hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
d285baafc260e6bc15a3cb91a69a445ffa93d910
12,816
py
Python
blocks/monitoring/evaluators.py
bartvm/blocks-fork
a5376e196e3c2df080a009e8ae8d6bf0efb57f36
[ "BSD-3-Clause" ]
1
2015-10-19T07:54:34.000Z
2015-10-19T07:54:34.000Z
blocks/monitoring/evaluators.py
bartvm/blocks-fork
a5376e196e3c2df080a009e8ae8d6bf0efb57f36
[ "BSD-3-Clause" ]
null
null
null
blocks/monitoring/evaluators.py
bartvm/blocks-fork
a5376e196e3c2df080a009e8ae8d6bf0efb57f36
[ "BSD-3-Clause" ]
null
null
null
from collections import OrderedDict import logging from picklable_itertools.extras import equizip import theano from theano import tensor from blocks.utils import dict_subset from blocks.monitoring.aggregation import (_DataIndependent, Mean, TakeLast, MonitoredQuantity) from blocks.graph import ComputationGraph from blocks.utils import reraise_as logger = logging.getLogger() class MonitoredQuantityBuffer(object): """Intermediate results of aggregating values of monitored-quantity. Accumulate results for a list of monitored-quantity for every single batch. Provides initialization and readout routines to initialize each quantity and capture its accumulated results. Parameters ---------- quantities : list of :class:`MonitoredQuantity` The quantity names are used as record names in the logs. Hence, all the quantity names must be different. Attributes ---------- requires : list of :class:`~tensor.TensorVariable` Needed to calculate monitored-quantities. quantity_names : list of str Names of quantities. inputs : list of :class:`~tensor.TensorVariable` The list of inputs needed for variables in `requires`. """ def __init__(self, quantities): self.quantities = quantities requires = [] for quantity in quantities: requires += quantity.requires self.requires = list(set(requires)) self._initialized = False self.quantity_names = [q.name for q in self.quantities] self._computation_graph = ComputationGraph(self.requires) self.inputs = self._computation_graph.inputs def initialize(self): """Initialize the quantities.""" self._initialized = True for quantity in self.quantities: quantity.initialize() def get_aggregated_values(self): """Readout the accumulated values.""" if not self._initialized: raise Exception("To readout you must first initialize, then" "process batches!") else: ret_vals = [q.readout() for q in self.quantities] return dict(zip(self.quantity_names, ret_vals)) def accumulate_quantities(self, numerical_values): """Accumulate the results for every batch.""" if not self._initialized: raise Exception("To readout you must first initialize, then" "process batches!") else: for quantity in self.quantities: quantity.accumulate( *[numerical_values[self.requires.index(requirement)] for requirement in quantity.requires]) class AggregationBuffer(object): """Intermediate results of aggregating values of Theano variables. Encapsulates aggregators for a list of Theano variables. Collects the respective updates and provides initialization and readout routines. Parameters ---------- variables : list of :class:`~tensor.TensorVariable` The variable names are used as record names in the logs. Hence, all the variable names must be different. use_take_last : bool When ``True``, the :class:`TakeLast` aggregation scheme is used instead of :class:`_DataIndependent` for those variables that do not require data to be computed. Attributes ---------- initialization_updates : list of tuples Initialization updates of the aggregators. accumulation_updates : list of tuples Accumulation updates of the aggregators. readout_variables : dict A dictionary of record names to :class:`~tensor.TensorVariable` representing the aggregated values. inputs : list of :class:`~tensor.TensorVariable` The list of inputs needed for accumulation. """ def __init__(self, variables, use_take_last=False): self.variables = variables self.use_take_last = use_take_last self.variable_names = [v.name for v in self.variables] if len(set(self.variable_names)) < len(self.variables): raise ValueError("variables should have different names") self._computation_graph = ComputationGraph(self.variables) self.inputs = self._computation_graph.inputs self._initialized = False self._create_aggregators() self._compile() def _create_aggregators(self): """Create aggregators and collect updates.""" self.initialization_updates = [] self.accumulation_updates = [] self.readout_variables = OrderedDict() for v in self.variables: logger.debug('variable to evaluate: %s', v.name) if not hasattr(v.tag, 'aggregation_scheme'): if not self._computation_graph.has_inputs(v): scheme = (TakeLast if self.use_take_last else _DataIndependent) logger.debug('Using %s aggregation scheme' ' for %s since it does not depend on' ' the data', scheme.__name__, v.name) v.tag.aggregation_scheme = scheme(v) else: logger.debug('Using the default ' ' (average over minibatches)' ' aggregation scheme for %s', v.name) v.tag.aggregation_scheme = Mean(v, 1.0) aggregator = v.tag.aggregation_scheme.get_aggregator() self.initialization_updates.extend( aggregator.initialization_updates) self.accumulation_updates.extend(aggregator.accumulation_updates) self.readout_variables[v.name] = aggregator.readout_variable def _compile(self): """Compiles Theano functions. .. todo:: The current compilation method does not account for updates attached to `ComputationGraph` elements. Compiling should be out-sourced to `ComputationGraph` to deal with it. """ logger.debug("Compiling initialization and readout functions") if self.initialization_updates: self._initialize_fun = theano.function( [], [], updates=self.initialization_updates) else: self._initialize_fun = None # We need to call `as_tensor_variable` here # to avoid returning `CudaNdarray`s to the user, which # happens otherwise under some circumstances (see # https://groups.google.com/forum/#!topic/theano-users/H3vkDN-Shok) self._readout_fun = theano.function( [], [tensor.as_tensor_variable(v) for v in self.readout_variables.values()]) logger.debug("Initialization and readout functions compiled") def initialize_aggregators(self): """Initialize the aggregators.""" self._initialized = True if self._initialize_fun is not None: self._initialize_fun() def get_aggregated_values(self): """Readout the aggregated values.""" if not self._initialized: raise Exception("To readout you must first initialize, then" "process batches!") ret_vals = self._readout_fun() return dict(equizip(self.variable_names, ret_vals)) class DatasetEvaluator(object): """A DatasetEvaluator evaluates many Theano variables or other quantities. The DatasetEvaluator provides a do-it-all method, :meth:`evaluate`, which computes values of ``variables`` on a dataset. Alternatively, methods :meth:`initialize_aggregators`, :meth:`process_batch`, :meth:`get_aggregated_values` can be used with a custom loop over data. The values computed on subsets of the given dataset are aggregated using the :class:`AggregationScheme`s provided in the `aggregation_scheme` tags. If no tag is given, the value is **averaged over minibatches**. However, care is taken to ensure that variables which do not depend on data are not unnecessarily recomputed. Parameters ---------- variables : list of :class:`~tensor.TensorVariable` and :class:`MonitoredQuantity` The variable names are used as record names in the logs. Hence, all the names must be different. Each variable can be tagged with an :class:`AggregationScheme` that specifies how the value can be computed for a data set by aggregating minibatches. updates : list of tuples or :class:`~collections.OrderedDict` or None :class:`~tensor.TensorSharedVariable` updates to be performed during evaluation. This parameter is only for Theano variables. Be careful not to update any model parameters as this is not intended to alter your model in any meaningfullway. A typical use case of this option arises when the theano function used for evaluation contains a call to:function:`~theano.scan` which might have returned shared variable updates. """ def __init__(self, variables, updates=None): theano_variables = [] monitored_quantities = [] for variable in variables: if isinstance(variable, MonitoredQuantity): monitored_quantities.append(variable) else: theano_variables.append(variable) self.theano_variables = theano_variables self.monitored_quantities = monitored_quantities variable_names = [v.name for v in variables] if len(set(variable_names)) < len(variables): raise ValueError("variables should have different names") self.theano_buffer = AggregationBuffer(theano_variables) self.monitored_quantities_buffer = MonitoredQuantityBuffer( monitored_quantities) self.updates = updates self._compile() def _compile(self): """Compiles Theano functions. .. todo:: The current compilation method does not account for updates attached to `ComputationGraph` elements. Compiling should be out-sourced to `ComputationGraph` to deal with it. """ inputs = [] outputs = [] updates = None if self.theano_buffer.accumulation_updates: updates = OrderedDict() updates.update(self.theano_buffer.accumulation_updates) if self.updates: updates.update(self.updates) inputs += self.theano_buffer.inputs inputs += self.monitored_quantities_buffer.inputs outputs = self.monitored_quantities_buffer.requires if inputs != []: self.unique_inputs = list(set(inputs)) self._accumulate_fun = theano.function(self.unique_inputs, outputs, updates=updates) else: self._accumulate_fun = None def initialize_aggregators(self): self.theano_buffer.initialize_aggregators() self.monitored_quantities_buffer.initialize() def process_batch(self, batch): try: input_names = [v.name for v in self.unique_inputs] batch = dict_subset(batch, input_names) except KeyError: reraise_as( "Not all data sources required for monitoring were" " provided. The list of required data sources:" " {}.".format(input_names)) if self._accumulate_fun is not None: numerical_values = self._accumulate_fun(**batch) self.monitored_quantities_buffer.accumulate_quantities( numerical_values) def get_aggregated_values(self): values = self.theano_buffer.get_aggregated_values() values.update( self.monitored_quantities_buffer.get_aggregated_values()) return values def evaluate(self, data_stream): """Compute the variables over a data stream. Parameters ---------- data_stream : instance of :class:`.DataStream` The data stream. Only the first epoch of data is used. Returns ------- A mapping from record names to the values computed on the provided dataset. """ self.initialize_aggregators() if self._accumulate_fun is not None: for batch in data_stream.get_epoch_iterator(as_dict=True): self.process_batch(batch) else: logger.debug( 'Only data independent variables were given,' 'will not iterate the over data!') return self.get_aggregated_values()
39.192661
78
0.638811
25fbd53e267bed3bd34c846fa57ed5644299a95a
17,380
py
Python
tests/cylinder_tests.py
kauevestena/sanit3Dsdi
6f12add218a9c64b86e3eb85d865117ac07e7299
[ "MIT" ]
null
null
null
tests/cylinder_tests.py
kauevestena/sanit3Dsdi
6f12add218a9c64b86e3eb85d865117ac07e7299
[ "MIT" ]
null
null
null
tests/cylinder_tests.py
kauevestena/sanit3Dsdi
6f12add218a9c64b86e3eb85d865117ac07e7299
[ "MIT" ]
null
null
null
# import subprocess # import numpy as np # import json # import geopandas as gpd # from shapely.geometry import LineString # import numpy as np # import os # import pymesh # from copy import deepcopy # # normalized_v = v/np.linalg.norm(v) # def normalize_vec(input_vec): # try: # return input_vec/np.linalg.norm(input_vec) # except: # print(np.linalg.norm(input_vec),'check for zero norm') # return input_vec * 0 # # class plane: # # def __init__(self,pt_onplane:np.array,normal:np.array): # # self.d = -pt_onplane.dot(normal) # # self.a = normal[0] # # self.b = normal[1] # # self.c = normal[2] # # def a_point(self,X,Y,Z): # # return self.a*X + self.b*Y + self.c*Z + self.d # def plane_as_4vec(normal:np.array,pt_onplane:np.array): # ''' # plane as 4vec: # - normal vector # - point on plane # ''' # return np.array([*normal,-np.dot(normal,pt_onplane)]) # def pt_onplane(plane4vec,X,Y): # # plane equation, with z=f(X,Y) # if not plane4vec[2] < 0.0001: # Z = - (plane4vec[0]*X+plane4vec[1]*Y+plane4vec[3])/plane4vec[2] # return np.array([X,Y,Z]) # else: # Z = X + 0.1*X # Y = - - (plane4vec[0]*X+plane4vec[2]*Z+plane4vec[3])/plane4vec[1] # return np.array([X,Y,Z]) # def gdec2rad(gdec): # return gdec * np.pi/180 # def circumference_3D(center_pt,radius,v1,v2,n_points=32): # ''' # a circunference in 3D: # - Center Point # - The Radius # thx: https://math.stackexchange.com/a/1184089/307651 # ''' # angles = np.linspace(0,2*np.pi,n_points) # point_list = [] # for angle in angles: # # circle_point = center_pt + (radius*np.cos(angle)*v1) + (radius*np.sin(angle)*v2) # circle_point = center_pt + radius * (np.cos(angle)*v2 + np.sin(angle)*v1) # point_list.append(circle_point) # return np.array(point_list) # def reverse_order_rangelist(a,b): # l1 = list(range(-a+1,-b+1)) # return list(map(abs,l1)) # def segments(curve): # ''' # code from # https://stackoverflow.com/a/62061414/4436950 # thx Georgy # ''' # return list(map(LineString, zip(curve.coords[:-1], curve.coords[1:]))) # def create_edgeslist(num_vertices,as_np=True): # edgelist = [] # if num_vertices > 0: # for i in range(num_vertices-1): # edgelist.append([i,i+1]) # if as_np: # return np.array(edgelist) # else: # return edgelist # def get_raster_val_at_geoXY(x,y,rasterpath): # runstring = f'gdallocationinfo -valonly -geoloc {rasterpath} {x} {y}' # ret = subprocess.run(runstring,shell=True, stdout=subprocess.PIPE).stdout.decode('utf-8') # return float(ret.strip('\n')) # def pymesh_cylinder_for_cityjson(vertices,radius,zero_index=0,num_edges=16,rounding_places=4,custom_attrs=None,tol_for_simplification=None): # ''' # creates a cylinder using pymesh # ''' # num_vertices = vertices.shape[0] # edges_list = create_edgeslist(num_vertices) # wire_network = pymesh.wires.WireNetwork.create_from_data(vertices, edges_list) # inflator = pymesh.wires.Inflator(wire_network) # inflator.set_profile(num_edges) # inflator.inflate(radius, per_vertex_thickness=False) # mesh = inflator.mesh # bbox_min, bbox_max = mesh.bbox # mins = bbox_min.tolist() # maxs = bbox_max.tolist() # points = np.around(mesh.vertices,decimals=rounding_places).tolist() # max_vert_idx = np.amax(mesh.faces) # faces = deepcopy(mesh.faces) + zero_index # faces = faces.tolist() # faces = [[face] for face in faces] # meshdata = {'mins':mins,'maxs':maxs,'points':points,'faces':faces,'zero_ref':max_vert_idx} # if tol_for_simplification: # # simplify based on tolerance # mesh,info = pymesh.collapse_short_edges(mesh,tol_for_simplification) # meshdata['edges_collapsed'] = info["num_edge_collapsed"] # if custom_attrs: # # for key in custom_attrs: # # meshdata[key] = custom_attrs[key] # meshdata['attributes'] = custom_attrs # return meshdata # def city_object_dict(faces,attrs_dict): # # TODO: swap between MultiSurface/Solid # city_obj = { # "geometry": [ # { # "boundaries": [], # "lod": 1, # "type": "MultiSurface" # } # ], # "attributes": { # }, # "type": "GenericCityObject" # } # city_obj['geometry'][0]['boundaries'] = faces # city_obj['attributes'] = attrs_dict # return city_obj # class cylinder3D: # ''' # DEPRECATED BY # pymesh_cylinder(vertices,radius,num_edges=16,tol_for_simplification=None) # manteined only because I don't wanna delete it # class to implement a cylinder in 3D to use it in cityjson # ''' # def __init__(self,p1,p2,radius,points_per_circle=32): # # first, its handy: # self.p_1 = p1 # self.p_2 = p2 # self.number_of_points = points_per_circle*2 # self.circle_points_n = points_per_circle # # the axis of the cylinder, is the difference vector: # self.axis = p2 - p1 # # its normalized version will be used as the plane normal # self.plane_n = normalize_vec(self.axis) # # the plane as a 4 vec of parameters: [a,b,c,d] # plane = plane_as_4vec(self.plane_n,p1) # # any point on the plane # point_on_plane = pt_onplane(plane,p1[0]+0.1*p1[0],p1[1]-0.1*p1[1]) # # first vector parallel to the plane containing the circle # vec1_planeparalel = normalize_vec(point_on_plane-p1) # # second vector parallel to the plane containing the circle # vec2_planeparalel = normalize_vec(np.cross(vec1_planeparalel,self.plane_n)) # # first circumference # # it must needs to be divisible by 4 # if points_per_circle % 4 != 0: # points_per_circle = (points_per_circle // 4) * 4 # # the first circumference # self.circle1 = circumference_3D(p1,radius,vec1_planeparalel,vec2_planeparalel,points_per_circle) # # the second contains basically each point summed up with the axis # self.circle2 = self.circle1 + self.axis # def check_circles(self): # centers = (self.p_1,self.p_2) # for i,circle in enumerate((self.circle1,self.circle2)): # print('\ncircle ',i+1,':') # for point in circle: # print(np.dot(point-centers[i],self.axis)) # print(np.linalg.norm(point-centers[i])) # def get_vertices_list(self,as_list=False): # self.justaposed = np.concatenate((self.circle1,self.circle2)) # self.mins = np.min(self.justaposed,axis=0) # self.maxs = np.max(self.justaposed,axis=0) # if as_list: # return list(map(list,self.justaposed)) # else: # return self.justaposed # def boundaries_list(self,new_zero=0): # # first the two circles boundaries # zero = new_zero # # first circle ending: # fce = zero + self.circle_points_n # c1 = [list(range(zero,fce))] # # c2 = [list(range(fce,fce+self.circle_points_n))] # c2 = [reverse_order_rangelist(fce+self.circle_points_n,fce)] # # for the rest of the faces: # rectangles = [] # for i in range(zero,fce): # print(i,fce) # p0 = i # p1 = i + fce # if i+1 == fce: # p2 = fce # p3 = zero # else: # p2 = i + fce + 1 # p3 = i + 1 # # the current face # curr = [[p3,p0,p1,p2]] # rectangles.append(curr) # # rectangles.append(rectangles[0]) # # rectangles.pop(0) # # print(rectangles) # # res_list = [] # # res_list.append(c1) # # res_list.append(rectangles) # # res_list.append(c2) # res_list = [c1,rectangles,c2] # self.boundaries = res_list # return res_list # def as_city_object(self,attrs_dict): # # city_obj = {name: { # # "geometry": [ # # { # # "boundaries": [], # # "lod": 1, # # "type": "Solid" # # } # # ], # # "attributes": { # # }, # # "type": "GenericCityObject" # # }} # # city_obj[name]['geometry'][0]['boundaries'].append(self.boundaries) # # city_obj[name]['attributes'] = attrs_dict # city_obj = { # "geometry": [ # { # "boundaries": [], # "lod": 1, # "type": "MultiSurface" # } # ], # "attributes": { # }, # "type": "GenericCityObject" # } # # city_obj['geometry'][0]['boundaries'].append(self.boundaries) # city_obj['geometry'][0]['boundaries'] = self.boundaries # city_obj['attributes'] = attrs_dict # return city_obj # # # # # THIS WAS AN ATTEMPT, MANTEINED HERE # # # # # class city_json_simple2: # # # # # base = { # # # # # "type": "CityJSON", # # # # # "version": "1.0", # # # # # "CityObjects": {}, # # # # # "vertices": [], # # # # # "metadata": { # # # # # "geographicalExtent": [ # # # # # ]}} # # # # # # cjio validation: # # # # # # cjio our_test_cylinder.json validate --long > test_cylinder_report.txt # # # # # mins = [] # # # # # maxs = [] # # # # # point_list = [] # # # # # def __init__(self,axis_vertex_list,radii_list,attrs_list,pts_per_cicle=32): # # # # # # first we will check if two list are equally-sized # # # # # # thx: https://stackoverflow.com/a/16720915/4436950 # # # # # ref_len = len(axis_vertex_list) # # # # # if all(len(lst) == ref_len for lst in [radii_list,attrs_list]): # # # # # for i,pointpair in enumerate(axis_vertex_list): # # # # # print('processing segment ',i,' of ',ref_len,' segments') # # # # # name = f't{i}' # # # # # p1 = pointpair[0] # # # # # p2 = pointpair[1] # # # # # zero = i * 2 * pts_per_cicle # # # # # cylinder = cylinder3D(p1,p2,radii_list[i],pts_per_cicle) # # # # # self.point_list.append(cylinder.get_vertices_list(True)) # # # # # boundaries = cylinder.boundaries_list(zero) # # # # # self.base['CityObjects'][name] = cylinder.as_city_object(attrs_list[i]) # # # # # self.mins.append(cylinder.mins) # # # # # self.maxs.append(cylinder.maxs) # # # # # del cylinder # # # # # abs_max = np.max(np.array(self.maxs),axis=0) # # # # # abs_min = np.min(np.array(self.mins),axis=0) # # # # # bbox = [*abs_min,*abs_max] # # # # # # filling the bounding box: # # # # # self.base['metadata']['geographicalExtent'] = bbox # # # # # # filling the vertices: # # # # # # self.base['vertices'] = list(map(list,self.point_list)) # # # # # for i,point in enumerate(self.point_list[0]): # # # # # self.base['vertices'].append(point) # # # # # # self.base['vertices'] = [[point.tolist()] for point in self.point_list] # # # # # # self.plist = [[point] for point in self.point_list] # # # # # else: # # # # # print('input lists are in different sizes, check your data!!!') # # # # # def dump_to_file(self,outpath): # # # # # with open(outpath,'w+') as writer: # # # # # json.dump(self.base,writer,indent=2) # ##### OUR BIG CLASS: # class city_json_simple: # base = { # "type": "CityJSON", # "version": "1.0", # "CityObjects": {}, # "vertices": [], # "metadata": { # "geographicalExtent": [ # ]}} # # cjio validation: # # cjio our_test_cylinder.json validate --long > test_cylinder_report.txt # mins = [] # maxs = [] # point_list = [] # def __init__(self,cylinderlist,EPSG): # # SETTING epsg # self.base["metadata"]["referenceSystem"] = f"urn:ogc:def:crs:EPSG::{EPSG}" # # first we will check if two list are equally-sized # # thx: https://stackoverflow.com/a/16720915/4436950 # total_cylinders = len(cylinderlist) # for i,cylinder in enumerate(cylinderlist): # print('writing cylinder',i,' of ',total_cylinders,' segments') # name = f't{i}' # self.base['CityObjects'][name] = city_object_dict(cylinder['faces'],cylinder['attributes']) # self.mins.append(cylinder['mins']) # self.maxs.append(cylinder['maxs']) # self.base['vertices'] += cylinder['points'] # abs_max = np.max(np.array(self.maxs),axis=0) # abs_min = np.min(np.array(self.mins),axis=0) # bbox = [*abs_min,*abs_max] # # filling the bounding box: # self.base['metadata']['geographicalExtent'] = bbox # # filling the vertices: # # self.base['vertices'] = list(map(list,self.point_list))3 # # for i,point in enumerate(self.point_list[0]): # # self.base['vertices'].append(point) # # self.base['vertices'] = [[point.tolist()] for point in self.point_list] # # self.plist = [[point] for point in self.point_list] # def dump_to_file(self,outpath): # with open(outpath,'w+') as writer: # json.dump(self.base,writer) # # # ############################################################### # # # # the points # # # p1 = np.array([1,1,1]) # # # p2 = np.array([5,5,1]) # # # p3 = np.array([6,7,6]) # # # # c1 = cylinder3D(p1,p2,10) # # # # p_list = c1.get_vertices_list(False) # # # # v_list = c1.boundaries_list(64) # # # # print(v_list[0]) # # # # print(c1.maxs) # # # # print(c1.mins) # # # # print(c1.justaposed) # # # lines_list = [(p1,p2)] # # # radius_list = [1] # # # attrs_list = [{"function": "something"}] # # # builder = city_json_simple(lines_list,radius_list,attrs_list,4) # # # # print(builder.base) # # # builder.dump_to_file('our_test_cylinder.json') # pipes_filepath = '/home/kaue/sanit3Dsdi/tests/sample_rede_agua_tratada.geojson' # rasterpath = os.path.join(os.environ['HOME'],'sanit3Dsdi/tests/test_vrt_dtm.vrt') # as_gdf = gpd.read_file(pipes_filepath) # material_key = 'MATERIAL' # diameter_key = 'DIAMETRO' # print(as_gdf[diameter_key].unique()) # meshinfos = [] # n_entities = as_gdf.shape[0] # zeroindex = 0 # with open('cylinder_report.txt','w+') as writer: # for i,feature in enumerate(as_gdf.geometry): # if as_gdf[diameter_key][i] != '': # if feature.geom_type == 'LineString': # as_array = np.array(feature) # else: # lines = [] # for line in feature: # lines.append(np.array(line)) # as_array = np.concatenate(lines,axis=0) # Z_list = [] # for point in as_array: # Z = get_raster_val_at_geoXY(*point,rasterpath) - 2 # Z_list.append(Z) # # as_array = np.concatenate((as_array,np.array(Z_list)[:,-1:]),axis=1) # vertices = np.column_stack((as_array,np.array(Z_list))) # radius = float(as_gdf[diameter_key][i]) / 200 #200 transforms into radius in centimeters # customattrs = {"diametro":as_gdf[diameter_key][i],'material':as_gdf[material_key][i]} # try: # print('cylinder',i,' of ',n_entities,' with zero index: ',zeroindex) # cylinder_meshinfo = pymesh_cylinder_for_cityjson(vertices,radius,zero_index=zeroindex,custom_attrs=customattrs) # zeroindex += (cylinder_meshinfo['zero_ref'] + 500 ) # except Exception as e: # writer.write(f'\n{i}') # writer.write(feature.wkt) # writer.write(str(e)) # meshinfos.append(cylinder_meshinfo) # if i > 50: # break # # "referenceSystem":"urn:ogc:def:crs:EPSG::31984" # builder = city_json_simple(meshinfos,31984) # outpath = os.path.join(os.environ['HOME'],'data/sanit3d_out/pipery01_50.json') # print(outpath) # builder.dump_to_file(outpath)
27.5
142
0.528884
89ad019847bfc14c71a5683913afeaa3123cc30c
761
py
Python
sonarr_exporter/__init__.py
dr1s/sonarr_exporter.py
46361ec6ad93489b6ba2bd2815e1dad8c1b39c43
[ "Apache-2.0" ]
3
2019-09-15T17:02:50.000Z
2020-04-09T09:13:42.000Z
sonarr_exporter/__init__.py
dr1s/sonarr_exporter.py
46361ec6ad93489b6ba2bd2815e1dad8c1b39c43
[ "Apache-2.0" ]
1
2018-12-22T00:16:30.000Z
2019-06-17T17:11:06.000Z
sonarr_exporter/__init__.py
dr1s/sonarr_exporter.py
46361ec6ad93489b6ba2bd2815e1dad8c1b39c43
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # # Copyright 2018 Daniel Schmitz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sonarr_exporter import main __NAME__ = 'sonarr_exporter' __VERSION__ = '0.1.dev0' __AUTHOR__ = 'Daniel Schmitz' if __name__ == '__main__': main()
30.44
74
0.751643
50cfe4cbd4e8014a860556dee6ed883de0e11858
13,464
py
Python
invenio_rdm_records/services/schemas/metadata.py
mb-wali/invenio-rdm-records
df2f2ae047ad262d189b2cb72049263a272039bc
[ "MIT" ]
null
null
null
invenio_rdm_records/services/schemas/metadata.py
mb-wali/invenio-rdm-records
df2f2ae047ad262d189b2cb72049263a272039bc
[ "MIT" ]
null
null
null
invenio_rdm_records/services/schemas/metadata.py
mb-wali/invenio-rdm-records
df2f2ae047ad262d189b2cb72049263a272039bc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2020 CERN. # Copyright (C) 2020 Northwestern University. # Copyright (C) 2021 Graz University of Technology. # # Invenio-RDM-Records is free software; you can redistribute it and/or modify # it under the terms of the MIT License; see LICENSE file for more details. """RDM record schemas.""" from functools import partial from urllib import parse from flask import current_app from flask_babelex import lazy_gettext as _ from marshmallow import Schema, ValidationError, fields, post_load, validate, \ validates, validates_schema from marshmallow_utils.fields import EDTFDateString, IdentifierSet, \ SanitizedHTML, SanitizedUnicode from marshmallow_utils.schemas import GeometryObjectSchema, IdentifierSchema from werkzeug.local import LocalProxy record_personorg_schemes = LocalProxy( lambda: current_app.config["RDM_RECORDS_PERSONORG_SCHEMES"] ) record_identifiers_schemes = LocalProxy( lambda: current_app.config["RDM_RECORDS_IDENTIFIERS_SCHEMES"] ) record_references_schemes = LocalProxy( lambda: current_app.config["RDM_RECORDS_REFERENCES_SCHEMES"] ) record_location_schemes = LocalProxy( lambda: current_app.config["RDM_RECORDS_LOCATION_SCHEMES"] ) def _not_blank(error_msg): """Returns a non-blank validation rule with custom error message.""" return validate.Length(min=1, error=error_msg) def _valid_url(error_msg): """Returns a URL validation rule with custom error message.""" return validate.URL(error=error_msg) def locale_validation(value, field_name): """Validates the locale value.""" valid_locales = current_app.extensions['invenio-i18n'].get_locales() valid_locales_code = [v.language for v in valid_locales] if value: if len(value.keys()) > 1: raise ValidationError(_("Only one value is accepted."), field_name) elif list(value.keys())[0] not in valid_locales_code: raise ValidationError(_("Not a valid locale."), field_name) class AffiliationSchema(Schema): """Affiliation of a creator/contributor.""" id = SanitizedUnicode() name = SanitizedUnicode() @validates_schema def validate_affiliation(self, data, **kwargs): """Validates that either id either name are present.""" id_ = data.get("id") name = data.get("name") if id_: data = {"id": id_} elif name: data = {"name": name} if not id_ and not name: raise ValidationError( _("An existing id or a free text name must be present"), "affiliations" ) class SubjectSchema(Schema): """Subject schema.""" id = SanitizedUnicode() subject = SanitizedUnicode() scheme = SanitizedUnicode() @validates_schema def validate_subject(self, data, **kwargs): """Validates that either id either name are present.""" id_ = data.get("id") subject = data.get("subject") if id_: data = {"id": id_} elif subject: data = {"subject": subject} if not id_ and not subject: raise ValidationError( _("An existing id or a free text subject must be present"), "subjects" ) class PersonOrOrganizationSchema(Schema): """Person or Organization schema.""" NAMES = [ "organizational", "personal" ] type = SanitizedUnicode( required=True, validate=validate.OneOf( choices=NAMES, error=_('Invalid value. Choose one of {NAMES}.') .format(NAMES=NAMES) ), error_messages={ # [] needed to mirror error message above "required": [ _('Invalid value. Choose one of {NAMES}.').format( NAMES=NAMES)] } ) name = SanitizedUnicode() given_name = SanitizedUnicode() family_name = SanitizedUnicode() identifiers = IdentifierSet( fields.Nested(partial( IdentifierSchema, # It is intended to allow org schemes to be sent as personal # and viceversa. This is a trade off learnt from running # Zenodo in production. allowed_schemes=record_personorg_schemes )) ) @validates_schema def validate_names(self, data, **kwargs): """Validate names based on type.""" if data['type'] == "personal": if not data.get('family_name'): messages = [_("Family name must be filled.")] raise ValidationError({ "family_name": messages }) elif data['type'] == "organizational": if not data.get('name'): messages = [_('Name cannot be blank.')] raise ValidationError({"name": messages}) @post_load def update_names(self, data, **kwargs): """Update names for organization / person. Fill name from given_name and family_name if person. Remove given_name and family_name if organization. """ if data["type"] == "personal": names = [data.get("family_name"), data.get("given_name")] data["name"] = ", ".join([n for n in names if n]) elif data['type'] == "organizational": if 'family_name' in data: del data['family_name'] if 'given_name' in data: del data['given_name'] return data class VocabularySchema(Schema): """Invenio Vocabulary schema.""" id = SanitizedUnicode(required=True) title = fields.Dict(dump_only=True) class CreatorSchema(Schema): """Creator schema.""" person_or_org = fields.Nested(PersonOrOrganizationSchema, required=True) role = fields.Nested(VocabularySchema) affiliations = fields.List(fields.Nested(AffiliationSchema)) class ContributorSchema(Schema): """Contributor schema.""" person_or_org = fields.Nested(PersonOrOrganizationSchema, required=True) role = fields.Nested(VocabularySchema, required=True) affiliations = fields.List(fields.Nested(AffiliationSchema)) class TitleSchema(Schema): """Schema for the additional title.""" title = SanitizedUnicode(required=True, validate=validate.Length(min=3)) type = fields.Nested(VocabularySchema, required=True) lang = fields.Nested(VocabularySchema) class DescriptionSchema(Schema): """Schema for the additional descriptions.""" description = SanitizedHTML(required=True, validate=validate.Length(min=3)) type = fields.Nested(VocabularySchema, required=True) lang = fields.Nested(VocabularySchema) def _is_uri(uri): try: parse.urlparse(uri) return True except AttributeError: return False class PropsSchema(Schema): """Schema for the URL schema.""" url = SanitizedUnicode( validate=_valid_url(_('Not a valid URL.')) ) scheme = SanitizedUnicode() class RightsSchema(Schema): """License schema.""" id = SanitizedUnicode() title = fields.Dict() description = fields.Dict() props = fields.Nested(PropsSchema) link = SanitizedUnicode( validate=_valid_url(_('Not a valid URL.')) ) @validates("title") def validate_title(self, value): """Validates that title contains only one valid locale.""" locale_validation(value, "title") @validates("description") def validate_description(self, value): """Validates that description contains only one valid locale.""" locale_validation(value, "description") @validates_schema def validate_rights(self, data, **kwargs): """Validates that id xor name are present.""" id_ = data.get("id") title = data.get("title") if not id_ and not title: raise ValidationError( _("An existing id or a free text title must be present"), "rights" ) elif id_ and len(data.values()) > 1: raise ValidationError( _("Only an existing id or free text title/description/link" + " is accepted, but not both cases at the same time"), "rights" ) class DateSchema(Schema): """Schema for date intervals.""" date = EDTFDateString(required=True) type = fields.Nested(VocabularySchema, required=True) description = fields.Str() class RelatedIdentifierSchema(IdentifierSchema): """Related identifier schema.""" def __init__(self, **kwargs): """Constructor.""" super().__init__(allowed_schemes=record_identifiers_schemes, **kwargs) relation_type = fields.Nested(VocabularySchema) resource_type = fields.Nested(VocabularySchema) @validates_schema def validate_related_identifier(self, data, **kwargs): """Validate the related identifiers.""" relation_type = data.get("relation_type") errors = dict() if not relation_type: errors['relation_type'] = self.error_messages["required"] if errors: raise ValidationError(errors) class FunderSchema(Schema): """Funder schema.""" name = SanitizedUnicode( required=True, validate=_not_blank(_('Name cannot be blank.')) ) scheme = SanitizedUnicode() identifier = SanitizedUnicode() class AwardSchema(Schema): """Award schema.""" title = SanitizedUnicode( required=True, validate=_not_blank(_('Name cannot be blank.')) ) number = SanitizedUnicode( required=True, validate=_not_blank(_('Name cannot be blank.')) ) scheme = SanitizedUnicode() identifier = SanitizedUnicode() class FundingSchema(Schema): """Funding schema.""" funder = fields.Nested(FunderSchema) award = fields.Nested(AwardSchema) @validates_schema def validate_data(self, data, **kwargs): """Validate either funder or award is present.""" funder = data.get('funder') award = data.get('award') if not funder and not award: raise ValidationError( {"funding": _("At least award or funder should be present.")}) class ReferenceSchema(IdentifierSchema): """Reference schema.""" def __init__(self, **kwargs): """Constructor.""" super().__init__(allowed_schemes=record_references_schemes, identifier_required=False, **kwargs) reference = SanitizedUnicode(required=True) class PointSchema(Schema): """Point schema.""" lat = fields.Number(required=True) lon = fields.Number(required=True) class LocationSchema(Schema): """Location schema.""" geometry = fields.Nested(GeometryObjectSchema) place = SanitizedUnicode() identifiers = fields.List( fields.Nested(partial( IdentifierSchema, allowed_schemes=record_location_schemes)) ) description = SanitizedUnicode() @validates_schema def validate_data(self, data, **kwargs): """Validate identifier based on type.""" if not data.get('geometry') and not data.get('place') and \ not data.get('identifiers') and not data.get('description'): raise ValidationError({ "locations": _("At least one of ['geometry', 'place', \ 'identifiers', 'description'] shold be present.") }) class FeatureSchema(Schema): """Location feature schema.""" features = fields.List(fields.Nested(LocationSchema)) class MetadataSchema(Schema): """Schema for the record metadata.""" field_load_permissions = { # TODO: define "can_admin" action } field_dump_permissions = { # TODO: define "can_admin" action } # Metadata fields resource_type = fields.Nested(VocabularySchema, required=True) creators = fields.List( fields.Nested(CreatorSchema), required=True, validate=validate.Length( min=1, error=_("Missing data for required field.") ) ) title = SanitizedUnicode(required=True, validate=validate.Length(min=3)) additional_titles = fields.List(fields.Nested(TitleSchema)) publisher = SanitizedUnicode() publication_date = EDTFDateString(required=True) subjects = fields.List(fields.Nested(SubjectSchema)) contributors = fields.List(fields.Nested(ContributorSchema)) dates = fields.List(fields.Nested(DateSchema)) languages = fields.List(fields.Nested(VocabularySchema)) # alternate identifiers identifiers = IdentifierSet( fields.Nested(partial( IdentifierSchema, allowed_schemes=record_identifiers_schemes)) ) related_identifiers = fields.List(fields.Nested(RelatedIdentifierSchema)) sizes = fields.List(SanitizedUnicode( validate=_not_blank(_('Size cannot be a blank string.')))) formats = fields.List(SanitizedUnicode( validate=_not_blank(_('Format cannot be a blank string.')))) version = SanitizedUnicode() rights = fields.List(fields.Nested(RightsSchema)) description = SanitizedHTML(validate=validate.Length(min=3)) additional_descriptions = fields.List(fields.Nested(DescriptionSchema)) locations = fields.Nested(FeatureSchema) funding = fields.List(fields.Nested(FundingSchema)) references = fields.List(fields.Nested(ReferenceSchema))
30.392777
79
0.645276
b32497499203c0a3e3539bd25903a1ab41581c9d
3,529
py
Python
silk/views/requests.py
JoshData/silk
f025dff691d8ce11a17e4a9499084e1c05598450
[ "MIT" ]
1
2016-02-16T09:24:26.000Z
2016-02-16T09:24:26.000Z
silk/views/requests.py
JoshData/silk
f025dff691d8ce11a17e4a9499084e1c05598450
[ "MIT" ]
null
null
null
silk/views/requests.py
JoshData/silk
f025dff691d8ce11a17e4a9499084e1c05598450
[ "MIT" ]
null
null
null
from django.core.context_processors import csrf from django.db.models import Sum from django.shortcuts import render_to_response from django.utils.decorators import method_decorator from django.views.generic import View from silk.profiling.dynamic import _get_module from silk.auth import login_possibly_required, permissions_possibly_required from silk.models import Request from silk.request_filters import BaseFilter, filters_from_request __author__ = 'mtford' class RequestsView(View): show = [5, 10, 25, 100, 250] default_show = 25 order_by = ['Recent', 'Path', 'Num. Queries', 'Time', 'Time on queries'] defualt_order_by = 'Recent' session_key_request_filters = 'request_filters' def _get_paths(self): return [''] + [x['path'] for x in Request.objects.values('path').distinct()] def _get_objects(self, show=None, order_by=None, path=None, filters=None): if not filters: filters = [] if not show: show = self.default_show query_set = Request.objects.all() if not order_by: order_by = self.defualt_order_by if order_by == 'Recent': query_set = query_set.order_by('-start_time') elif order_by == 'Path': query_set = query_set.order_by('-path') elif order_by == 'Num. Queries': query_set = query_set.order_by('-num_sql_queries') elif order_by == 'Time': query_set = query_set.order_by('-time_taken') elif order_by == 'Time on queries': query_set = query_set.annotate(db_time=Sum('queries__time_taken')).order_by('-db_time') else: raise RuntimeError('Unknown order_by: "%s"' % order_by) if path: query_set = query_set.filter(path=path) for f in filters: query_set = f.contribute_to_query_set(query_set) query_set = query_set.filter(f) return list(query_set[:show]) def _create_context(self, request): show = request.GET.get('show', self.default_show) order_by = request.GET.get('order_by', self.defualt_order_by) if show: show = int(show) path = request.GET.get('path', None) raw_filters = request.session.get(self.session_key_request_filters, {}) context = { 'show': show, 'order_by': order_by, 'request': request, 'options_show': self.show, 'options_order_by': self.order_by, 'options_paths': self._get_paths(), 'view_names': [x[0] for x in Request.objects.values_list('view_name').distinct()], 'filters': raw_filters } context.update(csrf(request)) if path: context['path'] = path context['results'] = self._get_objects(show, order_by, path, filters=[BaseFilter.from_dict(x) for _, x in raw_filters.items()]) return context @method_decorator(login_possibly_required) @method_decorator(permissions_possibly_required) def get(self, request): return render_to_response('silk/requests.html', self._create_context(request)) @method_decorator(login_possibly_required) @method_decorator(permissions_possibly_required) def post(self, request): filters = filters_from_request(request) request.session[self.session_key_request_filters] = {ident: f.as_dict() for ident, f in filters.items()} return render_to_response('silk/requests.html', self._create_context(request))
39.211111
135
0.65571
8253e880e6ea28c0a08387bb10cf6c1cce4879f2
105
py
Python
ulmo/usace/rivergages/__init__.py
cameronbracken/ulmo
4f38995843a760e0fca4e9f07c21ffeb4552f29c
[ "BSD-3-Clause" ]
null
null
null
ulmo/usace/rivergages/__init__.py
cameronbracken/ulmo
4f38995843a760e0fca4e9f07c21ffeb4552f29c
[ "BSD-3-Clause" ]
null
null
null
ulmo/usace/rivergages/__init__.py
cameronbracken/ulmo
4f38995843a760e0fca4e9f07c21ffeb4552f29c
[ "BSD-3-Clause" ]
null
null
null
from core import ( get_stations, get_station_data, get_station_parameters, )
17.5
31
0.609524
c31b2e66bfcc9e5feb39a0e8e1f9c18b5bdeb64d
11,245
py
Python
board.py
cs10/Pytris-FA20-Skeleton
9b70ae644b6fc0c39297bc08b4bb1a6b883f7502
[ "BSD-2-Clause" ]
null
null
null
board.py
cs10/Pytris-FA20-Skeleton
9b70ae644b6fc0c39297bc08b4bb1a6b883f7502
[ "BSD-2-Clause" ]
null
null
null
board.py
cs10/Pytris-FA20-Skeleton
9b70ae644b6fc0c39297bc08b4bb1a6b883f7502
[ "BSD-2-Clause" ]
null
null
null
class Board: """ An object to represent a 2-Dimensional rectangular board """ def __init__(self, num_cols=10, num_rows=20, cell_item=None, grid=None): """ Create a Board instance that has num cols and num rows. The 2D board is represented with a single list, if the board looks like: col col col 0 1 2 ------------- | 0 | 1 | 2 | row 0 ----+---+---- | 3 | 4 | 5 | row 1 ------------- Where num cols = 3, num rows = 2 Then the underlying representation looks like: [0, 1, 2, 3, 4, 5] Parameters ---------- num_cols (int, required): number of columns. Defaults to 10. num_rows (int, required): number of rows. Defaults to 20. cell_item (any, optional): create default items. Defaults to None. grid (list[any], optional): a list to create the underlying board representation. However len(grid) = num_cols * num_rows. Defaults to None. """ assert num_cols is not None and num_rows is not None assert type(num_cols) == int and type(num_rows) == int assert num_cols >= 0 and num_rows >= 0 self._num_rows = num_rows self._num_cols = num_cols if grid: assert num_cols * num_rows == len(grid) self._grid = grid[:] else: self._grid = [cell_item for _ in range(num_cols * num_rows)] # ---------------------------------------------------------------------------- # # --------------------------------- Required --------------------------------- # # ---------------------------------------------------------------------------- # def get_col(self, x): """Get a copy of column x Parameters ---------- x (int): column number Returns ------- list[any]: a list copy of column x >>> board = Board(3, 2, grid=[7, 6, 3, 9, 5, 2]) >>> print(board) ===== 7 6 3 9 5 2 ===== >>> board.get_col(1) [6, 5] >>> board2 = Board(2, 2, grid=[1, 0, 4, 3]) >>> print(board2) === 1 0 4 3 === >>> board2.get_col(0) [1, 4] """ # TODO: your solution here def get_item(self, x, y): """Get the item at coordinate (x, y) Parameters ---------- x (int): column number y (int): row number Returns ------- any: actual item >>> board = Board(3, 2, grid=[5, 4, 1, 3, 0, 6]) >>> print(board) ===== 5 4 1 3 0 6 ===== >>> [board.get_item(x, y) for y in range(2) for x in range(3)] [5, 4, 1, 3, 0, 6] >>> board2 = Board(4, 1, grid=[9, 2, 4, 1]) >>> print(board2) ======= 9 2 4 1 ======= >>> [board2.get_item(x, y) for y in range(1) for x in range(4)] [9, 2, 4, 1] """ # TODO: your solution here def set_item(self, x, y, item): """Overwrite the item at (x, y) Parameters ---------- x (int): column number y (int): row number item (any): new item >>> board = Board(3, 2, grid=[i for i in range(6)]) >>> print(board) ===== 0 1 2 3 4 5 ===== >>> board.set_item(0, 1, 30) >>> board.set_item(2, 0, 11) >>> print(board) ===== 0 1 11 30 4 5 ===== """ # TODO: your solution here def insert_row_at(self, y, lst): """Insert lst as new row at row y. Increment num_rows by 1 Parameters ---------- y (int): row number lst (list[any]): list of row items >>> board = Board(3, 2, grid=list(range(6))) >>> print(board) ===== 0 1 2 3 4 5 ===== >>> board.insert_row_at(1, [6, 7, 8]) >>> print(board) ===== 0 1 2 6 7 8 3 4 5 ===== >>> board.get_num_rows() 3 """ self._num_rows += 1 # DO NOT touch this line # TODO: your solution here def valid_coordinate(self, coordinate): """Check if coordinate (x, y) is within the board Parameters ---------- coordinate (tuple(x, y)): an (x: int, y: int) coordinate Returns ------- bool: if the coordinate is valid within *this* board >>> board = Board(3, 2, grid=list(range(6))) >>> print(board) ===== 0 1 2 3 4 5 ===== >>> sum([board.valid_coordinate((x, y)) for x in range(3) for y in range(2)]) == 6 True >>> board.valid_coordinate((2, 1)) True >>> board.valid_coordinate((1, 1)) True >>> board.valid_coordinate((0, 2)) False >>> board.valid_coordinate((0, -1)) False >>> board.valid_coordinate((-1, 0)) False >>> board.valid_coordinate((3, 0)) False """ # TODO: your solution here # ---------------------------------------------------------------------------- # # --------------------------- Helpers: Not Required -------------------------- # # ---------------------------------------------------------------------------- # def get_row(self, y): """Get a copy of row y Parameters ---------- y (int): row number Returns ------- list[any]: A list copy of row y >>> board = Board(3, 2, grid=[i for i in range(6)]) >>> print(board) ===== 0 1 2 3 4 5 ===== >>> board.get_row(0) [0, 1, 2] >>> board.get_row(1) [3, 4, 5] """ assert 0 <= y < self._num_rows, f'Invalid y: {y}' start_index = y * self._num_cols return self._grid[start_index : start_index + self._num_cols] def delete_row(self, y): """Delete row y and decremet num_rows count by 1 Parameters ---------- y (int): row number >>> board = Board(3, 3, grid=list(range(9))) >>> print(board) ===== 0 1 2 3 4 5 6 7 8 ===== >>> board.delete_row(1) >>> print(board) ===== 0 1 2 6 7 8 ===== >>> board.get_num_rows() 2 """ index_start = y * self._num_cols del self._grid[index_start : index_start + self._num_cols] self._num_rows -= 1 def index_to_coordinate(self, index): """Convert an index to (x, y) coordinate Parameters ---------- index (int): index in underlying list representation Returns ------- tuple[int, int]: tuple coordinate >>> board = Board(3, 2, grid=[i for i in range(6)]) >>> print(board) ===== 0 1 2 3 4 5 ===== >>> board.index_to_coordinate(5) (2, 1) """ assert 0 <= index < len(self._grid), f'Invalid index: {index}' return (index % self._num_cols, index // self._num_cols) def filter_coordinates(self, fn): """Extract coordinates of all item that satisfy fn and returns a list of these coordinates in tuples Parameters ---------- fn (any -> bool): a boolean function that operates on items of *this* board Returns ------- list[tuple[int, int]]: a list of tuple coordinates >>> board = Board(3, 3, grid=[i for i in range(9)]) >>> board.filter_coordinates(lambda x: x % 2 == 1) [(1, 0), (0, 1), (2, 1), (1, 2)] """ return [(i % self._num_cols, i // self._num_cols) \ for i, item in enumerate(self._grid) if fn(item)] def update_grid(self, new_grid): """ Overwrite existing underlying board with a new board """ assert len(new_grid) == len(self._grid), 'unequal grid lengths' self._grid = new_grid def get_num_rows(self): return self._num_rows def get_num_cols(self): return self._num_cols def get_grid(self): """ Returns a COPY of the underlying grid """ return self._grid[:] def __contains__(self, item): """ Returns True if item is in this Board, False otherwise >>> board = Board(2, 3, grid=list(range(6))) >>> 5 in board True >>> 6 in board False """ return self._grid.__contains__(item) def __getitem__(self, key): """ Using bracket notation e.g. [, ] and pass in either a number or a coordinate. >>> board = Board(3, 5, '*') >>> board[4] == board[(1, 1)] == board[[1, 1]] == '*' True """ if isinstance(key, int): return self._grid[key] return self.get_item(key[0], key[1]) def __setitem__(self, key, value): """ Using bracket notation e.g. [, ] and pass in either a number or a coordinate. >>> board = Board(3, 5, '*') >>> board[7] = 70 >>> board.get_item(1, 2) 70 """ if isinstance(key, int): self._grid[key] = value else: self.set_item(key[0], key[1], value) def __iter__(self): """ Iterate through the underlying grid in row major order >>> board = Board(2, 2, grid=list(range(4))) >>> list(board) [0, 1, 2, 3] """ return self._grid.__iter__() def __reversed__(self): """ Iterate through the underlying grid in reverse row major order Use the built-in reversed() call. >>> board = Board(2, 2, grid=list(range(4))) >>> list(reversed(board)) [3, 2, 1, 0] """ return self._grid.__reversed__() def __len__(self): """ Returns the total number of elements >>> board = Board(3, 3, grid=list(range(9))) >>> len(board) 9 """ return self._grid.__len__() def __repr__(self): return f'<Board num_cols: {self._num_cols} num_rows: {self._num_rows}>' def __str__(self): """ Print out the board items in a grid >>> board = Board(2, 3, grid=list(range(6))) >>> print(board) === 0 1 2 3 4 5 === """ s = '=' * (self._num_cols * 2 - 1) + '\n' for i, val in enumerate(self._grid): s += str(val) if (i + 1) % self._num_cols != 0: s += ' ' if (i + 1) % self._num_cols == 0: s += '\n' s += '=' * (self._num_cols * 2 - 1) return s
26.710214
90
0.434682
0294473b7d8733b5932d3b64c1582a1804c3bd58
671
py
Python
app/core/management/commands/wait_for_db.py
AlfaSakan/recipe-app-api
61c34252271f669d15d3e83980d33afd46469157
[ "MIT" ]
null
null
null
app/core/management/commands/wait_for_db.py
AlfaSakan/recipe-app-api
61c34252271f669d15d3e83980d33afd46469157
[ "MIT" ]
null
null
null
app/core/management/commands/wait_for_db.py
AlfaSakan/recipe-app-api
61c34252271f669d15d3e83980d33afd46469157
[ "MIT" ]
null
null
null
import time from django.db import connections from django.db.utils import OperationalError from django.core.management.base import BaseCommand class Command(BaseCommand): """Django command to pause execution until database is available""" def handle(self, *args, **kwargs): self.stdout.write('Waiting for database...') db_conn = None while not db_conn: try: db_conn = connections['default'] except OperationalError: self.stdout.write('Database unavailable, waiting 1 second...') time.sleep(1) self.stdout.write(self.style.SUCCESS('Database available!'))
30.5
78
0.651267
4903d2c10789bacbdab8e849a562725dcff7aa68
1,671
py
Python
doc/tools/healthcheck.py
d4wner/axefuzzer
2c5c5abc9cea3b24c14735ba9cb159911e9f1ded
[ "BSD-2-Clause" ]
2
2019-03-13T12:30:48.000Z
2021-01-29T23:40:46.000Z
doc/tools/healthcheck.py
d4wner/axefuzzer
2c5c5abc9cea3b24c14735ba9cb159911e9f1ded
[ "BSD-2-Clause" ]
null
null
null
doc/tools/healthcheck.py
d4wner/axefuzzer
2c5c5abc9cea3b24c14735ba9cb159911e9f1ded
[ "BSD-2-Clause" ]
1
2019-03-13T12:30:52.000Z
2019-03-13T12:30:52.000Z
#!/usr/bin/env python # encoding: utf-8 '''代理服务器健康监控工具 health check tool, if wyproxy is error, then restart the proxy server. $ python wyproxy.py -restart : wyporyx.py need add -conf options ''' from __future__ import (absolute_import, print_function, division) import os import json import subprocess """health check conf""" bind_addr = '106.75.199.107' url = 'http://www.baidu.com/wy' def read_cnf(): args = json.load(open('../.proxy.cnf', 'r')) return args def run_command(*arguments): return subprocess.check_output(['curl']+ list(arguments)) def check_live(): # curl --proxy 106.75.199.107:8080 http://www.baidu.com/wyproxy # curl --socks5-hostname 106.75.199.107:8080 http://www.baidu.com/wyproxy try: args = read_cnf() if args.get('mode') == 'socks5': opt = '--socks5-hostname' elif args.get('mode') == 'http': opt = '--proxy' server = '{}:{}'.format(bind_addr, args.get('port')) result = run_command('-q', opt, server, url, '--connect-timeout', '5') return False if 'Failed to connect' in result else True except Exception as e: return False def restart_wyproxy(pidfile): return subprocess.check_output('python','wyproxy.py','--restart','--pid', pidfile) def main(): print(check_live()) # print(result) # print(check_live()) # print(__file__) # print(os.path.realpath(__file__)) # print(os.path.dirname(os.path.realpath(__file__))) # pwd = os.environ['PWD'] # print(pwd) # print(os.getcwd()) if __name__ == '__main__': try: main() except Exception, e: print('error: {}'.format(e))
27.393443
86
0.629563
616427a25ab4a9af2055dcfa2757f9a003ac7293
5,143
py
Python
pipelines/processor.py
theboxahaan/pipelines
19c7ab18db2db6fe4d4316f8f843cf3e0e9681e2
[ "MIT" ]
3
2021-05-24T02:15:05.000Z
2022-03-03T07:45:16.000Z
pipelines/processor.py
theboxahaan/pipelines
19c7ab18db2db6fe4d4316f8f843cf3e0e9681e2
[ "MIT" ]
2
2021-05-24T15:33:57.000Z
2021-05-25T04:28:59.000Z
pipelines/processor.py
theboxahaan/pipelines
19c7ab18db2db6fe4d4316f8f843cf3e0e9681e2
[ "MIT" ]
2
2021-07-06T02:54:14.000Z
2022-02-27T10:32:25.000Z
import uuid import asyncio import logging import traceback class Processor: """ Class Processor represents a node in the processing pipeline where node := (input Q, processor, output Q, accumulator) pipeline := node1 -> node2 -> node3 """ def __init__(self, name:str = None, input_queue:asyncio.Queue=None, output_queue:asyncio.Queue=None, coro=None, input_srcs:list=None, output_dests:list=None, env_vars:dict=None, queue_size:int=0, *args, **kwargs): if queue_size == 0 : logging.warning('unbounded input_queue, output_queue') self._input_queue = asyncio.Queue(maxsize=queue_size) if input_queue is None else input_queue self._output_queue = asyncio.Queue(maxsize=queue_size) if output_queue is None else output_queue self._processor_coro = coro self._uuid = str(uuid.uuid4()) self._name = str(name) self._output_accumulator = [] self._input_srcs = input_srcs self._output_dests = output_dests self.env_vars = env_vars self._input_handler_task = asyncio.create_task( self._input_handler(self._input_srcs)) self._processor_task = asyncio.create_task( self._processor(*args, **kwargs)) self._output_handler_task = asyncio.create_task( self._output_handler(self._output_dests)) logging.info('instantiated %s', str(self)) async def _input_handler(self, input_src:list=None): """ Helper Function to handle multiple input sources and populate the input_queue of each Processor object. The only constraint is that the number of inputs coming in from each input source are equal in number, otherwise the processor Q's will be kept waiting... . """ try: logging.info('%s started input handler...', repr(self)) while(True): # acquire a single input elt from each of the source # (liason q's) cur_input = [] if input_src is None or len(input_src) == 0: logging.error('input sources cannot be None or empty list ... exiting input_handler') raise asyncio.CancelledError for _src in input_src: cur_input.append(await _src.get()) # put the acquired input inside the Processor's input_queue await self._input_queue.put(tuple(cur_input)) except asyncio.CancelledError: logging.warning('%s input_handler cancelled', str(self)) except Exception as e: logging.error('[input_handler]\n%s', traceback.format_exc()) raise async def _output_handler(self, output_dest:list=None): """ Helper Function to handle multiple output destinations and populate the output_queue of each Processor object. """ try: logging.info('%s started output handler...', repr(self)) while(True): if output_dest is None or len(output_dest) == 0: logging.error('output dests cannot be None or empty list... exiting output_handler') raise asyncio.CancelledError # acquire a single output elt from the output queue cur_output = await self._output_queue.get() # put the acquired output into the dest(liason) q's for _dest in output_dest: await _dest.put(cur_output) except asyncio.CancelledError: logging.warning('%s output_handler cancelled', str(self)) except Exception as e: logging.error('[output_handler]\n%s', traceback.format_exc()) raise async def _processor(self, *args, **kwargs): try: logging.info('%s started processor ...', repr(self)) while(True): _temp = await self._input_queue.get() async def _processor_task(_temp, *Aargs, **Akwargs): logging.info('starting processor task...') try: _temp = await self._processor_coro(self, _temp, *Aargs, **Akwargs) if self._output_queue is None: self._output_accumulator.append(_temp) else: await self._output_queue.put(_temp) except Exception as e: logging.error('[processor_task]\n%s', traceback.format_exc()) asyncio.create_task(_processor_task( _temp, *args, **kwargs)) except asyncio.CancelledError: logging.warning('%s processor cancelled', str(self)) except Exception as e: logging.error('[processor]\n%s', traceback.format_exc()) raise @property def input_queue(self) -> asyncio.Queue: return self._input_queue @property def output_queue(self) -> asyncio.Queue: return self._output_queue @property def uuid(self) -> str: return self._uuid @property def name(self) -> str: return self._name @property def liason_queues(self) -> tuple: return (self._input_srcs, self._output_dests) @property def processor_coro(self): return self._processor_coro def __repr__(self) -> str: return f"<Processor:{self._uuid}, coro:{self._processor_coro.__qualname__}>" def __str__(self) -> str: return f"<Processor:{self._uuid};{self._name}>" class InputProcessor(Processor): async def _processor(self, *args, **kwargs): try: logging.info('%s starting IO processor ...', repr(self)) await self._processor_coro(self, self._output_queue, *args, **kwargs) except Exception as e: logging.error('[processor]\n%s', traceback.format_exc())
29.728324
104
0.698425
f28499f97e68f8fdd8df26964566c07bc84bfd0c
720
py
Python
wsgi.py
ioannova/cache_app
dec4985b6ca7d718eaebe99cf0c2687f03e5e3ab
[ "MIT" ]
null
null
null
wsgi.py
ioannova/cache_app
dec4985b6ca7d718eaebe99cf0c2687f03e5e3ab
[ "MIT" ]
null
null
null
wsgi.py
ioannova/cache_app
dec4985b6ca7d718eaebe99cf0c2687f03e5e3ab
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- from flask_migrate import Migrate from app import app, db from app.settings import Development, Production import sqlite3 # Alembic migrate = Migrate(app, db) if __name__ == "__main__": app.run() def reset(): from os import system, getcwd, path import sqlite3 system('rm %s' % path.join(os.getcwd(), 'app/database.db')) system('rm -rf %s' % path.join(os.getcwd(), 'migrations')) sqlite3.connect('%s' % path.join(os.getcwd(), 'app/database.db')) system('%s db init' % path.join(os.getcwd(), 'env/bin/flask')) system('%s db migrate -m "initial"' % path.join(os.getcwd(), 'env/bin/flask')) system('%s db upgrade' % path.join(os.getcwd(), 'env/bin/flask'))
30
82
0.648611
4778624634bc70df7a21222991c018121d4925c6
5,103
py
Python
salt/returners/memcache_return.py
styro/salt
d087d94dca02ca8bf53a6c21b94944bc7957522c
[ "Apache-2.0" ]
1
2016-04-26T03:42:32.000Z
2016-04-26T03:42:32.000Z
salt/returners/memcache_return.py
styro/salt
d087d94dca02ca8bf53a6c21b94944bc7957522c
[ "Apache-2.0" ]
null
null
null
salt/returners/memcache_return.py
styro/salt
d087d94dca02ca8bf53a6c21b94944bc7957522c
[ "Apache-2.0" ]
1
2021-12-02T15:30:00.000Z
2021-12-02T15:30:00.000Z
# -*- coding: utf-8 -*- ''' Return data to a memcache server To enable this returner the minion will need the python client for memcache installed and the following values configured in the minion or master config, these are the defaults: memcache.host: 'localhost' memcache.port: '11211' Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative configuration will be pulled from the default location:: alternative.memcache.host: 'localhost' alternative.memcache.port: '11211' python2-memcache uses 'localhost' and '11211' as syntax on connection. To use the memcache returner, append '--return memcache' to the salt command. ex: salt '*' test.ping --return memcache To use the alternative configuration, append '--return_config alternative' to the salt command. ex: salt '*' test.ping --return memcache --return_config alternative ''' from __future__ import absolute_import # Import python libs import json import logging import salt.utils import salt.returners log = logging.getLogger(__name__) # Import third party libs try: import memcache HAS_MEMCACHE = True except ImportError: HAS_MEMCACHE = False # Define the module's virtual name __virtualname__ = 'memcache' def __virtual__(): if not HAS_MEMCACHE: return False return __virtualname__ def _get_options(ret=None): ''' Get the memcache options from salt. ''' attrs = {'host': 'host', 'port': 'port'} _options = salt.returners.get_returner_options(__virtualname__, ret, attrs, __salt__=__salt__, __opts__=__opts__) return _options def _get_serv(ret): ''' Return a memcache server object ''' _options = _get_options(ret) host = _options.get('host') port = _options.get('port') log.debug('memcache server: {0}:{1}'.format(host, port)) if not host or not port: log.error('Host or port not defined in salt config') return # Combine host and port to conform syntax of python memcache client memcacheoptions = (host, port) return memcache.Client(['{0}:{1}'.format(*memcacheoptions)], debug=0) # # TODO: make memcacheoptions cluster aware # Servers can be passed in two forms: # 1. Strings of the form C{"host:port"}, which implies a default weight of 1 # 2. Tuples of the form C{("host:port", weight)}, where C{weight} is # an integer weight value. def prep_jid(nocache, passed_jid=None): # pylint: disable=unused-argument ''' Do any work necessary to prepare a JID, including sending a custom id ''' return passed_jid if passed_jid is not None else salt.utils.gen_jid() def returner(ret): ''' Return data to a memcache data store ''' serv = _get_serv(ret) serv.set('{0}:{1}'.format(ret['id'], ret['jid']), json.dumps(ret)) # The following operations are neither efficient nor atomic. # If there is a way to make them so, this should be updated. if ret['id'] not in get_minions(): r = serv.append('minions', ret['id'] + ',') if not r: serv.add('minions', ret['id'] + ',') if ret['jid'] not in get_jids(): r = serv.append('jids', ret['jid'] + ',') if not r: serv.add('jids', ret['jid'] + ',') def save_load(jid, load): ''' Save the load to the specified jid ''' serv = _get_serv(ret=None) serv.set(jid, json.dumps(load)) serv.append('jids', jid) def get_load(jid): ''' Return the load data that marks a specified jid ''' serv = _get_serv(ret=None) data = serv.get(jid) if data: return json.loads(data) return {} def get_jid(jid): ''' Return the information returned when the specified job id was executed ''' serv = _get_serv(ret=None) ret = {} for minion in get_minions(): data = serv.get('{0}:{1}'.format(minion, jid)) if data: ret[minion] = json.loads(data) return ret def get_fun(fun): ''' Return a dict of the last function called for all minions ''' serv = _get_serv(ret=None) ret = {} for minion in serv.smembers('minions'): ind_str = '{0}:{1}'.format(minion, fun) try: jid = serv.lindex(ind_str, 0) except Exception: continue data = serv.get('{0}:{1}'.format(minion, jid)) if data: ret[minion] = json.loads(data) return ret def get_jids(): ''' Return a list of all job ids ''' serv = _get_serv(ret=None) try: return serv.get('jids').strip(',').split(',') except AttributeError: return [] def get_minions(): ''' Return a list of minions ''' serv = _get_serv(ret=None) try: return serv.get('minions').strip(',').split(',') except AttributeError: return []
26.304124
101
0.610033
dc145e835fe14e9b1e67c4b334a638609d285e96
435
py
Python
api/serializers.py
phemmylintry/flight-book
dcd187e81d36fae7424c2e19142cd4f31045f129
[ "MIT" ]
null
null
null
api/serializers.py
phemmylintry/flight-book
dcd187e81d36fae7424c2e19142cd4f31045f129
[ "MIT" ]
null
null
null
api/serializers.py
phemmylintry/flight-book
dcd187e81d36fae7424c2e19142cd4f31045f129
[ "MIT" ]
null
null
null
"""Define serializers for API.""" from rest_framework.serializers import ModelSerializer from .models import Flight class FlightSerializer(ModelSerializer): """flight object serializer.""" class Meta: """Meta data for flight object.""" model = Flight fields = ("id", "origin", "destination", "departure_date", "plane_type") """ Add new fields "plane" """
21.75
66
0.602299
459784e7d83034f035339b3054713dae105c3375
5,615
py
Python
example/app/api/client_routes.py
monoper/BlockchainDB
cda8bb65e2351553d4d09e6396796eb0715641b7
[ "MIT" ]
1
2021-05-15T19:45:41.000Z
2021-05-15T19:45:41.000Z
example/app/api/client_routes.py
monoper/BlockchainDB
cda8bb65e2351553d4d09e6396796eb0715641b7
[ "MIT" ]
null
null
null
example/app/api/client_routes.py
monoper/BlockchainDB
cda8bb65e2351553d4d09e6396796eb0715641b7
[ "MIT" ]
null
null
null
import uuid from typing import List from fastapi import Depends, APIRouter, status, HTTPException from .client_models import Client, LinkedProvider from .provider_models import Provider from .common_models import Appointment, AppointmentStatus from .blockchain import BlockchainDb from .util import verify_auth_header api = APIRouter( prefix="/api/client", tags=["clients"], dependencies=[Depends(BlockchainDb),Depends(verify_auth_header)], responses={404: {"description": "Not found"}}, ) @api.get("/{client_id}", response_model=Client, status_code=status.HTTP_200_OK) def get_client(client_id: str, database: BlockchainDb = Depends()): result = database.find_one('Client', {'clientId': client_id}) if result is None: raise HTTPException(status_code=404, detail='Client not found') return Client(**result) @api.put("/{client_id}", status_code=status.HTTP_200_OK) def update_client(client_id: str, client: Client, database: BlockchainDb = Depends()): if client.clientId != client_id: raise HTTPException(status_code=400, detail='Client id in query parameter doesn\'t match payload') database.commit_transaction(client, 'EDIT', 'Client', 'clientId', client_id) @api.get("/{client_id}/appointments", response_model=List[Appointment], status_code=status.HTTP_200_OK) def get_client_appointments(client_id: str, database: BlockchainDb = Depends()): result = database.find('Appointment', {'clientId': client_id}) if result is None: return [] return result @api.get("/{client_id}/appointments/{appointment_id}", response_model=Appointment, status_code=status.HTTP_200_OK) def get_client_appointment(client_id: str, appointment_id: str, database: BlockchainDb = Depends()): result = database.find_one('Appointment', {'clientId': client_id, 'appointmentId': appointment_id}) if result is None: raise HTTPException(status_code=404, detail='Appointment not found') return result @api.post("/{client_id}/appointments", status_code=status.HTTP_200_OK) def add_client_appointment(client_id: str, appointment: Appointment, database: BlockchainDb = Depends()): if appointment.clientId != client_id: raise HTTPException(status_code=400, detail=f'Client id ({client_id}) in query \ parameter doesn\'t match payload \ ({appointment.clientId}) \ {client_id == appointment.clientId}') #need to add protect so that only 1 create block can exist for a given ID appointment.appointmentId = str(uuid.uuid4()) provider = Provider(**database.find_one('Provider', {'providerId': appointment.providerId})) client = Client(**database.find_one('Client', {'clientId': client_id})) if not any(linked_provider.providerId == provider.providerId for linked_provider in client.linkedProviders): client.linkedProviders.append(LinkedProvider(providerId=provider.providerId, hasAccess=True, providerName=f'{provider.name.firstName} {provider.name.lastName}')) database.commit_transaction(client, 'EDIT', 'Client', 'clientId', client_id) database.commit_transaction(appointment, 'CREATE', 'Appointment', 'appointmentId', appointment.appointmentId) @api.post("/{client_id}/linked-provider/{provider_id}/toggle", status_code=status.HTTP_200_OK) def toggle_client_linked_provider(client_id: str, provider_id: str, database: BlockchainDb = Depends()): client = Client(**database.find_one('Client', {'clientId': client_id})) for index, linked_provider in enumerate(client.linkedProviders): if linked_provider.providerId == provider_id: linked_provider.hasAccess = not linked_provider.hasAccess client.linkedProviders[index] = linked_provider database.commit_transaction(client, 'EDIT', 'Client', 'clientId', client_id) @api.put("/{client_id}/appointments/{appointment_id}", status_code=status.HTTP_200_OK) def update_client_appointment(client_id: str, appointment_id: str, appointment: Appointment, database: BlockchainDb = Depends()): if appointment.clientId != client_id or appointment.appointmentId != appointment_id: raise HTTPException(status_code=400, detail='Client id in query parameter doesn\'t match payload') if appointment.status == AppointmentStatus.Completed \ or appointment.status == AppointmentStatus.Rejected: raise HTTPException(status_code=400, detail='Cannot update a completed or rejected appointment') result = database.commit_transaction(appointment, 'EDIT', 'Appointment', 'appointmentId', appointment_id) if result is None: raise HTTPException(status_code=400, detail='Could not update appointment') return result @api.get("/{client_id}/prescribed-treatments", status_code=status.HTTP_200_OK) def get_client_prescribed_treatments(client_id: str, database: BlockchainDb = Depends()): appointments = database.find('Appointment', { 'clientId' : client_id}) if appointments is None: return [] prescribed_treatments = [] [prescribed_treatments.extend(appointment.prescribedTreatment) for appointment in appointments] return prescribed_treatments
43.527132
100
0.68602
086ee9c878ca501f61915e87e401f87d189cd793
2,164
py
Python
CSCI-104/hw7/hw7-test/tests/checker.py
liyang990803/CSCI-103
6f84fbc242be90f7a9c3a58bdcc6f54352e4ae5a
[ "MIT" ]
null
null
null
CSCI-104/hw7/hw7-test/tests/checker.py
liyang990803/CSCI-103
6f84fbc242be90f7a9c3a58bdcc6f54352e4ae5a
[ "MIT" ]
null
null
null
CSCI-104/hw7/hw7-test/tests/checker.py
liyang990803/CSCI-103
6f84fbc242be90f7a9c3a58bdcc6f54352e4ae5a
[ "MIT" ]
1
2018-03-23T04:19:24.000Z
2018-03-23T04:19:24.000Z
import sys from checker_bst import bst from checker_rotate import rotate from checker_hypercube import hypercube from cs_grading import Grader, Homework, Problem from cs_grading import generate_grade_report sys.path.insert(0, '..') import setting RESULT_DIR = '../results/' # where test results are stored GRADER_CONFIG = '../grader.txt' RUBRIC_GENERAL = 'rubric/general.config' RUBRIC_BST = 'rubric/bst.config' RUBRIC_ROTATE = 'rubric/rotate.config' RUBRIC_HYPERCUBE = 'rubric/hypercube.config' RUBRIC_OTHER = '../rubric_other.tsv' GRADE_REPORT_DIR = '../' HOMEWORK = Homework( 7, RESULT_DIR, setting.REMOVE_OUTPUT, detailed_results=setting.DETAILED_RESULT, compile_flags=setting.COMPILE_FLAGS, logging_level=setting.LOGGING_LEVEL, ) P1 = Problem(HOMEWORK, 1, 'bst', 35) P2 = Problem(HOMEWORK, 2, 'rotate', 25) P3 = Problem(HOMEWORK, 3, 'hypercube', 40) if setting.RUN_BST: P1.generate_results( bst, setting.BST_USE_VALGRIND, timeout=setting.BST_TIMEOUT,) if setting.GENERATE_GRADE_REPORT: P1.grade_problem(RUBRIC_GENERAL, RUBRIC_BST) if setting.OPEN_RESULT: P1.open_result(text_editor=setting.TEXT_EDITOR) if setting.RUN_ROTATE: P2.generate_results( rotate, setting.ROTATE_USE_VALGRIND, timeout=setting.ROTATE_TIMEOUT,) if setting.GENERATE_GRADE_REPORT: P2.grade_problem(RUBRIC_GENERAL, RUBRIC_ROTATE) if setting.OPEN_RESULT: P2.open_result(text_editor=setting.TEXT_EDITOR) if setting.RUN_HYPERCUBE: P3.generate_results( hypercube, setting.HYPERCUBE_USE_VALGRIND, timeout=setting.HYPERCUBE_TIMEOUT,) if setting.GENERATE_GRADE_REPORT: P3.grade_problem(RUBRIC_GENERAL, RUBRIC_HYPERCUBE) if setting.OPEN_RESULT: P3.open_result(text_editor=setting.TEXT_EDITOR) if setting.GENERATE_GRADE_REPORT: HOMEWORK.grade_other_deduction(RUBRIC_OTHER) GRADER = Grader(GRADER_CONFIG, setting.LOGGING_LEVEL) generate_grade_report( HOMEWORK, GRADER, GRADE_REPORT_DIR, overwrite=setting.OVERWRITE_REPORT, logging_level=setting.LOGGING_LEVEL)
30.055556
58
0.737061
6f72209ca045276a65cf7f00b94112305dafb5d4
1,480
py
Python
src/openprocurement/tender/limited/tests/document.py
pontostroy/api
5afdd3a62a8e562cf77e2d963d88f1a26613d16a
[ "Apache-2.0" ]
10
2020-02-18T01:56:21.000Z
2022-03-28T00:32:57.000Z
src/openprocurement/tender/limited/tests/document.py
pontostroy/api
5afdd3a62a8e562cf77e2d963d88f1a26613d16a
[ "Apache-2.0" ]
26
2018-07-16T09:30:44.000Z
2021-02-02T17:51:30.000Z
src/openprocurement/tender/limited/tests/document.py
scrubele/prozorro-testing
42b93ea2f25d8cc40e66c596f582c7c05e2a9d76
[ "Apache-2.0" ]
15
2019-08-08T10:50:47.000Z
2022-02-05T14:13:36.000Z
# -*- coding: utf-8 -*- import unittest from openprocurement.tender.belowthreshold.tests.document import ( TenderDocumentResourceTestMixin, TenderDocumentWithDSResourceTestMixin, ) from openprocurement.tender.limited.tests.base import ( BaseTenderContentWebTest, test_tender_data, test_tender_negotiation_data, test_tender_negotiation_quick_data, ) class TenderDocumentResourceTest(BaseTenderContentWebTest, TenderDocumentResourceTestMixin): initial_data = test_tender_data docservice = False class TenderNegotiationDocumentResourceTest(TenderDocumentResourceTest): initial_data = test_tender_negotiation_data class TenderNegotiationQuickDocumentResourceTest(TenderNegotiationDocumentResourceTest): initial_data = test_tender_negotiation_quick_data class TenderDocumentWithDSResourceTest(TenderDocumentResourceTest, TenderDocumentWithDSResourceTestMixin): docservice = True class TenderNegotiationDocumentWithDSResourceTest(TenderDocumentWithDSResourceTest): initial_data = test_tender_negotiation_data class TenderNegotiationQuickDocumentWithDSResourceTest(TenderDocumentWithDSResourceTest): initial_data = test_tender_negotiation_quick_data def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TenderDocumentResourceTest)) suite.addTest(unittest.makeSuite(TenderDocumentWithDSResourceTest)) return suite if __name__ == "__main__": unittest.main(defaultTest="suite")
29.019608
106
0.833784
0c8b4fcabaaf735c3ebf6c034042f53501e9ed79
2,629
py
Python
helpers/WIndowsUSB.py
shloak17107/WhatsApp-Key-Database-Extractor
24fb112a81fe54d0b0f42a6d3253b3420b92976e
[ "MIT" ]
null
null
null
helpers/WIndowsUSB.py
shloak17107/WhatsApp-Key-Database-Extractor
24fb112a81fe54d0b0f42a6d3253b3420b92976e
[ "MIT" ]
null
null
null
helpers/WIndowsUSB.py
shloak17107/WhatsApp-Key-Database-Extractor
24fb112a81fe54d0b0f42a6d3253b3420b92976e
[ "MIT" ]
null
null
null
import os import re from subprocess import check_output, getoutput try: import wget from packaging import version except ImportError: try: os.system('pip3 install wget packaging') except: os.system('python3 -m pip install wget packaging') from CustomCI import CustomPrint # Global Variables appURLWhatsAppCDN = 'https://www.cdn.whatsapp.net/android/2.11.431/WhatsApp.apk' appURLWhatsCryptCDN = 'https://whatcrypt.com/WhatsApp-2.11.431.apk' # Global command line helpers tmp = 'tmp/' grep = 'bin\\grep.exe' curl = 'bin\\curl.exe' helpers = 'helpers/' def AfterConnect(adb): SDKVersion = int(getoutput( adb + ' shell getprop ro.build.version.sdk')) if (SDKVersion <= 13): CustomPrint( 'Unsupported device. This method only works on Android v4.0 or higer.', 'red') CustomPrint('Cleaning up temporary direcory.', 'red') os.remove(tmp) Exit() WhatsAppapkPath = re.search('(?<=package:)(.*)(?=apk)', str(check_output( adb + ' shell pm path com.whatsapp'))).group(1) + 'apk' if not (WhatsAppapkPath): CustomPrint('Looks like WhatsApp is not installed on device.', 'red') Exit() sdPath = getoutput(adb + ' shell "echo $EXTERNAL_STORAGE"') # To check if APK even exists at a given path to download! contentLength = int(re.search("(?<=Content-Length:)(.*[0-9])(?=)", str(check_output( curl + ' -sI http://www.cdn.whatsapp.net/android/2.11.431/WhatsApp.apk'))).group(1)) versionName = re.search("(?<=versionName=)(.*?)(?=\\\\r)", str(check_output( adb + ' shell dumpsys package com.whatsapp'))).group(1) CustomPrint('WhatsApp V' + versionName + ' installed on device') downloadAppFrom = appURLWhatsAppCDN if( contentLength == 18329558) else appURLWhatsCryptCDN if (version.parse(versionName) > version.parse('2.11.431')): if not (os.path.isfile(helpers + 'LegacyWhatsApp.apk')): CustomPrint( 'Downloading legacy WhatsApp V2.11.431 to helpers folder') wget.download(downloadAppFrom, helpers + 'LegacyWhatsApp.apk') print('\n') else: CustomPrint('Found legacy WhatsApp V2.11.431 apk in ' + helpers + ' folder') return 1, SDKVersion, WhatsAppapkPath, versionName, sdPath def Exit(): CustomPrint('\nExiting...') os.system('bin\\adb.exe kill-server') quit() def WindowsUSB(adb): CustomPrint('Connected to ' + getoutput(adb + ' shell getprop ro.product.model')) return AfterConnect(adb)
36.013699
92
0.633321
72312b1b26acf19c60784c6ebba4d0af31e6fe8e
10,775
py
Python
models/modelszoo/ResNet3D_VAE.py
qgking/FRGAN
b6a250c46981707c43c3889f80d8cc3ec31edaaf
[ "MIT" ]
2
2021-08-10T02:38:23.000Z
2021-08-10T03:04:22.000Z
models/modelszoo/ResNet3D_VAE.py
qgking/FRGAN
b6a250c46981707c43c3889f80d8cc3ec31edaaf
[ "MIT" ]
1
2022-02-21T15:57:03.000Z
2022-02-21T15:57:03.000Z
models/modelszoo/ResNet3D_VAE.py
qgking/FRGAN
b6a250c46981707c43c3889f80d8cc3ec31edaaf
[ "MIT" ]
2
2021-11-07T13:25:51.000Z
2022-01-18T07:09:30.000Z
import torch import torch.nn as nn from models.modelszoo.BaseModelClass import BaseModel """ Implementation based on the original paper https://arxiv.org/pdf/1810.11654.pdf """ class GreenBlock(nn.Module): def __init__(self, in_channels, out_channels=32, norm="group"): super(GreenBlock, self).__init__() if norm == "batch": norm_1 = nn.BatchNorm3d(num_features=in_channels) norm_2 = nn.BatchNorm3d(num_features=in_channels) elif norm == "group": norm_1 = nn.GroupNorm(num_groups=8, num_channels=in_channels) norm_2 = nn.GroupNorm(num_groups=8, num_channels=in_channels) self.layer_1 = nn.Sequential( norm_1, nn.ReLU()) self.layer_2 = nn.Sequential( nn.Conv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=(3, 3, 3), stride=1, padding=1), norm_2, nn.ReLU()) self.conv_3 = nn.Conv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=(3, 3, 3), stride=1, padding=1) def forward(self, x): x = self.layer_1(x) x = self.layer_2(x) y = self.conv_3(x) y = y + x return y class DownBlock(nn.Module): def __init__(self, in_channels, out_channels): super(DownBlock, self).__init__() self.conv = nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3, 3), stride=2, padding=1) def forward(self, x): return self.conv(x) class BlueBlock(nn.Module): def __init__(self, in_channels, out_channels=32): super(BlueBlock, self).__init__() self.conv = nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3, 3), stride=1, padding=1) def forward(self, x): return self.conv(x) class UpBlock1(nn.Module): """ TODO fix transpose conv to double spatial dim """ def __init__(self, in_channels, out_channels): super(UpBlock1, self).__init__() self.transp_conv = nn.ConvTranspose3d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, 1, 1), stride=2, padding=1) def forward(self, x): return self.transp_conv(x) class UpBlock2(nn.Module): def __init__(self, in_channels, out_channels): super(UpBlock2, self).__init__() self.conv_1 = nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, 1, 1), stride=1) # self.up_sample_1 = nn.Upsample(scale_factor=2, mode="bilinear") # TODO currently not supported in PyTorch 1.4 :( self.up_sample_1 = nn.Upsample(scale_factor=2, mode="nearest") def forward(self, x): return self.up_sample_1(self.conv_1(x)) def reparametrize(mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) class ResNetEncoder(nn.Module): def __init__(self, in_channels, start_channels=32): super(ResNetEncoder, self).__init__() self.start_channels = start_channels self.down_channels_1 = 2 * self.start_channels self.down_channels_2 = 2 * self.down_channels_1 self.down_channels_3 = 2 * self.down_channels_2 # print("self.down_channels_3", self.down_channels_3) self.blue_1 = BlueBlock(in_channels=in_channels, out_channels=self.start_channels) self.drop = nn.Dropout3d(0.2) self.green_1 = GreenBlock(in_channels=self.start_channels) self.down_1 = DownBlock(in_channels=self.start_channels, out_channels=self.down_channels_1) self.green_2_1 = GreenBlock(in_channels=self.down_channels_1) self.green_2_2 = GreenBlock(in_channels=self.down_channels_1) self.down_2 = DownBlock(in_channels=self.down_channels_1, out_channels=self.down_channels_2) self.green_3_1 = GreenBlock(in_channels=self.down_channels_2) self.green_3_2 = GreenBlock(in_channels=self.down_channels_2) self.down_3 = DownBlock(in_channels=self.down_channels_2, out_channels=self.down_channels_3) self.green_4_1 = GreenBlock(in_channels=self.down_channels_3) self.green_4_2 = GreenBlock(in_channels=self.down_channels_3) self.green_4_3 = GreenBlock(in_channels=self.down_channels_3) self.green_4_4 = GreenBlock(in_channels=self.down_channels_3) def forward(self, x): x = self.blue_1(x) x = self.drop(x) x1 = self.green_1(x) x = self.down_1(x1) x = self.green_2_1(x) x2 = self.green_2_2(x) x = self.down_2(x2) x = self.green_3_1(x) x3 = self.green_3_2(x) x = self.down_3(x3) x = self.green_4_1(x) x = self.green_4_2(x) x = self.green_4_3(x) x4 = self.green_4_4(x) return x1, x2, x3, x4 class Decoder(nn.Module): def __init__(self, in_channels=256, classes=4): super(Decoder, self).__init__() out_up_1_channels = int(in_channels / 2) out_up_2_channels = int(out_up_1_channels / 2) out_up_3_channels = int(out_up_2_channels / 2) self.up_1 = UpBlock2(in_channels=in_channels, out_channels=out_up_1_channels) self.green_1 = GreenBlock(in_channels=out_up_1_channels) self.up_2 = UpBlock2(in_channels=out_up_1_channels, out_channels=out_up_2_channels) self.green_2 = GreenBlock(in_channels=out_up_2_channels) self.up_3 = UpBlock2(in_channels=out_up_2_channels, out_channels=out_up_3_channels) self.green_3 = GreenBlock(in_channels=out_up_3_channels) self.blue = BlueBlock(in_channels=out_up_3_channels, out_channels=classes) def forward(self, x1, x2, x3, x4): x = self.up_1(x4) x = self.green_1(x + x3) x = self.up_2(x) x = self.green_2(x + x2) x = self.up_3(x) x = self.green_3(x + x1) y = self.blue(x) return y class VAE(nn.Module): def __init__(self, in_channels=256, in_dim=(10, 10, 10), out_dim=(2, 64, 64, 64)): super(VAE, self).__init__() self.in_channels = in_channels self.in_dim = in_dim self.out_dim = out_dim self.modalities = out_dim[0] self.encoder_channels = 16 # int(in_channels >> 4) self.split_dim = int(self.in_channels / 2) # self.reshape_dim = (int(self.out_dim[1] / 16), int(self.out_dim[2] / 16), int(self.out_dim[3] / 16)) # self.linear_in_dim = int(16 * (in_dim[0] / 2) * (in_dim[1] / 2) * (in_dim[2] / 2)) self.reshape_dim = (int(self.out_dim[1] / self.encoder_channels), int(self.out_dim[2] / self.encoder_channels), int(self.out_dim[3] / self.encoder_channels)) self.linear_in_dim = int(self.encoder_channels * (in_dim[0] / 2) * (in_dim[1] / 2) * (in_dim[2] / 2)) self.linear_vu_dim = self.encoder_channels * self.reshape_dim[0] * self.reshape_dim[1] * self.reshape_dim[2] channels_vup2 = int(self.in_channels / 2) # 128 channels_vup1 = int(channels_vup2 / 2) # 64 channels_vup0 = int(channels_vup1 / 2) # 32 group_1 = nn.GroupNorm(num_groups=8, num_channels=in_channels) relu_1 = nn.ReLU() conv_1 = nn.Conv3d(in_channels=in_channels, out_channels=self.encoder_channels, stride=2, kernel_size=(3, 3, 3), padding=1) self.VD = nn.Sequential(group_1, relu_1, conv_1) self.linear_1 = nn.Linear(self.linear_in_dim, in_channels) # TODO VU layer here self.linear_vu = nn.Linear(channels_vup2, self.linear_vu_dim) relu_vu = nn.ReLU() VUup_block = UpBlock2(in_channels=self.encoder_channels, out_channels=self.in_channels) self.VU = nn.Sequential(relu_vu, VUup_block) self.Vup2 = UpBlock2(in_channels, channels_vup2) self.Vblock2 = GreenBlock(channels_vup2) self.Vup1 = UpBlock2(channels_vup2, channels_vup1) self.Vblock1 = GreenBlock(channels_vup1) self.Vup0 = UpBlock2(channels_vup1, channels_vup0) self.Vblock0 = GreenBlock(channels_vup0) self.Vend = BlueBlock(channels_vup0, self.modalities) def forward(self, x): x = self.VD(x) x = x.view(-1, self.linear_in_dim) x = self.linear_1(x) mu = x[:, :self.split_dim] logvar = torch.log(x[:, self.split_dim:]) y = reparametrize(mu, logvar) y = self.linear_vu(y) y = y.view(-1, self.encoder_channels, self.reshape_dim[0], self.reshape_dim[1], self.reshape_dim[2]) y = self.VU(y) y = self.Vup2(y) y = self.Vblock2(y) y = self.Vup1(y) y = self.Vblock1(y) y = self.Vup0(y) y = self.Vblock0(y) dec = self.Vend(y) return dec, mu, logvar class ResNet3dVAE(BaseModel): def __init__(self, in_channels=2, classes=4, max_conv_channels=256, dim=(64, 64, 64)): super(ResNet3dVAE, self).__init__() self.dim = dim vae_in_dim = (int(dim[0] >> 3), int(dim[1] >> 3), int(dim[0] >> 3)) vae_out_dim = (in_channels, dim[0], dim[1], dim[2]) self.classes = classes self.modalities = in_channels start_channels = 32 # int(max_conv_channels >> 3) self.encoder = ResNetEncoder(in_channels=in_channels, start_channels=start_channels) self.decoder = Decoder(in_channels=max_conv_channels, classes=classes) self.vae = VAE(in_channels=max_conv_channels, in_dim=vae_in_dim, out_dim=vae_out_dim) def forward(self, x): x1, x2, x3, x4 = self.encoder(x) y = self.decoder(x1, x2, x3, x4) vae_out, mu, logvar = self.vae(x4) return y, vae_out, mu, logvar def test(self): inp = torch.rand(1, self.modalities, self.dim[0], self.dim[1], self.dim[2]) ideal = torch.rand(1, self.classes, self.dim[0], self.dim[1], self.dim[2]) y, vae_out, mu, logvar = self.forward(inp) assert vae_out.shape == inp.shape, vae_out.shape assert y.shape == ideal.shape assert mu.shape == logvar.shape print("3D-RESNET VAE test OK!") def test_enc_dec(): model = ResNetEncoder(in_channels=2) input = torch.rand(1, 2, 80, 80, 80) x1, x2, x3, x4 = model(input) print(x1.shape) print(x2.shape) print(x3.shape) print(x4.shape) model2 = Decoder() y = model2(x1, x2, x3, x4) print("out", y.shape) def testVAE(): input = torch.rand(1, 128, 10, 10, 10) model = VAE(in_channels=128, in_dim=(10, 10, 10), out_dim=(2, 128, 128, 128)) out, mu, logvar = model(input) print("Done.\n Final out shape is: ", out.shape)
35.444079
122
0.632854
1e34f2805c40edd53ed7ee9f96063dd3e144c81b
1,052
py
Python
kubernetes/test/test_v1beta1_rolling_update_daemon_set.py
itholic/python
dffe577a062e17057270ae80fa677ffd83e9d183
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1beta1_rolling_update_daemon_set.py
itholic/python
dffe577a062e17057270ae80fa677ffd83e9d183
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1beta1_rolling_update_daemon_set.py
itholic/python
dffe577a062e17057270ae80fa677ffd83e9d183
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.15.7 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes.client from kubernetes.client.models.v1beta1_rolling_update_daemon_set import V1beta1RollingUpdateDaemonSet # noqa: E501 from kubernetes.client.rest import ApiException class TestV1beta1RollingUpdateDaemonSet(unittest.TestCase): """V1beta1RollingUpdateDaemonSet unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV1beta1RollingUpdateDaemonSet(self): """Test V1beta1RollingUpdateDaemonSet""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes.client.models.v1beta1_rolling_update_daemon_set.V1beta1RollingUpdateDaemonSet() # noqa: E501 pass if __name__ == '__main__': unittest.main()
26.3
124
0.748099
7051a88e18e77b2c4292e3a10feabd5b395df914
19,623
py
Python
MIES/Spaces.py
caueguidotti/auto_dqn
0f20464fe9d67dbbddf156d97788d7fc816435bc
[ "MIT" ]
null
null
null
MIES/Spaces.py
caueguidotti/auto_dqn
0f20464fe9d67dbbddf156d97788d7fc816435bc
[ "MIT" ]
null
null
null
MIES/Spaces.py
caueguidotti/auto_dqn
0f20464fe9d67dbbddf156d97788d7fc816435bc
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ============================================================================= # File : Spaces.py # Project : Project # Created By : Caue Guidotti # Created Date: 7/6/2021 # ============================================================================= """ This module provides the basic classes to create an individual and its search space. Possible space types are: Continuous or Integer TODO: implement nominal (discrete) space """ # ============================================================================= import numpy as np POSSIBLE_SPACE_TYPES = ['i', 'c'] class Individual(object): """ Individual class An individual may be recombined with another to change its characteristics and its search space state An individual may also go through mutation TODO: Perhaps receive the evaluation function in this class """ def __init__(self, search_space): """ An individual is created :param search_space: Individual's search space """ assert isinstance(search_space, SearchSpace), 'Individual must be supplied with a object of type SearchSpace' self.search_space = search_space self.characteristics = None self.objective_value = None self.tau_r_global = None self.tau_r_local = None self.tau_i_global = None self.tau_i_local = None def __lt__(self, other_individual): """ Overloads < operator for Individual class. Used for heapq. """ return self.objective_value < other_individual.objective_value def __eq__(self, other_individual): """ Overloads == operator. Used, for instance, to check if an individual is already present in a population. """ return (self.characteristics == other_individual.characteristics).all() def initialize(self): """ Initialize the individual """ # obtains a random candidate solution self.characteristics = self.get_sample() # Defines learning rates # TODO - enable single and multi step-size mode # TODO - allows learning rate to be set externally if 'c' in self.search_space.get_types(): len_c = len(self.search_space.idx_dict['c']) self.tau_r_global = 1.0 / np.sqrt(2.0 * len_c) self.tau_r_local = 1.0 / np.sqrt(2 * np.sqrt(len_c)) if len_c > 1 else 0 if 'i' in self.search_space.get_types(): len_i = len(self.search_space.idx_dict['i']) self.tau_i_global = 1.0 / np.sqrt(2.0 * len_i) self.tau_i_local = 1.0 / np.sqrt(2 * np.sqrt(len_i)) if len_i > 1 else 0 def get_sample(self) -> np.ndarray: """ Obtains a random candidate solution """ sample = [] for space in self.search_space.spaces: sample += [space.get_sample()] return np.asarray(sample, dtype='object') def get_continuous_characteristics(self): """ Get continuous candidate solutions """ return self.characteristics[self.search_space.idx_dict['c']] def set_continuous_characteristics(self, values): """ Set individual continuous candidate solution :param values: New continuous parameters values """ assert len(self.search_space.idx_dict['c']) == len(values), 'Characteristics size must match values size' self.characteristics[self.search_space.idx_dict['c']] = values def get_integer_characteristics(self): """ Get integer candidate solutions """ return self.characteristics[self.search_space.idx_dict['i']] def set_integer_characteristics(self, values): """ Set individual integer candidate solution :param values: New integer parameters values """ assert len(self.search_space.idx_dict['i']) == len(values), 'Characteristics size must match values size' self.characteristics[self.search_space.idx_dict['i']] = values def set_objective_value(self, value): """ Set the corresponding evaluation value for this individual characteristics :param value: Evaluated value :return: """ self.objective_value = value def recombine(self, other_individual, characteristics_global_recombination=True, strategy_pars_global_recombination=True, strategy_par_random_weight=False): """ This individual can be recombined with another. This individual will be changed. In MIES, characteristics associated to the solution uses dominant (or discrete) recombination. Intermediate recombination is used for strategy parameters :param other_individual: another individual :param characteristics_global_recombination: (bool) use global recombination or not for solution params :param strategy_pars_global_recombination: (bool) use global recombination or not for strategy params :param strategy_par_random_weight: Use random weight instead of mean (0.5) :return: """ # Discrete recombination for characteristics if characteristics_global_recombination: chosen_characteristics = np.nonzero(np.random.rand(len(self.characteristics)) > 0.5) self.characteristics[chosen_characteristics] = other_individual.characteristics[chosen_characteristics] else: chosen_characteristics = np.random.rand() > 0.5 if chosen_characteristics: self.characteristics = other_individual.characteristics # Intermediate recombination for strategy parameters strategy_par_weight = 0.5 if not strategy_par_random_weight else np.random.rand() for space, other_space in zip(self.search_space.spaces, other_individual.search_space.spaces): if strategy_par_random_weight and strategy_pars_global_recombination: strategy_par_weight = np.random.rand() combined_strategy_par = space.get_strategy_parameter() * strategy_par_weight + \ other_space.get_strategy_parameter() * (1 - strategy_par_weight) space.set_strategy_parameter(combined_strategy_par) def mutate(self): """ Applies the mutation algorithm """ continuous_spaces = self.search_space.get_continuous_spaces() integer_spaces = self.search_space.get_integer_spaces() if continuous_spaces is not None: # mutate continuous spaces characteristics spaces_sigma = continuous_spaces.get_strategy_parameters() spaces_sigma *= np.exp(self.tau_r_global * np.random.normal(0, 1) + self.tau_r_local * np.random.normal(0, 1, len(spaces_sigma))) continuous_characteristics = self.get_continuous_characteristics() continuous_characteristics += spaces_sigma * np.random.normal(0, 1, len(continuous_characteristics)) continuous_spaces.set_strategy_parameters(spaces_sigma) self.set_continuous_characteristics(continuous_characteristics) if integer_spaces is not None: # mutate integer spaces characteristics spaces_eta = integer_spaces.get_strategy_parameters() spaces_eta *= np.exp(self.tau_i_global * np.random.normal(0, 1) + self.tau_i_local * np.random.normal(0, 1, len(spaces_eta))) spaces_eta = spaces_eta.clip(min=1) integer_characteristics = self.get_integer_characteristics() psi = 1 - ((spaces_eta / len(integer_characteristics)) / (1 + np.sqrt(1 + (spaces_eta / len(integer_characteristics))**2))) (u1, u2) = (np.random.rand(), np.random.rand()) g1 = np.floor(np.log(1 - u1) / np.log(1. - psi)).astype(int) g2 = np.floor(np.log(1 - u2) / np.log(1. - psi)).astype(int) integer_characteristics += g1 - g2 integer_spaces.set_strategy_parameters(spaces_eta) self.set_integer_characteristics(integer_characteristics) self.boundary_handling() def boundary_handling(self): """ Keep solution within boundaries """ # TODO improve boundary handling - clipping adds bias? lower_bounds, upper_bounds = list(zip(*self.search_space.get_spaces_boundaries())) self.characteristics = np.clip(self.characteristics, lower_bounds, upper_bounds) class SearchSpace(object): """ Defines a search space which is comprised of multiple spaces """ def __init__(self, spaces=None, boundaries=None, strategy_pars=None): """ A search space may be formed by providing Spaces objects directly OR boundaries and strategy pars, as space objects already contains its boundaries. If boundaries and strategy pars are provided, space objects are created. :param spaces: Spaces in this search space :param boundaries: Spaces boundaries :param strategy_pars: Spaces strategy parameters """ self._spaces = spaces self._boundaries = boundaries self._strategy_pars = strategy_pars self._parameters_consolidation() # reads parameters # following is a dict of possible space types to respective indexes on self.spaces list self.idx_dict = {space_type: [] for space_type in POSSIBLE_SPACE_TYPES} self.spaces = [] if self._spaces is None: for space_idx, ((lower_bound, upper_bound), strategy_par) in enumerate(zip(self._boundaries, self._strategy_pars)): # Make sure types are consistent. Lower limit must be lower than upper limit. After identifying type, # specific space class is instantiated, and index added to dict of index reference assert type(lower_bound) == type(upper_bound), f'Types of boundaries differs: {lower_bound} ({type(lower_bound)}) != {upper_bound} ({type(upper_bound)}) ' assert lower_bound < upper_bound, f'Lower limit ({lower_bound}) must be lower than upper limit ({upper_bound})' if type(lower_bound) == int: self.spaces.append(IntegerSpace(lower_bound, upper_bound, strategy_par)) elif type(lower_bound) == float: self.spaces.append(ContinuousSpace(lower_bound, upper_bound, strategy_par)) self.idx_dict[self.spaces[-1].type].append(space_idx) else: self.spaces = self._spaces for space_idx, space in enumerate(self.spaces): self.idx_dict[space.type].append(space_idx) self.spaces = np.asarray(self.spaces, dtype='object') def _parameters_consolidation(self): """ Treats the case of providing either spaces or boundaries. If strategy pars are not provided, default are used. """ spaces = self._spaces boundaries = self._boundaries strategy_pars = self._strategy_pars if spaces is None: assert boundaries is not None, 'Should either supply a list of spaces or space boundaries to SearchSpace' assert hasattr(boundaries, '__iter__') and not isinstance(boundaries, str), \ 'boundaries parameter must be iterable' # force strategy_pars to be iterable if not hasattr(strategy_pars, '__iter__') and not isinstance(strategy_pars, str): strategy_pars = [strategy_pars] # making sure we have a list of tuples on boundaries if hasattr(boundaries[0], '__iter__') and not isinstance(boundaries[0], str): boundaries = [tuple(boundary) for boundary in boundaries] else: # probably single list or tuple boundaries = [tuple(boundaries)] # making sure we have tuples with two elements for boundary in boundaries: assert len(boundary) % 2 == 0, 'args should represent boundaries (pairs):' \ '(lower_limit1, upper_limit1, lower_limit2, upper_limit2)' # making sure that, if strategy pars was supplied, it matches the number of spaces boundaries if strategy_pars[0] is not None: assert len(boundaries) == len(strategy_pars), 'Length of boundaries must match strategy pars' else: strategy_pars = strategy_pars*len(boundaries) else: # force strategy_pars to be iterable if not hasattr(spaces, '__iter__') and not isinstance(spaces, str): spaces = [spaces] self._spaces = spaces self._boundaries = boundaries self._strategy_pars = strategy_pars def __mul__(self, other_search_space): """ Calculates the product of search space objects :return: """ if isinstance(other_search_space, SearchSpace): return SearchSpace(spaces=self.spaces.tolist() + other_search_space.spaces.tolist()) elif isinstance(other_search_space, GenericSpace): return SearchSpace(spaces=self.spaces.tolist() + [other_search_space]) else: raise TypeError(f"can't multiply SearchSpace with type {type(other_search_space).__name__}") def get_spaces_boundaries(self, as_list_of_tuples=True): """ Obtain all spaces boundaries within this search space :param as_list_of_tuples: Return as list of tuple if true, single line is False """ boundaries = [] for space in self.spaces: if as_list_of_tuples: boundaries.append(space.get_boundary()) else: boundaries.extend(space.get_boundary()) return boundaries def get_strategy_parameters(self): """ Get all search spaces strategy parameters :return: strategy parameters list """ strategy_pars = [] for space in self.spaces: strategy_pars += [space.get_strategy_parameter()] return np.asarray(strategy_pars) def set_strategy_parameters(self, values): """ Set strategy parameters for all search spaces. :param values: Values to be set """ assert len(values) == len(self.spaces), 'Number of values must be the same as number of spaces.' for space, strategy_par in zip(self.spaces, values): space.set_strategy_parameter(strategy_par) def get_types(self): """ Return all types of spaces in this search space. Possible candidates are defined on ´POSSIBLE_SPACE_TYPES´ """ return [space_type for space_type, idxs in self.idx_dict.items() if idxs] def get_continuous_spaces(self): """ Return list of continuous spaces """ return self._get_space_type(space_type='c') def get_integer_spaces(self): """ Return list of integer spaces """ return self._get_space_type(space_type='i') def _get_space_type(self, space_type): """ Get all spaces of a specific type. Possible types are defined on ´POSSIBLE_SPACE_TYPES´ :param space_type: (str) selected type :return: list of spaces with this type """ return SearchSpace(spaces=self.spaces[self.idx_dict[space_type]]) if self.idx_dict[space_type] else None class GenericSpace(object): """ Implements a interface class of a Space """ def __init__(self, lower_limit, upper_limit): self.lower_limit = lower_limit self.upper_limit = upper_limit self.type = None def get_strategy_parameter(self): raise NotImplementedError('GenericSpace should not be used directly. Use either Integer or Continuous space.') def set_strategy_parameter(self, value): raise NotImplementedError('GenericSpace should not be used directly. Use either Integer or Continuous space.') def get_boundary(self): return self.lower_limit, self.upper_limit def get_sample(self): raise NotImplementedError('GenericSpace should not be used directly. Use either Integer or Continuous space.') def __mul__(self, other_space): if isinstance(other_space, GenericSpace): return SearchSpace(spaces=[self, other_space]) elif isinstance(other_space, SearchSpace): return SearchSpace(spaces=[self] + other_space.spaces.tolist()) else: raise TypeError(f"can't multiply GenericSpace with type {type(other_space).__name__}") class IntegerSpace(GenericSpace): """ Implements the integer space """ def __init__(self, lower_limit, upper_limit, mean_step_size=None): super().__init__(int(lower_limit), int(upper_limit)) self.type = 'i' if mean_step_size is not None: self.mean_step_size = mean_step_size else: # default strategy parameter self.mean_step_size = 0.05 * (self.upper_limit - self.lower_limit) def get_strategy_parameter(self): """ Return this space strategy parameter """ return self.mean_step_size def set_strategy_parameter(self, value): """ Set a new value for this space strategy parameter :param value: Value to be set """ self.mean_step_size = value def get_sample(self): """ Get a random value within this space using a uniform distribution :return: Random sample """ return np.random.randint(self.lower_limit, self.upper_limit + 1) class ContinuousSpace(GenericSpace): """ Implements the continuous space """ def __init__(self, lower_limit, upper_limit, std_dev=None): super().__init__(float(lower_limit), float(upper_limit)) self.type = 'c' if std_dev is not None: self.std_dev = std_dev else: # default strategy parameter self.std_dev = 0.05 * (self.upper_limit-self.lower_limit) def get_strategy_parameter(self): """ Return this space strategy parameter """ return self.std_dev def set_strategy_parameter(self, value): """ Set a new value for this space strategy parameter :param value: Value to be set """ self.std_dev = value def get_sample(self): """ Get a random value within this space using a uniform distribution :return: Random sample """ return (self.upper_limit - self.lower_limit) * np.random.rand() + self.lower_limit if __name__ == '__main__': # Following is used for debugging. C = ContinuousSpace(-10, 10) I = IntegerSpace(0, 10) search_space1 = C search_space2 = I search_space1 *= C search_space1 = C * search_space1 search_space1 = search_space1 * C search_space2 *= I search_space2 = I * search_space2 search_space2 = search_space2 * I search_space = I * search_space1 * search_space2 * C individual1 = Individual(search_space=search_space) individual1.initialize() individual2 = Individual(search_space=search_space) individual2.initialize() individual1.recombine(individual2) individual1.mutate() exit(0)
39.642424
170
0.636804
660d6923bf082998a3ccf923f8cdd45f54e2aea0
701
py
Python
setup.py
skolwa/astro-realm
008e6e97a256cbc2fd15ca6612f7a99c818b7d34
[ "MIT" ]
null
null
null
setup.py
skolwa/astro-realm
008e6e97a256cbc2fd15ca6612f7a99c818b7d34
[ "MIT" ]
null
null
null
setup.py
skolwa/astro-realm
008e6e97a256cbc2fd15ca6612f7a99c818b7d34
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="astrorealm", version="0.0.1", author="Sthabile Kolwa", author_email="sthabile.kolwa@gmail.com", description='''This package provides modules for analysing the kinematics of gas in distant radio galaxies using telescope datasets.''', long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/thabsko/astrorealm", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], python_requires='>=3.6', )
30.478261
61
0.686163
6e5dfe88cc18ff54c530c286b03047db75316d77
10,163
py
Python
spare/cmds/farm_funcs.py
Spare-Network/spare-blockchain
9ea2677c73570131cfd02447b9cdc64cf01e0909
[ "Apache-2.0" ]
122
2021-06-18T23:51:22.000Z
2022-01-15T17:51:49.000Z
spare/cmds/farm_funcs.py
zcomputerwiz/spare-blockchain
c48fe41ac3b2aae2e76fce0e44ab0647530147ee
[ "Apache-2.0" ]
165
2021-06-18T23:12:20.000Z
2021-11-14T06:02:04.000Z
spare/cmds/farm_funcs.py
zcomputerwiz/spare-blockchain
c48fe41ac3b2aae2e76fce0e44ab0647530147ee
[ "Apache-2.0" ]
58
2021-06-18T23:10:50.000Z
2022-03-15T08:44:02.000Z
from typing import Any, Dict, List, Optional import aiohttp from spare.cmds.units import units from spare.consensus.block_record import BlockRecord from spare.rpc.farmer_rpc_client import FarmerRpcClient from spare.rpc.full_node_rpc_client import FullNodeRpcClient from spare.rpc.wallet_rpc_client import WalletRpcClient from spare.util.config import load_config from spare.util.default_root import DEFAULT_ROOT_PATH from spare.util.ints import uint16 from spare.util.misc import format_bytes from spare.util.misc import format_minutes SECONDS_PER_BLOCK = (24 * 3600) / 4608 async def get_plots(farmer_rpc_port: int) -> Optional[Dict[str, Any]]: try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if farmer_rpc_port is None: farmer_rpc_port = config["farmer"]["rpc_port"] farmer_client = await FarmerRpcClient.create(self_hostname, uint16(farmer_rpc_port), DEFAULT_ROOT_PATH, config) plots = await farmer_client.get_plots() except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): print(f"Connection error. Check if farmer is running at {farmer_rpc_port}") else: print(f"Exception from 'harvester' {e}") return None farmer_client.close() await farmer_client.await_closed() return plots async def get_blockchain_state(rpc_port: int) -> Optional[Dict[str, Any]]: blockchain_state = None try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if rpc_port is None: rpc_port = config["full_node"]["rpc_port"] client = await FullNodeRpcClient.create(self_hostname, uint16(rpc_port), DEFAULT_ROOT_PATH, config) blockchain_state = await client.get_blockchain_state() except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): print(f"Connection error. Check if full node is running at {rpc_port}") else: print(f"Exception from 'full node' {e}") client.close() await client.await_closed() return blockchain_state async def get_average_block_time(rpc_port: int) -> float: try: blocks_to_compare = 500 config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if rpc_port is None: rpc_port = config["full_node"]["rpc_port"] client = await FullNodeRpcClient.create(self_hostname, uint16(rpc_port), DEFAULT_ROOT_PATH, config) blockchain_state = await client.get_blockchain_state() curr: Optional[BlockRecord] = blockchain_state["peak"] if curr is None or curr.height < (blocks_to_compare + 100): client.close() await client.await_closed() return SECONDS_PER_BLOCK while curr is not None and curr.height > 0 and not curr.is_transaction_block: curr = await client.get_block_record(curr.prev_hash) if curr is None: client.close() await client.await_closed() return SECONDS_PER_BLOCK past_curr = await client.get_block_record_by_height(curr.height - blocks_to_compare) while past_curr is not None and past_curr.height > 0 and not past_curr.is_transaction_block: past_curr = await client.get_block_record(past_curr.prev_hash) if past_curr is None: client.close() await client.await_closed() return SECONDS_PER_BLOCK client.close() await client.await_closed() return (curr.timestamp - past_curr.timestamp) / (curr.height - past_curr.height) except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): print(f"Connection error. Check if full node is running at {rpc_port}") else: print(f"Exception from 'full node' {e}") client.close() await client.await_closed() return SECONDS_PER_BLOCK async def get_wallets_stats(wallet_rpc_port: int) -> Optional[Dict[str, Any]]: amounts = None try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if wallet_rpc_port is None: wallet_rpc_port = config["wallet"]["rpc_port"] wallet_client = await WalletRpcClient.create(self_hostname, uint16(wallet_rpc_port), DEFAULT_ROOT_PATH, config) amounts = await wallet_client.get_farmed_amount() # # Don't catch any exceptions, the caller will handle it # finally: wallet_client.close() await wallet_client.await_closed() return amounts async def is_farmer_running(farmer_rpc_port: int) -> bool: is_running = False try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if farmer_rpc_port is None: farmer_rpc_port = config["farmer"]["rpc_port"] farmer_client = await FarmerRpcClient.create(self_hostname, uint16(farmer_rpc_port), DEFAULT_ROOT_PATH, config) await farmer_client.get_connections() is_running = True except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): print(f"Connection error. Check if farmer is running at {farmer_rpc_port}") else: print(f"Exception from 'farmer' {e}") farmer_client.close() await farmer_client.await_closed() return is_running async def get_challenges(farmer_rpc_port: int) -> Optional[List[Dict[str, Any]]]: signage_points = None try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if farmer_rpc_port is None: farmer_rpc_port = config["farmer"]["rpc_port"] farmer_client = await FarmerRpcClient.create(self_hostname, uint16(farmer_rpc_port), DEFAULT_ROOT_PATH, config) signage_points = await farmer_client.get_signage_points() except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): print(f"Connection error. Check if farmer is running at {farmer_rpc_port}") else: print(f"Exception from 'farmer' {e}") farmer_client.close() await farmer_client.await_closed() return signage_points async def challenges(farmer_rpc_port: int, limit: int) -> None: signage_points = await get_challenges(farmer_rpc_port) if signage_points is None: return None signage_points.reverse() if limit != 0: signage_points = signage_points[:limit] for signage_point in signage_points: print( ( f"Hash: {signage_point['signage_point']['challenge_hash']} " f"Index: {signage_point['signage_point']['signage_point_index']}" ) ) async def summary(rpc_port: int, wallet_rpc_port: int, harvester_rpc_port: int, farmer_rpc_port: int) -> None: all_plots = await get_plots(farmer_rpc_port) blockchain_state = await get_blockchain_state(rpc_port) farmer_running = await is_farmer_running(farmer_rpc_port) wallet_not_ready: bool = False wallet_not_running: bool = False amounts = None try: amounts = await get_wallets_stats(wallet_rpc_port) except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): wallet_not_running = True else: wallet_not_ready = True print("Farming status: ", end="") if blockchain_state is None: print("Not available") elif blockchain_state["sync"]["sync_mode"]: print("Syncing") elif not blockchain_state["sync"]["synced"]: print("Not synced or not connected to peers") elif not farmer_running: print("Not running") else: print("Farming") if amounts is not None: print(f"Total spare farmed: {amounts['farmed_amount'] / units['spare']}") print(f"User transaction fees: {amounts['fee_amount'] / units['spare']}") print(f"Block rewards: {(amounts['farmer_reward_amount'] + amounts['pool_reward_amount']) / units['spare']}") print(f"Last height farmed: {amounts['last_height_farmed']}") total_plot_size = 0 total_plots = 0 if all_plots is not None: for harvester_ip, plots in all_plots.items(): if harvester_ip == "success": # This key is just "success": True continue total_plot_size_harvester = sum(map(lambda x: x["file_size"], plots["plots"])) total_plot_size += total_plot_size_harvester total_plots += len(plots["plots"]) print(f"Harvester {harvester_ip}:") print(f" {len(plots['plots'])} plots of size: {format_bytes(total_plot_size_harvester)}") print(f"Plot count for all harvesters: {total_plots}") print("Total size of plots: ", end="") print(format_bytes(total_plot_size)) else: print("Plot count: Unknown") print("Total size of plots: Unknown") if blockchain_state is not None: print("Estimated network space: ", end="") print(format_bytes(blockchain_state["space"])) else: print("Estimated network space: Unknown") minutes = -1 if blockchain_state is not None and all_plots is not None: proportion = total_plot_size / blockchain_state["space"] if blockchain_state["space"] else -1 minutes = int((await get_average_block_time(rpc_port) / 60) / proportion) if proportion else -1 if all_plots is not None and total_plots == 0: print("Expected time to win: Never (no plots)") else: print("Expected time to win: " + format_minutes(minutes)) if amounts is None: if wallet_not_running: print("For details on farmed rewards and fees you should run 'spare start wallet' and 'spare wallet show'") elif wallet_not_ready: print("For details on farmed rewards and fees you should run 'spare wallet show'") else: print("Note: log into your key using 'spare wallet show' to see rewards for each key")
39.391473
119
0.672734
35862e91c71fda3ec0bd73b587b7f563435ee535
3,887
py
Python
tests/entities_update_tests.py
aswathm78/moncli
745672a335e61910181c4abbf28115ded4eb6f0e
[ "BSD-3-Clause" ]
40
2019-11-22T19:52:18.000Z
2022-03-26T09:03:10.000Z
tests/entities_update_tests.py
aswathm78/moncli
745672a335e61910181c4abbf28115ded4eb6f0e
[ "BSD-3-Clause" ]
35
2019-09-24T22:27:43.000Z
2022-03-31T19:54:03.000Z
tests/entities_update_tests.py
aswathm78/moncli
745672a335e61910181c4abbf28115ded4eb6f0e
[ "BSD-3-Clause" ]
17
2020-04-10T18:55:10.000Z
2022-03-14T14:45:24.000Z
from unittest.mock import patch from nose.tools import ok_, eq_ from moncli import client, entities as en TEST_USER = en.User(**{'creds': None, 'id': '1', 'email': 'foo.bar@test.com'}) @patch('moncli.api_v2.get_updates') def test_update_should_return_list_of_replies(get_updates): # Arrange get_updates.return_value = [{'id': '1', 'creator_id': '1', 'item_id': '1', 'replies': [{'id': '2', 'creator_id': '1'}]}] # Act updates = client.get_updates() # Assert ok_(updates != None) eq_(len(updates), 1) eq_(len(updates[0].replies), 1) @patch('moncli.api_v2.get_updates') @patch('moncli.api_v2.get_users') def test_update_should_return_creator(get_users, get_updates): # Arrange get_updates.return_value = [{'id': '1', 'creator_id': '1', 'item_id': '1'}] get_users.return_value = [TEST_USER.to_primitive()] update = client.get_updates()[0] # Assert ok_(update != None) eq_(update.creator.to_primitive(), TEST_USER.to_primitive()) @patch('moncli.api_v2.get_updates') @patch('moncli.api_v2.get_users') def test_update_should_return_creator_of_update_reply(get_users, get_updates): # Arrange get_updates.return_value = [{'id': '1', 'creator_id': '1', 'item_id': '1', 'replies': [{'id': '2', 'creator_id': '1'}]}] get_users.return_value = [TEST_USER.to_primitive()] reply = client.get_updates()[0].replies[0] # Assert ok_(reply != None) eq_(reply.creator.to_primitive(), TEST_USER.to_primitive()) @patch('moncli.api_v2.get_updates') def test_should_return_list_of_replies_for_an_update(get_updates): # Arrange reply_id = '12345' reply_body = 'Reply text' get_updates.return_value = [{'id': '1', 'creator_id': '1', 'item_id': '1'}] update = client.get_updates()[0] get_updates.return_value = [{'id': '1', 'creator_id': '1', 'item_id': '1', 'replies': [{'id': reply_id, 'body': reply_body}]}] # Act replies = update.get_replies() # Assert ok_(replies) eq_(replies[0].id, reply_id) eq_(replies[0].body, reply_body) @patch('moncli.api_v2.get_updates') @patch('moncli.api_v2.add_file_to_update') def test_should_add_file_to_update(add_file_to_update, get_updates): # Arrange id = '12345' name = '33.jpg' url = 'https://test.monday.com/12345/33.jpg' get_updates.return_value = [{'id': '1', 'item_id': '1', 'creator_id': TEST_USER.id}] add_file_to_update.return_value = {'id': '12345', 'name': name, 'url': url} update = client.get_updates()[0] # Act asset = update.add_file('/Users/test/33.jpg') # Assert ok_(asset != None) eq_(asset.id, id) eq_(asset.name, name) eq_(asset.url, url) @patch('moncli.api_v2.get_updates') def test_should_get_files_from_update(get_updates): # Arrange id = '12345' name = '33.jpg' url = 'https://test.monday.com/12345/33.jpg' get_updates.return_value = [{'id': '1', 'item_id': '1', 'creator_id': '1'}] update = client.get_updates()[0] get_updates.return_value = [{'id': '1', 'item_id': '1', 'creator_id': '1', 'assets': [{'id': id, 'name': name, 'url': url}]}] # Act assets = update.get_files() # Assert ok_(assets) eq_(assets[0].id, id) eq_(assets[0].name, name) eq_(assets[0].url, url) @patch('moncli.api_v2.get_updates') @patch('moncli.api_v2.delete_update') def test_should_should_update(delete_update, get_updates): # Arrange id = '1' item_id = '1' creator_id = '1' get_updates.return_value = [{'id': id, 'item_id': item_id, 'creator_id': creator_id}] delete_update.return_value = {'id': id, 'item_id': item_id, 'creator_id': creator_id} update = client.get_updates()[0] # Act update = update.delete() # Assert ok_(update) eq_(update.id, id) eq_(update.item_id, item_id) eq_(update.creator_id, creator_id)
28.166667
130
0.646771
14cdb270096ebf0717e20664b85c6322d0620f75
1,155
py
Python
aggcat/utils.py
djedi/python-aggcat
a922ee4a7eabf3714e62cbeda73c8fece511f5ca
[ "Unlicense" ]
1
2021-01-14T21:44:09.000Z
2021-01-14T21:44:09.000Z
aggcat/utils.py
djedi/python-aggcat
a922ee4a7eabf3714e62cbeda73c8fece511f5ca
[ "Unlicense" ]
null
null
null
aggcat/utils.py
djedi/python-aggcat
a922ee4a7eabf3714e62cbeda73c8fece511f5ca
[ "Unlicense" ]
null
null
null
from StringIO import StringIO from lxml import etree def remove_namespaces(tree): io = StringIO() """Remove the namspaces from XML for easier parsing""" xslt = """ <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:output method="xml" indent="no"/> <xsl:template match="/|comment()|processing-instruction()"> <xsl:copy> <xsl:apply-templates/> </xsl:copy> </xsl:template> <xsl:template match="*"> <xsl:element name="{local-name()}"> <xsl:apply-templates select="@*|node()"/> </xsl:element> </xsl:template> <xsl:template match="@*"> <xsl:attribute name="{local-name()}"> <xsl:value-of select="."/> </xsl:attribute> </xsl:template> </xsl:stylesheet> """ xslt_root = etree.XML(xslt) transform = etree.XSLT(xslt_root) parsed_tree = transform(tree) parsed_tree.write(io) return io.getvalue()
32.083333
91
0.502165
2708f38bdc1150aa45b31ba3dc352ee0cbd5a996
5,720
py
Python
dashboard/dashboard/doctype/dashboard_items/dashboard_items.py
TridotsTech/FrappeDashboardBuilder
2f8ff177694d13bd5941c3bcba4056f2bb5d19ac
[ "MIT" ]
1
2019-08-18T08:16:00.000Z
2019-08-18T08:16:00.000Z
dashboard/dashboard/doctype/dashboard_items/dashboard_items.py
TridotsTech/FrappeDashboardBuilder
2f8ff177694d13bd5941c3bcba4056f2bb5d19ac
[ "MIT" ]
null
null
null
dashboard/dashboard/doctype/dashboard_items/dashboard_items.py
TridotsTech/FrappeDashboardBuilder
2f8ff177694d13bd5941c3bcba4056f2bb5d19ac
[ "MIT" ]
1
2020-10-11T13:22:51.000Z
2020-10-11T13:22:51.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2018, info@valiantsystems.com and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class DashboardItems(Document): # def autoname(self): # self.name=self.display_text+' - '+self.type def validate(self): if self.type=='Counter': self.query_field=set_counter_query(self) self.css_style=set_css_property(self) elif self.type=='Table': self.query_field=set_table_query(self) else: assign_condition_query(self) @frappe.whitelist() def set_counter_query(self): query='' if self.counter_type=='Count': query='SELECT count(doc.*) as count from `tab{doctype}` doc'.format(doctype=self.reference_doctype) else: query='SELECT sum(doc.{field}) as sum from `tab{doctype}` doc'.format(doctype=self.reference_doctype,field=self.referred_field) if self.is_child_table_based==1 and self.reference_child_doc_name: query+=',`tab{childdoc}` childdoc'.format(childdoc=self.reference_child_doc_name) if self.date_range=='Daily': query+=' where CAST(creation as DATE)=CURDATE()' elif self.date_range=='Weekly': query+=' where creation BETWEEN CURDATE() and DATE_SUB(CURDATE(), INTERVAL 7 DAY)' elif self.date_range=='Monthly': query+=' where MONTH(CURDATE())=MONTH(creation)' if self.date_range!="All Time": query+=', childdoc.name=doc.name' elif self.is_child_table_based==1 and self.date_range=="All Time": query+=' where childdoc.parent=doc.name' docfields=frappe.get_meta(self.reference_doctype).get("fields") if self.conditions: for cond in self.conditions: if not cond.fieldtype: cond.fieldtype=next((x.fieldtype for x in docfields if x.fieldname==cond.fieldname),None) if query.find('where')==-1: query+=' where ' else: query+=' and ' conditions=get_cond_query(cond) if conditions: query+=conditions return query def get_cond_query(cond): query='' if cond.condition=='Equals': cond.condition_symbol='=' query+='doc.{field} = "{value}"'.format(field=cond.fieldname,value=cond.value) elif cond.condition=='Not Equals': cond.condition_symbol='!=' query+='doc.{field} != "{value}"'.format(field=cond.fieldname,value=cond.value) elif cond.condition=='Like': cond.condition_symbol='like' query+='doc.{field} like "%{value}%"'.format(field=cond.fieldname,value=cond.value) elif cond.condition=='Not Like': cond.condition_symbol='not like' query+='doc.{field} not like "%{value}%"'.format(field=cond.fieldname,value=cond.value) elif cond.condition=='In': cond.condition_symbol='in' values=cond.value.split('\n') val='"'+'","'.join(values)+'"' query+='{field} in ({value})'.format(field=cond.fieldname,value=val) elif cond.condition=='Not In': cond.condition_symbol='not in' values=cond.value.split('\n') val='"'+'","'.join(values)+'"' query+='{field} not in ({value})'.format(field=cond.fieldname,value=val) else: cond.condition_query=cond.condition query+='doc.{field} {operator} "{value}"'.format(field=cond.fieldname,operator=cond.condition,value=cond.value) return query @frappe.whitelist() def set_table_query(self): query='select ' if self.fields_to_specify: query+=self.fields_to_specify[:-1] else: query+='*' query+=' from `tab{doctype}`'.format(doctype=self.reference_doctype) query=assign_conditions(self,query) return query @frappe.whitelist() def assign_conditions(self,query): if self.conditions: docfields=frappe.get_meta(self.reference_doctype).get("fields") for cond in self.conditions: if not cond.fieldtype: cond.fieldtype=next((x.fieldtype for x in docfields if x.fieldname==cond.fieldname),None) if query.find('where')==-1: query+=' where ' else: query+=' and ' conditions=get_cond_query(cond) if conditions: query+=conditions return query @frappe.whitelist() def assign_condition_query(self): query='' docfields=frappe.get_meta(self.reference_doctype).get("fields") if self.datasets: for item in self.datasets: if self.conditions: for c in self.conditions: if not c.fieldtype: c.fieldtype=next((x.fieldtype for x in docfields if x.fieldname==c.fieldname),None) if c.condition_for==item.name: query+=' and ' conditions=get_cond_query(c) if conditions: query+=conditions item.condition_query=query else: query='select ' datef=next((x.fieldname for x in docfields if x.label==self.date_fields),None) if self.value_type=='Count': query+='count(*) as value' elif self.value_type=='Sum': field=next((x.fieldname for x in docfields if x.label==self.value_fields),None) query+='sum({field}) as value'.format(field=field) query+=',{field} as label from `tab{doctype}`'.format(doctype=self.reference_doctype,field=datef) query=assign_conditions(self,query) query+=' group by {field}'.format(field=datef) query+=' order by value {type}'.format(type=('asc' if self.order_by=='Ascending' else 'desc')) query+=' limit {limit}'.format(limit=(self.no_of_graph_records if self.no_of_graph_records>0 else 10)) self.query_field=query @frappe.whitelist() def set_css_property(self): css='' if self.text_color: css+='color:'+self.text_color+';' if self.bg_type=='Image Background': if self.background_image: css+='background-image:url("'+self.background_image+'");' elif self.bg_type=='Gradient Background': if self.gradient_type=='Linear': css+='background-image:linear-gradient(to '+self.linear_gradient_direction.lower()+','+self.bg_1+','+self.bg_2+');' else: css+='background-image:radial-gradient('+self.bg_1+','+self.bg_2+');' else: css+='background:'+self.bg_1+';' return css
35.974843
129
0.715909
8870165d006985a6aa9e568fff9254b5d4578c1d
5,913
py
Python
dataprep/clean/clean_iban.py
devinllu/dataprep
d56861e5bed3c608cace74983f797dc729072d0a
[ "MIT" ]
1
2022-02-14T07:18:00.000Z
2022-02-14T07:18:00.000Z
dataprep/clean/clean_iban.py
devinllu/dataprep
d56861e5bed3c608cace74983f797dc729072d0a
[ "MIT" ]
null
null
null
dataprep/clean/clean_iban.py
devinllu/dataprep
d56861e5bed3c608cace74983f797dc729072d0a
[ "MIT" ]
null
null
null
""" Clean and validate a DataFrame column containing IBAN numbers. """ # pylint: disable=too-many-lines, too-many-arguments, too-many-branches, unused-argument from typing import Any, Union from operator import itemgetter import dask.dataframe as dd import numpy as np import pandas as pd from stdnum import iban from ..progress_bar import ProgressBar from .utils import NULL_VALUES, to_dask def clean_iban( df: Union[pd.DataFrame, dd.DataFrame], column: str, output_format: str = "standard", split: bool = False, inplace: bool = False, errors: str = "coerce", progress: bool = True, ) -> pd.DataFrame: """ Clean IBAN type data in a DataFrame column. Parameters ---------- df A pandas or Dask DataFrame containing the data to be cleaned. column The name of the column containing data of ISBN type. output_format The output format of standardized number string. If output_format = 'compact', return string without any separators. If output_format = 'standard', return string with proper separators. (default: "standard") split If True, each component of derived from its number string will be put into its own column. (default: False) inplace If True, delete the column containing the data that was cleaned. Otherwise, keep the original column. (default: False) errors How to handle parsing errors. - ‘coerce’: invalid parsing will be set to NaN. - ‘ignore’: invalid parsing will return the input. - ‘raise’: invalid parsing will raise an exception. (default: 'coerce') progress If True, display a progress bar. (default: True) Examples -------- Clean a column of ISBN data. >>> df = pd.DataFrame({ "iban": [ "978-9024538270", "978-9024538271"] }) >>> clean_iban(df, 'iban', inplace=True) iban_clean 0 978-90-245-3827-0 1 NaN """ if output_format not in {"compact", "standard"}: raise ValueError( f"output_format {output_format} is invalid. " 'It needs to be "compact", "standard".' ) # convert to dask df = to_dask(df) # To clean, create a new column "clean_code_tup" which contains # the cleaned values and code indicating how the initial value was # changed in a tuple. Then split the column of tuples and count the # amount of different codes to produce the report df["clean_code_tup"] = df[column].map_partitions( lambda srs: [_format(x, output_format, split, errors) for x in srs], meta=object, ) if split: # For some reason the meta data for the last 3 components needs to be # set. I think this is a dask bug df = df.assign( _temp_=df["clean_code_tup"].map(itemgetter(0), meta=("_temp", object)), country_code=df["clean_code_tup"].map(itemgetter(1), meta=("country_code", object)), check_digits=df["clean_code_tup"].map(itemgetter(2), meta=("check_digits", object)), bban_code=df["clean_code_tup"].map(itemgetter(3), meta=("bban_code", object)), ) else: df = df.assign( _temp_=df["clean_code_tup"].map(itemgetter(0)), ) df = df.rename(columns={"_temp_": f"{column}_clean"}) df = df.drop(columns=["clean_code_tup"]) if inplace: df[column] = df[f"{column}_clean"] df = df.drop(columns=f"{column}_clean") df = df.rename(columns={column: f"{column}_clean"}) with ProgressBar(minimum=1, disable=not progress): df = df.compute() # output a report describing the result of clean_country return df def validate_iban( df: Union[str, pd.Series, dd.Series, pd.DataFrame, dd.DataFrame], column: str = "", ) -> Union[bool, pd.Series, pd.DataFrame]: """ Validate if a data cell is IBAN in a DataFrame column. For each cell, return True or False. Parameters ---------- df A pandas or Dask DataFrame containing the data to be validated. column The name of the column to be validated. """ if isinstance(df, (pd.Series, dd.Series)): return df.apply(iban.is_valid) elif isinstance(df, (pd.DataFrame, dd.DataFrame)): if column != "": return df[column].apply(iban.is_valid) else: return df.applymap(iban.is_valid) return iban.is_valid(df) def _format( val: Any, output_format: str = "standard", split: bool = False, errors: str = "coarse" ) -> Any: """ Reformat a number string with proper separators (formats). Parameters ---------- val The value of number string. output_format If output_format = 'compact', return string without any separators. If output_format = 'standard', return string with proper separators function. """ val = str(val) result: Any = [] if val in NULL_VALUES: if split: return [np.nan, np.nan, np.nan, np.nan] else: return [np.nan] if not validate_iban(val): if errors == "raise": raise ValueError(f"Unable to parse value {val}") error_result = val if errors == "ignore" else np.nan if split: return [error_result, np.nan, np.nan, np.nan] else: return [error_result] if split: compacted_val = iban.compact(val) result = [compacted_val[:2], compacted_val[2:4], compacted_val[4:]] if output_format == "compact": result = [iban.compact(val)] + result elif output_format == "standard": result = [iban.format(val)] + result return result
31.121053
97
0.603754
47d23289200133407a8a8de01a79ac3693b8e84d
2,319
py
Python
plugins/libravatar/libravatar.py
mohnjahoney/website_source
edc86a869b90ae604f32e736d9d5ecd918088e6a
[ "MIT" ]
13
2020-01-27T09:02:25.000Z
2022-01-20T07:45:26.000Z
plugins/libravatar/libravatar.py
mohnjahoney/website_source
edc86a869b90ae604f32e736d9d5ecd918088e6a
[ "MIT" ]
29
2020-03-22T06:57:57.000Z
2022-01-24T22:46:42.000Z
plugins/libravatar/libravatar.py
mohnjahoney/website_source
edc86a869b90ae604f32e736d9d5ecd918088e6a
[ "MIT" ]
6
2020-07-10T00:13:30.000Z
2022-01-26T08:22:33.000Z
"""Libravatar plugin for Pelican""" ## Copyright (C) 2015 Rafael Laboissiere <rafael@laboissiere.net> ## ## This program is free software: you can redistribute it and/or modify it ## under the terms of the GNU General Affero Public License as published by ## the Free Software Foundation, either version 3 of the License, or (at ## your option) any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## Affero General Public License for more details. ## ## You should have received a copy of the GNU Affero General Public License ## along with this program. If not, see http://www.gnu.org/licenses/. import hashlib from pelican import signals def initialize(pelicanobj): """Initialize the Libravatar plugin""" pelicanobj.settings.setdefault("LIBRAVATAR_MISSING", None) pelicanobj.settings.setdefault("LIBRAVATAR_SIZE", None) def add_libravatar(generator, metadata): """Article generator connector for the Libravatar plugin""" missing = generator.settings.get("LIBRAVATAR_MISSING") size = generator.settings.get("LIBRAVATAR_SIZE") ## Check the presence of the Email header if "email" not in metadata.keys(): try: metadata["email"] = generator.settings.get("AUTHOR_EMAIL") except: pass ## Add the Libravatar URL if metadata["email"]: ## Compose URL using the MD5 hash ## (the ascii encoding is necessary for Python3) email = metadata["email"].lower().encode("ascii") md5 = hashlib.md5(email).hexdigest() url = "http://cdn.libravatar.org/avatar/" + md5 ## Add eventual "missing picture" option if missing or size: url = url + "?" if missing: url = url + "d=" + missing if size: url = url + "&" if size: url = url + "s=" + str(size) ## Add URL to the article's metadata metadata["author_libravatar"] = url def register(): """Register the Libravatar plugin with Pelican""" signals.initialized.connect(initialize) signals.article_generator_context.connect(add_libravatar)
34.102941
75
0.661492
dd7309a51f5a56c0054b8786a504826624e60ee0
8,601
py
Python
summarytable.py
dalekreitler-bnl/summarytable
d6a82a54b73482d0fe6e607fb37f8bd88b9fe302
[ "MIT" ]
null
null
null
summarytable.py
dalekreitler-bnl/summarytable
d6a82a54b73482d0fe6e607fb37f8bd88b9fe302
[ "MIT" ]
null
null
null
summarytable.py
dalekreitler-bnl/summarytable
d6a82a54b73482d0fe6e607fb37f8bd88b9fe302
[ "MIT" ]
null
null
null
#!/bin/python import xmltodict from pathlib import PurePath import os from time import sleep import fcntl def scan_directory(dirpath, dirs_to_avoid=["dozor"], sort_dirs=True, filepatterns=["fast_dp.xml","autoPROC.xml"]): path_dict = {} for (dirpath,dirnames,filenames) in os.walk(dirpath,topdown=True): dirnames[:] = [d for d in dirnames if d not in dirs_to_avoid] for f in filenames: if f in filepatterns: path_dict[f"{os.path.join(dirpath,f)}"] = os.path.getmtime(os.path.join(dirpath,f)) return path_dict class DataDirectory: def __init__(self,dirpath): self._dirpath = dirpath self._observer_list = [] self._path_dict = {} def attach(self,observer): self._observer_list.append(observer) def notify(self,path_set): [observer.update(path_set) for observer in self._observer_list] def check_directory(self): path_dict = scan_directory(self._dirpath) path_set_to_send = set([]) for pd in path_dict: #check for new file if pd in self._path_dict: #check for update to file if path_dict[pd] - self._path_dict[pd] > 0: path_set_to_send.add(pd) else: path_set_to_send.add(pd) if path_set_to_send: self.notify(sorted(path_set_to_send,key=os.path.getmtime)) self._path_dict = path_dict class FileObserver: def __init__(self): self._results = ''.join([make_header(),'\n']) def update(self, paths): new_results = '\n'.join([format_results_string(parse_fdp_xml(fp)) for fp in paths if parse_fdp_xml(fp)]) new_results = ''.join([new_results,'\n']) self._results = ''.join([self._results,new_results]) with open('fast_dp.summary.txt','w') as f: fcntl.flock(f,fcntl.LOCK_SH) f.write(self._results) class DisplayObserver: def __init__(self): print(make_header()) def update(self, paths): #display results in order files created [print(format_results_string(parse_fdp_xml(f))) for f in paths if parse_fdp_xml(f)] def make_header(): first_row = ''.join([f"{'':34}", f'{"|---------------Overall------------------|":^14}', f'{"|-------------Outer-Shell----------------|":^14}\n',]) formatted_string=''.join([f'{"Sample Path":>34}', f'{"Hi":>7}', f'{"Lo":>7}', f'{"R_mrg":>7}', f'{"cc12":>7}', f'{"comp":>7}', f'{"mult":>7}', f'{"Hi":>7}', f'{"Lo":>7}', f'{"R_mrg":>7}', f'{"cc12":>7}', f'{"comp":>7}', f'{"mult":>7}', f'{"symm":>12}', f'{"a":>7}', f'{"b":>7}', f'{"c":>7}', f'{"alpha":>7}', f'{"beta":>7}', f'{"gamma":>7}']) return ''.join([first_row,formatted_string]) def parse_fdp_xml(filename): with open(filename) as f: fdp_xml = xmltodict.parse(f.read()) #sometimes there are multiple program attachment entries try: path=fdp_xml["AutoProcContainer"]\ ["AutoProcProgramContainer"]\ ["AutoProcProgramAttachment"]\ ["filePath"] except TypeError: path=fdp_xml["AutoProcContainer"]\ ["AutoProcProgramContainer"]\ ["AutoProcProgramAttachment"][0]\ ["filePath"] path_parts = PurePath(path).parts sample_name_path = '/'.join([path_parts[-4],path_parts[-3]]) try: #all resolution shells overall = fdp_xml["AutoProcContainer"]\ ["AutoProcScalingContainer"]\ ["AutoProcScalingStatistics"][0] #pertinent values for table res_lim_low_overall = float(overall["resolutionLimitLow"]) res_lim_high_overall = float(overall["resolutionLimitHigh"]) r_merge_overall = float(overall["rMerge"]) cc_half_overall = float(overall["ccHalf"]) comp_overall = float(overall["completeness"]) mult_overall = float(overall["multiplicity"]) #outer resolution shell outer = fdp_xml["AutoProcContainer"]\ ["AutoProcScalingContainer"]\ ["AutoProcScalingStatistics"][2] #pertinent values for table res_lim_low_outer = float(outer["resolutionLimitLow"]) res_lim_high_outer = float(outer["resolutionLimitHigh"]) r_merge_outer = float(outer["rMerge"]) cc_half_outer = float(outer["ccHalf"]) comp_outer = float(outer["completeness"]) mult_outer = float(outer["multiplicity"]) #symmetry info cell = fdp_xml["AutoProcContainer"]["AutoProc"] space_group = cell["spaceGroup"] a = float(cell["refinedCell_a"]) b = float(cell["refinedCell_b"]) c = float(cell["refinedCell_c"]) alpha = float(cell["refinedCell_alpha"]) beta = float(cell["refinedCell_beta"]) gamma = float(cell["refinedCell_gamma"]) return (sample_name_path, res_lim_high_overall, res_lim_low_overall, r_merge_overall, cc_half_overall, comp_overall, mult_overall, res_lim_high_outer, res_lim_low_outer, r_merge_outer, cc_half_outer, comp_outer, mult_outer, space_group, a, b, c, alpha, beta, gamma) except KeyError: return '' def format_results_string(*args): result_string = args[0] try: formatted_string=''.join([f'{result_string[0]:>34}',#sample path f'{result_string[1]:7.2f}',#high res cut overall f'{result_string[2]:7.2f}',#low res cut overall f'{result_string[3]:7.3f}',#R_merge overall f'{result_string[4]:7.2f}',#cc12 overall f'{result_string[5]:7.2f}',#completeness overall f'{result_string[6]:7.2f}',#multiplicity overall f'{result_string[7]:7.2f}',#high res cut outer f'{result_string[8]:7.2f}',#low res cut outer f'{result_string[9]:7.3f}',#R_merge outer f'{result_string[10]:7.2f}',#cc12 outer f'{result_string[11]:7.2f}',#completeness outer f'{result_string[12]:7.2f}',#multiplicity outer f'{result_string[13]:>12}',#space group f'{result_string[14]:7.1f}',#a f'{result_string[15]:7.1f}',#b f'{result_string[16]:7.1f}',#c f'{result_string[17]:7.1f}',#alpha f'{result_string[18]:7.1f}',#beta f'{result_string[19]:7.1f}'])#gamma return formatted_string except IndexError: return result_string if __name__ == "__main__": test_dir = os.getcwd() try: if os.path.basename(test_dir) == "fast_dp_dir": mx_directory = PurePath(test_dir).parent print(mx_directory) d = DataDirectory(mx_directory) dobs = DisplayObserver() fobs = FileObserver() d.attach(dobs) d.attach(fobs) while True: d.check_directory() sleep(10) else: print("summarytable must be launched from fast_dp_dir...") except KeyboardInterrupt: print("\nExiting gracefully...")
38.397321
99
0.488897
83413188b8941713b5a3de52a46c23b1290228d8
9,540
py
Python
backend/pyrogram/utils.py
appheap/social-media-analyzer
0f9da098bfb0b4f9eb38e0244aa3a168cf97d51c
[ "Apache-2.0" ]
5
2021-09-11T22:01:15.000Z
2022-03-16T21:33:42.000Z
backend/pyrogram/utils.py
iamatlasss/social-media-analyzer
429d1d2bbd8bfce80c50c5f8edda58f87ace668d
[ "Apache-2.0" ]
null
null
null
backend/pyrogram/utils.py
iamatlasss/social-media-analyzer
429d1d2bbd8bfce80c50c5f8edda58f87ace668d
[ "Apache-2.0" ]
3
2022-01-18T11:06:22.000Z
2022-02-26T13:39:28.000Z
import asyncio import base64 import functools import hashlib import os import struct from concurrent.futures.thread import ThreadPoolExecutor from getpass import getpass from typing import Union, List, Optional, Dict import pyrogram from pyrogram import raw from pyrogram import types from pyrogram.file_id import FileId, FileType, PHOTO_TYPES, DOCUMENT_TYPES async def ainput(prompt: str = "", *, hide: bool = False): """Just like the built-in input, but async""" with ThreadPoolExecutor(1) as executor: func = functools.partial(getpass if hide else input, prompt) return await asyncio.get_event_loop().run_in_executor(executor, func) def get_input_media_from_file_id( file_id: str, expected_file_type: FileType = None ) -> Union["raw.types.InputMediaPhoto", "raw.types.InputMediaDocument"]: try: decoded = FileId.decode(file_id) except Exception: raise ValueError(f'Failed to decode "{file_id}". The value does not represent an existing local file, ' f'HTTP URL, or valid file id.') file_type = decoded.file_type if expected_file_type is not None and file_type != expected_file_type: raise ValueError(f"Expected {expected_file_type.name}, got {file_type.name} file id instead") if file_type in (FileType.THUMBNAIL, FileType.CHAT_PHOTO): raise ValueError(f"This file id can only be used for download: {file_id}") if file_type in PHOTO_TYPES: return raw.types.InputMediaPhoto( id=raw.types.InputPhoto( id=decoded.media_id, access_hash=decoded.access_hash, file_reference=decoded.file_reference ) ) if file_type in DOCUMENT_TYPES: return raw.types.InputMediaDocument( id=raw.types.InputDocument( id=decoded.media_id, access_hash=decoded.access_hash, file_reference=decoded.file_reference ) ) raise ValueError(f"Unknown file id: {file_id}") def get_offset_date(dialogs): for m in reversed(dialogs.messages): if isinstance(m, raw.types.MessageEmpty): continue else: return m.date else: return 0 def unpack_inline_message_id(inline_message_id: str) -> "raw.types.InputBotInlineMessageID": r = inline_message_id + "=" * (-len(inline_message_id) % 4) r = struct.unpack("<iqq", base64.b64decode(r, altchars=b"-_")) return raw.types.InputBotInlineMessageID( dc_id=r[0], id=r[1], access_hash=r[2] ) MIN_CHANNEL_ID = -1002147483647 MAX_CHANNEL_ID = -1000000000000 MIN_CHAT_ID = -2147483647 MAX_USER_ID = 2147483647 def get_raw_peer_id(peer: raw.base.Peer) -> Optional[int]: """Get the raw peer id from a Peer object""" if isinstance(peer, raw.types.PeerUser): return peer.user_id if isinstance(peer, raw.types.PeerChat): return peer.chat_id if isinstance(peer, raw.types.PeerChannel): return peer.channel_id return None def get_peer_id(peer: raw.base.Peer) -> int: """Get the non-raw peer id from a Peer object""" if isinstance(peer, raw.types.PeerUser): return peer.user_id if isinstance(peer, raw.types.PeerChat): return -peer.chat_id if isinstance(peer, raw.types.PeerChannel): return MAX_CHANNEL_ID - peer.channel_id raise ValueError(f"Peer type invalid: {peer}") def get_peer_type(peer_id: int) -> str: if peer_id < 0: if MIN_CHAT_ID <= peer_id: return "chat" if MIN_CHANNEL_ID <= peer_id < MAX_CHANNEL_ID: return "channel" elif 0 < peer_id <= MAX_USER_ID: return "user" raise ValueError(f"Peer id invalid: {peer_id}") def get_channel_id(peer_id: int) -> int: return MAX_CHANNEL_ID - peer_id def btoi(b: bytes) -> int: return int.from_bytes(b, "big") def itob(i: int) -> bytes: return i.to_bytes(256, "big") def sha256(data: bytes) -> bytes: return hashlib.sha256(data).digest() def xor(a: bytes, b: bytes) -> bytes: return bytes(i ^ j for i, j in zip(a, b)) def compute_password_hash(algo: raw.types.PasswordKdfAlgoSHA256SHA256PBKDF2HMACSHA512iter100000SHA256ModPow, password: str) -> bytes: hash1 = sha256(algo.salt1 + password.encode() + algo.salt1) hash2 = sha256(algo.salt2 + hash1 + algo.salt2) hash3 = hashlib.pbkdf2_hmac("sha512", hash2, algo.salt1, 100000) return sha256(algo.salt2 + hash3 + algo.salt2) # noinspection PyPep8Naming def compute_password_check(r: raw.types.account.Password, password: str) -> raw.types.InputCheckPasswordSRP: algo = r.current_algo p_bytes = algo.p p = btoi(algo.p) g_bytes = itob(algo.g) g = algo.g B_bytes = r.srp_B B = btoi(B_bytes) srp_id = r.srp_id x_bytes = compute_password_hash(algo, password) x = btoi(x_bytes) g_x = pow(g, x, p) k_bytes = sha256(p_bytes + g_bytes) k = btoi(k_bytes) kg_x = (k * g_x) % p while True: a_bytes = os.urandom(256) a = btoi(a_bytes) A = pow(g, a, p) A_bytes = itob(A) u = btoi(sha256(A_bytes + B_bytes)) if u > 0: break g_b = (B - kg_x) % p ux = u * x a_ux = a + ux S = pow(g_b, a_ux, p) S_bytes = itob(S) K_bytes = sha256(S_bytes) M1_bytes = sha256( xor(sha256(p_bytes), sha256(g_bytes)) + sha256(algo.salt1) + sha256(algo.salt2) + A_bytes + B_bytes + K_bytes ) return raw.types.InputCheckPasswordSRP(srp_id=srp_id, A=A_bytes, M1=M1_bytes) async def parse_text_entities( client: "pyrogram.Client", text: str, parse_mode: str, entities: List["types.MessageEntity"] ) -> Dict[str, raw.base.MessageEntity]: if entities: # Inject the client instance because parsing user mentions requires it for entity in entities: entity._client = client text, entities = text, [await entity.write() for entity in entities] else: text, entities = (await client.parser.parse(text, parse_mode)).values() return { "message": text, "entities": entities } async def maybe_run_in_executor(func, data, length, loop, *args): return ( func(data, *args) if length <= pyrogram.CRYPTO_EXECUTOR_SIZE_THRESHOLD else await loop.run_in_executor(pyrogram.crypto_executor, func, data, *args) ) async def parse_admin_log_events( client: "pyrogram.Client", admin_log_results: raw.base.channels.AdminLogResults ) -> List["types.ChannelAdminLogEvent"]: users = {i.id: i for i in admin_log_results.users} chats = {i.id: i for i in admin_log_results.chats} if not admin_log_results.events: return types.List() parsed_events = [] for event in admin_log_results.events: parsed_event = await types.ChannelAdminLogEvent._parse(client, event, users, chats) if parsed_event: parsed_events.append(parsed_event) return types.List(parsed_events) if len(parsed_events) else types.List() async def parse_message_views( client, message_views: "raw.types.messages.MessageViews", message_ids: list ) -> List["types.MessageViews"]: users = {i.id: i for i in message_views.users} chats = {i.id: i for i in message_views.chats} if not message_views.views: return types.List() parsed_views = [] for message_id, view in zip(message_ids, message_views.views): parsed_view = await types.MessageViews._parse(client, message_id, view, users, chats) if parsed_view: parsed_views.append(parsed_view) return types.List(parsed_views) async def parse_messages( client, messages: "raw.types.messages.Messages", replies: int = 1, is_scheduled: bool = False, ) -> List["types.Message"]: users = {i.id: i for i in messages.users} chats = {i.id: i for i in messages.chats} if not messages.messages: return types.List() parsed_messages = [] for message in messages.messages: parsed_messages.append( await types.Message._parse( client, message, users, chats, is_scheduled=is_scheduled, replies=0 ) ) return types.List(parsed_messages) def parse_deleted_messages(client, update) -> List["types.Message"]: messages = update.messages channel_id = getattr(update, "channel_id", None) parsed_messages = [] for message in messages: parsed_messages.append( types.Message( message_id=message, chat=types.Chat( id=get_channel_id(channel_id), type="channel", client=client ) if channel_id is not None else None, client=client, type='empty', ) ) return types.List(parsed_messages) def parse_search_counters(r: List["raw.types.messages.SearchCounter"]) -> List["types.SearchCounter"]: parsed_objects = [] for raw_search_counter in r: parsed_objects.append( types.SearchCounter._parse( raw_obj=raw_search_counter ) ) return list(filter(lambda obj: obj is not None, parsed_objects))
27.492795
111
0.634696
806154c4643ec23d664f319d2d54100c301db412
1,487
py
Python
python_examples/example_box.py
adam-urbanczyk/cpp-solnp
97ac9296e39bf3dedcf3eacc1abc659e7eb7c6fa
[ "BSL-1.0" ]
null
null
null
python_examples/example_box.py
adam-urbanczyk/cpp-solnp
97ac9296e39bf3dedcf3eacc1abc659e7eb7c6fa
[ "BSL-1.0" ]
null
null
null
python_examples/example_box.py
adam-urbanczyk/cpp-solnp
97ac9296e39bf3dedcf3eacc1abc659e7eb7c6fa
[ "BSL-1.0" ]
null
null
null
""" To test this algorithm, then: 1) Install this package, for example through pip or by running "pip install ." from the cpp_solnp folder. 2) Run this file with Python """ import pysolnp def box_objective_function(x): result = -1 * x[0] * x[1] * x[2] return result def box_equality_function(x): result = [ 4 * x[0] * x[1] + 2 * x[1] * x[2] + 2 * x[2] * x[0] ] return result starting_point = [1.1, 1.1, 9.0] lower_bound = [1.0, 1.0, 1.0] upper_bound = [10.0, 10.0, 10.0] equality_values = [100] if __name__ == "__main__": result = pysolnp.solve( obj_func=box_objective_function, par_start_value=starting_point, par_lower_limit=lower_bound, par_upper_limit=upper_bound, eq_func=box_equality_function, eq_values=equality_values) final_parameters = result.optimum print(final_parameters) print(result.solve_value) print(result.callbacks) print(box_equality_function(final_parameters)) final_objective_value = box_objective_function(final_parameters) equality_constaints = box_equality_function(final_parameters) for index, value in enumerate(final_parameters): distance_to_lower = value - lower_bound[index] distance_to_over = upper_bound[index] - value print(f"Distance for index {index}: lower {distance_to_lower} upper {distance_to_over}")
25.20339
105
0.643578
efb2a17bd35c02b1526c4307d92920f90e491922
487
py
Python
interview/project/tests/base.py
Nkarnaud/interview_mgt
21c0cb987135b09b37fa1f5250a2eb96d9bb61b8
[ "Apache-2.0" ]
1
2019-08-08T10:25:48.000Z
2019-08-08T10:25:48.000Z
interview/project/tests/base.py
Nkarnaud/interview_mgt
21c0cb987135b09b37fa1f5250a2eb96d9bb61b8
[ "Apache-2.0" ]
null
null
null
interview/project/tests/base.py
Nkarnaud/interview_mgt
21c0cb987135b09b37fa1f5250a2eb96d9bb61b8
[ "Apache-2.0" ]
null
null
null
from flask_testing import TestCase from project import create_app, db # App initialisation app = create_app() # Defining the base test configuration class BaseTestCase(TestCase): def create_app(self): app.config.from_object('project.config.TestingConfig') return app # Database setup def setUp(self): db.create_all() db.session.commit() # Database tear down def tearDown(self): db.session.remove() db.drop_all()
19.48
62
0.671458
9dbebbb28a51f9d7841d3172e62feed098293d12
49,605
py
Python
scripts/slave/recipes/findit/chromium/test.py
mithro/chromium-build
98d83e124dc08510756906171922a22ba27b87fa
[ "BSD-3-Clause" ]
null
null
null
scripts/slave/recipes/findit/chromium/test.py
mithro/chromium-build
98d83e124dc08510756906171922a22ba27b87fa
[ "BSD-3-Clause" ]
null
null
null
scripts/slave/recipes/findit/chromium/test.py
mithro/chromium-build
98d83e124dc08510756906171922a22ba27b87fa
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from collections import defaultdict import json from recipe_engine.config import Dict from recipe_engine.config import List from recipe_engine.config import Single from recipe_engine.recipe_api import Property DEPS = [ 'adb', 'buildbucket', 'depot_tools/bot_update', 'chromium', 'chromium_android', 'chromium_checkout', 'chromium_swarming', 'chromium_tests', 'commit_position', 'depot_tools/gclient', 'depot_tools/git', 'filter', 'findit', 'isolate', 'recipe_engine/context', 'recipe_engine/json', 'recipe_engine/path', 'recipe_engine/platform', 'recipe_engine/properties', 'recipe_engine/python', 'recipe_engine/raw_io', 'recipe_engine/step', 'swarming', 'test_results', 'test_utils', ] PROPERTIES = { 'target_mastername': Property( kind=str, help='The target master to match compile config to.'), 'target_testername': Property( kind=str, help='The target tester to match test config to. If the tests are run ' 'on a builder, just treat the builder as a tester.'), 'good_revision': Property( kind=str, help='The last known good revision.'), 'bad_revision': Property( kind=str, help='The first known good revision.'), 'tests': Property( kind=Dict(value_type=list), default={}, help='The failed tests, the test name should be full name, e.g.: {' ' "browser_tests": [' ' "suite.test1", "suite.test2"' ' ]' '}'), 'buildbucket': Property( default=None, help='The buildbucket property in which we can find build id.' 'We need to use build id to get tests.'), 'use_analyze': Property( kind=Single(bool, empty_val=False, required=False), default=True, help='Use analyze to skip commits that do not affect tests.'), 'suspected_revisions': Property( kind=List(basestring), default=[], help='A list of suspected revisions from heuristic analysis.'), 'test_on_good_revision': Property( kind=Single(bool, empty_val=False, required=False), default=True, help='Run test on good revision as well if the first revision ' 'in range is suspected.'), 'test_repeat_count': Property( kind=Single(int, required=False), default=20, help='How many times to repeat the tests.'), } def _get_reduced_test_dict(original_test_dict, failed_tests_dict): # Remove tests that are in both dicts from the original test dict. if not failed_tests_dict: return original_test_dict reduced_dict = defaultdict(list) for step, tests in original_test_dict.iteritems(): remain_tests = list(set(tests) - set(failed_tests_dict.get(step, []))) if remain_tests: reduced_dict[step] = remain_tests return reduced_dict def _get_flaky_tests(test_results): # Uses pass_fail_count to get flaky tests. flaky_tests = defaultdict(list) if not test_results: return flaky_tests for step, result in test_results.iteritems(): pass_fail_counts = result.get('pass_fail_counts') if not pass_fail_counts: continue for test, test_counts in pass_fail_counts.iteritems(): if test_counts.get('pass_count') and test_counts.get('fail_count'): flaky_tests[step].append(test) return flaky_tests def _consolidate_flaky_tests(all_flakes, new_flakes): for step, tests in new_flakes.iteritems(): all_flakes[step] = list(set(all_flakes[step]) | set(tests)) def RunSteps(api, target_mastername, target_testername, good_revision, bad_revision, tests, buildbucket, use_analyze, suspected_revisions, test_on_good_revision, test_repeat_count): tests, target_buildername, checked_out_revision, cached_revision = ( api.findit.configure_and_sync(api, tests, buildbucket, target_mastername, target_testername, bad_revision)) # retrieve revisions in the regression range. revisions_to_check = api.findit.revisions_between(good_revision, bad_revision) suspected_revision_index = [ revisions_to_check.index(r) for r in set(suspected_revisions) if r in revisions_to_check] # Segments revisions_to_check by suspected_revisions. # Each sub_range will contain following elements: # 1. Revision before a suspected_revision or None as a placeholder # when no such revision # 2. Suspected_revision # 3. Revisions between a suspected_revision and the revision before next # suspected_revision, or remaining revisions before all suspect_revisions. # For example, if revisions_to_check are [r0, r1, ..., r6] and # suspected_revisions are [r2, r5], sub_ranges will be: # [[None, r0], [r1, r2, r3], [r4, r5, r6]] if suspected_revision_index: # If there are consecutive revisions being suspected, include them # in the same sub_range by only saving the oldest revision. suspected_revision_index = [i for i in suspected_revision_index if i - 1 not in suspected_revision_index] sub_ranges = [] remaining_revisions = revisions_to_check[:] for index in sorted(suspected_revision_index, reverse=True): if index > 0: # try job will not run linearly, sets use_analyze to False. use_analyze = False sub_ranges.append(remaining_revisions[index - 1:]) remaining_revisions = remaining_revisions[:index - 1] # None is a placeholder for the last known good revision. sub_ranges.append([None] + remaining_revisions) else: # Treats the entire regression range as a single sub-range. sub_ranges = [[None] + revisions_to_check] test_results = {} try_job_metadata = { 'regression_range_size': len(revisions_to_check) } report = { 'result': test_results, 'metadata': try_job_metadata, 'previously_checked_out_revision': checked_out_revision, 'previously_cached_revision': cached_revision } revision_being_checked = None found = False flakes = defaultdict(list) try: culprits = defaultdict(dict) # Tests that haven't found culprits in tested revision(s). tests_have_not_found_culprit = tests # Iterates through sub_ranges and find culprits for each failed test. # Sub-ranges with newer revisions are tested first so we have better chance # that try job will reproduce exactly the same failure as in waterfall. for sub_range in sub_ranges: if not tests_have_not_found_culprit: # All tests have found culprits. break # The revision right before the suspected revision provided by # the heuristic result. potential_green_rev = sub_range[0] following_revisions = sub_range[1:] if potential_green_rev: revision_being_checked = potential_green_rev test_results[potential_green_rev], tests_failed_in_potential_green = ( api.findit.compile_and_test_at_revision( api, target_mastername, target_buildername, target_testername, potential_green_rev, tests_have_not_found_culprit, use_analyze, test_repeat_count=test_repeat_count)) else: tests_failed_in_potential_green = {} # Looks for reliably failed tests. flaky_tests_in_potential_green = _get_flaky_tests(test_results.get( potential_green_rev)) _consolidate_flaky_tests(flakes, flaky_tests_in_potential_green) tests_passed_in_potential_green = _get_reduced_test_dict( tests_have_not_found_culprit, tests_failed_in_potential_green ) # Culprits for tests that failed in potential green should be earlier, so # removes failed tests and only runs passed ones in following revisions. if tests_passed_in_potential_green: tests_to_run = tests_passed_in_potential_green for revision in following_revisions: revision_being_checked = revision # Since tests_to_run are tests that passed in previous revision, # whichever test that fails now will find current revision is the # culprit. test_results[revision], tests_failed_in_revision = ( api.findit.compile_and_test_at_revision( api, target_mastername, target_buildername, target_testername, revision, tests_to_run, use_analyze, test_repeat_count)) flaky_tests_in_revision = _get_flaky_tests(test_results[revision]) reliable_failed_tests_in_revision = _get_reduced_test_dict( tests_failed_in_revision, flaky_tests_in_revision) _consolidate_flaky_tests(flakes, flaky_tests_in_revision) # Removes tests that passed in potential green and failed in # following revisions: culprits have been found for them. tests_have_not_found_culprit = _get_reduced_test_dict( tests_have_not_found_culprit, tests_failed_in_revision) # Only runs tests that have not found culprits in later revisions. tests_to_run = _get_reduced_test_dict( tests_to_run, tests_failed_in_revision) # Records found culprits. for step, test_list in reliable_failed_tests_in_revision.iteritems(): for test in test_list: culprits[step][test] = revision if not tests_to_run: break if culprits and test_on_good_revision: # Need to deflake by running on good revision. tests_run_on_good_revision = defaultdict(list) for step, step_culprits in culprits.iteritems(): for test, test_culprit in step_culprits.iteritems(): if test_culprit == revisions_to_check[0]: tests_run_on_good_revision[step].append(test) if tests_run_on_good_revision: test_results[good_revision], tests_failed_in_revision = ( api.findit.compile_and_test_at_revision( api, target_mastername, target_buildername, target_testername, good_revision, tests_run_on_good_revision, use_analyze, test_repeat_count)) if tests_failed_in_revision: # Some tests also failed on good revision, they should be flaky. # Should remove them from culprits. new_culprits = defaultdict(dict) for step, step_culprits in culprits.iteritems(): for test, test_culprit in step_culprits.iteritems(): if test in tests_failed_in_revision.get(step, []): continue new_culprits[step][test] = test_culprit culprits = new_culprits _consolidate_flaky_tests(flakes, tests_failed_in_revision) found = bool(culprits) except api.step.InfraFailure: test_results[revision_being_checked] = api.findit.TestResult.INFRA_FAILED report['metadata']['infra_failure'] = True raise finally: if found: report['culprits'] = culprits if flakes: report['flakes'] = flakes # Give the full report including test results and metadata. api.python.succeeding_step( 'report', [json.dumps(report, indent=2)], as_log='report') return report def GenTests(api): def props( tests, platform_name, tester_name, use_analyze=False, good_revision=None, bad_revision=None, suspected_revisions=None, buildbucket=None, test_on_good_revision=True, test_repeat_count=20): properties = { 'path_config': 'kitchen', 'mastername': 'tryserver.chromium.%s' % platform_name, 'buildername': '%s_chromium_variable' % platform_name, 'bot_id': 'build1-a1', 'buildnumber': 1, 'target_mastername': 'chromium.%s' % platform_name, 'target_testername': tester_name, 'good_revision': good_revision or 'r0', 'bad_revision': bad_revision or 'r1', 'use_analyze': use_analyze, 'test_on_good_revision': test_on_good_revision, 'test_repeat_count': test_repeat_count, } if tests: properties['tests'] = tests if suspected_revisions: properties['suspected_revisions'] = suspected_revisions if buildbucket: properties['buildbucket'] = buildbucket return api.properties(**properties) + api.platform.name(platform_name) yield ( api.test('nonexistent_test_step_skipped') + props({'newly_added_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'win', 'Win7 Tests (1)') + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) ) yield ( api.test('unaffected_test_skipped_by_analyze') + props({'affected_tests': ['Test.One'], 'unaffected_tests': ['Test.Two']}, 'win', 'Win7 Tests (1)', use_analyze=True) + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'affected_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, { 'test': 'unaffected_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.analyze', api.json.output({ 'status': 'Found dependency', 'compile_targets': ['affected_tests', 'affected_tests_run'], 'test_targets': ['affected_tests', 'affected_tests_run'], }) ) + api.override_step_data( 'test r1.affected_tests (r1)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One']) ) ) yield ( api.test('test_without_targets_not_skipped') + props({'unaffected_tests': ['Test.One'], 'checkperms': []}, 'win', 'Win7 Tests (1)', use_analyze=True) + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'unaffected_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], 'scripts': [ { 'name': 'checkperms', 'script': 'checkperms.py' }, ] }, }) ) + api.override_step_data( 'test r1.analyze', api.json.output({ 'status': 'No dependencies', 'compile_targets': [], 'test_targets': [], }) ) ) yield ( api.test('all_test_failed') + props({'gl_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'win', 'Win7 Tests (1)', test_on_good_revision=False) + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One', 'Test.Two', 'Test.Three']) ) ) yield ( api.test('all_test_passed') + props({'gl_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'win', 'Win7 Tests (1)') + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One', 'Test.Two', 'Test.Three']) ) ) yield ( api.test('only_one_test_passed') + props({'gl_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'win', 'Win7 Tests (1)') + api.override_step_data( 'test r0.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r0.gl_tests (r0)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One', 'Test.Two']) ) + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One', 'Test.Two'], passed_test_names=['Test.Three']) ) ) yield ( api.test('compile_skipped') + props({'checkperms': []}, 'win', 'Win7 Tests (1)') + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'scripts': [ { 'name': 'checkperms', 'script': 'checkperms.py' }, ] }, }) ) ) yield ( api.test('none_swarming_tests') + props({'gl_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'win', 'Win7 Tests (1)', test_on_good_revision=False) + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': False}, }, ], }, }) ) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One', 'Test.Two'], passed_test_names=['Test.Three']) ) ) yield ( api.test('swarming_tests') + props({'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests') + api.override_step_data( 'test r1.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One']) ) ) yield ( api.test('findit_culprit_in_last_sub_range') + props( {'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3']) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output(failed_test_names=['Test.One'])) ) yield ( api.test('findit_culprit_in_middle_sub_range') + props( {'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3', 'r6']) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r5.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r6.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'])) + api.override_step_data( 'test r5.gl_tests (r5)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r6.gl_tests (r6)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One'])) ) yield ( api.test('findit_culprit_in_first_sub_range') + props( {'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r6'], test_on_good_revision=False) + api.override_step_data( 'test r1.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r5.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r6.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'])) + api.override_step_data( 'test r5.gl_tests (r5)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r6.gl_tests (r6)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One'])) ) yield ( api.test('findit_steps_multiple_culprits') + props( {'gl_tests': ['Test.gl_One'], 'browser_tests': ['Test.browser_One']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3','r6']) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, { 'test': 'browser_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, { 'test': 'browser_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r5.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, { 'test': 'browser_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r6.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, { 'test': 'browser_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r5.gl_tests (r5)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.gl_One'])) + api.override_step_data( 'test r5.browser_tests (r5)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.browser_One'])) + api.override_step_data( 'test r6.browser_tests (r6)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.browser_One']))+ api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.gl_One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.gl_One'])) ) yield ( api.test('findit_tests_multiple_culprits') + props( {'gl_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3', 'r5']) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r4.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r5.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r6.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r4.gl_tests (r4)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One', 'Test.Three'], failed_test_names=['Test.Two'])) + api.override_step_data( 'test r5.gl_tests (r5)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'], failed_test_names=['Test.Three'])) + api.override_step_data( 'test r6.gl_tests (r6)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One']))+ api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.Two'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output(failed_test_names=['Test.Two'])) ) yield ( api.test('findit_consecutive_culprits') + props( {'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3', 'r4']) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r4.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r4.gl_tests (r4)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'])) + api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One'])) ) yield ( api.test('record_infra_failure') + props({'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests') + api.override_step_data( 'test r1.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.preprocess_for_goma.start_goma', retcode=1) + api.step_data( 'test r1.preprocess_for_goma.goma_jsonstatus', api.json.output( data={ 'notice': [ { 'infra_status': { 'ping_status_code': 408, }, }, ], })) ) yield ( api.test('use_build_parameter_for_tests') + props({}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3', 'r4'], buildbucket=json.dumps({'build': {'id': 'id1'}})) + api.buildbucket.simulated_buildbucket_output({ 'additional_build_parameters' : { 'tests': { 'gl_tests': ['Test.One'] } }}) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r4.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r4.gl_tests (r4)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'])) + api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One'])) ) yield ( api.test('use_build_parameter_for_tests_non_json_buildbucket') + props({}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r3', 'r4'], buildbucket={'build': {'id': 'id1'}}) + api.buildbucket.simulated_buildbucket_output({ 'additional_build_parameters' : { 'tests': { 'gl_tests': ['Test.One'] } }}) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r4.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r4.gl_tests (r4)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'])) + api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output(passed_test_names=['Test.One'])) ) yield ( api.test('use_analyze_set_to_False_for_non_linear_try_job') + props( {'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests', use_analyze=True, good_revision='r0', bad_revision='r6', suspected_revisions=['r3']) + api.override_step_data( 'test r2.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r2.gl_tests (r2)', api.swarming.canned_summary_output() + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One'])) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output(failed_test_names=['Test.One'])) ) yield ( api.test('flaky_tests') + props({'gl_tests': ['Test.One', 'Test.Two', 'Test.Three']}, 'win', 'Win7 Tests (1)') + api.override_step_data( 'test r0.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r0.gl_tests (r0)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'], passed_test_names=['Test.Two']) ) + api.override_step_data( 'test r1.read test spec (chromium.win.json)', api.json.output({ 'Win7 Tests (1)': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r1.gl_tests (r1)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One', 'Test.Two'], passed_test_names=['Test.Three'])) ) yield ( api.test('use_abbreviated_revision_in_step_name') + props( {'gl_tests': ['Test.One']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='1234567890abcdefg', bad_revision='gfedcba0987654321', test_on_good_revision=False) + api.override_step_data( 'test gfedcba.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output('gfedcba0987654321')) + api.override_step_data( 'test gfedcba.gl_tests (gfedcba)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( failed_test_names=['Test.One'])) ) yield ( api.test('remove_culprits_for_flaky_failures') + props( {'gl_tests': ['Test.One', 'Test.Two']}, 'mac', 'Mac10.9 Tests', use_analyze=False, good_revision='r0', bad_revision='r6', suspected_revisions=['r4']) + api.override_step_data( 'test r3.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'test r4.read test spec (chromium.mac.json)', api.json.output({ 'Mac10.9 Tests': { 'gtest_tests': [ { 'test': 'gl_tests', 'swarming': {'can_use_on_swarming_builders': True}, }, ], }, }) ) + api.override_step_data( 'git commits in range', api.raw_io.stream_output( '\n'.join('r%d' % i for i in reversed(range(1, 7))))) + api.override_step_data( 'test r3.gl_tests (r3)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( passed_test_names=['Test.One', 'Test.Two'])) + api.override_step_data( 'test r4.gl_tests (r4)', api.swarming.canned_summary_output(failure=True) + api.test_utils.simulated_gtest_output( flaky_test_names=['Test.One'], failed_test_names=['Test.Two'])) )
36.023965
80
0.5139
fa8b3d62ddea2c79f0d1664ed17a6bfeca1658f7
4,370
py
Python
benchmark/startQiskit1907.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit1907.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit1907.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=53 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.x(input_qubit[1]) # number=48 prog.h(input_qubit[1]) # number=26 prog.cz(input_qubit[4],input_qubit[1]) # number=27 prog.h(input_qubit[1]) # number=28 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 prog.h(input_qubit[1]) # number=34 prog.cz(input_qubit[4],input_qubit[1]) # number=35 prog.z(input_qubit[4]) # number=46 prog.rx(0.8011061266653969,input_qubit[2]) # number=37 prog.h(input_qubit[1]) # number=36 prog.z(input_qubit[3]) # number=51 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[1],input_qubit[0]) # number=38 prog.x(input_qubit[0]) # number=39 prog.cx(input_qubit[1],input_qubit[0]) # number=40 prog.cx(input_qubit[0],input_qubit[1]) # number=42 prog.rx(-1.928937889304133,input_qubit[2]) # number=49 prog.x(input_qubit[1]) # number=43 prog.cx(input_qubit[0],input_qubit[1]) # number=44 prog.x(input_qubit[2]) # number=11 prog.y(input_qubit[1]) # number=45 prog.x(input_qubit[3]) # number=12 prog.h(input_qubit[2]) # number=41 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.cx(input_qubit[1],input_qubit[0]) # number=22 prog.x(input_qubit[4]) # number=47 prog.x(input_qubit[0]) # number=23 prog.cx(input_qubit[1],input_qubit[0]) # number=24 prog.cx(input_qubit[0],input_qubit[1]) # number=30 prog.x(input_qubit[4]) # number=52 prog.x(input_qubit[1]) # number=31 prog.cx(input_qubit[0],input_qubit[1]) # number=32 prog.x(input_qubit[2]) # number=15 prog.h(input_qubit[4]) # number=29 prog.x(input_qubit[3]) # number=16 prog.z(input_qubit[3]) # number=50 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit1907.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
32.132353
82
0.61373
da7b5f814fa5840ffa90a2c92ca78a68ddd4f053
5,927
py
Python
platform/radio/efr32_multiphy_configurator/pyradioconfig/parts/dumbo/phys/Phys_IEEE802154_GB868.py
SiliconLabs/gecko_sdk
310814a9016b60a8012d50c62cc168a783ac102b
[ "Zlib" ]
69
2021-12-16T01:34:09.000Z
2022-03-31T08:27:39.000Z
platform/radio/efr32_multiphy_configurator/pyradioconfig/parts/dumbo/phys/Phys_IEEE802154_GB868.py
SiliconLabs/gecko_sdk
310814a9016b60a8012d50c62cc168a783ac102b
[ "Zlib" ]
6
2022-01-12T18:22:08.000Z
2022-03-25T10:19:27.000Z
platform/radio/efr32_multiphy_configurator/pyradioconfig/parts/dumbo/phys/Phys_IEEE802154_GB868.py
SiliconLabs/gecko_sdk
310814a9016b60a8012d50c62cc168a783ac102b
[ "Zlib" ]
21
2021-12-20T09:05:45.000Z
2022-03-28T02:52:28.000Z
from pyradioconfig.calculator_model_framework.interfaces.iphy import IPhy from pyradioconfig.parts.common.phys.phy_common import PHY_COMMON_FRAME_154 from py_2_and_3_compatibility import * class PHYS_IEEE802154_GB868(IPhy): def IEEE802154_GB868_154G_PHR(self, phy, model): # Great Britain smart metering PHY from 802.15.4g # refer to spec: # \\silabs.com\mcuandwireless\026 Shared Docs\0260_Standards\std_body\ZigBee\docs-13-0373-12-0mwg-868-gb-smart-meter-han-technical-requirements.doc # Override settings for 15.4g PHR and GB868 PN9 whitening phy.profile_inputs.white_seed.value = 0x000000FF phy.profile_inputs.white_output_bit.value = 8 phy.profile_inputs.white_poly.value = model.vars.white_poly.var_enum.PN9_BYTE phy.profile_inputs.payload_white_en.value = True # The whitening config above will calculate FRC->FECCTRL.BLOCKWHITEMODE # = 2 (BYTEWHITE), but it seems we need it to be 1 (WHITE) to work as # 15.4g has specifiesd it, so must override: phy.profile_outputs.FRC_FECCTRL_BLOCKWHITEMODE.override = 1 phy.profile_inputs.header_size.value = 2 phy.profile_inputs.var_length_numbits.value = 11 phy.profile_inputs.var_length_byteendian.value = model.vars.var_length_byteendian.var_enum.MSB_FIRST phy.profile_inputs.var_length_bitendian.value = model.vars.var_length_bitendian.var_enum.MSB_FIRST phy.profile_inputs.var_length_shift.value = 0 #@TODO: Bump min/maxlength by -1 after MCUW_RADIO_CFG-325 is fixed: phy.profile_inputs.var_length_minlength.value = 4 # 15.4e's 4 phy.profile_inputs.var_length_maxlength.value = 127 # NOT 15.4g's 2047 # GB868 does NOT support 15.4g 4-byte CRC, mode switching, or FEC def IEEE802154_GB868_Base(self, phy, model): # Great Britain smart metering PHY from 802.15.4g # refer to spec: # \\silabs.com\mcuandwireless\026 Shared Docs\0260_Standards\std_body\ZigBee\docs-13-0373-12-0mwg-868-gb-smart-meter-han-technical-requirements.doc # Copied from phy_internal_base.py::GFSK_915M_base() at commit 110a85d7 phy.profile_inputs.base_frequency_hz.value = long(915350000) phy.profile_inputs.baudrate_tol_ppm.value = 0 phy.profile_inputs.bitrate.value = 100000 phy.profile_inputs.channel_spacing_hz.value = 200000 phy.profile_inputs.deviation.value = 35000 phy.profile_inputs.diff_encoding_mode.value = model.vars.diff_encoding_mode.var_enum.DISABLED phy.profile_inputs.dsss_chipping_code.value = long(0) phy.profile_inputs.dsss_len.value = 0 phy.profile_inputs.dsss_spreading_factor.value = 0 phy.profile_inputs.fsk_symbol_map.value = model.vars.fsk_symbol_map.var_enum.MAP0 phy.profile_inputs.modulation_type.value = model.vars.modulation_type.var_enum.FSK2 phy.profile_inputs.preamble_pattern.value = 1 # 010101... phy.profile_inputs.preamble_pattern_len.value = 2 phy.profile_inputs.preamble_length.value = 64 phy.profile_inputs.rx_xtal_error_ppm.value = 40 phy.profile_inputs.shaping_filter.value = model.vars.shaping_filter.var_enum.Gaussian phy.profile_inputs.shaping_filter_param.value = 0.5 phy.profile_inputs.syncword_0.value = long(0x904E) # 15.4g SFD0 7209 non-FEC phy.profile_inputs.syncword_1.value = long(0x0) phy.profile_inputs.syncword_length.value = 16 phy.profile_inputs.tx_xtal_error_ppm.value = 0 phy.profile_inputs.xtal_frequency_hz.value = 38400000 phy.profile_inputs.symbols_in_timing_window.value = 14 # ??? phy.profile_inputs.agc_period.value = 0 phy.profile_inputs.agc_speed.value = model.vars.agc_speed.var_enum.FAST # Copied from Phys_Datasheet.py::PHY_Datasheet_915M_2GFSK_100Kbps_50K() # at commit 4bc304d1 phy.profile_inputs.timing_detection_threshold.value = 20 phy.profile_inputs.agc_power_target.value = -8 phy.profile_inputs.errors_in_timing_window.value = 1 phy.profile_inputs.timing_sample_threshold.value = 12 phy.profile_inputs.agc_settling_delay.value = 34 # Add 15.4 Packet Configuration PHY_COMMON_FRAME_154(phy, model) # Additional settings phy.profile_inputs.rssi_period.value = 3 # 2^3 = 8 bits(symbols) phy.profile_inputs.in_2fsk_opt_scope.value = False # RFVALREQ-42 phy.profile_inputs.symbols_in_timing_window.value = 8 phy.profile_inputs.number_of_timing_windows.value = 3 phy.profile_outputs.rx_sync_delay_ns.override = 49000 phy.profile_outputs.rx_eof_delay_ns.override = 49000 def PHY_IEEE802154_GB868_863MHz_PHR2(self, model, phy_name=None): # Great Britain smart metering PHY from 802.15.4g # refer to spec: # \\silabs.com\mcuandwireless\026 Shared Docs\0260_Standards\std_body\ZigBee\docs-13-0373-12-0mwg-868-gb-smart-meter-han-technical-requirements.doc phy = self._makePhy(model, model.profiles.Base, readable_name='PHY_IEEE802154_GB868_863MHz_PHR2', phy_name=phy_name) self.IEEE802154_GB868_Base(phy, model) self.IEEE802154_GB868_154G_PHR(phy, model) phy.profile_inputs.base_frequency_hz.value = long(863250000) def PHY_IEEE802154_GB868_915MHz_PHR2(self, model, phy_name=None): # Great Britain smart metering PHY from 802.15.4g # refer to spec: # \\silabs.com\mcuandwireless\026 Shared Docs\0260_Standards\std_body\ZigBee\docs-13-0373-12-0mwg-868-gb-smart-meter-han-technical-requirements.doc phy = self._makePhy(model, model.profiles.Base, readable_name='PHY_IEEE802154_GB868_915MHz_PHR2', phy_name=phy_name) self.IEEE802154_GB868_Base(phy, model) self.IEEE802154_GB868_154G_PHR(phy, model)
56.990385
155
0.729037
bf656fe2fac3cc141792dca0c26695c579314dfa
3,574
py
Python
google-cloud-sdk/lib/surface/compute/os_login/remove_profile.py
bopopescu/Social-Lite
ee05d6a7431c36ff582c8d6b58bb20a8c5f550bf
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
google-cloud-sdk/lib/surface/compute/os_login/remove_profile.py
bopopescu/Social-Lite
ee05d6a7431c36ff582c8d6b58bb20a8c5f550bf
[ "Apache-2.0" ]
4
2020-07-21T12:51:46.000Z
2022-01-22T10:29:25.000Z
google-cloud-sdk/lib/surface/compute/os_login/remove_profile.py
bopopescu/Social-Lite
ee05d6a7431c36ff582c8d6b58bb20a8c5f550bf
[ "Apache-2.0" ]
1
2020-07-25T18:17:57.000Z
2020-07-25T18:17:57.000Z
# -*- coding: utf-8 -*- # # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the command for removing an OS Login profile.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.oslogin import client from googlecloudsdk.calliope import base from googlecloudsdk.core import log from googlecloudsdk.core import properties from googlecloudsdk.core import resources from googlecloudsdk.core.console import console_io @base.ReleaseTracks(base.ReleaseTrack.GA, base.ReleaseTrack.BETA) class RemoveProfile(base.Command): """Remove the posix account information for the current user.""" def Run(self, args): oslogin_client = client.OsloginClient(self.ReleaseTrack()) account = (properties.VALUES.auth.impersonate_service_account.Get() or properties.VALUES.core.account.GetOrFail()) project = properties.VALUES.core.project.Get(required=True) project_ref = resources.REGISTRY.Parse(project, params={'user': account}, collection='oslogin.users.projects') current_profile = oslogin_client.GetLoginProfile(account) account_id = None for account in current_profile.posixAccounts: if account.accountId == project: account_id = account.accountId if account_id: console_io.PromptContinue( 'Posix accounts associated with project ID [{0}] will be deleted.' .format(project), default=True, cancel_on_no=True) operating_system = getattr(args, 'operating_system', None) res = oslogin_client.DeletePosixAccounts(project_ref, operating_system) log.DeletedResource(account_id, details='posix account(s)') return res else: log.warning('No profile found with accountId [{0}]'.format(project)) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class RemoveProfileAlpha(RemoveProfile): """Remove the posix account information for the current user.""" @staticmethod def Args(parser): os_arg = base.ChoiceArgument( '--operating-system', choices=('linux', 'windows'), required=False, default='linux', help_str='Specifies the profile type to remove.') os_arg.AddToParser(parser) RemoveProfile.detailed_help = { 'brief': 'Remove the posix account information for the current user.', 'DESCRIPTION': """ *{command}* removes the posix account information for the current user where the account ID field is set to the current project ID. Posix account entries for G Suite users do not set the account ID field and can only be modified by a domain administrator. """, 'EXAMPLES': """ To remove all POSIX accounts associated with the current user and project, run: $ {command} To remove all POSIX accounts associated with the current user in the project named `example-project`, run: $ {command} --project=example-project """ }
37.621053
79
0.715165
a20fd5fb67f71511bdc5f34aec6e9bede92a42a4
1,091
py
Python
src/genie/libs/parser/ironware/tests/ShowIPInterface/cli/equal/golden_output1_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
204
2018-06-27T00:55:27.000Z
2022-03-06T21:12:18.000Z
src/genie/libs/parser/ironware/tests/ShowIPInterface/cli/equal/golden_output1_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
468
2018-06-19T00:33:18.000Z
2022-03-31T23:23:35.000Z
src/genie/libs/parser/ironware/tests/ShowIPInterface/cli/equal/golden_output1_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
309
2019-01-16T20:21:07.000Z
2022-03-30T12:56:41.000Z
expected_output = { 'interfaces': { 'ethernet1/1': { 'ip': '10.254.32.221', 'ok': 'YES', 'method': 'NVRAM', 'status': 'admin/down', 'protocol': 'down', 'vrf': 'default-vrf' }, 'ethernet5/1': { 'ip': '10.254.32.3', 'ok': 'YES', 'method': 'NVRAM', 'status': 'up', 'protocol': 'up', 'vrf': 'default-vrf' }, 'ethernet7/1': { 'ip': '10.254.32.109', 'ok': 'YES', 'method': 'manual', 'status': 'up', 'protocol': 'up', 'vrf': 'default-vrf' }, 've150': { 'ip': '10.15.15.2', 'ok': 'YES', 'method': 'NVRAM', 'status': 'up', 'protocol': 'up', 'vrf': 'default-vrf', 'flag': 'VS' }, 'management1': { 'ip': '172.16.15.4', 'ok': 'YES', 'method': 'NVRAM', 'status': 'up', 'protocol': 'up', 'vrf': 'oob' }, 'loopback1': { 'ip': '10.69.9.9', 'ok': 'YES', 'method': 'NVRAM', 'status': 'up', 'protocol': 'up', 'vrf': 'default-vrf' } } }
20.203704
29
0.395967
53a924086ad5a98167ba7b8f99bd735ce8a1c130
2,252
py
Python
social_blog/blog_posts/views.py
higorspinto/Social-Blog
bec89351bf76778059f112c0e2a66de9348dda54
[ "MIT" ]
null
null
null
social_blog/blog_posts/views.py
higorspinto/Social-Blog
bec89351bf76778059f112c0e2a66de9348dda54
[ "MIT" ]
4
2021-03-19T03:43:40.000Z
2022-01-13T01:39:30.000Z
social_blog/blog_posts/views.py
higorspinto/Social-Blog
bec89351bf76778059f112c0e2a66de9348dda54
[ "MIT" ]
null
null
null
# blog_posts/views.py from flask import render_template, redirect, url_for, flash, request, Blueprint from flask_login import current_user, login_required from social_blog import db from social_blog.models import BlogPost from social_blog.blog_posts.forms import BlogPostForm blog_posts = Blueprint('blog_posts', __name__) #Create @blog_posts.route("/create", methods=["GET","POST"]) @login_required def create_post(): form = BlogPostForm() if form.validate_on_submit(): blog_post = BlogPost(title=form.title.data, text=form.text.data, user_id=current_user.id) db.session.add(blog_post) db.session.commit() flash('Blog Post created!') return redirect(url_for("core.index")) return render_template("create_post.html", form=form) #Blog Post (View) @blog_posts.route("/<int:blog_post_id>") def blog_post(blog_post_id): blog_post = BlogPost.query.get_or_404(blog_post_id) return render_template("blog_post.html", title=blog_post.title, date=blog_post.date, post=blog_post) #Update @blog_posts.route("/<int:blog_post_id>/update", methods=["GET","POST"]) @login_required def update_post(blog_post_id): blog_post = BlogPost.query.get_or_404(blog_post_id) if blog_post.author != current_user: abort(403) form = BlogPostForm() if form.validate_on_submit(): blog_post.title = form.title.data blog_post.text = form.text.data db.session.commit() flash('Blog Post updated!') return redirect(url_for("blog_posts.blog_post", blog_post_id=blog_post.id)) elif request.method == "GET": form.title.data = blog_post.title form.text.data = blog_post.text return render_template("create_post.html",title="Updating",form=form) #Delete @blog_posts.route("/<int:blog_post_id>/delete", methods=["GET","POST"]) @login_required def delete_post(blog_post_id): blog_post = BlogPost.query.get_or_404(blog_post_id) if blog_post.author != current_user: abort(403) db.session.delete(blog_post) db.session.commit() flash("Blog Post deleted.") return redirect(url_for("core.index"))
26.186047
83
0.683393
68ecea8f5958f9cac6b97c57a9ab69b733bf1a14
7,902
py
Python
src/datasets/off_road_testsets.py
Brazilian-Institute-of-Robotics/autonomous_perception
5645a2bc6811b33e9e6bf0f6873f496dff45ad94
[ "MIT" ]
null
null
null
src/datasets/off_road_testsets.py
Brazilian-Institute-of-Robotics/autonomous_perception
5645a2bc6811b33e9e6bf0f6873f496dff45ad94
[ "MIT" ]
null
null
null
src/datasets/off_road_testsets.py
Brazilian-Institute-of-Robotics/autonomous_perception
5645a2bc6811b33e9e6bf0f6873f496dff45ad94
[ "MIT" ]
1
2020-12-23T23:27:30.000Z
2020-12-23T23:27:30.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 6 15:26:10 2019 @author: nelson """ import tensorflow_datasets.public_api as tfds import os import tensorflow as tf import random classes = [ {'name': 'ignore' , 'color': [ 0, 0, 0]}, {'name': 'road' , 'color': [128, 64,128]}, {'name': 'car' , 'color': [ 0, 0,142]}, {'name': 'person' , 'color': [220, 20, 60]}, {'name': 'truck' , 'color': [ 0, 0, 70]}, {'name': 'bus' , 'color': [ 0, 60,100]}, {'name': 'cone' , 'color': [153,153,153]}, {'name': 'motorcycle' , 'color': [ 0, 0,230]}, {'name': 'animal' , 'color': [190,153,153]}, {'name': 'bicycle' , 'color': [119, 11, 32]}, # {'name': 'dog' , 'color': [ 70,130,180]}, # {'name': 'traffic light', 'color': [250,170, 30]}, # {'name': 'traffic sign' , 'color': [220,220, 0]}, ] # TODO # tfds.core.DatasetInfo( # name='off_road_small', # version=1.0.0, # description='This is the dataset for xxx. It contains yyy. The images are kept at their original dimensions.', # homepage='https://dataset-homepage.org', # features=FeaturesDict({ # 'image': Image(shape=(1208, 1920, 3), dtype=tf.uint8), # 'label': Image(shape=(1208, 1920, 1), dtype=tf.uint8), # }), # total_num_examples=5523, # splits={ # 'test': 1048, # 'train': 4027, # 'validation': 448, # }, # supervised_keys=('image', 'label'), # citation="""@article{my-awesome-dataset-2020, # author = {Nelson Alves, ...},"}""", # redistribution_info=, # ) class OffRoadTestsets(tfds.core.GeneratorBasedBuilder): """Short description of my dataset.""" VERSION = tfds.core.Version("1.0.0") def _info(self): return tfds.core.DatasetInfo( builder=self, # This is the description that will appear on the datasets page. description=("This is the dataset for xxx. It contains yyy. The " "images are kept at their original dimensions."), # tfds.features.FeatureConnectors features=tfds.features.FeaturesDict({ "image": tfds.features.Image(shape=(1208, 1920, 3)), # Here, labels can be of 5 distinct values. "label": tfds.features.Image(shape=(1208, 1920, 1)), }), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=("image", "label"), # Homepage of the dataset for documentation homepage="https://dataset-homepage.org", # Bibtex citation for the dataset citation=r"""@article{my-awesome-dataset-2020, author = {Nelson Alves, ...},"}""", ) def _split_generators(self, dl_manager): # Download source data extracted_path = "/home/nelson/projects/da_art_perception/data/dataset" label_suffix = '*label_raw.png' image_suffix = '.jpg' paths = ['/off-road/evening/cimatec-industrial/small.txt', '/off-road/rain/cimatec-industrial/small.txt', '/unpaved/rain/jaua/small.txt', '/unpaved/rain/praia-do-forte/small.txt', '/unpaved/rain/estrada-dos-tropeiros/small.txt', '/unpaved/day/jaua/small.txt', '/unpaved/day/praia-do-forte/small.txt', '/unpaved/day/estrada-dos-tropeiros/small.txt'] offroad_paths = ['/night_offroad_clean-test_subset.txt', '/day_offroad_clean-test_subset.txt', '/night_offroad_dusty-test_subset.txt', '/day_offroad_dusty-test_subset.txt'] img_list = {"evening":[], "rain":[], "day":[], "day_offroad_clean":[], "day_offroad_dusty":[], "night_offroad_clean":[], "night_offroad_dusty":[]} lbl_list = {"evening":[],"rain":[],"day":[], "day_offroad_clean":[], "day_offroad_dusty":[], "night_offroad_clean":[], "night_offroad_dusty":[]} for path in paths: print(path) lineList = open(extracted_path + path).readlines() for name in lineList: search_name_path = path[:path.rfind('/')]+'/'+name.replace('\n', '') full_name_path = tf.io.gfile.glob(extracted_path + search_name_path + label_suffix)[0] if 'test' in full_name_path: img_list[path.split("/")[2]].append(extracted_path + search_name_path + image_suffix) lbl_list[path.split("/")[2]].append(full_name_path) for path in offroad_paths: print(path) lineList = open(extracted_path + path).readlines() for name in lineList: search_name_path = path[:path.rfind('/')]+'/'+name.replace('.jpg\n', '') full_name_path = tf.io.gfile.glob(extracted_path + search_name_path + label_suffix)[0] if 'test' in full_name_path: img_list[path.replace('/', '').split("-")[0]].append(extracted_path + search_name_path + image_suffix) lbl_list[path.replace('/', '').split("-")[0]].append(full_name_path) for imgs, lbls in zip(img_list, lbl_list): random.Random(0).shuffle(img_list[imgs]) random.Random(0).shuffle(lbl_list[lbls]) # Specify the splits return [ tfds.core.SplitGenerator( name="evening", gen_kwargs={ "img_list": img_list["evening"], "lbl_list": lbl_list["evening"], }, ), tfds.core.SplitGenerator( name="rain", gen_kwargs={ "img_list": img_list["rain"], "lbl_list": lbl_list["rain"], }, ), tfds.core.SplitGenerator( name="day", gen_kwargs={ "img_list": img_list["day"], "lbl_list": lbl_list["day"], }, ), tfds.core.SplitGenerator( name="day_offroad_clean", gen_kwargs={ "img_list": img_list["day_offroad_clean"], "lbl_list": lbl_list["day_offroad_clean"], }, ), tfds.core.SplitGenerator( name="day_offroad_dusty", gen_kwargs={ "img_list": img_list["day_offroad_dusty"], "lbl_list": lbl_list["day_offroad_dusty"], }, ), tfds.core.SplitGenerator( name="night_offroad_clean", gen_kwargs={ "img_list": img_list["night_offroad_clean"], "lbl_list": lbl_list["night_offroad_clean"], }, ), tfds.core.SplitGenerator( name="night_offroad_dusty", gen_kwargs={ "img_list": img_list["night_offroad_dusty"], "lbl_list": lbl_list["night_offroad_dusty"], }, ), ] def _generate_examples(self, img_list, lbl_list): # Read the input data out of the source files key=0 for image_path, label_path in zip(img_list, lbl_list): yield key, { "image": image_path, "label": label_path, } key+=1
39.118812
122
0.506328
e9b4ecf55f6abdc4c1c21a6deab17773fa6cfac2
24,352
py
Python
ssd_liverdet/pixel_link/model.py
L0SG/Liver_segmentation
178b2367cf606ba7d704e96f855389be4c1abd14
[ "MIT" ]
null
null
null
ssd_liverdet/pixel_link/model.py
L0SG/Liver_segmentation
178b2367cf606ba7d704e96f855389be4c1abd14
[ "MIT" ]
null
null
null
ssd_liverdet/pixel_link/model.py
L0SG/Liver_segmentation
178b2367cf606ba7d704e96f855389be4c1abd14
[ "MIT" ]
null
null
null
import torch.nn as nn import pixel_link.pixel_link_config as config import numpy as np from pixel_link.pixel_link_decode import * from layers.dcn_v2_custom import DCN from layers import self_attn import os import torch from torch.utils.checkpoint import checkpoint def xavier(param): nn.init.xavier_uniform_(param) def weights_init(m): if isinstance(m, nn.Conv2d): xavier(m.weight.data) m.bias.data.zero_() class PixelLink(nn.Module): def __init__(self, cascade_fuse, use_fuseconv, batch_norm, use_self_attention, use_self_attention_base, num_dcn_layers, groups_dcn, dcn_cat_sab, detach_sab, max_pool_factor=1): super(PixelLink, self).__init__() self.vgg_groups = config.vgg_groups self.scale = config.feature_scale self.cascade_fuse = cascade_fuse self.use_self_attention = use_self_attention self.use_self_attention_base = use_self_attention_base self.num_dcn_layers = num_dcn_layers self.use_fuseconv = use_fuseconv self.batch_norm = batch_norm # TODO: modify padding self.conv1_1 = nn.Conv2d(12, int(64*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu1_1 = nn.ReLU() self.conv1_2 = nn.Conv2d(int(64*self.scale), int(64*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu1_2 = nn.ReLU() self.pool1 = nn.MaxPool2d(2, ceil_mode=True) self.conv2_1 = nn.Conv2d(int(64*self.scale), int(128*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu2_1 = nn.ReLU() self.conv2_2 = nn.Conv2d(int(128*self.scale), int(128*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu2_2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2, ceil_mode=True) self.conv3_1 = nn.Conv2d(int(128*self.scale), int(256*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu3_1 = nn.ReLU() self.conv3_2 = nn.Conv2d(int(256*self.scale), int(256*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu3_2 = nn.ReLU() self.conv3_3 = nn.Conv2d(int(256*self.scale), int(256*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu3_3 = nn.ReLU() self.pool3 = nn.MaxPool2d(2, ceil_mode=True) self.conv4_1 = nn.Conv2d(int(256*self.scale), int(512*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(int(512*self.scale), int(512*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu4_2 = nn.ReLU() self.conv4_3 = nn.Conv2d(int(512*self.scale), int(512*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu4_3 = nn.ReLU() self.pool4 = nn.MaxPool2d(2, ceil_mode=True) self.conv5_1 = nn.Conv2d(int(512*self.scale), int(512*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(int(512*self.scale), int(512*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu5_2 = nn.ReLU() self.conv5_3 = nn.Conv2d(int(512*self.scale), int(512*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu5_3 = nn.ReLU() self.pool5 = nn.MaxPool2d(kernel_size=[3, 3], stride=1, padding=1, ceil_mode=True) if config.dilation: self.conv6 = nn.Conv2d(int(512*self.scale), int(1024*self.scale), 3, stride=1, padding=6, dilation=6, groups=self.vgg_groups) else: self.conv6 = nn.Conv2d(int(512*self.scale), int(1024*self.scale), 3, stride=1, padding=1, groups=self.vgg_groups) self.relu6 = nn.ReLU() self.conv7 = nn.Conv2d(int(1024*self.scale), int(1024*self.scale), 1, stride=1, padding=0, groups=self.vgg_groups) self.relu7 = nn.ReLU() self.modules_except_dcn = nn.ModuleList([self.conv1_1, self.relu1_1, self.conv1_2, self.relu1_2, self.pool1, self.conv2_1, self.relu2_1, self.conv2_2, self.relu2_2, self.pool2, self.conv3_1, self.relu3_1, self.conv3_2, self.relu3_2, self.conv3_3, self.relu3_3, self.pool3, self.conv4_1, self.relu4_1, self.conv4_2, self.relu4_2, self.conv4_3, self.relu4_3, self.pool4, self.conv5_1, self.relu5_1, self.conv5_2, self.relu5_2, self.conv5_3, self.relu5_3, self.pool5, self.conv6, self.relu6, self.conv7, self.relu7]) if config.version == "2s": self.out1_1 = nn.Conv2d(int(128*self.scale), 2, 1, stride=1, padding=0) #conv2_2 self.out1_2 = nn.Conv2d(int(128*self.scale), 16, 1, stride=1, padding=0) self.modules_except_dcn.extend([self.out1_1, self.out1_2]) self.out2_1 = nn.Conv2d(int(256*self.scale), 2, 1, stride=1, padding=0) #conv3_3 self.out2_2 = nn.Conv2d(int(256*self.scale), 16, 1, stride=1, padding=0) self.out3_1 = nn.Conv2d(int(512*self.scale), 2, 1, stride=1, padding=0) #conv4_3 self.out3_2 = nn.Conv2d(int(512*self.scale), 16, 1, stride=1, padding=0) self.out4_1 = nn.Conv2d(int(512*self.scale), 2, 1, stride=1, padding=0) #conv5_3 self.out4_2 = nn.Conv2d(int(512*self.scale), 16, 1, stride=1, padding=0) self.out5_1 = nn.Conv2d(int(1024*self.scale), 2, 1, stride=1, padding=0) #fc7 self.out5_2 = nn.Conv2d(int(1024*self.scale), 16, 1, stride=1, padding=0) self.modules_except_dcn.extend([self.out2_1, self.out2_2, self.out3_1, self.out3_2, self.out4_1, self.out4_2, self.out5_1, self.out5_2]) if self.use_fuseconv: if config.version == "2s": self.fuse1 = nn.Conv2d(int(128*self.scale), int(128*self.scale), kernel_size=1) self.modules_except_dcn.append(self.fuse1) self.fuse2 = nn.Conv2d(int(256*self.scale), int(256*self.scale), kernel_size=1) self.fuse3 = nn.Conv2d(int(512*self.scale), int(512*self.scale), kernel_size=1) self.fuse4 = nn.Conv2d(int(512*self.scale), int(512*self.scale), kernel_size=1) self.fuse5 = nn.Conv2d(int(1024*self.scale), int(1024*self.scale), kernel_size=1) self.modules_except_dcn.extend([self.fuse2, self.fuse3, self.fuse4, self.fuse5]) if batch_norm: if config.version == "2s": self.bn_fuse1 = nn.BatchNorm2d(int(128*self.scale)) self.modules_except_dcn.append(self.bn_fuse1) self.bn_fuse2 = nn.BatchNorm2d(int(256*self.scale)) self.bn_fuse3 = nn.BatchNorm2d(int(512*self.scale)) self.bn_fuse4 = nn.BatchNorm2d(int(512*self.scale)) self.bn_fuse5 = nn.BatchNorm2d(int(1024*self.scale)) self.modules_except_dcn.extend([self.bn_fuse2, self.bn_fuse3, self.bn_fuse4, self.bn_fuse5]) if self.cascade_fuse: if config.version == "2s": self.final_1 = nn.Conv2d(2 * 5, 2, 1, stride=1, padding=0) self.final_2 = nn.Conv2d(16 * 5, 16, 1, stride=1, padding=0) else: self.final_1 = nn.Conv2d(2 * 4, 2, 1, stride=1, padding=0) self.final_2 = nn.Conv2d(16 * 4, 16, 1, stride=1, padding=0) else: self.final_1 = nn.Conv2d(2, 2, 1, stride=1, padding=0) self.final_2 = nn.Conv2d(16, 16, 1, stride=1, padding=0) self.modules_except_dcn.extend([self.final_1, self.final_2]) # new: try adjusting maxpool factor self.max_pool_factor = max_pool_factor if self.use_self_attention_base: self.self_attn_base_list = nn.ModuleList([]) self.self_attn_base_in_channel_list = [256, 512, 512, 1024] if config.version == "2s": self.self_attn_base_in_channel_list = [128] + self.self_attn_base_in_channel_list self.self_attn_base_in_channel_list = [int(i * self.scale) for i in self.self_attn_base_in_channel_list] for i in range(len(self.self_attn_base_in_channel_list)): self.self_attn_base_list.append(self_attn.Self_Attn(in_channels=self.self_attn_base_in_channel_list[i], max_pool_factor=max_pool_factor)) if self.use_self_attention: self.self_attn_list = nn.ModuleList([]) self.self_attn_in_channel_list = [256, 512, 512, 1024] if config.version == "2s": self.self_attn_in_channel_list = [128] + self.self_attn_in_channel_list self.self_attn_in_channel_list = [int(i * self.scale) for i in self.self_attn_in_channel_list] for i in range(len(self.self_attn_in_channel_list)): self.self_attn_list.append(self_attn.Self_Attn(in_channels=self.self_attn_in_channel_list[i], max_pool_factor=max_pool_factor)) if self.num_dcn_layers > 0: self.use_dcn = True self.groups_dcn = groups_dcn self.dcn_list = nn.ModuleList([]) # we try to match the offset of each phase after vgg conv7 stage self.dcn_in_channel_list = [256] self.dcn_in_channel_list = [int(i * self.scale) for i in self.dcn_in_channel_list] self.dcn_cat_sab = dcn_cat_sab # concat sab (self_attention_base) and the original x before dcn input self.detach_sab = detach_sab if self.detach_sab: assert self.dcn_cat_sab is True, "deatch_sab requires --dcn_cat_sab=True" for i in range(len(self.dcn_in_channel_list)): if self.dcn_cat_sab: assert self.use_self_attention_base is True, "dcn_cat_sab requires use_self_attention_base=True" self.dcn_list.append( DCN(in_channels=self.dcn_in_channel_list[i] * 2, out_channels=self.dcn_in_channel_list[i], kernel_size=3, stride=1, padding=1, deformable_groups=self.groups_dcn)) else: self.dcn_list.append( DCN(in_channels=self.dcn_in_channel_list[i], out_channels=self.dcn_in_channel_list[i], kernel_size=3, stride=1, padding=1, deformable_groups=self.groups_dcn)) for j in range(self.num_dcn_layers-1): self.dcn_list.append(DCN(in_channels=self.dcn_in_channel_list[i], out_channels=self.dcn_in_channel_list[i], kernel_size=3, stride=1, padding=1, deformable_groups=self.groups_dcn)) else: self.use_dcn = False self.dcn_cat_sab = False self.detach_sab = False for m in self.modules(): weights_init(m) def slice_and_cat(self, a, b): # slice each tensor by 4 (4-phase), concat a & b for each phase, then merge together # why?: we want to keep the "grouped" context of base convnet feature before feeding to next grouped conv a = torch.split(a, int(a.size(1)/self.vgg_groups), dim=1) b = torch.split(b, int(b.size(1)/self.vgg_groups), dim=1) ab = [torch.cat([a[i], b[i]], dim=1) for i in range(len(a))] ab = torch.cat(ab, dim=1) return ab def forward(self, x): if self.use_self_attention_base: sa_base_counter = 0 if self.use_self_attention: sa_counter = 0 # print("forward1") x = self.pool1(self.relu1_2(self.conv1_2(self.relu1_1(self.conv1_1(x))))) # print("forward11") x = self.relu2_2(self.conv2_2(self.relu2_1(self.conv2_1(x)))) # print("forward12") if config.version == "2s": if self.use_self_attention_base: # x, attn_g, attnb = self.self_attn_base_list[sa_base_counter](x) x, attn_g = checkpoint(self.self_attn_base_list[sa_base_counter], x) sa_base_counter += 1 if self.dcn_cat_sab: if self.detach_sab: x = self.slice_and_cat(x, attn_g.detach()) else: x = self.slice_and_cat(x, attn_g) if self.use_dcn: for i_dcn in range(self.num_dcn_layers): x, offset = self.dcn_list[i_dcn](x) s1 = x if self.use_self_attention: # s1, attn_g, attn = self.self_attn_list[sa_counter](s1) s1, attn_g, = checkpoint(self.self_attn_list[sa_counter], s1) sa_counter += 1 if self.use_fuseconv: s1 = self.fuse1(s1) if self.batch_norm: s1 = self.bn_fuse1(s1) l1_1x = self.out1_1(s1) #conv2_2 # print("forward13") l1_2x = self.out1_2(s1) #conv2_2 # print("forward14") x = self.relu3_3(self.conv3_3(self.relu3_2(self.conv3_2(self.relu3_1(self.conv3_1(self.pool2(x))))))) # print("forward15") if self.use_self_attention_base: # x, attn_g, attnb = self.self_attn_base_list[sa_base_counter](x) x, attn_g = checkpoint(self.self_attn_base_list[sa_base_counter], x) sa_base_counter += 1 if config.version != "2s" and self.use_dcn: if self.dcn_cat_sab: if self.detach_sab: x = self.slice_and_cat(x, attn_g.detach()) else: x = self.slice_and_cat(x, attn_g) for i_dcn in range(self.num_dcn_layers): x, offset = self.dcn_list[i_dcn](x) s2 = x if self.use_self_attention: # s2, attn_g, attn = self.self_attn_list[sa_counter](s2) s2, attn_g = checkpoint(self.self_attn_list[sa_counter], s2) sa_counter += 1 if self.use_fuseconv: s2 = self.fuse2(s2) if self.batch_norm: s2 = self.bn_fuse2(s2) l2_1x = self.out2_1(s2) #conv3_3 # print("forward16") l2_2x = self.out2_2(s2) #conv3_3 # print("forward17") x = self.relu4_3(self.conv4_3(self.relu4_2(self.conv4_2(self.relu4_1(self.conv4_1(self.pool3(x))))))) if self.use_self_attention_base: # x, attn_g, attnb = self.self_attn_base_list[sa_base_counter](x) x, attn_g = checkpoint(self.self_attn_base_list[sa_base_counter], x) sa_base_counter += 1 s3 = x if self.use_self_attention: # s3, attn_g, attn = self.self_attn_list[sa_counter](s3) s3, attn_g = checkpoint(self.self_attn_list[sa_counter], s3) sa_counter += 1 if self.use_fuseconv: s3 = self.fuse3(s3) if self.batch_norm: s3 = self.bn_fuse3(s3) l3_1x = self.out3_1(s3) #conv4_3 l3_2x = self.out3_2(s3) #conv4_3 x = self.relu5_3(self.conv5_3(self.relu5_2(self.conv5_2(self.relu5_1(self.conv5_1(self.pool4(x))))))) if self.use_self_attention_base: # x, attn_g, attnb = self.self_attn_base_list[sa_base_counter](x) x, attn_g = checkpoint(self.self_attn_base_list[sa_base_counter], x) sa_base_counter += 1 s4 = x if self.use_self_attention: # s4, attn_g, attn = self.self_attn_list[sa_counter](s4) s4, attn_g = checkpoint(self.self_attn_list[sa_counter], s4) sa_counter += 1 if self.use_fuseconv: s4 = self.fuse4(s4) if self.batch_norm: s4 = self.bn_fuse4(s4) l4_1x = self.out4_1(s4) #conv5_3 l4_2x = self.out4_2(s4) #conv5_3 x = self.relu7(self.conv7(self.relu6(self.conv6(self.pool5(x))))) if self.use_self_attention_base: # x, attn_g, attnb = self.self_attn_base_list[sa_base_counter](x) x, attn_g = checkpoint(self.self_attn_base_list[sa_base_counter], x) sa_base_counter += 1 s5 = x if self.use_self_attention: # s5, attn_g, attn = self.self_attn_list[sa_counter](s5) s5, attn_g = checkpoint(self.self_attn_list[sa_counter], s5) sa_counter += 1 if self.use_fuseconv: s5 = self.fuse5(s5) if self.batch_norm: s5 = self.bn_fuse5(s5) l5_1x = self.out5_1(s5) #fc7 l5_2x = self.out5_2(s5) #fc7 # print("forward3") if self.cascade_fuse: upsample1_1 = nn.functional.interpolate(l5_1x + l4_1x, size=l3_1x.size()[2:], mode="bilinear", align_corners=True) upsample2_1 = nn.functional.interpolate(upsample1_1 + l3_1x, size=l2_1x.size()[2:], mode="bilinear", align_corners=True) if config.version == "2s": upsample3_1 = nn.functional.interpolate(upsample2_1 + l2_1x, size=l1_1x.size()[2:], mode="bilinear", align_corners=True) logit_1 = upsample3_1 + l1_1x features = [nn.functional.interpolate(l5_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(l5_1x + l4_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(upsample1_1 + l3_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(upsample2_1 + l2_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), logit_1] out_1 = self.final_1(torch.cat(features, dim=1)) else: logit_1 = upsample2_1 + l2_1x features_1 = [nn.functional.interpolate(l5_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(l5_1x + l4_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(upsample1_1 + l3_1x, size=logit_1.size()[2:], mode="bilinear", align_corners=True), logit_1] out_1 = self.final_1(torch.cat(features_1, dim=1)) upsample1_2 = nn.functional.interpolate(l5_2x + l4_2x, size=l3_2x.size()[2:], mode="bilinear", align_corners=True) upsample2_2 = nn.functional.interpolate(upsample1_2 + l3_2x, size=l2_2x.size()[2:], mode="bilinear", align_corners=True) if config.version == "2s": upsample3_2 = nn.functional.interpolate(upsample2_2 + l2_2x, size=l1_1x.size()[2:], mode="bilinear", align_corners=True) logit_2 = upsample3_2 + l1_2x features_2 = [ nn.functional.interpolate(l5_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(l5_2x + l4_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(upsample1_2 + l3_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(upsample2_2 + l2_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), logit_2] out_2 = self.final_2(torch.cat(features_2, dim=1)) else: logit_2 = upsample2_2 + l2_2x features_2 = [ nn.functional.interpolate(l5_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(l5_2x + l4_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), nn.functional.interpolate(upsample1_2 + l3_2x, size=logit_2.size()[2:], mode="bilinear", align_corners=True), logit_2] out_2 = self.final_2(torch.cat(features_2, dim=1)) else: # upsample1_1 = nn.functional.upsample(l5_1x + l4_1x, scale_factor=2, mode="bilinear", align_corners=True) upsample1_1 = nn.functional.interpolate(l5_1x + l4_1x, size=l3_1x.size()[2:], mode="bilinear", align_corners=True) #upsample2_1 = nn.functional.upsample(upsample1_1 + l3_1x, scale_factor=2, mode="bilinear", align_corners=True) upsample2_1 = nn.functional.interpolate(upsample1_1 + l3_1x, size=l2_1x.size()[2:], mode="bilinear", align_corners=True) if config.version == "2s": # upsample3_1 = nn.functional.upsample(upsample2_1 + l2_1x, scale_factor=2, mode="bilinear", align_corners=True) upsample3_1 = nn.functional.interpolate(upsample2_1 + l2_1x, size=l1_1x.size()[2:], mode="bilinear", align_corners=True) out_1 = upsample3_1 + l1_1x else: out_1 = upsample2_1 + l2_1x out_1 = self.final_1(out_1) # print("forward4") # upsample1_2 = nn.functional.upsample(l5_2x + l4_2x, scale_factor=2, mode="bilinear", align_corners=True) upsample1_2 = nn.functional.interpolate(l5_2x + l4_2x, size=l3_2x.size()[2:], mode="bilinear", align_corners=True) # upsample2_2 = nn.functional.upsample(upsample1_2 + l3_2x, scale_factor=2, mode="bilinear", align_corners=True) upsample2_2 = nn.functional.interpolate(upsample1_2 + l3_2x, size=l2_2x.size()[2:], mode="bilinear", align_corners=True) if config.version == "2s": # upsample3_2 = nn.functional.upsample(upsample2_2 + l2_2x, scale_factor=2, mode="bilinear", align_corners=True) upsample3_2 = nn.functional.interpolate(upsample2_2 + l2_2x, size=l1_1x.size()[2:], mode="bilinear", align_corners=True) out_2 = upsample3_2 + l1_2x else: out_2 = upsample2_2 + l2_2x out_2 = self.final_2(out_2) # print("forward5") return [out_1, out_2] # [ [B, 2, H, W], [B, 16, H, W] ] def num_flat_features(self, x): size = x.size()[1:] num_features = 1 for s in size: num_features *= s return num_features def load_weights(self, base_file): other, ext = os.path.splitext(base_file) if ext == '.pkl' or '.pth': print('Loading weights into state dict...') weight_pretrained = torch.load(base_file, map_location=lambda storage, loc: storage) # https://discuss.pytorch.org/t/how-to-load-part-of-pre-trained-model/1113/32 from collections import OrderedDict pretrained_dict = OrderedDict() model_dict = self.state_dict() for k, v in weight_pretrained.items(): if k.startswith("module."): # DataParallel case name = k[7:] # remove `module.` else: name = k if name in model_dict.keys(): if v.shape != model_dict[name].shape: print( "WARNING: shape of pretrained {} {} does not match the current model {}. this weight will be ignored.".format( name, v.shape, model_dict[name].shape)) pretrained_dict[name] = v filtered_dict = {k: v for k, v in pretrained_dict.items() if (k in model_dict) and (model_dict[k].shape == pretrained_dict[k].shape)} # overwite model_dict entries in the existing filtered_dict and update it model_dict.update(filtered_dict) self.load_state_dict(model_dict) else: print('Sorry only .pth and .pkl files supported.')
57.56974
160
0.589192
0ff9a9bae36874fc3a41a605b6109b76794154d0
991
py
Python
headerstest.py
mzeinstra/openAnalyser
859156117948eb15283c348e6f6025cae9352279
[ "MIT" ]
1
2021-06-28T09:39:43.000Z
2021-06-28T09:39:43.000Z
headerstest.py
mzeinstra/openAnalyser
859156117948eb15283c348e6f6025cae9352279
[ "MIT" ]
null
null
null
headerstest.py
mzeinstra/openAnalyser
859156117948eb15283c348e6f6025cae9352279
[ "MIT" ]
null
null
null
from urllib.parse import urlparse from bs4 import BeautifulSoup import urllib3 from socket import timeout import tldextract import re import traceback import sys import logging import socket import threading from time import sleep from collector import Collector from checker import Checker http = urllib3.PoolManager() page = http.request('GET', "http://opennederland.nl", timeout=2) print(page) print("-------------------------------------------------------") print(page.headers) print("-------------------------------------------------------") print(page.headers.keys()) print("-------------------------------------------------------") print(page.headers.items()) print("-------------------------------------------------------") t = page.headers.items() print("-------------------------------------------------------") d = dict((x, y) for x, y in t) print (d) print("-------------------------------------------------------") if "X-Powered-By" in d: print ("print " + d['X-Powered-By'])
30.030303
64
0.491423
13db41a3aa7fcbe8ff30af5fa8fc986a9d0efbaf
7,162
py
Python
python/kfserving/kfserving/models/v1alpha2_kf_service_list.py
ariefrahmansyah/kfserving
733e415a3715e5bf662ef9fd791fc2708d145a37
[ "Apache-2.0" ]
null
null
null
python/kfserving/kfserving/models/v1alpha2_kf_service_list.py
ariefrahmansyah/kfserving
733e415a3715e5bf662ef9fd791fc2708d145a37
[ "Apache-2.0" ]
null
null
null
python/kfserving/kfserving/models/v1alpha2_kf_service_list.py
ariefrahmansyah/kfserving
733e415a3715e5bf662ef9fd791fc2708d145a37
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 kubeflow.org. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ KFServing Python SDK for KFServing # noqa: E501 OpenAPI spec version: v0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from kfserving.models.v1alpha2_kf_service import V1alpha2KFService # noqa: F401,E501 from kubernetes.client import V1ListMeta # noqa: F401,E501 class V1alpha2KFServiceList(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'api_version': 'str', 'items': 'list[V1alpha2KFService]', 'kind': 'str', 'metadata': 'V1ListMeta' } attribute_map = { 'api_version': 'apiVersion', 'items': 'items', 'kind': 'kind', 'metadata': 'metadata' } def __init__(self, api_version=None, items=None, kind=None, metadata=None): # noqa: E501 """V1alpha2KFServiceList - a model defined in Swagger""" # noqa: E501 self._api_version = None self._items = None self._kind = None self._metadata = None self.discriminator = None if api_version is not None: self.api_version = api_version self.items = items if kind is not None: self.kind = kind if metadata is not None: self.metadata = metadata @property def api_version(self): """Gets the api_version of this V1alpha2KFServiceList. # noqa: E501 APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources # noqa: E501 :return: The api_version of this V1alpha2KFServiceList. # noqa: E501 :rtype: str """ return self._api_version @api_version.setter def api_version(self, api_version): """Sets the api_version of this V1alpha2KFServiceList. APIVersion defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#resources # noqa: E501 :param api_version: The api_version of this V1alpha2KFServiceList. # noqa: E501 :type: str """ self._api_version = api_version @property def items(self): """Gets the items of this V1alpha2KFServiceList. # noqa: E501 :return: The items of this V1alpha2KFServiceList. # noqa: E501 :rtype: list[V1alpha2KFService] """ return self._items @items.setter def items(self, items): """Sets the items of this V1alpha2KFServiceList. :param items: The items of this V1alpha2KFServiceList. # noqa: E501 :type: list[V1alpha2KFService] """ if items is None: raise ValueError("Invalid value for `items`, must not be `None`") # noqa: E501 self._items = items @property def kind(self): """Gets the kind of this V1alpha2KFServiceList. # noqa: E501 Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds # noqa: E501 :return: The kind of this V1alpha2KFServiceList. # noqa: E501 :rtype: str """ return self._kind @kind.setter def kind(self, kind): """Sets the kind of this V1alpha2KFServiceList. Kind is a string value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#types-kinds # noqa: E501 :param kind: The kind of this V1alpha2KFServiceList. # noqa: E501 :type: str """ self._kind = kind @property def metadata(self): """Gets the metadata of this V1alpha2KFServiceList. # noqa: E501 :return: The metadata of this V1alpha2KFServiceList. # noqa: E501 :rtype: V1ListMeta """ return self._metadata @metadata.setter def metadata(self, metadata): """Sets the metadata of this V1alpha2KFServiceList. :param metadata: The metadata of this V1alpha2KFServiceList. # noqa: E501 :type: V1ListMeta """ self._metadata = metadata def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(V1alpha2KFServiceList, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1alpha2KFServiceList): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.157407
295
0.63069
671932eb2f238490056d3f42565ba61024eb49e3
7,250
py
Python
src/NewDouban.py
fugary/calibre-web-douban-api
8a8b7c969095a7be7a4df4c26fd82fdc8fcd85e3
[ "Apache-2.0" ]
69
2021-11-05T05:14:10.000Z
2022-03-30T17:55:57.000Z
src/NewDouban.py
zhoucheng8023/calibre-web-douban-api
8a8b7c969095a7be7a4df4c26fd82fdc8fcd85e3
[ "Apache-2.0" ]
7
2021-11-09T08:25:40.000Z
2022-03-29T05:54:39.000Z
src/NewDouban.py
zhoucheng8023/calibre-web-douban-api
8a8b7c969095a7be7a4df4c26fd82fdc8fcd85e3
[ "Apache-2.0" ]
23
2021-11-05T05:14:17.000Z
2022-03-20T03:35:05.000Z
import re import time import requests from concurrent.futures import ThreadPoolExecutor, as_completed from urllib.parse import urlparse, unquote from lxml import etree from functools import lru_cache from cps.services.Metadata import Metadata, MetaSourceInfo, MetaRecord DOUBAN_SEARCH_JSON_URL = "https://www.douban.com/j/search" DOUBAN_BOOK_CAT = "1001" DOUBAN_BOOK_CACHE_SIZE = 500 # 最大缓存数量 DOUBAN_CONCURRENCY_SIZE = 5 # 并发查询数 DEFAULT_HEADERS = { 'user-agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3573.0 Safari/537.36' } PROVIDER_NAME = "New Douban Books" PROVIDER_ID = "new_douban" class NewDouban(Metadata): __name__ = PROVIDER_NAME __id__ = PROVIDER_ID def __init__(self): self.searcher = DoubanBookSearcher() super().__init__() def search(self, query: str, generic_cover: str = "", locale: str = "en"): if self.active: return self.searcher.search_books(query) class DoubanBookSearcher: def __init__(self): self.book_loader = DoubanBookLoader() self.thread_pool = ThreadPoolExecutor(max_workers=10, thread_name_prefix='douban_async') def calc_url(self, href): query = urlparse(href).query params = {item.split('=')[0]: item.split('=')[1] for item in query.split('&')} url = unquote(params['url']) return url def load_book_urls(self, query): url = DOUBAN_SEARCH_JSON_URL params = {"start": 0, "cat": DOUBAN_BOOK_CAT, "q": query} res = requests.get(url, params, headers=DEFAULT_HEADERS) book_urls = [] if res.status_code in [200, 201]: book_list_content = res.json() for item in book_list_content['items'][0:DOUBAN_CONCURRENCY_SIZE]: # 获取部分数据,默认5条 html = etree.HTML(item) a = html.xpath('//a[@class="nbg"]') if len(a): href = a[0].attrib['href'] parsed = self.calc_url(href) book_urls.append(parsed) return book_urls def search_books(self, query): book_urls = self.load_book_urls(query) books = [] futures = [self.thread_pool.submit(self.book_loader.load_book, book_url) for book_url in book_urls] for future in as_completed(futures): book = future.result() if book is not None: books.append(future.result()) return books class DoubanBookLoader: def __init__(self): self.book_parser = DoubanBookHtmlParser() @lru_cache(maxsize=DOUBAN_BOOK_CACHE_SIZE) def load_book(self, url): book = None start_time = time.time() res = requests.get(url, headers=DEFAULT_HEADERS) if res.status_code in [200, 201]: print("下载书籍:{}成功,耗时{:.0f}ms".format(url, (time.time() - start_time) * 1000)) book_detail_content = res.content book = self.book_parser.parse_book(url, book_detail_content.decode("utf8")) return book class DoubanBookHtmlParser: def __init__(self): self.id_pattern = re.compile(".*/subject/(\\d+)/?") self.date_pattern = re.compile("(\\d{4})-(\\d+)") self.tag_pattern = re.compile("criteria = '(.+)'") def parse_book(self, url, book_content): book = MetaRecord( id="", title="", authors=[], publisher="", description="", url="", source=MetaSourceInfo( id=PROVIDER_ID, description=PROVIDER_NAME, link="https://book.douban.com/" ) ) html = etree.HTML(book_content) title_element = html.xpath("//span[@property='v:itemreviewed']") book.title = self.get_text(title_element) share_element = html.xpath("//a[@data-url]") if len(share_element): url = share_element[0].attrib['data-url'] book.url = url id_match = self.id_pattern.match(url) if id_match: book.id = id_match.group(1) img_element = html.xpath("//a[@class='nbg']") if len(img_element): cover = img_element[0].attrib['href'] if not cover or cover.endswith('update_image'): book.cover = '' else: book.cover = cover rating_element = html.xpath("//strong[@property='v:average']") book.rating = self.get_rating(rating_element) elements = html.xpath("//span[@class='pl']") for element in elements: text = self.get_text(element) if text.startswith("作者") or text.startswith("译者"): book.authors.extend([self.get_text(author_element) for author_element in filter(self.author_filter, element.findall("..//a"))]) elif text.startswith("出版社"): book.publisher = self.get_tail(element) elif text.startswith("副标题"): book.title = book.title + ':' + self.get_tail(element) elif text.startswith("出版年"): book.publishedDate = self.get_publish_date(self.get_tail(element)) elif text.startswith("丛书"): book.series = self.get_text(element.getnext()) summary_element = html.xpath("//div[@id='link-report']//div[@class='intro']") if len(summary_element): book.description = etree.tostring(summary_element[-1], encoding="utf8").decode("utf8").strip() tag_elements = html.xpath("//a[contains(@class, 'tag')]") if len(tag_elements): book.tags = [self.get_text(tag_element) for tag_element in tag_elements] else: book.tags = self.get_tags(book_content) return book def get_tags(self, book_content): tag_match = self.tag_pattern.findall(book_content) if len(tag_match): return [tag.replace('7:', '') for tag in filter(lambda tag: tag and tag.startswith('7:'), tag_match[0].split('|'))] return [] def get_publish_date(self, date_str): if date_str: date_match = self.date_pattern.fullmatch(date_str) if date_match: date_str = "{}-{}-1".format(date_match.group(1), date_match.group(2)) return date_str def get_rating(self, rating_element): return float(self.get_text(rating_element, '0')) / 2 def author_filter(self, a_element): a_href = a_element.attrib['href'] return '/author' in a_href or '/search' in a_href def get_text(self, element, default_str=''): text = default_str if len(element) and element[0].text: text = element[0].text.strip() elif isinstance(element, etree._Element) and element.text: text = element.text.strip() return text if text else default_str def get_tail(self, element, default_str=''): text = default_str if isinstance(element, etree._Element) and element.tail: text = element.tail.strip() if not text: text = self.get_text(element.getnext(), default_str) return text if text else default_str
37.958115
132
0.6
2e93b372d355932294deded9335115ab9e166d81
980
py
Python
main1.py
HieuNguyenPhi/ChatBot
7ae98fef40527ced15a58a4f35d3114257d32fbd
[ "MIT" ]
null
null
null
main1.py
HieuNguyenPhi/ChatBot
7ae98fef40527ced15a58a4f35d3114257d32fbd
[ "MIT" ]
null
null
null
main1.py
HieuNguyenPhi/ChatBot
7ae98fef40527ced15a58a4f35d3114257d32fbd
[ "MIT" ]
null
null
null
import nltk nltk.download('punkt') nltk.download('wordnet') from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() import json import pickle import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.optimizers import SGD import random import csv words=[] classes = [] documents = [] file = open("stoppingwords.txt") csv_reader = csv.reader(file, delimiter = ',') content = list(csv_reader) file.close() ignore_words = [word for word in content[0]] data_file = open('intents.json').read() intents = json.loads(data_file) for intent in intents['intents']: for pattern in intent['patterns']: # take each word and tokenize it w = nltk.word_tokenize(pattern) words.extend(w) # adding documents documents.append((w, intent['tag'])) # adding classes to our class list if intent['tag'] not in classes: classes.append(intent['tag'])
24.5
51
0.7
9770979f9a5a1e2afc56b9342f33d82ccc97a78f
1,676
py
Python
ticketsystem/mainapp/urls.py
malfin/ISMticket
a29260b008b4d1721b1986c85c9d92d703839f1f
[ "Apache-2.0" ]
null
null
null
ticketsystem/mainapp/urls.py
malfin/ISMticket
a29260b008b4d1721b1986c85c9d92d703839f1f
[ "Apache-2.0" ]
null
null
null
ticketsystem/mainapp/urls.py
malfin/ISMticket
a29260b008b4d1721b1986c85c9d92d703839f1f
[ "Apache-2.0" ]
null
null
null
from django.urls import path import mainapp.views as mainapp app_name = 'mainapp' urlpatterns = [ path('', mainapp.index, name='index'), path('tickets/', mainapp.my_ticket, name='my_ticket'), path('tickets/create/', mainapp.create_ticket, name='create_ticket'), path('tickets/open/<int:pk>/', mainapp.open_ticket, name='open_ticket'), path('tickets/close/<int:pk>/', mainapp.close_ticket, name='close_ticket'), path('tickets/send/<int:pk>/', mainapp.send_message, name='send_message'), path('profile/', mainapp.profile, name='profile'), path('profile/edit/', mainapp.edit_profile, name='edit_profile'), path('profile/edit/password/', mainapp.change_password, name='change_password'), path('news/', mainapp.news, name='news'), path('news/add/', mainapp.create_news, name='create_news'), path('news/edit/<int:pk>/', mainapp.edit_news, name='edit_news'), path('news/remove/<int:pk>/', mainapp.remove_news, name='remove_news'), path('ticket/admin/', mainapp.ticket_admin, name='ticket_admin'), path('ticket/admin/open/<int:pk>/', mainapp.open_ticket_admin, name='open_ticket_admin'), path('ticket/admin/send/<int:pk>/', mainapp.send_message_admin, name='send_message_admin'), path('ticket/admin/close/<int:pk>/', mainapp.close_ticket_admin, name='close_ticket_admin'), path('ticket/admin/open_message/<int:pk>/', mainapp.open_ticket_message, name='open_ticket_message'), path('userprofile/', mainapp.all_users, name='all_users'), path('userprofile/edit/<int:pk>/', mainapp.edit_profile_admin, name='edit_profile_admin'), path('userprofile/add/', mainapp.create_user, name='create_user'), ]
50.787879
105
0.708831
a9970ca270d93f59cdf6fb1d78f9bcaf06cf493f
3,951
py
Python
2019/05/day5.py
jscpeterson/advent-of-code-2020
69dce1b8ac752a63c4b064e46f0f7218a96bceb8
[ "Apache-2.0" ]
null
null
null
2019/05/day5.py
jscpeterson/advent-of-code-2020
69dce1b8ac752a63c4b064e46f0f7218a96bceb8
[ "Apache-2.0" ]
null
null
null
2019/05/day5.py
jscpeterson/advent-of-code-2020
69dce1b8ac752a63c4b064e46f0f7218a96bceb8
[ "Apache-2.0" ]
null
null
null
ADD = 1 MULTIPLY = 2 SAVE = 3 OUTPUT = 4 JUMP_IF_TRUE = 5 JUMP_IF_FALSE = 6 LESS_THAN = 7 EQUALS = 8 HALT = 99 OP_PARAMS = { ADD: 3, MULTIPLY: 3, SAVE: 1, OUTPUT: 1, JUMP_IF_TRUE: 2, JUMP_IF_FALSE: 2, LESS_THAN: 3, EQUALS: 3, HALT: 0, } POSITION = 0 IMMEDIATE = 1 class IntcodeCompiler: def __init__(self, filepath): with open(filepath) as f: self.program = list(map(int, f.read().strip().split(','))) f.close() def read(self, position, mode): if mode == POSITION: return self.program[position] elif mode == IMMEDIATE: return position else: raise Exception('Unrecognized mode: {}'.format(mode)) def write(self, position, input_): self.program[position] = input_ def run(self, input_=None): instruction_pointer = 0 output = None while True: if instruction_pointer > len(self.program): instruction_pointer = instruction_pointer % len(self.program) instruction = self.program[instruction_pointer] opcode = instruction % 100 modes = instruction // 100 if opcode == ADD: operand1 = self.read(self.program[instruction_pointer + 1], modes % 10) modes = modes // 10 operand2 = self.read(self.program[instruction_pointer + 2], modes % 10) modes = modes // 10 self.write(self.program[instruction_pointer + 3], operand1 + operand2) elif opcode == MULTIPLY: operand1 = self.read(self.program[instruction_pointer + 1], modes % 10) modes = modes // 10 operand2 = self.read(self.program[instruction_pointer + 2], modes % 10) modes = modes // 10 self.write(self.program[instruction_pointer + 3], operand1 * operand2) elif opcode == SAVE: self.write(self.program[instruction_pointer + 1], input_) elif opcode == OUTPUT: output = self.read(self.program[instruction_pointer + 1], modes % 10) elif opcode == JUMP_IF_TRUE: if self.read(self.program[instruction_pointer + 1], modes % 10) == 1: modes = modes // 10 instruction_pointer = self.read(self.program[instruction_pointer + 2], modes % 10) continue elif opcode == JUMP_IF_FALSE: if self.read(self.program[instruction_pointer + 1], modes % 10) == 0: modes = modes // 10 instruction_pointer = self.read(self.program[instruction_pointer + 2], modes % 10) continue elif opcode == LESS_THAN: operand1 = self.read(self.program[instruction_pointer + 1], modes % 10) modes = modes // 10 operand2 = self.read(self.program[instruction_pointer + 2], modes % 10) modes = modes // 10 self.write(self.program[instruction_pointer + 3], 1 if operand1 < operand2 else 0) elif opcode == EQUALS: operand1 = self.read(self.program[instruction_pointer + 1], modes % 10) modes = modes // 10 operand2 = self.read(self.program[instruction_pointer + 2], modes % 10) modes = modes // 10 self.write(self.program[instruction_pointer + 3], 1 if operand1 == operand2 else 0) elif opcode == HALT: return output else: raise Exception('Unrecognized opcode: {}'.format(opcode)) instruction_pointer += 1 + OP_PARAMS[opcode] assert IntcodeCompiler('test1').run(input_=1) == 999 assert IntcodeCompiler('test1').run(input_=8) == 1000 assert IntcodeCompiler('test1').run(input_=9) == 1001 print(IntcodeCompiler('input').run(input_=5))
37.628571
102
0.564667
f5ba8a33eacd571f1e35c5725e6ce1c3ca3eaab3
471
py
Python
scrooge/datasource/migrations/0004_auto_20160627_2239.py
SpisTresci/scrooge
787b7d5f8ece8f3f24feb4273505e6c0ea60b5d7
[ "MIT" ]
1
2021-01-04T04:30:24.000Z
2021-01-04T04:30:24.000Z
scrooge/datasource/migrations/0004_auto_20160627_2239.py
SpisTresci/scrooge
787b7d5f8ece8f3f24feb4273505e6c0ea60b5d7
[ "MIT" ]
6
2019-12-21T03:19:17.000Z
2020-01-07T07:28:04.000Z
scrooge/datasource/migrations/0004_auto_20160627_2239.py
SpisTresci/scrooge
787b7d5f8ece8f3f24feb4273505e6c0ea60b5d7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-06-27 20:39 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('datasource', '0003_auto_20160627_1928'), ] operations = [ migrations.AlterUniqueTogether( name='xmldatafield', unique_together=set([('name', 'data_source'), ('datafield_name', 'data_source')]), ), ]
23.55
94
0.63482
b59e05cf739be04bb254d42ffafbac9626305f41
379
py
Python
parsec/commands/tools/get_citations.py
erasche/parsec
c2f1bda7ff776f9aa121c7b94d62e3da2fad93f6
[ "Apache-2.0" ]
8
2015-03-27T17:09:15.000Z
2021-07-13T15:33:02.000Z
parsec/commands/tools/get_citations.py
erasche/parsec
c2f1bda7ff776f9aa121c7b94d62e3da2fad93f6
[ "Apache-2.0" ]
30
2015-02-27T21:21:47.000Z
2021-08-31T14:19:55.000Z
parsec/commands/tools/get_citations.py
erasche/parsec
c2f1bda7ff776f9aa121c7b94d62e3da2fad93f6
[ "Apache-2.0" ]
12
2017-06-01T03:49:23.000Z
2021-07-13T15:33:06.000Z
import click from parsec.cli import pass_context, json_loads from parsec.decorators import custom_exception, json_output @click.command('get_citations') @click.argument("tool_id", type=str) @pass_context @custom_exception @json_output def cli(ctx, tool_id): """Get BibTeX citations for a given tool ID. Output: """ return ctx.gi.tools.get_citations(tool_id)
19.947368
59
0.757256
bbd63a07393c3ab514b58b03d170123f960e0fc4
14,002
py
Python
common/xrd-opmon-tests/testcases/test_metaservices.py
ria-ee/XTM
6103f3f5bbba387b8b59b050c0c4f1fb2180fc37
[ "MIT" ]
3
2018-03-15T14:22:50.000Z
2021-11-08T10:30:35.000Z
common/xrd-opmon-tests/testcases/test_metaservices.py
ria-ee/XTM
6103f3f5bbba387b8b59b050c0c4f1fb2180fc37
[ "MIT" ]
11
2017-04-06T09:25:41.000Z
2018-06-04T09:08:48.000Z
common/xrd-opmon-tests/testcases/test_metaservices.py
ria-ee/XTM
6103f3f5bbba387b8b59b050c0c4f1fb2180fc37
[ "MIT" ]
20
2017-03-14T07:21:58.000Z
2019-05-21T09:26:30.000Z
#!/usr/bin/env python3 # The MIT License # Copyright (c) 2016 Estonian Information System Authority (RIA), Population Register Centre (VRK) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Test case for verifying that the operational monitoring related data # of metaservice requests are stored by the operational monitoring # daemon. # It is also verified that central monitoring client has full access to # operational monitoring data. import os import common # Base sizes of request and responses. # Parameters sizes must be added to these values. LISTMETHODS_QUERY_REQUEST_SOAP_BASE_SIZE = 1062 # Disabling responseSoapSize check, because tested subsystems may have # additional services # LISTMETHODS_QUERY_RESPONSE_SOAP_BASE_SIZE = 2735 GET_SS_METRICS_QUERY_REQUEST_SOAP_BASE_SIZE = 1308 def _listmethods_query_request_parameters_size(query_parameters): # Request template: listmethods_producer_query_template.xml return ( len(query_parameters["producer_instance"]) + len(query_parameters["producer_class"]) + len(query_parameters["producer_code"]) + len(query_parameters["producer_system"]) + len(query_parameters["client_instance"]) + len(query_parameters["client_class"]) + len(query_parameters["client_code"]) + len(query_parameters["client_system"]) ) def _expected_keys_and_values_of_listmethods_query_rec( xroad_message_id, security_server_address, security_server_type, query_parameters): request_parameters_size = _listmethods_query_request_parameters_size(query_parameters) print("Size of listmethods query request parameters: {}".format(request_parameters_size)) return [ ("clientMemberClass", query_parameters["client_class"]), ("clientMemberCode", query_parameters["client_code"]), ("clientSecurityServerAddress", query_parameters["client_server_address"]), ("clientSubsystemCode", query_parameters["client_system"]), ("clientXRoadInstance", query_parameters["client_instance"]), ("messageId", xroad_message_id), ("messageProtocolVersion", "4.0"), ("requestAttachmentCount", 0), ("requestSoapSize", LISTMETHODS_QUERY_REQUEST_SOAP_BASE_SIZE + request_parameters_size), ("responseAttachmentCount", 0), ("securityServerInternalIp", security_server_address), ("securityServerType", security_server_type), ("serviceCode", "listMethods"), ("serviceMemberClass", query_parameters["producer_class"]), ("serviceMemberCode", query_parameters["producer_code"]), ("serviceSecurityServerAddress", query_parameters["producer_server_address"]), ("serviceSubsystemCode", query_parameters["producer_system"]), ("serviceVersion", "v1"), ("serviceXRoadInstance", query_parameters["producer_instance"]), ("succeeded", True), ] def _get_ss_metrics_query_request_parameters_size(query_parameters): # Request template: get_ss_metrics_query_template.xml return ( 2 * len(query_parameters["producer_instance"]) + 2 * len(query_parameters["producer_class"]) + 2 * len(query_parameters["producer_code"]) + len(query_parameters["producer_server_code"]) + len(query_parameters["client_instance"]) + len(query_parameters["client_class"]) + len(query_parameters["client_code"]) + len(query_parameters["client_monitor_system"]) ) def _expected_keys_and_values_of_get_ss_metrics_query_rec( xroad_message_id, security_server_address, security_server_type, query_parameters): request_parameters_size = _get_ss_metrics_query_request_parameters_size(query_parameters) print("Size of get ss metrics query request parameters: {}".format(request_parameters_size)) return [ ("clientMemberClass", query_parameters["client_class"]), ("clientMemberCode", query_parameters["client_code"]), ("clientSecurityServerAddress", query_parameters["client_server_address"]), ("clientSubsystemCode", query_parameters["client_monitor_system"]), ("clientXRoadInstance", query_parameters["client_instance"]), ("messageId", xroad_message_id), ("messageProtocolVersion", "4.0"), ("requestAttachmentCount", 0), ("requestSoapSize", GET_SS_METRICS_QUERY_REQUEST_SOAP_BASE_SIZE + request_parameters_size), ("responseAttachmentCount", 0), ("securityServerInternalIp", security_server_address), ("securityServerType", security_server_type), ("serviceCode", "getSecurityServerMetrics"), ("serviceMemberClass", query_parameters["producer_class"]), ("serviceMemberCode", query_parameters["producer_code"]), ("serviceSecurityServerAddress", query_parameters["producer_server_address"]), ("serviceXRoadInstance", query_parameters["producer_instance"]), ("succeeded", True), ] def run(request_template_dir, query_parameters): client_security_server_address = query_parameters["client_server_ip"] producer_security_server_address = query_parameters["producer_server_ip"] ssh_user = query_parameters["ssh_user"] listmethods_query_template_filename = os.path.join( request_template_dir, "listmethods_producer_query_template.xml") get_ss_metrics_query_template_filename = os.path.join( request_template_dir, "get_ss_metrics_query_template.xml") query_data_client_template_filename = os.path.join( request_template_dir, "query_operational_data_client_central_monitoring_template.xml") query_data_producer_template_filename = os.path.join( request_template_dir, "query_operational_data_producer_central_monitoring_template.xml") client_timestamp_before_requests = common.get_remote_timestamp( client_security_server_address, ssh_user) producer_timestamp_before_requests = common.get_remote_timestamp( producer_security_server_address, ssh_user) message_id_listmethods = common.generate_message_id() print("\nGenerated message ID {} for listMethods request".format(message_id_listmethods)) # Regular and operational data requests and the relevant checks print("\n---- Sending a listMethods request to the client's security server ----\n") request_contents = common.format_xroad_request_template( listmethods_query_template_filename, message_id_listmethods, query_parameters) print("Generated the following listMethods request: \n") print(request_contents) response = common.post_xml_request( client_security_server_address, request_contents, get_raw_stream=True) mime_parts, raw_response = common.parse_multipart_response(response) if mime_parts: soap_part = common.get_multipart_soap(mime_parts[0]) common.print_multipart_soap(soap_part) else: common.parse_and_check_soap_response(raw_response) message_id_get_ss_metrics = common.generate_message_id() print("\nGenerated message ID {} for getSecurityServerMetrics request".format( message_id_get_ss_metrics)) print("\n---- Sending a getSecurityServerMetrics request to " "the client's security server ----\n") request_contents = common.format_xroad_request_template( get_ss_metrics_query_template_filename, message_id_get_ss_metrics, query_parameters) print("Generated the following getSecurityServerMetrics request: \n") print(request_contents) response = common.post_xml_request( client_security_server_address, request_contents, get_raw_stream=True) mime_parts, raw_response = common.parse_multipart_response(response) if mime_parts: soap_part = common.get_multipart_soap(mime_parts[0]) # getSecurityServerMetrics response is large, print only headers common.print_multipart_soap_headers(soap_part) # Program should never get here unless getSecurityServerMetrics # will be changed to return data in attachments instead of # SOAP Body raise Exception("\nWARNING!!! getSecurityServerMetrics returned attachments\n") else: common.parse_and_check_soap_response(raw_response) common.wait_for_operational_data() client_timestamp_after_requests = common.get_remote_timestamp( client_security_server_address, ssh_user) producer_timestamp_after_requests = common.get_remote_timestamp( producer_security_server_address, ssh_user) # Now make operational data requests to both security servers and # check the response payloads. print("\n---- Sending an operational data request to the client's security server ----\n") message_id = common.generate_message_id() print("Generated message ID {} for query data request".format(message_id)) request_contents = common.format_query_operational_data_request_template( query_data_client_template_filename, message_id, client_timestamp_before_requests, client_timestamp_after_requests, query_parameters) print("Generated the following query data request for the client's security server: \n") print(request_contents) response = common.post_xml_request( client_security_server_address, request_contents, get_raw_stream=True) mime_parts, raw_response = common.parse_multipart_response(response) if mime_parts: soap_part, record_count = common.get_multipart_soap_and_record_count(mime_parts[0]) common.print_multipart_soap_and_record_count(soap_part, record_count) json_payload = common.get_multipart_json_payload(mime_parts[1]) # Check the presence of all the required fields in at least # one JSON structure. common.assert_present_in_json( json_payload, _expected_keys_and_values_of_listmethods_query_rec( message_id_listmethods, client_security_server_address, "Client", query_parameters)) common.assert_present_in_json( json_payload, _expected_keys_and_values_of_get_ss_metrics_query_rec( message_id_get_ss_metrics, client_security_server_address, "Client", query_parameters)) # Check if the timestamps in the response are in the expected # range. common.assert_expected_timestamp_values( json_payload, client_timestamp_before_requests, client_timestamp_after_requests) common.print_multipart_query_data_response(json_payload) else: common.parse_and_check_soap_response(raw_response) # Central monitoring client is used as a service client in # operational data request. As central monitoring client is # registered in client's security server, let's send the # operational data request to producer's security server via # client's security server. print("\n---- Sending an operational data request from central monitoring client " "to the producer's security server ----\n") message_id = common.generate_message_id() print("\nGenerated message ID {} for query data request".format(message_id)) request_contents = common.format_query_operational_data_request_template( query_data_producer_template_filename, message_id, producer_timestamp_before_requests, producer_timestamp_after_requests, query_parameters) print("Generated the following query data request for the producer's " "security server: \n") print(request_contents) response = common.post_xml_request( client_security_server_address, request_contents, get_raw_stream=True) mime_parts, raw_response = common.parse_multipart_response(response) if mime_parts: soap_part, record_count = common.get_multipart_soap_and_record_count(mime_parts[0]) common.print_multipart_soap_and_record_count(soap_part, record_count, is_client=False) json_payload = common.get_multipart_json_payload(mime_parts[1]) # Check the presence of all the required fields in at least # one JSON structure. common.assert_present_in_json( json_payload, _expected_keys_and_values_of_listmethods_query_rec( message_id_listmethods, producer_security_server_address, "Producer", query_parameters)) common.assert_present_in_json( json_payload, _expected_keys_and_values_of_get_ss_metrics_query_rec( message_id_get_ss_metrics, producer_security_server_address, "Producer", query_parameters)) # Check timestamp values common.assert_expected_timestamp_values( json_payload, producer_timestamp_before_requests, producer_timestamp_after_requests) common.assert_equal_timestamp_values(json_payload) common.print_multipart_query_data_response(json_payload) else: common.parse_and_check_soap_response(raw_response)
46.059211
99
0.746893
3b4297a55ff48c9c736a7cc8d8ccb9ba0639010c
2,459
py
Python
leetcode_python/Array/spiral-matrix-iii.py
yennanliu/Python_basics
6a597442d39468295946cefbfb11d08f61424dc3
[ "Unlicense" ]
18
2019-08-01T07:45:02.000Z
2022-03-31T18:05:44.000Z
leetcode_python/Array/spiral-matrix-iii.py
yennanliu/Python_basics
6a597442d39468295946cefbfb11d08f61424dc3
[ "Unlicense" ]
null
null
null
leetcode_python/Array/spiral-matrix-iii.py
yennanliu/Python_basics
6a597442d39468295946cefbfb11d08f61424dc3
[ "Unlicense" ]
15
2019-12-29T08:46:20.000Z
2022-03-08T14:14:05.000Z
# V0 # V1 # https://www.jiuzhang.com/solution/spiral-matrix-iii/#tag-highlight-lang-python def spiralMatrixIII(self, R, C, r0, c0): """ :type R: int :type C: int :type r0: int :type c0: int :rtype: List[List[int]] """ i = r0 j = c0 ans = [[i, j]] adder = 0 while len(ans) < R * C: adder += 1 cj = j while j < (cj + adder): j += 1 if 0 <= j < C and 0 <= i < R: ans.append([i, j]) ci = i while i < (ci + adder): i += 1 if 0 <= j < C and 0 <= i < R: ans.append([i, j]) adder += 1 cj = j while j > (cj - adder): j -= 1 if 0 <= j < C and 0 <= i < R: ans.append([i, j]) ci = i while i > (ci - adder): i -= 1 if 0 <= j < C and 0 <= i < R: ans.append([i, j]) return ans # V1' # https://blog.csdn.net/XX_123_1_RJ/article/details/81952905 class Solution: def spiralMatrixIII(self, R, C, r0, c0): res = [[r0, c0]] if R * C == 1: return res for k in range(1, 2*(R+C), 2): # k = lengh of every side for dr, dc, dk in ((0, 1, k), (1, 0, k), (0, -1, k+1), (-1, 0, k+1)): # left, up, right, down (4 directions of move) for _ in range(dk): r0 += dr c0 += dc if 0 <= r0 < R and 0 <= c0 < C: # check if out of the boader res.append([r0, c0]) # add the new route if len(res) == R * C: # len(res) == R * C, means already finish the process return res # V2 # Time: O(max(m, n)^2) # Space: O(1) class Solution(object): def spiralMatrixIII(self, R, C, r0, c0): """ :type R: int :type C: int :type r0: int :type c0: int :rtype: List[List[int]] """ r, c = r0, c0 result = [[r, c]] x, y, n, i = 0, 1, 0, 0 while len(result) < R*C: r, c, i = r+x, c+y, i+1 if 0 <= r < R and 0 <= c < C: result.append([r, c]) if i == n//2+1: x, y, n, i = y, -x, n+1, 0 return result
28.593023
130
0.371289
7894d791f0bec280ba937357d1a5c6f5e63d0260
14,780
py
Python
lang/py3/avro/datafile.py
mkram/avro
f6c044e56f9de7d3e34eeb1702c11fa4add04d84
[ "Apache-2.0" ]
2
2021-11-09T12:50:18.000Z
2022-01-18T00:12:38.000Z
lang/py3/avro/datafile.py
mkram/avro
f6c044e56f9de7d3e34eeb1702c11fa4add04d84
[ "Apache-2.0" ]
null
null
null
lang/py3/avro/datafile.py
mkram/avro
f6c044e56f9de7d3e34eeb1702c11fa4add04d84
[ "Apache-2.0" ]
1
2020-09-13T13:10:00.000Z
2020-09-13T13:10:00.000Z
#!/usr/bin/env python3 # -*- mode: python -*- # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Read/Write Avro File Object Containers.""" import io import logging import os import zlib from avro import schema from avro import io as avro_io try: import snappy has_snappy = True except ImportError: has_snappy = False # ------------------------------------------------------------------------------ # Constants # Version of the container file: VERSION = 1 # Magic code that starts a data container file: MAGIC = b'Obj' + bytes([VERSION]) # Size of the magic code, in number of bytes: MAGIC_SIZE = len(MAGIC) # Size of the synchronization marker, in number of bytes: SYNC_SIZE = 16 # Interval between synchronization markers, in number of bytes: # TODO: make configurable SYNC_INTERVAL = 1000 * SYNC_SIZE # Schema of the container header: META_SCHEMA = schema.Parse(""" { "type": "record", "name": "org.apache.avro.file.Header", "fields": [{ "name": "magic", "type": {"type": "fixed", "name": "magic", "size": %(magic_size)d} }, { "name": "meta", "type": {"type": "map", "values": "bytes"} }, { "name": "sync", "type": {"type": "fixed", "name": "sync", "size": %(sync_size)d} }] } """ % { 'magic_size': MAGIC_SIZE, 'sync_size': SYNC_SIZE, }) # Codecs supported by container files: VALID_CODECS = frozenset(['null', 'deflate']) if has_snappy: VALID_CODECS = frozenset.union(VALID_CODECS, ['snappy']) # Not used yet VALID_ENCODINGS = frozenset(['binary']) # Metadata key associated to the codec: CODEC_KEY = "avro.codec" # Metadata key associated to the schema: SCHEMA_KEY = "avro.schema" # ------------------------------------------------------------------------------ # Exceptions class DataFileException(schema.AvroException): """Problem reading or writing file object containers.""" def __init__(self, msg): super(DataFileException, self).__init__(msg) # ------------------------------------------------------------------------------ class DataFileWriter(object): """Writes Avro data files.""" @staticmethod def GenerateSyncMarker(): """Generates a random synchronization marker.""" return os.urandom(SYNC_SIZE) # TODO: make 'encoder' a metadata property def __init__( self, writer, datum_writer, writer_schema=None, codec='null', ): """Constructs a new DataFileWriter instance. If the schema is not present, presume we're appending. Args: writer: File-like object to write into. datum_writer: writer_schema: Schema codec: """ self._writer = writer self._encoder = avro_io.BinaryEncoder(writer) self._datum_writer = datum_writer self._buffer_writer = io.BytesIO() self._buffer_encoder = avro_io.BinaryEncoder(self._buffer_writer) self._block_count = 0 self._meta = {} # Ensure we have a writer that accepts bytes: self._writer.write(b'') # Whether the header has already been written: self._header_written = False if writer_schema is not None: if codec not in VALID_CODECS: raise DataFileException('Unknown codec: %r' % codec) self._sync_marker = DataFileWriter.GenerateSyncMarker() self.SetMeta('avro.codec', codec) self.SetMeta('avro.schema', str(writer_schema).encode('utf-8')) self.datum_writer.writer_schema = writer_schema else: # open writer for reading to collect metadata dfr = DataFileReader(writer, avro_io.DatumReader()) # TODO: collect arbitrary metadata # collect metadata self._sync_marker = dfr.sync_marker self.SetMeta('avro.codec', dfr.GetMeta('avro.codec')) # get schema used to write existing file schema_from_file = dfr.GetMeta('avro.schema').decode('utf-8') self.SetMeta('avro.schema', schema_from_file) self.datum_writer.writer_schema = schema.Parse(schema_from_file) # seek to the end of the file and prepare for writing writer.seek(0, 2) self._header_written = True # read-only properties @property def writer(self): return self._writer @property def encoder(self): return self._encoder @property def datum_writer(self): return self._datum_writer @property def buffer_encoder(self): return self._buffer_encoder @property def sync_marker(self): return self._sync_marker @property def meta(self): return self._meta def __enter__(self): return self def __exit__(self, type, value, traceback): # Perform a close if there's no exception if type is None: self.close() @property def block_count(self): return self._block_count def GetMeta(self, key): """Reports the metadata associated to the given key. Args: key: Key of the metadata to report the value of. Returns: The metadata value, as bytes, or None if the key does not exist. """ return self._meta.get(key) def SetMeta(self, key, value): """Sets the metadata value for the given key. Note: metadata is persisted and retrieved as bytes. Args: key: Key of the metadata to set. value: Value of the metadata, as bytes or str. Strings are automatically converted to bytes. """ if isinstance(value, str): value = value.encode('utf-8') assert isinstance(value, bytes), ( 'Invalid metadata value for key %r: %r' % (key, value)) self._meta[key] = value def _WriteHeader(self): header = { 'magic': MAGIC, 'meta': self.meta, 'sync': self.sync_marker, } logging.debug( 'Writing Avro data file header:\n%s\nAvro header schema:\n%s', header, META_SCHEMA) self.datum_writer.write_data(META_SCHEMA, header, self.encoder) self._header_written = True # TODO: make a schema for blocks and use datum_writer def _WriteBlock(self): if not self._header_written: self._WriteHeader() if self.block_count <= 0: logging.info('Current block is empty, nothing to write.') return # write number of items in block self.encoder.write_long(self.block_count) # write block contents uncompressed_data = self._buffer_writer.getvalue() codec = self.GetMeta(CODEC_KEY).decode('utf-8') if codec == 'null': compressed_data = uncompressed_data compressed_data_length = len(compressed_data) elif codec == 'deflate': # The first two characters and last character are zlib # wrappers around deflate data. compressed_data = zlib.compress(uncompressed_data)[2:-1] compressed_data_length = len(compressed_data) elif codec == 'snappy': compressed_data = snappy.compress(uncompressed_data) compressed_data_length = len(compressed_data) + 4 # crc32 else: fail_msg = '"%s" codec is not supported.' % codec raise DataFileException(fail_msg) # Write length of block self.encoder.write_long(compressed_data_length) # Write block self.writer.write(compressed_data) # Write CRC32 checksum for Snappy if self.GetMeta(CODEC_KEY) == 'snappy': self.encoder.write_crc32(uncompressed_data) # write sync marker self.writer.write(self.sync_marker) logging.debug( 'Writing block with count=%d nbytes=%d sync=%r', self.block_count, compressed_data_length, self.sync_marker) # reset buffer self._buffer_writer.seek(0) self._buffer_writer.truncate() self._block_count = 0 def append(self, datum): """Append a datum to the file.""" self.datum_writer.write(datum, self.buffer_encoder) self._block_count += 1 # if the data to write is larger than the sync interval, write the block if self._buffer_writer.tell() >= SYNC_INTERVAL: self._WriteBlock() def sync(self): """ Return the current position as a value that may be passed to DataFileReader.seek(long). Forces the end of the current block, emitting a synchronization marker. """ self._WriteBlock() return self.writer.tell() def flush(self): """Flush the current state of the file, including metadata.""" self._WriteBlock() self.writer.flush() def close(self): """Close the file.""" self.flush() self.writer.close() # ------------------------------------------------------------------------------ class DataFileReader(object): """Read files written by DataFileWriter.""" # TODO: allow user to specify expected schema? # TODO: allow user to specify the encoder def __init__(self, reader, datum_reader): """Initializes a new data file reader. Args: reader: Open file to read from. datum_reader: Avro datum reader. """ self._reader = reader self._raw_decoder = avro_io.BinaryDecoder(reader) self._datum_decoder = None # Maybe reset at every block. self._datum_reader = datum_reader # read the header: magic, meta, sync self._read_header() # ensure codec is valid avro_codec_raw = self.GetMeta('avro.codec') if avro_codec_raw is None: self.codec = "null" else: self.codec = avro_codec_raw.decode('utf-8') if self.codec not in VALID_CODECS: raise DataFileException('Unknown codec: %s.' % self.codec) self._file_length = self._GetInputFileLength() # get ready to read self._block_count = 0 self.datum_reader.writer_schema = ( schema.Parse(self.GetMeta(SCHEMA_KEY).decode('utf-8'))) def __enter__(self): return self def __exit__(self, type, value, traceback): # Perform a close if there's no exception if type is None: self.close() def __iter__(self): return self def __next__(self): """Implements the iterator interface.""" return next(self) # read-only properties @property def reader(self): return self._reader @property def raw_decoder(self): return self._raw_decoder @property def datum_decoder(self): return self._datum_decoder @property def datum_reader(self): return self._datum_reader @property def sync_marker(self): return self._sync_marker @property def meta(self): return self._meta @property def file_length(self): """Length of the input file, in bytes.""" return self._file_length # read/write properties @property def block_count(self): return self._block_count def GetMeta(self, key): """Reports the value of a given metadata key. Args: key: Metadata key (string) to report the value of. Returns: Value associated to the metadata key, as bytes. """ return self._meta.get(key) def SetMeta(self, key, value): """Sets a metadata. Args: key: Metadata key (string) to set. value: Metadata value to set, as bytes. """ if isinstance(value, str): value = value.encode('utf-8') self._meta[key] = value def _GetInputFileLength(self): """Reports the length of the input file, in bytes. Leaves the current position unmodified. Returns: The length of the input file, in bytes. """ current_pos = self.reader.tell() self.reader.seek(0, 2) file_length = self.reader.tell() self.reader.seek(current_pos) return file_length def is_EOF(self): return self.reader.tell() == self.file_length def _read_header(self): # seek to the beginning of the file to get magic block self.reader.seek(0, 0) # read header into a dict header = self.datum_reader.read_data( META_SCHEMA, META_SCHEMA, self.raw_decoder) # check magic number if header.get('magic') != MAGIC: fail_msg = "Not an Avro data file: %s doesn't match %s."\ % (header.get('magic'), MAGIC) raise schema.AvroException(fail_msg) # set metadata self._meta = header['meta'] # set sync marker self._sync_marker = header['sync'] def _read_block_header(self): self._block_count = self.raw_decoder.read_long() if self.codec == "null": # Skip a long; we don't need to use the length. self.raw_decoder.skip_long() self._datum_decoder = self._raw_decoder elif self.codec == 'deflate': # Compressed data is stored as (length, data), which # corresponds to how the "bytes" type is encoded. data = self.raw_decoder.read_bytes() # -15 is the log of the window size; negative indicates # "raw" (no zlib headers) decompression. See zlib.h. uncompressed = zlib.decompress(data, -15) self._datum_decoder = avro_io.BinaryDecoder(io.BytesIO(uncompressed)) elif self.codec == 'snappy': # Compressed data includes a 4-byte CRC32 checksum length = self.raw_decoder.read_long() data = self.raw_decoder.read(length - 4) uncompressed = snappy.decompress(data) self._datum_decoder = avro_io.BinaryDecoder(io.BytesIO(uncompressed)) self.raw_decoder.check_crc32(uncompressed); else: raise DataFileException("Unknown codec: %r" % self.codec) def _skip_sync(self): """ Read the length of the sync marker; if it matches the sync marker, return True. Otherwise, seek back to where we started and return False. """ proposed_sync_marker = self.reader.read(SYNC_SIZE) if proposed_sync_marker != self.sync_marker: self.reader.seek(-SYNC_SIZE, 1) return False else: return True # TODO: handle block of length zero # TODO: clean this up with recursion def __next__(self): """Return the next datum in the file.""" if self.block_count == 0: if self.is_EOF(): raise StopIteration elif self._skip_sync(): if self.is_EOF(): raise StopIteration self._read_block_header() else: self._read_block_header() datum = self.datum_reader.read(self.datum_decoder) self._block_count -= 1 return datum def close(self): """Close this reader.""" self.reader.close() if __name__ == '__main__': raise Exception('Not a standalone module')
27.626168
80
0.660622
adefc8476e326941cd9caf8aa79032dbc68547a7
235
py
Python
raissyon/raissyon/doctype/salary_register_confirmation/test_salary_register_confirmation.py
mhbu50/raissyon
73d5d7498e3e7f74b07e4c0a1c979ad10f9c37ce
[ "MIT" ]
null
null
null
raissyon/raissyon/doctype/salary_register_confirmation/test_salary_register_confirmation.py
mhbu50/raissyon
73d5d7498e3e7f74b07e4c0a1c979ad10f9c37ce
[ "MIT" ]
null
null
null
raissyon/raissyon/doctype/salary_register_confirmation/test_salary_register_confirmation.py
mhbu50/raissyon
73d5d7498e3e7f74b07e4c0a1c979ad10f9c37ce
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, Accurate Systems and Contributors # See license.txt from __future__ import unicode_literals # import frappe import unittest class TestSalaryRegisterConfirmation(unittest.TestCase): pass
21.363636
56
0.782979
ba419490fe692d6d238b3fc1ad1e05e1dddb5606
5,145
py
Python
qiskit/aqua/algorithms/single_sample/amplitude_estimation/ae_algorithm.py
l45k/qiskit-aqua
77589d5fa0da670c23a4f6730d8a5477c9b0d126
[ "Apache-2.0" ]
1
2020-02-12T16:52:34.000Z
2020-02-12T16:52:34.000Z
qiskit/aqua/algorithms/single_sample/amplitude_estimation/ae_algorithm.py
l45k/qiskit-aqua
77589d5fa0da670c23a4f6730d8a5477c9b0d126
[ "Apache-2.0" ]
null
null
null
qiskit/aqua/algorithms/single_sample/amplitude_estimation/ae_algorithm.py
l45k/qiskit-aqua
77589d5fa0da670c23a4f6730d8a5477c9b0d126
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The Amplitude Estimation Algorithm. """ import logging from abc import abstractmethod from qiskit.aqua.algorithms import QuantumAlgorithm from .q_factory import QFactory logger = logging.getLogger(__name__) class AmplitudeEstimationAlgorithm(QuantumAlgorithm): r""" The Quantum Amplitude Estimation (QAE) algorithm base class. In general, QAE algorithms aim to approximate the amplitude of a certain, marked state. This amplitude is encoded in the so-called A operator, performing the mapping A \|0>_n \|0> = sqrt{1 - a} \|psi_0>_n \|0> + sqrt{a} \|psi_1>_n \|1> where the amplitude `a` (in [0, 1]) is approximated, and \|psi_0> and \|psi_1> are two normalized, not necessarily orthogonal, states. In the QAE algorithms, the Grover operator Q is used, which is defined as Q = -A S_0 A^{-1} S_psi0, where S_0 reflects about the \|0>_n state and S_psi0 reflects about \|psi_0>_n. See https://arxiv.org/abs/quant-ph/0005055 for more detail about QAE. """ @abstractmethod def __init__(self, a_factory=None, q_factory=None, i_objective=None): self._a_factory = a_factory self._q_factory = q_factory self._i_objective = i_objective super().__init__() @property def a_factory(self): r""" Get the A operator encoding the amplitude `a` that's approximated, i.e. A \|0>_n \|0> = sqrt{1 - a} \|psi_0>_n \|0> + sqrt{a} \|psi_1>_n \|1> see the original Brassard paper (https://arxiv.org/abs/quant-ph/0005055) for more detail. Returns: CircuitFactory: the A operator as CircuitFactory """ return self._a_factory @a_factory.setter def a_factory(self, a_factory): """ Set the A operator, that encodes the amplitude to be estimated. Args: a_factory (CircuitFactory): the A Operator """ self._a_factory = a_factory @property def q_factory(self): r""" Get the Q operator, or Grover-operator for the Amplitude Estimation algorithm, i.e. Q = -A S_0 A^{-1} S_psi0, where S_0 reflects about the \|0>_n state and S_psi0 reflects about \|psi_0>_n. See https://arxiv.org/abs/quant-ph/0005055 for more detail. If the Q operator is not set, we try to build it from the A operator. If neither the A operator is set, None is returned. Returns: QFactory: returns the current Q factory of the algorithm """ if self._q_factory is not None: return self._q_factory if self._a_factory is not None: return QFactory(self._a_factory, self.i_objective) return None @q_factory.setter def q_factory(self, q_factory): """ Set the Q operator as QFactory. Args: q_factory (QFactory): the specialized Q operator """ self._q_factory = q_factory @property def i_objective(self): r""" Get the index of the objective qubit. The objective qubit marks the \|psi_0> state (called 'bad states' in https://arxiv.org/abs/quant-ph/0005055) with \|0> and \|psi_1> ('good' states) with \|1>. If the A operator performs the mapping A \|0>_n \|0> = sqrt{1 - a} \|psi_0>_n \|0> + sqrt{a} \|psi_1>_n \|1> then, the objective qubit is the last one (which is either \|0> or \|1>). If the objective qubit (i_objective) is not set, we check if the Q operator (q_factory) is set and return the index specified there. If the q_factory is not defined, the index equals the number of qubits of the A operator (a_factory) minus one. If also the a_factory is not set, return None. Returns: int: the index of the objective qubit """ if self._i_objective is not None: return self._i_objective if self._q_factory is not None: return self._q_factory.i_objective if self._a_factory is not None: return self.a_factory.num_target_qubits - 1 return None @i_objective.setter def i_objective(self, i_objective): """ Set the index of the objective qubit, i.e. the qubit deciding between 'good/bad' states. Args: i_objective (int): the index Note: No checks about the validity of the index are performed, since i_objective could also be set before the A/Q operators and in that case checks cannot be done. """ self._i_objective = i_objective
32.563291
98
0.640428
6d2dd8e6270c241c670a8862f2de7246c19acba2
13,010
py
Python
salt/modules/freebsdservice.py
Jille/salt
286eaf923782851c9b6602583050be804c181a9a
[ "Apache-2.0" ]
null
null
null
salt/modules/freebsdservice.py
Jille/salt
286eaf923782851c9b6602583050be804c181a9a
[ "Apache-2.0" ]
null
null
null
salt/modules/freebsdservice.py
Jille/salt
286eaf923782851c9b6602583050be804c181a9a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' The service module for FreeBSD .. important:: If you feel that Salt should be using this module to manage services on a minion, and it is using a different module (or gives an error similar to *'service.start' is not available*), see :ref:`here <module-provider-override>`. ''' from __future__ import absolute_import # Import python libs import logging import os import fnmatch import re # Import salt libs import salt.utils import salt.utils.decorators as decorators from salt.exceptions import CommandNotFoundError __func_alias__ = { 'reload_': 'reload' } log = logging.getLogger(__name__) # Define the module's virtual name __virtualname__ = 'service' def __virtual__(): ''' Only work on FreeBSD ''' # Disable on these platforms, specific service modules exist: if __grains__['os'] == 'FreeBSD': return __virtualname__ return (False, 'The freebsdservice execution module cannot be loaded: only available on FreeBSD systems.') @decorators.memoize def _cmd(jail=None): ''' Return full path to service command .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) keyword argument in kwargs ''' service = salt.utils.which('service') if not service: raise CommandNotFoundError('\'service\' command not found') if jail: jexec = salt.utils.which('jexec') if not jexec: raise CommandNotFoundError('\'jexec\' command not found') service = '{0} {1} {2}'.format(jexec, jail, service) return service def _get_jail_path(jail): ''' .. versionadded:: 2016.3.4 Return the jail's root directory (path) as shown in jls jail The jid or jail name ''' jls = salt.utils.which('jls') if not jls: raise CommandNotFoundError('\'jls\' command not found') jails = __salt__['cmd.run_stdout']('{0} -n jid name path'.format(jls)) for j in jails.splitlines(): jid, jname, path = (x.split('=')[1].strip() for x in j.split()) if jid == jail or jname == jail: return path.rstrip('/') # XΧΧ, TODO, not sure how to handle nonexistent jail return '' def _get_rcscript(name, jail=None): ''' Return full path to service rc script .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) keyword argument in kwargs ''' cmd = '{0} -r'.format(_cmd(jail)) prf = _get_jail_path(jail) if jail else '' for line in __salt__['cmd.run_stdout'](cmd, python_shell=False).splitlines(): if line.endswith('{0}{1}'.format(os.path.sep, name)): return os.path.join(prf, line.lstrip(os.path.sep)) return None def _get_rcvar(name, jail=None): ''' Return rcvar .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) keyword argument in kwargs ''' if not available(name, jail): log.error('Service {0} not found'.format(name)) return False cmd = '{0} {1} rcvar'.format(_cmd(jail), name) for line in __salt__['cmd.run_stdout'](cmd, python_shell=False).splitlines(): if '_enable="' not in line: continue rcvar, _ = line.split('=', 1) return rcvar return None def get_enabled(jail=None): ''' Return what services are set to run on boot .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) keyword argument in kwargs CLI Example: .. code-block:: bash salt '*' service.get_enabled ''' ret = [] service = _cmd(jail) prf = _get_jail_path(jail) if jail else '' for svc in __salt__['cmd.run']('{0} -e'.format(service)).splitlines(): ret.append(os.path.basename(svc)) # This is workaround for bin/173454 bug for svc in get_all(jail): if svc in ret: continue if not os.path.exists('{0}/etc/rc.conf.d/{1}'.format(prf, svc)): continue if enabled(svc, jail=jail): ret.append(svc) return sorted(ret) def get_disabled(jail=None): ''' Return what services are available but not enabled to start at boot .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) keyword argument in kwargs CLI Example: .. code-block:: bash salt '*' service.get_disabled ''' en_ = get_enabled(jail) all_ = get_all(jail) return sorted(set(all_) - set(en_)) def _switch(name, # pylint: disable=C0103 on, # pylint: disable=C0103 **kwargs): ''' Switch on/off service start at boot. .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) and chroot keyword argument in kwargs. chroot should be used when jail's /etc is mounted read-only and should point to a root directory where jail's /etc is mounted read-write. ''' jail = kwargs.get('jail', '') chroot = kwargs.get('chroot', '').rstrip('/') if not available(name, jail): return False rcvar = _get_rcvar(name, jail) if not rcvar: log.error('rcvar for service {0} not found'.format(name)) return False if jail and not chroot: # prepend the jail's path in config paths when referring to a jail, when # chroot is not provided. chroot should be provided when the jail's /etc # is mounted read-only chroot = _get_jail_path(jail) config = kwargs.get('config', __salt__['config.option']('service.config', default='{0}/etc/rc.conf'.format(chroot) ) ) if not config: rcdir = '{0}/etc/rc.conf.d'.format(chroot) if not os.path.exists(rcdir) or not os.path.isdir(rcdir): log.error('{0} not exists'.format(rcdir)) return False config = os.path.join(rcdir, rcvar.replace('_enable', '')) nlines = [] edited = False if on: val = 'YES' else: val = 'NO' if os.path.exists(config): with salt.utils.fopen(config, 'r') as ifile: for line in ifile: if not line.startswith('{0}='.format(rcvar)): nlines.append(line) continue rest = line[len(line.split()[0]):] # keep comments etc nlines.append('{0}="{1}"{2}'.format(rcvar, val, rest)) edited = True if not edited: # Ensure that the file ends in a \n if len(nlines) > 1 and nlines[-1][-1] != '\n': nlines[-1] = '{0}\n'.format(nlines[-1]) nlines.append('{0}="{1}"\n'.format(rcvar, val)) with salt.utils.fopen(config, 'w') as ofile: ofile.writelines(nlines) return True def enable(name, **kwargs): ''' Enable the named service to start at boot name service name config : /etc/rc.conf Config file for managing service. If config value is empty string, then /etc/rc.conf.d/<service> used. See man rc.conf(5) for details. Also service.config variable can be used to change default. .. versionchanged:: 2016.3.4 jail (optional keyword argument) the jail's id or name chroot (optional keyword argument) the jail's chroot, if the jail's /etc is not mounted read-write CLI Example: .. code-block:: bash salt '*' service.enable <service name> ''' return _switch(name, True, **kwargs) def disable(name, **kwargs): ''' Disable the named service to start at boot Arguments the same as for enable() .. versionchanged:: 2016.3.4 jail (optional keyword argument) the jail's id or name chroot (optional keyword argument) the jail's chroot, if the jail's /etc is not mounted read-write CLI Example: .. code-block:: bash salt '*' service.disable <service name> ''' return _switch(name, False, **kwargs) def enabled(name, **kwargs): ''' Return True if the named service is enabled, false otherwise name Service name .. versionchanged:: 2016.3.4 Support for jail (representing jid or jail name) keyword argument in kwargs CLI Example: .. code-block:: bash salt '*' service.enabled <service name> ''' jail = kwargs.get('jail', '') if not available(name, jail): log.error('Service {0} not found'.format(name)) return False cmd = '{0} {1} rcvar'.format(_cmd(jail), name) for line in __salt__['cmd.run_stdout'](cmd, python_shell=False).splitlines(): if '_enable="' not in line: continue _, state, _ = line.split('"', 2) return state.lower() in ('yes', 'true', 'on', '1') # probably will never reached return False def disabled(name, **kwargs): ''' Return True if the named service is enabled, false otherwise CLI Example: .. code-block:: bash salt '*' service.disabled <service name> ''' return not enabled(name, **kwargs) def available(name, jail=None): ''' Check that the given service is available. .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.available sshd ''' return name in get_all(jail) def missing(name, jail=None): ''' The inverse of service.available. Returns ``True`` if the specified service is not available, otherwise returns ``False``. .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.missing sshd ''' return name not in get_all(jail) def get_all(jail=None): ''' Return a list of all available services .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.get_all ''' ret = [] service = _cmd(jail) for srv in __salt__['cmd.run']('{0} -l'.format(service)).splitlines(): if not srv.isupper(): ret.append(srv) return sorted(ret) def start(name, jail=None): ''' Start the specified service .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.start <service name> ''' cmd = '{0} {1} onestart'.format(_cmd(jail), name) return not __salt__['cmd.retcode'](cmd, python_shell=False) def stop(name, jail=None): ''' Stop the specified service .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.stop <service name> ''' cmd = '{0} {1} onestop'.format(_cmd(jail), name) return not __salt__['cmd.retcode'](cmd, python_shell=False) def restart(name, jail=None): ''' Restart the named service .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.restart <service name> ''' cmd = '{0} {1} onerestart'.format(_cmd(jail), name) return not __salt__['cmd.retcode'](cmd, python_shell=False) def reload_(name, jail=None): ''' Restart the named service .. versionchanged:: 2016.3.4 jail: optional jid or jail name CLI Example: .. code-block:: bash salt '*' service.reload <service name> ''' cmd = '{0} {1} onereload'.format(_cmd(jail), name) return not __salt__['cmd.retcode'](cmd, python_shell=False) def status(name, sig=None, jail=None): ''' Return the status for a service. If the name contains globbing, a dict mapping service name to True/False values is returned. .. versionchanged:: 2016.3.4 .. versionchanged:: Oxygen The service name can now be a glob (e.g. ``salt*``) Args: name (str): The name of the service to check sig (str): Signature to use to find the service via ps Returns: bool: True if running, False otherwise dict: Maps service name to True if running, False otherwise CLI Example: .. code-block:: bash salt '*' service.status <service name> [service signature] ''' if sig: return bool(__salt__['status.pid'](sig)) contains_globbing = bool(re.search(r'\*|\?|\[.+\]', name)) if contains_globbing: services = fnmatch.filter(get_all(), name) else: services = [name] results = {} for service in services: cmd = '{0} {1} onestatus'.format(_cmd(jail), service) results[service] = not __salt__['cmd.retcode'](cmd, python_shell=False, ignore_retcode=True) if contains_globbing: return results return results[name]
25.11583
110
0.600307
c9505a17e3fdf556e23aeea332ca6968d6640bdf
3,204
py
Python
quotes/apis.py
iJohnMaged/stock-market-CMS
fc40470c49bf9e3328538b90510923801b13a8f4
[ "MIT" ]
null
null
null
quotes/apis.py
iJohnMaged/stock-market-CMS
fc40470c49bf9e3328538b90510923801b13a8f4
[ "MIT" ]
null
null
null
quotes/apis.py
iJohnMaged/stock-market-CMS
fc40470c49bf9e3328538b90510923801b13a8f4
[ "MIT" ]
null
null
null
from dataclasses import dataclass from datetime import date import requests @dataclass class APIHandler: original_url: str post_data: dict = None data: dict = None updated: date = None def __post_init__(self): self.url = self.original_url def get(self): res = requests.get(self.url) if res.status_code == 404: raise HTTP404NotFound self.data = res.json() self.updated = date.today() return self.data def process_data(self, data=None): raise NotImplementedError class ExchangeRateAPI(APIHandler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cad_rate = None def process_data(self, data="CAD"): if self.cad_rate is None or self.updated != date.today(): self.get() self.cad_rate = self.data["rates"][data] return self.cad_rate class IEXApi(APIHandler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.convert_fields = [ "latestPrice", "previousClose", "marketCap", "week52High", "week52Low", ] def ticker_available(self, ticker): self.url = self.original_url.format(ticker) try: self.get() except HTTP404NotFound: return False return True def process_data(self, data=None): self.url = self.original_url.format(data["ticker"]) self.get() self.data["ytdChange"] *= 100 for field in self.convert_fields: self.data[field] = round(self.data[field] * data["cad_rate"], 2) if data.get("ticker_item", None) is not None: self.data["shares_owned"] = data["ticker_item"].shares_owned self.data["market_value"] = round( float(data["ticker_item"].shares_owned) * self.data["latestPrice"], 2 ) return self.data class CryptoAPI(APIHandler): def ticker_available(self, ticker): self.url = self.original_url.format(ticker) try: self.get() except HTTP404NotFound: return False return True def process_data(self, data): self.url = self.original_url.format(data["ticker"]) self.get() crypto_data = {} crypto_data["name"] = self.data["name"] crypto_data["symbol"] = self.data["symbol"] crypto_data["market_cap"] = self.data["market_data"]["market_cap"]["cad"] crypto_data["price"] = self.data["market_data"]["current_price"]["cad"] crypto_data["volume"] = self.data["market_data"]["total_volume"]["cad"] crypto_data["high_24"] = self.data["market_data"]["high_24h"]["cad"] crypto_data["low_24"] = self.data["market_data"]["low_24h"]["cad"] if data.get("ticker_item", None) is not None: crypto_data["shares_owned"] = data["ticker_item"].shares_owned crypto_data["market_value"] = round( float(data["ticker_item"].shares_owned) * crypto_data["price"], 2 ) return crypto_data class HTTP404NotFound(Exception): pass
31.106796
85
0.594881
fa0c72f8fa69c3ae79c4b9f3e80c0e2bae2adea0
9,202
py
Python
convlab/spec/spec_util.py
seungjaeryanlee/ConvLab
a8c90f63a86b84d45384b507663c4c6fbe8a378a
[ "MIT" ]
6
2021-09-07T14:30:22.000Z
2021-12-29T05:54:18.000Z
convlab/spec/spec_util.py
seungjaeryanlee/ConvLab
a8c90f63a86b84d45384b507663c4c6fbe8a378a
[ "MIT" ]
null
null
null
convlab/spec/spec_util.py
seungjaeryanlee/ConvLab
a8c90f63a86b84d45384b507663c4c6fbe8a378a
[ "MIT" ]
1
2021-09-02T15:12:18.000Z
2021-09-02T15:12:18.000Z
# The spec module # Manages specification to run things in lab import itertools import json import os from string import Template import pydash as ps from convlab.lib import logger, util SPEC_DIR = 'convlab/spec' ''' All spec values are already param, inferred automatically. To change from a value into param range, e.g. - single: "explore_anneal_epi": 50 - continuous param: "explore_anneal_epi": {"min": 50, "max": 100, "dist": "uniform"} - discrete range: "explore_anneal_epi": {"values": [50, 75, 100]} ''' SPEC_FORMAT = { "agent": [{ "name": str, "algorithm": dict, # "memory": dict, # "net": dict, }], "env": [{ "name": str, "max_t": (type(None), int, float), # "max_frame": (int, float), }], # "body": { # "product": ["outer", "inner", "custom"], # "num": (int, list), # }, "meta": { "eval_frequency": (int, float), "max_session": int, "max_trial": (type(None), int), }, "name": str, } logger = logger.get_logger(__name__) def check_comp_spec(comp_spec, comp_spec_format): '''Base method to check component spec''' for spec_k, spec_format_v in comp_spec_format.items(): comp_spec_v = comp_spec[spec_k] if ps.is_list(spec_format_v): v_set = spec_format_v assert comp_spec_v in v_set, f'Component spec value {ps.pick(comp_spec, spec_k)} needs to be one of {util.to_json(v_set)}' else: v_type = spec_format_v assert isinstance(comp_spec_v, v_type), f'Component spec {ps.pick(comp_spec, spec_k)} needs to be of type: {v_type}' if isinstance(v_type, tuple) and int in v_type and isinstance(comp_spec_v, float): # cast if it can be int comp_spec[spec_k] = int(comp_spec_v) def check_body_spec(spec): '''Base method to check body spec for multi-agent multi-env''' ae_product = ps.get(spec, 'body.product') body_num = ps.get(spec, 'body.num') if ae_product == 'outer': pass elif ae_product == 'inner': agent_num = len(spec['agent']) env_num = len(spec['env']) assert agent_num == env_num, 'Agent and Env spec length must be equal for body `inner` product. Given {agent_num}, {env_num}' else: # custom assert ps.is_list(body_num) def check_compatibility(spec): '''Check compatibility among spec setups''' # TODO expand to be more comprehensive if spec['meta'].get('distributed') == 'synced': assert ps.get(spec, 'agent.0.net.gpu') == False, f'Distributed mode "synced" works with CPU only. Set gpu: false.' def check(spec): '''Check a single spec for validity''' try: spec_name = spec.get('name') assert set(spec.keys()) >= set(SPEC_FORMAT.keys()), f'Spec needs to follow spec.SPEC_FORMAT. Given \n {spec_name}: {util.to_json(spec)}' for agent_spec in spec['agent']: check_comp_spec(agent_spec, SPEC_FORMAT['agent'][0]) for env_spec in spec['env']: check_comp_spec(env_spec, SPEC_FORMAT['env'][0]) # check_comp_spec(spec['body'], SPEC_FORMAT['body']) check_comp_spec(spec['meta'], SPEC_FORMAT['meta']) # check_body_spec(spec) check_compatibility(spec) except Exception as e: logger.exception(f'spec {spec_name} fails spec check') raise e return True def check_all(): '''Check all spec files, all specs.''' spec_files = ps.filter_(os.listdir(SPEC_DIR), lambda f: f.endswith('.json') and not f.startswith('_')) for spec_file in spec_files: spec_dict = util.read(f'{SPEC_DIR}/{spec_file}') for spec_name, spec in spec_dict.items(): # fill-in info at runtime spec['name'] = spec_name spec = extend_meta_spec(spec) try: check(spec) except Exception as e: logger.exception(f'spec_file {spec_file} fails spec check') raise e logger.info(f'Checked all specs from: {ps.join(spec_files, ",")}') return True def extend_meta_spec(spec): '''Extend meta spec with information for lab functions''' extended_meta_spec = { # reset lab indices to -1 so that they tick to 0 'experiment': -1, 'trial': -1, 'session': -1, 'cuda_offset': int(os.environ.get('CUDA_OFFSET', 0)), 'experiment_ts': util.get_ts(), 'prepath': None, # ckpt extends prepath, e.g. ckpt_str = ckpt-epi10-totalt1000 'ckpt': None, 'git_sha': util.get_git_sha(), 'random_seed': None, 'eval_model_prepath': None, } spec['meta'].update(extended_meta_spec) return spec def get(spec_file, spec_name): ''' Get an experiment spec from spec_file, spec_name. Auto-check spec. @example spec = spec_util.get('base.json', 'base_case_openai') ''' spec_file = spec_file.replace(SPEC_DIR, '') # cleanup if 'data/' in spec_file: assert spec_name in spec_file, 'spec_file in data/ must be lab-generated and contains spec_name' spec = util.read(spec_file) else: spec_file = f'{SPEC_DIR}/{spec_file}' # allow direct filename spec_dict = util.read(spec_file) assert spec_name in spec_dict, f'spec_name {spec_name} is not in spec_file {spec_file}. Choose from:\n {ps.join(spec_dict.keys(), ",")}' spec = spec_dict[spec_name] # fill-in info at runtime spec['name'] = spec_name spec = extend_meta_spec(spec) check(spec) return spec def get_eval_spec(spec_file, spec_name, prename=None): '''Get spec for eval mode''' spec = get(spec_file, spec_name) spec['meta']['ckpt'] = 'eval' spec['meta']['eval_model_prepath'] = prename return spec def get_param_specs(spec): '''Return a list of specs with substituted spec_params''' assert 'spec_params' in spec, 'Parametrized spec needs a spec_params key' spec_params = spec.pop('spec_params') spec_template = Template(json.dumps(spec)) keys = spec_params.keys() specs = [] for idx, vals in enumerate(itertools.product(*spec_params.values())): spec_str = spec_template.substitute(dict(zip(keys, vals))) spec = json.loads(spec_str) spec['name'] += f'_{"_".join(vals)}' # offset to prevent parallel-run GPU competition, to mod in util.set_cuda_id cuda_id_gap = int(spec['meta']['max_session'] / spec['meta']['param_spec_process']) spec['meta']['cuda_offset'] += idx * cuda_id_gap specs.append(spec) return specs def override_dev_spec(spec): spec['meta']['max_session'] = 1 spec['meta']['max_trial'] = 2 return spec #def override_enjoy_spec(spec): # spec['meta']['max_session'] = 1 # return spec def override_eval_spec(spec): spec['meta']['max_session'] = 1 # evaluate by episode is set in env clock init in env/base.py return spec def override_test_spec(spec): for agent_spec in spec['agent']: # onpolicy freq is episodic freq = 1 if agent_spec['memory']['name'] == 'OnPolicyReplay' else 8 agent_spec['algorithm']['training_frequency'] = freq agent_spec['algorithm']['training_start_step'] = 1 agent_spec['algorithm']['training_iter'] = 1 agent_spec['algorithm']['training_batch_iter'] = 1 for env_spec in spec['env']: env_spec['max_frame'] = 40 env_spec['max_t'] = 12 spec['meta']['log_frequency'] = 10 spec['meta']['eval_frequency'] = 10 spec['meta']['max_session'] = 1 spec['meta']['max_trial'] = 2 return spec def save(spec, unit='experiment'): '''Save spec to proper path. Called at Experiment or Trial init.''' prepath = util.get_prepath(spec, unit) util.write(spec, f'{prepath}_spec.json') def tick(spec, unit): ''' Method to tick lab unit (experiment, trial, session) in meta spec to advance their indices Reset lower lab indices to -1 so that they tick to 0 spec_util.tick(spec, 'session') session = Session(spec) ''' meta_spec = spec['meta'] if unit == 'experiment': meta_spec['experiment_ts'] = util.get_ts() meta_spec['experiment'] += 1 meta_spec['trial'] = -1 meta_spec['session'] = -1 elif unit == 'trial': if meta_spec['experiment'] == -1: meta_spec['experiment'] += 1 meta_spec['trial'] += 1 meta_spec['session'] = -1 elif unit == 'session': if meta_spec['experiment'] == -1: meta_spec['experiment'] += 1 if meta_spec['trial'] == -1: meta_spec['trial'] += 1 meta_spec['session'] += 1 else: raise ValueError(f'Unrecognized lab unit to tick: {unit}') # set prepath since it is determined at this point meta_spec['prepath'] = prepath = util.get_prepath(spec, unit) for folder in ('graph', 'info', 'log', 'model'): folder_prepath = util.insert_folder(prepath, folder) os.makedirs(os.path.dirname(util.smart_path(folder_prepath)), exist_ok=True) meta_spec[f'{folder}_prepath'] = folder_prepath return spec
34.988593
144
0.621169
1d26f4292c443334a2de5b10112eda5b20a117b1
1,142
py
Python
knapsack_problem/file_handling.py
netotz/optimization
e688904759892bb2e2048c1778434c411f29ddb4
[ "Unlicense" ]
1
2020-02-07T04:44:26.000Z
2020-02-07T04:44:26.000Z
knapsack_problem/file_handling.py
netotz/optimization
e688904759892bb2e2048c1778434c411f29ddb4
[ "Unlicense" ]
1
2021-08-31T15:19:53.000Z
2021-08-31T15:19:53.000Z
knapsack_problem/file_handling.py
netotz/optimization
e688904759892bb2e2048c1778434c411f29ddb4
[ "Unlicense" ]
null
null
null
""" Module for viewing subdirectories and constructing paths and file names. """ from os import listdir, makedirs from os.path import dirname, join, isfile FOLDER = 'instances' def generateFileName(total_items, capacity, index = 0): ''' Generates a name for the file which will store the n items and capacity of an instance. The index parameter distinguishes instances of same size. ''' return str(total_items) + '_' + str(capacity) + '_' + str(index) + '.dat' def getFilePath(file_name): ''' Returns the path of file_name. ''' current_directory = dirname(__file__) file_path = join(current_directory, FOLDER, file_name) return file_path def listFiles(): ''' Returns a list with the .dat files in the instances/ subdirectory. ''' current_directory = dirname(__file__) subdirectory = join(current_directory, FOLDER) try: files_list = listdir(subdirectory) except FileNotFoundError: makedirs(subdirectory) return listFiles() else: return [file for file in files_list if isfile(join(subdirectory, file)) and file.endswith('.dat')]
29.282051
106
0.690893
c128eccd8bfccba16d7bebe299019485f27cb38e
336
py
Python
build-support/travis/generate_travis_yml_main.py
billybecker/pants
ee101f3e360b712aceb9dacf7723aaf9b5567f04
[ "Apache-2.0" ]
94
2015-01-15T21:24:20.000Z
2022-02-16T16:55:43.000Z
build-support/travis/generate_travis_yml_main.py
billybecker/pants
ee101f3e360b712aceb9dacf7723aaf9b5567f04
[ "Apache-2.0" ]
5
2020-07-18T01:04:43.000Z
2021-05-10T08:40:56.000Z
build-support/travis/generate_travis_yml_main.py
billybecker/pants
ee101f3e360b712aceb9dacf7723aaf9b5567f04
[ "Apache-2.0" ]
47
2015-02-25T02:20:07.000Z
2022-03-21T00:59:16.000Z
# coding=utf-8 # Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals from generate_travis_yml import generate_travis_yml if __name__ == '__main__': generate_travis_yml()
28
82
0.803571
87a080e15a30cf0a85da6b88b6cda82511adc662
9,765
py
Python
cowrie/output/donthackme.py
McNinja/McCowrie
41d1a8fdc1f0331414004f5e1139060317f5258e
[ "BSD-3-Clause" ]
null
null
null
cowrie/output/donthackme.py
McNinja/McCowrie
41d1a8fdc1f0331414004f5e1139060317f5258e
[ "BSD-3-Clause" ]
null
null
null
cowrie/output/donthackme.py
McNinja/McCowrie
41d1a8fdc1f0331414004f5e1139060317f5258e
[ "BSD-3-Clause" ]
null
null
null
"""Cowrie API output plugin.""" # Copyright 2016 Russell Troxel # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import base64 from datetime import datetime, timedelta from requests import Session, Request import cowrie.core.output # entry = { # "entryid": "asdf", # "session": "asdf", # "timestamp": "isoformat", # "src_ip": "1.2.3.4", # "username": "asdf", # "password": "asdf", # "input": "cmd", # "url": "asdf", # "outfile": "asdf", # "shasum": "asdf", # "realm": "asdf", # "version": "asdf", # "width": 1, # "height": 1, # "ttylog": "asdf", # "size": "asdf", # "fingerprint": "asdf" # } def _send_request(*args, **kwargs): req = Request(*args, **kwargs) s = Session() prepped = s.prepare_request(req) resp = s.send(prepped) if resp.status_code > 300: raise HttpStatusCodeError(resp) return resp.json() class HttpStatusCodeError(Exception): """Error when status code was not expected.""" def __init__(self, response): """Initialize error from requests Response.""" msg = "Unexpected Response from Server: HTTP {0}, Body: {1}" self.message = msg.format(response.status_code, response.text) self.resp = response def __str__(self): """Return String.""" return repr(self.message) class Output(cowrie.core.output.Output): """Output over REST to the cowrie_api.""" def __init__(self, cfg): """Init.""" self.cfg = cfg self.username = cfg.get('output_donthackme', "username") self.api_key = cfg.get('output_donthackme', "api_key") self.endpoint = cfg.get('output_donthackme', "endpoint") self.expires = False cowrie.core.output.Output.__init__(self, cfg) def refresh_token(self): """If token is close to expiry, retrieve new.""" if self.expires and \ self.expires > datetime.utcnow() + timedelta(minutes=10): return agent_string = "Donthack.Me Cowrie Output Plugin v0.1, User: {0}" headers = { "Content-Type": "application/json", "User-Agent": agent_string.format(self.username) } payload = { "key_auth": { "username": self.username, "api_key": self.api_key } } response = _send_request( "GET", "".join([self.endpoint, "/users/token"]), data=json.dumps(payload), headers=headers ) expires = response["token"]["expires"] self.token = response["token"]["id"] self.expires = datetime.strptime(expires, "%Y-%m-%dT%H:%M:%S.%fZ") def headers(self): """Prepare request headers.""" self.refresh_token() agent_string = "Donthack.Me Cowrie Output Plugin v0.1, User: {0}" headers = { "Content-Type": "application/json", "User-Agent": agent_string.format(self.username), "X-JWT": self.token } return headers def make_url(self, path): """Join base endpoint and path.""" return "".join((self.endpoint, "/events", path)) def prepare_entry(self, logentry, payload, path, method="PUT", popkeys=[]): """Prepare an entry based on base_data.""" data = { "method": method, "url": self.make_url(path), "data": { "session": logentry["session"], "sensor_name": self.sensor, "timestamp": logentry["timestamp"] } } if "dst_ip" in logentry: data["data"]["sensor_ip"] = logentry["dst_ip"] data["data"].update(payload) for key in popkeys: data["data"].pop(key) return data def send_data(self, method, url, data): """Send data to endpoint.""" return _send_request( method.upper(), url, data=json.dumps(data), headers=self.headers() ) def start(self): """Start.""" pass def stop(self): """Stop.""" pass def write(self, logentry): """Class write method.""" prepared_entries = [] if logentry["eventid"] == "cowrie.session.connect": payload = { "source_ip": logentry["src_ip"], "start_time": logentry["timestamp"] } data = self.prepare_entry( logentry, payload, "/session/connect", method="POST", popkeys=["timestamp"] ) prepared_entries.append(data) elif logentry["eventid"] in ["cowrie.login.success", "cowrie.login.failed"]: payload = { "username": logentry["username"], "password": logentry["password"], "success": False } path = "/login/failed" if logentry["eventid"] == "cowrie.login.success": payload["success"] = True path = "/login/success" data = self.prepare_entry( logentry, payload, path ) prepared_entries.append(data) elif logentry["eventid"] in ["cowrie.command.success", "cowrie.command.failed"]: payload = { "command": logentry["input"], "success": False } path = "/command/failed" if logentry["eventid"] == "cowrie.command.success": payload["success"] = True path = "/command/success" data = self.prepare_entry( logentry, payload, path ) prepared_entries.append(data) elif logentry["eventid"] == "cowrie.session.file_download": payload = { "shasum": logentry["shasum"], "url": logentry["url"], "outfile": logentry["outfile"] } data = self.prepare_entry( logentry, payload, "/session/file_download" ) prepared_entries.append(data) elif logentry["eventid"] == 'cowrie.client.version': payload = { "ssh_version": logentry["version"], "ssh_kexAlgs": logentry["kexAlgs"], "ssh_keyAlgs": logentry["keyAlgs"], "ssh_macCS": logentry["macCS"] } data = self.prepare_entry( logentry, payload, "/client/version", popkeys=["timestamp"] ) prepared_entries.append(data) elif logentry["eventid"] == 'cowrie.client.size': payload = { "ttysize": { "height": logentry["height"], "width": logentry["width"], } } data = self.prepare_entry( logentry, payload, "/client/size", popkeys=["timestamp"] ) prepared_entries.append(data) elif logentry["eventid"] == 'cowrie.session.closed': data = self.prepare_entry( logentry, {"end_time": logentry["timestamp"]}, "/session/closed", popkeys=["timestamp"] ) prepared_entries.append(data) elif logentry["eventid"] == 'cowrie.log.closed': max_size = logentry["size"] + 1024 with open(logentry["ttylog"], "rb") as f: ttylog = f.read(max_size) payload = { "ttylog": { "size": logentry["size"], "log_location": logentry["ttylog"], "log_base64": base64.b64encode(ttylog) } } data = self.prepare_entry( logentry, payload, "/log/closed", popkeys=["timestamp"] ) prepared_entries.append(data) elif logentry["eventid"] == 'cowrie.client.fingerprint': payload = { "username": logentry["username"], "fingerprint": logentry["fingerprint"] } data = self.prepare_entry( logentry, payload, "/client/fingerprint" ) prepared_entries.append(data) # elif logentry["eventid"] == "cowrie.direct-tcpip.request": # payload = { # "dest_port": logentry["dst_port"], # "dest_ip": logentry["dst_ip"] # } # data = self.prepare_entry( # logentry, # payload, # "/cdirect-tcpip/request" # ) # prepared_entries.append(data) for entry in prepared_entries: self.send_data(**entry)
29.862385
79
0.498515
2572be34f9b825a21707b4d04f87cb18b1662ee6
5,794
py
Python
py_src/mlpiot/proto/action_execution_pb2.py
machine2learn/mlpiot.base
da0b77fccbb0e42d1ddbb6dbc490313433dc7575
[ "Apache-2.0" ]
1
2021-03-30T20:49:54.000Z
2021-03-30T20:49:54.000Z
py_src/mlpiot/proto/action_execution_pb2.py
machine2learn/mlpiot.base
da0b77fccbb0e42d1ddbb6dbc490313433dc7575
[ "Apache-2.0" ]
null
null
null
py_src/mlpiot/proto/action_execution_pb2.py
machine2learn/mlpiot.base
da0b77fccbb0e42d1ddbb6dbc490313433dc7575
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: mlpiot/proto/action_execution.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from mlpiot.proto import google_timestamp_pb2 as mlpiot_dot_proto_dot_google__timestamp__pb2 from mlpiot.proto import event_pb2 as mlpiot_dot_proto_dot_event__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='mlpiot/proto/action_execution.proto', package='mlpiot.proto', syntax='proto3', serialized_options=None, serialized_pb=b'\n#mlpiot/proto/action_execution.proto\x12\x0cmlpiot.proto\x1a#mlpiot/proto/google_timestamp.proto\x1a\x18mlpiot/proto/event.proto\"H\n\x16\x41\x63tionExecutorMetadata\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\x05\x12\x0f\n\x07payload\x18\x03 \x01(\t\"\xab\x01\n\x0f\x41\x63tionExecution\x12*\n\ttimestamp\x18\x01 \x01(\x0b\x32\x17.mlpiot.proto.Timestamp\x12\x36\n\x08metadata\x18\x02 \x01(\x0b\x32$.mlpiot.proto.ActionExecutorMetadata\x12\x34\n\x17\x61\x63tion_execution_events\x18\x03 \x03(\x0b\x32\x13.mlpiot.proto.Eventb\x06proto3' , dependencies=[mlpiot_dot_proto_dot_google__timestamp__pb2.DESCRIPTOR,mlpiot_dot_proto_dot_event__pb2.DESCRIPTOR,]) _ACTIONEXECUTORMETADATA = _descriptor.Descriptor( name='ActionExecutorMetadata', full_name='mlpiot.proto.ActionExecutorMetadata', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='mlpiot.proto.ActionExecutorMetadata.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='version', full_name='mlpiot.proto.ActionExecutorMetadata.version', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='payload', full_name='mlpiot.proto.ActionExecutorMetadata.payload', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=116, serialized_end=188, ) _ACTIONEXECUTION = _descriptor.Descriptor( name='ActionExecution', full_name='mlpiot.proto.ActionExecution', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='timestamp', full_name='mlpiot.proto.ActionExecution.timestamp', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metadata', full_name='mlpiot.proto.ActionExecution.metadata', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='action_execution_events', full_name='mlpiot.proto.ActionExecution.action_execution_events', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=191, serialized_end=362, ) _ACTIONEXECUTION.fields_by_name['timestamp'].message_type = mlpiot_dot_proto_dot_google__timestamp__pb2._TIMESTAMP _ACTIONEXECUTION.fields_by_name['metadata'].message_type = _ACTIONEXECUTORMETADATA _ACTIONEXECUTION.fields_by_name['action_execution_events'].message_type = mlpiot_dot_proto_dot_event__pb2._EVENT DESCRIPTOR.message_types_by_name['ActionExecutorMetadata'] = _ACTIONEXECUTORMETADATA DESCRIPTOR.message_types_by_name['ActionExecution'] = _ACTIONEXECUTION _sym_db.RegisterFileDescriptor(DESCRIPTOR) ActionExecutorMetadata = _reflection.GeneratedProtocolMessageType('ActionExecutorMetadata', (_message.Message,), { 'DESCRIPTOR' : _ACTIONEXECUTORMETADATA, '__module__' : 'mlpiot.proto.action_execution_pb2' # @@protoc_insertion_point(class_scope:mlpiot.proto.ActionExecutorMetadata) }) _sym_db.RegisterMessage(ActionExecutorMetadata) ActionExecution = _reflection.GeneratedProtocolMessageType('ActionExecution', (_message.Message,), { 'DESCRIPTOR' : _ACTIONEXECUTION, '__module__' : 'mlpiot.proto.action_execution_pb2' # @@protoc_insertion_point(class_scope:mlpiot.proto.ActionExecution) }) _sym_db.RegisterMessage(ActionExecution) # @@protoc_insertion_point(module_scope)
40.802817
580
0.774422
eb65a0bd69937e2cc6cd6c9a09e95f916e8e69de
26,145
py
Python
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/operations/_api_version_set_operations.py
mohamedshabanofficial/azure-sdk-for-python
81c585f310cd2ec23d2ad145173958914a075a58
[ "MIT" ]
2
2021-03-24T06:26:11.000Z
2021-04-18T15:55:59.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/operations/_api_version_set_operations.py
mohamedshabanofficial/azure-sdk-for-python
81c585f310cd2ec23d2ad145173958914a075a58
[ "MIT" ]
2
2021-11-03T06:10:36.000Z
2021-12-01T06:29:39.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/operations/_api_version_set_operations.py
mohamedshabanofficial/azure-sdk-for-python
81c585f310cd2ec23d2ad145173958914a075a58
[ "MIT" ]
1
2021-05-19T02:55:10.000Z
2021-05-19T02:55:10.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ApiVersionSetOperations(object): """ApiVersionSetOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.apimanagement.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_service( self, resource_group_name, # type: str service_name, # type: str filter=None, # type: Optional[str] top=None, # type: Optional[int] skip=None, # type: Optional[int] **kwargs # type: Any ): # type: (...) -> Iterable["_models.ApiVersionSetCollection"] """Lists a collection of API Version Sets in the specified service instance. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param filter: | Field | Usage | Supported operators | Supported functions |</br>|-------------|-------------|-------------|-------------|</br>. :type filter: str :param top: Number of records to return. :type top: int :param skip: Number of records to skip. :type skip: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ApiVersionSetCollection or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.apimanagement.models.ApiVersionSetCollection] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApiVersionSetCollection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_service.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int', minimum=1) if skip is not None: query_parameters['$skip'] = self._serialize.query("skip", skip, 'int', minimum=0) query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ApiVersionSetCollection', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_service.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apiVersionSets'} # type: ignore def get_entity_tag( self, resource_group_name, # type: str service_name, # type: str version_set_id, # type: str **kwargs # type: Any ): # type: (...) -> bool """Gets the entity state (Etag) version of the Api Version Set specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param version_set_id: Api Version Set identifier. Must be unique in the current API Management service instance. :type version_set_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: bool, or the result of cls(response) :rtype: bool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01-preview" accept = "application/json" # Construct URL url = self.get_entity_tag.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'versionSetId': self._serialize.url("version_set_id", version_set_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.head(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) if cls: return cls(pipeline_response, None, response_headers) return 200 <= response.status_code <= 299 get_entity_tag.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apiVersionSets/{versionSetId}'} # type: ignore def get( self, resource_group_name, # type: str service_name, # type: str version_set_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ApiVersionSetContract" """Gets the details of the Api Version Set specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param version_set_id: Api Version Set identifier. Must be unique in the current API Management service instance. :type version_set_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ApiVersionSetContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.ApiVersionSetContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApiVersionSetContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'versionSetId': self._serialize.url("version_set_id", version_set_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ApiVersionSetContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apiVersionSets/{versionSetId}'} # type: ignore def create_or_update( self, resource_group_name, # type: str service_name, # type: str version_set_id, # type: str parameters, # type: "_models.ApiVersionSetContract" if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.ApiVersionSetContract" """Creates or Updates a Api Version Set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param version_set_id: Api Version Set identifier. Must be unique in the current API Management service instance. :type version_set_id: str :param parameters: Create or update parameters. :type parameters: ~azure.mgmt.apimanagement.models.ApiVersionSetContract :param if_match: ETag of the Entity. Not required when creating an entity, but required when updating an entity. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ApiVersionSetContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.ApiVersionSetContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApiVersionSetContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'versionSetId': self._serialize.url("version_set_id", version_set_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ApiVersionSetContract') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 200: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ApiVersionSetContract', pipeline_response) if response.status_code == 201: response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ApiVersionSetContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apiVersionSets/{versionSetId}'} # type: ignore def update( self, resource_group_name, # type: str service_name, # type: str version_set_id, # type: str if_match, # type: str parameters, # type: "_models.ApiVersionSetUpdateParameters" **kwargs # type: Any ): # type: (...) -> "_models.ApiVersionSetContract" """Updates the details of the Api VersionSet specified by its identifier. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param version_set_id: Api Version Set identifier. Must be unique in the current API Management service instance. :type version_set_id: str :param if_match: ETag of the Entity. ETag should match the current entity state from the header response of the GET request or it should be * for unconditional update. :type if_match: str :param parameters: Update parameters. :type parameters: ~azure.mgmt.apimanagement.models.ApiVersionSetUpdateParameters :keyword callable cls: A custom type or function that will be passed the direct response :return: ApiVersionSetContract, or the result of cls(response) :rtype: ~azure.mgmt.apimanagement.models.ApiVersionSetContract :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApiVersionSetContract"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'versionSetId': self._serialize.url("version_set_id", version_set_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ApiVersionSetUpdateParameters') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('ApiVersionSetContract', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apiVersionSets/{versionSetId}'} # type: ignore def delete( self, resource_group_name, # type: str service_name, # type: str version_set_id, # type: str if_match, # type: str **kwargs # type: Any ): # type: (...) -> None """Deletes specific Api Version Set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_name: The name of the API Management service. :type service_name: str :param version_set_id: Api Version Set identifier. Must be unique in the current API Management service instance. :type version_set_id: str :param if_match: ETag of the Entity. ETag should match the current entity state from the header response of the GET request or it should be * for unconditional update. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-06-01-preview" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str', max_length=50, min_length=1, pattern=r'^[a-zA-Z](?:[a-zA-Z0-9-]*[a-zA-Z0-9])?$'), 'versionSetId': self._serialize.url("version_set_id", version_set_id, 'str', max_length=80, min_length=1, pattern=r'^[^*#&+:<>?]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apiVersionSets/{versionSetId}'} # type: ignore
51.772277
211
0.659361
2549cf4caf3f65971678ef730aa45f89c565d1f7
2,170
py
Python
delta/data/frontend/plp_test.py
didichuxing/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
[ "Apache-2.0" ]
1,442
2019-07-09T07:34:28.000Z
2020-11-15T09:52:09.000Z
delta/data/frontend/plp_test.py
didichuxing/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
[ "Apache-2.0" ]
93
2019-07-22T09:20:20.000Z
2020-11-13T01:59:30.000Z
delta/data/frontend/plp_test.py
didichuxing/delta
31dfebc8f20b7cb282b62f291ff25a87e403cc86
[ "Apache-2.0" ]
296
2019-07-09T07:35:28.000Z
2020-11-16T02:27:51.000Z
# Copyright (C) 2017 Beijing Didi Infinity Technology and Development Co.,Ltd. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The model tests PLP FE.""" import delta.compat as tf import os from pathlib import Path import numpy as np from delta.data.frontend.read_wav import ReadWav from delta.data.frontend.plp import Plp from core.ops import PACKAGE_OPS_DIR class PlpTest(tf.test.TestCase): """ Plp extraction test. """ def test_plp(self): wav_path = str(Path(PACKAGE_OPS_DIR).joinpath('data/sm1_cln.wav')) with self.cached_session(use_gpu=False, force_gpu=False): read_wav = ReadWav.params().instantiate() input_data, sample_rate = read_wav(wav_path) input_data = input_data / 32768 plp = Plp.params({ 'window_length': 0.025, 'frame_length': 0.010, 'plp_order': 12 }).instantiate() plp_test = plp(input_data, sample_rate) output_true = np.array( [[-0.209490, -0.326126, 0.010536, -0.027167, -0.117118], [-0.020293, -0.454695, -0.104243, 0.001560, -0.234854], [-0.015118, -0.444044, -0.156695, -0.086221, -0.319310], [-0.031856, -0.130708, 0.047435, -0.089916, -0.160247], [0.052763, -0.271487, 0.011329, 0.025320, 0.012851]]) self.assertEqual(tf.rank(plp_test).eval(), 2) # Because the povey window is used instead of the hamming window in spectrum. self.assertAllClose( plp_test.eval()[50:55, 5:10], output_true, rtol=1e-02, atol=1e-02) if __name__ == '__main__': tf.test.main()
35
83
0.652995
d1f2503da5f902a31e6622eab275488d9f499afd
12,543
py
Python
techminer/correlation_analysis.py
jdvelasq/techminer-new
a4b54c2783aee1a2d0d823ffd270131e42e5ff9a
[ "MIT" ]
1
2020-04-29T20:35:13.000Z
2020-04-29T20:35:13.000Z
techminer/correlation_analysis.py
jdvelasq/techminer-new
a4b54c2783aee1a2d0d823ffd270131e42e5ff9a
[ "MIT" ]
null
null
null
techminer/correlation_analysis.py
jdvelasq/techminer-new
a4b54c2783aee1a2d0d823ffd270131e42e5ff9a
[ "MIT" ]
null
null
null
import matplotlib.pyplot as pyplot import numpy as np import pandas as pd import techminer.core.dashboard as dash from techminer.core import ( DASH, Network, TF_matrix, add_counters_to_axis, corpus_filter, limit_to_exclude, sort_by_axis, ) from techminer.core.dashboard import min_occurrence from techminer.plots import ( ChordDiagram, bubble_plot, counters_to_node_colors, counters_to_node_sizes, heatmap, ) ############################################################################### ## ## MODEL ## ############################################################################### class Model: def __init__( self, data, limit_to, exclude, years_range, clusters=None, cluster=None, ): ## if years_range is not None: initial_year, final_year = years_range data = data[(data.Year >= initial_year) & (data.Year <= final_year)] # # Filter for cluster members # if clusters is not None and cluster is not None: data = corpus_filter(data=data, clusters=clusters, cluster=cluster) self.data = data self.limit_to = limit_to self.exclude = exclude def apply(self): x = self.data.copy() if self.column == self.by: ## ## Drop NA from column ## w = x[[self.column, "ID"]].dropna() ## ## Computes TF_matrix with occurrence >= min_occurrence ## A = TF_matrix( data=w, column=self.column, scheme=None, min_occurrence=self.min_occurrence, ) ## ## Limit to/Exclude ## A = limit_to_exclude( data=A, axis=1, column=self.column, limit_to=self.limit_to, exclude=self.exclude, ) ## ## Select max_items ## A = add_counters_to_axis(X=A, axis=1, data=self.data, column=self.column) A = sort_by_axis(data=A, sort_by=self.top_by, ascending=False, axis=1) A = A[A.columns[: self.max_items]] if len(A.columns) > self.max_items: top_items = A.sum(axis=0) top_items = top_items.sort_values(ascending=False) top_items = top_items.head(self.max_items) A = A.loc[:, top_items.index] rows = A.sum(axis=1) rows = rows[rows > 0] A = A.loc[rows.index, :] ## ## Computes correlation ## matrix = A.corr(method=self.method) else: ## ## Drop NA from column ## w = x[[self.column, self.by, "ID"]].dropna() ## ## Computes TF_matrix with occurrence >= min_occurrence ## A = TF_matrix(data=w, column=self.column, scheme=None) ## ## Limit to/Exclude ## A = limit_to_exclude( data=A, axis=1, column=self.column, limit_to=self.limit_to, exclude=self.exclude, ) ## ## Minimal occurrence ## terms = A.sum(axis=0) terms = terms.sort_values(ascending=False) terms = terms[terms >= self.min_occurrence] A = A.loc[:, terms.index] ## ## Select max_items ## A = add_counters_to_axis(X=A, axis=1, data=self.data, column=self.column) A = sort_by_axis(data=A, sort_by=self.top_by, ascending=False, axis=1) if len(A.columns) > self.max_items: A = A[A.columns[: self.max_items]] ## ## Computes correlation ## B = TF_matrix(w, column=self.by, scheme=None) matrix = np.matmul(B.transpose().values, A.values) matrix = pd.DataFrame(matrix, columns=A.columns, index=B.columns) matrix = matrix.corr(method=self.method) matrix = sort_by_axis( data=matrix, sort_by=self.sort_r_axis_by, ascending=self.r_axis_ascending, axis=0, ) matrix = sort_by_axis( data=matrix, sort_by=self.sort_c_axis_by, ascending=self.c_axis_ascending, axis=1, ) self.X_ = matrix def matrix(self): self.apply() return self.X_.style.format("{:+4.3f}").background_gradient( cmap=self.cmap, axis=None ) def heatmap(self): self.apply() return heatmap(self.X_, cmap=self.cmap, figsize=(self.width, self.height)) def bubble_plot(self): self.apply() return bubble_plot( self.X_, axis=0, cmap=self.cmap, figsize=(self.width, self.height), ) def chord_diagram(self): self.apply() x = self.X_.copy() terms = self.X_.columns.tolist() node_sizes = counters_to_node_sizes(x=terms) node_colors = counters_to_node_colors(x, cmap=pyplot.cm.get_cmap(self.cmap)) cd = ChordDiagram() ## add nodes for idx, term in enumerate(x.columns): cd.add_node(term, color=node_colors[idx], s=node_sizes[idx]) ## add links m = x.stack().to_frame().reset_index() m = m[m.level_0 < m.level_1] m.columns = ["from_", "to_", "link_"] m = m.reset_index(drop=True) d = { 0: {"linestyle": "-", "linewidth": 4, "color": "black"}, 1: {"linestyle": "-", "linewidth": 2, "color": "black"}, 2: {"linestyle": "--", "linewidth": 1, "color": "gray"}, 3: {"linestyle": ":", "linewidth": 1, "color": "lightgray"}, } for idx in range(len(m)): key = ( 0 if m.link_[idx] > 0.75 else (1 if m.link_[idx] > 0.50 else (2 if m.link_[idx] > 0.25 else 3)) ) cd.add_edge(m.from_[idx], m.to_[idx], **(d[key])) return cd.plot(figsize=(self.width, self.height)) def correlation_map_nx(self): self.apply() return Network( X=self.X_, top_by=self.top_by, n_labels=self.n_labels, clustering=self.clustering, ).networkx_plot( layout=self.layout, iterations=self.nx_iterations, figsize=(self.width, self.height), ) def communities(self): self.fit() return Network( X=self.X_, top_by=self.top_by, n_labels=self.n_labels, clustering=self.clustering, ).cluster_members_ def correlation_map_interactive(self): self.apply() return Network( X=self.X_, top_by=self.top_by, n_labels=self.n_labels, clustering=self.clustering, ).pyvis_plot() ############################################################################### ## ## DASHBOARD ## ############################################################################### class DASHapp(DASH, Model): def __init__( self, data, limit_to=None, exclude=None, years_range=None, clusters=None, cluster=None, ): """Dashboard app""" Model.__init__( self, data=data, limit_to=limit_to, exclude=exclude, years_range=years_range, clusters=clusters, cluster=cluster, ) DASH.__init__(self) self.app_title = "Correlation Analysis" self.menu_options = [ "Matrix", "Heatmap", "Bubble plot", "Correlation map (nx)", #  "Correlation map (interactive)", "Chord diagram", ] COLUMNS = sorted( [ column for column in data.columns if column not in [ "Abb_Source_Title", "Abstract", "Affiliations", "Authors_ID", "Bradford_Law_Zone", "Document_Type", "Frac_Num_Documents", "Global_Citations", "Global_References", "Historiograph_ID", "ID", "Local_Citations", "Local_References", "Num_Authors", "Source_Title", "Title", "Year", ] ] ) self.panel_widgets = [ dash.dropdown( desc="Column:", options=COLUMNS, ), dash.dropdown( desc="By:", options=COLUMNS, ), dash.dropdown( desc="Method:", options=["pearson", "kendall", "spearman"], ), dash.min_occurrence(), dash.max_items(), dash.dropdown( desc="Clustering:", options=[ "Label propagation", "Leiden", "Louvain", "Walktrap", ], ), dash.separator(text="Visualization"), dash.dropdown( desc="Top by:", options=[ "Num Documents", "Global Citations", ], ), dash.dropdown( desc="Sort C-axis by:", options=[ "Alphabetic", "Num Documents", "Global Citations", ], ), dash.c_axis_ascending(), dash.dropdown( desc="Sort R-axis by:", options=[ "Alphabetic", "Num Documents", "Global Citations", ], ), dash.r_axis_ascending(), dash.cmap(), dash.nx_layout(), dash.n_labels(), dash.nx_iterations(), dash.fig_width(), dash.fig_height(), ] super().create_grid() def interactive_output(self, **kwargs): DASH.interactive_output(self, **kwargs) if self.menu in [ "Matrix", "Heatmap", "Bubble plot", ]: self.set_enabled("Sort C-axis by:") self.set_enabled("C-axis ascending:") self.set_enabled("Sort R-axis by:") self.set_enabled("R-axis ascending:") else: self.set_disabled("Sort C-axis by:") self.set_disabled("C-axis ascending:") self.set_disabled("Sort R-axis by:") self.set_disabled("R-axis ascending:") if self.menu == "Correlation map (nx)": self.set_enabled("Layout:") self.set_enabled("N labels:") else: self.set_disabled("Layout:") self.set_disabled("N labels:") if self.menu == "Correlation map" and self.layout == "Spring": self.set_enabled("nx iterations:") else: self.set_disabled("nx iterations:") if self.menu in ["Matrix", "Correlation map (interactive)"]: self.set_disabled("Width:") self.set_disabled("Height:") else: self.set_enabled("Width:") self.set_enabled("Height:") ############################################################################### ## ## EXTERNAL INTERFACE ## ############################################################################### def correlation_analysis( input_file="techminer.csv", limit_to=None, exclude=None, years_range=None, clusters=None, cluster=None, ): return DASHapp( data=pd.read_csv(input_file), limit_to=limit_to, exclude=exclude, years_range=years_range, clusters=clusters, cluster=cluster, ).run()
27.997768
86
0.456111
823f29991129a83bb6f71f21c15154fc6481446f
225
py
Python
python/ccxtpro/test/exchange/test_ticker.py
kakacaca/ccxt
4fdb7d450fb9c9e480b6f0a3e3866b784cf24ebf
[ "Unlicense" ]
1
2021-09-15T11:42:59.000Z
2021-09-15T11:42:59.000Z
python/ccxtpro/test/exchange/test_ticker.py
bikidenny/ccxt
4fdb7d450fb9c9e480b6f0a3e3866b784cf24ebf
[ "Unlicense" ]
null
null
null
python/ccxtpro/test/exchange/test_ticker.py
bikidenny/ccxt
4fdb7d450fb9c9e480b6f0a3e3866b784cf24ebf
[ "Unlicense" ]
1
2022-03-12T03:02:15.000Z
2022-03-12T03:02:15.000Z
# -*- coding: utf-8 -*- __all__ = ['test_ticker'] def test_ticker(exchange, ticker, method, symbol): print( exchange.id, symbol, method, ticker['datetime'], ticker['last'] )
16.071429
50
0.528889
cc80cafacaa7562613b01094d3569e8dd8695c5e
843
py
Python
Project_PyCharm/maps/map3.py
DayongTong/ESE650LearningInRobotics
08d73fe237db7eee87f1e56f01b39baf11b6aa38
[ "MIT" ]
null
null
null
Project_PyCharm/maps/map3.py
DayongTong/ESE650LearningInRobotics
08d73fe237db7eee87f1e56f01b39baf11b6aa38
[ "MIT" ]
null
null
null
Project_PyCharm/maps/map3.py
DayongTong/ESE650LearningInRobotics
08d73fe237db7eee87f1e56f01b39baf11b6aa38
[ "MIT" ]
null
null
null
import random import numpy as np import matplotlib.pyplot as plt ###########################maze################################## maze = np.full((30,40), 1) random.seed(42) numAgents = 20 agent_pos = [] posx = [] posy = [] for i in range(120): while True: row = random.randint(0,29) col = random.randint(0,39) if maze[row,col] == 1: maze[row,col] = 0 break for i in range(numAgents): while True: row = random.randint(0,29) col = random.randint(0,39) if maze[row,col] == 1 and ((row,col) not in agent_pos): posx.append(row) posy.append(col) agent_pos.append((row,col)) break # plt.imshow(maze, cmap='hot', interpolation='nearest'); # plt.savefig('map3.png') # plt.show()
22.783784
66
0.500593
f6843a04c5fceaca943849d8669489f95b376e0e
5,775
py
Python
iogt/settings/base.py
sheralim012/iogt
72a43626636568b7b4603a193fdc045b581f5cd3
[ "BSD-2-Clause" ]
null
null
null
iogt/settings/base.py
sheralim012/iogt
72a43626636568b7b4603a193fdc045b581f5cd3
[ "BSD-2-Clause" ]
3
2021-07-26T07:55:17.000Z
2021-08-25T10:08:41.000Z
iogt/settings/base.py
sheralim012/iogt
72a43626636568b7b4603a193fdc045b581f5cd3
[ "BSD-2-Clause" ]
null
null
null
""" Django settings for iogt project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # Application definition INSTALLED_APPS = [ 'home', 'search', 'iogt_users', 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'wagtail.contrib.modeladmin', 'wagtailmenus', 'modelcluster', 'taggit', 'allauth', 'allauth.account', 'allauth.socialaccount', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', ] ROOT_URLCONF = 'iogt.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'wagtailmenus.context_processors.wagtailmenus', ], }, }, ] WSGI_APPLICATION = 'iogt.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Authentication AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ] AUTH_USER_MODEL = 'iogt_users.User' # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', 'OPTIONS': { 'min_length': 4 } } ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, 'static'), ] # ManifestStaticFilesStorage is recommended in production, to prevent outdated # JavaScript / CSS assets being served from cache (e.g. after a Wagtail upgrade). # See https://docs.djangoproject.com/en/3.1/ref/contrib/staticfiles/#manifeststaticfilesstorage STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.ManifestStaticFilesStorage' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' # Allauth settings (https://django-allauth.readthedocs.io/en/latest/configuration.html) # ACCOUNT_SIGNUP_FORM_CLASS = 'iogt_users.forms.AccountSignUpAdditionalFieldsForm' # Control the forms that django-allauth uses ACCOUNT_FORMS = { "login": "allauth.account.forms.LoginForm", "add_email": "allauth.account.forms.AddEmailForm", "change_password": "allauth.account.forms.ChangePasswordForm", "set_password": "allauth.account.forms.SetPasswordForm", "reset_password": "allauth.account.forms.ResetPasswordForm", "reset_password_from_key": "allauth.account.forms.ResetPasswordKeyForm", "disconnect": "allauth.socialaccount.forms.DisconnectForm", # Use our custom signup form "signup": "iogt_users.forms.AccountSignupForm", } # ACCOUNT_SIGNUP_FORM_CLASS = 'iogt_users.extra_forms.AccountSignUpAdditionalFieldsForm' # Wagtail settings WAGTAIL_SITE_NAME = "iogt" ACCOUNT_ADAPTER = 'iogt_users.adapters.AccountAdapter' WAGTAIL_USER_EDIT_FORM = 'iogt_users.forms.WagtailAdminUserEditForm' WAGTAIL_USER_CREATION_FORM = 'iogt_users.forms.WagtailAdminUserCreateForm' WAGTAIL_USER_CUSTOM_FIELDS = ['display_name', 'terms_accepted'] # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = 'http://example.com' # SITE ID SITE_ID = 1 # Miscellaneous LOGIN_REDIRECT_URL = "/" LOGIN_URL = 'account_login' WAGTAIL_FRONTEND_LOGIN_URL = LOGIN_URL
28.875
95
0.719481
c94a07de7095e95c88d9f4695ca909cb6f258793
268
py
Python
backend/app/__init__.py
ecshreve/jeppy
d15be0e6457be7dfa30c7a91a7c1218baf58ef98
[ "MIT" ]
1
2021-02-14T01:18:21.000Z
2021-02-14T01:18:21.000Z
backend/app/__init__.py
ecshreve/jeppy
d15be0e6457be7dfa30c7a91a7c1218baf58ef98
[ "MIT" ]
3
2021-02-28T04:55:59.000Z
2021-02-28T08:51:18.000Z
backend/app/__init__.py
ecshreve/jeppy
d15be0e6457be7dfa30c7a91a7c1218baf58ef98
[ "MIT" ]
1
2021-02-28T01:10:07.000Z
2021-02-28T01:10:07.000Z
from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from config import Config app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) migrate = Migrate(app, db) from app import routes, models, helpers
20.615385
39
0.80597
936585c4d58a259d5935c0023bd65988b81b76a7
7,987
py
Python
es_distributed/dist.py
TrevorCMorton/deep-neuroevolution
d6e5c5b41202e9c2e50c986fc822809b507ede64
[ "MIT" ]
null
null
null
es_distributed/dist.py
TrevorCMorton/deep-neuroevolution
d6e5c5b41202e9c2e50c986fc822809b507ede64
[ "MIT" ]
null
null
null
es_distributed/dist.py
TrevorCMorton/deep-neuroevolution
d6e5c5b41202e9c2e50c986fc822809b507ede64
[ "MIT" ]
null
null
null
import logging import os import pickle import time from collections import deque from pprint import pformat import redis logger = logging.getLogger(__name__) EXP_KEY = 'es:exp' TASK_ID_KEY = 'es:task_id' TASK_DATA_KEY = 'es:task_data' TASK_CHANNEL = 'es:task_channel' RESULTS_KEY = 'es:results' ARCHIVE_KEY = 'es:archive' def serialize(x): return pickle.dumps(x, protocol=-1) def deserialize(x): return pickle.loads(x) def retry_connect(redis_cfg, tries=300, base_delay=4.): for i in range(tries): try: r = redis.StrictRedis(**redis_cfg) r.ping() return r except redis.ConnectionError as e: if i == tries - 1: raise else: delay = base_delay * (1 + (os.getpid() % 10) / 9) logger.warning('Could not connect to {}. Retrying after {:.2f} sec ({}/{}). Error: {}'.format( redis_cfg, delay, i + 2, tries, e)) time.sleep(delay) def retry_get(pipe, key, tries=300, base_delay=4.): for i in range(tries): # Try to (m)get if isinstance(key, (list, tuple)): vals = pipe.mget(key) if all(v is not None for v in vals): return vals else: val = pipe.get(key) if val is not None: return val # Sleep and retry if any key wasn't available if i != tries - 1: delay = base_delay * (1 + (os.getpid() % 10) / 9) logger.warning('{} not set. Retrying after {:.2f} sec ({}/{})'.format(key, delay, i + 2, tries)) time.sleep(delay) raise RuntimeError('{} not set'.format(key)) class MasterClient: def __init__(self, master_redis_cfg): self.task_counter = 0 self.master_redis = retry_connect(master_redis_cfg) self.max_size = None logger.info('[master] Connected to Redis: {}'.format(self.master_redis)) def declare_experiment(self, exp): self.master_redis.set(EXP_KEY, serialize(exp)) self.max_size = exp['config']['archive_size'] logger.info('[master] Declared experiment {}'.format(pformat(exp))) def declare_task(self, task_data): task_id = self.task_counter self.task_counter += 1 serialized_task_data = serialize(task_data) (self.master_redis.pipeline() .mset({TASK_ID_KEY: task_id, TASK_DATA_KEY: serialized_task_data}) .publish(TASK_CHANNEL, serialize((task_id, serialized_task_data))) .execute()) # TODO: can we avoid transferring task data twice and serializing so much? logger.debug('[master] Declared task {}'.format(task_id)) return task_id def pop_result(self): task_id, result = deserialize(self.master_redis.blpop(RESULTS_KEY)[1]) logger.debug('[master] Popped a result for task {}'.format(task_id)) return task_id, result def flush_results(self): return max(self.master_redis.pipeline().llen(RESULTS_KEY).ltrim(RESULTS_KEY, -1, -1).execute()[0] -1, 0) def add_to_novelty_archive(self, novelty_vector): self.master_redis.rpush(ARCHIVE_KEY, serialize(novelty_vector)) logger.info('[master] Added novelty vector to archive') length = self.master_redis.llen(ARCHIVE_KEY) if self.max_size is not None and length > self.max_size: self.master_redis.lpop(ARCHIVE_KEY) def get_archive(self): archive = self.master_redis.lrange(ARCHIVE_KEY, 0, -1) return [deserialize(novelty_vector) for novelty_vector in archive] class RelayClient: """ Receives and stores task broadcasts from the master Batches and pushes results from workers to the master """ def __init__(self, master_redis_cfg, relay_redis_cfg): self.master_redis = retry_connect(master_redis_cfg) logger.info('[relay] Connected to master: {}'.format(self.master_redis)) self.local_redis = retry_connect(relay_redis_cfg) logger.info('[relay] Connected to relay: {}'.format(self.local_redis)) self.results_published = 0 def run(self): # Initialization: read exp and latest task from master self.local_redis.set(EXP_KEY, retry_get(self.master_redis, EXP_KEY)) self._declare_task_local(*retry_get(self.master_redis, (TASK_ID_KEY, TASK_DATA_KEY))) # Start subscribing to tasks p = self.master_redis.pubsub(ignore_subscribe_messages=True) p.subscribe(**{TASK_CHANNEL: lambda msg: self._declare_task_local(*deserialize(msg['data']))}) p.run_in_thread(sleep_time=0.001) # Loop on RESULTS_KEY and push to master batch_sizes, last_print_time = deque(maxlen=20), time.time() # for logging while True: results = [] start_time = curr_time = time.time() while curr_time - start_time < 0.001: results.append(self.local_redis.blpop(RESULTS_KEY)[1]) curr_time = time.time() self.results_published += len(results) self.master_redis.rpush(RESULTS_KEY, *results) # Log batch_sizes.append(len(results)) if curr_time - last_print_time > 5.0: logger.info('[relay] Average batch size {:.3f} ({} total)'.format(sum(batch_sizes) / len(batch_sizes), self.results_published)) last_print_time = curr_time def flush_results(self): number_flushed = max(self.local_redis.pipeline().llen(RESULTS_KEY).ltrim(RESULTS_KEY, -1, -1).execute()[0] -1, 0) number_flushed_master = max(self.master_redis.pipeline().llen(RESULTS_KEY).ltrim(RESULTS_KEY, -1, -1).execute()[0] -1, 0) logger.warning('[relay] Flushed {} results from worker redis and {} from master' .format(number_flushed, number_flushed_master)) def _declare_task_local(self, task_id, task_data): logger.info('[relay] Received task {}'.format(task_id)) self.results_published = 0 self.local_redis.mset({TASK_ID_KEY: task_id, TASK_DATA_KEY: task_data}) self.flush_results() class WorkerClient: def __init__(self, relay_redis_cfg, master_redis_cfg): self.local_redis = retry_connect(relay_redis_cfg) logger.info('[worker] Connected to relay: {}'.format(self.local_redis)) self.master_redis = retry_connect(master_redis_cfg) logger.warning('[worker] Connected to master: {}'.format(self.master_redis)) self.cached_task_id, self.cached_task_data = None, None def get_experiment(self): # Grab experiment info exp = deserialize(retry_get(self.local_redis, EXP_KEY)) logger.info('[worker] Experiment: {}'.format(exp)) return exp def get_archive(self): archive = self.master_redis.lrange(ARCHIVE_KEY, 0, -1) return [deserialize(novelty_vector) for novelty_vector in archive] def get_current_task(self): with self.local_redis.pipeline() as pipe: while True: try: pipe.watch(TASK_ID_KEY) task_id = int(retry_get(pipe, TASK_ID_KEY)) if task_id == self.cached_task_id: logger.debug('[worker] Returning cached task {}'.format(task_id)) break pipe.multi() pipe.get(TASK_DATA_KEY) logger.info('[worker] Getting new task {}. Cached task was {}'.format(task_id, self.cached_task_id)) self.cached_task_id, self.cached_task_data = task_id, deserialize(pipe.execute()[0]) break except redis.WatchError: continue return self.cached_task_id, self.cached_task_data def push_result(self, task_id, result): self.local_redis.rpush(RESULTS_KEY, serialize((task_id, result))) logger.debug('[worker] Pushed result for task {}'.format(task_id))
40.338384
143
0.632778
9f29b37ba554ae51911a54a45425d6ed00a0090b
7,064
py
Python
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_gtm_datacenter.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_gtm_datacenter.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/f5networks/f5_modules/tests/unit/modules/network/f5/test_bigip_gtm_datacenter.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2017 F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest import sys if sys.version_info < (2, 7): pytestmark = pytest.mark.skip("F5 Ansible modules require Python >= 2.7") from ansible.module_utils.basic import AnsibleModule from ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_datacenter import ( ApiParameters, ModuleParameters, ModuleManager, ArgumentSpec ) from ansible_collections.f5networks.f5_modules.tests.unit.compat import unittest from ansible_collections.f5networks.f5_modules.tests.unit.compat.mock import Mock, patch from ansible_collections.f5networks.f5_modules.tests.unit.modules.utils import set_module_args fixture_path = os.path.join(os.path.dirname(__file__), 'fixtures') fixture_data = {} def load_fixture(name): path = os.path.join(fixture_path, name) if path in fixture_data: return fixture_data[path] with open(path) as f: data = f.read() try: data = json.loads(data) except Exception: pass fixture_data[path] = data return data class TestParameters(unittest.TestCase): def test_module_parameters(self): args = dict( state='present', contact='foo', description='bar', location='baz', name='datacenter' ) p = ModuleParameters(params=args) assert p.state == 'present' def test_api_parameters(self): args = load_fixture('load_gtm_datacenter_default.json') p = ApiParameters(params=args) assert p.name == 'asd' def test_module_parameters_state_present(self): args = dict( state='present' ) p = ModuleParameters(params=args) assert p.state == 'present' assert p.enabled is True def test_module_parameters_state_absent(self): args = dict( state='absent' ) p = ModuleParameters(params=args) assert p.state == 'absent' def test_module_parameters_state_enabled(self): args = dict( state='enabled' ) p = ModuleParameters(params=args) assert p.state == 'enabled' assert p.enabled is True assert p.disabled is None def test_module_parameters_state_disabled(self): args = dict( state='disabled' ) p = ModuleParameters(params=args) assert p.state == 'disabled' assert p.enabled is None assert p.disabled is True class TestManager(unittest.TestCase): def setUp(self): self.spec = ArgumentSpec() self.p1 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_datacenter.module_provisioned') self.m1 = self.p1.start() self.m1.return_value = True self.p2 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_datacenter.tmos_version') self.p3 = patch('ansible_collections.f5networks.f5_modules.plugins.modules.bigip_gtm_datacenter.send_teem') self.m2 = self.p2.start() self.m2.return_value = '14.1.0' self.m3 = self.p3.start() self.m3.return_value = True def tearDown(self): self.p1.stop() self.p2.stop() self.p3.stop() def test_create_datacenter(self, *args): set_module_args(dict( name='foo', state='present', provider=dict( server='localhost', password='password', user='admin' ) )) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) mm = ModuleManager(module=module) # Override methods to force specific logic in the module to happen mm.exists = Mock(side_effect=[False, True]) mm.create_on_device = Mock(return_value=True) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is True assert results['state'] == 'present' def test_create_disabled_datacenter(self, *args): set_module_args(dict( name='foo', state='disabled', provider=dict( server='localhost', password='password', user='admin' ) )) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) mm = ModuleManager(module=module) # Override methods to force specific logic in the module to happen mm.exists = Mock(side_effect=[False, True]) mm.create_on_device = Mock(return_value=True) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is True assert results['enabled'] is False assert results['disabled'] is True def test_create_enabled_datacenter(self, *args): set_module_args(dict( name='foo', state='enabled', provider=dict( server='localhost', password='password', user='admin' ) )) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) mm = ModuleManager(module=module) # Override methods to force specific logic in the module to happen mm.exists = Mock(side_effect=[False, True]) mm.create_on_device = Mock(return_value=True) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is True assert results['enabled'] is True assert results['disabled'] is False def test_idempotent_disable_datacenter(self, *args): set_module_args(dict( name='foo', state='disabled', provider=dict( server='localhost', password='password', user='admin' ) )) module = AnsibleModule( argument_spec=self.spec.argument_spec, supports_check_mode=self.spec.supports_check_mode ) current = ApiParameters(params=load_fixture('load_gtm_datacenter_disabled.json')) mm = ModuleManager(module=module) # Override methods to force specific logic in the module to happen mm.exists = Mock(return_value=True) mm.update_on_device = Mock(return_value=True) mm.read_current_from_device = Mock(return_value=current) mm.module_provisioned = Mock(return_value=True) results = mm.exec_module() assert results['changed'] is False
30.713043
124
0.625425
0b898e852e920e2852835108928af595b10e7928
14,854
py
Python
qcfractal/server.py
ChayaSt/QCFractal
2d3c737b0e755d6e5bac743a0beb0714b5a92d0b
[ "BSD-3-Clause" ]
null
null
null
qcfractal/server.py
ChayaSt/QCFractal
2d3c737b0e755d6e5bac743a0beb0714b5a92d0b
[ "BSD-3-Clause" ]
null
null
null
qcfractal/server.py
ChayaSt/QCFractal
2d3c737b0e755d6e5bac743a0beb0714b5a92d0b
[ "BSD-3-Clause" ]
null
null
null
""" The FractalServer class """ import asyncio import logging import ssl import threading import traceback import tornado.ioloop import tornado.log import tornado.options import tornado.web from . import interface from . import queue from . import services from . import storage_sockets from . import web_handlers myFormatter = logging.Formatter('[%(asctime)s] %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') def _build_ssl(): from cryptography import x509 from cryptography.x509.oid import NameOID from cryptography.hazmat.primitives import hashes from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import rsa import sys import socket import datetime import ipaddress import random hostname = socket.gethostname() public_ip = ipaddress.ip_address(socket.gethostbyname(hostname)) key = rsa.generate_private_key(public_exponent=65537, key_size=1024, backend=default_backend()) alt_name_list = [x509.DNSName(hostname), x509.IPAddress(ipaddress.ip_address(public_ip))] alt_names = x509.SubjectAlternativeName(alt_name_list) # Basic data name = x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, hostname)]) basic_contraints = x509.BasicConstraints(ca=True, path_length=0) now = datetime.datetime.utcnow() # Build cert cert = (x509.CertificateBuilder() .subject_name(name) .issuer_name(name) .public_key(key.public_key()) .serial_number(int(random.random() * sys.maxsize)) .not_valid_before(now) .not_valid_after(now + datetime.timedelta(days=10*365)) .add_extension(basic_contraints, False) .add_extension(alt_names, False) .sign(key, hashes.SHA256(), default_backend())) # yapf: disable # Build and return keys cert_pem = cert.public_bytes(encoding=serialization.Encoding.PEM) key_pem = key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption(), ) # yapf: disable return cert_pem, key_pem class FractalServer: def __init__( self, # Server info options port=8888, loop=None, security=None, ssl_options=None, # Database options storage_uri="mongodb://localhost", storage_project_name="molssistorage", # Queue options queue_socket=None, # Log options logfile_prefix=None, # Queue options max_active_services=10): # Save local options self.port = port if ssl_options is False: self._address = "http://localhost:" + str(self.port) + "/" else: self._address = "https://localhost:" + str(self.port) + "/" self.max_active_services = max_active_services # Setup logging. if logfile_prefix is not None: tornado.options.options['log_file_prefix'] = logfile_prefix tornado.log.enable_pretty_logging() self.logger = logging.getLogger("tornado.application") # Build security layers if security is None: storage_bypass_security = True elif security == "local": storage_bypass_security = False else: raise KeyError("Security option '{}' not recognized.".format(security)) # Handle SSL ssl_ctx = None self.client_verify = True if ssl_options is None: self.logger.warning("No SSL files passed in, generating self-signed SSL certificate.") self.logger.warning("Clients must use `verify=False` when connecting.\n") cert, key = _build_ssl() # Add quick names cert_name = storage_project_name + "_ssl.crt" key_name = storage_project_name + "_ssl.key" ssl_options = {"crt": cert_name, "key": key_name} with open(cert_name, "wb") as handle: handle.write(cert) with open(key_name, "wb") as handle: handle.write(key) ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) ssl_ctx.load_cert_chain(ssl_options["crt"], ssl_options["key"]) # Destroy keyfiles upon close import atexit import os atexit.register(os.remove, cert_name) atexit.register(os.remove, key_name) self.client_verify = False elif ssl_options is False: ssl_ctx = None elif isinstance(ssl_options, dict): if ("crt" not in ssl_options) or ("key" not in ssl_options): raise KeyError("'crt' (SSL Certificate) and 'key' (SSL Key) fields are required for `ssl_options`.") ssl_ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) ssl_ctx.load_cert_chain(ssl_options["crt"], ssl_options["key"]) else: raise KeyError("ssl_options not understood") # Setup the database connection self.storage = storage_sockets.storage_socket_factory( storage_uri, project_name=storage_project_name, bypass_security=storage_bypass_security) self.logger.info("Connected to '{}'' with database name '{}'\n.".format(storage_uri, storage_project_name)) # Pull the current loop if we need it self.loop = loop or tornado.ioloop.IOLoop.current() # Build up the application self.objects = { "storage_socket": self.storage, "logger": self.logger, } endpoints = [ # Generic web handlers (r"/molecule", web_handlers.MoleculeHandler, self.objects), (r"/option", web_handlers.OptionHandler, self.objects), (r"/collection", web_handlers.CollectionHandler, self.objects), (r"/result", web_handlers.ResultHandler, self.objects), (r"/procedure", web_handlers.ProcedureHandler, self.objects), # Queue Schedulers (r"/task_queue", queue.TaskQueueHandler, self.objects), (r"/service_queue", queue.ServiceQueueHandler, self.objects), (r"/queue_manager", queue.QueueManagerHandler, self.objects), ] # Queue manager if direct build if queue_socket is not None: if security == "local": raise ValueError("Cannot yet use local security with a internal QueueManager") # Add the socket to passed args client = interface.FractalClient(self._address, verify=self.client_verify) self.objects["queue_manager"] = queue.QueueManager( client, queue_socket, loop=loop, logger=self.logger, cluster="FractalServer") # Build the app app_settings = { "compress_response": True, "serve_traceback": True, # "debug": True, } self.app = tornado.web.Application(endpoints, **app_settings) self.endpoints = set([v[0].replace("/", "", 1) for v in endpoints]) self.http_server = tornado.httpserver.HTTPServer(self.app, ssl_options=ssl_ctx) self.http_server.listen(self.port) # Add periodic callback holders self.periodic = {} # Exit callbacks self.exit_callbacks = [] self.logger.info("FractalServer successfully initialized at {}".format(self._address)) self.loop_active = False def start(self): """ Starts up all IOLoops and processes """ self.logger.info("FractalServer successfully started. Starting IOLoop.\n") # If we have a queue socket start up the nanny if "queue_manager" in self.objects: # Add canonical queue callback manager = tornado.ioloop.PeriodicCallback(self.update_tasks, 2000) manager.start() self.periodic["queue_manager_update"] = manager # Add services callback nanny_services = tornado.ioloop.PeriodicCallback(self.update_services, 2000) nanny_services.start() self.periodic["update_services"] = nanny_services # Soft quit with a keyboard interrupt try: self.loop_active = True if not asyncio.get_event_loop().is_running(): # Only works on Py3 self.loop.start() except KeyboardInterrupt: self.stop() def stop(self): """ Shuts down all IOLoops and periodic updates """ # Shut down queue manager if "queue_manager" in self.objects: if self.loop_active: # Drop this in a thread so that we are not blocking eachother thread = threading.Thread(target=self.objects["queue_manager"].shutdown, name="QueueManager Shutdown") thread.daemon = True thread.start() self.loop.call_later(5, thread.join) else: self.objects["queue_manager"].shutdown() # Close down periodics for cb in self.periodic.values(): cb.stop() # Call exit callbacks for func, args, kwargs in self.exit_callbacks: func(*args, **kwargs) # Shutdown IOLoop if needed if asyncio.get_event_loop().is_running(): self.loop.stop() self.loop_active = False # Final shutdown self.loop.close(all_fds=True) self.logger.info("FractalServer stopping gracefully. Stopped IOLoop.\n") def add_exit_callback(self, callback, *args, **kwargs): """Adds additional callbacks to perform when closing down the server Parameters ---------- callback : callable The function to call at exit *args Arguments to call with the function. **kwargs Kwargs to call with the function. """ self.exit_callbacks.append((callback, args, kwargs)) def get_address(self, endpoint=None): """Obtains the full URI for a given function on the FractalServer Parameters ---------- endpoint : str, optional Specifies a endpoint to provide the URI to """ if endpoint and (endpoint not in self.endpoints): raise AttributeError("Endpoint '{}' not found.".format(endpoint)) if endpoint: return self._address + endpoint else: return self._address def update_services(self): """Runs through all active services and examines their current status. """ # Grab current services current_services = self.storage.get_services({"status": "RUNNING"})["data"] # Grab new services if we have open slots open_slots = max(0, self.max_active_services - len(current_services)) if open_slots > 0: new_services = self.storage.get_services({"status": "READY"}, limit=open_slots)["data"] current_services.extend(new_services) # Loop over the services and iterate running_services = 0 new_procedures = [] complete_ids = [] for data in current_services: # Attempt to iteration and get message try: obj = services.build(data["service"], self.storage, data) finished = obj.iterate() data = obj.get_json() except Exception as e: print(traceback.format_exc()) data["status"] = "ERROR" data["error_message"] = "FractalServer Service Build and Iterate Error:\n" + traceback.format_exc() finished = False self.storage.update_services([(data["id"], data)]) if finished is not False: # Add results to procedures, remove complete_ids new_procedures.append(finished) complete_ids.append(data["id"]) else: running_services += 1 # Add new procedures and services self.storage.add_procedures(new_procedures) self.storage.del_services(complete_ids) return running_services ### Functions only available if using a local queue_adapter def _check_manager(self, func_name): if "queue_manager" not in self.objects: raise AttributeError( "{} is only available if the server was initialized with a queue manager.".format(func_name)) def update_tasks(self): """Pulls tasks from the queue_adapter, inserts them into the database, and fills the queue_adapter with new tasks. Returns ------- bool Return True if the operation completed successfully """ self._check_manager("update_tasks") if self.loop_active: # Drop this in a thread so that we are not blocking each other thread = threading.Thread(target=self.objects["queue_manager"].update, name="QueueManager Update") thread.daemon = True thread.start() self.loop.call_later(5, thread.join) else: self.objects["queue_manager"].update() return True def await_results(self): """A synchronous method for testing or small launches that awaits task completion before adding all queued results to the database and returning. Returns ------- bool Return True if the operation completed successfully """ self._check_manager("await_results") self.logger.info("Updating tasks") return self.objects["queue_manager"].await_results() def await_services(self, max_iter=10): """A synchronous method that awaits the completion of all services before returning. Returns ------- bool Return True if the operation completed successfully """ self._check_manager("await_services") self.await_results() for x in range(1, max_iter + 1): self.logger.info("\nAwait services: Iteration {}\n".format(x)) running_services = self.update_services() self.await_results() if running_services == 0: break return True def list_current_tasks(self): """Provides a list of tasks currently in the queue along with the associated keys Returns ------- ret : list of tuples All tasks currently still in the database """ self._check_manager("list_current_tasks") return self.objects["queue_manager"].list_current_tasks()
33.68254
118
0.61613
587ce641463e5b80404c88308ac402e3e7791462
3,603
py
Python
dev/website_docs/parse_tutorials.py
blazejdolicki/vissl
9c10748a19fb1c637f32687142c8cd685f2410ff
[ "MIT" ]
2,512
2021-01-27T18:44:44.000Z
2022-03-31T19:33:49.000Z
dev/website_docs/parse_tutorials.py
blazejdolicki/vissl
9c10748a19fb1c637f32687142c8cd685f2410ff
[ "MIT" ]
361
2021-01-27T20:12:09.000Z
2022-03-31T12:39:34.000Z
dev/website_docs/parse_tutorials.py
blazejdolicki/vissl
9c10748a19fb1c637f32687142c8cd685f2410ff
[ "MIT" ]
277
2021-01-29T08:09:02.000Z
2022-03-31T07:57:35.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import nbformat from bs4 import BeautifulSoup from nbconvert import HTMLExporter, ScriptExporter TEMPLATE = """const CWD = process.cwd(); const React = require('react'); const Tutorial = require(`${{CWD}}/core/Tutorial.js`); class TutorialPage extends React.Component {{ render() {{ const {{config: siteConfig}} = this.props; const {{baseUrl}} = siteConfig; return <Tutorial baseUrl={{baseUrl}} tutorialID="{}"/>; }} }} module.exports = TutorialPage; """ JS_SCRIPTS = """ <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"> </script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"> </script> """ # noqa: E501 def gen_tutorials(repo_dir: str) -> None: """Generate HTML tutorials for VISSL Docusaurus site from Jupyter notebooks. Also create ipynb and py versions of tutorial in Docusaurus site for download. """ with open(os.path.join(repo_dir, "website", "tutorials.json"), "r") as infile: tutorial_config = json.loads(infile.read()) tutorial_ids = {x["id"] for v in tutorial_config.values() for x in v} for tid in tutorial_ids: print("Generating {} tutorial".format(tid)) # convert notebook to HTML ipynb_in_path = os.path.join(repo_dir, "tutorials", "{}.ipynb".format(tid)) with open(ipynb_in_path, "r") as infile: nb_str = infile.read() nb = nbformat.reads(nb_str, nbformat.NO_CONVERT) # displayname is absent from notebook metadata nb["metadata"]["kernelspec"]["display_name"] = "python3" exporter = HTMLExporter() html, meta = exporter.from_notebook_node(nb) # pull out html div for notebook soup = BeautifulSoup(html, "html.parser") nb_meat = soup.find("div", {"id": "notebook-container"}) del nb_meat.attrs["id"] nb_meat.attrs["class"] = ["notebook"] html_out = JS_SCRIPTS + str(nb_meat) # generate html file html_out_path = os.path.join( repo_dir, "website", "_tutorials", "{}.html".format(tid) ) with open(html_out_path, "w") as html_outfile: html_outfile.write(html_out) # generate JS file script = TEMPLATE.format(tid) js_out_path = os.path.join( repo_dir, "website", "pages", "tutorials", "{}.js".format(tid) ) with open(js_out_path, "w") as js_outfile: js_outfile.write(script) # output tutorial in both ipynb & py form ipynb_out_path = os.path.join( repo_dir, "website", "static", "files", "{}.ipynb".format(tid) ) with open(ipynb_out_path, "w") as ipynb_outfile: ipynb_outfile.write(nb_str) exporter = ScriptExporter() script, meta = exporter.from_notebook_node(nb) py_out_path = os.path.join( repo_dir, "website", "static", "files", "{}.py".format(tid) ) with open(py_out_path, "w") as py_outfile: py_outfile.write(script) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate JS, HTML, ipynb, and py files for tutorials." ) parser.add_argument( "--repo_dir", metavar="path", required=True, help="VISSL repo directory." ) args = parser.parse_args() gen_tutorials(args.repo_dir)
32.754545
83
0.634749
7f10e1c0cb847ca10cbdef318a6bb410df71386c
19,517
py
Python
reg/tests/test_dispatch_method.py
sgaist/reg
c6d721da1d71a299063695966a8f73c4180de1a5
[ "BSD-3-Clause" ]
null
null
null
reg/tests/test_dispatch_method.py
sgaist/reg
c6d721da1d71a299063695966a8f73c4180de1a5
[ "BSD-3-Clause" ]
null
null
null
reg/tests/test_dispatch_method.py
sgaist/reg
c6d721da1d71a299063695966a8f73c4180de1a5
[ "BSD-3-Clause" ]
null
null
null
from types import FunctionType import pytest from ..context import ( dispatch, dispatch_method, methodify, clean_dispatch_methods, ) from ..predicate import match_instance from ..error import RegistrationError def test_dispatch_method_explicit_fallback(): def obj_fallback(self, obj): return "Obj fallback" class Foo(object): @dispatch_method(match_instance("obj", fallback=obj_fallback)) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "Obj fallback" Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "Obj fallback" def test_dispatch_method_without_fallback(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" def test_dispatch_method_string_predicates(): class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" def test_dispatch_method_add_predicates(): class Foo(object): @dispatch_method() def bar(self, obj): return "default" Foo.bar.add_predicates([match_instance("obj")]) class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" def test_dispatch_method_register_function(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" Foo.bar.register(methodify(lambda obj: "Alpha"), obj=Alpha) Foo.bar.register(methodify(lambda obj: "Beta"), obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" def test_dispatch_method_register_function_wrong_signature_too_long(): class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class Alpha(object): pass with pytest.raises(RegistrationError): Foo.bar.register(methodify(lambda obj, extra: "Alpha"), obj=Alpha) def test_dispatch_method_register_function_wrong_signature_too_short(): class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class Alpha(object): pass with pytest.raises(RegistrationError): Foo.bar.register(methodify(lambda: "Alpha"), obj=Alpha) def test_dispatch_method_register_non_callable(): class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class Alpha(object): pass with pytest.raises(RegistrationError): Foo.bar.register("cannot call this", obj=Alpha) def test_dispatch_method_methodify_non_callable(): with pytest.raises(TypeError): methodify("cannot call this") def test_dispatch_method_register_auto(): class Foo(object): x = "X" @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" Foo.bar.register(methodify(lambda obj: "Alpha", "app"), obj=Alpha) Foo.bar.register( methodify(lambda app, obj: "Beta %s" % app.x, "app"), obj=Beta ) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta X" assert foo.bar(None) == "default" def test_dispatch_method_class_method_accessed_first(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) foo = Foo() assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" def test_dispatch_method_accesses_instance(): class Foo(object): def __init__(self, x): self.x = x @dispatch_method(match_instance("obj")) def bar(self, obj): return "default %s" % self.x class Alpha(object): pass class Beta(object): pass Foo.bar.register(lambda self, obj: "Alpha %s" % self.x, obj=Alpha) Foo.bar.register(lambda self, obj: "Beta %s" % self.x, obj=Beta) foo = Foo("hello") assert foo.bar(Alpha()) == "Alpha hello" assert foo.bar(Beta()) == "Beta hello" assert foo.bar(None) == "default hello" def test_dispatch_method_inheritance_register_on_subclass(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Sub(Foo): pass class Alpha(object): pass class Beta(object): pass sub = Sub() assert sub.bar(Alpha()) == "default" Sub.bar.register(lambda self, obj: "Alpha", obj=Alpha) Sub.bar.register(lambda self, obj: "Beta", obj=Beta) assert sub.bar(Alpha()) == "Alpha" assert sub.bar(Beta()) == "Beta" assert sub.bar(None) == "default" def test_dispatch_method_inheritance_separation(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Sub(Foo): pass class Alpha(object): pass class Beta(object): pass # programmatic style: Foo.bar.register(lambda self, obj: "Foo Alpha", obj=Alpha) # decorator style: Foo.bar.register(obj=Beta)(lambda self, obj: "Foo Beta") # programmatic style: Sub.bar.register(lambda self, obj: "Sub Alpha", obj=Alpha) # decorator style: Sub.bar.register(obj=Beta)(lambda self, obj: "Sub Beta") foo = Foo() sub = Sub() assert foo.bar(Alpha()) == "Foo Alpha" assert foo.bar(Beta()) == "Foo Beta" assert foo.bar(None) == "default" assert sub.bar(Alpha()) == "Sub Alpha" assert sub.bar(Beta()) == "Sub Beta" assert sub.bar(None) == "default" def test_dispatch_method_inheritance_separation_multiple(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "bar default" @dispatch_method(match_instance("obj")) def qux(self, obj): return "qux default" class Sub(Foo): pass class Alpha(object): pass class Beta(object): pass Foo.bar.register(lambda self, obj: "Bar Foo Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Bar Foo Beta", obj=Beta) Sub.bar.register(lambda self, obj: "Bar Sub Alpha", obj=Alpha) Sub.bar.register(lambda self, obj: "Bar Sub Beta", obj=Beta) Foo.qux.register(lambda self, obj: "Qux Foo Alpha", obj=Alpha) Foo.qux.register(lambda self, obj: "Qux Foo Beta", obj=Beta) Sub.qux.register(lambda self, obj: "Qux Sub Alpha", obj=Alpha) Sub.qux.register(lambda self, obj: "Qux Sub Beta", obj=Beta) foo = Foo() sub = Sub() assert foo.bar(Alpha()) == "Bar Foo Alpha" assert foo.bar(Beta()) == "Bar Foo Beta" assert foo.bar(None) == "bar default" assert sub.bar(Alpha()) == "Bar Sub Alpha" assert sub.bar(Beta()) == "Bar Sub Beta" assert sub.bar(None) == "bar default" assert foo.qux(Alpha()) == "Qux Foo Alpha" assert foo.qux(Beta()) == "Qux Foo Beta" assert foo.qux(None) == "qux default" assert sub.qux(Alpha()) == "Qux Sub Alpha" assert sub.qux(Beta()) == "Qux Sub Beta" assert sub.qux(None) == "qux default" def test_dispatch_method_api_available(): def obj_fallback(self, obj): return "Obj fallback" class Foo(object): @dispatch_method(match_instance("obj", fallback=obj_fallback)) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() def alpha_func(self, obj): return "Alpha" def beta_func(self, obj): return "Beta" Foo.bar.register(alpha_func, obj=Alpha) Foo.bar.register(beta_func, obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert Foo.bar.by_args(Alpha()).component == alpha_func assert foo.bar.by_args(Alpha()).component == alpha_func assert foo.bar.by_args(Alpha()).all_matches == [alpha_func] assert foo.bar.by_args(Beta()).component == beta_func assert foo.bar.by_args(None).component is None assert foo.bar.by_args(None).fallback is obj_fallback assert foo.bar.by_args(None).all_matches == [] def test_dispatch_method_with_register_function_value(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" def alpha_func(obj): return "Alpha" def beta_func(obj): return "Beta" Foo.bar.register(methodify(alpha_func), obj=Alpha) Foo.bar.register(methodify(beta_func), obj=Beta) assert unmethodify(foo.bar.by_args(Alpha()).component) is alpha_func def test_dispatch_method_with_register_auto_value(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass foo = Foo() assert foo.bar(Alpha()) == "default" def alpha_func(obj): return "Alpha" def beta_func(app, obj): return "Beta" Foo.bar.register(methodify(alpha_func, "app"), obj=Alpha) Foo.bar.register(methodify(beta_func, "app"), obj=Beta) assert unmethodify(foo.bar.by_args(Alpha()).component) is alpha_func assert unmethodify(foo.bar.by_args(Beta()).component) is beta_func # actually since this is a method this is also unwrapped assert foo.bar.by_args(Beta()).component is beta_func def test_install_method(): class Target(object): pass def f(self, a): return a Target.m = f t = Target() assert t.m("A") == "A" def test_install_auto_method_function_no_app_arg(): class Target(object): pass def f(a): return a Target.m = methodify(f, "app") t = Target() assert t.m("A") == "A" assert unmethodify(t.m) is f def test_install_auto_method_function_app_arg(): class Target(object): pass def g(app, a): assert isinstance(app, Target) return a Target.m = methodify(g, "app") t = Target() assert t.m("A") == "A" assert unmethodify(t.m) is g def test_install_auto_method_method_no_app_arg(): class Target(object): pass class Foo(object): def f(self, a): return a f = Foo().f Target.m = methodify(f, "app") t = Target() assert t.m("A") == "A" assert unmethodify(t.m) is f def test_install_auto_method_method_app_arg(): class Target(object): pass class Bar(object): def g(self, app, a): assert isinstance(app, Target) return a g = Bar().g Target.m = methodify(g, "app") t = Target() assert t.m("A") == "A" assert unmethodify(t.m) is g def test_install_instance_method(): class Target(object): pass class Bar(object): def g(self, a): assert isinstance(self, Bar) return a g = Bar().g Target.m = methodify(g) t = Target() assert t.m("A") == "A" assert unmethodify(t.m) is g def test_dispatch_method_introspection(): class Foo(object): @dispatch_method("obj") def bar(self, obj): "Return the bar of an object." return "default" assert Foo.bar.__name__ == "bar" assert Foo.bar.__doc__ == "Return the bar of an object." assert Foo.bar.__module__ == __name__ def test_dispatch_method_clean(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Qux(Foo): pass class Alpha(object): pass class Beta(object): pass foo = Foo() qux = Qux() Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) Qux.bar.register(lambda self, obj: "Qux Alpha", obj=Alpha) Qux.bar.register(lambda self, obj: "Qux Beta", obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" assert qux.bar(Alpha()) == "Qux Alpha" assert qux.bar(Beta()) == "Qux Beta" assert qux.bar(None) == "default" Foo.bar.clean() assert foo.bar(Alpha()) == "default" # but hasn't affected qux registry assert qux.bar(Alpha()) == "Qux Alpha" def test_clean_dispatch_methods(): class Foo(object): @dispatch_method(match_instance("obj")) def bar(self, obj): return "default" class Qux(Foo): pass class Alpha(object): pass class Beta(object): pass foo = Foo() qux = Qux() Foo.bar.register(lambda self, obj: "Alpha", obj=Alpha) Foo.bar.register(lambda self, obj: "Beta", obj=Beta) Qux.bar.register(lambda self, obj: "Qux Alpha", obj=Alpha) Qux.bar.register(lambda self, obj: "Qux Beta", obj=Beta) assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" assert qux.bar(Alpha()) == "Qux Alpha" assert qux.bar(Beta()) == "Qux Beta" assert qux.bar(None) == "default" clean_dispatch_methods(Foo) assert foo.bar(Alpha()) == "default" # but hasn't affected qux registry assert qux.bar(Alpha()) == "Qux Alpha" def test_replacing_with_normal_method(): class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class Alpha(object): pass class Beta(object): pass # At this moment Foo.bar is still a descriptor, even though it is # not easy to see that: assert isinstance(vars(Foo)["bar"], dispatch_method) # Simply using Foo.bar wouldn't have worked here, as it would # invoke the descriptor: assert isinstance(Foo.bar, FunctionType) # We now replace the descriptor with the actual unbound method: Foo.bar = Foo.bar # Now the descriptor is gone assert isinstance(vars(Foo)["bar"], FunctionType) # But we can still use the generic function as usual, and even # register new implementations: Foo.bar.register(obj=Alpha)(lambda self, obj: "Alpha") Foo.bar.register(obj=Beta)(lambda self, obj: "Beta") foo = Foo() assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" def test_replacing_with_normal_method_and_its_effect_on_inheritance(): class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class SubFoo(Foo): pass class Alpha(object): pass class Beta(object): pass Foo.bar.register(obj=Alpha)(lambda self, obj: "Alpha") Foo.bar.register(obj=Beta)(lambda self, obj: "Beta") foo = Foo() assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" # SubFoo has different dispatching from Foo subfoo = SubFoo() assert subfoo.bar(Alpha()) == "default" assert subfoo.bar(Beta()) == "default" assert subfoo.bar(None) == "default" # We now replace the descriptor with the actual unbound method: Foo.bar = Foo.bar # Now the descriptor is gone assert isinstance(vars(Foo)["bar"], FunctionType) # Foo.bar works as before: foo = Foo() assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" # But now SubFoo.bar shares the dispatch registry with Foo: subfoo = SubFoo() assert subfoo.bar(Alpha()) == "Alpha" assert subfoo.bar(Beta()) == "Beta" assert subfoo.bar(None) == "default" # This is exactly the same behavior we'd get by using dispatch # instead of dispatch_method: del Foo, SubFoo class Foo(object): @dispatch("obj") def bar(self, obj): return "default" class SubFoo(Foo): pass # Foo and SubFoo share the same registry: Foo.bar.register(obj=Alpha)(lambda self, obj: "Alpha") SubFoo.bar.register(obj=Beta)(lambda self, obj: "Beta") foo = Foo() assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" subfoo = SubFoo() assert subfoo.bar(Alpha()) == "Alpha" assert subfoo.bar(Beta()) == "Beta" assert subfoo.bar(None) == "default" # Now we start again, and do the replacement for both subclass and # parent class, in this order: del Foo, SubFoo class Foo(object): @dispatch_method("obj") def bar(self, obj): return "default" class SubFoo(Foo): pass Foo.bar.register(obj=Alpha)(lambda self, obj: "Alpha") Foo.bar.register(obj=Beta)(lambda self, obj: "Beta") SubFoo.bar = SubFoo.bar Foo.bar = Foo.bar # This has kept two separate registries: foo = Foo() assert foo.bar(Alpha()) == "Alpha" assert foo.bar(Beta()) == "Beta" assert foo.bar(None) == "default" subfoo = SubFoo() assert subfoo.bar(Alpha()) == "default" assert subfoo.bar(Beta()) == "default" assert subfoo.bar(None) == "default" def unmethodify(func): """Reverses methodify operation. Given an object that is returned from a call to :func:`reg.methodify` return the original object. This can be used to discover the original object that was registered. You can apply this to a function after it was attached as a method. :param func: the methodified function. :returns: the original function. """ func = getattr(func, "__func__", func) return func.__globals__.get("_func", func)
24.305106
74
0.614234
8303f491d50b034e30739abf07d18cfed5bc216b
36,820
py
Python
second/utils/eval.py
CMU-Light-Curtains/ObjectDetection
d2002f6d1ebcf05a78f179bf0474703ed0211ac0
[ "BSD-3-Clause" ]
null
null
null
second/utils/eval.py
CMU-Light-Curtains/ObjectDetection
d2002f6d1ebcf05a78f179bf0474703ed0211ac0
[ "BSD-3-Clause" ]
null
null
null
second/utils/eval.py
CMU-Light-Curtains/ObjectDetection
d2002f6d1ebcf05a78f179bf0474703ed0211ac0
[ "BSD-3-Clause" ]
null
null
null
import io as sysio import time import numba import numpy as np from scipy.interpolate import interp1d from second.core.non_max_suppression.nms_gpu import rotate_iou_gpu_eval from second.core import box_np_ops @numba.jit def get_thresholds(scores: np.ndarray, num_gt, num_sample_pts=41): scores.sort() scores = scores[::-1] current_recall = 0 thresholds = [] for i, score in enumerate(scores): l_recall = (i + 1) / num_gt if i < (len(scores) - 1): r_recall = (i + 2) / num_gt else: r_recall = l_recall if (((r_recall - current_recall) < (current_recall - l_recall)) and (i < (len(scores) - 1))): continue # recall = l_recall thresholds.append(score) current_recall += 1 / (num_sample_pts - 1.0) # print(len(thresholds), len(scores), num_gt) return thresholds def clean_data(gt_anno, dt_anno, current_class, difficulty): CLASS_NAMES = [ 'car', 'pedestrian', 'cyclist', 'van', 'person_sitting', 'car', 'tractor', 'trailer' ] MIN_HEIGHT = [40, 25, 25] MAX_OCCLUSION = [0, 1, 2] MAX_TRUNCATION = [0.15, 0.3, 0.5] dc_bboxes, ignored_gt, ignored_dt = [], [], [] current_cls_name = CLASS_NAMES[current_class].lower() num_gt = len(gt_anno["name"]) num_dt = len(dt_anno["name"]) num_valid_gt = 0 for i in range(num_gt): bbox = gt_anno["bbox"][i] gt_name = gt_anno["name"][i].lower() height = bbox[3] - bbox[1] valid_class = -1 if (gt_name == current_cls_name): valid_class = 1 elif (current_cls_name == "Pedestrian".lower() and "Person_sitting".lower() == gt_name): valid_class = 0 elif (current_cls_name == "Car".lower() and "Van".lower() == gt_name): valid_class = 0 else: valid_class = -1 ignore = False if ((gt_anno["occluded"][i] > MAX_OCCLUSION[difficulty]) or (gt_anno["truncated"][i] > MAX_TRUNCATION[difficulty]) or (height <= MIN_HEIGHT[difficulty])): # if gt_anno["difficulty"][i] > difficulty or gt_anno["difficulty"][i] == -1: ignore = True if valid_class == 1 and not ignore: ignored_gt.append(0) num_valid_gt += 1 elif (valid_class == 0 or (ignore and (valid_class == 1))): ignored_gt.append(1) else: ignored_gt.append(-1) # for i in range(num_gt): if gt_anno["name"][i] == "DontCare": dc_bboxes.append(gt_anno["bbox"][i]) for i in range(num_dt): if (dt_anno["name"][i].lower() == current_cls_name): valid_class = 1 else: valid_class = -1 height = abs(dt_anno["bbox"][i, 3] - dt_anno["bbox"][i, 1]) if height < MIN_HEIGHT[difficulty]: ignored_dt.append(1) elif valid_class == 1: ignored_dt.append(0) else: ignored_dt.append(-1) return num_valid_gt, ignored_gt, ignored_dt, dc_bboxes @numba.jit(nopython=True) def image_box_overlap(boxes, query_boxes, criterion=-1): N = boxes.shape[0] K = query_boxes.shape[0] overlaps = np.zeros((N, K), dtype=boxes.dtype) for k in range(K): qbox_area = ((query_boxes[k, 2] - query_boxes[k, 0]) * (query_boxes[k, 3] - query_boxes[k, 1])) for n in range(N): iw = (min(boxes[n, 2], query_boxes[k, 2]) - max( boxes[n, 0], query_boxes[k, 0])) if iw > 0: ih = (min(boxes[n, 3], query_boxes[k, 3]) - max( boxes[n, 1], query_boxes[k, 1])) if ih > 0: if criterion == -1: ua = ( (boxes[n, 2] - boxes[n, 0]) * (boxes[n, 3] - boxes[n, 1]) + qbox_area - iw * ih) elif criterion == 0: ua = ((boxes[n, 2] - boxes[n, 0]) * (boxes[n, 3] - boxes[n, 1])) elif criterion == 1: ua = qbox_area else: ua = 1.0 overlaps[n, k] = iw * ih / ua return overlaps def bev_box_overlap(boxes, qboxes, criterion=-1, stable=True): # riou = box_np_ops.riou_cc(boxes, qboxes) riou = rotate_iou_gpu_eval(boxes, qboxes, criterion) return riou @numba.jit(nopython=True, parallel=True) def box3d_overlap_kernel(boxes, qboxes, rinc, criterion=-1, z_axis=1, z_center=1.0): """ z_axis: the z (height) axis. z_center: unified z (height) center of box. """ N, K = boxes.shape[0], qboxes.shape[0] for i in range(N): for j in range(K): if rinc[i, j] > 0: min_z = min( boxes[i, z_axis] + boxes[i, z_axis + 3] * (1 - z_center), qboxes[j, z_axis] + qboxes[j, z_axis + 3] * (1 - z_center)) max_z = max( boxes[i, z_axis] - boxes[i, z_axis + 3] * z_center, qboxes[j, z_axis] - qboxes[j, z_axis + 3] * z_center) iw = min_z - max_z if iw > 0: area1 = boxes[i, 3] * boxes[i, 4] * boxes[i, 5] area2 = qboxes[j, 3] * qboxes[j, 4] * qboxes[j, 5] inc = iw * rinc[i, j] if criterion == -1: ua = (area1 + area2 - inc) elif criterion == 0: ua = area1 elif criterion == 1: ua = area2 else: ua = 1.0 rinc[i, j] = inc / ua else: rinc[i, j] = 0.0 def box3d_overlap(boxes, qboxes, criterion=-1, z_axis=1, z_center=1.0): """kitti camera format z_axis=1. """ bev_axes = list(range(7)) bev_axes.pop(z_axis + 3) bev_axes.pop(z_axis) # t = time.time() # rinc = box_np_ops.rinter_cc(boxes[:, bev_axes], qboxes[:, bev_axes]) rinc = rotate_iou_gpu_eval(boxes[:, bev_axes], qboxes[:, bev_axes], 2) # print("riou time", time.time() - t) box3d_overlap_kernel(boxes, qboxes, rinc, criterion, z_axis, z_center) return rinc @numba.jit(nopython=True) def compute_statistics_jit(overlaps, gt_datas, dt_datas, ignored_gt, ignored_det, dc_bboxes, metric, min_overlap, thresh=0, compute_fp=False, compute_aos=False): det_size = dt_datas.shape[0] gt_size = gt_datas.shape[0] dt_scores = dt_datas[:, -1] dt_alphas = dt_datas[:, 4] gt_alphas = gt_datas[:, 4] dt_bboxes = dt_datas[:, :4] # gt_bboxes = gt_datas[:, :4] assigned_detection = [False] * det_size # if detection has already been assinged to a GT box ignored_threshold = [False] * det_size # detections to be ignored because score is less than thresh if compute_fp: for i in range(det_size): if (dt_scores[i] < thresh): ignored_threshold[i] = True NO_DETECTION = -10000000 tp, fp, fn, similarity = 0, 0, 0, 0 # thresholds = [0.0] # delta = [0.0] thresholds = np.zeros((gt_size, )) thresh_idx = 0 delta = np.zeros((gt_size, )) delta_idx = 0 for i in range(gt_size): if ignored_gt[i] == -1: continue det_idx = -1 valid_detection = NO_DETECTION # if this GT box has been assigned some detection (ignored_dt = 0 or 1) max_overlap = 0 assigned_ignored_det = False # if this GT box is currently assigned a detection that is to be ignored # This loop assigns every GT box (ignored_gt = 0 or 1) a detection conditioned on: # - there should be some min_overlap # - the detection box should already not have been assigned # (can be assinged to both ignored and unignored GT boxes: ignore_gt = 0/1) # in the following order of preference: # 1. Detection is not ignored (ignore_dt = 0) with the highest overlap (max_overlap) # 2. Detection is ignored (ignore_dt = 0) with some overap (there is no ordering, just a greedy selection). for j in range(det_size): if (ignored_det[j] == -1): continue if (assigned_detection[j]): continue if (ignored_threshold[j]): continue overlap = overlaps[j, i] dt_score = dt_scores[j] if (not compute_fp and (overlap > min_overlap) and dt_score > valid_detection): det_idx = j valid_detection = dt_score elif (compute_fp and (overlap > min_overlap) and (overlap > max_overlap or assigned_ignored_det) and ignored_det[j] == 0): max_overlap = overlap det_idx = j valid_detection = 1 assigned_ignored_det = False elif (compute_fp and (overlap > min_overlap) and (valid_detection == NO_DETECTION) and ignored_det[j] == 1): det_idx = j valid_detection = 1 assigned_ignored_det = True # case ignored_gt == 0 (un-ignored GT): # case assigned detection = "no detection": # - fn += 1 # case assigned detection = "ignored_dt = 1": # - No tp/fp (since detection is ignored)/fn # case assigned detection = "ignored_dt = 0": # - tp # case ignored_gt == 1 (ignored GT): # case assigned detection = "no detection": # - No tp/fp/fn # case assigned detection = "ignored_dt = 1": # - No tp/fp/fn # case assigned detection = "ignored_dt = 0": # - No tp/fp/fn # Note: all detections (ignored or not) if assigned to any gt # (ignored or not) will be marked as assigned (assigned_detection[] = 1) if (valid_detection == NO_DETECTION) and ignored_gt[i] == 0: fn += 1 elif ((valid_detection != NO_DETECTION) and (ignored_gt[i] == 1 or ignored_det[det_idx] == 1)): assigned_detection[det_idx] = True elif valid_detection != NO_DETECTION: # only a tp add a threshold. tp += 1 # thresholds.append(dt_scores[det_idx]) thresholds[thresh_idx] = dt_scores[det_idx] thresh_idx += 1 if compute_aos: # delta.append(gt_alphas[i] - dt_alphas[det_idx]) delta[delta_idx] = gt_alphas[i] - dt_alphas[det_idx] delta_idx += 1 assigned_detection[det_idx] = True if compute_fp: for i in range(det_size): if (not (assigned_detection[i] or ignored_det[i] == -1 or ignored_det[i] == 1 or ignored_threshold[i])): fp += 1 nstuff = 0 if metric == 0: overlaps_dt_dc = image_box_overlap(dt_bboxes, dc_bboxes, 0) for i in range(dc_bboxes.shape[0]): for j in range(det_size): if (assigned_detection[j]): continue if (ignored_det[j] == -1 or ignored_det[j] == 1): continue if (ignored_threshold[j]): continue if overlaps_dt_dc[j, i] > min_overlap: assigned_detection[j] = True nstuff += 1 fp -= nstuff if compute_aos: tmp = np.zeros((fp + delta_idx, )) # tmp = [0] * fp for i in range(delta_idx): tmp[i + fp] = (1.0 + np.cos(delta[i])) / 2.0 # tmp.append((1.0 + np.cos(delta[i])) / 2.0) # assert len(tmp) == fp + tp # assert len(delta) == tp if tp > 0 or fp > 0: similarity = np.sum(tmp) else: similarity = -1 return tp, fp, fn, similarity, thresholds[:thresh_idx] def get_split_parts(num, num_part): same_part = num // num_part remain_num = num % num_part parts = [] if same_part > 0: parts += [same_part] * num_part if remain_num > 0: parts += [remain_num] return parts @numba.jit(nopython=True) def fused_compute_statistics(overlaps, pr, gt_nums, dt_nums, dc_nums, gt_datas, dt_datas, dontcares, ignored_gts, ignored_dets, metric, min_overlap, thresholds, compute_aos=False): gt_num = 0 dt_num = 0 dc_num = 0 for i in range(gt_nums.shape[0]): for t, thresh in enumerate(thresholds): overlap = overlaps[dt_num:dt_num + dt_nums[i], gt_num:gt_num + gt_nums[i]] gt_data = gt_datas[gt_num:gt_num + gt_nums[i]] dt_data = dt_datas[dt_num:dt_num + dt_nums[i]] ignored_gt = ignored_gts[gt_num:gt_num + gt_nums[i]] ignored_det = ignored_dets[dt_num:dt_num + dt_nums[i]] dontcare = dontcares[dc_num:dc_num + dc_nums[i]] tp, fp, fn, similarity, _ = compute_statistics_jit( overlap, gt_data, dt_data, ignored_gt, ignored_det, dontcare, metric, min_overlap=min_overlap, thresh=thresh, compute_fp=True, compute_aos=compute_aos) pr[t, 0] += tp pr[t, 1] += fp pr[t, 2] += fn if similarity != -1: pr[t, 3] += similarity gt_num += gt_nums[i] dt_num += dt_nums[i] dc_num += dc_nums[i] def calculate_iou_partly(gt_annos, dt_annos, metric, num_parts=50, z_axis=1, z_center=1.0): """fast iou algorithm. this function can be used independently to do result analysis. Args: gt_annos: dict, must from get_label_annos() in kitti_common.py dt_annos: dict, must from get_label_annos() in kitti_common.py metric: eval type. 0: bbox, 1: bev, 2: 3d num_parts: int. a parameter for fast calculate algorithm z_axis: height axis. kitti camera use 1, lidar use 2. """ assert len(gt_annos) == len(dt_annos) total_dt_num = np.stack([len(a["name"]) for a in dt_annos], 0) total_gt_num = np.stack([len(a["name"]) for a in gt_annos], 0) num_examples = len(gt_annos) split_parts = get_split_parts(num_examples, num_parts) parted_overlaps = [] example_idx = 0 bev_axes = list(range(3)) bev_axes.pop(z_axis) for num_part in split_parts: gt_annos_part = gt_annos[example_idx:example_idx + num_part] dt_annos_part = dt_annos[example_idx:example_idx + num_part] if metric == 0: gt_boxes = np.concatenate([a["bbox"] for a in gt_annos_part], 0) dt_boxes = np.concatenate([a["bbox"] for a in dt_annos_part], 0) overlap_part = image_box_overlap(gt_boxes, dt_boxes) elif metric == 1: loc = np.concatenate( [a["location"][:, bev_axes] for a in gt_annos_part], 0) dims = np.concatenate( [a["dimensions"][:, bev_axes] for a in gt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in gt_annos_part], 0) gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1) loc = np.concatenate( [a["location"][:, bev_axes] for a in dt_annos_part], 0) dims = np.concatenate( [a["dimensions"][:, bev_axes] for a in dt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in dt_annos_part], 0) dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1) overlap_part = bev_box_overlap(gt_boxes, dt_boxes).astype(np.float64) elif metric == 2: loc = np.concatenate([a["location"] for a in gt_annos_part], 0) dims = np.concatenate([a["dimensions"] for a in gt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in gt_annos_part], 0) gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1) loc = np.concatenate([a["location"] for a in dt_annos_part], 0) dims = np.concatenate([a["dimensions"] for a in dt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in dt_annos_part], 0) dt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1) overlap_part = box3d_overlap( gt_boxes, dt_boxes, z_axis=z_axis, z_center=z_center).astype(np.float64) else: raise ValueError("unknown metric") parted_overlaps.append(overlap_part) example_idx += num_part overlaps = [] example_idx = 0 for j, num_part in enumerate(split_parts): gt_annos_part = gt_annos[example_idx:example_idx + num_part] dt_annos_part = dt_annos[example_idx:example_idx + num_part] gt_num_idx, dt_num_idx = 0, 0 for i in range(num_part): gt_box_num = total_gt_num[example_idx + i] dt_box_num = total_dt_num[example_idx + i] overlaps.append( parted_overlaps[j][gt_num_idx:gt_num_idx + gt_box_num, dt_num_idx:dt_num_idx + dt_box_num]) gt_num_idx += gt_box_num dt_num_idx += dt_box_num example_idx += num_part return overlaps, parted_overlaps, total_gt_num, total_dt_num def _prepare_data(gt_annos, dt_annos, current_class, difficulty): gt_datas_list = [] dt_datas_list = [] total_dc_num = [] ignored_gts, ignored_dets, dontcares = [], [], [] total_num_valid_gt = 0 for i in range(len(gt_annos)): rets = clean_data(gt_annos[i], dt_annos[i], current_class, difficulty) num_valid_gt, ignored_gt, ignored_det, dc_bboxes = rets ignored_gts.append(np.array(ignored_gt, dtype=np.int64)) ignored_dets.append(np.array(ignored_det, dtype=np.int64)) if len(dc_bboxes) == 0: dc_bboxes = np.zeros((0, 4)).astype(np.float64) else: dc_bboxes = np.stack(dc_bboxes, 0).astype(np.float64) total_dc_num.append(dc_bboxes.shape[0]) dontcares.append(dc_bboxes) total_num_valid_gt += num_valid_gt gt_datas = np.concatenate( [gt_annos[i]["bbox"], gt_annos[i]["alpha"][..., np.newaxis]], 1) dt_datas = np.concatenate([ dt_annos[i]["bbox"], dt_annos[i]["alpha"][..., np.newaxis], dt_annos[i]["score"][..., np.newaxis] ], 1) gt_datas_list.append(gt_datas) dt_datas_list.append(dt_datas) total_dc_num = np.stack(total_dc_num, axis=0) return (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares, total_dc_num, total_num_valid_gt) def eval_class_v3(gt_annos, dt_annos, current_classes, difficultys, metric, min_overlaps, compute_aos=False, z_axis=1, z_center=1.0, num_parts=50): """Kitti eval. support 2d/bev/3d/aos eval. support 0.5:0.05:0.95 coco AP. Args: gt_annos: dict, must from get_label_annos() in kitti_common.py dt_annos: dict, must from get_label_annos() in kitti_common.py current_class: int, 0: car, 1: pedestrian, 2: cyclist difficulty: int. eval difficulty, 0: easy, 1: normal, 2: hard metric: eval type. 0: bbox, 1: bev, 2: 3d min_overlap: float, min overlap. official: [[0.7, 0.5, 0.5], [0.7, 0.5, 0.5], [0.7, 0.5, 0.5]] format: [metric, class]. choose one from matrix above. num_parts: int. a parameter for fast calculate algorithm Returns: dict of recall, precision and aos """ assert len(gt_annos) == len(dt_annos) num_examples = len(gt_annos) split_parts = get_split_parts(num_examples, num_parts) rets = calculate_iou_partly( dt_annos, gt_annos, metric, num_parts, z_axis=z_axis, z_center=z_center) overlaps, parted_overlaps, total_dt_num, total_gt_num = rets N_SAMPLE_PTS = 41 num_minoverlap = len(min_overlaps) num_class = len(current_classes) num_difficulty = len(difficultys) precision = np.zeros( [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) recall = np.zeros( [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) aos = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) all_thresholds = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) for m, current_class in enumerate(current_classes): for l, difficulty in enumerate(difficultys): rets = _prepare_data(gt_annos, dt_annos, current_class, difficulty) (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares, total_dc_num, total_num_valid_gt) = rets for k, min_overlap in enumerate(min_overlaps[:, metric, m]): thresholdss = [] for i in range(len(gt_annos)): rets = compute_statistics_jit( overlaps[i], gt_datas_list[i], dt_datas_list[i], ignored_gts[i], ignored_dets[i], dontcares[i], metric, min_overlap=min_overlap, thresh=0.0, compute_fp=False) tp, fp, fn, similarity, thresholds = rets thresholdss += thresholds.tolist() thresholdss = np.array(thresholdss) thresholds = get_thresholds(thresholdss, total_num_valid_gt) thresholds = np.array(thresholds) # print(thresholds) all_thresholds[m, l, k, :len(thresholds)] = thresholds pr = np.zeros([len(thresholds), 4]) idx = 0 for j, num_part in enumerate(split_parts): gt_datas_part = np.concatenate( gt_datas_list[idx:idx + num_part], 0) dt_datas_part = np.concatenate( dt_datas_list[idx:idx + num_part], 0) dc_datas_part = np.concatenate( dontcares[idx:idx + num_part], 0) ignored_dets_part = np.concatenate( ignored_dets[idx:idx + num_part], 0) ignored_gts_part = np.concatenate( ignored_gts[idx:idx + num_part], 0) fused_compute_statistics( parted_overlaps[j], pr, total_gt_num[idx:idx + num_part], total_dt_num[idx:idx + num_part], total_dc_num[idx:idx + num_part], gt_datas_part, dt_datas_part, dc_datas_part, ignored_gts_part, ignored_dets_part, metric, min_overlap=min_overlap, thresholds=thresholds, compute_aos=compute_aos) idx += num_part for i in range(len(thresholds)): # recall[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 2]) precision[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 1]) if compute_aos: aos[m, l, k, i] = pr[i, 3] / (pr[i, 0] + pr[i, 1]) for i in range(len(thresholds)): precision[m, l, k, i] = np.max( precision[m, l, k, i:], axis=-1) # recall[m, l, k, i] = np.max(recall[m, l, k, :i + 1], axis=-1) if compute_aos: aos[m, l, k, i] = np.max(aos[m, l, k, i:], axis=-1) # use interp to calculate recall """ current_recalls = np.linspace(0, 1, 41) prec_unique, inds = np.unique(precision[m, l, k], return_index=True) current_recalls = current_recalls[inds] f = interp1d(prec_unique, current_recalls) precs_for_recall = np.linspace(0, 1, 41) max_prec = np.max(precision[m, l, k]) valid_prec = precs_for_recall < max_prec num_valid_prec = valid_prec.sum() recall[m, l, k, :num_valid_prec] = f(precs_for_recall[valid_prec]) """ ret_dict = { "recall": recall, # [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS] "precision": precision, "orientation": aos, "thresholds": all_thresholds, "min_overlaps": min_overlaps, } return ret_dict def get_mAP(prec): sums = 0 for i in range(0, prec.shape[-1], 4): sums = sums + prec[..., i] return sums / 11 * 100 def do_eval_v2(gt_annos, dt_annos, current_classes, min_overlaps, compute_aos=False, difficultys=(0, 1, 2), z_axis=1, z_center=1.0): # min_overlaps: [num_minoverlap, metric, num_class] ret = eval_class_v3( gt_annos, dt_annos, current_classes, difficultys, 0, min_overlaps, compute_aos, z_axis=z_axis, z_center=z_center) # ret: [num_class, num_diff, num_minoverlap, num_sample_points] mAP_bbox = get_mAP(ret["precision"]) mAP_aos = None if compute_aos: mAP_aos = get_mAP(ret["orientation"]) ret = eval_class_v3( gt_annos, dt_annos, current_classes, difficultys, 1, min_overlaps, z_axis=z_axis, z_center=z_center) mAP_bev = get_mAP(ret["precision"]) ret = eval_class_v3( gt_annos, dt_annos, current_classes, difficultys, 2, min_overlaps, z_axis=z_axis, z_center=z_center) mAP_3d = get_mAP(ret["precision"]) return mAP_bbox, mAP_bev, mAP_3d, mAP_aos def do_eval_v3(gt_annos, dt_annos, current_classes, min_overlaps, compute_aos=False, difficultys=(0, 1, 2), z_axis=1, z_center=1.0): # min_overlaps: [num_minoverlap, metric, num_class] types = ["bbox", "bev", "3d"] metrics = {} for i in range(3): ret = eval_class_v3( gt_annos, dt_annos, current_classes, difficultys, i, min_overlaps, compute_aos, z_axis=z_axis, z_center=z_center) metrics[types[i]] = ret return metrics def do_coco_style_eval(gt_annos, dt_annos, current_classes, overlap_ranges, compute_aos, z_axis=1, z_center=1.0): # overlap_ranges: [range, metric, num_class] min_overlaps = np.zeros([10, *overlap_ranges.shape[1:]]) for i in range(overlap_ranges.shape[1]): for j in range(overlap_ranges.shape[2]): min_overlaps[:, i, j] = np.linspace(*overlap_ranges[:, i, j]) mAP_bbox, mAP_bev, mAP_3d, mAP_aos = do_eval_v2( gt_annos, dt_annos, current_classes, min_overlaps, compute_aos, z_axis=z_axis, z_center=z_center) # ret: [num_class, num_diff, num_minoverlap] mAP_bbox = mAP_bbox.mean(-1) mAP_bev = mAP_bev.mean(-1) mAP_3d = mAP_3d.mean(-1) if mAP_aos is not None: mAP_aos = mAP_aos.mean(-1) return mAP_bbox, mAP_bev, mAP_3d, mAP_aos def print_str(value, *arg, sstream=None): if sstream is None: sstream = sysio.StringIO() sstream.truncate(0) sstream.seek(0) print(value, *arg, file=sstream) return sstream.getvalue() def get_official_eval_result(gt_annos, dt_annos, current_classes, difficultys=[0, 1, 2], z_axis=1, z_center=1.0): """ gt_annos and dt_annos must contains following keys: [bbox, location, dimensions, rotation_y, score] """ overlap_mod = np.array([[0.7, 0.5, 0.5, 0.7, 0.5, 0.7, 0.7, 0.7], [0.7, 0.5, 0.5, 0.7, 0.5, 0.7, 0.7, 0.7], [0.7, 0.5, 0.5, 0.7, 0.5, 0.7, 0.7, 0.7]]) overlap_easy = np.array([[0.7, 0.5, 0.5, 0.7, 0.5, 0.5, 0.5, 0.5], [0.5, 0.25, 0.25, 0.5, 0.25, 0.5, 0.5, 0.5], [0.5, 0.25, 0.25, 0.5, 0.25, 0.5, 0.5, 0.5]]) min_overlaps = np.stack([overlap_mod, overlap_easy], axis=0) # [2, 3, 5] class_to_name = { 0: 'Car', 1: 'Pedestrian', 2: 'Cyclist', 3: 'Van', 4: 'Person_sitting', 5: 'car', 6: 'tractor', 7: 'trailer', } name_to_class = {v: n for n, v in class_to_name.items()} if not isinstance(current_classes, (list, tuple)): current_classes = [current_classes] current_classes_int = [] for curcls in current_classes: if isinstance(curcls, str): current_classes_int.append(name_to_class[curcls]) else: current_classes_int.append(curcls) current_classes = current_classes_int min_overlaps = min_overlaps[:, :, current_classes] result = '' # check whether alpha is valid compute_aos = False for anno in dt_annos: if anno['alpha'].shape[0] != 0: if anno['alpha'][0] != -10: compute_aos = True break metrics = do_eval_v3( gt_annos, dt_annos, current_classes, min_overlaps, compute_aos, difficultys, z_axis=z_axis, z_center=z_center) detail = {} for j, curcls in enumerate(current_classes): # mAP threshold array: [num_minoverlap, metric, class] # mAP result: [num_class, num_diff, num_minoverlap] class_name = class_to_name[curcls] detail[class_name] = {} for i in range(min_overlaps.shape[0]): mAPbbox = get_mAP(metrics["bbox"]["precision"][j, :, i]) mAPbev = get_mAP(metrics["bev"]["precision"][j, :, i]) mAP3d = get_mAP(metrics["3d"]["precision"][j, :, i]) detail[class_name][f"bbox@{min_overlaps[i, 0, j]:.2f}"] = mAPbbox.tolist() detail[class_name][f"bev@{min_overlaps[i, 1, j]:.2f}"] = mAPbev.tolist() detail[class_name][f"3d@{min_overlaps[i, 2, j]:.2f}"] = mAP3d.tolist() result += print_str( (f"{class_to_name[curcls]} " "AP(Average Precision)@{:.2f}, {:.2f}, {:.2f}:".format(*min_overlaps[i, :, j]))) mAPbbox = ", ".join(f"{v:.2f}" for v in mAPbbox) mAPbev = ", ".join(f"{v:.2f}" for v in mAPbev) mAP3d = ", ".join(f"{v:.2f}" for v in mAP3d) result += print_str(f"bbox AP:{mAPbbox}") result += print_str(f"bev AP:{mAPbev}") result += print_str(f"3d AP:{mAP3d}") if compute_aos: mAPaos = get_mAP(metrics["bbox"]["orientation"][j, :, i]) detail[class_name][f"aos"] = mAPaos.tolist() mAPaos = ", ".join(f"{v:.2f}" for v in mAPaos) result += print_str(f"aos AP:{mAPaos}") return { "result": result, "detail": detail, } def get_coco_eval_result(gt_annos, dt_annos, current_classes, z_axis=1, z_center=1.0): class_to_name = { 0: 'Car', 1: 'Pedestrian', 2: 'Cyclist', 3: 'Van', 4: 'Person_sitting', 5: 'car', 6: 'tractor', 7: 'trailer', } class_to_range = { 0: [0.5, 1.0, 0.05], 1: [0.25, 0.75, 0.05], 2: [0.25, 0.75, 0.05], 3: [0.5, 1.0, 0.05], 4: [0.25, 0.75, 0.05], 5: [0.5, 1.0, 0.05], 6: [0.5, 1.0, 0.05], 7: [0.5, 1.0, 0.05], } class_to_range = { 0: [0.5, 0.95, 10], 1: [0.25, 0.7, 10], 2: [0.25, 0.7, 10], 3: [0.5, 0.95, 10], 4: [0.25, 0.7, 10], 5: [0.5, 0.95, 10], 6: [0.5, 0.95, 10], 7: [0.5, 0.95, 10], } name_to_class = {v: n for n, v in class_to_name.items()} if not isinstance(current_classes, (list, tuple)): current_classes = [current_classes] current_classes_int = [] for curcls in current_classes: if isinstance(curcls, str): current_classes_int.append(name_to_class[curcls]) else: current_classes_int.append(curcls) current_classes = current_classes_int overlap_ranges = np.zeros([3, 3, len(current_classes)]) for i, curcls in enumerate(current_classes): overlap_ranges[:, :, i] = np.array( class_to_range[curcls])[:, np.newaxis] result = '' # check whether alpha is valid compute_aos = False for anno in dt_annos: if anno['alpha'].shape[0] != 0: if anno['alpha'][0] != -10: compute_aos = True break mAPbbox, mAPbev, mAP3d, mAPaos = do_coco_style_eval( gt_annos, dt_annos, current_classes, overlap_ranges, compute_aos, z_axis=z_axis, z_center=z_center) detail = {} for j, curcls in enumerate(current_classes): class_name = class_to_name[curcls] detail[class_name] = {} # mAP threshold array: [num_minoverlap, metric, class] # mAP result: [num_class, num_diff, num_minoverlap] o_range = np.array(class_to_range[curcls])[[0, 2, 1]] o_range[1] = (o_range[2] - o_range[0]) / (o_range[1] - 1) result += print_str((f"{class_to_name[curcls]} " "coco AP@{:.2f}:{:.2f}:{:.2f}:".format(*o_range))) result += print_str((f"bbox AP:{mAPbbox[j, 0]:.2f}, " f"{mAPbbox[j, 1]:.2f}, " f"{mAPbbox[j, 2]:.2f}")) result += print_str((f"bev AP:{mAPbev[j, 0]:.2f}, " f"{mAPbev[j, 1]:.2f}, " f"{mAPbev[j, 2]:.2f}")) result += print_str((f"3d AP:{mAP3d[j, 0]:.2f}, " f"{mAP3d[j, 1]:.2f}, " f"{mAP3d[j, 2]:.2f}")) detail[class_name][f"bbox"] = mAPbbox[j].tolist() detail[class_name][f"bev"] = mAPbev[j].tolist() detail[class_name][f"3d"] = mAP3d[j].tolist() if compute_aos: detail[class_name][f"aos"] = mAPaos[j].tolist() result += print_str((f"aos AP:{mAPaos[j, 0]:.2f}, " f"{mAPaos[j, 1]:.2f}, " f"{mAPaos[j, 2]:.2f}")) return { "result": result, "detail": detail, }
39.170213
117
0.514177
4284a9266dfb2da4cddf9c92e33d95dbb7d84c86
2,031
py
Python
amrevaluation/utils.py
yichao-l/amr-eager-multilingual
6d96445a23ff493ceedea02712fbcceffe08b879
[ "BSD-2-Clause" ]
null
null
null
amrevaluation/utils.py
yichao-l/amr-eager-multilingual
6d96445a23ff493ceedea02712fbcceffe08b879
[ "BSD-2-Clause" ]
null
null
null
amrevaluation/utils.py
yichao-l/amr-eager-multilingual
6d96445a23ff493ceedea02712fbcceffe08b879
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 ''' Various routines used by scores.py ''' def disambig(lst): lst2 = [] for v in lst: idx = 1 v_idx = v + '_0' while str(v_idx) in lst2: v_idx = v + '_' + str(idx) idx += 1 lst2.append(str(v_idx)) return lst2 def concepts(v2c_dict): return [str(v) for v in v2c_dict.values()] def namedent(v2c_dict, triples): return [str(v2c_dict[v1]) for (l,v1,v2) in triples if l == "name"] def negations(v2c_dict, triples): return [v2c_dict[v1] for (l,v1,v2) in triples if l == "polarity"] def wikification(triples): return [v2 for (l,v1,v2) in triples if l == "wiki"] def reentrancies(v2c_dict, triples): lst = [] vrs = [] for n in v2c_dict.keys(): parents = [(l,v1,v2) for (l,v1,v2) in triples if v2 == n and l != "instance"] if len(parents) > 1: #extract triples involving this (multi-parent) node for t in parents: lst.append(t) vrs.extend([t[1],t[2]]) #collect var/concept pairs for all extracted nodes dict1 = {} for i in v2c_dict: if i in vrs: dict1[i] = v2c_dict[i] return (lst, dict1) def srl(v2c_dict, triples): lst = [] vrs = [] for t in triples: if t[0].startswith("ARG"): #although the smatch code we use inverts the -of relations #there seems to be cases where this is not done so we invert #them here if t[0].endswith("of"): lst.append((t[0][0:-3],t[2],t[1])) vrs.extend([t[2],t[1]]) else: lst.append(t) vrs.extend([t[1],t[2]]) #collect var/concept pairs for all extracted nodes dict1 = {} for i in v2c_dict: if i in vrs: dict1[i] = v2c_dict[i] return (lst, dict1) def var2concept(amr): v2c = {} for n, v in zip(amr.nodes, amr.node_values): v2c[n] = v return v2c
27.08
85
0.533235
e1767c03220a4b2ec1d1c6c2fd773d9b3838d43e
9,082
py
Python
test/backward_compatibility/check_backward_compatibility.py
suphoff/pytorch
7cdfd86a727ce01e41f2af81931064fb664513dd
[ "Intel" ]
null
null
null
test/backward_compatibility/check_backward_compatibility.py
suphoff/pytorch
7cdfd86a727ce01e41f2af81931064fb664513dd
[ "Intel" ]
null
null
null
test/backward_compatibility/check_backward_compatibility.py
suphoff/pytorch
7cdfd86a727ce01e41f2af81931064fb664513dd
[ "Intel" ]
null
null
null
import argparse import datetime import re import sys from collections import defaultdict import torch from torch._C import parse_schema # The date specifies how long the allowlist exclusion should apply to. # # - If we NEVER give BC guarantee for an operator, you can put the # date arbitrarily far in the future. # - Otherwise, pick a date that is far enough in the future that you # believe you can land your diff before then. # # Allowlist entries can be removed after the date listed on them passes. # # Allowlist item format: # [ # 0: function name regex # 1: date until which the allowlist entry is valid # 2: (optional) function argument regex # ] # # NB: function name DOES NOT include overload name! ALLOW_LIST = [ ("c10_experimental", datetime.date(2222, 1, 1)), # Internal ("static", datetime.date(9999, 1, 1)), ("prim::ModuleDictIndex", datetime.date(9999, 1, 1)), ("prim::MKLDNNRelu6", datetime.date(9999, 1, 1)), ("prim::MKLDNNRelu6_", datetime.date(9999, 1, 1)), ("prim::Concat", datetime.date(9999, 1, 1)), # Internal, profiler-specific ops ("profiler::_call_end_callbacks_on_jit_fut*", datetime.date(9999, 1, 1)), ("profiler::_record_function_enter", datetime.date(9999, 1, 1)), ("aten::linalg_matrix_rank", datetime.date(2021, 10, 30)), ("aten::linalg_pinv", datetime.date(2021, 10, 30)), ("aten::_cholesky_helper", datetime.date(9999, 1, 1)), ("aten::_lstsq_helper", datetime.date(9999, 1, 1)), ("aten::_syevd_helper", datetime.date(9999, 1, 1)), ("aten::_lu_solve_helper", datetime.date(9999, 1, 1)), ("aten::_lu_with_info", datetime.date(9999, 1, 1)), ("aten::_linalg_solve_out_helper_", datetime.date(9999, 1, 1)), ("aten::select_backward", datetime.date(9999, 1, 1)), ("aten::slice_backward", datetime.date(9999, 1, 1)), ("aten::diagonal_backward", datetime.date(9999, 1, 1)), ("aten::rowwise_prune", datetime.date(9999, 1, 1)), ("aten::adaptive_avg_pool3d_backward", datetime.date(9999, 1, 1)), ("aten::_embedding_bag_dense_backward", datetime.date(9999, 1, 1)), ("aten::randperm", datetime.date(9999, 1, 1)), ("aten::cudnn_convolution_backward", datetime.date(2022, 1, 31)), ("aten::cudnn_convolution_backward_input", datetime.date(2022, 1, 31)), ("aten::cudnn_convolution_backward_weight", datetime.date(2022, 1, 31)), ("aten::cudnn_convolution_transpose_backward", datetime.date(2022, 1, 31)), ("aten::cudnn_convolution_transpose_backward_input", datetime.date(2022, 1, 31)), ("aten::cudnn_convolution_transpose_backward_weight", datetime.date(2022, 1, 31)), ("aten::_slow_conv2d_forward", datetime.date(2022, 1, 31)), ("aten::_slow_conv2d_backward", datetime.date(2022, 1, 31)), ("aten::slow_conv3d_forward", datetime.date(2022, 1, 31)), ("aten::slow_conv3d_backward", datetime.date(2022, 1, 31)), ("aten::slow_conv_dilated2d_backward", datetime.date(2022, 1, 31)), ("aten::slow_conv_transpose2d", datetime.date(2022, 1, 31)), ("aten::slow_conv_transpose2d_backward", datetime.date(2022, 1, 31)), ("aten::slow_conv_transpose3d", datetime.date(2022, 1, 31)), ("aten::slow_conv_transpose3d_backward", datetime.date(2022, 1, 31)), ("aten::_log_softmax_backward_data", datetime.date(2021, 10, 21)), ("aten::_softmax_backward_data", datetime.date(2021, 10, 21)), ("aten::fused_moving_avg_obs_fake_quant", datetime.date(2021, 10, 21)), ("aten::_fused_moving_avg_obs_fq_helper", datetime.date(2021, 10, 21)), ("aten::_baddbmm_mkl_", datetime.date(2021, 10, 31)), ("aten::grid_sampler_2d_backward", datetime.date(2021, 10, 21)), ("aten::index_add.alpha", datetime.date(2021, 12, 31)), ("aten::index_add_.alpha", datetime.date(2021, 12, 31)), ("prim::TensorExprDynamicGuard", datetime.date(2021, 11, 20)), ("aten::split_with_sizes", datetime.date(2021, 11, 20)), ("aten::split", datetime.date(2021, 12, 20)), ("aten::vsplit", datetime.date(2021, 11, 20)), ("aten::tensor_split", datetime.date(2021, 11, 20)), ("aten::chunk", datetime.date(2021, 11, 20)), ("aten::unbind", datetime.date(2021, 11, 20)), ("aten::hsplit", datetime.date(2021, 11, 20)), ("aten::dsplit", datetime.date(2021, 11, 20)), ("aten::_convolution_nogroup", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_backward", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_backward_bias", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_backward_input", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_backward_weight", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_transpose_backward", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_transpose_backward_input", datetime.date(9999, 1, 1)), ("aten::miopen_convolution_transpose_backward_weight", datetime.date(9999, 1, 1)), ("aten::miopen_depthwise_convolution_backward", datetime.date(9999, 1, 1)), ("aten::miopen_depthwise_convolution_backward_input", datetime.date(9999, 1, 1)), ("aten::miopen_depthwise_convolution_backward_weight", datetime.date(9999, 1, 1)), ("caffe2::", datetime.date(2021, 10, 23)), ("prepacked::unpack_prepacked_sizes_conv2d", datetime.date(9999, 1, 1)), ("prepacked::unpack_prepacked_sizes_linear", datetime.date(9999, 1, 1)), ("q::_FloatToBfloat16Quantized", datetime.date(2021, 12, 21)), ("q::_Bfloat16QuantizedToFloat", datetime.date(2021, 12, 21)), ("aten::_inverse_helper", datetime.date(2021, 12, 31)), ] ALLOW_LIST_COMPILED = [ ( re.compile(item[0]), item[1], re.compile(item[2]) if len(item) > 2 else None, ) for item in ALLOW_LIST if item[1] >= datetime.date.today() ] def allow_listed(schema): for item in ALLOW_LIST_COMPILED: if item[0].search(str(schema)): if len(item) > 2 and item[2] is not None: # if arguments regex is present, use it return bool(item[2].search(str(schema))) return True return False # The nightly will fail to parse newly added syntax to schema declarations # Add new schemas that will fail the nightly here dont_parse_list = [ ("_TorchScriptTesting.*", datetime.date(2099, 9, 17)), ("test_backend", datetime.date(2099, 9, 17)), ("dist_c10d", datetime.date(2099, 9, 17)), ] def dont_parse(schema_line): for item in dont_parse_list: if item[1] < datetime.date.today(): continue regexp = re.compile(item[0]) if regexp.search(schema_line): return True return False def check_bc(existing_schemas): new_schemas = torch._C._jit_get_all_schemas() new_schemas += torch._C._jit_get_custom_class_schemas() new_schema_dict = defaultdict(list) for s in new_schemas: new_schema_dict[s.name].append(s) is_bc = True broken_ops = [] for existing_schema in existing_schemas: if allow_listed(existing_schema): print("schema: ", str(existing_schema), " found on allowlist, skipping") continue print("processing existing schema: ", str(existing_schema)) matching_new_schemas = new_schema_dict.get(existing_schema.name, []) found = False for matching_new_schema in matching_new_schemas: if matching_new_schema.is_backward_compatible_with(existing_schema): found = True break if not found: print( "Can NOT find backward compatible schemas after changes " "for schema {} from the following candidates:\n[\n{}\n]".format( str(existing_schema), "\n\t".join(str(s) for s in matching_new_schemas), ) ) # TODO Print out more details about why candidates don't match. broken_ops.append(str(existing_schema)) is_bc = False if is_bc: print("Found backward compatible schemas for all existing schemas") else: print( "The PR is introducing backward incompatible changes to the " "operator library. Please contact PyTorch team to confirm " "whether this change is wanted or not. \n\nBroken ops: " "[\n\t{}\n]".format("\n\t".join(broken_ops)) ) return is_bc if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process some integers.") parser.add_argument( "--existing-schemas", help="filename to load existing schemas", type=str, default="schemas.txt", ) args = parser.parse_args() existing_schema_dict = dict() slist = [] with open(args.existing_schemas, "r") as f: while True: line = f.readline() if not line: break if dont_parse(line.strip()): print("Not parsing schema line: ", line.strip()) continue s = parse_schema(line.strip()) slist.append(s) if not check_bc(slist): sys.exit(1)
43.247619
86
0.65261
55139a6204a49499741ae86fde290b2327325399
28,546
py
Python
pyjsdl/vector.py
jggatc/pyjsdl-ts
393658a58d4b9ed71efaa9adbbf1d85e368a8cca
[ "MIT" ]
null
null
null
pyjsdl/vector.py
jggatc/pyjsdl-ts
393658a58d4b9ed71efaa9adbbf1d85e368a8cca
[ "MIT" ]
null
null
null
pyjsdl/vector.py
jggatc/pyjsdl-ts
393658a58d4b9ed71efaa9adbbf1d85e368a8cca
[ "MIT" ]
null
null
null
#Pyjsdl - Copyright (C) 2021 James Garnon <https://gatc.ca/> #Released under the MIT License <https://opensource.org/licenses/MIT> from math import sqrt, sin, cos, atan2, pi, floor class Vector2(object): """ Vector2 - 2-dimensional vector. Operator and index functionality requires __pragma__ ('opov'). """ __slots__ = ['_x', '_y'] # __pragma__ ('kwargs') def __init__(self, *args, **kwargs): l = len(args) if l == 2: self._x = float(args[0]) self._y = float(args[1]) elif l == 1: if isinstance(args[0], (int, float)): self._x = float(args[0]) self._y = float(args[0]) else: self._x = float(args[0][0]) # __:opov self._y = float(args[0][1]) # __:opov else: if len(kwargs.keys()) > 0: if 'x' in kwargs.keys() and 'y' in kwargs.keys(): self._x = float(kwargs['x']) self._y = float(kwargs['y']) elif 'x' in kwargs.keys(): self._x = float(kwargs['x']) self._y = float(kwargs['x']) else: self._x = float(kwargs['y']) self._y = float(kwargs['y']) else: self._x = 0.0 self._y = 0.0 # __pragma__ ('nokwargs') @property def x(self): return self._x @x.setter def x(self, val): try: self._x = float(val) except ValueError: raise TypeError('float is required') @x.deleter def x(self): raise TypeError('Cannot delete the x attribute') @property def y(self): return self._y @y.setter def y(self, val): try: self._y = float(val) except ValueError: raise TypeError('float is required') @y.deleter def y(self): raise TypeError('Cannot delete the y attribute') def __str__(self): return '[{}, {}]'.format(self._x, self._y) def __repr__(self): return '<{}({}, {})>'.format(self.__class__.__name__, self._x, self._y) def __getitem__(self, index): if index in (0, -2): return self._x elif index in (1, -1): return self._y elif isinstance(index, slice): return [self._x, self._y][index] else: raise IndexError def __setitem__(self, index, val): if index == 0: try: self._x = float(val) except ValueError: raise TypeError elif index == 1: try: self._y = float(val) except ValueError: raise TypeError elif isinstance(index, slice): l = [self._x, self._y] l[index] = val if len(l) != 2: raise ValueError self._x = float(l[0]) self._y = float(l[1]) else: raise IndexError def __delitem__(self, index): raise TypeError('Deletion of vector components is not supported') def __getslice__(self, start, stop): return [self._x, self._y][start:stop] def __setslice__(self, lower, upper, val): l = [self._x, self._y] l[lower:upper] = val if len(l) != 2: raise ValueError self._x = float(l[0]) self._y = float(l[1]) def __iter__(self): for val in (self._x, self._y): yield val def __len__(self): return 2 def __bool__(self): return bool(self._x or self._y) def __nonzero__(self): return bool(self._x or self._y) def dot(self, vector): """ Return dot product with other vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov return (self._x * vector_x) + (self._y * vector_y) def cross(self, vector): """ Return cross product with other vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov return (self._x * vector_y) - (self._y * vector_x) def magnitude(self): """ Return magnitude of vector. """ return sqrt((self._x**2) + (self._y**2)) def magnitude_squared(self): """ Return squared magnitude of vector. """ return ((self._x**2) + (self._y**2)) def length(self): #js keyword, use magnitude. """ Return length of vector. """ return sqrt((self._x**2) + (self._y**2)) def length_squared(self): """ Return squared length of vector. """ return ((self._x**2) + (self._y**2)) def normalize(self): """ Return normalized vector. """ mag = self.magnitude() if mag == 0: raise ValueError('Cannot normalize vector of zero length') return Vector2(self._x/mag, self._y/mag) def normalize_ip(self): """ Normalized this vector. """ mag = self.magnitude() if mag == 0: raise ValueError('Cannot normalize vector of zero length') self._x /= mag self._y /= mag return None def is_normalized(self): """ Check whether vector is normalized. """ return self.magnitude() == 1 def scale_to_length(self, length): """ Scale vector to length. """ mag = self.magnitude() if mag == 0: raise ValueError('Cannot scale vector of zero length') self._x = (self._x/mag) * length self._y = (self._y/mag) * length return None def reflect(self, vector): """ Return reflected vector at given vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov vn = (self._x * vector_x) + (self._y * vector_y) nn = (vector_x * vector_x) + (vector_y * vector_y) if nn == 0: raise ValueError('Cannot reflect from normal of zero length') c = 2 * vn/nn return Vector2(self._x-(vector_x*c), self._y-(vector_y*c)) def reflect_ip(self, vector): """ Derive reflected vector at given vector in place. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov vn = (self._x * vector_x) + (self._y * vector_y) nn = (vector_x * vector_x) + (vector_y * vector_y) if nn == 0: raise ValueError('Cannot reflect from normal of zero length') c = 2 * vn/nn self._x -= (vector_x*c) self._y -= (vector_y*c) return None def distance_to(self, vector): """ Return distance to given vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov return sqrt((self._x-vector_x)**2 + (self._y-vector_y)**2) def distance_squared_to(self, vector): """ Return squared distance to given vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov return (self._x-vector_x)**2 + (self._y-vector_y)**2 def lerp(self, vector, t): """ Return vector linear interpolated by t to the given vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov if t < 0.0 or t > 1.0: raise ValueError('Argument t must be in range 0 to 1') return Vector2(self._x*(1-t) + vector_x*t, self._y*(1-t) + vector_y*t) def slerp(self, vector, t): """ Return vector spherical interpolated by t to the given vector. """ if t < -1.0 or t > 1.0: raise ValueError('Argument t must be in range -1 to 1') if not hasattr(vector, '__iter__') or len(vector) != 2: raise TypeError('The first argument must be a vector') vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov smag = sqrt((self._x**2) + (self._y**2)) vmag = sqrt((vector_x**2) + (vector_y**2)) if smag==0 or vmag==0: raise ValueError('Cannot use slerp with zero-vector') sx = self._x/smag sy = self._y/smag vx = vector_x/vmag vy = vector_y/vmag theta = atan2(vy, vx) - atan2(sy, sx) _theta = abs(theta) if _theta-pi > 0.000001: theta -= (2*pi) * (theta/_theta) elif -0.000001 < _theta-pi < 0.000001: raise ValueError('Cannot use slerp on 180 degrees') if t < 0.0: t = -t theta -= (2*pi) * (theta/abs(theta)) sin_theta = sin(theta) if sin_theta: a = sin((1.0-t)*theta) / sin_theta b = sin(t*theta) / sin_theta else: a = 1.0 b = 0.0 v = Vector2((sx * a) + (vx * b), (sy * a) + (vy * b)) smag = ((1.0-t)*smag) + (t*vmag) v.x *= smag v.y *= smag return v def elementwise(self): """ Elementwice operation. """ return VectorElementwiseProxy(self._x, self._y) def rotate(self, angle): """ Return vector rotated by angle in degrees. """ rad = angle/180.0*pi c = round(cos(rad),6) s = round(sin(rad),6) return Vector2((c*self._x) - (s*self._y), (s*self._x) + (c*self._y)) def rotate_rad(self, angle): """ Return vector rotated by angle in radians. """ c = cos(angle) s = sin(angle) return Vector2((c*self._x) - (s*self._y), (s*self._x) + (c*self._y)) def rotate_ip(self, angle): """ Rotate vector by angle in degrees. """ r = angle/180.0*pi c = round(cos(r),6) s = round(sin(r),6) x = self._x y = self._y self._x = (c*x) - (s*y) self._y = (s*x) + (c*y) return None def rotate_ip_rad(self, angle): """ Rotate vector by angle in radians. """ c = cos(angle) s = sin(angle) x = self._x y = self._y self._x = (c*x) - (s*y) self._y = (s*x) + (c*y) return None def angle_to(self, vector): """ Return angle to given vector. """ vector_x = vector[0] # __:opov vector_y = vector[1] # __:opov return (atan2(vector_y, vector_x) - atan2(self._y, self._x)) * (180.0/pi) def as_polar(self): """ Return radial distance and azimuthal angle. """ r = self.magnitude() phi = atan2(self._y, self._x) * (180.0/pi) return (r, phi) def from_polar(self, coordinate): """ Set vector with polar coordinate tuple. """ if len(coordinate) != 2: raise TypeError('coodinate must be of length 2') r = coordinate[0] phi = coordinate[1] * (pi/180.0) self._x = round(r * cos(phi), 6) self._y = round(r * sin(phi), 6) return None # __pragma__ ('kwargs') def update(self, *args, **kwargs): """ Update vector. """ l = len(args) if l == 2: self._x = float(args[0]) self._y = float(args[1]) elif l == 1: if isinstance(args[0], (int, float)): self._x = float(args[0]) self._y = float(args[0]) else: self._x = float(args[0][0]) # __:opov self._y = float(args[0][1]) # __:opov else: if len(kwargs.keys()) > 0: if 'x' in kwargs.keys() and 'y' in kwargs.keys(): self._x = float(kwargs['x']) self._y = float(kwargs['y']) elif 'x' in kwargs.keys(): self._x = float(kwargs['x']) self._y = float(kwargs['x']) else: self._x = float(kwargs['y']) self._y = float(kwargs['y']) else: self._x = 0.0 self._y = 0.0 # __pragma__ ('nokwargs') def __pos__(self): return Vector2(self._x, self._y) def __neg__(self): return Vector2(-self._x, -self._y) def __add__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x + other_x, self._y + other_y) else: return Vector2(self._x + other, self._y + other) def __sub__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x - other_x, self._y - other_y) else: return Vector2(self._x - other, self._y - other) def __mul__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov if not isinstance(other, VectorElementwiseProxy): return (self._x * other_x) + (self._y * other_y) else: return Vector2(self._x * other_x, self._y * other_y) else: return Vector2(self._x * other, self._y * other) def __div__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x / other_x, self._y / other_y) else: return Vector2(self._x / other, self._y / other) def __truediv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x / other_x, self._y / other_y) else: return Vector2(self._x / other, self._y / other) def __floordiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(floor(self._x/other_x), floor(self._y/other_y)) else: return Vector2(floor(self._x/other), floor(self._y/other)) def __eq__(self, other): if hasattr(other, '__iter__'): if len(other) == 2: other_x = other[0] # __:opov other_y = other[1] # __:opov return ( abs(self._x-other_x) < 0.000001 and abs(self._y-other_y) < 0.000001 ) else: return False else: return ( abs(self._x-other) < 0.000001 and abs(self._y-other) < 0.000001 ) def __ne__(self, other): if hasattr(other, '__iter__'): if len(other) == 2: other_x = other[0] # __:opov other_y = other[1] # __:opov return ( abs(self._x-other_x) > 0.000001 or abs(self._y-other_y) > 0.000001 ) else: return True else: return ( abs(self._x-other) > 0.000001 or abs(self._y-other) > 0.000001 ) def __gt__(self, other): if not isinstance(other, VectorElementwiseProxy): msg = 'This operation is not supported by vectors' raise TypeError(msg) return other.__lt__(self) def __ge__(self, other): if not isinstance(other, VectorElementwiseProxy): msg = 'This operation is not supported by vectors' raise TypeError(msg) return other.__le__(self) def __lt__(self, other): if not isinstance(other, VectorElementwiseProxy): msg = 'This operation is not supported by vectors' raise TypeError(msg) return other.__gt__(self) def __le__(self, other): if not isinstance(other, VectorElementwiseProxy): msg = 'This operation is not supported by vectors' raise TypeError(msg) return other.__ge__(self) def __radd__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x + other_x, self._y + other_y) else: return Vector2(self._x + other, self._y + other) def __rsub__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x - self._x, other_y - self._y) else: return Vector2(other - self._x, other - self._y) def __rmul__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov if not isinstance(other, VectorElementwiseProxy): return (self._x * other_x) + (self._y * other_y) else: return Vector2(self._x * other_x, self._y * other_y) else: return Vector2(self._x * other, self._y * other) def __rdiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x / self._x, other_y / self._y) else: return Vector2(other / self._x, other / self._y) def __rtruediv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x / self._x, other_y / self._y) else: return Vector2(other / self._x, other / self._y) def __rfloordiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(floor(other_x/self._x), floor(other_y/self._y)) else: return Vector2(floor(other/self._x), floor(other/self._y)) def __iadd__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov self._x += other_x self._y += other_y else: self._x += other self._y += other return self def __isub__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov self._x -= other_x self._y -= other_y else: self._x -= other self._y -= other return self def __imul__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov self._x *= other_x self._y *= other_y else: self._x *= other self._y *= other return self def __idiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov self._x /= other_x self._y /= other_y else: self._x /= other self._y /= other return self def __itruediv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov self._x /= other_x self._y /= other_y else: self._x /= other self._y /= other return self def __ifloordiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov self._x = float(floor(self._x / other_x)) self._y = float(floor(self._y / other_y)) else: self._x = float(floor(self._x / other)) self._y = float(floor(self._y / other)) return self class VectorElementwiseProxy(object): def __init__(self, x, y): self._x = x self._y = y def __getitem__(self, index): if index in (0, -2): return self._x elif index in (1, -1): return self._y def __iter__(self): for val in (self._x, self._y): yield val def __len__(self): return 2 def __bool__(self): return bool(self._x or self._y) def __nonzero__(self): return bool(self._x or self._y) def __pos__(self): return Vector2(self._x, self._y) def __neg__(self): return Vector2(-self._x, -self._y) def __abs__(self): return (abs(self._x), abs(self._y)) def __add__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x + other_x, self._y + other_y) else: return Vector2(self._x + other, self._y + other) def __sub__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x - other_x, self._y - other_y) else: return Vector2(self._x - other, self._y - other) def __mul__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x * other_x, self._y * other_y) else: return Vector2(self._x * other, self._y * other) def __div__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x / other_x, self._y / other_y) else: return Vector2(self._x / other, self._y / other) def __truediv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x / other_x, self._y / other_y) else: return Vector2(self._x / other, self._y / other) def __floordiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(floor(self._x/other_x), floor(self._y/other_y)) else: return Vector2(floor(self._x/other), floor(self._y/other)) def __pow__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov if (other_x%1 and self._x<0) or (other_y%1 and self._y<0): raise ValueError('negative number cannot be raised to a fractional power') return Vector2(self._x**other_x, self._y**other_y) else: if other%1 and (self._x<0 or self._y<0): raise ValueError('negative number cannot be raised to a fractional power') return Vector2(self._x**other, self._y**other) def __mod__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x%other_x, self._y%other_y) else: return Vector2(self._x%other, self._y%other) def __eq__(self, other): if hasattr(other, '__iter__'): if len(other) == 2: other_x = other[0] # __:opov other_y = other[1] # __:opov return ( abs(self._x-other_x) < 0.000001 and abs(self._y-other_y) < 0.000001 ) else: return False else: return ( abs(self._x-other) < 0.000001 and abs(self._y-other) < 0.000001 ) def __ne__(self, other): if hasattr(other, '__iter__'): if len(other) == 2: other_x = other[0] # __:opov other_y = other[1] # __:opov return ( abs(self._x-other_x) > 0.000001 or abs(self._y-other_y) > 0.000001 ) else: return True else: return ( abs(self._x-other) > 0.000001 or abs(self._y-other) > 0.000001 ) def __gt__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return bool(self._x>other_x and self._y>other_y) else: return bool(self._x>other and self._y>other) def __ge__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return bool(self._x>=other_x and self._y>=other_y) else: return bool(self._x>=other and self._y>=other) def __lt__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return bool(self._x<other_x and self._y<other_y) else: return bool(self._x<other and self._y<other) def __le__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return bool(self._x<=other_x and self._y<=other_y) else: return bool(self._x<=other and self._y<=other) def __radd__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x + other_x, self._y + other_y) else: return Vector2(self._x + other, self._y + other) def __rsub__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x - self._x, other_y - self._y) else: return Vector2(other - self._x, other - self._y) def __rmul__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(self._x * other_x, self._y * other_y) else: return Vector2(self._x * other, self._y * other) def __rdiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x / self._x, other_y / self._y) else: return Vector2(other / self._x, other / self._y) def __rtruediv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x / self._x, other_y / self._y) else: return Vector2(other / self._x, other / self._y) def __rfloordiv__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(floor(other_x/self._x), floor(other_y/self._y)) else: return Vector2(floor(other/self._x), floor(other/self._y)) def __rpow__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov if (other_x<0 and self._x%1) or (other_y<0 and self._y%1): raise ValueError('negative number cannot be raised to a fractional power') return Vector2(other_x**self._x, other_y**self._y) else: if other<0 and (self._x%1 or self._y%1): raise ValueError('negative number cannot be raised to a fractional power') return Vector2(other**self._x, other**self._y) def __rmod__(self, other): if hasattr(other, '__iter__'): other_x = other[0] # __:opov other_y = other[1] # __:opov return Vector2(other_x%self._x, other_y%self._y) else: return Vector2(other%self._x, other%self._y)
32.365079
90
0.508933
c07414cafc565f90834e59efde6c25643fb556ed
189
py
Python
musicstore/musicapp/admin.py
hannahclee/recordreview
73855cdc006db5170c9fca214bf5ce6d142040b3
[ "Apache-2.0" ]
null
null
null
musicstore/musicapp/admin.py
hannahclee/recordreview
73855cdc006db5170c9fca214bf5ce6d142040b3
[ "Apache-2.0" ]
null
null
null
musicstore/musicapp/admin.py
hannahclee/recordreview
73855cdc006db5170c9fca214bf5ce6d142040b3
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import Artist, Record, Review # Register your models here. admin.site.register(Artist) admin.site.register(Record) admin.site.register(Review)
27
42
0.809524
2861e4e01e81763f3230d96375eb16ecf7fa5c84
972
py
Python
a2ml/api/a2ml_dataset.py
arita37/a2ml
3e92bede2c2ef6e63be74560cc6b904d3ec9d931
[ "Apache-2.0" ]
2
2020-04-09T16:59:22.000Z
2020-04-09T17:01:10.000Z
a2ml/api/a2ml_dataset.py
arita37/a2ml
3e92bede2c2ef6e63be74560cc6b904d3ec9d931
[ "Apache-2.0" ]
null
null
null
a2ml/api/a2ml_dataset.py
arita37/a2ml
3e92bede2c2ef6e63be74560cc6b904d3ec9d931
[ "Apache-2.0" ]
null
null
null
from a2ml.api.utils.crud_runner import CRUDRunner from a2ml.api.utils.show_result import show_result class A2MLDataset(object): """Contains the dataset CRUD operations that interact with provider.""" def __init__(self, ctx, provider): """Initializes a new a2ml.         Args:          provider (str): The automl provider/s you wish to run. For example 'auger,azure,google'. Returns:          A2ML object """ super(A2MLDataset, self).__init__() self.ctx = ctx self.runner = CRUDRunner(ctx, provider, 'dataset') @show_result def list(self): return self.runner.execute('list') @show_result def create(self, source = None): return self.runner.execute('create', source) @show_result def delete(self, name = None): return self.runner.execute('delete', name) @show_result def select(self, name = None): return self.runner.execute('select', name)
28.588235
100
0.639918
994ed9ed21b6233033178db357596123c0fcc744
9,204
py
Python
Pyrado/pyrado/algorithms/episodic/nes.py
theogruner/SimuRLacra
4893514ccdeb10a736c55de9aa7753fd51c5afec
[ "DOC", "Zlib", "BSD-3-Clause" ]
null
null
null
Pyrado/pyrado/algorithms/episodic/nes.py
theogruner/SimuRLacra
4893514ccdeb10a736c55de9aa7753fd51c5afec
[ "DOC", "Zlib", "BSD-3-Clause" ]
null
null
null
Pyrado/pyrado/algorithms/episodic/nes.py
theogruner/SimuRLacra
4893514ccdeb10a736c55de9aa7753fd51c5afec
[ "DOC", "Zlib", "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Fabio Muratore, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of Fabio Muratore, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL FABIO MURATORE, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from typing import Optional import numpy as np import torch as to import pyrado from pyrado.algorithms.episodic.parameter_exploring import ParameterExploring from pyrado.environments.base import Env from pyrado.exploration.stochastic_params import NormalParamNoise, SymmParamExplStrat from pyrado.logger.step import StepLogger from pyrado.policies.base import Policy from pyrado.sampling.parameter_exploration_sampler import ParameterSamplingResult from pyrado.utils.data_processing import standardize class NES(ParameterExploring): """ Simplified variant of Natural Evolution Strategies (NES) .. seealso:: [1] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, J. Schmidhuber, "Natural Evolution Strategies", JMLR, 2014 [2] This implementation was inspired by https://github.com/pybrain/pybrain/blob/master/pybrain/optimization/distributionbased/snes.py """ name: str = "nes" def __init__( self, save_dir: pyrado.PathLike, env: Env, policy: Policy, max_iter: int, num_init_states_per_domain: int, expl_std_init: float, expl_std_min: float = 0.01, num_domains: int = 1, pop_size: Optional[int] = None, eta_mean: float = 1.0, eta_std: Optional[float] = None, symm_sampling: bool = False, transform_returns: bool = True, num_workers: int = 4, logger: Optional[StepLogger] = None, ): """ Constructor :param save_dir: directory to save the snapshots i.e. the results in :param env: the environment which the policy operates :param policy: policy to be updated :param max_iter: maximum number of iterations (i.e. policy updates) that this algorithm runs :param num_init_states_per_domain: number of rollouts to cover the variance over initial states :param num_domains: number of rollouts due to the variance over domain parameters :param expl_std_init: initial standard deviation for the exploration strategy :param expl_std_min: minimal standard deviation for the exploration strategy :param pop_size: number of solutions in the population :param eta_mean: step size factor for the mean :param eta_std: step size factor for the standard deviation :param symm_sampling: use an exploration strategy which samples symmetric populations :param transform_returns: use a rank-transformation of the returns to update the policy :param num_workers: number of environments for parallel sampling :param logger: logger for every step of the algorithm, if `None` the default logger will be created """ # Call ParameterExploring's constructor super().__init__( save_dir=save_dir, env=env, policy=policy, max_iter=max_iter, num_init_states_per_domain=num_init_states_per_domain, num_domains=num_domains, pop_size=pop_size, num_workers=num_workers, logger=logger, ) # Store the inputs self.transform_returns = transform_returns # Explore using normal noise self._expl_strat = NormalParamNoise( self._policy.num_param, std_init=expl_std_init, std_min=expl_std_min, use_cuda=self._policy.device != "cpu", ) if symm_sampling: # Exploration strategy based on symmetrical normally distributed noise # Symmetric buffer needs to have an even number of samples if self.pop_size % 2 != 0: self.pop_size += 1 self._expl_strat = SymmParamExplStrat(self._expl_strat) # Utility coefficients (ignored for transform_returns = False) # Use pop_size + 1 since we are also considering the current policy eta_std = eta_std if eta_std is not None else (3 + np.log(policy.num_param)) / np.sqrt(self.pop_size + 1) / 5.0 self.eta_mean_util, self.eta_std_util = self.compute_utilities(self.pop_size + 1, eta_mean, eta_std) # Learning rates [2] # Use pop_size + 1 since we are also considering the current policy self.lr_mean = 1.0 if transform_returns else 1e-2 self.lr_std = 0.6 * (3 + np.log(self.pop_size + 1)) / 3.0 / np.sqrt(self.pop_size + 1) @staticmethod def compute_utilities(pop_size: Optional[int], eta_mean: float, eta_std: float): """ Compute the utilities as described in section 3.1 of [1] (a.k.a. Hansen ranking with uniform baseline) :param pop_size: number of solutions in the population :param eta_mean: step size factor for the mean :param eta_std: step size factor for the standard deviation :return: utility coefficient for the mean, and utility coefficient for the standard deviation """ # Compute common utility vector log_half = np.log(pop_size / 2.0 + 1) log_k = np.log(np.arange(1, pop_size + 1)) num = np.maximum(0, log_half - log_k) utils = num / np.sum(num) - 1.0 / pop_size # Convert to PyTorch tensors eta_mean_util = to.from_numpy(eta_mean * utils).to(to.get_default_dtype()) eta_std_util = to.from_numpy(eta_std / 2.0 * utils).to(to.get_default_dtype()) return eta_mean_util, eta_std_util def update(self, param_results: ParameterSamplingResult, ret_avg_curr: float = None): # Average the return values over the rollouts rets_avg_ros = param_results.mean_returns # Get the perturbations (deltas from the current policy parameters) s = param_results.parameters - self._policy.param_values # also divide by the standard deviation to fully standardize s /= self._expl_strat.std if self.transform_returns: # Ascending sort according to return values idcs_acs = np.argsort(rets_avg_ros)[::-1] s_asc = s[list(idcs_acs), :] # Update the mean (see [1, 2]) delta_mean = self._expl_strat.std * (self.eta_mean_util @ s_asc) self._policy.param_values += self.lr_mean * delta_mean # Update the std (see [1, 2]) grad_std = self.eta_std_util @ (s_asc ** 2 - 1.0) new_std = self._expl_strat.std * to.exp(self.lr_std * grad_std / 2.0) self._expl_strat.adapt(std=new_std) else: # Standardize averaged returns over all pop_size rollouts rets_stdized = standardize(rets_avg_ros) rets_stdized = to.from_numpy(rets_stdized).to(to.get_default_dtype()) # delta_mean = 1./len(param_results) * (rets_stdized @ s) delta_mean = 1.0 / (self._expl_strat.std * len(param_results)) * (rets_stdized @ s) self._policy.param_values += self.lr_mean * delta_mean # Update the std (monotonous exponential decay) new_std = self._expl_strat.std * 0.999 ** self._curr_iter self._expl_strat.adapt(std=new_std) self.logger.add_value("min expl strat std", to.min(self._expl_strat.std), 4) self.logger.add_value("avg expl strat std", to.mean(self._expl_strat.std), 4) self.logger.add_value("max expl strat std", to.max(self._expl_strat.std), 4) self.logger.add_value("expl strat entropy", self._expl_strat.get_entropy(), 4)
47.2
141
0.686875
113fdaaf14ead638f626a61a7766e9d2979329b9
1,244
py
Python
superset/migrations/versions/55e910a74826_add_metadata_column_to_annotation_model_.py
Manikantan22/incubator-superset
ec325c871e60ae2a050aae595b430d6fc2888d1a
[ "Apache-2.0" ]
6
2019-06-14T11:16:54.000Z
2020-11-08T16:02:00.000Z
superset/migrations/versions/55e910a74826_add_metadata_column_to_annotation_model_.py
Manikantan22/incubator-superset
ec325c871e60ae2a050aae595b430d6fc2888d1a
[ "Apache-2.0" ]
203
2019-05-31T11:13:10.000Z
2020-03-31T02:50:54.000Z
superset/migrations/versions/55e910a74826_add_metadata_column_to_annotation_model_.py
Manikantan22/incubator-superset
ec325c871e60ae2a050aae595b430d6fc2888d1a
[ "Apache-2.0" ]
14
2019-05-31T11:32:40.000Z
2021-01-28T11:18:16.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """add_metadata_column_to_annotation_model.py Revision ID: 55e910a74826 Revises: 1a1d627ebd8e Create Date: 2018-08-29 14:35:20.407743 """ # revision identifiers, used by Alembic. revision = "55e910a74826" down_revision = "1a1d627ebd8e" from alembic import op import sqlalchemy as sa def upgrade(): op.add_column("annotation", sa.Column("json_metadata", sa.Text(), nullable=True)) def downgrade(): op.drop_column("annotation", "json_metadata")
31.897436
85
0.766881
51872b7bf71a067a06ea7e2ec6458e4b7615c9a5
3,862
py
Python
python/download-trade.py
Kento-Bento/binance-public-data
a4309127213f2f8af194626013598b278a541c73
[ "MIT" ]
637
2021-01-14T03:41:05.000Z
2022-03-29T13:02:56.000Z
python/download-trade.py
Kento-Bento/binance-public-data
a4309127213f2f8af194626013598b278a541c73
[ "MIT" ]
115
2021-01-15T02:52:21.000Z
2022-03-29T09:30:37.000Z
python/download-trade.py
Kento-Bento/binance-public-data
a4309127213f2f8af194626013598b278a541c73
[ "MIT" ]
267
2021-01-19T13:36:17.000Z
2022-03-31T15:56:19.000Z
#!/usr/bin/env python """ script to download trades. set the absoluate path destination folder for STORE_DIRECTORY, and run e.g. STORE_DIRECTORY=/data/ ./download-trade.py """ import sys from datetime import * import pandas as pd from enums import * from utility import download_file, get_all_symbols, get_parser, get_start_end_date_objects, convert_to_date_object, \ get_path def download_monthly_trades(trading_type, symbols, num_symbols, years, months, start_date, end_date, folder, checksum): current = 0 date_range = None if start_date and end_date: date_range = start_date + " " + end_date if not start_date: start_date = START_DATE else: start_date = convert_to_date_object(start_date) if not end_date: end_date = END_DATE else: end_date = convert_to_date_object(end_date) print("Found {} symbols".format(num_symbols)) for symbol in symbols: print("[{}/{}] - start download monthly {} trades ".format(current+1, num_symbols, symbol)) for year in years: for month in months: current_date = convert_to_date_object('{}-{}-01'.format(year, month)) if current_date >= start_date and current_date <= end_date: path = get_path(trading_type, "trades", "monthly", symbol) file_name = "{}-trades-{}-{}.zip".format(symbol.upper(), year, '{:02d}'.format(month)) download_file(path, file_name, date_range, folder) if checksum == 1: checksum_path = get_path(trading_type, "trades", "monthly", symbol) checksum_file_name = "{}-trades-{}-{}.zip.CHECKSUM".format(symbol.upper(), year, '{:02d}'.format(month)) download_file(checksum_path, checksum_file_name, date_range, folder) current += 1 def download_daily_trades(trading_type, symbols, num_symbols, dates, start_date, end_date, folder, checksum): current = 0 date_range = None if start_date and end_date: date_range = start_date + " " + end_date if not start_date: start_date = START_DATE else: start_date = convert_to_date_object(start_date) if not end_date: end_date = END_DATE else: end_date = convert_to_date_object(end_date) print("Found {} symbols".format(num_symbols)) for symbol in symbols: print("[{}/{}] - start download daily {} trades ".format(current+1, num_symbols, symbol)) for date in dates: current_date = convert_to_date_object(date) if current_date >= start_date and current_date <= end_date: path = get_path(trading_type, "trades", "daily", symbol) file_name = "{}-trades-{}.zip".format(symbol.upper(), date) download_file(path, file_name, date_range, folder) if checksum == 1: checksum_path = get_path(trading_type, "trades", "daily", symbol) checksum_file_name = "{}-trades-{}.zip.CHECKSUM".format(symbol.upper(), date) download_file(checksum_path, checksum_file_name, date_range, folder) current += 1 if __name__ == "__main__": parser = get_parser('trades') args = parser.parse_args(sys.argv[1:]) if not args.symbols: print("fetching all symbols from exchange") symbols = get_all_symbols(args.type) num_symbols = len(symbols) else: symbols = args.symbols num_symbols = len(symbols) print("fetching {} symbols from exchange".format(num_symbols)) if args.dates: dates = args.dates else: dates = pd.date_range(end = datetime.today(), periods = MAX_DAYS).to_pydatetime().tolist() dates = [date.strftime("%Y-%m-%d") for date in dates] download_monthly_trades(args.type, symbols, num_symbols, args.years, args.months, args.startDate, args.endDate, args.folder, args.checksum) download_daily_trades(args.type, symbols, num_symbols, dates, args.startDate, args.endDate, args.folder, args.checksum)
34.792793
145
0.684878
5276ecf712911672f88b4005caab490f5941ef1b
1,204
py
Python
src/omnibus/app.py
hmajid2301/omnibus
99de78329c28e99bcfefd523640f4fdd377bf8d4
[ "Apache-2.0" ]
1
2022-02-25T13:05:27.000Z
2022-02-25T13:05:27.000Z
src/omnibus/app.py
hmajid2301/omnibus
99de78329c28e99bcfefd523640f4fdd377bf8d4
[ "Apache-2.0" ]
null
null
null
src/omnibus/app.py
hmajid2301/omnibus
99de78329c28e99bcfefd523640f4fdd377bf8d4
[ "Apache-2.0" ]
null
null
null
from typing import Any, Callable, Dict, List, Type, Union from beanie import init_beanie from beanie.odm.documents import DocType from fastapi import FastAPI from fastapi_health import health from motor import motor_asyncio from omnibus.config.settings import OmnibusSettings from omnibus.healthcheck import default_healthcheck from omnibus.log.logger import get_logger, setup_logger from omnibus.middleware.cors import add_cors async def setup_app( app: FastAPI, get_settings: Callable[..., OmnibusSettings], document_models: List[Union[Type["DocType"], str]], healthcheck: Callable[..., Union[Dict[str, Any], bool]] = default_healthcheck, ): config = get_settings() setup_logger(log_level=config.LOG_LEVEL, env=config.ENVIRONMENT, uvicorn_log_level=config.UVICORN_LOG_LEVEL) uri = config.get_mongodb_uri() client = motor_asyncio.AsyncIOMotorClient(uri) await init_beanie(database=client[config.DB_NAME], document_models=document_models) add_cors(app=app, cors=config.CORS, regex_cors=config.REGEX_CORS) app.add_api_route("/health", health([healthcheck])) log = get_logger() log.info(f"starting {app.title} {config.WEB_HOST}:{config.WEB_PORT}")
37.625
112
0.775748
8fa7a58c8e55a8cf09335f185287c7bbde6d6829
18,454
py
Python
PAPC/models/detect/pointpillars/core/__init__.py
AgentMaker/PAPC
f5f385c6fed53d2ca2599171a317efaac348dfb5
[ "MIT" ]
70
2021-02-20T03:44:38.000Z
2022-01-17T12:55:45.000Z
PAPC/models/detect/pointpillars/core/__init__.py
AgentMaker/PAPC
f5f385c6fed53d2ca2599171a317efaac348dfb5
[ "MIT" ]
1
2021-02-20T05:26:14.000Z
2021-02-20T13:22:13.000Z
PAPC/models/detect/pointpillars/core/__init__.py
AgentMaker/PAPC
f5f385c6fed53d2ca2599171a317efaac348dfb5
[ "MIT" ]
8
2021-02-20T03:35:25.000Z
2022-02-08T03:22:55.000Z
import numpy as np from functools import partial import pickle import paddle from core.box_coders import (GroundBox3dCoderPaddle, BevBoxCoderPaddle) from core.voxel_generator import VoxelGenerator from core.target_assigner import TargetAssigner from core.similarity_calculator import (RotateIouSimilarity,NearestIouSimilarity,DistanceSimilarity) from core.anchor_generator import (AnchorGeneratorStride, AnchorGeneratorRange) from core import losses from data.dataset import KittiDataset, DatasetWrapper from data.preprocess import prep_pointcloud from libs.preprocess import DBFilterByMinNumPoint, DBFilterByDifficulty, DataBasePreprocessor from libs.ops.sample_ops import DataBaseSamplerV2 from libs.tools import learning_schedules def build_anchor_generator(anchor_config): """Create optimizer based on config. Args: optimizer_config: A Optimizer proto message. Returns: An optimizer and a list of variables for summary. Raises: ValueError: when using an unsupported input data type. """ if 'anchor_generator_stride' in anchor_config: config = anchor_config.anchor_generator_stride ag = AnchorGeneratorStride( sizes=list(config.sizes), anchor_strides=list(config.strides), anchor_offsets=list(config.offsets), rotations=list(config.rotations), match_threshold=config.matched_threshold, unmatch_threshold=config.unmatched_threshold, class_id=config.class_name) return ag elif 'anchor_generator_range' in anchor_config: config = anchor_config.anchor_generator_range ag = AnchorGeneratorRange( sizes=list(config.sizes), anchor_ranges=list(config.anchor_ranges), rotations=list(config.rotations), match_threshold=config.matched_threshold, unmatch_threshold=config.unmatched_threshold, class_id=config.class_name) return ag else: raise ValueError(" unknown anchor generator type") def build_similarity_calculator(similarity_config): """Create optimizer based on config. Args: optimizer_config: A Optimizer proto message. Returns: An optimizer and a list of variables for summary. Raises: ValueError: when using an unsupported input data type. """ if 'rotate_iou_similarity' in similarity_config: return RotateIouSimilarity() elif 'nearest_iou_similarity' in similarity_config: return NearestIouSimilarity() elif 'distance_similarity' in similarity_config: cfg = similarity_config.distance_similarity return DistanceSimilarity(distance_norm=cfg.distance_norm, with_rotation=cfg.with_rotation, rotation_alpha=cfg.rotation_alpha) else: raise ValueError("unknown similarity type") def build_voxel_generator(voxel_generator_config): """Builds a tensor dictionary based on the InputReader config. Args: input_reader_config: A input_reader_pb2.InputReader object. Returns: A tensor dict based on the input_reader_config. Raises: ValueError: On invalid input reader proto. ValueError: If no input paths are specified. """ voxel_generator = VoxelGenerator( voxel_size=list(voxel_generator_config.VOXEL_SIZE), point_cloud_range=list(voxel_generator_config.POINT_CLOUD_RANGE), max_num_points=voxel_generator_config.MAX_NUMBER_OF_POINTS_PER_VOXEL, max_voxels=voxel_generator_config.MAX_VOXELS) return voxel_generator def build_box_coder(box_coder_config): """Create optimizer based on config. Args: optimizer_config: A Optimizer proto message. Returns: An optimizer and a list of variables for summary. Raises: ValueError: when using an unsupported input data type. """ if box_coder_config.BOX_CODER_TYPE == 'ground_box3d_coder': return GroundBox3dCoderPaddle(box_coder_config.LINEAR_DIM, box_coder_config.ENCODE_ANGLE_VECTOR) elif box_coder_config.BOX_CODER_TYPE == 'bev_box_coder': return BevBoxCoderPaddle(box_coder_config.LINEAR_DIM, box_coder_config.ENCODE_ANGLE_VECTOR, box_coder_config.Z_FIXED, box_coder_config.H_FIXED) else: raise ValueError("unknown box_coder type") def build_target_assigner(target_assigner_config, bv_range, box_coder): """Builds a tensor dictionary based on the InputReader config. Args: input_reader_config: A input_reader_pb2.InputReader object. Returns: A tensor dict based on the input_reader_config. Raises: ValueError: On invalid input reader proto. ValueError: If no input paths are specified. """ anchor_cfg = target_assigner_config.ANCHOR_GENERATORS anchor_generators = [] for a_cfg in anchor_cfg: anchor_generator = build_anchor_generator(a_cfg) anchor_generators.append(anchor_generator) similarity_calc = build_similarity_calculator( target_assigner_config.REGION_SIMILARITY_CALCULATOR) positive_fraction = target_assigner_config.SAMPLE_POSITIVE_FRACTION if positive_fraction < 0: positive_fraction = None target_assigner = TargetAssigner( box_coder=box_coder, anchor_generators=anchor_generators, region_similarity_calculator=similarity_calc, positive_fraction=positive_fraction, sample_size=target_assigner_config.SAMPLE_SIZE) return target_assigner def build_losses(loss_config): """Build losses based on the config. Builds classification, localization losses and optionally a hard example miner based on the config. Args: loss_config: A yaml.Loss object. Returns: classification_loss: Classification loss object. localization_loss: Localization loss object. classification_weight: Classification loss weight. localization_weight: Localization loss weight. hard_example_miner: Hard example miner object. Raises: ValueError: If hard_example_miner is used with sigmoid_focal_loss. """ classification_loss = _build_classification_loss( loss_config.classification_loss) localization_loss = _build_localization_loss( loss_config.localization_loss) classification_weight = loss_config.classification_weight localization_weight = loss_config.localization_weight hard_example_miner = None return (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) def _build_localization_loss(loss_config): """Builds a localization loss based on the loss config. Args: loss_config: A yaml.LocalizationLoss object. Returns: Loss based on the config. Raises: ValueError: On invalid loss_config. """ if 'weighted_l2' in loss_config: config = loss_config.weighted_l2 if len(config.code_weight) == 0: code_weight = None else: code_weight = config.code_weight return losses.WeightedL2LocalizationLoss(code_weight) if 'weighted_smooth_l1' in loss_config: config = loss_config.weighted_smooth_l1 if len(config.code_weight) == 0: code_weight = None else: code_weight = config.code_weight return losses.WeightedSmoothL1LocalizationLoss(config.sigma, code_weight) else: raise ValueError('Empty loss config.') def _build_classification_loss(loss_config): """Builds a classification loss based on the loss config. Args: loss_config: A yaml.ClassificationLoss object. Returns: Loss based on the config. Raises: ValueError: On invalid loss_config. """ if 'weighted_sigmoid' in loss_config: return losses.WeightedSigmoidClassificationLoss() if 'weighted_sigmoid_focal' in loss_config: config = loss_config.weighted_sigmoid_focal # alpha = None # if config.HasField('alpha'): # alpha = config.alpha if config.alpha > 0: alpha = config.alpha else: alpha = None return losses.SigmoidFocalClassificationLoss( gamma=config.gamma, alpha=alpha) if 'weighted_softmax_focal' in loss_config : config = loss_config.weighted_softmax_focal # alpha = None # if config.HasField('alpha'): # alpha = config.alpha if config.alpha > 0: alpha = config.alpha else: alpha = None return losses.SoftmaxFocalClassificationLoss( gamma=config.gamma, alpha=alpha) if 'weighted_softmax' in loss_config: config = loss_config.weighted_softmax return losses.WeightedSoftmaxClassificationLoss( logit_scale=config.logit_scale) if 'bootstrapped_sigmoid' in loss_config: config = loss_config.bootstrapped_sigmoid return losses.BootstrappedSigmoidClassificationLoss( alpha=config.alpha, bootstrap_type=('hard' if config.hard_bootstrap else 'soft')) else: raise ValueError('Empty loss config.') def build_optimizer(optimizer_config, params, name=None): """Create optimizer based on config. Args: optimizer_config: A Optimizer proto message. Returns: An optimizer and a list of variables for summary. Raises: ValueError: when using an unsupported input data type. """ if optimizer_config.name == 'rms_prop_optimizer': optimizer = paddle.optimizer.RMSProp( parameters = params, learning_rate=_get_base_lr_by_lr_scheduler(optimizer_config.learning_rate), rho=optimizer_config.decay, momentum=optimizer_config.momentum_optimizer_value, epsilon=optimizer_config.epsilon, weight_decay=optimizer_config.weight_decay) if optimizer_config.name =='momentum_optimizer': optimizer = paddle.optimizer.SGD( parameters = params, learning_rate=_get_base_lr_by_lr_scheduler(optimizer_config.learning_rate), weight_decay=optimizer_config.weight_decay) if optimizer_config.name =='adam_optimizer': optimizer = paddle.optimizer.Adam( parameters = params, learning_rate=_get_base_lr_by_lr_scheduler(optimizer_config.learning_rate), weight_decay=optimizer_config.weight_decay) if optimizer is None: raise ValueError('Optimizer %s not supported.' % optimizer_config.name) if optimizer_config.use_moving_average: raise ValueError('paddle don\'t support moving average') if name is None: # assign a name to optimizer for checkpoint system optimizer.name = optimizer_config.name else: optimizer.name = name return optimizer def _get_base_lr_by_lr_scheduler(learning_rate_config): base_lr = None learning_rate_type = learning_rate_config.name if learning_rate_type == 'constant_learning_rate': base_lr = learning_rate_config.learning_rate if learning_rate_type == 'exponential_decay_learning_rate': base_lr = learning_rate_config.initial_learning_rate if learning_rate_type == 'manual_step_learning_rate': base_lr = learning_rate_config.initial_learning_rate if not config.schedule: raise ValueError('Empty learning rate schedule.') if learning_rate_type == 'cosine_decay_learning_rate': base_lr = learning_rate_config.learning_rate_base if base_lr is None: raise ValueError( 'Learning_rate %s not supported.' % learning_rate_type) return base_lr def build_db_preprocess(cfg): prepors = [] for k,v in cfg.items(): if k == 'filter_by_min_num_points': prepor = DBFilterByMinNumPoint(v.min_num_point_pairs) prepors.append(prepor) elif k == 'filter_by_difficulty': prepor = DBFilterByDifficulty(v.removed_difficulties) prepors.append(prepor) else: raise ValueError("unknown database prep type") return prepors def build_dbsampler(db_sampler_cfg): cfg = db_sampler_cfg groups = cfg.sample_groups prepors = build_db_preprocess(cfg.database_prep_steps) # list db_prepor = DataBasePreprocessor(prepors) rate = cfg.rate grot_range = cfg.global_random_rotation_range_per_object groups = [g.name_to_max_num for g in groups] info_path = cfg.database_info_path with open(info_path,'rb') as f: db_infos = pickle.load(f) if len(grot_range) == 0: grot_range =None sampler = DataBaseSamplerV2(db_infos , groups, db_prepor,rate,grot_range) return sampler def build_dataset(input_reader_config, model_config, training, voxel_generator, target_assigner=None): """Builds a tensor dictionary based on the InputReader config. Returns: A tensor dict based on the input_reader_config. """ generate_bev = model_config.POST_PROCESSING.use_bev without_reflectivity = model_config.WITHOUT_REFLECTIVITY num_point_features = model_config.NUM_POINT_FEATURES out_size_factor = model_config.BACKBONE.layer_strides[0] //model_config.BACKBONE.upsample_strides[0] cfg = input_reader_config db_sampler_cfg = input_reader_config.DATABASE_SAMPLER db_sampler = None if len(db_sampler_cfg.sample_groups) > 0: db_sampler = build_dbsampler(db_sampler_cfg) try: u_db_sampler_cfg = input_reader_config.UNLABELED_DATABASE_SAMPLER u_db_sampler = None if len(u_db_sampler_cfg.sample_groups) > 0: u_db_sampler = build_dbsampler(u_db_sampler_cfg) except: u_db_sampler = None grid_size = voxel_generator.grid_size #[352,400] feature_map_size = grid_size[:2] // out_size_factor feature_map_size = [*feature_map_size, 1][::-1] prep_func = partial( prep_pointcloud, root_path = cfg.KITTI_ROOT_PATH, class_names = cfg.CLASS_NAMES, voxel_generator=voxel_generator, target_assigner=target_assigner, training=training, max_voxels = cfg.MAX_NUMBER_OF_VOXELS, remove_outside_points = False, create_targets = training, shuffle_points = cfg.SHUFFLE_POINTS, gt_rotation_noise = cfg.GROUNDTRUTH_ROTATION_UNIFORM_NOISE, gt_loc_noise_std = cfg.GROUNDTRUTH_LOCALIZATION_NOISE_STD, global_rotation_noise = cfg.GLOBAL_ROTATION_UNIFORM_NOISE, global_scaling_noise = cfg.GLOBAL_SCALING_UNIFORM_NOISE, global_loc_noise_std = (0.2, 0.2, 0.2), global_random_rot_range = cfg.GLOBAL_RANDOM_ROTATION_RANGE_PER_OBJECT, db_sampler = db_sampler, unlabeled_db_sampler = u_db_sampler, generate_bev = generate_bev, without_reflectivity=without_reflectivity, num_point_features=num_point_features, anchor_area_threshold=cfg.ANCHOR_AREA_THRESHOLD, gt_points_drop=cfg.GROUNDTRUTH_POINTS_DROP_PERCENTAGE, gt_drop_max_keep=cfg.GROUNDTRUTH_DROP_MAX_KEEP_POINTS, remove_points_after_sample=cfg.REMOVE_POINTS_AFTER_SAMPLE, remove_environment=cfg.REMOVE_ENVIRONMENT, use_group_id=False, out_size_factor=out_size_factor) dataset = KittiDataset( info_path = cfg.KITTI_INFO_PATH, root_path=cfg.KITTI_ROOT_PATH, num_point_features=num_point_features, target_assigner=target_assigner, feature_map_size=feature_map_size, prep_func=prep_func ) return dataset def build_input_reader(input_reader_config, model_config, training, voxel_generator, target_assigner=None) -> DatasetWrapper: dataset = build_dataset(input_reader_config, model_config, training, voxel_generator, target_assigner) dataset = DatasetWrapper(dataset) return dataset def build_lr_schedules(optimizer_config, optimizer, last_step=-1): return _create_learning_rate_scheduler(optimizer_config.learning_rate, optimizer, last_step=last_step) def _create_learning_rate_scheduler(learning_rate_config, optimizer, last_step=-1): """Create optimizer learning rate scheduler based on config. Args: learning_rate_config: A LearningRate proto message. Returns: A learning rate. Raises: ValueError: when using an unsupported input data type. """ lr_scheduler = None learning_rate_type = learning_rate_config.name if learning_rate_type == 'constant_learning_rate': lr_scheduler = learning_schedules.Constant( optimizer, last_step=last_step) if learning_rate_type == 'exponential_decay_learning_rate': config = learning_rate_config lr_scheduler = learning_schedules.ExponentialDecay( optimizer, config.decay_steps, config.decay_factor, config.staircase, last_step=last_step) if learning_rate_type == 'manual_step_learning_rate': config = learning_rate_config if not config.schedule: raise ValueError('Empty learning rate schedule.') learning_rate_step_boundaries = [x.step for x in config.schedule] learning_rate_sequence = [config.initial_learning_rate] learning_rate_sequence += [x.learning_rate for x in config.schedule] lr_scheduler = learning_schedules.ManualStepping( optimizer, learning_rate_step_boundaries, learning_rate_sequence, last_step=last_step) if learning_rate_type == 'cosine_decay_learning_rate': config = learning_rate_config.cosine_decay_learning_rate lr_scheduler = learning_schedules.CosineDecayWithWarmup( optimizer, config.total_steps, config.warmup_learning_rate, config.warmup_steps, last_step=last_step) if lr_scheduler is None: raise ValueError('Learning_rate %s not supported.' % learning_rate_type) return lr_scheduler
34.950758
104
0.700336
f1923e6a60d6703b867a3d141b6b252c7f6100ff
216
py
Python
catalog/bindings/gmd/bounded_feature_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/gmd/bounded_feature_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
catalog/bindings/gmd/bounded_feature_type.py
NIVANorge/s-enda-playground
56ae0a8978f0ba8a5546330786c882c31e17757a
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass from bindings.gmd.abstract_feature_type import AbstractFeatureType __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass class BoundedFeatureType(AbstractFeatureType): pass
21.6
66
0.828704
3a6ee928b99933fe9275310a59ba9981df8294f1
64,738
py
Python
distributed/dashboard/components/scheduler.py
MichaelSchreier/distributed
7b9fccb1f5d6e5e262500c342650afbd5bfeccd7
[ "BSD-3-Clause" ]
null
null
null
distributed/dashboard/components/scheduler.py
MichaelSchreier/distributed
7b9fccb1f5d6e5e262500c342650afbd5bfeccd7
[ "BSD-3-Clause" ]
null
null
null
distributed/dashboard/components/scheduler.py
MichaelSchreier/distributed
7b9fccb1f5d6e5e262500c342650afbd5bfeccd7
[ "BSD-3-Clause" ]
null
null
null
from collections import defaultdict import logging import math from numbers import Number import operator import os from bokeh.layouts import column, row from bokeh.models import ( ColumnDataSource, ColorBar, DataRange1d, HoverTool, ResetTool, PanTool, WheelZoomTool, TapTool, OpenURL, Range1d, value, NumeralTickFormatter, BoxZoomTool, AdaptiveTicker, BasicTicker, NumberFormatter, BoxSelectTool, GroupFilter, CDSView, ) from bokeh.models.markers import Triangle from bokeh.models.widgets import DataTable, TableColumn from bokeh.plotting import figure from bokeh.palettes import Viridis11 from bokeh.themes import Theme from bokeh.transform import factor_cmap, linear_cmap from bokeh.io import curdoc import dask from dask.utils import format_bytes, key_split from toolz import pipe from tornado import escape try: import numpy as np except ImportError: np = False from distributed.dashboard.components import add_periodic_callback from distributed.dashboard.components.shared import ( DashboardComponent, ProfileTimePlot, ProfileServer, SystemMonitor, ) from distributed.dashboard.utils import ( transpose, BOKEH_VERSION, PROFILING, without_property_validation, update, ) from distributed.metrics import time from distributed.utils import log_errors, format_time, parse_timedelta from distributed.diagnostics.progress_stream import color_of, progress_quads from distributed.diagnostics.graph_layout import GraphLayout from distributed.diagnostics.task_stream import TaskStreamPlugin try: from cytoolz.curried import map, concat, groupby except ImportError: from toolz.curried import map, concat, groupby if dask.config.get("distributed.dashboard.export-tool"): from distributed.dashboard.export_tool import ExportTool else: ExportTool = None logger = logging.getLogger(__name__) from jinja2 import Environment, FileSystemLoader env = Environment( loader=FileSystemLoader(os.path.join(os.path.dirname(__file__), "..", "templates")) ) BOKEH_THEME = Theme(os.path.join(os.path.dirname(__file__), "..", "theme.yaml")) nan = float("nan") inf = float("inf") class Occupancy(DashboardComponent): """ Occupancy (in time) per worker """ def __init__(self, scheduler, **kwargs): with log_errors(): self.scheduler = scheduler self.source = ColumnDataSource( { "occupancy": [0, 0], "worker": ["a", "b"], "x": [0.0, 0.1], "y": [1, 2], "ms": [1, 2], "color": ["red", "blue"], "escaped_worker": ["a", "b"], } ) fig = figure( title="Occupancy", tools="", id="bk-occupancy-plot", x_axis_type="datetime", **kwargs, ) rect = fig.rect( source=self.source, x="x", width="ms", y="y", height=1, color="color" ) rect.nonselection_glyph = None fig.xaxis.minor_tick_line_alpha = 0 fig.yaxis.visible = False fig.ygrid.visible = False # fig.xaxis[0].formatter = NumeralTickFormatter(format='0.0s') fig.x_range.start = 0 tap = TapTool(callback=OpenURL(url="./info/worker/@escaped_worker.html")) hover = HoverTool() hover.tooltips = "@worker : @occupancy s." hover.point_policy = "follow_mouse" fig.add_tools(hover, tap) self.root = fig @without_property_validation def update(self): with log_errors(): workers = list(self.scheduler.workers.values()) y = list(range(len(workers))) occupancy = [ws.occupancy for ws in workers] ms = [occ * 1000 for occ in occupancy] x = [occ / 500 for occ in occupancy] total = sum(occupancy) color = [] for ws in workers: if ws in self.scheduler.idle: color.append("red") elif ws in self.scheduler.saturated: color.append("green") else: color.append("blue") if total: self.root.title.text = "Occupancy -- total time: %s wall time: %s" % ( format_time(total), format_time(total / self.scheduler.total_nthreads), ) else: self.root.title.text = "Occupancy" if occupancy: result = { "occupancy": occupancy, "worker": [ws.address for ws in workers], "ms": ms, "color": color, "escaped_worker": [escape.url_escape(ws.address) for ws in workers], "x": x, "y": y, } update(self.source, result) class ProcessingHistogram(DashboardComponent): """ How many tasks are on each worker """ def __init__(self, scheduler, **kwargs): with log_errors(): self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( {"left": [1, 2], "right": [10, 10], "top": [0, 0]} ) self.root = figure( title="Tasks Processing (Histogram)", id="bk-nprocessing-histogram-plot", name="processing_hist", y_axis_label="frequency", tools="", **kwargs, ) self.root.xaxis.minor_tick_line_alpha = 0 self.root.ygrid.visible = False self.root.toolbar.logo = None self.root.toolbar_location = None self.root.quad( source=self.source, left="left", right="right", bottom=0, top="top", color="deepskyblue", fill_alpha=0.5, ) @without_property_validation def update(self): L = [len(ws.processing) for ws in self.scheduler.workers.values()] counts, x = np.histogram(L, bins=40) self.source.data.update({"left": x[:-1], "right": x[1:], "top": counts}) class NBytesHistogram(DashboardComponent): """ How many tasks are on each worker """ def __init__(self, scheduler, **kwargs): with log_errors(): self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( {"left": [1, 2], "right": [10, 10], "top": [0, 0]} ) self.root = figure( title="Bytes Stored (Histogram)", name="nbytes_hist", id="bk-nbytes-histogram-plot", y_axis_label="frequency", tools="", **kwargs, ) self.root.xaxis[0].formatter = NumeralTickFormatter(format="0.0 b") self.root.xaxis.ticker = AdaptiveTicker(mantissas=[1, 256, 512], base=1024) self.root.xaxis.major_label_orientation = -math.pi / 12 self.root.xaxis.minor_tick_line_alpha = 0 self.root.ygrid.visible = False self.root.toolbar.logo = None self.root.toolbar_location = None self.root.quad( source=self.source, left="left", right="right", bottom=0, top="top", color="deepskyblue", fill_alpha=0.5, ) @without_property_validation def update(self): nbytes = np.asarray([ws.nbytes for ws in self.scheduler.workers.values()]) counts, x = np.histogram(nbytes, bins=40) d = {"left": x[:-1], "right": x[1:], "top": counts} self.source.data.update(d) self.root.title.text = "Bytes stored (Histogram): " + format_bytes(nbytes.sum()) class BandwidthTypes(DashboardComponent): """ Bar chart showing bandwidth per type """ def __init__(self, scheduler, **kwargs): with log_errors(): self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( { "bandwidth": [1, 2], "bandwidth-half": [0.5, 1], "type": ["a", "b"], "bandwidth_text": ["1", "2"], } ) fig = figure( title="Bandwidth by Type", tools="", id="bk-bandwidth-type-plot", name="bandwidth_type_histogram", y_range=["a", "b"], **kwargs, ) rect = fig.rect( source=self.source, x="bandwidth-half", y="type", width="bandwidth", height=1, color="blue", ) fig.x_range.start = 0 fig.xaxis[0].formatter = NumeralTickFormatter(format="0.0 b") fig.xaxis.ticker = AdaptiveTicker(mantissas=[1, 256, 512], base=1024) rect.nonselection_glyph = None fig.xaxis.minor_tick_line_alpha = 0 fig.ygrid.visible = False fig.toolbar.logo = None fig.toolbar_location = None hover = HoverTool() hover.tooltips = "@type: @bandwidth_text / s" hover.point_policy = "follow_mouse" fig.add_tools(hover) self.fig = fig @without_property_validation def update(self): with log_errors(): bw = self.scheduler.bandwidth_types self.fig.y_range.factors = list(sorted(bw)) result = { "bandwidth": list(bw.values()), "bandwidth-half": [b / 2 for b in bw.values()], "type": list(bw.keys()), "bandwidth_text": list(map(format_bytes, bw.values())), } self.fig.title.text = "Bandwidth: " + format_bytes(self.scheduler.bandwidth) update(self.source, result) class BandwidthWorkers(DashboardComponent): """ How many tasks are on each worker """ def __init__(self, scheduler, **kwargs): with log_errors(): self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( { "bandwidth": [1, 2], "source": ["a", "b"], "destination": ["a", "b"], "bandwidth_text": ["1", "2"], } ) values = [hex(x)[2:] for x in range(64, 256)][::-1] mapper = linear_cmap( field_name="bandwidth", palette=["#" + x + x + "FF" for x in values], low=0, high=1, ) fig = figure( title="Bandwidth by Worker", tools="", id="bk-bandwidth-worker-plot", name="bandwidth_worker_heatmap", x_range=["a", "b"], y_range=["a", "b"], **kwargs, ) fig.xaxis.major_label_orientation = -math.pi / 12 rect = fig.rect( source=self.source, x="source", y="destination", color=mapper, height=1, width=1, ) self.color_map = mapper["transform"] color_bar = ColorBar( color_mapper=self.color_map, label_standoff=12, border_line_color=None, location=(0, 0), ) color_bar.formatter = NumeralTickFormatter(format="0.0 b") color_bar.ticker = AdaptiveTicker( mantissas=[1, 64, 128, 256, 512], base=1024 ) fig.add_layout(color_bar, "right") fig.toolbar.logo = None fig.toolbar_location = None hover = HoverTool() hover.tooltips = """ <div> <p><b>Source:</b> @source </p> <p><b>Destination:</b> @destination </p> <p><b>Bandwidth:</b> @bandwidth_text / s</p> </div> """ hover.point_policy = "follow_mouse" fig.add_tools(hover) self.fig = fig @without_property_validation def update(self): with log_errors(): bw = self.scheduler.bandwidth_workers if not bw: return def name(address): ws = self.scheduler.workers[address] if ws.name is not None: return str(ws.name) else: return address x, y, value = zip(*[(name(a), name(b), c) for (a, b), c in bw.items()]) self.color_map.high = max(value) factors = list(sorted(set(x + y))) self.fig.x_range.factors = factors self.fig.y_range.factors = factors[::-1] result = { "source": x, "destination": y, "bandwidth": value, "bandwidth_text": list(map(format_bytes, value)), } self.fig.title.text = "Bandwidth: " + format_bytes(self.scheduler.bandwidth) update(self.source, result) class MemoryByKey(DashboardComponent): """ Bar chart showing memory use by key prefix""" def __init__(self, scheduler, **kwargs): with log_errors(): self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( { "name": ["a", "b"], "nbytes": [100, 1000], "count": [1, 2], "color": ["blue", "blue"], } ) fig = figure( title="Memory Use", tools="", id="bk-memory-by-key-plot", name="memory_by_key", x_range=["a", "b"], **kwargs, ) rect = fig.vbar( source=self.source, x="name", top="nbytes", width=0.9, color="color" ) fig.yaxis[0].formatter = NumeralTickFormatter(format="0.0 b") fig.yaxis.ticker = AdaptiveTicker(mantissas=[1, 256, 512], base=1024) fig.xaxis.major_label_orientation = -math.pi / 12 rect.nonselection_glyph = None fig.xaxis.minor_tick_line_alpha = 0 fig.ygrid.visible = False fig.toolbar.logo = None fig.toolbar_location = None hover = HoverTool() hover.tooltips = "@name: @nbytes_text" hover.tooltips = """ <div> <p><b>Name:</b> @name</p> <p><b>Bytes:</b> @nbytes_text </p> <p><b>Count:</b> @count objects </p> </div> """ hover.point_policy = "follow_mouse" fig.add_tools(hover) self.fig = fig @without_property_validation def update(self): with log_errors(): counts = defaultdict(int) nbytes = defaultdict(int) for ws in self.scheduler.workers.values(): for ts in ws.has_what: ks = key_split(ts.key) counts[ks] += 1 nbytes[ks] += ts.nbytes names = list(sorted(counts)) self.fig.x_range.factors = names result = { "name": names, "count": [counts[name] for name in names], "nbytes": [nbytes[name] for name in names], "nbytes_text": [format_bytes(nbytes[name]) for name in names], "color": [color_of(name) for name in names], } self.fig.title.text = "Total Use: " + format_bytes(sum(nbytes.values())) update(self.source, result) class CurrentLoad(DashboardComponent): """ How many tasks are on each worker """ def __init__(self, scheduler, width=600, **kwargs): with log_errors(): self.last = 0 self.scheduler = scheduler self.source = ColumnDataSource( { "nprocessing": [1, 2], "nprocessing-half": [0.5, 1], "nprocessing-color": ["red", "blue"], "nbytes": [1, 2], "nbytes-half": [0.5, 1], "nbytes_text": ["1B", "2B"], "cpu": [1, 2], "cpu-half": [0.5, 1], "worker": ["a", "b"], "y": [1, 2], "nbytes-color": ["blue", "blue"], "escaped_worker": ["a", "b"], } ) processing = figure( title="Tasks Processing", tools="", id="bk-nprocessing-plot", name="processing_hist", width=int(width / 2), **kwargs, ) rect = processing.rect( source=self.source, x="nprocessing-half", y="y", width="nprocessing", height=1, color="nprocessing-color", ) processing.x_range.start = 0 rect.nonselection_glyph = None nbytes = figure( title="Bytes stored", tools="", id="bk-nbytes-worker-plot", width=int(width / 2), name="nbytes_hist", **kwargs, ) rect = nbytes.rect( source=self.source, x="nbytes-half", y="y", width="nbytes", height=1, color="nbytes-color", ) rect.nonselection_glyph = None cpu = figure( title="CPU Utilization", tools="", id="bk-cpu-worker-plot", width=int(width / 2), name="cpu_hist", x_range=(0, None), **kwargs, ) rect = cpu.rect( source=self.source, x="cpu-half", y="y", width="cpu", height=1, color="blue", ) rect.nonselection_glyph = None nbytes.axis[0].ticker = BasicTicker(mantissas=[1, 256, 512], base=1024) nbytes.xaxis[0].formatter = NumeralTickFormatter(format="0.0 b") nbytes.xaxis.major_label_orientation = -math.pi / 12 nbytes.x_range.start = 0 for fig in [processing, nbytes, cpu]: fig.xaxis.minor_tick_line_alpha = 0 fig.yaxis.visible = False fig.ygrid.visible = False tap = TapTool( callback=OpenURL(url="./info/worker/@escaped_worker.html") ) fig.add_tools(tap) fig.toolbar.logo = None fig.toolbar_location = None fig.yaxis.visible = False hover = HoverTool() hover.tooltips = "@worker : @nprocessing tasks" hover.point_policy = "follow_mouse" processing.add_tools(hover) hover = HoverTool() hover.tooltips = "@worker : @nbytes_text" hover.point_policy = "follow_mouse" nbytes.add_tools(hover) hover = HoverTool() hover.tooltips = "@worker : @cpu %" hover.point_policy = "follow_mouse" cpu.add_tools(hover) self.processing_figure = processing self.nbytes_figure = nbytes self.cpu_figure = cpu processing.y_range = nbytes.y_range cpu.y_range = nbytes.y_range @without_property_validation def update(self): with log_errors(): workers = list(self.scheduler.workers.values()) y = list(range(len(workers))) cpu = [int(ws.metrics["cpu"]) for ws in workers] nprocessing = [len(ws.processing) for ws in workers] processing_color = [] for ws in workers: if ws in self.scheduler.idle: processing_color.append("red") elif ws in self.scheduler.saturated: processing_color.append("green") else: processing_color.append("blue") nbytes = [ws.metrics["memory"] for ws in workers] nbytes_text = [format_bytes(nb) for nb in nbytes] nbytes_color = [] max_limit = 0 for ws, nb in zip(workers, nbytes): limit = ( getattr(self.scheduler.workers[ws.address], "memory_limit", inf) or inf ) if limit > max_limit and limit != inf: max_limit = limit if nb > limit: nbytes_color.append("red") elif nb > limit / 2: nbytes_color.append("orange") else: nbytes_color.append("blue") now = time() if any(nprocessing) or self.last + 1 < now: self.last = now result = { "cpu": cpu, "cpu-half": [c / 2 for c in cpu], "nprocessing": nprocessing, "nprocessing-half": [np / 2 for np in nprocessing], "nprocessing-color": processing_color, "nbytes": nbytes, "nbytes-half": [nb / 2 for nb in nbytes], "nbytes-color": nbytes_color, "nbytes_text": nbytes_text, "worker": [ws.address for ws in workers], "escaped_worker": [escape.url_escape(ws.address) for ws in workers], "y": y, } self.nbytes_figure.title.text = "Bytes stored: " + format_bytes( sum(nbytes) ) self.nbytes_figure.x_range.end = max_limit if self.scheduler.workers: self.cpu_figure.x_range.end = ( max(ws.nthreads or 1 for ws in self.scheduler.workers.values()) * 100 ) else: self.cpu_figure.x_range.end = 100 update(self.source, result) class StealingTimeSeries(DashboardComponent): def __init__(self, scheduler, **kwargs): self.scheduler = scheduler self.source = ColumnDataSource( {"time": [time(), time() + 1], "idle": [0, 0.1], "saturated": [0, 0.1]} ) x_range = DataRange1d(follow="end", follow_interval=20000, range_padding=0) fig = figure( title="Idle and Saturated Workers Over Time", x_axis_type="datetime", y_range=[-0.1, len(scheduler.workers) + 0.1], height=150, tools="", x_range=x_range, **kwargs, ) fig.line(source=self.source, x="time", y="idle", color="red") fig.line(source=self.source, x="time", y="saturated", color="green") fig.yaxis.minor_tick_line_color = None fig.add_tools( ResetTool(), PanTool(dimensions="width"), WheelZoomTool(dimensions="width") ) self.root = fig @without_property_validation def update(self): with log_errors(): result = { "time": [time() * 1000], "idle": [len(self.scheduler.idle)], "saturated": [len(self.scheduler.saturated)], } if PROFILING: curdoc().add_next_tick_callback( lambda: self.source.stream(result, 10000) ) else: self.source.stream(result, 10000) class StealingEvents(DashboardComponent): def __init__(self, scheduler, **kwargs): self.scheduler = scheduler self.steal = scheduler.extensions["stealing"] self.last = 0 self.source = ColumnDataSource( { "time": [time() - 20, time()], "level": [0, 15], "color": ["white", "white"], "duration": [0, 0], "radius": [1, 1], "cost_factor": [0, 10], "count": [1, 1], } ) x_range = DataRange1d(follow="end", follow_interval=20000, range_padding=0) fig = figure( title="Stealing Events", x_axis_type="datetime", y_axis_type="log", height=250, tools="", x_range=x_range, **kwargs, ) fig.circle( source=self.source, x="time", y="cost_factor", color="color", size="radius", alpha=0.5, ) fig.yaxis.axis_label = "Cost Multiplier" hover = HoverTool() hover.tooltips = "Level: @level, Duration: @duration, Count: @count, Cost factor: @cost_factor" hover.point_policy = "follow_mouse" fig.add_tools( hover, ResetTool(), PanTool(dimensions="width"), WheelZoomTool(dimensions="width"), ) self.root = fig def convert(self, msgs): """ Convert a log message to a glyph """ total_duration = 0 for msg in msgs: time, level, key, duration, sat, occ_sat, idl, occ_idl = msg total_duration += duration try: color = Viridis11[level] except (KeyError, IndexError): color = "black" radius = math.sqrt(min(total_duration, 10)) * 30 + 2 d = { "time": time * 1000, "level": level, "count": len(msgs), "color": color, "duration": total_duration, "radius": radius, "cost_factor": min(10, self.steal.cost_multipliers[level]), } return d @without_property_validation def update(self): with log_errors(): log = self.steal.log n = self.steal.count - self.last log = [log[-i] for i in range(1, n + 1) if isinstance(log[-i], list)] self.last = self.steal.count if log: new = pipe( log, map(groupby(1)), map(dict.values), concat, map(self.convert), list, transpose, ) if PROFILING: curdoc().add_next_tick_callback( lambda: self.source.stream(new, 10000) ) else: self.source.stream(new, 10000) class Events(DashboardComponent): def __init__(self, scheduler, name, height=150, **kwargs): self.scheduler = scheduler self.action_ys = dict() self.last = 0 self.name = name self.source = ColumnDataSource( {"time": [], "action": [], "hover": [], "y": [], "color": []} ) x_range = DataRange1d(follow="end", follow_interval=200000) fig = figure( title=name, x_axis_type="datetime", height=height, tools="", x_range=x_range, **kwargs, ) fig.circle( source=self.source, x="time", y="y", color="color", size=50, alpha=0.5, **{"legend_field" if BOKEH_VERSION >= "1.4" else "legend": "action"}, ) fig.yaxis.axis_label = "Action" fig.legend.location = "top_left" hover = HoverTool() hover.tooltips = "@action<br>@hover" hover.point_policy = "follow_mouse" fig.add_tools( hover, ResetTool(), PanTool(dimensions="width"), WheelZoomTool(dimensions="width"), ) self.root = fig @without_property_validation def update(self): with log_errors(): log = self.scheduler.events[self.name] n = self.scheduler.event_counts[self.name] - self.last if log: log = [log[-i] for i in range(1, n + 1)] self.last = self.scheduler.event_counts[self.name] if log: actions = [] times = [] hovers = [] ys = [] colors = [] for msg in log: times.append(msg["time"] * 1000) action = msg["action"] actions.append(action) try: ys.append(self.action_ys[action]) except KeyError: self.action_ys[action] = len(self.action_ys) ys.append(self.action_ys[action]) colors.append(color_of(action)) hovers.append("TODO") new = { "time": times, "action": actions, "hover": hovers, "y": ys, "color": colors, } if PROFILING: curdoc().add_next_tick_callback( lambda: self.source.stream(new, 10000) ) else: self.source.stream(new, 10000) class TaskStream(DashboardComponent): def __init__(self, scheduler, n_rectangles=1000, clear_interval="20s", **kwargs): self.scheduler = scheduler self.offset = 0 es = [p for p in self.scheduler.plugins if isinstance(p, TaskStreamPlugin)] if not es: self.plugin = TaskStreamPlugin(self.scheduler) else: self.plugin = es[0] self.index = max(0, self.plugin.index - n_rectangles) self.workers = dict() self.n_rectangles = n_rectangles clear_interval = parse_timedelta(clear_interval, default="ms") self.clear_interval = clear_interval self.last = 0 self.last_seen = 0 self.source, self.root = task_stream_figure(clear_interval, **kwargs) # Required for update callback self.task_stream_index = [0] @without_property_validation def update(self): if self.index == self.plugin.index: return with log_errors(): if self.index and len(self.source.data["start"]): start = min(self.source.data["start"]) duration = max(self.source.data["duration"]) boundary = (self.offset + start - duration) / 1000 else: boundary = self.offset rectangles = self.plugin.rectangles( istart=self.index, workers=self.workers, start_boundary=boundary ) n = len(rectangles["name"]) self.index = self.plugin.index if not rectangles["start"]: return # If it has been a while since we've updated the plot if time() > self.last_seen + self.clear_interval: new_start = min(rectangles["start"]) - self.offset old_start = min(self.source.data["start"]) old_end = max( map( operator.add, self.source.data["start"], self.source.data["duration"], ) ) density = ( sum(self.source.data["duration"]) / len(self.workers) / (old_end - old_start) ) # If whitespace is more than 3x the old width if (new_start - old_end) > (old_end - old_start) * 2 or density < 0.05: self.source.data.update({k: [] for k in rectangles}) # clear self.offset = min(rectangles["start"]) # redefine offset rectangles["start"] = [x - self.offset for x in rectangles["start"]] self.last_seen = time() # Convert to numpy for serialization speed if n >= 10 and np: for k, v in rectangles.items(): if isinstance(v[0], Number): rectangles[k] = np.array(v) if PROFILING: curdoc().add_next_tick_callback( lambda: self.source.stream(rectangles, self.n_rectangles) ) else: self.source.stream(rectangles, self.n_rectangles) def task_stream_figure(clear_interval="20s", **kwargs): """ kwargs are applied to the bokeh.models.plots.Plot constructor """ clear_interval = parse_timedelta(clear_interval, default="ms") source = ColumnDataSource( data=dict( start=[time() - clear_interval], duration=[0.1], key=["start"], name=["start"], color=["white"], duration_text=["100 ms"], worker=["foo"], y=[0], worker_thread=[1], alpha=[0.0], ) ) x_range = DataRange1d(range_padding=0) y_range = DataRange1d(range_padding=0) root = figure( name="task_stream", title="Task Stream", id="bk-task-stream-plot", x_range=x_range, y_range=y_range, toolbar_location="above", x_axis_type="datetime", min_border_right=35, tools="", **kwargs, ) rect = root.rect( source=source, x="start", y="y", width="duration", height=0.4, fill_color="color", line_color="color", line_alpha=0.6, fill_alpha="alpha", line_width=3, ) rect.nonselection_glyph = None root.yaxis.major_label_text_alpha = 0 root.yaxis.minor_tick_line_alpha = 0 root.yaxis.major_tick_line_alpha = 0 root.xgrid.visible = False hover = HoverTool( point_policy="follow_mouse", tooltips=""" <div> <span style="font-size: 12px; font-weight: bold;">@name:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@duration_text</span> </div> """, ) tap = TapTool(callback=OpenURL(url="/profile?key=@name")) root.add_tools( hover, tap, BoxZoomTool(), ResetTool(), PanTool(dimensions="width"), WheelZoomTool(dimensions="width"), ) if ExportTool: export = ExportTool() export.register_plot(root) root.add_tools(export) return source, root class TaskGraph(DashboardComponent): """ A dynamic node-link diagram for the task graph on the scheduler See also the GraphLayout diagnostic at distributed/diagnostics/graph_layout.py """ def __init__(self, scheduler, **kwargs): self.scheduler = scheduler self.layout = GraphLayout(scheduler) self.invisible_count = 0 # number of invisible nodes self.node_source = ColumnDataSource( {"x": [], "y": [], "name": [], "state": [], "visible": [], "key": []} ) self.edge_source = ColumnDataSource({ "x0": [], "x1": [], "cx0": [], "cx1": [], "cy0": [], "cy1": [], "y0": [], "y1": [], "visible": [] }) node_view = CDSView( source=self.node_source, filters=[GroupFilter(column_name="visible", group="True")], ) edge_view = CDSView( source=self.edge_source, filters=[GroupFilter(column_name="visible", group="True")], ) node_colors = factor_cmap( "state", factors=["waiting", "processing", "memory", "released", "erred"], palette=["gray", "#4daf4a", "#e41a1c", "#377eb8", "black"], ) self.root = figure(title="Task Graph", output_backend="webgl", **kwargs) self.root.bezier( x0="x0", y0="y0", x1="x1", y1="y1", cx0="cx0", cy0="cy0", cx1="cx1", cy1="cy1", source=self.edge_source, line_width=1, view=edge_view, color="#377eb8", alpha=1 ) # prevents edges intersecting with nodes self.root.circle( x="x", y="y", size=15, line_width=0, color='white', name="margin", source=self.node_source, view=node_view, **{"legend_field" if BOKEH_VERSION >= "1.4" else "legend": "state"}, ) arrow = Triangle( angle=-np.pi/2, x="x1", y="y1", size=8, line_color=None, line_width=0, fill_color='#377eb8' ) self.root.add_glyph(self.edge_source, arrow) rect = self.root.circle( x="x", y="y", size=10, line_width=2, color=node_colors, fill_alpha=0.5, source=self.node_source, view=node_view, **{"legend_field" if BOKEH_VERSION >= "1.4" else "legend": "state"}, ) self.root.xgrid.grid_line_color = None self.root.ygrid.grid_line_color = None self.root.xaxis.visible = False self.root.yaxis.visible = False hover = HoverTool( point_policy="follow_mouse", tooltips="<b>@name</b>: @state", renderers=[rect], ) tap = TapTool(callback=OpenURL(url="info/task/@key.html"), renderers=[rect]) rect.nonselection_glyph = None self.root.add_tools(hover, tap) @without_property_validation def update(self): with log_errors(): # conditionally hide "margin" if number of nodes is large renderers = self.root.renderers if len(self.node_source.data["x"]) > 1e3: for renderer in renderers: if renderer.name == "margin": renderer.visible = False else: for renderer in renderers: if renderer.name == "margin": renderer.visible = True # occasionally reset the column data source to remove old nodes if self.invisible_count > len(self.node_source.data["x"]) / 2: self.layout.reset_index() self.invisible_count = 0 update = True else: update = False new, self.layout.new = self.layout.new, [] new_edges = self.layout.new_edges self.layout.new_edges = [] self.add_new_nodes_edges(new, new_edges, update=update) self.patch_updates() @without_property_validation def add_new_nodes_edges(self, new, new_edges, update=False): if new or update: node_key = [] node_x = [] node_y = [] node_state = [] node_name = [] edge_x = [] edge_y = [] x = self.layout.x y = self.layout.y tasks = self.scheduler.tasks for key in new: try: task = tasks[key] except KeyError: continue xx = x[key] yy = y[key] node_key.append(escape.url_escape(key)) node_x.append(xx) node_y.append(yy) node_state.append(task.state) node_name.append(task.prefix.name) for a, b in new_edges: try: edge_x.append([x[a], x[b]]) edge_y.append([y[a], y[b]]) except KeyError: pass node = { "x": node_x, "y": node_y, "state": node_state, "name": node_name, "key": node_key, "visible": ["True"] * len(node_x), } control_offset = .5 end_offset = .05 edge = { "x0": [x[0] + end_offset for x in edge_x], "x1": [x[1] - end_offset for x in edge_x], "cx0": [x[0] + control_offset + end_offset for x in edge_x], "cx1": [x[1] - control_offset - end_offset for x in edge_x], "cy0": [y[0] for y in edge_y], "cy1": [y[1] for y in edge_y], "y0": [y[0] for y in edge_y], "y1": [y[1] for y in edge_y], "visible": ["True"] * len(edge_x) } if update or not len(self.node_source.data["x"]): # see https://github.com/bokeh/bokeh/issues/7523 self.node_source.data.update(node) self.edge_source.data.update(edge) else: self.node_source.stream(node) self.edge_source.stream(edge) @without_property_validation def patch_updates(self): """ Small updates like color changes or lost nodes from task transitions """ n = len(self.node_source.data["x"]) m = len(self.edge_source.data["x0"]) if self.layout.state_updates: state_updates = self.layout.state_updates self.layout.state_updates = [] updates = [(i, c) for i, c in state_updates if i < n] self.node_source.patch({"state": updates}) if self.layout.visible_updates: updates = self.layout.visible_updates updates = [(i, c) for i, c in updates if i < n] self.visible_updates = [] self.node_source.patch({"visible": updates}) self.invisible_count += len(updates) if self.layout.visible_edge_updates: updates = self.layout.visible_edge_updates updates = [(i, c) for i, c in updates if i < m] self.visible_updates = [] self.edge_source.patch({"visible": updates}) def __del__(self): self.scheduler.remove_plugin(self.layout) class TaskProgress(DashboardComponent): """ Progress bars per task type """ def __init__(self, scheduler, **kwargs): self.scheduler = scheduler data = progress_quads( dict(all={}, memory={}, erred={}, released={}, processing={}) ) self.source = ColumnDataSource(data=data) x_range = DataRange1d(range_padding=0) y_range = Range1d(-8, 0) self.root = figure( id="bk-task-progress-plot", title="Progress", name="task_progress", x_range=x_range, y_range=y_range, toolbar_location=None, tools="", **kwargs, ) self.root.line( # just to define early ranges x=[0, 0.9], y=[-1, 0], line_color="#FFFFFF", alpha=0.0 ) self.root.quad( source=self.source, top="top", bottom="bottom", left="left", right="right", fill_color="#aaaaaa", line_color="#aaaaaa", fill_alpha=0.1, line_alpha=0.3, ) self.root.quad( source=self.source, top="top", bottom="bottom", left="left", right="released-loc", fill_color="color", line_color="color", fill_alpha=0.6, ) self.root.quad( source=self.source, top="top", bottom="bottom", left="released-loc", right="memory-loc", fill_color="color", line_color="color", fill_alpha=1.0, ) self.root.quad( source=self.source, top="top", bottom="bottom", left="memory-loc", right="erred-loc", fill_color="black", fill_alpha=0.5, line_alpha=0, ) self.root.quad( source=self.source, top="top", bottom="bottom", left="erred-loc", right="processing-loc", fill_color="gray", fill_alpha=0.35, line_alpha=0, ) self.root.text( source=self.source, text="show-name", y="bottom", x="left", x_offset=5, text_font_size=value("10pt"), ) self.root.text( source=self.source, text="done", y="bottom", x="right", x_offset=-5, text_align="right", text_font_size=value("10pt"), ) self.root.ygrid.visible = False self.root.yaxis.minor_tick_line_alpha = 0 self.root.yaxis.visible = False self.root.xgrid.visible = False self.root.xaxis.minor_tick_line_alpha = 0 self.root.xaxis.visible = False hover = HoverTool( point_policy="follow_mouse", tooltips=""" <div> <span style="font-size: 14px; font-weight: bold;">Name:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@name</span> </div> <div> <span style="font-size: 14px; font-weight: bold;">All:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@all</span> </div> <div> <span style="font-size: 14px; font-weight: bold;">Memory:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@memory</span> </div> <div> <span style="font-size: 14px; font-weight: bold;">Erred:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@erred</span> </div> <div> <span style="font-size: 14px; font-weight: bold;">Ready:</span>&nbsp; <span style="font-size: 10px; font-family: Monaco, monospace;">@processing</span> </div> """, ) self.root.add_tools(hover) @without_property_validation def update(self): with log_errors(): state = { "memory": {}, "erred": {}, "released": {}, "processing": {}, "waiting": {}, } for tp in self.scheduler.task_prefixes.values(): active_states = tp.active_states if any(active_states.get(s) for s in state.keys()): state["memory"][tp.name] = active_states["memory"] state["erred"][tp.name] = active_states["erred"] state["released"][tp.name] = active_states["released"] state["processing"][tp.name] = active_states["processing"] state["waiting"][tp.name] = active_states["waiting"] state["all"] = { k: sum(v[k] for v in state.values()) for k in state["memory"] } if not state["all"] and not len(self.source.data["all"]): return d = progress_quads(state) update(self.source, d) totals = { k: sum(state[k].values()) for k in ["all", "memory", "erred", "released", "waiting"] } totals["processing"] = totals["all"] - sum( v for k, v in totals.items() if k != "all" ) self.root.title.text = ( "Progress -- total: %(all)s, " "in-memory: %(memory)s, processing: %(processing)s, " "waiting: %(waiting)s, " "erred: %(erred)s" % totals ) class WorkerTable(DashboardComponent): """ Status of the current workers This is two plots, a text-based table for each host and a thin horizontal plot laying out hosts by their current memory use. """ excluded_names = {"executing", "in_flight", "in_memory", "ready", "time"} def __init__(self, scheduler, width=800, **kwargs): self.scheduler = scheduler self.names = [ "name", "address", "nthreads", "cpu", "memory", "memory_limit", "memory_percent", "num_fds", "read_bytes", "write_bytes", "cpu_fraction", ] workers = self.scheduler.workers.values() self.extra_names = sorted( { m for ws in workers for m, v in ws.metrics.items() if m not in self.names and isinstance(v, (str, int, float)) } - self.excluded_names ) table_names = [ "name", "address", "nthreads", "cpu", "memory", "memory_limit", "memory_percent", "num_fds", "read_bytes", "write_bytes", ] self.source = ColumnDataSource({k: [] for k in self.names}) columns = { name: TableColumn(field=name, title=name.replace("_percent", " %")) for name in table_names } formatters = { "cpu": NumberFormatter(format="0.0 %"), "memory_percent": NumberFormatter(format="0.0 %"), "memory": NumberFormatter(format="0 b"), "memory_limit": NumberFormatter(format="0 b"), "read_bytes": NumberFormatter(format="0 b"), "write_bytes": NumberFormatter(format="0 b"), "num_fds": NumberFormatter(format="0"), "nthreads": NumberFormatter(format="0"), } if BOKEH_VERSION < "0.12.15": dt_kwargs = {"row_headers": False} else: dt_kwargs = {"index_position": None} table = DataTable( source=self.source, columns=[columns[n] for n in table_names], reorderable=True, sortable=True, width=width, **dt_kwargs, ) for name in table_names: if name in formatters: table.columns[table_names.index(name)].formatter = formatters[name] extra_names = ["name", "address"] + self.extra_names extra_columns = { name: TableColumn(field=name, title=name.replace("_percent", "%")) for name in extra_names } extra_table = DataTable( source=self.source, columns=[extra_columns[n] for n in extra_names], reorderable=True, sortable=True, width=width, **dt_kwargs, ) hover = HoverTool( point_policy="follow_mouse", tooltips=""" <div> <span style="font-size: 10px; font-family: Monaco, monospace;">Worker (@name): </span> <span style="font-size: 10px; font-family: Monaco, monospace;">@memory_percent</span> </div> """, ) mem_plot = figure( title="Memory Use (%)", toolbar_location=None, x_range=(0, 1), y_range=(-0.1, 0.1), height=60, width=width, tools="", **kwargs, ) mem_plot.circle( source=self.source, x="memory_percent", y=0, size=10, fill_alpha=0.5 ) mem_plot.ygrid.visible = False mem_plot.yaxis.minor_tick_line_alpha = 0 mem_plot.xaxis.visible = False mem_plot.yaxis.visible = False mem_plot.add_tools(hover, BoxSelectTool()) hover = HoverTool( point_policy="follow_mouse", tooltips=""" <div> <span style="font-size: 10px; font-family: Monaco, monospace;">Worker (@name): </span> <span style="font-size: 10px; font-family: Monaco, monospace;">@cpu</span> </div> """, ) cpu_plot = figure( title="CPU Use (%)", toolbar_location=None, x_range=(0, 1), y_range=(-0.1, 0.1), height=60, width=width, tools="", **kwargs, ) cpu_plot.circle( source=self.source, x="cpu_fraction", y=0, size=10, fill_alpha=0.5 ) cpu_plot.ygrid.visible = False cpu_plot.yaxis.minor_tick_line_alpha = 0 cpu_plot.xaxis.visible = False cpu_plot.yaxis.visible = False cpu_plot.add_tools(hover, BoxSelectTool()) self.cpu_plot = cpu_plot if "sizing_mode" in kwargs: sizing_mode = {"sizing_mode": kwargs["sizing_mode"]} else: sizing_mode = {} components = [cpu_plot, mem_plot, table] if self.extra_names: components.append(extra_table) self.root = column(*components, id="bk-worker-table", **sizing_mode) @without_property_validation def update(self): data = {name: [] for name in self.names + self.extra_names} for i, (addr, ws) in enumerate( sorted(self.scheduler.workers.items(), key=lambda kv: str(kv[1].name)) ): for name in self.names + self.extra_names: data[name].append(ws.metrics.get(name, None)) data["name"][-1] = ws.name if ws.name is not None else i data["address"][-1] = ws.address if ws.memory_limit: data["memory_percent"][-1] = ws.metrics["memory"] / ws.memory_limit else: data["memory_percent"][-1] = "" data["memory_limit"][-1] = ws.memory_limit data["cpu"][-1] = ws.metrics["cpu"] / 100.0 data["cpu_fraction"][-1] = ws.metrics["cpu"] / 100.0 / ws.nthreads data["nthreads"][-1] = ws.nthreads for name in self.names + self.extra_names: if name == "name": data[name].insert( 0, "Total ({nworkers})".format(nworkers=len(data[name])) ) continue try: data[name].insert(0, sum(data[name])) except TypeError: data[name].insert(0, None) self.source.data.update(data) def systemmonitor_doc(scheduler, extra, doc): with log_errors(): sysmon = SystemMonitor(scheduler, sizing_mode="stretch_both") doc.title = "Dask: Scheduler System Monitor" add_periodic_callback(doc, sysmon, 500) for subdoc in sysmon.root.children: doc.add_root(subdoc) doc.template = env.get_template("system.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def stealing_doc(scheduler, extra, doc): with log_errors(): occupancy = Occupancy(scheduler, height=200, sizing_mode="scale_width") stealing_ts = StealingTimeSeries(scheduler, sizing_mode="scale_width") stealing_events = StealingEvents(scheduler, sizing_mode="scale_width") stealing_events.root.x_range = stealing_ts.root.x_range doc.title = "Dask: Work Stealing" add_periodic_callback(doc, occupancy, 500) add_periodic_callback(doc, stealing_ts, 500) add_periodic_callback(doc, stealing_events, 500) doc.add_root( column( occupancy.root, stealing_ts.root, stealing_events.root, sizing_mode="scale_width", ) ) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def events_doc(scheduler, extra, doc): with log_errors(): events = Events(scheduler, "all", height=250) events.update() add_periodic_callback(doc, events, 500) doc.title = "Dask: Scheduler Events" doc.add_root(column(events.root, sizing_mode="scale_width")) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def workers_doc(scheduler, extra, doc): with log_errors(): table = WorkerTable(scheduler) table.update() add_periodic_callback(doc, table, 500) doc.title = "Dask: Workers" doc.add_root(table.root) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def tasks_doc(scheduler, extra, doc): with log_errors(): ts = TaskStream( scheduler, n_rectangles=dask.config.get( "distributed.scheduler.dashboard.tasks.task-stream-length" ), clear_interval="60s", sizing_mode="stretch_both", ) ts.update() add_periodic_callback(doc, ts, 5000) doc.title = "Dask: Task Stream" doc.add_root(ts.root) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def graph_doc(scheduler, extra, doc): with log_errors(): graph = TaskGraph(scheduler, sizing_mode="stretch_both") doc.title = "Dask: Task Graph" graph.update() add_periodic_callback(doc, graph, 200) doc.add_root(graph.root) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def status_doc(scheduler, extra, doc): with log_errors(): task_stream = TaskStream( scheduler, n_rectangles=dask.config.get( "distributed.scheduler.dashboard.status.task-stream-length" ), clear_interval="5s", sizing_mode="stretch_both", ) task_stream.update() add_periodic_callback(doc, task_stream, 100) task_progress = TaskProgress(scheduler, sizing_mode="stretch_both") task_progress.update() add_periodic_callback(doc, task_progress, 100) if len(scheduler.workers) < 50: current_load = CurrentLoad(scheduler, sizing_mode="stretch_both") current_load.update() add_periodic_callback(doc, current_load, 100) doc.add_root(current_load.nbytes_figure) doc.add_root(current_load.processing_figure) else: nbytes_hist = NBytesHistogram(scheduler, sizing_mode="stretch_both") nbytes_hist.update() processing_hist = ProcessingHistogram(scheduler, sizing_mode="stretch_both") processing_hist.update() add_periodic_callback(doc, nbytes_hist, 100) add_periodic_callback(doc, processing_hist, 100) current_load_fig = row( nbytes_hist.root, processing_hist.root, sizing_mode="stretch_both" ) doc.add_root(nbytes_hist.root) doc.add_root(processing_hist.root) doc.title = "Dask: Status" doc.add_root(task_progress.root) doc.add_root(task_stream.root) doc.theme = BOKEH_THEME doc.template = env.get_template("status.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME def individual_task_stream_doc(scheduler, extra, doc): task_stream = TaskStream( scheduler, n_rectangles=1000, clear_interval="10s", sizing_mode="stretch_both" ) task_stream.update() add_periodic_callback(doc, task_stream, 100) doc.add_root(task_stream.root) doc.theme = BOKEH_THEME def individual_nbytes_doc(scheduler, extra, doc): current_load = CurrentLoad(scheduler, sizing_mode="stretch_both") current_load.update() add_periodic_callback(doc, current_load, 100) doc.add_root(current_load.nbytes_figure) doc.theme = BOKEH_THEME def individual_cpu_doc(scheduler, extra, doc): current_load = CurrentLoad(scheduler, sizing_mode="stretch_both") current_load.update() add_periodic_callback(doc, current_load, 100) doc.add_root(current_load.cpu_figure) doc.theme = BOKEH_THEME def individual_nprocessing_doc(scheduler, extra, doc): current_load = CurrentLoad(scheduler, sizing_mode="stretch_both") current_load.update() add_periodic_callback(doc, current_load, 100) doc.add_root(current_load.processing_figure) doc.theme = BOKEH_THEME def individual_progress_doc(scheduler, extra, doc): task_progress = TaskProgress(scheduler, height=160, sizing_mode="stretch_both") task_progress.update() add_periodic_callback(doc, task_progress, 100) doc.add_root(task_progress.root) doc.theme = BOKEH_THEME def individual_graph_doc(scheduler, extra, doc): with log_errors(): graph = TaskGraph(scheduler, sizing_mode="stretch_both") graph.update() add_periodic_callback(doc, graph, 200) doc.add_root(graph.root) doc.theme = BOKEH_THEME def individual_profile_doc(scheduler, extra, doc): with log_errors(): prof = ProfileTimePlot(scheduler, sizing_mode="scale_width", doc=doc) doc.add_root(prof.root) prof.trigger_update() doc.theme = BOKEH_THEME def individual_profile_server_doc(scheduler, extra, doc): with log_errors(): prof = ProfileServer(scheduler, sizing_mode="scale_width", doc=doc) doc.add_root(prof.root) prof.trigger_update() doc.theme = BOKEH_THEME def individual_workers_doc(scheduler, extra, doc): with log_errors(): table = WorkerTable(scheduler) table.update() add_periodic_callback(doc, table, 500) doc.add_root(table.root) doc.theme = BOKEH_THEME def individual_bandwidth_types_doc(scheduler, extra, doc): with log_errors(): bw = BandwidthTypes(scheduler, sizing_mode="stretch_both") bw.update() add_periodic_callback(doc, bw, 500) doc.add_root(bw.fig) doc.theme = BOKEH_THEME def individual_bandwidth_workers_doc(scheduler, extra, doc): with log_errors(): bw = BandwidthWorkers(scheduler, sizing_mode="stretch_both") bw.update() add_periodic_callback(doc, bw, 500) doc.add_root(bw.fig) doc.theme = BOKEH_THEME def individual_memory_by_key_doc(scheduler, extra, doc): with log_errors(): component = MemoryByKey(scheduler, sizing_mode="stretch_both") component.update() add_periodic_callback(doc, component, 500) doc.add_root(component.fig) doc.theme = BOKEH_THEME def profile_doc(scheduler, extra, doc): with log_errors(): doc.title = "Dask: Profile" prof = ProfileTimePlot(scheduler, sizing_mode="stretch_both", doc=doc) doc.add_root(prof.root) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME prof.trigger_update() def profile_server_doc(scheduler, extra, doc): with log_errors(): doc.title = "Dask: Profile of Event Loop" prof = ProfileServer(scheduler, sizing_mode="stretch_both", doc=doc) doc.add_root(prof.root) doc.template = env.get_template("simple.html") doc.template_variables.update(extra) doc.theme = BOKEH_THEME prof.trigger_update()
32.417626
104
0.512651
07694b597b9191a7951ccd0b714e74ca0c95319c
18,349
py
Python
student_tools/tools.py
mahart-studio/UniCloud
ab137c82680f23f2fea6fc226867b32967019ede
[ "MIT" ]
3
2019-12-06T15:31:14.000Z
2021-01-09T05:45:52.000Z
student_tools/tools.py
avour/UniCloud
ab137c82680f23f2fea6fc226867b32967019ede
[ "MIT" ]
null
null
null
student_tools/tools.py
avour/UniCloud
ab137c82680f23f2fea6fc226867b32967019ede
[ "MIT" ]
null
null
null
# my kivy side import import kivy from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.screenmanager import ScreenManager, Screen from kivy.uix.button import Button from kivy.uix.label import Label from kivy.uix.spinner import Spinner, SpinnerOption from kivy.uix.dropdown import DropDown from kivy.clock import Clock from kivy.garden.androidtabs import AndroidTabsBase from kivy.lang import Builder from kivy.uix.modalview import ModalView from kivy.garden.navigationdrawer import NavigationDrawer from kivy.properties import StringProperty, ObjectProperty from kivy.storage.jsonstore import JsonStore from kivy.factory import Factory #python side import import time from functools import partial from io import open import os, os.path from mahartstudios.widgets.buttons import DropButton from screenbase import ScreenBase student_store = JsonStore('student_store.json') gp_store = JsonStore('gp_store.json') # defualt password global password password = '0000' if student_store.exists('password_on'): password_on = [student_store.get('password_on')] else: password_on = [True] Builder.load_file('student_tools.kv') class MyTab1(BoxLayout, AndroidTabsBase): pass class CalculatorPage(Screen): def __init__(self, **kwargs): super(CalculatorPage, self).__init__(**kwargs) manager = ScreenManager() self.add_widget(manager) manager.add_widget(CalculatorHome()) manager.add_widget(Result_list()) manager.add_widget(Result_view()) manager.add_widget(GpCalculator()) class CalculatorHome(ScreenBase): def __init__(self, **kwargs): super(CalculatorHome, self).__init__(**kwargs) self.result_btn = self.ids.result_btn self.password_pop = PasswordPop() #password popup modalview self.password_pop.screen_guy = self self.result_btn.bind(on_release=self.password_dicide) def password_dicide(self, value): print([password_on[0]]) if password_on[0]: self.password_pop.open(self) else: self.manger.current = 'result_list_page' class GpCalculator(ScreenBase): def __init__(self, **kwargs): super(GpCalculator, self).__init__(**kwargs) self.grid_guy = self.ids.grid_guy self.calc_option = self.ids.calc_option self.course_num = 6 self.Gp_values1=[] #my drop down custom self.options = Factory.MyDropDown(auto_width=False, width='150dp') self.resest_btn = Button(text='Reset', size_hint=(1, None), height='50dp', background_normal='', background_color=(1, 1, 1, 1), color=(0, 0, 0, 1)) self.resest_btn.bind(on_release = lambda btn: self.reset_values()) self.delete_btn = Button(text='Delete', size_hint=(1, None), height='50dp', background_normal='', background_color=(1, 1, 1, 1), color=(0, 0, 0, 1)) self.delete_btn.bind(on_release= lambda btn: self.delete_course()) #add course to dropdown self.options.add_widget(self.resest_btn) self.options.add_widget(self.delete_btn) self.calc_option.bind(on_release=self.options.open) Clock.schedule_once(lambda dt: self.set_values()) def set_values(self): self.grid_guy.clear_widgets() for i in range(5): #add 5 courses to the gridlayout self.course_text = 'Course {}' self.grid_guy.add_widget(Label(text=self.course_text.format(i+1), size_hint_y=None, height='38dp', color=(.1, .1, .1, 1))) self.grid_guy.add_widget(Factory.Spinner(text='2', values=('1', '2', '3', '4', '5'))) self.grid_guy.add_widget(Factory.Spinner(text='B', values=('A', 'B', 'C', 'D', 'E', 'F'))) def delete_course(self): # remove 3 widget from the grid self.grid_list = self.grid_guy.children for j in range(3): if len(self.grid_list) <= 3: self.course_num = 2 else: self.grid_guy.remove_widget(self.grid_list[0]) if len(self.grid_list) != 3: self.course_num -= 1 def reset_values(self): self.set_values() def add_btn(self): #add a new button to the gridlayout self.course_text = 'Course {}' self.grid_guy.add_widget(Label(text=self.course_text.format(self.course_num), size_hint_y=None, height='38dp', color=(.1, .1,.1, 1))) self.grid_guy.add_widget(Factory.Spinner(text='2', values=('1', '2', '3', '4', '5'))) self.grid_guy.add_widget(Factory.Spinner(text='B', values=('A', 'B', 'C', 'D', 'E', 'F'))) self.course_num += 1 def open_drop(self): self.options.open(self.calc_option) def calculate_gp(self, grades, units): grade_values = [] cal_grade = [] sum_of_unit = 0 sum_of_grade = 0 for i in grades: if i == 'E': grade_values.append('1') if i == 'D': grade_values.append('2') if i == 'C': grade_values.append('3') if i == 'B': grade_values.append('4') if i == 'A': grade_values.append('5') if i == 'F': grade_values.append('0') for i in range(len(grade_values)): multi = int(units[i]) * int(grade_values[i]) cal_grade.append(multi) print((units[i], grades[i])) for i in units: sum_of_unit += int(i) for i in cal_grade: sum_of_grade += i gp = sum_of_grade/sum_of_unit gp = str(gp) return [gp, sum_of_unit] def get_values(self): list_value = self.grid_guy.children course_list = [] grade_list = [] unit_list = [] j = 2 # get the course list for i in range((len(list_value)//3)): course = list_value[j] course = course.text course_list.append(course) j += 3 courses = len(course_list) j = 1 #get the unit list for i in range((len(list_value)//3)): unit = list_value[j] unit = unit.text unit_list.append(unit) j += 3 j = 0# get the grade list for grade in range((len(list_value)//3)): grade = list_value[j].text grade_list.append(grade) j += 3 #then we send values to the calculator func gp, sum_of_unit = self.calculate_gp(grade_list, unit_list) print(gp) # if screens.previous() == 'result_view_page': # pass course_values = [course_list, unit_list, grade_list] # then we store gp_store.put(time.ctime(), gp=gp, sum_of_unit=sum_of_unit, course_values=course_values) self.parent.current = 'result_view_page' self.parent.get_screen('result_view_page').set_values(gp, sum_of_unit, course_values) class Result_view(ScreenBase): def __init__(self, **kwargs): super(Result_view, self).__init__(**kwargs) self.gp_view = self.ids.gp_view self.total_unit = self.ids.total_unit self.grid_lay = self.ids.grid_lay def set_values(self, gp, sum_of_unit, course_values): 'function called when we get to set values for page' self.grid_lay.clear_widgets() for course, unit, grade in zip(course_values[0], course_values[1], course_values[2]): course_label = Label(text='ssg4', color=(.1, .1,.1, 1), size_hint_y=None, height=40) unit_spin = Factory.MySpinner(text='2', values=('1', '2', '3', '4', '5')) grade_spin = Factory.MySpinner(text='B', values=('A', 'B', 'C', 'D', 'E', 'F')) course_label.text = course unit_spin.text = unit grade_spin.text = grade #then add to the gridlayout self.grid_lay.add_widget(course_label) self.grid_lay.add_widget(unit_spin) self.grid_lay.add_widget(grade_spin) self.gp_view.text = 'Grade Point: {}'.format(gp) self.total_unit.text = 'Sum of Unit: {}'.format(sum_of_unit) self.ids.num_of_course.text = 'Total Number Of Courses: {}'.format(str(len(course_values[0]))) class Result_list(ScreenBase): def __init__(self, **kwargs): super(Result_list, self).__init__(**kwargs) self.result_scroll = self.ids.result_scroll self.result_scroll.bind(minimum_height=self.result_scroll.setter('height')) def on_enter(self): self.set_values() def set_values(self): self.result_scroll.clear_widgets() if len(gp_store.keys()) < 1: self.error_msg = Label(text='Sorry no Result were found', color=(.3,.3, .3, 1) ) self.result_scroll.add_widget(self.error_msg) return for gp in gp_store.keys(): result_btn = Result_Button() result_btn.time = '{}'.format(gp) result_btn.gp = 'Gp: {} Sum of unit: {}'.format(gp_store.get(gp)['gp'], gp_store.get(gp)['sum_of_unit']) result_btn.gp_values = gp_store.get(gp)['course_values'] self.result_scroll.add_widget(result_btn) result_btn.load=partial(self.load_data, result_btn.time) result_btn.delete=partial(self.delete_data, result_btn.time) def load_data(self, time): self.manager.current = 'result_view_page' gp = gp_store.get(time)['gp'] sum_of_unit = gp_store.get(time)['sum_of_unit'] course_values = gp_store.get(time)['course_values'] self.manager.get_screen('result_view_page').set_values(gp, sum_of_unit, course_values) def delete_data(self, time): child = list(filter(lambda child: child.time == time, self.result_scroll.children))[0] self.result_scroll.remove_widget(child) gp_store.delete(child.time) def delete_all(self): pass def refresh_list(self): self.set_values() def on_result_press(self, pos): Gp_values2 = Gp_values_list[pos] self.manager.current = 'result_view_page' class PasswordPop(ModalView): screen_guy = ObjectProperty(None) def __init__(self, **kwargs): super(PasswordPop, self).__init__(**kwargs) self.password_state = self.ids.password_state self.pass_btn = self.ids.pass_btn self.password_value = self.ids.password_value def on_open(self): if password == '0000': # set the text if the user hasnt change the default password self.password_value.text = '0000' def comfirm_pass(self): if self.password_value.text == password: self.dismiss() self.screen_guy.manager.current = 'result_list_page' else: self.password_value.text = '' self.password_state.color = (1, .2, .2, 1) self.password_state.text = 'Incorrect Password' class Settings_password(Screen): def __init__(self, **kwargs): super(Settings_password, self).__init__(**kwargs) self.warning = self.ids.warning self.old_password = self.ids.old_password self.new_password = self.ids.new_password self.comfirm_pass = self.ids.comfirm_password self.password_switch = self.ids.password_switch if password == '0000': # set the text if the user hasnt change the default password self.old_password.text = '0000' def set_warning(self): #this func is being called on_text event if self.new_password.text != self.comfirm_pass.text: if len(self.comfirm_pass.text) >= len(self.new_password.text): self.warning.text = "Password Does Not Macth" else: self.warning.text = '' def set_password(self): if self.old_password.text == password: password = self.new_password.text self.old_password.text = self.new_password.text else: pass print((self.password1)) def on_leave(self): #turm password on/off if self.password_switch.active: password_on[0] = True else: password_on[0] = False print((password_on[0])) class Settings(Screen): def __init__(self, **kwargs): super(Settings, self).__init__(**kwargs) def go_back(self): #go back to previous page cause you might have being coming from any page previous = self.manager.previous() self.manager.current = previous class Home_page(Screen): def __init__(self, **kwargs): super(Home_page, self).__init__(**kwargs) class TimeTableButton(DropButton): pass class Lecture_time_table(Screen): def display(self): days = ['Monday', 'Tuesday', 'Wenesday', 'Thusday', 'Friday'] codes = ['GEG 101', 'Phy 111', 'SSG 201', 'EEG 301'] times = ['8:00-10:00AM', '12:00-2:00PM', '2:00-4:00pPM', '4:00-6:00PM'] venues = ['Elt', 'Room 201', 'Room 211', 'Room 101'] for day in days: drop_btn = TimeTableButton(day=day) for time, code, venue in zip(times, codes, venues): box = BoxLayout(size_hint_y=None, height='60dp') box.add_widget(Label(color=(0,0,0,1), text=time)) box.add_widget(Label(color=(0,0,0,1), text=code)) box.add_widget(Label(color=(0,0,0,1), text=venue)) drop_btn.drop_container.add_widget(box) self.ids.grid.add_widget(drop_btn) def on_enter(self): self.ids.grid.clear_widgets() self.display() class Exam_time_table(Screen): def __init__(self, **kwargs): super(Exam_time_table, self).__init__(**kwargs) class Box_guy(BoxLayout): pass class Matrix_detector(ScreenBase): #detector side of app def __init__(self, **kwargs): super(Matrix_detector, self).__init__(**kwargs) file = open('data/unilag_courses.txt', 'r') self.courses = {} file_lines = file.readlines() temp = [] temp_fal = '' first = True # print(file_lines) for line in file_lines: line = line.strip('\n') if line == '': pass else: if line[0] == '*': if first: temp_fal = line else: self.courses[temp_fal[1:]] = temp temp = [] temp_fal = line # print('-----------------------') # print('FACULTY OF ', line[1:]) # print('-----------------------') first = False else: first = False temp.append(line) # print(line) def go_back(self): #go back to previous page cause you might have being coming from any page previous = self.manager.previous() manager.current = previous def get_year(self, matrix): self.year = str(matrix)[0:2] self.current_year = time.ctime() self.year = int('20' + self.year) self.current_year = int(self.current_year[20:24]) self.year_dif = self.current_year - self.year self.level = str(self.year_dif) + '00' self.year_of_entry = (str(self.year) + '/' + str(self.year + 1)) return [self.level, self.year_of_entry] def get_falculty(self, matrix): self.list_falculty = list(self.courses) self.list_falculty.sort() matrix = str(matrix) if matrix[2] == '0': self.falc_no = int(matrix[3])-1 self.falculty = self.list_falculty[self.falc_no] else: self.falc_no = int(matrix[2:4])-1 self.falculty = self.list_falculty[self.falc_no] self.return_val = self.falculty return self.return_val def get_department(self, matrix): self.falculty = self.get_falculty(matrix) matrix = str(matrix) if matrix[4] == '0': dept_no = int(matrix[5])-1 department = self.courses[self.falculty][dept_no] else: dept_no = int(matrix[4:6]) department = self.courses[self.falculty][dept_no] return department def get_position(self, matrix): matrix = str(matrix) if matrix[7] == '0' and matrix[6] == '0': self.position = matrix[8] elif matrix[6] == '0': self.position = matrix[7:9] else: self.position = matrix[6:9] return self.position def set_info(self, matrix): box_guy = Box_guy() year_display = self.ids.year_display level_display = self.ids.level_display department_display = self.ids.department_display falculty_display = self.ids.falculty_display position_display = self.ids.position_display try: matrix = int(matrix) year_level = self.get_year(matrix) year = str(year_level[1]) level = str(year_level[0]) department = str(self.get_department(matrix)) falculty = str(self.get_falculty(matrix)) position = str(self.get_position(matrix)) except Exception as e: import traceback traceback.print_exc() year_display.text = '' level_display.text = '' department_display.text = '' falculty_display.text = '' position_display.text = '' from mahartstudios.android.notification import fast_toast fast_toast('Not found in database.') else: year_display.text = year level_display.text = level department_display.text = department falculty_display.text = falculty position_display.text = position class Result_Button(DropButton): pass
32.361552
141
0.588915
ff1bc782d52f33bcf94fbdbc4a24c493b2b7240d
69,456
py
Python
packages/python/plotly/plotly/graph_objs/parcats/line/__init__.py
thatneat/plotly.py
2e7c0ff2565f703394d872b0d8ea13f45aba3498
[ "MIT" ]
1
2020-02-29T09:46:51.000Z
2020-02-29T09:46:51.000Z
packages/python/plotly/plotly/graph_objs/parcats/line/__init__.py
hermitspirit/plotly.py
2e7c0ff2565f703394d872b0d8ea13f45aba3498
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/graph_objs/parcats/line/__init__.py
hermitspirit/plotly.py
2e7c0ff2565f703394d872b0d8ea13f45aba3498
[ "MIT" ]
null
null
null
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class ColorBar(_BaseTraceHierarchyType): # bgcolor # ------- @property def bgcolor(self): """ Sets the color of padded area. The 'bgcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["bgcolor"] @bgcolor.setter def bgcolor(self, val): self["bgcolor"] = val # bordercolor # ----------- @property def bordercolor(self): """ Sets the axis line color. The 'bordercolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["bordercolor"] @bordercolor.setter def bordercolor(self, val): self["bordercolor"] = val # borderwidth # ----------- @property def borderwidth(self): """ Sets the width (in px) or the border enclosing this color bar. The 'borderwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["borderwidth"] @borderwidth.setter def borderwidth(self, val): self["borderwidth"] = val # dtick # ----- @property def dtick(self): """ Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" The 'dtick' property accepts values of any type Returns ------- Any """ return self["dtick"] @dtick.setter def dtick(self, val): self["dtick"] = val # exponentformat # -------------- @property def exponentformat(self): """ Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. The 'exponentformat' property is an enumeration that may be specified as: - One of the following enumeration values: ['none', 'e', 'E', 'power', 'SI', 'B'] Returns ------- Any """ return self["exponentformat"] @exponentformat.setter def exponentformat(self, val): self["exponentformat"] = val # len # --- @property def len(self): """ Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. The 'len' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["len"] @len.setter def len(self, val): self["len"] = val # lenmode # ------- @property def lenmode(self): """ Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. The 'lenmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['fraction', 'pixels'] Returns ------- Any """ return self["lenmode"] @lenmode.setter def lenmode(self, val): self["lenmode"] = val # nticks # ------ @property def nticks(self): """ Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". The 'nticks' property is a integer and may be specified as: - An int (or float that will be cast to an int) in the interval [0, 9223372036854775807] Returns ------- int """ return self["nticks"] @nticks.setter def nticks(self, val): self["nticks"] = val # outlinecolor # ------------ @property def outlinecolor(self): """ Sets the axis line color. The 'outlinecolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["outlinecolor"] @outlinecolor.setter def outlinecolor(self, val): self["outlinecolor"] = val # outlinewidth # ------------ @property def outlinewidth(self): """ Sets the width (in px) of the axis line. The 'outlinewidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["outlinewidth"] @outlinewidth.setter def outlinewidth(self, val): self["outlinewidth"] = val # separatethousands # ----------------- @property def separatethousands(self): """ If "true", even 4-digit integers are separated The 'separatethousands' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["separatethousands"] @separatethousands.setter def separatethousands(self, val): self["separatethousands"] = val # showexponent # ------------ @property def showexponent(self): """ If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. The 'showexponent' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showexponent"] @showexponent.setter def showexponent(self, val): self["showexponent"] = val # showticklabels # -------------- @property def showticklabels(self): """ Determines whether or not the tick labels are drawn. The 'showticklabels' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showticklabels"] @showticklabels.setter def showticklabels(self, val): self["showticklabels"] = val # showtickprefix # -------------- @property def showtickprefix(self): """ If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. The 'showtickprefix' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showtickprefix"] @showtickprefix.setter def showtickprefix(self, val): self["showtickprefix"] = val # showticksuffix # -------------- @property def showticksuffix(self): """ Same as `showtickprefix` but for tick suffixes. The 'showticksuffix' property is an enumeration that may be specified as: - One of the following enumeration values: ['all', 'first', 'last', 'none'] Returns ------- Any """ return self["showticksuffix"] @showticksuffix.setter def showticksuffix(self, val): self["showticksuffix"] = val # thickness # --------- @property def thickness(self): """ Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. The 'thickness' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["thickness"] @thickness.setter def thickness(self, val): self["thickness"] = val # thicknessmode # ------------- @property def thicknessmode(self): """ Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. The 'thicknessmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['fraction', 'pixels'] Returns ------- Any """ return self["thicknessmode"] @thicknessmode.setter def thicknessmode(self, val): self["thicknessmode"] = val # tick0 # ----- @property def tick0(self): """ Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. The 'tick0' property accepts values of any type Returns ------- Any """ return self["tick0"] @tick0.setter def tick0(self, val): self["tick0"] = val # tickangle # --------- @property def tickangle(self): """ Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. The 'tickangle' property is a angle (in degrees) that may be specified as a number between -180 and 180. Numeric values outside this range are converted to the equivalent value (e.g. 270 is converted to -90). Returns ------- int|float """ return self["tickangle"] @tickangle.setter def tickangle(self, val): self["tickangle"] = val # tickcolor # --------- @property def tickcolor(self): """ Sets the tick color. The 'tickcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["tickcolor"] @tickcolor.setter def tickcolor(self, val): self["tickcolor"] = val # tickfont # -------- @property def tickfont(self): """ Sets the color bar's tick label font The 'tickfont' property is an instance of Tickfont that may be specified as: - An instance of plotly.graph_objs.parcats.line.colorbar.Tickfont - A dict of string/value properties that will be passed to the Tickfont constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- plotly.graph_objs.parcats.line.colorbar.Tickfont """ return self["tickfont"] @tickfont.setter def tickfont(self, val): self["tickfont"] = val # tickformat # ---------- @property def tickformat(self): """ Sets the tick label formatting rule using d3 formatting mini- languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/blob/master/READM E.md#locale_format And for dates see: https://github.com/d3/d3-time- format/blob/master/README.md#locale_format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" The 'tickformat' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["tickformat"] @tickformat.setter def tickformat(self, val): self["tickformat"] = val # tickformatstops # --------------- @property def tickformatstops(self): """ The 'tickformatstops' property is a tuple of instances of Tickformatstop that may be specified as: - A list or tuple of instances of plotly.graph_objs.parcats.line.colorbar.Tickformatstop - A list or tuple of dicts of string/value properties that will be passed to the Tickformatstop constructor Supported dict properties: dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- tuple[plotly.graph_objs.parcats.line.colorbar.Tickformatstop] """ return self["tickformatstops"] @tickformatstops.setter def tickformatstops(self, val): self["tickformatstops"] = val # tickformatstopdefaults # ---------------------- @property def tickformatstopdefaults(self): """ When used in a template (as layout.template.data.parcats.line.c olorbar.tickformatstopdefaults), sets the default property values to use for elements of parcats.line.colorbar.tickformatstops The 'tickformatstopdefaults' property is an instance of Tickformatstop that may be specified as: - An instance of plotly.graph_objs.parcats.line.colorbar.Tickformatstop - A dict of string/value properties that will be passed to the Tickformatstop constructor Supported dict properties: Returns ------- plotly.graph_objs.parcats.line.colorbar.Tickformatstop """ return self["tickformatstopdefaults"] @tickformatstopdefaults.setter def tickformatstopdefaults(self, val): self["tickformatstopdefaults"] = val # ticklen # ------- @property def ticklen(self): """ Sets the tick length (in px). The 'ticklen' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ticklen"] @ticklen.setter def ticklen(self, val): self["ticklen"] = val # tickmode # -------- @property def tickmode(self): """ Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). The 'tickmode' property is an enumeration that may be specified as: - One of the following enumeration values: ['auto', 'linear', 'array'] Returns ------- Any """ return self["tickmode"] @tickmode.setter def tickmode(self, val): self["tickmode"] = val # tickprefix # ---------- @property def tickprefix(self): """ Sets a tick label prefix. The 'tickprefix' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["tickprefix"] @tickprefix.setter def tickprefix(self, val): self["tickprefix"] = val # ticks # ----- @property def ticks(self): """ Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. The 'ticks' property is an enumeration that may be specified as: - One of the following enumeration values: ['outside', 'inside', ''] Returns ------- Any """ return self["ticks"] @ticks.setter def ticks(self, val): self["ticks"] = val # ticksuffix # ---------- @property def ticksuffix(self): """ Sets a tick label suffix. The 'ticksuffix' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["ticksuffix"] @ticksuffix.setter def ticksuffix(self, val): self["ticksuffix"] = val # ticktext # -------- @property def ticktext(self): """ Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. The 'ticktext' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ticktext"] @ticktext.setter def ticktext(self, val): self["ticktext"] = val # ticktextsrc # ----------- @property def ticktextsrc(self): """ Sets the source reference on plot.ly for ticktext . The 'ticktextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ticktextsrc"] @ticktextsrc.setter def ticktextsrc(self, val): self["ticktextsrc"] = val # tickvals # -------- @property def tickvals(self): """ Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. The 'tickvals' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["tickvals"] @tickvals.setter def tickvals(self, val): self["tickvals"] = val # tickvalssrc # ----------- @property def tickvalssrc(self): """ Sets the source reference on plot.ly for tickvals . The 'tickvalssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["tickvalssrc"] @tickvalssrc.setter def tickvalssrc(self, val): self["tickvalssrc"] = val # tickwidth # --------- @property def tickwidth(self): """ Sets the tick width (in px). The 'tickwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["tickwidth"] @tickwidth.setter def tickwidth(self, val): self["tickwidth"] = val # title # ----- @property def title(self): """ The 'title' property is an instance of Title that may be specified as: - An instance of plotly.graph_objs.parcats.line.colorbar.Title - A dict of string/value properties that will be passed to the Title constructor Supported dict properties: font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. Returns ------- plotly.graph_objs.parcats.line.colorbar.Title """ return self["title"] @title.setter def title(self, val): self["title"] = val # titlefont # --------- @property def titlefont(self): """ Deprecated: Please use parcats.line.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. The 'font' property is an instance of Font that may be specified as: - An instance of plotly.graph_objs.parcats.line.colorbar.title.Font - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- """ return self["titlefont"] @titlefont.setter def titlefont(self, val): self["titlefont"] = val # titleside # --------- @property def titleside(self): """ Deprecated: Please use parcats.line.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- """ return self["titleside"] @titleside.setter def titleside(self, val): self["titleside"] = val # x # - @property def x(self): """ Sets the x position of the color bar (in plot fraction). The 'x' property is a number and may be specified as: - An int or float in the interval [-2, 3] Returns ------- int|float """ return self["x"] @x.setter def x(self, val): self["x"] = val # xanchor # ------- @property def xanchor(self): """ Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. The 'xanchor' property is an enumeration that may be specified as: - One of the following enumeration values: ['left', 'center', 'right'] Returns ------- Any """ return self["xanchor"] @xanchor.setter def xanchor(self, val): self["xanchor"] = val # xpad # ---- @property def xpad(self): """ Sets the amount of padding (in px) along the x direction. The 'xpad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["xpad"] @xpad.setter def xpad(self, val): self["xpad"] = val # y # - @property def y(self): """ Sets the y position of the color bar (in plot fraction). The 'y' property is a number and may be specified as: - An int or float in the interval [-2, 3] Returns ------- int|float """ return self["y"] @y.setter def y(self, val): self["y"] = val # yanchor # ------- @property def yanchor(self): """ Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. The 'yanchor' property is an enumeration that may be specified as: - One of the following enumeration values: ['top', 'middle', 'bottom'] Returns ------- Any """ return self["yanchor"] @yanchor.setter def yanchor(self, val): self["yanchor"] = val # ypad # ---- @property def ypad(self): """ Sets the amount of padding (in px) along the y direction. The 'ypad' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["ypad"] @ypad.setter def ypad(self, val): self["ypad"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "parcats.line" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-form at/blob/master/README.md#locale_format And for dates see: https://github.com/d3/d3-time- format/blob/master/README.md#locale_format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of plotly.graph_objects.parcats.line.colorbar.T ickformatstop instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.data.parcat s.line.colorbar.tickformatstopdefaults), sets the default property values to use for elements of parcats.line.colorbar.tickformatstops ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on plot.ly for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on plot.ly for tickvals . tickwidth Sets the tick width (in px). title plotly.graph_objects.parcats.line.colorbar.Title instance or dict with compatible properties titlefont Deprecated: Please use parcats.line.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use parcats.line.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. """ _mapped_properties = { "titlefont": ("title", "font"), "titleside": ("title", "side"), } def __init__( self, arg=None, bgcolor=None, bordercolor=None, borderwidth=None, dtick=None, exponentformat=None, len=None, lenmode=None, nticks=None, outlinecolor=None, outlinewidth=None, separatethousands=None, showexponent=None, showticklabels=None, showtickprefix=None, showticksuffix=None, thickness=None, thicknessmode=None, tick0=None, tickangle=None, tickcolor=None, tickfont=None, tickformat=None, tickformatstops=None, tickformatstopdefaults=None, ticklen=None, tickmode=None, tickprefix=None, ticks=None, ticksuffix=None, ticktext=None, ticktextsrc=None, tickvals=None, tickvalssrc=None, tickwidth=None, title=None, titlefont=None, titleside=None, x=None, xanchor=None, xpad=None, y=None, yanchor=None, ypad=None, **kwargs ): """ Construct a new ColorBar object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.parcats.line.ColorBar bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-form at/blob/master/README.md#locale_format And for dates see: https://github.com/d3/d3-time- format/blob/master/README.md#locale_format We add one item to d3's date formatter: "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of plotly.graph_objects.parcats.line.colorbar.T ickformatstop instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.data.parcat s.line.colorbar.tickformatstopdefaults), sets the default property values to use for elements of parcats.line.colorbar.tickformatstops ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on plot.ly for ticktext . tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on plot.ly for tickvals . tickwidth Sets the tick width (in px). title plotly.graph_objects.parcats.line.colorbar.Title instance or dict with compatible properties titlefont Deprecated: Please use parcats.line.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use parcats.line.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. ypad Sets the amount of padding (in px) along the y direction. Returns ------- ColorBar """ super(ColorBar, self).__init__("colorbar") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.parcats.line.ColorBar constructor must be a dict or an instance of plotly.graph_objs.parcats.line.ColorBar""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.parcats.line import colorbar as v_colorbar # Initialize validators # --------------------- self._validators["bgcolor"] = v_colorbar.BgcolorValidator() self._validators["bordercolor"] = v_colorbar.BordercolorValidator() self._validators["borderwidth"] = v_colorbar.BorderwidthValidator() self._validators["dtick"] = v_colorbar.DtickValidator() self._validators["exponentformat"] = v_colorbar.ExponentformatValidator() self._validators["len"] = v_colorbar.LenValidator() self._validators["lenmode"] = v_colorbar.LenmodeValidator() self._validators["nticks"] = v_colorbar.NticksValidator() self._validators["outlinecolor"] = v_colorbar.OutlinecolorValidator() self._validators["outlinewidth"] = v_colorbar.OutlinewidthValidator() self._validators["separatethousands"] = v_colorbar.SeparatethousandsValidator() self._validators["showexponent"] = v_colorbar.ShowexponentValidator() self._validators["showticklabels"] = v_colorbar.ShowticklabelsValidator() self._validators["showtickprefix"] = v_colorbar.ShowtickprefixValidator() self._validators["showticksuffix"] = v_colorbar.ShowticksuffixValidator() self._validators["thickness"] = v_colorbar.ThicknessValidator() self._validators["thicknessmode"] = v_colorbar.ThicknessmodeValidator() self._validators["tick0"] = v_colorbar.Tick0Validator() self._validators["tickangle"] = v_colorbar.TickangleValidator() self._validators["tickcolor"] = v_colorbar.TickcolorValidator() self._validators["tickfont"] = v_colorbar.TickfontValidator() self._validators["tickformat"] = v_colorbar.TickformatValidator() self._validators["tickformatstops"] = v_colorbar.TickformatstopsValidator() self._validators[ "tickformatstopdefaults" ] = v_colorbar.TickformatstopValidator() self._validators["ticklen"] = v_colorbar.TicklenValidator() self._validators["tickmode"] = v_colorbar.TickmodeValidator() self._validators["tickprefix"] = v_colorbar.TickprefixValidator() self._validators["ticks"] = v_colorbar.TicksValidator() self._validators["ticksuffix"] = v_colorbar.TicksuffixValidator() self._validators["ticktext"] = v_colorbar.TicktextValidator() self._validators["ticktextsrc"] = v_colorbar.TicktextsrcValidator() self._validators["tickvals"] = v_colorbar.TickvalsValidator() self._validators["tickvalssrc"] = v_colorbar.TickvalssrcValidator() self._validators["tickwidth"] = v_colorbar.TickwidthValidator() self._validators["title"] = v_colorbar.TitleValidator() self._validators["x"] = v_colorbar.XValidator() self._validators["xanchor"] = v_colorbar.XanchorValidator() self._validators["xpad"] = v_colorbar.XpadValidator() self._validators["y"] = v_colorbar.YValidator() self._validators["yanchor"] = v_colorbar.YanchorValidator() self._validators["ypad"] = v_colorbar.YpadValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("bgcolor", None) self["bgcolor"] = bgcolor if bgcolor is not None else _v _v = arg.pop("bordercolor", None) self["bordercolor"] = bordercolor if bordercolor is not None else _v _v = arg.pop("borderwidth", None) self["borderwidth"] = borderwidth if borderwidth is not None else _v _v = arg.pop("dtick", None) self["dtick"] = dtick if dtick is not None else _v _v = arg.pop("exponentformat", None) self["exponentformat"] = exponentformat if exponentformat is not None else _v _v = arg.pop("len", None) self["len"] = len if len is not None else _v _v = arg.pop("lenmode", None) self["lenmode"] = lenmode if lenmode is not None else _v _v = arg.pop("nticks", None) self["nticks"] = nticks if nticks is not None else _v _v = arg.pop("outlinecolor", None) self["outlinecolor"] = outlinecolor if outlinecolor is not None else _v _v = arg.pop("outlinewidth", None) self["outlinewidth"] = outlinewidth if outlinewidth is not None else _v _v = arg.pop("separatethousands", None) self["separatethousands"] = ( separatethousands if separatethousands is not None else _v ) _v = arg.pop("showexponent", None) self["showexponent"] = showexponent if showexponent is not None else _v _v = arg.pop("showticklabels", None) self["showticklabels"] = showticklabels if showticklabels is not None else _v _v = arg.pop("showtickprefix", None) self["showtickprefix"] = showtickprefix if showtickprefix is not None else _v _v = arg.pop("showticksuffix", None) self["showticksuffix"] = showticksuffix if showticksuffix is not None else _v _v = arg.pop("thickness", None) self["thickness"] = thickness if thickness is not None else _v _v = arg.pop("thicknessmode", None) self["thicknessmode"] = thicknessmode if thicknessmode is not None else _v _v = arg.pop("tick0", None) self["tick0"] = tick0 if tick0 is not None else _v _v = arg.pop("tickangle", None) self["tickangle"] = tickangle if tickangle is not None else _v _v = arg.pop("tickcolor", None) self["tickcolor"] = tickcolor if tickcolor is not None else _v _v = arg.pop("tickfont", None) self["tickfont"] = tickfont if tickfont is not None else _v _v = arg.pop("tickformat", None) self["tickformat"] = tickformat if tickformat is not None else _v _v = arg.pop("tickformatstops", None) self["tickformatstops"] = tickformatstops if tickformatstops is not None else _v _v = arg.pop("tickformatstopdefaults", None) self["tickformatstopdefaults"] = ( tickformatstopdefaults if tickformatstopdefaults is not None else _v ) _v = arg.pop("ticklen", None) self["ticklen"] = ticklen if ticklen is not None else _v _v = arg.pop("tickmode", None) self["tickmode"] = tickmode if tickmode is not None else _v _v = arg.pop("tickprefix", None) self["tickprefix"] = tickprefix if tickprefix is not None else _v _v = arg.pop("ticks", None) self["ticks"] = ticks if ticks is not None else _v _v = arg.pop("ticksuffix", None) self["ticksuffix"] = ticksuffix if ticksuffix is not None else _v _v = arg.pop("ticktext", None) self["ticktext"] = ticktext if ticktext is not None else _v _v = arg.pop("ticktextsrc", None) self["ticktextsrc"] = ticktextsrc if ticktextsrc is not None else _v _v = arg.pop("tickvals", None) self["tickvals"] = tickvals if tickvals is not None else _v _v = arg.pop("tickvalssrc", None) self["tickvalssrc"] = tickvalssrc if tickvalssrc is not None else _v _v = arg.pop("tickwidth", None) self["tickwidth"] = tickwidth if tickwidth is not None else _v _v = arg.pop("title", None) self["title"] = title if title is not None else _v _v = arg.pop("titlefont", None) _v = titlefont if titlefont is not None else _v if _v is not None: self["titlefont"] = _v _v = arg.pop("titleside", None) _v = titleside if titleside is not None else _v if _v is not None: self["titleside"] = _v _v = arg.pop("x", None) self["x"] = x if x is not None else _v _v = arg.pop("xanchor", None) self["xanchor"] = xanchor if xanchor is not None else _v _v = arg.pop("xpad", None) self["xpad"] = xpad if xpad is not None else _v _v = arg.pop("y", None) self["y"] = y if y is not None else _v _v = arg.pop("yanchor", None) self["yanchor"] = yanchor if yanchor is not None else _v _v = arg.pop("ypad", None) self["ypad"] = ypad if ypad is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.graph_objs.parcats.line import colorbar
37.341935
98
0.571427
aad9ebc919506cdb9632b02701488ee4ee2b0a42
907
py
Python
tests/test_grid.py
roure/aima-drivers
45ed0153b614ca28979f58591956b59bc4ffcedf
[ "MIT" ]
null
null
null
tests/test_grid.py
roure/aima-drivers
45ed0153b614ca28979f58591956b59bc4ffcedf
[ "MIT" ]
2
2019-03-12T12:59:50.000Z
2019-03-12T13:09:06.000Z
tests/test_grid.py
roure/aima-drivers
45ed0153b614ca28979f58591956b59bc4ffcedf
[ "MIT" ]
null
null
null
import pytest from grid import * # noqa def compare_list(x, y): return all([elm_x == y[i] for i, elm_x in enumerate(x)]) def test_distance(): assert distance((1, 2), (5, 5)) == 5.0 def test_distance_squared(): assert distance_squared((1, 2), (5, 5)) == 25.0 def test_vector_clip(): assert vector_clip((-1, 10), (0, 0), (9, 9)) == (0, 9) def test_turn_heading(): assert turn_heading((0, 1), 1) == (-1, 0) assert turn_heading((0, 1), -1) == (1, 0) assert turn_heading((1, 0), 1) == (0, 1) assert turn_heading((1, 0), -1) == (0, -1) assert turn_heading((0, -1), 1) == (1, 0) assert turn_heading((0, -1), -1) == (-1, 0) assert turn_heading((-1, 0), 1) == (0, -1) assert turn_heading((-1, 0), -1) == (0, 1) def test_turn_left(): assert turn_left((0, 1)) == (-1, 0) def test_turn_right(): assert turn_right((0, 1)) == (1, 0) if __name__ == '__main__': pytest.main()
21.595238
60
0.577729
259ff7f5dee426d2c362f1800bb1be98a804421c
5,184
py
Python
extensionGadget.py
GarnetSunset/chromeExtensionsFetcher
dd2f620f9cfe8897235b8bf98a5b614d5669c6e2
[ "MIT" ]
null
null
null
extensionGadget.py
GarnetSunset/chromeExtensionsFetcher
dd2f620f9cfe8897235b8bf98a5b614d5669c6e2
[ "MIT" ]
null
null
null
extensionGadget.py
GarnetSunset/chromeExtensionsFetcher
dd2f620f9cfe8897235b8bf98a5b614d5669c6e2
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup from selenium import webdriver from six.moves.urllib.request import urlretrieve import ctypes, os, re, json, socket, subprocess, sys, time, zipfile localappdata = os.getenv('LocalAPPDATA') dir = localappdata + r"\Google\Chrome\User Data\Default\Extensions" dragNDrop = ''.join(sys.argv[1:]) local = False names = None owd = os.getcwd() returnMan = [] searchURL = "https://chrome.google.com/webstore/search/" if not os.path.exists("Machines"): os.makedirs("Machines") def admin(): try: return ctypes.windll.shell32.IsUserAnAdmin() except: return False if os.path.isfile('chrome.ini'): ini = open('chrome.ini', 'r') locationString = ini.read() elif os.path.isfile('chromedriver.exe'): locationString = 'chromedriver.exe' else: response = urlretrieve('https://chromedriver.storage.googleapis.com/2.38/chromedriver_win32.zip','chromedriver.zip') zip_ref = zipfile.ZipFile("chromedriver.zip", 'r') zip_ref.extractall(owd) zip_ref.close locationString = 'chromedriver.exe' if dragNDrop == "": pass else: directory_list = [] with open(dragNDrop) as f: for line in f: line = line.replace('\n', '') if len(line) == 32: directory_list.append(line) extension = dragNDrop.index(".") fileName = dragNDrop[:extension] open("Machines/" + fileName + "-extensions.txt", 'w').close() choice = raw_input("1. Your machine or 2. Someone else's?\n>") if choice == "1" and dragNDrop == "": directory_list = list() hostnameIP = socket.gethostname() open("Machines/" + hostnameIP + "-extensions.txt", 'w').close() for root, dirs, files in os.walk(dir, topdown=False): for name in dirs: if len(name) == 32: directory_list.append(name) if choice == "2" and dragNDrop == "": hostnameIP = raw_input("Input hostname or IP\n>") username = raw_input("Input username\n>") open("Machines/" + hostnameIP + "-extensions.txt", 'w').close() if admin(): batcmd = r"dir \"\\\\"+hostnameIP+r"\c$\Users\\"+username+r"\AppData\Local\Google\Chrome\User Data\Default\Extensions\"" result = subprocess.check_output(batcmd, shell=True) directory_list = list() while("<DIR>" in result): dirLoc = result.find("<DIR>") result = result[dirLoc+15:] newLine = result.find("\n") name = result[:newLine] name.rstrip() name = name[:-1] if len(name) == 32: directory_list.append(name) else: ctypes.windll.shell32.ShellExecuteW(None, "runas", sys.executable, __file__, None, 1) if choice == "2": driver = webdriver.Chrome(executable_path=(locationString)) driver.set_window_position(4000, 651) driver.set_page_load_timeout(600) for x in directory_list: driver.get(searchURL+x) time.sleep(2) requestRec = driver.page_source soup = BeautifulSoup(requestRec, 'lxml') soup.prettify() for tagStuff in soup.find_all('div', {'class': 'a-na-d-w'}): names = tagStuff.text print(tagStuff.text.encode('utf-8')) if names == None: names = "Unknown ID: " + x if dragNDrop == "": text_file = open("Machines/" + hostnameIP + "-extensions.txt", "a") else: text_file = open("Machines/" + fileName + "-extensions.txt", "a") text_file.write(names.encode('utf-8')+"\n") text_file.close() names = "" driver.close() else: local = True for dirpath, subdirs, files in os.walk(dir): for x in files: if x == "manifest.json": with open(dirpath+"\manifest.json") as f: herewego = json.load(f) if("__MSG_appName__" != herewego["name"]): if("__MSG_APP_NAME__" != herewego["name"]): if("__MSG_extName__" != herewego["name"]): returnMan.append(herewego["name"]) if os.path.isfile("debug.log"): try: os.remove("debug.log") except: print("") if os.path.isfile("chromedriver.zip"): try: os.remove("chromedriver.zip") except: print("") if dragNDrop == "": with open("Machines/" + hostnameIP + "-extensions.txt", 'r') as myfile: data=myfile.read().replace('\n\n', '\n') data=data.replace('\n\n', '\n') myfile.close() with open("Machines/" + hostnameIP + "-extensions.txt", 'w') as newfile: if(local == True): for x in returnMan: newfile.write(x+"\n") else: newfile.write(data) newfile.close() else: with open("Machines/" + fileName + "-extensions.txt", 'r') as myfile: data=myfile.read().replace('\n\n', '\n') data=data.replace('\n\n', '\n') myfile.close() with open("Machines/" + fileName + "-extensions.txt", 'w') as newfile: newfile.write(data) newfile.close() print("All Done")
34.105263
128
0.575424
c54a7f8aaa93fe7d262b1a26ae1192dcbf79e7f3
1,672
py
Python
leetcode/tree/binary-tree-inorder-traversal.py
jaimeulloa61/data-structure-and-algorithms
76140bb36b62ebc7c60914c48a323aae4956fb0a
[ "MIT" ]
81
2020-05-22T14:22:04.000Z
2021-12-18T10:11:23.000Z
leetcode/tree/binary-tree-inorder-traversal.py
jaimeulloa61/data-structure-and-algorithms
76140bb36b62ebc7c60914c48a323aae4956fb0a
[ "MIT" ]
4
2020-08-06T21:08:00.000Z
2021-03-31T16:07:50.000Z
leetcode/tree/binary-tree-inorder-traversal.py
jaimeulloa61/data-structure-and-algorithms
76140bb36b62ebc7c60914c48a323aae4956fb0a
[ "MIT" ]
37
2020-05-22T14:25:21.000Z
2021-12-30T03:13:13.000Z
""" Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] 1 \ 2 / 3 Output: [1,3,2] Follow up: Recursive solution is trivial, could you do it iteratively? """ # Solutions # Recursive Solution class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: """ Recursive Solution """ def __init__(self): self.list = [] def inorderTraversal(self, root: TreeNode) -> List[int]: if root: self.inorderTraversal(root.left) if root.val: self.list.append(root.val) self.inorderTraversal(root.right) return self.list # Runtime: 40 ms # Memory Usage: 13.8 MB # Iterative Solution # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: """ Iterative Solution Time Complexity: O( n ) Space Complexity: O( n ) """ def inorderTraversal(self, root: TreeNode) -> List[int]: # Base Case if not root: return stack = [] res = [] while root or stack: # Traverse to the extreme left while root: stack.append(root) root = root.left root = stack.pop() res.append(root.val) root = root.right return res # Runtime: 20 ms, faster than 96.86% of Python3 online submissions # Memory Usage: 12.6 MB, less than 100.00% of Python3 online submissions
18.577778
72
0.560407
17523b234697d2b2d456c0d5207e7e64e93cef44
6,964
py
Python
testing/conformance/conformance/applications/topology.py
vishalbelsare/wallaroo
2b985a3e756786139316c72ebcca342346546ba7
[ "Apache-2.0" ]
1,459
2017-09-16T13:13:15.000Z
2020-10-05T06:19:50.000Z
testing/conformance/conformance/applications/topology.py
vishalbelsare/wallaroo
2b985a3e756786139316c72ebcca342346546ba7
[ "Apache-2.0" ]
1,413
2017-09-14T18:18:14.000Z
2020-09-28T08:10:30.000Z
testing/conformance/conformance/applications/topology.py
vishalbelsare/wallaroo
2b985a3e756786139316c72ebcca342346546ba7
[ "Apache-2.0" ]
80
2017-09-27T23:16:23.000Z
2020-06-02T09:18:53.000Z
# Copyright 2019 The Wallaroo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. import logging import os import time from ..__init__ import root # absolute path for Wallaroo repo from ..base import (Application, update_dict) from ..completes_when import data_in_sink_count_is from integration.cluster import runner_data_format from integration.end_points import (Reader, Sender, sequence_generator) from integration.errors import TimeoutError from integration.external import run_shell_cmd ######################## # Topology Testing App # ######################## base_topology_policy = { 'command_parameters': {}, 'sender_interval': 0.01, 'batch_size': 10, 'workers': 1, 'topology': [],} SINK_EXPECT_MODIFIER = {'filter': 0.5, 'multi': 2} def get_expect_modifier(topology): last = topology[0] expect_mod = SINK_EXPECT_MODIFIER.get(last, 1) for s in topology[1:]: # successive filters don't reduce because the second filter only # receives input that already passed the first filter if not s in SINK_EXPECT_MODIFIER: continue if s == 'filter' and s == last: continue expect_mod *= SINK_EXPECT_MODIFIER[s] last = s return expect_mod def find_send_and_expect_values(expect_mod, min_expect=20): send = 10 while True: if ((int(send * expect_mod) == send * expect_mod) and send * expect_mod >= min_expect): break else: send += 1 return (send, int(send * expect_mod)) class TopologyTestError(Exception): pass class TopologyTesterBaseApp(Application): name = 'TopologyTestingBaseApp' command = None validation_command = None sources = ['topology_tester'] split_streams = False def __init__(self, config={}): super().__init__() self.config = base_topology_policy.copy() update_dict(self.config, config) self.workers = self.config['workers'] self.topology = self.config['topology'] # Add steps from topology to command and validation_command steps_val = ' '.join('--{}'.format(s) for s in self.topology) self.command = ("{cmd} {steps}".format( cmd=self.command, steps=steps_val)) self.validation_command = ( "{validation_cmd} {steps} " "--output {{output}}".format( validation_cmd=self.validation_command, steps=steps_val)) expect_mod = get_expect_modifier(self.topology) logging.info("Expect mod is {} for topology {!r}".format(expect_mod, self.topology)) send, expect = find_send_and_expect_values(expect_mod) self.expect = expect logging.info("Sending {} messages per key".format(send)) logging.info("Expecting {} final messages per key".format(expect)) logging.info("Running {!r} with config {!r}".format( self.__class__.name, self.config)) self.source_gens = [(sequence_generator(send, 0, '>I', 'key_0'), 'topology_tester'), (sequence_generator(send, 0, '>I', 'key_1'), 'topology_tester')] def start_senders(self): logging.info("Starting senders") src_name = self.sources[0] for gen, src_name in self.source_gens: sender = Sender(address = self.cluster.source_addrs[0][src_name], reader = Reader(gen)) self.cluster.add_sender(sender, start=True) logging.debug("end of send_tcp") def join_senders(self): logging.info("Joining senders") for sender in self.cluster.senders: sender.join(self.sender_join_timeout) if sender.error: raise sender.error if sender.is_alive(): raise TimeoutError("Sender failed to join in {} seconds" .format(self.sender_join_timeout)) def sink_await(self): logging.info("Awaiting on sink") self.completes_when(data_in_sink_count_is( expected=(len(self.source_gens) * self.expect), timeout=90, sink=-1, allow_more=False)) def validate(self): logging.info("Validating output") sink_files = [] for i, s in enumerate(self.cluster.sinks): sink_files.extend(s.save( os.path.join(self.cluster.log_dir, "sink.{}.dat".format(i)))) with open(os.path.join(self.cluster.log_dir, "ops.log"), "wt") as f: for op in self.cluster.ops: f.write("{}\n".format(op)) command = self.validation_command.format(output = ",".join(sink_files)) res = run_shell_cmd(command) if res.success: if res.output: logging.info("Validation command '%s' completed successfully " "with the output:\n--\n%s", ' '.join(res.command), res.output) else: logging.info("Validation command '%s' completed successfully", ' '.join(res.command)) else: outputs = runner_data_format(self.persistent_data.get('runner_data', [])) if outputs: logging.error("Application outputs:\n{}".format(outputs)) error = ("Validation command '%s' failed with the output:\n" "--\n%s" % (' '.join(res.command), res.output)) # Save logs to file in case of error raise TopologyTestError(error) class TopologyTesterPython2(TopologyTesterBaseApp): name = 'python2_TopologyTester' command = 'machida --application-module topology_tester' validation_command = ('python2 ' '{root}/testing/correctness/apps/' 'topology_tester/topology_tester.py').format(root=root) class TopologyTesterPython3(TopologyTesterBaseApp): name = 'python3_TopologyTester' command = 'machida3 --application-module topology_tester' validation_command = ('python3 ' '{root}/testing/correctness/apps/' 'topology_tester/topology_tester.py').format(root=root)
37.240642
80
0.596927
0f8a0012b869a206f29d6c7aa045fc77e3095113
209
py
Python
BoardGame/connectfour/ConnectFour.py
kitman0804/BoardGame
be8c08adf10f5d236d3904ca7673f2210f925979
[ "MIT" ]
null
null
null
BoardGame/connectfour/ConnectFour.py
kitman0804/BoardGame
be8c08adf10f5d236d3904ca7673f2210f925979
[ "MIT" ]
null
null
null
BoardGame/connectfour/ConnectFour.py
kitman0804/BoardGame
be8c08adf10f5d236d3904ca7673f2210f925979
[ "MIT" ]
null
null
null
from ..prototype.mnkgame.Game import Game from .GameBoard import GameBoard class ConnectFour(Game): def __init__(self): super().__init__(m=6, n=7, k=4) self._core.gameboard = GameBoard()
23.222222
42
0.684211
6c631fd16496abf26de9e86bf061d6fb44cd8b38
2,210
py
Python
harnessed_jobs/BOT_EO_analysis/v0/producer_BOT_EO_analysis.py
duncanwood/EO-analysis-jobs
26d22e49c0d2e32fbf2759f504048754f66ecc45
[ "BSD-3-Clause-LBNL" ]
2
2018-07-26T09:32:46.000Z
2019-05-28T20:57:43.000Z
harnessed_jobs/BOT_EO_analysis/v0/producer_BOT_EO_analysis.py
duncanwood/EO-analysis-jobs
26d22e49c0d2e32fbf2759f504048754f66ecc45
[ "BSD-3-Clause-LBNL" ]
3
2018-03-18T21:55:07.000Z
2019-04-18T18:26:06.000Z
harnessed_jobs/BOT_EO_analysis/v0/producer_BOT_EO_analysis.py
duncanwood/EO-analysis-jobs
26d22e49c0d2e32fbf2759f504048754f66ecc45
[ "BSD-3-Clause-LBNL" ]
2
2020-11-12T19:47:42.000Z
2022-02-25T21:43:03.000Z
#!/usr/bin/env python """ Producer script for BOT analyses. """ from __future__ import print_function from multiprocessor_execution import run_device_analysis_pool from camera_components import camera_info from bot_eo_analyses import fe55_jh_task, bias_frame_jh_task, \ read_noise_jh_task, \ dark_current_jh_task, bright_defects_jh_task, dark_defects_jh_task, \ ptc_jh_task, flat_pairs_jh_task, bf_jh_task, \ cte_jh_task, tearing_jh_task, \ get_analysis_types, raft_jh_noise_correlations, raft_results_task # Use the all of the available cores for processing. processes = None task_mapping = {'gain': (fe55_jh_task,), 'bias': (bias_frame_jh_task,), 'biasnoise': (read_noise_jh_task,), 'dark': (dark_current_jh_task,), 'badpixel': (bright_defects_jh_task, dark_defects_jh_task), 'ptc': (ptc_jh_task,), 'brighterfatter': (bf_jh_task,), 'linearity': (flat_pairs_jh_task,), 'cti': (cte_jh_task,), 'tearing': (tearing_jh_task,)} analysis_types = get_analysis_types() # Detector-level analyses det_names = camera_info.get_det_names() for analysis_type in analysis_types: print("**************************************") print("Running analysis type %s" % analysis_type) print("**************************************") if analysis_type not in task_mapping: print(" not in task_mapping. skipping") continue tasks = task_mapping[analysis_type] for task in tasks: run_device_analysis_pool(task, det_names, processes=processes) # Raft-level analyses raft_names = camera_info.get_raft_names() if 'biasnoise' in analysis_types: print("**************************************") print("Running analysis type biasnoise") print("**************************************") run_device_analysis_pool(raft_jh_noise_correlations, raft_names, processes=processes) print("**************************************") print("Running raft_results_task") print("**************************************") run_device_analysis_pool(raft_results_task, raft_names, processes=processes)
38.77193
76
0.625792
0403b4cbfe7710d35f2e8dedf3d8f4cd81c9329d
2,454
py
Python
tests/games/test_uttt_monte_carlo.py
DoveDoof/QLUT
8d48a5430a267b6b1018312d8267236d4df899d9
[ "MIT" ]
null
null
null
tests/games/test_uttt_monte_carlo.py
DoveDoof/QLUT
8d48a5430a267b6b1018312d8267236d4df899d9
[ "MIT" ]
13
2018-07-19T09:42:28.000Z
2018-09-25T15:08:05.000Z
tests/games/test_uttt_monte_carlo.py
DoveDoof/QLUT
8d48a5430a267b6b1018312d8267236d4df899d9
[ "MIT" ]
null
null
null
import unittest as test import time import games.uttt as ut import techniques.monte_carlo as mc class TestUltimateTicTacToe(test.TestCase): @test.skip def test_move(self): # Test single move of monte carlo tree search algorithm game_spec = ut.UltimateTicTacToeGameSpec() # generate board with 10 random moves random_func = game_spec.get_random_player_func() board_state = ut._new_board() side = 1 for _ in range(10): move = random_func(board_state, side) board_state = game_spec.apply_move(board_state, move, side) side = -1*side print("") ut.print_board_state(board_state, side) result, move = mc._monte_carlo_sample(game_spec, board_state, side) print("result: ", result) print("move: ", move) mc_func = game_spec.get_monte_carlo_player_func() result, move = mc.monte_carlo_tree_search(game_spec, board_state, side, 100) print(result) print(move) @test.skip def test_game(self): # test game against monte carlo tree search algorithm game_spec = ut.UltimateTicTacToeGameSpec() player_func = game_spec.get_monte_carlo_player_func() opponent_func = game_spec.get_random_player_func() # opponent_func = game_spec.get_manual_player_func() game_spec.play_game(player_func, opponent_func, log = 1) def test_performance(self): # test performance of mcts against random bot game_spec = ut.UltimateTicTacToeGameSpec() n = 10 number_of_samples = 27 mcts_func = game_spec.get_monte_carlo_player_func(number_of_samples) rand_func = game_spec.get_random_player_func() t = time.perf_counter() ut.play_game(mcts_func, rand_func) elapsed_time = time.perf_counter() - t print('One game takes %s seconds, so %s will take %s seconds' % (elapsed_time, n, n*elapsed_time)) t = time.perf_counter() resultsX = [ut.play_game(mcts_func, rand_func) for i in range(n)] resultsO = [ut.play_game(rand_func, mcts_func) for i in range(n)] elapsed_time = time.perf_counter() - t print('Elapsed time:', elapsed_time) print('mcts as X:') print('mcts wins: ', resultsX.count(1)) print('random wins: ', resultsX.count(-1)) print('Draws : ', resultsX.count(0)) print('Winrate : ', 0.5 + 1.*sum(resultsX)/2/n) print('mcts as O:') print('mcts wins: ', resultsO.count(-1)) print('random wins: ', resultsO.count(1)) print('Draws : ', resultsO.count(0)) print('Winrate : ', 0.5 - 1.*sum(resultsO)/2/n) if __name__ == '__main__': test.main()
29.926829
100
0.717604
c8eac20fdd8e250bad5331b3b5c52ede01e4b5e9
924
py
Python
davidgram/users/migrations/0005_auto_20180418_1957.py
lopun/davidgram
74abe2598d3bfd15b6ff88243696e71f451ba250
[ "MIT" ]
2
2018-12-24T23:00:59.000Z
2019-05-18T23:52:02.000Z
davidgram/users/migrations/0005_auto_20180418_1957.py
ujin43255252/davidgram
74abe2598d3bfd15b6ff88243696e71f451ba250
[ "MIT" ]
11
2020-06-05T18:23:02.000Z
2022-03-08T22:01:34.000Z
davidgram/users/migrations/0005_auto_20180418_1957.py
ujin43255252/davidgram
74abe2598d3bfd15b6ff88243696e71f451ba250
[ "MIT" ]
1
2018-10-17T12:43:40.000Z
2018-10-17T12:43:40.000Z
# Generated by Django 2.0.4 on 2018-04-18 10:57 from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0004_auto_20180418_1952'), ] operations = [ migrations.AddField( model_name='user', name='followers', field=models.ManyToManyField(related_name='_user_followers_+', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='user', name='following', field=models.ManyToManyField(related_name='_user_following_+', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='user', name='gender', field=models.CharField(choices=[('not-specified', 'Not specified'), ('male', 'Male'), ('female', 'Female')], max_length=80, null=True), ), ]
30.8
147
0.608225
2a12d69e35e3d4db9e0a5d907ab51a8f8d523306
2,062
py
Python
profiles_api/models.py
eklonsousa/profiles-rest-api
fbe9d2c917a597657fcfa97c4d3d47373f3cdff0
[ "MIT" ]
null
null
null
profiles_api/models.py
eklonsousa/profiles-rest-api
fbe9d2c917a597657fcfa97c4d3d47373f3cdff0
[ "MIT" ]
null
null
null
profiles_api/models.py
eklonsousa/profiles-rest-api
fbe9d2c917a597657fcfa97c4d3d47373f3cdff0
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import AbstractBaseUser from django.contrib.auth.models import PermissionsMixin from django.contrib.auth.models import BaseUserManager from django.conf import settings class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """Create a new user profile""" if not email: raise ValueError('Email cannot be blank') email = self.normalize_email(email) user = self.model(email=email, name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """Create and save a new speruser with given details""" user = self.create_user(email, name, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """Database model for users in the system""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] def get_full_name(self): """Retrieve full name for user""" return self.name def get_short_name(self): """Retrieve short name of user""" return self.name def __str__(self): """Return string representation of user""" return self.email class ProfileFeedItem(models.Model): """Profile status updte""" user_profile = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE ) status_text= models.CharField(max_length=255) created_on = models.DateTimeField(auto_now_add=True) def __str__(self): """Return the model as a string""" return self.status_text
26.779221
63
0.675558
e88d64287de85e2970296dd42d7e7ee7c5b686f2
23,173
py
Python
src/practice_problem3.py
tnafiu/13-Exam2Practice
2c9f91a79eb7358a8376b3554abcc1dc082f6f04
[ "MIT" ]
null
null
null
src/practice_problem3.py
tnafiu/13-Exam2Practice
2c9f91a79eb7358a8376b3554abcc1dc082f6f04
[ "MIT" ]
null
null
null
src/practice_problem3.py
tnafiu/13-Exam2Practice
2c9f91a79eb7358a8376b3554abcc1dc082f6f04
[ "MIT" ]
null
null
null
""" PRACTICE Test 2, practice_problem 3. Authors: David Mutchler, Dave Fisher, Valerie Galluzzi, Amanda Stouder, their colleagues and Toluwa Nafiu. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. ######################################################################## # Students: # # These problems have DIFFICULTY and TIME ratings: # DIFFICULTY rating: 1 to 10, where: # 1 is very easy # 3 is an "easy" Test 2 question. # 5 is a "typical" Test 2 question. # 7 is a "hard" Test 2 question. # 10 is an EXTREMELY hard problem (too hard for a Test 2 question) # # TIME ratings: A ROUGH estimate of the number of minutes that we # would expect a well-prepared student to take on the problem. # # IMPORTANT: For ALL the problems in this module, # if you reach the time estimate and are NOT close to a solution, # STOP working on that problem and ASK YOUR INSTRUCTOR FOR HELP # on it, in class or via Piazza. ######################################################################## import simple_testing as st import math import rosegraphics as rg def main(): """ Calls the TEST functions in this module. """ run_test_practice_problem3a() run_test_practice_problem3b() run_test_practice_problem3c() run_test_practice_problem3d() run_test_practice_problem3e() def is_prime(n): """ What comes in: An integer. What goes out: Returns True if the given integer is prime. Returns False if the given integer is NOT prime. Side effects: None. Examples: This function returns True or False, depending on whether the given integer is prime or not. Since the smallest prime is 2, this function returns False on all integers < 2. It returns True on 2, 3, 5, 7, and other primes. Note: The algorithm used here is simple and clear but slow. Type hints: :type n: int """ if n < 2: return False for k in range(2, int(math.sqrt(n) + 0.1) + 1): if n % k == 0: return False return True # ------------------------------------------------------------------ # Students: # Do NOT touch the above is_prime function - it has no TODO. # Do NOT copy code from this function. # # Instead, ** CALL ** this function as needed in the problems below. # ------------------------------------------------------------------ # ---------------------------------------------------------------------- # Students: Some of the testing code below uses SimpleTestCase objects, # from the imported simple_testing (st) module. # See details in the test code below. # ---------------------------------------------------------------------- def run_test_practice_problem3a(): """ Tests the practice_problem3a function. """ # ------------------------------------------------------------------ # 6 tests. # They use the imported simple_testing (st) module. # Each test is a SimpleTestCase with 3 arguments: # -- the function to test, # -- a list containing the argument(s) to send to the function, # -- the correct returned value. # For example, the first test below will call # practice_problem3a((rg.Circle(rg.Point(5, 10), 20), # rg.Circle(rg.Point(2, 20), 20), # rg.Circle(rg.Point(7, 30), 10), # rg.Circle(rg.Point(10, 40), 20), # rg.Circle(rg.Point(2, 50), 10))) # and compare the returned value against 1400 (the correct answer). # ------------------------------------------------------------------ tests = [st.SimpleTestCase(practice_problem3a, [(rg.Circle(rg.Point(5, 10), 20), rg.Circle(rg.Point(2, 20), 20), rg.Circle(rg.Point(7, 30), 10), rg.Circle(rg.Point(10, 40), 20), rg.Circle(rg.Point(2, 50), 10))], 5 * 2 * 7 * 10 * 2), st.SimpleTestCase(practice_problem3a, [(rg.Circle(rg.Point(58, 10), 20),)], 58), st.SimpleTestCase(practice_problem3a, [(rg.Circle(rg.Point(84, 100), 200), rg.Circle(rg.Point(28, 200), 200), rg.Circle(rg.Point(10005, 300), 100))], 84 * 28 * 10005), st.SimpleTestCase(practice_problem3a, [()], 1), st.SimpleTestCase(practice_problem3a, [(rg.Circle(rg.Point(5, 10), 20), rg.Circle(rg.Point(0, 20), 20), rg.Circle(rg.Point(7, 30), 10), rg.Circle(rg.Point(10, 40), 20), rg.Circle(rg.Point(2, 50), 10))], 5 * 0 * 7 * 10 * 2), ] circles = [] for k in range(1, 101): circles.append(rg.Circle(rg.Point(k, k + 20), 5 * k)) answer = math.factorial(100) tests.append(st.SimpleTestCase(practice_problem3a, [circles], answer)) # ------------------------------------------------------------------ # Run the 6 tests in the tests list constructed above. # ------------------------------------------------------------------ st.SimpleTestCase.run_tests('practice_problem3a', tests) def practice_problem3a(circles): """ What comes in: A sequence of rg.Circles. What goes out: Returns the product of the x-coordinates of the centers of the rg.Circles. Returns 1 if the given sequence is empty. Side effects: None. Examples: If the sequence is a list containing these 5 rg.Circles: rg.Circle(rg.Point(5, 10), 20) rg.Circle(rg.Point(2, 20), 20) rg.Circle(rg.Point(7, 30), 10) rg.Circle(rg.Point(10, 40), 20) rg.Circle(rg.Point(2, 50), 10) then this function returns: 5 x 2 x 7 x 10 x 2, which is 1400. Type hints: :type sequence: [rg.Circle] """ #################################################################### # TODO: 2. Implement and test this function. # The testing code is already written for you (above). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 7 # TIME ESTIMATE: 10 minutes. #################################################################### def run_test_practice_problem3b(): """ Tests the practice_problem3b function. """ # ------------------------------------------------------------------ # 13 tests. They use the imported simple_testing (st) module. # Each test is a SimpleTestCase with 3 arguments: # -- the function to test, # -- a list containing the argument(s) to send to the function, # -- the correct returned value. # For example, the first test below will call # practice_problem3b([12, 33, 18, 'hello', 9, 13, 3, 9]) # and compare the returned value against True (the correct answer). # ------------------------------------------------------------------ tests = [st.SimpleTestCase(practice_problem3b, [[12, 33, 18, 'hello', 9, 13, 3, 9]], True), st.SimpleTestCase(practice_problem3b, [[12, 12, 33, 'hello', 5, 33, 5, 9]], False), st.SimpleTestCase(practice_problem3b, [(77, 112, 33, 'hello', 0, 43, 5, 77)], True), st.SimpleTestCase(practice_problem3b, [[1, 1, 1, 1, 1, 1, 2]], False), st.SimpleTestCase(practice_problem3b, [['aa', 'a']], False), st.SimpleTestCase(practice_problem3b, ['aaa'], True), st.SimpleTestCase(practice_problem3b, [['aa', 'a', 'b', 'a', 'b', 'a']], True), st.SimpleTestCase(practice_problem3b, [[9]], False), st.SimpleTestCase(practice_problem3b, [(12, 33, 8, 'hello', 99, 'hello')], True), st.SimpleTestCase(practice_problem3b, [['hello there', 'he', 'lo', 'hello']], False), st.SimpleTestCase(practice_problem3b, [((8,), '8', (4 + 4, 4 + 4), [8, 8], 7, 8)], False), st.SimpleTestCase(practice_problem3b, [[(8,), '8', [4 + 4, 4 + 4], (8, 8), 7, [8, 8]]], True), st.SimpleTestCase(practice_problem3b, [[(8,), '8', [4 + 4, 4 + 4], [8, 8], 7, (8, 8)]], False), ] # Run the 13 tests in the tests list constructed above. st.SimpleTestCase.run_tests('practice_problem3b', tests) def practice_problem3b(sequence): """ What comes in: A non-empty sequence. What goes out: Returns True if the last item of the sequence appears again somewhere else in the sequence. Returns False if the last item of the sequence does NOT appear somewhere else in the sequence. Side effects: None. Examples: If the sequence is [12, 33, 18, 'hello', 9, 13, 3, 9], this function returns True because the last item (9) DOES appear elsewhere in the sequence (namely, at index 4). If the sequence is [12, 12, 33, 'hello', 5, 33, 5, 9], this function returns False because the last item (9) does NOT appear elsewhere in the sequence. If the sequence is (77, 112, 33, 'hello', 0, 43, 5, 77), this function returns True because the last item (77) DOES appear elsewhere in the sequence (namely, at index 0). If the sequence is [9], this function returns False because the last item (9) does NOT appear elsewhere in the sequence. If the sequence is [12, 33, 8, 'hello', 99, 'hello'], this function returns True since the last item ('hello') DOES appear elsewhere in the sequence (namely, at indices 3 and 5). If the sequence is ['hello there', 'he', 'lo', 'hello'], this function returns False because the last item ('hello') does NOT appear elsewhere in the sequence. If the sequence is 'hello there', this function returns True since the last item ('e') DOES appear elsewhere in the sequence (namely, at indices 1 and 8). Type hints: :type: sequence: list or tuple or string """ #################################################################### # TODO: 3. Implement and test this function. # The testing code is already written for you (above). # # IMPLEMENTATION REQUIREMENT: You are NOT allowed to use the # 'count' or 'index' methods for sequences in this problem # (because here we want you to demonstrate your ability # to use explicit looping). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 5 # TIME ESTIMATE: 8 minutes. #################################################################### def run_test_practice_problem3c(): """ Tests the practice_problem3c function. """ # ------------------------------------------------------------------ # 4 tests. They use the imported simple_testing (st) module. # Each test is a SimpleTestCase with 3 arguments: # -- the function to test, # -- a list containing the argument(s) to send to the function, # -- the correct returned value. # For example, the first test below will call # practice_problem3c((9, 0, 8, 0, 0, 4, 4, 0)) # and compare the returned value against [1, 3, 4, 7] # (the correct answer). # ------------------------------------------------------------------ tests = [st.SimpleTestCase(practice_problem3c, [(9, 0, 8, 0, 0, 4, 4, 0)], [1, 3, 4, 7]), st.SimpleTestCase(practice_problem3c, [(9, 9, 9, 9, 0, 9, 9, 9)], [4]), st.SimpleTestCase(practice_problem3c, [(4, 5, 4, 5, 4, 5, 4)], []), st.SimpleTestCase(practice_problem3c, [[0, 0, 0]], [0, 1, 2]), st.SimpleTestCase(practice_problem3c, [[0, 0]], [0, 1]), st.SimpleTestCase(practice_problem3c, [[0, 77]], [0]), st.SimpleTestCase(practice_problem3c, [[-40, 0]], [1]), st.SimpleTestCase(practice_problem3c, [[-40, 67]], []), st.SimpleTestCase(practice_problem3c, [(1, 0, 2, 0, 0, 0, 0, 6, 9, 0, 0, 12)], [1, 3, 4, 5, 6, 9, 10]), ] # Run the tests in the tests list constructed above. st.SimpleTestCase.run_tests('practice_problem3c', tests) def practice_problem3c(sequence): """ What comes in: A non-empty sequence of integers. What goes out: Returns a list of integers, where the integers are the places (indices) for which the item at that place equals 0. Side effects: None. Examples: Given sequence (9, 0, 8, 0, 0, 4, 4, 0) -- this function returns [1, 3, 4, 7] since 0 appears at indices 1, 3, 4, and 7. Given sequence [9, 9, 9, 9, 0, 9, 9, 9] -- this function returns [4] since 0 appears only at index 4. Given sequence (4, 5, 4, 5, 4, 5, 4) -- this function returns [] since none of the items are 0. Given sequence [0, 0, 0] -- this function returns [0, 1, 2] since 0 appears at indices 0, 1 and 2. Type hints: :type: sequence: list or tuple or string """ #################################################################### # TODO: 4. Implement and test this function. # The testing code is already written for you (above). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 5 # TIME ESTIMATE: 8 minutes. #################################################################### def run_test_practice_problem3d(): """ Tests the practice_problem3d function. """ # ------------------------------------------------------------------ # 4 tests. They use the imported simple_testing (st) module. # Each test is a SimpleTestCase with 3 arguments: # -- the function to test, # -- a list containing the argument(s) to send to the function, # -- the correct returned value. # For example, the first test below will call # practice_problem3d((9, 0, 8, 0, 0, 4, 4, 0)) # and compare the returned value against 1 (the correct answer). # ------------------------------------------------------------------ tests = [st.SimpleTestCase(practice_problem3d, [(9, 0, 8, 0, 0, 4, 4, 0)], 1), st.SimpleTestCase(practice_problem3d, [(9, 9, 9, 9, 0, 9, 9, 9)], 4), st.SimpleTestCase(practice_problem3d, [(4, 5, 4, 5, 4, 5, 4)], - 1), st.SimpleTestCase(practice_problem3d, [[0, 0, 0]], 0), st.SimpleTestCase(practice_problem3d, [[0, 0]], 0), st.SimpleTestCase(practice_problem3d, [[0, 77]], 0), st.SimpleTestCase(practice_problem3d, [[-40, 0]], 1), st.SimpleTestCase(practice_problem3d, [[-40, 67]], - 1), st.SimpleTestCase(practice_problem3d, [(1, 0, 2, 0, 0, 0, 0, 6, 9, 0, 0, 12)], 1), ] # Run the tests in the tests list constructed above. st.SimpleTestCase.run_tests('practice_problem3d', tests) def practice_problem3d(sequence): """ What comes in: A sequence of integers. What goes out: Returns the first (leftmost) place (index) for which the item at that place equals 0. Returns -1 if the sequence contains no items equal to 0. Side effects: None. Examples: Given sequence (9, 0, 8, 0, 0, 4, 4, 0) -- this function returns 1 since 0 first appears at index 1 Given sequence [9, 9, 9, 9, 0, 9, 9, 9] -- this function returns 4 since 0 first appears at index 4 Given sequence (4, 5, 4, 5, 4, 5, 4) -- this function returns -1 since none of the items are 0. Given sequence [0, 0, 0] -- this function returns 0 since 0 first appears at index 0 Type hints: :type: sequence: list or tuple or string """ #################################################################### # TODO: 5. Implement and test this function. # The testing code is already written for you (above). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 5 # TIME ESTIMATE: 8 minutes for each part of this problem. #################################################################### #################################################################### # TODO: 6. Just ABOVE this TODO, you should have implemented # a solution for the practice_problem3d function. # Here, put ANOTHER solution, as follows: # # -- Your FIRST solution (ABOVE this TODO) # should be a solution that IGNORES # practice_problem3c (the previous problem). # # -- Your SECOND solution (BELOW this TODO) # should be a solution that USES (calls) # practice_problem3c. # # This solution should *** HAVE NO LOOP (no FOR). *** #################################################################### def run_test_practice_problem3e(): """ Tests the practice_problem3e function. """ # ------------------------------------------------------------------ # 5 tests. They use the imported simple_testing (st) module. # Each test is a SimpleTestCase with 3 arguments: # -- the function to test, # -- a list containing the argument(s) to send to the function, # -- the correct returned value. # For example, the first test below will call # practice_problem3e((12, 33, 18, 9, 13, 3, 9, 20, 19, 20)) # and compare the returned value against 161 (the correct answer). # ------------------------------------------------------------------ tests = [st.SimpleTestCase(practice_problem3e, [(12, 33, 18, 9, 13, 3, 99, 20, 19, 20)], 161), st.SimpleTestCase(practice_problem3e, [(3, 12, 10, 8, 8, 9, 8, 11)], 29), st.SimpleTestCase(practice_problem3e, [(-9999999999, 8888888888)], -9999999999), st.SimpleTestCase(practice_problem3e, [(8888888888, -9999999999)], 8888888888), st.SimpleTestCase(practice_problem3e, [(-77, 20000, -33, 40000, -55, 60000, -11)], -176), st.SimpleTestCase(practice_problem3e, [()], 0), st.SimpleTestCase(practice_problem3e, [[]], 0), st.SimpleTestCase(practice_problem3e, [[8]], 8), st.SimpleTestCase(practice_problem3e, [(-77, 8)], -77), st.SimpleTestCase(practice_problem3e, [(-77, 8, 77)], 0), st.SimpleTestCase(practice_problem3e, [(-77, 8, 78)], 1), st.SimpleTestCase(practice_problem3e, [(-77, 8, 78, 100)], 1), ] # ------------------------------------------------------------------ # Run the 5 tests in the tests list constructed above. # ------------------------------------------------------------------ st.SimpleTestCase.run_tests('practice_problem3e', tests) def practice_problem3e(sequence): """ What comes in: A sequence of numbers. What goes out: Returns the sum of the numbers at EVEN INDICES of the sequence. Side effects: None. Examples: If the sequence is: (12, 33, 18, 9, 13, 3, 99, 20, 19, 20) then this function returns 12 + 18 + 13 + 99 + 19, which is 161. Type hints: :type sequence: list(float) or tuple(float) """ # ------------------------------------------------------------------ # TODO: 7. Implement and test this function. # The testing code is already written for you (above). #################################################################### # DIFFICULTY AND TIME RATINGS (see top of this file for explanation) # DIFFICULTY: 5 # TIME ESTIMATE: 8 minutes. #################################################################### # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
43.072491
82
0.453933
9120d8b84eea6c8bcc4685d92ee2b7afdd5b86ea
3,163
py
Python
Utilitarios/adivinhador_cesar.py
GregorioFornetti/CriPython
12b5bc64188de3a7c81d8f9d0a392f6edc7ac827
[ "MIT" ]
1
2020-05-17T03:00:18.000Z
2020-05-17T03:00:18.000Z
Utilitarios/adivinhador_cesar.py
GregorioFornetti/Cripythongrafia
12b5bc64188de3a7c81d8f9d0a392f6edc7ac827
[ "MIT" ]
1
2020-05-17T15:59:26.000Z
2020-05-17T15:59:26.000Z
Utilitarios/adivinhador_cesar.py
GregorioFornetti/Cripythongrafia
12b5bc64188de3a7c81d8f9d0a392f6edc7ac827
[ "MIT" ]
null
null
null
import Cifras.cifra_de_cesar as cifra_de_cesar import Cifras.utilidades_cifras as utilidades import dicionarios def imprimir_melhor_mensagem_adivinhada_apenas_letras(mensagem): lista_melhor_msg_e_indice = adivinhar_cesar_apenas_letras(mensagem) if lista_melhor_msg_e_indice: print(dicionarios.retorna_mensagens_adivinhador_cesar(lista_melhor_msg_e_indice[0], lista_melhor_msg_e_indice[1])) else: print(dicionarios.retorna_mensagem_com_bordas(dicionarios.retorna_erro_mensagem(), 127)) def imprimir_melhor_mensagem_adivinhada_varios_caracteres(mensagem): lista_melhor_msg_e_indice = adivinhar_cesar_varios_caracteres(mensagem) if lista_melhor_msg_e_indice: print(dicionarios.retorna_mensagens_adivinhador_cesar(lista_melhor_msg_e_indice[0], lista_melhor_msg_e_indice[1])) else: print(dicionarios.retorna_mensagem_com_bordas(dicionarios.retorna_erro_mensagem(), 127)) def adivinhar_cesar_apenas_letras(mensagem, idioma_teste=''): if not mensagem: return False lista_mensagens = [] lista_pontuacoes = [] for chave in range(1, 27): nova_mensagem = cifra_de_cesar.traduzir_modo_apenas_letras([str(chave)], mensagem) lista_mensagens.append(nova_mensagem) lista_pontuacoes.append(calcula_pontuacao(nova_mensagem.lower(), idioma_a_testar=idioma_teste)) index_melhor_possibilidade = lista_pontuacoes.index(min(lista_pontuacoes)) return [lista_mensagens[index_melhor_possibilidade], index_melhor_possibilidade + 1] def adivinhar_cesar_varios_caracteres(mensagem, idioma_teste=''): if not mensagem: return False lista_mensagens = [] lista_pontuacoes = [] for chave in range(1, 668): nova_mensagem = cifra_de_cesar.traduzir_modo_varios_caracteres([str(chave)], mensagem) lista_mensagens.append(nova_mensagem) lista_pontuacoes.append(calcula_pontuacao(nova_mensagem, idioma_a_testar=idioma_teste)) index_melhor_possibilidade = lista_pontuacoes.index(min(lista_pontuacoes)) return [lista_mensagens[index_melhor_possibilidade], index_melhor_possibilidade + 1] def calcula_pontuacao(mensagem, idioma_a_testar=''): freq_perc_geral = dicionarios.retorna_frequencia_letras(idioma_teste=idioma_a_testar) dicionario_pontuacao_letras = {'a':0, 'b':0, 'c':0, 'd':0, 'e':0, 'f':0, 'g':0, 'h':0, 'i':0, 'j':0, 'k':0, 'l':0, 'm':0, 'n':0, 'o':0, 'p':0, 'q':0, 'r':0, 's':0, 't':0, 'u':0, 'v':0, 'w':0, 'x':0, 'y':0, 'z':0} total_letras_validas = 1 pontuacao_mensagem = 0 for caractere in mensagem: if ord(caractere) > utilidades.MIN_MINUSCULA and ord(caractere) < utilidades.MAX_MINUSCULA: # Verificar se o caractere atual é uma letra sem acento. dicionario_pontuacao_letras[caractere] += 1 total_letras_validas += 1 for letra, frequencia in dicionario_pontuacao_letras.items(): frequencia_perc_atual = dicionario_pontuacao_letras[letra] / total_letras_validas * 100 pontuacao_mensagem += abs(frequencia_perc_atual - freq_perc_geral[letra]) return pontuacao_mensagem
52.716667
157
0.739488
0ad3de628147dff99fe766c197042c4cda7f923b
943
py
Python
tuyaha/devices/factory.py
xremix/tuyaha
5ce4e352131bbf3b1e1a5fabf9bd6af8102c83a8
[ "MIT" ]
153
2019-07-19T14:32:44.000Z
2022-02-11T20:44:22.000Z
tuyaha/devices/factory.py
xremix/tuyaha
5ce4e352131bbf3b1e1a5fabf9bd6af8102c83a8
[ "MIT" ]
97
2019-07-11T03:13:04.000Z
2021-10-04T02:02:11.000Z
tuyaha/devices/factory.py
xremix/tuyaha
5ce4e352131bbf3b1e1a5fabf9bd6af8102c83a8
[ "MIT" ]
96
2019-08-12T16:04:13.000Z
2021-12-30T16:16:21.000Z
from tuyaha.devices.climate import TuyaClimate from tuyaha.devices.cover import TuyaCover from tuyaha.devices.fan import TuyaFanDevice from tuyaha.devices.light import TuyaLight from tuyaha.devices.lock import TuyaLock from tuyaha.devices.scene import TuyaScene from tuyaha.devices.switch import TuyaSwitch def get_tuya_device(data, api): dev_type = data.get("dev_type") devices = [] if dev_type == "light": devices.append(TuyaLight(data, api)) elif dev_type == "climate": devices.append(TuyaClimate(data, api)) elif dev_type == "scene": devices.append(TuyaScene(data, api)) elif dev_type == "fan": devices.append(TuyaFanDevice(data, api)) elif dev_type == "cover": devices.append(TuyaCover(data, api)) elif dev_type == "lock": devices.append(TuyaLock(data, api)) elif dev_type == "switch": devices.append(TuyaSwitch(data, api)) return devices
32.517241
48
0.698834
e5edfa5325c6c2bd0c21090104d440e84f9838a1
499
py
Python
alipay/aop/api/response/AlipayEcoMycarDialogonlineAnswererUpdateResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayEcoMycarDialogonlineAnswererUpdateResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayEcoMycarDialogonlineAnswererUpdateResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayEcoMycarDialogonlineAnswererUpdateResponse(AlipayResponse): def __init__(self): super(AlipayEcoMycarDialogonlineAnswererUpdateResponse, self).__init__() def parse_response_content(self, response_content): response = super(AlipayEcoMycarDialogonlineAnswererUpdateResponse, self).parse_response_content(response_content)
31.1875
121
0.801603
25d82d38fb40d0d16451f5a9f183f995446d8552
7,003
py
Python
app/dao/provider_details_dao.py
alphagov/notify-notifications-api
e604385e0cf4c2ab8c6451b7120ceb196cce21b5
[ "MIT" ]
null
null
null
app/dao/provider_details_dao.py
alphagov/notify-notifications-api
e604385e0cf4c2ab8c6451b7120ceb196cce21b5
[ "MIT" ]
null
null
null
app/dao/provider_details_dao.py
alphagov/notify-notifications-api
e604385e0cf4c2ab8c6451b7120ceb196cce21b5
[ "MIT" ]
null
null
null
from datetime import datetime, timedelta from flask import current_app from notifications_utils.timezones import convert_utc_to_bst from sqlalchemy import asc, desc, func from app import db from app.dao.dao_utils import autocommit from app.models import ( SMS_TYPE, FactBilling, ProviderDetails, ProviderDetailsHistory, User, ) def get_provider_details_by_id(provider_details_id): return ProviderDetails.query.get(provider_details_id) def get_provider_details_by_identifier(identifier): return ProviderDetails.query.filter_by(identifier=identifier).one() def get_alternative_sms_provider(identifier): if identifier == 'firetext': return 'mmg' elif identifier == 'mmg': return 'firetext' raise ValueError('Unrecognised sms provider {}'.format(identifier)) def dao_get_provider_versions(provider_id): return ProviderDetailsHistory.query.filter_by( id=provider_id ).order_by( desc(ProviderDetailsHistory.version) ).limit( 100 # limit results instead of adding pagination ).all() def _adjust_provider_priority(provider, new_priority): current_app.logger.info( f'Adjusting provider priority - {provider.identifier} going from {provider.priority} to {new_priority}' ) provider.priority = new_priority # Automatic update so set as notify user provider.created_by_id = current_app.config['NOTIFY_USER_ID'] # update without commit so that both rows can be changed without ending the transaction # and releasing the for_update lock _update_provider_details_without_commit(provider) def _get_sms_providers_for_update(time_threshold): """ Returns a list of providers, while holding a for_update lock on the provider details table, guaranteeing that those providers won't change (but can still be read) until you've committed/rolled back your current transaction. if any of the providers have been changed recently, it returns an empty list - it's still your responsiblity to release the transaction in that case """ # get current priority of both providers q = ProviderDetails.query.filter( ProviderDetails.notification_type == 'sms', ProviderDetails.active ).with_for_update().all() # if something updated recently, don't update again. If the updated_at is null, treat it as min time if any((provider.updated_at or datetime.min) > datetime.utcnow() - time_threshold for provider in q): current_app.logger.info(f"Not adjusting providers, providers updated less than {time_threshold} ago.") return [] return q @autocommit def dao_reduce_sms_provider_priority(identifier, *, time_threshold): """ Will reduce a chosen sms provider's priority, and increase the other provider's priority by 10 points each. If either provider has been updated in the last `time_threshold`, then it won't take any action. """ amount_to_reduce_by = 10 providers_list = _get_sms_providers_for_update(time_threshold) if len(providers_list) < 2: current_app.logger.info("Not adjusting providers, number of active providers is less than 2.") return providers = {provider.identifier: provider for provider in providers_list} other_identifier = get_alternative_sms_provider(identifier) reduced_provider = providers[identifier] increased_provider = providers[other_identifier] # always keep values between 0 and 100 reduced_provider_priority = max(0, reduced_provider.priority - amount_to_reduce_by) increased_provider_priority = min(100, increased_provider.priority + amount_to_reduce_by) _adjust_provider_priority(reduced_provider, reduced_provider_priority) _adjust_provider_priority(increased_provider, increased_provider_priority) @autocommit def dao_adjust_provider_priority_back_to_resting_points(): """ Provided that neither SMS provider has been modified in the last hour, move both providers by 10 percentage points each towards their defined resting points (set in SMS_PROVIDER_RESTING_POINTS in config.py). """ amount_to_reduce_by = 10 time_threshold = timedelta(hours=1) providers = _get_sms_providers_for_update(time_threshold) for provider in providers: target = current_app.config['SMS_PROVIDER_RESTING_POINTS'][provider.identifier] current = provider.priority if current != target: if current > target: new_priority = max(target, provider.priority - amount_to_reduce_by) else: new_priority = min(target, provider.priority + amount_to_reduce_by) _adjust_provider_priority(provider, new_priority) def get_provider_details_by_notification_type(notification_type, supports_international=False): filters = [ProviderDetails.notification_type == notification_type] if supports_international: filters.append(ProviderDetails.supports_international == supports_international) return ProviderDetails.query.filter(*filters).order_by(asc(ProviderDetails.priority)).all() @autocommit def dao_update_provider_details(provider_details): _update_provider_details_without_commit(provider_details) def _update_provider_details_without_commit(provider_details): """ Doesn't commit, for when you need to control the database transaction manually """ provider_details.version += 1 provider_details.updated_at = datetime.utcnow() history = ProviderDetailsHistory.from_original(provider_details) db.session.add(provider_details) db.session.add(history) def dao_get_provider_stats(): # this query does not include the current day since the task to populate ft_billing runs overnight current_bst_datetime = convert_utc_to_bst(datetime.utcnow()) first_day_of_the_month = current_bst_datetime.date().replace(day=1) subquery = db.session.query( FactBilling.provider, func.sum(FactBilling.billable_units * FactBilling.rate_multiplier).label('current_month_billable_sms') ).filter( FactBilling.notification_type == SMS_TYPE, FactBilling.bst_date >= first_day_of_the_month ).group_by( FactBilling.provider ).subquery() result = db.session.query( ProviderDetails.id, ProviderDetails.display_name, ProviderDetails.identifier, ProviderDetails.priority, ProviderDetails.notification_type, ProviderDetails.active, ProviderDetails.updated_at, ProviderDetails.supports_international, User.name.label('created_by_name'), func.coalesce(subquery.c.current_month_billable_sms, 0).label('current_month_billable_sms') ).outerjoin( subquery, ProviderDetails.identifier == subquery.c.provider ).outerjoin( User, ProviderDetails.created_by_id == User.id ).order_by( ProviderDetails.notification_type, ProviderDetails.priority, ).all() return result
36.097938
119
0.74668