntry.setStatus('current') tmnxLogApCrOverrideCntrId = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22, 1, 1), THsmdaCounterIdOrZero().subtype(subtypeSpec=ValueRangeConstraint(1, 8))) if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrId.setStatus('current') tmnxLogApCrOverrideCntrRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrRowStatus.setStatus('current') tmnxLogApCrOverrideCntrLastChngd = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22, 1, 3), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrLastChngd.setStatus('current') tmnxLogApCrOverrideCntrICounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22, 1, 4), TmnxAccPlcyOICounters().clone(hexValue="0")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrICounters.setStatus('current') tmnxLogApCrOverrideCntrECounters = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 22, 1, 5), TmnxAccPlcyOECounters().clone(hexValue="0")).setMaxAccess("readcreate") if mibBuilder.loadTexts: tmnxLogApCrOverrideCntrECounters.setStatus('current') tmnxEventPrimaryRoutePref = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 23), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("inband", 1), ("outband", 2))).clone('outband')).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventPrimaryRoutePref.setStatus('current') tmnxEventSecondaryRoutePref = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 24), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("inband", 1), ("outband", 2), ("none", 3))).clone('inband')).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxEventSecondaryRoutePref.setStatus('current') tmnxLogConfigEventsDamped = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 25), TruthValue().clone('true')).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogConfigEventsDamped.setStatus('current') tmnxLogEventHistoryObjs = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26)) tmnxLogEventHistGeneralObjs = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 1)) tmnxLogExRbkOpTblLastChange = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 1, 1), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpTblLastChange.setStatus('current') tmnxLogExRbkOpMaxEntries = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 10)).clone(5)).setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogExRbkOpMaxEntries.setStatus('current') tmnxLogExecRollbackOpTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3), ) if mibBuilder.loadTexts: tmnxLogExecRollbackOpTable.setStatus('current') tmnxLogExecRollbackOpEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogExRbkOpIndex")) if mibBuilder.loadTexts: tmnxLogExecRollbackOpEntry.setStatus('current') tmnxLogExRbkOpIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 1), Unsigned32()) if mibBuilder.loadTexts: tmnxLogExRbkOpIndex.setStatus('current') tmnxLogExRbkOpLastChanged = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 2), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpLastChanged.setStatus('current') tmnxLogExRbkOpType = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2))).clone(namedValues=NamedValues(("unknown", 0), ("exec", 1), ("rollback", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpType.setStatus('current') tmnxLogExRbkOpStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(0, 1, 2, 3))).clone(namedValues=NamedValues(("unknown", 0), ("inProgress", 1), ("success", 2), ("failed", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpStatus.setStatus('current') tmnxLogExRbkOpBegin = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 5), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpBegin.setStatus('current') tmnxLogExRbkOpEnd = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 6), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpEnd.setStatus('current') tmnxLogExRbkOpFile = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 7), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpFile.setStatus('current') tmnxLogExRbkOpUser = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 8), TNamedItem()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpUser.setStatus('current') tmnxLogExRbkOpNumEvents = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 3, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkOpNumEvents.setStatus('current') tmnxLogExecRollbackEventTable = MibTable((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 4), ) if mibBuilder.loadTexts: tmnxLogExecRollbackEventTable.setStatus('current') tmnxLogExecRollbackEventEntry = MibTableRow((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 4, 1), ).setIndexNames((0, "TIMETRA-LOG-MIB", "tmnxLogExRbkOpIndex"), (0, "TIMETRA-LOG-MIB", "tmnxLogExRbkEventIndex")) if mibBuilder.loadTexts: tmnxLogExecRollbackEventEntry.setStatus('current') tmnxLogExRbkEventIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 4, 1, 1), Unsigned32()) if mibBuilder.loadTexts: tmnxLogExRbkEventIndex.setStatus('current') tmnxLogExRbkEventOID = MibTableColumn((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 4, 1, 2), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: tmnxLogExRbkEventOID.setStatus('current') tmnxLogExRbkNotifyObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 5)) tmnxLogExecRollbackOpIndex = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 26, 5, 1), Unsigned32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogExecRollbackOpIndex.setStatus('current') tmnxLogColdStartWaitTime = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 27), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 300))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogColdStartWaitTime.setStatus('current') tmnxLogRouteRecoveryWaitTime = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 28), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 100))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: tmnxLogRouteRecoveryWaitTime.setStatus('current') tmnxLogFileDeletedLogId = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 1), TmnxLogIdIndex()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogFileDeletedLogId.setStatus('current') tmnxLogFileDeletedFileId = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 2), TmnxLogFileId()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogFileDeletedFileId.setStatus('current') tmnxLogFileDeletedLogType = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 3), TmnxLogFileType()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogFileDeletedLogType.setStatus('current') tmnxLogFileDeletedLocation = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 4), TmnxCFlash()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogFileDeletedLocation.setStatus('current') tmnxLogFileDeletedName = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 5), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogFileDeletedName.setStatus('current') tmnxLogFileDeletedCreateTime = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 6), DateAndTime()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogFileDeletedCreateTime.setStatus('current') tmnxLogTraceErrorTitle = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 7), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 50))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogTraceErrorTitle.setStatus('current') tmnxLogTraceErrorSubject = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 8), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 50))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogTraceErrorSubject.setStatus('current') tmnxLogTraceErrorMessage = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 9), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogTraceErrorMessage.setStatus('current') tmnxLogThrottledEventID = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 10), ObjectIdentifier()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogThrottledEventID.setStatus('current') tmnxLogThrottledEvents = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 11), Unsigned32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogThrottledEvents.setStatus('current') tmnxSysLogTargetId = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 12), TmnxSyslogId()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxSysLogTargetId.setStatus('current') tmnxSysLogTargetProblemDescr = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 13), DisplayString()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxSysLogTargetProblemDescr.setStatus('current') tmnxLogNotifyApInterval = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 14), Integer32().subtype(subtypeSpec=ValueRangeConstraint(5, 120))).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxLogNotifyApInterval.setStatus('current') tmnxStdReplayStartEvent = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 15), Unsigned32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxStdReplayStartEvent.setStatus('current') tmnxStdReplayEndEvent = MibScalar((1, 3, 6, 1, 4, 1, 6527, 3, 1, 2, 12, 1, 16), Unsigned32()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: tmnxStdReplayEndEvent.setStatus('current') tmnxLogSpaceContention = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 1)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileIdRolloverTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdRetainTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdAdminLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdBackupLoc"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdOperLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogType")) if mibBuilder.loadTexts: tmnxLogSpaceContention.setStatus('current') tmnxLogAdminLocFailed = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 2)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileIdAdminLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdBackupLoc"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdOperLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogType")) if mibBuilder.loadTexts: tmnxLogAdminLocFailed.setStatus('current') tmnxLogBackupLocFailed = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 3)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileIdAdminLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdBackupLoc"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdOperLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogType")) if mibBuilder.loadTexts: tmnxLogBackupLocFailed.setStatus('current') tmnxLogFileRollover = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 4)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileIdRolloverTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdRetainTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdAdminLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdBackupLoc"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdOperLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdPathName"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdCreateTime")) if mibBuilder.loadTexts: tmnxLogFileRollover.setStatus('current') tmnxLogFileDeleted = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 5)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedFileId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedName"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedCreateTime")) if mibBuilder.loadTexts: tmnxLogFileDeleted.setStatus('current') tmnxTestEvent = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 6)).setObjects(("SNMPv2-MIB", "sysDescr"), ("SNMPv2-MIB", "sysObjectID")) if mibBuilder.loadTexts: tmnxTestEvent.setStatus('current') tmnxLogTraceError = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 7)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogTraceErrorTitle"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorMessage"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorSubject")) if mibBuilder.loadTexts: tmnxLogTraceError.setStatus('current') tmnxLogEventThrottled = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 8)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogThrottledEventID"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEvents")) if mibBuilder.loadTexts: tmnxLogEventThrottled.setStatus('current') tmnxSysLogTargetProblem = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 9)).setObjects(("TIMETRA-LOG-MIB", "tmnxSysLogTargetId"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetProblemDescr")) if mibBuilder.loadTexts: tmnxSysLogTargetProblem.setStatus('current') tmnxLogAccountingDataLoss = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 10)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileIdRolloverTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdRetainTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdAdminLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdBackupLoc"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdOperLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogId"), ("TIMETRA-LOG-MIB", "tmnxLogNotifyApInterval")) if mibBuilder.loadTexts: tmnxLogAccountingDataLoss.setStatus('current') tmnxStdEventsReplayed = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 11)).setObjects(("TIMETRA-LOG-MIB", "tmnxStdDestAddrType"), ("TIMETRA-LOG-MIB", "tmnxStdDestAddr"), ("TIMETRA-LOG-MIB", "tmnxStdReplayStartEvent"), ("TIMETRA-LOG-MIB", "tmnxStdReplayEndEvent"), ("TIMETRA-LOG-MIB", "tmnxStdReplayStart")) if mibBuilder.loadTexts: tmnxStdEventsReplayed.setStatus('current') tmnxLogEventOverrun = NotificationType((1, 3, 6, 1, 4, 1, 6527, 3, 1, 3, 12, 0, 12)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogThrottledEventID"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEvents")) if mibBuilder.loadTexts: tmnxLogEventOverrun.setStatus('current') tmnxLogCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1)) tmnxLogGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2)) tmnxLogV4v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 4)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV4v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogGroup"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsR2r1Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationR3r0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV4v0Compliance = tmnxLogV4v0Compliance.setStatus('obsolete') tmnxLogV5v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 5)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV5v0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV5v0Compliance = tmnxLogV5v0Compliance.setStatus('obsolete') tmnxLogV6v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 6)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapDestV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV6v0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV6v0Compliance = tmnxLogV6v0Compliance.setStatus('obsolete') tmnxLogV6v1Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 7)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapDestV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyV6v1Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV6v1Compliance = tmnxLogV6v1Compliance.setStatus('current') tmnxLogV7v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 8)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapDestV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyV6v1Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyCRV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogRoutePreferenceV7v0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV7v0Compliance = tmnxLogV7v0Compliance.setStatus('obsolete') tmnxLogV9v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 9)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyV6v1Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyCRV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapDestV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV9v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogRoutePreferenceV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogEventDampedV8v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogApV9v0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV9v0Compliance = tmnxLogV9v0Compliance.setStatus('obsolete') tmnxLogV8v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 10)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapDestV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyV6v1Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyCRV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogRoutePreferenceV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogEventDampedV8v0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV8v0Compliance = tmnxLogV8v0Compliance.setStatus('obsolete') tmnxLogV10v0Compliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 1, 11)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogGlobalGroup"), ("TIMETRA-LOG-MIB", "tmnxLogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyGroup"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyV6v1Group"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingPolicyCRV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdGroup"), ("TIMETRA-LOG-MIB", "tmnxLogSyslogV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpTrapDestV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsGroup"), ("TIMETRA-LOG-MIB", "tmnxLogEventsV5v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV6v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogNotificationV9v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogRoutePreferenceV7v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogEventDampedV8v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogApV9v0Group"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpGroup"), ("TIMETRA-LOG-MIB", "tmnxLogApExtGroup"), ("TIMETRA-LOG-MIB", "tmnxLogAppRouteNotifV10v0Group")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV10v0Compliance = tmnxLogV10v0Compliance.setStatus('current') tmnxLogGlobalGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 1)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogMaxLogs")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogGlobalGroup = tmnxLogGlobalGroup.setStatus('current') tmnxLogAccountingPolicyGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 3)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogApRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogApStorageType"), ("TIMETRA-LOG-MIB", "tmnxLogApAdminStatus"), ("TIMETRA-LOG-MIB", "tmnxLogApOperStatus"), ("TIMETRA-LOG-MIB", "tmnxLogApInterval"), ("TIMETRA-LOG-MIB", "tmnxLogApDescription"), ("TIMETRA-LOG-MIB", "tmnxLogApDefault"), ("TIMETRA-LOG-MIB", "tmnxLogApRecord"), ("TIMETRA-LOG-MIB", "tmnxLogApToFileId"), ("TIMETRA-LOG-MIB", "tmnxLogApPortType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogAccountingPolicyGroup = tmnxLogAccountingPolicyGroup.setStatus('current') tmnxLogFileIdGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 4)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileIdRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdStorageType"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdRolloverTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdRetainTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdAdminLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdOperLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdDescription"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdPathName"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdCreateTime"), ("TIMETRA-LOG-MIB", "tmnxLogFileIdBackupLoc")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogFileIdGroup = tmnxLogFileIdGroup.setStatus('current') tmnxLogSyslogGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 5)).setObjects(("TIMETRA-LOG-MIB", "tmnxSyslogTargetRowStatus"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetDescription"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetAddress"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetUdpPort"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetFacility"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetSeverity"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetMessagePrefix"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetMessagesDropped")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogSyslogGroup = tmnxLogSyslogGroup.setStatus('obsolete') tmnxSnmpTrapGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 6)).setObjects(("TIMETRA-LOG-MIB", "tmnxStgRowStatus"), ("TIMETRA-LOG-MIB", "tmnxStgDescription"), ("TIMETRA-LOG-MIB", "tmnxStgVersion"), ("TIMETRA-LOG-MIB", "tmnxStgNotifyCommunity"), ("TIMETRA-LOG-MIB", "tmnxStgSecurityLevel")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSnmpTrapGroup = tmnxSnmpTrapGroup.setStatus('obsolete') tmnxLogEventsR2r1Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 10)).setObjects(("TIMETRA-LOG-MIB", "tmnxEventAppName"), ("TIMETRA-LOG-MIB", "tmnxEventName"), ("TIMETRA-LOG-MIB", "tmnxEventSeverity"), ("TIMETRA-LOG-MIB", "tmnxEventControl"), ("TIMETRA-LOG-MIB", "tmnxEventCounter"), ("TIMETRA-LOG-MIB", "tmnxEventDropCount"), ("TIMETRA-LOG-MIB", "tmnxEventReset"), ("TIMETRA-LOG-MIB", "tmnxEventTest")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogEventsR2r1Group = tmnxLogEventsR2r1Group.setStatus('obsolete') tmnxLogNotifyObjsR3r0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 13)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedFileId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedName"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedCreateTime"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorTitle"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorMessage")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotifyObjsR3r0Group = tmnxLogNotifyObjsR3r0Group.setStatus('obsolete') tmnxLogNotificationR3r0Group = NotificationGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 14)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogSpaceContention"), ("TIMETRA-LOG-MIB", "tmnxLogAdminLocFailed"), ("TIMETRA-LOG-MIB", "tmnxLogBackupLocFailed"), ("TIMETRA-LOG-MIB", "tmnxLogFileRollover"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeleted"), ("TIMETRA-LOG-MIB", "tmnxTestEvent"), ("TIMETRA-LOG-MIB", "tmnxLogTraceError")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotificationR3r0Group = tmnxLogNotificationR3r0Group.setStatus('obsolete') tmnxLogV4v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 15)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogIdRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogIdStorageType"), ("TIMETRA-LOG-MIB", "tmnxLogIdAdminStatus"), ("TIMETRA-LOG-MIB", "tmnxLogIdOperStatus"), ("TIMETRA-LOG-MIB", "tmnxLogIdDescription"), ("TIMETRA-LOG-MIB", "tmnxLogIdFilterId"), ("TIMETRA-LOG-MIB", "tmnxLogIdSource"), ("TIMETRA-LOG-MIB", "tmnxLogIdDestination"), ("TIMETRA-LOG-MIB", "tmnxLogIdFileId"), ("TIMETRA-LOG-MIB", "tmnxLogIdSyslogId"), ("TIMETRA-LOG-MIB", "tmnxLogIdMaxMemorySize"), ("TIMETRA-LOG-MIB", "tmnxLogIdConsoleSession"), ("TIMETRA-LOG-MIB", "tmnxLogIdForwarded"), ("TIMETRA-LOG-MIB", "tmnxLogIdDropped"), ("TIMETRA-LOG-MIB", "tmnxLogIdTimeFormat"), ("TIMETRA-LOG-MIB", "tmnxLogFilterRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogFilterDescription"), ("TIMETRA-LOG-MIB", "tmnxLogFilterDefaultAction"), ("TIMETRA-LOG-MIB", "tmnxLogFilterInUse"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsDescription"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsAction"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsApplication"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsApplOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsNumber"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsNumberOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSeverity"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSeverityOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSubject"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSubjectOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSubjectRegexp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV4v0Group = tmnxLogV4v0Group.setStatus('obsolete') tmnxSnmpSetErrsGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 16)).setObjects(("TIMETRA-LOG-MIB", "tmnxSnmpSetErrsMax"), ("TIMETRA-LOG-MIB", "tmnxSseVersion"), ("TIMETRA-LOG-MIB", "tmnxSseSeverityLevel"), ("TIMETRA-LOG-MIB", "tmnxSseModuleId"), ("TIMETRA-LOG-MIB", "tmnxSseModuleName"), ("TIMETRA-LOG-MIB", "tmnxSseErrorCode"), ("TIMETRA-LOG-MIB", "tmnxSseErrorName"), ("TIMETRA-LOG-MIB", "tmnxSseErrorMsg"), ("TIMETRA-LOG-MIB", "tmnxSseExtraText"), ("TIMETRA-LOG-MIB", "tmnxSseTimestamp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSnmpSetErrsGroup = tmnxSnmpSetErrsGroup.setStatus('current') tmnxLogEventsV5v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 17)).setObjects(("TIMETRA-LOG-MIB", "tmnxEventAppName"), ("TIMETRA-LOG-MIB", "tmnxEventName"), ("TIMETRA-LOG-MIB", "tmnxEventSeverity"), ("TIMETRA-LOG-MIB", "tmnxEventControl"), ("TIMETRA-LOG-MIB", "tmnxEventCounter"), ("TIMETRA-LOG-MIB", "tmnxEventDropCount"), ("TIMETRA-LOG-MIB", "tmnxEventReset"), ("TIMETRA-LOG-MIB", "tmnxEventThrottle"), ("TIMETRA-LOG-MIB", "tmnxEventTest"), ("TIMETRA-LOG-MIB", "tmnxEventThrottleLimit"), ("TIMETRA-LOG-MIB", "tmnxEventThrottleInterval")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogEventsV5v0Group = tmnxLogEventsV5v0Group.setStatus('current') tmnxLogNotifyObjsV5v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 18)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedFileId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedName"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedCreateTime"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorTitle"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorMessage"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEventID"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEvents"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetId"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetProblemDescr")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotifyObjsV5v0Group = tmnxLogNotifyObjsV5v0Group.setStatus('obsolete') tmnxLogNotificationV5v0Group = NotificationGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 19)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogSpaceContention"), ("TIMETRA-LOG-MIB", "tmnxLogAdminLocFailed"), ("TIMETRA-LOG-MIB", "tmnxLogBackupLocFailed"), ("TIMETRA-LOG-MIB", "tmnxLogFileRollover"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeleted"), ("TIMETRA-LOG-MIB", "tmnxTestEvent"), ("TIMETRA-LOG-MIB", "tmnxLogTraceError"), ("TIMETRA-LOG-MIB", "tmnxLogEventThrottled"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetProblem")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotificationV5v0Group = tmnxLogNotificationV5v0Group.setStatus('obsolete') tmnxLogSyslogV5v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 20)).setObjects(("TIMETRA-LOG-MIB", "tmnxSyslogTargetRowStatus"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetDescription"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetUdpPort"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetFacility"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetSeverity"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetMessagePrefix"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetMessagesDropped"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetAddrType"), ("TIMETRA-LOG-MIB", "tmnxSyslogTargetAddr")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogSyslogV5v0Group = tmnxLogSyslogV5v0Group.setStatus('current') tmnxSnmpTrapV5v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 21)).setObjects(("TIMETRA-LOG-MIB", "tmnxSnmpTrapLogDescription"), ("TIMETRA-LOG-MIB", "tmnxStdRowStatus"), ("TIMETRA-LOG-MIB", "tmnxStdRowLastChanged"), ("TIMETRA-LOG-MIB", "tmnxStdDestAddrType"), ("TIMETRA-LOG-MIB", "tmnxStdDestAddr"), ("TIMETRA-LOG-MIB", "tmnxStdDestPort"), ("TIMETRA-LOG-MIB", "tmnxStdDescription"), ("TIMETRA-LOG-MIB", "tmnxStdVersion"), ("TIMETRA-LOG-MIB", "tmnxStdNotifyCommunity"), ("TIMETRA-LOG-MIB", "tmnxStdSecurityLevel"), ("TIMETRA-LOG-MIB", "tmnxStdMaxTargets")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSnmpTrapV5v0Group = tmnxSnmpTrapV5v0Group.setStatus('current') tmnxLogV5v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 22)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogIdRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogIdStorageType"), ("TIMETRA-LOG-MIB", "tmnxLogIdAdminStatus"), ("TIMETRA-LOG-MIB", "tmnxLogIdOperStatus"), ("TIMETRA-LOG-MIB", "tmnxLogIdDescription"), ("TIMETRA-LOG-MIB", "tmnxLogIdFilterId"), ("TIMETRA-LOG-MIB", "tmnxLogIdSource"), ("TIMETRA-LOG-MIB", "tmnxLogIdDestination"), ("TIMETRA-LOG-MIB", "tmnxLogIdFileId"), ("TIMETRA-LOG-MIB", "tmnxLogIdSyslogId"), ("TIMETRA-LOG-MIB", "tmnxLogIdMaxMemorySize"), ("TIMETRA-LOG-MIB", "tmnxLogIdConsoleSession"), ("TIMETRA-LOG-MIB", "tmnxLogIdForwarded"), ("TIMETRA-LOG-MIB", "tmnxLogIdDropped"), ("TIMETRA-LOG-MIB", "tmnxLogIdTimeFormat"), ("TIMETRA-LOG-MIB", "tmnxLogFilterRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogFilterDescription"), ("TIMETRA-LOG-MIB", "tmnxLogFilterDefaultAction"), ("TIMETRA-LOG-MIB", "tmnxLogFilterInUse"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsDescription"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsAction"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsApplication"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsApplOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsNumber"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsNumberOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSeverity"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSeverityOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSubject"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSubjectOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsSubjectRegexp"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsRouter"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsRouterOperator"), ("TIMETRA-LOG-MIB", "tmnxLogFilterParamsRouterRegexp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogV5v0Group = tmnxLogV5v0Group.setStatus('current') tmnxLogObsoleteObjsV5v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 23)).setObjects(("TIMETRA-LOG-MIB", "tmnxSyslogTargetAddress"), ("TIMETRA-LOG-MIB", "tmnxStgRowStatus"), ("TIMETRA-LOG-MIB", "tmnxStgDescription"), ("TIMETRA-LOG-MIB", "tmnxStgVersion"), ("TIMETRA-LOG-MIB", "tmnxStgNotifyCommunity"), ("TIMETRA-LOG-MIB", "tmnxStgSecurityLevel")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogObsoleteObjsV5v0Group = tmnxLogObsoleteObjsV5v0Group.setStatus('current') tmnxLogNotifyObjsV6v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 24)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedFileId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedName"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedCreateTime"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorTitle"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorMessage"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEventID"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEvents"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetId"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetProblemDescr"), ("TIMETRA-LOG-MIB", "tmnxLogNotifyApInterval"), ("TIMETRA-LOG-MIB", "tmnxStdReplayStartEvent"), ("TIMETRA-LOG-MIB", "tmnxStdReplayEndEvent")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotifyObjsV6v0Group = tmnxLogNotifyObjsV6v0Group.setStatus('obsolete') tmnxLogNotificationV6v0Group = NotificationGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 25)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogSpaceContention"), ("TIMETRA-LOG-MIB", "tmnxLogAdminLocFailed"), ("TIMETRA-LOG-MIB", "tmnxLogBackupLocFailed"), ("TIMETRA-LOG-MIB", "tmnxLogFileRollover"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeleted"), ("TIMETRA-LOG-MIB", "tmnxTestEvent"), ("TIMETRA-LOG-MIB", "tmnxLogTraceError"), ("TIMETRA-LOG-MIB", "tmnxLogEventThrottled"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetProblem"), ("TIMETRA-LOG-MIB", "tmnxLogAccountingDataLoss"), ("TIMETRA-LOG-MIB", "tmnxStdEventsReplayed")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotificationV6v0Group = tmnxLogNotificationV6v0Group.setStatus('current') tmnxSnmpTrapDestV6v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 26)).setObjects(("TIMETRA-LOG-MIB", "tmnxStdReplay"), ("TIMETRA-LOG-MIB", "tmnxStdReplayStart"), ("TIMETRA-LOG-MIB", "tmnxStdReplayLastTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxSnmpTrapDestV6v0Group = tmnxSnmpTrapDestV6v0Group.setStatus('current') tmnxLogAccountingPolicyV6v1Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 27)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogApDefaultInterval")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogAccountingPolicyV6v1Group = tmnxLogAccountingPolicyV6v1Group.setStatus('current') tmnxLogAccountingPolicyCRV7v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 28)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogApCrLastChanged"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeDelta"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeQueue"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeOCntr"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeQICounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeQECounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeOICounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeOECounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrSignChangeAACounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrAACounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrQueueRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogApCrQueueLastChanged"), ("TIMETRA-LOG-MIB", "tmnxLogApCrQueueICounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrQueueECounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrOverrideCntrRowStatus"), ("TIMETRA-LOG-MIB", "tmnxLogApCrOverrideCntrLastChngd"), ("TIMETRA-LOG-MIB", "tmnxLogApCrOverrideCntrICounters"), ("TIMETRA-LOG-MIB", "tmnxLogApCrOverrideCntrECounters")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogAccountingPolicyCRV7v0Group = tmnxLogAccountingPolicyCRV7v0Group.setStatus('current') tmnxLogRoutePreferenceV7v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 29)).setObjects(("TIMETRA-LOG-MIB", "tmnxEventPrimaryRoutePref"), ("TIMETRA-LOG-MIB", "tmnxEventSecondaryRoutePref")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogRoutePreferenceV7v0Group = tmnxLogRoutePreferenceV7v0Group.setStatus('current') tmnxLogNotifyObjsV8v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 30)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedFileId"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLogType"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedLocation"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedName"), ("TIMETRA-LOG-MIB", "tmnxLogFileDeletedCreateTime"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorTitle"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorSubject"), ("TIMETRA-LOG-MIB", "tmnxLogTraceErrorMessage"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEventID"), ("TIMETRA-LOG-MIB", "tmnxLogThrottledEvents"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetId"), ("TIMETRA-LOG-MIB", "tmnxSysLogTargetProblemDescr"), ("TIMETRA-LOG-MIB", "tmnxLogNotifyApInterval"), ("TIMETRA-LOG-MIB", "tmnxStdReplayStartEvent"), ("TIMETRA-LOG-MIB", "tmnxStdReplayEndEvent")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotifyObjsV8v0Group = tmnxLogNotifyObjsV8v0Group.setStatus('current') tmnxLogNotificationV9v0Group = NotificationGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 31)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogEventOverrun")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotificationV9v0Group = tmnxLogNotificationV9v0Group.setStatus('current') tmnxLogEventDampedV8v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 32)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogConfigEventsDamped")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogEventDampedV8v0Group = tmnxLogEventDampedV8v0Group.setStatus('current') tmnxLogApV9v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 33)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogApDataLossCount"), ("TIMETRA-LOG-MIB", "tmnxLogApLastDataLossTimeStamp")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogApV9v0Group = tmnxLogApV9v0Group.setStatus('current') tmnxLogExRbkOpGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 34)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogExRbkOpTblLastChange"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpMaxEntries"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpLastChanged"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpType"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpStatus"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpBegin"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpEnd"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpFile"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpUser"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkOpNumEvents"), ("TIMETRA-LOG-MIB", "tmnxLogExRbkEventOID")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogExRbkOpGroup = tmnxLogExRbkOpGroup.setStatus('current') tmnxLogNotifyObjsV10v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 35)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogExecRollbackOpIndex")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogNotifyObjsV10v0Group = tmnxLogNotifyObjsV10v0Group.setStatus('current') tmnxLogApExtGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 36)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogApToFileType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogApExtGroup = tmnxLogApExtGroup.setStatus('current') tmnxLogAppRouteNotifV10v0Group = ObjectGroup((1, 3, 6, 1, 4, 1, 6527, 3, 1, 1, 12, 2, 37)).setObjects(("TIMETRA-LOG-MIB", "tmnxLogColdStartWaitTime"), ("TIMETRA-LOG-MIB", "tmnxLogRouteRecoveryWaitTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): tmnxLogAppRouteNotifV10v0Group = tmnxLogAppRouteNotifV10v0Group.setStatus('current') mibBuilder.exportSymbols("TIMETRA-LOG-MIB", tmnxLogFileDeletedName=tmnxLogFileDeletedName, tmnxEventAppIndex=tmnxEventAppIndex, TmnxLogFilterEntryId=TmnxLogFilterEntryId, tmnxLogFileIdBackupLoc=tmnxLogFileIdBackupLoc, tmnxEventCounter=tmnxEventCounter, tmnxStdReplay=tmnxStdReplay, tmnxLogApCrSignChangeDelta=tmnxLogApCrSignChangeDelta, tmnxLogIdForwarded=tmnxLogIdForwarded, tmnxLogGroups=tmnxLogGroups, tmnxLogApStorageType=tmnxLogApStorageType, tmnxLogFileIdStorageType=tmnxLogFileIdStorageType, tmnxStdDestAddr=tmnxStdDestAddr, tmnxLogApRowStatus=tmnxLogApRowStatus, tmnxEventThrottleLimit=tmnxEventThrottleLimit, tmnxLogCompliances=tmnxLogCompliances, tmnxLogApCrQueueLastChanged=tmnxLogApCrQueueLastChanged, tmnxSnmpTrapLogEntry=tmnxSnmpTrapLogEntry, tmnxLogExRbkOpIndex=tmnxLogExRbkOpIndex, tmnxStdDescription=tmnxStdDescription, tmnxLogApCrOverrideCntrId=tmnxLogApCrOverrideCntrId, tmnxSyslogTargetMessagePrefix=tmnxSyslogTargetMessagePrefix, tmnxLogFilterParamsApplication=tmnxLogFilterParamsApplication, tmnxLogV8v0Compliance=tmnxLogV8v0Compliance, tmnxLogIdMaxMemorySize=tmnxLogIdMaxMemorySize, tmnxSnmpSetErrsGroup=tmnxSnmpSetErrsGroup, tmnxLogConfigEventsDamped=tmnxLogConfigEventsDamped, tmnxSseModuleName=tmnxSseModuleName, tmnxLogFilterInUse=tmnxLogFilterInUse, tmnxLogNotifyObjsV8v0Group=tmnxLogNotifyObjsV8v0Group, tmnxSseRequestId=tmnxSseRequestId, tmnxLogFilterDefaultAction=tmnxLogFilterDefaultAction, TmnxLogFileId=TmnxLogFileId, tmnxLogApDataLossCount=tmnxLogApDataLossCount, tmnxStgDestAddress=tmnxStgDestAddress, tmnxStdDestPort=tmnxStdDestPort, tmnxStdReplayStartEvent=tmnxStdReplayStartEvent, tmnxLogApDefaultInterval=tmnxLogApDefaultInterval, tmnxLogThrottledEventID=tmnxLogThrottledEventID, tmnxLogExRbkEventOID=tmnxLogExRbkEventOID, tmnxLogIdIndex=tmnxLogIdIndex, TmnxSyslogSeverity=TmnxSyslogSeverity, tmnxEventAppEntry=tmnxEventAppEntry, tmnxLogNotificationV6v0Group=tmnxLogNotificationV6v0Group, tmnxLogFileIdRolloverTime=tmnxLogFileIdRolloverTime, tmnxLogApRecord=tmnxLogApRecord, tmnxEventDropCount=tmnxEventDropCount, tmnxSseModuleId=tmnxSseModuleId, tmnxLogFileDeletedLogType=tmnxLogFileDeletedLogType, tmnxStgDescription=tmnxStgDescription, tmnxSyslogTargetIndex=tmnxSyslogTargetIndex, tmnxLogExecRollbackEventTable=tmnxLogExecRollbackEventTable, tmnxLogNotifyObjsV10v0Group=tmnxLogNotifyObjsV10v0Group, tmnxLogAccountingPolicyV6v1Group=tmnxLogAccountingPolicyV6v1Group, tmnxLogNotifyPrefix=tmnxLogNotifyPrefix, tmnxLogExRbkOpStatus=tmnxLogExRbkOpStatus, tmnxLogAppRouteNotifV10v0Group=tmnxLogAppRouteNotifV10v0Group, tmnxLogRouteRecoveryWaitTime=tmnxLogRouteRecoveryWaitTime, tmnxSnmpTrapGroupTable=tmnxSnmpTrapGroupTable, tmnxLogIdStorageType=tmnxLogIdStorageType, tmnxLogFilterParamsRouterRegexp=tmnxLogFilterParamsRouterRegexp, tmnxLogBackupLocFailed=tmnxLogBackupLocFailed, tmnxLogV4v0Group=tmnxLogV4v0Group, PYSNMP_MODULE_ID=timetraLogMIBModule, tmnxStgDestPort=tmnxStgDestPort, tmnxLogApAdminStatus=tmnxLogApAdminStatus, tmnxLogExRbkOpGroup=tmnxLogExRbkOpGroup, tmnxStdReplayEndEvent=tmnxStdReplayEndEvent, tmnxLogTraceError=tmnxLogTraceError, tmnxLogV5v0Group=tmnxLogV5v0Group, tmnxSnmpTrapV5v0Group=tmnxSnmpTrapV5v0Group, tmnxLogApCrSignChangeQueue=tmnxLogApCrSignChangeQueue, tmnxLogApCrOverrideCntrICounters=tmnxLogApCrOverrideCntrICounters, TmnxSyslogId=TmnxSyslogId, tmnxLogAccountingPolicyCRV7v0Group=tmnxLogAccountingPolicyCRV7v0Group, tmnxSnmpSetErrsMax=tmnxSnmpSetErrsMax, tmnxLogExRbkNotifyObjects=tmnxLogExRbkNotifyObjects, tmnxLogTraceErrorSubject=tmnxLogTraceErrorSubject, tmnxLogApCrOverrideCntrECounters=tmnxLogApCrOverrideCntrECounters, tmnxLogFilterParamsTable=tmnxLogFilterParamsTable, tmnxLogExRbkOpType=tmnxLogExRbkOpType, tmnxLogFilterParamsRouterOperator=tmnxLogFilterParamsRouterOperator, tmnxSnmpTrapGroupEntry=tmnxSnmpTrapGroupEntry, tmnxSseTimestamp=tmnxSseTimestamp, tmnxEventSecondaryRoutePref=tmnxEventSecondaryRoutePref, tmnxLogExRbkOpMaxEntries=tmnxLogExRbkOpMaxEntries, tmnxLogExRbkOpEnd=tmnxLogExRbkOpEnd, tmnxEventAppName=tmnxEventAppName, tmnxLogV10v0Compliance=tmnxLogV10v0Compliance, tmnxLogFileIdLogId=tmnxLogFileIdLogId, TmnxPerceivedSeverity=TmnxPerceivedSeverity, tmnxStgIndex=tmnxStgIndex, tmnxLogExecRollbackOpTable=tmnxLogExecRollbackOpTable, tmnxLogColdStartWaitTime=tmnxLogColdStartWaitTime, tmnxLogIdDescription=tmnxLogIdDescription, tmnxEventThrottleInterval=tmnxEventThrottleInterval, tmnxEventPrimaryRoutePref=tmnxEventPrimaryRoutePref, tmnxLogApToFileId=tmnxLogApToFileId, tmnxLogIdDestination=tmnxLogIdDestination, tmnxSnmpSetErrsEntry=tmnxSnmpSetErrsEntry, TmnxLogIdIndex=TmnxLogIdIndex, tmnxLogFilterParamsNumberOperator=tmnxLogFilterParamsNumberOperator, tmnxLogApCustRecordQueueEntry=tmnxLogApCustRecordQueueEntry, tmnxLogNotificationV5v0Group=tmnxLogNotificationV5v0Group, tmnxEventControl=tmnxEventControl, tmnxLogAccountingDataLoss=tmnxLogAccountingDataLoss, tmnxLogTraceErrorTitle=tmnxLogTraceErrorTitle, tmnxLogExRbkOpNumEvents=tmnxLogExRbkOpNumEvents, tmnxSyslogTargetDescription=tmnxSyslogTargetDescription, tmnxLogFileIdEntry=tmnxLogFileIdEntry, tmnxEventReset=tmnxEventReset, tmnxLogApCrSignChangeAACounters=tmnxLogApCrSignChangeAACounters, tmnxSseErrorName=tmnxSseErrorName, TmnxLogFilterOperator=TmnxLogFilterOperator, tmnxLogObsoleteObjsV5v0Group=tmnxLogObsoleteObjsV5v0Group, tmnxLogFilterParamsAction=tmnxLogFilterParamsAction, tmnxLogFileId=tmnxLogFileId, tmnxSyslogTargetMessagesDropped=tmnxSyslogTargetMessagesDropped, tmnxLogExecRollbackEventEntry=tmnxLogExecRollbackEventEntry, tmnxLogFileIdRowStatus=tmnxLogFileIdRowStatus, tmnxLogV7v0Compliance=tmnxLogV7v0Compliance, tmnxStgRowStatus=tmnxStgRowStatus, tmnxLogSyslogV5v0Group=tmnxLogSyslogV5v0Group, TmnxUdpPort=TmnxUdpPort, tmnxEventName=tmnxEventName, tmnxEventAppTable=tmnxEventAppTable, tmnxLogFileIdRetainTime=tmnxLogFileIdRetainTime, tmnxSnmpTrapDestV6v0Group=tmnxSnmpTrapDestV6v0Group, tmnxLogFilterParamsSubject=tmnxLogFilterParamsSubject, tmnxLogObjs=tmnxLogObjs, tmnxLogIdAdminStatus=tmnxLogIdAdminStatus, tmnxLogMaxLogs=tmnxLogMaxLogs, tmnxLogIdTable=tmnxLogIdTable, tmnxLogNotifications=tmnxLogNotifications, tmnxLogFilterParamsSeverity=tmnxLogFilterParamsSeverity, tmnxSyslogTargetTable=tmnxSyslogTargetTable, tmnxSseErrorCode=tmnxSseErrorCode, tmnxLogEventHistGeneralObjs=tmnxLogEventHistGeneralObjs, tmnxSysLogTargetId=tmnxSysLogTargetId, tmnxLogSyslogGroup=tmnxLogSyslogGroup, tmnxStdRowLastChanged=tmnxStdRowLastChanged, tmnxSnmpTrapDestEntry=tmnxSnmpTrapDestEntry, tmnxLogApCrOverrideCntrEntry=tmnxLogApCrOverrideCntrEntry, tmnxLogFilterTable=tmnxLogFilterTable, tmnxLogV4v0Compliance=tmnxLogV4v0Compliance, tmnxLogTraceErrorMessage=tmnxLogTraceErrorMessage, tmnxLogEventDampedV8v0Group=tmnxLogEventDampedV8v0Group, timetraLogMIBModule=timetraLogMIBModule, tmnxLogIdSyslogId=tmnxLogIdSyslogId, tmnxLogFilterParamsRowStatus=tmnxLogFilterParamsRowStatus, tmnxSyslogTargetSeverity=tmnxSyslogTargetSeverity, tmnxLogIdFileId=tmnxLogIdFileId, tmnxLogIdEntry=tmnxLogIdEntry, tmnxStgVersion=tmnxStgVersion, tmnxLogApInterval=tmnxLogApInterval, tmnxLogExRbkOpFile=tmnxLogExRbkOpFile, tmnxLogFileDeletedLocation=tmnxLogFileDeletedLocation, tmnxLogApEntry=tmnxLogApEntry, tmnxLogNotifyObjsV6v0Group=tmnxLogNotifyObjsV6v0Group, tmnxEventEntry=tmnxEventEntry, tmnxLogFilterParamsIndex=tmnxLogFilterParamsIndex, tmnxLogFilterId=tmnxLogFilterId, tmnxLogExRbkEventIndex=tmnxLogExRbkEventIndex, TmnxLogFileType=TmnxLogFileType, tmnxLogFileIdCreateTime=tmnxLogFileIdCreateTime, tmnxLogV9v0Compliance=tmnxLogV9v0Compliance, tmnxSseAddress=tmnxSseAddress, tmnxEventSeverity=tmnxEventSeverity, tmnxLogFilterParamsSubjectOperator=tmnxLogFilterParamsSubjectOperator, tmnxStdNotifyCommunity=tmnxStdNotifyCommunity, tmnxLogApCrQueueRowStatus=tmnxLogApCrQueueRowStatus, tmnxLogConformance=tmnxLogConformance, tmnxSyslogTargetAddress=tmnxSyslogTargetAddress, tmnxEventTable=tmnxEventTable, tmnxLogApCustRecordQueueTable=tmnxLogApCustRecordQueueTable, tmnxStdEventsReplayed=tmnxStdEventsReplayed, tmnxLogGlobalGroup=tmnxLogGlobalGroup, tmnxLogNotifyObjsV5v0Group=tmnxLogNotifyObjsV5v0Group, tmnxLogExecRollbackOpIndex=tmnxLogExecRollbackOpIndex, tmnxLogFilterParamsApplOperator=tmnxLogFilterParamsApplOperator, tmnxLogFileDeletedLogId=tmnxLogFileDeletedLogId, tmnxLogIdFilterId=tmnxLogIdFilterId, tmnxLogFilterParamsNumber=tmnxLogFilterParamsNumber, tmnxEventID=tmnxEventID, tmnxLogFileDeletedFileId=tmnxLogFileDeletedFileId, tmnxLogFilterParamsDescription=tmnxLogFilterParamsDescription, tmnxSseSeverityLevel=tmnxSseSeverityLevel, TmnxSyslogFacility=TmnxSyslogFacility, TmnxEventNumber=TmnxEventNumber, tmnxLogAccountingPolicyGroup=tmnxLogAccountingPolicyGroup, tmnxLogFileIdAdminLocation=tmnxLogFileIdAdminLocation, tmnxTestEvent=tmnxTestEvent, tmnxLogExRbkOpTblLastChange=tmnxLogExRbkOpTblLastChange, tmnxStdDestAddrType=tmnxStdDestAddrType, tmnxStdReplayLastTime=tmnxStdReplayLastTime, tmnxLogApCrLastChanged=tmnxLogApCrLastChanged, tmnxLogApToFileType=tmnxLogApToFileType, tmnxLogApCrSignChangeQICounters=tmnxLogApCrSignChangeQICounters, tmnxLogFilterDescription=tmnxLogFilterDescription, tmnxLogEventHistoryObjs=tmnxLogEventHistoryObjs, tmnxLogIdConsoleSession=tmnxLogIdConsoleSession, tmnxSyslogTargetUdpPort=tmnxSyslogTargetUdpPort, tmnxSseSnmpPort=tmnxSseSnmpPort, tmnxStgSecurityLevel=tmnxStgSecurityLevel, tmnxLogV6v1Compliance=tmnxLogV6v1Compliance, tmnxSnmpSetErrsTable=tmnxSnmpSetErrsTable, tmnxSseVersion=tmnxSseVersion, tmnxLogApPolicyId=tmnxLogApPolicyId, tmnxLogApDescription=tmnxLogApDescription, tmnxLogApCrOverrideCntrRowStatus=tmnxLogApCrOverrideCntrRowStatus, tmnxSysLogTargetProblem=tmnxSysLogTargetProblem, tmnxLogIdOperStatus=tmnxLogIdOperStatus, tmnxLogApCrSignChangeOICounters=tmnxLogApCrSignChangeOICounters, tmnxLogFilterParamsSeverityOperator=tmnxLogFilterParamsSeverityOperator, tmnxLogApPortType=tmnxLogApPortType, tmnxSseErrorMsg=tmnxSseErrorMsg, tmnxLogApOperStatus=tmnxLogApOperStatus, tmnxLogApCustRecordTable=tmnxLogApCustRecordTable, tmnxLogFileIdGroup=tmnxLogFileIdGroup, tmnxLogApTable=tmnxLogApTable, tmnxLogAdminLocFailed=tmnxLogAdminLocFailed, tmnxSyslogTargetAddrType=tmnxSyslogTargetAddrType, tmnxLogEventThrottled=tmnxLogEventThrottled, tmnxStdVersion=tmnxStdVersion, tmnxLogNotifyObjsR3r0Group=tmnxLogNotifyObjsR3r0Group, tmnxEventThrottle=tmnxEventThrottle, tmnxLogApCrSignChangeOECounters=tmnxLogApCrSignChangeOECounters, tmnxSnmpTrapLogDescription=tmnxSnmpTrapLogDescription, tmnxLogApCrQueueECounters=tmnxLogApCrQueueECounters, tmnxSyslogTargetRowStatus=tmnxSyslogTargetRowStatus, tmnxLogApDefault=tmnxLogApDefault, tmnxLogApCrOverrideCntrLastChngd=tmnxLogApCrOverrideCntrLastChngd, tmnxLogApCustRecordEntry=tmnxLogApCustRecordEntry, tmnxLogExRbkOpUser=tmnxLogExRbkOpUser, tmnxLogRoutePreferenceV7v0Group=tmnxLogRoutePreferenceV7v0Group, tmnxLogFileIdPathName=tmnxLogFileIdPathName, tmnxSnmpTrapDestTable=tmnxSnmpTrapDestTable, tmnxSnmpTrapGroup=tmnxSnmpTrapGroup, tmnxLogNotificationV9v0Group=tmnxLogNotificationV9v0Group, tmnxLogFileIdDescription=tmnxLogFileIdDescription, tmnxLogFileIdLogType=tmnxLogFileIdLogType, tmnxLogFilterParamsRouter=tmnxLogFilterParamsRouter, tmnxEventTest=tmnxEventTest, tmnxLogFileIdTable=tmnxLogFileIdTable, tmnxLogApCrQueueICounters=tmnxLogApCrQueueICounters, TmnxLogFilterId=TmnxLogFilterId, tmnxSseExtraText=tmnxSseExtraText, tmnxLogFileRollover=tmnxLogFileRollover, tmnxLogApCrOverrideCntrTable=tmnxLogApCrOverrideCntrTable, tmnxLogIdTimeFormat=tmnxLogIdTimeFormat, tmnxLogSpaceContention=tmnxLogSpaceContention, tmnxSyslogTargetFacility=tmnxSyslogTargetFacility, tmnxLogExecRollbackOpEntry=tmnxLogExecRollbackOpEntry, tmnxStdName=tmnxStdName, tmnxStdReplayStart=tmnxStdReplayStart) mibBuilder.exportSymbols("TIMETRA-LOG-MIB", tmnxLogApCrQueueId=tmnxLogApCrQueueId, tmnxLogFileIdOperLocation=tmnxLogFileIdOperLocation, tmnxLogNotificationObjects=tmnxLogNotificationObjects, tmnxLogIdDropped=tmnxLogIdDropped, tmnxLogFilterRowStatus=tmnxLogFilterRowStatus, tmnxStdRowStatus=tmnxStdRowStatus, tmnxLogFilterParamsEntry=tmnxLogFilterParamsEntry, tmnxLogExRbkOpBegin=tmnxLogExRbkOpBegin, tmnxLogApExtGroup=tmnxLogApExtGroup, tmnxLogEventsV5v0Group=tmnxLogEventsV5v0Group, tmnxLogIdRowStatus=tmnxLogIdRowStatus, tmnxLogApLastDataLossTimeStamp=tmnxLogApLastDataLossTimeStamp, tmnxLogApCrSignChangeQECounters=tmnxLogApCrSignChangeQECounters, tmnxSnmpTrapLogTable=tmnxSnmpTrapLogTable, tmnxLogThrottledEvents=tmnxLogThrottledEvents, tmnxLogApCrAACounters=tmnxLogApCrAACounters, tmnxLogFileDeletedCreateTime=tmnxLogFileDeletedCreateTime, tmnxLogNotifyApInterval=tmnxLogNotifyApInterval, tmnxSyslogTargetEntry=tmnxSyslogTargetEntry, tmnxLogEventOverrun=tmnxLogEventOverrun, tmnxLogIdSource=tmnxLogIdSource, tmnxSseAddressType=tmnxSseAddressType, tmnxStgNotifyCommunity=tmnxStgNotifyCommunity, tmnxLogFilterEntry=tmnxLogFilterEntry, tmnxStdSecurityLevel=tmnxStdSecurityLevel, tmnxStdIndex=tmnxStdIndex, tmnxLogV6v0Compliance=tmnxLogV6v0Compliance, tmnxLogApV9v0Group=tmnxLogApV9v0Group, tmnxLogFilterParamsSubjectRegexp=tmnxLogFilterParamsSubjectRegexp, tmnxSyslogTargetAddr=tmnxSyslogTargetAddr, tmnxLogExRbkOpLastChanged=tmnxLogExRbkOpLastChanged, tmnxLogV5v0Compliance=tmnxLogV5v0Compliance, tmnxLogNotificationR3r0Group=tmnxLogNotificationR3r0Group, TmnxCFlash=TmnxCFlash, tmnxLogEventsR2r1Group=tmnxLogEventsR2r1Group, TmnxSyslogIdOrEmpty=TmnxSyslogIdOrEmpty, tmnxSysLogTargetProblemDescr=tmnxSysLogTargetProblemDescr, tmnxLogApCrSignChangeOCntr=tmnxLogApCrSignChangeOCntr, tmnxStdMaxTargets=tmnxStdMaxTargets, tmnxLogFileDeleted=tmnxLogFileDeleted)
149.108504
11,632
0.757149
a97bbb14468b7c51a0541d43c1777bf9b6413366
1,554
py
Python
cogdl/data/extract.py
YuHuang42/cogdl
36eafd4a2ced8a513643b99a3e63e9919c38717c
[ "MIT" ]
824
2020-11-30T14:38:07.000Z
2022-03-19T10:14:04.000Z
cogdl/data/extract.py
YuHuang42/cogdl
36eafd4a2ced8a513643b99a3e63e9919c38717c
[ "MIT" ]
38
2020-12-21T12:32:57.000Z
2022-01-31T02:32:05.000Z
cogdl/data/extract.py
YuHuang42/cogdl
36eafd4a2ced8a513643b99a3e63e9919c38717c
[ "MIT" ]
85
2020-12-21T05:16:09.000Z
2022-03-28T08:44:22.000Z
from __future__ import print_function import os.path as osp import tarfile import zipfile import bz2 import gzip def maybe_log(path, log=True): if log: print("Extracting", path) def extract_tar(path, folder, mode="r:gz", log=True): r"""Extracts a tar archive to a specific folder. Args: path (string): The path to the tar archive. folder (string): The folder. mode (string, optional): The compression mode. (default: :obj:`"r:gz"`) log (bool, optional): If :obj:`False`, will not print anything to the console. (default: :obj:`True`) """ maybe_log(path, log) with tarfile.open(path, mode) as f: f.extractall(folder) def extract_zip(path, folder, log=True): r"""Extracts a zip archive to a specific folder. Args: path (string): The path to the tar archive. folder (string): The folder. log (bool, optional): If :obj:`False`, will not print anything to the console. (default: :obj:`True`) """ maybe_log(path, log) with zipfile.ZipFile(path, "r") as f: f.extractall(folder) def extract_bz2(path, folder, log=True): maybe_log(path, log) with bz2.open(path, "r") as r: with open(osp.join(folder, ".".join(path.split(".")[:-1])), "wb") as w: w.write(r.read()) def extract_gz(path, folder, log=True): maybe_log(path, log) with gzip.open(path, "r") as r: with open(osp.join(folder, ".".join(path.split(".")[:-1])), "wb") as w: w.write(r.read())
27.75
79
0.606821
bfc9849842519e3c5e472c596fc1488e9aeb9663
363
py
Python
src/quakestats/core/q3toql/api.py
LaudateCorpus1/quakestats
d4e44d593e6c7334628d34b5ec648ade5976003e
[ "MIT" ]
21
2018-04-24T09:33:01.000Z
2022-03-05T10:53:45.000Z
src/quakestats/core/q3toql/api.py
brabiega/quakestats
1628720350a1e4e40ebebdb7988785663892f0be
[ "MIT" ]
42
2018-04-13T18:09:19.000Z
2021-08-05T20:23:22.000Z
src/quakestats/core/q3toql/api.py
LaudateCorpus1/quakestats
d4e44d593e6c7334628d34b5ec648ade5976003e
[ "MIT" ]
8
2018-06-12T18:07:39.000Z
2021-08-28T02:26:17.000Z
""" Base module for Q3 game parser """ import logging from quakestats.core.q3parser.parser import ( Q3Game, ) from quakestats.core.q3toql.transform import ( Q3toQL, QuakeGame, ) logger = logging.getLogger(__name__) class Q3toQLAPI(): def transform(self, q3game: Q3Game) -> QuakeGame: tf = Q3toQL() return tf.transform(q3game)
16.5
53
0.683196
c32a246c900b9c07ab2c10928db432e23a4f2f0a
6,200
py
Python
models/train_classifier.py
jcylim/Disaster_Response_Pipeline
0a43e5dfbb8c518e6c46916325ff354fcef593aa
[ "FTL", "CNRI-Python", "blessing" ]
null
null
null
models/train_classifier.py
jcylim/Disaster_Response_Pipeline
0a43e5dfbb8c518e6c46916325ff354fcef593aa
[ "FTL", "CNRI-Python", "blessing" ]
null
null
null
models/train_classifier.py
jcylim/Disaster_Response_Pipeline
0a43e5dfbb8c518e6c46916325ff354fcef593aa
[ "FTL", "CNRI-Python", "blessing" ]
null
null
null
import sys import pandas as pd from sqlalchemy import create_engine import pickle import nltk nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger']) import re import numpy as np from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import confusion_matrix, classification_report from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier # custom transformer class StartingVerbExtractor(BaseEstimator, TransformerMixin): ''' Modified StartingVerbExtractor class used to improve analysis performance ''' def starting_verb(self, text): sentence_list = nltk.sent_tokenize(text) for sentence in sentence_list: pos_tags = nltk.pos_tag(tokenize(sentence)) first_word, first_tag = pos_tags[0] if first_tag in ['VB', 'VBP'] or first_word == 'RT': return True return False def fit(self, x, y=None): return self def transform(self, X): X_tagged = pd.Series(X).apply(self.starting_verb) return pd.DataFrame(X_tagged) def load_data(database_filepath): ''' Load dataset, input set, and labels set from SQLite database. Arguments: database_filepath: path to database where dataset is saved to (String) Returns: X: feature dataset (Pandas Series) y: label dataset (Pandas Series) category_names: list of column names (Pandas Index) ''' engine = create_engine('sqlite:///' + database_filepath) df = pd.read_sql_table('df',engine) # load feature set (X), label set (Y), and column names X = df['message'] y = df.iloc[:,4:] category_names = y.columns return X, y, category_names def tokenize(text): ''' Tokenize text to enable NLP. Arguments: text: English text to be tokenized for ML (List) Returns: clean_tokens: tokenized text for ML (List) ''' url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): ''' Build ML pipeline that includes GridSearch, FeatureUnion, pipeline with CountVectorizer and TfidfTransformer, StartingVerbExtractor, and AdaBoostClassifier for analysis. Returns: model: ML pipeline that contains NLP processes and classifier (Scikit Pipeline) ''' # parameters for grid search to improve pipeline performance parameters = { 'features__text_pipeline__vect__ngram_range': ((1, 1), (1, 2)), 'features__text_pipeline__vect__max_df': (0.5, 0.75), 'features__text_pipeline__vect__max_features': (None, 5000), 'features__text_pipeline__tfidf__use_idf': (True, False) } pipeline = Pipeline([ ('features', FeatureUnion([ ('text_pipeline', Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()) ])), ('starting_verb', StartingVerbExtractor()) ])), ('clf', MultiOutputClassifier(AdaBoostClassifier())) ]) model = GridSearchCV(pipeline, param_grid=parameters) return model def evaluate_model(model, X_test, Y_test, category_names): ''' Evaluate performance of ML pipeline by displaying multiple scores. Arguments: model: ML pipeline to be evaluated (Scikit Pipeline) X_test: test feature dataset (Pandas Series) Y_test: test label dataset (Pandas Series) category_names: list of column names (List) ''' # model predictions y_pred = model.predict(X_test) # Overall accuracy of model accuracy = (y_pred == Y_test).mean() print("Overall Accuracy:", accuracy.mean()) # scores report y_pred_df = pd.DataFrame(y_pred, columns=category_names) for col in category_names: print('Attribute: {}\n'.format(col)) print(classification_report(Y_test[col], y_pred_df[col])) def save_model(model, model_filepath): ''' Build ML pipeline that includes FeatureUnion, pipeline with CountVectorizer and TfidfTransformer, StartingVerbExtractor, and AdaBoostClassifier for analysis. Arguments: model: ML pipeline to be saved (Scikit Pipeline) model_filepath: name of pickle file the model is saved to (String) ''' filename = model_filepath pickle.dump(model, open(filename, 'wb')) def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
35.428571
173
0.667903
b1633fde1875dd106b72ce2096b2e4d263eb30c1
862
py
Python
chapter 8/sampleCode15.py
DTAIEB/Thoughtful-Data-Science
8b80e8f3e33b6fdc6672ecee1f27e0b983b28241
[ "Apache-2.0" ]
15
2018-06-01T19:18:32.000Z
2021-11-28T03:31:35.000Z
chapter 8/sampleCode15.py
chshychen/Thoughtful-Data-Science
8b80e8f3e33b6fdc6672ecee1f27e0b983b28241
[ "Apache-2.0" ]
1
2018-12-17T02:01:42.000Z
2018-12-17T02:01:42.000Z
chapter 8/sampleCode15.py
chshychen/Thoughtful-Data-Science
8b80e8f3e33b6fdc6672ecee1f27e0b983b28241
[ "Apache-2.0" ]
10
2018-09-23T02:45:45.000Z
2022-03-12T15:32:05.000Z
[[BaseSubApp]] def add_ticker_selection_markup(refresh_ids): def deco(fn): def wrap(self, *args, **kwargs): return """ <div class="row" style="text-align:center"> <div class="btn-group btn-group-toggle" style="border-bottom:2px solid #eeeeee" data-toggle="buttons"> {%for ticker, state in this.parent_pixieapp.tickers.items()%} <label class="btn btn-secondary {%if this.parent_pixieapp.active_ticker == ticker%}active{%endif%}" pd_refresh=\"""" + ",".join(refresh_ids) + """\" pd_script="self.parent_pixieapp.set_active_ticker('{{ticker}}')"> <input type="radio" {%if this.parent_pixieapp.active_ticker == ticker%}checked{%endif%}> {{ticker}} </label> {%endfor%} </div> </div> """ + fn(self, *args, **kwargs) return wrap return deco
43.1
126
0.603248
1cc466a1e1aca20a8038dbf223996f90f76ca31b
1,011
py
Python
build/lib/tests/generic_test.py
eltoto1219/vltk
e84c0efe9062eb864604d96345f71483816340aa
[ "Apache-2.0" ]
null
null
null
build/lib/tests/generic_test.py
eltoto1219/vltk
e84c0efe9062eb864604d96345f71483816340aa
[ "Apache-2.0" ]
null
null
null
build/lib/tests/generic_test.py
eltoto1219/vltk
e84c0efe9062eb864604d96345f71483816340aa
[ "Apache-2.0" ]
null
null
null
import os import unittest from vltk import get_data TEST_PATH = os.path.dirname(os.path.realpath(__file__)) class TestGeneric(unittest.TestCase): # setup rando things like schema, etc # for tests, we will want to test each new method, plus a test extraction. The test extraction will have to be first # in order of most general to most specific tests def test_extraction_single_dir(self): # okay so the extraction single dir will pass def test_extaction_multi_dir(self): pass def add_text_dataset(self): pass def test_create_column_text(self): pass def test_append_column_text(self): pass def test_remove_column_text(self): pass def test_create_labeled_column_text(self): pass def test_append_labeled_column_text(self): pass def test_remove_labeled_column_text(self): pass ''' useful methods: save_to_disk datasets.concatenate_datasets load from disk '''
20.22
120
0.694362
2bd2c11c953dc4b41de49912844b0de63987451e
292
py
Python
AD18-flask-admin-image-demo/app/extensions.py
AngelLiang/Flask-Demos
cf0a74885b873cb2583b3870ccdf3508d3af602e
[ "MIT" ]
3
2020-06-17T05:44:48.000Z
2021-09-11T02:49:38.000Z
AD18-flask-admin-image-demo/app/extensions.py
AngelLiang/Flask-Demos
cf0a74885b873cb2583b3870ccdf3508d3af602e
[ "MIT" ]
3
2021-06-08T20:57:03.000Z
2022-02-23T14:54:59.000Z
AD18-flask-admin-image-demo/app/extensions.py
AngelLiang/Flask-Demos
cf0a74885b873cb2583b3870ccdf3508d3af602e
[ "MIT" ]
6
2020-06-17T05:44:56.000Z
2022-03-29T12:53:05.000Z
from flask_sqlalchemy import SQLAlchemy from flask_admin import Admin db = SQLAlchemy() admin = Admin(template_mode='bootstrap3') def register_extensions(app): db.init_app(app) admin.init_app(app) from app.admin_ import register_modelviews register_modelviews(admin, app)
20.857143
46
0.773973
d3e555ab9178f9ec05d3921383f6b03a54441142
1,923
py
Python
setup.py
NJACKWinterOfCode/UltimateSecurityCam
9f288b90d94043060ea3e6f6617e20e35aefc9af
[ "MIT" ]
10
2018-11-22T20:04:39.000Z
2020-11-20T18:32:28.000Z
setup.py
NJACKWinterOfCode/UltimateSecurityCam
9f288b90d94043060ea3e6f6617e20e35aefc9af
[ "MIT" ]
53
2018-11-22T18:52:52.000Z
2019-01-10T11:39:24.000Z
setup.py
NJACKWinterOfCode/UltimateSecurityCam
9f288b90d94043060ea3e6f6617e20e35aefc9af
[ "MIT" ]
15
2018-11-23T18:15:43.000Z
2019-02-22T16:00:29.000Z
from setuptools import setup, find_packages from codecs import open from os import path dir_path = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(dir_path, 'README.md'), encoding='utf-8') as f: long_description = f.read() requirements = ['numpy', 'matplotlib', 'pandas', 'sklearn', 'opencv-python', 'argparse', 'pygame', 'opencv-contrib-python'] setup( name='Ultimate Security Cam', version = '1.0', author= 'Nitesh Chaudhry', author_email= 'niteshbinladen@gmail.com', url= 'https://github.com/NIteshx2/UltimateSecurityCam', description = ''' An easy-to-build, un-hack-able security camera which is impossible to fool. ## Step by step guide ----------------------- - Installation of all the required depedencies is completed first. - The code is made to run via terminal/IDE. - Sequence of code: - The code first initializes a three seconds waiting camera window. - The main code runs to detect movements and record the complete video footage. - All the configurations of the video clip are recorded (like Date and Time, camera fps, maximum object movement recorded at a time, duration, etc.) - The video clip and configuration data is saved for future reference and the code terminates. ''', long_description = long_description, #Listing Dependencies that it has install_requires = requirements, #LICENSE Info license= 'The MIT License 2018', #INFO about where package can run classifiers=[ 'Intended Audience :: Developers and users who wish to use image filters', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Operating System :: Windows', 'Operating System :: Linux', ] )
33.736842
123
0.720749
10e85378e0f3f94eabf1e635c769dead4c112b78
3,604
py
Python
bindings/python/ensmallen/datasets/string/desulfonatronospirathiodismutans.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/desulfonatronospirathiodismutans.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/desulfonatronospirathiodismutans.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Desulfonatronospira thiodismutans. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def DesulfonatronospiraThiodismutans( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Desulfonatronospira thiodismutans graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Desulfonatronospira thiodismutans graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="DesulfonatronospiraThiodismutans", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
33.37037
223
0.682575
50a9c3e0e6b13a425b6eb2fef51a235bd86c6e39
353
py
Python
tests/samples/hello-cython/setup.py
mlasch/scikit-build
664dd9c41cc54047d6d648b0466d525573da5a94
[ "MIT" ]
299
2015-10-19T22:45:08.000Z
2022-03-30T21:15:55.000Z
tests/samples/hello-cython/setup.py
mlasch/scikit-build
664dd9c41cc54047d6d648b0466d525573da5a94
[ "MIT" ]
588
2015-09-17T04:26:59.000Z
2022-03-29T14:51:54.000Z
tests/samples/hello-cython/setup.py
mlasch/scikit-build
664dd9c41cc54047d6d648b0466d525573da5a94
[ "MIT" ]
102
2015-10-19T22:45:13.000Z
2022-03-20T21:09:08.000Z
from skbuild import setup setup( name="hello-cython", version="1.2.3", description="a minimal example package (cython version)", author='The scikit-build team', license="MIT", packages=['hello_cython'], # The extra '/' was *only* added to check that scikit-build can handle it. package_dir={'hello_cython': 'hello/'}, )
27.153846
78
0.660057
a0c4626c26ef18abd58bf146714cf77b54404470
13,460
py
Python
orca/modules/checkpointer.py
IBM/urcanet
ce3f41eba23c24506ea2cf9e77cd3898a4eafbaf
[ "Apache-2.0" ]
2
2020-03-21T19:09:24.000Z
2020-07-08T07:52:55.000Z
orca/modules/checkpointer.py
IBM/urcanet
ce3f41eba23c24506ea2cf9e77cd3898a4eafbaf
[ "Apache-2.0" ]
null
null
null
orca/modules/checkpointer.py
IBM/urcanet
ce3f41eba23c24506ea2cf9e77cd3898a4eafbaf
[ "Apache-2.0" ]
3
2020-03-21T19:12:16.000Z
2020-11-17T10:02:44.000Z
from typing import Dict, Optional, List, Tuple, Union, Iterable, Any, NamedTuple import logging import os import re import shutil import time import torch from allennlp.training.trainer import Trainer, TrainerPieces from allennlp.training.trainer_base import TrainerBase from allennlp.training.checkpointer import Checkpointer from allennlp.common import Params from allennlp.common.checks import ConfigurationError from allennlp.common.util import (dump_metrics, gpu_memory_mb, parse_cuda_device, peak_memory_mb, get_frozen_and_tunable_parameter_names, lazy_groups_of) from allennlp.common.tqdm import Tqdm from allennlp.data.instance import Instance from allennlp.data.iterators.data_iterator import DataIterator, TensorDict from allennlp.data.vocabulary import Vocabulary from allennlp.models.model import Model from allennlp.nn import util as nn_util from allennlp.training.checkpointer import Checkpointer from allennlp.training.learning_rate_schedulers import LearningRateScheduler from allennlp.training.momentum_schedulers import MomentumScheduler from allennlp.training.metric_tracker import MetricTracker from allennlp.training.optimizers import Optimizer from allennlp.training.tensorboard_writer import TensorboardWriter from allennlp.training.trainer_base import TrainerBase from allennlp.training import util as training_util from allennlp.training.moving_average import MovingAverage logger = logging.getLogger(__name__) class ModifiedCheckpointer(Checkpointer): def __init__(self, serialization_dir: str = None, keep_serialized_model_every_num_seconds: int = None, num_serialized_models_to_keep: int = 20, minimal_save: bool = True) -> None: super().__init__(serialization_dir=serialization_dir, keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds, num_serialized_models_to_keep=num_serialized_models_to_keep) self._minimal_save = minimal_save def save_checkpoint(self, epoch: Union[int, str], model_state: Dict[str, Any], training_states: Dict[str, Any], is_best_so_far: bool) -> None: if self._serialization_dir is not None: model_path = os.path.join(self._serialization_dir, "model_state_epoch_{}.th".format(epoch)) if not self._minimal_save: torch.save(model_state, model_path) training_path = os.path.join(self._serialization_dir, "training_state_epoch_{}.th".format(epoch)) if not self._minimal_save: torch.save({**training_states, "epoch": epoch}, training_path) if is_best_so_far: logger.info("Best validation performance so far. " "Copying weights to '%s/best.th'.", self._serialization_dir) if not self._minimal_save: shutil.copyfile(model_path, os.path.join(self._serialization_dir, "best.th")) else: best_model_path = os.path.join(self._serialization_dir, "best.th") torch.save(model_state, best_model_path) if self._num_serialized_models_to_keep and self._num_serialized_models_to_keep >= 0: self._serialized_paths.append((time.time(), model_path, training_path)) if len(self._serialized_paths) > self._num_serialized_models_to_keep: paths_to_remove = self._serialized_paths.pop(0) # Check to see if we should keep this checkpoint, if it has been longer # then self._keep_serialized_model_every_num_seconds since the last # kept checkpoint. remove_path = True if self._keep_serialized_model_every_num_seconds is not None: save_time = paths_to_remove[0] time_since_checkpoint_kept = save_time - self._last_permanent_saved_checkpoint_time if time_since_checkpoint_kept > self._keep_serialized_model_every_num_seconds: # We want to keep this checkpoint. remove_path = False self._last_permanent_saved_checkpoint_time = save_time if remove_path: for fname in paths_to_remove[1:]: if os.path.isfile(fname): os.remove(fname) @TrainerBase.register("modified_trainer") class ModifiedTrainer(Trainer): def __init__(self, model, optimizer: torch.optim.Optimizer, iterator, train_dataset, validation_dataset = None, patience: Optional[int] = None, validation_metric: str = "-loss", validation_iterator = None, shuffle: bool = True, num_epochs: int = 20, serialization_dir: Optional[str] = None, num_serialized_models_to_keep: int = 20, keep_serialized_model_every_num_seconds: int = None, checkpointer: Checkpointer = None, model_save_interval: float = None, cuda_device: Union[int, List] = -1, grad_norm: Optional[float] = None, grad_clipping: Optional[float] = None, learning_rate_scheduler = None, momentum_scheduler = None, summary_interval: int = 100, histogram_interval: int = None, should_log_parameter_statistics: bool = True, should_log_learning_rate: bool = False, log_batch_size_period: Optional[int] = None, moving_average = None, minimal_save = False) -> None: super().__init__(model=model, optimizer=optimizer, iterator=iterator, train_dataset=train_dataset, validation_dataset=validation_dataset, patience=patience, validation_metric=validation_metric, validation_iterator=validation_iterator, shuffle=shuffle, num_epochs=num_epochs, serialization_dir=serialization_dir, num_serialized_models_to_keep=num_serialized_models_to_keep, keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds, checkpointer=checkpointer, model_save_interval=model_save_interval, cuda_device=cuda_device, grad_norm=grad_norm, grad_clipping=grad_clipping, learning_rate_scheduler=learning_rate_scheduler, momentum_scheduler=momentum_scheduler, summary_interval=summary_interval, histogram_interval=histogram_interval, should_log_parameter_statistics=should_log_parameter_statistics, should_log_learning_rate=should_log_learning_rate, log_batch_size_period=log_batch_size_period, moving_average=moving_average) self._checkpointer = ModifiedCheckpointer(serialization_dir, keep_serialized_model_every_num_seconds, num_serialized_models_to_keep, minimal_save) @classmethod def from_params(cls, params, serialization_dir, recover): pieces = TrainerPieces.from_params(params, serialization_dir, recover) return cls.from_params_old(model=pieces.model, serialization_dir=serialization_dir, iterator=pieces.iterator, train_data=pieces.train_dataset, validation_data=pieces.validation_dataset, params=pieces.params, validation_iterator=pieces.validation_iterator) @classmethod def from_params_old(cls, # type: ignore model, serialization_dir: str, iterator, train_data, validation_data, params, validation_iterator = None) -> 'Trainer': # pylint: disable=arguments-differ patience = params.pop_int("patience", None) validation_metric = params.pop("validation_metric", "-loss") shuffle = params.pop_bool("shuffle", True) num_epochs = params.pop_int("num_epochs", 20) cuda_device = parse_cuda_device(params.pop("cuda_device", -1)) grad_norm = params.pop_float("grad_norm", None) grad_clipping = params.pop_float("grad_clipping", None) lr_scheduler_params = params.pop("learning_rate_scheduler", None) momentum_scheduler_params = params.pop("momentum_scheduler", None) if isinstance(cuda_device, list): model_device = cuda_device[0] else: model_device = cuda_device if model_device >= 0: # Moving model to GPU here so that the optimizer state gets constructed on # the right device. model = model.cuda(model_device) parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad] optimizer = Optimizer.from_params(parameters, params.pop("optimizer")) if "moving_average" in params: moving_average = MovingAverage.from_params(params.pop("moving_average"), parameters=parameters) else: moving_average = None if lr_scheduler_params: lr_scheduler = LearningRateScheduler.from_params(optimizer, lr_scheduler_params) else: lr_scheduler = None if momentum_scheduler_params: momentum_scheduler = MomentumScheduler.from_params(optimizer, momentum_scheduler_params) else: momentum_scheduler = None if 'checkpointer' in params: if 'keep_serialized_model_every_num_seconds' in params or \ 'num_serialized_models_to_keep' in params: raise ConfigurationError( "Checkpointer may be initialized either from the 'checkpointer' key or from the " "keys 'num_serialized_models_to_keep' and 'keep_serialized_model_every_num_seconds'" " but the passed config uses both methods.") checkpointer = Checkpointer.from_params(params.pop("checkpointer")) else: num_serialized_models_to_keep = params.pop_int("num_serialized_models_to_keep", 20) keep_serialized_model_every_num_seconds = params.pop_int( "keep_serialized_model_every_num_seconds", None) checkpointer = Checkpointer( serialization_dir=serialization_dir, num_serialized_models_to_keep=num_serialized_models_to_keep, keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds) model_save_interval = params.pop_float("model_save_interval", None) summary_interval = params.pop_int("summary_interval", 100) histogram_interval = params.pop_int("histogram_interval", None) should_log_parameter_statistics = params.pop_bool("should_log_parameter_statistics", True) should_log_learning_rate = params.pop_bool("should_log_learning_rate", False) log_batch_size_period = params.pop_int("log_batch_size_period", None) minimal_save = params.pop_int("minimal_save", False) params.assert_empty(cls.__name__) return cls(model, optimizer, iterator, train_data, validation_data, patience=patience, validation_metric=validation_metric, validation_iterator=validation_iterator, shuffle=shuffle, num_epochs=num_epochs, serialization_dir=serialization_dir, cuda_device=cuda_device, grad_norm=grad_norm, grad_clipping=grad_clipping, learning_rate_scheduler=lr_scheduler, momentum_scheduler=momentum_scheduler, checkpointer=checkpointer, model_save_interval=model_save_interval, summary_interval=summary_interval, histogram_interval=histogram_interval, should_log_parameter_statistics=should_log_parameter_statistics, should_log_learning_rate=should_log_learning_rate, log_batch_size_period=log_batch_size_period, moving_average=moving_average, minimal_save=minimal_save)
53.201581
108
0.614562
b2bd8daba547b4f1b3f7c006905ae2a828c5a5f4
479
py
Python
nomadgram/users/migrations/0007_auto_20180322_0216.py
zlyanz13/Yonwongram
a340f8ef215d3d8967e6977f89f46fbe2cc1a337
[ "MIT" ]
null
null
null
nomadgram/users/migrations/0007_auto_20180322_0216.py
zlyanz13/Yonwongram
a340f8ef215d3d8967e6977f89f46fbe2cc1a337
[ "MIT" ]
null
null
null
nomadgram/users/migrations/0007_auto_20180322_0216.py
zlyanz13/Yonwongram
a340f8ef215d3d8967e6977f89f46fbe2cc1a337
[ "MIT" ]
null
null
null
# Generated by Django 2.0.3 on 2018-03-21 17:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0006_auto_20180322_0118'), ] operations = [ migrations.AlterField( model_name='user', name='gender', field=models.CharField(choices=[('female', 'Female'), ('not-specified', 'Not sepcified'), ('male', 'Male')], max_length=80, null=True), ), ]
25.210526
147
0.597077
30e20ee779276b7cd765c7c160fab127f16d7df8
7,078
py
Python
cime/config/e3sm/tests.py
sarats/E3SM
d6b52862bd04daecdaa71aba23d4952ae16d4b90
[ "FTL", "zlib-acknowledgement", "RSA-MD" ]
null
null
null
cime/config/e3sm/tests.py
sarats/E3SM
d6b52862bd04daecdaa71aba23d4952ae16d4b90
[ "FTL", "zlib-acknowledgement", "RSA-MD" ]
null
null
null
cime/config/e3sm/tests.py
sarats/E3SM
d6b52862bd04daecdaa71aba23d4952ae16d4b90
[ "FTL", "zlib-acknowledgement", "RSA-MD" ]
null
null
null
# Here are the tests belonging to e3sm suites. Format is # <test>.<grid>.<compset>. # suite_name -> (inherits_from, timelimit, [test [, mods[, machines]]]) # To elaborate, if no mods are needed, a string representing the testname is all that is needed. # If testmods are needed, a 2-ple must be provided (test, mods) # If you want to restrict the test mods to certain machines, than a 3-ple is needed (test, mods, [machines]) _TESTS = { "e3sm_land_developer" : (None, "0:45:00", ("ERS.f19_f19.ICLM45", "ERS.f19_f19.I1850CLM45CN", "ERS.f09_g16.I1850CLM45CN", "ERS.f19_f19.I20TRCLM45CN", "SMS_Ld1.hcru_hcru.I1850CRUCLM45CN", ("ERS.f19_g16.I1850CNECACNTBC" ,"clm-eca"), ("ERS.f19_g16.I1850CNECACTCBC" ,"clm-eca"), ("SMS_Ly2_P1x1.1x1_smallvilleIA.ICLM45CNCROP", "clm-force_netcdf_pio"), ("ERS_Ld3.f45_f45.ICLM45ED","clm-fates"), ("ERS.f19_g16.I1850CLM45","clm-betr"), ("ERS.f19_g16.I1850CLM45","clm-vst"), ("ERS.f09_g16.I1850CLM45CN","clm-bgcinterface"), "ERS.ne11_oQU240.I20TRCLM45", ("ERS.f19_g16.I1850CNRDCTCBC","clm-rd"), ("ERS.f19_g16.I1850GSWCNPECACNTBC","clm-eca_f19_g16_I1850GSWCNPECACNTBC"), ("ERS.f19_g16.I20TRGSWCNPECACNTBC","clm-eca_f19_g16_I20TRGSWCNPECACNTBC"), ("ERS.f19_g16.I1850GSWCNPRDCTCBC","clm-ctc_f19_g16_I1850GSWCNPRDCTCBC"), ("ERS.f19_g16.I20TRGSWCNPRDCTCBC","clm-ctc_f19_g16_I20TRGSWCNPRDCTCBC"), "ERS.f09_g16.ICLM45BC") ), "e3sm_atm_developer" : (None, None, ("ERP_Ln9.ne4_ne4.FC5AV1C-L", ("SMS_Ln9.ne4_ne4.FC5AV1C-L", "cam-outfrq9s"), ("SMS.ne4_ne4.FC5AV1C-L", "cam-cosplite"), "SMS_R_Ld5.T42_T42.FSCM5A97", "SMS_D_Ln5.ne4_ne4.FC5AV1C-L") ), "e3sm_atm_integration" : (None, None, ("ERP_Ln9.ne4_ne4.FC5AV1C-L-AQUAP", ("SMS_Ld1.ne4_ne4.FC5AV1C-L-AQUAP","cam-clubb_only"), ("PET_Ln5.ne4_ne4.FC5AV1C-L","allactive-mach-pet"), "PEM_Ln5.ne4_ne4.FC5AV1C-L", ("SMS_D_Ln5.ne4_ne4.FC5AV1C-L", "cam-cosplite_nhtfrq5"), ("ERS_Ld5.ne4_ne4.FC5AV1C-L", "cam-rrtmgp"), "REP_Ln5.ne4_ne4.FC5AV1C-L") ), #atmopheric tests for extra coverage "e3sm_atm_extra_coverage" : (None, None, ("SMS_Lm1.ne4_ne4.FC5AV1C-L", "ERS_Ld31.ne4_ne4.FC5AV1C-L", "ERP_Lm3.ne4_ne4.FC5AV1C-L", "SMS_D_Ln5.ne30_ne30.FC5AV1C-L", ("ERP_Ln5.ne30_ne30.FC5AV1C-L"), "SMS_Ly1.ne4_ne4.FC5AV1C-L") ), #atmopheric tests for hi-res "e3sm_atm_hi_res" : (None, "01:30:00", ( "SMS.ne120_ne120.FC5AV1C-H01A", )), #atmopheric tests to mimic low res production runs "e3sm_atm_prod" : (None, None, (("SMS_Ln5.ne30_ne30.FC5AV1C-L", "cam-cosplite"), ) ), #atmopheric nbfb tests "e3sm_atm_nbfb" : (None, None, ("PGN_P1x1.ne4_ne4.FC5AV1C-L", "TSC.ne4_ne4.FC5AV1C-L") ), "e3sm_developer" : (("e3sm_land_developer","e3sm_atm_developer"), "0:45:00", ("ERS.f19_g16_rx1.A", "ERS.ne30_g16_rx1.A", "SEQ.f19_g16.X", "ERIO.ne30_g16_rx1.A", "HOMME_P24.f19_g16_rx1.A", "NCK.f19_g16_rx1.A", "SMS.ne30_f19_g16_rx1.A", "ERS_Ld5.T62_oQU120.CMPASO-NYF", "ERS.f09_g16_g.MALISIA", "SMS.T62_oQU120_ais20.MPAS_LISIO_TEST", "SMS.f09_g16_a.IGCLM45_MLI", ("SMS_P12x2.ne4_oQU240.A_WCYCL1850","allactive-mach_mods") )), "e3sm_integration" : (("e3sm_developer", "e3sm_atm_integration"),"03:00:00", ("ERS.ne11_oQU240.A_WCYCL1850", ("SMS_D_Ld1.ne30_oECv3_ICG.A_WCYCL1850S_CMIP6","allactive-v1cmip6"), "ERS_Ln9.ne4_ne4.FC5AV1C-L", #"ERT_Ld31.ne16_g37.B1850C5",#add this line back in with the new correct compset "NCK.ne11_oQU240.A_WCYCL1850", ("PET.f19_g16.X","allactive-mach-pet"), ("PET.f45_g37_rx1.A","allactive-mach-pet"), ("PET_Ln9_PS.ne30_oECv3_ICG.A_WCYCL1850S","allactive-mach-pet"), "PEM_Ln9.ne30_oECv3_ICG.A_WCYCL1850S", "ERP_Ld3.ne30_oECv3_ICG.A_WCYCL1850S", "SMS.f09_g16_a.MALI", "SMS_D_Ln5.conusx4v1_conusx4v1.FC5AV1C-L", ("SMS.ne30_oECv3.BGCEXP_BCRC_CNPECACNT_1850","clm-bgcexp"), ("SMS.ne30_oECv3.BGCEXP_BCRC_CNPRDCTC_1850","clm-bgcexp")) ), #e3sm tests for extra coverage "e3sm_extra_coverage" : (("e3sm_atm_extra_coverage",), None, ("SMS_D_Ln5.enax4v1_enax4v1.FC5AV1C-L", "SMS_D_Ln5.twpx4v1_twpx4v1.FC5AV1C-L")), #e3sm tests for hi-res "e3sm_hi_res" : (("e3sm_atm_hi_res",),None, ( ("SMS.ne120_oRRS18v3_ICG.A_WCYCL2000_H01AS", "cam-cosplite"), "SMS.T62_oRRS30to10v3wLI.GMPAS-IAF", )), #e3sm tests for RRM grids "e3sm_rrm" : (None, None, ("SMS_D_Ln5.conusx4v1_conusx4v1.FC5AV1C-L", "SMS_D_Ln5.enax4v1_enax4v1.FC5AV1C-L", "SMS_D_Ln5.twpx4v1_twpx4v1.FC5AV1C-L") ), #e3sm tests to mimic production runs "e3sm_prod" : (("e3sm_atm_prod",),None, ( ("SMS_Ld2.ne30_oECv3_ICG.A_WCYCL1850S_CMIP6","allactive-v1cmip6"), )), "fates" : (None, None, ("ERS_Ld9.1x1_brazil.ICLM45ED", "ERS_D_Ld9.1x1_brazil.ICLM45ED", "SMS_D_Lm6.1x1_brazil.ICLM45ED") ), }
51.664234
110
0.476123
31b26e65fe4b3b964735058b017da9109e2f5ba5
9,982
py
Python
src/app_util/core.py
jnsougata/app_util
941421523d38973486321f26b38aa4735ca0a9b2
[ "MIT" ]
null
null
null
src/app_util/core.py
jnsougata/app_util
941421523d38973486321f26b38aa4735ca0a9b2
[ "MIT" ]
null
null
null
src/app_util/core.py
jnsougata/app_util
941421523d38973486321f26b38aa4735ca0a9b2
[ "MIT" ]
null
null
null
from __future__ import annotations import sys import discord from .errors import * from discord.ext import commands from discord.http import Route from .http_s import * from dataclasses import dataclass from .app import Overwrite, ApplicationCommandOrigin from typing import List, Optional, Union, Any, Dict from .enums import OptionType, ApplicationCommandType, PermissionType, try_enum def _try_flake(snowflake: str) -> Union[int, None]: try: return int(snowflake) except TypeError: return None def _make_qual(name: str, guild_id: Optional[int], ctype: ApplicationCommandType, ) -> str: if guild_id: post_fix = f'{name}_{guild_id}' else: post_fix = name if ctype is ApplicationCommandType.CHAT_INPUT: return '__CHAT__' + post_fix if ctype is ApplicationCommandType.MESSAGE: return '__MESSAGE__' + post_fix if ctype is ApplicationCommandType.USER: return '__USER__' + post_fix @dataclass(frozen=True) class InteractionData: name: str = None type: int = None guild_id: Optional[str] = None id: Union[int, str] = None resolved: Optional[dict] = None options: Optional[List[dict]] = None # below are only used for type != 2 custom_id: Optional[str] = None component_type: Optional[int] = None values: Optional[list] = None # only used for User Command & Message Command target_id: Optional[str] = None # only used for modals components: Optional[List[dict]] = None class Resolved: def __init__(self, data: dict, c): self.__c = c self.data = data self.client = c.client @property def users(self) -> Dict[int, discord.User]: if self.data.get('users'): return {int(key): discord.User(data=payload, state=self.client._connection) for key, payload in self.data['users'].items()} @property def members(self) -> Dict[int, discord.Member]: if self.data.get('members'): return {int(key): self.__c.guild.get_member(int(key)) for key, _ in self.data['members'].items()} @property def roles(self) -> Dict[int, discord.Role]: if self.data.get('roles'): return {int(key): discord.Role(guild=self.__c.guild, data=payload, state=self.client._connection) for key, payload in self.data['roles'].items()} @property def channels(self) -> Dict[int, discord.abc.GuildChannel]: if self.data.get('channels'): return {int(key): self.__c.guild.get_channel(int(key)) for key, _ in self.data['channels'].items()} @property def messages(self) -> Dict[int, discord.Message]: if self.data.get('messages'): return {int(key): discord.Message(data=payload, state=self.client._connection, channel=self.__c.channel) for key, payload in self.data['messages'].items()} @property def attachments(self) -> Dict[int, discord.Attachment]: if self.data.get('attachments'): return {int(key): discord.Attachment(data=payload, state=self.client._connection) for key, payload in self.data['attachments'].items()} class DummyOption: value = True class SlashCommandOption: def __init__(self, p, data: Dict[str, Any]): self.data = data self.guild = p.guild self.client = p.client self._resolved = p._resolved def __repr__(self): return f'<SlashCommandOption name={self.name} type={self.type}>' @property def name(self) -> str: return self.data['name'] @property def type(self): value = self.data['type'] return try_enum(OptionType, value) @staticmethod def _hybrid(family: str, options: List[Dict[str, Any]]): return [{'type': generic['type'], 'value': generic['value'], 'name': f'{family}_{generic["name"]}'} for generic in options] @property def value(self) -> Any: if self.type is OptionType.STRING: return self.data.get('value') elif self.type is OptionType.INTEGER: return self.data.get('value') elif self.type is OptionType.BOOLEAN: return self.data.get('value') elif self.type is OptionType.USER: user_id = int(self.data.get('value')) return self._resolved.users[user_id] elif self.type is OptionType.CHANNEL: channel_id = int(self.data.get('value')) return self._resolved.channels[channel_id] elif self.type is OptionType.ROLE: role_id = int(self.data.get('value')) return self._resolved.roles[role_id] elif self.type is OptionType.MENTIONABLE: target_id = int(self.data.get('value')) map = {} if not self.guild: if self._resolved.users: map.update(self._resolved.users) if self._resolved.roles: map.update(self._resolved.roles) else: if self._resolved.users: map.update(self._resolved.users) if self._resolved.roles: map.update(self._resolved.roles) if self._resolved.members: map.update(self._resolved.members) return map[target_id] elif self.type is OptionType.NUMBER: return self.data['value'] elif self.type is OptionType.ATTACHMENT: attachment_id = int(self.data['value']) return self._resolved.attachments[attachment_id] else: return self.data.get('value') @property def focused(self) -> bool: return self.data.get('focused') class ApplicationCommand: def __init__(self, client: commands.Bot, data: dict): self.__payload = data self._client = client self.id = int(data['id']) self.guild_id = _try_flake(data.get('guild_id')) self.name = data['name'] self.description = data['description'] self.type = try_enum(ApplicationCommandType, data['type']) self._qual = _make_qual(self.name, self.guild_id, self.type) self.application_id = int(data['application_id']) self.options = data.get('options') self.version = int(data['version']) self.default_access = data['default_permission'] self.dm_access = self.default_access or False self._permissions = data.get('permissions') or {} self.overwrites = {} self.__parse_permissions() self.name_locale = data.get('name_localizations') self.description_locale = data.get('description_localizations') def __eq__(self, other): return self.id == other.id def __repr__(self): return f'<ApplicationCommand id = {self.id} name = {self.name}>' @classmethod def _from_data(cls, client: commands.Bot, data: dict): return cls(client, data) @property def guild_specific(self) -> bool: if self.guild_id: return True return False @property def guild(self): if self.guild_id: return self._client.get_guild(self.guild_id) return None def overwrite_for(self, guild: discord.Guild, entity: Union[discord.Role, discord.User]) -> bool: permission = self.overwrites.get(guild.id) if permission is None: return self.default_access for_entity = permission.get(entity.id) if for_entity is None: return self.default_access return for_entity['allowed'] async def delete(self): await delete_command(self._client, self.id, self.guild_id) await self._client.http.request(route) self._client._application_commands.pop(self.id) def __parse_permissions(self): for guild_id, perms in self._permissions.items(): for p in perms: self.overwrites[int(guild_id)] = {int(p['id']): {'allowed': p['permission'], 'type': p['type']}} def _cache_permissions(self, ows: dict, guild_id: int): self._permissions[guild_id] = ows['permissions'] self.__parse_permissions() def _build_overwrites(self, guild_id: int): overwrites = self.overwrites.get(guild_id) if ows: return [{'id': str(entity_id), 'type': ovrt['type'], 'permission': ovrt['allowed']} for entity_id, ovrt in ows.items()] async def edit_overwrites(self, guild: discord.Guild, overwrites: List[Overwrite]): payload = {'permissions': [o.to_dict() for o in overwrites]} data = await put_overwrites(self._client, self.id, guild.id, payload) self._cache_permissions(data, guild.id) async def edit_overwrite_for(self, guild: discord.Guild, overwrite: Overwrite): container = self._build_overwrites(guild.id) new = overwrite.to_dict() for ovrt in container: if ovrt['id'] == new['id']: container.remove(ovrt) container.append(new) payload = {'permissions': container} data = await put_overwrites(self._client, self.id, guild.id, payload) self._cache_permissions(data, guild.id) async def update(self, new_command: ApplicationCommandOrigin) -> ApplicationCommand: if new_command.type is self.type: try: data = await patch_existing_command(self._client, self, new_command) except discord.errors.HTTPException as e: raise e else: updated = self._from_data(self._client, data) self._client._application_commands.pop(updated.id) self._client._application_commands[updated.id] = updated return updated raise CommandTypeMismatched( f'Type mismatched while editing command `{self.name}`. Expected: {self.type} & got: {new_command.type}')
35.272085
116
0.623021
fef456260a8dbbe679342f52c5c663a9f52db585
4,500
py
Python
api/tests/connection_test.py
sthagen/facebook-pyre-check
cea188088c9632b10e0d0a658a8f1954f19413cd
[ "MIT" ]
null
null
null
api/tests/connection_test.py
sthagen/facebook-pyre-check
cea188088c9632b10e0d0a658a8f1954f19413cd
[ "MIT" ]
null
null
null
api/tests/connection_test.py
sthagen/facebook-pyre-check
cea188088c9632b10e0d0a658a8f1954f19413cd
[ "MIT" ]
null
null
null
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import subprocess import unittest from pathlib import Path from unittest.mock import call, MagicMock, patch from ..connection import PyreConnection, PyreQueryError class ConnectionApiTest(unittest.TestCase): # pyre-ignore[56] @patch.object( PyreConnection, "_validate_query_response", side_effect=lambda response: response, ) @patch("subprocess.run") def test_query_server( self, run: MagicMock, _validate_query_response: MagicMock ) -> None: run_result = MagicMock() run_result.returncode = 0 run.return_value = run_result # We always start a server once when querying. pyre_connection = PyreConnection(Path("/tmp")) pyre_connection.server_initialized = False pyre_connection.query_server("hi") self.assertEqual( run.call_args_list, [ call( ["pyre", "--noninteractive", "incremental"], cwd="/tmp", stdout=subprocess.PIPE, ), call( ["pyre", "--noninteractive", "query", "hi"], cwd="/tmp", stdout=subprocess.PIPE, ), ], ) run.reset_mock() pyre_connection = PyreConnection(Path("/tmp")) pyre_connection.query_server("hi") self.assertEqual( run.call_args_list, [ call( ["pyre", "--noninteractive", "incremental"], cwd="/tmp", stdout=subprocess.PIPE, ), call( ["pyre", "--noninteractive", "query", "hi"], cwd="/tmp", stdout=subprocess.PIPE, ), ], ) run.reset_mock() pyre_connection = PyreConnection(Path("/tmp")) pyre_connection.query_server("hi") pyre_connection.query_server("bye") self.assertEqual( run.call_args_list, [ call( ["pyre", "--noninteractive", "incremental"], cwd="/tmp", stdout=subprocess.PIPE, ), call( ["pyre", "--noninteractive", "query", "hi"], cwd="/tmp", stdout=subprocess.PIPE, ), call( ["pyre", "--noninteractive", "query", "bye"], cwd="/tmp", stdout=subprocess.PIPE, ), ], ) run.reset_mock() with PyreConnection(Path("/tmp")) as pyre_connection: pyre_connection.query_server("hi") self.assertEqual( run.call_args_list, [ call( ["pyre", "--noninteractive", "incremental"], cwd="/tmp", stdout=subprocess.PIPE, ), call( ["pyre", "--noninteractive", "query", "hi"], cwd="/tmp", stdout=subprocess.PIPE, ), call(["pyre", "--noninteractive", "stop"], check=True, cwd="/tmp"), ], ) def test_validate_query_response(self) -> None: with self.assertRaisesRegex(PyreQueryError, "Foo"): PyreConnection._validate_query_response('{"error": "Foo"}') with self.assertRaisesRegex(PyreQueryError, "is not valid JSON."): PyreConnection._validate_query_response("asdf") with self.assertRaisesRegex(PyreQueryError, "The server response is invalid."): PyreConnection._validate_query_response("{}") self.assertEqual( PyreConnection._validate_query_response('{"response": "Foo"}'), {"response": "Foo"}, ) def test_context_manager(self) -> None: with patch.object(PyreConnection, "start_server") as start_server, patch.object( PyreConnection, "stop_server" ) as stop_server: with PyreConnection(): pass start_server.assert_called_once_with() stop_server.assert_called_once_with()
33.834586
88
0.506444
8435b980d71886220bfaab308a4c2573102d5303
365
py
Python
Day_8/Day 8: Dictionaries and Maps.py
chmielak90/HackerRank
25aff18bb2a02a3af5c5e35f0a99fcac54b21ca2
[ "MIT" ]
null
null
null
Day_8/Day 8: Dictionaries and Maps.py
chmielak90/HackerRank
25aff18bb2a02a3af5c5e35f0a99fcac54b21ca2
[ "MIT" ]
null
null
null
Day_8/Day 8: Dictionaries and Maps.py
chmielak90/HackerRank
25aff18bb2a02a3af5c5e35f0a99fcac54b21ca2
[ "MIT" ]
null
null
null
n = int(input().strip()) phoneBook = {} for i in range(n): add_value = [str(arr_temp) for arr_temp in input().strip().split(' ')] phoneBook[add_value[0]] = add_value[1] for j in range(n): key_value = str(input().strip()) if key_value in phoneBook: print('{}={}'.format(key_value, phoneBook[key_value])) else: print('Not found')
28.076923
74
0.610959
8bdea8acb4beca1ca56596e53d19b0de0ee5163b
11,490
py
Python
code/python/QuotesAPIforDigitalPortals/v2/fds/sdk/QuotesAPIforDigitalPortals/model/basic_mic_operating_list_data.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
6
2022-02-07T16:34:18.000Z
2022-03-30T08:04:57.000Z
code/python/QuotesAPIforDigitalPortals/v2/fds/sdk/QuotesAPIforDigitalPortals/model/basic_mic_operating_list_data.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
2
2022-02-07T05:25:57.000Z
2022-03-07T14:18:04.000Z
code/python/QuotesAPIforDigitalPortals/v2/fds/sdk/QuotesAPIforDigitalPortals/model/basic_mic_operating_list_data.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
null
null
null
""" Prime Developer Trial No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.QuotesAPIforDigitalPortals.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.QuotesAPIforDigitalPortals.exceptions import ApiAttributeError def lazy_import(): from fds.sdk.QuotesAPIforDigitalPortals.model.basic_mic_operating_list_data_filter import BasicMicOperatingListDataFilter globals()['BasicMicOperatingListDataFilter'] = BasicMicOperatingListDataFilter class BasicMicOperatingListData(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'filter': (BasicMicOperatingListDataFilter,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'filter': 'filter', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """BasicMicOperatingListData - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) filter (BasicMicOperatingListDataFilter): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """BasicMicOperatingListData - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) filter (BasicMicOperatingListDataFilter): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
43.854962
125
0.581201
bfe589cead26bd0bf0f0780ea3af400ed4cc1848
3,088
py
Python
bbs/settings.py
forumPro/bbs
8e85d404ff483039128eb155012f552744cfcc7b
[ "MIT" ]
null
null
null
bbs/settings.py
forumPro/bbs
8e85d404ff483039128eb155012f552744cfcc7b
[ "MIT" ]
null
null
null
bbs/settings.py
forumPro/bbs
8e85d404ff483039128eb155012f552744cfcc7b
[ "MIT" ]
null
null
null
""" Django settings for bbs project. Generated by 'django-admin startproject' using Django 1.11.15. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'kjxnb)fjw3j&(t^+-d(mob10n0)$@(rb81erp6wute&-rbkwx0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'bbs.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'bbs.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
25.520661
91
0.695596
88394a90cac88e400573dd749e0f10edffa14c2e
25,927
py
Python
src/fichier.py
Franckyi/Simulation-Telecom
e856b78bd1da487d52676fc97750be73858f3f30
[ "MIT" ]
null
null
null
src/fichier.py
Franckyi/Simulation-Telecom
e856b78bd1da487d52676fc97750be73858f3f30
[ "MIT" ]
null
null
null
src/fichier.py
Franckyi/Simulation-Telecom
e856b78bd1da487d52676fc97750be73858f3f30
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 """ Effectue des simulations depuis un fichier JSON """ import json import sys from pprint import pprint import affichage import canal import codage import echantillonnage import modulation import outils import sequence print print "############################" print "# #" print "# fichier.py #" print "# #" print "############################" print if len(sys.argv) < 2: print "Veuillez passer un fichier en paramètre" exit(1) fichier = sys.argv[1] print "> Lecture du fichier" data = json.load(open(fichier)) print "> Affichage du fichier" print "#####" pprint(data) print "#####" # Séquence print "> Analyse de la séquence" if 'sequence' not in data: print "!!! Elément 'sequence' introuvable !!!" exit(2) if 'seq' in data['sequence']: seq = sequence.sequence_chaine(data['sequence']['seq']) elif 'repetitions' in data['sequence']: seq = sequence.sequence_pseudo_aleatoire(data['sequence']['taille'], data['sequence']['repetitions']) else: seq = sequence.sequence_aleatoire(data['sequence']['taille']) db = data['sequence']['db'] # Affichage séquence print "> Analyse de l'affichage de la séquence" if 'aff_sequence' not in data: print "!!! Elément 'aff_sequence' introuvable !!!" exit(2) aff_sequence = data['aff_sequence'] aff_sequence_texte = aff_sequence['sequence'] aff_repartition = 'repartition' in aff_sequence if aff_repartition: bps = aff_sequence['repartition']['bps'] # Codage has_codage = 'codage' in data if has_codage: print "> Analyse du codage" fech_codage = data['codage']['fech'] ech_codage = echantillonnage.creer_echantillons(seq, db, fech_codage) if data['codage']['type'] == 'nrz': y_codage = codage.coder_nrz(seq, db, ech_codage, fech_codage, data['codage']['v0'], data['codage']['v1']) elif data['codage']['type'] == 'rz': y_codage = codage.coder_rz(seq, db, ech_codage, fech_codage, data['codage']['v0'], data['codage']['v1']) elif data['codage']['type'] == 'manchester': y_codage = codage.coder_manchester(seq, db, ech_codage, fech_codage, data['codage']['vp'], data['codage']['vm']) elif data['codage']['type'] == '2b1q': if 'vmax' in data['codage']: y_codage = codage.coder_2b1q_max(seq, db, ech_codage, fech_codage, data['codage']['vmax']) else: y_codage = codage.coder_2b1q(seq, db, ech_codage, fech_codage, data['codage']['v00'], data['codage']['v01'], data['codage']['v10'], data['codage']['v11']) else: print "!!! Codage '{}' inconnu !!!".format(data['codage']['type']) exit(3) # Affichage codage print "> Analyse de l'affichage du codage" if 'aff_codage' not in data: print "!!! Elément 'aff_codage' introuvable !!!" exit(2) aff_codage = data['aff_codage'] aff_chronogramme_codage = 'chronogramme' in aff_codage if aff_chronogramme_codage: aff_chronogramme_codagej = aff_codage['chronogramme'] aff_chronogramme_codage_tmin = aff_chronogramme_codagej['tmin'] if 'tmin' in aff_chronogramme_codagej else None aff_chronogramme_codage_tmax = aff_chronogramme_codagej['tmax'] if 'tmax' in aff_chronogramme_codagej else None aff_chronogramme_codage_vmin = aff_chronogramme_codagej['vmin'] if 'vmin' in aff_chronogramme_codagej else None aff_chronogramme_codage_vmax = aff_chronogramme_codagej['vmax'] if 'vmax' in aff_chronogramme_codagej else None aff_chronogramme_codage_xlegend = aff_chronogramme_codagej[ 'xlegend'] if 'xlegend' in aff_chronogramme_codagej else None aff_chronogramme_codage_ylegend = aff_chronogramme_codagej[ 'ylegend'] if 'ylegend' in aff_chronogramme_codagej else None aff_chronogramme_codage_titre = aff_chronogramme_codagej[ 'titre'] if 'titre' in aff_chronogramme_codagej else u"Chronogramme de la séquence codée" aff_spectre_codage = 'spectre' in aff_codage if aff_spectre_codage: aff_spectre_codagej = aff_codage['spectre'] aff_spectre_codage_fmin = aff_spectre_codagej['fmin'] if 'fmin' in aff_spectre_codagej else None aff_spectre_codage_fmax = aff_spectre_codagej['fmax'] if 'fmax' in aff_spectre_codagej else None aff_spectre_codage_vmin = aff_spectre_codagej['vmin'] if 'vmin' in aff_spectre_codagej else None aff_spectre_codage_vmax = aff_spectre_codagej['vmax'] if 'vmax' in aff_spectre_codagej else None aff_spectre_codage_xlegend = aff_spectre_codagej['xlegend'] if 'xlegend' in aff_spectre_codagej else None aff_spectre_codage_ylegend = aff_spectre_codagej['ylegend'] if 'ylegend' in aff_spectre_codagej else None aff_spectre_codage_titre = aff_spectre_codagej[ 'titre'] if 'titre' in aff_spectre_codagej else u"Spectre de la séquence codée" aff_diagramme_oeil = 'diagramme_oeil' in aff_codage if aff_diagramme_oeil: aff_diagramme_oeilj = aff_codage['diagramme_oeil'] aff_diagramme_oeil_n = aff_diagramme_oeilj['nb_yeux'] aff_diagramme_oeil_titre = aff_diagramme_oeilj[ 'titre'] if 'titre' in aff_diagramme_oeilj else u"Diagramme de l'oeil de la séquence codée" # Affichage démodulation print "> Analyse de l'affichage du codage à travers le canal" if 'aff_codage_canal' not in data: print "!!! Elément 'aff_codage_canal' introuvable !!!" exit(2) aff_codage_canal = data['aff_codage_canal'] aff_chronogramme_codage_canal = 'chronogramme' in aff_codage_canal if aff_chronogramme_codage_canal: aff_chronogramme_codage_canalj = aff_codage_canal['chronogramme'] aff_chronogramme_codage_canal_tmin = aff_chronogramme_codage_canalj[ 'tmin'] if 'tmin' in aff_chronogramme_codage_canalj else None aff_chronogramme_codage_canal_tmax = aff_chronogramme_codage_canalj[ 'tmax'] if 'tmax' in aff_chronogramme_codage_canalj else None aff_chronogramme_codage_canal_vmin = aff_chronogramme_codage_canalj[ 'vmin'] if 'vmin' in aff_chronogramme_codage_canalj else None aff_chronogramme_codage_canal_vmax = aff_chronogramme_codage_canalj[ 'vmax'] if 'vmax' in aff_chronogramme_codage_canalj else None aff_chronogramme_codage_canal_xlegend = aff_chronogramme_codage_canalj[ 'xlegend'] if 'xlegend' in aff_chronogramme_codage_canalj else None aff_chronogramme_codage_canal_ylegend = aff_chronogramme_codage_canalj[ 'ylegend'] if 'ylegend' in aff_chronogramme_codage_canalj else None aff_chronogramme_codage_canal_titre = aff_chronogramme_codage_canalj['titre'] \ if 'titre' in aff_chronogramme_codage_canalj else u"Chronogramme de la séquence codée à travers le canal" aff_spectre_codage_canal = 'spectre' in aff_codage_canal if aff_spectre_codage_canal: aff_spectre_codage_canalj = aff_codage_canal['spectre'] aff_spectre_codage_canal_fmin = aff_spectre_codage_canalj[ 'fmin'] if 'fmin' in aff_spectre_codage_canalj else None aff_spectre_codage_canal_fmax = aff_spectre_codage_canalj[ 'fmax'] if 'fmax' in aff_spectre_codage_canalj else None aff_spectre_codage_canal_vmin = aff_spectre_codage_canalj[ 'vmin'] if 'vmin' in aff_spectre_codage_canalj else None aff_spectre_codage_canal_vmax = aff_spectre_codage_canalj[ 'vmax'] if 'vmax' in aff_spectre_codage_canalj else None aff_spectre_codage_canal_xlegend = aff_spectre_codage_canalj[ 'xlegend'] if 'xlegend' in aff_spectre_codage_canalj else None aff_spectre_codage_canal_ylegend = aff_spectre_codage_canalj[ 'ylegend'] if 'ylegend' in aff_spectre_codage_canalj else None aff_spectre_codage_canal_titre = aff_spectre_codage_canalj['titre'] \ if 'titre' in aff_spectre_codage_canalj else u"Spectre de la séquence codée à travers le canal" aff_diagramme_oeil_canal = 'diagramme_oeil' in aff_codage_canal if aff_diagramme_oeil_canal: aff_diagramme_oeil_canalj = aff_codage_canal['diagramme_oeil'] aff_diagramme_oeil_canal_n = aff_diagramme_oeil_canalj['nb_yeux'] aff_diagramme_oeil_canal_titre = aff_diagramme_oeil_canalj['titre'] if 'titre' in aff_diagramme_oeil_canalj \ else u"Diagramme de l'oeil de la séquence codée à travers le canal" # Modulation has_modulation = 'modulation' in data if has_modulation: print "> Analyse de la modulation" fech_modulation = data['modulation']['fech'] ech_modulation = echantillonnage.creer_echantillons(seq, db, fech_modulation) if data['modulation']['type'] == 'ask': y_modulation = modulation.moduler_ask(seq, db, ech_modulation, fech_modulation, data['modulation']['fp'], data['modulation']['v']) elif data['modulation']['type'] == 'fsk': y_modulation = modulation.moduler_fsk(seq, db, ech_modulation, fech_modulation, data['modulation']['v'], data['modulation']['f']) elif data['modulation']['type'] == 'psk': y_modulation = modulation.moduler_psk(seq, db, ech_modulation, fech_modulation, data['modulation']['v'], data['modulation']['fp'], data['modulation']['p']) # elif data['modulation']['type'] == 'maq': # y_modulation = modulation.moduler_maq(seq, db, ech_modulation, fech_modulation, data['modulation']['v'], # data['modulation']['fp'], data['modulation']['p']) else: print "!!! Modulation '{}' inconnue !!!".format(data['modulation']['type']) exit(3) # Affichage modulation print "> Analyse de l'affichage de la modulation" if 'aff_modulation' not in data: print "!!! Elément 'aff_modulation' introuvable !!!" exit(2) aff_modulation = data['aff_modulation'] aff_chronogramme_modulation = 'chronogramme' in aff_modulation if aff_chronogramme_modulation: aff_chronogramme_modulationj = aff_modulation['chronogramme'] aff_chronogramme_modulation_tmin = aff_chronogramme_modulationj[ 'tmin'] if 'tmin' in aff_chronogramme_modulationj else None aff_chronogramme_modulation_tmax = aff_chronogramme_modulationj[ 'tmax'] if 'tmax' in aff_chronogramme_modulationj else None aff_chronogramme_modulation_vmin = aff_chronogramme_modulationj[ 'vmin'] if 'vmin' in aff_chronogramme_modulationj else None aff_chronogramme_modulation_vmax = aff_chronogramme_modulationj[ 'vmax'] if 'vmax' in aff_chronogramme_modulationj else None aff_chronogramme_modulation_xlegend = aff_chronogramme_modulationj[ 'xlegend'] if 'xlegend' in aff_chronogramme_modulationj else None aff_chronogramme_modulation_ylegend = aff_chronogramme_modulationj[ 'ylegend'] if 'ylegend' in aff_chronogramme_modulationj else None aff_chronogramme_modulation_titre = aff_chronogramme_modulationj[ 'titre'] if 'titre' in aff_chronogramme_modulationj else u"Chronogramme de la porteuse modulée" aff_spectre_modulation = 'spectre' in aff_modulation if aff_spectre_modulation: aff_spectre_modulationj = aff_modulation['spectre'] aff_spectre_modulation_fmin = aff_spectre_modulationj['fmin'] if 'fmin' in aff_spectre_modulationj else None aff_spectre_modulation_fmax = aff_spectre_modulationj['fmax'] if 'fmax' in aff_spectre_modulationj else None aff_spectre_modulation_vmin = aff_spectre_modulationj['vmin'] if 'vmin' in aff_spectre_modulationj else None aff_spectre_modulation_vmax = aff_spectre_modulationj['vmax'] if 'vmax' in aff_spectre_modulationj else None aff_spectre_modulation_xlegend = aff_spectre_modulationj[ 'xlegend'] if 'xlegend' in aff_spectre_modulationj else None aff_spectre_modulation_ylegend = aff_spectre_modulationj[ 'ylegend'] if 'ylegend' in aff_spectre_modulationj else None aff_spectre_modulation_titre = aff_spectre_modulationj[ 'titre'] if 'titre' in aff_spectre_modulationj else u"Spectre de la porteuse modulée" aff_constellation = 'constellation' in aff_modulation if aff_constellation: aff_constellation_j = aff_modulation['spectre'] aff_constellation_titre = aff_constellation_j[ 'titre'] if 'titre' in aff_constellation_j else u"Constellation de la porteuse modulée" # Affichage canal print "> Analyse de l'affichage de la modulation à travers le canal" if 'aff_modulation_canal' not in data: print "!!! Elément 'aff_modulation_canal' introuvable !!!" exit(2) aff_modulation_canal = data['aff_modulation_canal'] aff_chronogramme_modulation_canal = 'chronogramme' in aff_modulation_canal if aff_chronogramme_modulation_canal: aff_chronogramme_modulation_canalj = aff_modulation_canal['chronogramme'] aff_chronogramme_modulation_canal_tmin = aff_chronogramme_modulation_canalj[ 'tmin'] if 'tmin' in aff_chronogramme_modulation_canalj else None aff_chronogramme_modulation_canal_tmax = aff_chronogramme_modulation_canalj[ 'tmax'] if 'tmax' in aff_chronogramme_modulation_canalj else None aff_chronogramme_modulation_canal_vmin = aff_chronogramme_modulation_canalj[ 'vmin'] if 'vmin' in aff_chronogramme_modulation_canalj else None aff_chronogramme_modulation_canal_vmax = aff_chronogramme_modulation_canalj[ 'vmax'] if 'vmax' in aff_chronogramme_modulation_canalj else None aff_chronogramme_modulation_canal_xlegend = aff_chronogramme_modulation_canalj[ 'xlegend'] if 'xlegend' in aff_chronogramme_modulation_canalj else None aff_chronogramme_modulation_canal_ylegend = aff_chronogramme_modulation_canalj[ 'ylegend'] if 'ylegend' in aff_chronogramme_modulation_canalj else None aff_chronogramme_modulation_canal_titre = aff_chronogramme_modulation_canalj[ 'titre'] if 'titre' in aff_chronogramme_modulation_canalj else \ u"Chronogramme de la porteuse modulée à travers le canal" aff_spectre_modulation_canal = 'spectre' in aff_modulation_canal if aff_spectre_modulation_canal: aff_spectre_modulation_canalj = aff_modulation_canal['spectre'] aff_spectre_modulation_canal_fmin = aff_spectre_modulation_canalj[ 'fmin'] if 'fmin' in aff_spectre_modulation_canalj else None aff_spectre_modulation_canal_fmax = aff_spectre_modulation_canalj[ 'fmax'] if 'fmax' in aff_spectre_modulation_canalj else None aff_spectre_modulation_canal_vmin = aff_spectre_modulation_canalj[ 'vmin'] if 'vmin' in aff_spectre_modulation_canalj else None aff_spectre_modulation_canal_vmax = aff_spectre_modulation_canalj[ 'vmax'] if 'vmax' in aff_spectre_modulation_canalj else None aff_spectre_modulation_canal_xlegend = aff_spectre_modulation_canalj[ 'xlegend'] if 'xlegend' in aff_spectre_modulation_canalj else None aff_spectre_modulation_canal_ylegend = aff_spectre_modulation_canalj[ 'ylegend'] if 'ylegend' in aff_spectre_modulation_canalj else None aff_spectre_modulation_canal_titre = aff_spectre_modulation_canalj['titre'] \ if 'titre' in aff_spectre_modulation_canalj else u"Spectre de la porteuse modulée à travers le canal" aff_constellation_canal = 'constellation' in aff_modulation_canal if aff_constellation_canal: aff_constellation_canalj = aff_modulation_canal['spectre'] aff_constellation_canal_titre = aff_constellation_canalj['titre'] \ if 'titre' in aff_constellation_canalj else u"Constellation de la porteuse modulée à travers le canal" # Canal print "> Analyse du canal de transmission" if 'canal' not in data: print "!!! Elément 'canal' introuvable !!!" exit(2) has_bruit = 'bruit' in data['canal'] if has_bruit: if data['canal']['bruit']['type'] == 'gaussien': if has_codage: y_codage_bruit = canal.bruit_gaussien(y_codage, data['canal']['bruit']['intensite']) if has_modulation: y_modulation_bruit = canal.bruit_gaussien(y_modulation, data['canal']['bruit']['intensite']) elif data['canal']['bruit']['type'] == 'aleatoire': if has_codage: y_codage_bruit = canal.bruit_aleatoire(y_codage, data['canal']['bruit']['intensite']) if has_modulation: y_modulation_bruit = canal.bruit_aleatoire(y_modulation, data['canal']['bruit']['intensite']) print "#####" print "> Affichage" fig = 0 if aff_sequence_texte: print "Séquence : " + outils.chaine_binaire(seq) if aff_repartition: print "> Affichage de la répartition de la séquence" affichage.figure_sequence(seq, fig, bps) fig += 1 if has_codage: xf_codage, yf_codage = outils.calculer_spectre(ech_codage, y_codage) if has_bruit: xf_codage_bruit, yf_codage_bruit = outils.calculer_spectre(ech_codage, y_codage_bruit) if aff_chronogramme_codage: aff_chronogramme_codage_tmin = min( ech_codage) if aff_chronogramme_codage_tmin is None else aff_chronogramme_codage_tmin aff_chronogramme_codage_tmax = max( ech_codage) if aff_chronogramme_codage_tmax is None else aff_chronogramme_codage_tmax aff_chronogramme_codage_vmin = min( y_codage_bruit) if aff_chronogramme_codage_vmin is None else aff_chronogramme_codage_vmin aff_chronogramme_codage_vmax = max( y_codage_bruit) if aff_chronogramme_codage_vmax is None else aff_chronogramme_codage_vmax if aff_spectre_codage: aff_spectre_codage_fmin = min( xf_codage_bruit) if aff_spectre_codage_fmin is None else aff_spectre_codage_fmin aff_spectre_codage_fmax = max( xf_codage_bruit) if aff_spectre_codage_fmax is None else aff_spectre_codage_fmax aff_spectre_codage_vmin = min( yf_codage_bruit) if aff_spectre_codage_vmin is None else aff_spectre_codage_vmin aff_spectre_codage_vmax = max( yf_codage_bruit) if aff_spectre_codage_vmax is None else aff_spectre_codage_vmax y = y_codage_bruit if has_bruit else y_codage xf = xf_codage_bruit if has_bruit else xf_codage yf = yf_codage_bruit if has_bruit else yf_codage aff_diagramme_oeil_vmin = min(y_codage_bruit) if has_bruit else min(y_codage) aff_diagramme_oeil_vmax = max(y_codage_bruit) if has_bruit else max(y_codage) if aff_chronogramme_codage: print "> Affichage du chronogramme de la séquence codée" affichage.figure_chronogramme(ech_codage, y_codage, fig, aff_chronogramme_codage_titre, aff_chronogramme_codage_xlegend, aff_chronogramme_codage_ylegend, aff_chronogramme_codage_tmin, aff_chronogramme_codage_tmax, aff_chronogramme_codage_vmin, aff_chronogramme_codage_vmax) fig += 1 if aff_spectre_codage: print "> Affichage du spectre de la séquence codée" affichage.figure_spectre(xf_codage, yf_codage, fig, aff_spectre_codage_titre, aff_spectre_codage_xlegend, aff_spectre_codage_ylegend, aff_spectre_codage_fmin, aff_spectre_codage_fmax, aff_spectre_codage_vmin, aff_spectre_codage_vmax) fig += 1 if aff_diagramme_oeil: print "> Affichage du diagramme de l'oeil de la séquence codée" affichage.figure_diagramme_oeil(ech_codage, y_codage, fig, seq, aff_diagramme_oeil_vmin, aff_diagramme_oeil_vmax, aff_diagramme_oeil_n, aff_diagramme_oeil_titre) fig += 1 if aff_chronogramme_codage_canal: print "> Affichage du chronogramme de la séquence codée à travers le canal" affichage.figure_chronogramme(ech_codage, y, fig, aff_chronogramme_codage_canal_titre, aff_chronogramme_codage_canal_xlegend, aff_chronogramme_codage_canal_ylegend, aff_chronogramme_codage_canal_tmin, aff_chronogramme_codage_canal_tmax, aff_chronogramme_codage_canal_vmin, aff_chronogramme_codage_canal_vmax) fig += 1 if aff_spectre_codage_canal: print "> Affichage du spectre de la séquence codée à travers le canal" affichage.figure_spectre(xf, yf, fig, aff_spectre_codage_canal_titre, aff_spectre_codage_canal_xlegend, aff_spectre_codage_canal_ylegend, aff_spectre_codage_canal_fmin, aff_spectre_codage_canal_fmax, aff_spectre_codage_canal_vmin, aff_spectre_codage_canal_vmax) fig += 1 if aff_diagramme_oeil_canal: print "> Affichage du diagramme de l'oeil de la séquence codée à travers le canal" affichage.figure_diagramme_oeil(ech_codage, y, fig, seq, aff_diagramme_oeil_vmin, aff_diagramme_oeil_vmax, aff_diagramme_oeil_canal_n, aff_diagramme_oeil_canal_titre) fig += 1 if has_modulation: xf_modulation, yf_modulation = outils.calculer_spectre(ech_modulation, y_modulation) if has_bruit: xf_modulation_bruit, yf_modulation_bruit = outils.calculer_spectre(ech_modulation, y_modulation_bruit) if aff_chronogramme_modulation: aff_chronogramme_modulation_tmin = min( ech_modulation) if aff_chronogramme_modulation_tmin is None else aff_chronogramme_modulation_tmin aff_chronogramme_modulation_tmax = max( ech_modulation) if aff_chronogramme_modulation_tmax is None else aff_chronogramme_modulation_tmax aff_chronogramme_modulation_vmin = min( y_modulation_bruit) if aff_chronogramme_modulation_vmin is None else aff_chronogramme_modulation_vmin aff_chronogramme_modulation_vmax = max( y_modulation_bruit) if aff_chronogramme_modulation_vmax is None else aff_chronogramme_modulation_vmax if aff_spectre_modulation: aff_spectre_modulation_fmin = min( xf_modulation_bruit) if aff_spectre_modulation_fmin is None else aff_spectre_modulation_fmin aff_spectre_modulation_fmax = max( xf_modulation_bruit) if aff_spectre_modulation_fmax is None else aff_spectre_modulation_fmax aff_spectre_modulation_vmin = min( yf_modulation_bruit) if aff_spectre_modulation_vmin is None else aff_spectre_modulation_vmin aff_spectre_modulation_vmax = max( yf_modulation_bruit) if aff_spectre_modulation_vmax is None else aff_spectre_modulation_vmax y = y_modulation_bruit if has_bruit else y_modulation xf = xf_modulation_bruit if has_bruit else xf_modulation yf = yf_modulation_bruit if has_bruit else yf_modulation if aff_chronogramme_modulation: print "> Affichage du chronogramme de la porteuse modulée" affichage.figure_chronogramme(ech_modulation, y_modulation, fig, aff_chronogramme_modulation_titre, aff_chronogramme_modulation_xlegend, aff_chronogramme_modulation_ylegend, aff_chronogramme_modulation_tmin, aff_chronogramme_modulation_tmax, aff_chronogramme_modulation_vmin, aff_chronogramme_modulation_vmax) fig += 1 if aff_spectre_modulation: print "> Affichage du spectre de la porteuse modulée" affichage.figure_spectre(xf_modulation, yf_modulation, fig, aff_spectre_modulation_titre, aff_spectre_modulation_xlegend, aff_spectre_modulation_ylegend, aff_spectre_modulation_fmin, aff_spectre_modulation_fmax, aff_spectre_modulation_vmin, aff_spectre_modulation_vmax) fig += 1 if aff_constellation: print "> Affichage de la constellation de la porteuse modulée" affichage.figure_constellation() fig += 1 if aff_chronogramme_modulation_canal: print "> Affichage du chronogramme de la séquence codée à travers le canal" affichage.figure_chronogramme(ech_modulation, y, fig, aff_chronogramme_modulation_canal_titre, aff_chronogramme_modulation_canal_xlegend, aff_chronogramme_modulation_canal_ylegend, aff_chronogramme_modulation_canal_tmin, aff_chronogramme_modulation_canal_tmax, aff_chronogramme_modulation_canal_vmin, aff_chronogramme_modulation_canal_vmax) fig += 1 if aff_spectre_modulation_canal: print "> Affichage du spectre de la séquence codée à travers le canal" affichage.figure_spectre(xf, yf, fig, aff_spectre_modulation_canal_titre, aff_spectre_modulation_canal_xlegend, aff_spectre_modulation_canal_ylegend, aff_spectre_modulation_canal_fmin, aff_spectre_modulation_canal_fmax, aff_spectre_modulation_canal_vmin, aff_spectre_modulation_canal_vmax) fig += 1 if aff_constellation_canal: print "> Affichage de la constellation de la porteuse modulée à travers le canal" affichage.figure_constellation() fig += 1 print "> Affichage en cours..." affichage.afficher()
58.791383
120
0.705905
e00d5f56fd01113572f2015994ffceb4f789a39e
1,197
py
Python
chroma-manager/tests/unit/chroma_core/models/test_logmessage.py
GarimaVishvakarma/intel-chroma
fdf68ed00b13643c62eb7480754d3216d9295e0b
[ "MIT" ]
null
null
null
chroma-manager/tests/unit/chroma_core/models/test_logmessage.py
GarimaVishvakarma/intel-chroma
fdf68ed00b13643c62eb7480754d3216d9295e0b
[ "MIT" ]
null
null
null
chroma-manager/tests/unit/chroma_core/models/test_logmessage.py
GarimaVishvakarma/intel-chroma
fdf68ed00b13643c62eb7480754d3216d9295e0b
[ "MIT" ]
null
null
null
from tests.unit.lib.iml_unit_test_case import IMLUnitTestCase from chroma_core.models import LogMessage, MessageClass class TestLogMessage(IMLUnitTestCase): def test_classification(self): ''' Test the classification code correctly classfies messages. ''' test_messages = {'Lustre: Lustre output here': MessageClass.LUSTRE, 'LustreError: Lustre output here': MessageClass.LUSTRE_ERROR, '[NOT A TIME STAMP ] Lustre: Lustre output here': MessageClass.NORMAL, '[1234567A89] LustreError: Not A Time Stamp': MessageClass.NORMAL, '[123456789.123456789A] LustreError: Not A Time Stamp': MessageClass.NORMAL, 'Nothing to see here': MessageClass.NORMAL} for with_timestamp in [False, True]: for test_message, message_class in test_messages.iteritems(): test_message = ('[9830337.7944560] ' if with_timestamp else '') + test_message self.assertEqual(LogMessage.get_message_class(test_message), message_class, test_message)
46.038462
101
0.614871
5bd3c83470fb679e53c5821d62ace5cf351b8da3
13,292
py
Python
airflow/providers/mongo/hooks/mongo.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
79
2021-10-15T07:32:27.000Z
2022-03-28T04:10:19.000Z
airflow/providers/mongo/hooks/mongo.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
153
2021-10-15T05:23:46.000Z
2022-02-23T06:07:10.000Z
airflow/providers/mongo/hooks/mongo.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
23
2021-10-15T02:36:37.000Z
2022-03-17T02:59:27.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Hook for Mongo DB""" from ssl import CERT_NONE from types import TracebackType from typing import List, Optional, Type import pymongo from pymongo import MongoClient, ReplaceOne from airflow.hooks.base import BaseHook class MongoHook(BaseHook): """ PyMongo Wrapper to Interact With Mongo Database Mongo Connection Documentation https://docs.mongodb.com/manual/reference/connection-string/index.html You can specify connection string options in extra field of your connection https://docs.mongodb.com/manual/reference/connection-string/index.html#connection-string-options If you want use DNS seedlist, set `srv` to True. ex. {"srv": true, "replicaSet": "test", "ssl": true, "connectTimeoutMS": 30000} """ conn_name_attr = 'conn_id' default_conn_name = 'mongo_default' conn_type = 'mongo' hook_name = 'MongoDB' def __init__(self, conn_id: str = default_conn_name, *args, **kwargs) -> None: super().__init__() self.mongo_conn_id = conn_id self.connection = self.get_connection(conn_id) self.extras = self.connection.extra_dejson.copy() self.client = None srv = self.extras.pop('srv', False) scheme = 'mongodb+srv' if srv else 'mongodb' self.uri = '{scheme}://{creds}{host}{port}/{database}'.format( scheme=scheme, creds=f'{self.connection.login}:{self.connection.password}@' if self.connection.login else '', host=self.connection.host, port='' if self.connection.port is None else f':{self.connection.port}', database=self.connection.schema, ) def __enter__(self): return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: if self.client is not None: self.close_conn() def get_conn(self) -> MongoClient: """Fetches PyMongo Client""" if self.client is not None: return self.client # Mongo Connection Options dict that is unpacked when passed to MongoClient options = self.extras # If we are using SSL disable requiring certs from specific hostname if options.get('ssl', False): options.update({'ssl_cert_reqs': CERT_NONE}) self.client = MongoClient(self.uri, **options) return self.client def close_conn(self) -> None: """Closes connection""" client = self.client if client is not None: client.close() self.client = None def get_collection( self, mongo_collection: str, mongo_db: Optional[str] = None ) -> pymongo.collection.Collection: """ Fetches a mongo collection object for querying. Uses connection schema as DB unless specified. """ mongo_db = mongo_db if mongo_db is not None else self.connection.schema mongo_conn: MongoClient = self.get_conn() return mongo_conn.get_database(mongo_db).get_collection(mongo_collection) def aggregate( self, mongo_collection: str, aggregate_query: list, mongo_db: Optional[str] = None, **kwargs ) -> pymongo.command_cursor.CommandCursor: """ Runs an aggregation pipeline and returns the results https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.aggregate https://api.mongodb.com/python/current/examples/aggregation.html """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.aggregate(aggregate_query, **kwargs) def find( self, mongo_collection: str, query: dict, find_one: bool = False, mongo_db: Optional[str] = None, **kwargs, ) -> pymongo.cursor.Cursor: """ Runs a mongo find query and returns the results https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.find """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) if find_one: return collection.find_one(query, **kwargs) else: return collection.find(query, **kwargs) def insert_one( self, mongo_collection: str, doc: dict, mongo_db: Optional[str] = None, **kwargs ) -> pymongo.results.InsertOneResult: """ Inserts a single document into a mongo collection https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_one """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.insert_one(doc, **kwargs) def insert_many( self, mongo_collection: str, docs: dict, mongo_db: Optional[str] = None, **kwargs ) -> pymongo.results.InsertManyResult: """ Inserts many docs into a mongo collection. https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.insert_many """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.insert_many(docs, **kwargs) def update_one( self, mongo_collection: str, filter_doc: dict, update_doc: dict, mongo_db: Optional[str] = None, **kwargs, ) -> pymongo.results.UpdateResult: """ Updates a single document in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_one :param mongo_collection: The name of the collection to update. :type mongo_collection: str :param filter_doc: A query that matches the documents to update. :type filter_doc: dict :param update_doc: The modifications to apply. :type update_doc: dict :param mongo_db: The name of the database to use. Can be omitted; then the database from the connection string is used. :type mongo_db: str """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.update_one(filter_doc, update_doc, **kwargs) def update_many( self, mongo_collection: str, filter_doc: dict, update_doc: dict, mongo_db: Optional[str] = None, **kwargs, ) -> pymongo.results.UpdateResult: """ Updates one or more documents in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_many :param mongo_collection: The name of the collection to update. :type mongo_collection: str :param filter_doc: A query that matches the documents to update. :type filter_doc: dict :param update_doc: The modifications to apply. :type update_doc: dict :param mongo_db: The name of the database to use. Can be omitted; then the database from the connection string is used. :type mongo_db: str """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.update_many(filter_doc, update_doc, **kwargs) def replace_one( self, mongo_collection: str, doc: dict, filter_doc: Optional[dict] = None, mongo_db: Optional[str] = None, **kwargs, ) -> pymongo.results.UpdateResult: """ Replaces a single document in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.replace_one .. note:: If no ``filter_doc`` is given, it is assumed that the replacement document contain the ``_id`` field which is then used as filters. :param mongo_collection: The name of the collection to update. :type mongo_collection: str :param doc: The new document. :type doc: dict :param filter_doc: A query that matches the documents to replace. Can be omitted; then the _id field from doc will be used. :type filter_doc: dict :param mongo_db: The name of the database to use. Can be omitted; then the database from the connection string is used. :type mongo_db: str """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) if not filter_doc: filter_doc = {'_id': doc['_id']} return collection.replace_one(filter_doc, doc, **kwargs) def replace_many( self, mongo_collection: str, docs: List[dict], filter_docs: Optional[List[dict]] = None, mongo_db: Optional[str] = None, upsert: bool = False, collation: Optional[pymongo.collation.Collation] = None, **kwargs, ) -> pymongo.results.BulkWriteResult: """ Replaces many documents in a mongo collection. Uses bulk_write with multiple ReplaceOne operations https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.bulk_write .. note:: If no ``filter_docs``are given, it is assumed that all replacement documents contain the ``_id`` field which are then used as filters. :param mongo_collection: The name of the collection to update. :type mongo_collection: str :param docs: The new documents. :type docs: list[dict] :param filter_docs: A list of queries that match the documents to replace. Can be omitted; then the _id fields from docs will be used. :type filter_docs: list[dict] :param mongo_db: The name of the database to use. Can be omitted; then the database from the connection string is used. :type mongo_db: str :param upsert: If ``True``, perform an insert if no documents match the filters for the replace operation. :type upsert: bool :param collation: An instance of :class:`~pymongo.collation.Collation`. This option is only supported on MongoDB 3.4 and above. :type collation: pymongo.collation.Collation """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) if not filter_docs: filter_docs = [{'_id': doc['_id']} for doc in docs] requests = [ ReplaceOne(filter_docs[i], docs[i], upsert=upsert, collation=collation) for i in range(len(docs)) ] return collection.bulk_write(requests, **kwargs) def delete_one( self, mongo_collection: str, filter_doc: dict, mongo_db: Optional[str] = None, **kwargs ) -> pymongo.results.DeleteResult: """ Deletes a single document in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_one :param mongo_collection: The name of the collection to delete from. :type mongo_collection: str :param filter_doc: A query that matches the document to delete. :type filter_doc: dict :param mongo_db: The name of the database to use. Can be omitted; then the database from the connection string is used. :type mongo_db: str """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.delete_one(filter_doc, **kwargs) def delete_many( self, mongo_collection: str, filter_doc: dict, mongo_db: Optional[str] = None, **kwargs ) -> pymongo.results.DeleteResult: """ Deletes one or more documents in a mongo collection. https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.delete_many :param mongo_collection: The name of the collection to delete from. :type mongo_collection: str :param filter_doc: A query that matches the documents to delete. :type filter_doc: dict :param mongo_db: The name of the database to use. Can be omitted; then the database from the connection string is used. :type mongo_db: str """ collection = self.get_collection(mongo_collection, mongo_db=mongo_db) return collection.delete_many(filter_doc, **kwargs)
38.416185
116
0.658968
4f494942e4ed4d3ecb4b8d367fe2e21983a1367c
563
py
Python
src/asana/logic.py
isabella232/SGTM
3793d78e99f89e5f73bac5c44f9d8a18cac75fbf
[ "MIT" ]
8
2020-12-05T00:13:03.000Z
2022-01-11T11:35:51.000Z
src/asana/logic.py
Asana/SGTM
0e9e236980ed68e80e021470da6374945bbac501
[ "MIT" ]
12
2020-12-14T18:21:21.000Z
2022-03-29T17:06:20.000Z
src/asana/logic.py
isabella232/SGTM
3793d78e99f89e5f73bac5c44f9d8a18cac75fbf
[ "MIT" ]
2
2021-06-27T09:32:55.000Z
2022-02-27T23:17:36.000Z
from src.github.models import PullRequest from src.github.helpers import pull_request_has_label from enum import Enum, unique from src.config import SGTM_FEATURE__AUTOCOMPLETE_ENABLED @unique class AutocompleteLabel(Enum): COMPLETE_ON_MERGE = "complete tasks on merge" def should_autocomplete_tasks_on_merge(pull_request: PullRequest) -> bool: return ( SGTM_FEATURE__AUTOCOMPLETE_ENABLED and pull_request.merged() and pull_request_has_label( pull_request, AutocompleteLabel.COMPLETE_ON_MERGE.value ) )
26.809524
74
0.765542
c52982055e46a09e15971d5a665fb55324773f7e
3,185
py
Python
matching/matching_helpers.py
seanmchu/algo-research
199964b7ce376a88e248349946538cb2159c4797
[ "MIT" ]
null
null
null
matching/matching_helpers.py
seanmchu/algo-research
199964b7ce376a88e248349946538cb2159c4797
[ "MIT" ]
null
null
null
matching/matching_helpers.py
seanmchu/algo-research
199964b7ce376a88e248349946538cb2159c4797
[ "MIT" ]
null
null
null
import numpy as np import math import copy import networkx as nx import re from classes import * #student matching, seat matching, max rank --> matrix def build_matrix(m_student,m_seat,maxrank): matrix = np.zeros((len(m_student),len(m_seat))) for i in range(0,len(m_student)): if (m_student[i] != -1): matrix[i][m_student[i]] = 1 return matrix #matrix,edges --> int,int def get_metrics(matrix,edges): r1 = 0 r2 = 0 for i in range(len(matrix)): for j in range(len(matrix[i])): if (matrix[i][j] == 1): if (edges[i][j] == 1): r1 += 1 elif (edges[i][j] == 2): r2 += 1 return r1,r2 #matrix --> void def remove_k_edges(matrix,n_remove,m_student,k,gedges): n_removed = 0 for i in range(len(matrix)): if (n_removed == n_remove): return 1 for j in range(len(matrix[i])): if (matrix[i][j] and gedges[i][j] == k): matrix[i][j] = 0 n_removed += 1 break return 0 #M <- M ⊕ P #matrix --> matrix def symmdiff(matrix,path_s,path_v): #First, build a list of edges based on path_s, path_v edges = [] for i in range(0,len(path_s)): for j in range(i - 1,i + 1): if (j >= 0 and j < len(path_v)): edges.append((path_s[i],path_v[j])) for i,j in edges: if (matrix[i][j] == 0): matrix[i][j] = 1 else: matrix[i][j] = 0 #Checks whether or not the seat is unmatched or not in the matrix #matrix,seat --> Bool def aug_path(matrix,seat): for i in range(0,len(matrix)): if(matrix[i][seat]): return False return True #matrix,student,seat --> void def remove_pair(matrix,student,seat): matrix[student][seat] = 0 #matrix --> int def get_matching_size(m): size = 0 for i in m: if (i != -1): size += 1 return size # matrix --> list def find_unmatched_students(matrix): m1, _ = matrix_to_matching(matrix) l = [] for i in range(0,len(m1)): if (m1[i] == -1): l.append(i) return l #Converts matrix to matching in numpy syntax def matrix_to_matching(matrix): m1 = [-1] * len(matrix) m2 = [-1] * len(matrix[0]) for i in range(0,len(matrix)): for j in range(0,len(matrix[i])): if (matrix[i][j] == 1): m1[i] = j m2[j] = i return m1,m2 #Gets number of rank 1 and rank 2 seats filled in the matching #Specifc for A-S algorithm, because uses networkx matching def get_seat_metrics(edges,matching): r1 = 0 r2 = 0 for left in matching["bridge"]: if (matching['bridge'][left] != 0): lindex = re.findall("(\d+)",left)[0] for edge in matching[left]: if(matching[left][edge] != 0): rindex = re.findall("(\d+)",edge)[0] if (edges[int(lindex)][int(rindex)] == 1): r1 += 1 elif (edges[int(lindex)][int(rindex)] == 2): r2 += 1 return r1, r2
27.222222
65
0.523391
ee8505e793f92726c460c0232431ff7df319e427
1,022
py
Python
examples/BigBoy_refactor/players/RandomEnvPlayer.py
attraylor/poke-env
05eb57800c16229ec683762e628aacb0b6dd9cc3
[ "MIT" ]
4
2020-09-15T15:24:57.000Z
2021-03-02T19:48:24.000Z
examples/BigBoy_refactor/players/RandomEnvPlayer.py
attraylor/poke-env
05eb57800c16229ec683762e628aacb0b6dd9cc3
[ "MIT" ]
10
2021-11-01T10:20:30.000Z
2022-03-29T10:27:25.000Z
examples/BigBoy_refactor/players/RandomEnvPlayer.py
attraylor/poke-env
05eb57800c16229ec683762e628aacb0b6dd9cc3
[ "MIT" ]
1
2021-03-08T16:02:46.000Z
2021-03-08T16:02:46.000Z
from poke_env.player.env_player import ( Gen8EnvSinglePlayer, ) import numpy as np from poke_env.player_configuration import _create_player_configuration_from_player class RandomEnvPlayer(Gen8EnvSinglePlayer): def __init__(self, name, shortname, team, battle_format="gen8ou", log_level = 0, server_configuration=None, save_replays=False): self.shortname = shortname self.name = name pc = _create_player_configuration_from_player(self) super().__init__(player_configuration = pc, team=team, battle_format=battle_format, log_level = log_level, server_configuration=server_configuration, save_replays=save_replays) def embed_battle(self, battle): return np.array([0]) def select_action(self, state=None, action_mask=None, test=None, current_step=None): if action_mask is not None: action_indices = [i for i in range(len(action_mask)) if action_mask[i] == 1] return np.random.choice(action_indices) else: #shouldnt happen return 0
28.388889
85
0.744618
2abb50d97df8a9f5cfd6bafbfd64969c078041b7
702
py
Python
keymint_keymake/exceptions.py
keymint/keymint_keymake
adc38e07ce5f16d6ba4b36294d7d2e8a361153f0
[ "Apache-2.0" ]
null
null
null
keymint_keymake/exceptions.py
keymint/keymint_keymake
adc38e07ce5f16d6ba4b36294d7d2e8a361153f0
[ "Apache-2.0" ]
null
null
null
keymint_keymake/exceptions.py
keymint/keymint_keymake
adc38e07ce5f16d6ba4b36294d7d2e8a361153f0
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class InvalidPermissionsXML(Exception): pass class InvalidGovernanceXML(Exception): pass
31.909091
74
0.764957
0ede495483f48b3ddd3c80d53494045b5ef84947
1,995
py
Python
postgresqleu/braintreepayment/management/commands/send_braintree_logreport.py
bradfordboyle/pgeu-system
bbe70e7a94092c10f11a0f74fda23079532bb018
[ "MIT" ]
11
2020-08-20T11:16:02.000Z
2022-03-12T23:25:04.000Z
postgresqleu/braintreepayment/management/commands/send_braintree_logreport.py
bradfordboyle/pgeu-system
bbe70e7a94092c10f11a0f74fda23079532bb018
[ "MIT" ]
71
2019-11-18T10:11:22.000Z
2022-03-27T16:12:57.000Z
postgresqleu/braintreepayment/management/commands/send_braintree_logreport.py
bradfordboyle/pgeu-system
bbe70e7a94092c10f11a0f74fda23079532bb018
[ "MIT" ]
18
2019-11-18T09:56:31.000Z
2022-01-08T03:16:43.000Z
# This script sends out reports fo errors in the Braintree integration # as a summary email. # # Copyright (C) 2015-2019, PostgreSQL Europe # from django.core.management.base import BaseCommand from django.db import transaction from django.conf import settings from datetime import time from io import StringIO from postgresqleu.invoices.models import InvoicePaymentMethod from postgresqleu.braintreepayment.models import BraintreeLog from postgresqleu.mailqueue.util import send_simple_mail class Command(BaseCommand): help = 'Send log information about Braintree events' class ScheduledJob: scheduled_times = [time(23, 32), ] internal = True @classmethod def should_run(self): return InvoicePaymentMethod.objects.filter(active=True, classname='postgresqleu.util.payment.braintree.Braintree').exists() def handle(self, *args, **options): for method in InvoicePaymentMethod.objects.filter(active=True, classname='postgresqleu.util.payment.braintree.Braintree'): self.send_for_method(method) @transaction.atomic def send_for_method(self, method): pm = method.get_implementation() lines = list(BraintreeLog.objects.filter(error=True, sent=False, paymentmethod=method).order_by('timestamp')) if len(lines): sio = StringIO() sio.write("The following error events have been logged by the Braintree integration:\n\n") for l in lines: sio.write("%s: %20s: %s\n" % (l.timestamp, l.transid, l.message)) l.sent = True l.save() sio.write("\n\n\nAll these events have now been tagged as sent, and will no longer be\nprocessed by the system in any way.\n") send_simple_mail(settings.INVOICE_SENDER_EMAIL, pm.config('notification_receiver'), 'Braintree integration error report', sio.getvalue())
39.117647
138
0.673684
c92e1452faae360cf94c8dd80df8222ba4aea7fc
697
py
Python
tests/test_opioid.py
yoshavit/whynot
e33e56bae377b65fe87feac5c6246ae38f4586e8
[ "MIT" ]
376
2020-03-20T20:09:16.000Z
2022-03-29T09:53:33.000Z
tests/test_opioid.py
mrtzh/whynot
0668f0a0c1e80defec6e4678f85ed60f45226477
[ "MIT" ]
5
2020-04-20T10:19:34.000Z
2021-11-03T09:36:28.000Z
tests/test_opioid.py
mrtzh/whynot
0668f0a0c1e80defec6e4678f85ed60f45226477
[ "MIT" ]
41
2020-03-20T23:14:38.000Z
2022-03-09T06:02:01.000Z
"""Unit tests for opioid epidemic simulator.""" import whynot as wn def test_config(): """Ensure intervention update works as expected.""" intervention = wn.opioid.Intervention(time=2021, nonmedical_incidence=-0.12) config = wn.opioid.Config() assert config.nonmedical_incidence.intervention_val == 0.0 config = config.update(intervention) assert config.nonmedical_incidence.intervention_val == -0.12 intervention = wn.opioid.Intervention(time=2021, illicit_incidence=1.2) config = wn.opioid.Config() assert config.illicit_incidence.intervention_val == 0.0 config = config.update(intervention) assert config.illicit_incidence.intervention_val == 1.2
38.722222
80
0.747489
7507c655db5646a26e79a14aaa043ab5cc9e561a
853
py
Python
tofino_test_builds/09_smaller_than_table.test/codegen.py
gycsaba96/P4RROT
aa10d2063d566450674e4798e6f713e49877a604
[ "MIT" ]
null
null
null
tofino_test_builds/09_smaller_than_table.test/codegen.py
gycsaba96/P4RROT
aa10d2063d566450674e4798e6f713e49877a604
[ "MIT" ]
null
null
null
tofino_test_builds/09_smaller_than_table.test/codegen.py
gycsaba96/P4RROT
aa10d2063d566450674e4798e6f713e49877a604
[ "MIT" ]
null
null
null
import sys sys.path.append('../../src/') from p4rrot.generator_tools import * from p4rrot.known_types import * from p4rrot.core.commands import * from p4rrot.tofino.commands import * UID.reset() fp = FlowProcessor( istruct=[('a',uint32_t),('b',uint32_t),('x',bool_t)], method='MODIFY' ) fp.add(AssignConst('x',True,env=fp.get_env())) fp.add(SmallerThanTable('x','a','b',env=fp.get_env())) fp.add(If('x',env=fp.get_env() ,then_block=Block(env=fp.get_env()).add(Increment('a',5,env=fp.get_env())) ,else_block=Block(env=fp.get_env()).add(Decrement('a',5,env=fp.get_env())) ) ) fs = FlowSelector( 'IPV4_UDP', [(UdpDstPort,5555)], fp ) solution = Solution() solution.add_flow_processor(fp) solution.add_flow_selector(fs) solution.get_generated_code().dump('test.p4app')
25.088235
82
0.645955
cdca50f24fb5f8be088c07ad5dc6ce10403a5512
4,151
py
Python
rbi2/inte5.py
spottedzebra/interpreter
b5b2a735d771fbfe2842e4c36176f2bc8c1761c3
[ "MIT" ]
2
2016-10-22T11:55:07.000Z
2020-07-23T20:56:15.000Z
rbi2/inte5.py
mwhit74/interpreter
b5b2a735d771fbfe2842e4c36176f2bc8c1761c3
[ "MIT" ]
null
null
null
rbi2/inte5.py
mwhit74/interpreter
b5b2a735d771fbfe2842e4c36176f2bc8c1761c3
[ "MIT" ]
null
null
null
import string import pdb from collections import namedtuple ADD, SUB, MUL, DIV, CHAR, NUM, EOF = ('ADD', 'SUB', 'MUL', 'DIV','CHAR', 'NUM', 'EOF') WHITESPACE = string.whitespace Token = namedtuple('Token',['token_type', 'token_value']) class Lexer(object): def __init__(self, text): self.text = text self.pos = 0 self.cur_char = self.text[self.pos] def error(self): raise ValueError('Invalid character') def get_next_char(self): self.pos += 1 if self.pos <= len(self.text) - 1: self.cur_char = self.text[self.pos] else: self.cur_char = None def get_whitespace(self): value = '' while self.cur_char != None and self.cur_char in WHITESPACE: value = value + self.cur_char self.get_next_char() def get_num(self): value = '' while self.cur_char != None and self.cur_char.isdigit(): value = value + self.cur_char self.get_next_char() return int(value) def get_chars(self): value = '' while self.cur_char != None and self.cur_char.isalpha(): value = value + self.cur_char self.get_next_char() return value def get_next_token(self): while self.cur_char != None: if self.cur_char in WHITESPACE: value = self.get_whitespace() if self.cur_char.isdigit(): value = self.get_num() return Token(NUM, value) if self.cur_char.isalpha(): value = self.get_chars() return Token(CHAR, value) if self.cur_char == '+': token = Token(ADD, self.cur_char) self.get_next_char() return token if self.cur_char == '-': token = Token(SUB, self.cur_char) self.get_next_char() return token if self.cur_char == '*': token = Token(MUL, self.cur_char) self.get_next_char() return token if self.cur_char == '/': token = Token(DIV, self.cur_char) self.get_next_char() return token self.error() return Token(EOF, None) class Interpreter(object): def __init__(self, lexer): self.lexer = lexer self.cur_token = self.lexer.get_next_token() def error(self): raise SyntaxError('Invalid syntax') def check_token_type(self, token_type): if self.cur_token.token_type == token_type: self.cur_token = self.lexer.get_next_token() else: self.error() def expr1(self): result = self.expr2() while (self.cur_token.token_type != EOF and self.cur_token.token_type in (ADD, SUB)): if self.cur_token.token_type == ADD: self.check_token_type(ADD) result = result + self.expr2() if self.cur_token.token_type == SUB: self.check_token_type(SUB) result = result - self.expr2() return result def expr2(self): result = self.factor() while (self.cur_token.token_type != EOF and self.cur_token.token_type in (MUL, DIV)): if self.cur_token.token_type == MUL: self.check_token_type(MUL) result = result * self.factor() if self.cur_token.token_type == DIV: self.check_token_type(DIV) resutl = result / self.factor() return result def factor(self): value = self.cur_token.token_value self.check_token_type(NUM) return value def main(): while True: try: text = input('calc>') except e: continue lexer = Lexer(text) interpreter = Interpreter(lexer) result = interpreter.expr1() print(result) if __name__ == "__main__": main()
27.130719
68
0.528788
44a59b441b708b4af30b371f0a4e27ce7791b555
3,644
py
Python
src/leetcode_2058_find_the_minimum_and_maximum_number_of_nodes_between_critical_points.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
src/leetcode_2058_find_the_minimum_and_maximum_number_of_nodes_between_critical_points.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
src/leetcode_2058_find_the_minimum_and_maximum_number_of_nodes_between_critical_points.py
sungho-joo/leetcode2github
ce7730ef40f6051df23681dd3c0e1e657abba620
[ "MIT" ]
null
null
null
# @l2g 2058 python3 # [2058] Find the Minimum and Maximum Number of Nodes Between Critical Points # Difficulty: Medium # https://leetcode.com/problems/find-the-minimum-and-maximum-number-of-nodes-between-critical-points # # A critical point in a linked list is defined as either a local maxima or a local minima. # A node is a local maxima if the current node has a value strictly greater than the previous node and the next node. # A node is a local minima if the current node has a value strictly smaller than the previous node and the next node. # Note that a node can only be a local maxima/minima if there exists both a previous node and a next node. # Given a linked list head,return an array of length 2 containing [minDistance, # maxDistance] where minDistance is the minimum distance between any two distinct critical points and maxDistance is the maximum distance between any two distinct critical points. # If there are fewer than two critical points,return [-1,-1]. # # Example 1: # # # Input: head = [3,1] # Output: [-1,-1] # Explanation: There are no critical points in [3,1]. # # Example 2: # # # Input: head = [5,3,1,2,5,1,2] # Output: [1,3] # Explanation: There are three critical points: # - [5,3,1,2,5,1,2]: The third node is a local minima because 1 is less than 3 and 2. # - [5,3,1,2,5,1,2]: The fifth node is a local maxima because 5 is greater than 2 and 1. # - [5,3,1,2,5,1,2]: The sixth node is a local minima because 1 is less than 5 and 2. # The minimum distance is between the fifth and the sixth node. minDistance = 6 - 5 = 1. # The maximum distance is between the third and the sixth node. maxDistance = 6 - 3 = 3. # # Example 3: # # # Input: head = [1,3,2,2,3,2,2,2,7] # Output: [3,3] # Explanation: There are two critical points: # - [1,3,2,2,3,2,2,2,7]: The second node is a local maxima because 3 is greater than 1 and 2. # - [1,3,2,2,3,2,2,2,7]: The fifth node is a local maxima because 3 is greater than 2 and 2. # Both the minimum and maximum distances are between the second and the fifth node. # Thus, minDistance and maxDistance is 5 - 2 = 3. # Note that the last node is not considered a local maxima because it does not have a next node. # # Example 4: # # # Input: head = [2,3,3,2] # Output: [-1,-1] # Explanation: There are no critical points in [2,3,3,2]. # # # Constraints: # # The number of nodes in the list is in the range [2, 10^5]. # 1 <= Node.val <= 10^5 # # # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next from typing import List, Optional class Solution: def nodesBetweenCriticalPoints(self, head: Optional[ListNode]) -> List[int]: critical_points = [] prev = head cur = head.next next_node = head.next.next pos = 1 while next_node: # maxima if prev.val < cur.val and next_node.val < cur.val: critical_points.append(pos) # minima elif cur.val < prev.val and cur.val < next_node.val: critical_points.append(pos) prev, cur, next_node = prev.next, cur.next, next_node.next pos += 1 if len(critical_points) < 2: return [-1, -1] min_dist = float("inf") for i in range(1, len(critical_points)): min_dist = min(min_dist, critical_points[i] - critical_points[i - 1]) max_dist = critical_points[-1] - critical_points[0] return [min_dist, max_dist] if __name__ == "__main__": import os import pytest pytest.main([os.path.join("tests", "test_2058.py")])
35.038462
179
0.662733
6a2878aad6455f4029f2ade2e73fa5bfc9dd1f88
37,511
py
Python
detectron2/detectron2/modeling/roi_heads/roi_heads.py
sean-zhuh/SA-AutoAug
cb9403fe01cbd30d8b14bca106fd771586f1b89f
[ "BSD-2-Clause" ]
100
2021-05-23T08:21:32.000Z
2022-03-31T17:47:56.000Z
detectron2/detectron2/modeling/roi_heads/roi_heads.py
sean-zhuh/SA-AutoAug
cb9403fe01cbd30d8b14bca106fd771586f1b89f
[ "BSD-2-Clause" ]
7
2021-05-26T08:45:14.000Z
2021-12-02T08:23:34.000Z
detectron2/detectron2/modeling/roi_heads/roi_heads.py
sean-zhuh/SA-AutoAug
cb9403fe01cbd30d8b14bca106fd771586f1b89f
[ "BSD-2-Clause" ]
11
2021-05-23T02:07:15.000Z
2022-02-28T13:14:45.000Z
# Copyright (c) Facebook, Inc. and its affiliates. import inspect import logging import numpy as np from typing import Dict, List, Optional, Tuple import torch from torch import nn from detectron2.config import configurable from detectron2.layers import ShapeSpec, nonzero_tuple from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou from detectron2.utils.events import get_event_storage from detectron2.utils.registry import Registry from ..backbone.resnet import BottleneckBlock, ResNet from ..matcher import Matcher from ..poolers import ROIPooler from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals from ..sampling import subsample_labels from .box_head import build_box_head from .fast_rcnn import FastRCNNOutputLayers from .keypoint_head import build_keypoint_head from .mask_head import build_mask_head ROI_HEADS_REGISTRY = Registry("ROI_HEADS") ROI_HEADS_REGISTRY.__doc__ = """ Registry for ROI heads in a generalized R-CNN model. ROIHeads take feature maps and region proposals, and perform per-region computation. The registered object will be called with `obj(cfg, input_shape)`. The call is expected to return an :class:`ROIHeads`. """ logger = logging.getLogger(__name__) def build_roi_heads(cfg, input_shape): """ Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`. """ name = cfg.MODEL.ROI_HEADS.NAME return ROI_HEADS_REGISTRY.get(name)(cfg, input_shape) def select_foreground_proposals( proposals: List[Instances], bg_label: int ) -> Tuple[List[Instances], List[torch.Tensor]]: """ Given a list of N Instances (for N images), each containing a `gt_classes` field, return a list of Instances that contain only instances with `gt_classes != -1 && gt_classes != bg_label`. Args: proposals (list[Instances]): A list of N Instances, where N is the number of images in the batch. bg_label: label index of background class. Returns: list[Instances]: N Instances, each contains only the selected foreground instances. list[Tensor]: N boolean vector, correspond to the selection mask of each Instances object. True for selected instances. """ assert isinstance(proposals, (list, tuple)) assert isinstance(proposals[0], Instances) assert proposals[0].has("gt_classes") fg_proposals = [] fg_selection_masks = [] for proposals_per_image in proposals: gt_classes = proposals_per_image.gt_classes fg_selection_mask = (gt_classes != -1) & (gt_classes != bg_label) fg_idxs = fg_selection_mask.nonzero().squeeze(1) fg_proposals.append(proposals_per_image[fg_idxs]) fg_selection_masks.append(fg_selection_mask) return fg_proposals, fg_selection_masks def select_proposals_with_visible_keypoints(proposals: List[Instances]) -> List[Instances]: """ Args: proposals (list[Instances]): a list of N Instances, where N is the number of images. Returns: proposals: only contains proposals with at least one visible keypoint. Note that this is still slightly different from Detectron. In Detectron, proposals for training keypoint head are re-sampled from all the proposals with IOU>threshold & >=1 visible keypoint. Here, the proposals are first sampled from all proposals with IOU>threshold, then proposals with no visible keypoint are filtered out. This strategy seems to make no difference on Detectron and is easier to implement. """ ret = [] all_num_fg = [] for proposals_per_image in proposals: # If empty/unannotated image (hard negatives), skip filtering for train if len(proposals_per_image) == 0: ret.append(proposals_per_image) continue gt_keypoints = proposals_per_image.gt_keypoints.tensor # #fg x K x 3 vis_mask = gt_keypoints[:, :, 2] >= 1 xs, ys = gt_keypoints[:, :, 0], gt_keypoints[:, :, 1] proposal_boxes = proposals_per_image.proposal_boxes.tensor.unsqueeze(dim=1) # #fg x 1 x 4 kp_in_box = ( (xs >= proposal_boxes[:, :, 0]) & (xs <= proposal_boxes[:, :, 2]) & (ys >= proposal_boxes[:, :, 1]) & (ys <= proposal_boxes[:, :, 3]) ) selection = (kp_in_box & vis_mask).any(dim=1) selection_idxs = nonzero_tuple(selection)[0] all_num_fg.append(selection_idxs.numel()) ret.append(proposals_per_image[selection_idxs]) storage = get_event_storage() storage.put_scalar("keypoint_head/num_fg_samples", np.mean(all_num_fg)) return ret class ROIHeads(torch.nn.Module): """ ROIHeads perform all per-region computation in an R-CNN. It typically contains logic to 1. (in training only) match proposals with ground truth and sample them 2. crop the regions and extract per-region features using proposals 3. make per-region predictions with different heads It can have many variants, implemented as subclasses of this class. This base class contains the logic to match/sample proposals. But it is not necessary to inherit this class if the sampling logic is not needed. """ @configurable def __init__( self, *, num_classes, batch_size_per_image, positive_fraction, proposal_matcher, proposal_append_gt=True ): """ NOTE: this interface is experimental. Args: num_classes (int): number of foreground classes (i.e. background is not included) batch_size_per_image (int): number of proposals to sample for training positive_fraction (float): fraction of positive (foreground) proposals to sample for training. proposal_matcher (Matcher): matcher that matches proposals and ground truth proposal_append_gt (bool): whether to include ground truth as proposals as well """ super().__init__() self.batch_size_per_image = batch_size_per_image self.positive_fraction = positive_fraction self.num_classes = num_classes self.proposal_matcher = proposal_matcher self.proposal_append_gt = proposal_append_gt @classmethod def from_config(cls, cfg): return { "batch_size_per_image": cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, "positive_fraction": cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION, "num_classes": cfg.MODEL.ROI_HEADS.NUM_CLASSES, "proposal_append_gt": cfg.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT, # Matcher to assign box proposals to gt boxes "proposal_matcher": Matcher( cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS, cfg.MODEL.ROI_HEADS.IOU_LABELS, allow_low_quality_matches=False, ), } def _sample_proposals( self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """ Based on the matching between N proposals and M groundtruth, sample the proposals and set their classification labels. Args: matched_idxs (Tensor): a vector of length N, each is the best-matched gt index in [0, M) for each proposal. matched_labels (Tensor): a vector of length N, the matcher's label (one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal. gt_classes (Tensor): a vector of length M. Returns: Tensor: a vector of indices of sampled proposals. Each is in [0, N). Tensor: a vector of the same length, the classification label for each sampled proposal. Each sample is labeled as either a category in [0, num_classes) or the background (num_classes). """ has_gt = gt_classes.numel() > 0 # Get the corresponding GT for each proposal if has_gt: gt_classes = gt_classes[matched_idxs] # Label unmatched proposals (0 label from matcher) as background (label=num_classes) gt_classes[matched_labels == 0] = self.num_classes # Label ignore proposals (-1 label) gt_classes[matched_labels == -1] = -1 else: gt_classes = torch.zeros_like(matched_idxs) + self.num_classes sampled_fg_idxs, sampled_bg_idxs = subsample_labels( gt_classes, self.batch_size_per_image, self.positive_fraction, self.num_classes ) sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0) return sampled_idxs, gt_classes[sampled_idxs] @torch.no_grad() def label_and_sample_proposals( self, proposals: List[Instances], targets: List[Instances] ) -> List[Instances]: """ Prepare some proposals to be used to train the ROI heads. It performs box matching between `proposals` and `targets`, and assigns training labels to the proposals. It returns ``self.batch_size_per_image`` random samples from proposals and groundtruth boxes, with a fraction of positives that is no larger than ``self.positive_fraction``. Args: See :meth:`ROIHeads.forward` Returns: list[Instances]: length `N` list of `Instances`s containing the proposals sampled for training. Each `Instances` has the following fields: - proposal_boxes: the proposal boxes - gt_boxes: the ground-truth box that the proposal is assigned to (this is only meaningful if the proposal has a label > 0; if label = 0 then the ground-truth box is random) Other fields such as "gt_classes", "gt_masks", that's included in `targets`. """ gt_boxes = [x.gt_boxes for x in targets] # Augment proposals with ground-truth boxes. # In the case of learned proposals (e.g., RPN), when training starts # the proposals will be low quality due to random initialization. # It's possible that none of these initial # proposals have high enough overlap with the gt objects to be used # as positive examples for the second stage components (box head, # cls head, mask head). Adding the gt boxes to the set of proposals # ensures that the second stage components will have some positive # examples from the start of training. For RPN, this augmentation improves # convergence and empirically improves box AP on COCO by about 0.5 # points (under one tested configuration). if self.proposal_append_gt: proposals = add_ground_truth_to_proposals(gt_boxes, proposals) proposals_with_gt = [] num_fg_samples = [] num_bg_samples = [] for proposals_per_image, targets_per_image in zip(proposals, targets): has_gt = len(targets_per_image) > 0 match_quality_matrix = pairwise_iou( targets_per_image.gt_boxes, proposals_per_image.proposal_boxes ) matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) sampled_idxs, gt_classes = self._sample_proposals( matched_idxs, matched_labels, targets_per_image.gt_classes ) # Set target attributes of the sampled proposals: proposals_per_image = proposals_per_image[sampled_idxs] proposals_per_image.gt_classes = gt_classes if has_gt: sampled_targets = matched_idxs[sampled_idxs] # We index all the attributes of targets that start with "gt_" # and have not been added to proposals yet (="gt_classes"). # NOTE: here the indexing waste some compute, because heads # like masks, keypoints, etc, will filter the proposals again, # (by foreground/background, or number of keypoints in the image, etc) # so we essentially index the data twice. for (trg_name, trg_value) in targets_per_image.get_fields().items(): if trg_name.startswith("gt_") and not proposals_per_image.has(trg_name): proposals_per_image.set(trg_name, trg_value[sampled_targets]) # If no GT is given in the image, we don't know what a dummy gt value can be. # Therefore the returned proposals won't have any gt_* fields, except for a # gt_classes full of background label. num_bg_samples.append((gt_classes == self.num_classes).sum().item()) num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) proposals_with_gt.append(proposals_per_image) # Log the number of fg/bg samples that are selected for training ROI heads storage = get_event_storage() storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples)) storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples)) return proposals_with_gt def forward( self, images: ImageList, features: Dict[str, torch.Tensor], proposals: List[Instances], targets: Optional[List[Instances]] = None, ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: """ Args: images (ImageList): features (dict[str,Tensor]): input data as a mapping from feature map name to tensor. Axis 0 represents the number of images `N` in the input data; axes 1-3 are channels, height, and width, which may vary between feature maps (e.g., if a feature pyramid is used). proposals (list[Instances]): length `N` list of `Instances`. The i-th `Instances` contains object proposals for the i-th input image, with fields "proposal_boxes" and "objectness_logits". targets (list[Instances], optional): length `N` list of `Instances`. The i-th `Instances` contains the ground-truth per-instance annotations for the i-th input image. Specify `targets` during training only. It may have the following fields: - gt_boxes: the bounding box of each instance. - gt_classes: the label for each instance with a category ranging in [0, #class]. - gt_masks: PolygonMasks or BitMasks, the ground-truth masks of each instance. - gt_keypoints: NxKx3, the groud-truth keypoints for each instance. Returns: list[Instances]: length `N` list of `Instances` containing the detected instances. Returned during inference only; may be [] during training. dict[str->Tensor]: mapping from a named loss to a tensor storing the loss. Used during training only. """ raise NotImplementedError() @ROI_HEADS_REGISTRY.register() class Res5ROIHeads(ROIHeads): """ The ROIHeads in a typical "C4" R-CNN model, where the box and mask head share the cropping and the per-region feature computation by a Res5 block. See :paper:`ResNet` Appendix A. """ @configurable def __init__( self, *, in_features: List[str], pooler: ROIPooler, res5: nn.Module, box_predictor: nn.Module, mask_head: Optional[nn.Module] = None, **kwargs ): """ NOTE: this interface is experimental. Args: in_features (list[str]): list of backbone feature map names to use for feature extraction pooler (ROIPooler): pooler to extra region features from backbone res5 (nn.Sequential): a CNN to compute per-region features, to be used by ``box_predictor`` and ``mask_head``. Typically this is a "res5" block from a ResNet. box_predictor (nn.Module): make box predictions from the feature. Should have the same interface as :class:`FastRCNNOutputLayers`. mask_head (nn.Module): transform features to make mask predictions """ super().__init__(**kwargs) self.in_features = in_features self.pooler = pooler if isinstance(res5, (list, tuple)): res5 = nn.Sequential(*res5) self.res5 = res5 self.box_predictor = box_predictor self.mask_on = mask_head is not None if self.mask_on: self.mask_head = mask_head @classmethod def from_config(cls, cfg, input_shape): # fmt: off ret = super().from_config(cfg) in_features = ret["in_features"] = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE pooler_scales = (1.0 / input_shape[in_features[0]].stride, ) sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO mask_on = cfg.MODEL.MASK_ON # fmt: on assert not cfg.MODEL.KEYPOINT_ON assert len(in_features) == 1 ret["pooler"] = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) # Compatbility with old moco code. Might be useful. # See notes in StandardROIHeads.from_config if not inspect.ismethod(cls._build_res5_block): logger.warning( "The behavior of _build_res5_block may change. " "Please do not depend on private methods." ) cls._build_res5_block = classmethod(cls._build_res5_block) ret["res5"], out_channels = cls._build_res5_block(cfg) ret["box_predictor"] = FastRCNNOutputLayers( cfg, ShapeSpec(channels=out_channels, height=1, width=1) ) if mask_on: ret["mask_head"] = build_mask_head( cfg, ShapeSpec(channels=out_channels, width=pooler_resolution, height=pooler_resolution), ) return ret @classmethod def _build_res5_block(cls, cfg): # fmt: off stage_channel_factor = 2 ** 3 # res5 is 8x res2 num_groups = cfg.MODEL.RESNETS.NUM_GROUPS width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP bottleneck_channels = num_groups * width_per_group * stage_channel_factor out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS * stage_channel_factor stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1 norm = cfg.MODEL.RESNETS.NORM assert not cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE[-1], \ "Deformable conv is not yet supported in res5 head." # fmt: on blocks = ResNet.make_stage( BottleneckBlock, 3, stride_per_block=[2, 1, 1], in_channels=out_channels // 2, bottleneck_channels=bottleneck_channels, out_channels=out_channels, num_groups=num_groups, norm=norm, stride_in_1x1=stride_in_1x1, ) return nn.Sequential(*blocks), out_channels def _shared_roi_transform(self, features, boxes): x = self.pooler(features, boxes) return self.res5(x) def forward(self, images, features, proposals, targets=None): """ See :meth:`ROIHeads.forward`. """ del images if self.training: assert targets proposals = self.label_and_sample_proposals(proposals, targets) del targets proposal_boxes = [x.proposal_boxes for x in proposals] box_features = self._shared_roi_transform( [features[f] for f in self.in_features], proposal_boxes ) predictions = self.box_predictor(box_features.mean(dim=[2, 3])) if self.training: del features losses = self.box_predictor.losses(predictions, proposals) if self.mask_on: proposals, fg_selection_masks = select_foreground_proposals( proposals, self.num_classes ) # Since the ROI feature transform is shared between boxes and masks, # we don't need to recompute features. The mask loss is only defined # on foreground proposals, so we need to select out the foreground # features. mask_features = box_features[torch.cat(fg_selection_masks, dim=0)] del box_features losses.update(self.mask_head(mask_features, proposals)) return [], losses else: pred_instances, _ = self.box_predictor.inference(predictions, proposals) pred_instances = self.forward_with_given_boxes(features, pred_instances) return pred_instances, {} def forward_with_given_boxes(self, features, instances): """ Use the given boxes in `instances` to produce other (non-box) per-ROI outputs. Args: features: same as in `forward()` instances (list[Instances]): instances to predict other outputs. Expect the keys "pred_boxes" and "pred_classes" to exist. Returns: instances (Instances): the same `Instances` object, with extra fields such as `pred_masks` or `pred_keypoints`. """ assert not self.training assert instances[0].has("pred_boxes") and instances[0].has("pred_classes") if self.mask_on: features = [features[f] for f in self.in_features] x = self._shared_roi_transform(features, [x.pred_boxes for x in instances]) return self.mask_head(x, instances) else: return instances @ROI_HEADS_REGISTRY.register() class StandardROIHeads(ROIHeads): """ It's "standard" in a sense that there is no ROI transform sharing or feature sharing between tasks. Each head independently processes the input features by each head's own pooler and head. This class is used by most models, such as FPN and C5. To implement more models, you can subclass it and implement a different :meth:`forward()` or a head. """ @configurable def __init__( self, *, box_in_features: List[str], box_pooler: ROIPooler, box_head: nn.Module, box_predictor: nn.Module, mask_in_features: Optional[List[str]] = None, mask_pooler: Optional[ROIPooler] = None, mask_head: Optional[nn.Module] = None, keypoint_in_features: Optional[List[str]] = None, keypoint_pooler: Optional[ROIPooler] = None, keypoint_head: Optional[nn.Module] = None, train_on_pred_boxes: bool = False, **kwargs ): """ NOTE: this interface is experimental. Args: box_in_features (list[str]): list of feature names to use for the box head. box_pooler (ROIPooler): pooler to extra region features for box head box_head (nn.Module): transform features to make box predictions box_predictor (nn.Module): make box predictions from the feature. Should have the same interface as :class:`FastRCNNOutputLayers`. mask_in_features (list[str]): list of feature names to use for the mask pooler or mask head. None if not using mask head. mask_pooler (ROIPooler): pooler to extract region features from image features. The mask head will then take region features to make predictions. If None, the mask head will directly take the dict of image features defined by `mask_in_features` mask_head (nn.Module): transform features to make mask predictions keypoint_in_features, keypoint_pooler, keypoint_head: similar to ``mask_*``. train_on_pred_boxes (bool): whether to use proposal boxes or predicted boxes from the box head to train other heads. """ super().__init__(**kwargs) # keep self.in_features for backward compatibility self.in_features = self.box_in_features = box_in_features self.box_pooler = box_pooler self.box_head = box_head self.box_predictor = box_predictor self.mask_on = mask_in_features is not None if self.mask_on: self.mask_in_features = mask_in_features self.mask_pooler = mask_pooler self.mask_head = mask_head self.keypoint_on = keypoint_in_features is not None if self.keypoint_on: self.keypoint_in_features = keypoint_in_features self.keypoint_pooler = keypoint_pooler self.keypoint_head = keypoint_head self.train_on_pred_boxes = train_on_pred_boxes @classmethod def from_config(cls, cfg, input_shape): ret = super().from_config(cfg) ret["train_on_pred_boxes"] = cfg.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES # Subclasses that have not been updated to use from_config style construction # may have overridden _init_*_head methods. In this case, those overridden methods # will not be classmethods and we need to avoid trying to call them here. # We test for this with ismethod which only returns True for bound methods of cls. # Such subclasses will need to handle calling their overridden _init_*_head methods. if inspect.ismethod(cls._init_box_head): ret.update(cls._init_box_head(cfg, input_shape)) if inspect.ismethod(cls._init_mask_head): ret.update(cls._init_mask_head(cfg, input_shape)) if inspect.ismethod(cls._init_keypoint_head): ret.update(cls._init_keypoint_head(cfg, input_shape)) return ret @classmethod def _init_box_head(cls, cfg, input_shape): # fmt: off in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE # fmt: on # If StandardROIHeads is applied on multiple feature maps (as in FPN), # then we share the same predictors and therefore the channel counts must be the same in_channels = [input_shape[f].channels for f in in_features] # Check all channel counts are equal assert len(set(in_channels)) == 1, in_channels in_channels = in_channels[0] box_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) # Here we split "box head" and "box predictor", which is mainly due to historical reasons. # They are used together so the "box predictor" layers should be part of the "box head". # New subclasses of ROIHeads do not need "box predictor"s. box_head = build_box_head( cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution) ) box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape) return { "box_in_features": in_features, "box_pooler": box_pooler, "box_head": box_head, "box_predictor": box_predictor, } @classmethod def _init_mask_head(cls, cfg, input_shape): if not cfg.MODEL.MASK_ON: return {} # fmt: off in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler_type = cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE # fmt: on in_channels = [input_shape[f].channels for f in in_features][0] ret = {"mask_in_features": in_features} ret["mask_pooler"] = ( ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) if pooler_type else None ) if pooler_type: shape = ShapeSpec( channels=in_channels, width=pooler_resolution, height=pooler_resolution ) else: shape = {f: input_shape[f] for f in in_features} ret["mask_head"] = build_mask_head(cfg, shape) return ret @classmethod def _init_keypoint_head(cls, cfg, input_shape): if not cfg.MODEL.KEYPOINT_ON: return {} # fmt: off in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) # noqa sampling_ratio = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO pooler_type = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE # fmt: on in_channels = [input_shape[f].channels for f in in_features][0] ret = {"keypoint_in_features": in_features} ret["keypoint_pooler"] = ( ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) if pooler_type else None ) if pooler_type: shape = ShapeSpec( channels=in_channels, width=pooler_resolution, height=pooler_resolution ) else: shape = {f: input_shape[f] for f in in_features} ret["keypoint_head"] = build_keypoint_head(cfg, shape) return ret def forward( self, images: ImageList, features: Dict[str, torch.Tensor], proposals: List[Instances], targets: Optional[List[Instances]] = None, ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: """ See :class:`ROIHeads.forward`. """ del images if self.training: assert targets, "'targets' argument is required during training" proposals = self.label_and_sample_proposals(proposals, targets) del targets if self.training: losses = self._forward_box(features, proposals) # Usually the original proposals used by the box head are used by the mask, keypoint # heads. But when `self.train_on_pred_boxes is True`, proposals will contain boxes # predicted by the box head. losses.update(self._forward_mask(features, proposals)) losses.update(self._forward_keypoint(features, proposals)) return proposals, losses else: pred_instances = self._forward_box(features, proposals) # During inference cascaded prediction is used: the mask and keypoints heads are only # applied to the top scoring box detections. pred_instances = self.forward_with_given_boxes(features, pred_instances) return pred_instances, {} def forward_with_given_boxes( self, features: Dict[str, torch.Tensor], instances: List[Instances] ) -> List[Instances]: """ Use the given boxes in `instances` to produce other (non-box) per-ROI outputs. This is useful for downstream tasks where a box is known, but need to obtain other attributes (outputs of other heads). Test-time augmentation also uses this. Args: features: same as in `forward()` instances (list[Instances]): instances to predict other outputs. Expect the keys "pred_boxes" and "pred_classes" to exist. Returns: list[Instances]: the same `Instances` objects, with extra fields such as `pred_masks` or `pred_keypoints`. """ assert not self.training assert instances[0].has("pred_boxes") and instances[0].has("pred_classes") instances = self._forward_mask(features, instances) instances = self._forward_keypoint(features, instances) return instances def _forward_box(self, features: Dict[str, torch.Tensor], proposals: List[Instances]): """ Forward logic of the box prediction branch. If `self.train_on_pred_boxes is True`, the function puts predicted boxes in the `proposal_boxes` field of `proposals` argument. Args: features (dict[str, Tensor]): mapping from feature map names to tensor. Same as in :meth:`ROIHeads.forward`. proposals (list[Instances]): the per-image object proposals with their matching ground truth. Each has fields "proposal_boxes", and "objectness_logits", "gt_classes", "gt_boxes". Returns: In training, a dict of losses. In inference, a list of `Instances`, the predicted instances. """ features = [features[f] for f in self.box_in_features] box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) box_features = self.box_head(box_features) predictions = self.box_predictor(box_features) del box_features if self.training: losses = self.box_predictor.losses(predictions, proposals) # proposals is modified in-place below, so losses must be computed first. if self.train_on_pred_boxes: with torch.no_grad(): pred_boxes = self.box_predictor.predict_boxes_for_gt_classes( predictions, proposals ) for proposals_per_image, pred_boxes_per_image in zip(proposals, pred_boxes): proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image) return losses else: pred_instances, _ = self.box_predictor.inference(predictions, proposals) return pred_instances def _forward_mask(self, features: Dict[str, torch.Tensor], instances: List[Instances]): """ Forward logic of the mask prediction branch. Args: features (dict[str, Tensor]): mapping from feature map names to tensor. Same as in :meth:`ROIHeads.forward`. instances (list[Instances]): the per-image instances to train/predict masks. In training, they can be the proposals. In inference, they can be the boxes predicted by R-CNN box head. Returns: In training, a dict of losses. In inference, update `instances` with new fields "pred_masks" and return it. """ if not self.mask_on: return {} if self.training else instances if self.training: # head is only trained on positive proposals. instances, _ = select_foreground_proposals(instances, self.num_classes) if self.mask_pooler is not None: features = [features[f] for f in self.mask_in_features] boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances] features = self.mask_pooler(features, boxes) else: features = {f: features[f] for f in self.mask_in_features} return self.mask_head(features, instances) def _forward_keypoint(self, features: Dict[str, torch.Tensor], instances: List[Instances]): """ Forward logic of the keypoint prediction branch. Args: features (dict[str, Tensor]): mapping from feature map names to tensor. Same as in :meth:`ROIHeads.forward`. instances (list[Instances]): the per-image instances to train/predict keypoints. In training, they can be the proposals. In inference, they can be the boxes predicted by R-CNN box head. Returns: In training, a dict of losses. In inference, update `instances` with new fields "pred_keypoints" and return it. """ if not self.keypoint_on: return {} if self.training else instances if self.training: # head is only trained on positive proposals with >=1 visible keypoints. instances, _ = select_foreground_proposals(instances, self.num_classes) instances = select_proposals_with_visible_keypoints(instances) if self.keypoint_pooler is not None: features = [features[f] for f in self.keypoint_in_features] boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances] features = self.keypoint_pooler(features, boxes) else: features = dict([(f, features[f]) for f in self.keypoint_in_features]) return self.keypoint_head(features, instances)
43.06659
100
0.640292
66be49f460c65065e6f7736da4876a7e889e97ba
1,864
py
Python
airflow/contrib/utils/log/task_handler_with_custom_formatter.py
fxdmhtt/airflow
cf88f7bc7bbd3e9bf110e98f025759a96c130235
[ "Apache-2.0" ]
3
2019-10-03T21:08:15.000Z
2019-10-04T00:24:40.000Z
airflow/contrib/utils/log/task_handler_with_custom_formatter.py
fxdmhtt/airflow
cf88f7bc7bbd3e9bf110e98f025759a96c130235
[ "Apache-2.0" ]
3
2020-03-08T15:43:38.000Z
2021-09-29T17:26:10.000Z
airflow/contrib/utils/log/task_handler_with_custom_formatter.py
upjohnc/airflow-upjohn-k8s
caadbc1618d73e054de99138b0892cea3a9327c4
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
5
2017-06-19T19:55:47.000Z
2020-10-10T00:49:20.000Z
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from logging import StreamHandler from airflow import configuration as conf from airflow.utils.helpers import parse_template_string class TaskHandlerWithCustomFormatter(StreamHandler): def __init__(self, stream): super(TaskHandlerWithCustomFormatter, self).__init__() def set_context(self, ti): if ti.raw: return prefix = conf.get('core', 'task_log_prefix_template') rendered_prefix = "" if prefix: _, self.prefix_jinja_template = parse_template_string(prefix) rendered_prefix = self._render_prefix(ti) self.setFormatter(logging.Formatter(rendered_prefix + ":" + self.formatter._fmt)) self.setLevel(self.level) def _render_prefix(self, ti): if self.prefix_jinja_template: jinja_context = ti.get_template_context() return self.prefix_jinja_template.render(**jinja_context) logging.warning("'task_log_prefix_template' is in invalid format, ignoring the variable value") return ""
37.28
103
0.725322
b6ed4cbd48447eb6f928c864598323f1c095ae62
3,987
py
Python
pkuseg/config.py
hcg2011/pkuseg-python
dcfbb4a5fcbd11d421c9ec76d71fed8633e7d9af
[ "MIT" ]
1
2019-01-22T10:15:13.000Z
2019-01-22T10:15:13.000Z
pkuseg/config.py
DavidAlphaFox/pkuseg-python
3975a94cccd9e8e635ca42689ef1d44e8f719c61
[ "MIT" ]
null
null
null
pkuseg/config.py
DavidAlphaFox/pkuseg-python
3975a94cccd9e8e635ca42689ef1d44e8f719c61
[ "MIT" ]
null
null
null
import os import tempfile class Config: lineEnd = "\n" biLineEnd = "\n\n" triLineEnd = "\n\n\n" undrln = "_" blank = " " tab = "\t" star = "*" slash = "/" comma = "," delimInFeature = "." B = "B" num = "0123456789.几二三四五六七八九十千万亿兆零1234567890%" letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz/・-" mark = "*" def __init__(self): # main setting self.trainFile = os.path.join("data", "small_training.utf8") self.testFile = os.path.join("data", "small_test.utf8") self._tmp_dir = tempfile.TemporaryDirectory() self.homepath = self._tmp_dir.name self.tempFile = os.path.join(self.homepath, ".pkuseg", "temp") self.readFile = os.path.join("data", "small_test.utf8") self.outputFile = os.path.join("data", "small_test_output.utf8") self.modelOptimizer = "crf.adf" self.rate0 = 0.05 # init value of decay rate in SGD and ADF training # self.reg = 1 # self.regs = [1] # self.regList = self.regs.copy() self.random = ( 0 ) # 0 for 0-initialization of model weights, 1 for random init of model weights self.evalMetric = ( "f1" ) # tok.acc (token accuracy), str.acc (string accuracy), f1 (F1-score) self.trainSizeScale = 1 # for scaling the size of training data self.ttlIter = 20 # of training iterations self.nUpdate = 10 # for ADF training self.outFolder = os.path.join(self.tempFile, "output") self.save = 1 # save model file self.rawResWrite = True self.miniBatch = 1 # mini-batch in stochastic training self.nThread = 10 # number of processes # ADF training self.upper = 0.995 # was tuned for nUpdate = 10 self.lower = 0.6 # was tuned for nUpdate = 10 # global variables self.metric = None self.reg = 1 self.outDir = self.outFolder self.testrawDir = "rawinputs/" self.testinputDir = "inputs/" self.tempDir = os.path.join(self.homepath, ".pkuseg", "temp") self.testoutputDir = "entityoutputs/" # self.GL_init = True self.weightRegMode = "L2" # choosing weight regularizer: L2, L1) self.c_train = os.path.join(self.tempFile, "train.conll.txt") self.f_train = os.path.join(self.tempFile, "train.feat.txt") self.c_test = os.path.join(self.tempFile, "test.conll.txt") self.f_test = os.path.join(self.tempFile, "test.feat.txt") self.fTune = "tune.txt" self.fLog = "trainLog.txt" self.fResSum = "summarizeResult.txt" self.fResRaw = "rawResult.txt" self.fOutput = "outputTag-{}.txt" self.fFeatureTrain = os.path.join(self.tempFile, "ftrain.txt") self.fGoldTrain = os.path.join(self.tempFile, "gtrain.txt") self.fFeatureTest = os.path.join(self.tempFile, "ftest.txt") self.fGoldTest = os.path.join(self.tempFile, "gtest.txt") self.modelDir = os.path.join( os.path.dirname(os.path.realpath(__file__)), "models", "ctb8" ) self.fModel = os.path.join(self.modelDir, "model.txt") # feature self.numLetterNorm = True self.featureTrim = 0 self.wordFeature = True self.wordMax = 6 self.wordMin = 2 self.nLabel = 5 self.order = 1 def globalCheck(self): if self.evalMetric == "f1": self.metric = "f-score" elif self.evalMetric == "tok.acc": self.metric = "token-accuracy" elif self.evalMetric == "str.acc": self.metric = "string-accuracy" else: raise Exception("invalid eval metric") assert self.rate0 > 0 assert self.trainSizeScale > 0 assert self.ttlIter > 0 assert self.nUpdate > 0 assert self.miniBatch > 0 assert self.reg > 0 config = Config()
34.669565
88
0.58766
8e3ea17e47c960b6309f11d30b0dde96efbee551
3,633
py
Python
third_party/blink/tools/blinkpy/common/read_checksum_from_png_unittest.py
DamieFC/chromium
54ce2d3c77723697efd22cfdb02aea38f9dfa25c
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2020-10-18T02:33:40.000Z
2020-10-18T02:33:40.000Z
third_party/blink/tools/blinkpy/common/read_checksum_from_png_unittest.py
DamieFC/chromium
54ce2d3c77723697efd22cfdb02aea38f9dfa25c
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
3
2021-05-17T16:28:52.000Z
2021-05-21T22:42:22.000Z
third_party/blink/tools/blinkpy/common/read_checksum_from_png_unittest.py
DamieFC/chromium
54ce2d3c77723697efd22cfdb02aea38f9dfa25c
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
# Copyright (C) 2011 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest from blinkpy.common import read_checksum_from_png from six import StringIO class ReadChecksumFromPngTest(unittest.TestCase): def test_read_checksum(self): # pylint: disable=line-too-long # Test a file with the comment. filehandle = StringIO( '''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x03 \x00\x00\x02X\x08\x02\x00\x00\x00\x15\x14\x15'\x00\x00\x00)tEXtchecksum\x003c4134fe2739880353f91c5b84cadbaaC\xb8?\xec\x00\x00\x16\xfeIDATx\x9c\xed\xdd[\x8cU\xe5\xc1\xff\xf15T\x18\x0ea,)\xa6\x80XZ<\x10\n\xd6H\xc4V\x88}\xb5\xa9\xd6r\xd5\x0bki0\xa6\xb5ih\xd2\xde\x98PHz\xd1\x02=\\q#\x01\x8b\xa5rJ\x8b\x88i\xacM\xc5h\x8cbMk(\x1ez@!\x0c\xd5\xd2\xc2\xb44\x1c\x848\x1dF(\xeb\x7f\xb1\xff\xd9\xef~g\xd6\xde3\xe0o\x10\xec\xe7sa6{\xd6z\xd6\xb3\xd7\xf3\xa8_7\xdbM[Y\x96\x05\x00\x009\xc3\xde\xeb\t\x00\x00\xbc\xdf\x08,\x00\x800\x81\x05\x00\x10&\xb0\x00\x00\xc2\x04\x16\x00@\x98\xc0\x02\x00\x08\x13X\x00\x00a\x02\x0b\x00 Lx01\x00\x84\t,\x00\x800\x81\x05\x00\x10\xd64\xb0\xda\x9a\xdb\xb6m\xdb\xb4i\xd3\xfa\x9fr\xf3\xcd7\x0f\xe5T\x07\xe5\xd4\xa9''' ) checksum = read_checksum_from_png.read_checksum(filehandle) self.assertEqual('3c4134fe2739880353f91c5b84cadbaa', checksum) # Test a file without the comment. filehandle = StringIO( '''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x03 \x00\x00\x02X\x08\x02\x00\x00\x00\x15\x14\x15'\x00\x00\x16\xfeIDATx\x9c\xed\xdd[\x8cU\xe5\xc1\xff\xf15T\x18\x0ea,)\xa6\x80XZ<\x10\n\xd6H\xc4V\x88}\xb5\xa9\xd6r\xd5\x0bki0\xa6\xb5ih\xd2\xde\x98PHz\xd1\x02=\\q#\x01\x8b\xa5rJ\x8b\x88i\xacM\xc5h\x8cbMk(\x1ez@!\x0c\xd5\xd2\xc2\xb44\x1c\x848\x1dF(\xeb\x7f\xb1\xff\xd9\xef~g\xd6\xde3\xe0o\x10\xec\xe7sa6{\xd6z\xd6\xb3\xd7\xf3\xa8_7\xdbM[Y\x96\x05\x00\x009\xc3\xde\xeb\t\x00\x00\xbc\xdf\x08,\x00\x800\x81\x05\x00\x10&\xb0\x00\x00\xc2\x04\x16\x00@\x98\xc0\x02\x00\x08\x13X\x00\x00a\x02\x0b\x00 Lx01\x00\x84\t,\x00\x800\x81\x05\x00\x10\xd64\xb0\xda\x9a\xdb\xb6m\xdb\xb4i\xd3\xfa\x9fr\xf3\xcd7\x0f\xe5T\x07\xe5\xd4\xa9S\x8b\x17/\x1e?~\xfc\xf8\xf1\xe3\xef\xbf\xff\xfe\xf7z:M5\xbb\x87\x17\xcbUZ\x8f|V\xd7\xbd\x10\xb6\xcd{b\x88\xf6j\xb3\x9b?\x14\x9b\xa1>\xe6\xf9\xd9\xcf\x00\x17\x93''' ) checksum = read_checksum_from_png.read_checksum(filehandle) self.assertIsNone(checksum)
77.297872
886
0.744839
5714976b130aafe0af740890564805f211d3ac32
68
py
Python
railgun/http/__init__.py
c-goosen/asyncio-railgun
23a234d0810ae7dd3c69504232ea7b021ca7c82c
[ "MIT" ]
null
null
null
railgun/http/__init__.py
c-goosen/asyncio-railgun
23a234d0810ae7dd3c69504232ea7b021ca7c82c
[ "MIT" ]
null
null
null
railgun/http/__init__.py
c-goosen/asyncio-railgun
23a234d0810ae7dd3c69504232ea7b021ca7c82c
[ "MIT" ]
null
null
null
""" High level methods and wrappers for http calls with Railgun """
17
59
0.735294
55823c15515bd4b320f39730d09c35d0971db051
16,122
py
Python
docs/matplotlib_ext/docscrape_sphinx.py
nenkoru/okama
1e202bc801aea8adaf4c2ad033cd51af0c957df5
[ "MIT" ]
200
2015-02-12T16:56:28.000Z
2022-03-16T15:34:50.000Z
docs/matplotlib_ext/docscrape_sphinx.py
nenkoru/okama
1e202bc801aea8adaf4c2ad033cd51af0c957df5
[ "MIT" ]
330
2015-01-01T09:15:43.000Z
2022-03-30T22:48:26.000Z
docs/matplotlib_ext/docscrape_sphinx.py
nenkoru/okama
1e202bc801aea8adaf4c2ad033cd51af0c957df5
[ "MIT" ]
142
2015-01-21T01:05:14.000Z
2022-03-07T15:22:53.000Z
import re import inspect import textwrap import pydoc from collections.abc import Callable import os from jinja2 import FileSystemLoader from jinja2.sandbox import SandboxedEnvironment import sphinx from sphinx.jinja2glue import BuiltinTemplateLoader from .docscrape import NumpyDocString, FunctionDoc, ClassDoc, ObjDoc from .xref import make_xref IMPORT_MATPLOTLIB_RE = r'\b(import +matplotlib|from +matplotlib +import)\b' class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): NumpyDocString.__init__(self, docstring, config=config) self.load_config(config) def load_config(self, config): self.use_plots = config.get('use_plots', False) self.use_blockquotes = config.get('use_blockquotes', False) self.class_members_toctree = config.get('class_members_toctree', True) self.attributes_as_param_list = config.get('attributes_as_param_list', True) self.xref_param_type = config.get('xref_param_type', False) self.xref_aliases = config.get('xref_aliases', dict()) self.xref_ignore = config.get('xref_ignore', set()) self.template = config.get('template', None) if self.template is None: template_dirs = [os.path.join(os.path.dirname(__file__), 'templates')] template_loader = FileSystemLoader(template_dirs) template_env = SandboxedEnvironment(loader=template_loader) self.template = template_env.get_template('numpydoc_docstring.rst') # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_returns(self, name='Returns'): named_fmt = '**%s** : %s' unnamed_fmt = '%s' out = [] if self[name]: out += self._str_field_list(name) out += [''] for param in self[name]: param_type = param.type if param_type and self.xref_param_type: param_type = make_xref( param_type, self.xref_aliases, self.xref_ignore ) if param.name: out += self._str_indent([named_fmt % (param.name.strip(), param_type)]) else: out += self._str_indent([unnamed_fmt % param_type.strip()]) if not param.desc: out += self._str_indent(['..'], 8) else: if self.use_blockquotes: out += [''] out += self._str_indent(param.desc, 8) out += [''] return out def _escape_args_and_kwargs(self, name): if name[:2] == '**': return r'\*\*' + name[2:] elif name[:1] == '*': return r'\*' + name[1:] else: return name def _process_param(self, param, desc, fake_autosummary): """Determine how to display a parameter Emulates autosummary behavior if fake_autosummary Parameters ---------- param : str The name of the parameter desc : list of str The parameter description as given in the docstring. This is ignored when autosummary logic applies. fake_autosummary : bool If True, autosummary-style behaviour will apply for params that are attributes of the class and have a docstring. Returns ------- display_param : str The marked up parameter name for display. This may include a link to the corresponding attribute's own documentation. desc : list of str A list of description lines. This may be identical to the input ``desc``, if ``autosum is None`` or ``param`` is not a class attribute, or it will be a summary of the class attribute's docstring. Notes ----- This does not have the autosummary functionality to display a method's signature, and hence is not used to format methods. It may be complicated to incorporate autosummary's signature mangling, as it relies on Sphinx's plugin mechanism. """ param = self._escape_args_and_kwargs(param.strip()) # param = param.strip() # XXX: If changing the following, please check the rendering when param # ends with '_', e.g. 'word_' # See https://github.com/numpy/numpydoc/pull/144 display_param = '**%s**' % param if not fake_autosummary: return display_param, desc param_obj = getattr(self._obj, param, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isgetsetdescriptor(param_obj) or inspect.ismemberdescriptor(param_obj)): param_obj = None obj_doc = pydoc.getdoc(param_obj) if not (param_obj and obj_doc): return display_param, desc prefix = getattr(self, '_name', '') if prefix: link_prefix = '%s.' % prefix else: link_prefix = '' # Referenced object has a docstring display_param = ':obj:`%s <%s%s>`' % (param, link_prefix, param) if obj_doc: # Overwrite desc. Take summary logic of autosummary desc = re.split(r'\n\s*\n', obj_doc.strip(), 1)[0] # XXX: Should this have DOTALL? # It does not in autosummary m = re.search(r"^([A-Z].*?\.)(?:\s|$)", ' '.join(desc.split())) if m: desc = m.group(1).strip() else: desc = desc.partition('\n')[0] desc = desc.split('\n') return display_param, desc def _str_param_list(self, name, fake_autosummary=False): """Generate RST for a listing of parameters or similar Parameter names are displayed as bold text, and descriptions are in blockquotes. Descriptions may therefore contain block markup as well. Parameters ---------- name : str Section name (e.g. Parameters) fake_autosummary : bool When True, the parameter names may correspond to attributes of the object beign documented, usually ``property`` instances on a class. In this case, names will be linked to fuller descriptions. Returns ------- rst : list of str """ out = [] if self[name]: out += self._str_field_list(name) out += [''] for param in self[name]: display_param, desc = self._process_param(param.name, param.desc, fake_autosummary) parts = [] if display_param: parts.append(display_param) param_type = param.type if param_type: param_type = param.type if self.xref_param_type: param_type = make_xref( param_type, self.xref_aliases, self.xref_ignore ) parts.append(param_type) out += self._str_indent([' : '.join(parts)]) if desc and self.use_blockquotes: out += [''] elif not desc: # empty definition desc = ['..'] out += self._str_indent(desc, 8) out += [''] return out def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param in self[name]: param = param._replace(name=param.name.strip()) # Check if the referenced member can have a docstring or not param_obj = getattr(self._obj, param.name, None) if not (callable(param_obj) or isinstance(param_obj, property) or inspect.isdatadescriptor(param_obj)): param_obj = None if param_obj and pydoc.getdoc(param_obj): # Referenced object has a docstring autosum += [" %s%s" % (prefix, param.name)] else: others.append(param) if autosum: out += ['.. autosummary::'] if self.class_members_toctree: out += [' :toctree:'] out += [''] + autosum if others: maxlen_0 = max(3, max([len(p.name) + 4 for p in others])) hdr = "=" * maxlen_0 + " " + "=" * 10 fmt = '%%%ds %%s ' % (maxlen_0,) out += ['', '', hdr] for param in others: name = "**" + param.name.strip() + "**" desc = " ".join(x.strip() for x in param.desc).strip() if param.type: desc = "(%s) %s" % (param.type, desc) out += [fmt % (name, desc)] out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super()._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) out += [''] return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.items(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] out += [''] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and re.search(IMPORT_MATPLOTLIB_RE, examples_str) and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): ns = { 'signature': self._str_signature(), 'index': self._str_index(), 'summary': self._str_summary(), 'extended_summary': self._str_extended_summary(), 'parameters': self._str_param_list('Parameters'), 'returns': self._str_returns('Returns'), 'yields': self._str_returns('Yields'), 'receives': self._str_returns('Receives'), 'other_parameters': self._str_param_list('Other Parameters'), 'raises': self._str_returns('Raises'), 'warns': self._str_returns('Warns'), 'warnings': self._str_warnings(), 'see_also': self._str_see_also(func_role), 'notes': self._str_section('Notes'), 'references': self._str_references(), 'examples': self._str_examples(), 'attributes': self._str_param_list('Attributes', fake_autosummary=True) if self.attributes_as_param_list else self._str_member_list('Attributes'), 'methods': self._str_member_list('Methods'), } ns = dict((k, '\n'.join(v)) for k, v in ns.items()) rendered = self.template.render(**ns) return '\n'.join(self._str_indent(rendered.split('\n'), indent)) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.load_config(config) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString, ObjDoc): def __init__(self, obj, doc=None, config={}): self.load_config(config) ObjDoc.__init__(self, obj, doc=doc, config=config) # TODO: refactor to use docscrape.get_doc_object def get_doc_object(obj, what=None, doc=None, config={}, builder=None): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif isinstance(obj, Callable): what = 'function' else: what = 'object' template_dirs = [os.path.join(os.path.dirname(__file__), 'templates')] if builder is not None: template_loader = BuiltinTemplateLoader() template_loader.init(builder, dirs=template_dirs) else: template_loader = FileSystemLoader(template_dirs) template_env = SandboxedEnvironment(loader=template_loader) config['template'] = template_env.get_template('numpydoc_docstring.rst') if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
36.475113
84
0.521337
2dc64f3baa4ea619626d517c95224591d00d6678
15,781
py
Python
gogamechen3/api/wsgi/game/entity/async.py
lolizeppelin/gogamechen3
4ff06f9042f1bb0cc22e1cc0b342967a829ae0f8
[ "MIT" ]
null
null
null
gogamechen3/api/wsgi/game/entity/async.py
lolizeppelin/gogamechen3
4ff06f9042f1bb0cc22e1cc0b342967a829ae0f8
[ "MIT" ]
null
null
null
gogamechen3/api/wsgi/game/entity/async.py
lolizeppelin/gogamechen3
4ff06f9042f1bb0cc22e1cc0b342967a829ae0f8
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- import inspect import time import contextlib from collections import OrderedDict from sqlalchemy.sql import and_ from simpleutil.common.exceptions import InvalidArgument from simpleutil.log import log as logging from simpleutil.utils import jsonutils from simpleutil.utils import argutils from simpleutil.config import cfg from simpleservice.ormdb.api import model_query from goperation import threadpool from goperation.utils import safe_func_wrapper from goperation.manager import common as manager_common from goperation.manager.api import rpcfinishtime from goperation.manager.utils import resultutils from goperation.manager.utils import targetutils from goperation.manager.wsgi.entity.controller import EntityReuest from gogamechen3 import common from gogamechen3.api import endpoint_session from gogamechen3.models import AppEntity from gogamechen3.api.wsgi.utils import gmurl from .base import AppEntityReuestBase LOG = logging.getLogger(__name__) entity_controller = EntityReuest() CONF = cfg.CONF @contextlib.contextmanager def empty_context(*args, **kwargs): yield class AppEntityAsyncReuest(AppEntityReuestBase): """async ext function""" OBJFILES = {'type': 'object', 'properties': { common.APPFILE: { 'type': 'object', 'required': ['md5', 'timeout'], 'properties': {'md5': {'type': 'string', 'format': 'md5', 'description': '更新程序文件所需文件'}, 'timeout': {'type': 'integer', 'minimum': 10, 'maxmum': 300, 'description': '更新超时时间'}, 'backup': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否更新前备份程序,默认是'}, 'revertable': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '程序文件是否可以回滚,默认是'}, 'rollback': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否连带回滚(回滚前方已经成功的步骤),默认否'}, }}, common.DATADB: { 'type': 'object', 'required': ['md5', 'timeout'], 'properties': { 'md5': {'type': 'string', 'format': 'md5', 'description': '更新游戏库所需文件'}, 'timeout': {'type': 'integer', 'minimum': 30, 'maxmum': 1200, 'description': '更新超时时间'}, 'backup': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否更新前备份游戏数据库,默认否'}, 'revertable': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '游戏库是否可以回滚,默认否'}, 'rollback': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否连带回滚(回滚前方已经成功的步骤),默认否'}}}, common.LOGDB: { 'type': 'object', 'required': ['md5', 'timeout'], 'properties': { 'md5': {'type': 'string', 'format': 'md5', 'description': '更新日志库所需文件'}, 'timeout': {'type': 'integer', 'minimum': 30, 'maxmum': 3600, 'description': '更新超时时间'}, 'backup': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否更新前备份日志数据库,默认否'}, 'revertable': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '日志库是否可以回滚,默认否'}, 'rollback': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否连带回滚(回滚前方已经成功的步骤),默认否'}}},} } UPGRADE = {'type': 'object', 'required': ['request_time', 'finishtime', 'objfiles'], 'properties': { 'objfiles': OBJFILES, 'request_time': {'type': 'integer', 'description': '异步请求时间'}, 'timeline': {'type': 'integer', 'description': '异步请求时间'}, 'finishtime': {'type': 'integer', 'description': '异步请求完成时间'}} } FLUSH = {'type': 'object', 'properties': { common.GMSERVER: {'type': 'integer', 'minimum': 0, 'description': 'GM服务器位置更新, 区服专用参数'}, common.CROSSSERVER: {'type': 'integer', 'minimum': 0, 'description': '战场服务器位置更新, 区服专用参数'}, 'opentime': {'type': 'integer', 'minimum': 0, 'description': '游戏服开服时间, 区服专用参数'}, 'force': {'type': 'boolean', 'description': '忽略运行状态'}} } HOTFIX = {'type': 'object', 'required': [common.APPFILE], 'properties': { common.APPFILE: { 'type': 'object', 'required': ['md5', 'timeout'], 'properties': {'md5': {'type': 'string', 'format': 'md5', 'description': '更新程序文件所需文件'}, 'timeout': {'type': 'integer', 'minimum': 10, 'maxmum': 300, 'description': '更新超时时间'}, 'backup': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否更新前备份程序,默认否'}, 'revertable': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '程序文件是否可以回滚,默认是'}, 'rollback': {'oneOf': [{'type': 'boolean'}, {'type': 'null'}], 'description': '是否连带回滚(回滚前方已经成功的步骤),默认否'}, 'stream': {'oneOf': [{'type': 'string', "minLength": 6, "maxLength": 5000}, {'type': 'null'}], 'description': '直接以stream流文件发送文件'}, }}} } def _async_bluck_rpc(self, action, group_id, objtype, entity, body=None, context=None): caller = inspect.stack()[0][3] body = body or {} group_id = int(group_id) context = context or empty_context if entity == 'all': entitys = 'all' else: entitys = argutils.map_to_int(entity) asyncrequest = self.create_asyncrequest(body) target = targetutils.target_endpoint(common.NAME) session = endpoint_session(readonly=True) query = model_query(session, AppEntity, filter=and_(AppEntity.group_id == group_id, AppEntity.objtype == objtype)) emaps = dict() for _entity in query: if _entity.status <= common.DELETED: continue if _entity.status != common.OK and action != 'stop': continue emaps.setdefault(_entity.entity, _entity.agent_id) if entitys == 'all': entitys = emaps.keys() agents = set(emaps.values()) else: if entitys - set(emaps.keys()): raise InvalidArgument('Some entitys not found or status is not active') agents = set() for entity in emaps: if entity in entitys: agents.add(emaps[entity]) with context(asyncrequest.request_id, entitys, agents): async_ctxt = dict(pre_run=body.pop('pre_run', None), after_run=body.pop('after_run', None), post_run=body.pop('post_run', None)) rpc_ctxt = {} rpc_ctxt.setdefault('agents', agents) rpc_method = '%s_entitys' % action rpc_args = dict(entitys=list(entitys)) rpc_args.update(body) def wapper(): self.send_asyncrequest(asyncrequest, target, rpc_ctxt, rpc_method, rpc_args, async_ctxt) threadpool.add_thread(safe_func_wrapper, wapper, LOG) return resultutils.results(result='gogamechen3 %s entitys %s spawning' % (objtype, caller), data=[asyncrequest.to_dict()]) def start(self, req, group_id, objtype, entity, body=None): return self._async_bluck_rpc('start', group_id, objtype, entity, body) def stop(self, req, group_id, objtype, entity, body=None): """ kill 强制关闭 notify 通过gm服务器通知区服关闭 """ body = body or {} kill = body.get('kill', False) notify = body.pop('notify', False) if objtype == common.GAMESERVER and notify and not kill: message = body.pop('message', '') or '' delay = body.pop('delay', 3) if delay: if not isinstance(delay, (int, long)) or delay < 3: raise InvalidArgument('Delay value error') delay = min(delay, 60) finishtime = rpcfinishtime()[0] + delay + 5 body.update({'finishtime': finishtime, 'delay': delay + 5}) url = gmurl(req, group_id, interface='closegameserver') @contextlib.contextmanager def context(reqeust_id, entitys, agents): pre_run = {'executer': 'http', 'ekwargs': {'url': url, 'method': 'POST', 'async': False, 'json': OrderedDict(RealSvrIds=list(entitys), Msg=message, DelayTime=delay)} } body.update({'pre_run': pre_run}) yield else: context = None body.pop('delay', None) return self._async_bluck_rpc('stop', group_id, objtype, entity, body, context) def status(self, req, group_id, objtype, entity, body=None): return self._async_bluck_rpc('status', group_id, objtype, entity, body) def upgrade(self, req, group_id, objtype, entity, body=None): body = body or {} jsonutils.schema_validate(body, self.UPGRADE) objfiles = body.get('objfiles') if not objfiles: raise InvalidArgument('Not objfile found for upgrade') request_time = body.get('request_time') finishtime = body.get('finishtime') timeline = body.get('timeline') or request_time runtime = finishtime - request_time for subtype in objfiles: if subtype not in (common.APPFILE, common.DATADB, common.LOGDB): raise InvalidArgument('json schema error') objfile = objfiles[subtype] if objfile.get('timeout') + request_time > finishtime: raise InvalidArgument('%s timeout over finishtime' % subtype) body.update({'timeline': timeline, 'deadline': finishtime + 3 + (runtime * 2)}) body.setdefault('objtype', objtype) return self._async_bluck_rpc('upgrade', group_id, objtype, entity, body) def flushconfig(self, req, group_id, objtype, entity, body=None): body = body or {} group_id = int(group_id) jsonutils.schema_validate(body, self.FLUSH) if objtype == common.GAMESERVER: gm = body.pop(common.GMSERVER, 0) cross = body.pop(common.CROSSSERVER, 0) entitys = [] if gm: entitys.append(gm) if cross: entitys.append(cross) entitys = list(set(entitys)) if entitys: chiefs = {} session = endpoint_session() query = model_query(session, AppEntity, filter=and_(AppEntity.group_id == group_id, AppEntity.entity.in_(entitys))) gmsvr = crosssvr = None for appserver in query: if appserver.group_id != group_id: raise InvalidArgument('Entity group value error') if appserver.objtype == common.GMSERVER: if appserver.entity != gm: raise InvalidArgument('Find %s but entity is %d' % (common.GMSERVER, gm)) gmsvr = appserver elif appserver.objtype == common.CROSSSERVER: if appserver.entity != cross: raise InvalidArgument('Find %s but entity is %d' % (common.CROSSSERVER, cross)) crosssvr = appserver if gm and not gmsvr: raise InvalidArgument('%s.%d can not be found' % (common.GMSERVER, gm)) if cross and not crosssvr: raise InvalidArgument('%s.%d can not be found' % (common.CROSSSERVER, cross)) # 获取实体相关服务器信息(端口/ip) maps = entity_controller.shows(endpoint=common.NAME, entitys=entitys) if gmsvr: chiefs.setdefault(common.GMSERVER, dict(entity=gmsvr.entity, ports=maps.get(gmsvr.entity).get('ports'), local_ip=maps.get(gmsvr.entity).get('metadata').get('local_ip') )) if crosssvr: chiefs.setdefault(common.CROSSSERVER, dict(entity=crosssvr.entity, ports=maps.get(crosssvr.entity).get('ports'), local_ip=maps.get(crosssvr.entity).get('metadata').get('local_ip') )) body.update({'chiefs': chiefs}) return self._async_bluck_rpc('flushconfig', group_id, objtype, entity, body) def hotfix(self, req, group_id, objtype, entity, body=None): group_id = int(group_id) body = body or {} if objtype != common.GAMESERVER: raise InvalidArgument('Hotfix just for %s' % common.GAMESERVER) jsonutils.schema_validate(body, self.HOTFIX) body.setdefault('objtype', objtype) url = gmurl(req, group_id, interface='hotupdateconfig?RealSvrIds=0') @contextlib.contextmanager def context(reqeust_id, entitys, agents): post_run = {'executer': 'http', 'ekwargs': {'url': url, 'method': 'GET', 'async': False}, 'condition': 'entitys', 'ckwargs': {'all': False, 'operator': '=', 'value': manager_common.RESULT_SUCCESS, 'counter': '>', 'count': 0 } } body.update({'post_run': post_run}) yield return self._async_bluck_rpc('hotfix', group_id, objtype, entity, body, context)
48.112805
115
0.478804
4786d5539433e2087aac858d39f19bf2cb135ffe
5,371
py
Python
mrf_apps/mrf_size.py
rouault/mrf
8b757396c48709e2ac6fddd923631eebdc8acfd3
[ "Apache-2.0" ]
67
2015-04-13T12:37:59.000Z
2022-01-20T20:01:17.000Z
mrf_apps/mrf_size.py
rouault/mrf
8b757396c48709e2ac6fddd923631eebdc8acfd3
[ "Apache-2.0" ]
38
2016-01-20T20:12:15.000Z
2022-02-17T23:21:22.000Z
mrf_apps/mrf_size.py
rouault/mrf
8b757396c48709e2ac6fddd923631eebdc8acfd3
[ "Apache-2.0" ]
28
2015-04-30T04:14:32.000Z
2021-09-26T12:16:07.000Z
#!/usr/bin/env python3 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------------- # Name: MRF_size # Purpose: Visualize an MRF size index content # # Author: luci6974 # # Created: 30/07/2015 # Copyright: (c) luci6974 2015-2017 #------------------------------------------------------------------------------- '''Builds a GDAL vrt that visualizes the size of tiles in an MRF index''' # # Only trivial MRFs for now, flat files, default index name. Should be extended # to support all MRFs # # It creates a gdal VRT file with a pixel per tile, where the pixel value # is the size of the respective tile # This is very useful to understand the state of an MRF # Since most tiles are compressed, the size of the tile tends to be proportional # to the entropy (information) of the data within the tile. # import xml.etree.ElementTree as XML import sys import os.path as path def usage(): print('Takes one argument, a MRF file name, ' + \ 'builds a .vrt that contains the tile size info') def XMLprettify(elem, level=0): 'XML prettifier' i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: XMLprettify(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i def attr(node, key, default): return default if node is None or node.get(key) is None else node.get(key) class PointXYZC(object): def __init__(self, node, defaults = (-1, -1, 1, 1)): key = 'x','y','z','c' self.x, self.y, self.z, self.c = ( int(attr(node, key[i], defaults[i])) for i in range(4)) def __str__(self): f = "PointXYZC ({p.x}, {p.y}, {p.z}, {p.c})" return f.format(p = self) class BBOX(object): def __init__(self, node, defaults): key = 'minx', 'miny', 'maxx', 'maxy' self.minx, self.miny, self.maxx, self.maxy = ( float(attr(node, key[i], defaults[i])) for i in range(4)) def __str__(self): f = "BBOX ({p.minx}, {p.miny}, {p.maxx}, {p.maxy})" return f.format(p = self) class MRF(object): 'MRF metadata reader' def __init__(self, name): try: root = XML.parse(name).getroot() except: raise "Can't parse " + name if root.tag != 'MRF_META': raise name + ' is not an MRF metadata file' self.name = name #Get the basic raster info self.size = PointXYZC(root.find('Raster/Size')) self.pagesize = PointXYZC(root.find('Raster/PageSize'), (512, 512, 1, self.size.c)) self.projection = root.find('GeoTags/Projection').text self.bbox = BBOX(root.find('GeoTags/BoundingBox'), (0, 0, self.size.x, self.size.y)) def geotransform(self): 'gdal style affine geotransform as a list' return [ self.bbox.minx, (self.bbox.maxx - self.bbox.minx)/self.size.x, 0, self.bbox.maxy, 0, (self.bbox.miny - self.bbox.maxy)/self.size.y] def VRT_Size(mrf): 'Builds and returns a gdal VRT XML tree' xsz = int (1 + (mrf.size.x-1) / mrf.pagesize.x) ysz = int (1 + (mrf.size.y-1) / mrf.pagesize.y) root = XML.Element('VRTDataset', { 'rasterXSize':str(xsz), 'rasterYSize':str(ysz) }) XML.SubElement(root,'SRS').text = mrf.projection gt = mrf.geotransform() # Adjust for pagesize gt[1] *= mrf.pagesize.x gt[5] *= mrf.pagesize.y XML.SubElement(root,'GeoTransform').text = ",".join((str(x) for x in gt)) bands = int(mrf.size.c / mrf.pagesize.c) for band in range(bands): xband = XML.SubElement(root, 'VRTRasterBand', { 'band':str(band+1), 'dataType':'UInt32', 'subClass':'VRTRawRasterBand' }) idxname = path.splitext(path.basename(mrf.name))[0] + '.idx' XML.SubElement(xband,'SourceFilename', { 'relativetoVRT':"1" }).text =\ idxname XML.SubElement(xband,'ImageOffset').text = str(12 + 16 * band) XML.SubElement(xband,'PixelOffset').text = str(16 * bands) XML.SubElement(xband,'LineOffset').text = str(16 * xsz * bands) XML.SubElement(xband,'NoDataValue').text = '0' XML.SubElement(xband,'ByteOrder').text = 'MSB' return XML.ElementTree(root) def main(): if (len(sys.argv) != 2): usage() return name = sys.argv[1] outname = path.splitext(name)[0] + '_size.vrt' vrt = VRT_Size(MRF(name)) XMLprettify(vrt.getroot()) vrt.write(outname) if __name__ == '__main__': main()
34.876623
80
0.590207
1b0f0e52e8341fbfc1d15af9d3e9ef096f00ea3f
2,386
py
Python
quart/flask_patch/__init__.py
SmartManoj/quart
317562ea660edb7159efc20fa57b95223d408ea0
[ "MIT" ]
1
2020-08-09T19:45:14.000Z
2020-08-09T19:45:14.000Z
quart/flask_patch/__init__.py
SmartManoj/quart
317562ea660edb7159efc20fa57b95223d408ea0
[ "MIT" ]
null
null
null
quart/flask_patch/__init__.py
SmartManoj/quart
317562ea660edb7159efc20fa57b95223d408ea0
[ "MIT" ]
null
null
null
import quart.flask_patch.app import quart.flask_patch.globals # noqa: F401 import quart.views # noqa: F401 from quart.flask_patch._patch import patch_all patch_all() from flask.app import Flask # noqa: E402, I100 from flask.blueprints import Blueprint # noqa: E402 from flask.config import Config # noqa: E402 from flask.ctx import ( # noqa: E402 after_this_request, copy_current_request_context, has_app_context, has_request_context, ) from flask.exceptions import abort # noqa: E402 from flask.globals import ( # noqa: E402 _app_ctx_stack, _request_ctx_stack, current_app, g, request, session, ) from flask.helpers import ( # noqa: E402 flash, get_flashed_messages, get_template_attribute, make_response, stream_with_context, url_for, ) from flask.json import jsonify # noqa: E402 from flask.signals import ( # noqa: E402 appcontext_popped, appcontext_pushed, appcontext_tearing_down, before_render_template, got_request_exception, message_flashed, request_finished, request_started, request_tearing_down, signals_available, template_rendered, ) from flask.static import safe_join, send_file, send_from_directory # noqa: E402 from flask.templating import render_template, render_template_string # noqa: E402 from flask.typing import ResponseReturnValue # noqa: E402 from flask.utils import redirect # noqa: E402 from flask.wrappers import Request, Response # noqa: E402 from jinja2 import escape, Markup # noqa: E402 __all__ = ( '_app_ctx_stack', '_request_ctx_stack', 'abort', 'after_this_request', 'appcontext_popped', 'appcontext_pushed', 'appcontext_tearing_down', 'before_render_template', 'Blueprint', 'Config', 'copy_current_request_context', 'current_app', 'escape', 'flash', 'Flask', 'g', 'get_flashed_messages', 'get_template_attribute', 'got_request_exception', 'has_app_context', 'has_request_context', 'jsonify', 'make_response', 'Markup', 'message_flashed', 'redirect', 'render_template', 'render_template_string', 'request', 'Request', 'request_finished', 'request_started', 'request_tearing_down', 'Response', 'ResponseReturnValue', 'safe_join', 'send_file', 'send_from_directory', 'session', 'signals_available', 'stream_with_context', 'template_rendered', 'url_for', ) import sys # noqa: E402, I100 json = sys.modules['flask.json'] sys.modules['flask'] = sys.modules[__name__]
47.72
96
0.766974
f923b7bfb02bd6c9ae311e8fce8428e15e8bc175
13,719
py
Python
ipyelk/nx/transformer.py
nrbgt/ipyelk
58d06d0290f5b27e942af9e6036a56143604097b
[ "BSD-3-Clause" ]
null
null
null
ipyelk/nx/transformer.py
nrbgt/ipyelk
58d06d0290f5b27e942af9e6036a56143604097b
[ "BSD-3-Clause" ]
null
null
null
ipyelk/nx/transformer.py
nrbgt/ipyelk
58d06d0290f5b27e942af9e6036a56143604097b
[ "BSD-3-Clause" ]
null
null
null
import logging from collections import defaultdict from functools import lru_cache from typing import Dict, Generator, Hashable, List, Optional, Tuple import networkx as nx import traitlets as T from ..app import ElkTransformer from ..diagram.elk_model import ElkExtendedEdge, ElkLabel, ElkNode, ElkPort from .factors import get_factors, invert, keep from .nx import Edge, EdgeMap, compact, get_roots, lowest_common_ancestor logger = logging.getLogger(__name__) BASE_LAYOUT_DEFAULTS = { "hierarchyHandling": "INCLUDE_CHILDREN", # "algorithm": "layered", # "elk.edgeRouting": "POLYLINE", # "elk.portConstraints": "FIXED_SIDE", # "layering.strategy": "NETWORK_SIMPEX", } class XELK(ElkTransformer): """NetworkX DiGraphs to ELK dictionary structure""" HIDDEN_ATTR = "hidden" _hidden_edges: Optional[EdgeMap] = None _visible_edges: Optional[EdgeMap] = None source = T.Tuple(T.Instance(nx.Graph), T.Instance(nx.DiGraph, allow_none=True)) base_layout = T.Dict(kw=BASE_LAYOUT_DEFAULTS) port_scale = T.Int(default_value=10) text_scale = T.Float(default_value=10) label_key = T.Unicode(default_value="label") label_offset = T.Float(default_value=5) def eid(self, node: Hashable) -> str: """Get the element id for a node in the main graph for use in elk :param node: Node in main graph :type node: Hashable :return: Element ID :rtype: str """ g, tree = self.source if node is None: return "root" elif node in g: return g.nodes[node].get("_id", f"{node}") return f"{node}" def port_id(self, node, port): return f"{self.eid(node)}.{port}" def edge_id(self, edge: Edge): # TODO probably will need more sophisticated id generation in future return "{}.{} -> {}.{}".format( edge.source, edge.source_port, edge.target, edge.target_port ) def clear_cached(self): # clear old cached info is starting at the top level transform # TODO: look into ways to remove the need to have a cache like this # NOTE: this is caused by a series of side effects logger.debug("Clearing cached elk info") self._nodes: Dict[Hashable, ElkNode] = {} self._ports: Dict[Tuple[Hashable, Hashable], ElkPort] = {} self._visible_edges, self._hidden_edges = self.collect_edges() self.closest_common_visible.cache_clear() self.closest_visible.cache_clear() def transform(self, root=None): """Generate ELK dictionary structure :param root: [description], defaults to None :type root: [type], optional :return: [description] :rtype: [type] """ try: g, tree = self.source if root is None: self.clear_cached() elif is_hidden(tree, root, self.HIDDEN_ATTR): # bail is the node is hidden return None nodes = self._nodes ports = self._ports base_layout = self.base_layout if base_layout is None: base_layout = {} layout = {} # TODO: refactor this so you can specify node-specific layouts # NOTE: add traitlet for it, and get based on node passed layout.update(base_layout) properties = None labels = self.make_labels(root) model_id = self.eid(root) self._nodes[root] = ElkNode( id=model_id, labels=labels, layoutOptions=layout, children=compact(self.get_children(root)), properties=properties, ) if root is None: # the top level of the transform port_style = ["slack-port"] edge_style = ["slack-edge"] nodes, ports = self.process_edges(nodes, ports, self._visible_edges) nodes, ports = self.process_edges( nodes, ports, self._hidden_edges, edge_style, port_style ) for (owner, _), port in ports.items(): node = nodes[owner] if node.ports is None: node.ports = [] node.ports += [port] nodes = self.size_nodes(nodes) except Exception as E: logger.error("Error transforming elk graph") raise E return nodes[root] # top level node def size_nodes(self, nodes: Dict[Hashable, ElkNode]) -> Dict[Hashable, ElkNode]: for node in nodes.values(): node.width, node.height = self.get_node_size(node) return nodes def process_edges( self, nodes, ports, edges: EdgeMap, edge_style=None, port_style=None ): for owner, edge_list in edges.items(): for edge in edge_list: node = nodes[owner] if node.edges is None: node.edges = [] node.edges += [self.make_edge(edge, edge_style)] source_var = (edge.source, edge.source_port) if source_var not in ports: ports[source_var] = self.make_port( edge.source, edge.source_port, port_style ) target_var = (edge.target, edge.target_port) if target_var not in ports: ports[target_var] = self.make_port( edge.target, edge.target_port, port_style ) return nodes, ports def make_edge( self, edge: Edge, styles: Optional[List[str]] = None ) -> ElkExtendedEdge: properties = None if styles: properties = dict(cssClasses=" ".join(styles)) return ElkExtendedEdge( id=self.edge_id(edge), sources=[self.port_id(edge.source, edge.source_port)], targets=[self.port_id(edge.target, edge.target_port)], properties=properties, ) def make_port(self, owner, port, styles): properties = None if styles: properties = dict(cssClasses=" ".join(styles)) return ElkPort( id=self.port_id(owner, port), height=0.5 * self.port_scale, width=0.5 * self.port_scale, properties=properties, ) def get_children(self, node) -> Optional[List[ElkNode]]: g, tree = self.source attr = self.HIDDEN_ATTR if node is None: if tree is None: # Nonhierarchical graph. Iterate over only the main graph return [self.transform(root=node) for node in g.nodes()] else: # Hierarchical graph but no specified root... # start transforming from each root in the forest return [self.transform(root=node) for node in get_roots(tree, g)] else: if is_hidden(tree, node, attr): # Node is not Visible return None if tree is not None: # Node is visible and in the hierarchy if node in tree: return [ self.transform(root=child) for child in tree.neighbors(node) ] return None def get_node_size(self, node: ElkNode) -> Tuple[Optional[float], Optional[float]]: height = 0 if node.ports: height = ( 1.25 * self.port_scale * len(node.ports) ) # max(len(ins), len(outs)) # max number of ports height = max(18, height) if node.labels: width = ( self.text_scale * max(len(label.text or " ") for label in node.labels) + self.label_offset ) else: width = self.text_scale return width, height def make_labels(self, node) -> Optional[List[ElkLabel]]: if node is None: return None g, tree = self.source data = g.nodes[node] name = data.get(self.label_key, data.get("_id", f"{node}")) width = self.text_scale * len(name) return [ ElkLabel( id=f"{name}_label_{node}", text=name, width=width, x=self.label_offset, y=self.label_offset, ) ] def collect_edges(self) -> Tuple[EdgeMap, EdgeMap]: """[summary] :return: [description] :rtype: Tuple[ Dict[Hashable, List[ElkExtendedEdge]], Dict[Hashable, List[ElkExtendedEdge]] ] """ visible: EdgeMap = defaultdict( list ) # will index edges by nx.lowest_commen_ancestor hidden: EdgeMap = defaultdict( list ) # will index edges by nx.lowest_commen_ancestor g, tree = self.source factors = self.extract_factors() def merge( update: Dict[Hashable, List], base: Dict[Hashable, List] ) -> Dict[Hashable, List]: for key, value in update.items(): base[key].extend(value) return base try: while True: sources, targets = next(factors) visible = merge(self.process_endpts(sources, targets), visible) except StopIteration as e: hidden_factors: List[Tuple[List, List]] = e.value for sources, targets in hidden_factors: hidden = merge(self.process_endpts(sources, targets), hidden) return visible, hidden def to_dict(self) -> Dict: """Transform the NetworkX graphs into Elk json""" return self.transform().to_dict() def extract_factors( self, ) -> Generator[Tuple[List, List], None, List[Tuple[List, List]]]: g, tree = self.source attr = self.HIDDEN_ATTR hidden: List[Tuple[List, List]] = [] for source_vars, target_vars in get_factors(g): shidden = [is_hidden(tree, var[0], attr) for var in source_vars] thidden = [is_hidden(tree, var[0], attr) for var in target_vars] sources = source_vars targets = target_vars try: vis_source = self.closest_common_visible((s for s, sp in source_vars)) vis_target = self.closest_common_visible((t for t, tp in target_vars)) except ValueError: continue # bail if no possible target or source if any(shidden) or any(thidden): if vis_source == vis_target: # bail if factor is completely internal continue # trim hidden... sources = list(keep(source_vars, invert(shidden))) targets = list(keep(target_vars, invert(thidden))) if all(shidden) or all(thidden): if len(sources) == 0: sources = [(vis_source, v) for v in source_vars] if len(targets) == 0: target_vars.sort() targets = [(vis_target, v) for v in target_vars] # [tuple(source_vars), tuple(target_vars)] = ( # vis_source, # vis_target # ) hidden.append((sources, targets)) continue yield sources, targets return hidden def process_endpts(self, sources, targets) -> Dict[Hashable, List[Edge]]: g, tree = self.source edge_dict: Dict[Hashable, List[Edge]] = defaultdict(list) for s, sp in sources: for t, tp in targets: owner = self.closest_common_visible((s, t)) edge_dict[owner].append( Edge(source=s, source_port=sp, target=t, target_port=tp) ) return edge_dict @lru_cache() def closest_visible(self, node: Hashable): """Crawl through the given NetworkX `tree` looking for an ancestor of `node` that is not hidden :param node: [description] Node to identify a visible ancestor :type node: Hashable :raises ValueError: [description] :return: [description] :rtype: [type] """ attr = self.HIDDEN_ATTR g, tree = self.source if node not in tree: return None if not is_hidden(tree, node, attr): return node predecesors = list(tree.predecessors(node)) assert ( len(predecesors) <= 1 ), f"Expected only a single parent for `{node}` not {len(predecesors)}" for pred in tree.predecessors(node): return self.closest_visible(pred) raise ValueError(f"Unable to find visible ancestor for `{node}`") @lru_cache() def closest_common_visible(self, nodes: Tuple[Hashable]) -> Hashable: g, tree = self.source if tree is None: return None result = lowest_common_ancestor(tree, [self.closest_visible(n) for n in nodes]) return result def is_hidden(tree: nx.DiGraph, node: Hashable, attr: str) -> bool: """Iterate on the node ancestors and determine if it is hidden along the chain""" if tree is not None and node in tree: if tree.nodes[node].get(attr, False): return True for ancestor in nx.ancestors(tree, node): if tree.nodes[ancestor].get(attr, False): return True return False
34.383459
87
0.557183
deedb64c1e7c05146b7c7fae0bc91b704bbf1952
4,338
py
Python
custom_components/edgeos/config_flow.py
kcleong/homeassistant-config
15b7bc75f5d1055d8620ced87eed9d563475296d
[ "MIT" ]
null
null
null
custom_components/edgeos/config_flow.py
kcleong/homeassistant-config
15b7bc75f5d1055d8620ced87eed9d563475296d
[ "MIT" ]
null
null
null
custom_components/edgeos/config_flow.py
kcleong/homeassistant-config
15b7bc75f5d1055d8620ced87eed9d563475296d
[ "MIT" ]
null
null
null
"""Config flow to configure domain.""" import logging from homeassistant import config_entries from homeassistant.config_entries import ConfigEntry from homeassistant.core import callback from .helpers.const import * from .managers.config_flow_manager import ConfigFlowManager from .models import AlreadyExistsError, LoginError _LOGGER = logging.getLogger(__name__) @config_entries.HANDLERS.register(DOMAIN) class DomainFlowHandler(config_entries.ConfigFlow): """Handle a domain config flow.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_LOCAL_POLL def __init__(self): super().__init__() self._config_flow = ConfigFlowManager() @staticmethod @callback def async_get_options_flow(config_entry): """Get the options flow for this handler.""" return DomainOptionsFlowHandler(config_entry) async def async_step_user(self, user_input=None): """Handle a flow start.""" _LOGGER.debug(f"Starting async_step_user of {DEFAULT_NAME}") errors = None await self._config_flow.initialize(self.hass) new_user_input = self._config_flow.clone_items(user_input) if user_input is not None: try: await self._config_flow.update_data(user_input, CONFIG_FLOW_DATA) title, data = self._config_flow.get_data_user_input() return self.async_create_entry(title=title, data=data) except LoginError as lex: await self._config_flow.clear_credentials(new_user_input) _LOGGER.warning(f"Cannot complete login") errors = lex.errors except AlreadyExistsError as aeex: _LOGGER.warning( f"{DEFAULT_NAME} with {ENTRY_PRIMARY_KEY}: {aeex.title} already exists" ) errors = {"base": "already_configured"} schema = await self._config_flow.get_default_data(new_user_input) return self.async_show_form( step_id="user", data_schema=schema, errors=errors, description_placeholders=new_user_input, ) async def async_step_import(self, info): """Import existing configuration.""" _LOGGER.debug(f"Starting async_step_import of {DEFAULT_NAME}") title = f"{DEFAULT_NAME} (import from configuration.yaml)" return self.async_create_entry(title=title, data=info) class DomainOptionsFlowHandler(config_entries.OptionsFlow): """Handle domain options.""" def __init__(self, config_entry: ConfigEntry): """Initialize domain options flow.""" super().__init__() self._config_entry = config_entry self._config_flow = ConfigFlowManager() async def async_step_init(self, user_input=None): """Manage the domain options.""" return await self.async_step_edge_os_additional_settings(user_input) async def async_step_edge_os_additional_settings(self, user_input=None): _LOGGER.info(f"Starting additional settings step: {user_input}") errors = None await self._config_flow.initialize(self.hass, self._config_entry) if user_input is not None: if user_input is not None: try: await self._config_flow.update_options( user_input, CONFIG_FLOW_OPTIONS ) title, data = self._config_flow.get_options_user_input() return self.async_create_entry(title=title, data=data) except LoginError as lex: await self._config_flow.clear_credentials(user_input) _LOGGER.warning(f"Cannot complete login") errors = lex.errors except AlreadyExistsError as aeex: _LOGGER.warning( f"{DEFAULT_NAME} with {ENTRY_PRIMARY_KEY}: {aeex.title} already exists" ) errors = {"base": "already_configured"} schema = self._config_flow.get_default_options() return self.async_show_form( step_id="edge_os_additional_settings", data_schema=schema, errors=errors, description_placeholders=user_input, )
32.133333
95
0.643154
a5eab347bc0be08e5379aa3bf43b7caa6416e898
19,248
py
Python
test_autoarray/structures/grids/two_d/test_grid_2d_interpolate.py
jonathanfrawley/PyAutoArray_copy
c21e8859bdb20737352147b9904797ac99985b73
[ "MIT" ]
null
null
null
test_autoarray/structures/grids/two_d/test_grid_2d_interpolate.py
jonathanfrawley/PyAutoArray_copy
c21e8859bdb20737352147b9904797ac99985b73
[ "MIT" ]
null
null
null
test_autoarray/structures/grids/two_d/test_grid_2d_interpolate.py
jonathanfrawley/PyAutoArray_copy
c21e8859bdb20737352147b9904797ac99985b73
[ "MIT" ]
null
null
null
import numpy as np import pytest import autoarray as aa from autoarray.mock.mock import ndarray_1d_from_grid, ndarray_2d_from_grid class TestObj: def test__blurring_grid_from_mask__compare_to_array_util(self): mask = np.array( [ [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, False, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], ] ) mask = aa.Mask2D.manual(mask=mask, pixel_scales=(2.0, 2.0), sub_size=2) blurring_mask_util = aa.util.mask_2d.blurring_mask_2d_from( mask_2d=mask, kernel_shape_native=(3, 5) ) blurring_grid_util = aa.util.grid_2d.grid_2d_slim_via_mask_from( mask_2d=blurring_mask_util, pixel_scales=(2.0, 2.0), sub_size=1 ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) blurring_grid = grid.blurring_grid_from_kernel_shape(kernel_shape_native=(3, 5)) assert isinstance(blurring_grid, aa.Grid2DInterpolate) assert len(blurring_grid.shape) == 2 assert blurring_grid == pytest.approx(blurring_grid_util, 1e-4) assert blurring_grid.pixel_scales == (2.0, 2.0) assert blurring_grid.pixel_scales_interp == (0.1, 0.1) def test__blurring_grid_from_kernel_shape__compare_to_array_util(self): mask = np.array( [ [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, False, True, True, True, False, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], [True, True, False, True, True, True, False, True, True], [True, True, True, True, True, True, True, True, True], [True, True, True, True, True, True, True, True, True], ] ) mask = aa.Mask2D.manual(mask=mask, pixel_scales=(2.0, 2.0)) blurring_mask_util = aa.util.mask_2d.blurring_mask_2d_from( mask_2d=mask, kernel_shape_native=(3, 5) ) blurring_grid_util = aa.util.grid_2d.grid_2d_slim_via_mask_from( mask_2d=blurring_mask_util, pixel_scales=(2.0, 2.0), sub_size=1 ) mask = aa.Mask2D.manual(mask=mask, pixel_scales=(2.0, 2.0)) blurring_grid = aa.Grid2DInterpolate.blurring_grid_from_mask_and_kernel_shape( mask=mask, kernel_shape_native=(3, 5), pixel_scales_interp=0.1 ) assert isinstance(blurring_grid, aa.Grid2DInterpolate) assert len(blurring_grid.shape) == 2 assert blurring_grid == pytest.approx(blurring_grid_util, 1e-4) assert blurring_grid.pixel_scales == (2.0, 2.0) assert blurring_grid.pixel_scales_interp == (0.1, 0.1) def test__padded_grid_from_kernel_shape(self): grid = aa.Grid2DInterpolate.uniform( shape_native=(4, 4), pixel_scales=3.0, pixel_scales_interp=0.1 ) padded_grid = grid.padded_grid_from_kernel_shape(kernel_shape_native=(3, 3)) assert isinstance(padded_grid, aa.Grid2DInterpolate) assert padded_grid.pixel_scales_interp == (0.1, 0.1) mask = aa.Mask2D.unmasked( shape_native=(6, 6), pixel_scales=(3.0, 3.0), sub_size=1 ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) assert isinstance(padded_grid, aa.Grid2DInterpolate) assert padded_grid.pixel_scales_interp == (0.1, 0.1) assert (padded_grid.vtx == grid.vtx).all() assert (padded_grid.wts == grid.wts).all() mask = aa.Mask2D.manual( mask=np.full((2, 5), False), pixel_scales=(8.0, 8.0), sub_size=4 ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.2) padded_grid = grid.padded_grid_from_kernel_shape(kernel_shape_native=(5, 5)) padded_grid_util = aa.util.grid_2d.grid_2d_slim_via_mask_from( mask_2d=np.full((6, 9), False), pixel_scales=(8.0, 8.0), sub_size=4 ) assert isinstance(padded_grid, aa.Grid2DInterpolate) assert padded_grid.pixel_scales_interp == (0.2, 0.2) assert isinstance(padded_grid, aa.Grid2DInterpolate) assert padded_grid.shape == (864, 2) assert (padded_grid.mask == np.full(fill_value=False, shape=(6, 9))).all() assert padded_grid == pytest.approx(padded_grid_util, 1e-4) class TestInterpolatedResult: def test__function_returns_binary_ndarray_1d__returns_interpolated_array(self): # noinspection PyUnusedLocal class MockInterpolateClass: def func(self, profile, grid): result = np.zeros(grid.shape[0]) result[0] = 1 return result mask = aa.Mask2D.unmasked( shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=1 ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.5) cls = MockInterpolateClass() interp_array = grid.result_from_func(func=cls.func, cls=MockInterpolateClass()) assert isinstance(interp_array, aa.Array2D) assert interp_array.ndim == 1 assert interp_array.shape == (9,) assert (interp_array != np.array([[1, 0, 0, 0, 0, 0, 0, 0, 0]])).any() def test__function_is_false_in_config__does_not_use_interpolatin(self): # noinspection PyUnusedLocal class MockInterpolateClass: def func_off(self, profile, grid): result = np.zeros(grid.shape[0]) result[0] = 1 return result mask = aa.Mask2D.unmasked( shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=1 ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.5) cls = MockInterpolateClass() arr = grid.result_from_func(func=cls.func_off, cls=MockInterpolateClass()) assert isinstance(arr, aa.Array2D) assert arr.ndim == 1 assert arr.shape == (9,) assert (arr == np.array([[1, 0, 0, 0, 0, 0, 0, 0, 0]])).any() def test__function_returns_binary_ndarray_2d__returns_interpolated_grid(self): # noinspection PyUnusedLocal class MockInterpolateClass: def func(self, profile, grid): result = np.zeros((grid.shape[0], 2)) result[0, :] = 1 return result mask = aa.Mask2D.unmasked( shape_native=(3, 3), pixel_scales=(1.0, 1.0), sub_size=1 ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.5) cls = MockInterpolateClass() interp_grid = grid.result_from_func(func=cls.func, cls=MockInterpolateClass()) assert isinstance(interp_grid, aa.Grid2D) assert interp_grid.ndim == 2 assert interp_grid.shape == (9, 2) assert ( interp_grid != np.array( np.array( [ [1, 1], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], ] ) ) ).any() def test__function_returns_ndarray_1d__interpolation_used_and_accurate(self): # noinspection PyUnusedLocal class MockInterpolateObj: def ndarray_1d_from_grid(self, profile, grid): return ndarray_1d_from_grid(profile=profile, grid=grid) cls = MockInterpolateObj() mask = aa.Mask2D.circular_annular( shape_native=(20, 20), pixel_scales=(1.0, 1.0), sub_size=1, inner_radius=3.0, outer_radius=8.0, ) grid = aa.Grid2D.from_mask(mask=mask) true_array = ndarray_1d_from_grid(profile=None, grid=grid) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=1.0) interpolated_array = grid.result_from_func( func=cls.ndarray_1d_from_grid, cls=MockInterpolateObj() ) assert interpolated_array.shape[0] == mask.pixels_in_mask assert (true_array == interpolated_array).all() grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) interpolated_array = grid.result_from_func( func=cls.ndarray_1d_from_grid, cls=MockInterpolateObj() ) assert interpolated_array.shape[0] == mask.pixels_in_mask assert true_array[0] != interpolated_array[0] assert np.max(true_array - interpolated_array) < 0.001 mask = aa.Mask2D.circular_annular( shape_native=(28, 28), pixel_scales=(1.0, 1.0), sub_size=1, inner_radius=3.0, outer_radius=8.0, centre=(3.0, 3.0), ) grid = aa.Grid2D.from_mask(mask=mask) true_array = ndarray_1d_from_grid(profile=None, grid=grid) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) interpolated_array = grid.result_from_func( func=cls.ndarray_1d_from_grid, cls=MockInterpolateObj() ) assert interpolated_array.shape[0] == mask.pixels_in_mask assert true_array[0] != interpolated_array[0] assert np.max(true_array - interpolated_array) < 0.001 def test__function_returns_ndarray_2d__interpolation_used_and_accurate(self): # noinspection PyUnusedLocal class MockInterpolateObj: def ndarray_2d_from_grid(self, profile, grid): return ndarray_2d_from_grid(profile=profile, grid=grid) cls = MockInterpolateObj() mask = aa.Mask2D.circular_annular( shape_native=(20, 20), pixel_scales=(1.0, 1.0), sub_size=1, inner_radius=3.0, outer_radius=8.0, ) grid = aa.Grid2D.from_mask(mask=mask) true_grid = ndarray_2d_from_grid(profile=None, grid=grid) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=1.0) interpolated_grid = grid.result_from_func( func=cls.ndarray_2d_from_grid, cls=MockInterpolateObj() ) assert interpolated_grid.shape[0] == mask.pixels_in_mask assert interpolated_grid.shape[1] == 2 assert (true_grid == interpolated_grid).all() grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) interpolated_grid = grid.result_from_func( func=cls.ndarray_2d_from_grid, cls=MockInterpolateObj() ) assert interpolated_grid.shape[0] == mask.pixels_in_mask assert interpolated_grid.shape[1] == 2 assert true_grid[0, 0] != interpolated_grid[0, 0] assert np.max(true_grid[:, 0] - interpolated_grid[:, 0]) < 0.001 assert np.max(true_grid[:, 1] - interpolated_grid[:, 1]) < 0.001 mask = aa.Mask2D.circular_annular( shape_native=(28, 28), pixel_scales=(1.0, 1.0), sub_size=1, inner_radius=3.0, outer_radius=8.0, centre=(3.0, 3.0), ) grid = aa.Grid2D.from_mask(mask=mask) true_grid = ndarray_2d_from_grid(profile=None, grid=grid) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) interpolated_grid = grid.result_from_func( func=cls.ndarray_2d_from_grid, cls=MockInterpolateObj() ) assert interpolated_grid.shape[0] == mask.pixels_in_mask assert interpolated_grid.shape[1] == 2 assert true_grid[0, 0] != interpolated_grid[0, 0] assert np.max(true_grid[:, 0] - interpolated_grid[:, 0]) < 0.01 assert np.max(true_grid[:, 1] - interpolated_grid[:, 1]) < 0.01 class TestAPI: def test__manual_slim(self): grid = aa.Grid2DInterpolate.manual_slim( grid=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], shape_native=(2, 2), pixel_scales=1.0, pixel_scales_interp=0.1, origin=(0.0, 1.0), ) assert type(grid) == aa.Grid2DInterpolate assert type(grid.slim) == aa.Grid2DInterpolate assert type(grid.native) == aa.Grid2DInterpolate assert ( grid == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert ( grid.native == np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) ).all() assert ( grid.slim == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert grid.pixel_scales == (1.0, 1.0) assert grid.pixel_scales_interp == (0.1, 0.1) assert grid.origin == (0.0, 1.0) grid = aa.Grid2DInterpolate.manual_slim( grid=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], shape_native=(1, 1), pixel_scales=1.0, pixel_scales_interp=0.1, sub_size=2, origin=(0.0, 1.0), ) assert type(grid) == aa.Grid2DInterpolate assert type(grid.slim) == aa.Grid2DInterpolate assert type(grid.native) == aa.Grid2DInterpolate assert ( grid == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert ( grid.native == np.array([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]) ).all() assert ( grid.slim == np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]) ).all() assert (grid.binned.native == np.array([[[4.0, 5.0]]])).all() assert (grid.binned == np.array([[4.0, 5.0]])).all() assert grid.pixel_scales == (1.0, 1.0) assert grid.pixel_scales_interp == (0.1, 0.1) assert grid.origin == (0.0, 1.0) assert grid.sub_size == 2 def test__from_mask(self): mask = np.array( [ [True, True, False, False], [True, False, True, True], [True, True, False, False], ] ) mask = aa.Mask2D.manual(mask=mask, pixel_scales=(2.0, 2.0), sub_size=1) grid_via_util = aa.util.grid_2d.grid_2d_slim_via_mask_from( mask_2d=mask, sub_size=1, pixel_scales=(2.0, 2.0) ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) assert type(grid) == aa.Grid2DInterpolate assert type(grid.slim) == aa.Grid2DInterpolate assert type(grid.native) == aa.Grid2DInterpolate assert grid == pytest.approx(grid_via_util, 1e-4) assert grid.pixel_scales_interp == (0.1, 0.1) assert grid.sub_size == 1 grid_via_util = aa.util.grid_2d.grid_2d_via_mask_from( mask_2d=mask, sub_size=1, pixel_scales=(2.0, 2.0) ) mask = np.array( [ [True, True, False, False], [True, False, True, True], [True, True, False, False], ] ) mask = aa.Mask2D.manual(mask=mask, pixel_scales=(2.0, 2.0), sub_size=2) grid_via_util = aa.util.grid_2d.grid_2d_slim_via_mask_from( mask_2d=mask, sub_size=2, pixel_scales=(2.0, 2.0) ) grid = aa.Grid2DInterpolate.from_mask(mask=mask, pixel_scales_interp=0.1) assert type(grid) == aa.Grid2DInterpolate assert type(grid.slim) == aa.Grid2DInterpolate assert type(grid.native) == aa.Grid2DInterpolate assert grid == pytest.approx(grid_via_util, 1e-4) assert grid.pixel_scales_interp == (0.1, 0.1) assert grid.sub_size == 2 def test__uniform(self): grid = aa.Grid2DInterpolate.uniform( shape_native=(2, 2), pixel_scales=2.0, pixel_scales_interp=0.1 ) assert type(grid) == aa.Grid2DInterpolate assert type(grid.slim) == aa.Grid2DInterpolate assert type(grid.native) == aa.Grid2DInterpolate assert ( grid == np.array([[1.0, -1.0], [1.0, 1.0], [-1.0, -1.0], [-1.0, 1.0]]) ).all() assert ( grid.native == np.array([[[1.0, -1.0], [1.0, 1.0]], [[-1.0, -1.0], [-1.0, 1.0]]]) ).all() assert ( grid.slim == np.array([[1.0, -1.0], [1.0, 1.0], [-1.0, -1.0], [-1.0, 1.0]]) ).all() assert grid.pixel_scales == (2.0, 2.0) assert grid.pixel_scales_interp == (0.1, 0.1) assert grid.origin == (0.0, 0.0) grid = aa.Grid2DInterpolate.uniform( shape_native=(2, 1), pixel_scales=1.0, pixel_scales_interp=0.2, sub_size=2 ) assert type(grid) == aa.Grid2DInterpolate assert type(grid.slim) == aa.Grid2DInterpolate assert type(grid.native) == aa.Grid2DInterpolate assert ( grid.native == np.array( [ [[0.75, -0.25], [0.75, 0.25]], [[0.25, -0.25], [0.25, 0.25]], [[-0.25, -0.25], [-0.25, 0.25]], [[-0.75, -0.25], [-0.75, 0.25]], ] ) ).all() assert ( grid.slim == np.array( [ [0.75, -0.25], [0.75, 0.25], [0.25, -0.25], [0.25, 0.25], [-0.25, -0.25], [-0.25, 0.25], [-0.75, -0.25], [-0.75, 0.25], ] ) ).all() assert (grid.binned.native == np.array([[[0.5, 0.0]], [[-0.5, 0.0]]])).all() assert (grid.binned == np.array([[0.5, 0.0], [-0.5, 0.0]])).all() assert grid.pixel_scales == (1.0, 1.0) assert grid.pixel_scales_interp == (0.2, 0.2) assert grid.origin == (0.0, 0.0) assert grid.sub_size == 2
37.230174
89
0.548576
14de8eea666ea2840e4e454c63203933119a4913
4,566
py
Python
examples/BenchmarkingExample.py
nolanstr/bingo_multi_stage
7a88c4f5c59268d0612664be5864765db2edad51
[ "Apache-2.0" ]
null
null
null
examples/BenchmarkingExample.py
nolanstr/bingo_multi_stage
7a88c4f5c59268d0612664be5864765db2edad51
[ "Apache-2.0" ]
null
null
null
examples/BenchmarkingExample.py
nolanstr/bingo_multi_stage
7a88c4f5c59268d0612664be5864765db2edad51
[ "Apache-2.0" ]
null
null
null
import numpy as np from bingo.symbolic_regression.benchmarking.benchmark_suite \ import BenchmarkSuite from bingo.symbolic_regression.benchmarking.benchmark_test \ import BenchmarkTest from bingo.symbolic_regression import ComponentGenerator, \ AGraphGenerator, \ AGraphCrossover, \ AGraphMutation, \ ExplicitRegression from bingo.local_optimizers.continuous_local_opt \ import ContinuousLocalOptimization from bingo.evaluation.evaluation import Evaluation from bingo.evolutionary_algorithms.age_fitness import AgeFitnessEA from bingo.evolutionary_algorithms.generalized_crowding \ import GeneralizedCrowdingEA from bingo.evolutionary_optimizers.island import Island def training_function(training_data, ea_choice): component_generator = \ ComponentGenerator(input_x_dimension=training_data.x.shape[1]) component_generator.add_operator("+") component_generator.add_operator("-") component_generator.add_operator("*") agraph_generator = AGraphGenerator(agraph_size=32, component_generator=component_generator) crossover = AGraphCrossover() mutation = AGraphMutation(component_generator) fitness = ExplicitRegression(training_data=training_data) local_opt_fitness = ContinuousLocalOptimization(fitness, algorithm='lm') evaluator = Evaluation(local_opt_fitness) POPULATION_SIZE = 64 MUTATION_PROBABILITY = 0.1 CROSSOVER_PROBABILITY = 0.7 if ea_choice == "age_fitness": ea = AgeFitnessEA(evaluator, agraph_generator, crossover, mutation, MUTATION_PROBABILITY, CROSSOVER_PROBABILITY, POPULATION_SIZE) else: ea = GeneralizedCrowdingEA(evaluator, crossover, mutation, MUTATION_PROBABILITY, CROSSOVER_PROBABILITY) island = Island(ea, agraph_generator, POPULATION_SIZE) opt_result = island.evolve_until_convergence(max_generations=MAX_GENERATIONS, fitness_threshold=1e-6) return island.get_best_individual(), opt_result def scoring_function(equation, scoring_data, opt_result): mae_function = ExplicitRegression(training_data=scoring_data) mae = mae_function(equation) return mae, opt_result.success def parse_results(train_results, test_results): train_array = np.array(train_results) test_array = np.array(test_results) mae_train = np.mean(train_array, axis=1)[:, 0] mae_test = np.mean(test_array, axis=1)[:, 0] success_rate = np.mean(train_array, axis=1)[:, 1] return mae_train, mae_test, success_rate def print_results(title, af_res, dc_res, bench_names): print("\n----------::", title, "::-------------") titles = "".join(["{:^10}".format(name) for name in bench_names]) print(" " + titles) af_scores = "".join(["{:^10.2e}".format(score) for score in af_res]) print("age-fitness " + af_scores) dc_scores = "".join(["{:^10.2e}".format(score) for score in dc_res]) print("det. crowding " + dc_scores) def run_benchmark_comparison(): suite = BenchmarkSuite(inclusive_terms=["Nguyen"]) age_fitness_strategy = \ BenchmarkTest(lambda x: training_function(x, "age_fitness"), scoring_function) deterministic_crowding_strategy = \ BenchmarkTest(lambda x: training_function(x, "deterministic_crowding"), scoring_function) train_scores_af, test_scores_af = \ suite.run_benchmark_test(age_fitness_strategy, repeats=NUM_REPEATS) train_scores_dc, test_scores_dc = \ suite.run_benchmark_test(deterministic_crowding_strategy, repeats=NUM_REPEATS) mae_train_af, mae_test_af, success_rate_af = \ parse_results(train_scores_af, test_scores_af) mae_train_dc, mae_test_dc, success_rate_dc = \ parse_results(train_scores_dc, test_scores_dc) benchmark_names = [benchmark.name for benchmark in suite] print_results("MAE (Train)", mae_train_af, mae_train_dc, benchmark_names) print_results("MAE (Test)", mae_test_af, mae_test_dc, benchmark_names) print_results("Success Rate", success_rate_af, success_rate_dc, benchmark_names) if __name__ == "__main__": MAX_GENERATIONS = 200 NUM_REPEATS = 2 run_benchmark_comparison()
40.052632
81
0.680464
1d0f2bd744f5e95ec82f44dde28d058d147b667b
53
py
Python
python/television/registry.py
pztrick/django-television
5857200a0871702052827a5d603db7d60bca1406
[ "MIT" ]
1
2018-07-16T16:21:44.000Z
2018-07-16T16:21:44.000Z
python/television/registry.py
pztrick/django-television
5857200a0871702052827a5d603db7d60bca1406
[ "MIT" ]
4
2019-12-22T11:20:56.000Z
2021-06-10T19:38:46.000Z
python/television/registry.py
pztrick/django-television
5857200a0871702052827a5d603db7d60bca1406
[ "MIT" ]
null
null
null
LISTENERS = {} DEMULTIPLEXERS = [] EXTRA_ROUTES = []
13.25
19
0.660377