hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
dcc5975e820927a9cdf1ae7282e9fef0f42b40f8
591
py
Python
bin/convert_geofon_to_quakeml.py
trichter/sito
1b3895f3a56fe0fa6cdce1201545111025d606c8
[ "MIT" ]
18
2015-01-30T00:48:30.000Z
2021-04-03T03:11:15.000Z
bin/convert_geofon_to_quakeml.py
trichter/sito
1b3895f3a56fe0fa6cdce1201545111025d606c8
[ "MIT" ]
null
null
null
bin/convert_geofon_to_quakeml.py
trichter/sito
1b3895f3a56fe0fa6cdce1201545111025d606c8
[ "MIT" ]
21
2015-04-09T13:55:13.000Z
2021-06-19T22:22:08.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Convert SeiscompEventXML version 0.6 to QuakeML. arguments: files to convert write to output_geofon.xml """ import sys from sito.events import read_regex from obspy.core.event import Catalog def read_files(fnames): out = Catalog() for fname in fnames: out += read_regex(fname) out_fname = 'output_geofon.xml' out.write(out_fname, 'QUAKEML') if __name__ == '__main__': if len(sys.argv) <= 1 or sys.argv[1] in ('-h', '--help'): print(__doc__.strip('\n')) sys.exit() read_files(sys.argv[1:])
22.730769
61
0.651438
656a58fb0e48ec13beb5fa0bec4dca6fab3b4ec9
11,533
py
Python
glue/core/fixed_resolution_buffer.py
areza7/glue
42b68baec522b257e70a2f902c151233a0414720
[ "BSD-3-Clause" ]
null
null
null
glue/core/fixed_resolution_buffer.py
areza7/glue
42b68baec522b257e70a2f902c151233a0414720
[ "BSD-3-Clause" ]
null
null
null
glue/core/fixed_resolution_buffer.py
areza7/glue
42b68baec522b257e70a2f902c151233a0414720
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from glue.core.exceptions import IncompatibleDataException from glue.core.component import CoordinateComponent from glue.core.coordinate_helpers import dependent_axes from glue.utils import unbroadcast, broadcast_to, broadcast_arrays_minimal # TODO: cache needs to be updated when links are removed/changed __all__ = ['compute_fixed_resolution_buffer'] ARRAY_CACHE = {} PIXEL_CACHE = {} def translate_pixel(data, pixel_coords, target_cid): """ Given a dataset and pixel coordinates in that dataset, compute a corresponding pixel coordinate for another dataset. Parameters ---------- data : `~glue.core.data.Data` The main data object in which the original pixel coordinates are defined. pixel_coords : tuple or list List of pixel coordinates in the original data object. This should contain as many Numpy arrays as there are dimensions in ``data``. target_cid : `~glue.core.component_id.ComponentID` The component to compute - this can be for a different dataset. Returns ------- coords : `~numpy.ndarray` The values of the translated coordinates dimensions : tuple The dimensions in ``data`` for which pixel coordinates were used in the translation. """ if not len(pixel_coords) == data.ndim: raise ValueError('The number of coordinates in pixel_coords does not ' 'match the number of dimensions in data') if target_cid in data.pixel_component_ids: return pixel_coords[target_cid.axis], [target_cid.axis] # TODO: check that things are efficient if the PixelComponentID is in a # pixel-aligned dataset. component = data.get_component(target_cid) if hasattr(component, 'link'): link = component.link values_all = [] dimensions_all = [] for cid in link._from: values, dimensions = translate_pixel(data, pixel_coords, cid) values_all.append(values) dimensions_all.extend(dimensions) # Unbroadcast arrays to smallest common shape for performance if len(values_all) > 0: shape = values_all[0].shape values_all = broadcast_arrays_minimal(*values_all) results = link._using(*values_all) result = broadcast_to(results, shape) else: result = None return result, sorted(set(dimensions_all)) elif isinstance(component, CoordinateComponent): # FIXME: Hack for now - if we pass arrays in the view, it's interpreted return component._calculate(view=pixel_coords), dependent_axes(data.coords, component.axis) else: raise Exception("Dependency on non-pixel component", target_cid) class AnyScalar(object): def __eq__(self, other): return np.isscalar(other) def bounds_for_cache(bounds, dimensions): cache_bounds = [] for i in range(len(bounds)): if i not in dimensions and np.isscalar(bounds[i]): cache_bounds.append(AnyScalar()) else: cache_bounds.append(bounds[i]) return cache_bounds def compute_fixed_resolution_buffer(data, bounds, target_data=None, target_cid=None, subset_state=None, broadcast=True, cache_id=None): """ Get a fixed-resolution buffer for a dataset. Parameters ---------- data : `~glue.core.Data` The dataset from which to extract a fixed resolution buffer bounds : list The list of bounds for the fixed resolution buffer. This list should have as many items as there are dimensions in ``target_data``. Each item should either be a scalar value, or a tuple of ``(min, max, nsteps)``. target_data : `~glue.core.Data`, optional The data in whose frame of reference the bounds are defined. Defaults to ``data``. target_cid : `~glue.core.component_id.ComponentID`, optional If specified, gives the component ID giving the component to use for the data values. Alternatively, use ``subset_state`` to get a subset mask. subset_state : `~glue.core.subset.SubsetState`, optional If specified, gives the subset state for which to compute a mask. Alternatively, use ``target_cid`` if you want to get data values. broadcast : bool, optional If `True`, then if a dimension in ``target_data`` for which ``bounds`` is not a scalar does not affect any of the dimensions in ``data``, then the final array will be effectively broadcast along this dimension, otherwise an error will be raised. """ if target_data is None: target_data = data if target_cid is None and subset_state is None: raise ValueError("Either target_cid or subset_state should be specified") if target_cid is not None and subset_state is not None: raise ValueError("Either target_cid or subset_state should be specified (not both)") for bound in bounds: if isinstance(bound, tuple) and bound[2] < 1: raise ValueError("Number of steps in bounds should be >=1") # If cache_id is specified, we keep a cached version of the resulting array # indexed by cache_id as well as a hash formed of the call arguments to this # function. We then check if the resulting array already exists in the cache. if cache_id is not None: if subset_state is None: # Use uuid for component ID since otherwise component IDs don't return # False when comparing two different CIDs (instead they return a subset state). # For bounds we use a special wrapper that can identify wildcards. current_array_hash = (data, bounds, target_data, target_cid.uuid, broadcast) else: current_array_hash = (data, bounds, target_data, subset_state, broadcast) current_pixel_hash = (data, target_data) if cache_id in ARRAY_CACHE: if ARRAY_CACHE[cache_id]['hash'] == current_array_hash: return ARRAY_CACHE[cache_id]['array'] # To save time later, if the pixel cache doesn't match at the level of the # data and target_data, we just reset the cache. if cache_id in PIXEL_CACHE: if PIXEL_CACHE[cache_id]['hash'] != current_pixel_hash: PIXEL_CACHE.pop(cache_id) # Start off by generating arrays of coordinates in the original dataset pixel_coords = [np.linspace(*bound) if isinstance(bound, tuple) else bound for bound in bounds] pixel_coords = np.meshgrid(*pixel_coords, indexing='ij', copy=False) # Keep track of the original shape of these arrays original_shape = pixel_coords[0].shape # Now loop through the dimensions of 'data' to find the corresponding # coordinates in the frame of view of this dataset. translated_coords = [] dimensions_all = [] invalid_all = np.zeros(original_shape, dtype=bool) for ipix, pix in enumerate(data.pixel_component_ids): # At this point, if cache_id is in PIXEL_CACHE, we know that data and # target_data match so we just check the bounds. Note that the bounds # include the AnyScalar wildcard for any dimensions that don't impact # the pixel coordinates here. We do this so that we don't have to # recompute the pixel coordinates when e.g. slicing through cubes. if cache_id in PIXEL_CACHE and ipix in PIXEL_CACHE[cache_id] and PIXEL_CACHE[cache_id][ipix]['bounds'] == bounds: translated_coord = PIXEL_CACHE[cache_id][ipix]['translated_coord'] dimensions = PIXEL_CACHE[cache_id][ipix]['dimensions'] invalid = PIXEL_CACHE[cache_id][ipix]['invalid'] else: translated_coord, dimensions = translate_pixel(target_data, pixel_coords, pix) # The returned coordinates may often be a broadcasted array. To convert # the coordinates to integers and check which ones are within bounds, we # thus operate on the un-broadcasted array, before broadcasting it back # to the original shape. translated_coord = np.round(unbroadcast(translated_coord)).astype(int) invalid = (translated_coord < 0) | (translated_coord >= data.shape[ipix]) # Since we are going to be using these coordinates later on to index an # array, we need the coordinates to be within the array, so we reset # any invalid coordinates and keep track of which pixels are invalid # to reset them later. translated_coord[invalid] = 0 # We now populate the cache if cache_id is not None: if cache_id not in PIXEL_CACHE: PIXEL_CACHE[cache_id] = {'hash': current_pixel_hash} PIXEL_CACHE[cache_id][ipix] = {'translated_coord': translated_coord, 'dimensions': dimensions, 'invalid': invalid, 'bounds': bounds_for_cache(bounds, dimensions)} invalid_all |= invalid # Broadcast back to the original shape and add to the list translated_coords.append(broadcast_to(translated_coord, original_shape)) # Also keep track of all the dimensions that contributed to this coordinate dimensions_all.extend(dimensions) translated_coords = tuple(translated_coords) # If a dimension from the target data for which bounds was set to an interval # did not actually contribute to any of the coordinates in data, then if # broadcast is set to False we raise an error, otherwise we proceed and # implicitly broadcast values along that dimension of the target data. if data is not target_data and not broadcast: for i in range(target_data.ndim): if isinstance(bounds[i], tuple) and i not in dimensions_all: raise IncompatibleDataException() # PERF: optimize further - check if we can extract a sub-region that # contains all the valid values. # Take subset_state into account, if present if subset_state is None: array = data.get_data(target_cid, view=translated_coords).astype(float) invalid_value = -np.inf else: array = data.get_mask(subset_state, view=translated_coords) invalid_value = False if np.any(invalid_all): if not array.flags.writeable: array = np.array(array, dtype=type(invalid_value)) array[invalid_all] = invalid_value # Drop dimensions for which bounds were scalars slices = [] for bound in bounds: if isinstance(bound, tuple): slices.append(slice(None)) else: slices.append(0) array = array[tuple(slices)] if cache_id is not None: # For the bounds, we use a special wildcard for bounds that don't affect # the result. This will allow the cache to match regardless of the # value for those bounds. However, we only do this for scalar bounds. cache_bounds = bounds_for_cache(bounds, dimensions_all) current_array_hash = current_array_hash[:1] + (cache_bounds,) + current_array_hash[2:] if subset_state is None: ARRAY_CACHE[cache_id] = {'hash': current_array_hash, 'array': array} else: ARRAY_CACHE[cache_id] = {'hash': current_array_hash, 'array': array} return array
41.485612
121
0.666435
dc40a5d91fa5c06ee74a1cb4fc480fb3cf39033f
9,673
py
Python
sdk/python/pulumi_azure_nextgen/compute/latest/get_availability_set.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/compute/latest/get_availability_set.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/compute/latest/get_availability_set.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetAvailabilitySetResult', 'AwaitableGetAvailabilitySetResult', 'get_availability_set', ] warnings.warn("""The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-nextgen:compute:getAvailabilitySet'.""", DeprecationWarning) @pulumi.output_type class GetAvailabilitySetResult: """ Specifies information about the availability set that the virtual machine should be assigned to. Virtual machines specified in the same availability set are allocated to different nodes to maximize availability. For more information about availability sets, see [Manage the availability of virtual machines](https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json). <br><br> For more information on Azure planned maintenance, see [Planned maintenance for virtual machines in Azure](https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-planned-maintenance?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json) <br><br> Currently, a VM can only be added to availability set at creation time. An existing VM cannot be added to an availability set. """ def __init__(__self__, id=None, location=None, name=None, platform_fault_domain_count=None, platform_update_domain_count=None, proximity_placement_group=None, sku=None, statuses=None, tags=None, type=None, virtual_machines=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if platform_fault_domain_count and not isinstance(platform_fault_domain_count, int): raise TypeError("Expected argument 'platform_fault_domain_count' to be a int") pulumi.set(__self__, "platform_fault_domain_count", platform_fault_domain_count) if platform_update_domain_count and not isinstance(platform_update_domain_count, int): raise TypeError("Expected argument 'platform_update_domain_count' to be a int") pulumi.set(__self__, "platform_update_domain_count", platform_update_domain_count) if proximity_placement_group and not isinstance(proximity_placement_group, dict): raise TypeError("Expected argument 'proximity_placement_group' to be a dict") pulumi.set(__self__, "proximity_placement_group", proximity_placement_group) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if statuses and not isinstance(statuses, list): raise TypeError("Expected argument 'statuses' to be a list") pulumi.set(__self__, "statuses", statuses) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if virtual_machines and not isinstance(virtual_machines, list): raise TypeError("Expected argument 'virtual_machines' to be a list") pulumi.set(__self__, "virtual_machines", virtual_machines) @property @pulumi.getter def id(self) -> str: """ Resource Id """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="platformFaultDomainCount") def platform_fault_domain_count(self) -> Optional[int]: """ Fault Domain count. """ return pulumi.get(self, "platform_fault_domain_count") @property @pulumi.getter(name="platformUpdateDomainCount") def platform_update_domain_count(self) -> Optional[int]: """ Update Domain count. """ return pulumi.get(self, "platform_update_domain_count") @property @pulumi.getter(name="proximityPlacementGroup") def proximity_placement_group(self) -> Optional['outputs.SubResourceResponse']: """ Specifies information about the proximity placement group that the availability set should be assigned to. <br><br>Minimum api-version: 2018-04-01. """ return pulumi.get(self, "proximity_placement_group") @property @pulumi.getter def sku(self) -> Optional['outputs.SkuResponse']: """ Sku of the availability set, only name is required to be set. See AvailabilitySetSkuTypes for possible set of values. Use 'Aligned' for virtual machines with managed disks and 'Classic' for virtual machines with unmanaged disks. Default value is 'Classic'. """ return pulumi.get(self, "sku") @property @pulumi.getter def statuses(self) -> Sequence['outputs.InstanceViewStatusResponse']: """ The resource status information. """ return pulumi.get(self, "statuses") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualMachines") def virtual_machines(self) -> Optional[Sequence['outputs.SubResourceResponse']]: """ A list of references to all virtual machines in the availability set. """ return pulumi.get(self, "virtual_machines") class AwaitableGetAvailabilitySetResult(GetAvailabilitySetResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAvailabilitySetResult( id=self.id, location=self.location, name=self.name, platform_fault_domain_count=self.platform_fault_domain_count, platform_update_domain_count=self.platform_update_domain_count, proximity_placement_group=self.proximity_placement_group, sku=self.sku, statuses=self.statuses, tags=self.tags, type=self.type, virtual_machines=self.virtual_machines) def get_availability_set(availability_set_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAvailabilitySetResult: """ Specifies information about the availability set that the virtual machine should be assigned to. Virtual machines specified in the same availability set are allocated to different nodes to maximize availability. For more information about availability sets, see [Manage the availability of virtual machines](https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json). <br><br> For more information on Azure planned maintenance, see [Planned maintenance for virtual machines in Azure](https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-planned-maintenance?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json) <br><br> Currently, a VM can only be added to availability set at creation time. An existing VM cannot be added to an availability set. Latest API Version: 2020-12-01. :param str availability_set_name: The name of the availability set. :param str resource_group_name: The name of the resource group. """ pulumi.log.warn("get_availability_set is deprecated: The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-nextgen:compute:getAvailabilitySet'.") __args__ = dict() __args__['availabilitySetName'] = availability_set_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:compute/latest:getAvailabilitySet', __args__, opts=opts, typ=GetAvailabilitySetResult).value return AwaitableGetAvailabilitySetResult( id=__ret__.id, location=__ret__.location, name=__ret__.name, platform_fault_domain_count=__ret__.platform_fault_domain_count, platform_update_domain_count=__ret__.platform_update_domain_count, proximity_placement_group=__ret__.proximity_placement_group, sku=__ret__.sku, statuses=__ret__.statuses, tags=__ret__.tags, type=__ret__.type, virtual_machines=__ret__.virtual_machines)
48.124378
862
0.701023
eb957f58185d9e99346f5ca7cdc859641147bda0
11,579
py
Python
fuocore/core/player.py
AmyLewis/feeluown-core
0aecb39ce49504b04fa54a391260e9976220a288
[ "MIT" ]
null
null
null
fuocore/core/player.py
AmyLewis/feeluown-core
0aecb39ce49504b04fa54a391260e9976220a288
[ "MIT" ]
null
null
null
fuocore/core/player.py
AmyLewis/feeluown-core
0aecb39ce49504b04fa54a391260e9976220a288
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ fuocore.player ~~~~~~~~~~~~~~ fuocore media player. """ from abc import ABCMeta, abstractmethod from enum import Enum import logging import random from mpv import MPV, MpvEventID, MpvEventEndFile from fuocore.dispatch import Signal logger = logging.getLogger(__name__) class State(Enum): stopped = 0 paused = 1 playing = 2 class PlaybackMode(Enum): one_loop = 0 sequential = 1 loop = 2 random = 3 class Playlist(object): """player playlist provide a list of song model to play NOTE - Design: Why we use song model instead of url? Theoretically, using song model may increase the coupling. However, simple url do not obtain enough metadata. """ def __init__(self, songs=None, playback_mode=PlaybackMode.loop): """ :param songs: list of :class:`fuocore.models.SongModel` :param playback_mode: :class:`fuocore.player.PlaybackMode` """ self._current_song = None self._songs = songs or [] self._playback_mode = playback_mode # signals self.playback_mode_changed = Signal() self.song_changed = Signal() def __len__(self): return len(self._songs) def __getitem__(self, index): """overload [] operator""" return self._songs[index] def add(self, song): """insert a song after current song""" if song in self._songs: return if self._current_song is None: self._songs.append(song) else: index = self._songs.index(self._current_song) self._songs.insert(index + 1, song) logger.debug('Add %s to player playlist', song) def remove(self, song): """Remove song from playlist. If song is current song, remove the song and play next. Otherwise, just remove it. """ if song in self._songs: if self._current_song is None: self._songs.remove(song) elif song == self._current_song: self.current_song = self.next_song self._songs.remove(song) else: self._songs.remove(song) logger.debug('Remove {} from player playlist'.format(song)) else: logger.debug('Remove failed: {} not in playlist'.format(song)) def clear(self): self.current_song = None self._songs = [] def list(self): return self._songs @property def current_song(self): return self._current_song @current_song.setter def current_song(self, song): """change current song, emit song changed singal""" self._last_song = self.current_song if song is None: self._current_song = None # add it to playlist if song not in playlist elif song in self._songs: self._current_song = song else: self.add(song) self._current_song = song self.song_changed.emit(song) @property def playback_mode(self): return self._playback_mode @playback_mode.setter def playback_mode(self, playback_mode): self._playback_mode = playback_mode self.playback_mode_changed.emit(playback_mode) @property def next_song(self): next_song = None if not self._songs: return None if self.current_song is None: return self._songs[0] if self.playback_mode == PlaybackMode.random: next_song = random.choice(range(0, len(self._songs))) elif self.playback_mode == PlaybackMode.one_loop: next_song = self.current_song else: current_index = self._songs.index(self.current_song) if current_index == len(self._songs) - 1: if self.playback_mode == PlaybackMode.loop: next_song = self._songs[0] elif self.playback_mode == PlaybackMode.sequential: next_song = None else: next_song = self._songs[current_index + 1] return next_song @property def previous_song(self): """return to previous played song, if previous played song not exists, get the song before current song in playback mode order. """ if not self._songs: return None if self.current_song is None: return self._songs[0] previous_song = None if self.playback_mode == PlaybackMode.random: previous_song = random.choice(self._songs) elif self.playback_mode == PlaybackMode.one_loop: previous_song = self.current_song else: current_index = self._songs.index(self.current_song) previous_song = self._songs[current_index - 1] return previous_song class AbstractPlayer(metaclass=ABCMeta): def __init__(self, playlist=Playlist(), **kwargs): self._position = 0 # seconds self._volume = 100 # (0, 100) self._playlist = playlist self._state = State.stopped self._duration = None self.position_changed = Signal() self.state_changed = Signal() self.song_finished = Signal() self.duration_changed = Signal() self.media_changed = Signal() @property def state(self): """player state :return: :class:`fuocore.engine.State` """ return self._state @state.setter def state(self, value): self._state = value self.state_changed.emit(value) @property def current_song(self): return self._playlist.current_song @property def playlist(self): """player playlist :return: :class:`fuocore.engine.Playlist` """ return self._playlist @playlist.setter def playlist(self, playlist): self._playlist = playlist @property def position(self): """player position, the units is seconds""" return self._position @position.setter def position(self, position): self._position = position @property def volume(self): return self._volume @volume.setter def volume(self, value): value = 0 if value < 0 else value value = 100 if value > 100 else value self._volume = value @property def duration(self): """player media duration, the units is seconds""" return self._duration @duration.setter def duration(self, value): if value is not None and value != self._duration: self._duration = value self.duration_changed.emit(value) @abstractmethod def play(self, url): """play media :param url: a local file absolute path, or a http url that refers to a media file """ @abstractmethod def play_song(self, song): """play media by song model :param song: :class:`fuocore.models.SongModel` """ @abstractmethod def resume(self): """play playback""" @abstractmethod def pause(self): """pause player""" @abstractmethod def toggle(self): """toggle player state""" @abstractmethod def stop(self): """stop player""" @abstractmethod def initialize(self): """"initialize player""" @abstractmethod def shutdown(self): """shutdown player, do some clean up here""" class MpvPlayer(AbstractPlayer): """ player will always play playlist current song. player will listening to playlist ``song_changed`` signal and change the current playback. """ def __init__(self): super(MpvPlayer, self).__init__() self._mpv = MPV(ytdl=False, input_default_bindings=True, input_vo_keyboard=True) self._playlist = Playlist() self._playlist.song_changed.connect(self._on_song_changed) def initialize(self): self._mpv.observe_property( 'time-pos', lambda name, position: self._on_position_changed(position) ) self._mpv.observe_property( 'duration', lambda name, duration: self._on_duration_changed(duration) ) # self._mpv.register_event_callback(lambda event: self._on_event(event)) self._mpv.event_callbacks.append(self._on_event) self.song_finished.connect(self.play_next) logger.info('Player initialize finished.') def shutdown(self): del self._mpv def play(self, url): # NOTE - API DESGIN: we should return None, see # QMediaPlayer API reference for more details. logger.debug("Player will play: '%s'", url) # Clear playlist before play next song, # otherwise, mpv will seek to the last position and play. self._mpv.playlist_clear() self._mpv.play(url) self._mpv.pause = False self.state = State.playing self.media_changed.emit(url) def play_song(self, song): if self.playlist.current_song is not None and \ self.playlist.current_song == song: logger.warning('the song to be played is same as current song') return url = song.url if url is not None: self._playlist.current_song = song else: raise ValueError("invalid song: song url can't be None") def play_next(self): self.playlist.current_song = self.playlist.next_song def play_previous(self): self.playlist.current_song = self.playlist.previous_song def resume(self): self._mpv.pause = False self.state = State.playing def pause(self): self._mpv.pause = True self.state = State.paused def toggle(self): self._mpv.pause = not self._mpv.pause if self._mpv.pause: self.state = State.paused else: self.state = State.playing def stop(self): logger.info('stop player...') self._mpv.pause = True self.state = State.stopped self._mpv.playlist_clear() @property def position(self): return self._position @position.setter def position(self, position): self._mpv.seek(position, reference='absolute') self._position = position @AbstractPlayer.volume.setter def volume(self, value): super(MpvPlayer, MpvPlayer).volume.__set__(self, value) self._mpv.volume = self.volume def _on_position_changed(self, position): self._position = position self.position_changed.emit(position) def _on_duration_changed(self, duration): """listening to mpv duration change event""" logger.info('player receive duration changed signal') self.duration = duration def _on_song_changed(self, song): logger.debug('player received song changed signal') if song is not None: logger.info('Will play song: %s' % self._playlist.current_song) self.play(song.url) else: self.stop() logger.info('playlist provide no song anymore.') def _on_event(self, event): if event['event_id'] == MpvEventID.END_FILE: reason = event['event']['reason'] logger.debug('Current song finished. reason: %d' % reason) if self.state != State.stopped and reason != MpvEventEndFile.ABORTED: self.song_finished.emit()
28.310513
81
0.606702
3d7c8fd0f8087f1c4c1a9d522fc4f517bd3153b7
7,470
py
Python
pgoapi/protos/pogoprotos/enums/activity_type_pb2.py
z3cr3t/api
960c0c10a76e1f46e99de7f8de8644b00cf95d0d
[ "MIT" ]
null
null
null
pgoapi/protos/pogoprotos/enums/activity_type_pb2.py
z3cr3t/api
960c0c10a76e1f46e99de7f8de8644b00cf95d0d
[ "MIT" ]
null
null
null
pgoapi/protos/pogoprotos/enums/activity_type_pb2.py
z3cr3t/api
960c0c10a76e1f46e99de7f8de8644b00cf95d0d
[ "MIT" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: pogoprotos/enums/activity_type.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='pogoprotos/enums/activity_type.proto', package='pogoprotos.enums', syntax='proto3', serialized_pb=_b('\n$pogoprotos/enums/activity_type.proto\x12\x10pogoprotos.enums*\xeb\x06\n\x0c\x41\x63tivityType\x12\x14\n\x10\x41\x43TIVITY_UNKNOWN\x10\x00\x12\x1a\n\x16\x41\x43TIVITY_CATCH_POKEMON\x10\x01\x12!\n\x1d\x41\x43TIVITY_CATCH_LEGEND_POKEMON\x10\x02\x12\x19\n\x15\x41\x43TIVITY_FLEE_POKEMON\x10\x03\x12\x18\n\x14\x41\x43TIVITY_DEFEAT_FORT\x10\x04\x12\x1b\n\x17\x41\x43TIVITY_EVOLVE_POKEMON\x10\x05\x12\x16\n\x12\x41\x43TIVITY_HATCH_EGG\x10\x06\x12\x14\n\x10\x41\x43TIVITY_WALK_KM\x10\x07\x12\x1e\n\x1a\x41\x43TIVITY_POKEDEX_ENTRY_NEW\x10\x08\x12\x1e\n\x1a\x41\x43TIVITY_CATCH_FIRST_THROW\x10\t\x12\x1d\n\x19\x41\x43TIVITY_CATCH_NICE_THROW\x10\n\x12\x1e\n\x1a\x41\x43TIVITY_CATCH_GREAT_THROW\x10\x0b\x12\"\n\x1e\x41\x43TIVITY_CATCH_EXCELLENT_THROW\x10\x0c\x12\x1c\n\x18\x41\x43TIVITY_CATCH_CURVEBALL\x10\r\x12%\n!ACTIVITY_CATCH_FIRST_CATCH_OF_DAY\x10\x0e\x12\x1c\n\x18\x41\x43TIVITY_CATCH_MILESTONE\x10\x0f\x12\x1a\n\x16\x41\x43TIVITY_TRAIN_POKEMON\x10\x10\x12\x18\n\x14\x41\x43TIVITY_SEARCH_FORT\x10\x11\x12\x1c\n\x18\x41\x43TIVITY_RELEASE_POKEMON\x10\x12\x12\"\n\x1e\x41\x43TIVITY_HATCH_EGG_SMALL_BONUS\x10\x13\x12#\n\x1f\x41\x43TIVITY_HATCH_EGG_MEDIUM_BONUS\x10\x14\x12\"\n\x1e\x41\x43TIVITY_HATCH_EGG_LARGE_BONUS\x10\x15\x12 \n\x1c\x41\x43TIVITY_DEFEAT_GYM_DEFENDER\x10\x16\x12\x1e\n\x1a\x41\x43TIVITY_DEFEAT_GYM_LEADER\x10\x17\x12+\n\'ACTIVITY_CATCH_FIRST_CATCH_STREAK_BONUS\x10\x18\x12)\n%ACTIVITY_SEARCH_FORT_FIRST_OF_THE_DAY\x10\x19\x12%\n!ACTIVITY_SEARCH_FORT_STREAK_BONUS\x10\x1a\x62\x06proto3') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _ACTIVITYTYPE = _descriptor.EnumDescriptor( name='ActivityType', full_name='pogoprotos.enums.ActivityType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ACTIVITY_UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_POKEMON', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_LEGEND_POKEMON', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_FLEE_POKEMON', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_DEFEAT_FORT', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_EVOLVE_POKEMON', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_HATCH_EGG', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_WALK_KM', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_POKEDEX_ENTRY_NEW', index=8, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_FIRST_THROW', index=9, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_NICE_THROW', index=10, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_GREAT_THROW', index=11, number=11, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_EXCELLENT_THROW', index=12, number=12, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_CURVEBALL', index=13, number=13, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_FIRST_CATCH_OF_DAY', index=14, number=14, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_MILESTONE', index=15, number=15, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_TRAIN_POKEMON', index=16, number=16, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_SEARCH_FORT', index=17, number=17, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_RELEASE_POKEMON', index=18, number=18, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_HATCH_EGG_SMALL_BONUS', index=19, number=19, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_HATCH_EGG_MEDIUM_BONUS', index=20, number=20, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_HATCH_EGG_LARGE_BONUS', index=21, number=21, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_DEFEAT_GYM_DEFENDER', index=22, number=22, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_DEFEAT_GYM_LEADER', index=23, number=23, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_CATCH_FIRST_CATCH_STREAK_BONUS', index=24, number=24, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_SEARCH_FORT_FIRST_OF_THE_DAY', index=25, number=25, options=None, type=None), _descriptor.EnumValueDescriptor( name='ACTIVITY_SEARCH_FORT_STREAK_BONUS', index=26, number=26, options=None, type=None), ], containing_type=None, options=None, serialized_start=59, serialized_end=934, ) _sym_db.RegisterEnumDescriptor(_ACTIVITYTYPE) ActivityType = enum_type_wrapper.EnumTypeWrapper(_ACTIVITYTYPE) ACTIVITY_UNKNOWN = 0 ACTIVITY_CATCH_POKEMON = 1 ACTIVITY_CATCH_LEGEND_POKEMON = 2 ACTIVITY_FLEE_POKEMON = 3 ACTIVITY_DEFEAT_FORT = 4 ACTIVITY_EVOLVE_POKEMON = 5 ACTIVITY_HATCH_EGG = 6 ACTIVITY_WALK_KM = 7 ACTIVITY_POKEDEX_ENTRY_NEW = 8 ACTIVITY_CATCH_FIRST_THROW = 9 ACTIVITY_CATCH_NICE_THROW = 10 ACTIVITY_CATCH_GREAT_THROW = 11 ACTIVITY_CATCH_EXCELLENT_THROW = 12 ACTIVITY_CATCH_CURVEBALL = 13 ACTIVITY_CATCH_FIRST_CATCH_OF_DAY = 14 ACTIVITY_CATCH_MILESTONE = 15 ACTIVITY_TRAIN_POKEMON = 16 ACTIVITY_SEARCH_FORT = 17 ACTIVITY_RELEASE_POKEMON = 18 ACTIVITY_HATCH_EGG_SMALL_BONUS = 19 ACTIVITY_HATCH_EGG_MEDIUM_BONUS = 20 ACTIVITY_HATCH_EGG_LARGE_BONUS = 21 ACTIVITY_DEFEAT_GYM_DEFENDER = 22 ACTIVITY_DEFEAT_GYM_LEADER = 23 ACTIVITY_CATCH_FIRST_CATCH_STREAK_BONUS = 24 ACTIVITY_SEARCH_FORT_FIRST_OF_THE_DAY = 25 ACTIVITY_SEARCH_FORT_STREAK_BONUS = 26 DESCRIPTOR.enum_types_by_name['ActivityType'] = _ACTIVITYTYPE # @@protoc_insertion_point(module_scope)
40.819672
1,520
0.741901
34a0a466f1c95aafe7a6e8fdd068f0dc898b7523
537
py
Python
code/547.Number-of-Provinces.py
Aden-Q/leetcode
ebd4804edd4f172b9981b22c18d9ff654cf20762
[ "Apache-2.0" ]
1
2019-09-22T03:08:14.000Z
2019-09-22T03:08:14.000Z
code/547.Number-of-Provinces.py
Aden-Q/leetcode
ebd4804edd4f172b9981b22c18d9ff654cf20762
[ "Apache-2.0" ]
null
null
null
code/547.Number-of-Provinces.py
Aden-Q/leetcode
ebd4804edd4f172b9981b22c18d9ff654cf20762
[ "Apache-2.0" ]
null
null
null
class Solution: def findCircleNum(self, isConnected: List[List[int]]) -> int: n = len(isConnected) visited = [False] * n def dfs(s): nonlocal isConnected if visited[s]: return visited[s] = True for i in range(n): if isConnected[s][i]: dfs(i) ct = 0 for i in range(n): if not visited[i]: ct += 1 dfs(i) return ct
26.85
65
0.39851
40a5df0b823f67c0008300d42b4f8224c67a5a58
610
py
Python
saltstack/pillar_sls_rendering_error/srv/modules/pillar/id_info.py
gladiatr72/gaze_upon
fdeb9c8f860bd5b4ef388471b793434a2131ccf7
[ "MIT" ]
null
null
null
saltstack/pillar_sls_rendering_error/srv/modules/pillar/id_info.py
gladiatr72/gaze_upon
fdeb9c8f860bd5b4ef388471b793434a2131ccf7
[ "MIT" ]
null
null
null
saltstack/pillar_sls_rendering_error/srv/modules/pillar/id_info.py
gladiatr72/gaze_upon
fdeb9c8f860bd5b4ef388471b793434a2131ccf7
[ "MIT" ]
null
null
null
# vim: ft=python import logging from stephens_little_package import traceit, PrettyLog log = logging.getLogger(__name__) @traceit def ext_pillar(minion_id, pillar): retval = {} if __grains__.get('wants_me_some_id_info', False): id = __opts__['id'] exp = __salt__['id_info.explode'](id) if exp['project'] != 'mten': retval['project_list'] = exp['project_list'] del(exp['project_list']) retval.update(exp) retval['id_info'] = exp log.critical('and then, PILLAR ID_INFO: \n{0}'.format(PrettyLog(retval))) return retval
21.785714
81
0.631148
a41e180d206ce2f2841065f021ce013eb137a491
416
py
Python
api/migrations/0003_auto_20200627_1908.py
nemesis-umbrella/HorarioAPI
f2638cd7f1b969ac2583807b33b811f4c04f9c90
[ "MIT" ]
null
null
null
api/migrations/0003_auto_20200627_1908.py
nemesis-umbrella/HorarioAPI
f2638cd7f1b969ac2583807b33b811f4c04f9c90
[ "MIT" ]
null
null
null
api/migrations/0003_auto_20200627_1908.py
nemesis-umbrella/HorarioAPI
f2638cd7f1b969ac2583807b33b811f4c04f9c90
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-06-28 00:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0002_auto_20200627_1828'), ] operations = [ migrations.AlterField( model_name='asistencia', name='puntualidad', field=models.BooleanField(blank=True, max_length=1, null=True), ), ]
21.894737
75
0.612981
e8d86d480e5247fef80c4230ee55e14a3176998d
9,472
py
Python
homeassistant/components/proximity.py
kdschlosser/home-assistant
a94a24f6f83508642e220fadf2799789dc32a25b
[ "Apache-2.0" ]
2
2020-06-17T01:23:01.000Z
2020-06-18T22:17:14.000Z
homeassistant/components/proximity.py
kdschlosser/home-assistant
a94a24f6f83508642e220fadf2799789dc32a25b
[ "Apache-2.0" ]
6
2021-02-08T21:02:40.000Z
2022-03-12T00:52:16.000Z
homeassistant/components/proximity.py
kdschlosser/home-assistant
a94a24f6f83508642e220fadf2799789dc32a25b
[ "Apache-2.0" ]
1
2020-01-09T12:36:16.000Z
2020-01-09T12:36:16.000Z
""" Support for tracking the proximity of a device. Component to monitor the proximity of devices to a particular zone and the direction of travel. For more details about this component, please refer to the documentation at https://home-assistant.io/components/proximity/ """ import logging import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.const import ( CONF_ZONE, CONF_DEVICES, CONF_UNIT_OF_MEASUREMENT) from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import track_state_change from homeassistant.util.distance import convert from homeassistant.util.location import distance _LOGGER = logging.getLogger(__name__) ATTR_DIR_OF_TRAVEL = 'dir_of_travel' ATTR_DIST_FROM = 'dist_to_zone' ATTR_NEAREST = 'nearest' CONF_IGNORED_ZONES = 'ignored_zones' CONF_TOLERANCE = 'tolerance' DEFAULT_DIR_OF_TRAVEL = 'not set' DEFAULT_DIST_TO_ZONE = 'not set' DEFAULT_NEAREST = 'not set' DEFAULT_PROXIMITY_ZONE = 'home' DEFAULT_TOLERANCE = 1 DEPENDENCIES = ['zone', 'device_tracker'] DOMAIN = 'proximity' UNITS = ['km', 'm', 'mi', 'ft'] ZONE_SCHEMA = vol.Schema({ vol.Optional(CONF_ZONE, default=DEFAULT_PROXIMITY_ZONE): cv.string, vol.Optional(CONF_DEVICES, default=[]): vol.All(cv.ensure_list, [cv.entity_id]), vol.Optional(CONF_IGNORED_ZONES, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_TOLERANCE, default=DEFAULT_TOLERANCE): cv.positive_int, vol.Optional(CONF_UNIT_OF_MEASUREMENT): vol.All(cv.string, vol.In(UNITS)), }) CONFIG_SCHEMA = vol.Schema({ DOMAIN: cv.schema_with_slug_keys(ZONE_SCHEMA), }, extra=vol.ALLOW_EXTRA) def setup_proximity_component(hass, name, config): """Set up the individual proximity component.""" ignored_zones = config.get(CONF_IGNORED_ZONES) proximity_devices = config.get(CONF_DEVICES) tolerance = config.get(CONF_TOLERANCE) proximity_zone = name unit_of_measurement = config.get( CONF_UNIT_OF_MEASUREMENT, hass.config.units.length_unit) zone_id = 'zone.{}'.format(config.get(CONF_ZONE)) proximity = Proximity(hass, proximity_zone, DEFAULT_DIST_TO_ZONE, DEFAULT_DIR_OF_TRAVEL, DEFAULT_NEAREST, ignored_zones, proximity_devices, tolerance, zone_id, unit_of_measurement) proximity.entity_id = '{}.{}'.format(DOMAIN, proximity_zone) proximity.schedule_update_ha_state() track_state_change( hass, proximity_devices, proximity.check_proximity_state_change) return True def setup(hass, config): """Get the zones and offsets from configuration.yaml.""" for zone, proximity_config in config[DOMAIN].items(): setup_proximity_component(hass, zone, proximity_config) return True class Proximity(Entity): """Representation of a Proximity.""" def __init__(self, hass, zone_friendly_name, dist_to, dir_of_travel, nearest, ignored_zones, proximity_devices, tolerance, proximity_zone, unit_of_measurement): """Initialize the proximity.""" self.hass = hass self.friendly_name = zone_friendly_name self.dist_to = dist_to self.dir_of_travel = dir_of_travel self.nearest = nearest self.ignored_zones = ignored_zones self.proximity_devices = proximity_devices self.tolerance = tolerance self.proximity_zone = proximity_zone self._unit_of_measurement = unit_of_measurement @property def name(self): """Return the name of the entity.""" return self.friendly_name @property def state(self): """Return the state.""" return self.dist_to @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return self._unit_of_measurement @property def state_attributes(self): """Return the state attributes.""" return { ATTR_DIR_OF_TRAVEL: self.dir_of_travel, ATTR_NEAREST: self.nearest, } def check_proximity_state_change(self, entity, old_state, new_state): """Perform the proximity checking.""" entity_name = new_state.name devices_to_calculate = False devices_in_zone = '' zone_state = self.hass.states.get(self.proximity_zone) proximity_latitude = zone_state.attributes.get('latitude') proximity_longitude = zone_state.attributes.get('longitude') # Check for devices in the monitored zone. for device in self.proximity_devices: device_state = self.hass.states.get(device) if device_state is None: devices_to_calculate = True continue if device_state.state not in self.ignored_zones: devices_to_calculate = True # Check the location of all devices. if (device_state.state).lower() == (self.friendly_name).lower(): device_friendly = device_state.name if devices_in_zone != '': devices_in_zone = devices_in_zone + ', ' devices_in_zone = devices_in_zone + device_friendly # No-one to track so reset the entity. if not devices_to_calculate: self.dist_to = 'not set' self.dir_of_travel = 'not set' self.nearest = 'not set' self.schedule_update_ha_state() return # At least one device is in the monitored zone so update the entity. if devices_in_zone != '': self.dist_to = 0 self.dir_of_travel = 'arrived' self.nearest = devices_in_zone self.schedule_update_ha_state() return # We can't check proximity because latitude and longitude don't exist. if 'latitude' not in new_state.attributes: return # Collect distances to the zone for all devices. distances_to_zone = {} for device in self.proximity_devices: # Ignore devices in an ignored zone. device_state = self.hass.states.get(device) if device_state.state in self.ignored_zones: continue # Ignore devices if proximity cannot be calculated. if 'latitude' not in device_state.attributes: continue # Calculate the distance to the proximity zone. dist_to_zone = distance(proximity_latitude, proximity_longitude, device_state.attributes['latitude'], device_state.attributes['longitude']) # Add the device and distance to a dictionary. distances_to_zone[device] = round( convert(dist_to_zone, 'm', self.unit_of_measurement), 1) # Loop through each of the distances collected and work out the # closest. closest_device = None # type: str dist_to_zone = None # type: float for device in distances_to_zone: if not dist_to_zone or distances_to_zone[device] < dist_to_zone: closest_device = device dist_to_zone = distances_to_zone[device] # If the closest device is one of the other devices. if closest_device != entity: self.dist_to = round(distances_to_zone[closest_device]) self.dir_of_travel = 'unknown' device_state = self.hass.states.get(closest_device) self.nearest = device_state.name self.schedule_update_ha_state() return # Stop if we cannot calculate the direction of travel (i.e. we don't # have a previous state and a current LAT and LONG). if old_state is None or 'latitude' not in old_state.attributes: self.dist_to = round(distances_to_zone[entity]) self.dir_of_travel = 'unknown' self.nearest = entity_name self.schedule_update_ha_state() return # Reset the variables distance_travelled = 0 # Calculate the distance travelled. old_distance = distance(proximity_latitude, proximity_longitude, old_state.attributes['latitude'], old_state.attributes['longitude']) new_distance = distance(proximity_latitude, proximity_longitude, new_state.attributes['latitude'], new_state.attributes['longitude']) distance_travelled = round(new_distance - old_distance, 1) # Check for tolerance if distance_travelled < self.tolerance * -1: direction_of_travel = 'towards' elif distance_travelled > self.tolerance: direction_of_travel = 'away_from' else: direction_of_travel = 'stationary' # Update the proximity entity self.dist_to = round(dist_to_zone) self.dir_of_travel = direction_of_travel self.nearest = entity_name self.schedule_update_ha_state() _LOGGER.debug('proximity.%s update entity: distance=%s: direction=%s: ' 'device=%s', self.friendly_name, round(dist_to_zone), direction_of_travel, entity_name) _LOGGER.info('%s: proximity calculation complete', entity_name)
36.856031
79
0.648226
44740f67d813af2e5d9b1e2a6d538f82fcc81e1c
48,357
py
Python
tests/test_intl.py
daobook/sphinx
ef8daca1f9a82ede9b4b0b5cde93f3414cee3dfe
[ "BSD-2-Clause" ]
null
null
null
tests/test_intl.py
daobook/sphinx
ef8daca1f9a82ede9b4b0b5cde93f3414cee3dfe
[ "BSD-2-Clause" ]
null
null
null
tests/test_intl.py
daobook/sphinx
ef8daca1f9a82ede9b4b0b5cde93f3414cee3dfe
[ "BSD-2-Clause" ]
null
null
null
"""Test message patching for internationalization purposes. Runs the text builder in the test root. """ import os import re import pygments import pytest from babel.messages import mofile, pofile from babel.messages.catalog import Catalog from docutils import nodes from sphinx import locale from sphinx.testing.util import (assert_node, assert_not_re_search, assert_re_search, assert_startswith, etree_parse, path, strip_escseq) from sphinx.util import docutils sphinx_intl = pytest.mark.sphinx( testroot='intl', confoverrides={ 'language': 'xx', 'locale_dirs': ['.'], 'gettext_compact': False, }, ) pygments_version = tuple(int(v) for v in pygments.__version__.split('.')) def read_po(pathname): with pathname.open() as f: return pofile.read_po(f) def write_mo(pathname, po): with pathname.open('wb') as f: return mofile.write_mo(f, po) @pytest.fixture(autouse=True) def setup_intl(app_params): srcdir = path(app_params.kwargs['srcdir']) for dirpath, _dirs, files in os.walk(srcdir): dirpath = path(dirpath) for f in [f for f in files if f.endswith('.po')]: po = dirpath / f mo = srcdir / 'xx' / 'LC_MESSAGES' / ( os.path.relpath(po[:-3], srcdir) + '.mo') if not mo.parent.exists(): mo.parent.makedirs() if not mo.exists() or mo.stat().st_mtime < po.stat().st_mtime: # compile .mo file only if needed write_mo(mo, read_po(po)) @pytest.fixture(autouse=True) def _info(app): yield print('# language:', app.config.language) print('# locale_dirs:', app.config.locale_dirs) def elem_gettexts(elem): return [_f for _f in [s.strip() for s in elem.itertext()] if _f] def elem_getref(elem): return elem.attrib.get('refid') or elem.attrib.get('refuri') def assert_elem(elem, texts=None, refs=None, names=None): if texts is not None: _texts = elem_gettexts(elem) assert _texts == texts if refs is not None: _refs = [elem_getref(x) for x in elem.findall('reference')] assert _refs == refs if names is not None: _names = elem.attrib.get('names').split() assert _names == names def assert_count(expected_expr, result, count): find_pair = (expected_expr, result) assert len(re.findall(*find_pair)) == count, find_pair @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_emit_warnings(app, warning): app.build() # test warnings in translation warnings = getwarning(warning) warning_expr = ('.*/warnings.txt:4:<translated>:1: ' 'WARNING: Inline literal start-string without end-string.\n') assert_re_search(warning_expr, warnings) @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_warning_node(app): app.build() # test warnings in translation result = (app.outdir / 'warnings.txt').read_text() expect = ("3. I18N WITH REST WARNINGS" "\n**************************\n" "\nLINE OF >>``<<BROKEN LITERAL MARKUP.\n") assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') @pytest.mark.xfail(os.name != 'posix', reason="Not working on windows") def test_text_title_underline(app): app.build() # --- simple translation; check title underlines result = (app.outdir / 'bom.txt').read_text() expect = ("2. Datei mit UTF-8" "\n******************\n" # underline matches new translation "\nThis file has umlauts: äöü.\n") assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_subdirs(app): app.build() # --- check translation in subdirs result = (app.outdir / 'subdir' / 'index.txt').read_text() assert_startswith(result, "1. subdir contents\n******************\n") @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_inconsistency_warnings(app, warning): app.build() # --- check warnings for inconsistency in number of references result = (app.outdir / 'refs_inconsistency.txt').read_text() expect = ("8. I18N WITH REFS INCONSISTENCY" "\n*******************************\n" "\n* FOR CITATION [ref3].\n" "\n* reference FOR reference.\n" "\n* ORPHAN REFERENCE: I18N WITH REFS INCONSISTENCY.\n" "\n[1] THIS IS A AUTO NUMBERED FOOTNOTE.\n" "\n[ref2] THIS IS A CITATION.\n" "\n[100] THIS IS A NUMBERED FOOTNOTE.\n") assert result == expect warnings = getwarning(warning) warning_fmt = ('.*/refs_inconsistency.txt:\\d+: ' 'WARNING: inconsistent %(reftype)s in translated message.' ' original: %(original)s, translated: %(translated)s\n') expected_warning_expr = ( warning_fmt % { 'reftype': 'footnote references', 'original': "\\['\\[#\\]_'\\]", 'translated': "\\[\\]" } + warning_fmt % { 'reftype': 'footnote references', 'original': "\\['\\[100\\]_'\\]", 'translated': "\\[\\]" } + warning_fmt % { 'reftype': 'references', 'original': "\\['reference_'\\]", 'translated': "\\['reference_', 'reference_'\\]" } + warning_fmt % { 'reftype': 'references', 'original': "\\[\\]", 'translated': "\\['`I18N WITH REFS INCONSISTENCY`_'\\]" }) assert_re_search(expected_warning_expr, warnings) expected_citation_warning_expr = ( '.*/refs_inconsistency.txt:\\d+: WARNING: Citation \\[ref2\\] is not referenced.\n' + '.*/refs_inconsistency.txt:\\d+: WARNING: citation not found: ref3') assert_re_search(expected_citation_warning_expr, warnings) @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_literalblock_warnings(app, warning): app.build() # --- check warning for literal block result = (app.outdir / 'literalblock.txt').read_text() expect = ("9. I18N WITH LITERAL BLOCK" "\n**************************\n" "\nCORRECT LITERAL BLOCK:\n" "\n this is" "\n literal block\n" "\nMISSING LITERAL BLOCK:\n" "\n<SYSTEM MESSAGE:") assert_startswith(result, expect) warnings = getwarning(warning) expected_warning_expr = ('.*/literalblock.txt:\\d+: ' 'WARNING: Literal block expected; none found.') assert_re_search(expected_warning_expr, warnings) @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_definition_terms(app): app.build() # --- definition terms: regression test for #975, #2198, #2205 result = (app.outdir / 'definition_terms.txt').read_text() expect = ("13. I18N WITH DEFINITION TERMS" "\n******************************\n" "\nSOME TERM" "\n THE CORRESPONDING DEFINITION\n" "\nSOME *TERM* WITH LINK" "\n THE CORRESPONDING DEFINITION #2\n" "\nSOME **TERM** WITH : CLASSIFIER1 : CLASSIFIER2" "\n THE CORRESPONDING DEFINITION\n" "\nSOME TERM WITH : CLASSIFIER[]" "\n THE CORRESPONDING DEFINITION\n") assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_glossary_term(app, warning): app.build() # --- glossary terms: regression test for #1090 result = (app.outdir / 'glossary_terms.txt').read_text() expect = (r"""18. I18N WITH GLOSSARY TERMS **************************** SOME NEW TERM THE CORRESPONDING GLOSSARY SOME OTHER NEW TERM THE CORRESPONDING GLOSSARY #2 LINK TO *SOME NEW TERM*. TRANSLATED GLOSSARY SHOULD BE SORTED BY TRANSLATED TERMS: TRANSLATED TERM XXX DEFINE XXX TRANSLATED TERM YYY DEFINE YYY TRANSLATED TERM ZZZ VVV DEFINE ZZZ """) assert result == expect warnings = getwarning(warning) assert 'term not in glossary' not in warnings @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_glossary_term_inconsistencies(app, warning): app.build() # --- glossary term inconsistencies: regression test for #1090 result = (app.outdir / 'glossary_terms_inconsistency.txt').read_text() expect = ("19. I18N WITH GLOSSARY TERMS INCONSISTENCY" "\n******************************************\n" "\n1. LINK TO *SOME NEW TERM*.\n") assert result == expect warnings = getwarning(warning) expected_warning_expr = ( '.*/glossary_terms_inconsistency.txt:\\d+: ' 'WARNING: inconsistent term references in translated message.' " original: \\[':term:`Some term`', ':term:`Some other term`'\\]," " translated: \\[':term:`SOME NEW TERM`'\\]\n") assert_re_search(expected_warning_expr, warnings) @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_section(app): app.build() # --- section expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'section.po') actual = read_po(app.outdir / 'section.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_section(app): app.build() # --- section result = (app.outdir / 'section.txt').read_text() expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'section.po') for expect_msg in [m for m in expect if m.id]: assert expect_msg.string in result @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_seealso(app): app.build() # --- seealso result = (app.outdir / 'seealso.txt').read_text() expect = ("12. I18N WITH SEEALSO" "\n*********************\n" "\nSee also: SHORT TEXT 1\n" "\nSee also: LONG TEXT 1\n" "\nSee also:\n" "\n SHORT TEXT 2\n" "\n LONG TEXT 2\n") assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_figure_captions(app): app.build() # --- figure captions: regression test for #940 result = (app.outdir / 'figure.txt').read_text() expect = ("14. I18N WITH FIGURE CAPTION" "\n****************************\n" "\n [image]MY CAPTION OF THE FIGURE\n" "\n MY DESCRIPTION PARAGRAPH1 OF THE FIGURE.\n" "\n MY DESCRIPTION PARAGRAPH2 OF THE FIGURE.\n" "\n" "\n14.1. FIGURE IN THE BLOCK" "\n=========================\n" "\nBLOCK\n" "\n [image]MY CAPTION OF THE FIGURE\n" "\n MY DESCRIPTION PARAGRAPH1 OF THE FIGURE.\n" "\n MY DESCRIPTION PARAGRAPH2 OF THE FIGURE.\n" "\n" "\n" "14.2. IMAGE URL AND ALT\n" "=======================\n" "\n" "[image: I18N -> IMG][image]\n" "\n" " [image: IMG -> I18N][image]\n" "\n" "\n" "14.3. IMAGE ON SUBSTITUTION\n" "===========================\n" "\n" "\n" "14.4. IMAGE UNDER NOTE\n" "======================\n" "\n" "Note:\n" "\n" " [image: i18n under note][image]\n" "\n" " [image: img under note][image]\n") assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_rubric(app): app.build() # --- rubric: regression test for pull request #190 result = (app.outdir / 'rubric.txt').read_text() expect = ("I18N WITH RUBRIC" "\n****************\n" "\n-[ RUBRIC TITLE ]-\n" "\n" "\nRUBRIC IN THE BLOCK" "\n===================\n" "\nBLOCK\n" "\n -[ RUBRIC TITLE ]-\n") assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_docfields(app): app.build() # --- docfields result = (app.outdir / 'docfields.txt').read_text() expect = ("21. I18N WITH DOCFIELDS" "\n***********************\n" "\nclass Cls1\n" "\n Parameters:" "\n **param** -- DESCRIPTION OF PARAMETER param\n" "\nclass Cls2\n" "\n Parameters:" "\n * **foo** -- DESCRIPTION OF PARAMETER foo\n" "\n * **bar** -- DESCRIPTION OF PARAMETER bar\n" "\nclass Cls3(values)\n" "\n Raises:" "\n **ValueError** -- IF THE VALUES ARE OUT OF RANGE\n" "\nclass Cls4(values)\n" "\n Raises:" "\n * **TypeError** -- IF THE VALUES ARE NOT VALID\n" "\n * **ValueError** -- IF THE VALUES ARE OUT OF RANGE\n" "\nclass Cls5\n" "\n Returns:" '\n A NEW "Cls3" INSTANCE\n') assert result == expect @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_admonitions(app): app.build() # --- admonitions # #1206: gettext did not translate admonition directive's title # seealso: https://docutils.sourceforge.io/docs/ref/rst/directives.html#admonitions result = (app.outdir / 'admonitions.txt').read_text() directives = ( "attention", "caution", "danger", "error", "hint", "important", "note", "tip", "warning", "admonition") for d in directives: assert d.upper() + " TITLE" in result assert d.upper() + " BODY" in result # for #4938 `1. ` prefixed admonition title assert "1. ADMONITION TITLE" in result @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_toctree(app): app.build() # --- toctree (index.rst) expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'index.po') actual = read_po(app.outdir / 'index.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] # --- toctree (toctree.rst) expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'toctree.po') actual = read_po(app.outdir / 'toctree.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_table(app): app.build() # --- toctree expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'table.po') actual = read_po(app.outdir / 'table.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_table(app): app.build() # --- toctree result = (app.outdir / 'table.txt').read_text() expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'table.po') for expect_msg in [m for m in expect if m.id]: assert expect_msg.string in result @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_toctree(app): app.build() # --- toctree (index.rst) # Note: index.rst contains contents that is not shown in text. result = (app.outdir / 'index.txt').read_text() assert 'CONTENTS' in result assert 'TABLE OF CONTENTS' in result # --- toctree (toctree.rst) result = (app.outdir / 'toctree.txt').read_text() expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'toctree.po') for expect_msg in [m for m in expect if m.id]: assert expect_msg.string in result @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_topic(app): app.build() # --- topic expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'topic.po') actual = read_po(app.outdir / 'topic.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_topic(app): app.build() # --- topic result = (app.outdir / 'topic.txt').read_text() expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'topic.po') for expect_msg in [m for m in expect if m.id]: assert expect_msg.string in result @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_definition_terms(app): app.build() # --- definition terms: regression test for #2198, #2205 expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'definition_terms.po') actual = read_po(app.outdir / 'definition_terms.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_glossary_terms(app, warning): app.build() # --- glossary terms: regression test for #1090 expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'glossary_terms.po') actual = read_po(app.outdir / 'glossary_terms.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] warnings = warning.getvalue().replace(os.sep, '/') assert 'term not in glossary' not in warnings @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_glossary_term_inconsistencies(app): app.build() # --- glossary term inconsistencies: regression test for #1090 expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'glossary_terms_inconsistency.po') actual = read_po(app.outdir / 'glossary_terms_inconsistency.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_literalblock(app): app.build() # --- gettext builder always ignores ``only`` directive expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'literalblock.po') actual = read_po(app.outdir / 'literalblock.pot') for expect_msg in [m for m in expect if m.id]: if len(expect_msg.id.splitlines()) == 1: # compare tranlsations only labels assert expect_msg.id in [m.id for m in actual if m.id] else: pass # skip code-blocks and literalblocks @sphinx_intl @pytest.mark.sphinx('gettext') @pytest.mark.test_params(shared_result='test_intl_gettext') def test_gettext_buildr_ignores_only_directive(app): app.build() # --- gettext builder always ignores ``only`` directive expect = read_po(app.srcdir / 'xx' / 'LC_MESSAGES' / 'only.po') actual = read_po(app.outdir / 'only.pot') for expect_msg in [m for m in expect if m.id]: assert expect_msg.id in [m.id for m in actual if m.id] @sphinx_intl # use individual shared_result directory to avoid "incompatible doctree" error @pytest.mark.sphinx(testroot='builder-gettext-dont-rebuild-mo') def test_gettext_dont_rebuild_mo(make_app, app_params): # --- don't rebuild by .mo mtime def get_number_of_update_targets(app_): app_.env.find_files(app_.config, app_.builder) _, updated, _ = app_.env.get_outdated_files(config_changed=False) return len(updated) args, kwargs = app_params # phase1: build document with non-gettext builder and generate mo file in srcdir app0 = make_app('dummy', *args, **kwargs) app0.build() assert (app0.srcdir / 'xx' / 'LC_MESSAGES' / 'bom.mo').exists() # Since it is after the build, the number of documents to be updated is 0 assert get_number_of_update_targets(app0) == 0 # When rewriting the timestamp of mo file, the number of documents to be # updated will be changed. mtime = (app0.srcdir / 'xx' / 'LC_MESSAGES' / 'bom.mo').stat().st_mtime (app0.srcdir / 'xx' / 'LC_MESSAGES' / 'bom.mo').utime((mtime + 5, mtime + 5)) assert get_number_of_update_targets(app0) == 1 # Because doctree for gettext builder can not be shared with other builders, # erase doctreedir before gettext build. app0.doctreedir.rmtree() # phase2: build document with gettext builder. # The mo file in the srcdir directory is retained. app = make_app('gettext', *args, **kwargs) app.build() # Since it is after the build, the number of documents to be updated is 0 assert get_number_of_update_targets(app) == 0 # Even if the timestamp of the mo file is updated, the number of documents # to be updated is 0. gettext builder does not rebuild because of mo update. (app0.srcdir / 'xx' / 'LC_MESSAGES' / 'bom.mo').utime((mtime + 10, mtime + 10)) assert get_number_of_update_targets(app) == 0 @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_meta(app): app.build() # --- test for meta result = (app.outdir / 'index.html').read_text() expected_expr = '<meta content="TESTDATA FOR I18N" name="description" />' assert expected_expr in result expected_expr = '<meta content="I18N, SPHINX, MARKUP" name="keywords" />' assert expected_expr in result expected_expr = '<p class="caption" role="heading"><span class="caption-text">HIDDEN TOC</span></p>' assert expected_expr in result @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_footnotes(app): app.build() # --- test for #955 cant-build-html-with-footnotes-when-using # expect no error by build (app.outdir / 'footnote.html').read_text() @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_undefined_refs(app): app.build() # --- links to undefined reference result = (app.outdir / 'refs_inconsistency.html').read_text() expected_expr = ('<a class="reference external" ' 'href="http://www.example.com">reference</a>') assert len(re.findall(expected_expr, result)) == 2 expected_expr = ('<a class="reference internal" ' 'href="#reference">reference</a>') assert len(re.findall(expected_expr, result)) == 0 expected_expr = ('<a class="reference internal" ' 'href="#i18n-with-refs-inconsistency">I18N WITH ' 'REFS INCONSISTENCY</a>') assert len(re.findall(expected_expr, result)) == 1 @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_index_entries(app): app.build() # --- index entries: regression test for #976 result = (app.outdir / 'genindex.html').read_text() def wrap(tag, keyword): start_tag = "<%s[^>]*>" % tag end_tag = "</%s>" % tag return r"%s\s*%s\s*%s" % (start_tag, keyword, end_tag) def wrap_nest(parenttag, childtag, keyword): start_tag1 = "<%s[^>]*>" % parenttag start_tag2 = "<%s[^>]*>" % childtag return r"%s\s*%s\s*%s" % (start_tag1, keyword, start_tag2) expected_exprs = [ wrap('a', 'NEWSLETTER'), wrap('a', 'MAILING LIST'), wrap('a', 'RECIPIENTS LIST'), wrap('a', 'FIRST SECOND'), wrap('a', 'SECOND THIRD'), wrap('a', 'THIRD, FIRST'), wrap_nest('li', 'ul', 'ENTRY'), wrap_nest('li', 'ul', 'SEE'), wrap('a', 'MODULE'), wrap('a', 'KEYWORD'), wrap('a', 'OPERATOR'), wrap('a', 'OBJECT'), wrap('a', 'EXCEPTION'), wrap('a', 'STATEMENT'), wrap('a', 'BUILTIN'), ] for expr in expected_exprs: assert_re_search(expr, result, re.M) @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_versionchanges(app): app.build() # --- versionchanges result = (app.outdir / 'versionchange.html').read_text() def get_content(result, name): matched = re.search(r'<div class="%s">\n*(.*?)</div>' % name, result, re.DOTALL) if matched: return matched.group(1) else: return '' expect1 = ( """<p><span class="versionmodified deprecated">Deprecated since version 1.0: </span>""" """THIS IS THE <em>FIRST</em> PARAGRAPH OF DEPRECATED.</p>\n""" """<p>THIS IS THE <em>SECOND</em> PARAGRAPH OF DEPRECATED.</p>\n""") matched_content = get_content(result, "deprecated") assert expect1 == matched_content expect2 = ( """<p><span class="versionmodified added">New in version 1.0: </span>""" """THIS IS THE <em>FIRST</em> PARAGRAPH OF VERSIONADDED.</p>\n""") matched_content = get_content(result, "versionadded") assert expect2 == matched_content expect3 = ( """<p><span class="versionmodified changed">Changed in version 1.0: </span>""" """THIS IS THE <em>FIRST</em> PARAGRAPH OF VERSIONCHANGED.</p>\n""") matched_content = get_content(result, "versionchanged") assert expect3 == matched_content @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_docfields(app): app.build() # --- docfields # expect no error by build (app.outdir / 'docfields.html').read_text() @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_template(app): app.build() # --- gettext template result = (app.outdir / 'contents.html').read_text() assert "WELCOME" in result assert "SPHINX 2013.120" in result @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_html_rebuild_mo(app): app.build() # --- rebuild by .mo mtime app.builder.build_update() app.env.find_files(app.config, app.builder) _, updated, _ = app.env.get_outdated_files(config_changed=False) assert len(updated) == 0 mtime = (app.srcdir / 'xx' / 'LC_MESSAGES' / 'bom.mo').stat().st_mtime (app.srcdir / 'xx' / 'LC_MESSAGES' / 'bom.mo').utime((mtime + 5, mtime + 5)) app.env.find_files(app.config, app.builder) _, updated, _ = app.env.get_outdated_files(config_changed=False) assert len(updated) == 1 @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_footnotes(app, warning): app.build() # --- footnotes: regression test for fix #955, #1176 et = etree_parse(app.outdir / 'footnote.xml') secs = et.findall('section') para0 = secs[0].findall('paragraph') assert_elem( para0[0], ['I18N WITH FOOTNOTE', 'INCLUDE THIS CONTENTS', '2', '[ref]', '1', '100', '*', '. SECOND FOOTNOTE_REF', '100', '.'], ['i18n-with-footnote', 'ref']) # check node_id for footnote_references which refer same footnote (refs: #3002) assert para0[0][4].text == para0[0][6].text == '100' assert para0[0][4].attrib['ids'] != para0[0][6].attrib['ids'] footnote0 = secs[0].findall('footnote') assert_elem( footnote0[0], ['1', 'THIS IS A AUTO NUMBERED FOOTNOTE.'], None, ['1']) assert_elem( footnote0[1], ['100', 'THIS IS A NUMBERED FOOTNOTE.'], None, ['100']) assert_elem( footnote0[2], ['2', 'THIS IS A AUTO NUMBERED NAMED FOOTNOTE.'], None, ['named']) assert_elem( footnote0[3], ['*', 'THIS IS A AUTO SYMBOL FOOTNOTE.'], None, None) citation0 = secs[0].findall('citation') assert_elem( citation0[0], ['ref', 'THIS IS A NAMED FOOTNOTE.'], None, ['ref']) warnings = getwarning(warning) warning_expr = '.*/footnote.xml:\\d*: SEVERE: Duplicate ID: ".*".\n' assert_not_re_search(warning_expr, warnings) @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_footnote_backlinks(app): app.build() # --- footnote backlinks: i18n test for #1058 et = etree_parse(app.outdir / 'footnote.xml') secs = et.findall('section') para0 = secs[0].findall('paragraph') refs0 = para0[0].findall('footnote_reference') refid2id = {r.attrib.get('refid'): r.attrib.get('ids') for r in refs0} footnote0 = secs[0].findall('footnote') for footnote in footnote0: ids = footnote.attrib.get('ids') backrefs = footnote.attrib.get('backrefs').split() assert refid2id[ids] in backrefs @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_refs_in_python_domain(app): app.build() # --- refs in the Python domain et = etree_parse(app.outdir / 'refs_python_domain.xml') secs = et.findall('section') # regression test for fix #1363 para0 = secs[0].findall('paragraph') assert_elem( para0[0], ['SEE THIS DECORATOR:', 'sensitive_variables()', '.'], ['sensitive.sensitive_variables']) @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_keep_external_links(app): app.build() # --- keep external links: regression test for #1044 et = etree_parse(app.outdir / 'external_links.xml') secs = et.findall('section') para0 = secs[0].findall('paragraph') # external link check assert_elem( para0[0], ['EXTERNAL LINK TO', 'Python', '.'], ['http://python.org/index.html']) # internal link check assert_elem( para0[1], ['EXTERNAL LINKS', 'IS INTERNAL LINK.'], ['i18n-with-external-links']) # inline link check assert_elem( para0[2], ['INLINE LINK BY', 'THE SPHINX SITE', '.'], ['http://sphinx-doc.org']) # unnamed link check assert_elem( para0[3], ['UNNAMED', 'LINK', '.'], ['http://google.com']) # link target swapped translation para1 = secs[1].findall('paragraph') assert_elem( para1[0], ['LINK TO', 'external2', 'AND', 'external1', '.'], ['https://www.google.com/external2', 'https://www.google.com/external1']) assert_elem( para1[1], ['LINK TO', 'THE PYTHON SITE', 'AND', 'THE SPHINX SITE', '.'], ['http://python.org', 'http://sphinx-doc.org']) # multiple references in the same line para2 = secs[2].findall('paragraph') assert_elem( para2[0], ['LINK TO', 'EXTERNAL LINKS', ',', 'Python', ',', 'THE SPHINX SITE', ',', 'UNNAMED', 'AND', 'THE PYTHON SITE', '.'], ['i18n-with-external-links', 'http://python.org/index.html', 'http://sphinx-doc.org', 'http://google.com', 'http://python.org']) @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_role_xref(app): app.build() # --- role xref: regression test for #1090, #1193 et = etree_parse(app.outdir / 'role_xref.xml') sec1, sec2 = et.findall('section') para1, = sec1.findall('paragraph') assert_elem( para1, ['LINK TO', "I18N ROCK'N ROLE XREF", ',', 'CONTENTS', ',', 'SOME NEW TERM', '.'], ['i18n-role-xref', 'index', 'glossary_terms#term-Some-term']) para2 = sec2.findall('paragraph') assert_elem( para2[0], ['LINK TO', 'SOME OTHER NEW TERM', 'AND', 'SOME NEW TERM', '.'], ['glossary_terms#term-Some-other-term', 'glossary_terms#term-Some-term']) assert_elem( para2[1], ['LINK TO', 'LABEL', 'AND', 'SAME TYPE LINKS', 'AND', 'SAME TYPE LINKS', '.'], ['i18n-role-xref', 'same-type-links', 'same-type-links']) assert_elem( para2[2], ['LINK TO', 'I18N WITH GLOSSARY TERMS', 'AND', 'CONTENTS', '.'], ['glossary_terms', 'index']) assert_elem( para2[3], ['LINK TO', '--module', 'AND', '-m', '.'], ['cmdoption-module', 'cmdoption-m']) assert_elem( para2[4], ['LINK TO', 'env2', 'AND', 'env1', '.'], ['envvar-env2', 'envvar-env1']) assert_elem( para2[5], ['LINK TO', 'token2', 'AND', 'token1', '.'], []) # TODO: how do I link token role to productionlist? assert_elem( para2[6], ['LINK TO', 'same-type-links', 'AND', "i18n-role-xref", '.'], ['same-type-links', 'i18n-role-xref']) @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_warnings(app, warning): app.build() # warnings warnings = getwarning(warning) assert 'term not in glossary' not in warnings assert 'undefined label' not in warnings assert 'unknown document' not in warnings @sphinx_intl @pytest.mark.sphinx('xml') @pytest.mark.test_params(shared_result='test_intl_basic') def test_xml_label_targets(app): app.build() # --- label targets: regression test for #1193, #1265 et = etree_parse(app.outdir / 'label_target.xml') secs = et.findall('section') para0 = secs[0].findall('paragraph') assert_elem( para0[0], ['X SECTION AND LABEL', 'POINT TO', 'implicit-target', 'AND', 'X SECTION AND LABEL', 'POINT TO', 'section-and-label', '.'], ['implicit-target', 'section-and-label']) para1 = secs[1].findall('paragraph') assert_elem( para1[0], ['X EXPLICIT-TARGET', 'POINT TO', 'explicit-target', 'AND', 'X EXPLICIT-TARGET', 'POINT TO DUPLICATED ID LIKE', 'id1', '.'], ['explicit-target', 'id1']) para2 = secs[2].findall('paragraph') assert_elem( para2[0], ['X IMPLICIT SECTION NAME', 'POINT TO', 'implicit-section-name', '.'], ['implicit-section-name']) sec2 = secs[2].findall('section') para2_0 = sec2[0].findall('paragraph') assert_elem( para2_0[0], ['`X DUPLICATED SUB SECTION`_', 'IS BROKEN LINK.'], []) para3 = secs[3].findall('paragraph') assert_elem( para3[0], ['X', 'bridge label', 'IS NOT TRANSLATABLE BUT LINKED TO TRANSLATED ' + 'SECTION TITLE.'], ['label-bridged-target-section']) assert_elem( para3[1], ['X', 'bridge label', 'POINT TO', 'LABEL BRIDGED TARGET SECTION', 'AND', 'bridge label2', 'POINT TO', 'SECTION AND LABEL', '. THE SECOND APPEARED', 'bridge label2', 'POINT TO CORRECT TARGET.'], ['label-bridged-target-section', 'section-and-label', 'section-and-label']) @sphinx_intl @pytest.mark.sphinx('html') @pytest.mark.test_params(shared_result='test_intl_basic') def test_additional_targets_should_not_be_translated(app): app.build() # [literalblock.txt] result = (app.outdir / 'literalblock.html').read_text() # title should be translated expected_expr = 'CODE-BLOCKS' assert_count(expected_expr, result, 2) # ruby code block should not be translated but be highlighted expected_expr = """<span class="s1">&#39;result&#39;</span>""" assert_count(expected_expr, result, 1) # C code block without lang should not be translated and *ruby* highlighted expected_expr = """<span class="c1">#include &lt;stdlib.h&gt;</span>""" assert_count(expected_expr, result, 1) # C code block with lang should not be translated but be *C* highlighted if pygments_version < (2, 10, 0): expected_expr = ("""<span class="cp">#include</span> """ """<span class="cpf">&lt;stdio.h&gt;</span>""") else: expected_expr = ("""<span class="cp">#include</span>""" """<span class="w"> </span>""" """<span class="cpf">&lt;stdio.h&gt;</span>""") assert_count(expected_expr, result, 1) # literal block in list item should not be translated expected_expr = ("""<span class="n">literal</span>""" """<span class="o">-</span>""" """<span class="n">block</span>\n""" """<span class="k">in</span> """ """<span class="n">list</span>""") assert_count(expected_expr, result, 1) # doctest block should not be translated but be highlighted expected_expr = ( """<span class="gp">&gt;&gt;&gt; </span>""" """<span class="kn">import</span> <span class="nn">sys</span> """ """<span class="c1"># sys importing</span>""") assert_count(expected_expr, result, 1) # [raw.txt] result = (app.outdir / 'raw.html').read_text() # raw block should not be translated if docutils.__version_info__ < (0, 17): expected_expr = """<iframe src="http://sphinx-doc.org"></iframe></div>""" assert_count(expected_expr, result, 1) else: expected_expr = """<iframe src="http://sphinx-doc.org"></iframe></section>""" assert_count(expected_expr, result, 1) # [figure.txt] result = (app.outdir / 'figure.html').read_text() # src for image block should not be translated (alt is translated) expected_expr = """<img alt="I18N -&gt; IMG" src="_images/i18n.png" />""" assert_count(expected_expr, result, 1) # src for figure block should not be translated (alt is translated) expected_expr = """<img alt="IMG -&gt; I18N" src="_images/img.png" />""" assert_count(expected_expr, result, 1) @sphinx_intl @pytest.mark.sphinx( 'html', srcdir='test_additional_targets_should_be_translated', confoverrides={ 'language': 'xx', 'locale_dirs': ['.'], 'gettext_compact': False, 'gettext_additional_targets': [ 'index', 'literal-block', 'doctest-block', 'raw', 'image', ], } ) def test_additional_targets_should_be_translated(app): app.build() # [literalblock.txt] result = (app.outdir / 'literalblock.html').read_text() # title should be translated expected_expr = 'CODE-BLOCKS' assert_count(expected_expr, result, 2) # ruby code block should be translated and be highlighted expected_expr = """<span class="s1">&#39;RESULT&#39;</span>""" assert_count(expected_expr, result, 1) # C code block without lang should be translated and *ruby* highlighted expected_expr = """<span class="c1">#include &lt;STDLIB.H&gt;</span>""" assert_count(expected_expr, result, 1) # C code block with lang should be translated and be *C* highlighted if pygments_version < (2, 10, 0): expected_expr = ("""<span class="cp">#include</span> """ """<span class="cpf">&lt;STDIO.H&gt;</span>""") else: expected_expr = ("""<span class="cp">#include</span>""" """<span class="w"> </span>""" """<span class="cpf">&lt;STDIO.H&gt;</span>""") assert_count(expected_expr, result, 1) # literal block in list item should be translated expected_expr = ("""<span class="no">LITERAL</span>""" """<span class="o">-</span>""" """<span class="no">BLOCK</span>\n""" """<span class="no">IN</span> """ """<span class="no">LIST</span>""") assert_count(expected_expr, result, 1) # doctest block should not be translated but be highlighted expected_expr = ( """<span class="gp">&gt;&gt;&gt; </span>""" """<span class="kn">import</span> <span class="nn">sys</span> """ """<span class="c1"># SYS IMPORTING</span>""") assert_count(expected_expr, result, 1) # [raw.txt] result = (app.outdir / 'raw.html').read_text() # raw block should be translated if docutils.__version_info__ < (0, 17): expected_expr = """<iframe src="HTTP://SPHINX-DOC.ORG"></iframe></div>""" assert_count(expected_expr, result, 1) else: expected_expr = """<iframe src="HTTP://SPHINX-DOC.ORG"></iframe></section>""" assert_count(expected_expr, result, 1) # [figure.txt] result = (app.outdir / 'figure.html').read_text() # alt and src for image block should be translated expected_expr = """<img alt="I18N -&gt; IMG" src="_images/img.png" />""" assert_count(expected_expr, result, 1) # alt and src for figure block should be translated expected_expr = """<img alt="IMG -&gt; I18N" src="_images/i18n.png" />""" assert_count(expected_expr, result, 1) @sphinx_intl @pytest.mark.sphinx('text') @pytest.mark.test_params(shared_result='test_intl_basic') def test_text_references(app, warning): app.builder.build_specific([app.srcdir / 'refs.txt']) warnings = warning.getvalue().replace(os.sep, '/') warning_expr = 'refs.txt:\\d+: ERROR: Unknown target name:' assert_count(warning_expr, warnings, 0) @pytest.mark.sphinx( 'dummy', testroot='images', srcdir='test_intl_images', confoverrides={'language': 'xx'} ) @pytest.mark.xfail(os.name != 'posix', reason="Not working on windows") def test_image_glob_intl(app): app.build() # index.rst doctree = app.env.get_doctree('index') assert_node(doctree[0][1], nodes.image, uri='rimg.xx.png', candidates={'*': 'rimg.xx.png'}) assert isinstance(doctree[0][2], nodes.figure) assert_node(doctree[0][2][0], nodes.image, uri='rimg.xx.png', candidates={'*': 'rimg.xx.png'}) assert_node(doctree[0][3], nodes.image, uri='img.*', candidates={'application/pdf': 'img.pdf', 'image/gif': 'img.gif', 'image/png': 'img.png'}) assert isinstance(doctree[0][4], nodes.figure) assert_node(doctree[0][4][0], nodes.image, uri='img.*', candidates={'application/pdf': 'img.pdf', 'image/gif': 'img.gif', 'image/png': 'img.png'}) # subdir/index.rst doctree = app.env.get_doctree('subdir/index') assert_node(doctree[0][1], nodes.image, uri='subdir/rimg.xx.png', candidates={'*': 'subdir/rimg.xx.png'}) assert_node(doctree[0][2], nodes.image, uri='subdir/svgimg.*', candidates={'application/pdf': 'subdir/svgimg.pdf', 'image/svg+xml': 'subdir/svgimg.xx.svg'}) assert isinstance(doctree[0][3], nodes.figure) assert_node(doctree[0][3][0], nodes.image, uri='subdir/svgimg.*', candidates={'application/pdf': 'subdir/svgimg.pdf', 'image/svg+xml': 'subdir/svgimg.xx.svg'}) @pytest.mark.sphinx( 'dummy', testroot='images', srcdir='test_intl_images', confoverrides={ 'language': 'xx', 'figure_language_filename': '{root}{ext}.{language}', } ) @pytest.mark.xfail(os.name != 'posix', reason="Not working on windows") def test_image_glob_intl_using_figure_language_filename(app): app.build() # index.rst doctree = app.env.get_doctree('index') assert_node(doctree[0][1], nodes.image, uri='rimg.png.xx', candidates={'*': 'rimg.png.xx'}) assert isinstance(doctree[0][2], nodes.figure) assert_node(doctree[0][2][0], nodes.image, uri='rimg.png.xx', candidates={'*': 'rimg.png.xx'}) assert_node(doctree[0][3], nodes.image, uri='img.*', candidates={'application/pdf': 'img.pdf', 'image/gif': 'img.gif', 'image/png': 'img.png'}) assert isinstance(doctree[0][4], nodes.figure) assert_node(doctree[0][4][0], nodes.image, uri='img.*', candidates={'application/pdf': 'img.pdf', 'image/gif': 'img.gif', 'image/png': 'img.png'}) # subdir/index.rst doctree = app.env.get_doctree('subdir/index') assert_node(doctree[0][1], nodes.image, uri='subdir/rimg.png', candidates={'*': 'subdir/rimg.png'}) assert_node(doctree[0][2], nodes.image, uri='subdir/svgimg.*', candidates={'application/pdf': 'subdir/svgimg.pdf', 'image/svg+xml': 'subdir/svgimg.svg'}) assert isinstance(doctree[0][3], nodes.figure) assert_node(doctree[0][3][0], nodes.image, uri='subdir/svgimg.*', candidates={'application/pdf': 'subdir/svgimg.pdf', 'image/svg+xml': 'subdir/svgimg.svg'}) def getwarning(warnings): return strip_escseq(warnings.getvalue().replace(os.sep, '/')) @pytest.mark.sphinx('html', testroot='basic', srcdir='gettext_allow_fuzzy_translations', confoverrides={ 'language': 'de', 'gettext_allow_fuzzy_translations': True }) def test_gettext_allow_fuzzy_translations(app): locale_dir = app.srcdir / 'locales' / 'de' / 'LC_MESSAGES' locale_dir.makedirs() with (locale_dir / 'index.po').open('wb') as f: catalog = Catalog() catalog.add('features', 'FEATURES', flags=('fuzzy',)) pofile.write_po(f, catalog) app.build() content = (app.outdir / 'index.html').read_text() assert 'FEATURES' in content @pytest.mark.sphinx('html', testroot='basic', srcdir='gettext_disallow_fuzzy_translations', confoverrides={ 'language': 'de', 'gettext_allow_fuzzy_translations': False }) def test_gettext_disallow_fuzzy_translations(app): locale_dir = app.srcdir / 'locales' / 'de' / 'LC_MESSAGES' locale_dir.makedirs() with (locale_dir / 'index.po').open('wb') as f: catalog = Catalog() catalog.add('features', 'FEATURES', flags=('fuzzy',)) pofile.write_po(f, catalog) app.build() content = (app.outdir / 'index.html').read_text() assert 'FEATURES' not in content @pytest.mark.sphinx('html', testroot='basic', confoverrides={'language': 'de'}) def test_customize_system_message(make_app, app_params, sphinx_test_tempdir): try: # clear translators cache locale.translators.clear() # prepare message catalog (.po) locale_dir = sphinx_test_tempdir / 'basic' / 'locales' / 'de' / 'LC_MESSAGES' locale_dir.makedirs() with (locale_dir / 'sphinx.po').open('wb') as f: catalog = Catalog() catalog.add('Quick search', 'QUICK SEARCH') pofile.write_po(f, catalog) # construct application and convert po file to .mo args, kwargs = app_params app = make_app(*args, **kwargs) assert (locale_dir / 'sphinx.mo').exists() assert app.translator.gettext('Quick search') == 'QUICK SEARCH' app.build() content = (app.outdir / 'index.html').read_text() assert 'QUICK SEARCH' in content finally: locale.translators.clear()
35.117647
104
0.603263
5b50c0d0d6819e10770bf62ca65017e622e2a31e
3,074
py
Python
img_process.py
willsirius/Openrave_Painter
2584722ee23f97baa54c56d7c9fffcbe895a3cc6
[ "MIT" ]
null
null
null
img_process.py
willsirius/Openrave_Painter
2584722ee23f97baa54c56d7c9fffcbe895a3cc6
[ "MIT" ]
null
null
null
img_process.py
willsirius/Openrave_Painter
2584722ee23f97baa54c56d7c9fffcbe895a3cc6
[ "MIT" ]
null
null
null
import cv2 import time import openravepy import numpy as np img = cv2.imread('obj.jpg') img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) (thresh, im_bw) = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) im_bw = cv2.threshold(im_bw, thresh, 255, cv2.THRESH_BINARY)[1] rows, cols = im_bw.shape[:2] # dimensions of resized m-cap img = [] for i in range(0,rows) : for j in range(0,cols) : if im_bw[i][j] < 255 and i%10 == 0 and j%10 == 0: img.append([-0.2, j*0.001 - 0.1,-i*0.001+1]) if not __openravepy_build_doc__: from openravepy import * from numpy import * def waitrobot(robot): """busy wait for robot completion""" while not robot.GetController().IsDone(): time.sleep(0.01) def tuckarms(env,robot): with env: jointnames = ['l_shoulder_lift_joint','l_elbow_flex_joint','l_wrist_flex_joint','r_shoulder_lift_joint','r_elbow_flex_joint','r_wrist_flex_joint'] robot.SetActiveDOFs([robot.GetJoint(name).GetDOFIndex() for name in jointnames]) robot.SetActiveDOFValues([1.29023451,-2.32099996,-0.69800004,1.27843491,-2.32100002,-0.69799996]); robot.GetController().SetDesired(robot.GetDOFValues()); waitrobot(robot) if __name__ == "__main__": env = Environment() env.SetViewer('qtcoin') collisionChecker = RaveCreateCollisionChecker(env,'ode') env.SetCollisionChecker(collisionChecker) env.Reset() # load a scene from ProjectRoom environment XML file env.Load('hw3.env.xml') time.sleep(0.1) # 1) get the 1st robot that is inside the loaded scene # 2) assign it to the variable named 'robot' robot = env.GetRobots()[0] # jointnames = ['J0','J1','J2','J3','J4','J5'] # robot.SetActiveDOFs([robot.GetJoint(name).GetDOFIndex() for name in jointnames]) print robot tuckarms(env, robot) robot.SetActiveManipulator(robot.GetManipulator('rightarm_torso')) T = robot.GetManipulator('rightarm_torso').GetTransform() point = [T[0,3], T[1,3], T[2,3]] print T print point with env: ikmodel = openravepy.databases.inversekinematics.InverseKinematicsModel(robot,iktype=IkParameterization.Type.Translation3D) print ikmodel if not ikmodel.load(): ikmodel.autogenerate() #h = env.plot3(Tee[0:3,3],10) # plot one point #raw_input('press any key') handles = []; joint_names = ['torso_lift_joint','r_shoulder_pan_joint','r_shoulder_lift_joint', 'r_upper_arm_roll_joint','r_elbow_flex_joint', 'r_forearm_roll_joint', 'r_wrist_flex_joint'] robot.SetActiveDOFs([robot.GetJoint(name).GetDOFIndex() for name in joint_names]); raw_input("Press enter to continue...") for point in img: color = [0,0,0] handles.append(env.plot3(points=point,pointsize=2.0, colors=color)) solutions = ikmodel.manip.FindIKSolution(IkParameterization(point, IkParameterization.Type.Translation3D),IkFilterOptions.CheckEnvCollisions) robot.SetActiveDOFValues(solutions) robot.GetController().SetDesired(robot.GetDOFValues()); T = robot.GetManipulator('rightarm_torso').GetTransform() print "Endeffector After IK" point = [T[0,3], T[1,3], T[2,3]] print point time.sleep(0.02) raw_input("Press enter to exit...")
33.053763
175
0.736174
134dab9647763062c11ff584c1b98d399d6eda74
5,399
py
Python
src/GAN_CNNRegression/train.py
MatthieuSarkis/criticality
2939d7408bcd5d3bf7f237cfe56c836cf361e64f
[ "Apache-2.0" ]
null
null
null
src/GAN_CNNRegression/train.py
MatthieuSarkis/criticality
2939d7408bcd5d3bf7f237cfe56c836cf361e64f
[ "Apache-2.0" ]
null
null
null
src/GAN_CNNRegression/train.py
MatthieuSarkis/criticality
2939d7408bcd5d3bf7f237cfe56c836cf361e64f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Written by Adel Sohbi and Matthieu Sarkis, https://github.com/adelshb, https://github.com/MatthieuSarkis # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Train the GAN model.""" from argparse import ArgumentParser import os from datetime import datetime import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from dcgan import make_generator_model from utils import train_step, val_pred_loss from logger import Logger def main(args, logger_plots = False): save_dir = os.path.join(args.save_dir, datetime.now().strftime("%Y.%m.%d.%H.%M.%S")) tensorboard_writer_gen_loss = tf.summary.create_file_writer(save_dir + "/tensorboard/gen_loss") tensorboard_writer_gen_reg = tf.summary.create_file_writer(save_dir + "/tensorboard/gen_reg") tensorboard_writer_gen_signed_loss = tf.summary.create_file_writer(save_dir + "/tensorboard/gen_signed_loss") tensorboard_writer_val_loss = tf.summary.create_file_writer(save_dir + "/tensorboard/val_loss") print("Tensorboard command line: {}".format("tensorboard --logdir " + save_dir + "/tensorboard")) generator = make_generator_model(args.noise_dim) cnn = tf.keras.models.load_model(args.CNN_model_path) loss_function = tf.keras.losses.MeanAbsoluteError() generator_optimizer = tf.keras.optimizers.Adam(args.lr) checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, generator=generator) checkpoint_dir = os.path.join(save_dir, 'training_checkpoints') checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") logger = Logger(save_dir=save_dir) for epoch in range(args.epochs): logger.set_time_stamp(1) noise = tf.random.normal([args.batch_size, args.noise_dim], mean=args.noise_mean, stddev=args.noise_std) (gen_loss, gen_reg), gen_signed_loss= train_step(generator= generator, cnn= cnn, generator_optimizer= generator_optimizer, loss_function= loss_function, noise= noise, l= args.reg_coeff) val_loss, val_mean_pred, val_stddev = val_pred_loss(generator = generator, cnn = cnn, loss_function = tf.keras.losses.MeanAbsoluteError(), wanted_output = 0.5928, noise_dim = 100, test_size = 1000, noise_mean = 0, noise_stddev = 1.0) with tensorboard_writer_gen_loss.as_default(): tf.summary.scalar("Loss", gen_loss, step=epoch) with tensorboard_writer_gen_reg.as_default(): tf.summary.scalar("Loss", gen_reg, step=epoch) with tensorboard_writer_gen_signed_loss.as_default(): tf.summary.scalar("Loss", gen_signed_loss, step=epoch) with tensorboard_writer_val_loss.as_default(): tf.summary.scalar("Loss", val_loss, step=epoch) if (epoch + 1) % args.ckpt_freq == 0: checkpoint.save(file_prefix= checkpoint_prefix) logger.set_time_stamp(2) logger.logs['generator_loss'].append(gen_loss) logger.logs['generator_reg'].append(gen_reg) logger.logs['generator_signed_loss'].append(gen_signed_loss) logger.logs['val_loss'].append(val_loss) logger.logs['val_pred_mean'].append(val_mean_pred) logger.logs['val_pred_stddev'].append(val_stddev) logger.save_logs() if logger_plots == True: logger.generate_plots(generator= generator, cnn= cnn, epoch= epoch, noise_dim= args.noise_dim, bins_number= args.bins_number) logger.print_status(epoch=epoch) tf.keras.models.save_model(generator, save_dir) logger.save_metadata(vars(args)) if __name__ == "__main__": parser = ArgumentParser() # Model parameters parser.add_argument("--noise_dim", type=int, default=100) parser.add_argument("--noise_mean", type=float, default=0.0) parser.add_argument("--noise_std", type=float, default=1.0) # Training parameters parser.add_argument("--batch_size", type=int, default=256) parser.add_argument("--epochs", type=int, default=500) parser.add_argument("--reg_coeff", type=float, default=1.0) parser.add_argument("--lr", type=float, default=1e-3) # Evaluation parameters parser.add_argument("--CNN_model_path", type=str, default="./saved_models/CNN_L128_N10000/saved-model.h5") parser.add_argument("--bins_number", type=int, default=100) # Save parameters parser.add_argument("--save_dir", type=str, default="./saved_models/gan_cnn_regression") parser.add_argument("--ckpt_freq", type=int, default=10) args = parser.parse_args() main(args)
42.179688
113
0.65438
056147966b1fda2532b1e086eddede0934dd7ef2
1,494
py
Python
Setting/config.py
jyun790430/CrawlerH
4329c42dfbf3eacba9711eaf1dc90106166ecdcc
[ "MIT" ]
null
null
null
Setting/config.py
jyun790430/CrawlerH
4329c42dfbf3eacba9711eaf1dc90106166ecdcc
[ "MIT" ]
3
2021-03-31T19:49:20.000Z
2021-12-13T20:38:02.000Z
Setting/config.py
jyun790430/CrawlerH
4329c42dfbf3eacba9711eaf1dc90106166ecdcc
[ "MIT" ]
null
null
null
#coding:utf-8 MYSQL_CONN = { 'host' : '127.0.0.1', 'db': 'crawlh', 'user': 'root', 'passwd': 'root', 'port': 3306 } PRONHUB_CATEGORY = [ 'https://cn.pornhub.com/video/search?search=%E7%A0%B4%E8%A7%A3' ] PRONHUB_PREMIUM_CATEGORY = [ 'https://cn.pornhubpremium.com/video?c=111&hd=1&premium=1' ] XVIDEOS_CATRGORY = [ "https://www.xvideos.com/best/2020-01", "https://www.xvideos.com/best/2019-12" ] VIDEO_FILE_PATH = "/Users/bryson/videoH" ### Server ID SERVER_ID = 0 ### Thread THREAD_NUM_XVIDEOX = 1 THREAD_NUM_PRONHUB = 1 THREAD_NUM_PRONHUB_PREMIUM = 1 ### Spider Xvideos XVIDEOS_WAIT_S_NEXT_PAGE_URL = 0 XVIDEOS_WAIT_S_NEXT_VIDEO_URL = 0 ### Spider Pronhub PRONHUB_WAIT_S_NEXT_PAGE_URL = 4 PRONHUB_WAIT_S_NEXT_VIDEO_URL = 30 ### Spider Pronhub Preminum PRONHUB_PREMINUM_WAIT_S_NEXT_PAGE_URL = 4 PRONHUB_PREMINUM_WAIT_S_NEXT_VIDEO_URL = 30 ### Download video, wait second to next XVIDEOS_WAIT_S_NEXT_DOWNLOAD = 20 PRONHUB_WAIT_S_NEXT_DOWNLOAD = 90 PRONHUB_PREMINUM_WAIT_S_NEXT_DOWNLOAD = 90 DOWNLOAD_DURATION = 3600 ### Cookie XVIDEOS_COOKIE = "f1403e7e43a3759dsd8VC07olgiro3pnojtnuaayu13qsS7UkSm5QNdHkVdUC12I23K2bkXZtELu_lr7KMfMaXsPOP8HNLVsgSdZrscRC9gdGIhhSevZctyq31QiKNY-yP2XAC3_K5ofbw_rmbhawtBByNKCjsEddnfItYNB-BV-OhJLRawaeVIVh_FF5bUa-xbBBjP59agkj9Cp5mQNKfWKCxx2e_prj-YQFyFoY_CQgkdnv2OV6SF2Xdg%3D" PRONHUB_PREMIUM_COOKIE = "v1Uo81aOoMAF0Hy-bBWsqx7eDaLS5-jHQpCp1kQF9GTIExNTg3MjgzNTM4bzJVVEVGd1o2bTl0NG9ydTFGZmdsOG9iVEVJX0ZJMTlJem1hN2Z4TA.."
25.322034
273
0.789826
a69211bb210d960690ff23acf96e009c7d18cf52
4,083
py
Python
data_structures/linked_list/deque_doubly.py
daltonkato/Python
d1b5b0bc5ceb18f5180a13930254d31159c7e648
[ "MIT" ]
null
null
null
data_structures/linked_list/deque_doubly.py
daltonkato/Python
d1b5b0bc5ceb18f5180a13930254d31159c7e648
[ "MIT" ]
null
null
null
data_structures/linked_list/deque_doubly.py
daltonkato/Python
d1b5b0bc5ceb18f5180a13930254d31159c7e648
[ "MIT" ]
null
null
null
""" Implementing Deque using DoublyLinkedList ... Operations: 1. insertion in the front -> O(1) 2. insertion in the end -> O(1) 3. remove from the front -> O(1) 4. remove from the end -> O(1) """ class _DoublyLinkedBase: """A Private class (to be inherited)""" class _Node: __slots__ = "_prev", "_data", "_next" def __init__(self, link_p, element, link_n): self._prev = link_p self._data = element self._next = link_n def has_next_and_prev(self): return " Prev -> {0}, Next -> {1}".format( self._prev is not None, self._next is not None ) def __init__(self): self._header = self._Node(None, None, None) self._trailer = self._Node(None, None, None) self._header._next = self._trailer self._trailer._prev = self._header self._size = 0 def __len__(self): return self._size def is_empty(self): return self.__len__() == 0 def _insert(self, predecessor, e, successor): # Create new_node by setting it's prev.link -> header # setting it's next.link -> trailer new_node = self._Node(predecessor, e, successor) predecessor._next = new_node successor._prev = new_node self._size += 1 return self def _delete(self, node): predecessor = node._prev successor = node._next predecessor._next = successor successor._prev = predecessor self._size -= 1 temp = node._data node._prev = node._next = node._data = None del node return temp class LinkedDeque(_DoublyLinkedBase): def first(self): """return first element >>> d = LinkedDeque() >>> d.add_first('A').first() 'A' >>> d.add_first('B').first() 'B' """ if self.is_empty(): raise Exception("List is empty") return self._header._next._data def last(self): """return last element >>> d = LinkedDeque() >>> d.add_last('A').last() 'A' >>> d.add_last('B').last() 'B' """ if self.is_empty(): raise Exception("List is empty") return self._trailer._prev._data # DEque Insert Operations (At the front, At the end) def add_first(self, element): """insertion in the front >>> LinkedDeque().add_first('AV').first() 'AV' """ return self._insert(self._header, element, self._header._next) def add_last(self, element): """insertion in the end >>> LinkedDeque().add_last('B').last() 'B' """ return self._insert(self._trailer._prev, element, self._trailer) # DEqueu Remove Operations (At the front, At the end) def remove_first(self): """removal from the front >>> d = LinkedDeque() >>> d.is_empty() True >>> d.remove_first() Traceback (most recent call last): ... IndexError: remove_first from empty list >>> d.add_first('A') # doctest: +ELLIPSIS <data_structures.linked_list.deque_doubly.LinkedDeque object at ... >>> d.remove_first() 'A' >>> d.is_empty() True """ if self.is_empty(): raise IndexError("remove_first from empty list") return self._delete(self._header._next) def remove_last(self): """removal in the end >>> d = LinkedDeque() >>> d.is_empty() True >>> d.remove_last() Traceback (most recent call last): ... IndexError: remove_first from empty list >>> d.add_first('A') # doctest: +ELLIPSIS <data_structures.linked_list.deque_doubly.LinkedDeque object at ... >>> d.remove_last() 'A' >>> d.is_empty() True """ if self.is_empty(): raise IndexError("remove_first from empty list") return self._delete(self._trailer._prev)
28.354167
75
0.55278
401e81bb2bdd923f8c901b49121472e38efa1cc1
35,636
py
Python
irlmethods/general_deep_maxent.py
ranok92/deepirl
88c7e76986243cf0b988d8d7dc0eef6b58e07864
[ "MIT" ]
2
2019-01-04T22:03:15.000Z
2019-04-03T00:16:11.000Z
irlmethods/general_deep_maxent.py
ranok92/deepirl
88c7e76986243cf0b988d8d7dc0eef6b58e07864
[ "MIT" ]
null
null
null
irlmethods/general_deep_maxent.py
ranok92/deepirl
88c7e76986243cf0b988d8d7dc0eef6b58e07864
[ "MIT" ]
null
null
null
""" Implements deep maxent IRL (Wulfmeier et. all) in a general, feature-type agnostic way. """ import sys import random from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam from tensorboardX import SummaryWriter sys.path.insert(0, "..") from neural_nets.base_network import BaseNN from irlmethods.irlUtils import play_features as play from irlmethods.irlUtils import lcr_regularizer, monotonic_regularizer from rlmethods.rlutils import play_complete import utils DEVICE = "cuda" if torch.cuda.is_available() else "cpu" class RewardNet(BaseNN): """Reward network""" def __init__(self, state_dims, hidden_dims=128): super(RewardNet, self).__init__() self.input = nn.Linear(state_dims, hidden_dims) self.linear1 = nn.Linear(hidden_dims, hidden_dims) self.linear2 = nn.Linear(hidden_dims, hidden_dims) self.head = nn.Linear(hidden_dims, 1) def forward(self, x): x = F.relu(self.input(x)) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = torch.tanh(self.head(x)) return x class GeneralDeepMaxent: """ Implements deep maxent IRL (Wulfmeier et. al) in a state-type agnostic way. """ def __init__( self, rl, env, expert_trajectories, learning_rate=1e-3, l2_regularization=1e-5, save_folder="./", saving_interval=10, ): # RL related self.rl = rl self.feature_extractor = self.rl.feature_extractor # environment attributes self.env = env state_size = self.feature_extractor.extract_features( env.reset() ).shape[0] # reward net self.reward_net = RewardNet(state_size, hidden_dims=256) self.reward_net = self.reward_net.to(DEVICE) self.reward_optim = Adam( self.reward_net.parameters(), lr=learning_rate, weight_decay=l2_regularization, ) # expert info self.expert_trajectories = [ traj.to(torch.float).to(DEVICE) for traj in expert_trajectories ] # logging and saving self.save_path = Path(save_folder) self.tbx_writer = SummaryWriter( str(self.save_path / "tensorboard_logs") ) # highjack RL method's tbx_writer self.rl.tbx_writer = self.tbx_writer self.data_table = utils.DataTable() # training meta self.training_i = 0 self.saving_interval = saving_interval def save_models(self, filename=None): self.rl.policy.save(str(self.save_path / "policy"), filename=filename) self.reward_net.save( str(self.save_path / "reward_net"), filename=filename ) def generate_trajectories( self, num_trajectories, max_env_steps, stochastic, ): """ Generate trajectories in environemnt using leanred RL policy. :param num_trajectories: number of trajectories to generate. :type num_trajectories: int :param max_env_steps: max steps to take in environment (rollout length.) :type max_env_steps: int :return: list of features encountered in playthrough. :rtype: list of tensors of shape (num_states x feature_length) """ states = [] for _ in range(num_trajectories): generated_states = play( self.env, self.rl.policy, self.feature_extractor, max_env_steps, stochastic, ) states.append(generated_states) return states def discounted_rewards(self, rewards, gamma, account_for_terminal_state): discounted_sum = 0 t = 0 gamma_t = 1 for t, reward in enumerate(rewards[:-1]): discounted_sum += gamma_t * reward gamma_t *= gamma if account_for_terminal_state: discounted_sum += ( (gamma / (1 - gamma)) * gamma ** (t + 1) * rewards[-1] ) else: discounted_sum += gamma_t * rewards[-1] return discounted_sum def train_episode( self, num_rl_episodes, max_rl_episode_length, num_trajectory_samples, max_env_steps, reset_training, account_for_terminal_state, gamma, stochastic_sampling, ): """ perform IRL training. :param num_rl_episodes: Number of RL iterations for this IRL iteration. :type num_rl_episodes: int. :param max_rl_episode_length: maximum number of environment steps to take when doing rollouts using learned RL agent. :type max_rl_episode_length: int :param num_trajectory_samples: Number of trajectories to sample using learned RL agent. :type num_trajectory_samples: int :param max_env_steps: maximum number of environment steps to take, both when training RL agent and when generating rollouts. :type max_env_steps: int :param reset_training: Whether to reset RL training every iteration or not. :type reset_training: Boolean. :param account_for_terminal_state: Whether to account for a state being terminal or not. If true, (gamma/1-gamma)*R will be immitated by padding the trajectory with its ending state until max_env_steps length is reached. e.g. if max_env_steps is 5, the trajectory [s_0, s_1, s_2] will be padded to [s_0, s_1, s_2, s_2, s_2]. :type account_for_terminal_state: Boolean. :param gamma: The discounting factor. :type gamma: float. :param stochastic_sampling: Sample trajectories using stochastic policy instead of deterministic 'best action policy' :type stochastic_sampling: Boolean. """ # expert loss expert_loss = 0 for traj in self.expert_trajectories: expert_rewards = self.reward_net(traj) expert_loss += self.discounted_rewards( expert_rewards, gamma, account_for_terminal_state ) # policy loss trajectories = self.generate_trajectories( num_trajectory_samples, max_env_steps, stochastic_sampling ) policy_loss = 0 for traj in trajectories: policy_rewards = self.reward_net(traj) policy_loss += self.discounted_rewards( policy_rewards, gamma, account_for_terminal_state ) policy_loss = ( len(self.expert_trajectories) / num_trajectory_samples ) * policy_loss # Backpropagate IRL loss loss = policy_loss - expert_loss self.reward_optim.zero_grad() loss.backward() self.reward_optim.step() # train RL agent if reset_training: self.rl.reset_training() self.rl.train( num_rl_episodes, max_rl_episode_length, reward_network=self.reward_net, ) # logging self.tbx_writer.add_scalar( "IRL/policy_loss", policy_loss, self.training_i ) self.tbx_writer.add_scalar( "IRL/expert_loss", expert_loss, self.training_i ) self.tbx_writer.add_scalar("IRL/total_loss", loss, self.training_i) self.data_table.add_row( { "IRL/policy_loss": policy_loss.item(), "IRL/expert_loss": expert_loss.item(), "IRL/total_loss": loss.item(), }, self.training_i, ) # save policy and reward network # TODO: make a uniform dumping function for all agents. self.save_models(filename="{}.pt".format(self.training_i)) # increment training counter self.training_i += 1 def train( self, num_irl_episodes, num_rl_episodes, max_rl_episode_length, num_trajectory_samples, max_env_steps, reset_training=False, account_for_terminal_state=False, gamma=0.99, stochastic_sampling=False, ): """ Runs the train_episode() function for 'num_irl_episodes' times. Other parameters are identical to the aforementioned function, with the same description and requirements. """ for _ in range(num_irl_episodes): print("IRL episode {}".format(self.training_i), end="\r") self.train_episode( num_rl_episodes, max_rl_episode_length, num_trajectory_samples, max_env_steps, reset_training, account_for_terminal_state, gamma, stochastic_sampling, ) class MixingDeepMaxent(GeneralDeepMaxent): def __init__( self, rl, env, expert_trajectories, learning_rate=0.001, l2_regularization=1e-05, save_folder="./", saving_interval=25, ): super().__init__( rl, env, expert_trajectories, learning_rate=learning_rate, l2_regularization=l2_regularization, save_folder=save_folder, saving_interval=saving_interval, ) # expert and training datasets self.all_trajectories = random.sample( expert_trajectories, len(expert_trajectories) ) self.expert_label_trajectories = [ traj.to(torch.float).to(DEVICE) for traj in self.all_trajectories[ : len(self.all_trajectories) // 2 ] ] self.expert_train_trajectories = [ traj.to(torch.float).to(DEVICE) for traj in self.all_trajectories[ len(self.all_trajectories) // 2 : ] ] self.pre_data_table = utils.DataTable() # initial model save self.save_models(filename="initial_save.pt") def train_episode( self, num_rl_episodes, max_rl_episode_length, max_env_steps, reset_training, account_for_terminal_state, gamma, stochastic_sampling, num_expert_samples, num_policy_samples, ): """ perform IRL with mix-in of expert samples. :param num_rl_episodes: Number of RL iterations for this IRL iteration. :type num_rl_episodes: int. :param max_rl_episode_length: maximum number of environment steps to take when doing rollouts using learned RL agent. :type max_rl_episode_length: int :param num_trajectory_samples: Number of trajectories to sample using learned RL agent. :type num_trajectory_samples: int :param max_env_steps: maximum number of environment steps to take, both when training RL agent and when generating rollouts. :type max_env_steps: int :param reset_training: Whether to reset RL training every iteration or not. :type reset_training: Boolean. :param account_for_terminal_state: Whether to account for a state being terminal or not. If true, (gamma/1-gamma)*R will be immitated by padding the trajectory with its ending state until max_env_steps length is reached. e.g. if max_env_steps is 5, the trajectory [s_0, s_1, s_2] will be padded to [s_0, s_1, s_2, s_2, s_2]. :type account_for_terminal_state: Boolean. :param gamma: The discounting factor. :type gamma: float. :param stochastic_sampling: Sample trajectories using stochastic policy instead of deterministic 'best action policy' :type stochastic_sampling: Boolean. """ # expert loss expert_loss = 0 expert_samples = random.sample( self.expert_trajectories, num_expert_samples ) for traj in expert_samples: expert_rewards = self.reward_net(traj) expert_loss += self.discounted_rewards( expert_rewards, gamma, account_for_terminal_state ) # policy loss trajectories = self.generate_trajectories( num_expert_samples // 2, max_env_steps, stochastic_sampling ) # mix in expert samples. trajectories.extend( random.sample(self.expert_trajectories, num_policy_samples // 2) ) policy_loss = 0 for traj in trajectories: policy_rewards = self.reward_net(traj) policy_loss += self.discounted_rewards( policy_rewards, gamma, account_for_terminal_state ) policy_loss = (num_expert_samples / num_policy_samples) * policy_loss # Backpropagate IRL loss loss = policy_loss - expert_loss self.reward_optim.zero_grad() loss.backward() self.reward_optim.step() # train RL agent if reset_training: self.rl.reset_training() self.rl.train( num_rl_episodes, max_rl_episode_length, reward_network=self.reward_net, ) # logging self.tbx_writer.add_scalar( "IRL/policy_loss", policy_loss, self.training_i ) self.tbx_writer.add_scalar( "IRL/expert_loss", expert_loss, self.training_i ) self.tbx_writer.add_scalar("IRL/total_loss", loss, self.training_i) self.data_table.add_row( { "IRL/policy_loss": policy_loss.item(), "IRL/expert_loss": expert_loss.item(), "IRL/total_loss": loss.item(), }, self.training_i, ) # save policy and reward network # TODO: make a uniform dumping function for all agents. if (self.training_i + 1) % self.saving_interval == 0: self.save_models(filename="{}.pt".format(self.training_i)) # increment training counter self.training_i += 1 def pre_train_episode( self, num_trajectory_samples, account_for_terminal_state, gamma, ): """ perform IRL pre-training by using only expert samples. :param num_trajectory_samples: Number of trajectories to sample using learned RL agent. :type num_trajectory_samples: int :param account_for_terminal_state: Whether to account for a state being terminal or not. If true, (gamma/1-gamma)*R will be immitated by padding the trajectory with its ending state until max_env_steps length is reached. e.g. if max_env_steps is 5, the trajectory [s_0, s_1, s_2] will be padded to [s_0, s_1, s_2, s_2, s_2]. :type account_for_terminal_state: Boolean. :param gamma: The discounting factor. :type gamma: float. """ # expert loss expert_loss = 0 expert_sample = random.sample( self.expert_label_trajectories, num_trajectory_samples ) for traj in expert_sample: expert_rewards = self.reward_net(traj) expert_loss += self.discounted_rewards( expert_rewards, gamma, account_for_terminal_state ) # policy loss trajectories = random.sample( self.expert_train_trajectories, num_trajectory_samples ) generator_loss = 0 for traj in trajectories: policy_rewards = self.reward_net(traj) generator_loss += self.discounted_rewards( policy_rewards, gamma, account_for_terminal_state ) generator_loss = ( len(self.expert_trajectories) / num_trajectory_samples ) * generator_loss # Backpropagate IRL loss loss = generator_loss - expert_loss self.reward_optim.zero_grad() loss.backward() self.reward_optim.step() # logging self.tbx_writer.add_scalar( "pre_IRL/generator_loss", generator_loss, self.training_i ) self.tbx_writer.add_scalar( "pre_IRL/expert_loss", expert_loss, self.training_i ) self.tbx_writer.add_scalar("pre_IRL/total_loss", loss, self.training_i) self.pre_data_table.add_row( { "pre_IRL/policy_loss": generator_loss.item(), "pre_IRL/expert_loss": expert_loss.item(), "pre_IRL/total_loss": loss.item(), }, self.training_i, ) # save policy and reward network self.reward_net.save( str(self.save_path / "reward_net"), filename="pre_{}.pt".format(self.training_i), ) # increment training counter self.training_i += 1 def pre_train( self, num_pretrain_episodes, num_trajectory_samples, account_for_terminal_state=False, gamma=0.99, ): """ Runs the train_episode() function for 'num_irl_episodes' times. Other parameters are identical to the aforementioned function, with the same description and requirements. """ for _ in range(num_pretrain_episodes): print( "IRL pre-training episode {}".format(self.training_i), end="\r" ) self.pre_train_episode( num_trajectory_samples, account_for_terminal_state, gamma ) def train( self, num_irl_episodes, num_rl_episodes, max_rl_episode_length, max_env_steps, reset_training=False, account_for_terminal_state=False, gamma=0.99, stochastic_sampling=False, num_expert_samples=64, num_policy_samples=64, ): """ Runs the train_episode() function for 'num_irl_episodes' times. Other parameters are identical to the aforementioned function, with the same description and requirements. """ for _ in range(num_irl_episodes): print("IRL episode {}".format(self.training_i), end="\r") self.train_episode( num_rl_episodes, max_rl_episode_length, max_env_steps, reset_training, account_for_terminal_state, gamma, stochastic_sampling, num_expert_samples, num_policy_samples, ) # final model save self.save_models(filename="final.pt") class GCL(MixingDeepMaxent): def generate_trajectories(self, num_trajectories, max_env_steps, ped_id=None): """ Generate trajectories in environemnt using leanred RL policy. :param num_trajectories: number of trajectories to generate. :type num_trajectories: int :param max_env_steps: max steps to take in environment (rollout length.) :type max_env_steps: int :return: list of features encountered in playthrough. :rtype: list of tensors of shape (num_states x feature_length) """ buffers = [] for _ in range(num_trajectories): generated_buffer = play_complete( self.rl.policy, self.env, self.feature_extractor, max_env_steps, ped_id=ped_id ) buffers.append(generated_buffer) return buffers def train_episode( self, num_rl_episodes, max_rl_episode_length, max_env_steps, reset_training, account_for_terminal_state, gamma, stochastic_sampling, num_expert_samples, num_policy_samples, ): """ perform IRL with mix-in of expert samples. :param num_rl_episodes: Number of RL iterations for this IRL iteration. :type num_rl_episodes: int. :param max_rl_episode_length: maximum number of environment steps to take when doing rollouts using learned RL agent. :type max_rl_episode_length: int :param num_trajectory_samples: Number of trajectories to sample using learned RL agent. :type num_trajectory_samples: int :param max_env_steps: maximum number of environment steps to take, both when training RL agent and when generating rollouts. :type max_env_steps: int :param reset_training: Whether to reset RL training every iteration or not. :type reset_training: Boolean. :param account_for_terminal_state: Whether to account for a state being terminal or not. If true, (gamma/1-gamma)*R will be immitated by padding the trajectory with its ending state until max_env_steps length is reached. e.g. if max_env_steps is 5, the trajectory [s_0, s_1, s_2] will be padded to [s_0, s_1, s_2, s_2, s_2]. :type account_for_terminal_state: Boolean. :param gamma: The discounting factor. :type gamma: float. :param stochastic_sampling: Sample trajectories using stochastic policy instead of deterministic 'best action policy' :type stochastic_sampling: Boolean. """ # regularizers g_lcr = 0 g_mono = 0 # expert loss expert_loss = 0 expert_samples = random.sample( self.expert_trajectories, num_expert_samples ) for traj in expert_samples: expert_rewards = self.reward_net(traj) # update regularizers g_lcr += lcr_regularizer(expert_rewards) g_mono += monotonic_regularizer(expert_rewards) expert_loss += self.discounted_rewards( expert_rewards, gamma, account_for_terminal_state ) # policy loss trajectories = self.generate_trajectories( num_expert_samples, max_env_steps ) rewards = [] log_pis = [] for traj in trajectories: states = [ torch.from_numpy(tran.state).to(torch.float).to(DEVICE) for tran in traj ] states.append( torch.from_numpy(traj[-1].next_state) .to(torch.float) .to(DEVICE) ) states = torch.stack(states) reward = self.reward_net(states) #update regularizers g_lcr += lcr_regularizer(reward) g_mono += lcr_regularizer(reward) reward_sum = self.discounted_rewards(reward, gamma, traj[-1].done) rewards.append(reward_sum) log_pi = [ torch.from_numpy(tran.action_log_prob) .to(torch.float) .to(DEVICE) for tran in traj ] log_pis.append(torch.tensor(log_pi).sum()) # log sum exp trick exponents = torch.cat(rewards) - torch.tensor(log_pis).to(DEVICE) max_exponent = torch.max(exponents) log_Z = max_exponent + torch.log( torch.exp(exponents - max_exponent).sum() ) policy_loss = log_Z policy_loss = (num_expert_samples) * policy_loss # Backpropagate IRL loss loss = policy_loss - expert_loss + g_mono + g_lcr self.reward_optim.zero_grad() loss.backward() self.reward_optim.step() # train RL agent if reset_training: self.rl.reset_training() self.rl.train( num_rl_episodes, max_rl_episode_length, reward_network=self.reward_net, ) # logging self.tbx_writer.add_scalar( "IRL/policy_loss", policy_loss, self.training_i ) self.tbx_writer.add_scalar( "IRL/expert_loss", expert_loss, self.training_i ) self.tbx_writer.add_scalar("IRL/total_loss", loss, self.training_i) self.tbx_writer.add_scalar("IRL/log_Z", log_Z.item(), self.training_i) self.data_table.add_row( { "IRL/policy_loss": policy_loss.item(), "IRL/expert_loss": expert_loss.item(), "IRL/total_loss": loss.item(), "IRL/log_Z": log_Z.item(), }, self.training_i, ) # save policy and reward network # TODO: make a uniform dumping function for all agents. if (self.training_i + 1) % self.saving_interval == 0: self.save_models(filename="{}.pt".format(self.training_i)) # increment training counter self.training_i += 1 class PerTrajGCL(GCL): def train_episode( self, num_rl_episodes, max_rl_episode_length, max_env_steps, reset_training, account_for_terminal_state, gamma, stochastic_sampling, num_expert_samples, num_policy_samples, ): """ perform IRL with mix-in of expert samples. :param num_rl_episodes: Number of RL iterations for this IRL iteration. :type num_rl_episodes: int. :param max_rl_episode_length: maximum number of environment steps to take when doing rollouts using learned RL agent. :type max_rl_episode_length: int :param num_trajectory_samples: Number of trajectories to sample using learned RL agent. :type num_trajectory_samples: int :param max_env_steps: maximum number of environment steps to take, both when training RL agent and when generating rollouts. :type max_env_steps: int :param reset_training: Whether to reset RL training every iteration or not. :type reset_training: Boolean. :param account_for_terminal_state: Whether to account for a state being terminal or not. If true, (gamma/1-gamma)*R will be immitated by padding the trajectory with its ending state until max_env_steps length is reached. e.g. if max_env_steps is 5, the trajectory [s_0, s_1, s_2] will be padded to [s_0, s_1, s_2, s_2, s_2]. :type account_for_terminal_state: Boolean. :param gamma: The discounting factor. :type gamma: float. :param stochastic_sampling: Sample trajectories using stochastic policy instead of deterministic 'best action policy' :type stochastic_sampling: Boolean. """ # regularizers g_lcr = 0 g_mono = 0 # expert loss expert_loss = 0 expert_samples = random.sample( list(enumerate(self.expert_trajectories)), num_expert_samples ) for _, traj in expert_samples: expert_rewards = self.reward_net(traj) expert_loss += self.discounted_rewards( expert_rewards, gamma, account_for_terminal_state ) # update regularizers g_lcr += lcr_regularizer(expert_rewards) g_mono += monotonic_regularizer(expert_rewards) # policy loss trajectories = [] for idx, _ in expert_samples: trajectories.extend( self.generate_trajectories( num_policy_samples, max_env_steps, idx + 1 ) ) policy_loss = 0 # mix in expert samples. expert_mixin_samples = random.sample( self.expert_trajectories, num_policy_samples // 2 ) rewards = [] log_pis = [] for traj in trajectories: states = [ torch.from_numpy(tran.state).to(torch.float).to(DEVICE) for tran in traj ] states.append( torch.from_numpy(traj[-1].next_state) .to(torch.float) .to(DEVICE) ) states = torch.stack(states) reward = self.reward_net(states) # update regularizers g_lcr += lcr_regularizer(reward) g_mono += monotonic_regularizer(reward) reward_sum = self.discounted_rewards(reward, gamma, traj[-1].done) rewards.append(reward_sum) log_pi = [ torch.from_numpy(tran.action_log_prob) .to(torch.float) .to(DEVICE) for tran in traj ] log_pis.append(torch.tensor(log_pi).sum()) # log sum exp trick exponents = torch.cat(rewards) - torch.tensor(log_pis).to(DEVICE) max_exponent = torch.max(exponents) log_Z = max_exponent + torch.log( torch.exp(exponents - max_exponent).sum() ) policy_loss += log_Z policy_loss = (num_expert_samples) * policy_loss # Backpropagate IRL loss loss = policy_loss - expert_loss + g_mono + g_lcr self.reward_optim.zero_grad() loss.backward() self.reward_optim.step() # train RL agent if reset_training: self.rl.reset_training() self.rl.train( num_rl_episodes, max_rl_episode_length, reward_network=self.reward_net, ) # logging self.tbx_writer.add_scalar( "IRL/policy_loss", policy_loss, self.training_i ) self.tbx_writer.add_scalar( "IRL/expert_loss", expert_loss, self.training_i ) self.tbx_writer.add_scalar("IRL/total_loss", loss, self.training_i) self.tbx_writer.add_scalar("IRL/log_Z", log_Z.item(), self.training_i) self.data_table.add_row( { "IRL/policy_loss": policy_loss.item(), "IRL/expert_loss": expert_loss.item(), "IRL/total_loss": loss.item(), "IRL/log_Z": log_Z.item(), }, self.training_i, ) # save policy and reward network # TODO: make a uniform dumping function for all agents. if (self.training_i + 1) % self.saving_interval == 0: self.save_models(filename="{}.pt".format(self.training_i)) # increment training counter self.training_i += 1 class ExpertOnlyMaxent: """ Implements expert only deep maxent, using only expert demonstrations and no environment interaction. """ def __init__( self, state_size, expert_trajectories, learning_rate=1e-3, l2_regularization=1e-5, save_folder="./", ): # reward net self.reward_net = RewardNet(state_size, hidden_dims=256) self.reward_net = self.reward_net.to(DEVICE) self.reward_optim = Adam( self.reward_net.parameters(), lr=learning_rate, weight_decay=l2_regularization, ) # expert and training datasets self.all_trajectories = random.sample( expert_trajectories, len(expert_trajectories) ) self.expert_trajectories = [ traj.to(torch.float).to(DEVICE) for traj in self.all_trajectories[ : len(self.all_trajectories) // 2 ] ] self.training_trajectories = [ traj.to(torch.float).to(DEVICE) for traj in self.all_trajectories[ len(self.all_trajectories) // 2 : ] ] # logging and saving self.save_path = Path(save_folder) self.tbx_writer = SummaryWriter( str(self.save_path / "tensorboard_logs") ) self.data_table = utils.DataTable() # training meta self.training_i = 0 def discounted_rewards(self, rewards, gamma, account_for_terminal_state): discounted_sum = 0 t = 0 gamma_t = 1 for t, reward in enumerate(rewards[:-1]): discounted_sum += gamma_t * reward gamma_t *= gamma if account_for_terminal_state: discounted_sum += ( (gamma / (1 - gamma)) * gamma ** (t + 1) * rewards[-1] ) else: discounted_sum += gamma_t * rewards[-1] return discounted_sum def train_episode( self, num_trajectory_samples, account_for_terminal_state, gamma, ): """ perform IRL pre-training by using only expert samples. :param num_trajectory_samples: Number of trajectories to sample using learned RL agent. :type num_trajectory_samples: int :param account_for_terminal_state: Whether to account for a state being terminal or not. If true, (gamma/1-gamma)*R will be immitated by padding the trajectory with its ending state until max_env_steps length is reached. e.g. if max_env_steps is 5, the trajectory [s_0, s_1, s_2] will be padded to [s_0, s_1, s_2, s_2, s_2]. :type account_for_terminal_state: Boolean. :param gamma: The discounting factor. :type gamma: float. """ # expert loss expert_loss = 0 expert_sample = random.sample( self.expert_trajectories, num_trajectory_samples ) for traj in expert_sample: expert_rewards = self.reward_net(traj) expert_loss += self.discounted_rewards( expert_rewards, gamma, account_for_terminal_state ) # policy loss trajectories = random.sample( self.training_trajectories, num_trajectory_samples ) generator_loss = 0 for traj in trajectories: policy_rewards = self.reward_net(traj) generator_loss += self.discounted_rewards( policy_rewards, gamma, account_for_terminal_state ) generator_loss = ( len(self.expert_trajectories) / num_trajectory_samples ) * generator_loss # Backpropagate IRL loss loss = generator_loss - expert_loss self.reward_optim.zero_grad() loss.backward() self.reward_optim.step() # logging self.tbx_writer.add_scalar( "IRL/generator_loss", generator_loss, self.training_i ) self.tbx_writer.add_scalar( "IRL/expert_loss", expert_loss, self.training_i ) self.tbx_writer.add_scalar("IRL/total_loss", loss, self.training_i) self.data_table.add_row( { "IRL/policy_loss": generator_loss.item(), "IRL/expert_loss": expert_loss.item(), "IRL/total_loss": loss.item(), }, self.training_i, ) # save policy and reward network self.reward_net.save(str(self.save_path / "reward_net")) # increment training counter self.training_i += 1 def train( self, num_episodes, num_trajectory_samples, account_for_terminal_state=False, gamma=0.99, ): """ Runs the train_episode() function for 'num_irl_episodes' times. Other parameters are identical to the aforementioned function, with the same description and requirements. """ for _ in range(num_episodes): print( "IRL pre-training episode {}".format(self.training_i), end="\r" ) self.train_episode( num_trajectory_samples, account_for_terminal_state, gamma )
31.425044
82
0.599282
3a19ce4041e2b28589f65f5103ddcbb885dafa55
5,286
py
Python
prim's-algo-py.py
kapilbindal/Python-for-beginner
a3e02dc3fe1b847dbda24455400b52b9408a61dd
[ "MIT" ]
48
2018-10-05T19:29:56.000Z
2021-12-31T04:59:37.000Z
prim's-algo-py.py
kapilbindal/Python-for-beginner
a3e02dc3fe1b847dbda24455400b52b9408a61dd
[ "MIT" ]
127
2018-10-05T19:34:28.000Z
2022-02-10T08:50:16.000Z
prim's-algo-py.py
kapilbindal/Python-for-beginner
a3e02dc3fe1b847dbda24455400b52b9408a61dd
[ "MIT" ]
168
2018-10-05T19:30:01.000Z
2022-01-10T11:28:21.000Z
class Graph: def __init__(self): # dictionary containing keys that map to the corresponding vertex object self.vertices = {} def add_vertex(self, key): """Add a vertex with the given key to the graph.""" vertex = Vertex(key) self.vertices[key] = vertex def get_vertex(self, key): """Return vertex object with the corresponding key.""" return self.vertices[key] def __contains__(self, key): return key in self.vertices def add_edge(self, src_key, dest_key, weight=1): """Add edge from src_key to dest_key with given weight.""" self.vertices[src_key].add_neighbour(self.vertices[dest_key], weight) def does_edge_exist(self, src_key, dest_key): """Return True if there is an edge from src_key to dest_key.""" return self.vertices[src_key].does_it_point_to(self.vertices[dest_key]) def display(self): print('Vertices: ', end='') for v in self: print(v.get_key(), end=' ') print() print('Edges: ') for v in self: for dest in v.get_neighbours(): w = v.get_weight(dest) print('(src={}, dest={}, weight={}) '.format(v.get_key(), dest.get_key(), w)) def __len__(self): return len(self.vertices) def __iter__(self): return iter(self.vertices.values()) class Vertex: def __init__(self, key): self.key = key self.points_to = {} def get_key(self): """Return key corresponding to this vertex object.""" return self.key def add_neighbour(self, dest, weight): """Make this vertex point to dest with given edge weight.""" self.points_to[dest] = weight def get_neighbours(self): """Return all vertices pointed to by this vertex.""" return self.points_to.keys() def get_weight(self, dest): """Get weight of edge from this vertex to dest.""" return self.points_to[dest] def does_it_point_to(self, dest): """Return True if this vertex points to dest.""" return dest in self.points_to def mst_prim(g): """Return a minimum cost spanning tree of the connected graph g.""" mst = Graph() # create new Graph object to hold the MST # if graph is empty if not g: return mst nearest_neighbour = {} smallest_distance = {} unvisited = set(g) u = next(iter(g)) # select any one vertex from g mst.add_vertex(u.get_key()) # add a copy of it to the MST unvisited.remove(u) for n in u.get_neighbours(): if n is u: continue nearest_neighbour[n] = mst.get_vertex(u.get_key()) smallest_distance[n] = u.get_weight(n) while (smallest_distance): outside_mst = min(smallest_distance, key=smallest_distance.get) # get the nearest neighbour inside the MST inside_mst = nearest_neighbour[outside_mst] mst.add_vertex(outside_mst.get_key()) mst.add_edge(outside_mst.get_key(), inside_mst.get_key(), smallest_distance[outside_mst]) mst.add_edge(inside_mst.get_key(), outside_mst.get_key(), smallest_distance[outside_mst]) unvisited.remove(outside_mst) del smallest_distance[outside_mst] del nearest_neighbour[outside_mst] for n in outside_mst.get_neighbours(): if n in unvisited: if n not in smallest_distance: smallest_distance[n] = outside_mst.get_weight(n) nearest_neighbour[n] = mst.get_vertex(outside_mst.get_key()) else: if smallest_distance[n] > outside_mst.get_weight(n): smallest_distance[n] = outside_mst.get_weight(n) nearest_neighbour[n] = mst.get_vertex(outside_mst.get_key()) return mst g = Graph() print('Undirected Graph') print('Menu') print('add vertex <key>') print('add edge <src> <dest> <weight>') print('mst') print('display') print('quit') while True: do = input('What would you like to do? ').split() operation = do[0] if operation == 'add': suboperation = do[1] if suboperation == 'vertex': key = int(do[2]) if key not in g: g.add_vertex(key) else: print('Vertex already exists.') elif suboperation == 'edge': src = int(do[2]) dest = int(do[3]) weight = int(do[4]) if src not in g: print('Vertex {} does not exist.'.format(src)) elif dest not in g: print('Vertex {} does not exist.'.format(dest)) else: if not g.does_edge_exist(src, dest): g.add_edge(src, dest, weight) g.add_edge(dest, src, weight) else: print('Edge already exists.') elif operation == 'mst': mst = mst_prim(g) print('Minimum Spanning Tree:') mst.display() print() elif operation == 'display': g.display() print() elif operation == 'quit': break
31.652695
84
0.573023
f88cc96096c4c14e60ec5770bc98e16ecf169790
984
py
Python
osm_policy_module/core/exceptions.py
TCSOSM-20/POL
8ba99ff372d2d8ef13b2c6865b16c0869fa04069
[ "Apache-2.0" ]
null
null
null
osm_policy_module/core/exceptions.py
TCSOSM-20/POL
8ba99ff372d2d8ef13b2c6865b16c0869fa04069
[ "Apache-2.0" ]
null
null
null
osm_policy_module/core/exceptions.py
TCSOSM-20/POL
8ba99ff372d2d8ef13b2c6865b16c0869fa04069
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 Whitestack, LLC # ************************************************************* # This file is part of OSM Monitoring module # All Rights Reserved to Whitestack, LLC # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # For those usages not covered by the Apache License, Version 2.0 please # contact: bdiaz@whitestack.com or glavado@whitestack.com ## class ManagementVduNotFound(Exception): pass class VdurNotFound(Exception): pass
30.75
75
0.703252
25f93b177fcb561caf0d421dc8b8848cc5f6e864
1,372
py
Python
tests/test_CKANTransform.py
bcgov/bcdc_2_bcdc
37f9641ee434fd9a40baf2d652a28a8bede642ce
[ "Apache-2.0" ]
1
2020-01-06T19:28:16.000Z
2020-01-06T19:28:16.000Z
tests/test_CKANTransform.py
bcgov/bcdc_2_bcdc
37f9641ee434fd9a40baf2d652a28a8bede642ce
[ "Apache-2.0" ]
12
2020-04-17T19:25:52.000Z
2021-11-01T21:22:47.000Z
tests/test_CKANTransform.py
bcgov/bcdc_2_bcdc
37f9641ee434fd9a40baf2d652a28a8bede642ce
[ "Apache-2.0" ]
1
2020-04-14T15:50:42.000Z
2020-04-14T15:50:42.000Z
"""used to verify methods in ckanCompare """ import logging import pytest import constants import CKANTransform import pprint # pylint: disable=logging-format-interpolation LOGGER = logging.getLogger(__name__) PP = pprint.PrettyPrinter(indent=4) def test_validateType(Transform): validTypes = constants.VALID_TRANSFORM_TYPES # assert valid types do not raise exception for validType in validTypes: CKANTransform.validateType(validType) inValidTypes = [i + '_INVALID' for i in validTypes] LOGGER.debug(f"invalidTypes: {inValidTypes}") # assert invalid types raise exception with pytest.raises(CKANTransform.InValidTransformationTypeError): for inValidType in inValidTypes: CKANTransform.validateType(inValidType) def test_transformConfig(TransformationConfig): userType = constants.TRANSFORM_TYPE_USERS orgType = constants.TRANSFORM_TYPE_ORGS config_user_auto = TransformationConfig.getAutoPopulatedProperties(userType) config_user_user = TransformationConfig.getUserPopulatedProperties(userType) spacer = "_" * 100 LOGGER.debug(f"{spacer}") LOGGER.debug(f"config_auto: {config_user_auto}") LOGGER.debug(f"config_user: {config_user_user}") config_org_user = TransformationConfig.getUserPopulatedProperties(orgType) LOGGER.debug(f"config_org_user: {config_org_user}")
31.906977
80
0.773324
a5eef10691281dc59ce4a214904965089c20649d
1,100
py
Python
migrations/versions/ef22dd6df3a8_.py
gzxultra/FlaskLoginManagement
0a36a36fa1322e91a35735280bb119c94d016592
[ "MIT" ]
null
null
null
migrations/versions/ef22dd6df3a8_.py
gzxultra/FlaskLoginManagement
0a36a36fa1322e91a35735280bb119c94d016592
[ "MIT" ]
null
null
null
migrations/versions/ef22dd6df3a8_.py
gzxultra/FlaskLoginManagement
0a36a36fa1322e91a35735280bb119c94d016592
[ "MIT" ]
null
null
null
"""empty message Revision ID: ef22dd6df3a8 Revises: 66814cba0685 Create Date: 2016-03-24 22:02:52.556712 """ # revision identifiers, used by Alembic. revision = 'ef22dd6df3a8' down_revision = '66814cba0685' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('about_me', sa.Text(), nullable=True)) op.add_column('users', sa.Column('last_seen', sa.DateTime(), nullable=True)) op.add_column('users', sa.Column('location', sa.String(length=64), nullable=True)) op.add_column('users', sa.Column('member_since', sa.DateTime(), nullable=True)) op.add_column('users', sa.Column('name', sa.String(length=64), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'name') op.drop_column('users', 'member_since') op.drop_column('users', 'location') op.drop_column('users', 'last_seen') op.drop_column('users', 'about_me') ### end Alembic commands ###
31.428571
86
0.687273
d8b2438a78ed241dfad95623bb95bb3e170aa12e
8,247
py
Python
greent/services/omnicorp_postgres.py
TranslatorIIPrototypes/robo-commons
a915d80b70f7e68a70f6a5f7ff6e732d2e02db06
[ "MIT" ]
1
2020-02-05T20:00:52.000Z
2020-02-05T20:00:52.000Z
greent/services/omnicorp_postgres.py
TranslatorIIPrototypes/robo-commons
a915d80b70f7e68a70f6a5f7ff6e732d2e02db06
[ "MIT" ]
12
2020-05-07T16:40:15.000Z
2020-06-16T13:23:13.000Z
greent/services/omnicorp_postgres.py
TranslatorIIPrototypes/robo-commons
a915d80b70f7e68a70f6a5f7ff6e732d2e02db06
[ "MIT" ]
6
2018-02-23T20:25:50.000Z
2019-11-21T14:55:52.000Z
from string import Template import json import os import logging from greent.service import Service from greent.triplestore import TripleStore from greent.util import LoggingUtil from greent.util import Text from greent import node_types from pprint import pprint import datetime from collections import defaultdict import time import psycopg2 logger = LoggingUtil.init_logging(__name__, logging.INFO) """OMNICORP IS NO LONGER CALLED FROM INTERFACES""" class OmniCorp(Service): def __init__(self, context): #triplestore): super(OmniCorp, self).__init__("omnicorp", context) db = context.config['OMNICORP_DB'] user = context.config['OMNICORP_USER'] port = context.config['OMNICORP_PORT'] host = context.config['OMNICORP_HOST'] password = context.config['OMNICORP_PASSWORD'] self.prefixes = set(['UBERON', 'BSPO', 'PATO', 'GO', 'MONDO', 'HP', 'ENVO', 'OBI', 'CL', 'SO', 'CHEBI', 'HGNC', 'MESH']) #self.conn = psycopg2.connect(dbname=db, user=user, host=host, port=port, password=password) self.conn = None self.nsingle = 0 self.total_single_call = datetime.timedelta() self.npair = 0 self.total_pair_call = datetime.timedelta() def __del__(self): self.conn.close() def get_omni_identifier(self,node): #Let's start with just the 'best' identifier identifier = node.id prefix = Text.get_curie(node.id) if prefix not in self.prefixes: #logger.debug("What kinda tomfoolery is this?") #logger.debug(f"{node.id} {node.type}") #logger.debug(f"{node.synonyms}") return None return identifier def get_shared_pmids (self, node1, node2): id1 = self.get_omni_identifier(node1) id2 = self.get_omni_identifier(node2) if id1 is None or id2 is None: return [] done = False ntries = 0 pmids = self.postgres_get_shared_pmids( id1,id2 ) if pmids is None: logger.error("OmniCorp gave up") return None return [ f'PMID:{p}' for p in pmids ] def postgres_get_shared_pmids(self, id1, id2): prefix1 = Text.get_curie(id1) prefix2 = Text.get_curie(id2) start = datetime.datetime.now() cur = self.conn.cursor() statement = f'''SELECT a.pubmedid FROM omnicorp.{prefix1} a JOIN omnicorp.{prefix2} b ON a.pubmedid = b.pubmedid WHERE a.curie = %s AND b.curie = %s ''' cur.execute(statement, (id1, id2)) pmids = [ x[0] for x in cur.fetchall() ] cur.close() end = datetime.datetime.now() self.total_pair_call += (end-start) logger.debug(f'Found {len(pmids)} shared ids in {end-start}. Total {self.total_pair_call}') self.npair += 1 if self.npair % 100 == 0: logger.info(f'NCalls: {self.npair} Total time: {self.total_pair_call} Avg Time: {self.total_pair_call/self.npair}') return pmids def count_pmids(self, node): identifier = self.get_omni_identifier(node) if identifier is None: return 0 prefix = Text.get_curie(identifier) start = datetime.datetime.now() cur = self.conn.cursor() statement = f'SELECT COUNT(pubmedid) from omnicorp.{prefix} WHERE curie = %s' cur.execute(statement, (identifier,)) n = cur.fetchall()[0][0] cur.close() end = datetime.datetime.now() self.total_single_call += (end-start) logger.debug(f'Found {n} pmids in {end-start}. Total {self.total_single_call}') self.nsingle += 1 if self.nsingle % 100 == 0: logger.info(f'NCalls: {self.nsingle} Total time: {self.total_single_call} Avg Time: {self.total_single_call/self.nsingle}') return n ''' def query_omnicorp (self, query): """ Execute and return the result of a SPARQL query. """ return self.triplestore.execute_query (query) def sparql_get_all_shared_pmids (self, identifier_list): text = """ PREFIX dct: <http://purl.org/dc/terms/> SELECT DISTINCT ?pubmed ?term1 ?term2 WHERE { hint:Query hint:analytic true . VALUES ?term1 $id_list_a VALUES ?term2 $id_list_b ?pubmed dct:references ?term1 . ?pubmed dct:references ?term2 . FILTER(STR(?term1) < STR(?term2)) } """ start = datetime.datetime.now() results = self.triplestore.query_template( inputs = { 'id_list_a': identifier_list, 'id_list_b': identifier_list }, outputs = [ 'term1','term2','pubmed' ], template_text = text, post = True ) end = datetime.datetime.now() logger.debug(f'Completed in: {end-start}') return results def sparql_count_pmids (self, identifier): text = """ PREFIX dct: <http://purl.org/dc/terms/> SELECT (COUNT(DISTINCT ?pubmed) as ?count) WHERE { hint:Query hint:analytic true . ?pubmed dct:references <$identifier> . } """ results = self.triplestore.query_template( inputs = { 'identifier': identifier }, outputs = [ 'count' ], template_text = text, ) return results def sparql_get_shared_pmids (self, identifier_a, identifier_b): text = """ PREFIX dct: <http://purl.org/dc/terms/> SELECT DISTINCT ?pubmed WHERE { hint:Query hint:analytic true . ?pubmed dct:references <$id_a> . ?pubmed dct:references <$id_b> . } """ results = self.triplestore.query_template( inputs = { 'id_a': identifier_a, 'id_b': identifier_b }, outputs = [ 'pubmed' ], template_text = text, post = True ) return results def get_all_shared_pmids (self, nodes): oiddict = {self.get_omni_identifier(n):n for n in nodes} oids = [f'<{x}>' for x in filter(lambda n: n is not None, oiddict.keys())] oidsstring = '{ ' + ' '.join(oids) + '}' results = self.sparql_get_all_shared_pmids(oidsstring) pubmeds = defaultdict( list ) for r in results: k = (oiddict[r['term1']],oiddict[r['term2']]) pubmeds[k].append(f"PMID:{r['pubmed'].split('/')[-1]}") for i,node_i in enumerate(nodes): for node_j in nodes[:i]: k_ij = (node_i, node_j) k_ji = (node_j, node_i) if k_ij not in pubmeds and k_ji not in pubmeds: pubmeds[k_ij] = [] return pubmeds def call_with_retries(self,fnc,args): done = False ntries = 0 maxtries = 100 rest_time = 10 #seconds start = datetime.datetime.now() while not done and ntries < maxtries: try: result = fnc(*args) done = True except: logger.warn("OmniCorp error, retrying") time.sleep(rest_time) ntries += 1 if not done: return None else: end = datetime.datetime.now() logger.debug(f'Total call ntries: {ntries}, time: {end-start}') return result def count_pmids(self, node): identifier = self.get_omni_identifier(node) if identifier is None: return 0 res = self.call_with_retries(self.sparql_count_pmids, [identifier]) if res is None: return None else: logger.debug(f"Returned {res[0]['count']}") return res[0]['count'] def get_shared_pmids (self, node1, node2): id1 = self.get_omni_identifier(node1) id2 = self.get_omni_identifier(node2) if id1 is None or id2 is None: return [] done = False ntries = 0 pmids = self.call_with_retries(self.sparql_get_shared_pmids, [id1,id2]) if pmids is None: logger.error("OmniCorp gave up") return None return [ p['pubmed'] for p in pmids ] '''
35.701299
136
0.580575
3259bfaa09c2bc68028764c87a63e0adbf6a4a77
31,629
py
Python
eit/fem.py
ivo53/EIT-MPhys-Project
e907fdb99c2fb0bb2a33686385cfd98f89ec8cb2
[ "BSD-3-Clause" ]
2
2020-09-07T01:24:57.000Z
2020-12-12T16:41:59.000Z
eit/fem.py
ivo53/EIT-MPhys-Project
e907fdb99c2fb0bb2a33686385cfd98f89ec8cb2
[ "BSD-3-Clause" ]
1
2021-09-04T04:21:19.000Z
2021-09-11T11:42:00.000Z
eit/fem.py
ivo53/EIT-MPhys-Project
e907fdb99c2fb0bb2a33686385cfd98f89ec8cb2
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # pylint: disable=invalid-name, no-member, too-many-locals # pylint: disable=too-many-instance-attributes """ 2D/3D FEM routines """ # Copyright (c) Benyuan Liu. All Rights Reserved. # Distributed under the (new) BSD License. See LICENSE.txt for more info. #from __future__ import division, absolute_import, print_function from collections import namedtuple import numpy as np import matplotlib.pyplot as plt import cupy as cp from cupyx.scipy import sparse as sp from scipy.optimize import minimize from .utils import eit_scan_lines from time import time cp.cuda.Device(0).use() class Forward(object): """ FEM forward computing code """ #@profile def __init__(self, mesh, el_pos, ne, z=None): """ A good FEM forward solver should only depend on mesh structure and the position of electrodes NOTE: the nodes are assumed continuous numbered. Parameters ---------- mesh : dict mesh structure el_pos : NDArray numbering of electrodes positions """ # save all arrays on GPU using CuPy self.pts = cp.array(mesh['node']) self.tri = cp.array(mesh['element']) self.tri_perm = cp.array(mesh['perm']) self.el_pos = cp.array(el_pos) # reference electrodes [ref node should not be on electrodes] ref_el = 0 while ref_el in self.el_pos: ref_el = ref_el + 1 self.ref = ref_el # infer dimensions from mesh self.n_pts, self.n_dim = self.pts.shape self.n_tri, self.n_vertices = self.tri.shape self.ne = ne self.n_per_el = int(self.el_pos.size / self.ne) self.twoFromElectrode, self.nodeisElectrode, self.isValid = self.findTrianglesOnElectrodes() if z is None: self.z = 50. * cp.ones(self.ne) else: self.z = z #@profile def solve_eit(self, volt_mat=None, new_ind=None, ex_mat=None, step=1, perm=None, parser=None): """ EIT simulation, generate perturbation matrix and forward v Parameters ---------- ex_mat : NDArray numLines x n_el array, stimulation matrix step : int the configuration of measurement electrodes (default: adjacent) perm : NDArray Mx1 array, initial x0. must be the same size with self.tri_perm parser : str if parser is 'fmmu', within each stimulation pattern, diff_pairs or boundary measurements are re-indexed and started from the positive stimulus electrode if parser is 'std', subtract_row start from the 1st electrode Returns ------- jac : NDArray number of measures x n_E complex array, the Jacobian v : NDArray number of measures x 1 array, simulated boundary measures b_matrix : NDArray back-projection mappings (smear matrix) """ # deduce number of electrodes from number of electrodes and array of positions if ex_mat is None: ex_mat = cp.array(eit_scan_lines(self.ne, int(self.ne/2))) else: ex_mat = cp.array(ex_mat) # initialize/extract the step (takes both integer for constant and array for variable steps) if type(step) is int: step_arr = step * cp.ones(ex_mat.shape[0]) elif type(step) is np.ndarray: if np.shape(step)[0] >= ex_mat.shape[0]: step_arr = cp.array(step) else: raise ValueError('Array is not long enough!') elif (volt_mat is not None) and (new_ind is not None): pass else: raise TypeError('Type of step is not int or ndarray!') # initialize permitivity if perm is None: perm0 = self.tri_perm elif cp.isscalar(perm): perm0 = cp.ones(self.n_tri, dtype=float) else: assert perm.shape == (self.n_tri,) perm0 = cp.array(perm) # calculate stiffness matrix on each element ke = self.calculate_ke() #t_2 = pt() # calculate global stiffness matrix Ag = self.assemble_sparse(ke, self.tri, perm0, self.n_pts, ref=self.ref) #t_1 = pt() # calculate its inverse r_matrix = cp.linalg.inv(Ag) # extract values for electrodes r_el = r_matrix[self.n_pts:] #r_el = r_el.reshape(self.ne, self.n_per_el, r_el.shape[1]) #r_el = cp.mean(r_el, axis=1) #t0 = pt() ''' b = np.zeros((self.n_pts, ex_mat.shape[0])) r_el_np = cp.asnumpy(r_el) ex_mat_np = cp.asnumpy(ex_mat) i = 0 for ex_line in ex_mat_np: b_el = self.optimise_currents(r_el_np, ex_line) b[ex_mat_np[i, 0] * self.n_per_el : (ex_mat_np[i, 0] + 1) * self.n_per_el, i] = b_el[:self.n_per_el] b[ex_mat_np[i, 1] * self.n_per_el : (ex_mat_np[i, 1] + 1) * self.n_per_el, i] = b_el[self.n_per_el:] i += 1 b = cp.array(b)''' # set boundary conditions b = self._natural_boundary(ex_mat) # calculate f matrix (potential at nodes) f = cp.einsum('ij, jh', r_matrix, b) #t1 = pt() # calculate Jacobian jac_i = self.findJac(ex_mat, perm0, ke, f, r_el) #t2 = pt() f_el = f[:, self.n_pts:] #print(f_el[5]) #f_el = f_el.reshape(f_el.shape[0], self.ne, self.n_per_el) #f_el = np.mean(f_el, axis=2) # generate all voltage measurements with given step if volt_mat is None or new_ind is None: volt_mat, new_ind = self.voltMeter(ex_mat, step_arr) elif len(volt_mat) == len(new_ind): volt_mat = cp.array(volt_mat, dtype='i1') new_ind = cp.array(new_ind, dtype='i1') else: raise ValueError('volt_mat and new_ind must be arrays (or lists/tuples) shape (N, 2) and (N) respectively. N is number of measurements.') #t3 = pt() # find differences in voltage and in Jacobian at the measuring electrodes, since absolute values are not needed for conductivity reconstruction V = self.substractRow(f_el, volt_mat, new_ind) J = self.substractRow(jac_i, volt_mat, new_ind) #t4 = pt() # find smearing matrix from f (needed for backprojection) B = self.smearing(f, f_el, volt_mat, new_ind) #t5 = pt() # optional: check time performance ''' print('kg takes:', t_1-t_2) print('inv takes:', t0-t_1) print('dot product takes:', t1-t0) print('Solve takes:', t2-t1) print('voltmeter takes:', t3-t2) print('subtract_row takes:', t4-t3) print('Smearing takes:', t5-t4) ''' #print("New FEM voltages:\n", f) # return result as a tuple pde_result = namedtuple("pde_result", ['jac', 'v', 'b_matrix']) p = pde_result(jac=cp.asnumpy(J), v=cp.asnumpy(V), b_matrix=cp.asnumpy(B)) #print(J.shape) return p def _natural_boundary(self, ex_mat): """ Notes ----- Generate the Neumann boundary condition. In utils.py, you should note that ex_line is local indexed from 0...15, which need to be converted to global node number using el_pos. """ drv_a_global_arr = ex_mat[:, 0] drv_b_global_arr = ex_mat[:, 1] row = cp.arange(ex_mat.shape[0]) b = cp.zeros((self.ne, ex_mat.shape[0])) b[drv_a_global_arr, row] = 1e4 b[drv_b_global_arr, row] = -1e4 b_final = cp.zeros(( self.n_pts + self.ne, ex_mat.shape[0])) b_final[self.n_pts:, :] = b[:] return b_final def findJac(self, ex_mat, perm0, ke, f, r_el): ''' Calculates Jacobian for all measurements takes: ex_mat - array shape (n_source/sinks, 2) - excitation matrix with source and sink for each measurement perm0 - array shape (n_triangles) - initial permittivity on each triangle ke - array shape (n_triangles, n_vertices, n_vertices) - stiffness on each element matrix f - array shape (n_nodes) - voltage on each node of mesh r_el - inverse of global stiffness matrix on electrodes returns: jac - array shape ( n_measurements, n_electrodes, n_triangles) - Jacobian for all measurements ''' # initialise array for Jacobian jac = cp.zeros((ex_mat.shape[0], self.ne, self.n_tri), dtype=perm0.dtype) # calculating jacobian jac[:] = cp.einsum('ijk, jkp, ljp->lij', r_el[:, self.tri], ke, f[:, self.tri], optimize='optimal') #jac = cp.zeros((ex_mat.shape[0], self.ne, self.n_tri), dtype=perm0.dtype) #jac_all_el_pts = jac_all_el_pts.reshape((ex_mat.shape[0], self.ne, self.n_per_el, self.n_tri)) #jac[:] = (1. / self.n_per_el) * np.sum(jac_all_el_pts, axis=2) return jac def substractRow(self, f_el, volt_mat, new_ind): ''' Finds values of f_el for all pairs of measuring electrodes and finds the difference of f_el between its value at the two electrodes. takes: f_el - 1d array volt_mat - array shape (n_measurements, 2) - gives all volt. measurements new_ind - array shape (n_measurements) - helps with finding the relevant source-sink pair for each volt. measurement returns: v_diff - array shape (n_measurements) - difference in voltages or whatever f_el is ''' # get first and second measuring electrode i = volt_mat[:, 0].astype(int) j = volt_mat[:, 1].astype(int) # perform subtraction v_diff = f_el[new_ind, i] - f_el[new_ind, j] #print(v_diff) return v_diff def smearing(self, f, f_el, volt_mat, new_ind): ''' Produces B matrix by comparing voltages takes: f - array shape (n_nodes) f_el - array shape (n_electrodes) volt_mat - array shape (n_measurements, 2) new_ind - array shape (n_measurements) returns: b-matrix - array shape (n_measurements, n_nodes) ''' i = cp.arange(len(volt_mat)) f_volt0 = f_el[new_ind, volt_mat[:, 0].astype(int)] f_volt1 = f_el[new_ind, volt_mat[:, 1].astype(int)] min_fel = cp.minimum(f_volt0, f_volt1) max_fel = cp.maximum(f_volt0, f_volt1) b_matrix = cp.empty((len(volt_mat), self.n_pts+self.ne)) b_matrix[:] = (min_fel[:, None] < f[new_ind]) & (f[new_ind] <= max_fel[:, None]) return b_matrix #@profile def voltMeter(self, ex_mat, step_arr=None, parser=None): ''' Returns all measurements with this step_arr and ex_mat takes: ex_mat - array shape (n_source/sinks, 2) - excitation matrix with source and sink for each measurement step_arr - array shape (n_source/sinks) - step between measuring electrodes for each source/sink pair parser - string returns: pair_mat - array shape (n_measurements, 2) - matrix with all possible meas. electrode combinations ind_new - array shape (n_measurements) - helper array ''' if step_arr is None: step_arr = 1 + cp.arange((ex_mat.shape[0])) % (self.ne) drv_a = ex_mat[:, 0] drv_b = ex_mat[:, 1] i0 = drv_a if parser == 'fmmu' else 0 A = cp.arange(i0, i0 + self.ne) #M = cp.dot(cp.ones(ex_mat.shape[0])[:,None], A[None, :]) % self.ne #N = (M + step_arr[:, None]) % self.ne M = cp.arange(ex_mat.shape[0] * self.ne) % self.ne N = (M.reshape((ex_mat.shape[0], self.ne)) + step_arr[:, None]) % self.ne pair_mat = cp.stack((N.ravel(), M), axis=-1) #ind_new = cp.arange(pair_mat.shape[0]) % ex_mat.shape[0] ind_new = cp.arange(ex_mat.shape[0]) ind_new = cp.tile(ind_new, (self.ne, 1)).T.ravel() #print('before indtest', ind_new[20:70]) nz2 = cp.where(pair_mat == drv_a[ind_new, None]) nz3 = cp.where(pair_mat == drv_b[ind_new, None]) #print(ind_new) ind_ = cp.arange(pair_mat.shape[0]) ind_fin = cp.sum(ind_[:, None] == nz2[0][None], axis=1) ind_fin2 = cp.sum(ind_[:, None] == nz3[0][None], axis=1) ind_test = cp.less((ind_fin + ind_fin2), 0.5 * cp.ones(len(ind_fin))) pair_mat = pair_mat[ind_test, :] ind_new = ind_new[ind_test] sort_index = cp.argsort(ind_new) #print('after indtest', ind_new[20:70]) #meas = cp.concatenate((ex_mat[ind_new], pair_mat), axis=1) #print(meas[20:70]) return pair_mat, ind_new def optimise_currents(self, r_el, ex_line): def charge_cons_src(b): return np.sum(b[0:self.n_per_el]) - 1 def charge_cons_snk(b): return np.sum(b[self.n_per_el:]) + 1 #the optimise function needs to be defined in the class so we can access the r_matrix #redefine function to take only the values of currents for sources/sinks def voltage_opt(b): b_try = np.zeros(self.n_pts) #set values of the currents based on the input to the function b_try [ int(ex_line[0] * self.n_per_el) : int(( ex_line[0] + 1 ) * self.n_per_el) ] = b [0:int(self.n_per_el)] b_try [ ex_line[1] * self.n_per_el : ( ex_line[1] + 1 ) * self.n_per_el ] = b [self.n_per_el:] f_el = np.dot(r_el[0:self.ne * self.n_per_el], b_try) f_el = f_el.reshape(self.ne, self.n_per_el) mean_vector = np.mean(f_el, axis=1).reshape(self.ne, 1) f_el = np.sum(np.abs(f_el - mean_vector)) return f_el bound_src = [0., 1.] bound_snk = [-1., 0.] bounds = np.empty((self.n_per_el * 2, 2)) bounds[0:self.n_per_el] = bound_src bounds[self.n_per_el:] = bound_snk b0 = np.empty(self.n_per_el * 2) b0[0:self.n_per_el] = 1. / self.n_per_el b0[self.n_per_el:] = -1. / self.n_per_el constraint1 = {'type' : 'eq', 'fun' : charge_cons_src} constraint2 = {'type' : 'eq', 'fun' : charge_cons_snk} constraint = [constraint1, constraint2] solution = minimize(voltage_opt, b0, method = 'SLSQP', bounds = bounds, constraints = constraint) #print(solution) return solution.x #@profile def assemble_sparse(self, ke, tri, perm, n_pts, ref=0): ''' function that assembles the global stiffness matrix from all element stiffness matrices takes: ke - stiffness on each element matrix - array shape (n_triangles, n_vertices, n_vertices) tri - array with all indices (in pts array) of triangle vertices - shape (num_triangles, 3) perm - array with permittivity in each element - array shape (num_triangles,) n_pts - number of nodes - int ref - electrode on which reference value is placed returns: K - global stiffness matrix - (n_pts, n_pts) ''' n_tri, n_vertices = tri.shape row = cp.tile(tri, (1, n_vertices)) i = cp.array([0, 3, 6, 1, 4, 7, 2, 5, 8]) row = row[:, i].ravel() col = cp.tile(tri, (n_vertices)).reshape((tri.shape[0] * tri.shape[1] * n_vertices)) admittanceMatrixC2 = self.admittanceMatrixC2() data = cp.multiply(ke[:], perm[:, None, None]) indexElectrode = cp.sort(self.tri[self.twoFromElectrode][self.isValid], axis=1)[:, 0] // self.n_per_el data[self.twoFromElectrode][self.isValid] = (data[self.twoFromElectrode][self.isValid] + ((1/self.z[indexElectrode]))[:, None, None] * admittanceMatrixC2) data = data.ravel() ind = cp.argsort(row) row = row[ind] col = col[ind] data = data[ind] unique, counts = cp.unique(row, return_counts=True) index_pointer = cp.zeros(n_pts + 1) sum_count = cp.cumsum(counts) index_pointer[unique[:]+1] = sum_count[:] K = sp.csr_matrix((data, col, index_pointer), shape=(n_pts, n_pts), dtype=perm.dtype) K = K.toarray() A = cp.empty((self.n_pts + self.ne, self.n_pts + self.ne), dtype='f8') if 0 <= self.ref < n_pts: K[self.ref, :] = 0. K[:, self.ref] = 0. K[self.ref, self.ref] = 1. A[:self.n_pts, :self.n_pts] = K[:] admittanceMatrixE = self.admittanceMatrixE() A[self.n_pts:, :self.n_pts] = admittanceMatrixE.T A[:self.n_pts, self.n_pts:] = admittanceMatrixE A[self.n_pts:, self.n_pts:] = self.admittanceMatrixD() return A def calculate_ke(self): ''' function that calculates the element stiffness matrix on each element takes: pts - array that contains the coordinates of all nodes in the mesh - shape (n_nodes, 2) tri - array with all indices (in pts array) of triangle vertices - shape (num_triangles, 3) returns: ke_array - an array of stiffness matrices for all elements (n_triangles, 3, 3) ''' n_tri, n_vertices = self.tri.shape ke_array = cp.zeros((n_tri, n_vertices, n_vertices)) coord = self.pts[self.tri[:,:]] ke_array[:] = self.triangle_ke(coord) return ke_array def triangle_ke(self, coord): ''' function that calculates ke takes: coord - coordinates of each triangle's nodes - shape (n_triangles, 3, 2) returns: ke_array - an array of stiffness matrices for all elements (n_triangles, 3, 3) ''' s = cp.array(coord[:, [2, 0, 1]] - coord[:, [1, 2, 0]]) # shape (n_tri, 3, 2) ke_matrix = cp.empty((len(coord), 3, 3)) area = cp.abs(0.5 * self.det2x2(s[:, 0], s[:, 1])) ke_matrix[:] = cp.einsum('ijk,kli->ijl', s, s.T) / (4. * area[:, None, None]) return ke_matrix def det2x2(self, s1, s2): ''' Function that calculates the determinants of two arrays ''' return s1[:, 0]*s2[:, 1] - s1[:, 1]*s2[:, 0] def shapeFunctionParameters(self): ''' return arrays of parameters for all shape functions in all triangles on electrodes - shape ((n_el * n_per_el - 1), 3, 3) ''' #print(self.tri[twoFromElectrode][isValid]) pointsTri = self.pts[self.tri[self.twoFromElectrode][self.isValid]] # shape ((n_el * n_per_el - 1), 3, 2) params = cp.empty((pointsTri.shape[0], 3, 3)) params[:, :, 0] = cp.multiply(pointsTri[:, [1, 2, 0], 0], pointsTri[:, [2, 0, 1], 1]) - cp.multiply(pointsTri[:, [2, 0, 1], 0], pointsTri[:, [1, 2, 0], 1]) params[:, :, 1] = pointsTri[:, [1, 2, 0], 1] - pointsTri[:, [2, 0, 1], 1] params[:, :, 2] = - (pointsTri[:, [1, 2, 0], 0] - pointsTri[:, [2, 0, 1], 0]) return params def findTrianglesOnElectrodes(self): twoFromElectrode = (cp.sum(self.tri < self.ne * self.n_per_el, axis = 1) == 2) nodeisElectrode = self.tri[twoFromElectrode][self.tri[twoFromElectrode] < self.ne * self.n_per_el].reshape(self.tri[twoFromElectrode].shape[0], 2) isValid = ( nodeisElectrode[:, 0]//self.n_per_el - nodeisElectrode[:, 1]//self.n_per_el ) == 0 return twoFromElectrode,nodeisElectrode, isValid def admittanceMatrixC2(self): ''' compute matrix to calculate integral of two shape functions over the length of the electrode (assuming they are non-zero) - shape ((n_el * n_per_el - 1), 3, 3, 3) ''' shapeParams = self.shapeFunctionParameters() whereIsZero = (cp.absolute(shapeParams) - 1e-12 < 0) indexZero = cp.where(whereIsZero) isConst = indexZero[2] == 2 # 1 for const x, 0 for const y zeroShapeFunc = cp.array(indexZero[1]) indicesShapeFunctions = cp.outer(cp.ones(shapeParams.shape[0]), cp.arange(3)) indicesShapeFunctions[:, ~zeroShapeFunc] = 0 #print(indexZero) outerOfShapeFunc = cp.einsum('ijk, ipq -> ijpkq', shapeParams, shapeParams) #print(outerOfShapeFunc[0,0,0]) integratingMatrix = cp.empty((outerOfShapeFunc.shape[0], outerOfShapeFunc.shape[3], outerOfShapeFunc.shape[4])) ''' for i in range(20): #print(self.pts[nodeisElectrode[isValid], :][i]) print(nodeisElectrode[isValid][i]) print(self.tri[twoFromElectrode][isValid][i]) #print(nodeisElectrode[isValid])''' sortedElNodeIndices = cp.sort(self.nodeisElectrode[self.isValid], axis=1) #print(sortedElNodeIndices) firstOrderY = cp.empty((outerOfShapeFunc.shape[0])) secondOrderY = cp.empty((outerOfShapeFunc.shape[0])) thirdOrderY = cp.empty((outerOfShapeFunc.shape[0])) constX = cp.ones((outerOfShapeFunc.shape[0], 3)) firstOrderY[:] = self.pts[sortedElNodeIndices, :][:, 1, 1] - self.pts[sortedElNodeIndices, :][:, 0, 1] # y2 - y1 secondOrderY[:] = 0.5 * (cp.power(self.pts[sortedElNodeIndices, :][:, 1, 1], 2) - cp.power(self.pts[sortedElNodeIndices, :][:, 0, 1], 2)) # 1/2 (y2^2 - y1^2) thirdOrderY[:] = 1./3. * (cp.power(self.pts[sortedElNodeIndices, :][:, 1, 1], 3) - cp.power(self.pts[sortedElNodeIndices, :][:, 0, 1], 3)) # 1/3 (y2^3 - y1^3) constX[:, 1] = self.pts[sortedElNodeIndices, :][:, 1, 0] constX = cp.einsum('ij, ik -> ijk', constX, constX) integratingMatrix[:, 0, 0] = firstOrderY[:] integratingMatrix[:, 0, 1] = firstOrderY[:] integratingMatrix[:, 1, 0] = firstOrderY[:] integratingMatrix[:, 0, 2] = secondOrderY[:] integratingMatrix[:, 2, 0] = secondOrderY[:] integratingMatrix[:, 1, 1] = firstOrderY[:] integratingMatrix[:, 1, 2] = secondOrderY[:] integratingMatrix[:, 2, 1] = secondOrderY[:] integratingMatrix[:, 2, 2] = thirdOrderY[:] integratingMatrix[:] = integratingMatrix * isConst[:, None, None] #print(integratingMatrix) #intm = cp.array(integratingMatrix) #print(constX) firstOrderX = cp.empty((outerOfShapeFunc.shape[0])) secondOrderX = cp.empty((outerOfShapeFunc.shape[0])) thirdOrderX = cp.empty((outerOfShapeFunc.shape[0])) constY = cp.ones((outerOfShapeFunc.shape[0], 3)) firstOrderX[:] = self.pts[sortedElNodeIndices, :][:, 1, 0] - self.pts[sortedElNodeIndices, :][:, 0, 0] # x2 - x1 secondOrderX[:] = 0.5 * (cp.power(self.pts[sortedElNodeIndices, :][:, 1, 0], 2) - cp.power(self.pts[sortedElNodeIndices, :][:, 0, 0], 2)) # 1/2 (x2^2 - x1^2) thirdOrderX[:] = 1./3. * (cp.power(self.pts[sortedElNodeIndices, :][:, 1, 0], 3) - cp.power(self.pts[sortedElNodeIndices, :][:, 0, 0], 3)) # 1/3 (x2^3 - x1^3) constY[:, 2] = self.pts[sortedElNodeIndices, :][:, 1, 1] constY = cp.einsum('ij, ik -> ijk', constY, constY) #print(constY) indicesConstX = cp.where(isConst)[0] indicesConstY = cp.where(~isConst)[0] #print(indicesConstY) integratingMatrix[indicesConstY, 0, 0] = firstOrderX[indicesConstY] integratingMatrix[indicesConstY, 0, 1] = secondOrderX[indicesConstY] integratingMatrix[indicesConstY, 1, 0] = secondOrderX[indicesConstY] integratingMatrix[indicesConstY, 0, 2] = firstOrderX[indicesConstY] integratingMatrix[indicesConstY, 2, 0] = firstOrderX[indicesConstY] integratingMatrix[indicesConstY, 1, 1] = thirdOrderX[indicesConstY] integratingMatrix[indicesConstY, 1, 2] = secondOrderX[indicesConstY] integratingMatrix[indicesConstY, 2, 1] = secondOrderX[indicesConstY] integratingMatrix[indicesConstY, 2, 2] = firstOrderX[indicesConstY] ''' for i in range(40): print(intm[i]) print(integratingMatrix[i]) ''' integratingMatrix[indicesConstX] = cp.multiply(integratingMatrix[indicesConstX], constX[indicesConstX]) integratingMatrix[indicesConstY] = cp.multiply(integratingMatrix[indicesConstY], constY[indicesConstY]) admittanceMatrix = cp.einsum('ijklm, ilm -> ijk', outerOfShapeFunc, integratingMatrix) admittanceMatrix[:] = cp.abs(admittanceMatrix) admittanceMatrix[admittanceMatrix < 1e-18] = 0 #admittanceMatrix2 = cp.sum(cp.multiply(outerOfShapeFunc, integratingMatrix[:, None, None, :, :]), axis = [3,4]) #print(admittanceMatrix[:50,:50]) #number_of_equal = cp.sum(cp.equal(cp.round_(admittanceMatrix, 16), cp.round_(admittanceMatrix2, 16))) #print(number_of_equal) #print(number_of_equal == admittanceMatrix.shape[0] * admittanceMatrix.shape[1] * admittanceMatrix.shape[2]) return admittanceMatrix def admittanceMatrixE(self): shapeParams = self.shapeFunctionParameters() whereIsZero = (cp.absolute(shapeParams) - 1e-12 < 0) indexZero = cp.where(whereIsZero) isConst = indexZero[2] == 2 # 1 for const x, 0 for const y indicesConstX = cp.where(isConst)[0] indicesConstY = cp.where(~isConst)[0] sortedElNodeIndices = cp.sort(self.nodeisElectrode[self.isValid], axis=1) admittanceMatrixE = cp.zeros((self.n_pts, self.ne)) shapeMatrix = cp.zeros((shapeParams.shape[0], shapeParams.shape[1], 2)) integratingMatrix = cp.zeros((shapeParams.shape[0], 2)) shapeMatrix[indicesConstY, :, 0] = shapeParams[indicesConstY, :, 0] + shapeParams[indicesConstY, :, 2] * self.pts[sortedElNodeIndices, :][indicesConstY, 1, 1][:, None] shapeMatrix[indicesConstY, :, 1] = shapeParams[indicesConstY, :, 1] shapeMatrix[indicesConstX, :, 0] = shapeParams[indicesConstX, :, 0] + shapeParams[indicesConstX, :, 1] * self.pts[sortedElNodeIndices, :][indicesConstX, 1, 0][:, None] shapeMatrix[indicesConstX, :, 1] = shapeParams[indicesConstX, :, 2] integratingMatrix[indicesConstY, 0] = self.pts[sortedElNodeIndices, :][indicesConstY, 1, 0] - self.pts[sortedElNodeIndices, :][indicesConstY, 0, 0] integratingMatrix[indicesConstY, 1] = 0.5 * (cp.power(self.pts[sortedElNodeIndices, :][indicesConstY, 1, 0], 2) - cp.power(self.pts[sortedElNodeIndices, :][indicesConstY, 0, 0], 2)) integratingMatrix[indicesConstX, 0] = self.pts[sortedElNodeIndices, :][indicesConstX, 1, 1] - self.pts[sortedElNodeIndices, :][indicesConstX, 0, 1] integratingMatrix[indicesConstX, 1] = 0.5 * (cp.power(self.pts[sortedElNodeIndices, :][indicesConstX, 1, 1], 2) - cp.power(self.pts[sortedElNodeIndices, :][indicesConstX, 0, 1], 2)) #print(integratingMatrix.shape) integrals = cp.einsum('ijk, ik -> ij', shapeMatrix, integratingMatrix) integrals[:] = cp.abs(integrals) #integr = cp.sum(cp.multiply(shapeMatrix, integratingMatrix[:, None]), axis=2) #print(cp.sum(cp.round_(integrals, 16) == cp.round_(integr, 16))) indexElectrode = sortedElNodeIndices[:, 0] // self.n_per_el #print(indexElectrode) integrals = - integrals / self.z[indexElectrode][:, None, None] integrals = integrals.ravel() indexElectrode = cp.tile(indexElectrode, (self.n_per_el, 1)).T.ravel() #print(self.tri[twoFromElectrode][isValid]) indexNode = self.tri[self.twoFromElectrode][self.isValid].ravel() #admittanceMatrixE [self.tri[twoFromElectrode][isValid].ravel(), indexElectrode] += integrals.ravel() indSort = cp.argsort(indexNode) indexNode = indexNode[indSort] indexElectrode = indexElectrode[indSort] integrals = integrals[indSort] unique, counts = cp.unique(indexNode, return_counts=True) #print("number of unique entries", unique.shape) #print("counts \n", counts) index_pointer = cp.zeros(self.n_pts + 1) sum_count = cp.cumsum(counts) #print(sum_count) index_pointer[unique[:]+1] = sum_count[:] #print(index_pointer) nonzeroes = cp.nonzero(index_pointer)[0] #print(nonzeroes) mask = cp.zeros(index_pointer.shape[0], dtype='b1') mask[nonzeroes] = True mask[0] = True zeroes = cp.where(~mask)[0] #time_loop = time() while (index_pointer[1:]==0).any(): index_pointer[zeroes] = index_pointer[zeroes - 1] #for z in zeroes: # index_pointer[z] = index_pointer[z-1] '''for i in range(index_pointer.shape[0]): if i == 0: continue elif index_pointer[i] == 0: index_pointer[i] = index_pointer[i-1]''' #print('time for loop ',time()-time_loop) #index_pointer2 = cp.arange(self.n_pts + 1) #print('indexEl', indexElectrode) #print(index_pointer) admittanceMatrixE = sp.csr_matrix((integrals, indexElectrode, index_pointer), shape=(self.n_pts, self.ne), dtype=integrals.dtype) adm = admittanceMatrixE.toarray(); #print(integrals) #print(indexNode) #print(indexElectrode) #a = (sortedElNodeIndices[0,0]) #print(adm[4]) # print(adm[:,1]) #print('sum zeroes ',cp.sum(adm>0)) return adm; def admittanceMatrixD(self): all_el_nodes_coords = self.pts[:(self.ne * self.n_per_el)].reshape((self.ne, self.n_per_el, 2)) lengths = cp.linalg.norm((all_el_nodes_coords[:, 0] - all_el_nodes_coords[:, (self.n_per_el - 1)]), axis=1) admittanceMatrixD = cp.diag(lengths/self.z) return admittanceMatrixD def _k_tetrahedron(xy): """ given a point-matrix of an element, solving for Kij analytically using barycentric coordinates (simplex coordinates) Parameters ---------- xy : NDArray (x,y) of nodes 1, 2, 3, 4 given in counterclockwise manner, see notes. Returns ------- ke_matrix : NDArray local stiffness matrix Notes ----- A tetrahedron is described using [0, 1, 2, 3] (local node index) or [171, 27, 9, 53] (global index). Counterclockwise (CCW) is defined such that the barycentric coordinate of face (1->2->3) is positive. """ s = xy[[2, 3, 0, 1]] - xy[[1, 2, 3, 0]] # volume of the tetrahedron # TODO: remove abs, user must make sure all tetrahedrons are CCW. vt = np.abs(1./6 * la.det(s[[0, 1, 2]])) # calculate area (vector) of triangle faces # re-normalize using alternative (+,-) signs ij_pairs = [[0, 1], [1, 2], [2, 3], [3, 0]] signs = [1, -1, 1, -1] a = [sign*np.cross(s[i], s[j]) for (i, j), sign in zip(ij_pairs, signs)] a = np.array(a) # local (e for element) stiffness matrix ke_matrix = np.dot(a, a.transpose()) / (36. * vt) return ke_matrix
44.673729
190
0.59085
07ca034f42ed9914133896adf55819b82f730358
3,447
py
Python
tools/adb.py
lingyfh/r8
03f8577d014124c37760c0d6439a8dcbeb0742a1
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
3
2021-07-03T15:26:05.000Z
2021-09-01T09:50:44.000Z
tools/adb.py
lingyfh/r8
03f8577d014124c37760c0d6439a8dcbeb0742a1
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
null
null
null
tools/adb.py
lingyfh/r8
03f8577d014124c37760c0d6439a8dcbeb0742a1
[ "BSD-3-Clause", "Apache-2.0", "MIT" ]
1
2021-09-24T10:09:20.000Z
2021-09-24T10:09:20.000Z
#!/usr/bin/env python # Copyright (c) 2020, the R8 project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import subprocess import time import utils def install_apk_on_emulator(apk, emulator_id, quiet=False): cmd = ['adb', '-s', emulator_id, 'install', '-r', '-d', apk] if quiet: subprocess.check_output(cmd) else: subprocess.check_call(cmd) def uninstall_apk_on_emulator(app_id, emulator_id): process = subprocess.Popen( ['adb', '-s', emulator_id, 'uninstall', app_id], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() stdout = stdout.decode('UTF-8') stderr = stderr.decode('UTF-8') if stdout.strip() == 'Success': # Successfully uninstalled return if 'Unknown package: {}'.format(app_id) in stderr: # Application not installed return # Check if the app is listed in packages packages = subprocess.check_output(['adb', 'shell', 'pm', 'list', 'packages']) if not 'package:' + app_id in packages: return raise Exception( 'Unexpected result from `adb uninstall {}\nStdout: {}\nStderr: {}'.format( app_id, stdout, stderr)) def wait_for_emulator(emulator_id): stdout = subprocess.check_output(['adb', 'devices']).decode('UTF-8') if '{}\tdevice'.format(emulator_id) in stdout: return True print('Emulator \'{}\' not connected; waiting for connection'.format( emulator_id)) time_waited = 0 while True: time.sleep(10) time_waited += 10 stdout = subprocess.check_output(['adb', 'devices']).decode('UTF-8') if '{}\tdevice'.format(emulator_id) not in stdout: print('... still waiting for connection') if time_waited >= 5 * 60: return False else: return True def run_monkey(app_id, emulator_id, apk, monkey_events, quiet, enable_logging): if not wait_for_emulator(emulator_id): return False install_apk_on_emulator(apk, emulator_id, quiet) # Intentionally using a constant seed such that the monkey generates the same # event sequence for each shrinker. random_seed = 42 cmd = ['adb', '-s', emulator_id, 'shell', 'monkey', '-p', app_id, '-s', str(random_seed), str(monkey_events)] try: stdout = utils.RunCmd(cmd, quiet=quiet, logging=enable_logging) succeeded = ('Events injected: {}'.format(monkey_events) in stdout) except subprocess.CalledProcessError as e: succeeded = False uninstall_apk_on_emulator(app_id, emulator_id) return succeeded def run_instrumented(app_id, test_id, emulator_id, apk, test_apk, quiet, enable_logging, test_runner='androidx.test.runner.AndroidJUnitRunner'): if not wait_for_emulator(emulator_id): return None install_apk_on_emulator(apk, emulator_id, quiet) install_apk_on_emulator(test_apk, emulator_id, quiet) cmd = ['adb', '-s', emulator_id, 'shell', 'am', 'instrument', '-w', '{}/{}'.format(test_id, test_runner)] try: stdout = utils.RunCmd(cmd, quiet=quiet, logging=enable_logging) # The runner will print OK (X tests) if completed succesfully succeeded = any("OK (" in s for s in stdout) except subprocess.CalledProcessError as e: succeeded = False uninstall_apk_on_emulator(test_id, emulator_id) uninstall_apk_on_emulator(app_id, emulator_id) return succeeded
30.776786
80
0.693937
0b37439270d732847abdfbf043fc10cd217545d3
303
py
Python
src/backend/app/utils/jsonutils.py
douglasdaly/dougliz-wedding
da673baf3a7387c3818960c0ffa12ab7c830a89b
[ "MIT" ]
5
2020-02-02T02:39:23.000Z
2021-08-17T15:50:57.000Z
src/backend/app/utils/jsonutils.py
douglasdaly/dougliz-wedding
da673baf3a7387c3818960c0ffa12ab7c830a89b
[ "MIT" ]
4
2021-03-31T19:39:57.000Z
2022-01-22T09:29:10.000Z
src/backend/app/utils/jsonutils.py
douglasdaly/dougliz-wedding
da673baf3a7387c3818960c0ffa12ab7c830a89b
[ "MIT" ]
1
2020-04-12T17:11:43.000Z
2020-04-12T17:11:43.000Z
# -*- coding: utf-8 -*- """ JSON utilities. """ import json from uuid import UUID class JSONEncoderUUID(json.JSONEncoder): """ JSON Encoder with UUID support. """ def default(self, obj): if isinstance(obj, UUID): return obj.hex return super().default(obj)
16.833333
40
0.59736
610228375392606f289a9d6cc2fc1b6be0d0ae40
3,572
py
Python
custom_components/fpl/config_flow.py
dorgan/hass-fpl
304b4d4f5f6186202fee1d94fb988a298f8f0777
[ "MIT" ]
null
null
null
custom_components/fpl/config_flow.py
dorgan/hass-fpl
304b4d4f5f6186202fee1d94fb988a298f8f0777
[ "MIT" ]
null
null
null
custom_components/fpl/config_flow.py
dorgan/hass-fpl
304b4d4f5f6186202fee1d94fb988a298f8f0777
[ "MIT" ]
null
null
null
from collections import OrderedDict import voluptuous as vol from .fplapi import FplApi from homeassistant import config_entries import aiohttp from .const import DOMAIN, CONF_USERNAME, CONF_PASSWORD, CONF_NAME from .fplapi import ( LOGIN_RESULT_OK, LOGIN_RESULT_INVALIDUSER, LOGIN_RESULT_INVALIDPASSWORD, ) from homeassistant.core import callback @callback def configured_instances(hass): """Return a set of configured SimpliSafe instances.""" entites = [] for entry in hass.config_entries.async_entries(DOMAIN): entites.append(f"{entry.data.get(CONF_USERNAME)}") return set(entites) class FplFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL def __init__(self): """Initialize.""" self._errors = {} async def async_step_user( self, user_input={} ): # pylint: disable=dangerous-default-value """Handle a flow initialized by the user.""" self._errors = {} if self._async_current_entries(): return self.async_abort(reason="single_instance_allowed") if self.hass.data.get(DOMAIN): return self.async_abort(reason="single_instance_allowed") if user_input is not None: username = user_input[CONF_USERNAME] password = user_input[CONF_PASSWORD] if username not in configured_instances(self.hass): api = FplApi(username, password, None) result = await api.login() if result == LOGIN_RESULT_OK: fplData = await api.get_data() accounts = fplData["accounts"] user_input["accounts"] = accounts return self.async_create_entry(title="", data=user_input) if result == LOGIN_RESULT_INVALIDUSER: self._errors[CONF_USERNAME] = "invalid_username" if result == LOGIN_RESULT_INVALIDPASSWORD: self._errors[CONF_PASSWORD] = "invalid_password" if result == None: self._errors["base"] = "auth" else: self._errors[CONF_NAME] = "name_exists" return await self._show_config_form(user_input) return await self._show_config_form(user_input) async def _show_config_form(self, user_input): """Show the configuration form to edit location data.""" # Defaults username = "" password = "" if user_input is not None: if CONF_USERNAME in user_input: username = user_input[CONF_USERNAME] if CONF_PASSWORD in user_input: password = user_input[CONF_PASSWORD] data_schema = OrderedDict() data_schema[vol.Required(CONF_USERNAME, default=username)] = str data_schema[vol.Required(CONF_PASSWORD, default=password)] = str return self.async_show_form( step_id="user", data_schema=vol.Schema(data_schema), errors=self._errors ) async def async_step_import(self, user_input): # pylint: disable=unused-argument """Import a config entry. Special type of import, we're not actually going to store any data. Instead, we're going to rely on the values that are in config file. """ if self._async_current_entries(): return self.async_abort(reason="single_instance_allowed") return self.async_create_entry(title="configuration.yaml", data={})
32.472727
85
0.640258
2a717c2d0f014320e0c6db667e1b75eef413486c
282
py
Python
invenio_stats/contrib/file_download/__init__.py
Glignos/invenio-stats
dd17ed37932d78432a4637498c1e54131ae66a9a
[ "MIT" ]
null
null
null
invenio_stats/contrib/file_download/__init__.py
Glignos/invenio-stats
dd17ed37932d78432a4637498c1e54131ae66a9a
[ "MIT" ]
null
null
null
invenio_stats/contrib/file_download/__init__.py
Glignos/invenio-stats
dd17ed37932d78432a4637498c1e54131ae66a9a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """File downloads Elasticsearch index templates."""
28.2
72
0.712766
1ffda41af80d6a2b20206f773189fa59adacb773
960
py
Python
text generator/scrapy/indeed/pipelines.py
BaiganKing/allay-ds
a04f1eba7880e9f88b7f3e94f4213b3d755c92ea
[ "MIT" ]
1
2020-04-08T22:26:39.000Z
2020-04-08T22:26:39.000Z
text generator/scrapy/indeed/pipelines.py
BaiganKing/allay-ds
a04f1eba7880e9f88b7f3e94f4213b3d755c92ea
[ "MIT" ]
7
2020-04-23T20:43:37.000Z
2020-11-13T17:14:24.000Z
text generator/scrapy/indeed/pipelines.py
BloomTech-Labs/allay-ds
ee81a9ff0eb28a19f1c634ce72f5752c36ffc786
[ "MIT" ]
3
2020-04-29T15:32:22.000Z
2020-08-13T15:40:41.000Z
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html from scrapy.exceptions import DropItem from scrapy.exporters import CsvItemExporter class ValidateItemPipeline(object): def process_item(self, item, spider): if not all(item.values()): raise DropItem("Missing values!") else: return item class WriteItemPipeline(object): def __init__(self): self.filename = 'indeed.csv' def open_spider(self, spider): self.csvfile = open(self.filename, 'wb') self.exporter = CsvItemExporter(self.csvfile) self.exporter.start_exporting() def close_spider(self, spider): self.exporter.finish_exporting() self.csvfile.close() def process_item(self, item, spider): self.exporter.export_item(item) return item
27.428571
65
0.675
232a418260d4319f55376ac35f5f394d36a3ea13
55,927
py
Python
entity_event/models.py
robdmc/django-entity-event
8426734faba5e22169b3c329aa9e088b9300dd35
[ "MIT" ]
null
null
null
entity_event/models.py
robdmc/django-entity-event
8426734faba5e22169b3c329aa9e088b9300dd35
[ "MIT" ]
null
null
null
entity_event/models.py
robdmc/django-entity-event
8426734faba5e22169b3c329aa9e088b9300dd35
[ "MIT" ]
null
null
null
from collections import defaultdict from datetime import datetime from operator import or_ from six.moves import reduce from cached_property import cached_property from django.contrib.postgres.fields import JSONField from django.core.serializers.json import DjangoJSONEncoder from django.db import models, transaction from django.db.models import Q from django.db.models.query import QuerySet from django.template.loader import render_to_string from django.template import Context, Template from django.utils.encoding import python_2_unicode_compatible from entity.models import Entity, EntityRelationship from entity_event.context_serializer import DefaultContextSerializer @python_2_unicode_compatible class Medium(models.Model): """ A ``Medium`` is an object in the database that defines the method by which users will view events. The actual objects in the database are fairly simple, only requiring a ``name``, ``display_name`` and ``description``. Mediums can be created with ``Medium.objects.create``, using the following parameters: :type name: str :param name: A short, unique name for the medium. :type display_name: str :param display_name: A short, human readable name for the medium. Does not need to be unique. :type description: str :param description: A human readable description of the medium. Encoding a ``Medium`` object in the database serves two purposes. First, it is referenced when subscriptions are created. Second the ``Medium`` objects provide an entry point to query for events and have all the subscription logic and filtering taken care of for you. Any time a new way to display events to a user is created, a corresponding ``Medium`` should be created. Some examples could include a medium for sending email notifications, a medium for individual newsfeeds, or a medium for a site wide notification center. Once a medium object is created, and corresponding subscriptions are created, there are three methods on the medium object that can be used to query for events. They are ``events``, ``entity_events`` and ``events_targets``. The differences between these methods are described in their corresponding documentation. A medium can use a ``RenderingStyle`` to use a configured style of rendering with the medium. Any associated ``ContextRenderer`` models defined with that rendering style will be used to render events in the ``render`` method of the medium. This is an optional part of Entity Event's built-in rendering system. If a rendering style is not set up for a particular source or source group, it will try to use the default rendering style specified in settings. A medium can also provided ``additional_context`` that will always be passed to the templates of its rendered events. This allows for medium-specific rendering styles to be used. For example, perhaps a medium wishes to display a short description of an event but does not wish to display the names of the event actors since those names are already displayed in other places on the page. In this case, the medium can always pass additional context to suppress rendering of names. """ # A name and display name for the medium along with a description for any # application display name = models.CharField(max_length=64, unique=True) display_name = models.CharField(max_length=64) description = models.TextField() time_created = models.DateTimeField(auto_now_add=True) # The rendering style determines the primary way the medium will try to render events. # If a context loader has been defined for this rendering style along with the appropriate # source, the renderer will be used. If a context renderer has not been set up with this # rendering style, it will try to use the default style configured in settings. rendering_style = models.ForeignKey('entity_event.RenderingStyle', null=True, on_delete=models.CASCADE) # These values are passed in as additional context to whatever event is being rendered. additional_context = JSONField(null=True, default=None, encoder=DjangoJSONEncoder) def __str__(self): """ Readable representation of ``Medium`` objects. """ return self.display_name @transaction.atomic def events(self, **event_filters): """ Return subscribed events, with basic filters. This method of getting events is useful when you want to display events for your medium, independent of what entities were involved in those events. For example, this method can be used to display a list of site-wide events that happened in the past 24 hours: .. code-block:: python TEMPLATE = ''' <html><body> <h1> Yoursite's Events </h1> <ul> {% for event in events %} <li> {{ event.context.event_text }} </li> {% endfor %} </ul> </body></html> ''' def site_feed(request): site_feed_medium = Medium.objects.get(name='site_feed') start_time = datetime.utcnow() - timedelta(days=1) context = {} context['events'] = site_feed_medium.events(start_time=start_time) return HttpResponse(TEMPLATE.render(context)) While the `events` method does not filter events based on what entities are involved, filtering based on the properties of the events themselves is supported, through the following arguments, all of which are optional. :type start_time: datetime.datetime (optional) :param start_time: Only return events that occurred after the given time. If no time is given for this argument, no filtering is done. :type end_time: datetime.datetime (optional) :param end_time: Only return events that occurred before the given time. If no time is given for this argument, no filtering is done :type seen: Boolean (optional) :param seen: This flag controls whether events that have marked as seen are included. By default, both events that have and have not been marked as seen are included. If ``True`` is given for this parameter, only events that have been marked as seen will be included. If ``False`` is given, only events that have not been marked as seen will be included. :type include_expired: Boolean (optional) :param include_expired: By default, events that have a expiration time, which has passed, are not included in the results. Passing in ``True`` to this argument causes expired events to be returned as well. :type actor: Entity (optional) :param actor: Only include events with the given entity as an actor. :type mark_seen: Boolean (optional) :param mark_seen: Create a side effect in the database that marks all the returned events as having been seen by this medium. :rtype: EventQuerySet :returns: A queryset of events. """ events = self.get_filtered_events(**event_filters) subscriptions = Subscription.objects.cache_related().filter( medium=self ) subscription_q_objects = [ Q( eventactor__entity__in=self.followed_by(sub.subscribed_entities()), source=sub.source ) for sub in subscriptions if sub.only_following ] subscription_q_objects.append( Q(source__in=[sub.source for sub in subscriptions if not sub.only_following])) events = events.cache_related().filter(reduce(or_, subscription_q_objects)) return events @transaction.atomic def entity_events(self, entity, **event_filters): """ Return subscribed events for a given entity. This method of getting events is useful when you want to see only the events relevant to a single entity. The events returned are events that the given entity is subscribed to, either directly as an individual entity, or because they are part of a group subscription. As an example, the `entity_events` method can be used to implement a newsfeed for a individual entity: .. code-block:: python TEMPLATE = ''' <html><body> <h1> {entity}'s Events </h1> <ul> {% for event in events %} <li> {{ event.context.event_text }} </li> {% endfor %} </ul> </body></html> ''' def newsfeed(request): newsfeed_medium = Medium.objects.get(name='newsfeed') entity = Entity.get_for_obj(request.user) context = {} context['entity'] = entity context['events'] = site_feed_medium.entity_events(entity, seen=False, mark_seen=True) return HttpResponse(TEMPLATE.render(context)) The only required argument for this method is the entity to get events for. Filtering based on the properties of the events themselves is supported, through the rest of the following arguments, which are optional. :type_entity: Entity :param entity: The entity to get events for. :type start_time: datetime.datetime (optional) :param start_time: Only return events that occurred after the given time. If no time is given for this argument, no filtering is done. :type end_time: datetime.datetime (optional) :param end_time: Only return events that occurred before the given time. If no time is given for this argument, no filtering is done :type seen: Boolean (optional) :param seen: This flag controls whether events that have marked as seen are included. By default, both events that have and have not been marked as seen are included. If ``True`` is given for this parameter, only events that have been marked as seen will be included. If ``False`` is given, only events that have not been marked as seen will be included. :type include_expired: Boolean (optional) :param include_expired: By default, events that have a expiration time, which has passed, are not included in the results. Passing in ``True`` to this argument causes expired events to be returned as well. :type actor: Entity (optional) :param actor: Only include events with the given entity as an actor. :type mark_seen: Boolean (optional) :param mark_seen: Create a side effect in the database that marks all the returned events as having been seen by this medium. :rtype: EventQuerySet :returns: A queryset of events. """ events = self.get_filtered_events(**event_filters) subscriptions = Subscription.objects.filter(medium=self) subscriptions = self.subset_subscriptions(subscriptions, entity) subscription_q_objects = [ Q( eventactor__entity__in=self.followed_by(entity), source=sub.source ) for sub in subscriptions if sub.only_following ] subscription_q_objects.append( Q(source__in=[sub.source for sub in subscriptions if not sub.only_following]) ) return [ event for event in events.filter(reduce(or_, subscription_q_objects)) if self.filter_source_targets_by_unsubscription(event.source_id, [entity]) ] @transaction.atomic def events_targets(self, entity_kind=None, **event_filters): """ Return all events for this medium, with who each event is for. This method is useful for individually notifying every entity concerned with a collection of events, while still respecting subscriptions and usubscriptions. For example, ``events_targets`` can be used to send email notifications, by retrieving all unseen events (and marking them as now having been seen), and then processing the emails. In code, this could look like: .. code-block:: python email = Medium.objects.get(name='email') new_emails = email.events_targets(seen=False, mark_seen=True) for event, targets in new_emails: django.core.mail.send_mail( subject = event.context["subject"] message = event.context["message"] recipient_list = [t.entity_meta["email"] for t in targets] ) This ``events_targets`` method attempts to make bulk processing of push-style notifications straightforward. This sort of processing should normally occur in a separate thread from any request/response cycle. Filtering based on the properties of the events themselves is supported, through the rest of the following arguments, which are optional. :type entity_kind: EntityKind :param entity_kind: Only include targets of the given kind in each targets list. :type start_time: datetime.datetime (optional) :param start_time: Only return events that occurred after the given time. If no time is given for this argument, no filtering is done. :type end_time: datetime.datetime (optional) :param end_time: Only return events that occurred before the given time. If no time is given for this argument, no filtering is done :type seen: Boolean (optional) :param seen: This flag controls whether events that have marked as seen are included. By default, both events that have and have not been marked as seen are included. If ``True`` is given for this parameter, only events that have been marked as seen will be included. If ``False`` is given, only events that have not been marked as seen will be included. :type include_expired: Boolean (optional) :param include_expired: By default, events that have a expiration time, which has passed, are not included in the results. Passing in ``True`` to this argument causes expired events to be returned as well. :type actor: Entity (optional) :param actor: Only include events with the given entity as an actor. :type mark_seen: Boolean (optional) :param mark_seen: Create a side effect in the database that marks all the returned events as having been seen by this medium. :rtype: List of tuples :returns: A list of tuples in the form ``(event, targets)`` where ``targets`` is a list of entities. """ events = self.get_filtered_events(**event_filters) subscriptions = Subscription.objects.filter(medium=self) event_pairs = [] for event in events: targets = [] for sub in subscriptions: if event.source != sub.source: continue subscribed = sub.subscribed_entities() if sub.only_following: potential_targets = self.followers_of( event.eventactor_set.values_list('entity__id', flat=True) ) subscription_targets = list(Entity.objects.filter( Q(id__in=subscribed), Q(id__in=potential_targets))) else: subscription_targets = list(subscribed) targets.extend(subscription_targets) targets = self.filter_source_targets_by_unsubscription(event.source_id, targets) if entity_kind: targets = [t for t in targets if t.entity_kind == entity_kind] if targets: event_pairs.append((event, targets)) return event_pairs def subset_subscriptions(self, subscriptions, entity=None): """ Return only subscriptions the given entity is a part of. An entity is "part of a subscription" if either: 1. The subscription is for that entity, with no sub-entity-kind. That is, it is not a group subscription. 2. The subscription is for a super-entity of the given entity, and the subscription's sub-entity-kind is the same as that of the entity's. :type subscriptions: QuerySet :param subscriptions: A QuerySet of subscriptions to subset. :type entity: (optional) Entity :param entity: Subset subscriptions to only those relevant for this entity. :rtype: QuerySet :returns: A queryset of filtered subscriptions. """ if entity is None: return subscriptions super_entities = EntityRelationship.objects.filter( sub_entity=entity).values_list('super_entity') subscriptions = subscriptions.filter( Q(entity=entity, sub_entity_kind=None) | Q(entity__in=super_entities, sub_entity_kind=entity.entity_kind) ) return subscriptions @cached_property def unsubscriptions(self): """ Returns the unsubscribed entity IDs for each source as a dict, keyed on source_id. :rtype: Dictionary :returns: A dictionary of the form ``{source_id: entities}`` where ``entities`` is a list of entities unsubscribed from that source for this medium. """ unsubscriptions = defaultdict(list) for unsub in Unsubscription.objects.filter(medium=self).values('entity', 'source'): unsubscriptions[unsub['source']].append(unsub['entity']) return unsubscriptions def filter_source_targets_by_unsubscription(self, source_id, targets): """ Given a source id and targets, filter the targets by unsubscriptions. Return the filtered list of targets. """ unsubscriptions = self.unsubscriptions return [t for t in targets if t.id not in unsubscriptions[source_id]] def get_filtered_events_queries(self, start_time, end_time, seen, include_expired, actor): """ Return Q objects to filter events table to relevant events. The filters that are applied are those passed in from the method that is querying the events table: One of ``events``, ``entity_events`` or ``events_targets``. The arguments have the behavior documented in those methods. :rtype: List of Q objects :returns: A list of Q objects, which can be used as arguments to ``Event.objects.filter``. """ now = datetime.utcnow() filters = [] if start_time is not None: filters.append(Q(time__gte=start_time)) if end_time is not None: filters.append(Q(time__lte=end_time)) if not include_expired: filters.append(Q(time_expires__gte=now)) # Check explicitly for True and False as opposed to None # - `seen==False` gets unseen notifications # - `seen is None` does no seen/unseen filtering if seen is True: filters.append(Q(eventseen__medium=self)) elif seen is False: unseen_ids = _unseen_event_ids(medium=self) filters.append(Q(id__in=unseen_ids)) # Filter by actor if actor is not None: filters.append(Q(eventactor__entity=actor)) return filters def get_filtered_events( self, start_time=None, end_time=None, seen=None, mark_seen=False, include_expired=False, actor=None): """ Retrieves events, filters by event level filters, and marks them as seen if necessary. :rtype: EventQuerySet :returns: All events which match the given filters. """ filtered_events_queries = self.get_filtered_events_queries(start_time, end_time, seen, include_expired, actor) events = Event.objects.filter(*filtered_events_queries) if seen is False and mark_seen: # Evaluate the event qset here and create a new queryset that is no longer filtered by # if the events are marked as seen. We do this because we want to mark the events # as seen in the next line of code. If we didn't evaluate the qset here first, it result # in not returning unseen events since they are marked as seen. events = Event.objects.filter(id__in=list(e.id for e in events)) events.mark_seen(self) return events def followed_by(self, entities): """ Define what entities are followed by the entities passed to this method. This method can be overridden by a class that concretely inherits ``Medium``, to define custom semantics for the ``only_following`` flag on relevant ``Subscription`` objects. Overriding this method, and ``followers_of`` will be sufficient to define that behavior. This method is not useful to call directly, but is used by the methods that filter events and targets. This implementation attempts to provide a sane default. In this implementation, the entities followed by the ``entities`` argument are the entities themselves, and their super entities. That is, individual entities follow themselves, and the groups they are a part of. This works as a default implementation, but, for example, an alternate medium may wish to define the opposite behavior, where an individual entity follows themselves and all of their sub-entities. Return a queryset of the entities that the given entities are following. This needs to be the inverse of ``followers_of``. :type entities: Entity or EntityQuerySet :param entities: The Entity, or QuerySet of Entities of interest. :rtype: EntityQuerySet :returns: A QuerySet of all the entities followed by any of those given. """ if isinstance(entities, Entity): entities = Entity.objects.filter(id=entities.id) super_entities = EntityRelationship.objects.filter( sub_entity__in=entities).values_list('super_entity') followed_by = Entity.objects.filter( Q(id__in=entities) | Q(id__in=super_entities)) return followed_by def followers_of(self, entities): """ Define what entities are followers of the entities passed to this method. This method can be overridden by a class that concretely inherits ``Medium``, to define custom semantics for the ``only_following`` flag on relevant ``Subscription`` objects. Overriding this method, and ``followed_by`` will be sufficient to define that behavior. This method is not useful to call directly, but is used by the methods that filter events and targets. This implementation attempts to provide a sane default. In this implementation, the followers of the entities passed in are defined to be the entities themselves, and their sub-entities. That is, the followers of individual entities are themselves, and if the entity has sub-entities, those sub-entities. This works as a default implementation, but, for example, an alternate medium may wish to define the opposite behavior, where an the followers of an individual entity are themselves and all of their super-entities. Return a queryset of the entities that follow the given entities. This needs to be the inverse of ``followed_by``. :type entities: Entity or EntityQuerySet :param entities: The Entity, or QuerySet of Entities of interest. :rtype: EntityQuerySet :returns: A QuerySet of all the entities who are followers of any of those given. """ if isinstance(entities, Entity): entities = Entity.objects.filter(id=entities.id) sub_entities = EntityRelationship.objects.filter( super_entity__in=entities).values_list('sub_entity') followers_of = Entity.objects.filter( Q(id__in=entities) | Q(id__in=sub_entities)) return followers_of def render(self, events): """ Renders a list of events for this medium. The events first have their contexts loaded. Afterwards, the rendered events are returned as a dictionary keyed on the event itself. The key points to a tuple of (txt, html) renderings of the event. :type events: list :param events: A list or queryset of Event models. :rtype: dict :returns: A dictionary of rendered text and html tuples keyed on the provided events. """ from entity_event import context_loader context_loader.load_contexts_and_renderers(events, [self]) return {e: e.render(self) for e in events} @python_2_unicode_compatible class Source(models.Model): """ A ``Source`` is an object in the database that represents where events come from. These objects only require a few fields, ``name``, ``display_name`` ``description``, and ``group``. Source objects categorize events based on where they came from, or what type of information they contain. Each source should be fairly fine grained, with broader categorizations possible through ``SourceGroup`` objects. Sources can be created with ``Source.objects.create`` using the following parameters: :type name: str :param name: A short, unique name for the source. :type display_name: str :param display_name: A short, human readable name for the source. Does not need to be unique. :type description: str :param description: A human readable description of the source. :type group: SourceGroup :param group: A SourceGroup object. A broad grouping of where the events originate. Storing source objects in the database servers two purposes. The first is to provide an object that Subscriptions can reference, allowing different categories of events to be subscribed to over different mediums. The second is to allow source instances to store a reference to a function which can populate event contexts with additional information that is relevant to the source. This allows ``Event`` objects to be created with minimal data duplication. Once sources are created, they will primarily be used to categorize events, as each ``Event`` object requires a reference to a source. Additionally they will be referenced by ``Subscription`` objects to route events of the given source to be handled by a given medium. """ name = models.CharField(max_length=64, unique=True) display_name = models.CharField(max_length=64) description = models.TextField() group = models.ForeignKey('entity_event.SourceGroup', on_delete=models.CASCADE) def __str__(self): """ Readable representation of ``Source`` objects. """ return self.display_name @python_2_unicode_compatible class SourceGroup(models.Model): """ A ``SourceGroup`` object is a high level categorization of events. Since ``Source`` objects are meant to be very fine grained, they are collected into ``SourceGroup`` objects. There is no additional behavior associated with the source groups other than further categorization. Source groups can be created with ``SourceGroup.objects.create``, which takes the following arguments: :type name: str :param name: A short, unique name for the source group. :type display_name: str :param display_name: A short, human readable name for the source group. Does not need to be unique. :type description: str :param description: A human readable description of the source group. """ name = models.CharField(max_length=64, unique=True) display_name = models.CharField(max_length=64) description = models.TextField() def __str__(self): """ Readable representation of ``SourceGroup`` objects. """ return self.display_name @python_2_unicode_compatible class Unsubscription(models.Model): """ Because django-entity-event allows for whole groups to be subscribed to events at once, unsubscribing an entity is not as simple as removing their subscription object. Instead, the Unsubscription table provides a simple way to ensure that an entity does not see events if they don't want to. Unsubscriptions are created for a single entity at a time, where they are unsubscribed for events from a source on a medium. This is stored as an ``Unsubscription`` object in the database, which can be created using ``Unsubscription.objects.create`` using the following arguments: :type entity: Entity :param entity: The entity to unsubscribe. :type medium: Medium :param medium: The ``Medium`` object representing where they don't want to see the events. :type source: Source :param source: The ``Source`` object representing what category of event they no longer want to see. Once an ``Unsubscription`` object is created, all of the logic to ensure that they do not see events form the given source by the given medium is handled by the methods used to query for events via the ``Medium`` object. That is, once the object is created, no more work is needed to unsubscribe them. """ entity = models.ForeignKey('entity.Entity', on_delete=models.CASCADE) medium = models.ForeignKey('entity_event.Medium', on_delete=models.CASCADE) source = models.ForeignKey('entity_event.Source', on_delete=models.CASCADE) def __str__(self): """ Readable representation of ``Unsubscription`` objects. """ s = '{entity} from {source} by {medium}' entity = self.entity.__str__() source = self.source.__str__() medium = self.medium.__str__() return s.format(entity=entity, source=source, medium=medium) class SubscriptionQuerySet(QuerySet): """ A custom QuerySet for Subscriptions. """ def cache_related(self): """ Cache any related objects that we may use :return: """ return self.select_related('medium', 'source', 'entity', 'sub_entity_kind') @python_2_unicode_compatible class Subscription(models.Model): """ Which types of events are available to which mediums is controlled through ``Subscription`` objects. By creating a ``Subscription`` object in the database, you are storing that events from a given ``Source`` object should be available to a given ``Medium`` object. Each ``Subscription`` object can be one of two levels, either an individual subscription or a group subscription. Additionally, each ``Subscription`` object can be one of two types of subscription, either a global subscription, or an "only following" subscription. ``Subscription`` objects are created using ``Subscription.objects.create`` which takes the following arguments: :type medium: Medium :param medium: The ``Medium`` object to make events available to. :type source: Source :param source: The ``Source`` object that represents the category of events to make available. :type entity: Entity :param entity: The entity to subscribe in the case of an individual subscription, or in the case of a group subscription, the super-entity of the group. :type sub_entity_kind: (optional) EntityKind :param sub_entity_kind: When creating a group subscription, this is a foreign key to the ``EntityKind`` of the sub-entities to subscribe. In the case of an individual subscription, this should be ``None``. :type only_following: Boolean :param only_following: If ``True``, events will be available to entities through the medium only if the entities are following the actors of the event. If ``False``, the events will all be available to all the entities through the medium. When a ``Medium`` object is used to query for events, only the events that have a subscription for their source to that medium will ever be returned. This is an extremely useful property that allows complex subscription logic to be handled simply by storing subscription objects in the database. Storing subscriptions is made simpler by the ability to subscribe groups of entities with a single subscription object. Groups of entities of a given kind can be subscribed by subscribing their super-entity and providing the ``sub_entity_kind`` argument. Subscriptions further are specified to be either an "only following" subscription or not. This specification controls what events will be returned when ``Medium.entity_events`` is called, and controls what targets are returned when ``Medium.events_targets`` is called. For example, if events are created for a new photo being uploaded (from a single source called, say "photos"), and we want to provide individuals with a notification in their newsfeed (through a medium called "newsfeed"), we want to be able to display only the events where the individual is tagged in the photo. By setting ``only_following`` to true the following code would only return events where the individual was included in the ``EventActor`` s, rather than returning all "photos" events: .. code-block:: python user_entity = Entity.objects.get_for_obj(user) newsfeed_medium = Medium.objects.get(name='newsfeed') newsfeed.entity_events(user) The behavior of what constitutes "following" is controlled by the Medium class. A default implementation of following is provided and documented in the ``Medium.followers_of`` and ``Medium.followed_by`` methods, but could be extended by subclasses of Medium. """ medium = models.ForeignKey('entity_event.Medium', on_delete=models.CASCADE) source = models.ForeignKey('entity_event.Source', on_delete=models.CASCADE) entity = models.ForeignKey('entity.Entity', related_name='+', on_delete=models.CASCADE) sub_entity_kind = models.ForeignKey( 'entity.EntityKind', null=True, related_name='+', default=None, on_delete=models.CASCADE ) only_following = models.BooleanField(default=True) objects = SubscriptionQuerySet.as_manager() def __str__(self): """ Readable representation of ``Subscription`` objects. """ s = '{entity} to {source} by {medium}' entity = self.entity.__str__() source = self.source.__str__() medium = self.medium.__str__() return s.format(entity=entity, source=source, medium=medium) def subscribed_entities(self): """ Return a queryset of all subscribed entities. This will be a single entity in the case of an individual subscription, otherwise it will be all the entities in the group subscription. :rtype: EntityQuerySet :returns: A QuerySet of all the entities that are a part of this subscription. """ if self.sub_entity_kind is not None: sub_entities = self.entity.sub_relationships.filter( sub_entity__entity_kind=self.sub_entity_kind).values_list('sub_entity') entities = Entity.objects.filter(id__in=sub_entities) else: entities = Entity.all_objects.filter(id=self.entity.id) return entities class EventQuerySet(QuerySet): """ A custom QuerySet for Events. """ def cache_related(self): """ Cache any related objects that we may use :return: """ return self.select_related( 'source' ).prefetch_related( 'source__group' ) def mark_seen(self, medium): """ Creates EventSeen objects for the provided medium for every event in the queryset. Creating these EventSeen objects ensures they will not be returned when passing ``seen=False`` to any of the medium event retrieval functions, ``events``, ``entity_events``, or ``events_targets``. """ EventSeen.objects.bulk_create([ EventSeen(event=event, medium=medium) for event in self ]) def load_contexts_and_renderers(self, medium): """ Loads context data into the event ``context`` variable. This method destroys the queryset and returns a list of events. """ from entity_event import context_loader return context_loader.load_contexts_and_renderers(self, [medium]) class EventManager(models.Manager): """ A custom Manager for Events. """ def get_queryset(self): """ Return the EventQuerySet. """ return EventQuerySet(self.model) def cache_related(self): """ Return a queryset with prefetched values :return: """ return self.get_queryset().cache_related() def mark_seen(self, medium): """ Creates EventSeen objects for the provided medium for every event in the queryset. Creating these EventSeen objects ensures they will not be returned when passing ``seen=False`` to any of the medium event retrieval functions, ``events``, ``entity_events``, or ``events_targets``. """ return self.get_queryset().mark_seen(medium) def load_contexts_and_renderers(self, medium): """ Loads context data into the event ``context`` variable. This method destroys the queryset and returns a list of events. """ return self.get_queryset().load_contexts_and_renderers(medium) @transaction.atomic def create_event(self, actors=None, ignore_duplicates=False, **kwargs): """ Create events with actors. This method can be used in place of ``Event.objects.create`` to create events, and the appropriate actors. It takes all the same keywords as ``Event.objects.create`` for the event creation, but additionally takes a list of actors, and can be told to not attempt to create an event if a duplicate event exists. :type source: Source :param source: A ``Source`` object representing where the event came from. :type context: dict :param context: A dictionary containing relevant information about the event, to be serialized into JSON. It is possible to load additional context dynamically when events are fetched. See the documentation on the ``ContextRenderer`` model. :type uuid: str :param uuid: A unique string for the event. Requiring a ``uuid`` allows code that creates events to ensure they do not create duplicate events. This id could be, for example some hash of the ``context``, or, if the creator is unconcerned with creating duplicate events a call to python's ``uuid1()`` in the ``uuid`` module. :type time_expires: datetime (optional) :param time_expires: If given, the default methods for querying events will not return this event after this time has passed. :type actors: (optional) List of entities or list of entity ids. :param actors: An ``EventActor`` object will be created for each entity in the list. This allows for subscriptions which are only following certain entities to behave appropriately. :type ignore_duplicates: (optional) Boolean :param ignore_duplicates: If ``True``, a check will be made to ensure that an event with the give ``uuid`` does not exist before attempting to create the event. Setting this to ``True`` allows the creator of events to gracefully ensure no duplicates are attempted to be created. There is a uniqueness constraint on uuid so it will raise an exception if duplicates are allowed and submitted. :rtype: Event :returns: The created event. Alternatively if a duplicate event already exists and ``ignore_duplicates`` is ``True``, it will return ``None``. """ kwargs['actors'] = actors kwargs['ignore_duplicates'] = ignore_duplicates events = self.create_events([kwargs]) if events: return events[0] return None def create_events(self, kwargs_list): """ Create events in bulk to save on queries. Each element in the kwargs list should be a dict with the same set of arguments you would normally pass to create_event :param kwargs_list: list of kwargs dicts :return: list of Event """ # Build map of uuid to event info uuid_map = { kwargs.get('uuid', ''): { 'actors': kwargs.pop('actors', []), 'ignore_duplicates': kwargs.pop('ignore_duplicates', False), 'event_kwargs': kwargs } for kwargs in kwargs_list } # Check for uuids uuid_set = set(Event.objects.filter(uuid__in=uuid_map.keys()).values_list('uuid', flat=True)) # Set a flag for whether each uuid exists for uuid, event_dict in uuid_map.items(): event_dict['exists'] = uuid in uuid_set # Build list of events to bulk create events_to_create = [] for uuid, event_dict in uuid_map.items(): # If the event doesn't already exist or the event does exist but we are allowing duplicates if not event_dict['exists'] or not event_dict['ignore_duplicates']: events_to_create.append(Event(**event_dict['event_kwargs'])) # Bulk create the events created_events = Event.objects.bulk_create(events_to_create) # Build list of EventActor objects to bulk create event_actors_to_create = [] for created_event in created_events: event_dict = uuid_map[created_event.uuid] if event_dict['actors'] is not None: for actor in event_dict['actors']: actor_id = actor.id if hasattr(actor, 'id') else actor event_actors_to_create.append(EventActor(entity_id=actor_id, event=created_event)) EventActor.objects.bulk_create(event_actors_to_create) return created_events @python_2_unicode_compatible class Event(models.Model): """ ``Event`` objects store information about events. By storing events, from a given source, with some context, they are made available to any ``Medium`` object with an appropriate subscription. Events can be created with ``Event.objects.create_event``, documented above. When creating an event, the information about what occurred is stored in a JSON blob in the ``context`` field. This context can be any type of information that could be useful for displaying events on a given Medium. It is entirely the role of the application developer to ensure that there is agreement between what information is stored in ``Event.context`` and what information the code the processes and displays events on each medium expects. Events will usually be created by code that also created, or knows about the ``Source`` object that is required to create the event. To prevent storing unnecessary data in the context, this code can define a context loader function when creating this source, which can be used to dynamically fetch more data based on whatever limited amount of data makes sense to store in the context. This is further documented in the ``Source`` documentation. """ source = models.ForeignKey('entity_event.Source', on_delete=models.CASCADE) context = JSONField(encoder=DjangoJSONEncoder) time = models.DateTimeField(auto_now_add=True, db_index=True) time_expires = models.DateTimeField(default=datetime.max, db_index=True) uuid = models.CharField(max_length=512, unique=True) objects = EventManager() def __init__(self, *args, **kwargs): super(Event, self).__init__(*args, **kwargs) # A dictionary that is populated with renderers after the contexts have been # properly loaded. When renderers are available, the 'render' method may be # called with a medium and optional observer self._context_renderers = {} def _merge_medium_additional_context_with_context(self, medium): """ If the medium has additional context properties, merge those together here in the main context before rendering. """ if medium.additional_context: context = self.context.copy() context.update(medium.additional_context) return context else: return self.context def render(self, medium, observing_entity=None): """ Returns the rendered event as a tuple of text and html content. This information is filled out with respect to which medium is rendering the event, what context renderers are available with the prefetched context, and which optional entity may be observing the rendered event. """ if medium not in self._context_renderers: raise RuntimeError('Context and renderer for medium {0} has not or cannot been fetched'.format(medium)) else: context = self._merge_medium_additional_context_with_context(medium) return self._context_renderers[medium].render_context_to_text_html_templates(context) def get_serialized_context(self, medium): """ Returns the serialized context of the event for a specific medium :param medium: :return: """ if medium not in self._context_renderers: raise RuntimeError('Context and renderer for medium {0} has not or cannot been fetched'.format(medium)) else: context = self._merge_medium_additional_context_with_context(medium) return self._context_renderers[medium].get_serialized_context(context) def __str__(self): """ Readable representation of ``Event`` objects. """ s = '{source} event at {time}' source = self.source.__str__() time = self.time.strftime('%Y-%m-%d::%H:%M:%S') return s.format(source=source, time=time) class AdminEvent(Event): """ A proxy model used to provide a separate interface for event creation through the django-admin interface. """ class Meta: proxy = True @python_2_unicode_compatible class EventActor(models.Model): """ ``EventActor`` objects encode what entities were involved in an event. They provide the information necessary to create "only following" subscriptions which route events only to the entities that are involved in the event. ``EventActor`` objects should not be created directly, but should be created as part of the creation of ``Event`` objects, using ``Event.objects.create_event``. """ event = models.ForeignKey('entity_event.Event', on_delete=models.CASCADE) entity = models.ForeignKey('entity.Entity', on_delete=models.CASCADE) def __str__(self): """ Readable representation of ``EventActor`` objects. """ s = 'Event {eventid} - {entity}' eventid = self.event.id entity = self.entity.__str__() return s.format(eventid=eventid, entity=entity) @python_2_unicode_compatible class EventSeen(models.Model): """ ``EventSeen`` objects store information about where and when an event was seen. They store the medium that the event was seen on, and what time it was seen. This information is used by the event querying methods on ``Medium`` objects to filter events by whether or not they have been seen on that medium. ``EventSeen`` objects should not be created directly, but should be created by using the ``EventQuerySet.mark_seen`` method, available on the QuerySets returned by the event querying methods. """ event = models.ForeignKey('entity_event.Event', on_delete=models.CASCADE) medium = models.ForeignKey('entity_event.Medium', on_delete=models.CASCADE) time_seen = models.DateTimeField(default=datetime.utcnow) class Meta: unique_together = ('event', 'medium') def __str__(self): """ Readable representation of ``EventSeen`` objects. """ s = 'Seen on {medium} at {time}' medium = self.medium.__str__() time = self.time_seen.strftime('%Y-%m-%d::%H:%M:%S') return s.format(medium=medium, time=time) def _unseen_event_ids(medium): """ Return all events that have not been seen on this medium. """ query = ''' SELECT event.id FROM entity_event_event AS event LEFT OUTER JOIN (SELECT * FROM entity_event_eventseen AS seen WHERE seen.medium_id=%s) AS eventseen ON event.id = eventseen.event_id WHERE eventseen.medium_id IS NULL ''' unseen_events = Event.objects.raw(query, params=[medium.id]) ids = [e.id for e in unseen_events] return ids @python_2_unicode_compatible class RenderingStyle(models.Model): """ Defines a rendering style. This is used to group together mediums that have similar rendering styles and allows context renderers to be used across mediums. """ name = models.CharField(max_length=64, unique=True) display_name = models.CharField(max_length=64, default='') def __str__(self): return '{0} {1}'.format(self.display_name, self.name) @python_2_unicode_compatible class ContextRenderer(models.Model): """ ``ContextRenderer`` objects store information about how a source or source group is rendered with a particular rendering style, along with information for loading the render context in a database-efficient manner. Of the four template fields: `text_template_path`, 'html_template_path', `text_template`, and `html_template`, at least one must be non-empty. Both a text and html template may be provided, either through a path to the template, or a raw template object. If both are provided, the template given in the path will be used and the text template will be ignored. This object is linked to a `RenderingStyle` object. This is how the context renderer is associated with various `Medium` objects. It also provides the `source` that uses the renderer. If a `source_group` is specified, all sources under that group use this context renderer for the rendering style. The `context_hints` provide the ability to fetch model IDs of an event context that are stored in the database. For example, if an event context has a `user` key that points to the PK of a Django `User` model, the context hints for it would be specified as follows: .. code-block:: python { 'user': { 'app_name': 'auth', 'model_name': 'User', } } With these hints, the 'user' field in the event context will be treated as a PK in the database and fetched appropriately. If one wishes to perform and prefetch or select_related calls, the following options can be added: .. code-block:: python { 'user': { 'app_name': 'auth', 'model_name': 'User', 'select_related': ['foreign_key_field', 'one_to_one_field'], 'prefetch_related': ['reverse_foreign_key_field', 'many_to_many_field'], } } Note that as many keys can be defined that have corresponding keys in the event context for the particular source or source group. Also note that the keys in the event context can be embedded anywhere in the context and can also point to a list of PKs. For example: .. code-block:: python { 'my_context': { 'user': [1, 3, 5, 10], 'other_context_info': 'other_info_string', }, 'more_context': { 'hello': 'world', } } In the above case, `User` objects with the PKs 1, 3, 5, and 10 will be fetched and loaded into the event context whenever rendering is performed. """ name = models.CharField(max_length=64, unique=True) # The various templates that can be used for rendering text_template_path = models.CharField(max_length=256, default='') html_template_path = models.CharField(max_length=256, default='') text_template = models.TextField(default='') html_template = models.TextField(default='') # The source or source group of the event. It can only be one or the other source = models.ForeignKey('entity_event.Source', null=True, on_delete=models.CASCADE) source_group = models.ForeignKey('entity_event.SourceGroup', null=True, on_delete=models.CASCADE) # The rendering style. Used to associated it with a medium rendering_style = models.ForeignKey('entity_event.RenderingStyle', on_delete=models.CASCADE) # Contains hints on how to fetch the context from the database context_hints = JSONField(null=True, default=None, encoder=DjangoJSONEncoder) class Meta: unique_together = ('source', 'rendering_style') def get_sources(self): return [self.source] if self.source_id else self.source_group.source_set.all() def __str__(self): return self.name def get_serialized_context(self, context): """ Serializes the context using the serializer class. """ return DefaultContextSerializer(context).data def render_text_or_html_template(self, context, is_text=True): """ Renders a text or html template based on either the template path or the stored template. """ template_path = getattr(self, '{0}_template_path'.format('text' if is_text else 'html')) template = getattr(self, '{0}_template'.format('text' if is_text else 'html')) if template_path: return render_to_string(template_path, context) elif template: return Template(template).render(Context(context)) else: return '' def render_context_to_text_html_templates(self, context): """ Render the templates with the provided context. Args: A loaded context. Returns: A tuple of (rendered_text, rendered_html). Either, but not both may be an empty string. """ # Process text template: return ( self.render_text_or_html_template(context, is_text=True).strip(), self.render_text_or_html_template(context, is_text=False).strip(), )
41.305022
120
0.666118
8b7e0f2a1f8d7363c4a7045709aa260449c86b2e
4,816
py
Python
mysite/myapp/forms.py
MarkArren/PhotoSocial
bb401f465a464e7cf6a7fac184cef0d40e0a9525
[ "MIT" ]
null
null
null
mysite/myapp/forms.py
MarkArren/PhotoSocial
bb401f465a464e7cf6a7fac184cef0d40e0a9525
[ "MIT" ]
null
null
null
mysite/myapp/forms.py
MarkArren/PhotoSocial
bb401f465a464e7cf6a7fac184cef0d40e0a9525
[ "MIT" ]
null
null
null
from django import forms from django.forms import ModelForm from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.core.validators import EmailValidator from . import models from .models import ProfileModel from io import BytesIO from PIL import Image, ExifTags from django.core.files import File def compressImage(image): maxWidth = 440 # Open image and get bytes imageTmp = Image.open(image).convert('RGB') imageIO = BytesIO() try: # Rotate image if 'Orientation' included in metadata # From https://stackoverflow.com/questions/13872331/rotating-an-image-with-orientation-specified-in-exif-using-python-without-pil-in for orientation in ExifTags.TAGS.keys(): if ExifTags.TAGS[orientation]=='Orientation': break exif=dict(imageTmp.getexif().items()) if exif[orientation] == 3: imageTmp=imageTmp.rotate(180, expand=True) elif exif[orientation] == 6: imageTmp=imageTmp.rotate(270, expand=True) elif exif[orientation] == 8: imageTmp=imageTmp.rotate(90, expand=True) except (AttributeError, KeyError, IndexError): pass # Get image attributes width, height = imageTmp.size newWidth = width newHeight = height # Check if if image needs to be cropped crop = False if width/height > 1.7: # Image is too wide so cut width ratio = height/9 newWidth = 16 * ratio newHeight = height crop = True print("too wide") elif width/height < 0.8: # image is too tall so cut height ratio = width / 8 newWidth = width newHeight = 10 * ratio crop = True print("too tall") if crop: # Crop left = (width - newWidth) / 2 top = (height - newHeight)/2 right = (width + newWidth)/2 bottom = (height + newHeight)/2 imageTmp = imageTmp.crop((left, top, right, bottom)) print("cropped") # Resize image ratio = maxWidth/newWidth newWidth = newWidth * ratio newHeight = newHeight * ratio imageTmp = imageTmp.resize((int(newWidth), int(newHeight))) print("resized") # Convert to bytes, save and compress imageTmp.save(imageIO, format='JPEG', optimize=True, quality=60) return File(imageIO, name=image.name) class PostForm(forms.Form): image = forms.ImageField(label="Upload Image", required=True) caption = forms.CharField(label="Caption", max_length=512, required=False, widget=forms.TextInput(attrs={'placeholder': 'Caption'})) location = forms.CharField(label="Location", max_length=50, required=False, widget=forms.TextInput(attrs={'placeholder': 'Location'})) def save(self, request): postInstance = models.PostModel() postInstance.image = compressImage(self.cleaned_data["image"]) postInstance.caption = self.cleaned_data["caption"] postInstance.location = self.cleaned_data["location"] profile = models.ProfileModel.objects.filter(user=request.user.id) postInstance.profile = profile[0] postInstance.save() return postInstance # class PostForm(ModelForm): # class meta: # model = models.PostModel # fields = ('image', 'caption', 'location') def must_be_unique_email(value): user = User.objects.filter(email=value) if len(user) > 0: raise forms.ValidationError("Email Already Exists") return value def must_be_unique_username(value): user = User.objects.filter(username=value) if len(user) > 0: raise forms.ValidationError("Username Already Exists") return value class RegistrationForm(UserCreationForm): # email = forms.EmailField( # label="Email", # required=True, # validators=[EmailValidator] # ) username = forms.CharField(label='Username', required=True, max_length=30 ) class Meta: model = User fields = ("username", "password1", "password2") def save(self, commit=True): user = super(RegistrationForm, self).save(commit=False) # user.email = self.cleaned_data["email"] if commit: user.save() return user # def __init__(self, *args, **kwargs): # super(RegistrationForm, self).__init__(*args, **kwargs) # self.fields['fullname'] = user.first_name + user.last_name class ProfileForm(ModelForm): class Meta: model = ProfileModel fields = ('profilePicture', 'fullname', 'email', 'bio') class UserUpdateForm(forms.ModelForm): class Meta: model = User fields = ('username', 'email') # class ProfileForm(forms.Form): # profilePicture = forms.ImageField(label="Profile Picture", required=False) # bio = forms.CharField(label="Bio", max_length=512, required=False) # def save(self, request): # profileInstance = models.PostModel() # postInstance.user = request.user # profileInstance.profilePicture = self.cleaned_data["profilePicture"] # profileInstance.bio = self.cleaned_data["bio"] # profileInstance.save() # return profileInstance
28.163743
135
0.706811
96f5f81c1f04b7d64ddbd6fd461348c6986d9ff6
94,579
py
Python
tensorflow/python/ops/array_ops.py
Matanley/tensorflow
be5bcb90566013b495c3f267423d7b7c5269b9ee
[ "Apache-2.0" ]
1
2018-03-01T08:32:28.000Z
2018-03-01T08:32:28.000Z
tensorflow/python/ops/array_ops.py
shenruixiang10086/tensorflow
acb1ef68f5aea3b6f7f1e14db588b74134719b5e
[ "Apache-2.0" ]
null
null
null
tensorflow/python/ops/array_ops.py
shenruixiang10086/tensorflow
acb1ef68f5aea3b6f7f1e14db588b74134719b5e
[ "Apache-2.0" ]
2
2019-01-17T08:02:34.000Z
2021-09-26T17:11:21.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Tests for this file live in python/kernel_tests/array_ops_test.py """Support for manipulating tensors. See the @{$python/array_ops} guide. @@string_to_number @@to_double @@to_float @@to_bfloat16 @@to_int32 @@to_int64 @@cast @@bitcast @@saturate_cast @@broadcast_dynamic_shape @@broadcast_static_shape @@shape @@shape_n @@size @@rank @@reshape @@squeeze @@expand_dims @@unravel_index @@meshgrid @@slice @@strided_slice @@split @@tile @@pad @@concat @@stack @@parallel_stack @@unstack @@reverse_sequence @@reverse @@reverse_v2 @@transpose @@extract_image_patches @@space_to_batch_nd @@space_to_batch @@required_space_to_batch_paddings @@batch_to_space_nd @@batch_to_space @@space_to_depth @@depth_to_space @@gather @@gather_nd @@unique_with_counts @@scatter_nd @@dynamic_partition @@dynamic_stitch @@boolean_mask @@one_hot @@sequence_mask @@dequantize @@quantize @@quantize_v2 @@quantized_concat @@setdiff1d @@guarantee_const @@fake_quant_with_min_max_args @@fake_quant_with_min_max_args_gradient @@fake_quant_with_min_max_vars @@fake_quant_with_min_max_vars_gradient @@fake_quant_with_min_max_vars_per_channel @@fake_quant_with_min_max_vars_per_channel_gradient """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import common_shapes from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util # 'Constant' gets imported in the module 'array_ops'. from tensorflow.python.framework.constant_op import constant from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.ops.gen_array_ops import * from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export # pylint: enable=wildcard-import # Used for slicing to specify a new 1 size dimension newaxis = None tf_export("newaxis").export_constant(__name__, "newaxis") # We override the 'slice' for the "slice" op, so we keep python's # existing 'slice' for later use in this module. _BaseSlice = slice @tf_export("identity") def identity(input, name=None): # pylint: disable=redefined-builtin r"""Return a tensor with the same shape and contents as input. Args: input: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ if context.in_graph_mode(): return gen_array_ops.identity(input, name=name) else: input = ops.convert_to_tensor(input) in_device = input.device # TODO(ashankar): Does 'identity' need to invoke execution callbacks? context_device = context.context().device_name if not context_device: context_device = "/job:localhost/replica:0/task:0/device:CPU:0" if context_device != in_device: return input._copy() # pylint: disable=protected-access return input # pylint: disable=redefined-builtin,protected-access @tf_export("expand_dims") def expand_dims(input, axis=None, name=None, dim=None): """Inserts a dimension of 1 into a tensor's shape. Given a tensor `input`, this operation inserts a dimension of 1 at the dimension index `axis` of `input`'s shape. The dimension index `axis` starts at zero; if you specify a negative number for `axis` it is counted backward from the end. This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape `[height, width, channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`, which will make the shape `[1, height, width, channels]`. Other examples: ```python # 't' is a tensor of shape [2] tf.shape(tf.expand_dims(t, 0)) # [1, 2] tf.shape(tf.expand_dims(t, 1)) # [2, 1] tf.shape(tf.expand_dims(t, -1)) # [2, 1] # 't2' is a tensor of shape [2, 3, 5] tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5] tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5] tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1] ``` This operation requires that: `-1-input.dims() <= dim <= input.dims()` This operation is related to `squeeze()`, which removes dimensions of size 1. Args: input: A `Tensor`. axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`. name: The name of the output `Tensor`. dim: 0-D (scalar). Equivalent to `axis`, to be deprecated. Returns: A `Tensor` with the same data as `input`, but its shape has an additional dimension of size 1 added. Raises: ValueError: if both `dim` and `axis` are specified. """ # TODO(aselle): Remove argument dim if dim is not None: if axis is not None: raise ValueError("can't specify both 'dim' and 'axis'") axis = dim return gen_array_ops._expand_dims(input, axis, name) # pylint: enable=redefined-builtin,protected-access # Aliases for some automatically-generated names. # pylint: disable=protected-access @deprecation.deprecated( "2016-11-30", "This op will be removed after the deprecation date. " "Please switch to tf.setdiff1d().") def listdiff(x, y, out_idx=None, name=None): return gen_array_ops._list_diff(x, y, out_idx, name) listdiff.__doc__ = gen_array_ops._list_diff.__doc__ + "\n" + listdiff.__doc__ # pylint: enable=protected-access # pylint: disable=undefined-variable,protected-access @tf_export("setdiff1d") def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops._list_diff(x, y, index_dtype, name) setdiff1d.__doc__ = gen_array_ops._list_diff.__doc__ # pylint: enable=protected-access @tf_export("broadcast_dynamic_shape") def broadcast_dynamic_shape(shape_x, shape_y): # pylint: disable=protected-access """Returns the broadcasted dynamic shape between `shape_x` and `shape_y`. Args: shape_x: A rank 1 integer `Tensor`, representing the shape of x. shape_y: A rank 1 integer `Tensor`, representing the shape of y. Returns: A rank 1 integer `Tensor` representing the broadcasted shape. """ return gen_array_ops._broadcast_args(shape_x, shape_y) # pylint: enable=protected-access @tf_export("broadcast_static_shape") def broadcast_static_shape(shape_x, shape_y): """Returns the broadcasted static shape between `shape_x` and `shape_y`. Args: shape_x: A `TensorShape` shape_y: A `TensorShape` Returns: A `TensorShape` representing the broadcasted shape. Raises: ValueError: If the two shapes can not be broadcasted. """ return common_shapes.broadcast_shape(shape_x, shape_y) @tf_export("shape") def shape(input, name=None, out_type=dtypes.int32): # pylint: disable=redefined-builtin """Returns the shape of a tensor. This operation returns a 1-D integer tensor representing the shape of `input`. For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.shape(t) # [2, 2, 3] ``` Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). out_type: (Optional) The specified output type of the operation (`int32` or `int64`). Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. """ return shape_internal(input, name, optimize=True, out_type=out_type) def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32): # pylint: disable=redefined-builtin """Returns the shape of a tensor. Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). optimize: if true, encode the shape as a constant when possible. out_type: (Optional) The specified output type of the operation (`int32` or `int64`). Defaults to tf.int32. Returns: A `Tensor` of type `out_type`. """ with ops.name_scope(name, "Shape", [input]) as name: if isinstance(input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): return gen_math_ops.cast(input.dense_shape, out_type) else: if context.in_graph_mode(): input_tensor = ops.convert_to_tensor(input) input_shape = input_tensor.get_shape() if optimize and input_shape.is_fully_defined(): return constant(input_shape.as_list(), out_type, name=name) return gen_array_ops.shape(input, name=name, out_type=out_type) @tf_export("shape_n") def shape_n(input, out_type=dtypes.int32, name=None): # pylint: disable=redefined-builtin """Returns shape of tensors. Args: input: A list of at least 1 `Tensor` object with the same type. out_type: The specified output type of the operation (`int32` or `int64`). Defaults to `tf.int32`(optional). name: A name for the operation (optional). Returns: A list with the same length as `input` of `Tensor` objects with type `out_type`. """ output = gen_array_ops.shape_n(input, out_type=out_type, name=name) if context.in_graph_mode(): for i, input_tensor in enumerate(input): input_tensor = ops.convert_to_tensor(input_tensor) input_shape = input_tensor.get_shape() if input_shape.is_fully_defined(): output[i] = constant( input_shape.as_list(), dtype=out_type, name=name) return output @tf_export("size") def size(input, name=None, out_type=dtypes.int32): # pylint: disable=redefined-builtin """Returns the size of a tensor. Returns a 0-D `Tensor` representing the number of elements in `input` of type `out_type`. Defaults to tf.int32. For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.size(t) # 12 ``` Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). out_type: (Optional) The specified non-quantized numeric output type of the operation. Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. Defaults to `tf.int32`. @compatibility(numpy) Equivalent to np.size() @end_compatibility """ return size_internal(input, name, optimize=True, out_type=out_type) def size_internal(input, name=None, optimize=True, out_type=dtypes.int32): # pylint: disable=redefined-builtin,protected-access """Returns the size of a tensor. Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). optimize: if true, encode the size as a constant when possible. out_type: (Optional) The specified non-quantized numeric output type of the operation. Defaults to `tf.int32`. Returns: A `Tensor` of type `out_type`. Defaults to `tf.int32`. """ if context.in_eager_mode() and not isinstance( input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): size_ = 1 for dim in ops.convert_to_tensor(input)._shape_tuple(): # pylint: disable=protected-access size_ *= dim return size_ with ops.name_scope(name, "Size", [input]) as name: if isinstance(input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): return gen_math_ops._prod( gen_math_ops.cast(input.dense_shape, out_type), 0, name=name) else: input_tensor = ops.convert_to_tensor(input) input_shape = input_tensor.get_shape() if optimize: if input_shape.is_fully_defined(): return constant(input_shape.num_elements(), out_type, name=name) if input_shape.dims and any(dim == 0 for dim in input_shape.dims): return constant(0, out_type, name=name) return gen_array_ops.size(input, name=name, out_type=out_type) @tf_export("rank") def rank(input, name=None): # pylint: disable=redefined-builtin """Returns the rank of a tensor. Returns a 0-D `int32` `Tensor` representing the rank of `input`. For example: ```python # shape of tensor 't' is [2, 2, 3] t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]) tf.rank(t) # 3 ``` **Note**: The rank of a tensor is not the same as the rank of a matrix. The rank of a tensor is the number of indices required to uniquely select each element of the tensor. Rank is also known as "order", "degree", or "ndims." Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). Returns: A `Tensor` of type `int32`. @compatibility(numpy) Equivalent to np.ndim @end_compatibility """ return rank_internal(input, name, optimize=True) def rank_internal(input, name=None, optimize=True): # pylint: disable=redefined-builtin """Returns the rank of a tensor. Args: input: A `Tensor` or `SparseTensor`. name: A name for the operation (optional). optimize: if true, encode the rank as a constant when possible. Returns: A `Tensor` of type `int32`. """ with ops.name_scope(name, "Rank", [input]) as name: if isinstance(input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): return gen_array_ops.size(input.dense_shape, name=name) else: input_tensor = ops.convert_to_tensor(input) input_shape = input_tensor.get_shape() if optimize and input_shape.ndims is not None: return constant(input_shape.ndims, dtypes.int32, name=name) return gen_array_ops.rank(input, name=name) def _slice_helper(tensor, slice_spec, var=None): """Overload for Tensor.__getitem__. This operation extracts the specified region from the tensor. The notation is similar to NumPy with the restriction that currently only support basic indexing. That means that using a non-scalar tensor as input is not currently allowed. Some useful examples: ```python # strip leading and trailing 2 elements foo = tf.constant([1,2,3,4,5,6]) print(foo[2:-2].eval()) # => [3,4] # skip every row and reverse every column foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]] # Use scalar tensors as indices on both dimensions print(foo[tf.constant(0), tf.constant(2)].eval()) # => 3 # Insert another dimension foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]] print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]], [[7],[8],[9]]] # Ellipses (3 equivalent operations) foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] ``` Notes: - `tf.newaxis` is `None` as in NumPy. - An implicit ellipsis is placed at the end of the `slice_spec` - NumPy advanced indexing is currently not supported. Args: tensor: An ops.Tensor object. slice_spec: The arguments to Tensor.__getitem__. var: In the case of variable slice assignment, the Variable object to slice (i.e. tensor is the read-only view of this variable). Returns: The appropriate slice of "tensor", based on "slice_spec". Raises: ValueError: If a slice range is negative size. TypeError: If the slice indices aren't int, slice, or Ellipsis. """ if not isinstance(slice_spec, (list, tuple)): slice_spec = [slice_spec] begin, end, strides = [], [], [] index = 0 new_axis_mask, shrink_axis_mask = 0, 0 begin_mask, end_mask = 0, 0 ellipsis_mask = 0 for s in slice_spec: if isinstance(s, _BaseSlice): # python doesn't always use None when constructing ranges # for example a[:] gives slice(None,sys.maxsize,None) # whereas a[::1] gives slice(None,None,None) if s.start is not None and s.start is not sys.maxsize: begin.append(s.start) else: begin.append(0) begin_mask |= (1 << index) if s.stop is not None and s.stop != sys.maxsize: end.append(s.stop) else: end.append(0) end_mask |= (1 << index) if s.step is not None: strides.append(s.step) else: strides.append(1) elif s is Ellipsis: begin.append(0) end.append(0) strides.append(1) ellipsis_mask |= (1 << index) elif s is newaxis: begin.append(0) end.append(0) strides.append(1) new_axis_mask |= (1 << index) else: begin.append(s) end.append(s + 1) strides.append(1) shrink_axis_mask |= (1 << index) index += 1 # stack possibly involves no tensors, so we must use op_scope correct graph. with ops.name_scope(None, "strided_slice", [tensor] + begin + end + strides) as name: if begin: packed_begin, packed_end, packed_strides = (stack(begin), stack(end), stack(strides)) if (packed_begin.dtype == dtypes.int64 or packed_end.dtype == dtypes.int64 or packed_strides.dtype == dtypes.int64): if packed_begin.dtype != dtypes.int64: packed_begin = gen_math_ops.cast(packed_begin, dtypes.int64) if packed_end.dtype != dtypes.int64: packed_end = gen_math_ops.cast(packed_end, dtypes.int64) if packed_strides.dtype != dtypes.int64: packed_strides = gen_math_ops.cast(packed_strides, dtypes.int64) else: var_empty = constant([], dtype=dtypes.int32) packed_begin = packed_end = packed_strides = var_empty return strided_slice( tensor, packed_begin, packed_end, packed_strides, begin_mask=begin_mask, end_mask=end_mask, shrink_axis_mask=shrink_axis_mask, new_axis_mask=new_axis_mask, ellipsis_mask=ellipsis_mask, var=var, name=name) # pylint: disable=undefined-variable,protected-access,redefined-outer-name @tf_export("slice") def slice(input_, begin, size, name=None): # pylint: disable=redefined-builtin """Extracts a slice from a tensor. This operation extracts a slice of size `size` from a tensor `input` starting at the location specified by `begin`. The slice `size` is represented as a tensor shape, where `size[i]` is the number of elements of the 'i'th dimension of `input` that you want to slice. The starting location (`begin`) for the slice is represented as an offset in each dimension of `input`. In other words, `begin[i]` is the offset into the 'i'th dimension of `input` that you want to slice from. Note that @{tf.Tensor.__getitem__} is typically a more pythonic way to perform slices, as it allows you to write `foo[3:7, :-2]` instead of `tf.slice(foo, [3, 0], [4, foo.get_shape()[1]-2])`. `begin` is zero-based; `size` is one-based. If `size[i]` is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: `size[i] = input.dim_size(i) - begin[i]` This operation requires that: `0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n]` For example: ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]) tf.slice(t, [1, 0, 0], [1, 1, 3]) # [[[3, 3, 3]]] tf.slice(t, [1, 0, 0], [1, 2, 3]) # [[[3, 3, 3], # [4, 4, 4]]] tf.slice(t, [1, 0, 0], [2, 1, 3]) # [[[3, 3, 3]], # [[5, 5, 5]]] ``` Args: input_: A `Tensor`. begin: An `int32` or `int64` `Tensor`. size: An `int32` or `int64` `Tensor`. name: A name for the operation (optional). Returns: A `Tensor` the same type as `input`. """ return gen_array_ops._slice(input_, begin, size, name=name) # pylint: disable=invalid-name @tf_export("strided_slice") def strided_slice(input_, begin, end, strides=None, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, var=None, name=None): """Extracts a strided slice of a tensor (generalized python array indexing). **Instead of calling this op directly most users will want to use the NumPy-style slicing syntax (e.g. `tensor[..., 3:4:-1, tf.newaxis, 3]`), which is supported via @{tf.Tensor.__getitem__} and @{tf.Variable.__getitem__}.** The interface of this op is a low-level encoding of the slicing syntax. Roughly speaking, this op extracts a slice of size `(end-begin)/stride` from the given `input_` tensor. Starting at the location specified by `begin` the slice continues by adding `stride` to the index until all dimensions are not less than `end`. Note that a stride can be negative, which causes a reverse slice. Given a Python slice `input[spec0, spec1, ..., specn]`, this function will be called as follows. `begin`, `end`, and `strides` will be vectors of length n. n in general is not equal to the rank of the `input_` tensor. In each mask field (`begin_mask`, `end_mask`, `ellipsis_mask`, `new_axis_mask`, `shrink_axis_mask`) the ith bit will correspond to the ith spec. If the ith bit of `begin_mask` is set, `begin[i]` is ignored and the fullest possible range in that dimension is used instead. `end_mask` works analogously, except with the end range. `foo[5:,:,:3]` on a 7x8x9 tensor is equivalent to `foo[5:7,0:8,0:3]`. `foo[::-1]` reverses a tensor with shape 8. If the ith bit of `ellipsis_mask` is set, as many unspecified dimensions as needed will be inserted between other dimensions. Only one non-zero bit is allowed in `ellipsis_mask`. For example `foo[3:5,...,4:5]` on a shape 10x3x3x10 tensor is equivalent to `foo[3:5,:,:,4:5]` and `foo[3:5,...]` is equivalent to `foo[3:5,:,:,:]`. If the ith bit of `new_axis_mask` is set, then `begin`, `end`, and `stride` are ignored and a new length 1 dimension is added at this point in the output tensor. For example, `foo[:4, tf.newaxis, :2]` would produce a shape `(4, 1, 2)` tensor. If the ith bit of `shrink_axis_mask` is set, it implies that the ith specification shrinks the dimensionality by 1. `begin[i]`, `end[i]` and `strides[i]` must imply a slice of size 1 in the dimension. For example in Python one might do `foo[:, 3, :]` which would result in `shrink_axis_mask` equal to 2. NOTE: `begin` and `end` are zero-indexed. `strides` entries must be non-zero. ```python t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]) tf.strided_slice(t, [1, 0, 0], [2, 1, 3], [1, 1, 1]) # [[[3, 3, 3]]] tf.strided_slice(t, [1, 0, 0], [2, 2, 3], [1, 1, 1]) # [[[3, 3, 3], # [4, 4, 4]]] tf.strided_slice(t, [1, -1, 0], [2, -3, 3], [1, -1, 1]) # [[[4, 4, 4], # [3, 3, 3]]] ``` Args: input_: A `Tensor`. begin: An `int32` or `int64` `Tensor`. end: An `int32` or `int64` `Tensor`. strides: An `int32` or `int64` `Tensor`. begin_mask: An `int32` mask. end_mask: An `int32` mask. ellipsis_mask: An `int32` mask. new_axis_mask: An `int32` mask. shrink_axis_mask: An `int32` mask. var: The variable corresponding to `input_` or None name: A name for the operation (optional). Returns: A `Tensor` the same type as `input`. """ if strides is None: strides = ones_like(begin) op = gen_array_ops.strided_slice( input=input_, begin=begin, end=end, strides=strides, name=name, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask) parent_name = name def assign(val, name=None): """Closure that holds all the arguments to create an assignment.""" if var is None: raise ValueError("Sliced assignment is only supported for variables") if name is None: name = parent_name + "_assign" return var._strided_slice_assign( begin=begin, end=end, strides=strides, value=val, name=name, begin_mask=begin_mask, end_mask=end_mask, ellipsis_mask=ellipsis_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask) if context.in_graph_mode(): # TODO(apassos) In eager mode assignment will be done by overriding # __setitem__ instead. op.assign = assign return op def _SliceHelperVar(var, slice_spec): """Creates a slice helper object given a variable. This allows creating a sub-tensor from part of the current contents of a variable. See ${tf.Tensor$`Tensor.__getitem__`} for detailed examples of slicing. This function in addition also allows assignment to a sliced range. This is similar to `__setitem__` functionality in Python. However, the syntax is different so that the user can capture the assignment operation for grouping or passing to `sess.run()`. For example, ```python import tensorflow as tf A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(A[:2, :2])) # => [[1,2], [4,5]] op = A[:2,:2].assign(22. * tf.ones((2, 2))) print(sess.run(op)) # => [[22, 22, 3], [22, 22, 6], [7,8,9]] ``` Note that assignments currently do not support NumPy broadcasting semantics. Args: var: An `ops.Variable` object. slice_spec: The arguments to `Tensor.__getitem__`. Returns: The appropriate slice of "tensor", based on "slice_spec". As an operator. The operator also has a `assign()` method that can be used to generate an assignment operator. Raises: ValueError: If a slice range is negative size. TypeError: If the slice indices aren't int, slice, or Ellipsis. """ return _slice_helper(var._AsTensor(), slice_spec, var) ops.Tensor._override_operator("__getitem__", _slice_helper) @tf_export("parallel_stack") def parallel_stack(values, name="parallel_stack"): """Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor in parallel. Requires that the shape of inputs be known at graph construction time. Packs the list of tensors in `values` into a tensor with rank one higher than each tensor in `values`, by packing them along the first dimension. Given a list of length `N` of tensors of shape `(A, B, C)`; the `output` tensor will have the shape `(N, A, B, C)`. For example: ```python x = tf.constant([1, 4]) y = tf.constant([2, 5]) z = tf.constant([3, 6]) tf.parallel_stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] ``` The difference between `stack` and `parallel_stack` is that `stack` requires all the inputs be computed before the operation will begin but doesn't require that the input shapes be known during graph construction. `parallel_stack` will copy pieces of the input into the output as they become available, in some situations this can provide a performance benefit. Unlike `stack`, `parallel_stack` does NOT support backpropagation. This is the opposite of unstack. The numpy equivalent is tf.parallel_stack([x, y, z]) = np.asarray([x, y, z]) Args: values: A list of `Tensor` objects with the same shape and type. name: A name for this operation (optional). Returns: output: A stacked `Tensor` with the same type as `values`. """ with ops.name_scope(name): value_t = ops.convert_to_tensor(values[0]) value_shape = ops.convert_to_tensor(value_t).get_shape() output_shape = tensor_shape.TensorShape([len(values)]) output_shape = output_shape.concatenate(value_shape) # expand_dims converts concat to stack. return gen_array_ops._parallel_concat( [expand_dims(value, 0) for value in values], shape=output_shape) @tf_export("stack") def stack(values, axis=0, name="stack"): """Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor. Packs the list of tensors in `values` into a tensor with rank one higher than each tensor in `values`, by packing them along the `axis` dimension. Given a list of length `N` of tensors of shape `(A, B, C)`; if `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`. if `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. Etc. For example: ```python x = tf.constant([1, 4]) y = tf.constant([2, 5]) z = tf.constant([3, 6]) tf.stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] (Pack along first dim.) tf.stack([x, y, z], axis=1) # [[1, 2, 3], [4, 5, 6]] ``` This is the opposite of unstack. The numpy equivalent is ```python tf.stack([x, y, z]) = np.stack([x, y, z]) ``` Args: values: A list of `Tensor` objects with the same shape and type. axis: An `int`. The axis to stack along. Defaults to the first dimension. Negative values wrap around, so the valid range is `[-(R+1), R+1)`. name: A name for this operation (optional). Returns: output: A stacked `Tensor` with the same type as `values`. Raises: ValueError: If `axis` is out of the range [-(R+1), R+1). """ if axis == 0: try: # If the input is a constant list, it can be converted to a constant op return ops.convert_to_tensor(values, name=name) except (TypeError, ValueError): pass # Input list contains non-constant tensors value_shape = ops.convert_to_tensor(values[0], name=name).get_shape() if value_shape.ndims is not None: expanded_num_dims = value_shape.ndims + 1 if axis < -expanded_num_dims or axis >= expanded_num_dims: raise ValueError("axis = %d not in [%d, %d)" % (axis, -expanded_num_dims, expanded_num_dims)) return gen_array_ops._pack(values, axis=axis, name=name) # pylint: disable=invalid-name def _autopacking_helper(list_or_tuple, dtype, name): """Converts the given list or tuple to a tensor by packing. Args: list_or_tuple: A (possibly nested) list or tuple containing a tensor. dtype: The element type of the returned tensor. name: A name for the returned tensor. Returns: A `tf.Tensor` with value equivalent to `list_or_tuple`. """ must_pack = False converted_elems = [] with ops.name_scope(name) as scope: for i, elem in enumerate(list_or_tuple): if ops.is_dense_tensor_like(elem): if dtype is not None and elem.dtype.base_dtype != dtype: raise TypeError("Cannot convert a list containing a tensor of dtype " "%s to %s (Tensor is: %r)" % (elem.dtype, dtype, elem)) converted_elems.append(elem) must_pack = True elif isinstance(elem, (list, tuple)): converted_elem = _autopacking_helper(elem, dtype, str(i)) if ops.is_dense_tensor_like(converted_elem): must_pack = True converted_elems.append(converted_elem) else: converted_elems.append(elem) if must_pack: elems_as_tensors = [] for i, elem in enumerate(converted_elems): if ops.is_dense_tensor_like(elem): elems_as_tensors.append(elem) else: # NOTE(mrry): This is inefficient, but it enables us to # handle the case where the list arguments are other # convertible-to-tensor types, such as numpy arrays. elems_as_tensors.append( constant_op.constant(elem, dtype=dtype, name=str(i))) return gen_array_ops._pack(elems_as_tensors, name=scope) else: return converted_elems def _get_dtype_from_nested_lists(list_or_tuple): """Returns the dtype of any tensor-like object in `list_or_tuple`, if found. Args: list_or_tuple: A list or tuple representing an object that can be converted to a `tf.Tensor`. Returns: The dtype of any tensor-like object in `list_or_tuple`, or `None` if no such object exists. """ for elem in list_or_tuple: if ops.is_dense_tensor_like(elem): return elem.dtype.base_dtype elif isinstance(elem, (list, tuple)): maybe_dtype = _get_dtype_from_nested_lists(elem) if maybe_dtype is not None: return maybe_dtype return None def _autopacking_conversion_function(v, dtype=None, name=None, as_ref=False): """Tensor conversion function that automatically packs arguments.""" if as_ref: return NotImplemented inferred_dtype = _get_dtype_from_nested_lists(v) if inferred_dtype is None: # We did not find any tensor-like objects in the nested lists, so defer to # other conversion functions. return NotImplemented if dtype is not None and dtype != inferred_dtype: return NotImplemented return _autopacking_helper(v, inferred_dtype, name or "packed") # pylint: enable=invalid-name # NOTE: Register this conversion function to run *before* one that # assumes every element is a value. ops.register_tensor_conversion_function((list, tuple), _autopacking_conversion_function, 99) @tf_export("unstack") def unstack(value, num=None, axis=0, name="unstack"): """Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors. Unpacks `num` tensors from `value` by chipping it along the `axis` dimension. If `num` is not specified (the default), it is inferred from `value`'s shape. If `value.shape[axis]` is not known, `ValueError` is raised. For example, given a tensor of shape `(A, B, C, D)`; If `axis == 0` then the i'th tensor in `output` is the slice `value[i, :, :, :]` and each tensor in `output` will have shape `(B, C, D)`. (Note that the dimension unpacked along is gone, unlike `split`). If `axis == 1` then the i'th tensor in `output` is the slice `value[:, i, :, :]` and each tensor in `output` will have shape `(A, C, D)`. Etc. This is the opposite of stack. The numpy equivalent is tf.unstack(x, n) = np.unstack(x) Args: value: A rank `R > 0` `Tensor` to be unstacked. num: An `int`. The length of the dimension `axis`. Automatically inferred if `None` (the default). axis: An `int`. The axis to unstack along. Defaults to the first dimension. Negative values wrap around, so the valid range is `[-R, R)`. name: A name for the operation (optional). Returns: The list of `Tensor` objects unstacked from `value`. Raises: ValueError: If `num` is unspecified and cannot be inferred. ValueError: If `axis` is out of the range [-R, R). """ if num is None: value = ops.convert_to_tensor(value) value_shape = value.get_shape() if value_shape.ndims is not None: if axis < -value_shape.ndims or axis >= value_shape.ndims: raise ValueError("axis = %d not in [%d, %d)" % (axis, -value_shape.ndims, value_shape.ndims)) num = value_shape[axis].value if num is None: raise ValueError("Cannot infer num from shape %s" % value_shape) return gen_array_ops._unpack(value, num=num, axis=axis, name=name) @tf_export("concat") def concat(values, axis, name="concat"): """Concatenates tensors along one dimension. Concatenates the list of tensors `values` along dimension `axis`. If `values[i].shape = [D0, D1, ... Daxis(i), ...Dn]`, the concatenated result has shape [D0, D1, ... Raxis, ...Dn] where Raxis = sum(Daxis(i)) That is, the data from the input tensors is joined along the `axis` dimension. The number of dimensions of the input tensors must match, and all dimensions except `axis` must be equal. For example: ```python t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tf.concat([t1, t2], 1) # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]] # tensor t3 with shape [2, 3] # tensor t4 with shape [2, 3] tf.shape(tf.concat([t3, t4], 0)) # [4, 3] tf.shape(tf.concat([t3, t4], 1)) # [2, 6] ``` As in Python, the `axis` could also be negative numbers. Negative `axis` are interpreted as counting from the end of the rank, i.e., `axis + rank(values)`-th dimension. For example: ```python t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]] t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]] tf.concat([t1, t2], -1) ``` would produce: ```python [[[ 1, 2, 7, 4], [ 2, 3, 8, 4]], [[ 4, 4, 2, 10], [ 5, 3, 15, 11]]] ``` Note: If you are concatenating along a new axis consider using stack. E.g. ```python tf.concat([tf.expand_dims(t, axis) for t in tensors], axis) ``` can be rewritten as ```python tf.stack(tensors, axis=axis) ``` Args: values: A list of `Tensor` objects or a single `Tensor`. axis: 0-D `int32` `Tensor`. Dimension along which to concatenate. Must be in the range `[-rank(values), rank(values))`. As in Python, indexing for axis is 0-based. Positive axis in the rage of `[0, rank(values))` refers to `axis`-th dimension. And negative axis refers to `axis + rank(values)`-th dimension. name: A name for the operation (optional). Returns: A `Tensor` resulting from concatenation of the input tensors. """ if not isinstance(values, (list, tuple)): values = [values] # TODO(mrry): Change to return values? if len(values) == 1: # Degenerate case of one tensor. # Make a throwaway call to convert_to_tensor to make sure # that axis is of the correct type, and make sure that # the returned tensor is a scalar. # TODO(keveman): Implement a standalone type and shape checker. with ops.name_scope(name) as scope: ops.convert_to_tensor( axis, name="concat_dim", dtype=dtypes.int32).get_shape().assert_is_compatible_with( tensor_shape.scalar()) return identity(values[0], name=scope) return gen_array_ops._concat_v2(values=values, axis=axis, name=name) @tf_export("boolean_mask") def boolean_mask(tensor, mask, name="boolean_mask", axis=None): """Apply boolean mask to tensor. Numpy equivalent is `tensor[mask]`. ```python # 1-D example tensor = [0, 1, 2, 3] mask = np.array([True, False, True, False]) boolean_mask(tensor, mask) # [0, 2] ``` In general, `0 < dim(mask) = K <= dim(tensor)`, and `mask`'s shape must match the first K dimensions of `tensor`'s shape. We then have: `boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iK,j1,...,jd]` where `(i1,...,iK)` is the ith `True` entry of `mask` (row-major order). The `axis` could be used with `mask` to indicate the axis to mask from. In that case, `axis + dim(mask) <= dim(tensor)` and `mask`'s shape must match the first `axis + dim(mask)` dimensions of `tensor`'s shape. Args: tensor: N-D tensor. mask: K-D boolean tensor, K <= N and K must be known statically. name: A name for this operation (optional). axis: A 0-D int Tensor representing the axis in `tensor` to mask from. By default, axis is 0 which will mask from the first dimension. Otherwise K + axis <= N. Returns: (N-K+1)-dimensional tensor populated by entries in `tensor` corresponding to `True` values in `mask`. Raises: ValueError: If shapes do not conform. Examples: ```python # 2-D example tensor = [[1, 2], [3, 4], [5, 6]] mask = np.array([True, False, True]) boolean_mask(tensor, mask) # [[1, 2], [5, 6]] ``` """ def _apply_mask_1d(reshaped_tensor, mask, axis=None): """Mask tensor along dimension 0 with a 1-D mask.""" indices = squeeze(where(mask), squeeze_dims=[1]) return gather(reshaped_tensor, indices, axis=axis) with ops.name_scope(name, values=[tensor, mask]): tensor = ops.convert_to_tensor(tensor, name="tensor") mask = ops.convert_to_tensor(mask, name="mask") shape_mask = mask.get_shape() ndims_mask = shape_mask.ndims shape_tensor = tensor.get_shape() if ndims_mask == 0: raise ValueError("mask cannot be scalar.") if ndims_mask is None: raise ValueError( "Number of mask dimensions must be specified, even if some dimensions" " are None. E.g. shape=[None] is ok, but shape=None is not.") axis = 0 if axis is None else axis shape_tensor[axis:axis + ndims_mask].assert_is_compatible_with(shape_mask) leading_size = gen_math_ops._prod( shape(tensor)[axis:axis + ndims_mask], [0]) tensor = reshape(tensor, concat([ shape(tensor)[:axis], [leading_size], shape(tensor)[axis + ndims_mask:] ], 0)) first_dim = shape_tensor[axis:axis + ndims_mask].num_elements() tensor.set_shape( tensor_shape.as_shape(shape_tensor[:axis]).concatenate([first_dim]) .concatenate(shape_tensor[axis + ndims_mask:])) mask = reshape(mask, [-1]) return _apply_mask_1d(tensor, mask, axis) @tf_export("sparse_mask") def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices # [12, 26, 37, 45] tf.shape(a.values) # [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse_mask(a, [12, 45]) b.indices # [26, 37] tf.shape(b.values) # [2, 10] ``` Args: a: An `IndexedSlices` instance. mask_indices: Indices of elements to mask. name: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = setdiff1d(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape) @tf_export("unique") def unique(x, out_idx=dtypes.int32, name=None): # TODO(yongtang): switch to v2 once API deprecation # period (3 weeks) pass. # TODO(yongtang): The documentation should also # be updated when switch to v2. return gen_array_ops._unique(x, out_idx, name) unique.__doc__ = gen_array_ops._unique.__doc__ @tf_export("unique_with_counts") def unique_with_counts(x, out_idx=dtypes.int32, name=None): # TODO(yongtang): switch to v2 once API deprecation # period (3 weeks) pass. # TODO(yongtang): The documentation should also # be updated when switch to v2. return gen_array_ops._unique_with_counts(x, out_idx, name) unique_with_counts.__doc__ = gen_array_ops._unique_with_counts.__doc__ @tf_export("split") def split(value, num_or_size_splits, axis=0, num=None, name="split"): """Splits a tensor into sub tensors. If `num_or_size_splits` is an integer type, `num_split`, then splits `value` along dimension `axis` into `num_split` smaller tensors. Requires that `num_split` evenly divides `value.shape[axis]`. If `num_or_size_splits` is not an integer type, it is presumed to be a Tensor `size_splits`, then splits `value` into `len(size_splits)` pieces. The shape of the `i`-th piece has the same size as the `value` except along dimension `axis` where the size is `size_splits[i]`. For example: ```python # 'value' is a tensor with shape [5, 30] # Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1 split0, split1, split2 = tf.split(value, [4, 15, 11], 1) tf.shape(split0) # [5, 4] tf.shape(split1) # [5, 15] tf.shape(split2) # [5, 11] # Split 'value' into 3 tensors along dimension 1 split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1) tf.shape(split0) # [5, 10] ``` Args: value: The `Tensor` to split. num_or_size_splits: Either a 0-D integer `Tensor` indicating the number of splits along split_dim or a 1-D integer `Tensor` containing the sizes of each output tensor along split_dim. If a scalar then it must evenly divide `value.shape[axis]`; otherwise the sum of sizes along the split dimension must match that of the `value`. axis: A 0-D `int32` `Tensor`. The dimension along which to split. Must be in the range `[-rank(value), rank(value))`. Defaults to 0. num: Optional, used to specify the number of outputs when it cannot be inferred from the shape of `size_splits`. name: A name for the operation (optional). Returns: if `num_or_size_splits` is a scalar returns `num_or_size_splits` `Tensor` objects; if `num_or_size_splits` is a 1-D Tensor returns `num_or_size_splits.get_shape[0]` `Tensor` objects resulting from splitting `value`. Raises: ValueError: If `num` is unspecified and cannot be inferred. """ size_splits = ops.convert_to_tensor(num_or_size_splits) if size_splits._rank() == 0 and size_splits.dtype.is_integer: return gen_array_ops._split( axis=axis, num_split=num_or_size_splits, value=value, name=name) if num is None: num = size_splits._shape_tuple()[0] if num is None: raise ValueError("Cannot infer num from shape %s" % num_or_size_splits) return gen_array_ops._split_v( value=value, size_splits=size_splits, axis=axis, num_split=num, name=name) @tf_export("transpose") def transpose(a, perm=None, name="transpose", conjugate=False): """Transposes `a`. Permutes the dimensions according to `perm`. The returned tensor's dimension i will correspond to the input dimension `perm[i]`. If `perm` is not given, it is set to (n-1...0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors. If conjugate is True and `a.dtype` is either `complex64` or `complex128` then the values of `a` are conjugated and transposed. @compatibility(numpy) In `numpy` transposes are memory-efficient constant time operations as they simply return a new view of the same data with adjusted `strides`. TensorFlow does not support strides, so `transpose` returns a new tensor with the items permuted. @end_compatibility For example: ```python x = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.transpose(x) # [[1, 4] # [2, 5] # [3, 6]] # Equivalently tf.transpose(x, perm=[1, 0]) # [[1, 4] # [2, 5] # [3, 6]] # If x is complex, setting conjugate=True gives the conjugate transpose x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]) tf.transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j], # [2 - 2j, 5 - 5j], # [3 - 3j, 6 - 6j]] # 'perm' is more useful for n-dimensional tensors, for n > 2 x = tf.constant([[[ 1, 2, 3], [ 4, 5, 6]], [[ 7, 8, 9], [10, 11, 12]]]) # Take the transpose of the matrices in dimension-0 # (this common operation has a shorthand `matrix_transpose`) tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4], # [2, 5], # [3, 6]], # [[7, 10], # [8, 11], # [9, 12]]] ``` Args: a: A `Tensor`. perm: A permutation of the dimensions of `a`. name: A name for the operation (optional). conjugate: Optional bool. Setting it to `True` is mathematically equivalent to tf.conj(tf.transpose(input)). Returns: A transposed `Tensor`. """ with ops.name_scope(name, "transpose", [a]) as name: transpose_fn = ( gen_array_ops._conjugate_transpose if (conjugate and a.dtype.is_complex) else gen_array_ops.transpose) if perm is None: rank = gen_array_ops.rank(a) perm = (rank - 1) - gen_math_ops._range(0, rank, 1) ret = transpose_fn(a, perm, name=name) # NOTE(mrry): Setting the shape explicitly because # reverse is not handled by the shape function. if context.in_graph_mode(): input_shape = ret.op.inputs[0].get_shape().dims if input_shape is not None: ret.set_shape(input_shape[::-1]) else: ret = transpose_fn(a, perm, name=name) return ret # pylint: disable=invalid-name @tf_export("matrix_transpose", "linalg.transpose") def matrix_transpose(a, name="matrix_transpose", conjugate=False): """Transposes last two dimensions of tensor `a`. For example: ```python x = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.matrix_transpose(x) # [[1, 4], # [2, 5], # [3, 6]] x = tf.constant([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]) tf.matrix_transpose(x, conjugate=True) # [[1 - 1j, 4 - 4j], # [2 - 2j, 5 - 5j], # [3 - 3j, 6 - 6j]] # Matrix with two batch dimensions. # x.shape is [1, 2, 3, 4] # tf.matrix_transpose(x) is shape [1, 2, 4, 3] ``` Note that `tf.matmul` provides kwargs allowing for transpose of arguments. This is done with minimal cost, and is preferable to using this function. E.g. ```python # Good! Transpose is taken at minimal additional cost. tf.matmul(matrix, b, transpose_b=True) # Inefficient! tf.matmul(matrix, tf.matrix_transpose(b)) ``` @compatibility(numpy) In `numpy` transposes are memory-efficient constant time operations as they simply return a new view of the same data with adjusted `strides`. TensorFlow does not support strides, `matrix_transposes` return a new tensor with the items permuted. @end_compatibility Args: a: A `Tensor` with `rank >= 2`. name: A name for the operation (optional). conjugate: Optional bool. Setting it to `True` is mathematically equivalent to tf.conj(tf.matrix_transpose(input)). Returns: A transposed batch matrix `Tensor`. Raises: ValueError: If `a` is determined statically to have `rank < 2`. """ with ops.name_scope(name, values=[a]): a = ops.convert_to_tensor(a, name="a") # If we know the number of dimensions (statically), we can do two things: # 1. Check that `a` is a (batch) matrix. # 2. Use a python list for perm. This preserves static shape information # and avoids extra computations. a_shape = a.get_shape() ndims = a_shape.ndims if ndims is not None: if ndims < 2: raise ValueError( "Argument 'a' should be a (batch) matrix, with rank >= 2. Found: " "%s" % a_shape) perm = list(range(ndims - 2)) + [ndims - 1] + [ndims - 2] else: a_rank = rank(a) perm = concat((gen_math_ops._range(0, a_rank - 2, 1), [a_rank - 1, a_rank - 2]), 0) return transpose(a, perm=perm, conjugate=conjugate) # pylint: enable=invalid-name @tf_export("zeros") def zeros(shape, dtype=dtypes.float32, name=None): """Creates a tensor with all elements set to zero. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to zero. For example: ```python tf.zeros([3, 4], tf.int32) # [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ``` Args: shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`. dtype: The type of an element in the resulting `Tensor`. name: A name for the operation (optional). Returns: A `Tensor` with all elements set to zero. """ dtype = dtypes.as_dtype(dtype).base_dtype with ops.name_scope(name, "zeros", [shape]) as name: if dtype == dtypes.bool: zero = False elif dtype == dtypes.string: zero = "" else: zero = 0 if not isinstance(shape, ops.Tensor): try: # Go through tensor shapes to get int64-if-needed semantics shape = constant_op._tensor_shape_tensor_conversion_function( tensor_shape.TensorShape(shape)) except (TypeError, ValueError): # Happens when shape is a list with tensor elements shape = ops.convert_to_tensor(shape, dtype=dtypes.int32) if not shape._shape_tuple(): shape = reshape(shape, [-1]) # Ensure it's a vector output = fill(shape, constant(zero, dtype=dtype), name=name) assert output.dtype.base_dtype == dtype return output @tf_export("zeros_like") def zeros_like(tensor, dtype=None, name=None, optimize=True): """Creates a tensor with all elements set to zero. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to zero. Optionally, you can use `dtype` to specify a new type for the returned tensor. For example: ```python tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.zeros_like(tensor) # [[0, 0, 0], [0, 0, 0]] ``` Args: tensor: A `Tensor`. dtype: A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. name: A name for the operation (optional). optimize: if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns: A `Tensor` with all elements set to zero. """ with ops.name_scope(name, "zeros_like", [tensor]) as name: tensor = ops.convert_to_tensor(tensor, name="tensor") if context.in_eager_mode(): if dtype is not None and dtype != tensor.dtype: return zeros( shape_internal(tensor, optimize=optimize), dtype=dtype, name=name) with ops.device(tensor.device): return gen_array_ops._zeros_like(tensor, name=name) # For now, variant types must be created via zeros_like; as we need to # pass the input variant object to the proper zeros callback. if (optimize and tensor.shape.is_fully_defined() and tensor.dtype != dtypes.variant): # We can produce a zeros tensor independent of the value of 'tensor', # since the shape is known statically. return zeros(tensor.shape, dtype=dtype or tensor.dtype, name=name) if dtype is not None and dtype != tensor.dtype and dtype != dtypes.variant: return zeros( shape_internal(tensor, optimize=optimize), dtype=dtype, name=name) else: return gen_array_ops._zeros_like(tensor, name=name) @tf_export("ones_like") def ones_like(tensor, dtype=None, name=None, optimize=True): """Creates a tensor with all elements set to 1. Given a single tensor (`tensor`), this operation returns a tensor of the same type and shape as `tensor` with all elements set to 1. Optionally, you can specify a new type (`dtype`) for the returned tensor. For example: ```python tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) tf.ones_like(tensor) # [[1, 1, 1], [1, 1, 1]] ``` Args: tensor: A `Tensor`. dtype: A type for the returned `Tensor`. Must be `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, int32`, `int64`, `complex64`, `complex128` or `bool`. name: A name for the operation (optional). optimize: if true, attempt to statically determine the shape of 'tensor' and encode it as a constant. Returns: A `Tensor` with all elements set to 1. """ with ops.name_scope(name, "ones_like", [tensor]) as name: tensor = ops.convert_to_tensor(tensor, name="tensor") ones_shape = shape_internal(tensor, optimize=optimize) if dtype is None: dtype = tensor.dtype ret = ones(ones_shape, dtype=dtype, name=name) if context.in_graph_mode(): ret.set_shape(tensor.get_shape()) return ret @tf_export("ones") def ones(shape, dtype=dtypes.float32, name=None): """Creates a tensor with all elements set to 1. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to 1. For example: ```python tf.ones([2, 3], tf.int32) # [[1, 1, 1], [1, 1, 1]] ``` Args: shape: A list of integers, a tuple of integers, or a 1-D `Tensor` of type `int32`. dtype: The type of an element in the resulting `Tensor`. name: A name for the operation (optional). Returns: A `Tensor` with all elements set to 1. """ dtype = dtypes.as_dtype(dtype).base_dtype with ops.name_scope(name, "ones", [shape]) as name: one = True if dtype == dtypes.bool else 1 if not isinstance(shape, ops.Tensor): try: # Go through tensor shapes to get int64-if-needed semantics shape = constant_op._tensor_shape_tensor_conversion_function( tensor_shape.TensorShape(shape)) except (TypeError, ValueError): # Happens when shape is a list with tensor elements shape = ops.convert_to_tensor(shape, dtype=dtypes.int32) if not shape._shape_tuple(): shape = reshape(shape, [-1]) # Ensure it's a vector output = fill(shape, constant(one, dtype=dtype), name=name) assert output.dtype.base_dtype == dtype return output @tf_export("placeholder") def placeholder(dtype, shape=None, name=None): """Inserts a placeholder for a tensor that will be always fed. **Important**: This tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`. For example: ```python x = tf.placeholder(tf.float32, shape=(1024, 1024)) y = tf.matmul(x, x) with tf.Session() as sess: print(sess.run(y)) # ERROR: will fail because x was not fed. rand_array = np.random.rand(1024, 1024) print(sess.run(y, feed_dict={x: rand_array})) # Will succeed. ``` @compatibility{eager} Placeholders are not compatible with eager execution. Args: dtype: The type of elements in the tensor to be fed. shape: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any shape. name: A name for the operation (optional). Returns: A `Tensor` that may be used as a handle for feeding a value, but not evaluated directly. Raises: RuntimeError: if eager execution is enabled """ if context.in_eager_mode(): raise RuntimeError("tf.placeholder() is not compatible with " "eager execution.") return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name) # pylint: disable=redefined-outer-name def _normalize_sparse_shape(shape, name): """Returns a tuple of (Tensor or None, rank or None).""" if shape is None: return (None, None) rank = shape.get_shape()[0] if isinstance(shape, ops.Tensor) else len(shape) if not isinstance(shape, ops.Tensor) and None in shape: return (None, rank) return (ops.convert_to_tensor(shape, dtype=dtypes.int64, name=name), rank) @tf_export("sparse_placeholder") def sparse_placeholder(dtype, shape=None, name=None): """Inserts a placeholder for a sparse tensor that will be always fed. **Important**: This sparse tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to `Session.run()`, `Tensor.eval()`, or `Operation.run()`. For example: ```python x = tf.sparse_placeholder(tf.float32) y = tf.sparse_reduce_sum(x) with tf.Session() as sess: print(sess.run(y)) # ERROR: will fail because x was not fed. indices = np.array([[3, 2, 0], [4, 5, 1]], dtype=np.int64) values = np.array([1.0, 2.0], dtype=np.float32) shape = np.array([7, 9, 2], dtype=np.int64) print(sess.run(y, feed_dict={ x: tf.SparseTensorValue(indices, values, shape)})) # Will succeed. print(sess.run(y, feed_dict={ x: (indices, values, shape)})) # Will succeed. sp = tf.SparseTensor(indices=indices, values=values, dense_shape=shape) sp_value = sp.eval(session=sess) print(sess.run(y, feed_dict={x: sp_value})) # Will succeed. ``` @compatibility{eager} Placeholders are not compatible with eager execution. Args: dtype: The type of `values` elements in the tensor to be fed. shape: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a sparse tensor of any shape. name: A name for prefixing the operations (optional). Returns: A `SparseTensor` that may be used as a handle for feeding a value, but not evaluated directly. Raises: RuntimeError: if eager execution is enabled """ if context.in_eager_mode(): raise RuntimeError("tf.placeholder() is not compatible with " "eager execution.") shape_name = (name + "/shape") if name is not None else None shape, rank = _normalize_sparse_shape(shape, shape_name) if shape is None: shape = placeholder(dtypes.int64, shape=[rank], name=shape_name) return sparse_tensor.SparseTensor( values=placeholder( dtype, shape=[None], name=(name + "/values") if name is not None else None), indices=placeholder( dtypes.int64, shape=[None, rank], name=(name + "/indices") if name is not None else None), dense_shape=shape) # pylint: enable=redefined-outer-name @tf_export("pad") def pad(tensor, paddings, mode="CONSTANT", name=None, constant_values=0): # pylint: disable=invalid-name """Pads a tensor. This operation pads a `tensor` according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `tensor`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `tensor` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `tensor` in that dimension. If `mode` is "REFLECT" then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D) - 1`. If `mode` is "SYMMETRIC" then both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `tensor.dim_size(D)`. The padded size of each dimension D of the output is: `paddings[D, 0] + tensor.dim_size(D) + paddings[D, 1]` For example: ```python t = tf.constant([[1, 2, 3], [4, 5, 6]]) paddings = tf.constant([[1, 1,], [2, 2]]) # 'constant_values' is 0. # rank of 't' is 2. tf.pad(t, paddings, "CONSTANT") # [[0, 0, 0, 0, 0, 0, 0], # [0, 0, 1, 2, 3, 0, 0], # [0, 0, 4, 5, 6, 0, 0], # [0, 0, 0, 0, 0, 0, 0]] tf.pad(t, paddings, "REFLECT") # [[6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1], # [6, 5, 4, 5, 6, 5, 4], # [3, 2, 1, 2, 3, 2, 1]] tf.pad(t, paddings, "SYMMETRIC") # [[2, 1, 1, 2, 3, 3, 2], # [2, 1, 1, 2, 3, 3, 2], # [5, 4, 4, 5, 6, 6, 5], # [5, 4, 4, 5, 6, 6, 5]] ``` Args: tensor: A `Tensor`. paddings: A `Tensor` of type `int32`. mode: One of "CONSTANT", "REFLECT", or "SYMMETRIC" (case-insensitive) name: A name for the operation (optional). constant_values: In "CONSTANT" mode, the scalar pad value to use. Must be same type as `tensor`. Returns: A `Tensor`. Has the same type as `tensor`. Raises: ValueError: When mode is not one of "CONSTANT", "REFLECT", or "SYMMETRIC". """ # Convert lower/mixed case to upper for NumPy compatibility # NumPy uses all lower-case modes. mode = mode.upper() if mode == "CONSTANT": # TODO(rjryan): Once the forward compatibility period (3 weeks) have passed # remove the "Pad" fallback here. if constant_values != 0: result = gen_array_ops._pad_v2( tensor, paddings, constant_values, name=name) else: result = gen_array_ops._pad(tensor, paddings, name=name) elif mode == "REFLECT": result = gen_array_ops._mirror_pad( tensor, paddings, mode="REFLECT", name=name) elif mode == "SYMMETRIC": result = gen_array_ops._mirror_pad( tensor, paddings, mode="SYMMETRIC", name=name) else: raise ValueError("Unknown padding mode: %s" % mode) # Restore shape information where possible. if context.in_graph_mode(): paddings_constant = tensor_util.constant_value( result.op.inputs[1], partial=True) input_shape = result.op.inputs[0].shape if (input_shape.ndims is not None and not result.shape.is_fully_defined() and paddings_constant is not None): new_shape = [] for padding, dim in zip(paddings_constant, input_shape.as_list()): if padding is None or dim is None or not all(padding): new_shape.append(None) else: new_shape.append(sum(padding) + dim) result.set_shape(new_shape) return result @tf_export("meshgrid") def meshgrid(*args, **kwargs): """Broadcasts parameters for evaluation on an N-D grid. Given N one-dimensional coordinate arrays `*args`, returns a list `outputs` of N-D coordinate arrays for evaluating expressions on an N-D grid. Notes: `meshgrid` supports cartesian ('xy') and matrix ('ij') indexing conventions. When the `indexing` argument is set to 'xy' (the default), the broadcasting instructions for the first two dimensions are swapped. Examples: Calling `X, Y = meshgrid(x, y)` with the tensors ```python x = [1, 2, 3] y = [4, 5, 6] X, Y = tf.meshgrid(x, y) # X = [[1, 2, 3], # [1, 2, 3], # [1, 2, 3]] # Y = [[4, 4, 4], # [5, 5, 5], # [6, 6, 6]] ``` Args: *args: `Tensor`s with rank 1. **kwargs: - indexing: Either 'xy' or 'ij' (optional, default: 'xy'). - name: A name for the operation (optional). Returns: outputs: A list of N `Tensor`s with rank N. Raises: TypeError: When no keyword arguments (kwargs) are passed. ValueError: When indexing keyword argument is not one of `xy` or `ij`. """ indexing = kwargs.pop("indexing", "xy") name = kwargs.pop("name", "meshgrid") if kwargs: key = list(kwargs.keys())[0] raise TypeError("'{}' is an invalid keyword argument " "for this function".format(key)) if indexing not in ("xy", "ij"): raise ValueError("indexing parameter must be either 'xy' or 'ij'") with ops.name_scope(name, "meshgrid", args) as name: ndim = len(args) s0 = (1,) * ndim # Prepare reshape by inserting dimensions with size 1 where needed output = [] for i, x in enumerate(args): output.append(reshape(stack(x), (s0[:i] + (-1,) + s0[i + 1::]))) # Create parameters for broadcasting each tensor to the full size shapes = [size(x) for x in args] output_dtype = ops.convert_to_tensor(args[0]).dtype.base_dtype if indexing == "xy" and ndim > 1: output[0] = reshape(output[0], (1, -1) + (1,) * (ndim - 2)) output[1] = reshape(output[1], (-1, 1) + (1,) * (ndim - 2)) shapes[0], shapes[1] = shapes[1], shapes[0] # TODO(nolivia): improve performance with a broadcast mult_fact = ones(shapes, output_dtype) return [x * mult_fact for x in output] NEW_AXIS = -1 SHRINK_AXIS = -2 # PEP-8 naming # pylint: disable=invalid-name,redefined-outer-name def _compute_size_of_strided_dim(shrink, spec, size): """Computes the size of a single strided slice dimension.""" unknown = None # Document what None means here. use_full_range = None # Document other use of None. # if this is a shrink axis (i.e. a non-range index) # it either will produce an error or return 1 if shrink: return 1 if size is unknown or size.value is unknown: return unknown size = size.value stride = spec.step if stride is not unknown: if stride == 0: return unknown stride = spec.step valid_range = [0, size] if stride > 0 else [-1, size - 1] # PEP-8 naming # pylint: disable=invalid-name def canonical(x, c): if x is use_full_range: return valid_range[c] if stride > 0 else valid_range[(c + 1) & 1] else: x_fwd = size + x if x < 0 else x # make negative indices positive return max(valid_range[0], min(valid_range[1], x_fwd)) begin = canonical(spec.start, 0) end = canonical(spec.stop, 1) interval_length = end - begin if interval_length == 0 or ((interval_length < 0) != (stride < 0)): return 0 else: remainder = 1 if interval_length % stride != 0 else 0 return interval_length // stride + remainder else: return unknown # unknown because stride is unknown def _TileGradShape(op): """Shape function for the TileGrad op.""" multiples_shape = op.inputs[1].get_shape().with_rank(1) input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0]) # NOTE(mrry): Represent `multiples` as a `TensorShape` because (i) # it is a vector of non-negative integers, and (ii) doing so allows # us to handle partially-known multiples. multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank( input_shape.ndims) if multiples.ndims is None: return [tensor_shape.unknown_shape()] else: output_dims = [] for dim, multiple in zip(input_shape.dims, multiples.dims): output_dims.append(dim // multiple) return [tensor_shape.TensorShape(output_dims)] @tf_export("edit_distance") def edit_distance(hypothesis, truth, normalize=True, name="edit_distance"): """Computes the Levenshtein distance between sequences. This operation takes variable-length sequences (`hypothesis` and `truth`), each provided as a `SparseTensor`, and computes the Levenshtein distance. You can normalize the edit distance by length of `truth` by setting `normalize` to true. For example, given the following input: ```python # 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values: # (0,0) = ["a"] # (1,0) = ["b"] hypothesis = tf.SparseTensor( [[0, 0, 0], [1, 0, 0]], ["a", "b"], (2, 1, 1)) # 'truth' is a tensor of shape `[2, 2]` with variable-length values: # (0,0) = [] # (0,1) = ["a"] # (1,0) = ["b", "c"] # (1,1) = ["a"] truth = tf.SparseTensor( [[0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]], ["a", "b", "c", "a"], (2, 2, 2)) normalize = True ``` This operation would return the following: ```python # 'output' is a tensor of shape `[2, 2]` with edit distances normalized # by 'truth' lengths. output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis ``` Args: hypothesis: A `SparseTensor` containing hypothesis sequences. truth: A `SparseTensor` containing truth sequences. normalize: A `bool`. If `True`, normalizes the Levenshtein distance by length of `truth.` name: A name for the operation (optional). Returns: A dense `Tensor` with rank `R - 1`, where R is the rank of the `SparseTensor` inputs `hypothesis` and `truth`. Raises: TypeError: If either `hypothesis` or `truth` are not a `SparseTensor`. """ if not isinstance(hypothesis, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Hypothesis must be a SparseTensor.") if not isinstance(truth, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Truth must be a SparseTensor.") return gen_array_ops._edit_distance( hypothesis.indices, hypothesis.values, hypothesis.dense_shape, truth.indices, truth.values, truth.dense_shape, normalize=normalize, name=name) @ops.RegisterGradient("FakeQuantWithMinMaxArgs") def _FakeQuantWithMinMaxArgsGradient(op, grad): """Gradient for FakeQuantWithMinMaxArgs op.""" return fake_quant_with_min_max_args_gradient( grad, op.inputs[0], min=op.get_attr("min"), max=op.get_attr("max"), num_bits=op.get_attr("num_bits"), narrow_range=op.get_attr("narrow_range")) @ops.RegisterGradient("FakeQuantWithMinMaxVars") def _FakeQuantWithMinMaxVarsGradient(op, grad): """Gradient for FakeQuantWithMinMaxVars op.""" return fake_quant_with_min_max_vars_gradient( grad, op.inputs[0], op.inputs[1], op.inputs[2], num_bits=op.get_attr("num_bits"), narrow_range=op.get_attr("narrow_range")) @ops.RegisterGradient("FakeQuantWithMinMaxVarsPerChannel") def _FakeQuantWithMinMaxVarsPerChannelGradient(op, grad): """Gradient for FakeQuantWithMinMaxVarsPerChannel op.""" return fake_quant_with_min_max_vars_per_channel_gradient( grad, op.inputs[0], op.inputs[1], op.inputs[2], num_bits=op.get_attr("num_bits"), narrow_range=op.get_attr("narrow_range")) @tf_export("required_space_to_batch_paddings") def required_space_to_batch_paddings(input_shape, block_shape, base_paddings=None, name=None): """Calculate padding required to make block_shape divide input_shape. This function can be used to calculate a suitable paddings argument for use with space_to_batch_nd and batch_to_space_nd. Args: input_shape: int32 Tensor of shape [N]. block_shape: int32 Tensor of shape [N]. base_paddings: Optional int32 Tensor of shape [N, 2]. Specifies the minimum amount of padding to use. All elements must be >= 0. If not specified, defaults to 0. name: string. Optional name prefix. Returns: (paddings, crops), where: `paddings` and `crops` are int32 Tensors of rank 2 and shape [N, 2] satisfying: paddings[i, 0] = base_paddings[i, 0]. 0 <= paddings[i, 1] - base_paddings[i, 1] < block_shape[i] (input_shape[i] + paddings[i, 0] + paddings[i, 1]) % block_shape[i] == 0 crops[i, 0] = 0 crops[i, 1] = paddings[i, 1] - base_paddings[i, 1] Raises: ValueError if called with incompatible shapes. """ with ops.name_scope(name, "required_space_to_batch_paddings", [input_shape, block_shape]): input_shape = ops.convert_to_tensor( input_shape, dtype=dtypes.int32, name="input_shape") block_shape = ops.convert_to_tensor( block_shape, dtype=dtypes.int32, name="block_shape") block_shape.get_shape().assert_is_fully_defined() block_shape.get_shape().assert_has_rank(1) num_block_dims = block_shape.get_shape()[0].value if num_block_dims == 0: return zeros([0, 2], dtypes.int32), zeros([0, 2], dtypes.int32) input_shape.get_shape().assert_is_compatible_with([num_block_dims]) if base_paddings is not None: base_paddings = ops.convert_to_tensor( base_paddings, dtype=dtypes.int32, name="base_paddings") base_paddings.get_shape().assert_is_compatible_with([num_block_dims, 2]) else: base_paddings = zeros([num_block_dims, 2], dtypes.int32) const_block_shape = tensor_util.constant_value(block_shape) const_input_shape = tensor_util.constant_value(input_shape) const_base_paddings = tensor_util.constant_value(base_paddings) if (const_block_shape is not None and const_input_shape is not None and const_base_paddings is not None): block_shape = const_block_shape input_shape = const_input_shape base_paddings = const_base_paddings # Use same expression for both constant and non-constant case. pad_start = base_paddings[:, 0] orig_pad_end = base_paddings[:, 1] full_input_shape = input_shape + pad_start + orig_pad_end pad_end_extra = (block_shape - full_input_shape % block_shape) % block_shape pad_end = orig_pad_end + pad_end_extra result_paddings = stack( [[pad_start[i], pad_end[i]] for i in range(num_block_dims)], name="paddings") result_crops = stack( [[0, pad_end_extra[i]] for i in range(num_block_dims)], name="crops") return result_paddings, result_crops @tf_export("space_to_batch") def space_to_batch(input, paddings, block_size, name=None): # pylint: disable=redefined-builtin result = space_to_batch_nd( input, paddings=paddings, block_shape=np.array([block_size, block_size], dtype=np.int64), name=name) result.set_shape(result.get_shape().with_rank(4)) return result space_to_batch.__doc__ = gen_array_ops._space_to_batch.__doc__ @tf_export("space_to_depth") def space_to_depth(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin return gen_array_ops.space_to_depth(input, block_size, data_format, name=name) space_to_depth.__doc__ = gen_array_ops.space_to_depth.__doc__ @tf_export("depth_to_space") def depth_to_space(input, block_size, name=None, data_format="NHWC"): # pylint: disable=redefined-builtin return gen_array_ops.depth_to_space(input, block_size, data_format, name=name) depth_to_space.__doc__ = gen_array_ops.depth_to_space.__doc__ @tf_export("batch_to_space") def batch_to_space(input, crops, block_size, name=None): # pylint: disable=redefined-builtin result = batch_to_space_nd( input, crops=crops, block_shape=np.array([block_size, block_size], dtype=np.int64), name=name) result.set_shape(result.get_shape().with_rank(4)) return result batch_to_space.__doc__ = gen_array_ops._batch_to_space.__doc__ @tf_export("one_hot") def one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None): """Returns a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`. `on_value` and `off_value` must have matching data types. If `dtype` is also provided, they must be the same data type as specified by `dtype`. If `on_value` is not provided, it will default to the value `1` with type `dtype` If `off_value` is not provided, it will default to the value `0` with type `dtype` If the input `indices` is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis` (default: the new axis is appended at the end). If `indices` is a scalar the output shape will be a vector of length `depth` If `indices` is a vector of length `features`, the output shape will be: ``` features x depth if axis == -1 depth x features if axis == 0 ``` If `indices` is a matrix (batch) with shape `[batch, features]`, the output shape will be: ``` batch x features x depth if axis == -1 batch x depth x features if axis == 1 depth x batch x features if axis == 0 ``` If `dtype` is not provided, it will attempt to assume the data type of `on_value` or `off_value`, if one or both are passed in. If none of `on_value`, `off_value`, or `dtype` are provided, `dtype` will default to the value `tf.float32`. Note: If a non-numeric data type output is desired (`tf.string`, `tf.bool`, etc.), both `on_value` and `off_value` _must_ be provided to `one_hot`. For example: ```python indices = [0, 1, 2] depth = 3 tf.one_hot(indices, depth) # output: [3 x 3] # [[1., 0., 0.], # [0., 1., 0.], # [0., 0., 1.]] indices = [0, 2, -1, 1] depth = 3 tf.one_hot(indices, depth, on_value=5.0, off_value=0.0, axis=-1) # output: [4 x 3] # [[5.0, 0.0, 0.0], # one_hot(0) # [0.0, 0.0, 5.0], # one_hot(2) # [0.0, 0.0, 0.0], # one_hot(-1) # [0.0, 5.0, 0.0]] # one_hot(1) indices = [[0, 2], [1, -1]] depth = 3 tf.one_hot(indices, depth, on_value=1.0, off_value=0.0, axis=-1) # output: [2 x 2 x 3] # [[[1.0, 0.0, 0.0], # one_hot(0) # [0.0, 0.0, 1.0]], # one_hot(2) # [[0.0, 1.0, 0.0], # one_hot(1) # [0.0, 0.0, 0.0]]] # one_hot(-1) ``` Args: indices: A `Tensor` of indices. depth: A scalar defining the depth of the one hot dimension. on_value: A scalar defining the value to fill in output when `indices[j] = i`. (default: 1) off_value: A scalar defining the value to fill in output when `indices[j] != i`. (default: 0) axis: The axis to fill (default: -1, a new inner-most axis). dtype: The data type of the output tensor. name: A name for the operation (optional). Returns: output: The one-hot tensor. Raises: TypeError: If dtype of either `on_value` or `off_value` don't match `dtype` TypeError: If dtype of `on_value` and `off_value` don't match one another """ with ops.name_scope(name, "one_hot", [indices, depth, on_value, off_value, axis, dtype]) as name: on_exists = on_value is not None off_exists = off_value is not None on_dtype = (ops.convert_to_tensor(on_value).dtype.base_dtype if on_exists else None) off_dtype = (ops.convert_to_tensor(off_value).dtype.base_dtype if off_exists else None) if on_exists or off_exists: if dtype is not None: # Ensure provided on_value and/or off_value match dtype if on_exists and on_dtype != dtype: raise TypeError("dtype {0} of on_value does not match " "dtype parameter {1}".format(on_dtype, dtype)) if off_exists and off_dtype != dtype: raise TypeError("dtype {0} of off_value does not match " "dtype parameter {1}".format(off_dtype, dtype)) else: # dtype not provided: automatically assign it dtype = on_dtype if on_exists else off_dtype elif dtype is None: # None of on_value, off_value, or dtype provided. Default dtype to float32 dtype = dtypes.float32 if not on_exists: # on_value not provided: assign to value 1 of type dtype on_value = ops.convert_to_tensor(1, dtype, name="on_value") on_dtype = dtype if not off_exists: # off_value not provided: assign to value 0 of type dtype off_value = ops.convert_to_tensor(0, dtype, name="off_value") off_dtype = dtype if on_dtype != off_dtype: raise TypeError("dtype {0} of on_value does not match " "dtype {1} of off_value".format(on_dtype, off_dtype)) return gen_array_ops._one_hot(indices, depth, on_value, off_value, axis, name) def _all_dimensions(x): """Returns a 1D-tensor listing all dimensions in x.""" # Fast path: avoid creating Rank and Range ops if ndims is known. if isinstance(x, ops.Tensor) and x.get_shape().ndims is not None: return constant_op.constant( np.arange(x.get_shape().ndims), dtype=dtypes.int32) if (isinstance(x, sparse_tensor.SparseTensor) and x.dense_shape.get_shape().is_fully_defined()): r = x.dense_shape.get_shape()[0].value # sparse.dense_shape is 1-D. return constant_op.constant(np.arange(r), dtype=dtypes.int32) # Otherwise, we rely on `range` and `rank` to do the right thing at runtime. return gen_math_ops._range(0, rank(x), 1) @tf_export("sequence_mask") def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None): """Returns a mask tensor representing the first N positions of each cell. If `lengths` has shape `[d_1, d_2, ..., d_n]` the resulting tensor `mask` has dtype `dtype` and shape `[d_1, d_2, ..., d_n, maxlen]`, with ``` mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n]) ``` Examples: ```python tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False], # [True, True, True, False, False], # [True, True, False, False, False]] tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False], # [True, True, True]], # [[True, True, False], # [False, False, False]]] ``` Args: lengths: integer tensor, all its values <= maxlen. maxlen: scalar integer tensor, size of last dimension of returned tensor. Default is the maximum value in `lengths`. dtype: output type of the resulting tensor. name: name of the op. Returns: A mask tensor of shape `lengths.shape + (maxlen,)`, cast to specified dtype. Raises: ValueError: if `maxlen` is not a scalar. """ with ops.name_scope(name, "SequenceMask", [lengths, maxlen]): lengths = ops.convert_to_tensor(lengths) if maxlen is None: maxlen = gen_math_ops._max(lengths, _all_dimensions(lengths)) else: maxlen = ops.convert_to_tensor(maxlen) if maxlen.get_shape().ndims is not None and maxlen.get_shape().ndims != 0: raise ValueError("maxlen must be scalar for sequence_mask") # The basic idea is to compare a range row vector of size maxlen: # [0, 1, 2, 3, 4] # to length as a matrix with 1 column: [[1], [3], [2]]. # Because of broadcasting on both arguments this comparison results # in a matrix of size (len(lengths), maxlen) row_vector = gen_math_ops._range( constant(0, maxlen.dtype), maxlen, constant(1, maxlen.dtype)) # Since maxlen >= max(lengths), it is safe to use maxlen as a cast # authoritative type. Whenever maxlen fits into tf.int32, so do the lengths. matrix = gen_math_ops.cast(expand_dims(lengths, -1), maxlen.dtype) result = row_vector < matrix if dtype is None or result.dtype.base_dtype == dtype.base_dtype: return result else: return gen_math_ops.cast(result, dtype) @tf_export("squeeze") def squeeze(input, axis=None, name=None, squeeze_dims=None): # pylint: disable=redefined-builtin """Removes dimensions of size 1 from the shape of a tensor. Given a tensor `input`, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying `axis`. For example: ```python # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] tf.shape(tf.squeeze(t)) # [2, 3] ``` Or, to remove specific size 1 dimensions: ```python # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] tf.shape(tf.squeeze(t, [2, 4])) # [1, 2, 3, 1] ``` Args: input: A `Tensor`. The `input` to squeeze. axis: An optional list of `ints`. Defaults to `[]`. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. Must be in the range `[-rank(input), rank(input))`. name: A name for the operation (optional). squeeze_dims: Deprecated keyword argument that is now axis. Returns: A `Tensor`. Has the same type as `input`. Contains the same data as `input`, but has one or more dimensions of size 1 removed. Raises: ValueError: When both `squeeze_dims` and `axis` are specified. """ if squeeze_dims is not None: if axis is not None: raise ValueError("Cannot specify both 'squeeze_dims' and 'axis'") axis = squeeze_dims if np.isscalar(axis): axis = [axis] return gen_array_ops._squeeze(input, axis, name) @tf_export("where") def where(condition, x=None, y=None, name=None): """Return the elements, either from `x` or `y`, depending on the `condition`. If both `x` and `y` are None, then this operation returns the coordinates of true elements of `condition`. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order. If both non-None, `x` and `y` must have the same shape. The `condition` tensor must be a scalar if `x` and `y` are scalar. If `x` and `y` are vectors of higher rank, then `condition` must be either a vector with size matching the first dimension of `x`, or must have the same shape as `x`. The `condition` tensor acts as a mask that chooses, based on the value at each element, whether the corresponding element / row in the output should be taken from `x` (if true) or `y` (if false). If `condition` is a vector and `x` and `y` are higher rank matrices, then it chooses which row (outer dimension) to copy from `x` and `y`. If `condition` has the same shape as `x` and `y`, then it chooses which element to copy from `x` and `y`. Args: condition: A `Tensor` of type `bool` x: A Tensor which may have the same shape as `condition`. If `condition` is rank 1, `x` may have higher rank, but its first dimension must match the size of `condition`. y: A `tensor` with the same shape and type as `x`. name: A name of the operation (optional) Returns: A `Tensor` with the same type and shape as `x`, `y` if they are non-None. A `Tensor` with shape `(num_true, dim_size(condition))`. Raises: ValueError: When exactly one of `x` or `y` is non-None. """ if x is None and y is None: with ops.name_scope(name, "Where", [condition]) as name: condition = ops.convert_to_tensor( condition, preferred_dtype=dtypes.bool, name="condition") return gen_array_ops.where(condition=condition, name=name) elif x is not None and y is not None: return gen_math_ops._select(condition=condition, x=x, y=y, name=name) else: raise ValueError("x and y must both be non-None or both be None.") @tf_export("reverse") def reverse(tensor, axis, name=None): return gen_array_ops.reverse_v2(tensor, axis, name) reverse.__doc__ = gen_array_ops.reverse_v2.__doc__ # pylint: disable=redefined-builtin @tf_export("reverse_sequence") def reverse_sequence(input, seq_lengths, seq_axis=None, batch_axis=None, name=None, seq_dim=None, batch_dim=None): seq_axis = deprecation.deprecated_argument_lookup("seq_axis", seq_axis, "seq_dim", seq_dim) batch_axis = deprecation.deprecated_argument_lookup("batch_axis", batch_axis, "batch_dim", batch_dim) return gen_array_ops.reverse_sequence( input=input, seq_lengths=seq_lengths, seq_dim=seq_axis, batch_dim=batch_axis, name=name) # pylint: enable=redefined-builtin reverse_sequence.__doc__ = deprecation.rewrite_argument_docstring( deprecation.rewrite_argument_docstring( gen_array_ops.reverse_sequence.__doc__, "batch_dim", "batch_axis"), "seq_dim", "seq_axis") @tf_export("gather") def gather(params, indices, validate_indices=None, name=None, axis=0): # TODO(rjryan): Remove "Gather" creation in favor of GatherV2 once the forward # compatibility 3 week period has passed. if axis == 0: return gen_array_ops.gather( params, indices, validate_indices=validate_indices, name=name) else: return gen_array_ops.gather_v2(params, indices, axis, name=name) gather.__doc__ = gen_array_ops.gather_v2.__doc__ # Define quantize_v2 here in order to make name the second-to-last attribute, # because round_mode was added later. @tf_export("quantize_v2") @deprecation.deprecated( "2017-10-25", "`tf.quantize_v2` is deprecated, please use `tf.quantize` instead.") def quantize_v2(input, # pylint: disable=redefined-builtin min_range, max_range, T, mode="MIN_COMBINED", name=None, round_mode="HALF_AWAY_FROM_ZERO"): return gen_array_ops.quantize_v2(input, min_range, max_range, T=T, mode=mode, name=name, round_mode=round_mode) quantize_v2.__doc__ = """Please use `tf.quantize` instead.""" # We want to expose tf.quantize instead of tf.quantize_v2; we can deprecate # tf.quantize_v2 in next version of TensorFlow. @tf_export("quantize") def quantize(input, # pylint: disable=redefined-builtin min_range, max_range, T, mode="MIN_COMBINED", round_mode="HALF_AWAY_FROM_ZERO", name=None): return gen_array_ops.quantize_v2( input, min_range, max_range, T, mode=mode, round_mode=round_mode, name=name) quantize.__doc__ = gen_array_ops.quantize_v2.__doc__
34.230547
106
0.649806
fc224e12f18d586eb073570280eafbdbf71eb48f
12,938
py
Python
likelihood/tools.py
jzsmoreno/MLearning
45ff911f56b4dd76eb43bc7934df66dde0377cd4
[ "MIT" ]
1
2020-10-10T01:50:35.000Z
2020-10-10T01:50:35.000Z
likelihood/tools.py
jzsmoreno/MLearning
45ff911f56b4dd76eb43bc7934df66dde0377cd4
[ "MIT" ]
null
null
null
likelihood/tools.py
jzsmoreno/MLearning
45ff911f56b4dd76eb43bc7934df66dde0377cd4
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt """ Data Science from Scratch, Second Edition, by Joel Grus (O'Reilly).Copyright 2019 Joel Grus, 978-1-492-04113-9 """ def minibatches(dataset, batch_size, shuffle = True): """Generates 'batch_size'-sized minibatches from the dataset Parameters ---------- dataset : List batch_size : int shuffle : bool """ # start indexes 0, batch_size, 2 * batch_size, ... batch_starts = [start for start in range(0, len(dataset), batch_size)] if shuffle: np.random.shuffle(batch_starts) # shuffle the batches for start in batch_starts: end = start + batch_size yield dataset[start:end] def difference_quotient(f, x, h): """Calculates the difference quotient of 'f' evaluated at x and x + h Parameters ---------- f(x) : Callable function x : float h : float Returns ------- '(f(x + h) - f(x)) / h' """ return (f(x + h) - f(x)) / h def partial_difference_quotient(f, v, i, h): """Calculates the partial difference quotient of 'f' Parameters ---------- f(x0,...,xi-th) : Callable function v : Vector or np.array h : float Returns ------- the i-th partial difference quotient of f at v """ w = [v_j + (h if j == i else 0) # add h to just the ith element of v for j, v_j in enumerate(v)] return (f(w) - f(v)) / h def estimate_gradient(f, v, h = 0.0001): """Calculates the gradient of 'f' at v Parameters ---------- f(x0,...,xi-th) : Callable function v : Vector or np.array h : float. By default it is set to 0.0001 """ return [partial_difference_quotient(f, v, i, h) for i in range(len(v))] #------------------------------------------------------------------------- def calculate_probability(x, points = 1, cond = True): """Calculates the probability of the data Parameters ---------- x : np.array An array containing the data. points : int An integer value. By default it is set to `1`. cond : bool A boolean value. By default it is set to `True`. Returns ------- p : np.array An array containing the probability of the data. """ p = [] f = cdf(x)[0] for i in range(len(x)): p.append(f(x[i])) p = np.array(p) if cond: if(np.prod(p[-points]) > 1): print('\nThe probability of the data cannot be calculated.\n') else: if(np.prod(p[-points]) < 0): print('\nThe probability of the data cannot be calculated.\n') else: print('The model has a probability of {:.2f}% of being correct'.format(np.prod(p[-points])*100)) else: if(np.sum(p[-points]) < 0): print('\nThe probability of the data cannot be calculated.\n') else: if(np.sum(p[-points]) > 1): print('\nThe probability of the data cannot be calculated.\n') else: print('The model has a probability of {:.2f}% of being correct'.format(np.sum(p[-points])*100)) return p def cdf(x, poly = 9, inv = False, plot = False): """Calculates the cumulative distribution function of the data Parameters ---------- x : np.array An array containing the data. poly : int An integer value. By default it is set to `9`. inv : bool A boolean value. By default it is set to `False`. Returns ------- cdf_ : np.array An array containing the cumulative distribution function. """ cdf_ = np.cumsum(x) / np.sum(x) ox = np.sort(x) I = np.ones(len(ox)) M = np.triu(I) df = np.dot(ox, M) df_ = df/np.max(df) if inv: fit = np.polyfit(df_, ox, poly) f = np.poly1d(fit) else: fit = np.polyfit(ox, df_, poly) f = np.poly1d(fit) if plot: if inv: plt.plot(df_, ox, 'o', label = 'inv cdf') plt.plot(df_, f(df_), 'r--', label = 'fit') plt.title('Quantile Function') plt.xlabel("Probability") plt.ylabel("Value") plt.legend() plt.show() else: plt.plot(ox, cdf_, 'o', label = 'cdf') plt.plot(ox, f(ox), 'r--', label = 'fit') plt.title('Cumulative Distribution Function') plt.xlabel("Value") plt.ylabel("Probability") plt.legend() plt.show() return f, cdf_, ox class corr(): """Calculates the autocorrelation of the data Parameters ---------- x : np.array An array containing the data. y : np.array An array containing the data. Returns ------- z : np.array An array containing the correlation of x and y. """ def __init__(self, x, y): self.x = x self.y = y self.result = np.correlate(x, y, mode='full') self.z = self.result[self.result.size//2:] self.z = self.z/float(np.abs(self.z).max()) def plot(self): plt.plot(range(len(self.z)), self.z, label = 'Correlation') plt.legend() plt.show() def __call__(self): return self.z class autocorr(): """Calculates the autocorrelation of the data Parameters ---------- x : np.array An array containing the data. Returns ------- z : np.array An array containing the autocorrelation of the data. """ def __init__(self, x): self.x = x self.result = np.correlate(x, x, mode='full') self.z = self.result[self.result.size//2:] self.z = self.z/float(np.abs(self.z).max()) def plot(self): plt.plot(range(len(self.z)), self.z, label = 'Autocorrelation') plt.legend() plt.show() def __call__(self): return self.z def fft_denoise(dataset, sigma = 0, mode = True): """Performs the noise removal using the Fast Fourier Transform Parameters ---------- dataset : np.array An array containing the noised data. sigma : float A float between 0 and 1. By default it is set to `0`. mode : bool A boolean value. By default it is set to `True`. Returns ------- dataset : np.array An array containing the denoised data. """ dataset_ = dataset.copy() for i in range(dataset.shape[0]): n = dataset.shape[1] fhat = np.fft.fft(dataset[i, :], n) freq = (1/n) * np.arange(n) L = np.arange(1,np.floor(n/2),dtype='int') PSD = fhat * np.conj(fhat) / n indices = PSD > np.mean(PSD) + sigma * np.std(PSD) PSDclean = PSD * indices # Zero out all others fhat = indices * fhat ffilt = np.fft.ifft(fhat) # Inverse FFT for filtered time signal dataset_[i, :] = ffilt.real # Calculate the period of the signal period = 1 / freq[L][np.argmax(fhat[L])] if mode: print(f'The {i+1}-th row of the dataset has been denoised.') print(f'The period is {round(period, 4)}') return dataset_ def feature_importance(dataset, values): """Calculates the importance of each feature Parameters ---------- dataset : np.array An array containing the scaled data. values : np.ndarray A set of values returned by the linear function. Returns ------- importance : np.array An array containing the importance of each feature. """ importance = [] print('\nFeature importance:') U, S, VT = np.linalg.svd(dataset, full_matrices=False) w = (VT.T@np.linalg.inv(np.diag(S))@U.T).T@values for i in range(dataset.shape[0]): a = np.around(w[i], decimals=4) importance.append(a) print(f'The importance of the {i+1} feature is {a}') return np.array(importance) def cal_average(y, alpha = 1): """Calculates the moving average of the data Parameters ---------- y : np.array An array containing the data. alpha : float A float between 0 and 1. By default it is set to `1`. Returns ------- average : float The average of the data. """ n = int(alpha * len(y)) w = np.ones(n) / n average = np.convolve(y, w, mode='same') / np.convolve(np.ones_like(y), w, mode='same') return average def rescale(dataset, n=1): """Perform a standard rescaling of the data Parameters ---------- dataset : np.array An array containing the model data. n : int Is the degree of the polynomial to subtract the slope. By default it is set to `1`. Returns ------- data_scaled : np.array An array containing the scaled data. mu : np.array An array containing the min of the original data. sigma : np.array An array containing the (max - min) of the original data. """ mu = [] sigma = [] fitting = [] dataset_ = dataset.copy() try: xaxis = range(dataset.shape[1]) except: error_type = 'IndexError' msg = 'Trying to access an item at an invalid index.' print(f'{error_type}: {msg}') return None for i in range(dataset.shape[0]): if n != None: fit = np.polyfit(xaxis, dataset[i, :], n) f = np.poly1d(fit) poly = f(xaxis) fitting.append(f) else: fitting.append(0.0) dataset_[i, :] += -poly mu.append(np.min(dataset_[i, :])) if np.max(dataset_[i, :]) != 0: sigma.append(np.max(dataset_[i, :])-mu[i]) else: sigma.append(1) dataset_[i, :] = 2*((dataset_[i, :] - mu[i]) / sigma[i])-1 values = [mu, sigma, fitting] return dataset_, values def scale(dataset, values): """Performs the inverse operation to the rescale function Parameters ---------- dataset : np.array An array containing the scaled data. values : np.ndarray A set of values returned by the rescale function. """ dataset_ = dataset.copy() for i in range(dataset.shape[0]): dataset_[i, :] += 1 dataset_[i, :] /= 2 dataset_[i, :] = dataset_[i, :]*values[1][i] dataset_[i, :] += values[0][i] dataset_[i, :] += values[2][i](range(dataset_.shape[1])) return dataset_ def generate_series(n, n_steps, incline = True): """Function that generates $n$ series of length $n_steps$ """ freq1, freq2, offsets1, offsets2 = np.random.rand(4, n, 1) if incline : slope = np.random.rand(n, 1) else: slope = 0.0 offsets2 = 1 time = np.linspace(0, 1, n_steps) series = 0.5 * np.sin((time - offsets1) * (freq1 * 10 + 10)) # wave 1 series += 0.2 * np.sin((time - offsets2) * (freq2 * 20 + 20)) # + wave 2 series += 0.7 * (np.random.rand(n, n_steps) - 0.5) # + noise series += 5 * slope * time + 2 * (offsets2-offsets1) * time ** (1-offsets2) series = series return series.astype(np.float32) def RMSE(y_true, y_pred): """Calculates the Root Mean Squared Error Parameters ---------- y_true : np.array An array containing the true values. y_pred : np.array An array containing the predicted values. Returns ------- RMSE : float The Root Mean Squared Error. """ print(f'The RMSE is {np.sqrt(np.mean((y_true - y_pred)**2))}') return np.sqrt(np.mean((y_true - y_pred)**2)) #------------------------------------------------------------------------- if __name__ == '__main__': # Generate data x = np.random.rand(3, 100) y = 0.1*x[0, :] + 0.4*x[1, :] + 0.5*x[2, :] importance = feature_importance(x, y) a = generate_series(1, 40, incline=False) # Graph the data for visualization plt.plot(range(len(a[0, :])), a[0, :], label = 'Original Data') plt.legend() plt.xlabel('Time periods') plt.ylabel('$y(t)$') plt.show() a_denoise = fft_denoise(a) plt.plot(range(len(a_denoise[0, :])), a_denoise[0, :], label = 'Denoise Data') plt.legend() plt.xlabel('Time periods') plt.ylabel('$y(t)$') plt.show() # Calculate the autocorrelation of the data z = autocorr(a[0, :]) z.plot() #print(z()) N = 1000 mu = np.random.uniform(0, 10.0) sigma = np.random.uniform(0.1, 1.0) x = np.random.normal(mu, sigma, N) f, cdf_, ox = cdf(x, plot = True) invf, cdf_, ox = cdf(x, plot = True, inv = True)
26.842324
112
0.535941
e6ae75e3f1c892ee2f2ca00e2dfe19a9ff89d5b2
9,931
py
Python
train.py
HawkSun562/lw-pose_modify
f8906704aa2ef2be1df2004b90cd4ec52718f589
[ "Apache-2.0" ]
1
2021-08-24T07:00:47.000Z
2021-08-24T07:00:47.000Z
train.py
HawkSun562/lw-pose_modify
f8906704aa2ef2be1df2004b90cd4ec52718f589
[ "Apache-2.0" ]
null
null
null
train.py
HawkSun562/lw-pose_modify
f8906704aa2ef2be1df2004b90cd4ec52718f589
[ "Apache-2.0" ]
null
null
null
import argparse import cv2 import os import torch from torch.nn import DataParallel import torch.optim as optim from torch.utils.data import DataLoader from torchvision import transforms from datasets.coco import CocoTrainDataset from datasets.transformations import ConvertKeypoints, Scale, Rotate, CropPad, Flip from modules.get_parameters import get_parameters_conv, get_parameters_bn, get_parameters_conv_depthwise from models.with_mobilenet import PoseEstimationWithMobileNet from modules.loss import l2_loss from modules.load_state import load_state, load_from_mobilenet from val import evaluate cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) # To prevent freeze of DataLoader def train(prepared_train_labels, train_images_folder, num_refinement_stages, base_lr, batch_size, batches_per_iter, num_workers, checkpoint_path, weights_only, from_mobilenet, checkpoints_folder, log_after, val_labels, val_images_folder, val_output_name, checkpoint_after, val_after): gpu_available = torch.cuda.is_available() if gpu_available: print('[INFO] Training on GPU') else: print('[INFO] Training on CPU') net = PoseEstimationWithMobileNet(num_refinement_stages) stride = 8 sigma = 7 path_thickness = 1 dataset = CocoTrainDataset(prepared_train_labels, train_images_folder, stride, sigma, path_thickness, transform=transforms.Compose([ ConvertKeypoints(), Scale(), Rotate(pad=(128, 128, 128)), CropPad(pad=(128, 128, 128)), Flip()])) train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) optimizer = optim.Adam([ {'params': get_parameters_conv(net.model, 'weight')}, {'params': get_parameters_conv_depthwise(net.model, 'weight'), 'weight_decay': 0}, {'params': get_parameters_bn(net.model, 'weight'), 'weight_decay': 0}, {'params': get_parameters_bn(net.model, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0}, {'params': get_parameters_conv(net.cpm, 'weight'), 'lr': base_lr}, {'params': get_parameters_conv(net.cpm, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0}, {'params': get_parameters_conv_depthwise(net.cpm, 'weight'), 'weight_decay': 0}, {'params': get_parameters_conv(net.initial_stage, 'weight'), 'lr': base_lr}, {'params': get_parameters_conv(net.initial_stage, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0}, {'params': get_parameters_conv(net.refinement_stages, 'weight'), 'lr': base_lr * 4}, {'params': get_parameters_conv(net.refinement_stages, 'bias'), 'lr': base_lr * 8, 'weight_decay': 0}, {'params': get_parameters_bn(net.refinement_stages, 'weight'), 'weight_decay': 0}, {'params': get_parameters_bn(net.refinement_stages, 'bias'), 'lr': base_lr * 2, 'weight_decay': 0}, ], lr=base_lr, weight_decay=5e-4) num_iter = 0 current_epoch = 0 drop_after_epoch = [100, 200, 260] scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=drop_after_epoch, gamma=0.333) if checkpoint_path: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage.cuda()) if gpu_available else torch.load(checkpoint_path, map_location=lambda storage, loc: storage) if from_mobilenet: load_from_mobilenet(net, checkpoint) else: load_state(net, checkpoint) if not weights_only: optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) num_iter = checkpoint['iter'] current_epoch = checkpoint['current_epoch'] net = DataParallel(net).cuda() if gpu_available else DataParallel(net).cpu() net.train() for epochId in range(current_epoch, 280): total_losses = [0, 0] * (num_refinement_stages + 1) # heatmaps loss, paf loss per stage batch_per_iter_idx = 0 for batch_data in train_loader: if batch_per_iter_idx == 0: optimizer.zero_grad() images = batch_data['image'].cuda() if gpu_available else batch_data['image'] keypoint_masks = batch_data['keypoint_mask'].cuda() if gpu_available else batch_data['keypoint_mask'] paf_masks = batch_data['paf_mask'].cuda() if gpu_available else batch_data['paf_mask'] keypoint_maps = batch_data['keypoint_maps'].cuda() if gpu_available else batch_data['keypoint_maps'] paf_maps = batch_data['paf_maps'].cuda() if gpu_available else batch_data['paf_maps'] stages_output = net(images) losses = [] for loss_idx in range(len(total_losses) // 2): losses.append(l2_loss(stages_output[loss_idx * 2], keypoint_maps, keypoint_masks, images.shape[0])) losses.append(l2_loss(stages_output[loss_idx * 2 + 1], paf_maps, paf_masks, images.shape[0])) total_losses[loss_idx * 2] += losses[-2].item() / batches_per_iter total_losses[loss_idx * 2 + 1] += losses[-1].item() / batches_per_iter loss = losses[0] for loss_idx in range(1, len(losses)): loss += losses[loss_idx] loss /= batches_per_iter loss.backward() batch_per_iter_idx += 1 if batch_per_iter_idx == batches_per_iter: optimizer.step() batch_per_iter_idx = 0 num_iter += 1 else: continue if num_iter % log_after == 0: print('Iter: {}'.format(num_iter)) for loss_idx in range(len(total_losses) // 2): print('\n'.join(['stage{}_pafs_loss: {}', 'stage{}_heatmaps_loss: {}']).format( loss_idx + 1, total_losses[loss_idx * 2 + 1] / log_after, loss_idx + 1, total_losses[loss_idx * 2] / log_after)) for loss_idx in range(len(total_losses)): total_losses[loss_idx] = 0 if num_iter % checkpoint_after == 0: snapshot_name = '{}/checkpoint_iter_{}.pth'.format(checkpoints_folder, num_iter) torch.save({'state_dict': net.module.state_dict(), 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'iter': num_iter, 'current_epoch': epochId}, snapshot_name) if num_iter % val_after == 0: print('Validation...') evaluate(val_labels, val_output_name, val_images_folder, net) net.train() scheduler.step() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--prepared-train-labels', type=str, required=True, help='path to the file with prepared annotations') parser.add_argument('--train-images-folder', type=str, required=True, help='path to COCO train images folder') parser.add_argument('--num-refinement-stages', type=int, default=1, help='number of refinement stages') parser.add_argument('--base-lr', type=float, default=4e-5, help='initial learning rate') parser.add_argument('--batch-size', type=int, default=80, help='batch size') parser.add_argument('--batches-per-iter', type=int, default=1, help='number of batches to accumulate gradient from') parser.add_argument('--num-workers', type=int, default=8, help='number of workers') parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint to continue training from') parser.add_argument('--from-mobilenet', action='store_true', help='load weights from mobilenet feature extractor') parser.add_argument('--weights-only', action='store_true', help='just initialize layers with pre-trained weights and start training from the beginning') parser.add_argument('--experiment-name', type=str, default='default', help='experiment name to create folder for checkpoints') parser.add_argument('--log-after', type=int, default=100, help='number of iterations to print train loss') parser.add_argument('--val-labels', type=str, required=True, help='path to json with keypoints val labels') parser.add_argument('--val-images-folder', type=str, required=True, help='path to COCO val images folder') parser.add_argument('--val-output-name', type=str, default='detections.json', help='name of output json file with detected keypoints') parser.add_argument('--checkpoint-after', type=int, default=5000, help='number of iterations to save checkpoint') parser.add_argument('--val-after', type=int, default=5000, help='number of iterations to run validation') parser.add_argument('--gpu', type=str, default='0', help='which gpu index you want to use') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu checkpoints_folder = '{}_checkpoints'.format(args.experiment_name) if not os.path.exists(checkpoints_folder): os.makedirs(checkpoints_folder) train(args.prepared_train_labels, args.train_images_folder, args.num_refinement_stages, args.base_lr, args.batch_size, args.batches_per_iter, args.num_workers, args.checkpoint_path, args.weights_only, args.from_mobilenet, checkpoints_folder, args.log_after, args.val_labels, args.val_images_folder, args.val_output_name, args.checkpoint_after, args.val_after)
55.792135
191
0.642433
913ba5a6e3386099e14326b7aa8f12531ef8ff77
21,676
py
Python
python/tvm/script/scope_handler.py
h77h7/tvm-04.26
1bd8e6b921f392ae29b7672159326d94d40d6922
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
3
2021-04-30T04:09:44.000Z
2021-07-07T09:49:51.000Z
python/tvm/script/scope_handler.py
h77h7/tvm-04.26
1bd8e6b921f392ae29b7672159326d94d40d6922
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
1
2019-10-22T21:09:49.000Z
2019-10-22T21:09:49.000Z
python/tvm/script/scope_handler.py
h77h7/tvm-04.26
1bd8e6b921f392ae29b7672159326d94d40d6922
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0" ]
2
2019-10-22T08:48:21.000Z
2022-02-19T02:17:50.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """TVM Script Parser Scope Handler Classes""" # pylint: disable=redefined-builtin, unused-argument, invalid-name, relative-beyond-top-level from typing import Tuple, Any, Callable, Optional, List, Union, Mapping import synr from synr import ast import tvm.tir from tvm.runtime import Object from tvm.ir import Span, Range from tvm.tir import Stmt, PrimExpr, IterVar, Var, Buffer, BufferRegion, ForKind from .context_maintainer import ContextMaintainer from .utils import ( get_param_list, tvm_span_from_synr, buffer_slice_to_region, call_with_error_reporting, ) from .registry import register from .node import BufferSlice class ScopeHandler: """Base class for all scope handlers""" def __init__(self, func: Callable): self.func: Callable = func self.body: Optional[Stmt] = None self.node: Optional[synr.ast.Node] = None self.context: Optional[ContextMaintainer] = None def signature(self) -> Tuple[str, Tuple[list, list, Any]]: return "tir." + self.func.__name__, get_param_list(self.func) def enter_scope( self, node: synr.ast.Node, context: ContextMaintainer, arg_list: List[Any], span: synr.ast.Span, ): pass def exit_scope( self, node: synr.ast.Node, context: ContextMaintainer, arg_list: List[Any], span: synr.ast.Span, ): self.node = node self.context = context return call_with_error_reporting( context.report_error, span, self.func, *arg_list, span=tvm_span_from_synr(span) ) class WithScopeHandler(ScopeHandler): """Base class for all with scope handlers""" def __init__(self, func, concise_scope, def_symbol): super().__init__(func) self.concise_scope = concise_scope self.def_symbol = def_symbol @staticmethod def get_optional_var_names(node, context): """Get list of names from ast.With's optional_vars""" assert isinstance( node, ast.With ), f"WithScopeHandler expected ast.With but got {type(node)}" if isinstance(node.lhs, list): for var in node.lhs: if not isinstance(var, ast.Var): context.report_error( f"Invalid optional var definition, expected Var but got {type(var)}", node.span, ) var_names = [var.id.name for var in node.lhs] else: context.report_error( f"Invalid optional var definition, expected list of Var but got {type(node.lhs)}", node.span, ) return var_names @register class Allocate(WithScopeHandler): """ With scope handler tir.allocate(extents, dtype, scope, condition) """ def __init__(self): def allocate(extents, dtype, scope, condition=True, span=None): condition = tvm.runtime.convert(condition) scope = tvm.runtime.convert(scope) body = tvm.tir.Allocate( self.buffer_var, dtype, extents, condition, self.body, span=span ) return tvm.tir.AttrStmt(self.buffer_var, "storage_scope", scope, body, span=span) super().__init__(allocate, concise_scope=True, def_symbol=True) self.buffer_var = None def enter_scope( self, node: synr.ast.Node, context: ContextMaintainer, arg_list: List[Any], span: synr.ast.Span, ): # define buffer vars in symbol table if isinstance(node, ast.With): names = WithScopeHandler.get_optional_var_names(node, context) if len(names) != 1: context.report_error("Unexpected number of vars", node.span) name = names[0] elif isinstance(node, ast.Assign): name = node.lhs.id.name else: raise Exception("Internal Bug") def setup_buffer_var(extents, dtype, scope, condition=True, span: Span = None): """Setup buffer var for a given type.""" buffer_ptr_type = tvm.ir.PointerType(tvm.ir.PrimType(dtype)) self.buffer_var = tvm.tir.Var(name, buffer_ptr_type, span) setup_buffer_var(*arg_list, span=tvm_span_from_synr(node.lhs.id.span)) context.update_symbol(name, self.buffer_var, node) @register class LaunchThread(WithScopeHandler): """ With scope handler tir.launch_thread(env_var, extent) """ def __init__(self): def launch_thread(env_var, extent, span): extent = tvm.runtime.convert(extent, span=span) return tvm.tir.AttrStmt( IterVar( None, env_var, getattr(IterVar, "ThreadIndex"), self.context.func_var_env_dict[env_var], span=span, ), "thread_extent", extent, self.body, span=span, ) super().__init__(launch_thread, concise_scope=True, def_symbol=False) @register class Realize(WithScopeHandler): """ With scope handler tir.realize(buffer_bounds, scope, condition) """ def __init__(self): def realize( buffer_slice: BufferSlice, scope: str, condition: bool = True, span: bool = None ): assert self.context, "call 'exit_scope' before 'enter_scope'" buffer: Buffer = buffer_slice.buffer bounds: List[Range] = [] for s in buffer_slice.slices: min: Union[PrimExpr, int] = s.start extent: Union[PrimExpr, int] = 1 if s.stop is None else s.stop - s.start if isinstance(extent, PrimExpr): extent = self.context.analyzer.simplify(extent) bounds.append(Range.from_min_extent(min, extent, span=s.span)) scope = tvm.runtime.convert(scope, span=span) return tvm.tir.AttrStmt( buffer, "realize_scope", scope, tvm.tir.BufferRealize(buffer, bounds, condition, self.body, span=span), span=span, ) super().__init__(realize, concise_scope=True, def_symbol=False) @register class Attr(WithScopeHandler): """ With scope handler tir.attr(attr_node, attr_key, value) """ def __init__(self): def attr(attr_node, attr_key, value, span): attr_node = tvm.runtime.convert(attr_node, span=span) value = tvm.runtime.convert(value, span=span) return tvm.tir.AttrStmt(attr_node, attr_key, value, self.body, span=span) super().__init__(attr, concise_scope=True, def_symbol=False) @register class AssertHandler(WithScopeHandler): """ With scope handler tir.Assert(condition, message) """ def __init__(self): def Assert(condition, message, span): return tvm.tir.AssertStmt(condition, tvm.runtime.convert(message), self.body, span=span) super().__init__(Assert, concise_scope=True, def_symbol=False) @register class Let(WithScopeHandler): """ With scope handler tir.let(var, value) """ def __init__(self): def let(var, value, span): return tvm.tir.LetStmt(var, value, self.body, span=span) super().__init__(let, concise_scope=False, def_symbol=False) @register class Block(WithScopeHandler): """ With scope handler tir.block(extents, name) as iter_vars""" def __init__(self): def block(axes=None, name_hint: str = "", span: Optional[Span] = None): assert ( self.node and self.context and self.body ), "call 'exit_scope' before 'enter_scope'" block_info = self.context.block_info_stack[-1] if axes is None: axes = [] if len(axes) != len(self.block_vars): self.context.report_error( "Inconsistent number of block vars, " + f"there are {len(axes)} axes but {len(self.block_vars)} block vars. " + "The number of block vars should match the number of axes.", self.node.span, ) block_iters: List[IterVar] = [] for i, axis in enumerate(axes): axis = tvm.runtime.convert(axis) if isinstance(axis, tvm.tir.PrimExpr): block_var_dom = Range.from_min_extent(0, axis) block_iters.append(IterVar(block_var_dom, self.block_vars[i], 0)) elif isinstance(axis, Range): block_iters.append(IterVar(axis, self.block_vars[i], 0)) elif isinstance(axis, IterVar): block_iters.append(IterVar(axis.dom, self.block_vars[i], axis.iter_type)) else: self.context.report_error( "Invalid argument of tir.block(), " + f"expected PrimExpr, Range or IterVar, but got {type(axis)}", self.node.span, ) # create block read/write regions reads: List[BufferRegion] = ( [buffer_slice_to_region(read) for read in block_info.reads] if block_info.reads else [] ) writes: List[BufferRegion] = ( [buffer_slice_to_region(write) for write in block_info.writes] if block_info.writes else [] ) region_detect_mask: int = (block_info.reads is None) | ( (block_info.writes is None) << 1 ) annotations = {} if block_info.annotations is None else block_info.annotations if region_detect_mask != 0: annotations["tir.script_parsing_detect_access"] = region_detect_mask inner = tvm.tir.Block( block_iters, reads, writes, name_hint, self.body, block_info.init, block_info.alloc_buffers, block_info.match_buffers, annotations, span, ) # create block var iter binding values: List[PrimExpr] if not block_info.iter_bindings: values = self.context.loop_stack[-2].copy() if len(block_iters) == 0: # It is an opaque block without any bindings values = [] elif len(values) == 0: values = [tvm.tir.const(float("nan"), dtype="float32")] * len(block_iters) elif len(values) != len(block_iters): self.context.report_error( "Number of block iter var and outer loop nesting mismatch, " + f"{len(block_iters)} block iter vars but {len(values)} loops", self.node.span, ) else: for block_var in self.block_vars: if block_var not in block_info.iter_bindings: self.context.report_error( "Missing block iter var binding for " + block_var.name, self.node.span, ) values = [block_info.iter_bindings[block_var] for block_var in self.block_vars] predicate = ( tvm.tir.const(True, "bool") if block_info.predicate is None else block_info.predicate ) body = tvm.tir.BlockRealize(values, predicate, inner, span) return body super().__init__(func=block, concise_scope=False, def_symbol=True) self.block_vars = None def enter_scope( self, node: synr.ast.Node, context: ContextMaintainer, arg_list: List[Any], span: synr.ast.Span, ): # define block vars assert isinstance( node, ast.With ), f"BlockScopeHandler expected to work on ast.With but got {type(node)}" var_names = WithScopeHandler.get_optional_var_names(node, context) self.block_vars = [tvm.te.var(name) for name in var_names] for block_var in self.block_vars: context.update_symbol(block_var.name, block_var, node) @register class InitBlock(WithScopeHandler): """ With scope handler tir.init()""" def __init__(self): def init(span: Span = None): assert self.context, "call 'exit_scope' before 'enter_scope'" if self.context.block_info_stack[-2].init is not None: self.context.report_error("Duplicate init block declaration", span) self.context.block_info_stack[-2].init = self.body super().__init__(func=init, concise_scope=False, def_symbol=True) class ForScopeHandler(ScopeHandler): """Base class for all for scope handlers""" def __init__(self, func): super().__init__(func) self.loop_vars: Optional[List[Var]] = None def enter_scope( self, node: synr.ast.Node, context: ContextMaintainer, arg_list: List[Any], span: synr.ast.Span, ): assert isinstance(node, ast.For), f"ForScopeHandler expected ast.For but got {type(node)}" loop_var_names = list() spans = list() if isinstance(node.lhs, ast.Var): loop_var_names.append(node.lhs.id.name) spans.append(tvm_span_from_synr(node.lhs.id.span)) elif isinstance(node.lhs, list): for elt in node.lhs: if not isinstance(elt, ast.Var): context.report_error( f"Invalid loop var. Expected a var, but got {type(elt)}", elt.span ) loop_var_names.append(elt.id.name) spans.append(tvm_span_from_synr(elt.id.span)) else: context.report_error( f"Invalid loop var. Expected var or list of vars as lhs, but got {type(node.lhs)}", span, ) self.loop_vars = [ tvm.te.var(name, dtype="int32", span=span) for name, span in zip(loop_var_names, spans) ] for loop_var in self.loop_vars: context.update_symbol(loop_var.name, loop_var, node) context.loop_stack[-1].append(loop_var) def exit_scope( self, node: synr.ast.Node, context: ContextMaintainer, arg_list: List[Any], span: synr.ast.Span, ): assert self.loop_vars, "call 'exit_scope' before 'enter_scope'" for _ in self.loop_vars: context.loop_stack[-1].pop() return super().exit_scope(node, context, arg_list, span) def create_loop( self, begin: PrimExpr, end: PrimExpr, kind: ForKind, thread_binding: Optional[str] = None, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ) -> tvm.tir.For: """ Helper function for creating For in TVM Script parser. Parameters ---------- begin : PrimExpr The beginning value. end : PrimExpr The endding value. kind : ForKind The type of the for. thread_binding: Optional[str] The thread this loop binds to. annotations : Optional[Mapping[str, Object]] Additional annotation hints. span : Optional[Span] The location of this for in the source code. Returns ------- for : For The constructed For. """ assert ( self.loop_vars and self.context and self.node ), "call 'exit_scope' before 'enter_scope'" if len(self.loop_vars) != 1: self.context.report_error( f"Expected exactly one loop var, but got {self.loop_vars}", self.node.span ) extent = end if begin == 0 else self.context.analyzer.simplify(end - begin) annos: Mapping[str, Object] = {} if annotations is not None: annos = { key: tvm.tir.StringImm(val) if isinstance(val, str) else val for key, val in annotations.items() } return tvm.tir.For( self.loop_vars[0], begin, extent, kind, self.body, thread_binding=thread_binding, annotations=annos, span=span, ) @register class Serial(ForScopeHandler): """ For scope handler tir.serial(begin, end, annotations)""" def __init__(self): def serial( begin: PrimExpr, end: PrimExpr, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ): return self.create_loop(begin, end, ForKind.SERIAL, annotations=annotations, span=span) super().__init__(serial) @register class Parallel(ForScopeHandler): """ For scope handler tir.parallel(begin, end, annotations)""" def __init__(self): def parallel( begin: PrimExpr, end: PrimExpr, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ): return self.create_loop( begin, end, ForKind.PARALLEL, annotations=annotations, span=span ) super().__init__(parallel) @register class Vectorized(ForScopeHandler): """ For scope handler tir.vectorized(begin, end, annotations)""" def __init__(self): def vectorized( begin: PrimExpr, end: PrimExpr, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ): return self.create_loop( begin, end, ForKind.VECTORIZED, annotations=annotations, span=span ) super().__init__(vectorized) @register class Unroll(ForScopeHandler): """ For scope handler tir.unroll(begin, end, annotations)""" def __init__(self): def unroll( begin: PrimExpr, end: PrimExpr, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ): return self.create_loop( begin, end, ForKind.UNROLLED, annotations=annotations, span=span ) super().__init__(unroll) @register class ThreadBinding(ForScopeHandler): """ For scope handler tir.thread_binding(begin, end, thread, annotations)""" def __init__(self): def thread_binding( begin: PrimExpr, end: PrimExpr, thread: str, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ): thread_iter_var = IterVar(None, None, IterVar.ThreadIndex, thread, span=span) return self.create_loop( begin, end, ForKind.THREAD_BINDING, thread_binding=thread_iter_var, annotations=annotations, span=span, ) super().__init__(thread_binding) @register class RangeHandler(ForScopeHandler): """For scope handler range(begin, end, annotations) Note that tir.range is totally the same as tir.serial """ def __init__(self): def for_range( begin: PrimExpr, end: PrimExpr, annotations: Optional[Mapping[str, Object]] = None, span: Optional[Span] = None, ): return self.create_loop(begin, end, ForKind.SERIAL, annotations=annotations, span=span) super().__init__(for_range) def signature(self): return "range", get_param_list(self.func) @register class Grid(ForScopeHandler): """ For scope handler tir.grid(extents)""" def __init__(self): def grid(*extents: List[PrimExpr], span: Span): assert ( self.node and self.context and self.loop_vars ), "call 'exit_scope' before 'enter_scope'" if len(self.loop_vars) != len(extents): self.context.report_error( "Inconsistent number of loop vars and extents, " + f"got {len(self.loop_vars)} vs {len(extents)}", self.node.span, ) body = self.body for loop_var, extent in zip(reversed(self.loop_vars), reversed(extents)): body = tvm.tir.For(loop_var, 0, extent, ForKind.SERIAL, body, span=span) return body super().__init__(grid)
34.737179
100
0.577966
9a87e10612d3c46c9c370b2414314511217e8bfc
2,377
py
Python
ubicenter/plotly.py
MaxGhenis/ubicenter.py
6444e456f278216ec17c0bdd818212af7804c67a
[ "MIT" ]
null
null
null
ubicenter/plotly.py
MaxGhenis/ubicenter.py
6444e456f278216ec17c0bdd818212af7804c67a
[ "MIT" ]
null
null
null
ubicenter/plotly.py
MaxGhenis/ubicenter.py
6444e456f278216ec17c0bdd818212af7804c67a
[ "MIT" ]
null
null
null
from plotly import graph_objects as go from typing import Union CONFIG = {"displayModeBar": False} LOGO_URL = ( "https://raw.githubusercontent.com/UBICenter/ubicenter.org/master/" "assets/images/logos/wide-blue.jpg" ) LIGHTER_BLUE = "#ABCEEB" # Blue 100. LIGHT_BLUE = "#49A6E2" # Blue 500. BLUE = "#1976D2" # Blue 700. DARK_BLUE = "#0F4AA1" # Blue 900. GRAY = "#BDBDBD" WHITE = "#FFFFFF" BLUE_COLOR_SEQUENCE = [LIGHTER_BLUE, LIGHT_BLUE, BLUE, DARK_BLUE] def add_ubi_center_logo( fig: go.Figure, x: float = 0.98, y: float = -0.12 ) -> None: """Adds UBI Center logo to a plotly figure. Returns nothing. :param fig: Plotly figure. :type fig: go.Figure :param x: Horizontal coordinate. :type x: float :param y: Vertical coordinate, defaults to -0.12. :type y: float, optional """ fig.add_layout_image( dict( source=LOGO_URL, xref="paper", yref="paper", x=x, y=y, sizex=0.12, sizey=0.12, xanchor="right", yanchor="bottom", ) ) def format_fig( fig: go.Figure, show: bool = True, width: int = 800, height: int = 600, **kwargs ) -> Union[None, go.Figure]: """Formats figure with UBI styling and logo. **kwargs passed to add_ubi_center_logo. :param fig: Plotly figure. :type fig: go.Figure :param show: Whether to show the figure, defaults to True. If False, returns the figure. :type show: bool :param width: Width of the figure, defaults to 800. :type width: int, optional :param height: Height of the figure, defaults to 600. :type height: int, optional :return: If show is True, nothing. If show is False, returns the formatted plotly figure. :rtype: go.Figure """ add_ubi_center_logo(fig, **kwargs) fig.update_xaxes( title_font=dict(size=16, color="black"), tickfont={"size": 14} ) fig.update_yaxes( title_font=dict(size=16, color="black"), tickfont={"size": 14} ) fig.update_layout( hoverlabel_align="right", font_family="Roboto", title_font_size=20, plot_bgcolor="white", paper_bgcolor="white", width=width, height=height, ) if show: fig.show(config=CONFIG) else: return fig
25.55914
71
0.604964
667db24e93107503ee9bdae285b6ab24da57538d
2,825
py
Python
delve/tests/test_torch.py
dionhaefner/delve
811756520cbfd8dce4427c53203ac193f61a94d1
[ "MIT" ]
69
2019-03-04T20:59:59.000Z
2022-02-02T17:44:09.000Z
delve/tests/test_torch.py
dionhaefner/delve
811756520cbfd8dce4427c53203ac193f61a94d1
[ "MIT" ]
30
2019-02-26T13:34:06.000Z
2022-01-24T13:08:25.000Z
delve/tests/test_torch.py
dionhaefner/delve
811756520cbfd8dce4427c53203ac193f61a94d1
[ "MIT" ]
11
2019-04-22T21:53:56.000Z
2021-12-22T13:20:05.000Z
import tempfile import pytest import torch import torch.nn from delve import CheckLayerSat from delve.writers import CSVandPlottingWriter device = "cuda:0" if torch.cuda.is_available() else "cpu" TEMP_DIR = tempfile.TemporaryDirectory() TEMP_DIRNAME = TEMP_DIR.name def test_dense_saturation_runs(): save_path = TEMP_DIRNAME model = torch.nn.Sequential(torch.nn.Linear(10, 88)).to(device) writer = CSVandPlottingWriter(save_path, fontsize=16, primary_metric='test_accuracy') _ = CheckLayerSat(save_path, [writer], model, stats=['lsat', 'idim'], device=device) test_input = torch.randn(5, 10).to(device) _ = model(test_input) return True def test_lstm_saturation_runs(): save_path = TEMP_DIRNAME # Run 1 timeseries_method = 'timestepwise' model = torch.nn.Sequential().to(device) lstm = torch.nn.LSTM(10, 88, 2) lstm.name = 'lstm2' model.add_module('lstm', lstm) writer = CSVandPlottingWriter(save_path, fontsize=16, primary_metric='test_accuracy') saturation = CheckLayerSat(save_path, [writer], model, stats=['lsat', 'idim'], timeseries_method=timeseries_method, device=device) input = torch.randn(5, 3, 10).to(device) output, (hn, cn) = model(input) saturation.close() def test_lstm_saturation_embed_runs(): save_path = TEMP_DIRNAME # Run 2 timeseries_method = 'last_timestep' model = torch.nn.Sequential().to(device) lstm = torch.nn.LSTM(10, 88, 2) model.add_module('lstm', lstm) writer = CSVandPlottingWriter(save_path, fontsize=16) saturation = CheckLayerSat(save_path, [writer], model, stats=['lsat', 'idim', 'embed'], timeseries_method=timeseries_method, device=device) input = torch.randn(5, 3, 10).to(device) output, (hn, cn) = model(input) assert saturation.logs['train-covariance-matrix'][ 'lstm'].saved_samples.shape == torch.Size([5, 88]) input = torch.randn(8, 3, 10) output, (hn, cn) = model(input) assert saturation.logs['train-covariance-matrix'][ 'lstm'].saved_samples.shape == torch.Size([8, 88]) saturation.add_saturations() saturation.close() return True @pytest.fixture(scope="session", autouse=True) def cleanup(request): """Cleanup temp directory once we are finished""" def remove_tempdir(): TEMP_DIR.cleanup() request.addfinalizer(remove_tempdir)
30.053191
67
0.588673
ef68d0dc6b30640aa0342204c6916ce12fab6b51
5,565
py
Python
tools/text_demo.py
lz20061213/quadrilateral
ee0a38c91bfc979998f63963585b5e00f24a49a0
[ "MIT" ]
2
2018-08-12T13:15:55.000Z
2021-06-14T18:48:09.000Z
tools/text_demo.py
lz20061213/quadrilateral
ee0a38c91bfc979998f63963585b5e00f24a49a0
[ "MIT" ]
null
null
null
tools/text_demo.py
lz20061213/quadrilateral
ee0a38c91bfc979998f63963585b5e00f24a49a0
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths from model.test import test_net, im_detect from model.config import cfg, cfg_from_file, cfg_from_list from datasets.factory import get_imdb import argparse import pprint import time, os, sys import os.path as osp import cv2 import numpy as np from utils.cython_nms import nms import tensorflow as tf from nets.vgg16 import vgg16 from nets.resnet_v1 import resnetv1 NUM_CLASSES = 2 def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Test a Faster R-CNN network') parser.add_argument('--model', dest='model', help='model to test', default='/home/hezheqi/Project/dev/frame_regression/output/res101/icdar_train_17/baseline_0.62/res101_faster_rcnn_iter_100000.ckpt', type=str) parser.add_argument('--gpu', dest='gpu') parser.add_argument('--num_dets', dest='max_per_image', help='max number of detections per image', default=100, type=int) parser.add_argument('--tag', dest='tag', help='tag of the model', default='', type=str) parser.add_argument('--net', dest='net', help='vgg16 or res101', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args def draw_polygon(ori_img, pts, is_copy=True): if is_copy: img = ori_img.copy() else: img = ori_img if pts == None or len(pts) == 0: return img pts = pts.reshape((-1, 1, 2)) # print('pts', pts) cv2.polylines(img, [pts], True, (255, 0, 0), thickness=8) return img def draw_one_page(img, frames, pos_list=None): for i, frame in enumerate(frames): if len(frame) != 0: if pos_list: frame[::2] += pos_list[i][0] frame[1::2] += pos_list[i][1] draw_polygon(img, frame, is_copy=False) def vis_detections(im, dets, thresh=0.5): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return for i in inds: frame = dets[i, 4:12] frame = frame.astype(int) # score = dets[i, -1] draw_polygon(im, frame, is_copy=False) def detect_one(name, thresh=0.75): im = cv2.imread(osp.join('/home/hezheqi/data/tmp/p2', name)) scores, polys = im_detect(sess, net, im) print(scores) boxes = np.zeros((polys.shape[0], 8), dtype=polys.dtype) boxes[:, 0] = np.min(polys[:, 0:8:2], axis=1) boxes[:, 1] = np.min(polys[:, 1:8:2], axis=1) boxes[:, 2] = np.max(polys[:, 0:8:2], axis=1) boxes[:, 3] = np.max(polys[:, 1:8:2], axis=1) boxes[:, 4] = np.min(polys[:, 8::2], axis=1) boxes[:, 5] = np.min(polys[:, 9::2], axis=1) boxes[:, 6] = np.max(polys[:, 8::2], axis=1) boxes[:, 7] = np.max(polys[:, 9::2], axis=1) for j in range(1, NUM_CLASSES): inds = np.where(scores[:, j] > thresh)[0] cls_scores = scores[inds, j] cls_boxes = boxes[inds, j * 4:(j + 1) * 4] cls_polys = polys[inds, j * 8:(j + 1) * 8] cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \ .astype(np.float32, copy=False) cls_dets_poly = cls_polys.astype(np.float32, copy=False) keep = nms(cls_dets, cfg.TEST.NMS) # cls_dets = cls_dets[keep, :] cls_dets = cls_boxes[keep, :] cls_dets_poly = cls_dets_poly[keep, :] cls_scores = cls_scores[:, np.newaxis] cls_scores = cls_scores[keep, :] cls_dets = np.hstack((cls_dets, cls_dets_poly, cls_scores)) print(cls_dets) vis_detections(im, cls_dets) cv2.imwrite(osp.join(out_dir, name), im) fout = open(osp.join(out_dir, 'txt', name[:-4]+'.txt'), 'w') for det in cls_dets: fout.write('{}\n'.format(' '.join(str(int(d)) for d in det[4:12]))) if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) # if has model, get the name from it # if does not, then just use the inialization weights if args.model: filename = os.path.splitext(os.path.basename(args.model))[0] else: filename = os.path.splitext(os.path.basename(args.weight))[0] os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu tag = args.tag tag = tag if tag else 'default' filename = tag + '/' + filename tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True # init session sess = tf.Session(config=tfconfig) # load network if args.net == 'vgg16': net = vgg16(batch_size=1) else: net = resnetv1(batch_size=1, num_layers=101) # load model anchors = [4, 8, 16, 32] ratios = [0.25,0.5,1,2,4] net.create_architecture(sess, "TEST", NUM_CLASSES, tag='default', anchor_scales=anchors, anchor_ratios=ratios) if args.model: print(('Loading model check point from {:s}').format(args.model)) saver = tf.train.Saver() saver.restore(sess, args.model) print('Loaded.') else: print(('Loading initial weights from {:s}').format(args.weight)) sess.run(tf.global_variables_initializer()) print('Loaded.') out_dir = osp.join(cfg.ROOT_DIR, 'output', 'demo') if not osp.isdir(out_dir): os.makedirs(out_dir) img_dir = '/home/hezheqi/data/tmp' names = open(osp.join(img_dir, 'img_list.txt')).read().strip().split('\n') # name = ['1.jpg'] for name in names: detect_one(name)
32.16763
154
0.637376
fad14b06d09f5ea3e28830ff5854ff6aece6f4f8
4,690
py
Python
flatlib/ephem/swe.py
D-Vaillant/flatlib
fba89c72c13279c0709b0967a597427ee177665b
[ "MIT" ]
196
2015-03-13T21:08:26.000Z
2022-03-27T20:46:33.000Z
flatlib/ephem/swe.py
D-Vaillant/flatlib
fba89c72c13279c0709b0967a597427ee177665b
[ "MIT" ]
71
2017-03-19T14:11:11.000Z
2022-02-20T17:37:28.000Z
flatlib/ephem/swe.py
D-Vaillant/flatlib
fba89c72c13279c0709b0967a597427ee177665b
[ "MIT" ]
77
2016-03-10T01:23:12.000Z
2022-02-27T22:18:12.000Z
""" This file is part of flatlib - (C) FlatAngle Author: João Ventura (flatangleweb@gmail.com) This module implements a simple interface with the C Swiss Ephemeris using the pyswisseph library. The pyswisseph library must be already installed and accessible. """ import swisseph from flatlib import angle from flatlib import const # Map objects SWE_OBJECTS = { const.SUN: 0, const.MOON: 1, const.MERCURY: 2, const.VENUS: 3, const.MARS: 4, const.JUPITER: 5, const.SATURN: 6, const.URANUS: 7, const.NEPTUNE: 8, const.PLUTO: 9, const.CHIRON: 15, const.NORTH_NODE: 10 } # Map house systems SWE_HOUSESYS = { const.HOUSES_PLACIDUS: b'P', const.HOUSES_KOCH: b'K', const.HOUSES_PORPHYRIUS: b'O', const.HOUSES_REGIOMONTANUS: b'R', const.HOUSES_CAMPANUS: b'C', const.HOUSES_EQUAL: b'A', const.HOUSES_EQUAL_2: b'E', const.HOUSES_VEHLOW_EQUAL: b'V', const.HOUSES_WHOLE_SIGN: b'W', const.HOUSES_MERIDIAN: b'X', const.HOUSES_AZIMUTHAL: b'H', const.HOUSES_POLICH_PAGE: b'T', const.HOUSES_ALCABITUS: b'B', const.HOUSES_MORINUS: b'M' } # ==== Internal functions ==== # def setPath(path): """ Sets the path for the swe files. """ swisseph.set_ephe_path(path) # === Object functions === # def sweObject(obj, jd): """ Returns an object from the Ephemeris. """ sweObj = SWE_OBJECTS[obj] sweList, flg = swisseph.calc_ut(jd, sweObj) return { 'id': obj, 'lon': sweList[0], 'lat': sweList[1], 'lonspeed': sweList[3], 'latspeed': sweList[4] } def sweObjectLon(obj, jd): """ Returns the longitude of an object. """ sweObj = SWE_OBJECTS[obj] sweList, flg = swisseph.calc_ut(jd, sweObj) return sweList[0] def sweNextTransit(obj, jd, lat, lon, flag): """ Returns the julian date of the next transit of an object. The flag should be 'RISE' or 'SET'. """ sweObj = SWE_OBJECTS[obj] flag = swisseph.CALC_RISE if flag == 'RISE' else swisseph.CALC_SET trans = swisseph.rise_trans(jd, sweObj, lon, lat, 0, 0, 0, flag) return trans[1][0] # === Houses and angles === # def sweHouses(jd, lat, lon, hsys): """ Returns lists of houses and angles. """ hsys = SWE_HOUSESYS[hsys] hlist, ascmc = swisseph.houses(jd, lat, lon, hsys) # Add first house to the end of 'hlist' so that we # can compute house sizes with an iterator hlist += (hlist[0],) houses = [ { 'id': const.LIST_HOUSES[i], 'lon': hlist[i], 'size': angle.distance(hlist[i], hlist[i + 1]) } for i in range(12) ] angles = [ {'id': const.ASC, 'lon': ascmc[0]}, {'id': const.MC, 'lon': ascmc[1]}, {'id': const.DESC, 'lon': angle.norm(ascmc[0] + 180)}, {'id': const.IC, 'lon': angle.norm(ascmc[1] + 180)} ] return (houses, angles) def sweHousesLon(jd, lat, lon, hsys): """ Returns lists with house and angle longitudes. """ hsys = SWE_HOUSESYS[hsys] hlist, ascmc = swisseph.houses(jd, lat, lon, hsys) angles = [ ascmc[0], ascmc[1], angle.norm(ascmc[0] + 180), angle.norm(ascmc[1] + 180) ] return (hlist, angles) # === Fixed stars === # # Beware: the swisseph.fixstar_mag function is really # slow because it parses the fixstars.cat file every # time.. def sweFixedStar(star, jd): """ Returns a fixed star from the Ephemeris. """ sweList, stnam, flg = swisseph.fixstar2_ut(star, jd) mag = swisseph.fixstar2_mag(star) return { 'id': star, 'mag': mag, 'lon': sweList[0], 'lat': sweList[1] } # === Eclipses === # def solarEclipseGlobal(jd, backward): """ Returns the jd details of previous or next global solar eclipse. """ sweList = swisseph.sol_eclipse_when_glob(jd, backward=backward) return { 'maximum': sweList[1][0], 'begin': sweList[1][2], 'end': sweList[1][3], 'totality_begin': sweList[1][4], 'totality_end': sweList[1][5], 'center_line_begin': sweList[1][6], 'center_line_end': sweList[1][7], } def lunarEclipseGlobal(jd, backward): """ Returns the jd details of previous or next global lunar eclipse. """ sweList = swisseph.lun_eclipse_when(jd, backward=backward) return { 'maximum': sweList[1][0], 'partial_begin': sweList[1][2], 'partial_end': sweList[1][3], 'totality_begin': sweList[1][4], 'totality_end': sweList[1][5], 'penumbral_begin': sweList[1][6], 'penumbral_end': sweList[1][7], }
26.201117
76
0.60064
54ec95d23453f1268414c035dedde0b7e88b6407
70,903
py
Python
ambari-server/src/test/python/stacks/2.5/HIVE/test_hive_server_int.py
zyclove/ambari
1032f0f54cb7b312b9a3b37570cd840f4e1e89d4
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/python/stacks/2.5/HIVE/test_hive_server_int.py
zyclove/ambari
1032f0f54cb7b312b9a3b37570cd840f4e1e89d4
[ "Apache-2.0" ]
null
null
null
ambari-server/src/test/python/stacks/2.5/HIVE/test_hive_server_int.py
zyclove/ambari
1032f0f54cb7b312b9a3b37570cd840f4e1e89d4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python2 ''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import json import os from stacks.utils.RMFTestCase import * from mock.mock import MagicMock, patch from resource_management.libraries import functions from resource_management.core.logger import Logger from resource_management.libraries.script.config_dictionary import UnknownConfiguration from hive_server_interactive import HiveServerInteractiveDefault from resource_management.libraries.script.script import Script from resource_management.core import shell @patch("resource_management.libraries.Script.get_tmp_dir", new=MagicMock(return_value=('/var/lib/ambari-agent/tmp'))) @patch.object(functions, "get_stack_version", new=MagicMock(return_value="2.0.0.0-1234")) @patch("resource_management.libraries.functions.check_thrift_port_sasl", new=MagicMock()) @patch("resource_management.libraries.functions.get_user_call_output.get_user_call_output", new=MagicMock(return_value=(0, '123', ''))) class TestHiveServerInteractive(RMFTestCase): COMMON_SERVICES_PACKAGE_DIR = "HIVE/0.12.0.2.0/package" STACK_VERSION = "2.0.6" UPGRADE_STACK_VERSION = "2.2" DEFAULT_IMMUTABLE_PATHS = ['/apps/hive/warehouse', '/apps/falcon', '/mr-history/done', '/app-logs', '/tmp'] def setUp(self): Logger.logger = MagicMock() self.testDirectory = os.path.dirname(os.path.abspath(__file__)) # llap state related tests. self.hsi = HiveServerInteractiveDefault() self.llap_app_name='llap' self.num_times_to_iterate = 3 self.wait_time = 1 def load_json(self, filename): file = os.path.join(self.testDirectory, filename) with open(file, 'rb') as f: data = json.load(f) return data @patch("resource_management.libraries.functions.copy_tarball.copy_to_hdfs") def test_configure_default(self, copy_to_hdfs_mock): self.maxDiff = None copy_to_hdfs_mock.return_value = False self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="configure", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_default.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES ) self.assert_configure_default() self.assertNoMoreResources() """ Tests HSI start with llap package creation output having single line. Sample output : "Prepared llap-slider-05Apr2016/run.sh for running LLAP" """ #@patch("Script.get_tmp_dir()") @patch("os.path.isfile") @patch("resource_management.libraries.functions.copy_tarball.copy_to_hdfs") @patch("socket.socket") @patch("time.sleep") def test_start_default_with_llap_single_line_output(self, sleep_mock, socket_mock, copy_to_hfds_mock, is_file_mock): #, get_tmp_dir_mock): self.maxDiff = None copy_to_hfds_mock.return_value = False s = socket_mock.return_value is_file_mock.return_value = True #get_tmp_dir_mock.return_value = "/var/lib/ambari-agent/tmp" self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="start", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_default.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES, checked_call_mocks=[(0, "Prepared llap-slider-05Apr2016/run.sh for running LLAP", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, "OK.", "")], ) self.assert_configure_default() self.assertResourceCalled('Execute', '/home/hive/llap-slider-05Apr2016/run.sh', logoutput= True, user=u'hive' ) self.assertResourceCalled('Execute', 'hive --config /usr/hdp/current/hive-server2-hive2/conf/conf.server --service metatool -updateLocation hdfs://c6401.ambari.apache.org:8020 OK.', environment={'PATH': '/usr/hdp/current/hadoop-client/bin'}, user='hive' ) self.assertResourceCalled('Execute', '/tmp/start_hiveserver2_interactive_script /var/run/hive/hive-server2-interactive.out /var/log/hive/hive-server2-interactive.err /var/run/hive/hive-interactive.pid /usr/hdp/current/hive-server2-hive2/conf/conf.server /var/log/hive', environment={'HIVE_BIN': '/usr/hdp/current/hive-server2-hive2/bin/hive2', 'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, not_if="ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1", user='hive', path=['/bin:/usr/hdp/current/hive-server2-hive2/bin:/usr/hdp/current/hadoop-client/bin'], ) self.assertResourceCalled('Execute', '/usr/jdk64/jdk1.7.0_45/bin/java -cp /usr/lib/ambari-agent/DBConnectionVerification.jar:/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar org.apache.ambari.server.DBConnectionVerification \'jdbc:mysql://c6402.ambari.apache.org/hive?createDatabaseIfNotExist=true\' hive \'!`"\'"\'"\' 1\' com.mysql.jdbc.Driver', path=['/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin'], tries=5, try_sleep=10 ) self.assertNoMoreResources() """ Tests HSI start with llap package creation output having single line. Sample output : "Prepared llap-slider-05Apr2016/run.sh for running LLAP" HSI HA is enabled and llap is stopped, so it will be restartd """ #@patch("Script.get_tmp_dir()") @patch("os.path.isfile") @patch("resource_management.libraries.functions.copy_tarball.copy_to_hdfs") @patch("socket.socket") @patch("time.sleep") def test_start_hsi_ha_with_llap_single_line_output(self, sleep_mock, socket_mock, copy_to_hfds_mock, is_file_mock): #, get_tmp_dir_mock): self.maxDiff = None copy_to_hfds_mock.return_value = False s = socket_mock.return_value is_file_mock.return_value = True #get_tmp_dir_mock.return_value = "/var/lib/ambari-agent/tmp" self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="start", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_ha.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES, checked_call_mocks=[(0, """{ \"state\" : \"COMPLETED\" }""", ""), (0, "Prepared llap-slider-05Apr2016/run.sh for running LLAP", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, "OK.", "")], ) self.assert_configure_default() self.assertResourceCalled('Execute', '/home/hive/llap-slider-05Apr2016/run.sh', logoutput= True, user='hive' ) self.assertResourceCalled('Execute', 'hive --config /usr/hdp/current/hive-server2-hive2/conf/conf.server --service metatool -updateLocation hdfs://c6401.ambari.apache.org:8020 OK.', environment={'PATH': '/usr/hdp/current/hadoop-client/bin'}, user='hive' ) self.assertResourceCalled('Execute', '/tmp/start_hiveserver2_interactive_script /var/run/hive/hive-server2-interactive.out /var/log/hive/hive-server2-interactive.err /var/run/hive/hive-interactive.pid /usr/hdp/current/hive-server2-hive2/conf/conf.server /var/log/hive', environment={'HIVE_BIN': '/usr/hdp/current/hive-server2-hive2/bin/hive2', 'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, not_if="ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1", user='hive', path=['/bin:/usr/hdp/current/hive-server2-hive2/bin:/usr/hdp/current/hadoop-client/bin'], ) self.assertResourceCalled('Execute', '/usr/jdk64/jdk1.7.0_45/bin/java -cp /usr/lib/ambari-agent/DBConnectionVerification.jar:/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar org.apache.ambari.server.DBConnectionVerification \'jdbc:mysql://c6402.ambari.apache.org/hive?createDatabaseIfNotExist=true\' hive \'!`"\'"\'"\' 1\' com.mysql.jdbc.Driver', path=['/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin'], tries=5, try_sleep=10 ) self.assertNoMoreResources() """ Tests HSI start with llap running and HA deployment. As llap is running it will not be started." """ #@patch("Script.get_tmp_dir()") @patch("os.path.isfile") @patch("resource_management.libraries.functions.copy_tarball.copy_to_hdfs") @patch("socket.socket") @patch("time.sleep") def test_start_with_ha_and_llap_running(self, sleep_mock, socket_mock, copy_to_hfds_mock, is_file_mock): #, get_tmp_dir_mock): self.maxDiff = None copy_to_hfds_mock.return_value = False s = socket_mock.return_value is_file_mock.return_value = True #get_tmp_dir_mock.return_value = "/var/lib/ambari-agent/tmp" self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="start", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_ha.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES, checked_call_mocks=[(0, """{ \"state\" : \"RUNNING_ALL\" }""", "")], ) self.assert_configure_default() self.assertResourceCalled('Execute', 'hive --config /usr/hdp/current/hive-server2-hive2/conf/conf.server --service metatool -updateLocation hdfs://c6401.ambari.apache.org:8020 OK.', environment={'PATH': '/usr/hdp/current/hadoop-client/bin'}, user='hive' ) self.assertResourceCalled('Execute', '/tmp/start_hiveserver2_interactive_script /var/run/hive/hive-server2-interactive.out /var/log/hive/hive-server2-interactive.err /var/run/hive/hive-interactive.pid /usr/hdp/current/hive-server2-hive2/conf/conf.server /var/log/hive', environment={'HIVE_BIN': '/usr/hdp/current/hive-server2-hive2/bin/hive2', 'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, not_if="ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1", user='hive', path=['/bin:/usr/hdp/current/hive-server2-hive2/bin:/usr/hdp/current/hadoop-client/bin'], ) self.assertResourceCalled('Execute', '/usr/jdk64/jdk1.7.0_45/bin/java -cp /usr/lib/ambari-agent/DBConnectionVerification.jar:/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar org.apache.ambari.server.DBConnectionVerification \'jdbc:mysql://c6402.ambari.apache.org/hive?createDatabaseIfNotExist=true\' hive \'!`"\'"\'"\' 1\' com.mysql.jdbc.Driver', path=['/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin'], tries=5, try_sleep=10 ) self.assertNoMoreResources() ''' restart should not call slider destroy ''' @patch("os.path.isfile") @patch("resource_management.libraries.functions.copy_tarball.copy_to_hdfs") @patch("socket.socket") @patch("time.sleep") def test_restart_default_with_llap_multi_line_output(self, sleep_mock, socket_mock, copy_to_hfds_mock, is_file_mock): self.maxDiff = None copy_to_hfds_mock.return_value = False s = socket_mock.return_value is_file_mock.return_value = True self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="restart", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_default_for_restart.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES, call_mocks = [(0, "OK.", ""), (0, "OK."), (0, "OK."), (0, "OK."), (0, "OK.")], checked_call_mocks=[(0, "OK.", ""), #(0, "OK.", ""), (0, "UNWANTED_STRING \n " " Prepared llap-slider-05Apr2016/run.sh for running LLAP \n " "UNWANTED_STRING \n ", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, "OK.", "")], ) self.assertResourceCalled('Execute', "ambari-sudo.sh kill 123", not_if="! (ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1)", ) self.assertResourceCalled('Execute', "! (ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1)", tries=10, try_sleep=3, ) self.assertResourceCalled('Execute', "! (ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1)", tries=20, try_sleep=3, ) self.assertResourceCalled('File', '/var/run/hive/hive-interactive.pid', action=['delete'], ) self.assertResourceCalled('Execute', ('slider', 'destroy', u'llap0', '--force'), ignore_failures = True, user = 'hive', timeout = 30, ) self.assert_configure_default(with_cs_enabled=True) self.assertResourceCalled('Execute', '/home/hive/llap-slider-05Apr2016/run.sh', logoutput= True, user=u'hive' ) self.assertResourceCalled('Execute', 'hive --config /usr/hdp/current/hive-server2-hive2/conf/conf.server --service metatool -updateLocation hdfs://c6401.ambari.apache.org:8020 OK.', environment={'PATH': '/usr/hdp/current/hadoop-client/bin'}, user='hive' ) self.assertResourceCalled('Execute', '/tmp/start_hiveserver2_interactive_script /var/run/hive/hive-server2-interactive.out /var/log/hive/hive-server2-interactive.err /var/run/hive/hive-interactive.pid /usr/hdp/current/hive-server2-hive2/conf/conf.server /var/log/hive', environment={'HIVE_BIN': '/usr/hdp/current/hive-server2-hive2/bin/hive2', 'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, not_if="ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1", user='hive', path=['/bin:/usr/hdp/current/hive-server2-hive2/bin:/usr/hdp/current/hadoop-client/bin'], ) self.assertResourceCalled('Execute', '/usr/jdk64/jdk1.7.0_45/bin/java -cp /usr/lib/ambari-agent/DBConnectionVerification.jar:/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar org.apache.ambari.server.DBConnectionVerification \'jdbc:mysql://c6402.ambari.apache.org/hive?createDatabaseIfNotExist=true\' hive \'!`"\'"\'"\' 1\' com.mysql.jdbc.Driver', path=['/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin'], tries=5, try_sleep=10 ) self.assertNoMoreResources() """ Tests HSI start with llap package creation output having multiple lines. Sample output : "UNWANTED STRING \n Prepared llap-slider-05Apr2016/run.sh for running LLAP \n UNWANTED STRING \n" """ @patch("os.path.isfile") @patch("resource_management.libraries.functions.copy_tarball.copy_to_hdfs") @patch("socket.socket") @patch("time.sleep") def test_start_default_with_llap_multi_line_output(self, sleep_mock, socket_mock, copy_to_hfds_mock, is_file_mock): self.maxDiff = None copy_to_hfds_mock.return_value = False s = socket_mock.return_value is_file_mock.return_value = True self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="start", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_default.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES, checked_call_mocks=[(0, "UNWANTED_STRING \n " " Prepared llap-slider-05Apr2016/run.sh for running LLAP \n " "UNWANTED_STRING \n ", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, """{ \"state\" : \"RUNNING_ALL\" }""", ""), (0, "OK.", "")], ) self.assert_configure_default() self.assertResourceCalled('Execute', '/home/hive/llap-slider-05Apr2016/run.sh', logoutput= True, user=u'hive' ) self.assertResourceCalled('Execute', 'hive --config /usr/hdp/current/hive-server2-hive2/conf/conf.server --service metatool -updateLocation hdfs://c6401.ambari.apache.org:8020 OK.', environment={'PATH': '/usr/hdp/current/hadoop-client/bin'}, user='hive' ) self.assertResourceCalled('Execute', '/tmp/start_hiveserver2_interactive_script /var/run/hive/hive-server2-interactive.out /var/log/hive/hive-server2-interactive.err /var/run/hive/hive-interactive.pid /usr/hdp/current/hive-server2-hive2/conf/conf.server /var/log/hive', environment={'HIVE_BIN': '/usr/hdp/current/hive-server2-hive2/bin/hive2', 'JAVA_HOME': u'/usr/jdk64/jdk1.7.0_45'}, not_if="ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1", user='hive', path=['/bin:/usr/hdp/current/hive-server2-hive2/bin:/usr/hdp/current/hadoop-client/bin'], ) self.assertResourceCalled('Execute', '/usr/jdk64/jdk1.7.0_45/bin/java -cp /usr/lib/ambari-agent/DBConnectionVerification.jar:/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar org.apache.ambari.server.DBConnectionVerification \'jdbc:mysql://c6402.ambari.apache.org/hive?createDatabaseIfNotExist=true\' hive \'!`"\'"\'"\' 1\' com.mysql.jdbc.Driver', path=['/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin'], tries=5, try_sleep=10 ) self.assertNoMoreResources() def test_stop_default(self): self.maxDiff = None self.executeScript(self.COMMON_SERVICES_PACKAGE_DIR + "/scripts/hive_server_interactive.py", classname="HiveServerInteractive", command="stop", config_file=self.get_src_folder() + "/test/python/stacks/2.5/configs/hsi_default.json", stack_version=self.STACK_VERSION, target=RMFTestCase.TARGET_COMMON_SERVICES, call_mocks=[(0, "OK.", ""), (0, "OK.", "")], ) self.assertResourceCalled('Execute', "ambari-sudo.sh kill 123", not_if="! (ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1)", ) self.assertResourceCalled('Execute', "! (ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1)", tries=10, try_sleep=3, ) self.assertResourceCalled('Execute', "! (ls /var/run/hive/hive-interactive.pid >/dev/null 2>&1 && ps -p 123 >/dev/null 2>&1)", tries=20, try_sleep=3, ) self.assertResourceCalled('File', '/var/run/hive/hive-interactive.pid', action=['delete'], ) self.assertResourceCalled('Execute', ('slider', 'destroy', 'llap0', '--force'), ignore_failures = True, user = 'hive', timeout = 30, ) self.assertNoMoreResources() def assert_configure_default(self, no_tmp=False, default_fs_default=u'hdfs://c6401.ambari.apache.org:8020', with_cs_enabled=False): self.assertResourceCalled('HdfsResource', '/apps/hive/warehouse', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/hdp/current/hadoop-client/bin', keytab = UnknownConfigurationMock(), kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', owner = 'hive', group = 'hadoop', hadoop_conf_dir = '/usr/hdp/current/hadoop-client/conf', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name='missing_principal', default_fs=default_fs_default, mode = 0777, ) self.assertResourceCalled('HdfsResource', '/user/hive', immutable_paths = self.DEFAULT_IMMUTABLE_PATHS, security_enabled = False, hadoop_bin_dir = '/usr/hdp/current/hadoop-client/bin', keytab = UnknownConfigurationMock(), kinit_path_local = '/usr/bin/kinit', user = 'hdfs', dfs_type = '', owner = 'hive', hadoop_conf_dir = '/usr/hdp/current/hadoop-client/conf', type = 'directory', action = ['create_on_execute'], hdfs_resource_ignore_file='/var/lib/ambari-agent/data/.hdfs_resource_ignore', hdfs_site=self.getConfig()['configurations']['hdfs-site'], principal_name='missing_principal', default_fs=default_fs_default, mode = 0755, ) self.assertResourceCalled('Directory', '/etc/hive2', mode=0755, ) self.assertResourceCalled('Directory', '/usr/hdp/current/hive-server2-hive2/conf', owner='hive', group='hadoop', create_parents=True, mode = 0755, ) self.assertResourceCalled('XmlConfig', 'mapred-site.xml', group='hadoop', conf_dir='/usr/hdp/current/hive-server2-hive2/conf', mode=0644, configuration_attributes={u'final': {u'mapred.healthChecker.script.path': u'true', u'mapreduce.jobtracker.staging.root.dir': u'true'}}, owner='hive', configurations=self.getConfig()['configurations']['mapred-site'], ) self.assertResourceCalled('File', '/usr/hdp/current/hive-server2-hive2/conf/hive-default.xml.template', owner='hive', group='hadoop', mode = 0644, ) self.assertResourceCalled('File', '/usr/hdp/current/hive-server2-hive2/conf/hive-env.sh.template', owner='hive', group='hadoop', mode = 0644, ) hive_site_conf = {} hive_site_conf.update(self.getConfig()['configurations']['hive-site']) hive_site_conf.update(self.getConfig()['configurations']['hive-interactive-site']) hive_site_conf['hive.exec.post.hooks'] = 'a,b,org.apache.hadoop.hive.ql.hooks.ATSHook' del hive_site_conf['hive.enforce.bucketing'] del hive_site_conf['hive.enforce.sorting'] del hive_site_conf['hive.llap.io.memory.size'] hive_site_conf['hive.llap.io.memory.size'] = 357564416L hiveserver2_site_conf = {} hiveserver2_site_conf.update(self.getConfig()['configurations']['hiveserver2-site']) hiveserver2_site_conf.update(self.getConfig()['configurations']['hiveserver2-interactive-site']) mapred_site_conf = {} mapred_site_conf.update(self.getConfig()['configurations']['mapred-site']) self.assertResourceCalled("Directory", "/usr/hdp/current/hive-server2-hive2/conf/conf.server", owner=u"hive", group=u"hadoop", create_parents=True, mode = 0700) self.assertResourceCalled('XmlConfig', 'mapred-site.xml', group='hadoop', conf_dir='/usr/hdp/current/hive-server2-hive2/conf/conf.server', mode=0600, configuration_attributes={u'final': {u'mapred.healthChecker.script.path': u'true', u'mapreduce.jobtracker.staging.root.dir': u'true'}}, owner='hive', configurations=mapred_site_conf, ) self.assertResourceCalled("File", "/usr/hdp/current/hive-server2-hive2/conf/conf.server/hive-default.xml.template", owner=u"hive", group=u"hadoop", mode = 0600) self.assertResourceCalled("File", "/usr/hdp/current/hive-server2-hive2/conf/conf.server/hive-env.sh.template", owner=u"hive", group=u"hadoop", mode = 0600) self.assertResourceCalled('XmlConfig', 'tez-site.xml', group='hadoop', conf_dir='/etc/tez_hive2/conf', mode=0664, configuration_attributes=UnknownConfigurationMock(), owner='tez', configurations=self.getConfig()['configurations']['tez-interactive-site'], ) # Verify that config files got created under /etc/hive2/conf and /etc/hive2/conf/conf.server hive_conf_dirs_list = ['/usr/hdp/current/hive-server2-hive2/conf', '/usr/hdp/current/hive-server2-hive2/conf/conf.server'] # Making copy of 'hive_site_conf' in 'hive_site_conf_for_client', and deleting 'javax.jdo.option.ConnectionPassword' config # from there. hive_site_conf_for_client = hive_site_conf.copy() del hive_site_conf_for_client['javax.jdo.option.ConnectionPassword'] if 'hadoop.security.credential.provider.path' in hive_site_conf_for_client: del hive_site_conf_for_client['hadoop.security.credential.provider.path'] for conf_dir in hive_conf_dirs_list: # if 'conf_dir' is '/usr/hdp/current/hive-server2-hive2/conf', we don't expect 'javax.jdo.option.ConnectionPassword' config # to be part of 'hive_site_conf', as we delete it for the HIVE client file. Thus, deleting it here for checking the contents. if conf_dir == '/usr/hdp/current/hive-server2-hive2/conf': self.assertResourceCalled('XmlConfig', 'hive-site.xml', group='hadoop', conf_dir=conf_dir, mode=0644, configuration_attributes={u'final': {u'hive.optimize.bucketmapjoin.sortedmerge': u'true', u'javax.jdo.option.ConnectionDriverName': u'true', u'javax.jdo.option.ConnectionPassword': u'true'}}, owner='hive', configurations=hive_site_conf_for_client, ) else: if with_cs_enabled: self.assertResourceCalled('File', '/usr/hdp/current/hive-server2-hive2/conf/conf.server/hive-site.jceks', content=StaticFile('/var/lib/ambari-agent/data/abc.jceks'), owner='hive', group='hadoop', mode = 0640, ) self.assertTrue('hadoop.security.credential.provider.path' in hive_site_conf) hive_site_conf['hadoop.security.credential.provider.path'] = 'jceks://file/usr/hdp/current/hive-server2-hive2/conf/conf.server/hive-site.jceks' self.assertResourceCalled('XmlConfig', 'hive-site.xml', group='hadoop', conf_dir=conf_dir, mode=0600, configuration_attributes={u'final': {u'hive.optimize.bucketmapjoin.sortedmerge': u'true', u'javax.jdo.option.ConnectionDriverName': u'true', u'javax.jdo.option.ConnectionPassword': u'true'}}, owner='hive', configurations=hive_site_conf, ) if conf_dir == '/usr/hdp/current/hive-server2-hive2/conf/conf.server': self.assertResourceCalled('XmlConfig', 'hiveserver2-site.xml', group='hadoop', conf_dir=conf_dir, mode=0600, configuration_attributes={}, owner='hive', configurations=hiveserver2_site_conf, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hive-env.sh'), content=InlineTemplate(self.getConfig()['configurations']['hive-interactive-env']['content']), owner='hive', group='hadoop', mode = 0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'llap-daemon-log4j2.properties'), content=InlineTemplate('con\ntent'), owner='hive', group='hadoop', mode=0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'llap-cli-log4j2.properties'), content=InlineTemplate('con\ntent'), owner='hive', group='hadoop', mode=0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hive-log4j2.properties'), content=InlineTemplate('con\ntent'), # Test new line owner='hive', group='hadoop', mode=0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hive-exec-log4j2.properties'), content=InlineTemplate('con\ntent'), # Test new line owner='hive', group='hadoop', mode=0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'beeline-log4j2.properties'), content=InlineTemplate('con\ntent'), # Test new line owner='hive', group='hadoop', mode=0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hadoop-metrics2-hiveserver2.properties'), content=Template("hadoop-metrics2-hiveserver2.properties.j2"), owner='hive', group='hadoop', mode = 0600, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hadoop-metrics2-llapdaemon.properties'), content=Template("hadoop-metrics2-llapdaemon.j2"), owner='hive', group='hadoop', mode = 0600 ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hadoop-metrics2-llaptaskscheduler.properties'), content=Template("hadoop-metrics2-llaptaskscheduler.j2"), owner='hive', group='hadoop', mode = 0600 ) else: self.assertResourceCalled('XmlConfig', 'hiveserver2-site.xml', group='hadoop', conf_dir=conf_dir, mode=0644, configuration_attributes={}, owner='hive', configurations=hiveserver2_site_conf, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hive-env.sh'), content=InlineTemplate(self.getConfig()['configurations']['hive-interactive-env']['content']), owner='hive', group='hadoop', mode = 0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'llap-daemon-log4j2.properties'), content=InlineTemplate('con\ntent'), owner='hive', group='hadoop', mode=0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'llap-cli-log4j2.properties'), content=InlineTemplate('con\ntent'), owner='hive', group='hadoop', mode=0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hive-log4j2.properties'), content=InlineTemplate('con\ntent'), # Test new line owner='hive', group='hadoop', mode=0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hive-exec-log4j2.properties'), content=InlineTemplate('con\ntent'), # Test new line owner='hive', group='hadoop', mode=0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'beeline-log4j2.properties'), content=InlineTemplate('con\ntent'), # Test new line owner='hive', group='hadoop', mode=0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hadoop-metrics2-hiveserver2.properties'), content=Template("hadoop-metrics2-hiveserver2.properties.j2"), owner='hive', group='hadoop', mode = 0644, ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hadoop-metrics2-llapdaemon.properties'), content=Template("hadoop-metrics2-llapdaemon.j2"), owner='hive', group='hadoop', mode = 0644 ) self.assertResourceCalled('File', os.path.join(conf_dir, 'hadoop-metrics2-llaptaskscheduler.properties'), content=Template("hadoop-metrics2-llaptaskscheduler.j2"), owner='hive', group='hadoop', mode = 0644 ) pass self.assertResourceCalled('Directory', '/etc/security/limits.d', owner='root', group='root', create_parents=True, ) self.assertResourceCalled('File', '/etc/security/limits.d/hive.conf', content=Template('hive.conf.j2'), owner='root', group='root', mode=0644, ) self.assertResourceCalled('File', '/tmp/mysql-connector-java.jar', content=DownloadSource('http://c6401.ambari.apache.org:8080/resources/mysql-connector-java.jar'), ) self.assertResourceCalled('Execute', ('cp', '--remove-destination', '/tmp/mysql-connector-java.jar', '/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar'), path=['/bin', '/usr/bin/'], sudo=True, ) self.assertResourceCalled('File', '/usr/hdp/current/hive-server2-hive2/lib/mysql-connector-java.jar', mode=0644, ) self.assertResourceCalled('File', '/usr/lib/ambari-agent/DBConnectionVerification.jar', content=DownloadSource('http://c6401.ambari.apache.org:8080/resources' '/DBConnectionVerification.jar'), mode=0644, ) self.assertResourceCalled('File', '/tmp/start_hiveserver2_interactive_script', content=Template('startHiveserver2Interactive.sh.j2'), mode=0755, ) self.assertResourceCalled('Directory', '/var/run/hive', owner='hive', mode=0755, group='hadoop', create_parents=True, cd_access='a', ) self.assertResourceCalled('Directory', '/var/log/hive', owner='hive', mode=0755, group='hadoop', create_parents=True, cd_access='a', ) self.assertResourceCalled('Directory', '/var/lib/hive2', owner='hive', mode=0755, group='hadoop', create_parents=True, cd_access='a', ) # Tests for function '_make_valid_json()' with will be passed in with 'llapstatus' output which may be : # (1). A string parseable as JSON, or # (2). May have extra lines in beginning (eg: from MOTD logging embedded), which needs to be removed before parsed as JSON # Status : RUNNING having MOTD lines in beginning def test_make_valid_json_1(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/running_withMOTDmsg.txt","r") llap_app_info = input_file_handle.read() llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Set up expected output expected_ouput_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/running.json","r") expected_ouput_data = expected_ouput_file_handle.read() expected_ouput_data_as_json = json.loads(expected_ouput_data) # Verification self.assertEqual(llap_app_info_as_json, expected_ouput_data_as_json) # Status : RUNNING w/o MOTD lines in beginning # Expected : No change def test_make_valid_json_2(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/running.json","r") llap_app_info = input_file_handle.read() expected_llap_app_info_as_json = json.loads(llap_app_info) llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Verification self.assertEqual(llap_app_info_as_json, expected_llap_app_info_as_json) # Status : RUNNING_PARTIAL (2 out of 3 running -> < 80% instances ON) having MOTD lines in beginning def test_make_valid_json_3(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/oneContainerDown_withMOTDmsg.txt","r") llap_app_info = input_file_handle.read() llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Set up expected output expected_ouput_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/oneContainerDown.json","r") expected_ouput_data = expected_ouput_file_handle.read() expected_ouput_data_as_json = json.loads(expected_ouput_data) # Verification self.assertEqual(llap_app_info_as_json, expected_ouput_data_as_json) # Status : RUNNING_PARTIAL (2 out of 3 running -> < 80% instances ON) w/o MOTD lines in beginning # Expected : No change def test_make_valid_json_4(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/oneContainerDown.json","r") llap_app_info = input_file_handle.read() expected_llap_app_info_as_json = json.loads(llap_app_info) llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Verification self.assertEqual(llap_app_info_as_json, expected_llap_app_info_as_json) # Status : LAUNCHING having MOTD lines in beginning def test_make_valid_json_5(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/starting_withMOTDmsg.txt","r") llap_app_info = input_file_handle.read() llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Set up expected output expected_ouput_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/starting.json","r") expected_ouput_data = expected_ouput_file_handle.read() expected_ouput_data_as_json = json.loads(expected_ouput_data) # Verification self.assertEqual(llap_app_info_as_json, expected_ouput_data_as_json) # Status : LAUNCHING w/o MOTD lines in beginning # Expected : No change def test_make_valid_json_6(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/starting.json","r") llap_app_info = input_file_handle.read() expected_llap_app_info_as_json = json.loads(llap_app_info) llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Verification self.assertEqual(llap_app_info_as_json, expected_llap_app_info_as_json) # Status : COMPLETE having MOTD lines in beginning def test_make_valid_json_7(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/appComplete_withMOTDmsg.txt","r") llap_app_info = input_file_handle.read() llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Set up expected output expected_ouput_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/appComplete.json","r") expected_ouput_data = expected_ouput_file_handle.read() expected_ouput_data_as_json = json.loads(expected_ouput_data) # Verification self.assertEqual(llap_app_info_as_json, expected_ouput_data_as_json) # Status : COMPLETE w/o MOTD lines in beginning # Expected : No change def test_make_valid_json_8(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/appComplete.json","r") llap_app_info = input_file_handle.read() expected_llap_app_info_as_json = json.loads(llap_app_info) llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Verification self.assertEqual(llap_app_info_as_json, expected_llap_app_info_as_json) # Status : INVALID APP having MOTD lines in beginning def test_make_valid_json_9(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/invalidApp_withMOTDmsg.txt","r") llap_app_info = input_file_handle.read() llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Set up expected output expected_ouput_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/invalidApp.json","r") expected_ouput_data = expected_ouput_file_handle.read() expected_ouput_data_as_json = json.loads(expected_ouput_data) # Verification self.assertEqual(llap_app_info_as_json, expected_ouput_data_as_json) # Status : INVALID APP w/o MOTD lines in beginning # Expected : No change def test_make_valid_json_10(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/invalidApp.json","r") llap_app_info = input_file_handle.read() expected_llap_app_info_as_json = json.loads(llap_app_info) llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Verification self.assertEqual(llap_app_info_as_json, expected_llap_app_info_as_json) # Tests for function '_make_valid_json()' : will be passed in with 'llapstatus' output which will be : # (1). A string parseable as JSON, but has 2 and 3. # (2). Has extra lines in beginning (eg: from MOTD logging embedded) # AND/OR # (3). Extra lines at the end. # Begginning and end lines need to be removed before parsed as JSON def test_make_valid_json_11(self): # Setting up input for fn. '_make_valid_json()' input_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/running_withMOTDmsg_andTrailingMsg.txt","r") llap_app_info = input_file_handle.read() llap_app_info_as_json = self.hsi._make_valid_json(llap_app_info) # Set up expected output expected_ouput_file_handle = open(self.get_src_folder() + "/test/python/stacks/2.5/HIVE/running.json","r") expected_ouput_data = expected_ouput_file_handle.read() expected_ouput_data_as_json = json.loads(expected_ouput_data) # Verification self.assertEqual(llap_app_info_as_json, expected_ouput_data_as_json) # Tests for fn : 'check_llap_app_status_in_hdp_tp()' # Status : RUNNING @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_running_all_wait_negative_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('running.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, -1) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_running_all_wait_0_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('running.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 0) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_running_all_wait_2_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('running.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 2) self.assertEqual(status, True) # Status : RUNNING_PARTIAL (2 out of 3 running -> < 80% instances ON) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_one_container_down_wait_negative_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_one_container_down_wait_0_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_one_container_down_wait_2_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 2) self.assertEqual(status, False) # Status : RUNNING_PARTIAL (4 out of 5 running -> > 80% instances ON) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_two_container_down_1_wait_negative_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown1.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, -1) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_two_container_down_1_wait_0_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown1.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 0) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_two_container_down_1_wait_2_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown1.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 2) self.assertEqual(status, True) # Status : LAUNCHING @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_starting_wait_negative_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('starting.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_starting_wait_0_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('starting.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_starting_wait_2_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('starting.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 2) self.assertEqual(status, False) # Status : COMPLETE @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_complete_wait_negative_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('appComplete.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_complete_wait_0_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('appComplete.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_complete_wait_2_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('appComplete.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 2) self.assertEqual(status, False) # Status : APP_NOT_FOUND @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_invalid_wait_negative_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('invalidApp.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_invalid_wait_0_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('invalidApp.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_tp') def test_check_llap_app_status_invalid_wait_2_in_llap_tp(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('invalidApp.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_tp(self.llap_app_name, 2) self.assertEqual(status, False) # Tests for fn : 'check_llap_app_status_in_llap_ga()' # Status : RUNNING @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_running_all_wait_negative_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('running.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, -1) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_running_all_wait_0_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('running.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 0) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_running_all_wait_2_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('running.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 2) self.assertEqual(status, True) # Status : RUNNING_PARTIAL (2 out of 3 running -> < 80% instances ON) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_one_container_down_wait_negative_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_one_container_down_wait_0_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_one_container_down_wait_2_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 2) self.assertEqual(status, False) # Status : RUNNING_PARTIAL (4 out of 5 running -> > 80% instances ON) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_two_container_down_1_wait_negative_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown1.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, -1) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_two_container_down_1_wait_0_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown1.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 0) self.assertEqual(status, True) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_two_container_down_1_wait_2_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('oneContainerDown1.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 2) self.assertEqual(status, True) # Status : LAUNCHING @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_starting_wait_negative_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('starting.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_starting_wait_0_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('starting.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_starting_wait_2_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('starting.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 2) self.assertEqual(status, False) # Status : COMPLETE @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_complete_wait_negative_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('appComplete.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_complete_wait_0_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('appComplete.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_complete_wait_2_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('appComplete.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 2) self.assertEqual(status, False) # Status : APP_NOT_FOUND @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_invalid_wait_negative_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('invalidApp.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, -1) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_invalid_wait_0_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('invalidApp.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 0) self.assertEqual(status, False) @patch("time.sleep") @patch('hive_server_interactive.HiveServerInteractiveDefault._get_llap_app_status_info_in_llap_ga') def test_check_llap_app_status_invalid_wait_2_in_llap_ga(self, mock_get_llap_app_status_data, sleep_mock): sleep_mock.return_value = 1 llap_app_json = self.load_json('invalidApp.json') mock_get_llap_app_status_data.return_value = llap_app_json status = self.hsi.check_llap_app_status_in_llap_ga(self.llap_app_name, 2) self.assertEqual(status, False)
50.464769
355
0.616363
2c90894721f0ecafa2751cbb405e21d40c000c08
2,735
py
Python
main.py
carreb/autopull
cce0f50fd5648685b5608b319ff9646e329cdd19
[ "MIT" ]
null
null
null
main.py
carreb/autopull
cce0f50fd5648685b5608b319ff9646e329cdd19
[ "MIT" ]
1
2022-02-14T16:05:00.000Z
2022-02-15T14:43:57.000Z
main.py
carreb/autopull
cce0f50fd5648685b5608b319ff9646e329cdd19
[ "MIT" ]
null
null
null
from importlib.resources import contents from github import Github from time import sleep from datetime import datetime import git import os import configparser #var config = configparser.ConfigParser() config.read('config.ini') info = config['info'] repo_name = info['repo-name'] owner_username = info['owner-username'] token = info['token'] git_dir = "./" + repo_name git = git.cmd.Git(git_dir) g = Github(token) repo = g.get_repo(owner_username+"/"+repo_name) filename = info['filename'] sleepamount = int(info['sleep-amount']) def clearcommand(): global clear clear = 'clear' if os.name in ('nt', 'dos'): command = 'cls' def startup(): global updatefile global doneworking doneworking = False try: updatefile = repo.get_contents(filename) print("Updatefile found!") doneworking = True except: print("Updatefile not found... Creating one") doneworking = False try: repo.create_file(filename, "[AUTOMATED] Create updatefile", "hello world", branch="main") print("Successfully created updatefile!") doneworking = True except: print("Failed to create updatefile!") exit() clearcommand() startup() def check(): while True: os.system(clear) now = str(datetime.now()) contents = repo.get_contents("") try: updatefile = repo.get_contents(filename) except: print("[" + now + "] There are no updates!") print("[" + now + "] Checking for updates...") for ContentFile in contents: if ContentFile.name == filename: os.system(clear) print("[" + now + "] Update file found!") print("[" + now + "] Removing update file...") try: repo.delete_file(updatefile.path, "[AUTOMATED] Removed update file", updatefile.sha, branch="main") print("[" + now + "] Update file removed!") print("[" + now + "] Attempting to pull repo...") try: git.pull() print("[" + now + "] Repo pulled!") except: print("[" + now + "]" " Failed to pull repo! Recreating update file to try again...") repo.create_file(filename, "[AUTOMATED] Error occurred while pulling.", "hello world", branch="main") except: print("[" + now + "] Error occurred while removing update file!") sleep(sleepamount) sleep(5) if doneworking == True: check()
32.951807
126
0.547349
505fadcdbe57499071c2c4e0ca7a1e20d7f37311
27,597
py
Python
spark_fhir_schemas/stu3/complex_types/careplan.py
icanbwell/SparkFhirSchemas
8c828313c39850b65f8676e67f526ee92b7d624e
[ "Apache-2.0" ]
2
2020-10-31T23:25:01.000Z
2021-06-09T14:12:42.000Z
spark_fhir_schemas/stu3/complex_types/careplan.py
icanbwell/SparkFhirSchemas
8c828313c39850b65f8676e67f526ee92b7d624e
[ "Apache-2.0" ]
null
null
null
spark_fhir_schemas/stu3/complex_types/careplan.py
icanbwell/SparkFhirSchemas
8c828313c39850b65f8676e67f526ee92b7d624e
[ "Apache-2.0" ]
null
null
null
from typing import Union, List, Optional from pyspark.sql.types import StructType, StructField, StringType, ArrayType, DataType # This file is auto-generated by generate_schema so do not edit manually # noinspection PyPep8Naming class CarePlanSchema: """ Describes the intention of how one or more practitioners intend to deliver care for a particular patient, group or community for a period of time, possibly limited to care for a specific condition or set of conditions. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueQuantity", ], extension_depth: int = 0, max_extension_depth: Optional[int] = 2, ) -> Union[StructType, DataType]: """ Describes the intention of how one or more practitioners intend to deliver care for a particular patient, group or community for a period of time, possibly limited to care for a specific condition or set of conditions. id: The logical id of the resource, as used in the URL for the resource. Once assigned, this value never changes. extension: May be used to represent additional information that is not part of the basic definition of the resource. In order to make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer is allowed to define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. meta: The metadata about the resource. This is content that is maintained by the infrastructure. Changes to the content may not always be associated with version changes to the resource. implicitRules: A reference to a set of rules that were followed when the resource was constructed, and which must be understood when processing the content. language: The base language in which the resource is written. text: A human-readable narrative that contains a summary of the resource, and may be used to represent the content of the resource to a human. The narrative need not encode all the structured data, but is required to contain sufficient detail to make it "clinically safe" for a human to just read the narrative. Resource definitions may define what content should be represented in the narrative to ensure clinical safety. contained: These resources do not have an independent existence apart from the resource that contains them - they cannot be identified independently, and nor can they have their own independent transaction scope. resourceType: This is a CarePlan resource identifier: This records identifiers associated with this care plan that are defined by business processes and/or used to refer to it when a direct URL reference to the resource itself is not appropriate (e.g. in CDA documents, or in written / printed documentation). definition: Identifies the protocol, questionnaire, guideline or other specification the care plan should be conducted in accordance with. basedOn: A care plan that is fulfilled in whole or in part by this care plan. replaces: Completed or terminated care plan whose function is taken by this new care plan. partOf: A larger care plan of which this particular care plan is a component or step. status: Indicates whether the plan is currently being acted upon, represents future intentions or is now a historical record. intent: Indicates the level of authority/intentionality associated with the care plan and where the care plan fits into the workflow chain. category: Identifies what "kind" of plan this is to support differentiation between multiple co-existing plans; e.g. "Home health", "psychiatric", "asthma", "disease management", "wellness plan", etc. title: Human-friendly name for the CarePlan. description: A description of the scope and nature of the plan. subject: Identifies the patient or group whose intended care is described by the plan. context: Identifies the original context in which this particular CarePlan was created. period: Indicates when the plan did (or is intended to) come into effect and end. author: Identifies the individual(s) or ogranization who is responsible for the content of the care plan. careTeam: Identifies all people and organizations who are expected to be involved in the care envisioned by this plan. addresses: Identifies the conditions/problems/concerns/diagnoses/etc. whose management and/or mitigation are handled by this plan. supportingInfo: Identifies portions of the patient's record that specifically influenced the formation of the plan. These might include co-morbidities, recent procedures, limitations, recent assessments, etc. goal: Describes the intended objective(s) of carrying out the care plan. activity: Identifies a planned action to occur as part of the plan. For example, a medication to be used, lab tests to perform, self-monitoring, education, etc. note: General notes about the care plan not covered elsewhere. """ from spark_fhir_schemas.stu3.complex_types.extension import ExtensionSchema from spark_fhir_schemas.stu3.complex_types.meta import MetaSchema from spark_fhir_schemas.stu3.complex_types.narrative import NarrativeSchema from spark_fhir_schemas.stu3.simple_types.resourcelist import ResourceListSchema from spark_fhir_schemas.stu3.complex_types.identifier import IdentifierSchema from spark_fhir_schemas.stu3.complex_types.reference import ReferenceSchema from spark_fhir_schemas.stu3.complex_types.codeableconcept import ( CodeableConceptSchema, ) from spark_fhir_schemas.stu3.complex_types.period import PeriodSchema from spark_fhir_schemas.stu3.complex_types.careplan_activity import ( CarePlan_ActivitySchema, ) from spark_fhir_schemas.stu3.complex_types.annotation import AnnotationSchema if ( max_recursion_limit and nesting_list.count("CarePlan") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + ["CarePlan"] schema = StructType( [ # The logical id of the resource, as used in the URL for the resource. Once # assigned, this value never changes. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the resource. In order to make the use of extensions safe and # manageable, there is a strict set of governance applied to the definition and # use of extensions. Though any implementer is allowed to define an extension, # there is a set of requirements that SHALL be met as part of the definition of # the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # The metadata about the resource. This is content that is maintained by the # infrastructure. Changes to the content may not always be associated with # version changes to the resource. StructField( "meta", MetaSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # A reference to a set of rules that were followed when the resource was # constructed, and which must be understood when processing the content. StructField("implicitRules", StringType(), True), # The base language in which the resource is written. StructField("language", StringType(), True), # A human-readable narrative that contains a summary of the resource, and may be # used to represent the content of the resource to a human. The narrative need # not encode all the structured data, but is required to contain sufficient # detail to make it "clinically safe" for a human to just read the narrative. # Resource definitions may define what content should be represented in the # narrative to ensure clinical safety. StructField( "text", NarrativeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # These resources do not have an independent existence apart from the resource # that contains them - they cannot be identified independently, and nor can they # have their own independent transaction scope. StructField( "contained", ArrayType( ResourceListSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # This is a CarePlan resource StructField("resourceType", StringType(), True), # This records identifiers associated with this care plan that are defined by # business processes and/or used to refer to it when a direct URL reference to # the resource itself is not appropriate (e.g. in CDA documents, or in written / # printed documentation). StructField( "identifier", ArrayType( IdentifierSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Identifies the protocol, questionnaire, guideline or other specification the # care plan should be conducted in accordance with. StructField( "definition", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A care plan that is fulfilled in whole or in part by this care plan. StructField( "basedOn", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Completed or terminated care plan whose function is taken by this new care # plan. StructField( "replaces", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A larger care plan of which this particular care plan is a component or step. StructField( "partOf", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Indicates whether the plan is currently being acted upon, represents future # intentions or is now a historical record. StructField("status", StringType(), True), # Indicates the level of authority/intentionality associated with the care plan # and where the care plan fits into the workflow chain. StructField("intent", StringType(), True), # Identifies what "kind" of plan this is to support differentiation between # multiple co-existing plans; e.g. "Home health", "psychiatric", "asthma", # "disease management", "wellness plan", etc. StructField( "category", ArrayType( CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Human-friendly name for the CarePlan. StructField("title", StringType(), True), # A description of the scope and nature of the plan. StructField("description", StringType(), True), # Identifies the patient or group whose intended care is described by the plan. StructField( "subject", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Identifies the original context in which this particular CarePlan was created. StructField( "context", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Indicates when the plan did (or is intended to) come into effect and end. StructField( "period", PeriodSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Identifies the individual(s) or ogranization who is responsible for the # content of the care plan. StructField( "author", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Identifies all people and organizations who are expected to be involved in the # care envisioned by this plan. StructField( "careTeam", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Identifies the conditions/problems/concerns/diagnoses/etc. whose management # and/or mitigation are handled by this plan. StructField( "addresses", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Identifies portions of the patient's record that specifically influenced the # formation of the plan. These might include co-morbidities, recent procedures, # limitations, recent assessments, etc. StructField( "supportingInfo", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Describes the intended objective(s) of carrying out the care plan. StructField( "goal", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Identifies a planned action to occur as part of the plan. For example, a # medication to be used, lab tests to perform, self-monitoring, education, etc. StructField( "activity", ArrayType( CarePlan_ActivitySchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # General notes about the care plan not covered elsewhere. StructField( "note", ArrayType( AnnotationSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] return schema
50.451554
100
0.538863
7f7c31d0a32c80932b84a3b2831caef6fef1ffa3
10,096
py
Python
npms/viz/viz_multi_shape.py
Tiamat-Tech/npms
2d1bce8c98b0f24aa69273975c52b2fbdb101c29
[ "MIT" ]
96
2021-08-01T18:19:04.000Z
2022-03-04T02:53:47.000Z
npms/viz/viz_multi_shape.py
Tiamat-Tech/npms
2d1bce8c98b0f24aa69273975c52b2fbdb101c29
[ "MIT" ]
3
2021-08-18T12:57:39.000Z
2021-11-30T07:18:46.000Z
npms/viz/viz_multi_shape.py
Tiamat-Tech/npms
2d1bce8c98b0f24aa69273975c52b2fbdb101c29
[ "MIT" ]
8
2021-08-03T01:51:10.000Z
2021-12-31T09:46:25.000Z
import os, sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import shutil import open3d as o3d import numpy as np import trimesh import json from utils.pcd_utils import (BBox, transform_pointcloud_to_opengl_coords, rotate_around_axis, origin, normalize_transformation) from data_scripts import config_data as cfg from utils.gaps_utils import read_pts_file from utils.utils import filter_identities class ViewerMulti: def __init__( self, identity_names=[], target_animations=[], exclude_identities_with=None, only_identities_with=None, ): self.identity_names = identity_names self.target_animations = target_animations self.time = 0 self.p_ref = None self.p_cur = None self.mesh_cur = None self.show_ref = False self.show_cur = False self.exclude_identities_with = exclude_identities_with self.only_identities_with = only_identities_with self.initialize() def initialize(self): self.p_refs_list = {} self.p_curs_list = [] self.mesh_curs_list = [] self.frames_list = [] self.identity_name_by_frame_id = {} self.animation_frame_id_by_frame_id = {} loaded_frames = 0 global_id = -1 is_done = False # Prepare identity names if len(self.identity_names) == 0: self.identity_names = os.listdir(dataset_dir) for identity_name in self.identity_names: identity_dir = os.path.join(dataset_dir, identity_name) if not os.path.isdir(identity_dir): print(f"Skipping {identity_dir}, since it's not a directory") continue if self.exclude_identities_with is not None and self.exclude_identities_with in identity_name: continue if self.only_identities_with is not None and self.only_identities_with not in identity_name: continue # T-Pose ref_mesh_path = os.path.join(identity_dir, "a_t_pose", "000000", f"{mesh_filename}") if os.path.isfile(ref_mesh_path): ref_mesh = o3d.io.read_triangle_mesh(ref_mesh_path) ref_vertices = np.asarray(ref_mesh.vertices) p_ref = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(ref_vertices)) p_ref.paint_uniform_color([0, 1, 0]) self.p_refs_list[identity_name] = p_ref # Go over animations for animation_name in sorted(os.listdir(identity_dir)): if len(self.target_animations) > 0 and animation_name not in self.target_animations: continue animation_dir = os.path.join(identity_dir, animation_name) if not os.path.isdir(animation_dir): continue # Go over the frames in the animation for frame_id in sorted(os.listdir(animation_dir)): global_id += 1 if load_every and global_id % load_every != 0: continue if global_id < from_frame_id: continue ################################################################# # Current ################################################################# cur_mesh_path = os.path.join(animation_dir, frame_id, f"{mesh_filename}") if not os.path.isfile(cur_mesh_path): print(f"File {cur_mesh_path} is not a mesh") continue print("Loading", identity_name, animation_name, frame_id) cur_mesh = o3d.io.read_triangle_mesh(cur_mesh_path) cur_mesh.compute_vertex_normals() cur_vertices = np.asarray(cur_mesh.vertices) p_cur = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(cur_vertices)) p_cur.paint_uniform_color([0, 0, 1]) self.p_curs_list.append(p_cur) self.mesh_curs_list.append(cur_mesh) self.identity_name_by_frame_id[loaded_frames] = identity_name self.animation_frame_id_by_frame_id[loaded_frames] = f"{animation_name}_{frame_id}" # Increase counter of evaluated frames loaded_frames += 1 print(f'Loaded {loaded_frames} frames') if loaded_frames == num_samples: print() print(f"Stopping early. Already loaded {loaded_frames}") print() is_done = True break if is_done: break if is_done: break print() print("Total num frames loaded:", len(self.p_curs_list)) # ############################################################################################### # # Generate additional meshes. # ############################################################################################### self.world_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=0.2, origin=[0, 0, 0] ) # unit bbox p_min = -0.5 p_max = 0.5 self.unit_bbox = BBox.compute_bbox_from_min_point_and_max_point( np.array([p_min]*3), np.array([p_max]*3) ) print((np.array([p_min]*3) + np.array([p_max]*3)) / 2.) # Load bbox used to normalize bbox_json_path = os.path.join(dataset_dir, "bbox.json") if os.path.isfile(bbox_json_path): with open(bbox_json_path, 'r') as f: bbox = json.loads(f.read()) bbox = np.array(bbox) self.max_bbox = BBox.compute_bbox_from_min_point_and_max_point( np.array(bbox[0]), np.array(bbox[1]) ) def update_ref(self, vis): param = vis.get_view_control().convert_to_pinhole_camera_parameters() if self.p_ref is not None: vis.remove_geometry(self.p_ref) if self.show_ref: if self.identity_name_by_frame_id[self.time] in self.p_refs_list: self.p_ref = self.p_refs_list[self.identity_name_by_frame_id[self.time]] vis.add_geometry(self.p_ref) ctr = vis.get_view_control() ctr.convert_from_pinhole_camera_parameters(param) def update_cur(self, vis): param = vis.get_view_control().convert_to_pinhole_camera_parameters() if self.p_cur is not None: vis.remove_geometry(self.p_cur) if self.mesh_cur is not None: vis.remove_geometry(self.mesh_cur) if self.show_cur: self.p_cur = self.p_curs_list[self.time] vis.add_geometry(self.p_cur) self.mesh_cur = self.mesh_curs_list[self.time] vis.add_geometry(self.mesh_cur) ctr = vis.get_view_control() ctr.convert_from_pinhole_camera_parameters(param) def run(self): # Define callbacks. def toggle_next(vis): self.time += 1 if self.time >= len(self.p_curs_list): self.time = 0 print(f"Frame: {self.time} - Identity: {self.identity_name_by_frame_id[self.time]} - {self.animation_frame_id_by_frame_id[self.time]}") self.update_ref(vis) self.update_cur(vis) return False def toggle_previous(vis): self.time -= 1 if self.time < 0: self.time = len(self.p_curs_list) - 1 print(f"Frame: {self.time} - Identity: {self.identity_name_by_frame_id[self.time]} - {self.animation_frame_id_by_frame_id[self.time]}") self.update_ref(vis) self.update_cur(vis) return False def toggle_ref(vis): self.show_ref = not self.show_ref self.update_ref(vis) return False def toggle_cur(vis): self.show_cur = not self.show_cur self.update_cur(vis) return False key_to_callback = {} key_to_callback[ord("D")] = toggle_next key_to_callback[ord("A")] = toggle_previous key_to_callback[ord("R")] = toggle_ref key_to_callback[ord("C")] = toggle_cur # Add mesh at initial time step. assert self.time < len(self.p_curs_list) print("Showing time", self.time) self.p_cur = self.p_curs_list[self.time] self.mesh_cur = self.mesh_curs_list[self.time] self.show_cur = True o3d.visualization.draw_geometries_with_key_callbacks([self.unit_bbox, self.world_frame, self.p_cur, self.mesh_cur], key_to_callback) # o3d.visualization.draw_geometries_with_key_callbacks( # [self.max_bbox, self.world_frame, self.unit_bbox, self.p_cur, self.mesh_cur], key_to_callback # ) if __name__ == "__main__": PROCESSED_MESH_FILENAME = "mesh_raw.ply" REAL_SCAN_MESH_FILENAME = "mesh_real_scan.ply" NORMALIZED_MESH_FILENAME = "mesh_normalized.ply" # mesh_filename = "mesh_raw" mesh_filename = NORMALIZED_MESH_FILENAME cluster_location = "cluster" dataset = "mixamo_trans_all" dataset_dir = f"/{cluster_location}/lothlann/ppalafox/datasets/{dataset}" num_samples = 2 load_every = 0 from_frame_id = 0 viewer = ViewerMulti( # identity_names=['00096_jerseyshort'], # target_animations=['ballerina_spin'], # ["astra"], # [cfg.identities[29]], # cfg.identities, # target_animations # exclude_identities_with='test', # only_identities_with='test', ) viewer.run()
35.055556
147
0.565471
63d5fb092f0cc24e2c27f0886b0cd5ba71e075d6
4,033
py
Python
tests/test_hvac.py
joro75/mytoyota
405f7d84b3737846124aac6e7692aa6da52838a1
[ "MIT" ]
null
null
null
tests/test_hvac.py
joro75/mytoyota
405f7d84b3737846124aac6e7692aa6da52838a1
[ "MIT" ]
1
2022-02-12T16:46:48.000Z
2022-02-12T16:46:48.000Z
tests/test_hvac.py
joro75/mytoyota
405f7d84b3737846124aac6e7692aa6da52838a1
[ "MIT" ]
null
null
null
"""pytest tests for mytoyota.models.hvac.Hvac""" from mytoyota.models.hvac import Hvac # pylint: disable=no-self-use class TestHvac: """pytest functions to test Hvac""" @staticmethod def _create_example_data(): """Create hvac with predefined data""" return Hvac( { "currentTemperatureIndication": { "timestamp": "2020-10-16T03:50:15Z", "unit": "string", "value": 22, }, "targetTemperature": { "timestamp": "2020-10-16T03:50:15Z", "unit": "string", "value": 21, }, "startedAt": "", "status": "", "type": "", "duration": 1, "options": { "frontDefogger": "", "frontDriverSeatHeater": "", "frontPassengerSeatHeater": "", "mirrorHeater": "", "rearDefogger": "", "rearDriverSeatHeater": "", "rearPassengerSeatHeater": "", "steeringHeater": "", }, "commandId": "", } ) @staticmethod def _create_example_legacy_data(): """Create legacy hvac with predefined data""" return Hvac( { "BlowerStatus": 0, "FrontDefoggerStatus": 0, "InsideTemperature": 22, "LatestAcStartTime": "2020-10-16T03:50:15Z", "RearDefoggerStatus": 0, "RemoteHvacMode": 0, "RemoteHvacProhibitionSignal": 1, "SettingTemperature": 21, "TemperatureDisplayFlag": 0, "Temperaturelevel": 29, }, legacy=True, ) def test_hvac(self): """Test Hvac""" hvac = self._create_example_data() assert hvac.legacy is False assert hvac.current_temperature == 22 assert hvac.target_temperature == 21 assert hvac.started_at == "" assert hvac.status == "" assert hvac.type == "" assert hvac.duration == 1 assert hvac.command_id == "" assert isinstance(hvac.options, dict) assert hvac.options == { "frontDefogger": "", "frontDriverSeatHeater": "", "frontPassengerSeatHeater": "", "mirrorHeater": "", "rearDefogger": "", "rearDriverSeatHeater": "", "rearPassengerSeatHeater": "", "steeringHeater": "", } assert hvac.last_updated == "2020-10-16T03:50:15Z" assert hvac.front_defogger_is_on is None assert hvac.rear_defogger_is_on is None assert hvac.blower_on is None def test_hvac_legacy(self): """Test legacy Hvac""" hvac = self._create_example_legacy_data() assert hvac.legacy is True assert hvac.current_temperature == 22 assert hvac.target_temperature == 21 assert hvac.blower_on == 0 assert hvac.front_defogger_is_on is False assert hvac.rear_defogger_is_on is False assert hvac.last_updated is None assert hvac.started_at is None assert hvac.status is None assert hvac.type is None assert hvac.duration is None assert hvac.options is None assert hvac.command_id is None def test_hvac_no_data(self): """Test Hvac with no initialization data""" hvac = Hvac({}) assert hvac.legacy is False assert hvac.current_temperature is None assert hvac.target_temperature is None assert hvac.started_at is None assert hvac.status is None assert hvac.type is None assert hvac.duration is None assert hvac.command_id is None assert hvac.options is None assert hvac.last_updated is None
31.023077
60
0.521944
337faeca365f18a0b66d561a127dccebaac916fc
16,194
py
Python
app.py
DanielAndreasen/TripMeal
78446b1a23b32cb0c5617a6c98cebefa30e5bcb0
[ "MIT" ]
10
2017-02-21T22:50:22.000Z
2020-11-04T08:07:29.000Z
app.py
DanielAndreasen/TripMeal
78446b1a23b32cb0c5617a6c98cebefa30e5bcb0
[ "MIT" ]
5
2017-02-22T13:12:39.000Z
2021-05-17T10:56:32.000Z
app.py
DanielAndreasen/TripMeal
78446b1a23b32cb0c5617a6c98cebefa30e5bcb0
[ "MIT" ]
null
null
null
from flask import Flask, render_template, flash, jsonify, request, url_for, \ redirect, session, g from dbconnect import connection from MySQLdb import escape_string from wtforms import Form, TextField, PasswordField, BooleanField, validators, TextAreaField, StringField, SelectField from passlib.hash import sha256_crypt from functools import wraps import random import gc import os class RegistrationForm(Form): username = TextField('Username', [validators.Length(min=4, max=25)]) email = TextField('Email address', [validators.Length(min=5, max=50)]) password = PasswordField('Password', [validators.Required(), validators.EqualTo('confirm', message='Passwords must match')]) confirm = PasswordField('Repeat password') class RecipeForm(Form): title = StringField('Title', [validators.Length(min=1, max=200)]) country = SelectField('Country') ingredients = TextAreaField('Ingredients', [validators.Length(min=5)]) recipe = TextAreaField('Recipe', [validators.Length(min=30)]) def login_required(f): @wraps(f) def decorated_function(*args, **kwargs): try: username = session['username'] except KeyError: username = None if username is None: return redirect(url_for('login_page')) return f(*args, **kwargs) return decorated_function def get_recipes(rid): """rid can be an integer or 'all'. Return a dictionary with the rid and title""" c, conn = connection() if rid == 'all': _ = c.execute('SELECT rid, title FROM recipes;') d = c.fetchall() rid_dict = {int(di[0]): di[1] for di in d} c.close() conn.close() gc.collect() return rid_dict else: _ = c.execute('SELECT rid, title FROM recipes WHERE rid = ("%s");' % rid) d = c.fetchall()[0] rid_dict = {int(d[0]): d[1]} c.close() conn.close() gc.collect() return rid_dict def get_ranking(): c, conn = connection() _ = c.execute('SELECT user, COUNT(*) AS nu FROM recipes GROUP BY user ORDER BY nu DESC;') d = c.fetchall() c.close() conn.close() gc.collect() d = {name: int(count) for name, count in d} return d def convert2HTML(text): if ('1.' in text) and ('2.' in text) and ('3.' in text): # We have a list here final = 1 for line in text.split('\r\n'): if line.startswith('%s.' % final): final += 1 newtext = '' i = 1 for line in text.split('\r\n'): if line.startswith('%s.' % i): if i == 1: newtext += '<ol>\r\n' i += 1 newline = '<li>' + line[2:] + '</li>\r\n' newtext += newline if i == final: newtext += '</ol>' else: newtext += line + '\r\n' return newtext else: return text # Setup Flask app = Flask(__name__) app.config['SECRET_KEY'] = os.environ['TRIPMEAL_KEY'] @app.route('/') def homepage(): return render_template('main.html') @app.route('/login/', methods=['GET', 'POST']) def login_page(): try: error = None c, conn = connection() if request.method == 'POST': username = escape_string(request.form['username']).decode() data = c.execute('SELECT * FROM users WHERE username = ("%s");' % username) data = c.fetchone() if sha256_crypt.verify(request.form['password'], data[2]) and (data[1] == username): session['logged_in'] = True session['username'] = username session['favourites'] = data[4] flash('You are now logged in') return redirect(url_for('user_page')) else: error = 'Invalid credentials, try again' gc.collect() return render_template('login.html', error=error) except: error = 'Invalid credentials, try again' return render_template('login.html', error=error) @app.route('/logout/') @login_required def logout_page(): if session['logged_in']: session['logged_in'] = False session['username'] = None return redirect(url_for('list_recipes')) @app.route('/register/', methods=['GET', 'POST']) def register_page(): form = RegistrationForm(request.form) try: if request.method == 'POST' and form.validate(): username = form.username.data email = form.email.data password = sha256_crypt.encrypt(str(form.password.data)) c, conn = connection() x = c.execute('SELECT * FROM users WHERE username = ("%s");' % escape_string(username)) if int(x) > 0: flash('That username is already taken, please choose another') return render_template('register.html', form=form) else: c.execute('INSERT INTO users (username, password, email) VALUES ("%s", "%s", "%s");' % (escape_string(username), escape_string(password), escape_string(email))) conn.commit() flash('Thanks for registering!') c.close() conn.close() gc.collect() session['logged_in'] = True session['username'] = username return redirect(url_for('favourites_page')) return render_template('register.html', form=form) except Exception as e: return render_template('register.html', form=form) @app.route('/newrecipe/', methods=['GET', 'POST']) @login_required def newrecipe(): if request.method == 'POST': pass # print request.form return render_template('newrecipe.html') @app.route('/addrecipe/', methods=['POST', 'GET']) def addrecipe(): if request.method == 'POST': title = escape_string(request.form['title']) location = escape_string(request.form['country']) ingredients = escape_string(','.join(request.form['ingredients'].split('\r\n')).strip(',')) recipe = escape_string(request.form['recipe']) username = session['username'] c, conn = connection() c.execute('INSERT INTO recipes (title, location, ingredients, recipe, user) VALUES ("%s", "%s", "%s", "%s", "%s");' % (title, location, ingredients, recipe, username)) conn.commit() # Save to the database flash("Thanks for your recipe :)") c.close() conn.close() gc.collect() # Garbage collection return redirect(url_for('newrecipe')) else: return render_template('main.html') @app.route('/_background/') def background(): try: i = request.args.get('ingredients_submit', 0, type=str) return jsonify(ingredient=i) except Error: return str(e) @app.route('/recipes/') def list_recipes(): c, conn = connection() _ = c.execute('SELECT rid, title FROM recipes;') recipes = c.fetchall() c.close() conn.close() gc.collect() return render_template('recipes.html', recipes=recipes) @app.route('/recipe', methods=['POST', 'GET'], strict_slashes=False) def list_recipe(): try: if request.method == 'GET': rid = request.args.get('rid') c, conn = connection() _ = c.execute('SELECT * FROM recipes WHERE rid = %s;' % escape_string(rid)) recipe = list(c.fetchall()[0]) recipe[4] = convert2HTML(recipe[4]) c.close() conn.close() gc.collect() if request.args.get('fav') == 'true': # Insert recipe as a favourite in database c, conn = connection() _ = c.execute('SELECT favourites FROM users WHERE username = "%s";' % session['username']) favs = c.fetchall()[0][0] if favs is None: _ = c.execute('UPDATE users SET favourites = "%s" WHERE username = "%s";' % (recipe[0], session['username'])) conn.commit() else: favs = favs.split(',') if str(recipe[0]) not in favs: favs = ','.join(favs)+',%s' % recipe[0] _ = c.execute('UPDATE users SET favourites = "%s" WHERE username = "%s";' % (favs, session['username'])) conn.commit() c.close() conn.close() gc.collect() return render_template('recipe.html', recipe=recipe, fav=True) elif request.args.get('fav') == 'false': # Delete a favourite from the database c, conn = connection() _ = c.execute('SELECT favourites FROM users WHERE username = "%s";' % session['username']) favs = c.fetchall()[0][0] favs = favs.split(',') fav = str(recipe[0]) if fav in favs: idx = favs.index(fav) _ = favs.pop(idx) favs = ','.join(favs) _ = c.execute('UPDATE users SET favourites = "%s" WHERE username = "%s";' % (favs, session['username'])) conn.commit() c.close() conn.close() gc.collect() return render_template('recipe.html', recipe=recipe, fav=False) else: try: logged_in = session['logged_in'] except KeyError: logged_in = False if logged_in: c, conn = connection() _ = c.execute('SELECT favourites FROM users WHERE username = ("%s");' % session['username']) try: favs = c.fetchall()[0][0].split(',') except Exception: # No favs yet return render_template('recipe.html', recipe=recipe, fav=False) c.close() conn.close() gc.collect() return render_template('recipe.html', recipe=recipe, fav=rid in favs) else: return render_template('recipe.html', recipe=recipe, fav=False) else: return redirect(url_for('list_recipes')) except Exception as e: return redirect(url_for('list_recipes')) @app.route('/favourites/') @login_required def favourites_page(): try: c, conn = connection() _ = c.execute('SELECT favourites FROM users WHERE username = ("%s");' % session['username']) favs = c.fetchall()[0][0] c.close() conn.close() gc.collect() try: favs = filter(None, favs.split(',')) except Exception: return render_template('favourites.html', favourites=False) fav_dict = {} for fav in favs: c, conn = connection() _ = c.execute('SELECT title FROM recipes WHERE rid = ("%s");' % fav) fav_dict[fav] = c.fetchall()[0][0] c.close() conn.close() gc.collect() return render_template('favourites.html', favourites=fav_dict) except Exception as e: return render_template('favourites.html', favourites=False) @app.route('/menu/') def menu_page(): try: logged_in = session['logged_in'] except KeyError: logged_in = False menu_dict = {} n_favourites = 0 all_recipes = get_recipes('all') rids = all_recipes.keys() days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] if logged_in: # Include favourites try: c, conn = connection() _ = c.execute('SELECT favourites FROM users WHERE username = ("%s");' % session['username']) d = c.fetchall()[0][0] favs = map(int, filter(None, d.split(','))) c.close() conn.close() gc.collect n_favourites = len(favs) except Exception: pass if n_favourites: while len(favs): rid = random.choice(favs) favs.pop(favs.index(rid)) # Don't use the same recipe twice per week tmp = {rid: all_recipes[rid]} day = random.choice(days) days.pop(days.index(day)) menu_dict[day] = [rid, tmp[rid]] for _ in range(7-n_favourites): day = random.choice(days) days.pop(days.index(day)) rid = random.choice(rids) tmp = {rid: all_recipes[rid]} menu_dict[day] = [rid, tmp[rid]] return render_template('menu.html', menu=menu_dict) @app.route('/user/') @login_required def user_page(): try: user = session['username'] c, conn = connection() if user == 'Daniel': _ = c.execute('SELECT rid, location, title FROM recipes;') else: _ = c.execute('SELECT rid, location, title FROM recipes WHERE user="%s";' % user) recipes = c.fetchall() c.close() conn.close() gc.collect() recipes = [ { 'rid': recipe[0], 'country': recipe[1], 'title': recipe[2] } for recipe in recipes] rank = get_ranking() if user not in rank.keys(): number_recipes = 0 else: number_recipes = rank[user] total_recipes = sum(rank.values()) return render_template('user.html', user=user, nr=number_recipes, tr=total_recipes, recipes=recipes) except Exception as e: return render_template('favourites.html', favourites=False) @app.route('/edit_recipe/<string:rid>', methods=['GET', 'POST']) @login_required def edit_recipe(rid): # Get the recipe # c.execute('INSERT INTO recipes (title, location, ingredients, recipe, user) VALUES ("%s", "%s", "%s", "%s", "%s");' % c, conn = connection() _ = c.execute('SELECT * FROM recipes WHERE rid="%s"' % rid) recipe = c.fetchone() c.close() conn.close() gc.collect() # Fill the form form = RecipeForm(request.form) form.title.data = recipe[1] form.country.data = recipe[2] form.ingredients.data = '\n'.join(recipe[3].split(',')) form.recipe.data = recipe[4] if request.method == 'POST': title = escape_string(request.form['title']) country = escape_string(request.form['country']) ingredients = escape_string(','.join(request.form['ingredients'].split('\r\n')).strip(',')) recipe = escape_string(request.form['recipe']) # Update the DB c, conn = connection() c.execute('UPDATE recipes SET title="%s", location="%s", ingredients="%s", recipe="%s" WHERE rid=%s' % (title, country, ingredients, recipe, rid)) conn.commit() # Close connection c.close() conn.close() gc.collect() flash('Recipe updated') return redirect(url_for('user_page')) return render_template('edit_recipe.html', form=form) @app.route('/delete_recipe/<string:rid>', methods=['GET', 'POST']) @login_required def delete_recipe(rid): username = session['username'] if request.method == 'POST': c, conn = connection() if username == 'Daniel': _ = c.execute('DELETE FROM recipes WHERE rid="%s"' % (rid)) else: _ = c.execute('DELETE FROM recipes WHERE rid="%s" AND user="%s"' % (rid, username)) conn.commit() c.close() conn.close() gc.collect() flash('Recipe successfully deleted') return redirect(url_for('user_page')) else: flash('Recipe not deleted') return redirect(url_for('user_page')) if __name__ == '__main__': port = int(os.environ.get('PORT', 5000)) app.run(host='0.0.0.0', port=port, debug=True)
34.825806
154
0.544214
292e5572e9b26b2b27b00331d2425f003f6e2cc2
4,846
py
Python
DM562/Python Exercises/asg3-wienerpolygon/wiener.py
RuneSemey/course-help
8eab36d89d02dd12df2c23786c982f4045262a45
[ "MIT" ]
2
2019-10-03T16:25:18.000Z
2019-11-19T16:51:22.000Z
DM562/Python Exercises/asg3-wienerpolygon/wiener.py
RuneSemey/course-help
8eab36d89d02dd12df2c23786c982f4045262a45
[ "MIT" ]
7
2019-10-03T15:31:57.000Z
2019-10-10T14:22:15.000Z
DM562/Python Exercises/asg3-wienerpolygon/wiener.py
RuneSemey/course-help
8eab36d89d02dd12df2c23786c982f4045262a45
[ "MIT" ]
28
2019-10-03T14:46:09.000Z
2019-10-29T13:31:40.000Z
"""wiener.py Lab 3: Wiener Index / Polygons ------------------------------ This lab has two independent parts, you need to provide you solutions via implementations in wiener.py (this file) and polygon.py. Hint: Start with the implementations for polygon.py, to ensure you get most of the points with a small amount of work. Number of point to be achieved in polygon.py : 92 Number of point to be achieved in wiener.py : 8 wienerIndex(W): 2 distanceMatrix(W): 2 lengthThreePaths(W): 2 boilingPoint(W): 2 In this part of the lab you need to implement the methods in order to predict boiling points of chemical compounds, where the chemical compounds are, for simplicity, encoded as adjacency matrices of graphs. See the lecture slides for all the details. The functions /docstring/s again contain some real examples and usage of the functions. You can run these examples by executing the script from command line: python3 wiener.py Note that the unit tests for the final grading may contain different tests, and that certain requirements given below are not tested in the tesing before the final testing. """ import numpy as np from math import inf def wienerIndex(W): """ Returns the Wiener Index (i.e, the sum of all pairwise shortest paths in a graph represented by an edge weight matrix W). Note, that we assume all weights to be floats. Parameters: ----------- W : np.ndarray , the edge weight matrix representation of a graph (floats) Returns: -------- float : the Wiener Index as presented on the lecture slides Examples: --------- >>> A = np.array([[0.0, inf, 1.0, inf, inf, inf], \ [inf, 0.0, 1.0, inf, inf, inf], \ [1.0, 1.0, 0.0, 1.0, 1.0, inf], \ [inf, inf, 1.0, 0.0, inf, 1.0], \ [inf, inf, 1.0, inf, 0.0, inf], \ [inf, inf, inf, 1.0, inf, 0.0]]) >>> wienerIndex(A) 28.0 """ pass def distanceMatrix(W): """ Given an edge weight matrix W, this returns the distance matrix D (as presented on the lecture slides) Parameters: ----------- W : np.ndarray , the edge weight matrix representation of a graph (floats) Returns: -------- D : np.ndarray , the distance matrix of a chemical graph Examples: --------- >>> W = np.array([[0.0, inf, 1.0, inf, inf, inf], \ [inf, 0.0, 1.0, inf, inf, inf], \ [1.0, 1.0, 0.0, 1.0, 1.0, inf], \ [inf, inf, 1.0, 0.0, inf, 1.0], \ [inf, inf, 1.0, inf, 0.0, inf], \ [inf, inf, inf, 1.0, inf, 0.0]]) >>> distanceMatrix(W) array([[ 0., 2., 1., 2., 2., 3.], [ 2., 0., 1., 2., 2., 3.], [ 1., 1., 0., 1., 1., 2.], [ 2., 2., 1., 0., 2., 1.], [ 2., 2., 1., 2., 0., 3.], [ 3., 3., 2., 1., 3., 0.]]) """ pass def lengthThreePaths(W): """ Returns the number of all shortest paths of length 3.0 where the index of the starting vertex i is smaller than the index of the goal vertex j (called p on the lecture slides) Parameters: ----------- W : np.ndarray , the edge weight matrix representation of a graph (floats) Returns: -------- int : the number of all shortest paths of length 3 Examples: --------- >>> W = np.array([[0.0, inf, 1.0, inf, inf, inf], \ [inf, 0.0, 1.0, inf, inf, inf], \ [1.0, 1.0, 0.0, 1.0, 1.0, inf], \ [inf, inf, 1.0, 0.0, inf, 1.0], \ [inf, inf, 1.0, inf, 0.0, inf], \ [inf, inf, inf, 1.0, inf, 0.0]]) >>> lengthThreePaths(W) 3 """ pass def boilingPoint(W): """ Returns the boiling point prediction as introduced on the lecture slides. Parameters: ----------- W : np.ndarray , the edge weight matrix representation of a graph (floats) Returns: -------- float : the predicted boiling point of the molecule Raises: ------- TypeError: if A is not a two-dimensional squared and symmetric edge weight matrix with A[i,i] == 0 for all possible i Examples: --------- >>> W = np.array([[0.0, inf, 1.0, inf, inf, inf], \ [inf, 0.0, 1.0, inf, inf, inf], \ [1.0, 1.0, 0.0, 1.0, 1.0, inf], \ [inf, inf, 1.0, 0.0, inf, 1.0], \ [inf, inf, 1.0, inf, 0.0, inf], \ [inf, inf, inf, 1.0, inf, 0.0]]) >>> round(boilingPoint(W),3) 49.664 """ pass if __name__ == "__main__": import doctest doctest.testmod()
29.192771
83
0.524144
7bf1f88b52266224a0a123de193c37b3adf4241b
12,299
py
Python
tutorials/rnn/ptb/ptb_word_lm.py
obreitwi/tensorflow-models
c15fada28113eca32dc98d6e3bec4755d0d5b4c2
[ "Apache-2.0" ]
null
null
null
tutorials/rnn/ptb/ptb_word_lm.py
obreitwi/tensorflow-models
c15fada28113eca32dc98d6e3bec4755d0d5b4c2
[ "Apache-2.0" ]
null
null
null
tutorials/rnn/ptb/ptb_word_lm.py
obreitwi/tensorflow-models
c15fada28113eca32dc98d6e3bec4755d0d5b4c2
[ "Apache-2.0" ]
1
2019-11-04T11:52:51.000Z
2019-11-04T11:52:51.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example / benchmark for building a PTB LSTM model. Trains the model described in: (Zaremba, et. al.) Recurrent Neural Network Regularization http://arxiv.org/abs/1409.2329 There are 3 supported model configurations: =========================================== | config | epochs | train | valid | test =========================================== | small | 13 | 37.99 | 121.39 | 115.91 | medium | 39 | 48.45 | 86.16 | 82.07 | large | 55 | 37.87 | 82.62 | 78.29 The exact results may vary depending on the random initialization. The hyperparameters used in the model: - init_scale - the initial scale of the weights - learning_rate - the initial value of the learning rate - max_grad_norm - the maximum permissible norm of the gradient - num_layers - the number of LSTM layers - num_steps - the number of unrolled steps of LSTM - hidden_size - the number of LSTM units - max_epoch - the number of epochs trained with the initial learning rate - max_max_epoch - the total number of epochs for training - keep_prob - the probability of keeping weights in the dropout layer - lr_decay - the decay of the learning rate for each epoch after "max_epoch" - batch_size - the batch size The data required for this example is in the data/ dir of the PTB dataset from Tomas Mikolov's webpage: $ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz $ tar xvf simple-examples.tgz To run: $ python ptb_word_lm.py --data_path=simple-examples/data/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import time import numpy as np import tensorflow as tf import reader flags = tf.flags logging = tf.logging flags.DEFINE_string( "model", "small", "A type of model. Possible options are: small, medium, large.") flags.DEFINE_string("data_path", None, "Where the training/test data is stored.") flags.DEFINE_string("save_path", None, "Model output directory.") flags.DEFINE_bool("use_fp16", False, "Train using 16-bit floats instead of 32bit floats") FLAGS = flags.FLAGS def data_type(): return tf.float16 if FLAGS.use_fp16 else tf.float32 class PTBInput(object): """The input data.""" def __init__(self, config, data, name=None): self.batch_size = batch_size = config.batch_size self.num_steps = num_steps = config.num_steps self.epoch_size = ((len(data) // batch_size) - 1) // num_steps self.input_data, self.targets = reader.ptb_producer( data, batch_size, num_steps, name=name) class PTBModel(object): """The PTB model.""" def __init__(self, is_training, config, input_): self._input = input_ batch_size = input_.batch_size num_steps = input_.num_steps size = config.hidden_size vocab_size = config.vocab_size # Slightly better results can be obtained with forget gate biases # initialized to 1 but the hyperparameters of the model would need to be # different than reported in the paper. def lstm_cell(): # With the latest TensorFlow source code (as of Mar 27, 2017), # the BasicLSTMCell will need a reuse parameter which is unfortunately not # defined in TensorFlow 1.0. To maintain backwards compatibility, we add # an argument check here: if 'reuse' in inspect.getargspec( tf.contrib.rnn.BasicLSTMCell.__init__).args: return tf.contrib.rnn.BasicLSTMCell( size, forget_bias=0.0, state_is_tuple=True, reuse=tf.get_variable_scope().reuse) else: return tf.contrib.rnn.BasicLSTMCell( size, forget_bias=0.0, state_is_tuple=True) attn_cell = lstm_cell if is_training and config.keep_prob < 1: def attn_cell(): return tf.contrib.rnn.DropoutWrapper( lstm_cell(), output_keep_prob=config.keep_prob) cell = tf.contrib.rnn.MultiRNNCell( [attn_cell() for _ in range(config.num_layers)], state_is_tuple=True) self._initial_state = cell.zero_state(batch_size, data_type()) with tf.device("/cpu:0"): embedding = tf.get_variable( "embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, input_.input_data) if is_training and config.keep_prob < 1: inputs = tf.nn.dropout(inputs, config.keep_prob) # Simplified version of models/tutorials/rnn/rnn.py's rnn(). # This builds an unrolled LSTM for tutorial purposes only. # In general, use the rnn() or state_saving_rnn() from rnn.py. # # The alternative version of the code below is: # # inputs = tf.unstack(inputs, num=num_steps, axis=1) # outputs, state = tf.nn.rnn(cell, inputs, # initial_state=self._initial_state) outputs = [] state = self._initial_state with tf.variable_scope("RNN"): for time_step in range(num_steps): if time_step > 0: tf.get_variable_scope().reuse_variables() (cell_output, state) = cell(inputs[:, time_step, :], state) outputs.append(cell_output) output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, size]) softmax_w = tf.get_variable( "softmax_w", [size, vocab_size], dtype=data_type()) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type()) logits = tf.matmul(output, softmax_w) + softmax_b loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [logits], [tf.reshape(input_.targets, [-1])], [tf.ones([batch_size * num_steps], dtype=data_type())]) self._cost = cost = tf.reduce_sum(loss) / batch_size self._final_state = state if not is_training: return self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(self._lr) self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.contrib.framework.get_or_create_global_step()) self._new_lr = tf.placeholder( tf.float32, shape=[], name="new_learning_rate") self._lr_update = tf.assign(self._lr, self._new_lr) def assign_lr(self, session, lr_value): session.run(self._lr_update, feed_dict={self._new_lr: lr_value}) @property def input(self): return self._input @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def final_state(self): return self._final_state @property def lr(self): return self._lr @property def train_op(self): return self._train_op class SmallConfig(object): """Small config.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 13 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 10000 class MediumConfig(object): """Medium config.""" init_scale = 0.05 learning_rate = 1.0 max_grad_norm = 5 num_layers = 2 num_steps = 35 hidden_size = 650 max_epoch = 6 max_max_epoch = 39 keep_prob = 0.5 lr_decay = 0.8 batch_size = 20 vocab_size = 10000 class LargeConfig(object): """Large config.""" init_scale = 0.04 learning_rate = 1.0 max_grad_norm = 10 num_layers = 2 num_steps = 35 hidden_size = 1500 max_epoch = 14 max_max_epoch = 55 keep_prob = 0.35 lr_decay = 1 / 1.15 batch_size = 20 vocab_size = 10000 class TestConfig(object): """Tiny config, for testing.""" init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 1 num_layers = 1 num_steps = 2 hidden_size = 2 max_epoch = 1 max_max_epoch = 1 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 10000 def run_epoch(session, model, eval_op=None, verbose=False): """Runs the model on the given data.""" start_time = time.time() costs = 0.0 iters = 0 state = session.run(model.initial_state) fetches = { "cost": model.cost, "final_state": model.final_state, } if eval_op is not None: fetches["eval_op"] = eval_op for step in range(model.input.epoch_size): feed_dict = {} for i, (c, h) in enumerate(model.initial_state): feed_dict[c] = state[i].c feed_dict[h] = state[i].h vals = session.run(fetches, feed_dict) cost = vals["cost"] state = vals["final_state"] costs += cost iters += model.input.num_steps if verbose and step % (model.input.epoch_size // 10) == 10: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / model.input.epoch_size, np.exp(costs / iters), iters * model.input.batch_size / (time.time() - start_time))) return np.exp(costs / iters) def get_config(): if FLAGS.model == "small": return SmallConfig() elif FLAGS.model == "medium": return MediumConfig() elif FLAGS.model == "large": return LargeConfig() elif FLAGS.model == "test": return TestConfig() else: raise ValueError("Invalid model: %s", FLAGS.model) def main(_): if not FLAGS.data_path: raise ValueError("Must set --data_path to PTB data directory") raw_data = reader.ptb_raw_data(FLAGS.data_path) train_data, valid_data, test_data, _ = raw_data config = get_config() eval_config = get_config() eval_config.batch_size = 1 eval_config.num_steps = 1 with tf.Graph().as_default(): initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale) with tf.name_scope("Train"): train_input = PTBInput(config=config, data=train_data, name="TrainInput") with tf.variable_scope("Model", reuse=None, initializer=initializer): m = PTBModel(is_training=True, config=config, input_=train_input) tf.summary.scalar("Training Loss", m.cost) tf.summary.scalar("Learning Rate", m.lr) with tf.name_scope("Valid"): valid_input = PTBInput(config=config, data=valid_data, name="ValidInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mvalid = PTBModel(is_training=False, config=config, input_=valid_input) tf.summary.scalar("Validation Loss", mvalid.cost) with tf.name_scope("Test"): test_input = PTBInput(config=eval_config, data=test_data, name="TestInput") with tf.variable_scope("Model", reuse=True, initializer=initializer): mtest = PTBModel(is_training=False, config=eval_config, input_=test_input) sv = tf.train.Supervisor(logdir=FLAGS.save_path) with sv.managed_session() as session: for i in range(config.max_max_epoch): lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0) m.assign_lr(session, config.learning_rate * lr_decay) print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr))) train_perplexity = run_epoch(session, m, eval_op=m.train_op, verbose=True) print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity)) valid_perplexity = run_epoch(session, mvalid) print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity)) test_perplexity = run_epoch(session, mtest) print("Test Perplexity: %.3f" % test_perplexity) if FLAGS.save_path: print("Saving model to %s." % FLAGS.save_path) sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step) if __name__ == "__main__": tf.app.run()
31.862694
81
0.669241
fbbd1cc5a0d89039832575a593b631016bd6a814
2,451
py
Python
caldera/dataset/_graph_dataset.py
jvrana/caldera
a346324e77f20739e00a82f97530dda4906f59dd
[ "MIT" ]
2
2021-12-13T17:52:17.000Z
2021-12-13T17:52:18.000Z
caldera/dataset/_graph_dataset.py
jvrana/caldera
a346324e77f20739e00a82f97530dda4906f59dd
[ "MIT" ]
4
2020-10-06T21:06:15.000Z
2020-10-10T01:18:23.000Z
caldera/dataset/_graph_dataset.py
jvrana/caldera
a346324e77f20739e00a82f97530dda4906f59dd
[ "MIT" ]
null
null
null
from typing import List from typing import Optional from typing import overload import torch from torch.utils.data import Dataset from caldera.data import GraphBatch from caldera.data import GraphData from caldera.transforms._base import TransformCallable class GraphDataset(Dataset): """Graph dataset.""" def __init__( self, datalist: List[GraphData], transform: Optional[TransformCallable] = None ): """Creates a graph dataset. :param datalist: :param transform: """ assert isinstance(datalist, list) self.datalist = datalist self.transform = transform def __len__(self): return len(self.datalist) def mem_sizes(self): return torch.IntTensor([d.memsize() for d in self.dataset]) def get(self, idx, transform: Optional[TransformCallable] = None): transform = transform or self.transform if torch.is_tensor(idx): idx = idx.tolist() if isinstance(idx, int): idx = [idx] one_item = True else: one_item = False if isinstance(idx, slice): samples = self.datalist[idx] else: samples = [] for i in idx: sample = self.datalist[i] if transform: sample = transform(sample) samples.append(sample) if one_item: samples = samples[0] return samples @overload def __getitem__(self, idx: torch.LongTensor) -> List[GraphData]: ... @overload def __getitem__(self, idx: List[int]) -> List[GraphData]: ... def __getitem__(self, idx: int) -> GraphData: return self.get(idx) class GraphBatchDataset(GraphDataset): """Dataset that loads a :class:`caldera.data.GraphData` list into. :class:`caldera.data.GraphBatch` instances, and then performs transform (if provided). """ @overload def __getitem__(self, idx: torch.LongTensor) -> GraphBatch: ... @overload def __getitem__(self, idx: List[int]) -> GraphData: ... def __getitem__(self, idx: int) -> GraphBatch: samples = self.get(idx, transform=None) if isinstance(samples, GraphData): samples = [samples] batch = GraphBatch.from_data_list(samples) if self.transform: batch = self.transform(batch) return batch
26.074468
86
0.603427
de869e9af2d05f16908d65ff7bff0ebcef20654c
693
py
Python
apps/cms/migrations/0003_auto_20211013_1635.py
truhlik/what_articles
a212b78c7137f1a4e7008bb06c927c2a60ef9b9f
[ "MIT" ]
null
null
null
apps/cms/migrations/0003_auto_20211013_1635.py
truhlik/what_articles
a212b78c7137f1a4e7008bb06c927c2a60ef9b9f
[ "MIT" ]
null
null
null
apps/cms/migrations/0003_auto_20211013_1635.py
truhlik/what_articles
a212b78c7137f1a4e7008bb06c927c2a60ef9b9f
[ "MIT" ]
null
null
null
# Generated by Django 3.2.8 on 2021-10-13 16:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cms', '0002_auto_20211013_1612'), ] operations = [ migrations.AddField( model_name='article', name='title_de', field=models.CharField(default='test', max_length=255, verbose_name='title de'), preserve_default=False, ), migrations.AddField( model_name='article', name='title_en', field=models.CharField(default='test', max_length=255, verbose_name='title en'), preserve_default=False, ), ]
26.653846
92
0.593074
26d892d2cedddbc5215fdd76ceb0a0e4a54142ab
14,773
py
Python
src/gui.py
Jack477/CommanderPi_rockpi
25bd80d982d6627b71d9e174021611f6d734de3d
[ "MIT" ]
3
2021-03-24T10:46:20.000Z
2021-11-12T12:24:45.000Z
src/gui.py
Jack477/CommanderPi_rockpi
25bd80d982d6627b71d9e174021611f6d734de3d
[ "MIT" ]
null
null
null
src/gui.py
Jack477/CommanderPi_rockpi
25bd80d982d6627b71d9e174021611f6d734de3d
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys import os import resources as rs import update as up import tkinter as tk import theme as th import importlib import webbrowser from tkinter import messagebox as msb from tkinter import * from tkinter import ttk from PIL import Image, ImageTk ### TODO: Move change_theme function to theme.py? ### split resources.py into smaller files ### move window_list from theme.py to resources home_path = sys.argv[1] def change_theme(master): if int(th.color_mode)==0: print("Setting color theme to 1") th.color_mode=1 else: th.color_mode=0 rs.config.set('DEFAULT', 'color_mode', str(th.color_mode)) with open(home_path+'/CommanderPi/src/cpi.config', 'w') as configfile: rs.config.write(configfile) th.set_theme(master) #print(th.color_mode) ### Use in window class: master.protocol("WM_DELETE_WINDOW", lambda:on_Window_Close(master)) def on_Window_Close(master): if isinstance(master, tk.Tk): window_name = master.__class__ print(window_name) th.window_list.pop() master.destroy() ### Using to keybind window kill def killwindow(event, master): on_Window_Close(master) ### Open new window with his own master def bopen(window): x = window() class Network_Window: def __init__(master): master = tk.Tk() master.geometry("480x310") master.title("Commander Pi") th.window_list.append(master) mainframe = Frame(master) mainframe.pack(padx=10, pady=10) titleframe = Frame(mainframe) titleframe.pack(fill=X) image = Image.open(home_path+"/CommanderPi/src/icons/Networkings.png") photo = ImageTk.PhotoImage(image, master=titleframe) title_label = tk.Label( titleframe, text = " Networking", font=("TkDefaultFont", 18, "bold"), image = photo, compound=LEFT, anchor='w') title_label.image = photo title_label.pack(side=LEFT) network_frame = Frame(mainframe) network_frame.pack() ether_title = tk.Label(network_frame, text="Ethernet:", font=("TkDefaultFont", 11, "bold")) ether_title.grid(row=0, column=0) wlan_title = tk.Label(network_frame, text="WiFi:", font=("TkDefaultFont", 11, "bold")) wlan_title.grid(row=0, column=1) ether_label = tk.Label( network_frame, text = rs.eth0_data, borderwidth=2, relief="groove", height=7, width=25, anchor='w', justify=LEFT ) ether_label.grid(row=1, column=0, sticky = W) wlan_label = tk.Label( network_frame, text = rs.wlan0_data, borderwidth=2, relief="groove", height=7, width=25, anchor='w', justify=LEFT ) wlan_label.grid(row=1, column=1, sticky = W) cc_frame = Frame(mainframe) cc_frame.pack() actual_country_code = tk.Label( cc_frame, text="Your country code: "+rs.get_country_code(), font=("TkDefaultFont", 11, "bold")) actual_country_code.grid(row=0, column=0, columnspan=2) country_code_label = tk.Label( cc_frame, text="Set your country code", font=("TkDefaultFont", 11, "bold")) country_code_label.grid(row=1, column=0, columnspan=2) country_code_entry = tk.Entry( cc_frame, justify=CENTER, width=5) country_code_entry.grid(row=2, column=0, sticky=E) country_code_button = tk.Button( cc_frame, text="Apply", command=lambda:push_cc(), font=("TkDefaultFont", 10, "bold"), cursor="hand2") country_code_button.grid(row=2, column=1) bind_label = tk.Label( mainframe, text="Press [Esc] to close", font=("TkDefaultFont", 11, "bold") ) bind_label.pack(side=BOTTOM) def push_cc(): code = country_code_entry.get() if isinstance(code, str) and len(code) == 2: code = code.upper() rs.set_country_code(code) actual_country_code.configure(text="Your country code: "+rs.get_country_code()) msb.showinfo(title="Done!", message="Your country code is now set as "+code) else: msb.showwarning(title="Error", message="Country code should be two letters!") th.set_theme(master) master.bind('<Escape>', lambda e:killwindow(e, master)) master.protocol("WM_DELETE_WINDOW", lambda:on_Window_Close(master)) master.mainloop() class Proc_Info_Window: def __init__(master): master = tk.Tk() master.geometry("350x400") master.title("Commander Pi") th.window_list.append(master) th.set_theme(master) mainframe = Frame(master) mainframe.pack(padx=10, pady=10) titleframe = Frame(mainframe) titleframe.pack(fill=X) image = Image.open(home_path+"/CommanderPi/src/icons/CPUs.png") photo = ImageTk.PhotoImage(image, master=titleframe) title_label = tk.Label( titleframe, text = " CPU Details", font=("TkDefaultFont", 18, "bold"), image = photo, compound=LEFT, anchor='w') title_label.image = photo title_label.pack(side=LEFT) separator = ttk.Separator(mainframe, orient='horizontal') separator.pack(fill=X, expand=True, pady=15) cpu_content_frame = Frame(mainframe) cpu_content_frame.pack(fill=X) cpu_label = tk.Label( cpu_content_frame, text = rs.getproc0(), justify=LEFT, width=20, anchor='w' ) cpu_label.grid(row=0, column=0, rowspan=14, sticky=W) cpu_label2 = tk.Label( cpu_content_frame, text = rs.getproc1(), justify=LEFT, width=13, anchor='w' ) cpu_label2.grid(row=0, column=1, rowspan=14, sticky=W) separator2 = ttk.Separator(mainframe, orient='horizontal') separator2.pack(fill=X, expand=True, pady=15) bind_label = tk.Label( mainframe, text="Press [Esc] to close", font=("TkDefaultFont", 11, "bold") ) bind_label.pack(side=BOTTOM) master.bind('<Escape>', lambda e:killwindow(e, master)) master.protocol("WM_DELETE_WINDOW", lambda:on_Window_Close(master)) master.mainloop() class About_Window: def __init__(master): master = tk.Tk() master.geometry("400x450") master.title("Commander Pi") th.window_list.append(master) mainframe = Frame(master) mainframe.pack(padx=10, pady=10) titleframe = Frame(mainframe) titleframe.pack(fill=X) image = Image.open(home_path+"/CommanderPi/src/icons/logo.png") photo = ImageTk.PhotoImage(image, master=titleframe) title_label = tk.Label( titleframe, text = " About Application", font=("TkDefaultFont", 18, "bold"), image = photo, compound=LEFT, anchor='w') title_label.image = photo title_label.pack(side=LEFT) separator = ttk.Separator(mainframe, orient='horizontal') separator.pack(fill=X, expand=True, pady=15) content_frame = Frame(mainframe) content_frame.pack() about_label = tk.Label( content_frame, text = "Commander Pi 2020\n", justify=CENTER, font=("TkDefaultFont", 11, "bold")) about_label.pack() text_label = tk.Label( content_frame, text="By Jack477\nFor Twister OS Armbian\n\nGraphic elements by grayduck\nIcon derived from a work by Vectors Market", justify=CENTER) text_label.pack(fill=X) version_label = tk.Label( content_frame, text=rs.get_app_version(), font=("TkDefaultFont", 11, "bold"), justify=CENTER) version_label.pack() link = tk.Label( content_frame, text="Changelog", cursor="hand2", fg="#1D81DA", pady=5) link.pack(fill=X) mlink = 'https://github.com/Jack477/CommanderPi/blob/master/CHANGELOG.md' link.bind("<Button-1>", lambda e: rs.cpi_open_url(mlink)) separator2 = ttk.Separator(mainframe, orient='horizontal') separator2.pack(fill=X, expand=True, pady=15) update_button = Button(mainframe, text="Check for updates", command=lambda:update_x(), cursor="hand2", font=("TkDefaultFont", 11, "bold"), state=DISABLED) update_button.pack() color_buton = Button(mainframe, text="Change color theme", command=lambda:change_theme(master), cursor="hand2", font=("TkDefaultFont", 11, "bold")) color_buton.pack() def update_x(): up.update_cpi() bind_label = tk.Label( mainframe, text="Press [Esc] to close", font=("TkDefaultFont", 11, "bold") ) bind_label.pack(side=BOTTOM) master.bind('<Escape>', lambda e:killwindow(e, master)) th.set_theme(master) master.protocol("WM_DELETE_WINDOW", lambda:on_Window_Close(master)) master.mainloop() ### Main window class Window: def __init__(master): master = tk.Tk() master.geometry("420x550") master.title("Commander Pi") master.resizable(False, False) #master.iconbitmap("@"+home_path+"/CommanderPi/src/xicon.ico") icon = PhotoImage(file = home_path+"/CommanderPi/src/icon.png") master.iconphoto(True, icon) th.window_list.append(master) mainframe = Frame(master) mainframe.pack(padx=10, pady=10) titleframe = Frame(mainframe) titleframe.pack() loadimg = Image.open(home_path+"/CommanderPi/src/icons/title_logo.png") img = ImageTk.PhotoImage(image=loadimg) img_label = tk.Label ( titleframe, image=img) img_label.image = img img_label.grid(row=0, column=0, columnspan=2) #title_label = tk.Label( titleframe, text = "Commander Pi", font=("TkDefaultFont", 22, "bold") ) #title_label.grid(row=0, column=1) separator = ttk.Separator(mainframe, orient='horizontal') separator.pack(fill=X, expand=True, pady=10) infoframe = Frame(mainframe) infoframe.pack(fill=X) title2_label = tk.Label( infoframe, text = "ROCK PI VERSION\nReal-time system information:\n", font=("TkDefaultFont", 11, "bold"), anchor='w') title2_label.grid(row=0, column=0, columnspan=2, sticky=W) board_version_label = tk.Label( infoframe, text= rs.board_version, fg="red", anchor='w') board_version_label.grid(row=1, column=0, columnspan=2, sticky=W) kernel_version_label = tk.Label( infoframe, text = "Kernel version: ", width=30, anchor='w' ) kernel_version_label.grid(row=2, column=0, sticky=W) kernel_version_label2 = tk.Label( infoframe, text = rs.kernel_version , width=15, anchor='w') kernel_version_label2.grid(row=2, column=1) kernel_mode_label = tk.Label( infoframe, text = "Operating mode: ", width=30, anchor='w') kernel_mode_label.grid(row=3, column=0, sticky=W) kernel_mode_label2 = tk.Label( infoframe, text = rs.get_kernel_mode(), width=15, anchor='w') kernel_mode_label2.grid(row=3, column=1) processor_architecture_label = tk.Label( infoframe, text="Processor architecture: ", width=30, anchor='w' ) processor_architecture_label.grid(row=4, column=0, sticky=W) processor_architecture_label2 = tk.Label( infoframe, text=rs.processor_architecture, width=15, anchor='w') processor_architecture_label2.grid(row=4, column=1) memory_use_label = tk.Label( infoframe, text = "Memory usage: ", width=30, anchor='w' ) memory_use_label.grid(row=5, column=0, sticky=W) memory_use_label2 = tk.Label( infoframe, text = "", width=15, anchor='w' ) memory_use_label2.grid(row=5, column=1) actual_gpu_temp_label = tk.Label( infoframe, text = "Actual GPU temperature: ", width=30, anchor='w' ) actual_gpu_temp_label.grid(row=6, column=0, sticky=W) actual_gpu_temp_label2 = tk.Label( infoframe, text = "", width=15, anchor='w' ) actual_gpu_temp_label2.grid(row=6, column=1) actual_cpu_temp_label = tk.Label( infoframe, text = "Actual CPU temperature: ", width=30, anchor='w' ) actual_cpu_temp_label.grid(row=7, column=0, sticky=W) actual_cpu_temp_label2 = tk.Label( infoframe, text = "", width=15, anchor='w' ) actual_cpu_temp_label2.grid(row=7, column=1) actual_cpu_usage_label = tk.Label( infoframe, text = "Processor frequency usage is: ", width=30, anchor='w') actual_cpu_usage_label.grid(row=8, column=0, sticky=W) actual_cpu_usage_label2 = tk.Label(infoframe, text = "", width=15, anchor='w') actual_cpu_usage_label2.grid(row=8, column=1) actual_gpu_usage_label = tk.Label( infoframe, text = "GPU frequency (V3D) usage is: ", width=30, anchor='w') actual_gpu_usage_label.grid(row=9, column=0, sticky=W) actual_gpu_usage_label2 = tk.Label(infoframe, text = "", width=15, anchor='w') actual_gpu_usage_label2.grid(row=9, column=1) used_label = tk.Label ( infoframe, text="Used disk space: ", width=30, anchor='w') used_label.grid(row=10, column=0, sticky=W) ##BORDER TO TABLE borderwidth=2, relief="groove", used_label2 = tk.Label ( infoframe, text=rs.used+"/"+rs.total+" GiB", width=15, anchor='w') used_label2.grid(row=10, column=1) separator2 = ttk.Separator(mainframe, orient='horizontal') separator2.pack(fill=X, expand=True, pady=10) #REFRESH CPU USAGE, MEMORY USAGE AND TEMPERATURE def refresh(): #for x in th.window_list: # print(x.__class__) ttext = rs.reftemp() ptext = rs.refusage() mtext = rs.refmem() gtext = rs.reftemp2() gputext = rs.refgpu() #dtext = str(rs.get_disk_percent()) #dtext = "CPU usage " + rs.cpu_usagex +" MHz" memory_use_label2.configure(text = mtext + "/100%") actual_cpu_temp_label2.configure(text = ttext) actual_cpu_usage_label2.configure(text = ptext) actual_gpu_temp_label2.configure(text = gtext) actual_gpu_usage_label2.configure(text = gputext) master.after(1000, refresh) refresh() advanced_label = tk.Label( mainframe, text = "Advanced tools", font=("TkDefaultFont", 11, "bold"), anchor='w' ) advanced_label.pack(fill=X) btn_frame = Frame(mainframe) btn_frame.pack(fill=X) photo1 = PhotoImage(file = home_path+"/CommanderPi/src/icons/CPUs.png") #photoimage1 = photo1.subsample(15, 15) proc_info_button = Button ( btn_frame, text="CPU details", command = lambda:bopen(Proc_Info_Window), width=60, height=80, cursor="hand2", image = photo1, compound=TOP) proc_info_button.grid(row=0, column=0, padx=4) #photo2 = PhotoImage(file = home_path+"/CommanderPi/src/icons/Bootloaders.png") #btn4 = Button (btn_frame, text="Bootloader", width=60, height=80, cursor="hand2", image = photo2, compound=TOP) #btn4.grid(row=0, column=1, padx=4) photo3 = PhotoImage(file = home_path+"/CommanderPi/src/icons/Networkings.png") btn5 = Button (btn_frame, text="Network", command = lambda:bopen(Network_Window), width=60, height=80, cursor="hand2", image = photo3, compound=TOP) btn5.grid(row=0, column=2, padx=4) #photo4 = PhotoImage(file = home_path+"/CommanderPi/src/icons/Overclockings.png") #btn2 = Button(btn_frame, text="Overclock", command = lambda:bopen(Overclock_Window), width=60, height=80, cursor="hand2", image = photo4, compound=TOP) #btn2.grid(row=0, column=3, padx=4) btn3 = Button( mainframe, text="About/Update", command = lambda:bopen(About_Window), font=("TkDefaultFont", 11, "bold"), cursor="hand2") btn3.pack(side=BOTTOM, pady=5) master.protocol("WM_DELETE_WINDOW", lambda:on_Window_Close(master)) th.set_theme(master) #up.check_update() master.mainloop()
38.272021
175
0.695323
7310ddf8902515ec57c147bac72a9d0d43af3a9f
10,297
py
Python
autotest/gdrivers/ers.py
Instant-Monkey/gdal
e4755c13394841ded981c885da2fc4e257f22c6b
[ "MIT" ]
null
null
null
autotest/gdrivers/ers.py
Instant-Monkey/gdal
e4755c13394841ded981c885da2fc4e257f22c6b
[ "MIT" ]
3
2019-02-27T00:43:06.000Z
2019-06-28T21:57:10.000Z
autotest/gdrivers/ers.py
TileDB-Inc/gdal
dc824494cc3f96ead82eb42be9a8bcfb1466073b
[ "MIT" ]
1
2021-04-26T14:47:38.000Z
2021-04-26T14:47:38.000Z
#!/usr/bin/env pytest # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test ERS format driver. # Author: Frank Warmerdam <warmerdam@pobox.com> # ############################################################################### # Copyright (c) 2007, Frank Warmerdam <warmerdam@pobox.com> # Copyright (c) 2011-2013, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### from osgeo import gdal from osgeo import osr import gdaltest import pytest ############################################################################### # Perform simple read test. def test_ers_1(): tst = gdaltest.GDALTest('ERS', 'srtm.ers', 1, 64074) tst.testOpen() ds = gdal.Open('data/srtm.ers') md = ds.GetRasterBand(1).GetMetadata() expected_md = {'STATISTICS_MEAN': '-4020.25', 'STATISTICS_MINIMUM': '-4315', 'STATISTICS_MAXIMUM': '-3744', 'STATISTICS_MEDIAN': '-4000'} assert md == expected_md ############################################################################### # Create simple copy and check. def test_ers_2(): tst = gdaltest.GDALTest('ERS', 'float32.bil', 1, 27) return tst.testCreateCopy(new_filename='tmp/float32.ers', check_gt=1, vsimem=1) ############################################################################### # Test multi-band file. def test_ers_3(): tst = gdaltest.GDALTest('ERS', 'rgbsmall.tif', 2, 21053) return tst.testCreate(new_filename='tmp/rgbsmall.ers') ############################################################################### # Test HeaderOffset case. def test_ers_4(): gt = (143.59625, 0.025, 0.0, -39.38125, 0.0, -0.025) srs = """GEOGCS["GEOCENTRIC DATUM of AUSTRALIA", DATUM["GDA94", SPHEROID["GRS80",6378137,298.257222101]], PRIMEM["Greenwich",0], UNIT["degree",0.0174532925199433]]""" tst = gdaltest.GDALTest('ERS', 'ers_dem.ers', 1, 56588) return tst.testOpen(check_prj=srs, check_gt=gt) ############################################################################### # Confirm we can recognised signed 8bit data. def test_ers_5(): ds = gdal.Open('data/8s.ers') md = ds.GetRasterBand(1).GetMetadata('IMAGE_STRUCTURE') assert md['PIXELTYPE'] == 'SIGNEDBYTE', 'Failed to detect SIGNEDBYTE' ds = None ############################################################################### # Confirm a copy preserves the signed byte info. def test_ers_6(): drv = gdal.GetDriverByName('ERS') src_ds = gdal.Open('data/8s.ers') ds = drv.CreateCopy('tmp/8s.ers', src_ds) md = ds.GetRasterBand(1).GetMetadata('IMAGE_STRUCTURE') assert md['PIXELTYPE'] == 'SIGNEDBYTE', 'Failed to detect SIGNEDBYTE' ds = None drv.Delete('tmp/8s.ers') ############################################################################### # Test opening a file with everything in lower case. def test_ers_7(): ds = gdal.Open('data/caseinsensitive.ers') desc = ds.GetRasterBand(1).GetDescription() assert desc == 'RTP 1st Vertical Derivative', 'did not get expected values.' ############################################################################### # Test GCP support def test_ers_8(): src_ds = gdal.Open('../gcore/data/gcps.vrt') drv = gdal.GetDriverByName('ERS') ds = drv.CreateCopy('/vsimem/ers_8.ers', src_ds) ds = None gdal.Unlink('/vsimem/ers_8.ers.aux.xml') ds = gdal.Open('/vsimem/ers_8.ers') expected_gcps = src_ds.GetGCPs() gcps = ds.GetGCPs() gcp_count = ds.GetGCPCount() wkt = ds.GetGCPProjection() ds = None assert wkt == """PROJCS["NUTM11",GEOGCS["NAD27",DATUM["North_American_Datum_1927",SPHEROID["Clarke 1866",6378206.4,294.978698213898,AUTHORITY["EPSG","7008"]],TOWGS84[-3,142,183,0,0,0,0],AUTHORITY["EPSG","6267"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4267"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-117],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["Metre",1],AXIS["Easting",EAST],AXIS["Northing",NORTH]]""", \ 'did not get expected GCP projection' assert len(gcps) == len(expected_gcps) and len(gcps) == gcp_count, \ 'did not get expected GCP number' for i, gcp in enumerate(gcps): if gcp.GCPPixel != pytest.approx(expected_gcps[i].GCPPixel, abs=1e-6) or \ gcp.GCPLine != pytest.approx(expected_gcps[i].GCPLine, abs=1e-6) or \ gcp.GCPX != pytest.approx(expected_gcps[i].GCPX, abs=1e-6) or \ gcp.GCPY != pytest.approx(expected_gcps[i].GCPY, abs=1e-6): print(gcps[i]) pytest.fail('did not get expected GCP %d' % i) drv.Delete('/vsimem/ers_8.ers') ############################################################################### # Test NoData support (#4207) def test_ers_9(): drv = gdal.GetDriverByName('ERS') ds = drv.Create('/vsimem/ers_9.ers', 1, 1) ds.GetRasterBand(1).SetNoDataValue(123) ds = None f = gdal.VSIFOpenL('/vsimem/ers_9.ers.aux.xml', 'rb') if f is not None: gdal.VSIFCloseL(f) drv.Delete('/vsimem/ers_9.ers') pytest.fail('/vsimem/ers_9.ers.aux.xml should not exist') ds = gdal.Open('/vsimem/ers_9.ers') val = ds.GetRasterBand(1).GetNoDataValue() ds = None drv.Delete('/vsimem/ers_9.ers') assert val == 123, 'did not get expected nodata value' ############################################################################### # Test PROJ, DATUM, UNITS support (#4229) def test_ers_10(): drv = gdal.GetDriverByName('ERS') ds = drv.Create('/vsimem/ers_10.ers', 1, 1, options=['DATUM=GDA94', 'PROJ=MGA55', 'UNITS=METERS']) proj = ds.GetMetadataItem("PROJ", "ERS") datum = ds.GetMetadataItem("DATUM", "ERS") units = ds.GetMetadataItem("UNITS", "ERS") assert proj == 'MGA55', 'did not get expected PROJ' assert datum == 'GDA94', 'did not get expected DATUM' assert units == 'METERS', 'did not get expected UNITS' # This should be overridden by the above values sr = osr.SpatialReference() sr.ImportFromEPSG(4326) ds.SetProjection(sr.ExportToWkt()) proj = ds.GetMetadataItem("PROJ", "ERS") datum = ds.GetMetadataItem("DATUM", "ERS") units = ds.GetMetadataItem("UNITS", "ERS") assert proj == 'MGA55', 'did not get expected PROJ' assert datum == 'GDA94', 'did not get expected DATUM' assert units == 'METERS', 'did not get expected UNITS' ds = None f = gdal.VSIFOpenL('/vsimem/ers_10.ers.aux.xml', 'rb') if f is not None: gdal.VSIFCloseL(f) drv.Delete('/vsimem/ers_10.ers') pytest.fail('/vsimem/ers_10.ers.aux.xml should not exist') ds = gdal.Open('/vsimem/ers_10.ers') wkt = ds.GetProjectionRef() proj = ds.GetMetadataItem("PROJ", "ERS") datum = ds.GetMetadataItem("DATUM", "ERS") units = ds.GetMetadataItem("UNITS", "ERS") md_ers = ds.GetMetadata("ERS") ds = None drv.Delete('/vsimem/ers_10.ers') assert proj == 'MGA55', 'did not get expected PROJ' assert datum == 'GDA94', 'did not get expected DATUM' assert units == 'METERS', 'did not get expected UNITS' assert md_ers["PROJ"] == proj and md_ers["DATUM"] == datum and md_ers["UNITS"] == units, \ ('GetMetadata() not consistent with ' 'GetMetadataItem()') assert wkt.startswith("""PROJCS["MGA55"""), 'did not get expected projection' ds = drv.Create('/vsimem/ers_10.ers', 1, 1, options=['DATUM=GDA94', 'PROJ=MGA55', 'UNITS=FEET']) ds = None # Check that we can update those values with SetProjection() ds = gdal.Open('/vsimem/ers_10.ers', gdal.GA_Update) sr = osr.SpatialReference() sr.ImportFromEPSG(4326) ds.SetProjection(sr.ExportToWkt()) proj = ds.GetMetadataItem("PROJ", "ERS") datum = ds.GetMetadataItem("DATUM", "ERS") units = ds.GetMetadataItem("UNITS", "ERS") assert proj == 'GEODETIC', 'did not get expected PROJ' assert datum == 'WGS84', 'did not get expected DATUM' assert units == 'METERS', 'did not get expected UNITS' ds = None ds = gdal.Open('/vsimem/ers_10.ers') proj = ds.GetMetadataItem("PROJ", "ERS") datum = ds.GetMetadataItem("DATUM", "ERS") units = ds.GetMetadataItem("UNITS", "ERS") ds = None drv.Delete('/vsimem/ers_10.ers') assert proj == 'GEODETIC', 'did not get expected PROJ' assert datum == 'WGS84', 'did not get expected DATUM' assert units == 'METERS', 'did not get expected UNITS' ############################################################################### # Test fix for https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=8744 def test_ers_recursive_opening(): ds = gdal.Open('/vsitar/data/test_ers_recursive.tar/test.ers') ds.GetFileList() ############################################################################### # Cleanup def test_ers_cleanup(): gdaltest.clean_tmp()
33.650327
614
0.588132
76f0427af25c4989945127e6a8cb7e3e94718da5
990
py
Python
countdown with user input.py
Pergamon256/Countdown
8c928d4ec64c98b6535089d7498ccfa2425af5d1
[ "MIT" ]
null
null
null
countdown with user input.py
Pergamon256/Countdown
8c928d4ec64c98b6535089d7498ccfa2425af5d1
[ "MIT" ]
null
null
null
countdown with user input.py
Pergamon256/Countdown
8c928d4ec64c98b6535089d7498ccfa2425af5d1
[ "MIT" ]
null
null
null
import time x = int(input("Enter countdown minutes: ")) y = int(input("Enter countdown seconds: ")) print('Countdown started') #You can edit this to display whatever text you want, even include strings using {} and .format() def countdown(m,s): i=m j=s k=0 try: while True: if(j == -1): j = 59 i -= 1 if((i > 9) and (j > 9)): print(str(i)+":"+str(j), end='\r') #Carriage return only works with python 3; end='\r' will not work with python 2. elif(i > 9): print(str(i)+":"+str(k)+str(j), end='\r') elif(j > 9): print(str(k)+str(i)+":"+str(j), end='\r') else: print(str(k)+str(i)+":"+str(k)+str(j), end='\r') time.sleep(1) j -= 1 if(i == 0 and j == -1): break except KeyboardInterrupt: pass print("", end='\r') if(i == 0 and j == -1): print('Countdown ended') #You can edit this to display whatever text you want, even include strings using {} and .format() time.sleep(1) result = countdown(x,y) countdown(result)
27.5
124
0.586869
fe14cba8bcfee021100f33f0dfe413f1571a894e
474
py
Python
django-ng/django_ng_project/django_ng_app/migrations/0013_auto_20170516_0106.py
bounouhmahmoud/ensi
209e57340359af3ea063c064982198848dc36c5f
[ "MIT" ]
1
2018-07-10T06:59:05.000Z
2018-07-10T06:59:05.000Z
django-ng/django_ng_project/django_ng_app/migrations/0013_auto_20170516_0106.py
Arsalen/BusinessStrategies
209e57340359af3ea063c064982198848dc36c5f
[ "MIT" ]
null
null
null
django-ng/django_ng_project/django_ng_app/migrations/0013_auto_20170516_0106.py
Arsalen/BusinessStrategies
209e57340359af3ea063c064982198848dc36c5f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-05-16 01:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('django_ng_app', '0012_auto_20170515_1926'), ] operations = [ migrations.AlterField( model_name='search', name='expression', field=models.TextField(default=None, max_length=254), ), ]
22.571429
65
0.630802
fd45cc32616cf3d83a53f2682836eba99ddf8e58
228
py
Python
src/configuration/settings.py
arturosolutions/dta_test
2beb7e332a13929070655ec41894a727e9be03e0
[ "MIT" ]
null
null
null
src/configuration/settings.py
arturosolutions/dta_test
2beb7e332a13929070655ec41894a727e9be03e0
[ "MIT" ]
null
null
null
src/configuration/settings.py
arturosolutions/dta_test
2beb7e332a13929070655ec41894a727e9be03e0
[ "MIT" ]
null
null
null
import os DEBUG = True CURR_DIR = os.path.dirname(os.path.abspath(__file__)) BASE_DIR = os.path.dirname(CURR_DIR) LOG_DIR = '{}/logs'.format(BASE_DIR) COMPANY_TABLENAME = 'company' SOURCE_TABLENAME = 'login_source'
20.727273
54
0.723684
40b3b0aa6706428ef6ddde1f0eba186bc70357ab
397
py
Python
app/rss_feeder/wsgi.py
RSaab/rss-scraper
9bf608878e7d08fea6508ae90b27f1c226b313f1
[ "MIT" ]
null
null
null
app/rss_feeder/wsgi.py
RSaab/rss-scraper
9bf608878e7d08fea6508ae90b27f1c226b313f1
[ "MIT" ]
null
null
null
app/rss_feeder/wsgi.py
RSaab/rss-scraper
9bf608878e7d08fea6508ae90b27f1c226b313f1
[ "MIT" ]
null
null
null
""" WSGI config for rss_feeder project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rss_feeder.settings') application = get_wsgi_application()
23.352941
78
0.788413
2ad01f049ae585b9690e1f335cfc08ccf670e810
10,659
py
Python
sdk/python/pulumi_azure_native/importexport/v20200801/job.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/importexport/v20200801/job.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/importexport/v20200801/job.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['JobArgs', 'Job'] @pulumi.input_type class JobArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], job_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input['JobDetailsArgs']] = None, tags: Optional[Any] = None): """ The set of arguments for constructing a Job resource. :param pulumi.Input[str] resource_group_name: The resource group name uniquely identifies the resource group within the user subscription. :param pulumi.Input[str] job_name: The name of the import/export job. :param pulumi.Input[str] location: Specifies the supported Azure location where the job should be created :param pulumi.Input['JobDetailsArgs'] properties: Specifies the job properties :param Any tags: Specifies the tags that will be assigned to the job. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if job_name is not None: pulumi.set(__self__, "job_name", job_name) if location is not None: pulumi.set(__self__, "location", location) if properties is not None: pulumi.set(__self__, "properties", properties) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The resource group name uniquely identifies the resource group within the user subscription. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="jobName") def job_name(self) -> Optional[pulumi.Input[str]]: """ The name of the import/export job. """ return pulumi.get(self, "job_name") @job_name.setter def job_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "job_name", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Specifies the supported Azure location where the job should be created """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter def properties(self) -> Optional[pulumi.Input['JobDetailsArgs']]: """ Specifies the job properties """ return pulumi.get(self, "properties") @properties.setter def properties(self, value: Optional[pulumi.Input['JobDetailsArgs']]): pulumi.set(self, "properties", value) @property @pulumi.getter def tags(self) -> Optional[Any]: """ Specifies the tags that will be assigned to the job. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[Any]): pulumi.set(self, "tags", value) class Job(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, job_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[pulumi.InputType['JobDetailsArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[Any] = None, __props__=None): """ Contains the job information. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] job_name: The name of the import/export job. :param pulumi.Input[str] location: Specifies the supported Azure location where the job should be created :param pulumi.Input[pulumi.InputType['JobDetailsArgs']] properties: Specifies the job properties :param pulumi.Input[str] resource_group_name: The resource group name uniquely identifies the resource group within the user subscription. :param Any tags: Specifies the tags that will be assigned to the job. """ ... @overload def __init__(__self__, resource_name: str, args: JobArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Contains the job information. :param str resource_name: The name of the resource. :param JobArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(JobArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, job_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, properties: Optional[pulumi.Input[pulumi.InputType['JobDetailsArgs']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, tags: Optional[Any] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = JobArgs.__new__(JobArgs) __props__.__dict__["job_name"] = job_name __props__.__dict__["location"] = location __props__.__dict__["properties"] = properties if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["tags"] = tags __props__.__dict__["identity"] = None __props__.__dict__["name"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:importexport/v20200801:Job"), pulumi.Alias(type_="azure-native:importexport:Job"), pulumi.Alias(type_="azure-nextgen:importexport:Job"), pulumi.Alias(type_="azure-native:importexport/v20161101:Job"), pulumi.Alias(type_="azure-nextgen:importexport/v20161101:Job"), pulumi.Alias(type_="azure-native:importexport/v20210101:Job"), pulumi.Alias(type_="azure-nextgen:importexport/v20210101:Job")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Job, __self__).__init__( 'azure-native:importexport/v20200801:Job', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Job': """ Get an existing Job resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = JobArgs.__new__(JobArgs) __props__.__dict__["identity"] = None __props__.__dict__["location"] = None __props__.__dict__["name"] = None __props__.__dict__["properties"] = None __props__.__dict__["system_data"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None return Job(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.IdentityDetailsResponse']]: """ Specifies the job identity details """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Specifies the Azure location where the job is created. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the name of the job. """ return pulumi.get(self, "name") @property @pulumi.getter def properties(self) -> pulumi.Output['outputs.JobDetailsResponse']: """ Specifies the job properties """ return pulumi.get(self, "properties") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ SystemData of ImportExport Jobs. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Any]]: """ Specifies the tags that are assigned to the job. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Specifies the type of the job resource. """ return pulumi.get(self, "type")
40.071429
478
0.634487
eac813c4d8e6114c0487fbab6a3f4bfb0cab6d6b
43,183
py
Python
userbot/modules/memes.py
jefanya14/Bot
2166a9cce2a595dd4dbe08f09c036c3757c1f25b
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2021-11-28T16:04:59.000Z
2021-11-28T16:04:59.000Z
userbot/modules/memes.py
jefanya14/Bot
2166a9cce2a595dd4dbe08f09c036c3757c1f25b
[ "Naumen", "Condor-1.1", "MS-PL" ]
5
2021-11-28T21:14:32.000Z
2021-11-29T09:20:22.000Z
userbot/modules/memes.py
jefanya14/Bot
2166a9cce2a595dd4dbe08f09c036c3757c1f25b
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2021-11-29T05:25:48.000Z
2021-11-29T05:25:48.000Z
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # """ Userbot module for having some fun with people. """ import os import time import urllib from asyncio import sleep from collections import deque from random import choice, getrandbits, randint from re import sub import requests from cowpy import cow from userbot import CMD_HELP, LOGS, bot from userbot.events import register from userbot.modules.admin import get_user_from_event # ================= CONSTANT ================= METOOSTR = [ "Me too thanks", "Haha yes, me too", "Same lol", "Me irl", "Same here", "Haha yes", "Me rn", ] ZALG_LIST = [ [ "̖", " ̗", " ̘", " ̙", " ̜", " ̝", " ̞", " ̟", " ̠", " ̤", " ̥", " ̦", " ̩", " ̪", " ̫", " ̬", " ̭", " ̮", " ̯", " ̰", " ̱", " ̲", " ̳", " ̹", " ̺", " ̻", " ̼", " ͅ", " ͇", " ͈", " ͉", " ͍", " ͎", " ͓", " ͔", " ͕", " ͖", " ͙", " ͚", " ", ], [ " ̍", " ̎", " ̄", " ̅", " ̿", " ̑", " ̆", " ̐", " ͒", " ͗", " ͑", " ̇", " ̈", " ̊", " ͂", " ̓", " ̈́", " ͊", " ͋", " ͌", " ̃", " ̂", " ̌", " ͐", " ́", " ̋", " ̏", " ̽", " ̉", " ͣ", " ͤ", " ͥ", " ͦ", " ͧ", " ͨ", " ͩ", " ͪ", " ͫ", " ͬ", " ͭ", " ͮ", " ͯ", " ̾", " ͛", " ͆", " ̚", ], [ " ̕", " ̛", " ̀", " ́", " ͘", " ̡", " ̢", " ̧", " ̨", " ̴", " ̵", " ̶", " ͜", " ͝", " ͞", " ͟", " ͠", " ͢", " ̸", " ̷", " ͡", ], ] EMOJIS = [ "😂", "😂", "👌", "✌", "💞", "👍", "👌", "💯", "🎶", "👀", "😂", "👓", "👏", "👐", "🍕", "💥", "🍴", "💦", "💦", "🍑", "🍆", "😩", "😏", "👉👌", "👀", "👅", "😩", "🚰", ] INSULT_STRINGS = [ "Owww ... Such a stupid idiot.", "Don't drink and type.", "I think you should go home or better a mental asylum.", "Command not found. Just like your brain.", "Do you realize you are making a fool of yourself? Apparently not.", "You can type better than that.", "Bot rule 544 section 9 prevents me from replying to stupid humans like you.", "Sorry, we do not sell brains.", "Believe me you are not normal.", "I bet your brain feels as good as new, seeing that you never use it.", "If I wanted to kill myself I'd climb your ego and jump to your IQ.", "Zombies eat brains... you're safe.", "You didn't evolve from apes, they evolved from you.", "Come back and talk to me when your I.Q. exceeds your age.", "I'm not saying you're stupid, I'm just saying you've got bad luck when it comes to thinking.", "What language are you speaking? Cause it sounds like bullshit.", "Stupidity is not a crime so you are free to go.", "You are proof that evolution CAN go in reverse.", "I would ask you how old you are but I know you can't count that high.", "As an outsider, what do you think of the human race?", "Brains aren't everything. In your case they're nothing.", "Ordinarily people live and learn. You just live.", "I don't know what makes you so stupid, but it really works.", "Keep talking, someday you'll say something intelligent! (I doubt it though)", "Shock me, say something intelligent.", "Your IQ's lower than your shoe size.", "Alas! Your neurotransmitters are no more working.", "Are you crazy you fool.", "Everyone has the right to be stupid but you are abusing the privilege.", "I'm sorry I hurt your feelings when I called you stupid. I thought you already knew that.", "You should try tasting cyanide.", "Your enzymes are meant to digest rat poison.", "You should try sleeping forever.", "Pick up a gun and shoot yourself.", "You could make a world record by jumping from a plane without parachute.", "Stop talking BS and jump in front of a running bullet train.", "Try bathing with Hydrochloric Acid instead of water.", "Try this: if you hold your breath underwater for an hour, you can then hold it forever.", "Go Green! Stop inhaling Oxygen.", "God was searching for you. You should leave to meet him.", "give your 100%. Now, go donate blood.", "Try jumping from a hundred story building but you can do it only once.", "You should donate your brain seeing that you never used it.", "Volunteer for target in an firing range.", "Head shots are fun. Get yourself one.", "You should try swimming with great white sharks.", "You should paint yourself red and run in a bull marathon.", "You can stay underwater for the rest of your life without coming back up.", "How about you stop breathing for like 1 day? That'll be great.", "Try provoking a tiger while you both are in a cage.", "Have you tried shooting yourself as high as 100m using a canon.", "You should try holding TNT in your mouth and igniting it.", "Try playing catch and throw with RDX its fun.", "I heard phogine is poisonous but i guess you wont mind inhaling it for fun.", "Launch yourself into outer space while forgetting oxygen on Earth.", "You should try playing snake and ladders, with real snakes and no ladders.", "Dance naked on a couple of HT wires.", "Active Volcano is the best swimming pool for you.", "You should try hot bath in a volcano.", "Try to spend one day in a coffin and it will be yours forever.", "Hit Uranium with a slow moving neutron in your presence. It will be a worthwhile experience.", "You can be the first person to step on sun. Have a try.", ] UWUS = [ "(・`ω´・)", ";;w;;", "owo", "UwU", ">w<", "^w^", r"\(^o\) (/o^)/", "( ^ _ ^)∠☆", "(ô_ô)", "~:o", ";-;", "(*^*)", "(>_", "(♥_♥)", "*(^O^)*", "((+_+))", ] IWIS = [ "┐(´д`)┌", "┐(´~`)┌", "┐(´ー`)┌", "┐( ̄ヘ ̄)┌", "╮(╯∀╰)╭", "╮(╯_╰)╭", "┐(´д`)┌", "┐(´∀`)┌", "ʅ(́◡◝)ʃ", "┐(゚~゚)┌", "┐('д')┌", "┐(‘~`;)┌", "ヘ(´-`;)ヘ", "┐( -“-)┌", "ʅ(´◔౪◔)ʃ", "ヽ(゜~゜o)ノ", "ヽ(~~~ )ノ", "┐(~ー~;)┌", "┐(-。ー;)┌", r"¯\_(ツ)_/¯", r"¯\_(⊙_ʖ⊙)_/¯", r"¯\_༼ ಥ ‿ ಥ ༽_/¯", "乁( ⁰͡ Ĺ̯ ⁰͡ ) ㄏ", ] FACEREACTS = [ "ʘ‿ʘ", "ヾ(-_- )ゞ", "(っ˘ڡ˘ς)", "(´ж`ς)", "( ಠ ʖ̯ ಠ)", "(° ͜ʖ͡°)╭∩╮", "(ᵟຶ︵ ᵟຶ)", "(งツ)ว", "ʚ(•`", "(っ▀¯▀)つ", "(◠﹏◠)", "( ͡ಠ ʖ̯ ͡ಠ)", "( ఠ ͟ʖ ఠ)", "(∩`-´)⊃━☆゚.*・。゚", "(⊃。•́‿•̀。)⊃", "(._.)", "{•̃_•̃}", "(ᵔᴥᵔ)", "♨_♨", "⥀.⥀", "ح˚௰˚づ ", "(҂◡_◡)", "ƪ(ړײ)‎ƪ​​", "(っ•́。•́)♪♬", "◖ᵔᴥᵔ◗ ♪ ♫ ", "(☞゚ヮ゚)☞", "[¬º-°]¬", "(Ծ‸ Ծ)", "(•̀ᴗ•́)و ̑̑", "ヾ(´〇`)ノ♪♪♪", "(ง'̀-'́)ง", "ლ(•́•́ლ)", "ʕ •́؈•̀ ₎", "♪♪ ヽ(ˇ∀ˇ )ゞ", "щ(゚Д゚щ)", "( ˇ෴ˇ )", "눈_눈", "(๑•́ ₃ •̀๑) ", "( ˘ ³˘)♥ ", "ԅ(≖‿≖ԅ)", "♥‿♥", "◔_◔", "⁽⁽ଘ( ˊᵕˋ )ଓ⁾⁾", "乁( ◔ ౪◔)「 ┑( ̄Д  ̄)┍", "( ఠൠఠ )ノ", "٩(๏_๏)۶", "┌(ㆆ㉨ㆆ)ʃ", "ఠ_ఠ", "(づ。◕‿‿◕。)づ", "(ノಠ ∩ಠ)ノ彡( \\o°o)\\", "“ヽ(´▽`)ノ”", "༼ ༎ຶ ෴ ༎ຶ༽", "。゚( ゚இ‸இ゚)゚。", "(づ ̄ ³ ̄)づ", "(⊙.☉)7", "ᕕ( ᐛ )ᕗ", "t(-_-t)", "(ಥ⌣ಥ)", "ヽ༼ ಠ益ಠ ༽ノ", "༼∵༽ ༼⍨༽ ༼⍢༽ ༼⍤༽", "ミ●﹏☉ミ", "(⊙_◎)", "¿ⓧ_ⓧﮌ", "ಠ_ಠ", "(´・_・`)", "ᕦ(ò_óˇ)ᕤ", "⊙﹏⊙", "(╯°□°)╯︵ ┻━┻", r"¯\_(⊙︿⊙)_/¯", "٩◔̯◔۶", "°‿‿°", "ᕙ(⇀‸↼‶)ᕗ", "⊂(◉‿◉)つ", "V•ᴥ•V", "q(❂‿❂)p", "ಥ_ಥ", "ฅ^•ﻌ•^ฅ", "ಥ﹏ಥ", "( ^_^)o自自o(^_^ )", "ಠ‿ಠ", "ヽ(´▽`)/", "ᵒᴥᵒ#", "( ͡° ͜ʖ ͡°)", "┬─┬ ノ( ゜-゜ノ)", "ヽ(´ー`)ノ", "☜(⌒▽⌒)☞", "ε=ε=ε=┌(;*´Д`)ノ", "(╬ ಠ益ಠ)", "┬─┬⃰͡ (ᵔᵕᵔ͜ )", "┻━┻ ︵ヽ(`Д´)ノ︵ ┻━┻", r"¯\_(ツ)_/¯", "ʕᵔᴥᵔʔ", "(`・ω・´)", "ʕ•ᴥ•ʔ", "ლ(`ー´ლ)", "ʕʘ̅͜ʘ̅ʔ", "( ゚Д゚)", r"¯\(°_o)/¯", "(。◕‿◕。)", ] RUNS_STR = [ "Runs to Thanos..", "Runs far, far away from earth..", "Running faster than Bolt coz i'mma userbot !!", "Runs to Marie..", "This Group is too cancerous to deal with.", "Cya bois", "Kys", "I go away", "I am just walking off, coz me is too fat.", "I Fugged off!", "Will run for chocolate.", "I run because I really like food.", "Running...\nbecause dieting is not an option.", "Wicked fast runnah", "If you wanna catch me, you got to be fast...\nIf you wanna stay with me, you got to be good...\nBut if you wanna pass me...\nYou've got to be kidding.", "Anyone can run a hundred meters, it's the next forty-two thousand and two hundred that count.", "Why are all these people following me?", "Are the kids still chasing me?", "Running a marathon...there's an app for that.", ] CHASE_STR = [ "Where do you think you're going?", "Huh? what? did they get away?", "ZZzzZZzz... Huh? what? oh, just them again, nevermind.", "Get back here!", "Not so fast...", "Look out for the wall!", "Don't leave me alone with them!!", "You run, you die.", "Jokes on you, I'm everywhere", "You're gonna regret that...", "You could also try /kickme, I hear that's fun.", "Go bother someone else, no-one here cares.", "You can run, but you can't hide.", "Is that all you've got?", "I'm behind you...", "You've got company!", "We can do this the easy way, or the hard way.", "You just don't get it, do you?", "Yeah, you better run!", "Please, remind me how much I care?", "I'd run faster if I were you.", "That's definitely the droid we're looking for.", "May the odds be ever in your favour.", "Famous last words.", "And they disappeared forever, never to be seen again.", '"Oh, look at me! I\'m so cool, I can run from a bot!" - this person', "Yeah yeah, just tap /kickme already.", "Here, take this ring and head to Mordor while you're at it.", "Legend has it, they're still running...", "Unlike Harry Potter, your parents can't protect you from me.", "Fear leads to anger. Anger leads to hate. Hate leads to suffering. If you keep running in fear, you might " "be the next Vader.", "Multiple calculations later, I have decided my interest in your shenanigans is exactly 0.", "Legend has it, they're still running.", "Keep it up, not sure we want you here anyway.", "You're a wiza- Oh. Wait. You're not Harry, keep moving.", "NO RUNNING IN THE HALLWAYS!", "Hasta la vista, baby.", "Who let the dogs out?", "It's funny, because no one cares.", "Ah, what a waste. I liked that one.", "Frankly, my dear, I don't give a damn.", "My milkshake brings all the boys to yard... So run faster!", "You can't HANDLE the truth!", "A long time ago, in a galaxy far far away... Someone would've cared about that. Not anymore though.", "Hey, look at them! They're running from the inevitable banhammer... Cute.", "Han shot first. So will I.", "What are you running after, a white rabbit?", "As The Doctor would say... RUN!", ] HELLOSTR = [ "Hi !", "‘Ello, gov'nor!", "What’s crackin’?", "‘Sup, homeslice?", "Howdy, howdy ,howdy!", "Hello, who's there, I'm talking.", "You know who this is.", "Yo!", "Whaddup.", "Greetings and salutations!", "Hello, sunshine!", "Hey, howdy, hi!", "What’s kickin’, little chicken?", "Peek-a-boo!", "Howdy-doody!", "Hey there, freshman!", "I come in peace!", "Ahoy, matey!", "Hiya!", ] SHGS = [ "┐(´д`)┌", "┐(´~`)┌", "┐(´ー`)┌", "┐( ̄ヘ ̄)┌", "╮(╯∀╰)╭", "╮(╯_╰)╭", "┐(´д`)┌", "┐(´∀`)┌", "ʅ(́◡◝)ʃ", "┐(゚~゚)┌", "┐('д')┌", "┐(‘~`;)┌", "ヘ(´-`;)ヘ", "┐( -“-)┌", "ʅ(´◔౪◔)ʃ", "ヽ(゜~゜o)ノ", "ヽ(~~~ )ノ", "┐(~ー~;)┌", "┐(-。ー;)┌", r"¯\_(ツ)_/¯", r"¯\_(⊙_ʖ⊙)_/¯", r"¯\_༼ ಥ ‿ ಥ ༽_/¯", "乁( ⁰͡ Ĺ̯ ⁰͡ ) ㄏ", ] CRI = [ "أ‿أ", "╥﹏╥", "(;﹏;)", "(ToT)", "(┳Д┳)", "(ಥ﹏ಥ)", "(;へ:)", "(T_T)", "(πーπ)", "(T▽T)", "(⋟﹏⋞)", "(iДi)", "(´Д⊂ヽ", "(;Д;)", "(>﹏<)", "(TдT)", "(つ﹏⊂)", "༼☯﹏☯༽", "(ノ﹏ヽ)", "(ノAヽ)", "(╥_╥)", "(T⌓T)", "(༎ຶ⌑༎ຶ)", "(☍﹏⁰)。", "(ಥ_ʖಥ)", "(つд⊂)", "(≖͞_≖̥)", "(இ﹏இ`。)", "༼ಢ_ಢ༽", "༼ ༎ຶ ෴ ༎ຶ༽", ] SLAP_TEMPLATES_EN = [ "{hits} {victim} with a {item}.", "{hits} {victim} in the face with a {item}.", "{hits} {victim} around a bit with a {item}.", "{throws} a {item} at {victim}.", "grabs a {item} and {throws} it at {victim}'s face.", "{hits} a {item} at {victim}.", "{throws} a few {item} at {victim}.", "grabs a {item} and {throws} it in {victim}'s face.", "launches a {item} in {victim}'s general direction.", "sits on {victim}'s face while slamming a {item} {where}.", "starts slapping {victim} silly with a {item}.", "pins {victim} down and repeatedly {hits} them with a {item}.", "grabs up a {item} and {hits} {victim} with it.", "starts slapping {victim} silly with a {item}.", "holds {victim} down and repeatedly {hits} them with a {item}.", "prods {victim} with a {item}.", "picks up a {item} and {hits} {victim} with it.", "ties {victim} to a chair and {throws} a {item} at them.", "{hits} {victim} {where} with a {item}.", "ties {victim} to a pole and whips them {where} with a {item}." "gave a friendly push to help {victim} learn to swim in lava.", "sent {victim} to /dev/null.", "sent {victim} down the memory hole.", "beheaded {victim}.", "threw {victim} off a building.", "replaced all of {victim}'s music with Nickelback.", "spammed {victim}'s email.", "made {victim} a knuckle sandwich.", "slapped {victim} with pure nothing.", "hit {victim} with a small, interstellar spaceship.", "quickscoped {victim}.", "put {victim} in check-mate.", "RSA-encrypted {victim} and deleted the private key.", "put {victim} in the friendzone.", "slaps {victim} with a DMCA takedown request!", ] ITEMS_EN = [ "cast iron skillet", "large trout", "baseball bat", "cricket bat", "wooden cane", "nail", "printer", "shovel", "pair of trousers", "CRT monitor", "diamond sword", "baguette", "physics textbook", "toaster", "portrait of Richard Stallman", "television", "mau5head", "five ton truck", "roll of duct tape", "book", "laptop", "old television", "sack of rocks", "rainbow trout", "cobblestone block", "lava bucket", "rubber chicken", "spiked bat", "gold block", "fire extinguisher", "heavy rock", "chunk of dirt", "beehive", "piece of rotten meat", "bear", "ton of bricks", ] THROW_EN = [ "throws", "flings", "chucks", "hurls", ] HIT_EN = [ "yeets" "hits", "whacks", "slaps", "smacks", "bashes", ] WHERE_EN = ["in the chest", "on the head", "on the butt", "on the crotch"] # ID translation by @yincen SLAP_TEMPLATES_ID = [ "{hits} {victim} dengan {item}.", "{throws} sebuah {item} kepada {victim}.", "mengambil {item} dan {hits} {victim} .", "Mengambil Sebuah {item} dan {hits} {victim} Dengan itu.", "Menjatuhkan {victim} Ke Lava.", "Mengirimkan {victim} ke Kawah.", "Membuang {victim} Ke Laut.", "Mengeluarkan {victim} Dari Bumi.", "Melempar {victim} Ke luar angkasa.", "Menaruh {victim} di Pluto.", "Melemparkan sebuah {item} ke {victim}.", "Melemparkan {item} kepada {victim}.", "Menampar {victim} menggunakan {item}.", "Membuang {victim} Ke udara.", "Menghapus {victim} Dari Daftar Teman.", "Melemparkan {item} {where} {victim}.", "Meletakan {item} {where} {victim}.", "Menyerang {victim} menggunakan {anime}.", "Mengehack Seluruh akun {victim}", ] ITEMS_ID = [ "Tabung Gas", "Televisi 42 In", "Raket", "Raket Nyamuk", "Kaca", "Buku", "Linggis", "Telur", "Jarum", "Monitor Tabung", "Obeng", "Almunium", "Emas", "Printer", "Speaker", "Gas Lpg", "Tangki Bensin", "Tandon Air", "Bola Boling", "Laptop", "Hardisk Rusak", "Wajan Panas", "Virus Corona", "Meja Kantor", "Meja Arsip", "Lemari", "Ember Besi", "Besi Beton", "Timah Panas", "Harimau", "Batu Krikil", "Makanan Basi", "Pesawat AirBus", "Roket Nasa", "Satelit Nasa", "Matahari", "Meteor", "Berkas Kantor", "Beton panas", "Cermin", "Batu Giok", "Botol", "Nezuko", "Kaset Pita", "Tiang Jemuran", "Pisau Lipat", "Bongkahan Es ", "Asteroid", ] THROW_ID = [ "Melempar", "Melemparkan", "Mematak", ] HIT_ID = [ "Memukul", "melemparkan", "Memukuli", "Membogem", ] WHERE_ID = ["di pipi", "di kepala", "di bokong", "di badan"] SLAP_TEMPLATES_Jutsu = [ "Menyerang {victim} Menggunakan {hits}.", "Menyerang {victim} Menggunakan {item}.", "Melemparkan {throws} kepada {victim} .", "Melemparkan {throws} {where} {victim}.", ] ITEMS_Jutsu = [ "KAA MEE HAA MEE HAA", "Chibaku Tensei", "Amaterasu", ] THROW_Jutsu = [ "Futon Rasen Shuriken", "Shuriken", ] HIT_Jutsu = [ "Rasengan", "Chidori", ] WHERE_Jutsu = ["Di Pipi", "Di Kepala", "Di Bokong", "Di Badan ,Di Pantat"] # =========================================== @register(outgoing=True, pattern=r"^.(\w+)say (.*)") async def univsaye(cowmsg): """For .cowsay module, userbot wrapper for cow which says things.""" arg = cowmsg.pattern_match.group(1).lower() text = cowmsg.pattern_match.group(2) if arg == "cow": arg = "default" if arg not in cow.COWACTERS: return cheese = cow.get_cow(arg) cheese = cheese() await cowmsg.edit(f"`{cheese.milk(text).replace('`', '´')}`") @register(outgoing=True, pattern="^:/$", ignore_unsafe=True) async def kek(keks): """Check yourself ;)""" uio = ["/", "\\"] for i in range(1, 15): time.sleep(0.3) await keks.edit(":" + uio[i % 2]) @register(outgoing=True, pattern=r"^.coinflip (.*)") async def coin(event): r = choice(["heads", "tails"]) input_str = event.pattern_match.group(1) if input_str: input_str = input_str.lower() if r == "heads": if input_str == "heads": await event.edit( "The coin landed on: **Heads**.\nYou were correct.") elif input_str == "tails": await event.edit( "The coin landed on: **Heads**.\nYou weren't correct, try again ..." ) else: await event.edit("The coin landed on: **Heads**.") elif r == "tails": if input_str == "tails": await event.edit( "The coin landed on: **Tails**.\nYou were correct.") elif input_str == "heads": await event.edit( "The coin landed on: **Tails**.\nYou weren't correct, try again ..." ) else: await event.edit("The coin landed on: **Tails**.") @register(pattern="^.slap(?: |$)(.*)", outgoing=True) async def who(event): """slaps a user, or get slapped if not a reply.""" replied_user = await get_user_from_event(event) if replied_user: replied_user = replied_user[0] else: return caption = await slap(replied_user, event) try: await event.edit(caption) except BaseException: await event.edit( "`Can't slap this person, need to fetch some sticks and stones !!`" ) async def slap(replied_user, event): """Construct a funny slap sentence !!""" user_id = replied_user.id first_name = replied_user.first_name username = replied_user.username if username: slapped = "@{}".format(username) else: slapped = f"[{first_name}](tg://user?id={user_id})" slap_str = event.pattern_match.group(1) if slap_str == "en" or slap_str not in ["id", "jutsu"]: temp = choice(SLAP_TEMPLATES_EN) item = choice(ITEMS_EN) hit = choice(HIT_EN) throw = choice(THROW_EN) where = choice(WHERE_EN) elif slap_str == "id": temp = choice(SLAP_TEMPLATES_ID) item = choice(ITEMS_ID) hit = choice(HIT_ID) throw = choice(THROW_ID) where = choice(WHERE_ID) else: temp = choice(SLAP_TEMPLATES_Jutsu) item = choice(ITEMS_Jutsu) hit = choice(HIT_Jutsu) throw = choice(THROW_Jutsu) where = choice(WHERE_Jutsu) return "..." + temp.format( victim=slapped, item=item, hits=hit, throws=throw, where=where) @register(outgoing=True, pattern="^-_-$", ignore_unsafe=True) async def lol(lel): """Ok...""" okay = "-_-" for _ in range(10): okay = okay[:-1] + "_-" await lel.edit(okay) @register(outgoing=True, pattern="^.boobs(?: |$)(.*)") async def boobs(e): await e.edit("`Finding some big boobs...`") await sleep(3) await e.edit("`Sending some big boobs...`") nsfw = requests.get("http://api.oboobs.ru/noise/1").json()[0]["preview"] urllib.request.urlretrieve("http://media.oboobs.ru/{}".format(nsfw), "*.jpg") os.rename("*.jpg", "boobs.jpg") await e.client.send_file(e.chat_id, "boobs.jpg") os.remove("boobs.jpg") await e.delete() @register(outgoing=True, pattern="^.butts(?: |$)(.*)") async def butts(e): await e.edit("`Finding some beautiful butts...`") await sleep(3) await e.edit("`Sending some beautiful butts...`") nsfw = requests.get("http://api.obutts.ru/noise/1").json()[0]["preview"] urllib.request.urlretrieve("http://media.obutts.ru/{}".format(nsfw), "*.jpg") os.rename("*.jpg", "butts.jpg") await e.client.send_file(e.chat_id, "butts.jpg") os.remove("butts.jpg") await e.delete() @register(outgoing=True, pattern="^.(yes|no|maybe|decide)$") async def decide(event): decision = event.pattern_match.group(1).lower() message_id = event.reply_to_msg_id if event.reply_to_msg_id else None if decision != "decide": r = requests.get(f"https://yesno.wtf/api?force={decision}").json() else: r = requests.get("https://yesno.wtf/api").json() await event.delete() await event.client.send_message(event.chat_id, str(r["answer"]).upper(), reply_to=message_id, file=r["image"]) @register(outgoing=True, pattern="^;_;$", ignore_unsafe=True) async def fun(e): t = ";_;" for _ in range(10): t = t[:-1] + "_;" await e.edit(t) @register(outgoing=True, pattern="^.cry$") async def cry(e): """nangis aja""" await e.edit(choice(CRI)) @register(outgoing=True, pattern="^.insult$") async def insult(e): """I make you cry !!""" await e.edit(choice(INSULT_STRINGS)) @register(outgoing=True, pattern="^.cp(?: |$)(.*)") async def copypasta(cp_e): """Copypasta the famous meme""" textx = await cp_e.get_reply_message() message = cp_e.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await cp_e.edit("`😂🅱️IvE👐sOME👅text👅for✌️Me👌tO👐MAkE👀iT💞funNy!💦`") return reply_text = choice(EMOJIS) # choose a random character in the message to be substituted with 🅱️ b_char = choice(message).lower() for owo in message: if owo == " ": reply_text += choice(EMOJIS) elif owo in EMOJIS: reply_text += owo reply_text += choice(EMOJIS) elif owo.lower() == b_char: reply_text += "🅱️" else: reply_text += owo.upper() if bool(getrandbits(1)) else owo.lower() reply_text += choice(EMOJIS) await cp_e.edit(reply_text) @register(outgoing=True, pattern="^.vapor(?: |$)(.*)") async def vapor(vpr): """Vaporize everything!""" reply_text = [] textx = await vpr.get_reply_message() message = vpr.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await vpr.edit("`Give some text for vapor!`") return for charac in message: if 0x21 <= ord(charac) <= 0x7F: reply_text.append(chr(ord(charac) + 0xFEE0)) elif ord(charac) == 0x20: reply_text.append(chr(0x3000)) else: reply_text.append(charac) await vpr.edit("".join(reply_text)) @register(outgoing=True, pattern="^.str(?: |$)(.*)") async def stretch(stret): """Stretch it.""" textx = await stret.get_reply_message() message = stret.text message = stret.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await stret.edit("`GiiiiiiiB sooooooomeeeeeee teeeeeeext!`") return count = randint(3, 10) reply_text = sub(r"([aeiouAEIOUaeiouAEIOUаеиоуюяыэё])", (r"\1" * count), message) await stret.edit(reply_text) @register(outgoing=True, pattern="^.zal(?: |$)(.*)") async def zal(zgfy): """Invoke the feeling of chaos.""" reply_text = [] textx = await zgfy.get_reply_message() message = zgfy.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await zgfy.edit( "`gͫ ̆ i̛ ̺ v͇̆ ȅͅ a̢ͦ s̴̪ c̸̢ ä̸ rͩͣ y͖͞ t̨͚ é̠ x̢͖ t͔͛`" ) return for charac in message: if not charac.isalpha(): reply_text.append(charac) continue for _ in range(3): textz = randint(0, 2) if textz == 0: charac = charac.strip() + choice(ZALG_LIST[0]).strip() elif textz == 1: charac = charac.strip() + choice(ZALG_LIST[1]).strip() else: charac = charac.strip() + choice(ZALG_LIST[2]).strip() reply_text.append(charac) await zgfy.edit("".join(reply_text)) @register(outgoing=True, pattern="^.hi$") async def hoi(hello): """Greet everyone!""" await hello.edit(choice(HELLOSTR)) @register(outgoing=True, pattern="^.owo(?: |$)(.*)") async def faces(owo): """UwU""" textx = await owo.get_reply_message() message = owo.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await owo.edit("` UwU no text given! `") return reply_text = sub(r"(r|l)", "w", message) reply_text = sub(r"(R|L)", "W", reply_text) reply_text = sub(r"n([aeiou])", r"ny\1", reply_text) reply_text = sub(r"N([aeiouAEIOU])", r"Ny\1", reply_text) reply_text = sub(r"\!+", " " + choice(UWUS), reply_text) reply_text = reply_text.replace("ove", "uv") reply_text += " " + choice(UWUS) await owo.edit(reply_text) @register(outgoing=True, pattern="^.react$") async def react_meme(react): """Make your userbot react to everything.""" await react.edit(choice(FACEREACTS)) @register(outgoing=True, pattern="^.ii(?: |$)(.*)") async def faces(siwis): """IwI""" textx = await siwis.get_reply_message() message = siwis.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await siwis.edit("` IwI no text given! `") return reply_text = sub(r"(a|i|u|e|o)", "i", message) reply_text = sub(r"(A|I|U|E|O)", "I", reply_text) reply_text = sub(r"\!+", " " + choice(IWIS), reply_text) reply_text += " " + choice(IWIS) await siwis.edit(reply_text) @register(outgoing=True, pattern="^.shg$") async def shrugger(shg): r"""¯\_(ツ)_/¯""" await shg.edit(choice(SHGS)) @register(outgoing=True, pattern="^.chase$") async def police(chase): """Run boi run, i'm gonna catch you !!""" await chase.edit(choice(CHASE_STR)) @register(outgoing=True, pattern="^.run$") async def runner_lol(run): """Run, run, RUNNN!""" await run.edit(choice(RUNS_STR)) @register(outgoing=True, pattern="^.metoo$") async def metoo(hahayes): """Haha yes""" await hahayes.edit(choice(METOOSTR)) @register(outgoing=True, pattern="^.iff$") async def pressf(f): """Pays respects""" args = f.text.split() arg = (f.text.split(" ", 1))[1] if len(args) > 1 else None if len(args) == 1: r = randint(0, 3) LOGS.info(r) if r == 0: await f.edit("┏━━━┓\n┃┏━━┛\n┃┗━━┓\n┃┏━━┛\n┃┃\n┗┛") elif r == 1: await f.edit("╭━━━╮\n┃╭━━╯\n┃╰━━╮\n┃╭━━╯\n┃┃\n╰╯") else: arg = "F" if arg is not None: out = "" F_LENGTHS = [5, 1, 1, 4, 1, 1, 1] for line in F_LENGTHS: c = max(round(line / len(arg)), 1) out += (arg * c) + "\n" await f.edit("`" + out + "`") @register(outgoing=True, pattern="^Oof$") async def Oof(e): t = "Oof" for _ in range(15): t = t[:-1] + "of" await e.edit(t) @register(outgoing=True, pattern="^.moon$") async def moon(event): deq = deque(list("🌗🌘🌑🌒🌓🌔🌕🌖")) try: for _ in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.earth$") async def earth(event): deq = deque(list("🌏🌍🌎🌎🌍🌏🌍🌎")) try: for _ in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.clock$") async def clock(event): deq = deque(list("🕙🕘🕗🕖🕕🕔🕓🕒🕑🕐🕛")) try: for _ in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.rain$") async def rain(event): deq = deque(list("☀️🌤⛅️🌥☁️🌧⛈")) try: for _ in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.love$") async def love(event): deq = deque(list("❤️🧡💛💚💙💜🖤💕💞💓💗💖💘💝")) try: for _ in range(32): await sleep(0.1) await event.edit("".join(deq)) deq.rotate(1) except BaseException: return @register(outgoing=True, pattern="^.mock(?: |$)(.*)") async def spongemocktext(mock): """Do it and find the real fun.""" reply_text = [] textx = await mock.get_reply_message() message = mock.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await mock.edit("`gIvE sOMEtHInG tO MoCk!`") return for charac in message: if charac.isalpha() and randint(0, 1): to_app = charac.upper() if charac.islower() else charac.lower() reply_text.append(to_app) else: reply_text.append(charac) await mock.edit("".join(reply_text)) @register(outgoing=True, pattern="^.clap(?: |$)(.*)") async def claptext(memereview): """Praise people!""" textx = await memereview.get_reply_message() message = memereview.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await memereview.edit("`Hah, I don't clap pointlessly!`") return reply_text = "👏 " reply_text += message.replace(" ", " 👏 ") reply_text += " 👏" await memereview.edit(reply_text) @register(outgoing=True, pattern="^.bt$") async def bluetext(bt_e): """Believe me, you will find this useful.""" if await bt_e.get_reply_message() and bt_e.is_group: await bt_e.edit( "/BLUETEXT /MUST /CLICK.\n" "/ARE /YOU /A /STUPID /ANIMAL /WHICH /IS /ATTRACTED /TO /COLOURS?") @register(outgoing=True, pattern=r"^.f (.*)") async def payf(event): paytext = event.pattern_match.group(1) pay = "{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}\n{}".format( paytext * 8, paytext * 8, paytext * 2, paytext * 2, paytext * 2, paytext * 6, paytext * 6, paytext * 2, paytext * 2, paytext * 2, paytext * 2, paytext * 2, ) await event.edit(pay) @register(outgoing=True, pattern="^.lfy (.*)") async def let_me_google_that_for_you(lmgtfy_q): textx = await lmgtfy_q.get_reply_message() qry = lmgtfy_q.pattern_match.group(1) if qry: query = str(qry) elif textx: query = textx query = query.message query_encoded = query.replace(" ", "+") lfy_url = f"http://lmgtfy.com/?s=g&iie=1&q={query_encoded}" payload = {"format": "json", "url": lfy_url} r = requests.get("http://is.gd/create.php", params=payload) await lmgtfy_q.edit(f"Here you are, help yourself.\ \n[{query}]({r.json()['shorturl']})") @register(pattern=r".scam(?: |$)(.*)", outgoing=True) async def scam(event): """Just a small command to fake chat actions for fun !!""" options = [ "typing", "contact", "game", "location", "voice", "round", "video", "photo", "document", "cancel", ] input_str = event.pattern_match.group(1) args = input_str.split() if len(args) == 0: # Let bot decide action and time scam_action = choice(options) scam_time = randint(30, 60) elif len(args) == 1: # User decides time/action, bot decides the other. try: scam_action = str(args[0]).lower() scam_time = randint(30, 60) except ValueError: scam_action = choice(options) scam_time = int(args[0]) elif len(args) == 2: # User decides both action and time scam_action = str(args[0]).lower() scam_time = int(args[1]) else: await event.edit("`Invalid Syntax !!`") return try: if scam_time > 0: await event.delete() async with event.client.action(event.chat_id, scam_action): await sleep(scam_time) except BaseException: return @register(pattern=r".type(?: |$)(.*)", outgoing=True) async def typewriter(typew): """Just a small command to make your keyboard become a typewriter!""" textx = await typew.get_reply_message() message = typew.pattern_match.group(1) if message: pass elif textx: message = textx.text else: await typew.edit("`Give a text to type!`") return sleep_time = 0.03 typing_symbol = "|" old_text = "" await typew.edit(typing_symbol) await sleep(sleep_time) for character in message: old_text = old_text + "" + character typing_text = old_text + "" + typing_symbol await typew.edit(typing_text) await sleep(sleep_time) await typew.edit(old_text) await sleep(sleep_time) @register(outgoing=True, pattern="^.fail$") async def fail(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ `" "`\n████▌▄▌▄▐▐▌█████ `" "`\n████▌▄▌▄▐▐▌▀████ `" "`\n▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ `") @register(outgoing=True, pattern="^.lol$") async def lol(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n╱┏┓╱╱╱╭━━━╮┏┓╱╱╱╱ `" "`\n╱┃┃╱╱╱┃╭━╮┃┃┃╱╱╱╱ `" "`\n╱┃┗━━┓┃╰━╯┃┃┗━━┓╱ `" "`\n╱┗━━━┛╰━━━╯┗━━━┛╱ `") @register(outgoing=True, pattern="^.lool$") async def lool(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit( "`\n╭╭━━━╮╮┈┈┈┈┈┈┈┈┈┈\n┈┃╭━━╯┈┈┈┈▕╲▂▂╱▏┈\n┈┃┃╱▔▔▔▔▔▔▔▏╱▋▋╮┈`" "`\n┈┃╰▏┃╱╭╮┃╱╱▏╱╱▆┃┈\n┈╰━▏┗━╰╯┗━╱╱╱╰┻┫┈\n┈┈┈▏┏┳━━━━▏┏┳━━╯┈`" "`\n┈┈┈▏┃┃┈┈┈┈▏┃┃┈┈┈┈ `") @register(outgoing=True, pattern="^.stfu$") async def stfu(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n█████████████████████████████████`" "`\n██▀▀▀▀████▀▀▀▀████▀▀▀▀▀███▀▀██▀▀█`" "`\n█──────██──────██───────██──██──█`" "`\n█──██▄▄████──████──███▄▄██──██──█`" "`\n█▄────▀████──████────█████──██──█`" "`\n█▀▀██──████──████──███████──██──█`" "`\n█──────████──████──███████──────█`" "`\n██▄▄▄▄█████▄▄████▄▄████████▄▄▄▄██`" "`\n█████████████████████████████████`") @register(outgoing=True, pattern="^.gtfo$") async def gtfo(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n███████████████████████████████ `" "`\n█▀▀▀▀▀▀▀█▀▀▀▀▀▀█▀▀▀▀▀▀▀█▀▀▀▀▀▀█ `" "`\n█───────█──────█───────█──────█ `" "`\n█──███──███──███──███▄▄█──██──█ `" "`\n█──███▄▄███──███─────███──██──█ `" "`\n█──██───███──███──██████──██──█ `" "`\n█──▀▀▀──███──███──██████──────█ `" "`\n█▄▄▄▄▄▄▄███▄▄███▄▄██████▄▄▄▄▄▄█ `" "`\n███████████████████████████████ `") @register(outgoing=True, pattern="^.nih$") async def nih(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n(\\_/)`" "`\n(●_●)`" "`\n />🌹 *ini buat kamu`" "`\n `" "`\n(\\_/)`" "`\n(●_●)`" "`\n🌹<\\ *tapi boong`") @register(outgoing=True, pattern="^.fag$") async def gtfo(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n█████████`" "`\n█▄█████▄█`" "`\n█▼▼▼▼▼`" "`\n█ STFU FAGGOT'S`" "`\n█▲▲▲▲▲`" "`\n█████████`" "`\n ██ ██`") @register(outgoing=True, pattern="^.taco$") async def taco(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("\n{\\__/}" "\n(●_●)" "\n( >🌮 Want a taco?") @register(outgoing=True, pattern="^.gey$") async def gey(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n┈┈┈╭━━━━━╮┈┈┈┈┈\n┈┈┈┃┊┊┊┊┊┃┈┈┈┈┈`" "`\n┈┈┈┃┊┊╭━╮┻╮┈┈┈┈\n┈┈┈╱╲┊┃▋┃▋┃┈┈┈┈\n┈┈╭┻┊┊╰━┻━╮┈┈┈┈`" "`\n┈┈╰┳┊╭━━━┳╯┈┈┈┈\n┈┈┈┃┊┃╰━━┫┈NIGGA U GEY`" "\n┈┈┈┈┈┈┏━┓┈┈┈┈┈┈") @register(outgoing=True, pattern="^.gay$") async def gey(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n┈┈┈╭━━━━━╮┈┈┈┈┈\n┈┈┈┃┊┊┊┊┊┃┈┈┈┈┈`" "`\n┈┈┈┃┊┊╭━╮┻╮┈┈┈┈\n┈┈┈╱╲┊┃▋┃▋┃┈┈┈┈\n┈┈╭┻┊┊╰━┻━╮┈┈┈┈`" "`\n┈┈╰┳┊╭━━━┳╯┈┈┈┈\n┈┈┈┃┊┃╰━━┫┈BAPAQ U GAY`" "\n┈┈┈┈┈┈┏━┓┈┈┈┈┈┈") @register(outgoing=True, pattern="^.bot$") async def bot(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("` \n ╲╲╭━━━━╮ \n╭╮┃▆┈┈▆┃╭╮ \n┃╰┫▽▽▽┣╯┃ \n╰━┫△△△┣━╯`" "`\n╲╲┃┈┈┈┈┃ \n╲╲┃┈┏┓┈┃ `") @register(outgoing=True, pattern="^.hey$") async def hey(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit( "\n┈┈┈╱▔▔▔▔╲┈╭━━━━━\n┈┈▕▂▂▂▂▂▂▏┃HEY!┊😀`" "`\n┈┈▕▔▇▔▔┳▔▏╰┳╮HEY!┊\n┈┈▕╭━╰╯━╮▏━╯╰━━━\n╱▔▔▏▅▅▅▅▕▔▔╲┈┈┈┈`" "`\n▏┈┈╲▂▂▂▂╱┈┈┈▏┈┈┈`") @register(outgoing=True, pattern="^.nou$") async def nou(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n┈╭╮╭╮\n┈┃┃┃┃\n╭┻┗┻┗╮`" "`\n┃┈▋┈▋┃\n┃┈╭▋━╮━╮\n┃┈┈╭╰╯╰╯╮`" "`\n┫┈┈ NoU\n┃┈╰╰━━━━╯`" "`\n┗━━┻━┛`") @register(outgoing=True, pattern="^.tolol$") async def tolol(e): if not e.text[0].isalpha() and e.text[0] not in ("/", "#", "@", "!"): await e.edit("`\n░▀█▀░▄▀▄░█▒░░▄▀▄░█▒░`" "`\n░▒█▒░▀▄▀▒█▄▄░▀▄▀▒█▄▄`") CMD_HELP.update({ "memes": ">`.cowsay`\ \nUsage: cow which says things.\ \n\n>`:/`\ \nUsage: Check yourself ;)\ \n\n>`-_-`\ \nUsage: Ok...\ \n\n>`;_;`\ \nUsage: Like `-_-` but crying.\ \n\n>`.cp`\ \nUsage: Copypasta the famous meme\ \n\n>`.vapor`\ \nUsage: Vaporize everything!\ \n\n>`.str`\ \nUsage: Stretch it.\ \n\n>`.zal`\ \nUsage: Invoke the feeling of chaos.\ \n\n>`Oof`\ \nUsage: Ooooof\ \n\n>`.moon`\ \nUsage: kensar moon animation.\ \n\n>`.clock`\ \nUsage: kensar clock animation.\ \n\n>`.hi`\ \nUsage: Greet everyone!\ \n\n>`.coinflip` <heads/tails>\ \nUsage: Flip a coin !!\ \n\n>`.owo`\ \nUsage: UwU\ \n\n>`.react`\ \nUsage: Make your userbot react to everything.\ \n\n>`.slap`\ \nUsage: reply to slap them with random objects !!\ \n\n>`.cry`\ \nUsage: y u du dis, i cri.\ \n\n>`.shg`\ \nUsage: Shrug at it !!\ \n\n>`.run`\ \nUsage: Let Me Run, run, RUNNN!\ \n\n>`.chase`\ \nUsage: You better start running\ \n\n>`.metoo`\ \nUsage: Haha yes\ \n\n>`.mock`\ \nUsage: Do it and find the real fun.\ \n\n>`.clap`\ \nUsage: Praise people!\ \n\n>`.f` <emoji/character>\ \nUsage: Pay Respects.\ \n\n>`.bt`\ \nUsage: Believe me, you will find this useful.\ \n\n>`.type`\ \nUsage: Just a small command to make your keyboard become a typewriter!\ \n\n>`.lfy` <query>\ \nUsage: Let me Google that for you real quick !!\ \n\n>`.boobs`\ \nUsage: Get b00bs imej\ \n\n>`.butts`\ \nUsage: Get 🅱️utts imej\ \n\n>`.decide` [Alternates: (`.yes`, `.no`, `.maybe`)]\ \nUsage: Make a quick decision.\ \n\n>`.scam` <action> <time>\ \n[Available Actions: (`typing`, `contact`, `game`, `location`, `voice`, `round`, `video`, `photo`, `document`, `cancel`)]\ \nUsage: Create fake chat actions, for fun. (Default action: typing)\ \n\nAnd many more\ \n| `.nou` | `.bot` | `.gay` | `.gey` | `.tf` | `.paw` | `.taco` | `.nih` |\ \n| `.fag` | `.gtfo` | `.stfu` | `.lol` | `.lool` | `.fail` | `.love` |\ \n| `.rain` | `.earth` | `.ii` | `.tolol` |\ \n\n\nThanks to 🅱️ottom🅱️ext🅱️ot (@NotAMemeBot) for some of these." })
27.331013
157
0.492925
244babbf3623feea9ad9d1cd5fef7f49ecba161f
2,226
py
Python
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/DeleteNatGatewayRequest.py
jia-jerry/aliyun-openapi-python-sdk
e90f3683a250cfec5b681b5f1d73a68f0dc9970d
[ "Apache-2.0" ]
1
2021-03-08T02:59:17.000Z
2021-03-08T02:59:17.000Z
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/DeleteNatGatewayRequest.py
jia-jerry/aliyun-openapi-python-sdk
e90f3683a250cfec5b681b5f1d73a68f0dc9970d
[ "Apache-2.0" ]
1
2020-05-31T14:51:47.000Z
2020-05-31T14:51:47.000Z
aliyun-python-sdk-ecs/aliyunsdkecs/request/v20140526/DeleteNatGatewayRequest.py
jia-jerry/aliyun-openapi-python-sdk
e90f3683a250cfec5b681b5f1d73a68f0dc9970d
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkecs.endpoint import endpoint_data class DeleteNatGatewayRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'DeleteNatGateway','ecs') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_NatGatewayId(self): return self.get_query_params().get('NatGatewayId') def set_NatGatewayId(self,NatGatewayId): self.add_query_param('NatGatewayId',NatGatewayId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId)
35.903226
75
0.774483
dc6b3a6418366530343586e5dec8c35e03595883
991
py
Python
Demo_6/libscipy_leastsq_demo.py
AlexYu-beta/Python_Study
6d90b605e47d9341b20a41e7384be269243b14ba
[ "Unlicense" ]
null
null
null
Demo_6/libscipy_leastsq_demo.py
AlexYu-beta/Python_Study
6d90b605e47d9341b20a41e7384be269243b14ba
[ "Unlicense" ]
null
null
null
Demo_6/libscipy_leastsq_demo.py
AlexYu-beta/Python_Study
6d90b605e47d9341b20a41e7384be269243b14ba
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- """ an example from http://old.sebug.net/paper/books/scipydoc/scipy_intro.html a simple demo using python scientific stack numpy and scipy and more """ import numpy as np from scipy.optimize import leastsq import pylab as pl def func(x, p): """ 数据拟合所用的函数: A*sin(2*pi*k*x + theta) """ A, k, theta = p return A*np.sin(2*np.pi*k*x+theta) def residuals(p, y, x): """ 实验数据x, y和拟合函数之间的差,p为拟合需要找到的系数 """ return y - func(x, p) x = np.linspace(0, -2*np.pi, 100) A, k, theta = 10, 0.34, np.pi/6 # 真实数据的函数参数 y0 = func(x, [A, k, theta]) # 真实数据 y1 = y0 + 2 * np.random.randn(len(x)) # 加入噪声之后的实验数据 p0 = [7, 0.2, 0] # 第一次猜测的函数拟合参数 # 调用leastsq进行数据拟合 # residuals为计算误差的函数 # p0为拟合参数的初始值 # args为需要拟合的实验数据 plsq = leastsq(residuals, p0, args=(y1, x)) print u"真实参数:", [A, k, theta] print u"拟合参数", plsq[0] # 实验数据拟合后的参数 pl.plot(x, y0, label=u"真实数据") pl.plot(x, y1, label=u"带噪声的实验数据") pl.plot(x, func(x, plsq[0]), label=u"拟合数据") pl.legend() pl.show()
23.046512
74
0.63774
d7aa5ff4450f4209596552c357d120b178d4be73
1,221
py
Python
punkin/_value.py
artPlusPlus/punkin
0265b06d67463a5aaf27e0b2a771220d41cae5ee
[ "MIT" ]
1
2017-10-24T10:02:29.000Z
2017-10-24T10:02:29.000Z
punkin/_value.py
artPlusPlus/punkin
0265b06d67463a5aaf27e0b2a771220d41cae5ee
[ "MIT" ]
null
null
null
punkin/_value.py
artPlusPlus/punkin
0265b06d67463a5aaf27e0b2a771220d41cae5ee
[ "MIT" ]
null
null
null
from . import UNSET class Value(object): def __init__(self, context_key, setter=None): self._context_key = context_key self._setter = setter self._data = {} def __getitem__(self, context): try: return self._data[context[self._context_key]] except KeyError: return UNSET def __setitem__(self, context, value): if value is UNSET: try: del self[context] except KeyError: pass return if self._setter: value = self._setter(value) self._data[context[self._context_key]] = value def __delitem__(self, context): del self._data[context[self._context_key]] def merge(self, source_value, context): source_value = source_value[context] target_value = self[context] if source_value is UNSET: self[context] = target_value elif target_value is UNSET: self[context] = source_value else: # TODO: Handle merge operations (add, subtract, multiply, etc) # Example: self[context] = target_value * source_value self[context] = source_value
29.071429
74
0.588043
5d6996d7ef313609fa9aed2286c4fe6b702c871a
14,563
py
Python
pytoshop/path.py
andrewvaliente/pytoshop
42f88f69906e6fe8e765ca2ebce4477ae6a203f1
[ "BSD-3-Clause" ]
106
2016-11-22T18:52:22.000Z
2022-02-22T03:01:16.000Z
pytoshop/path.py
andrewvaliente/pytoshop
42f88f69906e6fe8e765ca2ebce4477ae6a203f1
[ "BSD-3-Clause" ]
28
2017-05-26T00:54:59.000Z
2021-08-06T04:56:03.000Z
pytoshop/path.py
andrewvaliente/pytoshop
42f88f69906e6fe8e765ca2ebce4477ae6a203f1
[ "BSD-3-Clause" ]
20
2017-06-05T21:12:18.000Z
2022-01-24T18:41:37.000Z
# -*- coding: utf-8 -*- """ Handle Bézier paths. """ from __future__ import unicode_literals, absolute_import import struct import six from . import docs from . import enums from . import util from typing import Any, BinaryIO, Dict, List, Optional, TYPE_CHECKING, Union # NOQA if TYPE_CHECKING: from . import core # NOQA def _to_float(value): # type: (Union[float, int]) -> float if isinstance(value, int): value = float(value) if not isinstance(value, float): raise ValueError("Must be a float") return value def _read_point(x, size): # type: (Union[float, int], Union[float, int]) -> float return (float(x) / (1 << 24)) * float(size) def _write_point(x, size): # type: (Union[float, int], Union[float, int]) -> float return int((x / float(size)) * (1 << 24)) class _PathRecordMeta(type): """ A metaclass that builds a mapping of subclasses. """ mapping = {} # type: Dict[int, PathRecord] def __new__(cls, name, parents, dct): new_cls = type.__new__(cls, name, parents, dct) if '_type' in dct: if dct['_type'] in cls.mapping: raise ValueError("Duplicate type '{}'".format(dct['_type'])) cls.mapping[dct['_type']] = new_cls return new_cls @six.add_metaclass(_PathRecordMeta) class PathRecord(object): _type = -1 @property def type(self): # type: (...) -> int return self._type def length(self, header): # type: (core.Header) -> int return 26 @classmethod @util.trace_read def read(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord type = util.read_value(fd, 'H') new_cls = _PathRecordMeta.mapping[type] return new_cls.read_data(fd, header) @classmethod def read_data(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord raise NotImplementedError() def write(self, fd, header): # type: (BinaryIO, core.Header) -> None util.write_value(fd, 'H', self.type) self.write_data(fd, header) def write_data(self, fd, header): # type: (BinaryIO, core.Header) -> None raise NotImplementedError() class PathFillRuleRecord(PathRecord): _type = enums.PathRecordType.path_fill_rule_record @classmethod def read_data(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord padding = fd.read(24) if padding != b'\0' * 24: # pragma: no cover raise ValueError( "Invalid padding in path fill rule record") return cls() def write_data(self, fd, header): # type: (BinaryIO, core.Header) -> None fd.write(b'\0' * 24) class InitialFillRuleRecord(PathRecord): def __init__(self, all_pixels=False # type: bool ): # type: (...) -> None self.all_pixels = all_pixels _type = enums.PathRecordType.initial_fill_rule_record @property def all_pixels(self): # type: (...) -> bool 'Fill starts with all pixels' return self._all_pixels @all_pixels.setter def all_pixels(self, value): # type: (Any) -> None self._all_pixels = bool(value) @classmethod def read_data(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord all_pixels = bool(util.read_value(fd, 'H')) padding = fd.read(22) if padding != b'\0' * 22: # pragma: no cover raise ValueError( "Invalid padding in initial fill rule record") util.log("all_pixels: {}", all_pixels) return cls(all_pixels=all_pixels) def write_data(self, fd, header): # type: (BinaryIO, core.Header) -> None util.write_value(fd, 'H', self.all_pixels) fd.write(b'\0' * 22) class _LengthRecord(PathRecord): def __init__(self, num_knots=0 # type: int ): # type: (...) -> None self.num_knots = num_knots @property def num_knots(self): # type: (...) -> int "Number of Bezier knots" return self._num_knots @num_knots.setter def num_knots(self, value): # type: (int) -> None if (not isinstance(value, int) or value < 0 or value > 65535): raise ValueError("num_knots must be a 16-bit integer") self._num_knots = value @classmethod def read_data(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord num_knots = util.read_value(fd, 'H') fd.read(22) util.log('num_knots: {}', num_knots) return cls(num_knots=num_knots) def write_data(self, fd, header): # type: (BinaryIO, core.Header) -> None util.write_value(fd, 'H', self.num_knots) fd.write(b'\0' * 22) class ClosedSubpathLengthRecord(_LengthRecord): _type = enums.PathRecordType.closed_subpath_length class OpenSubpathLengthRecord(_LengthRecord): _type = enums.PathRecordType.open_subpath_length class _PointRecord(PathRecord): def __init__(self, y0=0.0, # type: float x0=0.0, # type: float y1=None, # type: Optional[float] x1=None, # type: Optional[float] y2=None, # type: Optional[float] x2=None # type: Optional[float] ): # type: (...) -> None self.y0 = y0 self.x0 = x0 self.y1 = y1 self.x1 = x1 self.y2 = y2 self.x2 = x2 @property def y0(self): # type: (...) -> Union[int, float] 'y of control point preceding the knot, in pixels' return self._y0 @y0.setter def y0(self, value): # type: (Union[int, float]) -> None self._y0 = _to_float(value) @property def x0(self): # type: (...) -> Union[int, float] 'x of control point preceding the knot, in pixels' return self._x0 @x0.setter def x0(self, value): # type: (Union[int, float]) -> None self._x0 = _to_float(value) @property def y1(self): # type: (...) -> Optional[Union[int, float]] 'y of anchor point of the knot' return self._y1 @y1.setter def y1(self, value): # type: (Optional[Union[int, float]]) -> None if value is None: self._y1 = value else: self._y1 = _to_float(value) @property def x1(self): # type: (...) -> Optional[Union[int, float]] 'x of anchor point of the knot' return self._x1 @x1.setter def x1(self, value): # type: (Optional[Union[int, float]]) -> None if value is None: self._x1 = value else: self._x1 = _to_float(value) @property def y2(self): # type: (...) -> Optional[Union[int, float]] 'y of control point for the segment leaving the knot, in pixels' return self._y2 @y2.setter def y2(self, value): # type: (Optional[Union[int, float]]) -> None if value is None: self._y2 = value else: self._y2 = _to_float(value) @property def x2(self): # type: (...) -> Optional[Union[int, float]] 'x of control point for the segment leaving the knot, in pixels' return self._x2 @x2.setter def x2(self, value): # type: (Optional[Union[int, float]]) -> None if value is None: self._x2 = value else: self._x2 = _to_float(value) @classmethod def read_data(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord data = fd.read(24) y0, x0, y1, x1, y2, x2 = struct.unpack(str('>iiiiii'), data) y0 = _read_point(y0, header.height) x0 = _read_point(x0, header.width) y1 = _read_point(y1, header.height) x1 = _read_point(x1, header.width) y2 = _read_point(y2, header.height) x2 = _read_point(x2, header.width) util.log( '({}, {}) ({}, {}), ({}, {})', y0, x0, y1, x1, y2, x2) return cls(y0=y0, x0=x0, y1=y1, x1=x1, y2=y2, x2=x2) def write_data(self, fd, header): # type: (BinaryIO, core.Header) -> None y0 = _write_point(self.y0, header.height) x0 = _write_point(self.x0, header.width) if self.y1 is None: y1 = y0 else: y1 = _write_point(self.y1, header.height) if self.x1 is None: x1 = x0 else: x1 = _write_point(self.x1, header.width) if self.y2 is None: y2 = y0 else: y2 = _write_point(self.y2, header.height) if self.x2 is None: x2 = x0 else: x2 = _write_point(self.x2, header.width) util.write_value(fd, 'iiiiii', y0, x0, y1, x1, y2, x2) class ClosedSubpathBezierKnotLinked(_PointRecord): _type = enums.PathRecordType.closed_subpath_bezier_knot_linked class ClosedSubpathBezierKnotUnlinked(_PointRecord): _type = enums.PathRecordType.closed_subpath_bezier_knot_unlinked class OpenSubpathBezierKnotLinked(_PointRecord): _type = enums.PathRecordType.open_subpath_bezier_knot_linked class OpenSubpathBezierKnotUnlinked(_PointRecord): _type = enums.PathRecordType.open_subpath_bezier_knot_unlinked class ClipboardRecord(PathRecord): def __init__(self, top=0.0, # type: float left=0.0, # type: float bottom=0.0, # type: float right=0.0, # type: float resolution=0 # type: int ): # type: (...) -> None self.top = top self.left = left self.bottom = bottom self.right = right self.resolution = resolution _type = enums.PathRecordType.clipboard_record @property def top(self): # type: (...) -> Union[int, float] "top, in pixels" return self._top @top.setter def top(self, value): # type: (Union[int, float]) -> None self._top = _to_float(value) @property def left(self): # type: (...) -> Union[int, float] "left, in pixels" return self._left @left.setter def left(self, value): # type: (Union[int, float]) -> None self._left = _to_float(value) @property def bottom(self): # type: (...) -> Union[int, float] "bottom, in pixels" return self._bottom @bottom.setter def bottom(self, value): # type: (Union[int, float]) -> None self._bottom = _to_float(value) @property def right(self): # type: (...) -> Union[int, float] "right, in pixels" return self._right @right.setter def right(self, value): # type: (Union[int, float]) -> None self._right = _to_float(value) @property def resolution(self): # type: (...) -> int "resolution" return self._resolution @resolution.setter def resolution(self, value): # type: (int) -> None if not isinstance(value, int): raise TypeError("resolution must be an int") self._resolution = value @classmethod def read_data(cls, fd, header): # type: (BinaryIO, core.Header) -> PathRecord data = fd.read(24) top, left, bottom, right, resolution, _ = struct.unpack( str('>iiiiii'), data) top = _read_point(top, header.height) left = _read_point(left, header.width) bottom = _read_point(bottom, header.height) right = _read_point(right, header.width) util.log( 'position: ({}, {}, {}, {}), resolution: {}', top, left, bottom, right, resolution) return cls(top=top, left=left, bottom=bottom, right=right, resolution=resolution) def write_data(self, fd, header): # type: (BinaryIO, core.Header) -> None top = _write_point(self.top, header.height) left = _write_point(self.left, header.width) bottom = _write_point(self.bottom, header.height) right = _write_point(self.right, header.width) util.write_value( fd, 'iiiiii', top, left, bottom, right, self.resolution, 0 ) class PathResource(object): def __init__(self, path_records=[] # List[PathRecord] ): self.path_records = path_records @property def path_records(self): # type: (...) -> List[PathRecord] "List of `PathRecord` instances." return self._path_records @path_records.setter def path_records(self, value): # type: (List[PathRecord]) -> None util.assert_is_list_of(value, PathRecord) self._path_records = value def length(self, header): # type: (core.Header) -> int return sum(x.length(header) for x in self.path_records) length.__doc__ = docs.length # type: ignore @classmethod def read(cls, fd, length, header): # type: (BinaryIO, int, core.Header) -> PathResource end = fd.tell() + length path_records = [] while fd.tell() + 26 <= end: path_records.append( PathRecord.read(fd, header)) if (path_records[0].type != enums.PathRecordType.path_fill_rule_record): raise ValueError( 'Path resource must start with path_fill_rule_record') fd.seek(end - fd.tell(), 1) return cls(path_records=path_records) @classmethod def from_rect(cls, top, # type: Union[int, float] left, # type: Union[int, float] bottom, # type: Union[int, float] right, # type: Union[int, float] all_pixels=True # type: bool ): # type: (...) -> PathResource return cls(path_records=[ PathFillRuleRecord(), InitialFillRuleRecord(all_pixels=False), OpenSubpathLengthRecord(num_knots=5), OpenSubpathBezierKnotLinked(y0=top, x0=left), OpenSubpathBezierKnotLinked(y0=top, x0=right), OpenSubpathBezierKnotLinked(y0=bottom, x0=right), OpenSubpathBezierKnotLinked(y0=bottom, x0=left), OpenSubpathBezierKnotLinked(y0=top, x0=left), ] ) def write(self, fd, header): # type: (BinaryIO, core.Header) -> None for path_record in self.path_records: path_record.write(fd, header)
29.360887
84
0.572684
69754571cb5e1dc924e000b3492fa83dee6711a2
17
py
Python
samplepkg/__init__.py
schahal/sample
61e5e76598011e64d859eaeceb9f724feb319e07
[ "MIT" ]
null
null
null
samplepkg/__init__.py
schahal/sample
61e5e76598011e64d859eaeceb9f724feb319e07
[ "MIT" ]
null
null
null
samplepkg/__init__.py
schahal/sample
61e5e76598011e64d859eaeceb9f724feb319e07
[ "MIT" ]
null
null
null
# Copyright 2020
8.5
16
0.764706
5971110ebc5c8bc9d4d9f1e47c09bb9348b439fb
538
py
Python
src/spyglass/decoding/__init__.py
LorenFrankLab/SpyGlass
5c2764b6ba5f7e9e47ddad5d2b9ce5039a0d3f41
[ "MIT" ]
1
2022-03-22T12:13:18.000Z
2022-03-22T12:13:18.000Z
src/spyglass/decoding/__init__.py
LorenFrankLab/SpyGlass
5c2764b6ba5f7e9e47ddad5d2b9ce5039a0d3f41
[ "MIT" ]
17
2022-03-22T14:42:04.000Z
2022-03-31T23:58:39.000Z
src/spyglass/decoding/__init__.py
LorenFrankLab/SpyGlass
5c2764b6ba5f7e9e47ddad5d2b9ce5039a0d3f41
[ "MIT" ]
1
2022-03-23T20:04:25.000Z
2022-03-23T20:04:25.000Z
# flake8: noqa from .clusterless import (ClusterlessClassifierParameters, MarkParameters, MultiunitFiringRate, MultiunitHighSynchronyEvents, MultiunitHighSynchronyEventsParameters, UnitMarkParameters, UnitMarks, UnitMarksIndicator, UnitMarksIndicatorSelection) from .sorted_spikes import (SortedSpikesClassifierParameters, SortedSpikesIndicator, SortedSpikesIndicatorSelection)
53.8
76
0.630112
ca4eb6e28f84452d292d520db510e4773d86a486
3,845
py
Python
tests/collections/tts/test_waveglow.py
karpnv/NeMo
0572fccde6e33ccd692683d2e549bb08b0e2b100
[ "Apache-2.0" ]
null
null
null
tests/collections/tts/test_waveglow.py
karpnv/NeMo
0572fccde6e33ccd692683d2e549bb08b0e2b100
[ "Apache-2.0" ]
null
null
null
tests/collections/tts/test_waveglow.py
karpnv/NeMo
0572fccde6e33ccd692683d2e549bb08b0e2b100
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile from unittest import TestCase import onnx import pytest import torch from omegaconf import DictConfig from nemo.collections.tts.models import WaveGlowModel from nemo.collections.tts.modules import WaveGlowModule from nemo.core.classes import typecheck mcfg = DictConfig( { "_target_": "nemo.collections.tts.modules.waveglow.WaveGlowModule", "n_flows": 12, "n_group": 8, "n_mel_channels": 80, "n_early_every": 4, "n_early_size": 2, "n_wn_channels": 512, "n_wn_layers": 8, "wn_kernel_size": 3, } ) pcfg = DictConfig( { "_target_": "nemo.collections.asr.parts.features.FilterbankFeatures", "dither": 0.0, "nfilt": 80, "stft_conv": True, } ) wcfg = DictConfig({"waveglow": mcfg, "sigma": 1.0, "preprocessor": pcfg,}) def input_example(sz): mel = torch.randn(1, 1, 80, sz).cuda().half() z = torch.randn(1, 8, sz * 256 // 8, 1).cuda().half() return ( mel, z, ) def taco2wg(spec, z): spec = spec.permute(0, 3, 2, 1).contiguous() return spec.view(spec.size(0), spec.size(1), -1), z.view(z.size(0), z.size(1), -1) # Wrapper method to convert Jasper's Taco2 output to WG input and call inference def forward_wrapper(self, spec, z=None): spec, z = taco2wg(spec, z) audio = self.waveglow.norm_dist_to_audio(spec=spec, sigma=1.0, z=z) return audio class TestWaveGlow: @pytest.mark.run_only_on('GPU') @pytest.mark.unit def test_export_to_onnx(self): model = WaveGlowModel(wcfg) model = model.cuda().half() typecheck.set_typecheck_enabled(enabled=False) with tempfile.TemporaryDirectory() as tmpdir, model.nemo_infer(): # Generate filename in the temporary directory. tmp_file_name = os.path.join("waveglow.onnx") n_mels = 80 # Test export. inp = input_example(n_mels) inp1 = taco2wg(*inp) inp2 = inp1 res1 = model.waveglow(*inp1) res2 = model.waveglow(*inp2) assert torch.allclose(res1, res2, rtol=0.01, atol=0.1) model.export( tmp_file_name, verbose=True, input_example=inp, output_example=res1, try_script=False, check_trace=False, do_constant_folding=True, dynamic_axes={"spec": [0], "z": [0], "audio": [0]}, forward_method=forward_wrapper, ) try: test_runtime = True import onnxruntime except (ImportError, ModuleNotFoundError): test_runtime = False if test_runtime: omodel = onnx.load(tmp_file_name) output_names = ['audio'] sess = onnxruntime.InferenceSession(omodel.SerializeToString()) output = sess.run(None, {"spec": inp[0].cpu().numpy(), "z": inp[1].cpu().numpy()})[0] assert torch.allclose(torch.from_numpy(output), res2.cpu(), rtol=1, atol=100) if __name__ == "__main__": t = TestWaveGlow() t.test_export_to_onnx()
31.260163
101
0.610403
b4454f59ac310df61dccc7b2c05be51e63305802
3,385
py
Python
maps/util.py
WPRDC/neighborhood-simulacrum
46892dfdbc8bc3201e31fee4ee991c49b208753e
[ "MIT" ]
null
null
null
maps/util.py
WPRDC/neighborhood-simulacrum
46892dfdbc8bc3201e31fee4ee991c49b208753e
[ "MIT" ]
null
null
null
maps/util.py
WPRDC/neighborhood-simulacrum
46892dfdbc8bc3201e31fee4ee991c49b208753e
[ "MIT" ]
null
null
null
import json import urllib.request from typing import TYPE_CHECKING, Type from urllib.error import URLError from django.db import connection from indicators.data import GeogCollection if TYPE_CHECKING: from django.db.models.sql import Query from indicators.models import TimeAxis, Variable from geo.models import AdminRegion def refresh_tile_index(): """ Signal tile server to register new view """ try: urllib.request.urlopen("http://127.0.0.1:3000/index.json") except URLError: pass def as_tile_server_query(query: 'Query'): import re query_str = as_geometry_query(query) return re.sub(r',\s*\"geo_adminregion\".\"mini_geom\"\s*,', ',', re.sub(r',\s*\"geo_adminregion\".\"geom\"\s*,', ',', query_str)) def as_geometry_query(query: 'Query'): """ Removes casting of geometries to byte arrays as necessary for what django does but not useful as a raw postgis query :param query: QuerySet Query object to modify """ return str(query).replace('::bytea', '') def menu_view_name(geog_type: Type['AdminRegion']): return f'maps.v_{geog_type.geog_type_id.lower()}' # noinspection SqlAmbiguousColumn ,SqlResolve def store_map_data( map_slug: str, geog_collection: 'GeogCollection', time_axis: 'TimeAxis', variable: 'Variable', use_percent: bool ): table_name = f'maps.t_{map_slug}' view_name = f'maps.v_{map_slug}' data = variable.get_values(geog_collection, time_axis) number_format_options = {'style': 'percent'} if use_percent else variable.locale_options with connection.cursor() as cursor: cursor.execute(f"""DROP VIEW IF EXISTS {view_name}""") cursor.execute(f"""DROP TABLE IF EXISTS {table_name}""") cursor.execute(f"""CREATE TABLE {table_name} (geoid varchar(63), value numeric)""") sql_rows = [f"""('{datum.geog}', {datum.percent if use_percent else datum.value})""" for datum in data] cursor.execute(f"""INSERT INTO {table_name} (geoid, value) VALUES """ + ", ".join(sql_rows)) base_geography_subquery = as_geometry_query(geog_collection.geog_type.objects.filter(in_extent=True).query) cursor.execute( f"""CREATE VIEW {view_name} AS SELECT geo.name as geo_name, geo.geom as the_geom, geo.geom_webmercator as the_geom_webmercator, %(title)s as title, dat.value::float as value, %(number_format_options)s as number_format_options FROM {table_name} dat JOIN ({base_geography_subquery}) geo ON dat.geoid = geo.global_geoid""", {'title': variable.name, 'number_format_options': json.dumps(number_format_options)} ) refresh_tile_index() def store_menu_layer(geog_type: Type['AdminRegion']): print('Adding menu view for', geog_type.geog_type_id) view_name = menu_view_name(geog_type) view_query = as_tile_server_query(geog_type.objects.filter(in_extent=True).query) with connection.cursor() as cursor: cursor.execute(f"""DROP VIEW IF EXISTS {view_name}""") cursor.execute(f"""CREATE VIEW {view_name} AS {view_query}""") print('Menu view added.') refresh_tile_index()
35.631579
115
0.651699
8dd10d6c3bd224f77b9055fe1522afd09f723631
2,536
py
Python
tests/test_console.py
SoheilSalmani/wikipedia-cli
ab9c65cf694a4ac120c4bc3b256233a976b293c4
[ "MIT" ]
null
null
null
tests/test_console.py
SoheilSalmani/wikipedia-cli
ab9c65cf694a4ac120c4bc3b256233a976b293c4
[ "MIT" ]
3
2021-09-20T04:59:17.000Z
2021-09-21T02:49:13.000Z
tests/test_console.py
SoheilSalmani/wikipedia-cli
ab9c65cf694a4ac120c4bc3b256233a976b293c4
[ "MIT" ]
null
null
null
"""Test cases for the console module.""" from unittest.mock import Mock from click.testing import CliRunner import marshmallow import pytest from pytest_mock import MockFixture import requests from wikipedia_cli import console from wikipedia_cli.wikipedia import page_schema @pytest.fixture def cli_runner() -> CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() @pytest.fixture def mock_wikipedia_get_random(mocker: MockFixture) -> Mock: """Fixture for mocking wikipedia.get_random.""" mock = mocker.patch("wikipedia_cli.wikipedia.get_random") mock.return_value = page_schema.load( { "title": "Title of the article", "extract": "Extract of the article.", } ) return mock @pytest.mark.unit def test_main_returns_0(cli_runner: CliRunner, mock_wikipedia_get_random: Mock) -> None: """It exits with a status code of zero.""" result = cli_runner.invoke(console.main) assert result.exit_code == 0 @pytest.mark.unit def test_main_prints_title( cli_runner: CliRunner, mock_wikipedia_get_random: Mock ) -> None: """It prints the title of the Wikipedia page.""" result = cli_runner.invoke(console.main) assert "Title of the article" in result.output @pytest.mark.unit def test_main_uses_specified_lang( cli_runner: CliRunner, mock_wikipedia_get_random: Mock ) -> None: """It uses the specified language edition of Wikipedia.""" cli_runner.invoke(console.main, ["--lang=pl"]) mock_wikipedia_get_random.assert_called_with(lang="pl") @pytest.mark.unit def test_main_handles_request_exceptions( cli_runner: CliRunner, mock_wikipedia_get_random: Mock ) -> None: """It exists with a non-zero status code if the request fails.""" mock_wikipedia_get_random.side_effect = requests.RequestException("request failed") result = cli_runner.invoke(console.main) assert "Error" in result.output @pytest.mark.unit def test_main_handles_validation_errors( cli_runner: CliRunner, mock_wikipedia_get_random: Mock ) -> None: """It raises `ClickException` when validation fails.""" mock_wikipedia_get_random.side_effect = marshmallow.ValidationError("invalid data") result = cli_runner.invoke(console.main) assert "Error" in result.output @pytest.mark.e2e def test_main_returns_0_in_production(cli_runner: CliRunner) -> None: """It exists with a status code of zero (end-to-end).""" result = cli_runner.invoke(console.main) assert result.exit_code == 0
30.190476
88
0.736987
983e0d51ea008796d91364116949316f1b29ee7d
1,785
py
Python
home/migrations/0002_create_homepage.py
digitaloxford/do-wagtail
49dd75b95109ebb38bf66aca13d3fdeb8e25d319
[ "MIT" ]
2
2021-04-11T11:59:51.000Z
2021-04-12T06:56:23.000Z
home/migrations/0002_create_homepage.py
digitaloxford/do-wagtail
49dd75b95109ebb38bf66aca13d3fdeb8e25d319
[ "MIT" ]
8
2021-04-10T10:40:27.000Z
2022-01-25T16:32:22.000Z
home/migrations/0002_create_homepage.py
digitaloxford/do-wagtail
49dd75b95109ebb38bf66aca13d3fdeb8e25d319
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import migrations def create_homepage(apps, schema_editor): # Get models ContentType = apps.get_model('contenttypes.ContentType') Page = apps.get_model('wagtailcore.Page') Site = apps.get_model('wagtailcore.Site') HomePage = apps.get_model('home.HomePage') # Delete the default homepage # If migration is run multiple times, it may have already been deleted Page.objects.filter(id=2).delete() # Create content type for homepage model homepage_content_type, __ = ContentType.objects.get_or_create( model='homepage', app_label='home') # Create a new homepage homepage = HomePage.objects.create( title="Home", draft_title="Home", slug='home', content_type=homepage_content_type, path='00010001', depth=2, numchild=0, url_path='/home/', ) # Create a site with the new homepage set as the root Site.objects.create( hostname='localhost', root_page=homepage, is_default_site=True) def remove_homepage(apps, schema_editor): # Get models ContentType = apps.get_model('contenttypes.ContentType') HomePage = apps.get_model('home.HomePage') # Delete the default homepage # Page and Site objects CASCADE HomePage.objects.filter(slug='home', depth=2).delete() # Delete content type for homepage model ContentType.objects.filter(model='homepage', app_label='home').delete() class Migration(migrations.Migration): run_before = [ ("wagtailcore", "0053_locale_model"), # added for Wagtail 2.11 compatibility ] dependencies = [ ('home', '0001_initial'), ] operations = [ migrations.RunPython(create_homepage, remove_homepage), ]
28.333333
85
0.671709
54b37333ce41942056b0ef2896d2fae33b82176e
4,985
py
Python
openpeerpower/components/vera/climate.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
1
2021-07-08T20:09:55.000Z
2021-07-08T20:09:55.000Z
openpeerpower/components/vera/climate.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
47
2021-02-21T23:43:07.000Z
2022-03-31T06:07:10.000Z
openpeerpower/components/vera/climate.py
OpenPeerPower/core
f673dfac9f2d0c48fa30af37b0a99df9dd6640ee
[ "Apache-2.0" ]
null
null
null
"""Support for Vera thermostats.""" from __future__ import annotations from typing import Any import pyvera as veraApi from openpeerpower.components.climate import ( DOMAIN as PLATFORM_DOMAIN, ENTITY_ID_FORMAT, ClimateEntity, ) from openpeerpower.components.climate.const import ( FAN_AUTO, FAN_ON, HVAC_MODE_COOL, HVAC_MODE_HEAT, HVAC_MODE_HEAT_COOL, HVAC_MODE_OFF, SUPPORT_FAN_MODE, SUPPORT_TARGET_TEMPERATURE, ) from openpeerpower.config_entries import ConfigEntry from openpeerpower.const import ATTR_TEMPERATURE, TEMP_CELSIUS, TEMP_FAHRENHEIT from openpeerpower.core import OpenPeerPower from openpeerpower.helpers.entity_platform import AddEntitiesCallback from openpeerpower.util import convert from . import VeraDevice from .common import ControllerData, get_controller_data FAN_OPERATION_LIST = [FAN_ON, FAN_AUTO] SUPPORT_FLAGS = SUPPORT_TARGET_TEMPERATURE | SUPPORT_FAN_MODE SUPPORT_HVAC = [HVAC_MODE_COOL, HVAC_MODE_HEAT, HVAC_MODE_HEAT_COOL, HVAC_MODE_OFF] async def async_setup_entry( opp: OpenPeerPower, entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up the sensor config entry.""" controller_data = get_controller_data(opp, entry) async_add_entities( [ VeraThermostat(device, controller_data) for device in controller_data.devices.get(PLATFORM_DOMAIN) ], True, ) class VeraThermostat(VeraDevice[veraApi.VeraThermostat], ClimateEntity): """Representation of a Vera Thermostat.""" def __init__( self, vera_device: veraApi.VeraThermostat, controller_data: ControllerData ) -> None: """Initialize the Vera device.""" VeraDevice.__init__(self, vera_device, controller_data) self.entity_id = ENTITY_ID_FORMAT.format(self.vera_id) @property def supported_features(self) -> int | None: """Return the list of supported features.""" return SUPPORT_FLAGS @property def hvac_mode(self) -> str: """Return hvac operation ie. heat, cool mode. Need to be one of HVAC_MODE_*. """ mode = self.vera_device.get_hvac_mode() if mode == "HeatOn": return HVAC_MODE_HEAT if mode == "CoolOn": return HVAC_MODE_COOL if mode == "AutoChangeOver": return HVAC_MODE_HEAT_COOL return HVAC_MODE_OFF @property def hvac_modes(self) -> list[str]: """Return the list of available hvac operation modes. Need to be a subset of HVAC_MODES. """ return SUPPORT_HVAC @property def fan_mode(self) -> str | None: """Return the fan setting.""" mode = self.vera_device.get_fan_mode() if mode == "ContinuousOn": return FAN_ON return FAN_AUTO @property def fan_modes(self) -> list[str] | None: """Return a list of available fan modes.""" return FAN_OPERATION_LIST def set_fan_mode(self, fan_mode) -> None: """Set new target temperature.""" if fan_mode == FAN_ON: self.vera_device.fan_on() else: self.vera_device.fan_auto() self.schedule_update_op_state() @property def current_power_w(self) -> float | None: """Return the current power usage in W.""" power = self.vera_device.power if power: return convert(power, float, 0.0) @property def temperature_unit(self) -> str: """Return the unit of measurement.""" vera_temp_units = self.vera_device.vera_controller.temperature_units if vera_temp_units == "F": return TEMP_FAHRENHEIT return TEMP_CELSIUS @property def current_temperature(self) -> float | None: """Return the current temperature.""" return self.vera_device.get_current_temperature() @property def operation(self) -> str: """Return current operation ie. heat, cool, idle.""" return self.vera_device.get_hvac_mode() @property def target_temperature(self) -> float | None: """Return the temperature we try to reach.""" return self.vera_device.get_current_goal_temperature() def set_temperature(self, **kwargs: Any) -> None: """Set new target temperatures.""" if kwargs.get(ATTR_TEMPERATURE) is not None: self.vera_device.set_temperature(kwargs.get(ATTR_TEMPERATURE)) self.schedule_update_op_state() def set_hvac_mode(self, hvac_mode) -> None: """Set new target hvac mode.""" if hvac_mode == HVAC_MODE_OFF: self.vera_device.turn_off() elif hvac_mode == HVAC_MODE_HEAT_COOL: self.vera_device.turn_auto_on() elif hvac_mode == HVAC_MODE_COOL: self.vera_device.turn_cool_on() elif hvac_mode == HVAC_MODE_HEAT: self.vera_device.turn_heat_on() self.schedule_update_op_state()
30.212121
83
0.666199
ff3281864fea8b6702d3f149ee891e505b61e118
3,288
py
Python
mooquant_formula/helpers/symbol.py
bopo/mooquant_formula
8a7b5030f5bc53fe35850a8d0825f34e7d9d8660
[ "MIT" ]
null
null
null
mooquant_formula/helpers/symbol.py
bopo/mooquant_formula
8a7b5030f5bc53fe35850a8d0825f34e7d9d8660
[ "MIT" ]
1
2021-03-25T21:47:29.000Z
2021-03-25T21:47:29.000Z
mooquant_formula/helpers/symbol.py
bopo/mooquant_formula
8a7b5030f5bc53fe35850a8d0825f34e7d9d8660
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import json import os import re import requests STOCK_CODE_PATH = 'symbol.json' def round_price_by_code(price, code): """ 根据代码类型[股票,基金] 截取制定位数的价格 :param price: 证券价格 :param code: 证券代码 :return: str 截断后的价格的字符串表示 """ if isinstance(price, str): return price typ = get_code_type(code) if typ == 'fund': return '{:.3f}'.format(price) return '{:.2f}'.format(price) def get_ipo_info(only_today=False): import pyquery response = requests.get('http://vip.stock.finance.sina.com.cn/corp/go.php/vRPD_NewStockIssue/page/1.phtml', headers={'accept-encoding': 'gzip, deflate, sdch'}) html = response.content.decode('gbk') html_obj = pyquery.PyQuery(html) table_html = html_obj('#con02-0').html() import pandas as pd df = pd.read_html(io.StringIO(table_html), skiprows=3, converters={ '证券代码': str, '申购代码': str } )[0] if only_today: today = datetime.datetime.now().strftime('%Y-%m-%d') df = df[df['上网发行日期↓'] == today] return df def update_stock_codes(): """获取所有股票 ID 到 all_stock_code 目录下""" all_stock_codes_url = 'http://www.shdjt.com/js/lib/astock.js' grep_stock_codes = re.compile('~(\d+)`') response = requests.get(all_stock_codes_url) all_stock_codes = grep_stock_codes.findall(response.text) with open(stock_code_path(), 'w') as f: f.write(json.dumps(dict(stock=all_stock_codes))) def get_all_stock_codes(realtime=False): """获取所有股票 ID""" return get_stock_codes(realtime) def get_stock_codes(symbol_path=None, realtime=False): """获取所有股票 ID 到 all_stock_code 目录下""" if realtime: all_stock_codes_url = 'http://www.shdjt.com/js/lib/astock.js' grep_stock_codes = re.compile('~(\d+)`') response = requests.get(all_stock_codes_url) symbol_code = grep_stock_codes.findall(response.text) symbol_path = symbol_path if symbol_path else stock_code_path() with open(symbol_path, 'w') as f: json.dump(symbol_code, f) return symbol_code else: with open(symbol_path) as f: return json.load(f) def get_stock_type(stock_code): """判断股票ID对应的证券市场 匹配规则 ['50', '51', '60', '90', '110'] 为 sh ['00', '13', '18', '15', '16', '18', '20', '30', '39', '115'] 为 sz ['5', '6', '9'] 开头的为 sh, 其余为 sz :param stock_code:股票ID, 若以 'sz', 'sh' 开头直接返回对应类型,否则使用内置规则判断 :return 'sh' or 'sz'""" assert type(stock_code) is str, 'stock code need str type' if stock_code.startswith(('sh', 'sz')): return stock_code[:2] if stock_code.startswith(('50', '51', '60', '90', '110', '113', '132', '204')): return 'sh' if stock_code.startswith(('00', '13', '18', '15', '16', '18', '20', '30', '39', '115', '1318')): return 'sz' if stock_code.startswith(('5', '6', '9')): return 'sh' return 'sz' def get_code_type(code): """ 判断代码是属于那种类型,目前仅支持 ['fund', 'stock'] :return str 返回code类型, fund 基金 stock 股票 """ if code.startswith(('00', '30', '60')): return 'stock' return 'fund' def stock_code_path(): return os.path.join(os.path.dirname(__file__), STOCK_CODE_PATH)
26.95082
163
0.604015
d4ba002d7be92f6b1896af5919811305d4bd01cf
13,335
py
Python
train_mdfd.py
rchopinw/Tree-regularization-project
afc477d6bf76d0b226c97beac499fc56db36f269
[ "MIT" ]
null
null
null
train_mdfd.py
rchopinw/Tree-regularization-project
afc477d6bf76d0b226c97beac499fc56db36f269
[ "MIT" ]
null
null
null
train_mdfd.py
rchopinw/Tree-regularization-project
afc477d6bf76d0b226c97beac499fc56db36f269
[ "MIT" ]
null
null
null
"""Run this file to train demo GRU-Tree.""" from __future__ import print_function from __future__ import absolute_import import pydotplus from copy import deepcopy import autograd.numpy as np import autograd.numpy.random as npr from autograd.optimizers import sgd, adam from autograd import grad import _pickle as cPickle from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz from model_mdfd import build_gru, build_mlp from model_mdfd import softplus from model_mdfd import save_obj, load_obj import pickle as pk class GRUTree(object): def __init__(self, in_count, state_count, hidden_sizes, out_count, strength=200.0): self.gru = GRU(in_count, state_count, out_count) self.mlp = MLP(self.gru.num_weights, hidden_sizes, 1) self.mlp.weights = self.mlp.init_weights(0.1) # init for 1st run self.strength = strength def objective(self, W, X, F, y): path_length = self.mlp.pred_fun(self.mlp.weights, W[:self.gru.num_weights][:, np.newaxis]).ravel()[0] return -self.gru.loglike_fun(W, X, F, y) + self.strength * path_length def average_path_length_batch(self, weights_batch, X_train, F_train, y_train): apl_batch = np.zeros((1, weights_batch.shape[1])) for i in range(weights_batch.shape[1]): apl_batch[0, i] = self.gru.average_path_length(weights_batch[:, i], X_train, F_train, y_train) return apl_batch def train(self, X_train, F_train, y_train, iters_retrain=25, num_iters=1000, batch_size=32, lr=1e-3, param_scale=0.01, log_every=10): npr.seed(42) num_retrains = num_iters // iters_retrain for i in range(num_retrains): self.gru.objective = self.objective # carry over weights from last training # init_weights = self.gru.weights if i > 0 else None # print('training deep net... [%d/%d], learning rate: %.4f' % (i + 1, num_retrains, lr)) # self.gru.train(X_train, F_train, y_train, num_iters=iters_retrain, # batch_size=batch_size, lr=lr, param_scale=param_scale, # log_every=log_every, init_weights=init_weights) # print('building surrogate dataset...') # W_train = deepcopy(self.gru.saved_weights.T) # save_obj({'a': W_train}, 'W_saved_intermid') W_train = load_obj('W_saved_intermid')['a'] # APL_train = self.average_path_length_batch(W_train, X_train, F_train, y_train) # save_obj({'a': APL_train}, 'APL_train') APL_train = np.reshape(np.random.randint(3, 6, 200), (1, 200)) print('training surrogate net... [%d/%d]' % (i + 1, num_retrains)) print(self.gru.num_weights) self.mlp.train(W_train[:self.gru.num_weights, :], APL_train, num_iters=3000, lr=1e-3, param_scale=0.1, log_every=250) self.pred_fun = self.gru.pred_fun self.weights = self.gru.weights # save final decision tree self.tree = self.gru.fit_tree(self.weights, X_train, F_train, y_train) return self.weights class GRU(object): def __init__(self, in_count, state_count, out_count): super(GRU, self).__init__() pred_fun, loglike_fun, parser = build_gru(in_count, state_count, out_count) self.num_weights = parser.num_weights self.in_count = in_count self.out_count = out_count self.state_count = state_count self.pred_fun = pred_fun self.loglike_fun = loglike_fun self.saved_weights = None def objective(self, W, X, F, y): return -self.loglike_fun(W, X, F, y) def init_weights(self, param_scale): return npr.randn(self.num_weights) * param_scale def fit_tree(self, weights, X_train, F_train, y_train): """Train decision tree to track path length.""" interval = F_train[1] - F_train[0] y_train_hat = self.pred_fun(weights, X_train, F_train) y_train_hat_int = np.argmax(y_train_hat, axis=0) X_train = np.array([X_train[0][x:(x+interval)] for x in F_train[:-1]]).T tree = DecisionTreeClassifier(min_samples_leaf=25) tree.fit(X_train.T, y_train_hat_int.T) return tree def average_path_length(self, weights, X_train, F_train, y_train): interval = F_train[1] - F_train[0] tree = self.fit_tree(weights, X_train, F_train, y_train) X_train = np.array([X_train[0][x:(x + interval)] for x in F_train[:-1]]).T path_length = average_path_length(tree, X_train.T) print(path_length) return path_length def train(self, X_train, F_train, y_train, batch_size=32, num_iters=1000, lr=1e-3, param_scale=0.01, log_every=100, init_weights=None): grad_fun = build_batched_grad_fences(grad(self.objective), batch_size, X_train, F_train, y_train) print('Batched gradient fences building completed') if init_weights is None: init_weights = self.init_weights(param_scale) saved_weights = np.zeros((num_iters, self.num_weights)) def callback(weights, i, gradients): # 计算全样本log-likelihood过于缓慢,摒弃。 apl = self.average_path_length(weights, X_train, F_train, y_train) saved_weights[i, :] = weights loss_train = self.objective(weights, X_train, F_train, y_train) if i % log_every == 0: print('model: gru | iter: {} | loss: {:.2f} | apl: {:.2f}'.format(i, loss_train, apl)) print('Optimization started.') print(self.num_weights) optimized_weights = adam(grad_fun, init_weights, num_iters=num_iters, step_size=lr, callback=callback) self.saved_weights = saved_weights self.weights = optimized_weights return optimized_weights class MLP(object): def __init__(self, in_count, hidden_sizes, out_count): super(MLP, self).__init__() layer_specs = [in_count] + hidden_sizes + [out_count] pred_fun, loglike_fun, parser = build_mlp(layer_specs, output_activation=softplus) self.num_weights = parser.num_weights self.in_count = in_count self.out_count = out_count self.hidden_sizes = hidden_sizes self.pred_fun = pred_fun self.loglike_fun = loglike_fun def objective(self, W, X, y): return self.loglike_fun(W, X, y) + np.linalg.norm(W[:self.num_weights], ord=2) def init_weights(self, param_scale): return npr.randn(self.num_weights) * param_scale def train(self, X_train, y_train, batch_size=32, num_iters=1000, lr=1e-3, param_scale=0.01, log_every=100, init_weights=None): grad_fun = build_batched_grad(grad(self.objective), batch_size, X_train, y_train) if init_weights is None: init_weights = self.init_weights(param_scale) def callback(weights, i, gradients): loss_train = self.objective(weights, X_train, y_train) if i % log_every == 0: print('model: mlp | iter: {} | loss: {:.2f}'.format(i, loss_train)) optimized_weights = adam(grad_fun, init_weights, num_iters=num_iters, step_size=lr, callback=callback) self.weights = optimized_weights return optimized_weights def average_path_length(tree, X): """Compute average path length: cost of simulating the average example; this is used in the objective function. @param tree: DecisionTreeClassifier instance @param X: NumPy array (D x N) D := number of dimensions N := number of examples @return path_length: float average path length """ leaf_indices = tree.apply(X) leaf_counts = np.bincount(leaf_indices) leaf_i = np.arange(tree.tree_.node_count) path_length = np.dot(leaf_i, leaf_counts) / float(X.shape[0]) return path_length def get_ith_minibatch_ixs(i, num_data, batch_size): """Split data into minibatches. @param i: integer iteration index @param num_data: integer number of data points @param batch_size: integer number of data points in a batch @return batch_slice: slice object """ num_minibatches = num_data / batch_size + ((num_data % batch_size) > 0) i = i % num_minibatches start = i * batch_size stop = start + batch_size return slice(start, stop) def build_batched_grad(grad, batch_size, inputs, targets): """Return grad on batched gradient. @param grad: gradient function. @param batch_size: integer batch size @param inputs: NumPy Array size D x N @param targets: NumPy Array size O x N @return batched_grad: function function to compute gradients on inputs. """ def batched_grad(weights, i): cur_idxs = get_ith_minibatch_ixs(i, targets.shape[1], batch_size) return grad(weights, inputs[:, cur_idxs], targets[:, cur_idxs]) return batched_grad def get_ith_minibatch_ixs_fences(b_i, batch_size, fences): """Split timeseries data of uneven sequence lengths into batches. This is how we handle different sized sequences. @param b_i: integer iteration index @param batch_size: integer size of batch @param fences: list of integers sequence of cutoff array @return idx: integer @return batch_slice: slice object """ num_data = len(fences) - 1 num_minibatches = num_data / batch_size + ((num_data % batch_size) > 0) b_i = b_i % num_minibatches idx = slice(int(b_i * batch_size), int((b_i+1) * batch_size)) batch_i = np.arange(num_data)[idx] batch_slice = np.concatenate([range(i, j) for i, j in zip(fences[batch_i], fences[batch_i+1])]) print(batch_slice, batch_i, idx) return idx, batch_slice def build_batched_grad_fences(grad, batch_size, inputs, fences, targets): """Return grad on batched gradient. @param grad: gradient function. @param batch_size: integer batch size @param inputs: NumPy Array size D x N @param fences: NumPy Array @param targets: NumPy Array size O x N @return batched_grad: function function to compute gradients on inputs with fenceposts. """ def batched_grad(weights, i): cur_idxs, cur_slice = get_ith_minibatch_ixs_fences(i, batch_size, fences) batched_inputs = inputs[:, cur_slice] batched_targets = None if targets is None else targets[:, cur_slice] batched_fences = fences[cur_idxs.start:cur_idxs.stop+1] - fences[cur_idxs.start] return grad(weights, batched_inputs, batched_fences, batched_targets) return batched_grad def visualize(tree, save_path): """Generate PDF of a decision tree. @param tree: DecisionTreeClassifier instance @param save_path: string where to save tree PDF """ dot_data = export_graphviz(tree, out_file=None, filled=True, rounded=True) graph = pydotplus.graph_from_dot_data(dot_data) graph = make_graph_minimal(graph) # remove extra text if not save_path is None: graph.write_pdf(save_path) def make_graph_minimal(graph): nodes = graph.get_nodes() for node in nodes: old_label = node.get_label() label = prune_label(old_label) if label is not None: node.set_label(label) return graph def prune_label(label): if label is None: return None if len(label) == 0: return None label = label[1:-1] parts = [part for part in label.split('\\n') if 'gini =' not in part and 'samples =' not in part] return '"' + '\\n'.join(parts) + '"' if __name__ == "__main__": import os import _pickle as cPickle import argparse parser = argparse.ArgumentParser() parser.add_argument('--strength', type=float, default=1000.0, help='how much to weigh tree-regularization term.') args = parser.parse_args(args=[]) with open('./data/train.pkl', 'rb') as fp: data_train = cPickle.load(fp) X_train = data_train['X'] F_train = data_train['F'] y_train = data_train['y'] gru = GRUTree(1, 2, [10], 4, strength=args.strength) gru.train(X_train, F_train, y_train, iters_retrain=200, num_iters=400, batch_size=100, lr=1e-2, param_scale=0.1, log_every=4) if not os.path.isdir('./trained_models'): os.mkdir('./trained_models') with open('./trained_models/trained_weights.pkl', 'wb') as fp: cPickle.dump({'gru': gru.gru.weights, 'mlp': gru.mlp.weights}, fp) print('saved trained model to ./trained_models') visualize(gru.tree, './trained_models/tree.pdf') print('saved final decision tree to ./trained_models')
39.569733
102
0.631796
0348444cb65ab6717235355c8bc90f3045bbc964
1,553
py
Python
samples/test/reused_component_test.py
rahulsmehta/pipelines
a0a8f1da8cb7ca53cde7717aa78e666b634fec75
[ "Apache-2.0" ]
2,860
2018-05-24T04:55:01.000Z
2022-03-31T13:49:56.000Z
samples/test/reused_component_test.py
rahulsmehta/pipelines
a0a8f1da8cb7ca53cde7717aa78e666b634fec75
[ "Apache-2.0" ]
7,331
2018-05-16T09:03:26.000Z
2022-03-31T23:22:04.000Z
samples/test/reused_component_test.py
rahulsmehta/pipelines
a0a8f1da8cb7ca53cde7717aa78e666b634fec75
[ "Apache-2.0" ]
1,359
2018-05-15T11:05:41.000Z
2022-03-31T09:42:09.000Z
# Copyright 2021 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import kfp from .reused_component import my_pipeline from kfp.samples.test.utils import run_pipeline_func, TestCase, KfpMlmdClient def verify(run, mlmd_connection_config, **kwargs): t = unittest.TestCase() t.maxDiff = None # we always want to see full diff t.assertEqual(run.status, 'Succeeded') client = KfpMlmdClient(mlmd_connection_config=mlmd_connection_config) tasks = client.get_tasks(run_id=run.id) t.assertEqual(17, tasks['add-3'].outputs.parameters['sum'], 'add result should be 17') run_pipeline_func([ # Cannot test V2_ENGINE and V1_LEGACY using the same code. # V2_ENGINE requires importing everything from v2 namespace. # TestCase( # pipeline_func=my_pipeline, # verify_func=verify, # mode=kfp.dsl.PipelineExecutionMode.V2_ENGINE # ), TestCase( pipeline_func=my_pipeline, mode=kfp.dsl.PipelineExecutionMode.V1_LEGACY, ), ])
33.042553
77
0.727624
eb19280c81e86f20c07301cee666403868c2e2df
204,891
py
Python
patches_tool/aws_patch/aws_deps/libcloud/compute/drivers/ec2.py
Hybrid-Cloud/badam
390ad3a6fc03948008f7c04ed2f9fcc8514cc1eb
[ "Apache-2.0" ]
2
2015-06-15T02:16:33.000Z
2022-02-23T07:10:38.000Z
patches_tool/aws_patch/aws_deps/libcloud/compute/drivers/ec2.py
Hybrid-Cloud/badam
390ad3a6fc03948008f7c04ed2f9fcc8514cc1eb
[ "Apache-2.0" ]
7
2016-05-13T06:39:45.000Z
2016-05-20T02:55:31.000Z
patches_tool/aws_patch/aws_deps/libcloud/compute/drivers/ec2.py
Hybrid-Cloud/badam
390ad3a6fc03948008f7c04ed2f9fcc8514cc1eb
[ "Apache-2.0" ]
4
2015-11-02T04:02:50.000Z
2021-05-13T17:06:00.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Amazon EC2, Eucalyptus, Nimbus and Outscale drivers. """ import re import sys import base64 import copy import warnings try: from lxml import etree as ET except ImportError: from xml.etree import ElementTree as ET from libcloud.utils.py3 import b, basestring, ensure_string from libcloud.utils.xml import fixxpath, findtext, findattr, findall from libcloud.utils.publickey import get_pubkey_ssh2_fingerprint from libcloud.utils.publickey import get_pubkey_comment from libcloud.utils.iso8601 import parse_date from libcloud.common.aws import AWSBaseResponse, SignedAWSConnection from libcloud.common.aws import DEFAULT_SIGNATURE_VERSION from libcloud.common.types import (InvalidCredsError, MalformedResponseError, LibcloudError) from libcloud.compute.providers import Provider from libcloud.compute.base import Node, NodeDriver, NodeLocation, NodeSize from libcloud.compute.base import NodeImage, StorageVolume, VolumeSnapshot from libcloud.compute.base import KeyPair from libcloud.compute.types import NodeState, KeyPairDoesNotExistError, \ StorageVolumeState __all__ = [ 'API_VERSION', 'NAMESPACE', 'INSTANCE_TYPES', 'OUTSCALE_INSTANCE_TYPES', 'OUTSCALE_SAS_REGION_DETAILS', 'OUTSCALE_INC_REGION_DETAILS', 'DEFAULT_EUCA_API_VERSION', 'EUCA_NAMESPACE', 'EC2NodeDriver', 'BaseEC2NodeDriver', 'NimbusNodeDriver', 'EucNodeDriver', 'OutscaleSASNodeDriver', 'OutscaleINCNodeDriver', 'EC2NodeLocation', 'EC2ReservedNode', 'EC2SecurityGroup', 'EC2PlacementGroup', 'EC2Network', 'EC2NetworkSubnet', 'EC2NetworkInterface', 'EC2RouteTable', 'EC2Route', 'EC2SubnetAssociation', 'ExEC2AvailabilityZone', 'IdempotentParamError' ] API_VERSION = '2013-10-15' NAMESPACE = 'http://ec2.amazonaws.com/doc/%s/' % (API_VERSION) # Eucalyptus Constants DEFAULT_EUCA_API_VERSION = '3.3.0' EUCA_NAMESPACE = 'http://msgs.eucalyptus.com/%s' % (DEFAULT_EUCA_API_VERSION) """ Sizes must be hardcoded, because Amazon doesn't provide an API to fetch them. From http://aws.amazon.com/ec2/instance-types/ """ INSTANCE_TYPES = { 't1.micro': { 'id': 't1.micro', 'name': 'Micro Instance', 'ram': 613, 'disk': 15, 'bandwidth': None }, 'm1.small': { 'id': 'm1.small', 'name': 'Small Instance', 'ram': 1740, 'disk': 160, 'bandwidth': None }, 'm1.medium': { 'id': 'm1.medium', 'name': 'Medium Instance', 'ram': 3700, 'disk': 410, 'bandwidth': None }, 'm1.large': { 'id': 'm1.large', 'name': 'Large Instance', 'ram': 7680, 'disk': 850, 'bandwidth': None }, 'm1.xlarge': { 'id': 'm1.xlarge', 'name': 'Extra Large Instance', 'ram': 15360, 'disk': 1690, 'bandwidth': None }, 'c1.medium': { 'id': 'c1.medium', 'name': 'High-CPU Medium Instance', 'ram': 1740, 'disk': 350, 'bandwidth': None }, 'c1.xlarge': { 'id': 'c1.xlarge', 'name': 'High-CPU Extra Large Instance', 'ram': 7680, 'disk': 1690, 'bandwidth': None }, 'm2.xlarge': { 'id': 'm2.xlarge', 'name': 'High-Memory Extra Large Instance', 'ram': 17510, 'disk': 420, 'bandwidth': None }, 'm2.2xlarge': { 'id': 'm2.2xlarge', 'name': 'High-Memory Double Extra Large Instance', 'ram': 35021, 'disk': 850, 'bandwidth': None }, 'm2.4xlarge': { 'id': 'm2.4xlarge', 'name': 'High-Memory Quadruple Extra Large Instance', 'ram': 70042, 'disk': 1690, 'bandwidth': None }, 'm3.medium': { 'id': 'm3.medium', 'name': 'Medium Instance', 'ram': 3840, 'disk': 4000, 'bandwidth': None }, 'm3.large': { 'id': 'm3.large', 'name': 'Large Instance', 'ram': 7168, 'disk': 32000, 'bandwidth': None }, 'm3.xlarge': { 'id': 'm3.xlarge', 'name': 'Extra Large Instance', 'ram': 15360, 'disk': 80000, 'bandwidth': None }, 'm3.2xlarge': { 'id': 'm3.2xlarge', 'name': 'Double Extra Large Instance', 'ram': 30720, 'disk': 160000, 'bandwidth': None }, 'cg1.4xlarge': { 'id': 'cg1.4xlarge', 'name': 'Cluster GPU Quadruple Extra Large Instance', 'ram': 22528, 'disk': 1690, 'bandwidth': None }, 'g2.2xlarge': { 'id': 'g2.2xlarge', 'name': 'Cluster GPU G2 Double Extra Large Instance', 'ram': 15000, 'disk': 60, 'bandwidth': None, }, 'cc1.4xlarge': { 'id': 'cc1.4xlarge', 'name': 'Cluster Compute Quadruple Extra Large Instance', 'ram': 23552, 'disk': 1690, 'bandwidth': None }, 'cc2.8xlarge': { 'id': 'cc2.8xlarge', 'name': 'Cluster Compute Eight Extra Large Instance', 'ram': 63488, 'disk': 3370, 'bandwidth': None }, # c3 instances have 2 SSDs of the specified disk size 'c3.large': { 'id': 'c3.large', 'name': 'Compute Optimized Large Instance', 'ram': 3750, 'disk': 32, # x2 'bandwidth': None }, 'c3.xlarge': { 'id': 'c3.xlarge', 'name': 'Compute Optimized Extra Large Instance', 'ram': 7500, 'disk': 80, # x2 'bandwidth': None }, 'c3.2xlarge': { 'id': 'c3.2xlarge', 'name': 'Compute Optimized Double Extra Large Instance', 'ram': 15000, 'disk': 160, # x2 'bandwidth': None }, 'c3.4xlarge': { 'id': 'c3.4xlarge', 'name': 'Compute Optimized Quadruple Extra Large Instance', 'ram': 30000, 'disk': 320, # x2 'bandwidth': None }, 'c3.8xlarge': { 'id': 'c3.8xlarge', 'name': 'Compute Optimized Eight Extra Large Instance', 'ram': 60000, 'disk': 640, # x2 'bandwidth': None }, 'cr1.8xlarge': { 'id': 'cr1.8xlarge', 'name': 'High Memory Cluster Eight Extra Large', 'ram': 244000, 'disk': 240, 'bandwidth': None }, 'hs1.4xlarge': { 'id': 'hs1.4xlarge', 'name': 'High Storage Quadruple Extra Large Instance', 'ram': 61952, 'disk': 2048, 'bandwidth': None }, 'hs1.8xlarge': { 'id': 'hs1.8xlarge', 'name': 'High Storage Eight Extra Large Instance', 'ram': 119808, 'disk': 48000, 'bandwidth': None }, # i2 instances have up to eight SSD drives 'i2.xlarge': { 'id': 'i2.xlarge', 'name': 'High Storage Optimized Extra Large Instance', 'ram': 31232, 'disk': 800, 'bandwidth': None }, 'i2.2xlarge': { 'id': 'i2.2xlarge', 'name': 'High Storage Optimized Double Extra Large Instance', 'ram': 62464, 'disk': 1600, 'bandwidth': None }, 'i2.4xlarge': { 'id': 'i2.4xlarge', 'name': 'High Storage Optimized Quadruple Large Instance', 'ram': 124928, 'disk': 3200, 'bandwidth': None }, 'i2.8xlarge': { 'id': 'i2.8xlarge', 'name': 'High Storage Optimized Eight Extra Large Instance', 'ram': 249856, 'disk': 6400, 'bandwidth': None }, 'd2.xlarge': { 'id': 'd2.xlarge', 'name': 'High Storage Optimized Extra Large Instance', 'ram': 30050, 'disk': 6000, # 3 x 2 TB 'bandwidth': None }, 'd2.2xlarge': { 'id': 'd2.2xlarge', 'name': 'High Storage Optimized Double Extra Large Instance', 'ram': 61952, 'disk': 12000, # 6 x 2 TB 'bandwidth': None }, 'd2.4xlarge': { 'id': 'd2.4xlarge', 'name': 'High Storage Optimized Quadruple Extra Large Instance', 'ram': 122000, 'disk': 24000, # 12 x 2 TB 'bandwidth': None }, 'd2.8xlarge': { 'id': 'd2.8xlarge', 'name': 'High Storage Optimized Eight Extra Large Instance', 'ram': 244000, 'disk': 48000, # 24 x 2 TB 'bandwidth': None }, # 1x SSD 'r3.large': { 'id': 'r3.large', 'name': 'Memory Optimized Large instance', 'ram': 15000, 'disk': 32, 'bandwidth': None }, 'r3.xlarge': { 'id': 'r3.xlarge', 'name': 'Memory Optimized Extra Large instance', 'ram': 30500, 'disk': 80, 'bandwidth': None }, 'r3.2xlarge': { 'id': 'r3.2xlarge', 'name': 'Memory Optimized Double Extra Large instance', 'ram': 61000, 'disk': 160, 'bandwidth': None }, 'r3.4xlarge': { 'id': 'r3.4xlarge', 'name': 'Memory Optimized Quadruple Extra Large instance', 'ram': 122000, 'disk': 320, 'bandwidth': None }, 'r3.8xlarge': { 'id': 'r3.8xlarge', 'name': 'Memory Optimized Eight Extra Large instance', 'ram': 244000, 'disk': 320, # x2 'bandwidth': None }, 't2.micro': { 'id': 't2.micro', 'name': 'Burstable Performance Micro Instance', 'ram': 1024, 'disk': 0, # EBS Only 'bandwidth': None, 'extra': { 'cpu': 1 } }, # Burstable Performance General Purpose 't2.small': { 'id': 't2.small', 'name': 'Burstable Performance Small Instance', 'ram': 2048, 'disk': 0, # EBS Only 'bandwidth': None, 'extra': { 'cpu': 11 } }, 't2.medium': { 'id': 't2.medium', 'name': 'Burstable Performance Medium Instance', 'ram': 4028, 'disk': 0, # EBS Only 'bandwidth': None, 'extra': { 'cpu': 2 } } } REGION_DETAILS = { # US East (Northern Virginia) Region 'us-east-1': { 'endpoint': 'ec2.us-east-1.amazonaws.com', 'api_name': 'ec2_us_east', 'country': 'USA', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'cc2.8xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'cg1.4xlarge', 'g2.2xlarge', 'cr1.8xlarge', 'hs1.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # US West (Northern California) Region 'us-west-1': { 'endpoint': 'ec2.us-west-1.amazonaws.com', 'api_name': 'ec2_us_west', 'country': 'USA', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'g2.2xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # US West (Oregon) Region 'us-west-2': { 'endpoint': 'ec2.us-west-2.amazonaws.com', 'api_name': 'ec2_us_west_oregon', 'country': 'US', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'g2.2xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'hs1.8xlarge', 'cc2.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # EU (Ireland) Region 'eu-west-1': { 'endpoint': 'ec2.eu-west-1.amazonaws.com', 'api_name': 'ec2_eu_west', 'country': 'Ireland', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'g2.2xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'hs1.8xlarge', 'cc2.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # EU (Frankfurt) Region 'eu-central-1': { 'endpoint': 'ec2.eu-central-1.amazonaws.com', 'api_name': 'ec2_eu_central', 'country': 'Frankfurt', 'signature_version': '4', 'instance_types': [ 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # Asia Pacific (Singapore) Region 'ap-southeast-1': { 'endpoint': 'ec2.ap-southeast-1.amazonaws.com', 'api_name': 'ec2_ap_southeast', 'country': 'Singapore', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'hs1.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # Asia Pacific (Tokyo) Region 'ap-northeast-1': { 'endpoint': 'ec2.ap-northeast-1.amazonaws.com', 'api_name': 'ec2_ap_northeast', 'country': 'Japan', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'g2.2xlarge', 'c1.xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'hs1.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # South America (Sao Paulo) Region 'sa-east-1': { 'endpoint': 'ec2.sa-east-1.amazonaws.com', 'api_name': 'ec2_sa_east', 'country': 'Brazil', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 't2.micro', 't2.small', 't2.medium' ] }, # Asia Pacific (Sydney) Region 'ap-southeast-2': { 'endpoint': 'ec2.ap-southeast-2.amazonaws.com', 'api_name': 'ec2_ap_southeast_2', 'country': 'Australia', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'hs1.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'd2.xlarge', 'd2.2xlarge', 'd2.4xlarge', 'd2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, 'us-gov-west-1': { 'endpoint': 'ec2.us-gov-west-1.amazonaws.com', 'api_name': 'ec2_us_govwest', 'country': 'US', 'signature_version': '2', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'm3.medium', 'm3.large', 'm3.xlarge', 'm3.2xlarge', 'c1.medium', 'c1.xlarge', 'g2.2xlarge', 'c3.large', 'c3.xlarge', 'c3.2xlarge', 'c3.4xlarge', 'c3.8xlarge', 'hs1.4xlarge', 'hs1.8xlarge', 'i2.xlarge', 'i2.2xlarge', 'i2.4xlarge', 'i2.8xlarge', 'r3.large', 'r3.xlarge', 'r3.2xlarge', 'r3.4xlarge', 'r3.8xlarge', 't2.micro', 't2.small', 't2.medium' ] }, 'nimbus': { # Nimbus clouds have 3 EC2-style instance types but their particular # RAM allocations are configured by the admin 'country': 'custom', 'signature_version': '2', 'instance_types': [ 'm1.small', 'm1.large', 'm1.xlarge' ] } } """ Sizes must be hardcoded because Outscale doesn't provide an API to fetch them. Outscale cloud instances share some names with EC2 but have different specifications so declare them in another constant. """ OUTSCALE_INSTANCE_TYPES = { 't1.micro': { 'id': 't1.micro', 'name': 'Micro Instance', 'ram': 615, 'disk': 0, 'bandwidth': None }, 'm1.small': { 'id': 'm1.small', 'name': 'Standard Small Instance', 'ram': 1740, 'disk': 150, 'bandwidth': None }, 'm1.medium': { 'id': 'm1.medium', 'name': 'Standard Medium Instance', 'ram': 3840, 'disk': 420, 'bandwidth': None }, 'm1.large': { 'id': 'm1.large', 'name': 'Standard Large Instance', 'ram': 7680, 'disk': 840, 'bandwidth': None }, 'm1.xlarge': { 'id': 'm1.xlarge', 'name': 'Standard Extra Large Instance', 'ram': 15360, 'disk': 1680, 'bandwidth': None }, 'c1.medium': { 'id': 'c1.medium', 'name': 'Compute Optimized Medium Instance', 'ram': 1740, 'disk': 340, 'bandwidth': None }, 'c1.xlarge': { 'id': 'c1.xlarge', 'name': 'Compute Optimized Extra Large Instance', 'ram': 7168, 'disk': 1680, 'bandwidth': None }, 'c3.large': { 'id': 'c3.large', 'name': 'Compute Optimized Large Instance', 'ram': 3840, 'disk': 32, 'bandwidth': None }, 'c3.xlarge': { 'id': 'c3.xlarge', 'name': 'Compute Optimized Extra Large Instance', 'ram': 7168, 'disk': 80, 'bandwidth': None }, 'c3.2xlarge': { 'id': 'c3.2xlarge', 'name': 'Compute Optimized Double Extra Large Instance', 'ram': 15359, 'disk': 160, 'bandwidth': None }, 'c3.4xlarge': { 'id': 'c3.4xlarge', 'name': 'Compute Optimized Quadruple Extra Large Instance', 'ram': 30720, 'disk': 320, 'bandwidth': None }, 'c3.8xlarge': { 'id': 'c3.8xlarge', 'name': 'Compute Optimized Eight Extra Large Instance', 'ram': 61440, 'disk': 640, 'bandwidth': None }, 'm2.xlarge': { 'id': 'm2.xlarge', 'name': 'High Memory Extra Large Instance', 'ram': 17510, 'disk': 420, 'bandwidth': None }, 'm2.2xlarge': { 'id': 'm2.2xlarge', 'name': 'High Memory Double Extra Large Instance', 'ram': 35020, 'disk': 840, 'bandwidth': None }, 'm2.4xlarge': { 'id': 'm2.4xlarge', 'name': 'High Memory Quadruple Extra Large Instance', 'ram': 70042, 'disk': 1680, 'bandwidth': None }, 'nv1.small': { 'id': 'nv1.small', 'name': 'GPU Small Instance', 'ram': 1739, 'disk': 150, 'bandwidth': None }, 'nv1.medium': { 'id': 'nv1.medium', 'name': 'GPU Medium Instance', 'ram': 3839, 'disk': 420, 'bandwidth': None }, 'nv1.large': { 'id': 'nv1.large', 'name': 'GPU Large Instance', 'ram': 7679, 'disk': 840, 'bandwidth': None }, 'nv1.xlarge': { 'id': 'nv1.xlarge', 'name': 'GPU Extra Large Instance', 'ram': 15358, 'disk': 1680, 'bandwidth': None }, 'g2.2xlarge': { 'id': 'g2.2xlarge', 'name': 'GPU Double Extra Large Instance', 'ram': 15360, 'disk': 60, 'bandwidth': None }, 'cc1.4xlarge': { 'id': 'cc1.4xlarge', 'name': 'Cluster Compute Quadruple Extra Large Instance', 'ram': 24576, 'disk': 1680, 'bandwidth': None }, 'cc2.8xlarge': { 'id': 'cc2.8xlarge', 'name': 'Cluster Compute Eight Extra Large Instance', 'ram': 65536, 'disk': 3360, 'bandwidth': None }, 'hi1.xlarge': { 'id': 'hi1.xlarge', 'name': 'High Storage Extra Large Instance', 'ram': 15361, 'disk': 1680, 'bandwidth': None }, 'm3.xlarge': { 'id': 'm3.xlarge', 'name': 'High Storage Optimized Extra Large Instance', 'ram': 15357, 'disk': 0, 'bandwidth': None }, 'm3.2xlarge': { 'id': 'm3.2xlarge', 'name': 'High Storage Optimized Double Extra Large Instance', 'ram': 30720, 'disk': 0, 'bandwidth': None }, 'm3s.xlarge': { 'id': 'm3s.xlarge', 'name': 'High Storage Optimized Extra Large Instance', 'ram': 15359, 'disk': 0, 'bandwidth': None }, 'm3s.2xlarge': { 'id': 'm3s.2xlarge', 'name': 'High Storage Optimized Double Extra Large Instance', 'ram': 30719, 'disk': 0, 'bandwidth': None }, 'cr1.8xlarge': { 'id': 'cr1.8xlarge', 'name': 'Memory Optimized Eight Extra Large Instance', 'ram': 249855, 'disk': 240, 'bandwidth': None }, 'os1.2xlarge': { 'id': 'os1.2xlarge', 'name': 'Memory Optimized, High Storage, Passthrough NIC Double Extra ' 'Large Instance', 'ram': 65536, 'disk': 60, 'bandwidth': None }, 'os1.4xlarge': { 'id': 'os1.4xlarge', 'name': 'Memory Optimized, High Storage, Passthrough NIC Quadruple Ext' 'ra Large Instance', 'ram': 131072, 'disk': 120, 'bandwidth': None }, 'os1.8xlarge': { 'id': 'os1.8xlarge', 'name': 'Memory Optimized, High Storage, Passthrough NIC Eight Extra L' 'arge Instance', 'ram': 249856, 'disk': 500, 'bandwidth': None }, 'oc1.4xlarge': { 'id': 'oc1.4xlarge', 'name': 'Outscale Quadruple Extra Large Instance', 'ram': 24575, 'disk': 1680, 'bandwidth': None }, 'oc2.8xlarge': { 'id': 'oc2.8xlarge', 'name': 'Outscale Eight Extra Large Instance', 'ram': 65535, 'disk': 3360, 'bandwidth': None } } """ The function manipulating Outscale cloud regions will be overridden because Outscale instances types are in a separate dict so also declare Outscale cloud regions in some other constants. """ OUTSCALE_SAS_REGION_DETAILS = { 'eu-west-3': { 'endpoint': 'api-ppd.outscale.com', 'api_name': 'osc_sas_eu_west_3', 'country': 'FRANCE', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'c1.medium', 'c1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'nv1.small', 'nv1.medium', 'nv1.large', 'nv1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'm3.xlarge', 'm3.2xlarge', 'cr1.8xlarge', 'os1.8xlarge' ] }, 'eu-west-1': { 'endpoint': 'api.eu-west-1.outscale.com', 'api_name': 'osc_sas_eu_west_1', 'country': 'FRANCE', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'c1.medium', 'c1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'nv1.small', 'nv1.medium', 'nv1.large', 'nv1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'm3.xlarge', 'm3.2xlarge', 'cr1.8xlarge', 'os1.8xlarge' ] }, 'us-east-1': { 'endpoint': 'api.us-east-1.outscale.com', 'api_name': 'osc_sas_us_east_1', 'country': 'USA', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'c1.medium', 'c1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'nv1.small', 'nv1.medium', 'nv1.large', 'nv1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'm3.xlarge', 'm3.2xlarge', 'cr1.8xlarge', 'os1.8xlarge' ] } } OUTSCALE_INC_REGION_DETAILS = { 'eu-west-1': { 'endpoint': 'api.eu-west-1.outscale.com', 'api_name': 'osc_inc_eu_west_1', 'country': 'FRANCE', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'c1.medium', 'c1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'nv1.small', 'nv1.medium', 'nv1.large', 'nv1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'm3.xlarge', 'm3.2xlarge', 'cr1.8xlarge', 'os1.8xlarge' ] }, 'eu-west-3': { 'endpoint': 'api-ppd.outscale.com', 'api_name': 'osc_inc_eu_west_3', 'country': 'FRANCE', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'c1.medium', 'c1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'nv1.small', 'nv1.medium', 'nv1.large', 'nv1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'm3.xlarge', 'm3.2xlarge', 'cr1.8xlarge', 'os1.8xlarge' ] }, 'us-east-1': { 'endpoint': 'api.us-east-1.outscale.com', 'api_name': 'osc_inc_us_east_1', 'country': 'USA', 'instance_types': [ 't1.micro', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge', 'c1.medium', 'c1.xlarge', 'm2.xlarge', 'm2.2xlarge', 'm2.4xlarge', 'nv1.small', 'nv1.medium', 'nv1.large', 'nv1.xlarge', 'cc1.4xlarge', 'cc2.8xlarge', 'm3.xlarge', 'm3.2xlarge', 'cr1.8xlarge', 'os1.8xlarge' ] } } """ Define the extra dictionary for specific resources """ RESOURCE_EXTRA_ATTRIBUTES_MAP = { 'ebs_volume': { 'snapshot_id': { 'xpath': 'ebs/snapshotId', 'transform_func': str }, 'volume_id': { 'xpath': 'ebs/volumeId', 'transform_func': str }, 'volume_size': { 'xpath': 'ebs/volumeSize', 'transform_func': int }, 'delete': { 'xpath': 'ebs/deleteOnTermination', 'transform_func': str }, 'volume_type': { 'xpath': 'ebs/volumeType', 'transform_func': str }, 'iops': { 'xpath': 'ebs/iops', 'transform_func': int } }, 'elastic_ip': { 'allocation_id': { 'xpath': 'allocationId', 'transform_func': str, }, 'association_id': { 'xpath': 'associationId', 'transform_func': str, }, 'interface_id': { 'xpath': 'networkInterfaceId', 'transform_func': str, }, 'owner_id': { 'xpath': 'networkInterfaceOwnerId', 'transform_func': str, }, 'private_ip': { 'xpath': 'privateIp', 'transform_func': str, } }, 'image': { 'state': { 'xpath': 'imageState', 'transform_func': str }, 'owner_id': { 'xpath': 'imageOwnerId', 'transform_func': str }, 'owner_alias': { 'xpath': 'imageOwnerAlias', 'transform_func': str }, 'is_public': { 'xpath': 'isPublic', 'transform_func': str }, 'architecture': { 'xpath': 'architecture', 'transform_func': str }, 'image_type': { 'xpath': 'imageType', 'transform_func': str }, 'image_location': { 'xpath': 'imageLocation', 'transform_func': str }, 'platform': { 'xpath': 'platform', 'transform_func': str }, 'description': { 'xpath': 'description', 'transform_func': str }, 'root_device_type': { 'xpath': 'rootDeviceType', 'transform_func': str }, 'virtualization_type': { 'xpath': 'virtualizationType', 'transform_func': str }, 'hypervisor': { 'xpath': 'hypervisor', 'transform_func': str }, 'kernel_id': { 'xpath': 'kernelId', 'transform_func': str }, 'ramdisk_id': { 'xpath': 'ramdiskId', 'transform_func': str } }, 'network': { 'state': { 'xpath': 'state', 'transform_func': str }, 'dhcp_options_id': { 'xpath': 'dhcpOptionsId', 'transform_func': str }, 'instance_tenancy': { 'xpath': 'instanceTenancy', 'transform_func': str }, 'is_default': { 'xpath': 'isDefault', 'transform_func': str } }, 'network_interface': { 'subnet_id': { 'xpath': 'subnetId', 'transform_func': str }, 'vpc_id': { 'xpath': 'vpcId', 'transform_func': str }, 'zone': { 'xpath': 'availabilityZone', 'transform_func': str }, 'description': { 'xpath': 'description', 'transform_func': str }, 'owner_id': { 'xpath': 'ownerId', 'transform_func': str }, 'mac_address': { 'xpath': 'macAddress', 'transform_func': str }, 'private_dns_name': { 'xpath': 'privateIpAddressesSet/privateDnsName', 'transform_func': str }, 'source_dest_check': { 'xpath': 'sourceDestCheck', 'transform_func': str } }, 'network_interface_attachment': { 'attachment_id': { 'xpath': 'attachment/attachmentId', 'transform_func': str }, 'instance_id': { 'xpath': 'attachment/instanceId', 'transform_func': str }, 'owner_id': { 'xpath': 'attachment/instanceOwnerId', 'transform_func': str }, 'device_index': { 'xpath': 'attachment/deviceIndex', 'transform_func': int }, 'status': { 'xpath': 'attachment/status', 'transform_func': str }, 'attach_time': { 'xpath': 'attachment/attachTime', 'transform_func': parse_date }, 'delete': { 'xpath': 'attachment/deleteOnTermination', 'transform_func': str } }, 'node': { 'availability': { 'xpath': 'placement/availabilityZone', 'transform_func': str }, 'architecture': { 'xpath': 'architecture', 'transform_func': str }, 'client_token': { 'xpath': 'clientToken', 'transform_func': str }, 'dns_name': { 'xpath': 'dnsName', 'transform_func': str }, 'hypervisor': { 'xpath': 'hypervisor', 'transform_func': str }, 'iam_profile': { 'xpath': 'iamInstanceProfile/id', 'transform_func': str }, 'image_id': { 'xpath': 'imageId', 'transform_func': str }, 'instance_id': { 'xpath': 'instanceId', 'transform_func': str }, 'instance_lifecycle': { 'xpath': 'instanceLifecycle', 'transform_func': str }, 'instance_tenancy': { 'xpath': 'placement/tenancy', 'transform_func': str }, 'instance_type': { 'xpath': 'instanceType', 'transform_func': str }, 'key_name': { 'xpath': 'keyName', 'transform_func': str }, 'launch_index': { 'xpath': 'amiLaunchIndex', 'transform_func': int }, 'launch_time': { 'xpath': 'launchTime', 'transform_func': str }, 'kernel_id': { 'xpath': 'kernelId', 'transform_func': str }, 'monitoring': { 'xpath': 'monitoring/state', 'transform_func': str }, 'platform': { 'xpath': 'platform', 'transform_func': str }, 'private_dns': { 'xpath': 'privateDnsName', 'transform_func': str }, 'ramdisk_id': { 'xpath': 'ramdiskId', 'transform_func': str }, 'root_device_type': { 'xpath': 'rootDeviceType', 'transform_func': str }, 'root_device_name': { 'xpath': 'rootDeviceName', 'transform_func': str }, 'reason': { 'xpath': 'reason', 'transform_func': str }, 'source_dest_check': { 'xpath': 'sourceDestCheck', 'transform_func': str }, 'status': { 'xpath': 'instanceState/name', 'transform_func': str }, 'subnet_id': { 'xpath': 'subnetId', 'transform_func': str }, 'virtualization_type': { 'xpath': 'virtualizationType', 'transform_func': str }, 'ebs_optimized': { 'xpath': 'ebsOptimized', 'transform_func': str }, 'vpc_id': { 'xpath': 'vpcId', 'transform_func': str } }, 'reserved_node': { 'instance_type': { 'xpath': 'instanceType', 'transform_func': str }, 'availability': { 'xpath': 'availabilityZone', 'transform_func': str }, 'start': { 'xpath': 'start', 'transform_func': str }, 'duration': { 'xpath': 'duration', 'transform_func': int }, 'usage_price': { 'xpath': 'usagePrice', 'transform_func': float }, 'fixed_price': { 'xpath': 'fixedPrice', 'transform_func': float }, 'instance_count': { 'xpath': 'instanceCount', 'transform_func': int }, 'description': { 'xpath': 'productDescription', 'transform_func': str }, 'instance_tenancy': { 'xpath': 'instanceTenancy', 'transform_func': str }, 'currency_code': { 'xpath': 'currencyCode', 'transform_func': str }, 'offering_type': { 'xpath': 'offeringType', 'transform_func': str } }, 'security_group': { 'vpc_id': { 'xpath': 'vpcId', 'transform_func': str }, 'description': { 'xpath': 'groupDescription', 'transform_func': str }, 'owner_id': { 'xpath': 'ownerId', 'transform_func': str } }, 'snapshot': { 'volume_id': { 'xpath': 'volumeId', 'transform_func': str }, 'state': { 'xpath': 'status', 'transform_func': str }, 'description': { 'xpath': 'description', 'transform_func': str }, 'progress': { 'xpath': 'progress', 'transform_func': str }, 'start_time': { 'xpath': 'startTime', 'transform_func': parse_date } }, 'subnet': { 'cidr_block': { 'xpath': 'cidrBlock', 'transform_func': str }, 'available_ips': { 'xpath': 'availableIpAddressCount', 'transform_func': int }, 'zone': { 'xpath': 'availabilityZone', 'transform_func': str }, 'vpc_id': { 'xpath': 'vpcId', 'transform_func': str } }, 'volume': { 'device': { 'xpath': 'attachmentSet/item/device', 'transform_func': str }, 'snapshot_id': { 'xpath': 'snapshotId', 'transform_func': lambda v: str(v) or None }, 'iops': { 'xpath': 'iops', 'transform_func': int }, 'zone': { 'xpath': 'availabilityZone', 'transform_func': str }, 'create_time': { 'xpath': 'createTime', 'transform_func': parse_date }, 'state': { 'xpath': 'status', 'transform_func': str }, 'attach_time': { 'xpath': 'attachmentSet/item/attachTime', 'transform_func': parse_date }, 'attachment_status': { 'xpath': 'attachmentSet/item/status', 'transform_func': str }, 'instance_id': { 'xpath': 'attachmentSet/item/instanceId', 'transform_func': str }, 'delete': { 'xpath': 'attachmentSet/item/deleteOnTermination', 'transform_func': str } }, 'route_table': { 'vpc_id': { 'xpath': 'vpcId', 'transform_func': str } } } VALID_EC2_REGIONS = REGION_DETAILS.keys() VALID_EC2_REGIONS = [r for r in VALID_EC2_REGIONS if r != 'nimbus'] class EC2NodeLocation(NodeLocation): def __init__(self, id, name, country, driver, availability_zone): super(EC2NodeLocation, self).__init__(id, name, country, driver) self.availability_zone = availability_zone def __repr__(self): return (('<EC2NodeLocation: id=%s, name=%s, country=%s, ' 'availability_zone=%s driver=%s>') % (self.id, self.name, self.country, self.availability_zone, self.driver.name)) class EC2Response(AWSBaseResponse): """ EC2 specific response parsing and error handling. """ def parse_error(self): err_list = [] # Okay, so for Eucalyptus, you can get a 403, with no body, # if you are using the wrong user/password. msg = "Failure: 403 Forbidden" if self.status == 403 and self.body[:len(msg)] == msg: raise InvalidCredsError(msg) try: body = ET.XML(self.body) except: raise MalformedResponseError("Failed to parse XML", body=self.body, driver=EC2NodeDriver) for err in body.findall('Errors/Error'): code, message = err.getchildren() err_list.append('%s: %s' % (code.text, message.text)) if code.text == 'InvalidClientTokenId': raise InvalidCredsError(err_list[-1]) if code.text == 'SignatureDoesNotMatch': raise InvalidCredsError(err_list[-1]) if code.text == 'AuthFailure': raise InvalidCredsError(err_list[-1]) if code.text == 'OptInRequired': raise InvalidCredsError(err_list[-1]) if code.text == 'IdempotentParameterMismatch': raise IdempotentParamError(err_list[-1]) if code.text == 'InvalidKeyPair.NotFound': # TODO: Use connection context instead match = re.match(r'.*\'(.+?)\'.*', message.text) if match: name = match.groups()[0] else: name = None raise KeyPairDoesNotExistError(name=name, driver=self.connection.driver) return '\n'.join(err_list) class EC2Connection(SignedAWSConnection): """ Represents a single connection to the EC2 Endpoint. """ version = API_VERSION host = REGION_DETAILS['us-east-1']['endpoint'] responseCls = EC2Response service_name = 'ec2' class ExEC2AvailabilityZone(object): """ Extension class which stores information about an EC2 availability zone. Note: This class is EC2 specific. """ def __init__(self, name, zone_state, region_name): self.name = name self.zone_state = zone_state self.region_name = region_name def __repr__(self): return (('<ExEC2AvailabilityZone: name=%s, zone_state=%s, ' 'region_name=%s>') % (self.name, self.zone_state, self.region_name)) class EC2ReservedNode(Node): """ Class which stores information about EC2 reserved instances/nodes Inherits from Node and passes in None for name and private/public IPs Note: This class is EC2 specific. """ def __init__(self, id, state, driver, size=None, image=None, extra=None): super(EC2ReservedNode, self).__init__(id=id, name=None, state=state, public_ips=None, private_ips=None, driver=driver, extra=extra) def __repr__(self): return (('<EC2ReservedNode: id=%s>') % (self.id)) class EC2SecurityGroup(object): """ Represents information about a Security group Note: This class is EC2 specific. """ def __init__(self, id, name, ingress_rules, egress_rules, extra=None): self.id = id self.name = name self.ingress_rules = ingress_rules self.egress_rules = egress_rules self.extra = extra or {} def __repr__(self): return (('<EC2SecurityGroup: id=%s, name=%s') % (self.id, self.name)) class EC2PlacementGroup(object): """ Represents information about a Placement Grous Note: This class is EC2 specific. """ def __init__(self, name, state, strategy='cluster', extra=None): self.name = name self.strategy = strategy self.extra = extra or {} def __repr__(self): return '<EC2PlacementGroup: name=%s, state=%s>' % (self.name, self.strategy) class EC2Network(object): """ Represents information about a VPC (Virtual Private Cloud) network Note: This class is EC2 specific. """ def __init__(self, id, name, cidr_block, extra=None): self.id = id self.name = name self.cidr_block = cidr_block self.extra = extra or {} def __repr__(self): return (('<EC2Network: id=%s, name=%s') % (self.id, self.name)) class EC2NetworkSubnet(object): """ Represents information about a VPC (Virtual Private Cloud) subnet Note: This class is EC2 specific. """ def __init__(self, id, name, state, extra=None): self.id = id self.name = name self.state = state self.extra = extra or {} def __repr__(self): return (('<EC2NetworkSubnet: id=%s, name=%s') % (self.id, self.name)) class EC2NetworkInterface(object): """ Represents information about a VPC network interface Note: This class is EC2 specific. The state parameter denotes the current status of the interface. Valid values for state are attaching, attached, detaching and detached. """ def __init__(self, id, name, state, extra=None): self.id = id self.name = name self.state = state self.extra = extra or {} def __repr__(self): return (('<EC2NetworkInterface: id=%s, name=%s') % (self.id, self.name)) class ElasticIP(object): """ Represents information about an elastic IP address :param ip: The elastic IP address :type ip: ``str`` :param domain: The domain that the IP resides in (EC2-Classic/VPC). EC2 classic is represented with standard and VPC is represented with vpc. :type domain: ``str`` :param instance_id: The identifier of the instance which currently has the IP associated. :type instance_id: ``str`` Note: This class is used to support both EC2 and VPC IPs. For VPC specific attributes are stored in the extra dict to make promotion to the base API easier. """ def __init__(self, ip, domain, instance_id, extra=None): self.ip = ip self.domain = domain self.instance_id = instance_id self.extra = extra or {} def __repr__(self): return (('<ElasticIP: ip=%s, domain=%s, instance_id=%s>') % (self.ip, self.domain, self.instance_id)) class VPCInternetGateway(object): """ Class which stores information about VPC Internet Gateways. Note: This class is VPC specific. """ def __init__(self, id, name, vpc_id, state, driver, extra=None): self.id = id self.name = name self.vpc_id = vpc_id self.state = state self.extra = extra or {} def __repr__(self): return (('<VPCInternetGateway: id=%s>') % (self.id)) class EC2RouteTable(object): """ Class which stores information about VPC Route Tables. Note: This class is VPC specific. """ def __init__(self, id, name, routes, subnet_associations, propagating_gateway_ids, extra=None): """ :param id: The ID of the route table. :type id: ``str`` :param name: The name of the route table. :type name: ``str`` :param routes: A list of routes in the route table. :type routes: ``list`` of :class:`EC2Route` :param subnet_associations: A list of associations between the route table and one or more subnets. :type subnet_associations: ``list`` of :class:`EC2SubnetAssociation` :param propagating_gateway_ids: The list of IDs of any virtual private gateways propagating the routes. :type propagating_gateway_ids: ``list`` """ self.id = id self.name = name self.routes = routes self.subnet_associations = subnet_associations self.propagating_gateway_ids = propagating_gateway_ids self.extra = extra or {} def __repr__(self): return (('<EC2RouteTable: id=%s>') % (self.id)) class EC2Route(object): """ Class which stores information about a Route. Note: This class is VPC specific. """ def __init__(self, cidr, gateway_id, instance_id, owner_id, interface_id, state, origin, vpc_peering_connection_id): """ :param cidr: The CIDR block used for the destination match. :type cidr: ``str`` :param gateway_id: The ID of a gateway attached to the VPC. :type gateway_id: ``str`` :param instance_id: The ID of a NAT instance in the VPC. :type instance_id: ``str`` :param owner_id: The AWS account ID of the owner of the instance. :type owner_id: ``str`` :param interface_id: The ID of the network interface. :type interface_id: ``str`` :param state: The state of the route (active | blackhole). :type state: ``str`` :param origin: Describes how the route was created. :type origin: ``str`` :param vpc_peering_connection_id: The ID of the VPC peering connection. :type vpc_peering_connection_id: ``str`` """ self.cidr = cidr self.gateway_id = gateway_id self.instance_id = instance_id self.owner_id = owner_id self.interface_id = interface_id self.state = state self.origin = origin self.vpc_peering_connection_id = vpc_peering_connection_id def __repr__(self): return (('<EC2Route: cidr=%s>') % (self.cidr)) class EC2SubnetAssociation(object): """ Class which stores information about Route Table associated with a given Subnet in a VPC Note: This class is VPC specific. """ def __init__(self, id, route_table_id, subnet_id, main=False): """ :param id: The ID of the subnet association in the VPC. :type id: ``str`` :param route_table_id: The ID of a route table in the VPC. :type route_table_id: ``str`` :param subnet_id: The ID of a subnet in the VPC. :type subnet_id: ``str`` :param main: If true, means this is a main VPC route table. :type main: ``bool`` """ self.id = id self.route_table_id = route_table_id self.subnet_id = subnet_id self.main = main def __repr__(self): return (('<EC2SubnetAssociation: id=%s>') % (self.id)) class BaseEC2NodeDriver(NodeDriver): """ Base Amazon EC2 node driver. Used for main EC2 and other derivate driver classes to inherit from it. """ connectionCls = EC2Connection features = {'create_node': ['ssh_key']} path = '/' signature_version = DEFAULT_SIGNATURE_VERSION NODE_STATE_MAP = { 'pending': NodeState.PENDING, 'running': NodeState.RUNNING, 'shutting-down': NodeState.UNKNOWN, 'terminated': NodeState.TERMINATED } # http://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Volume.html VOLUME_STATE_MAP = { 'available': StorageVolumeState.AVAILABLE, 'in-use': StorageVolumeState.INUSE, 'error': StorageVolumeState.ERROR, 'creating': StorageVolumeState.CREATING, 'deleting': StorageVolumeState.DELETING, 'deleted': StorageVolumeState.DELETED, 'error_deleting': StorageVolumeState.ERROR } def list_nodes(self, ex_node_ids=None, ex_filters=None): """ List all nodes Ex_node_ids parameter is used to filter the list of nodes that should be returned. Only the nodes with the corresponding node ids will be returned. :param ex_node_ids: List of ``node.id`` :type ex_node_ids: ``list`` of ``str`` :param ex_filters: The filters so that the response includes information for only certain nodes. :type ex_filters: ``dict`` :rtype: ``list`` of :class:`Node` """ params = {'Action': 'DescribeInstances'} if ex_node_ids: params.update(self._pathlist('InstanceId', ex_node_ids)) if ex_filters: params.update(self._build_filters(ex_filters)) elem = self.connection.request(self.path, params=params).object nodes = [] for rs in findall(element=elem, xpath='reservationSet/item', namespace=NAMESPACE): nodes += self._to_nodes(rs, 'instancesSet/item') nodes_elastic_ips_mappings = self.ex_describe_addresses(nodes) for node in nodes: ips = nodes_elastic_ips_mappings[node.id] node.public_ips.extend(ips) return nodes def list_sizes(self, location=None): available_types = REGION_DETAILS[self.region_name]['instance_types'] sizes = [] for instance_type in available_types: attributes = INSTANCE_TYPES[instance_type] attributes = copy.deepcopy(attributes) price = self._get_size_price(size_id=instance_type) attributes.update({'price': price}) sizes.append(NodeSize(driver=self, **attributes)) return sizes def list_images(self, location=None, ex_image_ids=None, ex_owner=None, ex_executableby=None, ex_filters=None): """ List all images @inherits: :class:`NodeDriver.list_images` Ex_image_ids parameter is used to filter the list of images that should be returned. Only the images with the corresponding image ids will be returned. Ex_owner parameter is used to filter the list of images that should be returned. Only the images with the corresponding owner will be returned. Valid values: amazon|aws-marketplace|self|all|aws id Ex_executableby parameter describes images for which the specified user has explicit launch permissions. The user can be an AWS account ID, self to return images for which the sender of the request has explicit launch permissions, or all to return images with public launch permissions. Valid values: all|self|aws id Ex_filters parameter is used to filter the list of images that should be returned. Only images matchind the filter will be returned. :param ex_image_ids: List of ``NodeImage.id`` :type ex_image_ids: ``list`` of ``str`` :param ex_owner: Owner name :type ex_owner: ``str`` :param ex_executableby: Executable by :type ex_executableby: ``str`` :param ex_filters: Filter by :type ex_filters: ``dict`` :rtype: ``list`` of :class:`NodeImage` """ params = {'Action': 'DescribeImages'} if ex_owner: params.update({'Owner.1': ex_owner}) if ex_executableby: params.update({'ExecutableBy.1': ex_executableby}) if ex_image_ids: for index, image_id in enumerate(ex_image_ids): index += 1 params.update({'ImageId.%s' % (index): image_id}) if ex_filters: params.update(self._build_filters(ex_filters)) images = self._to_images( self.connection.request(self.path, params=params).object ) return images def get_image(self, image_id): """ Get an image based on an image_id :param image_id: Image identifier :type image_id: ``str`` :return: A NodeImage object :rtype: :class:`NodeImage` """ images = self.list_images(ex_image_ids=[image_id]) image = images[0] return image def list_locations(self): locations = [] for index, availability_zone in \ enumerate(self.ex_list_availability_zones()): locations.append(EC2NodeLocation( index, availability_zone.name, self.country, self, availability_zone) ) return locations def list_volumes(self, node=None): params = { 'Action': 'DescribeVolumes', } if node: filters = {'attachment.instance-id': node.id} params.update(self._build_filters(filters)) response = self.connection.request(self.path, params=params).object volumes = [self._to_volume(el) for el in response.findall( fixxpath(xpath='volumeSet/item', namespace=NAMESPACE)) ] return volumes def create_node(self, **kwargs): """ Create a new EC2 node. Reference: http://bit.ly/8ZyPSy [docs.amazonwebservices.com] @inherits: :class:`NodeDriver.create_node` :keyword ex_keyname: The name of the key pair :type ex_keyname: ``str`` :keyword ex_userdata: User data :type ex_userdata: ``str`` :keyword ex_security_groups: A list of names of security groups to assign to the node. :type ex_security_groups: ``list`` :keyword ex_security_group_ids: A list of ids of security groups to assign to the node.[for VPC nodes only] :type ex_security_group_ids: ``list`` :keyword ex_metadata: Key/Value metadata to associate with a node :type ex_metadata: ``dict`` :keyword ex_mincount: Minimum number of instances to launch :type ex_mincount: ``int`` :keyword ex_maxcount: Maximum number of instances to launch :type ex_maxcount: ``int`` :keyword ex_clienttoken: Unique identifier to ensure idempotency :type ex_clienttoken: ``str`` :keyword ex_blockdevicemappings: ``list`` of ``dict`` block device mappings. :type ex_blockdevicemappings: ``list`` of ``dict`` :keyword ex_iamprofile: Name or ARN of IAM profile :type ex_iamprofile: ``str`` :keyword ex_ebs_optimized: EBS-Optimized if True :type ex_ebs_optimized: ``bool`` :keyword ex_subnet: The subnet to launch the instance into. :type ex_subnet: :class:`.EC2Subnet` :keyword ex_placement_group: The name of the placement group to launch the instance into. :type ex_placement_group: ``str`` """ image = kwargs["image"] size = kwargs["size"] params = { 'Action': 'RunInstances', 'ImageId': image.id, 'MinCount': str(kwargs.get('ex_mincount', '1')), 'MaxCount': str(kwargs.get('ex_maxcount', '1')), 'InstanceType': size.id } if 'ex_security_groups' in kwargs and 'ex_securitygroup' in kwargs: raise ValueError('You can only supply ex_security_groups or' ' ex_securitygroup') # ex_securitygroup is here for backward compatibility ex_security_groups = kwargs.get('ex_security_groups', None) ex_securitygroup = kwargs.get('ex_securitygroup', None) security_groups = ex_security_groups or ex_securitygroup if security_groups: if not isinstance(security_groups, (tuple, list)): security_groups = [security_groups] for sig in range(len(security_groups)): params['SecurityGroup.%d' % (sig + 1,)] =\ security_groups[sig] if 'ex_security_group_ids' in kwargs and 'ex_subnet' not in kwargs: raise ValueError('You can only supply ex_security_group_ids' ' combinated with ex_subnet') security_group_ids = kwargs.get('ex_security_group_ids', None) if security_group_ids: if not isinstance(security_group_ids, (tuple, list)): security_group_ids = [security_group_ids] for sig in range(len(security_group_ids)): params['SecurityGroupId.%d' % (sig + 1,)] =\ security_group_ids[sig] if 'location' in kwargs: availability_zone = getattr(kwargs['location'], 'availability_zone', None) if availability_zone: if availability_zone.region_name != self.region_name: raise AttributeError('Invalid availability zone: %s' % (availability_zone.name)) params['Placement.AvailabilityZone'] = availability_zone.name if 'auth' in kwargs and 'ex_keyname' in kwargs: raise AttributeError('Cannot specify auth and ex_keyname together') if 'auth' in kwargs: auth = self._get_and_check_auth(kwargs['auth']) key = self.ex_find_or_import_keypair_by_key_material(auth.pubkey) params['KeyName'] = key['keyName'] if 'ex_keyname' in kwargs: params['KeyName'] = kwargs['ex_keyname'] if 'ex_userdata' in kwargs: params['UserData'] = base64.b64encode(b(kwargs['ex_userdata']))\ .decode('utf-8') if 'ex_clienttoken' in kwargs: params['ClientToken'] = kwargs['ex_clienttoken'] if 'ex_blockdevicemappings' in kwargs: params.update(self._get_block_device_mapping_params( kwargs['ex_blockdevicemappings'])) if 'ex_iamprofile' in kwargs: if not isinstance(kwargs['ex_iamprofile'], basestring): raise AttributeError('ex_iamprofile not string') if kwargs['ex_iamprofile'].startswith('arn:aws:iam:'): params['IamInstanceProfile.Arn'] = kwargs['ex_iamprofile'] else: params['IamInstanceProfile.Name'] = kwargs['ex_iamprofile'] if 'ex_ebs_optimized' in kwargs: params['EbsOptimized'] = kwargs['ex_ebs_optimized'] if 'ex_subnet' in kwargs: params['SubnetId'] = kwargs['ex_subnet'].id if 'ex_placement_group' in kwargs and kwargs['ex_placement_group']: params['Placement.GroupName'] = kwargs['ex_placement_group'] object = self.connection.request(self.path, params=params).object nodes = self._to_nodes(object, 'instancesSet/item') for node in nodes: tags = {'Name': kwargs['name']} if 'ex_metadata' in kwargs: tags.update(kwargs['ex_metadata']) try: self.ex_create_tags(resource=node, tags=tags) except Exception: continue node.name = kwargs['name'] node.extra.update({'tags': tags}) if len(nodes) == 1: return nodes[0] else: return nodes def reboot_node(self, node): params = {'Action': 'RebootInstances'} params.update(self._pathlist('InstanceId', [node.id])) res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def destroy_node(self, node): params = {'Action': 'TerminateInstances'} params.update(self._pathlist('InstanceId', [node.id])) res = self.connection.request(self.path, params=params).object return self._get_terminate_boolean(res) def create_volume(self, size, name, location=None, snapshot=None, ex_volume_type='standard', ex_iops=None): """ Create a new volume. :param size: Size of volume in gigabytes (required) :type size: ``int`` :param name: Name of the volume to be created :type name: ``str`` :param location: Which data center to create a volume in. If empty, undefined behavior will be selected. (optional) :type location: :class:`.NodeLocation` :param snapshot: Snapshot from which to create the new volume. (optional) :type snapshot: :class:`.VolumeSnapshot` :param location: Datacenter in which to create a volume in. :type location: :class:`.ExEC2AvailabilityZone` :param ex_volume_type: Type of volume to create. :type ex_volume_type: ``str`` :param iops: The number of I/O operations per second (IOPS) that the volume supports. Only used if ex_volume_type is io1. :type iops: ``int`` :return: The newly created volume. :rtype: :class:`StorageVolume` """ valid_volume_types = ['standard', 'io1', 'gp2'] params = { 'Action': 'CreateVolume', 'Size': str(size)} if ex_volume_type and ex_volume_type not in valid_volume_types: raise ValueError('Invalid volume type specified: %s' % (ex_volume_type)) if snapshot: params['SnapshotId'] = snapshot.id if location is not None: params['AvailabilityZone'] = location.availability_zone.name if ex_volume_type: params['VolumeType'] = ex_volume_type if ex_volume_type == 'io1' and ex_iops: params['Iops'] = ex_iops volume = self._to_volume( self.connection.request(self.path, params=params).object, name=name) if self.ex_create_tags(volume, {'Name': name}): volume.extra['tags']['Name'] = name return volume def attach_volume(self, node, volume, device): params = { 'Action': 'AttachVolume', 'VolumeId': volume.id, 'InstanceId': node.id, 'Device': device} self.connection.request(self.path, params=params) return True def detach_volume(self, volume): params = { 'Action': 'DetachVolume', 'VolumeId': volume.id} self.connection.request(self.path, params=params) return True def destroy_volume(self, volume): params = { 'Action': 'DeleteVolume', 'VolumeId': volume.id} response = self.connection.request(self.path, params=params).object return self._get_boolean(response) def create_volume_snapshot(self, volume, name=None): """ Create snapshot from volume :param volume: Instance of ``StorageVolume`` :type volume: ``StorageVolume`` :param name: Name of snapshot (optional) :type name: ``str`` :rtype: :class:`VolumeSnapshot` """ params = { 'Action': 'CreateSnapshot', 'VolumeId': volume.id, } if name: params.update({ 'Description': name, }) response = self.connection.request(self.path, params=params).object snapshot = self._to_snapshot(response, name) if name and self.ex_create_tags(snapshot, {'Name': name}): snapshot.extra['tags']['Name'] = name return snapshot def list_volume_snapshots(self, volume): return [snapshot for snapshot in self.list_snapshots(owner='self') if snapshot.extra["volume_id"] == volume.id] def list_snapshots(self, snapshot=None, owner=None): """ Describe all snapshots. :param snapshot: If provided, only return snapshot information for the provided snapshot. :param owner: Owner for snapshot: self|amazon|ID :type owner: ``str`` :rtype: ``list`` of :class:`VolumeSnapshot` """ params = { 'Action': 'DescribeSnapshots', } if snapshot: params.update({ 'SnapshotId.1': snapshot.id, }) if owner: params.update({ 'Owner.1': owner, }) response = self.connection.request(self.path, params=params).object snapshots = self._to_snapshots(response) return snapshots def destroy_volume_snapshot(self, snapshot): params = { 'Action': 'DeleteSnapshot', 'SnapshotId': snapshot.id } response = self.connection.request(self.path, params=params).object return self._get_boolean(response) # Key pair management methods def list_key_pairs(self): params = { 'Action': 'DescribeKeyPairs' } response = self.connection.request(self.path, params=params) elems = findall(element=response.object, xpath='keySet/item', namespace=NAMESPACE) key_pairs = self._to_key_pairs(elems=elems) return key_pairs def get_key_pair(self, name): params = { 'Action': 'DescribeKeyPairs', 'KeyName': name } response = self.connection.request(self.path, params=params) elems = findall(element=response.object, xpath='keySet/item', namespace=NAMESPACE) key_pair = self._to_key_pairs(elems=elems)[0] return key_pair def create_key_pair(self, name): params = { 'Action': 'CreateKeyPair', 'KeyName': name } response = self.connection.request(self.path, params=params) elem = response.object key_pair = self._to_key_pair(elem=elem) return key_pair def import_key_pair_from_string(self, name, key_material): base64key = ensure_string(base64.b64encode(b(key_material))) params = { 'Action': 'ImportKeyPair', 'KeyName': name, 'PublicKeyMaterial': base64key } response = self.connection.request(self.path, params=params) elem = response.object key_pair = self._to_key_pair(elem=elem) return key_pair def delete_key_pair(self, key_pair): params = { 'Action': 'DeleteKeyPair', 'KeyName': key_pair.name } res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def copy_image(self, image, source_region, name=None, description=None): """ Copy an Amazon Machine Image from the specified source region to the current region. @inherits: :class:`NodeDriver.copy_image` :param source_region: The region where the image resides :type source_region: ``str`` :param image: Instance of class NodeImage :type image: :class:`NodeImage` :param name: The name of the new image :type name: ``str`` :param description: The description of the new image :type description: ``str`` :return: Instance of class ``NodeImage`` :rtype: :class:`NodeImage` """ params = {'Action': 'CopyImage', 'SourceRegion': source_region, 'SourceImageId': image.id} if name is not None: params['Name'] = name if description is not None: params['Description'] = description image = self._to_image( self.connection.request(self.path, params=params).object) return image def create_image(self, node, name, description=None, reboot=False, block_device_mapping=None): """ Create an Amazon Machine Image based off of an EBS-backed instance. @inherits: :class:`NodeDriver.create_image` :param node: Instance of ``Node`` :type node: :class: `Node` :param name: The name for the new image :type name: ``str`` :param block_device_mapping: A dictionary of the disk layout An example of this dict is included below. :type block_device_mapping: ``list`` of ``dict`` :param reboot: Whether or not to shutdown the instance before creation. Amazon calls this NoReboot and sets it to false by default to ensure a clean image. :type reboot: ``bool`` :param description: An optional description for the new image :type description: ``str`` An example block device mapping dictionary is included: mapping = [{'VirtualName': None, 'Ebs': {'VolumeSize': 10, 'VolumeType': 'standard', 'DeleteOnTermination': 'true'}, 'DeviceName': '/dev/sda1'}] :return: Instance of class ``NodeImage`` :rtype: :class:`NodeImage` """ params = {'Action': 'CreateImage', 'InstanceId': node.id, 'Name': name, 'NoReboot': not reboot} if description is not None: params['Description'] = description if block_device_mapping is not None: params.update(self._get_block_device_mapping_params( block_device_mapping)) image = self._to_image( self.connection.request(self.path, params=params).object) return image def delete_image(self, image): """ Deletes an image at Amazon given a NodeImage object @inherits: :class:`NodeDriver.delete_image` :param image: Instance of ``NodeImage`` :type image: :class: `NodeImage` :rtype: ``bool`` """ params = {'Action': 'DeregisterImage', 'ImageId': image.id} response = self.connection.request(self.path, params=params).object return self._get_boolean(response) def ex_create_placement_group(self, name): """ Creates new Placement Group :param name: Name for new placement Group :type name: ``str`` :rtype: ``bool`` """ params = {'Action': 'CreatePlacementGroup', 'Strategy': 'cluster', 'GroupName': name} response = self.connection.request(self.path, params=params).object return self._get_boolean(response) def ex_delete_placement_group(self, name): """ Deletes Placement Group :param name: Placement Group name :type name: ``str`` :rtype: ``bool`` """ params = {'Action': 'DeletePlacementGroup', 'GroupName': name} response = self.connection.request(self.path, params=params).object return self._get_boolean(response) def ex_list_placement_groups(self, names=None): """ List Placement Groups :param names: Placement Group names :type names: ``list`` of ``str`` :rtype: ``list`` of :class:`.EC2PlacementGroup` """ names = names or [] params = {'Action': 'DescribePlacementGroups'} for index, name in enumerate(names): params['GroupName.%s' % index + 1] = name response = self.connection.request(self.path, params=params).object return self._to_placement_groups(response) def ex_register_image(self, name, description=None, architecture=None, image_location=None, root_device_name=None, block_device_mapping=None, kernel_id=None, ramdisk_id=None, virtualization_type=None): """ Registers an Amazon Machine Image based off of an EBS-backed instance. Can also be used to create images from snapshots. More information can be found at http://goo.gl/hqZq0a. :param name: The name for the AMI being registered :type name: ``str`` :param description: The description of the AMI (optional) :type description: ``str`` :param architecture: The architecture of the AMI (i386/x86_64) (optional) :type architecture: ``str`` :param image_location: The location of the AMI within Amazon S3 Required if registering an instance store-backed AMI :type image_location: ``str`` :param root_device_name: The device name for the root device Required if registering an EBS-backed AMI :type root_device_name: ``str`` :param block_device_mapping: A dictionary of the disk layout (optional) :type block_device_mapping: ``dict`` :param kernel_id: Kernel id for AMI (optional) :type kernel_id: ``str`` :param ramdisk_id: RAM disk for AMI (optional) :type ramdisk_id: ``str`` :param virtualization_type: The type of virtualization for the AMI you are registering, paravirt or hvm (optional) :type virtualization_type: ``str`` :rtype: :class:`NodeImage` """ params = {'Action': 'RegisterImage', 'Name': name} if description is not None: params['Description'] = description if architecture is not None: params['Architecture'] = architecture if image_location is not None: params['ImageLocation'] = image_location if root_device_name is not None: params['RootDeviceName'] = root_device_name if block_device_mapping is not None: params.update(self._get_block_device_mapping_params( block_device_mapping)) if kernel_id is not None: params['KernelId'] = kernel_id if ramdisk_id is not None: params['RamDiskId'] = ramdisk_id if virtualization_type is not None: params['VirtualizationType'] = virtualization_type image = self._to_image( self.connection.request(self.path, params=params).object ) return image def ex_list_networks(self, network_ids=None, filters=None): """ Return a list of :class:`EC2Network` objects for the current region. :param network_ids: Return only networks matching the provided network IDs. If not specified, a list of all the networks in the corresponding region is returned. :type network_ids: ``list`` :param filters: The filters so that the response includes information for only certain networks. :type filters: ``dict`` :rtype: ``list`` of :class:`EC2Network` """ params = {'Action': 'DescribeVpcs'} if network_ids: params.update(self._pathlist('VpcId', network_ids)) if filters: params.update(self._build_filters(filters)) return self._to_networks( self.connection.request(self.path, params=params).object ) def ex_create_network(self, cidr_block, name=None, instance_tenancy='default'): """ Create a network/VPC :param cidr_block: The CIDR block assigned to the network :type cidr_block: ``str`` :param name: An optional name for the network :type name: ``str`` :param instance_tenancy: The allowed tenancy of instances launched into the VPC. Valid values: default/dedicated :type instance_tenancy: ``str`` :return: Dictionary of network properties :rtype: ``dict`` """ params = {'Action': 'CreateVpc', 'CidrBlock': cidr_block, 'InstanceTenancy': instance_tenancy} response = self.connection.request(self.path, params=params).object element = response.findall(fixxpath(xpath='vpc', namespace=NAMESPACE))[0] network = self._to_network(element, name) if name and self.ex_create_tags(network, {'Name': name}): network.extra['tags']['Name'] = name return network def ex_delete_network(self, vpc): """ Deletes a network/VPC. :param vpc: VPC to delete. :type vpc: :class:`.EC2Network` :rtype: ``bool`` """ params = {'Action': 'DeleteVpc', 'VpcId': vpc.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_list_subnets(self, subnet_ids=None, filters=None): """ Return a list of :class:`EC2NetworkSubnet` objects for the current region. :param subnet_ids: Return only subnets matching the provided subnet IDs. If not specified, a list of all the subnets in the corresponding region is returned. :type subnet_ids: ``list`` :param filters: The filters so that the response includes information for only certain subnets. :type filters: ``dict`` :rtype: ``list`` of :class:`EC2NetworkSubnet` """ params = {'Action': 'DescribeSubnets'} if subnet_ids: params.update(self._pathlist('SubnetId', subnet_ids)) if filters: params.update(self._build_filters(filters)) return self._to_subnets( self.connection.request(self.path, params=params).object ) def ex_create_subnet(self, vpc_id, cidr_block, availability_zone, name=None): """ Create a network subnet within a VPC :param vpc_id: The ID of the VPC that the subnet should be associated with :type vpc_id: ``str`` :param cidr_block: The CIDR block assigned to the subnet :type cidr_block: ``str`` :param availability_zone: The availability zone where the subnet should reside :type availability_zone: ``str`` :param name: An optional name for the network :type name: ``str`` :rtype: :class: `EC2NetworkSubnet` """ params = {'Action': 'CreateSubnet', 'VpcId': vpc_id, 'CidrBlock': cidr_block, 'AvailabilityZone': availability_zone} response = self.connection.request(self.path, params=params).object element = response.findall(fixxpath(xpath='subnet', namespace=NAMESPACE))[0] subnet = self._to_subnet(element, name) if name and self.ex_create_tags(subnet, {'Name': name}): subnet.extra['tags']['Name'] = name return subnet def ex_delete_subnet(self, subnet): """ Deletes a VPC subnet. :param subnet: The subnet to delete :type subnet: :class:`.EC2NetworkSubnet` :rtype: ``bool`` """ params = {'Action': 'DeleteSubnet', 'SubnetId': subnet.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_list_security_groups(self): """ List existing Security Groups. @note: This is a non-standard extension API, and only works for EC2. :rtype: ``list`` of ``str`` """ params = {'Action': 'DescribeSecurityGroups'} response = self.connection.request(self.path, params=params).object groups = [] for group in findall(element=response, xpath='securityGroupInfo/item', namespace=NAMESPACE): name = findtext(element=group, xpath='groupName', namespace=NAMESPACE) groups.append(name) return groups def ex_get_security_groups(self, group_ids=None, group_names=None, filters=None): """ Return a list of :class:`EC2SecurityGroup` objects for the current region. :param group_ids: Return only groups matching the provided group IDs. :type group_ids: ``list`` :param group_names: Return only groups matching the provided group names. :type group_ids: ``list`` :param filters: The filters so that the response includes information for only specific security groups. :type filters: ``dict`` :rtype: ``list`` of :class:`EC2SecurityGroup` """ params = {'Action': 'DescribeSecurityGroups'} if group_ids: params.update(self._pathlist('GroupId', group_ids)) if group_names: for name_idx, group_name in enumerate(group_names): name_idx += 1 # We want 1-based indexes name_key = 'GroupName.%s' % (name_idx) params[name_key] = group_name if filters: params.update(self._build_filters(filters)) response = self.connection.request(self.path, params=params) return self._to_security_groups(response.object) def ex_create_security_group(self, name, description, vpc_id=None): """ Creates a new Security Group in EC2-Classic or a targeted VPC. :param name: The name of the security group to Create. This must be unique. :type name: ``str`` :param description: Human readable description of a Security Group. :type description: ``str`` :param vpc_id: Optional identifier for VPC networks :type vpc_id: ``str`` :rtype: ``dict`` """ params = {'Action': 'CreateSecurityGroup', 'GroupName': name, 'GroupDescription': description} if vpc_id is not None: params['VpcId'] = vpc_id response = self.connection.request(self.path, params=params).object group_id = findattr(element=response, xpath='groupId', namespace=NAMESPACE) return { 'group_id': group_id } def ex_delete_security_group_by_id(self, group_id): """ Deletes a new Security Group using the group id. :param group_id: The ID of the security group :type group_id: ``str`` :rtype: ``bool`` """ params = {'Action': 'DeleteSecurityGroup', 'GroupId': group_id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_delete_security_group_by_name(self, group_name): """ Deletes a new Security Group using the group name. :param group_name: The name of the security group :type group_name: ``str`` :rtype: ``bool`` """ params = {'Action': 'DeleteSecurityGroup', 'GroupName': group_name} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_delete_security_group(self, name): """ Wrapper method which calls ex_delete_security_group_by_name. :param name: The name of the security group :type name: ``str`` :rtype: ``bool`` """ return self.ex_delete_security_group_by_name(name) def ex_authorize_security_group(self, name, from_port, to_port, cidr_ip, protocol='tcp'): """ Edit a Security Group to allow specific traffic. @note: This is a non-standard extension API, and only works for EC2. :param name: The name of the security group to edit :type name: ``str`` :param from_port: The beginning of the port range to open :type from_port: ``str`` :param to_port: The end of the port range to open :type to_port: ``str`` :param cidr_ip: The ip to allow traffic for. :type cidr_ip: ``str`` :param protocol: tcp/udp/icmp :type protocol: ``str`` :rtype: ``bool`` """ params = {'Action': 'AuthorizeSecurityGroupIngress', 'GroupName': name, 'IpProtocol': protocol, 'FromPort': str(from_port), 'ToPort': str(to_port), 'CidrIp': cidr_ip} try: res = self.connection.request( self.path, params=params.copy()).object return self._get_boolean(res) except Exception: e = sys.exc_info()[1] if e.args[0].find('InvalidPermission.Duplicate') == -1: raise e def ex_authorize_security_group_ingress(self, id, from_port, to_port, cidr_ips=None, group_pairs=None, protocol='tcp'): """ Edit a Security Group to allow specific ingress traffic using CIDR blocks or either a group ID, group name or user ID (account). :param id: The id of the security group to edit :type id: ``str`` :param from_port: The beginning of the port range to open :type from_port: ``int`` :param to_port: The end of the port range to open :type to_port: ``int`` :param cidr_ips: The list of ip ranges to allow traffic for. :type cidr_ips: ``list`` :param group_pairs: Source user/group pairs to allow traffic for. More info can be found at http://goo.gl/stBHJF EC2 Classic Example: To allow access from any system associated with the default group on account 1234567890 [{'group_name': 'default', 'user_id': '1234567890'}] VPC Example: Allow access from any system associated with security group sg-47ad482e on your own account [{'group_id': ' sg-47ad482e'}] :type group_pairs: ``list`` of ``dict`` :param protocol: tcp/udp/icmp :type protocol: ``str`` :rtype: ``bool`` """ params = self._get_common_security_group_params(id, protocol, from_port, to_port, cidr_ips, group_pairs) params["Action"] = 'AuthorizeSecurityGroupIngress' res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_authorize_security_group_egress(self, id, from_port, to_port, cidr_ips, group_pairs=None, protocol='tcp'): """ Edit a Security Group to allow specific egress traffic using CIDR blocks or either a group ID, group name or user ID (account). This call is not supported for EC2 classic and only works for VPC groups. :param id: The id of the security group to edit :type id: ``str`` :param from_port: The beginning of the port range to open :type from_port: ``int`` :param to_port: The end of the port range to open :type to_port: ``int`` :param cidr_ips: The list of ip ranges to allow traffic for. :type cidr_ips: ``list`` :param group_pairs: Source user/group pairs to allow traffic for. More info can be found at http://goo.gl/stBHJF EC2 Classic Example: To allow access from any system associated with the default group on account 1234567890 [{'group_name': 'default', 'user_id': '1234567890'}] VPC Example: Allow access from any system associated with security group sg-47ad482e on your own account [{'group_id': ' sg-47ad482e'}] :type group_pairs: ``list`` of ``dict`` :param protocol: tcp/udp/icmp :type protocol: ``str`` :rtype: ``bool`` """ params = self._get_common_security_group_params(id, protocol, from_port, to_port, cidr_ips, group_pairs) params["Action"] = 'AuthorizeSecurityGroupEgress' res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_revoke_security_group_ingress(self, id, from_port, to_port, cidr_ips=None, group_pairs=None, protocol='tcp'): """ Edit a Security Group to revoke specific ingress traffic using CIDR blocks or either a group ID, group name or user ID (account). :param id: The id of the security group to edit :type id: ``str`` :param from_port: The beginning of the port range to open :type from_port: ``int`` :param to_port: The end of the port range to open :type to_port: ``int`` :param cidr_ips: The list of ip ranges to allow traffic for. :type cidr_ips: ``list`` :param group_pairs: Source user/group pairs to allow traffic for. More info can be found at http://goo.gl/stBHJF EC2 Classic Example: To allow access from any system associated with the default group on account 1234567890 [{'group_name': 'default', 'user_id': '1234567890'}] VPC Example: Allow access from any system associated with security group sg-47ad482e on your own account [{'group_id': ' sg-47ad482e'}] :type group_pairs: ``list`` of ``dict`` :param protocol: tcp/udp/icmp :type protocol: ``str`` :rtype: ``bool`` """ params = self._get_common_security_group_params(id, protocol, from_port, to_port, cidr_ips, group_pairs) params["Action"] = 'RevokeSecurityGroupIngress' res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_revoke_security_group_egress(self, id, from_port, to_port, cidr_ips=None, group_pairs=None, protocol='tcp'): """ Edit a Security Group to revoke specific egress traffic using CIDR blocks or either a group ID, group name or user ID (account). This call is not supported for EC2 classic and only works for VPC groups. :param id: The id of the security group to edit :type id: ``str`` :param from_port: The beginning of the port range to open :type from_port: ``int`` :param to_port: The end of the port range to open :type to_port: ``int`` :param cidr_ips: The list of ip ranges to allow traffic for. :type cidr_ips: ``list`` :param group_pairs: Source user/group pairs to allow traffic for. More info can be found at http://goo.gl/stBHJF EC2 Classic Example: To allow access from any system associated with the default group on account 1234567890 [{'group_name': 'default', 'user_id': '1234567890'}] VPC Example: Allow access from any system associated with security group sg-47ad482e on your own account [{'group_id': ' sg-47ad482e'}] :type group_pairs: ``list`` of ``dict`` :param protocol: tcp/udp/icmp :type protocol: ``str`` :rtype: ``bool`` """ params = self._get_common_security_group_params(id, protocol, from_port, to_port, cidr_ips, group_pairs) params['Action'] = 'RevokeSecurityGroupEgress' res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_authorize_security_group_permissive(self, name): """ Edit a Security Group to allow all traffic. @note: This is a non-standard extension API, and only works for EC2. :param name: The name of the security group to edit :type name: ``str`` :rtype: ``list`` of ``str`` """ results = [] params = {'Action': 'AuthorizeSecurityGroupIngress', 'GroupName': name, 'IpProtocol': 'tcp', 'FromPort': '0', 'ToPort': '65535', 'CidrIp': '0.0.0.0/0'} try: results.append( self.connection.request(self.path, params=params.copy()).object ) except Exception: e = sys.exc_info()[1] if e.args[0].find("InvalidPermission.Duplicate") == -1: raise e params['IpProtocol'] = 'udp' try: results.append( self.connection.request(self.path, params=params.copy()).object ) except Exception: e = sys.exc_info()[1] if e.args[0].find("InvalidPermission.Duplicate") == -1: raise e params.update({'IpProtocol': 'icmp', 'FromPort': '-1', 'ToPort': '-1'}) try: results.append( self.connection.request(self.path, params=params.copy()).object ) except Exception: e = sys.exc_info()[1] if e.args[0].find("InvalidPermission.Duplicate") == -1: raise e return results def ex_list_availability_zones(self, only_available=True): """ Return a list of :class:`ExEC2AvailabilityZone` objects for the current region. Note: This is an extension method and is only available for EC2 driver. :keyword only_available: If true, return only availability zones with state 'available' :type only_available: ``str`` :rtype: ``list`` of :class:`ExEC2AvailabilityZone` """ params = {'Action': 'DescribeAvailabilityZones'} filters = {'region-name': self.region_name} if only_available: filters['state'] = 'available' params.update(self._build_filters(filters)) result = self.connection.request(self.path, params=params.copy()).object availability_zones = [] for element in findall(element=result, xpath='availabilityZoneInfo/item', namespace=NAMESPACE): name = findtext(element=element, xpath='zoneName', namespace=NAMESPACE) zone_state = findtext(element=element, xpath='zoneState', namespace=NAMESPACE) region_name = findtext(element=element, xpath='regionName', namespace=NAMESPACE) availability_zone = ExEC2AvailabilityZone( name=name, zone_state=zone_state, region_name=region_name ) availability_zones.append(availability_zone) return availability_zones def ex_describe_tags(self, resource): """ Return a dictionary of tags for a resource (e.g. Node or StorageVolume). :param resource: resource which should be used :type resource: any resource class, such as :class:`Node,` :class:`StorageVolume,` or :class:NodeImage` :return: dict Node tags :rtype: ``dict`` """ params = {'Action': 'DescribeTags'} filters = { 'resource-id': resource.id } params.update(self._build_filters(filters)) result = self.connection.request(self.path, params=params).object return self._get_resource_tags(result) def ex_create_tags(self, resource, tags): """ Create tags for a resource (Node or StorageVolume). :param resource: Resource to be tagged :type resource: :class:`Node` or :class:`StorageVolume` or :class:`VolumeSnapshot` :param tags: A dictionary or other mapping of strings to strings, associating tag names with tag values. :type tags: ``dict`` :rtype: ``bool`` """ if not tags: return params = {'Action': 'CreateTags', 'ResourceId.0': resource.id} for i, key in enumerate(tags): params['Tag.%d.Key' % i] = key params['Tag.%d.Value' % i] = tags[key] res = self.connection.request(self.path, params=params.copy()).object return self._get_boolean(res) def ex_delete_tags(self, resource, tags): """ Delete tags from a resource. :param resource: Resource to be tagged :type resource: :class:`Node` or :class:`StorageVolume` :param tags: A dictionary or other mapping of strings to strings, specifying the tag names and tag values to be deleted. :type tags: ``dict`` :rtype: ``bool`` """ if not tags: return params = {'Action': 'DeleteTags', 'ResourceId.0': resource.id} for i, key in enumerate(tags): params['Tag.%d.Key' % i] = key params['Tag.%d.Value' % i] = tags[key] res = self.connection.request(self.path, params=params.copy()).object return self._get_boolean(res) def ex_get_metadata_for_node(self, node): """ Return the metadata associated with the node. :param node: Node instance :type node: :class:`Node` :return: A dictionary or other mapping of strings to strings, associating tag names with tag values. :rtype tags: ``dict`` """ return node.extra['tags'] def ex_allocate_address(self, domain='standard'): """ Allocate a new Elastic IP address for EC2 classic or VPC :param domain: The domain to allocate the new address in (standard/vpc) :type domain: ``str`` :return: Instance of ElasticIP :rtype: :class:`ElasticIP` """ params = {'Action': 'AllocateAddress'} if domain == 'vpc': params['Domain'] = domain response = self.connection.request(self.path, params=params).object return self._to_address(response, only_associated=False) def ex_release_address(self, elastic_ip, domain=None): """ Release an Elastic IP address using the IP (EC2-Classic) or using the allocation ID (VPC) :param elastic_ip: Elastic IP instance :type elastic_ip: :class:`ElasticIP` :param domain: The domain where the IP resides (vpc only) :type domain: ``str`` :return: True on success, False otherwise. :rtype: ``bool`` """ params = {'Action': 'ReleaseAddress'} if domain is not None and domain != 'vpc': raise AttributeError('Domain can only be set to vpc') if domain is None: params['PublicIp'] = elastic_ip.ip else: params['AllocationId'] = elastic_ip.extra['allocation_id'] response = self.connection.request(self.path, params=params).object return self._get_boolean(response) def ex_describe_all_addresses(self, only_associated=False): """ Return all the Elastic IP addresses for this account optionally, return only addresses associated with nodes :param only_associated: If true, return only those addresses that are associated with an instance. :type only_associated: ``bool`` :return: List of ElasticIP instances. :rtype: ``list`` of :class:`ElasticIP` """ params = {'Action': 'DescribeAddresses'} response = self.connection.request(self.path, params=params).object # We will send our only_associated boolean over to # shape how the return data is sent back return self._to_addresses(response, only_associated) def ex_associate_address_with_node(self, node, elastic_ip, domain=None): """ Associate an Elastic IP address with a particular node. :param node: Node instance :type node: :class:`Node` :param elastic_ip: Elastic IP instance :type elastic_ip: :class:`ElasticIP` :param domain: The domain where the IP resides (vpc only) :type domain: ``str`` :return: A string representation of the association ID which is required for VPC disassociation. EC2/standard addresses return None :rtype: ``None`` or ``str`` """ params = {'Action': 'AssociateAddress', 'InstanceId': node.id} if domain is not None and domain != 'vpc': raise AttributeError('Domain can only be set to vpc') if domain is None: params.update({'PublicIp': elastic_ip.ip}) else: params.update({'AllocationId': elastic_ip.extra['allocation_id']}) response = self.connection.request(self.path, params=params).object association_id = findtext(element=response, xpath='associationId', namespace=NAMESPACE) return association_id def ex_associate_addresses(self, node, elastic_ip, domain=None): """ Note: This method has been deprecated in favor of the ex_associate_address_with_node method. """ return self.ex_associate_address_with_node(node=node, elastic_ip=elastic_ip, domain=domain) def ex_disassociate_address(self, elastic_ip, domain=None): """ Disassociate an Elastic IP address using the IP (EC2-Classic) or the association ID (VPC) :param elastic_ip: ElasticIP instance :type elastic_ip: :class:`ElasticIP` :param domain: The domain where the IP resides (vpc only) :type domain: ``str`` :return: True on success, False otherwise. :rtype: ``bool`` """ params = {'Action': 'DisassociateAddress'} if domain is not None and domain != 'vpc': raise AttributeError('Domain can only be set to vpc') if domain is None: params['PublicIp'] = elastic_ip.ip else: params['AssociationId'] = elastic_ip.extra['association_id'] res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_describe_addresses(self, nodes): """ Return Elastic IP addresses for all the nodes in the provided list. :param nodes: List of :class:`Node` instances :type nodes: ``list`` of :class:`Node` :return: Dictionary where a key is a node ID and the value is a list with the Elastic IP addresses associated with this node. :rtype: ``dict`` """ if not nodes: return {} params = {'Action': 'DescribeAddresses'} if len(nodes) == 1: self._add_instance_filter(params, nodes[0]) result = self.connection.request(self.path, params=params).object node_instance_ids = [node.id for node in nodes] nodes_elastic_ip_mappings = {} # We will set only_associated to True so that we only get back # IPs which are associated with instances only_associated = True for node_id in node_instance_ids: nodes_elastic_ip_mappings.setdefault(node_id, []) for addr in self._to_addresses(result, only_associated): instance_id = addr.instance_id if node_id == instance_id: nodes_elastic_ip_mappings[instance_id].append( addr.ip) return nodes_elastic_ip_mappings def ex_describe_addresses_for_node(self, node): """ Return a list of Elastic IP addresses associated with this node. :param node: Node instance :type node: :class:`Node` :return: list Elastic IP addresses attached to this node. :rtype: ``list`` of ``str`` """ node_elastic_ips = self.ex_describe_addresses([node]) return node_elastic_ips[node.id] # Network interface management methods def ex_list_network_interfaces(self): """ Return all network interfaces :return: List of EC2NetworkInterface instances :rtype: ``list`` of :class `EC2NetworkInterface` """ params = {'Action': 'DescribeNetworkInterfaces'} return self._to_interfaces( self.connection.request(self.path, params=params).object ) def ex_create_network_interface(self, subnet, name=None, description=None, private_ip_address=None): """ Create a network interface within a VPC subnet. :param subnet: EC2NetworkSubnet instance :type subnet: :class:`EC2NetworkSubnet` :param name: Optional name of the interface :type name: ``str`` :param description: Optional description of the network interface :type description: ``str`` :param private_ip_address: Optional address to assign as the primary private IP address of the interface. If one is not provided then Amazon will automatically auto-assign an available IP. EC2 allows assignment of multiple IPs, but this will be the primary. :type private_ip_address: ``str`` :return: EC2NetworkInterface instance :rtype: :class `EC2NetworkInterface` """ params = {'Action': 'CreateNetworkInterface', 'SubnetId': subnet.id} if description: params['Description'] = description if private_ip_address: params['PrivateIpAddress'] = private_ip_address response = self.connection.request(self.path, params=params).object element = response.findall(fixxpath(xpath='networkInterface', namespace=NAMESPACE))[0] interface = self._to_interface(element, name) if name and self.ex_create_tags(interface, {'Name': name}): interface.extra['tags']['Name'] = name return interface def ex_delete_network_interface(self, network_interface): """ Deletes a network interface. :param network_interface: EC2NetworkInterface instance :type network_interface: :class:`EC2NetworkInterface` :rtype: ``bool`` """ params = {'Action': 'DeleteNetworkInterface', 'NetworkInterfaceId': network_interface.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_attach_network_interface_to_node(self, network_interface, node, device_index): """ Attach a network interface to an instance. :param network_interface: EC2NetworkInterface instance :type network_interface: :class:`EC2NetworkInterface` :param node: Node instance :type node: :class:`Node` :param device_index: The interface device index :type device_index: ``int`` :return: String representation of the attachment id. This is required to detach the interface. :rtype: ``str`` """ params = {'Action': 'AttachNetworkInterface', 'NetworkInterfaceId': network_interface.id, 'InstanceId': node.id, 'DeviceIndex': device_index} response = self.connection.request(self.path, params=params).object attachment_id = findattr(element=response, xpath='attachmentId', namespace=NAMESPACE) return attachment_id def ex_detach_network_interface(self, attachment_id, force=False): """ Detach a network interface from an instance. :param attachment_id: The attachment ID associated with the interface :type attachment_id: ``str`` :param force: Forces the detachment. :type force: ``bool`` :return: ``True`` on successful detachment, ``False`` otherwise. :rtype: ``bool`` """ params = {'Action': 'DetachNetworkInterface', 'AttachmentId': attachment_id} if force: params['Force'] = True res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_modify_instance_attribute(self, node, attributes): """ Modify node attributes. A list of valid attributes can be found at http://goo.gl/gxcj8 :param node: Node instance :type node: :class:`Node` :param attributes: Dictionary with node attributes :type attributes: ``dict`` :return: True on success, False otherwise. :rtype: ``bool`` """ attributes = attributes or {} attributes.update({'InstanceId': node.id}) params = {'Action': 'ModifyInstanceAttribute'} params.update(attributes) res = self.connection.request(self.path, params=params.copy()).object return self._get_boolean(res) def ex_modify_image_attribute(self, image, attributes): """ Modify image attributes. :param image: NodeImage instance :type image: :class:`NodeImage` :param attributes: Dictionary with node attributes :type attributes: ``dict`` :return: True on success, False otherwise. :rtype: ``bool`` """ attributes = attributes or {} attributes.update({'ImageId': image.id}) params = {'Action': 'ModifyImageAttribute'} params.update(attributes) res = self.connection.request(self.path, params=params.copy()).object return self._get_boolean(res) def ex_change_node_size(self, node, new_size): """ Change the node size. Note: Node must be turned of before changing the size. :param node: Node instance :type node: :class:`Node` :param new_size: NodeSize intance :type new_size: :class:`NodeSize` :return: True on success, False otherwise. :rtype: ``bool`` """ if 'instancetype' in node.extra: current_instance_type = node.extra['instancetype'] if current_instance_type == new_size.id: raise ValueError('New instance size is the same as' + 'the current one') attributes = {'InstanceType.Value': new_size.id} return self.ex_modify_instance_attribute(node, attributes) def ex_start_node(self, node): """ Start the node by passing in the node object, does not work with instance store backed instances :param node: Node which should be used :type node: :class:`Node` :rtype: ``bool`` """ params = {'Action': 'StartInstances'} params.update(self._pathlist('InstanceId', [node.id])) res = self.connection.request(self.path, params=params).object return self._get_state_boolean(res) def ex_stop_node(self, node): """ Stop the node by passing in the node object, does not work with instance store backed instances :param node: Node which should be used :type node: :class:`Node` :rtype: ``bool`` """ params = {'Action': 'StopInstances'} params.update(self._pathlist('InstanceId', [node.id])) res = self.connection.request(self.path, params=params).object return self._get_state_boolean(res) def ex_get_console_output(self, node): """ Get console output for the node. :param node: Node which should be used :type node: :class:`Node` :return: Dictionary with the following keys: - instance_id (``str``) - timestamp (``datetime.datetime``) - ts of the last output - output (``str``) - console output :rtype: ``dict`` """ params = { 'Action': 'GetConsoleOutput', 'InstanceId': node.id } response = self.connection.request(self.path, params=params).object timestamp = findattr(element=response, xpath='timestamp', namespace=NAMESPACE) encoded_string = findattr(element=response, xpath='output', namespace=NAMESPACE) timestamp = parse_date(timestamp) if encoded_string: output = base64.b64decode(b(encoded_string)).decode('utf-8') else: # No console output output = None return {'instance_id': node.id, 'timestamp': timestamp, 'output': output} def ex_list_reserved_nodes(self): """ List all reserved instances/nodes which can be purchased from Amazon for one or three year terms. Reservations are made at a region level and reduce the hourly charge for instances. More information can be found at http://goo.gl/ulXCC7. :rtype: ``list`` of :class:`.EC2ReservedNode` """ params = {'Action': 'DescribeReservedInstances'} response = self.connection.request(self.path, params=params).object return self._to_reserved_nodes(response, 'reservedInstancesSet/item') # Account specific methods def ex_get_limits(self): """ Retrieve account resource limits. :rtype: ``dict`` """ attributes = ['max-instances', 'max-elastic-ips', 'vpc-max-elastic-ips'] params = {} params['Action'] = 'DescribeAccountAttributes' for index, attribute in enumerate(attributes): params['AttributeName.%s' % (index)] = attribute response = self.connection.request(self.path, params=params) data = response.object elems = data.findall(fixxpath(xpath='accountAttributeSet/item', namespace=NAMESPACE)) result = {'resource': {}} for elem in elems: name = findtext(element=elem, xpath='attributeName', namespace=NAMESPACE) value = findtext(element=elem, xpath='attributeValueSet/item/attributeValue', namespace=NAMESPACE) result['resource'][name] = int(value) return result # Deprecated extension methods def ex_list_keypairs(self): """ Lists all the keypair names and fingerprints. :rtype: ``list`` of ``dict`` """ warnings.warn('This method has been deprecated in favor of ' 'list_key_pairs method') key_pairs = self.list_key_pairs() result = [] for key_pair in key_pairs: item = { 'keyName': key_pair.name, 'keyFingerprint': key_pair.fingerprint, } result.append(item) return result def ex_describe_all_keypairs(self): """ Return names for all the available key pairs. @note: This is a non-standard extension API, and only works for EC2. :rtype: ``list`` of ``str`` """ names = [key_pair.name for key_pair in self.list_key_pairs()] return names def ex_describe_keypairs(self, name): """ Here for backward compatibility. """ return self.ex_describe_keypair(name=name) def ex_describe_keypair(self, name): """ Describes a keypair by name. @note: This is a non-standard extension API, and only works for EC2. :param name: The name of the keypair to describe. :type name: ``str`` :rtype: ``dict`` """ params = { 'Action': 'DescribeKeyPairs', 'KeyName.1': name } response = self.connection.request(self.path, params=params).object key_name = findattr(element=response, xpath='keySet/item/keyName', namespace=NAMESPACE) fingerprint = findattr(element=response, xpath='keySet/item/keyFingerprint', namespace=NAMESPACE).strip() return { 'keyName': key_name, 'keyFingerprint': fingerprint } def ex_create_keypair(self, name): """ Creates a new keypair @note: This is a non-standard extension API, and only works for EC2. :param name: The name of the keypair to Create. This must be unique, otherwise an InvalidKeyPair.Duplicate exception is raised. :type name: ``str`` :rtype: ``dict`` """ warnings.warn('This method has been deprecated in favor of ' 'create_key_pair method') key_pair = self.create_key_pair(name=name) result = { 'keyMaterial': key_pair.private_key, 'keyFingerprint': key_pair.fingerprint } return result def ex_delete_keypair(self, keypair): """ Delete a key pair by name. @note: This is a non-standard extension API, and only works with EC2. :param keypair: The name of the keypair to delete. :type keypair: ``str`` :rtype: ``bool`` """ warnings.warn('This method has been deprecated in favor of ' 'delete_key_pair method') keypair = KeyPair(name=keypair, public_key=None, fingerprint=None, driver=self) return self.delete_key_pair(keypair) def ex_import_keypair_from_string(self, name, key_material): """ imports a new public key where the public key is passed in as a string @note: This is a non-standard extension API, and only works for EC2. :param name: The name of the public key to import. This must be unique, otherwise an InvalidKeyPair.Duplicate exception is raised. :type name: ``str`` :param key_material: The contents of a public key file. :type key_material: ``str`` :rtype: ``dict`` """ warnings.warn('This method has been deprecated in favor of ' 'import_key_pair_from_string method') key_pair = self.import_key_pair_from_string(name=name, key_material=key_material) result = { 'keyName': key_pair.name, 'keyFingerprint': key_pair.fingerprint } return result def ex_import_keypair(self, name, keyfile): """ imports a new public key where the public key is passed via a filename @note: This is a non-standard extension API, and only works for EC2. :param name: The name of the public key to import. This must be unique, otherwise an InvalidKeyPair.Duplicate exception is raised. :type name: ``str`` :param keyfile: The filename with path of the public key to import. :type keyfile: ``str`` :rtype: ``dict`` """ warnings.warn('This method has been deprecated in favor of ' 'import_key_pair_from_file method') key_pair = self.import_key_pair_from_file(name=name, key_file_path=keyfile) result = { 'keyName': key_pair.name, 'keyFingerprint': key_pair.fingerprint } return result def ex_find_or_import_keypair_by_key_material(self, pubkey): """ Given a public key, look it up in the EC2 KeyPair database. If it exists, return any information we have about it. Otherwise, create it. Keys that are created are named based on their comment and fingerprint. :rtype: ``dict`` """ key_fingerprint = get_pubkey_ssh2_fingerprint(pubkey) key_comment = get_pubkey_comment(pubkey, default='unnamed') key_name = '%s-%s' % (key_comment, key_fingerprint) key_pairs = self.list_key_pairs() key_pairs = [key_pair for key_pair in key_pairs if key_pair.fingerprint == key_fingerprint] if len(key_pairs) >= 1: key_pair = key_pairs[0] result = { 'keyName': key_pair.name, 'keyFingerprint': key_pair.fingerprint } else: result = self.ex_import_keypair_from_string(key_name, pubkey) return result def ex_list_internet_gateways(self, gateway_ids=None, filters=None): """ Describes available Internet gateways and whether or not they are attached to a VPC. These are required for VPC nodes to communicate over the Internet. :param gateway_ids: Return only intenet gateways matching the provided internet gateway IDs. If not specified, a list of all the internet gateways in the corresponding region is returned. :type gateway_ids: ``list`` :param filters: The filters so that the response includes information for only certain gateways. :type filters: ``dict`` :rtype: ``list`` of :class:`.VPCInternetGateway` """ params = {'Action': 'DescribeInternetGateways'} if gateway_ids: params.update(self._pathlist('InternetGatewayId', gateway_ids)) if filters: params.update(self._build_filters(filters)) response = self.connection.request(self.path, params=params).object return self._to_internet_gateways(response, 'internetGatewaySet/item') def ex_create_internet_gateway(self, name=None): """ Delete a VPC Internet gateway :rtype: ``bool`` """ params = {'Action': 'CreateInternetGateway'} resp = self.connection.request(self.path, params=params).object element = resp.findall(fixxpath(xpath='internetGateway', namespace=NAMESPACE)) gateway = self._to_internet_gateway(element[0], name) if name and self.ex_create_tags(gateway, {'Name': name}): gateway.extra['tags']['Name'] = name return gateway def ex_delete_internet_gateway(self, gateway): """ Delete a VPC Internet gateway :param gateway: The gateway to delete :type gateway: :class:`.VPCInternetGateway` :rtype: ``bool`` """ params = {'Action': 'DeleteInternetGateway', 'InternetGatewayId': gateway.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_attach_internet_gateway(self, gateway, network): """ Attach an Internet gateway to a VPC :param gateway: The gateway to attach :type gateway: :class:`.VPCInternetGateway` :param network: The VPC network to attach to :type network: :class:`.EC2Network` :rtype: ``bool`` """ params = {'Action': 'AttachInternetGateway', 'InternetGatewayId': gateway.id, 'VpcId': network.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_detach_internet_gateway(self, gateway, network): """ Detach an Internet gateway from a VPC :param gateway: The gateway to detach :type gateway: :class:`.VPCInternetGateway` :param network: The VPC network to detach from :type network: :class:`.EC2Network` :rtype: ``bool`` """ params = {'Action': 'DetachInternetGateway', 'InternetGatewayId': gateway.id, 'VpcId': network.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_list_route_tables(self, route_table_ids=None, filters=None): """ Describes one or more of a VPC's route tables. These are used to determine where network traffic is directed. :param route_table_ids: Return only route tables matching the provided route table IDs. If not specified, a list of all the route tables in the corresponding region is returned. :type route_table_ids: ``list`` :param filters: The filters so that the response includes information for only certain route tables. :type filters: ``dict`` :rtype: ``list`` of :class:`.EC2RouteTable` """ params = {'Action': 'DescribeRouteTables'} if route_table_ids: params.update(self._pathlist('RouteTableId', route_table_ids)) if filters: params.update(self._build_filters(filters)) response = self.connection.request(self.path, params=params) return self._to_route_tables(response.object) def ex_create_route_table(self, network, name=None): """ Create a route table within a VPC. :param vpc_id: The VPC that the subnet should be created in. :type vpc_id: :class:`.EC2Network` :rtype: :class: `.EC2RouteTable` """ params = {'Action': 'CreateRouteTable', 'VpcId': network.id} response = self.connection.request(self.path, params=params).object element = response.findall(fixxpath(xpath='routeTable', namespace=NAMESPACE))[0] route_table = self._to_route_table(element, name=name) if name and self.ex_create_tags(route_table, {'Name': name}): route_table.extra['tags']['Name'] = name return route_table def ex_delete_route_table(self, route_table): """ Deletes a VPC route table. :param route_table: The route table to delete. :type route_table: :class:`.EC2RouteTable` :rtype: ``bool`` """ params = {'Action': 'DeleteRouteTable', 'RouteTableId': route_table.id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_associate_route_table(self, route_table, subnet): """ Associates a route table with a subnet within a VPC. Note: A route table can be associated with multiple subnets. :param route_table: The route table to associate. :type route_table: :class:`.EC2RouteTable` :param subnet: The subnet to associate with. :type subnet: :class:`.EC2Subnet` :return: Route table association ID. :rtype: ``str`` """ params = {'Action': 'AssociateRouteTable', 'RouteTableId': route_table.id, 'SubnetId': subnet.id} result = self.connection.request(self.path, params=params).object association_id = findtext(element=result, xpath='associationId', namespace=NAMESPACE) return association_id def ex_dissociate_route_table(self, subnet_association): """ Dissociates a subnet from a route table. :param subnet_association: The subnet association object or subnet association ID. :type subnet_association: :class:`.EC2SubnetAssociation` or ``str`` :rtype: ``bool`` """ if isinstance(subnet_association, EC2SubnetAssociation): subnet_association_id = subnet_association.id else: subnet_association_id = subnet_association params = {'Action': 'DisassociateRouteTable', 'AssociationId': subnet_association_id} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_replace_route_table_association(self, subnet_association, route_table): """ Changes the route table associated with a given subnet in a VPC. Note: This method can be used to change which table is the main route table in the VPC (Specify the main route table's association ID and the route table to be the new main route table). :param subnet_association: The subnet association object or subnet association ID. :type subnet_association: :class:`.EC2SubnetAssociation` or ``str`` :param route_table: The new route table to associate. :type route_table: :class:`.EC2RouteTable` :return: New route table association ID. :rtype: ``str`` """ if isinstance(subnet_association, EC2SubnetAssociation): subnet_association_id = subnet_association.id else: subnet_association_id = subnet_association params = {'Action': 'ReplaceRouteTableAssociation', 'AssociationId': subnet_association_id, 'RouteTableId': route_table.id} result = self.connection.request(self.path, params=params).object new_association_id = findtext(element=result, xpath='newAssociationId', namespace=NAMESPACE) return new_association_id def ex_create_route(self, route_table, cidr, internet_gateway=None, node=None, network_interface=None, vpc_peering_connection=None): """ Creates a route entry in the route table. :param route_table: The route table to create the route in. :type route_table: :class:`.EC2RouteTable` :param cidr: The CIDR block used for the destination match. :type cidr: ``str`` :param internet_gateway: The internet gateway to route traffic through. :type internet_gateway: :class:`.VPCInternetGateway` :param node: The NAT instance to route traffic through. :type node: :class:`Node` :param network_interface: The network interface of the node to route traffic through. :type network_interface: :class:`.EC2NetworkInterface` :param vpc_peering_connection: The VPC peering connection. :type vpc_peering_connection: :class:`.VPCPeeringConnection` :rtype: ``bool`` Note: You must specify one of the following: internet_gateway, node, network_interface, vpc_peering_connection. """ params = {'Action': 'CreateRoute', 'RouteTableId': route_table.id, 'DestinationCidrBlock': cidr} if internet_gateway: params['GatewayId'] = internet_gateway.id if node: params['InstanceId'] = node.id if network_interface: params['NetworkInterfaceId'] = network_interface.id if vpc_peering_connection: params['VpcPeeringConnectionId'] = vpc_peering_connection.id res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_delete_route(self, route_table, cidr): """ Deletes a route entry from the route table. :param route_table: The route table to delete the route from. :type route_table: :class:`.EC2RouteTable` :param cidr: The CIDR block used for the destination match. :type cidr: ``str`` :rtype: ``bool`` """ params = {'Action': 'DeleteRoute', 'RouteTableId': route_table.id, 'DestinationCidrBlock': cidr} res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def ex_replace_route(self, route_table, cidr, internet_gateway=None, node=None, network_interface=None, vpc_peering_connection=None): """ Replaces an existing route entry within a route table in a VPC. :param route_table: The route table to replace the route in. :type route_table: :class:`.EC2RouteTable` :param cidr: The CIDR block used for the destination match. :type cidr: ``str`` :param internet_gateway: The new internet gateway to route traffic through. :type internet_gateway: :class:`.VPCInternetGateway` :param node: The new NAT instance to route traffic through. :type node: :class:`Node` :param network_interface: The new network interface of the node to route traffic through. :type network_interface: :class:`.EC2NetworkInterface` :param vpc_peering_connection: The new VPC peering connection. :type vpc_peering_connection: :class:`.VPCPeeringConnection` :rtype: ``bool`` Note: You must specify one of the following: internet_gateway, node, network_interface, vpc_peering_connection. """ params = {'Action': 'ReplaceRoute', 'RouteTableId': route_table.id, 'DestinationCidrBlock': cidr} if internet_gateway: params['GatewayId'] = internet_gateway.id if node: params['InstanceId'] = node.id if network_interface: params['NetworkInterfaceId'] = network_interface.id if vpc_peering_connection: params['VpcPeeringConnectionId'] = vpc_peering_connection.id res = self.connection.request(self.path, params=params).object return self._get_boolean(res) def _ex_connection_class_kwargs(self): kwargs = super(BaseEC2NodeDriver, self)._ex_connection_class_kwargs() kwargs['signature_version'] = self.signature_version return kwargs def _to_nodes(self, object, xpath): return [self._to_node(el) for el in object.findall(fixxpath(xpath=xpath, namespace=NAMESPACE))] def _to_node(self, element): try: state = self.NODE_STATE_MAP[findattr(element=element, xpath="instanceState/name", namespace=NAMESPACE) ] except KeyError: state = NodeState.UNKNOWN instance_id = findtext(element=element, xpath='instanceId', namespace=NAMESPACE) public_ip = findtext(element=element, xpath='ipAddress', namespace=NAMESPACE) public_ips = [public_ip] if public_ip else [] private_ip = findtext(element=element, xpath='privateIpAddress', namespace=NAMESPACE) private_ips = [private_ip] if private_ip else [] product_codes = [] for p in findall(element=element, xpath="productCodesSet/item/productCode", namespace=NAMESPACE): product_codes.append(p) # Get our tags tags = self._get_resource_tags(element) name = tags.get('Name', instance_id) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['node']) # Add additional properties to our extra dictionary extra['block_device_mapping'] = self._to_device_mappings(element) extra['groups'] = self._get_security_groups(element) extra['network_interfaces'] = self._to_interfaces(element) extra['product_codes'] = product_codes extra['tags'] = tags return Node(id=instance_id, name=name, state=state, public_ips=public_ips, private_ips=private_ips, driver=self.connection.driver, extra=extra) def _to_images(self, object): return [self._to_image(el) for el in object.findall( fixxpath(xpath='imagesSet/item', namespace=NAMESPACE)) ] def _to_image(self, element): id = findtext(element=element, xpath='imageId', namespace=NAMESPACE) name = findtext(element=element, xpath='name', namespace=NAMESPACE) # Build block device mapping block_device_mapping = self._to_device_mappings(element) # Get our tags tags = self._get_resource_tags(element) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['image']) # Add our tags and block device mapping extra['tags'] = tags extra['block_device_mapping'] = block_device_mapping return NodeImage(id=id, name=name, driver=self, extra=extra) def _to_volume(self, element, name=None): """ Parse the XML element and return a StorageVolume object. :param name: An optional name for the volume. If not provided then either tag with a key "Name" or volume ID will be used (which ever is available first in that order). :type name: ``str`` :rtype: :class:`StorageVolume` """ volId = findtext(element=element, xpath='volumeId', namespace=NAMESPACE) size = findtext(element=element, xpath='size', namespace=NAMESPACE) raw_state = findtext(element=element, xpath='status', namespace=NAMESPACE) state = self.VOLUME_STATE_MAP.get(raw_state, StorageVolumeState.UNKNOWN) # Get our tags tags = self._get_resource_tags(element) # If name was not passed into the method then # fall back then use the volume id name = name if name else tags.get('Name', volId) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['volume']) extra['tags'] = tags return StorageVolume(id=volId, name=name, size=int(size), driver=self, state=state, extra=extra) def _to_snapshots(self, response): return [self._to_snapshot(el) for el in response.findall( fixxpath(xpath='snapshotSet/item', namespace=NAMESPACE)) ] def _to_snapshot(self, element, name=None): snapId = findtext(element=element, xpath='snapshotId', namespace=NAMESPACE) size = findtext(element=element, xpath='volumeSize', namespace=NAMESPACE) created = parse_date(findtext(element=element, xpath='startTime', namespace=NAMESPACE)) # Get our tags tags = self._get_resource_tags(element) # If name was not passed into the method then # fall back then use the snapshot id name = name if name else tags.get('Name', snapId) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['snapshot']) # Add tags and name to the extra dict extra['tags'] = tags extra['name'] = name return VolumeSnapshot(snapId, size=int(size), driver=self, extra=extra, created=created) def _to_key_pairs(self, elems): key_pairs = [self._to_key_pair(elem=elem) for elem in elems] return key_pairs def _to_key_pair(self, elem): name = findtext(element=elem, xpath='keyName', namespace=NAMESPACE) fingerprint = findtext(element=elem, xpath='keyFingerprint', namespace=NAMESPACE).strip() private_key = findtext(element=elem, xpath='keyMaterial', namespace=NAMESPACE) key_pair = KeyPair(name=name, public_key=None, fingerprint=fingerprint, private_key=private_key, driver=self) return key_pair def _to_security_groups(self, response): return [self._to_security_group(el) for el in response.findall( fixxpath(xpath='securityGroupInfo/item', namespace=NAMESPACE)) ] def _to_security_group(self, element): # security group id sg_id = findtext(element=element, xpath='groupId', namespace=NAMESPACE) # security group name name = findtext(element=element, xpath='groupName', namespace=NAMESPACE) # Get our tags tags = self._get_resource_tags(element) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['security_group']) # Add tags to the extra dict extra['tags'] = tags # Get ingress rules ingress_rules = self._to_security_group_rules( element, 'ipPermissions/item' ) # Get egress rules egress_rules = self._to_security_group_rules( element, 'ipPermissionsEgress/item' ) return EC2SecurityGroup(sg_id, name, ingress_rules, egress_rules, extra=extra) def _to_security_group_rules(self, element, xpath): return [self._to_security_group_rule(el) for el in element.findall( fixxpath(xpath=xpath, namespace=NAMESPACE)) ] def _to_security_group_rule(self, element): """ Parse the XML element and return a SecurityGroup object. :rtype: :class:`EC2SecurityGroup` """ rule = {} rule['protocol'] = findtext(element=element, xpath='ipProtocol', namespace=NAMESPACE) rule['from_port'] = findtext(element=element, xpath='fromPort', namespace=NAMESPACE) rule['to_port'] = findtext(element=element, xpath='toPort', namespace=NAMESPACE) # get security groups elements = element.findall(fixxpath( xpath='groups/item', namespace=NAMESPACE )) rule['group_pairs'] = [] for element in elements: item = { 'user_id': findtext( element=element, xpath='userId', namespace=NAMESPACE), 'group_id': findtext( element=element, xpath='groupId', namespace=NAMESPACE), 'group_name': findtext( element=element, xpath='groupName', namespace=NAMESPACE) } rule['group_pairs'].append(item) # get ip ranges elements = element.findall(fixxpath( xpath='ipRanges/item', namespace=NAMESPACE )) rule['cidr_ips'] = [ findtext( element=element, xpath='cidrIp', namespace=NAMESPACE ) for element in elements] return rule def _to_networks(self, response): return [self._to_network(el) for el in response.findall( fixxpath(xpath='vpcSet/item', namespace=NAMESPACE)) ] def _to_network(self, element, name=None): # Get the network id vpc_id = findtext(element=element, xpath='vpcId', namespace=NAMESPACE) # Get our tags tags = self._get_resource_tags(element) # Set our name if the Name key/value if available # If we don't get anything back then use the vpc_id name = name if name else tags.get('Name', vpc_id) cidr_block = findtext(element=element, xpath='cidrBlock', namespace=NAMESPACE) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['network']) # Add tags to the extra dict extra['tags'] = tags return EC2Network(vpc_id, name, cidr_block, extra=extra) def _to_addresses(self, response, only_associated): """ Builds a list of dictionaries containing elastic IP properties. :param only_associated: If true, return only those addresses that are associated with an instance. If false, return all addresses. :type only_associated: ``bool`` :rtype: ``list`` of :class:`ElasticIP` """ addresses = [] for el in response.findall(fixxpath(xpath='addressesSet/item', namespace=NAMESPACE)): addr = self._to_address(el, only_associated) if addr is not None: addresses.append(addr) return addresses def _to_address(self, element, only_associated): instance_id = findtext(element=element, xpath='instanceId', namespace=NAMESPACE) public_ip = findtext(element=element, xpath='publicIp', namespace=NAMESPACE) domain = findtext(element=element, xpath='domain', namespace=NAMESPACE) # Build our extra dict extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['elastic_ip']) # Return NoneType if only associated IPs are requested if only_associated and not instance_id: return None return ElasticIP(public_ip, domain, instance_id, extra=extra) def _to_placement_groups(self, response): return [self._to_placement_group(el) for el in response.findall( fixxpath(xpath='placementGroupSet/item', namespace=NAMESPACE))] def _to_placement_group(self, element): name = findtext(element=element, xpath='groupName', namespace=NAMESPACE) state = findtext(element=element, xpath='state', namespace=NAMESPACE) strategy = findtext(element=element, xpath='strategy', namespace=NAMESPACE) return EC2PlacementGroup(name, state, strategy) def _to_subnets(self, response): return [self._to_subnet(el) for el in response.findall( fixxpath(xpath='subnetSet/item', namespace=NAMESPACE)) ] def _to_subnet(self, element, name=None): # Get the subnet ID subnet_id = findtext(element=element, xpath='subnetId', namespace=NAMESPACE) # Get our tags tags = self._get_resource_tags(element) # If we don't get anything back then use the subnet_id name = name if name else tags.get('Name', subnet_id) state = findtext(element=element, xpath='state', namespace=NAMESPACE) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['subnet']) # Also include our tags extra['tags'] = tags return EC2NetworkSubnet(subnet_id, name, state, extra=extra) def _to_interfaces(self, response): return [self._to_interface(el) for el in response.findall( fixxpath(xpath='networkInterfaceSet/item', namespace=NAMESPACE)) ] def _to_interface(self, element, name=None): """ Parse the XML element and return an EC2NetworkInterface object. :param name: An optional name for the interface. If not provided then either tag with a key "Name" or the interface ID will be used (whichever is available first in that order). :type name: ``str`` :rtype: :class: `EC2NetworkInterface` """ interface_id = findtext(element=element, xpath='networkInterfaceId', namespace=NAMESPACE) state = findtext(element=element, xpath='status', namespace=NAMESPACE) # Get tags tags = self._get_resource_tags(element) name = name if name else tags.get('Name', interface_id) # Build security groups groups = self._get_security_groups(element) # Build private IPs priv_ips = [] for item in findall(element=element, xpath='privateIpAddressesSet/item', namespace=NAMESPACE): priv_ips.append({'private_ip': findtext(element=item, xpath='privateIpAddress', namespace=NAMESPACE), 'private_dns': findtext(element=item, xpath='privateDnsName', namespace=NAMESPACE), 'primary': findtext(element=item, xpath='primary', namespace=NAMESPACE)}) # Build our attachment dictionary which we will add into extra later attributes_map = \ RESOURCE_EXTRA_ATTRIBUTES_MAP['network_interface_attachment'] attachment = self._get_extra_dict(element, attributes_map) # Build our extra dict attributes_map = RESOURCE_EXTRA_ATTRIBUTES_MAP['network_interface'] extra = self._get_extra_dict(element, attributes_map) # Include our previously built items as well extra['tags'] = tags extra['attachment'] = attachment extra['private_ips'] = priv_ips extra['groups'] = groups return EC2NetworkInterface(interface_id, name, state, extra=extra) def _to_reserved_nodes(self, object, xpath): return [self._to_reserved_node(el) for el in object.findall(fixxpath(xpath=xpath, namespace=NAMESPACE))] def _to_reserved_node(self, element): """ Build an EC2ReservedNode object using the reserved instance properties. Information on these properties can be found at http://goo.gl/ulXCC7. """ # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['reserved_node']) try: size = [size for size in self.list_sizes() if size.id == extra['instance_type']][0] except IndexError: size = None return EC2ReservedNode(id=findtext(element=element, xpath='reservedInstancesId', namespace=NAMESPACE), state=findattr(element=element, xpath='state', namespace=NAMESPACE), driver=self, size=size, extra=extra) def _to_device_mappings(self, object): return [self._to_device_mapping(el) for el in object.findall( fixxpath(xpath='blockDeviceMapping/item', namespace=NAMESPACE)) ] def _to_device_mapping(self, element): """ Parse the XML element and return a dictionary of device properties. Additional information can be found at http://goo.gl/GjWYBf. @note: EBS volumes do not have a virtual name. Only ephemeral disks use this property. :rtype: ``dict`` """ mapping = {} mapping['device_name'] = findattr(element=element, xpath='deviceName', namespace=NAMESPACE) mapping['virtual_name'] = findattr(element=element, xpath='virtualName', namespace=NAMESPACE) # If virtual name does not exist then this is an EBS volume. # Build the EBS dictionary leveraging the _get_extra_dict method. if mapping['virtual_name'] is None: mapping['ebs'] = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['ebs_volume']) return mapping def _to_internet_gateways(self, object, xpath): return [self._to_internet_gateway(el) for el in object.findall(fixxpath(xpath=xpath, namespace=NAMESPACE))] def _to_internet_gateway(self, element, name=None): id = findtext(element=element, xpath='internetGatewayId', namespace=NAMESPACE) vpc_id = findtext(element=element, xpath='attachmentSet/item/vpcId', namespace=NAMESPACE) state = findtext(element=element, xpath='attachmentSet/item/state', namespace=NAMESPACE) # If there's no attachment state, let's # set it to available if not state: state = 'available' # Get our tags tags = self._get_resource_tags(element) # If name was not passed into the method then # fall back then use the gateway id name = name if name else tags.get('Name', id) return VPCInternetGateway(id=id, name=name, vpc_id=vpc_id, state=state, driver=self.connection.driver, extra={'tags': tags}) def _to_route_tables(self, response): return [self._to_route_table(el) for el in response.findall( fixxpath(xpath='routeTableSet/item', namespace=NAMESPACE)) ] def _to_route_table(self, element, name=None): # route table id route_table_id = findtext(element=element, xpath='routeTableId', namespace=NAMESPACE) # Get our tags tags = self._get_resource_tags(element) # Get our extra dictionary extra = self._get_extra_dict( element, RESOURCE_EXTRA_ATTRIBUTES_MAP['route_table']) # Add tags to the extra dict extra['tags'] = tags # Get routes routes = self._to_routes(element, 'routeSet/item') # Get subnet associations subnet_associations = self._to_subnet_associations( element, 'associationSet/item') # Get propagating routes virtual private gateways (VGW) IDs propagating_gateway_ids = [] for el in element.findall(fixxpath(xpath='propagatingVgwSet/item', namespace=NAMESPACE)): propagating_gateway_ids.append(findtext(element=el, xpath='gatewayId', namespace=NAMESPACE)) name = name if name else tags.get('Name', id) return EC2RouteTable(route_table_id, name, routes, subnet_associations, propagating_gateway_ids, extra=extra) def _to_routes(self, element, xpath): return [self._to_route(el) for el in element.findall( fixxpath(xpath=xpath, namespace=NAMESPACE)) ] def _to_route(self, element): """ Parse the XML element and return a route object :rtype: :class: `EC2Route` """ destination_cidr = findtext(element=element, xpath='destinationCidrBlock', namespace=NAMESPACE) gateway_id = findtext(element=element, xpath='gatewayId', namespace=NAMESPACE) instance_id = findtext(element=element, xpath='instanceId', namespace=NAMESPACE) owner_id = findtext(element=element, xpath='instanceOwnerId', namespace=NAMESPACE) interface_id = findtext(element=element, xpath='networkInterfaceId', namespace=NAMESPACE) state = findtext(element=element, xpath='state', namespace=NAMESPACE) origin = findtext(element=element, xpath='origin', namespace=NAMESPACE) vpc_peering_connection_id = findtext(element=element, xpath='vpcPeeringConnectionId', namespace=NAMESPACE) return EC2Route(destination_cidr, gateway_id, instance_id, owner_id, interface_id, state, origin, vpc_peering_connection_id) def _to_subnet_associations(self, element, xpath): return [self._to_subnet_association(el) for el in element.findall( fixxpath(xpath=xpath, namespace=NAMESPACE)) ] def _to_subnet_association(self, element): """ Parse the XML element and return a route table association object :rtype: :class: `EC2SubnetAssociation` """ association_id = findtext(element=element, xpath='routeTableAssociationId', namespace=NAMESPACE) route_table_id = findtext(element=element, xpath='routeTableId', namespace=NAMESPACE) subnet_id = findtext(element=element, xpath='subnetId', namespace=NAMESPACE) main = findtext(element=element, xpath='main', namespace=NAMESPACE) main = True if main else False return EC2SubnetAssociation(association_id, route_table_id, subnet_id, main) def _pathlist(self, key, arr): """ Converts a key and an array of values into AWS query param format. """ params = {} i = 0 for value in arr: i += 1 params['%s.%s' % (key, i)] = value return params def _get_boolean(self, element): tag = '{%s}%s' % (NAMESPACE, 'return') return element.findtext(tag) == 'true' def _get_terminate_boolean(self, element): status = element.findtext(".//{%s}%s" % (NAMESPACE, 'name')) return any([term_status == status for term_status in ('shutting-down', 'terminated')]) def _add_instance_filter(self, params, node): """ Add instance filter to the provided params dictionary. """ filters = {'instance-id': node.id} params.update(self._build_filters(filters)) return params def _get_state_boolean(self, element): """ Checks for the instances's state """ state = findall(element=element, xpath='instancesSet/item/currentState/name', namespace=NAMESPACE)[0].text return state in ('stopping', 'pending', 'starting') def _get_extra_dict(self, element, mapping): """ Extract attributes from the element based on rules provided in the mapping dictionary. :param element: Element to parse the values from. :type element: xml.etree.ElementTree.Element. :param mapping: Dictionary with the extra layout :type node: :class:`Node` :rtype: ``dict`` """ extra = {} for attribute, values in mapping.items(): transform_func = values['transform_func'] value = findattr(element=element, xpath=values['xpath'], namespace=NAMESPACE) if value is not None: extra[attribute] = transform_func(value) else: extra[attribute] = None return extra def _get_resource_tags(self, element): """ Parse tags from the provided element and return a dictionary with key/value pairs. :rtype: ``dict`` """ tags = {} # Get our tag set by parsing the element tag_set = findall(element=element, xpath='tagSet/item', namespace=NAMESPACE) for tag in tag_set: key = findtext(element=tag, xpath='key', namespace=NAMESPACE) value = findtext(element=tag, xpath='value', namespace=NAMESPACE) tags[key] = value return tags def _get_block_device_mapping_params(self, block_device_mapping): """ Return a list of dictionaries with query parameters for a valid block device mapping. :param mapping: List of dictionaries with the drive layout :type mapping: ``list`` or ``dict`` :return: Dictionary representation of the drive mapping :rtype: ``dict`` """ if not isinstance(block_device_mapping, (list, tuple)): raise AttributeError( 'block_device_mapping not list or tuple') params = {} for idx, mapping in enumerate(block_device_mapping): idx += 1 # We want 1-based indexes if not isinstance(mapping, dict): raise AttributeError( 'mapping %s in block_device_mapping ' 'not a dict' % mapping) for k, v in mapping.items(): if not isinstance(v, dict): params['BlockDeviceMapping.%d.%s' % (idx, k)] = str(v) else: for key, value in v.items(): params['BlockDeviceMapping.%d.%s.%s' % (idx, k, key)] = str(value) return params def _get_common_security_group_params(self, group_id, protocol, from_port, to_port, cidr_ips, group_pairs): """ Return a dictionary with common query parameters which are used when operating on security groups. :rtype: ``dict`` """ params = {'GroupId': group_id, 'IpPermissions.1.IpProtocol': protocol, 'IpPermissions.1.FromPort': from_port, 'IpPermissions.1.ToPort': to_port} if cidr_ips is not None: ip_ranges = {} for index, cidr_ip in enumerate(cidr_ips): index += 1 ip_ranges['IpPermissions.1.IpRanges.%s.CidrIp' % (index)] = cidr_ip params.update(ip_ranges) if group_pairs is not None: user_groups = {} for index, group_pair in enumerate(group_pairs): index += 1 if 'group_id' in group_pair.keys(): user_groups['IpPermissions.1.Groups.%s.GroupId' % (index)] = group_pair['group_id'] if 'group_name' in group_pair.keys(): user_groups['IpPermissions.1.Groups.%s.GroupName' % (index)] = group_pair['group_name'] if 'user_id' in group_pair.keys(): user_groups['IpPermissions.1.Groups.%s.UserId' % (index)] = group_pair['user_id'] params.update(user_groups) return params def _get_security_groups(self, element): """ Parse security groups from the provided element and return a list of security groups with the id ane name key/value pairs. :rtype: ``list`` of ``dict`` """ groups = [] for item in findall(element=element, xpath='groupSet/item', namespace=NAMESPACE): groups.append({ 'group_id': findtext(element=item, xpath='groupId', namespace=NAMESPACE), 'group_name': findtext(element=item, xpath='groupName', namespace=NAMESPACE) }) return groups def _build_filters(self, filters): """ Return a dictionary with filter query parameters which are used when listing networks, security groups, etc. :param filters: Dict of filter names and filter values :type filters: ``dict`` :rtype: ``dict`` """ filter_entries = {} for filter_idx, filter_data in enumerate(filters.items()): filter_idx += 1 # We want 1-based indexes filter_name, filter_values = filter_data filter_key = 'Filter.%s.Name' % (filter_idx) filter_entries[filter_key] = filter_name if isinstance(filter_values, list): for value_idx, value in enumerate(filter_values): value_idx += 1 # We want 1-based indexes value_key = 'Filter.%s.Value.%s' % (filter_idx, value_idx) filter_entries[value_key] = value else: value_key = 'Filter.%s.Value.1' % (filter_idx) filter_entries[value_key] = filter_values return filter_entries class EC2NodeDriver(BaseEC2NodeDriver): """ Amazon EC2 node driver. """ connectionCls = EC2Connection type = Provider.EC2 name = 'Amazon EC2' website = 'http://aws.amazon.com/ec2/' path = '/' NODE_STATE_MAP = { 'pending': NodeState.PENDING, 'running': NodeState.RUNNING, 'shutting-down': NodeState.UNKNOWN, 'terminated': NodeState.TERMINATED, 'stopped': NodeState.STOPPED } def __init__(self, key, secret=None, secure=True, host=None, port=None, region='us-east-1', **kwargs): if hasattr(self, '_region'): region = self._region if region not in VALID_EC2_REGIONS: raise ValueError('Invalid region: %s' % (region)) details = REGION_DETAILS[region] self.region_name = region self.api_name = details['api_name'] self.country = details['country'] self.signature_version = details.get('signature_version', DEFAULT_SIGNATURE_VERSION) host = host or details['endpoint'] super(EC2NodeDriver, self).__init__(key=key, secret=secret, secure=secure, host=host, port=port, **kwargs) class IdempotentParamError(LibcloudError): """ Request used the same client token as a previous, but non-identical request. """ def __str__(self): return repr(self.value) class EC2EUNodeDriver(EC2NodeDriver): """ Driver class for EC2 in the Western Europe Region. """ name = 'Amazon EC2 (eu-west-1)' _region = 'eu-west-1' class EC2USWestNodeDriver(EC2NodeDriver): """ Driver class for EC2 in the Western US Region """ name = 'Amazon EC2 (us-west-1)' _region = 'us-west-1' class EC2USWestOregonNodeDriver(EC2NodeDriver): """ Driver class for EC2 in the US West Oregon region. """ name = 'Amazon EC2 (us-west-2)' _region = 'us-west-2' class EC2APSENodeDriver(EC2NodeDriver): """ Driver class for EC2 in the Southeast Asia Pacific Region. """ name = 'Amazon EC2 (ap-southeast-1)' _region = 'ap-southeast-1' class EC2APNENodeDriver(EC2NodeDriver): """ Driver class for EC2 in the Northeast Asia Pacific Region. """ name = 'Amazon EC2 (ap-northeast-1)' _region = 'ap-northeast-1' class EC2SAEastNodeDriver(EC2NodeDriver): """ Driver class for EC2 in the South America (Sao Paulo) Region. """ name = 'Amazon EC2 (sa-east-1)' _region = 'sa-east-1' class EC2APSESydneyNodeDriver(EC2NodeDriver): """ Driver class for EC2 in the Southeast Asia Pacific (Sydney) Region. """ name = 'Amazon EC2 (ap-southeast-2)' _region = 'ap-southeast-2' class EucConnection(EC2Connection): """ Connection class for Eucalyptus """ host = None class EucNodeDriver(BaseEC2NodeDriver): """ Driver class for Eucalyptus """ name = 'Eucalyptus' website = 'http://www.eucalyptus.com/' api_name = 'ec2_us_east' region_name = 'us-east-1' connectionCls = EucConnection signature_version = '2' def __init__(self, key, secret=None, secure=True, host=None, path=None, port=None, api_version=DEFAULT_EUCA_API_VERSION): """ @inherits: :class:`EC2NodeDriver.__init__` :param path: The host where the API can be reached. :type path: ``str`` :param api_version: The API version to extend support for Eucalyptus proprietary API calls :type api_version: ``str`` """ super(EucNodeDriver, self).__init__(key, secret, secure, host, port) if path is None: path = '/services/Eucalyptus' self.path = path self.EUCA_NAMESPACE = 'http://msgs.eucalyptus.com/%s' % (api_version) def list_locations(self): raise NotImplementedError( 'list_locations not implemented for this driver') def _to_sizes(self, response): return [self._to_size(el) for el in response.findall( fixxpath(xpath='instanceTypeDetails/item', namespace=self.EUCA_NAMESPACE))] def _to_size(self, el): name = findtext(element=el, xpath='name', namespace=self.EUCA_NAMESPACE) cpu = findtext(element=el, xpath='cpu', namespace=self.EUCA_NAMESPACE) disk = findtext(element=el, xpath='disk', namespace=self.EUCA_NAMESPACE) memory = findtext(element=el, xpath='memory', namespace=self.EUCA_NAMESPACE) return NodeSize(id=name, name=name, ram=int(memory), disk=int(disk), bandwidth=None, price=None, driver=EucNodeDriver, extra={ 'cpu': int(cpu) }) def list_sizes(self): """ List available instance flavors/sizes :rtype: ``list`` of :class:`NodeSize` """ params = {'Action': 'DescribeInstanceTypes'} response = self.connection.request(self.path, params=params).object return self._to_sizes(response) def _add_instance_filter(self, params, node): """ Eucalyptus driver doesn't support filtering on instance id so this is a no-op. """ pass class NimbusConnection(EC2Connection): """ Connection class for Nimbus """ host = None class NimbusNodeDriver(BaseEC2NodeDriver): """ Driver class for Nimbus """ type = Provider.NIMBUS name = 'Nimbus' website = 'http://www.nimbusproject.org/' country = 'Private' api_name = 'nimbus' region_name = 'nimbus' friendly_name = 'Nimbus Private Cloud' connectionCls = NimbusConnection signature_version = '2' def ex_describe_addresses(self, nodes): """ Nimbus doesn't support elastic IPs, so this is a pass-through. @inherits: :class:`EC2NodeDriver.ex_describe_addresses` """ nodes_elastic_ip_mappings = {} for node in nodes: # empty list per node nodes_elastic_ip_mappings[node.id] = [] return nodes_elastic_ip_mappings def ex_create_tags(self, resource, tags): """ Nimbus doesn't support creating tags, so this is a pass-through. @inherits: :class:`EC2NodeDriver.ex_create_tags` """ pass class OutscaleConnection(EC2Connection): """ Connection class for Outscale """ host = None class OutscaleNodeDriver(BaseEC2NodeDriver): """ Base Outscale FCU node driver. Outscale per provider driver classes inherit from it. """ connectionCls = OutscaleConnection name = 'Outscale' website = 'http://www.outscale.com' path = '/' signature_version = '2' NODE_STATE_MAP = { 'pending': NodeState.PENDING, 'running': NodeState.RUNNING, 'shutting-down': NodeState.UNKNOWN, 'terminated': NodeState.TERMINATED, 'stopped': NodeState.STOPPED } def __init__(self, key, secret=None, secure=True, host=None, port=None, region='us-east-1', region_details=None, **kwargs): if hasattr(self, '_region'): region = self._region if region_details is None: raise ValueError('Invalid region_details argument') if region not in region_details.keys(): raise ValueError('Invalid region: %s' % (region)) self.region_name = region self.region_details = region_details details = self.region_details[region] self.api_name = details['api_name'] self.country = details['country'] self.connectionCls.host = details['endpoint'] self._not_implemented_msg =\ 'This method is not supported in the Outscale driver' super(BaseEC2NodeDriver, self).__init__(key=key, secret=secret, secure=secure, host=host, port=port, **kwargs) def create_node(self, **kwargs): """ Create a new Outscale node. The ex_iamprofile keyword is not supported. @inherits: :class:`BaseEC2NodeDriver.create_node` :keyword ex_keyname: The name of the key pair :type ex_keyname: ``str`` :keyword ex_userdata: User data :type ex_userdata: ``str`` :keyword ex_security_groups: A list of names of security groups to assign to the node. :type ex_security_groups: ``list`` :keyword ex_metadata: Key/Value metadata to associate with a node :type ex_metadata: ``dict`` :keyword ex_mincount: Minimum number of instances to launch :type ex_mincount: ``int`` :keyword ex_maxcount: Maximum number of instances to launch :type ex_maxcount: ``int`` :keyword ex_clienttoken: Unique identifier to ensure idempotency :type ex_clienttoken: ``str`` :keyword ex_blockdevicemappings: ``list`` of ``dict`` block device mappings. :type ex_blockdevicemappings: ``list`` of ``dict`` :keyword ex_ebs_optimized: EBS-Optimized if True :type ex_ebs_optimized: ``bool`` """ if 'ex_iamprofile' in kwargs: raise NotImplementedError("ex_iamprofile not implemented") return super(OutscaleNodeDriver, self).create_node(**kwargs) def ex_create_network(self, cidr_block, name=None): """ Create a network/VPC. Outscale does not support instance_tenancy. :param cidr_block: The CIDR block assigned to the network :type cidr_block: ``str`` :param name: An optional name for the network :type name: ``str`` :return: Dictionary of network properties :rtype: ``dict`` """ return super(OutscaleNodeDriver, self).ex_create_network(cidr_block, name=name) def ex_modify_instance_attribute(self, node, disable_api_termination=None, ebs_optimized=None, group_id=None, source_dest_check=None, user_data=None, instance_type=None): """ Modify node attributes. Ouscale support the following attributes: 'DisableApiTermination.Value', 'EbsOptimized', 'GroupId.n', 'SourceDestCheck.Value', 'UserData.Value', 'InstanceType.Value' :param node: Node instance :type node: :class:`Node` :param attributes: Dictionary with node attributes :type attributes: ``dict`` :return: True on success, False otherwise. :rtype: ``bool`` """ attributes = {} if disable_api_termination is not None: attributes['DisableApiTermination.Value'] = disable_api_termination if ebs_optimized is not None: attributes['EbsOptimized'] = ebs_optimized if group_id is not None: attributes['GroupId.n'] = group_id if source_dest_check is not None: attributes['SourceDestCheck.Value'] = source_dest_check if user_data is not None: attributes['UserData.Value'] = user_data if instance_type is not None: attributes['InstanceType.Value'] = instance_type return super(OutscaleNodeDriver, self).ex_modify_instance_attribute( node, attributes) def ex_register_image(self, name, description=None, architecture=None, root_device_name=None, block_device_mapping=None): """ Registers a Machine Image based off of an EBS-backed instance. Can also be used to create images from snapshots. Outscale does not support image_location, kernel_id and ramdisk_id. :param name: The name for the AMI being registered :type name: ``str`` :param description: The description of the AMI (optional) :type description: ``str`` :param architecture: The architecture of the AMI (i386/x86_64) (optional) :type architecture: ``str`` :param root_device_name: The device name for the root device Required if registering an EBS-backed AMI :type root_device_name: ``str`` :param block_device_mapping: A dictionary of the disk layout (optional) :type block_device_mapping: ``dict`` :rtype: :class:`NodeImage` """ return super(OutscaleNodeDriver, self).ex_register_image( name, description=description, architecture=architecture, root_device_name=root_device_name, block_device_mapping=block_device_mapping) def ex_copy_image(self, source_region, image, name=None, description=None): """ Outscale does not support copying images. @inherits: :class:`EC2NodeDriver.ex_copy_image` """ raise NotImplementedError(self._not_implemented_msg) def ex_get_limits(self): """ Outscale does not support getting limits. @inherits: :class:`EC2NodeDriver.ex_get_limits` """ raise NotImplementedError(self._not_implemented_msg) def ex_create_network_interface(self, subnet, name=None, description=None, private_ip_address=None): """ Outscale does not support creating a network interface within a VPC. @inherits: :class:`EC2NodeDriver.ex_create_network_interface` """ raise NotImplementedError(self._not_implemented_msg) def ex_delete_network_interface(self, network_interface): """ Outscale does not support deleting a network interface within a VPC. @inherits: :class:`EC2NodeDriver.ex_delete_network_interface` """ raise NotImplementedError(self._not_implemented_msg) def ex_attach_network_interface_to_node(self, network_interface, node, device_index): """ Outscale does not support attaching a network interface. @inherits: :class:`EC2NodeDriver.ex_attach_network_interface_to_node` """ raise NotImplementedError(self._not_implemented_msg) def ex_detach_network_interface(self, attachment_id, force=False): """ Outscale does not support detaching a network interface @inherits: :class:`EC2NodeDriver.ex_detach_network_interface` """ raise NotImplementedError(self._not_implemented_msg) def list_sizes(self, location=None): """ List available instance flavors/sizes This override the EC2 default method in order to use Outscale infos. :rtype: ``list`` of :class:`NodeSize` """ available_types =\ self.region_details[self.region_name]['instance_types'] sizes = [] for instance_type in available_types: attributes = OUTSCALE_INSTANCE_TYPES[instance_type] attributes = copy.deepcopy(attributes) price = self._get_size_price(size_id=instance_type) attributes.update({'price': price}) sizes.append(NodeSize(driver=self, **attributes)) return sizes class OutscaleSASNodeDriver(OutscaleNodeDriver): """ Outscale SAS node driver """ name = 'Outscale SAS' type = Provider.OUTSCALE_SAS def __init__(self, key, secret=None, secure=True, host=None, port=None, region='us-east-1', region_details=None, **kwargs): super(OutscaleSASNodeDriver, self).__init__( key=key, secret=secret, secure=secure, host=host, port=port, region=region, region_details=OUTSCALE_SAS_REGION_DETAILS, **kwargs) class OutscaleINCNodeDriver(OutscaleNodeDriver): """ Outscale INC node driver """ name = 'Outscale INC' type = Provider.OUTSCALE_INC def __init__(self, key, secret=None, secure=True, host=None, port=None, region='us-east-1', region_details=None, **kwargs): super(OutscaleINCNodeDriver, self).__init__( key=key, secret=secret, secure=secure, host=host, port=port, region=region, region_details=OUTSCALE_INC_REGION_DETAILS, **kwargs)
33.283138
80
0.517075
d463f75ac362815da409ada6cf1ef513d3f08fcc
1,647
py
Python
torcharrow/benchmark/benchmark_vmap.py
wenleix/torcharrow-1
9c398a361156973e29be868520ea9278db00ea52
[ "BSD-3-Clause" ]
null
null
null
torcharrow/benchmark/benchmark_vmap.py
wenleix/torcharrow-1
9c398a361156973e29be868520ea9278db00ea52
[ "BSD-3-Clause" ]
null
null
null
torcharrow/benchmark/benchmark_vmap.py
wenleix/torcharrow-1
9c398a361156973e29be868520ea9278db00ea52
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. import timeit import torcharrow as ta import torcharrow.dtypes as dt def prepare_list_int_col(): elements = [] for i in range(1, 101): element = [] for j in range(1, i // 10 + 2): element.append(i * j) elements.append(element) return ta.from_pylist(elements, dtype=dt.List(dt.int64), device="cpu") def list_map_int(col: ta.IColumn): return col.list.map(lambda val: val + 1) def list_vmap_int(col: ta.IColumn): return col.list.vmap(lambda col: col + 1) def prepare_list_str_col(): elements = [] for i in range(1, 101): element = [] for j in range(1, i // 10 + 2): element.append(f"str{i}_{j}") elements.append(element) return ta.from_pylist(elements, dtype=dt.List(dt.string), device="cpu") def list_map_str(col: ta.IColumn): return col.list.map(lambda val: val + "_1") def list_vmap_str(col: ta.IColumn): return col.list.vmap(lambda col: col + "_1") if __name__ == "__main__": import timeit print("Benchmark list[int] column:") col1 = prepare_list_int_col() print( "list.map: " + str(timeit.timeit(stmt=lambda: list_map_int(col1), number=100)) ) print( "list.vmap: " + str(timeit.timeit(stmt=lambda: list_vmap_int(col1), number=100)) ) print("Benchmark list[str] column:") col2 = prepare_list_str_col() print( "list.map: " + str(timeit.timeit(stmt=lambda: list_map_str(col2), number=100)) ) print( "list.vmap: " + str(timeit.timeit(stmt=lambda: list_vmap_str(col2), number=100)) )
24.954545
88
0.627201
fd8c96cd4dae248a63a11c360fb26b43934b97fa
9,261
py
Python
services/api-server/tests/unit/fakes/jobs_faker.py
colinRawlings/osparc-simcore
bf2f18d5bc1e574d5f4c238d08ad15156184c310
[ "MIT" ]
25
2018-04-13T12:44:12.000Z
2022-03-12T15:01:17.000Z
services/api-server/tests/unit/fakes/jobs_faker.py
colinRawlings/osparc-simcore
bf2f18d5bc1e574d5f4c238d08ad15156184c310
[ "MIT" ]
2,553
2018-01-18T17:11:55.000Z
2022-03-31T16:26:40.000Z
services/api-server/tests/unit/fakes/jobs_faker.py
mrnicegyu11/osparc-simcore
b6fa6c245dbfbc18cc74a387111a52de9b05d1f4
[ "MIT" ]
20
2018-01-18T19:45:33.000Z
2022-03-29T07:08:47.000Z
""" Fakes the implementation of some some kind of queueing and scheduling of jobs """ import asyncio import hashlib import logging import random from contextlib import contextmanager from dataclasses import dataclass, field from datetime import datetime from typing import Callable, Dict, Iterator from uuid import UUID from fastapi import HTTPException from simcore_service_api_server.models.api_resources import ( RelativeResourceName, compose_resource_name, ) from simcore_service_api_server.models.schemas.files import File from simcore_service_api_server.models.schemas.jobs import ( Job, JobInputs, JobOutputs, JobStatus, TaskStates, ) from simcore_service_api_server.models.schemas.solvers import SolverKeyId, VersionStr from starlette import status logger = logging.getLogger(__name__) JobName = RelativeResourceName @dataclass class JobsFaker: # Fakes jobs managements for a given user # jobs: Dict[JobName, Job] = field(default_factory=dict) job_status: Dict[UUID, JobStatus] = field(default_factory=dict) job_inputs: Dict[UUID, JobInputs] = field(default_factory=dict) job_tasks: Dict[UUID, asyncio.Future] = field(default_factory=dict) job_outputs: Dict[UUID, JobOutputs] = field(default_factory=dict) def job_values(self, solver_name: str = None) -> Iterator[Job]: if solver_name: for job in self.jobs.values(): if job.runner_name == solver_name: yield job else: for job in self.jobs.values(): yield job def create_job(self, solver_name: str, inputs: JobInputs) -> Job: # NOTE: how can be sure that inputs.json() will be identical everytime? str # representation might truncate e.g. a number which does not guarantee # in all cases that is the same!? inputs_checksum = hashlib.sha256( " ".join(inputs.json()).encode("utf-8") ).hexdigest() job = Job.create_now(solver_name, inputs_checksum) self.jobs[job.name] = job self.job_inputs[job.id] = inputs return job def start_job(self, job_name: JobName) -> JobStatus: # check job was created? job = self.jobs[job_name] # why not getting inputs from here? inputs = self.job_inputs[job.id] job_status = self.job_status.get(job.id) if not job_status: job_status = JobStatus( job_id=job.id, state=TaskStates.UNKNOWN, progress=0, submitted_at=datetime.utcnow(), ) self.job_status[job.id] = job_status self.job_tasks[job.id] = asyncio.ensure_future( self._start_job_task(job.id, inputs) ) return self.job_status[job.id] async def _start_job_task(self, job_id, inputs): MOCK_PULLING_TIME = 1, 2 MOCK_PENDING_TIME = 1, 3 MOCK_RUNNING_TIME = 1, 5 + len(inputs.values) job_status = self.job_status[job_id] # Fake results ready outputs = JobOutputs( job_id=job_id, results={ "output_1": File( filename="file_with_int.txt", id="1460b7c8-70d7-42ee-9eb2-e2de2a9b7b37", ), "output_2": 42, }, ) try: await asyncio.sleep(random.randint(*MOCK_PULLING_TIME)) # nosec job_status.state = TaskStates.PENDING logger.info(job_status) await asyncio.sleep(random.randint(*MOCK_PENDING_TIME)) # nosec # ------------------------------------------------- job_status.state = TaskStates.STARTED job_status.take_snapshot("started") logger.info(job_status) job_status.progress = 0 for n in range(100): await asyncio.sleep(random.randint(*MOCK_RUNNING_TIME) / 100.0) # nosec job_status.progress = n + 1 # NOTE: types of solvers # - all outputs at once or output completion # - can pause and resume or not # # ------------------------------------------------- done_states = [TaskStates.SUCCESS, TaskStates.FAILED] job_status.state = random.choice(done_states) # nosec job_status.progress = 100 job_status.take_snapshot("stopped") logger.info(job_status) if job_status.state == TaskStates.FAILED: failed = random.choice(list(outputs.results.keys())) outputs.results[failed] = None # similar to ValidatinError? For one field or generic job error? except asyncio.CancelledError: logging.debug("Task for job %s was cancelled", job_id) job_status.state = TaskStates.FAILED job_status.take_snapshot("stopped") # all fail for name in outputs.results: outputs.results[name] = None except Exception: # pylint: disable=broad-except logger.exception("Job %s failed", job_id) job_status.state = TaskStates.FAILED job_status.take_snapshot("stopped") for name in outputs.results: outputs.results[name] = None finally: self.job_outputs[job_id] = outputs def stop_job(self, job_name) -> Job: job = self.jobs[job_name] try: task = self.job_tasks[job.id] if not task.cancelled(): task.cancel() except KeyError: logger.warning("Stopping job {job_id} that was never started") return job the_fake_impl = JobsFaker() ##################################################### # */jobs/* API FAKE implementations # @contextmanager def resource_context(**kwargs): args = [] for key, value in kwargs.items(): args += [str(key), value] resource_name = compose_resource_name(*args) resource_display_name = args[-2] try: yield resource_name except KeyError as err: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail=f"{resource_display_name.capitalize().rstrip('s')} {resource_name} does not exists", ) from err def _copy_n_update(job: Job, url_for, solver_key, version): return job.copy( update={ "url": url_for( "get_job", solver_key=solver_key, version=version, job_id=job.id ), "runner_url": url_for( "get_solver_release", solver_key=solver_key, version=version, ), "outputs_url": url_for( "get_job_outputs", solver_key=solver_key, version=version, job_id=job.id, ), } ) async def list_jobs_impl( solver_key: SolverKeyId, version: VersionStr, url_for: Callable, ): solver_resource_name = f"solvers/{solver_key}/releases/{version}" return [ _copy_n_update(job, url_for, solver_key, version) for job in the_fake_impl.job_values(solver_resource_name) ] async def create_job_impl( solver_key: SolverKeyId, version: VersionStr, inputs: JobInputs, url_for: Callable, ): """Creates a job for a solver with given inputs. NOTE: This operation does **not** start the job """ with resource_context(solvers=solver_key, releases=version) as solver_name: job = the_fake_impl.create_job(solver_name, inputs) return _copy_n_update(job, url_for, solver_key, version) async def get_job_impl( solver_key: SolverKeyId, version: VersionStr, job_id: UUID, url_for: Callable, ): with resource_context( solvers=solver_key, releases=version, jobs=job_id ) as job_name: job = the_fake_impl.jobs[job_name] return _copy_n_update(job, url_for, solver_key, version) async def start_job_impl(solver_key: SolverKeyId, version: VersionStr, job_id: UUID): with resource_context( solvers=solver_key, releases=version, jobs=job_id ) as job_name: job_state = the_fake_impl.start_job(job_name) return job_state async def stop_job_impl( solver_key: SolverKeyId, version: VersionStr, job_id: UUID, url_for: Callable, ): with resource_context( solvers=solver_key, releases=version, jobs=job_id ) as job_name: job = the_fake_impl.stop_job(job_name) return _copy_n_update(job, url_for, solver_key, version) async def inspect_job_impl(solver_key: SolverKeyId, version: VersionStr, job_id: UUID): with resource_context(solvers=solver_key, releases=version, jobs=job_id): # here we should use job_name .. state = the_fake_impl.job_status[job_id] return state async def get_job_outputs_impl( solver_key: SolverKeyId, version: VersionStr, job_id: UUID ): with resource_context( solvers=solver_key, releases=version, jobs=job_id, outputs="*" ): outputs: JobOutputs = the_fake_impl.job_outputs[job_id] return outputs
30.87
103
0.615592
f1442e7f936e7e4473ea9e64e24df2ec6a8f7250
2,996
py
Python
notebooks/nb066x_workshop_pandas.py
hoelzl/ML-Course
efa7ccb7c6583753675bbcda569d3184d1ca98d2
[ "MIT" ]
1
2022-03-02T15:59:11.000Z
2022-03-02T15:59:11.000Z
notebooks/nb066z_solution_pandas.py
hoelzl/ML-Course
efa7ccb7c6583753675bbcda569d3184d1ca98d2
[ "MIT" ]
null
null
null
notebooks/nb066z_solution_pandas.py
hoelzl/ML-Course
efa7ccb7c6583753675bbcda569d3184d1ca98d2
[ "MIT" ]
null
null
null
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% [markdown] # Importieren Sie Pandas und lesen Sie die Datei `population_by_county.csv` in einen Data Frame `population` # %% import pandas as pd # %% population = pd.read_csv('population_by_county.csv') # %% [markdown] # Zeigen Sie die ersten Zeilen des `population` Data Frames an. # %% population.head() # %% [markdown] # Bestimmen Sie die Spaltennamen von `population`. # %% population.columns # %% [markdown] # Welche Staten werden in der Tabelle erfasst? Wie viele Staten sind das? # %% population['State'].unique() # %% population['State'].nunique() # %% [markdown] # Welches sind die 10 häufigsten County-Namen in diesem Datensatz? # %% population['County'].value_counts()[0:10] # %% [markdown] # Welches sind die 10 bevölkerungsreichsten Staaten nach der Schätzung 2017? # # *Hinweis:* Verwenden Sie Hilfsvariablen um Zwischenergebnisse auszuwerten. Mit `Shift-Tab` können Sie sehen, welche Parameter die verwendeten Funktionen akzeptieren. # %% population_per_state = population.groupby('State').sum()['2017PopEstimate'] # %% population_per_state.sort_values(ascending=False)[0:10] # %% # Alternativ: population_per_state.sort_values()[-10:] # %% [markdown] # Wie viele Staaten haben nach der Schätzung 2017 mehr als 1 Million Einwohner? # %% population_per_state[population_per_state > 1_000_000].count() # %% [markdown] # Wie viele Counties haben das Wort "County" in ihrem Namen? # %% population['County'].apply(lambda n: 'County' in n).sum() # %% [markdown] # Berechnen Sie, als Vorbereitung für die nächste Frage, die proportionale Änderung (d.h., 1.0 entspricht keiner Änderung) zwischen der Volkszählung von 2010 und der Schätzung von 2017 für alle Counties. # %% (population['2017PopEstimate'] - population['2010Census']) / population['2010Census'] # %% [markdown] # Fügen Sie eine Spalte `PercentChange` zu `population` hinzu, die die prozentuale Änderung zwischen der Volkszählung von 2010 und der Schätzung von 2017 angibt. (D.h. 100 entspricht keiner Änderung) # %% population['PercentChange'] = 100 * (population['2017PopEstimate'] - population['2010Census']) / population['2010Census'] # %% population.head() # %% [markdown] # Welche 10 Staaten haben die höchste prozentuelle Änderung? # # *Hinweis:* Speichern Sie die pro Staat gruppierte Bevölkerung in einer neuen Tabelle und verwenden Sie diese zur Berechnung. # %% pop_by_state = population.groupby('State').sum() # %% del pop_by_state['PercentChange'] # %% pop_by_state.head() # %% pop_by_state['PercentChange'] = 100 * (pop_by_state['2017PopEstimate'] - pop_by_state['2010Census']) / pop_by_state['2010Census'] # %% pop_by_state.head() # %% pop_by_state.sort_values('PercentChange', ascending=False)[0:10] # %%
25.606838
203
0.716956
228cfc8532b49503f3034060ff8d7c3338a43f68
9,525
py
Python
pollbot/telegram/callback_handler/vote.py
3wille/ultimate-poll-bot
7a99659df463a891b20a1ab424665cd84d4242b4
[ "MIT" ]
null
null
null
pollbot/telegram/callback_handler/vote.py
3wille/ultimate-poll-bot
7a99659df463a891b20a1ab424665cd84d4242b4
[ "MIT" ]
null
null
null
pollbot/telegram/callback_handler/vote.py
3wille/ultimate-poll-bot
7a99659df463a891b20a1ab424665cd84d4242b4
[ "MIT" ]
null
null
null
"""Callback functions needed during creation of a Poll.""" from sqlalchemy import func from sqlalchemy.exc import IntegrityError from pollbot.i18n import i18n from pollbot.helper import poll_allows_cumulative_votes from pollbot.helper.enums import PollType, CallbackResult from pollbot.helper.update import update_poll_messages from pollbot.models import PollOption, Vote def handle_vote(session, context): """Handle any clicks on vote buttons.""" # Remove the poll, in case it got deleted, but we didn't manage to kill all references option = session.query(PollOption).get(context.payload) if option is None: if context.query.message is not None: context.query.message.edit_text(i18n.t('deleted.polls', locale=context.user.locale)) else: context.bot.edit_message_text( i18n.t('deleted.polls', locale=context.user.locale), inline_message_id=context.query.inline_message_id, ) return poll = option.poll try: # Single vote if poll.poll_type == PollType.single_vote.name: update_poll = handle_single_vote(session, context, option) # Block vote elif poll.poll_type == PollType.block_vote.name: update_poll = handle_block_vote(session, context, option) # Limited vote elif poll.poll_type == PollType.limited_vote.name: update_poll = handle_limited_vote(session, context, option) # Cumulative vote elif poll.poll_type == PollType.cumulative_vote.name: update_poll = handle_cumulative_vote(session, context, option) elif poll.poll_type == PollType.count_vote.name: update_poll = handle_cumulative_vote(session, context, option, unlimited=True) elif poll.poll_type == PollType.doodle.name: update_poll = handle_doodle_vote(session, context, option) else: raise Exception("Unknown poll type") except IntegrityError: # Double vote. Rollback the transaction and ignore the second vote session.rollback() return session.commit() if update_poll: update_poll_messages(session, context.bot, poll) def respond_to_vote(session, line, context, poll, total_vote_count=None, limited=False): """Get the formatted response for a user.""" locale = poll.locale votes = session.query(Vote) \ .filter(Vote.user == context.user) \ .filter(Vote.poll == poll) \ .all() if limited: line += i18n.t('callback.vote.votes_left', locale=locale, count=total_vote_count) lines = [line] lines.append(i18n.t('callback.vote.your_votes', locale=locale, count=total_vote_count)) for vote in votes: if poll_allows_cumulative_votes(poll): lines.append(f' {vote.poll_option.name} ({vote.vote_count}), ') else: lines.append(f' {vote.poll_option.name}') message = ''.join(lines) context.query.answer(message) def handle_single_vote(session, context, option): """Handle a single vote.""" locale = option.poll.locale existing_vote = session.query(Vote) \ .filter(Vote.poll == option.poll) \ .filter(Vote.user == context.user) \ .one_or_none() # Changed vote if existing_vote and existing_vote.poll_option != option: existing_vote.poll_option = option vote_changed = i18n.t('callback.vote.changed', locale=locale) respond_to_vote(session, vote_changed, context, option.poll) # Voted for the same thing again elif existing_vote and existing_vote.poll_option == option: session.delete(existing_vote) vote_removed = i18n.t('callback.vote.removed', locale=locale) context.query.answer(vote_removed) # First vote on this poll elif existing_vote is None: vote = Vote(context.user, option) session.add(vote) vote_registered = i18n.t('callback.vote.registered', locale=locale) respond_to_vote(session, vote_registered, context, option.poll) return True def handle_block_vote(session, context, option): """Handle a block vote.""" locale = option.poll.locale existing_vote = session.query(Vote) \ .filter(Vote.poll_option == option) \ .filter(Vote.user == context.user) \ .one_or_none() # Remove vote if existing_vote: session.delete(existing_vote) vote_removed = i18n.t('callback.vote.removed', locale=locale) respond_to_vote(session, vote_removed, context, option.poll) # Add vote elif existing_vote is None: vote = Vote(context.user, option) session.add(vote) vote_registered = i18n.t('callback.vote.registered', locale=locale) respond_to_vote(session, vote_registered, context, option.poll) return True def handle_limited_vote(session, context, option): """Handle a limited vote.""" locale = option.poll.locale existing_vote = session.query(Vote) \ .filter(Vote.poll_option == option) \ .filter(Vote.user == context.user) \ .one_or_none() vote_count = session.query(Vote) \ .filter(Vote.poll == option.poll) \ .filter(Vote.user == context.user) \ .count() # Remove vote if existing_vote: session.delete(existing_vote) vote_removed = i18n.t('callback.vote.removed', locale=locale) respond_to_vote(session, vote_removed, context, option.poll, vote_count-1, True) # Add vote elif existing_vote is None and vote_count < option.poll.number_of_votes: vote = Vote(context.user, option) session.add(vote) vote_registered = i18n.t('callback.vote.registered', locale=locale) respond_to_vote(session, vote_registered, context, option.poll, vote_count+1, True) # Max votes reached else: no_left = i18n.t('callback.vote.no_left', locale=locale) respond_to_vote(session, no_left, context, option.poll) return False return True def handle_cumulative_vote(session, context, option, unlimited=False): """Handle a cumulative vote.""" locale = option.poll.locale existing_vote = session.query(Vote) \ .filter(Vote.poll_option == option) \ .filter(Vote.user == context.user) \ .one_or_none() vote_count = session.query(func.sum(Vote.vote_count)) \ .filter(Vote.poll == option.poll) \ .filter(Vote.user == context.user) \ .one() vote_count = vote_count[0] if vote_count is None: vote_count = 0 action = context.callback_result allowed_votes = 10000000 if not unlimited: allowed_votes = option.poll.number_of_votes # Upvote, but no votes left if not unlimited and action == CallbackResult.yes and vote_count >= allowed_votes: no_left = i18n.t('callback.vote.no_left', locale=locale) respond_to_vote(session, no_left, context, option.poll) return False # Early return if downvote on non existing vote if existing_vote is None and action == CallbackResult.no: respond_to_vote(session, 'Cannot downvote this option.', context, option.poll) return False if existing_vote: # Add to an existing vote if action == CallbackResult.yes: existing_vote.vote_count += 1 session.commit() total_vote_count = allowed_votes - (vote_count + 1) vote_registered = i18n.t('callback.vote.registered', locale=locale) respond_to_vote(session, vote_registered, context, option.poll, total_vote_count, True) # Remove from existing vote elif action == CallbackResult.no: existing_vote.vote_count -= 1 session.commit() total_vote_count = allowed_votes - (vote_count - 1) vote_removed = i18n.t('callback.vote.removed', locale=locale) respond_to_vote(session, vote_removed, context, option.poll, total_vote_count, True) # Delete vote if necessary if existing_vote.vote_count <= 0: session.delete(existing_vote) session.commit() # Add new vote elif existing_vote is None and action == CallbackResult.yes: vote = Vote(context.user, option) session.add(vote) session.commit() total_vote_count = allowed_votes - (vote_count + 1) vote_registered = i18n.t('callback.vote.registered', locale=locale) respond_to_vote(session, vote_registered, context, option.poll, total_vote_count, True) return True def handle_doodle_vote(session, context, option): """Handle a doodle vote.""" locale = option.poll.locale vote = session.query(Vote) \ .filter(Vote.poll_option == option) \ .filter(Vote.user == context.user) \ .one_or_none() if context.callback_result.name is None: data = context.data # noqa raise Exception("Unknown callback result") # Remove vote if vote is not None: vote.type = context.callback_result.name changed = i18n.t('callback.vote.doodle_changed', locale=locale, vote_type=vote.type) context.query.answer(changed) # Add vote else: vote = Vote(context.user, option) vote.type = context.callback_result.name session.add(vote) registered = i18n.t('callback.vote.doodle_registered', locale=locale, vote_type=vote.type) context.query.answer(registered) return True
36.21673
99
0.663307
60aa8308bc22bd1f618b2d464adee4aa2a5520ed
23,227
py
Python
meiduo_mall/meiduo_mall/apps/users/views.py
1103928458/meiduo_drf
49595755f264b09ea748b4deb8a88bba5eb8557b
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/users/views.py
1103928458/meiduo_drf
49595755f264b09ea748b4deb8a88bba5eb8557b
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/users/views.py
1103928458/meiduo_drf
49595755f264b09ea748b4deb8a88bba5eb8557b
[ "MIT" ]
1
2020-11-10T07:22:42.000Z
2020-11-10T07:22:42.000Z
from django.http import HttpResponseForbidden from django import http from django.shortcuts import render, redirect import re, json from django.contrib.auth import login, authenticate, logout, mixins from .models import User, Address from meiduo_mall.utils.response_code import RETCODE from django_redis import get_redis_connection from random import randint from django.views import View from celery_tasks.email.tasks import send_verify_email from django.conf import settings from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from .utils import generate_email_verify_url, check_verify_token import logging from goods.models import SKU from carts.utils import merge_cart_cookie_to_redis from .utils import get_user_by_account from itsdangerous import TimedJSONWebSignatureSerializer as Serializer, BadData from celery_tasks.sms.tasks import send_sms_code Logger = logging.getLogger("django") class RegisterView(View): def get(self, request): """提供注册页面""" return render(request, "register.html") def post(self, request): """注册公功能逻辑""" # 1.接收前端传入的表单数据 # 用户名,密码,手机号,短信验证码,同意协议 query_dict = request.POST username = query_dict.get("username") password = query_dict.get("password") password2 = query_dict.get("password2") mobile = query_dict.get("mobile") sms_code = query_dict.get("sms_code") allow = query_dict.get("allow") # 单选框,如果勾选传入的就是“on”,如果没有勾选传入的是None # 2.检验数据是否满足需求 if all([username, password, password2, mobile, sms_code, allow]) is False: return http.HttpResponseForbidden("缺少必要参数") if not re.match(r"^[a-zA-Z0-9_-]{8,20}$", password): return http.HttpResponseForbidden('请输入8-20位的密码') if password != password2: return http.HttpResponseForbidden('两次输入的密码不一致') if not re.match(r"^1[3-9]\d{9}$", mobile): return http.HttpResponseForbidden('请输入正确的手机号码') # 短信验证码后期在补充校验逻辑 redis_conn = get_redis_connection("verify_code") sms_code_server = redis_conn.get('sms_%s' % mobile) # 删除redis中的短信验证码,让验证码只能用一次 redis_conn.delete('sms_%s', mobile) # 检验短信验证码是否过期 if sms_code_server is None: return http.HttpResponseForbidden("短信验证码过期") sms_code_server = sms_code_server.decode() if sms_code != sms_code_server: return http.HttpResponseForbidden('请输入正确的验证码') # 保存数据,创建用户user user = User.objects.create_user(username=username, password=password, mobile=mobile) # 当用户登录后,将用户的user.id值存储到session 生成session cookie # 记录用户的登陆状态 login(request, user) # request.session["_auth_user_id"] = user.id # 响应:重定向到首页 return redirect('/') class UsernameCountView(View): '''判断用户名是否重复注册''' def get(self, request, username): # 从数据库查询 count = User.objects.filter(username=username).count() response_data = {"count": count, "code": RETCODE.OK, "errmsg": "ok"} return http.JsonResponse(response_data) class MobileCountView(View): '''判断手机号是否重复注册''' def get(self, request, mobile): # 从数据库查询 count = User.objects.filter(mobile=mobile).count() response_data = {"count": count, "code": RETCODE.OK, "errmsg": "ok"} return http.JsonResponse(response_data) class LoginView(View): '''用户登录''' def get(self, request): '''展示登录界面''' return render(request, 'login.html') def post(self, request): """用户登录逻辑""" # 1.接收表单数据 username = request.POST.get("username") password = request.POST.get("password") remembered = request.POST.get("remembered") # 是否记录密码 勾选on 不勾None # 2.校验 # try: # user = User.objects.get(username=username,password=password) # except User.DoesNotExist: # return # # if user.check_password(password) is False: # return # 修改配置文件---使用手机号码登录(多账号登录) # if re.match(r"^1[3-9]\d{9}$", username): # # User.USERNAME_FIELD = "mobile" # 使用模型类 模型类的属性:USERNAME_FIELD # 用户认证(django自带校验) user = authenticate(request, username=username, password=password) if user is None: return render(request, "login.html", {"account_errmsg": "用户名或密码错误"}) # 3.状态保持 login(request, user) # 如果用户没有点击记住密码 if remembered != "on": # 此行代码实际最终讲cookie中的session设置位浏览器关闭就失效 request.session.set_expiry(0) next = request.GET.get("next") # 尝试性去获取来源查询参数 response = redirect(next or "/") response.set_cookie("username", user.username, max_age=3600 * 24 * 14 if remembered else None) # 再此做合并购物车 merge_cart_cookie_to_redis(request, response) # 4.重定向首页 return response class LogoutView(View): """退出登录""" def get(self, request): # 1.清除状态保持信息 logout(request) # 2.重定向到登录页面 response = redirect("/login/") # 3.清除cookie中的username response.delete_cookie("username") # 4.响应 return response # 展示用户中心第一种方法: # class UserInfoView(View): # """展示用户中心""" # def get(self,request): # """展示用户中心界面""" # user = request.user # # # 如果用户登录就展示用户中心 # if user.is_authenticated: # 判断用户是否登录 # return render(request,"user_center_info.html") # # # 如果没有登录就展示登录页面 # else: # return redirect("/login/?next=/info/") # 展示用户中心第二种方法: # class UserInfoView(View): # """展示用户中心""" # @method_decorator(login_required) # 判断用户有没有登录 # def get(self,request): # """展示用户中心界面""" # # return render(request,"user_center_info.html") # 展示用户中心第二种方法: # mixins.LoginRequiredMixin 判断用户是否登录 class UserInfoView(mixins.LoginRequiredMixin, View): """展示用户中心""" def get(self, request): """展示用户中心界面""" return render(request, "user_center_info.html") class EmailView(mixins.LoginRequiredMixin, View): '''设置邮箱''' def put(self, request): # 1.接收数据 json_dict = json.loads(request.body.decode()) email = json_dict.get("email") # 2.校验 if not email: return http.HttpResponseForbidden('缺少email参数') if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.HttpResponseForbidden('参数email有误') # 3.修改用户的email字段 user = request.user # user.email = email # user.save() User.objects.filter(username=user.username, email="").update(email=email) # 再次给用户发一封激活邮件 verify_url = generate_email_verify_url(user) # 生成激活邮箱url send_verify_email.delay(email, verify_url) # 使用异步任务 # 4.响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "添加邮箱成功"}) class VerifyEmailView(View): '''激活邮箱''' def get(self, request): # 接收参数中的token token = request.GET.get("token") # 校验 if token is None: return http.HttpResponseForbidden("缺少token") # 对token解密并获取user user = check_verify_token(token) if user is None: return http.HttpResponseForbidden("token无效") # 修改指定user的email_active字段 user.email_active = True user.save() # 响应 # 激活成功回到用户中心 return redirect("/info/") class AddressView(mixins.LoginRequiredMixin, View): '''展示用户收货地址''' def get(self, request): """用户收货地址展示""" # 查询当前用户的所有收货地址 user = request.user addresses_qs = Address.objects.filter(user=user, is_deleted=False) # 定义一个列表变量用来包装所有的收货地址字典数据 addresses = [] for address_model in addresses_qs: addresses.append({ "id": address_model.id, "title": address_model.title, "receiver": address_model.receiver, "province": address_model.province.name, "province_id": address_model.province.id, "city": address_model.city.name, "city_id": address_model.city.id, "district": address_model.district.name, "district_id": address_model.district.id, "place": address_model.place, "mobile": address_model.mobile, "tel": address_model.tel, "email": address_model.email }) # 准备渲染数据 context = { "addresses": addresses, "default_address_id": user.default_address_id } return render(request, "user_center_site.html", context) class CreateAddressView(mixins.LoginRequiredMixin, View): def post(self, request): # 判断用户的收货地址是否上限 user = request.user count = user.addresses.filter(is_deleted=False).count() if count >= 20: return http.JsonResponse({"code": RETCODE.THROTTLINGERR, "errmsg": "地址已达到上限"}) # 接收请求体数据 json_dict = json.loads(request.body.decode()) title = json_dict.get("title") receiver = json_dict.get("receiver") province_id = json_dict.get("province_id") city_id = json_dict.get("city_id") district_id = json_dict.get("district_id") place = json_dict.get("place") mobile = json_dict.get("mobile") tel = json_dict.get("tel") email = json_dict.get("email") # 校验 if all([title, receiver, province_id, city_id, district_id, place, mobile]) is False: return http.HttpResponseForbidden("缺少必传参数") if not re.match(r'^1[3-9]\d{9}$', mobile): return http.HttpResponseForbidden('参数mobile有误') if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return http.HttpResponseForbidden('参数tel有误') if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.HttpResponseForbidden('参数email有误') try: # 保存收货地址数据 address_model = Address.objects.create( user=request.user, title=title, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email, ) except Exception as e: Logger.error(e) return http.HttpResponseForbidden({"code": RETCODE.PARAMERR, "errmsg": "新增收货地址失败"}) # 如果当前用户还没有默认收货地址,就把当前新增的这个地址设置为他的默认地址 if user.default_address is None: user.default_address = address_model user.save() # 把保存好的模型对象转换成字典,再响应给前端 address_dict = { "id": address_model.id, "title": address_model.title, "receiver": address_model.receiver, "province": address_model.province.name, "province_id": address_model.province.id, "city": address_model.city.name, "city_id": address_model.city.id, "district": address_model.district.name, "district_id": address_model.district.id, "place": address_model.place, "mobile": address_model.mobile, "tel": address_model.tel, "email": address_model.email } # 响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "新增地址成功", "address": address_dict}) class UpdateDestroyAddressView(mixins.LoginRequiredMixin, View): """修改和删除用户地址操作""" def put(self, request, address_id): # 接收请求体数据 json_dict = json.loads(request.body.decode()) title = json_dict.get("title") receiver = json_dict.get("receiver") province_id = json_dict.get("province_id") city_id = json_dict.get("city_id") district_id = json_dict.get("district_id") place = json_dict.get("place") mobile = json_dict.get("mobile") tel = json_dict.get("tel") email = json_dict.get("email") # 校验 if all([title, receiver, province_id, city_id, district_id, place, mobile]) is False: return http.HttpResponseForbidden("缺少必传参数") if not re.match(r'^1[3-9]\d{9}$', mobile): return http.HttpResponseForbidden('参数mobile有误') if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return http.HttpResponseForbidden('参数tel有误') if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.HttpResponseForbidden('参数email有误') try: # 修改收货地址数据 Address.objects.filter(id=address_id).update( title=title, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email, ) except Exception as e: Logger.error(e) return http.HttpResponseForbidden({"code": RETCODE.PARAMERR, "errmsg": "修改收货地址失败"}) # 获取到修改后的地址模型对象 address_model = Address.objects.get(id=address_id) address_dict = { "id": address_model.id, "title": address_model.title, "receiver": address_model.receiver, "province": address_model.province.name, "province_id": address_model.province.id, "city": address_model.city.name, "city_id": address_model.city.id, "district": address_model.district.name, "district_id": address_model.district.id, "place": address_model.place, "mobile": address_model.mobile, "tel": address_model.tel, "email": address_model.email } # 响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "修改地址成功", "address": address_dict}) def delete(self, request, address_id): """删除地址""" try: address = Address.objects.get(id=address_id) address.is_deleted = True address.save() return http.JsonResponse({"code": RETCODE.OK, "errmsg": "删除地址成功"}) except Address.DoesNotExist: return http.JsonResponse({"code": RETCODE.PARAMERR, "errmsg": "address_id不存在"}) class DefaultAddressView(mixins.LoginRequiredMixin, View): """设置默认地址""" def put(self, request, address_id): # 查询指定id的收货地址 try: address = Address.objects.get(id=address_id) user = request.user # 把指定的收货地址设置给user的default_address字段 user.default_address = address user.save() # 响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "设置默认地址成功"}) except Address.DoesNotExist: return http.JsonResponse({"code": RETCODE.PARAMERR, "errmsg": "设置默认地址失败"}) class UpdateTitleAddressView(mixins.LoginRequiredMixin, View): """修改用户收货地址标题""" def put(self, request, address_id): # 接收请求体中的地址标题 json_dict = json.loads(request.body.decode()) title = json_dict.get("title") # 校验 if title is None: return http.JsonResponse({"code": RETCODE.PARAMERR, "errmsg": "缺少必传参数"}) # 把要修改的收货地址获取 try: address = Address.objects.get(id=address_id) # 修改address的title address.title = title address.save() # 响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "修改地址标题成功"}) except Address.DoesNotExist: return http.JsonResponse({"code": RETCODE.PARAMERR, "errmsg": "修改地址标题失败"}) class CheckPaswordView(mixins.LoginRequiredMixin, View): """修改用户密码""" def get(self, request): return render(request, "user_center_pass.html") def post(self, request): # 接收请求体中的表单数据 qury_dict = request.POST old_password = qury_dict.get("old_pwd") new_password = qury_dict.get("new_pwd") new_password2 = qury_dict.get("new_cpwd") # 校验 if all([old_password, new_password, new_password2]) is False: return http.HttpResponseForbidden("缺少必传参数") user = request.user if user.check_password(old_password) is False: return render(request, "user_center_pass.html", {"origin_pwd_errmsg": "原密码错误"}) # 检验密码 if not re.match(r'^[0-9A-Za-z]{8,20}$', new_password): return http.HttpResponseForbidden('密码最少8位,最长20位') if new_password != new_password2: return http.HttpResponseForbidden('两次输入的密码不一致') # 修改用户密码 set_password方法 user.set_password(new_password) user.save() # 清除状态保持信息 logout(request) # 清除cookie中的username response = redirect("/login") response.delete_cookie("username") # 重定向到登录界面 return response class UserBrowseHistory(mixins.LoginRequiredMixin, View): """商品浏览记录""" def post(self, request): # 接收请求体中的sku_id json_dict = json.loads(request.body.decode()) sku_id = json_dict.get("sku_id") try: # 校验sku_id的真实性 sku = SKU.objects.get(id=sku_id) except SKU.DoesNotExist: return http.HttpResponseForbidden('sku不存在') # 创建redis链接 redis_conn = get_redis_connection("history") pl = redis_conn.pipeline() # 获取当前用户 user = request.user # 拼接list的key key = 'history_%s' % user.id # 先去重 pl.lrem(key, 0, sku_id) # 添加到列表的开头 pl.lpush(key, sku_id) # 截取列表前五位 pl.ltrim(key, 0, 4) # 执行 pl.execute() # 响应 return http.JsonResponse({"code": RETCODE, "errmsg": "ok"}) def get(self, request): """获取用户浏览记录逻辑""" # 1.获取当前的登录用户对象 user = request.user # 2.创建redis链接对象 redis_conn = get_redis_connection("history") # 3.获取当前用户在redis中所有的浏览记录列表 sku_ids = redis_conn.lrange("history_%s" % user.id, 0, -1) skus = [] # 用来保存sku字典 # 4.在通过列表中的sku_id获取到每个sku模型 for sku_id in sku_ids: # 5.再将sku模型转换成字典 sku_model = SKU.objects.get(id=sku_id) skus.append({ "id": sku_model.id, "name": sku_model.name, "default_image_url": sku_model.default_image.url, "price": sku_model.price }) # 6.响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "ok", "skus": skus}) class ForgetPassword(View): """忘记密码""" def get(self, request): return render(request, 'find_password.html') class GetMobileAndCode(View): """修改密码""" def get(self, request, username): image_code = request.GET.get('text') uuid = request.GET.get('image_code_id') if all([username, image_code, uuid]) is False: return http.HttpResponseForbidden("缺少必要参数") user = get_user_by_account(username) if user is None: return http.HttpResponseForbidden('用户名不存在') else: mobile = user.mobile # 创建redis数据库链接 redis_conn = get_redis_connection('verify_code') # 获取redis数据库中取出图形验证码 redis_image_code = redis_conn.get("img_%s" % uuid) redis_conn.delete("img_%s" % uuid) if redis_image_code is None or image_code.lower() != redis_image_code.decode().lower(): return http.JsonResponse({'code': 'ok', 'errmsg': "验证码错误"}, status=400) # 对数据加密 data = {'mobile': mobile} serializer = Serializer(settings.SECRET_KEY, 60) access_token = serializer.dumps(data).decode() return http.JsonResponse({"mobile": mobile, "access_token": access_token}) class Send_sms_code(View): """发送短信验证码""" def get(self, request): access_token = request.GET.get('access_token') if access_token is None: return http.HttpResponseForbidden('access_token为空') serializer = Serializer(settings.SECRET_KEY, 60) try: data = serializer.loads(access_token) mobile = data.get('mobile') except BadData: return http.HttpResponseForbidden('数据有误') redis_conn = get_redis_connection('verify_code') send_flag = redis_conn.get('send_flag_%s' % mobile) if send_flag: # 判断有无标记 return http.JsonResponse({'errmsg': '频繁发送短信'}) sms_code = "%06d" % randint(0, 999999) print(sms_code) # 5.把短信验证码存储到redis,以备后期注册时校验 redis_conn.setex('sms_%s' % mobile, 300, sms_code) # 5.1向redis存储一个此手机号以发送过短信的标记 redis_conn.setex('send_flag_%s' % mobile, 60, 1) send_sms_code.delay(mobile, sms_code) return http.JsonResponse({'message': 'ok'}) class Check_sms_code(View): """验证手机号""" def get(self, request, username): sms_code = request.GET.get('sms_code') if all([username, sms_code]) is False: return http.HttpResponseForbidden("缺少必传参数") # 自定义认证后端 username = get_user_by_account(username) if username is None: return http.HttpResponseForbidden('用户名不存在') else: user_id = username.id mobile = username.mobile # 连接redis数据库 redis_conn = get_redis_connection('verify_code') redis_conn_code = redis_conn.get('sms_%s' % mobile) if sms_code != redis_conn_code.decode(): return http.HttpResponseForbidden('验证码错误') data = {'mobile': mobile} serializer = Serializer(settings.SECRET_KEY, 300) access_token = serializer.dumps(data).decode() return http.JsonResponse({ 'user_id': user_id, 'access_token': access_token }) class Check_pwd(View): """检查密码---重置密码""" def post(self, request, user_id): json_dict = json.loads(request.body.decode()) password = json_dict.get('password') password2 = json_dict.get('password2') access_token = json_dict.get('access_token') if all(([password, password2, access_token])) is None: return http.HttpResponseForbidden("缺少必传参数") if password != password2: return http.HttpResponseForbidden('密码不一致') if not re.match(r'^[0-9A-Za-z]{8,20}$', password): return http.HttpResponseForbidden('密码最少8位,最长20位') user = User.objects.get(id=user_id) mobile = user.mobile serializer = Serializer(settings.SECRET_KEY, 300) data = serializer.loads(access_token) mobile_data = data.get('mobile') if mobile != mobile_data: return http.HttpResponseForbidden('数据错误') user.set_password(password) user.save() return http.JsonResponse({'code': '修改密码成功'})
31.261104
102
0.594438
a0cabbfc2b540132bc0cd93574c265c8d05b151a
621
py
Python
mixins.py
bathelomeo/mixins
d676972fd3bde3f683963dcf6dcadebff6158b24
[ "MIT" ]
null
null
null
mixins.py
bathelomeo/mixins
d676972fd3bde3f683963dcf6dcadebff6158b24
[ "MIT" ]
null
null
null
mixins.py
bathelomeo/mixins
d676972fd3bde3f683963dcf6dcadebff6158b24
[ "MIT" ]
null
null
null
class Loggable: def __init__(self): self.title = '' def log(self): print('Log message from ' + self.title) class Connection: def __init__(self): self.server = '' def connect(self): print('Connecting to data base on ' + self.server) class Sqldatabase(Connection , Loggable): def __init__(self): self.title = 'Sql Connection Demo' self.server = 'Some_Server' def framework(item): if isinstance(item,Connection): item.connect() isinstance(item , Loggable) item.log() sql_connection = Sqldatabase() framework(sql_connection)
24.84
58
0.63124
4c6c0e4a1e379db8d1361f032e5f9e0b851589c1
2,582
py
Python
aws/dynamoDB/p02-graph/tw_upload.py
JoseIbanez/testing
4d6ff310cd63a8b2f8e1abcfbea0f17b23220021
[ "MIT" ]
1
2016-09-15T03:58:30.000Z
2016-09-15T03:58:30.000Z
aws/dynamoDB/p02-graph/tw_upload.py
JoseIbanez/testing
4d6ff310cd63a8b2f8e1abcfbea0f17b23220021
[ "MIT" ]
1
2020-09-13T08:44:50.000Z
2020-09-13T08:44:50.000Z
aws/dynamoDB/p02-graph/tw_upload.py
JoseIbanez/testing
4d6ff310cd63a8b2f8e1abcfbea0f17b23220021
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Upload a photo to Twitter ----------------------------------------------------------------- Run this command line script with any Twitter endpoint. The json-formatted response is printed to the console. The script works with both Streaming API and REST API endpoints. IMPORTANT: Before using this script, you must enter your Twitter application's OAuth credentials in TwitterAPI/credentials.txt. Log into http://dev.twitter.com to create your application. Examples: :: python cli -endpoint search/tweets -parameters q=zzz python cli -endpoint statuses/filter -parameters track=zzz These examples print the raw json response. You can also print one or more fields from the response, for instance the tweet 'text' field, like this: :: python cli -endpoint statuses/filter -parameters track=zzz -fields text Documentation for all Twitter endpoints is located at: https://dev.twitter.com/docs/api/1.1 """ __author__ = "ibanez.j@gmail.com" __date__ = "July 4, 2017" __license__ = "MIT" from TwitterAPI import TwitterAPI, __version__ #from TwitterAPI import TwitterAPI from TwitterAPI.TwitterOAuth import TwitterOAuth import argparse #import codecs #import json #import sys from os.path import expanduser if __name__ == '__main__': print('TwitterAPI %s by geduldig' % __version__) parser = argparse.ArgumentParser( description='Request any Twitter Streaming or REST API endpoint') parser.add_argument( '-oauth', metavar='FILENAME', type=str, help='file containing OAuth credentials', default=expanduser("~/.secrets/twitter")) parser.add_argument( '-file', metavar='FILENAME', type=str, help='image to upload', required=True) parser.add_argument( '-text', metavar='NAME_VALUE', type=str, help='text to send', default='My picture') args = parser.parse_args() try: oauth = TwitterOAuth.read_file(args.oauth) file = open(args.file, 'rb') data = file.read() file.close() api = TwitterAPI(oauth.consumer_key, oauth.consumer_secret, oauth.access_token_key, oauth.access_token_secret) r = api.request('statuses/update_with_media', {'status':args.text}, {'media[]':data}) print(r.status_code) except KeyboardInterrupt: print('Terminated by user') except Exception as e: print('STOPPED: %s' % e)
25.82
93
0.644849
4d344ebe19e0f85f683f7c0a0477880da1958d41
4,283
py
Python
src/scripts/training/lgb_K5_nonull_mean_sum_max_mean_imp_no_scaler_params_K.py
arnabbiswas1/k_tab_sept_roc_auc_binary_classification_KFold
7a5a91e52d460fd25133b76d5241462a4aedc474
[ "Apache-2.0" ]
null
null
null
src/scripts/training/lgb_K5_nonull_mean_sum_max_mean_imp_no_scaler_params_K.py
arnabbiswas1/k_tab_sept_roc_auc_binary_classification_KFold
7a5a91e52d460fd25133b76d5241462a4aedc474
[ "Apache-2.0" ]
null
null
null
src/scripts/training/lgb_K5_nonull_mean_sum_max_mean_imp_no_scaler_params_K.py
arnabbiswas1/k_tab_sept_roc_auc_binary_classification_KFold
7a5a91e52d460fd25133b76d5241462a4aedc474
[ "Apache-2.0" ]
null
null
null
""" LGB,K10,non-null,mean,sum,max,mean impute,no-scaler params : https://www.kaggle.com/arnabbiswas1/tps-sep-2021-single-lgbm """ import os from timeit import default_timer as timer from datetime import datetime import pandas as pd from sklearn.model_selection import KFold import src.common as common import src.config.constants as constants import src.munging as process_data import src.modeling as model common.set_timezone() start = timer() # Create RUN_ID RUN_ID = datetime.now().strftime("%m%d_%H%M") MODEL_NAME = os.path.basename(__file__).split(".")[0] SEED = 2021 EXP_DETAILS = "LGB,K5,non-null,mean,sum,max,mean impute,no-scaler" TARGET = "claim" N_SPLIT = 5 MODEL_TYPE = "lgb" OBJECTIVE = "binary" BOOSTING_TYPE = "gbdt" METRIC = "auc" VERBOSE = 100 N_THREADS = 8 NUM_LEAVES = 6 MAX_DEPTH = 2 N_ESTIMATORS = 20000 LEARNING_RATE = 5e-3 EARLY_STOPPING_ROUNDS = 200 lgb_params = { "objective": OBJECTIVE, "boosting_type": BOOSTING_TYPE, "learning_rate": LEARNING_RATE, # "num_leaves": NUM_LEAVES, "n_jobs": N_THREADS, "seed": SEED, # "max_depth": MAX_DEPTH, "metric": METRIC, "verbose": -1, 'subsample': 0.6, 'subsample_freq': 1, 'colsample_bytree': 0.4, 'reg_alpha': 10.0, 'reg_lambda': 1e-1, 'min_child_weight': 256, 'min_child_samples': 20, } LOGGER_NAME = "sub_1" logger = common.get_logger(LOGGER_NAME, MODEL_NAME, RUN_ID, constants.LOG_DIR) common.set_seed(SEED) logger.info(f"Running for Model Number [{MODEL_NAME}] & [{RUN_ID}]") common.update_tracking(RUN_ID, "model_number", MODEL_NAME, drop_incomplete_rows=True) common.update_tracking(RUN_ID, "model_type", MODEL_TYPE) common.update_tracking(RUN_ID, "metric", "roc_auc") common.update_tracking(RUN_ID, "n_estimators", N_ESTIMATORS) common.update_tracking(RUN_ID, "learning_rate", LEARNING_RATE) common.update_tracking(RUN_ID, "num_leaves", NUM_LEAVES) common.update_tracking(RUN_ID, "early_stopping_rounds", EARLY_STOPPING_ROUNDS) train_df, test_df, sample_submission_df = process_data.read_processed_data( logger, constants.PROCESSED_DATA_DIR, train=True, test=True, sample_submission=True, ) combined_df = pd.concat([train_df.drop(TARGET, axis=1), test_df]) features_df = pd.read_parquet( f"{constants.FEATURES_DATA_DIR}/features_row_wise_stat.parquet" ) features_to_use = ["no_null", "mean", "sum", "max"] features_df = features_df[features_to_use] combined_df = pd.concat([combined_df, features_df], axis=1) predictors = list(combined_df.columns) combined_df[predictors] = combined_df[predictors].fillna(combined_df[predictors].mean()) target = train_df[TARGET] train_df = combined_df.loc[train_df.index] train_df[TARGET] = target test_df = combined_df.loc[test_df.index] train_X = train_df.drop([TARGET], axis=1) train_Y = train_df[TARGET] test_X = test_df logger.info( f"Shape of train_X : {train_X.shape}, test_X: {test_X.shape}, train_Y: {train_Y.shape}" ) predictors = list(train_X.columns) logger.info(f"List of predictors {predictors}") kfold = KFold(n_splits=N_SPLIT, random_state=SEED, shuffle=True) common.update_tracking(RUN_ID, "no_of_features", len(predictors), is_integer=True) common.update_tracking(RUN_ID, "cv_method", "KFold") common.update_tracking(RUN_ID, "n_fold", N_SPLIT) results_dict = model.lgb_train_validate_on_cv( logger, run_id=RUN_ID, train_X=train_X, train_Y=train_Y, test_X=test_X, metric="roc_auc", kf=kfold, features=predictors, params=lgb_params, n_estimators=N_ESTIMATORS, early_stopping_rounds=EARLY_STOPPING_ROUNDS, cat_features="auto", verbose_eval=100, retrain=False, ) common.update_tracking(RUN_ID, "lb_score", 0, is_integer=True) train_index = train_df.index common.save_artifacts( logger, target=TARGET, is_plot_fi=True, result_dict=results_dict, submission_df=sample_submission_df, train_index=train_index, model_number=MODEL_NAME, run_id=RUN_ID, sub_dir=constants.SUBMISSION_DIR, oof_dir=constants.OOF_DIR, fi_dir=constants.FI_DIR, fi_fig_dir=constants.FI_FIG_DIR, ) end = timer() common.update_tracking(RUN_ID, "training_time", end - start, is_integer=True) common.update_tracking(RUN_ID, "comments", EXP_DETAILS) logger.info("Execution Complete")
26.602484
91
0.749008
76e5d22a0614fb6c762f78fb93a2ba36348a56d2
7,967
py
Python
kinow_client/models/director_2.py
kinow-io/kinow-python-sdk
4c1699a3c78048b84287bd049a669651a5b4e2d5
[ "Apache-2.0" ]
1
2019-06-26T14:24:54.000Z
2019-06-26T14:24:54.000Z
kinow_client/models/director_2.py
kinow-io/kinow-python-sdk
4c1699a3c78048b84287bd049a669651a5b4e2d5
[ "Apache-2.0" ]
null
null
null
kinow_client/models/director_2.py
kinow-io/kinow-python-sdk
4c1699a3c78048b84287bd049a669651a5b4e2d5
[ "Apache-2.0" ]
1
2018-02-01T10:08:40.000Z
2018-02-01T10:08:40.000Z
# coding: utf-8 """ Server API Reference for Server API (REST/Json) OpenAPI spec version: 1.4.58 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class Director2(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, name=None, description_short=None, description=None, meta_title=None, meta_description=None, meta_keywords=None, link_rewrite=None, active=None): """ Director2 - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'name': 'str', 'description_short': 'list[I18nField]', 'description': 'list[I18nField]', 'meta_title': 'list[I18nField]', 'meta_description': 'list[I18nField]', 'meta_keywords': 'list[I18nField]', 'link_rewrite': 'list[I18nField]', 'active': 'bool' } self.attribute_map = { 'name': 'name', 'description_short': 'description_short', 'description': 'description', 'meta_title': 'meta_title', 'meta_description': 'meta_description', 'meta_keywords': 'meta_keywords', 'link_rewrite': 'link_rewrite', 'active': 'active' } self._name = name self._description_short = description_short self._description = description self._meta_title = meta_title self._meta_description = meta_description self._meta_keywords = meta_keywords self._link_rewrite = link_rewrite self._active = active @property def name(self): """ Gets the name of this Director2. Director's name :return: The name of this Director2. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this Director2. Director's name :param name: The name of this Director2. :type: str """ self._name = name @property def description_short(self): """ Gets the description_short of this Director2. Director's short description :return: The description_short of this Director2. :rtype: list[I18nField] """ return self._description_short @description_short.setter def description_short(self, description_short): """ Sets the description_short of this Director2. Director's short description :param description_short: The description_short of this Director2. :type: list[I18nField] """ self._description_short = description_short @property def description(self): """ Gets the description of this Director2. Director's description :return: The description of this Director2. :rtype: list[I18nField] """ return self._description @description.setter def description(self, description): """ Sets the description of this Director2. Director's description :param description: The description of this Director2. :type: list[I18nField] """ self._description = description @property def meta_title(self): """ Gets the meta_title of this Director2. Title page for search engines :return: The meta_title of this Director2. :rtype: list[I18nField] """ return self._meta_title @meta_title.setter def meta_title(self, meta_title): """ Sets the meta_title of this Director2. Title page for search engines :param meta_title: The meta_title of this Director2. :type: list[I18nField] """ self._meta_title = meta_title @property def meta_description(self): """ Gets the meta_description of this Director2. Short description for search engines :return: The meta_description of this Director2. :rtype: list[I18nField] """ return self._meta_description @meta_description.setter def meta_description(self, meta_description): """ Sets the meta_description of this Director2. Short description for search engines :param meta_description: The meta_description of this Director2. :type: list[I18nField] """ self._meta_description = meta_description @property def meta_keywords(self): """ Gets the meta_keywords of this Director2. List of keywords for search engines :return: The meta_keywords of this Director2. :rtype: list[I18nField] """ return self._meta_keywords @meta_keywords.setter def meta_keywords(self, meta_keywords): """ Sets the meta_keywords of this Director2. List of keywords for search engines :param meta_keywords: The meta_keywords of this Director2. :type: list[I18nField] """ self._meta_keywords = meta_keywords @property def link_rewrite(self): """ Gets the link_rewrite of this Director2. Friendly URL used to reach real page :return: The link_rewrite of this Director2. :rtype: list[I18nField] """ return self._link_rewrite @link_rewrite.setter def link_rewrite(self, link_rewrite): """ Sets the link_rewrite of this Director2. Friendly URL used to reach real page :param link_rewrite: The link_rewrite of this Director2. :type: list[I18nField] """ self._link_rewrite = link_rewrite @property def active(self): """ Gets the active of this Director2. Director's status :return: The active of this Director2. :rtype: bool """ return self._active @active.setter def active(self, active): """ Sets the active of this Director2. Director's status :param active: The active of this Director2. :type: bool """ self._active = active def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
26.824916
168
0.578637
85309d76c3b96ca7268bfde3915187a6d3f67267
5,544
py
Python
test/functional/rpc_generateblock.py
trungnq1510/bitcoin
4702a08358f9996f2a40cb5cba03c9177d4d991f
[ "MIT" ]
null
null
null
test/functional/rpc_generateblock.py
trungnq1510/bitcoin
4702a08358f9996f2a40cb5cba03c9177d4d991f
[ "MIT" ]
null
null
null
test/functional/rpc_generateblock.py
trungnq1510/bitcoin
4702a08358f9996f2a40cb5cba03c9177d4d991f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2020 The Bitnamicoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. '''Test generateblock rpc. ''' from test_framework.test_framework import BitnamicoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class GenerateBlockTest(BitnamicoinTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): node = self.nodes[0] self.log.info('Generate an empty block to address') address = node.getnewaddress() hash = node.generateblock(output=address, transactions=[])['hash'] block = node.getblock(blockhash=hash, verbose=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['addresses'][0], address) self.log.info('Generate an empty block to a descriptor') hash = node.generateblock('addr(' + address + ')', [])['hash'] block = node.getblock(blockhash=hash, verbosity=2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['addresses'][0], address) self.log.info('Generate an empty block to a combo descriptor with compressed pubkey') combo_key = '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798' combo_address = 'bcrt1qw508d6qejxtdg4y5r3zarvary0c5xw7kygt080' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['addresses'][0], combo_address) self.log.info('Generate an empty block to a combo descriptor with uncompressed pubkey') combo_key = '0408ef68c46d20596cc3f6ddf7c8794f71913add807f1dc55949fa805d764d191c0b7ce6894c126fce0babc6663042f3dde9b0cf76467ea315514e5a6731149c67' combo_address = 'mkc9STceoCcjoXEXe6cm66iJbmjM6zR9B2' hash = node.generateblock('combo(' + combo_key + ')', [])['hash'] block = node.getblock(hash, 2) assert_equal(len(block['tx']), 1) assert_equal(block['tx'][0]['vout'][0]['scriptPubKey']['addresses'][0], combo_address) # Generate 110 blocks to spend node.generatetoaddress(110, address) # Generate some extra mempool transactions to verify they don't get mined for _ in range(10): node.sendtoaddress(address, 0.001) self.log.info('Generate block with txid') txid = node.sendtoaddress(address, 1) hash = node.generateblock(address, [txid])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) assert_equal(block['tx'][1], txid) self.log.info('Generate block with raw tx') utxos = node.listunspent(addresses=[address]) raw = node.createrawtransaction([{'txid':utxos[0]['txid'], 'vout':utxos[0]['vout']}],[{address:1}]) signed_raw = node.signrawtransactionwithwallet(raw)['hex'] hash = node.generateblock(address, [signed_raw])['hash'] block = node.getblock(hash, 1) assert_equal(len(block['tx']), 2) txid = block['tx'][1] assert_equal(node.gettransaction(txid)['hex'], signed_raw) self.log.info('Fail to generate block with out of order txs') raw1 = node.createrawtransaction([{'txid':txid, 'vout':0}],[{address:0.9999}]) signed_raw1 = node.signrawtransactionwithwallet(raw1)['hex'] txid1 = node.sendrawtransaction(signed_raw1) raw2 = node.createrawtransaction([{'txid':txid1, 'vout':0}],[{address:0.999}]) signed_raw2 = node.signrawtransactionwithwallet(raw2)['hex'] assert_raises_rpc_error(-25, 'TestBlockValidity failed: bad-txns-inputs-missingorspent', node.generateblock, address, [signed_raw2, txid1]) self.log.info('Fail to generate block with txid not in mempool') missing_txid = '0000000000000000000000000000000000000000000000000000000000000000' assert_raises_rpc_error(-5, 'Transaction ' + missing_txid + ' not in mempool.', node.generateblock, address, [missing_txid]) self.log.info('Fail to generate block with invalid raw tx') invalid_raw_tx = '0000' assert_raises_rpc_error(-22, 'Transaction decode failed for ' + invalid_raw_tx, node.generateblock, address, [invalid_raw_tx]) self.log.info('Fail to generate block with invalid address/descriptor') assert_raises_rpc_error(-5, 'Invalid address or descriptor', node.generateblock, '1234', []) self.log.info('Fail to generate block with a ranged descriptor') ranged_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0/*)' assert_raises_rpc_error(-8, 'Ranged descriptor not accepted. Maybe pass through deriveaddresses first?', node.generateblock, ranged_descriptor, []) self.log.info('Fail to generate block with a descriptor missing a private key') child_descriptor = 'pkh(tpubD6NzVbkrYhZ4XgiXtGrdW5XDAPFCL9h7we1vwNCpn8tGbBcgfVYjXyhWo4E1xkh56hjod1RhGjxbaTLV3X4FyWuejifB9jusQ46QzG87VKp/0\'/0)' assert_raises_rpc_error(-5, 'Cannot derive script without private keys', node.generateblock, child_descriptor, []) if __name__ == '__main__': GenerateBlockTest().main()
51.813084
155
0.694805
f6c883e451c88a1e1d7de646f56c752da4e7ad25
2,144
py
Python
lms/models/event_models.py
yankai14/event-management-telegram-bot-backend
c0b4b2294ab7d06100b221d9b41a8f52d500075d
[ "MIT" ]
null
null
null
lms/models/event_models.py
yankai14/event-management-telegram-bot-backend
c0b4b2294ab7d06100b221d9b41a8f52d500075d
[ "MIT" ]
6
2021-06-28T07:23:15.000Z
2021-07-22T12:59:33.000Z
lms/models/event_models.py
yankai14/event-management-telegram-bot-backend
c0b4b2294ab7d06100b221d9b41a8f52d500075d
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.postgres.fields import ArrayField class Event(models.Model): eventCode = models.CharField(max_length=100, blank=False, null=True, unique=True) name = models.CharField(max_length=100, blank=False, null=True) description = models.TextField(default="") def __str__(self): return self.eventCode class EventInstance(models.Model): ''' An EventInstance is a many to one relation with Event. Eg A module has many tutorial groups. ''' eventInstanceCode = models.CharField(max_length=100, blank=False, null=True, unique=True) startDate = models.DateTimeField(blank=False, null=True) endDate = models.DateTimeField(blank=False, null=True) location = models.CharField(max_length=250, blank=False, null=True) dates = ArrayField( models.DateTimeField(blank=False, null=True), null=True ) fee = models.DecimalField(max_digits=10, decimal_places=2, default=0) isCompleted = models.BooleanField(default=False) event = models.ForeignKey('Event', null=True, on_delete=models.CASCADE) vacancy = models.IntegerField(blank=False, null=True) vacancyLeft = models.IntegerField(blank=False, null=True) isOpenForSignUps = models.BooleanField(default=True) def __str__(self): return self.eventInstanceCode class EventInstanceFolder(models.Model): folderId = models.CharField(max_length=250, blank=False, null=False, unique=True) folderName = models.CharField(max_length=200, blank=False, null=True, unique=True) eventInstance = models.OneToOneField('EventInstance', null=True, on_delete=models.CASCADE) def __str__(self): return self.folderId class EventInstanceFolderPermissions(models.Model): permissionId = models.CharField(max_length=250, blank=False, null=False, unique=True) user = models.OneToOneField('User', null=True, on_delete=models.CASCADE) folder = models.ManyToManyField('EventInstanceFolder') folderRole = models.CharField(max_length=50, blank=False, null=False, default="reader") def __str__(self): return self.permissionId
38.285714
94
0.736007
59cfadb44650872154785eec14fbda5405526d1c
8,051
py
Python
doc/src/MCsummary/src/qdotBroyden.py
GabrielSCabrera/ComputationalPhysics2
a840b97b651085090f99bf6a11abab57100c2e85
[ "CC0-1.0" ]
87
2015-01-21T08:29:56.000Z
2022-03-28T07:11:53.000Z
doc/src/MCsummary/src/qdotBroyden.py
GabrielSCabrera/ComputationalPhysics2
a840b97b651085090f99bf6a11abab57100c2e85
[ "CC0-1.0" ]
3
2020-01-18T10:43:38.000Z
2020-02-08T13:15:42.000Z
doc/src/MCsummary/src/qdotBroyden.py
GabrielSCabrera/ComputationalPhysics2
a840b97b651085090f99bf6a11abab57100c2e85
[ "CC0-1.0" ]
54
2015-02-09T10:02:00.000Z
2022-03-07T10:44:14.000Z
# 2-electron VMC code for 2dim quantum dot with importance sampling # Using gaussian rng for new positions and Metropolis- Hastings # Added energy minimization from math import exp, sqrt from random import random, seed, normalvariate import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from scipy.optimize import minimize import sys import os # Where to save data files PROJECT_ROOT_DIR = "Results" DATA_ID = "Results/EnergyMin" if not os.path.exists(PROJECT_ROOT_DIR): os.mkdir(PROJECT_ROOT_DIR) if not os.path.exists(DATA_ID): os.makedirs(DATA_ID) def data_path(dat_id): return os.path.join(DATA_ID, dat_id) outfile = open(data_path("Energies.dat"),'w') # Trial wave function for the 2-electron quantum dot in two dims def WaveFunction(r,alpha,beta): r1 = r[0,0]**2 + r[0,1]**2 r2 = r[1,0]**2 + r[1,1]**2 r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = r12/(1+beta*r12) return exp(-0.5*alpha*(r1+r2)+deno) # Local energy for the 2-electron quantum dot in two dims, using analytical local energy def LocalEnergy(r,alpha,beta): r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12) # Derivate of wave function ansatz as function of variational parameters def DerivativeWFansatz(r,alpha,beta): WfDer = np.zeros((2), np.double) r1 = (r[0,0]**2 + r[0,1]**2) r2 = (r[1,0]**2 + r[1,1]**2) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) deno2 = deno*deno WfDer[0] = -0.5*(r1+r2) WfDer[1] = -r12*r12*deno2 return WfDer # Setting up the quantum force for the two-electron quantum dot, recall that it is a vector def QuantumForce(r,alpha,beta): qforce = np.zeros((NumberParticles,Dimension), np.double) r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2) deno = 1.0/(1+beta*r12) qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12 qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12 return qforce # Computing the derivative of the energy and the energy def EnergyDerivative(x0): # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) energy = 0.0 DeltaE = 0.0 alpha = x0[0] beta = x0[1] EnergyDer = 0.0 DeltaPsi = 0.0 DerivativePsiE = 0.0 #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha,beta) QuantumForceOld = QuantumForce(PositionOld,alpha, beta) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha,beta) QuantumForceNew = QuantumForce(PositionNew,alpha, beta) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha,beta) DerPsi = DerivativeWFansatz(PositionOld,alpha,beta) DeltaPsi += DerPsi energy += DeltaE DerivativePsiE += DerPsi*DeltaE # We calculate mean values energy /= NumberMCcycles DerivativePsiE /= NumberMCcycles DeltaPsi /= NumberMCcycles EnergyDer = 2*(DerivativePsiE-DeltaPsi*energy) return EnergyDer # Computing the expectation value of the local energy def Energy(x0): # Parameters in the Fokker-Planck simulation of the quantum force D = 0.5 TimeStep = 0.05 # positions PositionOld = np.zeros((NumberParticles,Dimension), np.double) PositionNew = np.zeros((NumberParticles,Dimension), np.double) # Quantum force QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double) QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double) energy = 0.0 DeltaE = 0.0 alpha = x0[0] beta = x0[1] #Initial position for i in range(NumberParticles): for j in range(Dimension): PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep) wfold = WaveFunction(PositionOld,alpha,beta) QuantumForceOld = QuantumForce(PositionOld,alpha, beta) #Loop over MC MCcycles for MCcycle in range(NumberMCcycles): #Trial position moving one particle at the time for i in range(NumberParticles): for j in range(Dimension): PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\ QuantumForceOld[i,j]*TimeStep*D wfnew = WaveFunction(PositionNew,alpha,beta) QuantumForceNew = QuantumForce(PositionNew,alpha, beta) GreensFunction = 0.0 for j in range(Dimension): GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\ (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\ PositionNew[i,j]+PositionOld[i,j]) GreensFunction = exp(GreensFunction) ProbabilityRatio = GreensFunction*wfnew**2/wfold**2 #Metropolis-Hastings test to see whether we accept the move if random() <= ProbabilityRatio: for j in range(Dimension): PositionOld[i,j] = PositionNew[i,j] QuantumForceOld[i,j] = QuantumForceNew[i,j] wfold = wfnew DeltaE = LocalEnergy(PositionOld,alpha,beta) energy += DeltaE if Printout: outfile.write('%f\n' %(energy/(MCcycle+1.0))) # We calculate mean values energy /= NumberMCcycles return energy #Here starts the main program with variable declarations NumberParticles = 2 Dimension = 2 # seed for rng generator seed() # Monte Carlo cycles for parameter optimization Printout = False NumberMCcycles= 10000 # guess for variational parameters x0 = np.array([0.9,0.2]) # Using Broydens method to find optimal parameters res = minimize(Energy, x0, method='BFGS', jac=EnergyDerivative, options={'gtol': 1e-4,'disp': True}) x0 = res.x # Compute the energy again with the optimal parameters and increased number of Monte Cycles NumberMCcycles= 2**19 Printout = True FinalEnergy = Energy(x0) EResult = np.array([FinalEnergy,FinalEnergy]) outfile.close() #nice printout with Pandas import pandas as pd from pandas import DataFrame data ={'Optimal Parameters':x0, 'Final Energy':EResult} frame = pd.DataFrame(data) print(frame)
35.46696
105
0.635573
eafe9e815a235969468f3cc59527190de78b77ea
3,569
py
Python
stellar_sdk/xdr/transaction_signature_payload_tagged_transaction.py
JakeUrban/py-stellar-base
819097df05c9af448f806657a3ff1b0d890f0ac4
[ "Apache-2.0" ]
null
null
null
stellar_sdk/xdr/transaction_signature_payload_tagged_transaction.py
JakeUrban/py-stellar-base
819097df05c9af448f806657a3ff1b0d890f0ac4
[ "Apache-2.0" ]
null
null
null
stellar_sdk/xdr/transaction_signature_payload_tagged_transaction.py
JakeUrban/py-stellar-base
819097df05c9af448f806657a3ff1b0d890f0ac4
[ "Apache-2.0" ]
null
null
null
# This is an automatically generated file. # DO NOT EDIT or your changes may be overwritten import base64 from xdrlib import Packer, Unpacker from .envelope_type import EnvelopeType from .fee_bump_transaction import FeeBumpTransaction from .transaction import Transaction from ..exceptions import ValueError __all__ = ["TransactionSignaturePayloadTaggedTransaction"] class TransactionSignaturePayloadTaggedTransaction: """ XDR Source Code ---------------------------------------------------------------- union switch (EnvelopeType type) { // Backwards Compatibility: Use ENVELOPE_TYPE_TX to sign ENVELOPE_TYPE_TX_V0 case ENVELOPE_TYPE_TX: Transaction tx; case ENVELOPE_TYPE_TX_FEE_BUMP: FeeBumpTransaction feeBump; } ---------------------------------------------------------------- """ def __init__( self, type: EnvelopeType, tx: Transaction = None, fee_bump: FeeBumpTransaction = None, ) -> None: self.type = type self.tx = tx self.fee_bump = fee_bump def pack(self, packer: Packer) -> None: self.type.pack(packer) if self.type == EnvelopeType.ENVELOPE_TYPE_TX: if self.tx is None: raise ValueError("tx should not be None.") self.tx.pack(packer) return if self.type == EnvelopeType.ENVELOPE_TYPE_TX_FEE_BUMP: if self.fee_bump is None: raise ValueError("fee_bump should not be None.") self.fee_bump.pack(packer) return raise ValueError("Invalid type.") @classmethod def unpack( cls, unpacker: Unpacker ) -> "TransactionSignaturePayloadTaggedTransaction": type = EnvelopeType.unpack(unpacker) if type == EnvelopeType.ENVELOPE_TYPE_TX: tx = Transaction.unpack(unpacker) if tx is None: raise ValueError("tx should not be None.") return cls(type, tx=tx) if type == EnvelopeType.ENVELOPE_TYPE_TX_FEE_BUMP: fee_bump = FeeBumpTransaction.unpack(unpacker) if fee_bump is None: raise ValueError("fee_bump should not be None.") return cls(type, fee_bump=fee_bump) raise ValueError("Invalid type.") def to_xdr_bytes(self) -> bytes: packer = Packer() self.pack(packer) return packer.get_buffer() @classmethod def from_xdr_bytes( cls, xdr: bytes ) -> "TransactionSignaturePayloadTaggedTransaction": unpacker = Unpacker(xdr) return cls.unpack(unpacker) def to_xdr(self) -> str: xdr_bytes = self.to_xdr_bytes() return base64.b64encode(xdr_bytes).decode() @classmethod def from_xdr(cls, xdr: str) -> "TransactionSignaturePayloadTaggedTransaction": xdr_bytes = base64.b64decode(xdr.encode()) return cls.from_xdr_bytes(xdr_bytes) def __eq__(self, other: object): if not isinstance(other, self.__class__): return NotImplemented return ( self.type == other.type and self.tx == other.tx and self.fee_bump == other.fee_bump ) def __str__(self): out = [] out.append(f"type={self.type}") out.append(f"tx={self.tx}") if self.tx is not None else None out.append(f"fee_bump={self.fee_bump}") if self.fee_bump is not None else None return f"<TransactionSignaturePayloadTaggedTransaction {[', '.join(out)]}>"
33.669811
86
0.607453
ee43f5a68307556d0a4535981880a0a3c4a7e166
419
py
Python
django_rest_framework/django_rest_framework/wsgi.py
KushalVenkatesh/drf-secure-apis-demo
ef24928f9ad58e205827ce93ab3be3d1e80af715
[ "Apache-2.0" ]
1
2021-08-31T06:09:00.000Z
2021-08-31T06:09:00.000Z
django_rest_framework/django_rest_framework/wsgi.py
KushalVenkatesh/drf-secure-apis-demo
ef24928f9ad58e205827ce93ab3be3d1e80af715
[ "Apache-2.0" ]
null
null
null
django_rest_framework/django_rest_framework/wsgi.py
KushalVenkatesh/drf-secure-apis-demo
ef24928f9ad58e205827ce93ab3be3d1e80af715
[ "Apache-2.0" ]
1
2021-08-31T06:08:59.000Z
2021-08-31T06:08:59.000Z
""" WSGI config for django_rest_framework project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'django_rest_framework.settings') application = get_wsgi_application()
24.647059
81
0.799523
7fbc0969249ea3ac7097800abc81beb1e3ebf5da
820
py
Python
tickit/devices/eiger/stream/stream_status.py
dls-controls/tickit
00bb013e69674bcfe4926f365ecb3c65c080abe8
[ "Apache-2.0" ]
4
2021-09-16T13:35:33.000Z
2022-02-01T23:35:53.000Z
tickit/devices/eiger/stream/stream_status.py
dls-controls/tickit
00bb013e69674bcfe4926f365ecb3c65c080abe8
[ "Apache-2.0" ]
46
2021-09-16T13:44:58.000Z
2022-02-02T13:42:56.000Z
tickit/devices/eiger/stream/stream_status.py
dls-controls/tickit
00bb013e69674bcfe4926f365ecb3c65c080abe8
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass, field, fields from typing import Any, List from tickit.devices.eiger.eiger_schema import AccessMode, ro_int, ro_str @dataclass class StreamStatus: """Eiger stream status taken from the API spec.""" state: str = field(default="ready", metadata=ro_str()) error: List[str] = field( default_factory=lambda: [], metadata=dict( value=[], value_type=AccessMode.LIST_STR, access_mode=AccessMode.READ_ONLY ), ) dropped: int = field(default=0, metadata=ro_int()) def __getitem__(self, key: str) -> Any: # noqa: D105 f = {} for field_ in fields(self): f[field_.name] = { "value": vars(self)[field_.name], "metadata": field_.metadata, } return f[key]
29.285714
86
0.609756
be94f993d1a0f68dcdbc47ecfce56f3376ffe6c9
2,189
py
Python
tasks/__init__.py
ruivieira/python-experiments
c25cc7644d1437898ae5b0fa8073c5ae1442c3ba
[ "Apache-2.0" ]
null
null
null
tasks/__init__.py
ruivieira/python-experiments
c25cc7644d1437898ae5b0fa8073c5ae1442c3ba
[ "Apache-2.0" ]
null
null
null
tasks/__init__.py
ruivieira/python-experiments
c25cc7644d1437898ae5b0fa8073c5ae1442c3ba
[ "Apache-2.0" ]
null
null
null
# type: ignore """Task management""" # INFO: Task management # pylint: disable=R0903,C0103 from dataclasses import dataclass from enum import Enum from typing import List from todoist import TodoistAPI import common.fs as fs class TaskStatus(Enum): """Task status enum""" TODO = "TODO" DONE = "DONE" LATER = "LATER" @dataclass class Task: """Task data class""" status: TaskStatus content: str class Todoist: """Todoist access manager""" def __init__(self, token: str): self.token = token self.api = TodoistAPI(self.token) self.api.sync() def get_all_active_tasks(self) -> List[Task]: """Get all active tasks""" tasks: List[Task] = [] for item in self.api.state["items"]: status = TaskStatus.TODO if item["checked"] == 0 else TaskStatus.DONE task = Task(status=status, content=item["content"]) tasks.append(task) return tasks def _parse_LogSeq_task(line: str) -> Task: """Parse a string into a LogSeq (orgmode) task""" stripped = line.lstrip() if stripped.startswith("- TODO"): task = Task(TaskStatus.TODO, stripped[7:]) elif stripped.startswith("- LATER"): task = Task(TaskStatus.LATER, stripped[8:]) elif stripped.startswith("- DONE"): task = Task(TaskStatus.DONE, stripped[7:]) else: task = Task(TaskStatus.TODO, stripped[2:]) return task def _isTask(line: str) -> bool: """Check if a LogSeq string is a task""" stripped = line.lstrip() return ( stripped.startswith("- TODO") or stripped.startswith("- LATER") or stripped.startswith("- DONE") ) class LogSeqTasks: """LogSeq tasks manager""" def __init__(self, root): self.root = root self.tasks: List[Task] = [] files = fs.get_all_files(root, "*.md") for file in files: # open the markdown file with open(file, "r") as md_file: lines = md_file.read().splitlines() for line in lines: if _isTask(line): self.tasks.append(_parse_LogSeq_task(line))
25.16092
81
0.595249
7a4d10d0c271fb998260abd06a935a458709e72a
3,293
py
Python
examples/pylab_examples/axes_zoom_effect.py
stefanv/matplotlib
2c6c3695ef989ec86b7c43740462ef992685022f
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
3
2015-11-16T07:22:28.000Z
2016-11-11T17:55:14.000Z
examples/pylab_examples/axes_zoom_effect.py
astraw/matplotlib-ancient
7272f102482941ada6e5fd874bdf7f185f420526
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
null
null
null
examples/pylab_examples/axes_zoom_effect.py
astraw/matplotlib-ancient
7272f102482941ada6e5fd874bdf7f185f420526
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
null
null
null
from matplotlib.transforms import Bbox, TransformedBbox, \ blended_transform_factory from mpl_toolkits.axes_grid1.inset_locator import BboxPatch, BboxConnector,\ BboxConnectorPatch def connect_bbox(bbox1, bbox2, loc1a, loc2a, loc1b, loc2b, prop_lines, prop_patches=None): if prop_patches is None: prop_patches = prop_lines.copy() prop_patches["alpha"] = prop_patches.get("alpha", 1)*0.2 c1 = BboxConnector(bbox1, bbox2, loc1=loc1a, loc2=loc2a, **prop_lines) c1.set_clip_on(False) c2 = BboxConnector(bbox1, bbox2, loc1=loc1b, loc2=loc2b, **prop_lines) c2.set_clip_on(False) bbox_patch1 = BboxPatch(bbox1, **prop_patches) bbox_patch2 = BboxPatch(bbox2, **prop_patches) p = BboxConnectorPatch(bbox1, bbox2, #loc1a=3, loc2a=2, loc1b=4, loc2b=1, loc1a=loc1a, loc2a=loc2a, loc1b=loc1b, loc2b=loc2b, **prop_patches) p.set_clip_on(False) return c1, c2, bbox_patch1, bbox_patch2, p def zoom_effect01(ax1, ax2, xmin, xmax, **kwargs): u""" ax1 : the main axes ax1 : the zoomed axes (xmin,xmax) : the limits of the colored area in both plot axes. connect ax1 & ax2. The x-range of (xmin, xmax) in both axes will be marked. The keywords parameters will be used ti create patches. """ trans1 = blended_transform_factory(ax1.transData, ax1.transAxes) trans2 = blended_transform_factory(ax2.transData, ax2.transAxes) bbox = Bbox.from_extents(xmin, 0, xmax, 1) mybbox1 = TransformedBbox(bbox, trans1) mybbox2 = TransformedBbox(bbox, trans2) prop_patches=kwargs.copy() prop_patches["ec"]="none" prop_patches["alpha"]=0.2 c1, c2, bbox_patch1, bbox_patch2, p = \ connect_bbox(mybbox1, mybbox2, loc1a=3, loc2a=2, loc1b=4, loc2b=1, prop_lines=kwargs, prop_patches=prop_patches) ax1.add_patch(bbox_patch1) ax2.add_patch(bbox_patch2) ax2.add_patch(c1) ax2.add_patch(c2) ax2.add_patch(p) return c1, c2, bbox_patch1, bbox_patch2, p def zoom_effect02(ax1, ax2, **kwargs): u""" ax1 : the main axes ax1 : the zoomed axes Similar to zoom_effect01. The xmin & xmax will be taken from the ax1.viewLim. """ tt = ax1.transScale + (ax1.transLimits + ax2.transAxes) trans = blended_transform_factory(ax2.transData, tt) mybbox1 = ax1.bbox mybbox2 = TransformedBbox(ax1.viewLim, trans) prop_patches=kwargs.copy() prop_patches["ec"]="none" prop_patches["alpha"]=0.2 c1, c2, bbox_patch1, bbox_patch2, p = \ connect_bbox(mybbox1, mybbox2, loc1a=3, loc2a=2, loc1b=4, loc2b=1, prop_lines=kwargs, prop_patches=prop_patches) ax1.add_patch(bbox_patch1) ax2.add_patch(bbox_patch2) ax2.add_patch(c1) ax2.add_patch(c2) ax2.add_patch(p) return c1, c2, bbox_patch1, bbox_patch2, p import matplotlib.pyplot as plt plt.figure(1, figsize=(5,5)) ax1 = plt.subplot(221) ax2 = plt.subplot(212) ax2.set_xlim(0, 1) ax2.set_xlim(0, 5) zoom_effect01(ax1, ax2, 0.2, 0.8) ax1 = plt.subplot(222) ax1.set_xlim(2, 3) ax2.set_xlim(0, 5) zoom_effect02(ax1, ax2) plt.show()
27.672269
78
0.652293
55b4b339e9d70e85b4187a60ee978350f2ece6e4
2,282
py
Python
test_files/Final/move_type_check.py
NeelamMahapatro/Roborex_Chess
cc2666c56c09fc21a7c76879e2f19e594ddd474c
[ "MIT" ]
3
2019-06-20T04:17:54.000Z
2020-07-17T15:34:14.000Z
test_files/Final/move_type_check.py
NeelamMahapatro/Roborex_Chess
cc2666c56c09fc21a7c76879e2f19e594ddd474c
[ "MIT" ]
1
2018-03-31T09:48:58.000Z
2018-03-31T09:48:58.000Z
test_files/Final/move_type_check.py
NeelamMahapatro/Roborex_Chess
cc2666c56c09fc21a7c76879e2f19e594ddd474c
[ "MIT" ]
6
2018-03-30T12:24:25.000Z
2020-07-17T15:33:48.000Z
#!/usr/bin/env python ################################################################################ ## ## MIT License ## ## Copyright (c) 2018 Team Roborex, NIT Rourkela ## ## Permission is hereby granted, free of charge, to any person obtaining a copy ## of this software and associated documentation files (the "Software"), to deal ## in the Software without restriction, including without limitation the rights ## to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ## copies of the Software, and to permit persons to whom the Software is ## furnished to do so, subject to the following conditions: ## ## The above copyright notice and this permission notice shall be included in all ## copies or substantial portions of the Software. ## ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ## IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ## FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ## AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ## LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ## OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE ## SOFTWARE. ## ################################################################################ ################################################################################ ## ## AUTHORS: Pabitra Dash ## ################################################################################ import chess import chess.uci brd=chess.Board() def checking(string_): len_value=len(string_) if len_value==4: cool=checking_(string_) if len_value==5: cool='5' return cool def checking_(string_): flag=99 string_=chess.Move.from_uci(string_) if(brd.is_capture(string_)): flag='1' if(brd.is_en_passant(string_)): flag='2' if(brd.is_castling(string_)): flag='3' if(flag==99): flag='0' return flag ################################### i=0 while True: str_=raw_input("Enter a string: ") i=i+1 a=checking(str_) print(a) brd.push(chess.Move.from_uci(str_)) print(brd) ''' if(i%2==0): a=checking(str_) print(a) '''
30.837838
81
0.578878
3e0c46caf8ea5a3737443e70ff8d615300e67347
204
py
Python
python/packages/isce3/core/DateTime.py
piyushrpt/isce3
1741af321470cb5939693459765d11a19c5c6fc2
[ "Apache-2.0" ]
null
null
null
python/packages/isce3/core/DateTime.py
piyushrpt/isce3
1741af321470cb5939693459765d11a19c5c6fc2
[ "Apache-2.0" ]
null
null
null
python/packages/isce3/core/DateTime.py
piyushrpt/isce3
1741af321470cb5939693459765d11a19c5c6fc2
[ "Apache-2.0" ]
null
null
null
#-*- coding: utf-8 -*- # # Heresh Fattahi # Copyright 2019- # # The extension from .. import isceextension class DateTime(isceextension.pyDateTime): """ Wrapper for pyDateTime. """ pass
13.6
41
0.642157
fa1104381ac698aaf0186a6447bbe10fea4eb475
1,064
py
Python
kd_common/kd_common/google/common.py
konovalovdmitry/catsnap
d5f1d7c37dcee1ad3fee2cdc12a3b44b56f4c63f
[ "MIT" ]
null
null
null
kd_common/kd_common/google/common.py
konovalovdmitry/catsnap
d5f1d7c37dcee1ad3fee2cdc12a3b44b56f4c63f
[ "MIT" ]
null
null
null
kd_common/kd_common/google/common.py
konovalovdmitry/catsnap
d5f1d7c37dcee1ad3fee2cdc12a3b44b56f4c63f
[ "MIT" ]
1
2021-09-30T08:06:20.000Z
2021-09-30T08:06:20.000Z
import pickle import os.path from typing import Any from os.path import join from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from kd_common import pathutil _SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] _FILE_TOKEN = join(pathutil.FOLDER_GOOGLE, "token.pickle") _FILE_CREDENTIALS = join(pathutil.FOLDER_GOOGLE, "credentials.json") def get_credentials() -> Any: creds = None if os.path.exists(_FILE_TOKEN): with open(_FILE_TOKEN, 'rb') as token: creds = pickle.load(token) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( _FILE_CREDENTIALS, _SCOPES) creds = flow.run_console() # Save the credentials for the next run with open(_FILE_TOKEN, 'wb') as token: pickle.dump(creds, token) return creds
30.4
68
0.698308
06c5606d3f39a9dd8b48f22ce967fe806b42fae9
4,018
py
Python
dcitools/devices/doremi/message.py
jeajar/python-dcitools
1be2e70b6d48bed18465fd8d5ef36ea0e617d5b2
[ "MIT" ]
15
2015-02-25T00:51:05.000Z
2021-01-14T17:20:56.000Z
dcitools/devices/doremi/message.py
jeajar/python-dcitools
1be2e70b6d48bed18465fd8d5ef36ea0e617d5b2
[ "MIT" ]
5
2018-10-05T07:41:00.000Z
2019-05-27T22:57:42.000Z
dcitools/devices/doremi/message.py
jeajar/python-dcitools
1be2e70b6d48bed18465fd8d5ef36ea0e617d5b2
[ "MIT" ]
7
2018-03-26T13:43:10.000Z
2022-03-08T14:43:26.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: ai ts=4 sts=4 et sw=4 nu """ (c) 2014 Ronan Delacroix Doremi API Requests definition :author: Ronan Delacroix """ import six import tbx.bytes class MessageDefinition(object): """ Request Definition object. """ def __init__(self, name, key, elements=None): self.name = name if six.PY3: self.key = bytes.fromhex(key) else: self.key = str(key).decode('hex') self.elements = elements or [] #List of Element or ResponseElement @property def element_names(self): return [e.name for e in self.elements] class Element(object): """ Message Element Definition """ def __init__(self, name, func, **kwargs): self.name = name self.func = func self.kwargs = kwargs class ResponseElement(Element): """ Response Message Element Definition """ def __init__(self, name, start, end, func, text_translate=None): self.name = name self.func = func self.start = start self.end = end self.text_translate = text_translate class ResponseBatch(Element): """ Response Message Element Definition """ def __init__(self, name, start, end, sub_elements=None): super(ResponseBatch, self).__init__(name=name, func=self.func) self.start = start self.end = end self.sub_elements = sub_elements or [] self.text_translate = None def func(self, byte_array): result = [] length = tbx.bytes.bytes_to_int(byte_array[0:4]) item_size = tbx.bytes.bytes_to_int(byte_array[4:8]) for i in range(0, length): item = {} chunk = byte_array[8+i*item_size:8+(i+1)*item_size] for e in self.sub_elements: sub_chunk = chunk[e.start:e.end] item[e.name] = e.func(sub_chunk) if e.text_translate: item[e.name+'_text'] = e.text_translate.get(item[e.name], 'unknown value') result.append(item) return result class MessageList(object): """ Message class. Allows to index a request/response definition set. """ def __init__(self, messages): self.messages = messages self.index_by_name = {} self.index_by_key = {} for d in self.messages: self.index_by_key[d.key] = d self.index_by_name[d.name] = d def get_by_name(self, name): return self.index_by_name.get(name, None) def get_by_key(self, k): if isinstance(k, str): if six.PY3: k = bytes.fromhex(k) else: k = k.encode('hex') return self.index_by_key.get(bytes(k), None) def get(self, key_or_name): if isinstance(key_or_name, bytes) or isinstance(key_or_name, bytearray): return self.get_by_key(key_or_name) or self.get_by_name(key_or_name) else: return self.get_by_name(key_or_name) or self.get_by_key(key_or_name) def list_names(self): return self.index_by_name.keys() def list_keys(self): return self.index_by_key.keys() def __getattr__(self, name): if name in self.index_by_name.keys(): return self.get_by_name(name) return super(MessageList, self).__getattr__(name) class MessageListWrapper(MessageList): """ Module Wrapper Class. Same as parent class but can wrap a module. See here for wrapping module class : http://stackoverflow.com/questions/2447353/getattr-on-a-module """ def __init__(self, wrapped, messages): self.wrapped = wrapped super(MessageListWrapper, self).__init__(messages) def __getattr__(self, name): """ Fall back on module to get attributes """ try: super(MessageListWrapper, self).__getattr__(name) except AttributeError: return getattr(self.wrapped, name)
28.295775
103
0.607018
5c62ad30a0a9e1afc05f8288697746bce12e286d
2,019
py
Python
process_geotiff.py
SmartDataLab/building_damage_kd
45392fff69de818b8d13576de6c413372ca3d0e0
[ "MIT" ]
null
null
null
process_geotiff.py
SmartDataLab/building_damage_kd
45392fff69de818b8d13576de6c413372ca3d0e0
[ "MIT" ]
null
null
null
process_geotiff.py
SmartDataLab/building_damage_kd
45392fff69de818b8d13576de6c413372ca3d0e0
[ "MIT" ]
2
2021-07-02T08:26:11.000Z
2021-07-02T08:27:03.000Z
import numpy as np import gdal import os import cv2 import matplotlib.pyplot as plt import argparse #%% def image(path,band): #读为一个numpy数组 dataset = gdal.Open(path) band = dataset.GetRasterBand(band) nXSize = dataset.RasterXSize #列数 nYSize = dataset.RasterYSize #行数 data= band.ReadAsArray(0,0,nXSize,nYSize).astype(np.int) return data def writeimage(filename,dst_filename,data): #filename用于获取坐标信息,dst_filename目标文件格式为ENVI格式,data为要写出的数据, dataset=gdal.Open(filename) projinfo=dataset.GetProjection() geotransform = dataset.GetGeoTransform() format = "ENVI" driver = gdal.GetDriverByName( format ) dst_ds = driver.Create( dst_filename,dataset.RasterXSize, dataset.RasterYSize, 1, gdal.GDT_Float32 ) dst_ds.SetGeoTransform(geotransform ) dst_ds.SetProjection( projinfo ) dst_ds.GetRasterBand(1).WriteArray( data ) dst_ds = None def getListFiles(path): #获取文件目录下的所有文件(包含子文件夹内的文件) assert os.path.isdir(path),'%s not exist,'%path ret=[] for root,dirs,files in os.walk(path): for filespath in files: ret.append(os.path.join(root,filespath)) return ret def get_figure(file_path,save_path=None): band_list = [image(file_path,i) for i in range(1,4)] img = cv2.merge(band_list) plt.imshow(img) plt.xticks([]),plt.yticks([]) # 不显示坐标轴 if save_path != None: plt.savefig(save_path) plt.show() #%% if __name__=='__main__': parser = argparse.ArgumentParser('将geotiff文件转成rbg图像') parser.add_argument("-geotiff", help="geotiff文件的path", required=True) parser.add_argument("-savepath", help="存储rgb文件的path", required=True) args = parser.parse_args() #file_path = '/data1/su/data/geotiffs/tier3/images/woolsey-fire_00000877_pre_disaster.tif' # %% # %% # use like following # python process_geotiff.py -geotiff /data1/su/data/geotiffs/tier3/images/woolsey-fire_00000877_pre_disaster.tif -savepath test.png get_figure(args.geotiff,args.savepath)
33.098361
135
0.70629
cde75ee6425139ceabd9a6a5de87e846ec184a1a
2,182
py
Python
music_blog/models.py
sashis/music-blog
c0ed13e3df4d25606345c4d8e064833fa86eb0c3
[ "MIT" ]
null
null
null
music_blog/models.py
sashis/music-blog
c0ed13e3df4d25606345c4d8e064833fa86eb0c3
[ "MIT" ]
null
null
null
music_blog/models.py
sashis/music-blog
c0ed13e3df4d25606345c4d8e064833fa86eb0c3
[ "MIT" ]
null
null
null
from datetime import datetime from flask_login import UserMixin from sqlalchemy import func from sqlalchemy.ext.hybrid import hybrid_property from werkzeug.security import generate_password_hash, check_password_hash from .database import db class User(db.Model, UserMixin): __repr_attr__ = 'username' username = db.Column(db.String(64), unique=True) email = db.Column(db.String(128), unique=True) _password = db.Column('password_hash', db.String(128), nullable=False) posts = db.relationship('Post', backref='author', lazy=True) @hybrid_property def password(self): return self._password @password.setter def password(self, plain_passwd): self._password = generate_password_hash(plain_passwd) def check_password(self, plain_passwd): return check_password_hash(self.password, plain_passwd) @classmethod def is_exist(cls, username, email): user = cls.query.filter((cls.username == username) | (cls.email == email)) return user.first() is not None posts_tags = db.Table( 'posts_tags', db.Column('post_id', db.Integer, db.ForeignKey('posts.id'), primary_key=True), db.Column('tag_id', db.Integer, db.ForeignKey('tags.id'), primary_key=True) ) class Tag(db.Model): __repr_attr__ = 'name' name = db.Column(db.String(32), unique=True, nullable=False) class Post(db.Model): __repr_attr__ = 'title' title = db.Column(db.String(80), nullable=False) img_filename = db.Column(db.String(64), nullable=False) description = db.Column(db.String(170)) body = db.Column(db.Text, nullable=False) created_at = db.Column(db.DateTime, nullable=False, default=datetime.utcnow()) view_count = db.Column(db.Integer, nullable=False, default=0) user_id = db.Column( db.Integer, db.ForeignKey('users.id', onupdate='CASCADE', ondelete='SET NULL') ) tags = db.relationship(Tag, secondary=posts_tags, backref=db.backref('posts', lazy='dynamic'), lazy='dynamic') @property def by_same_author(self): cls = type(self) return cls.query.with_parent(self.author).filter(cls.id != self.id).order_by(func.random())
32.088235
114
0.698442
dfb6df882195a4196e52852d93b67a3af58b2ac2
736
py
Python
tests/views.py
wq/django-mustache
09d9a723167f5f5ffb63abe687b89324e397f0a2
[ "MIT" ]
19
2016-01-14T23:01:50.000Z
2020-09-05T07:59:10.000Z
tests/views.py
sheppard/django-mustache
09d9a723167f5f5ffb63abe687b89324e397f0a2
[ "MIT" ]
3
2016-11-07T20:54:47.000Z
2020-03-18T13:48:27.000Z
tests/views.py
sheppard/django-mustache
09d9a723167f5f5ffb63abe687b89324e397f0a2
[ "MIT" ]
4
2016-04-26T23:14:51.000Z
2020-06-24T12:18:15.000Z
from rest_framework.views import APIView from rest_framework.response import Response class View(APIView): context = {} @property def template_name(self): return "test_%s.html" % type(self).__name__.lower().replace('view', '') def get(self, request, *args, **kwargs): return Response(self.context) class ContextView(View): context = { 'test': 1234, 'boolean': True, 'none': None, 'false': False, 'nested': { 'value': 5678, }, 'array': [1, 2, 3], 'empty': [], } class PartialsView(View): pass class MustacheCPView(View): pass class DjangoCPView(View): pass class AppTemplateView(View): pass
16.727273
79
0.576087
d47eb6ae4ab202335e36b34a13205a376de997dd
67,605
py
Python
scipy/stats/mstats_basic.py
f0k/scipy
3145a226339b14bbc22f2e984848e05def7659c5
[ "BSD-3-Clause" ]
null
null
null
scipy/stats/mstats_basic.py
f0k/scipy
3145a226339b14bbc22f2e984848e05def7659c5
[ "BSD-3-Clause" ]
null
null
null
scipy/stats/mstats_basic.py
f0k/scipy
3145a226339b14bbc22f2e984848e05def7659c5
[ "BSD-3-Clause" ]
null
null
null
""" An extension of scipy.stats.stats to support masked arrays :author: Pierre GF Gerard-Marchant :contact: pierregm_at_uga_edu """ #TODO : f_value_wilks_lambda looks botched... what are dfnum & dfden for ? #TODO : ttest_reel looks botched: what are x1,x2,v1,v2 for ? #TODO : reimplement ksonesamp from __future__ import division, print_function, absolute_import __author__ = "Pierre GF Gerard-Marchant" __docformat__ = "restructuredtext en" __all__ = ['argstoarray', 'betai', 'chisquare','count_tied_groups', 'describe', 'f_oneway','f_value_wilks_lambda','find_repeats','friedmanchisquare', 'gmean', 'hmean', 'kendalltau','kendalltau_seasonal','kruskal','kruskalwallis', 'ks_twosamp','ks_2samp','kurtosis','kurtosistest', 'linregress', 'mannwhitneyu', 'meppf','mode','moment','mquantiles','msign', 'normaltest', 'obrientransform', 'pearsonr','plotting_positions','pointbiserialr', 'rankdata', 'scoreatpercentile','sem', 'sen_seasonal_slopes','signaltonoise','skew','skewtest','spearmanr', 'theilslopes','threshold','tmax','tmean','tmin','trim','trimboth', 'trimtail','trima','trimr','trimmed_mean','trimmed_std', 'trimmed_stde','trimmed_var','tsem','ttest_1samp','ttest_onesamp', 'ttest_ind','ttest_rel','tvar', 'variation', 'winsorize', 'zmap', 'zscore' ] import numpy as np from numpy import ndarray import numpy.ma as ma from numpy.ma import MaskedArray, masked, nomask from scipy.lib.six import iteritems import itertools import warnings #import scipy.stats as stats from . import stats import scipy.special as special import scipy.misc as misc #import scipy.stats.futil as futil from . import futil genmissingvaldoc = """ Notes ----- Missing values are considered pair-wise: if a value is missing in x, the corresponding value in y is masked. """ #------------------------------------------------------------------------------ def _chk_asarray(a, axis): if axis is None: a = ma.ravel(a) outaxis = 0 else: a = ma.asanyarray(a) outaxis = axis return a, outaxis def _chk2_asarray(a, b, axis): if axis is None: a = ma.ravel(a) b = ma.ravel(b) outaxis = 0 else: a = ma.asanyarray(a) b = ma.asanyarray(b) outaxis = axis return a, b, outaxis def _chk_size(a,b): a = ma.asanyarray(a) b = ma.asanyarray(b) (na, nb) = (a.size, b.size) if na != nb: raise ValueError("The size of the input array should match!"\ " (%s <> %s)" % (na,nb)) return (a,b,na) def argstoarray(*args): """Constructs a 2D array from a sequence of sequences. Sequences are filled with missing values to match the length of the longest sequence. Returns ------- output : MaskedArray a (mxn) masked array, where m is the number of arguments and n the length of the longest argument. """ if len(args) == 1 and not isinstance(args[0], ndarray): output = ma.asarray(args[0]) if output.ndim != 2: raise ValueError("The input should be 2D") else: n = len(args) m = max([len(k) for k in args]) output = ma.array(np.empty((n,m), dtype=float), mask=True) for (k,v) in enumerate(args): output[k,:len(v)] = v output[np.logical_not(np.isfinite(output._data))] = masked return output #####-------------------------------------------------------------------------- #---- --- Ranking --- #####-------------------------------------------------------------------------- def find_repeats(arr): """Find repeats in arr and return a tuple (repeats, repeat_count). Masked values are discarded. Parameters ---------- arr : sequence Input array. The array is flattened if it is not 1D. Returns ------- repeats : ndarray Array of repeated values. counts : ndarray Array of counts. """ marr = ma.compressed(arr) if not marr.size: return (np.array(0), np.array(0)) (v1, v2, n) = futil.dfreps(ma.array(ma.compressed(arr), copy=True)) return (v1[:n], v2[:n]) def count_tied_groups(x, use_missing=False): """ Counts the number of tied values in x, and returns a dictionary (nb of ties: nb of groups). Parameters ---------- x : sequence Sequence of data on which to counts the ties use_missing : boolean Whether to consider missing values as tied. Examples -------- >>> z = [0, 0, 0, 2, 2, 2, 3, 3, 4, 5, 6] >>> count_tied_groups(z) >>> {2:1, 3:2} >>> # The ties were 0 (3x), 2 (3x) and 3 (2x) >>> z = ma.array([0, 0, 1, 2, 2, 2, 3, 3, 4, 5, 6]) >>> count_tied_groups(z) >>> {2:2, 3:1} >>> # The ties were 0 (2x), 2 (3x) and 3 (2x) >>> z[[1,-1]] = masked >>> count_tied_groups(z, use_missing=True) >>> {2:2, 3:1} >>> # The ties were 2 (3x), 3 (2x) and masked (2x) """ nmasked = ma.getmask(x).sum() # We need the copy as find_repeats will overwrite the initial data data = ma.compressed(x).copy() (ties, counts) = find_repeats(data) nties = {} if len(ties): nties = dict(zip(np.unique(counts), itertools.repeat(1))) nties.update(dict(zip(*find_repeats(counts)))) if nmasked and use_missing: try: nties[nmasked] += 1 except KeyError: nties[nmasked] = 1 return nties def rankdata(data, axis=None, use_missing=False): """Returns the rank (also known as order statistics) of each data point along the given axis. If some values are tied, their rank is averaged. If some values are masked, their rank is set to 0 if use_missing is False, or set to the average rank of the unmasked values if use_missing is True. Parameters ---------- data : sequence Input data. The data is transformed to a masked array axis : {None,int}, optional Axis along which to perform the ranking. If None, the array is first flattened. An exception is raised if the axis is specified for arrays with a dimension larger than 2 use_missing : {boolean}, optional Whether the masked values have a rank of 0 (False) or equal to the average rank of the unmasked values (True). """ # def _rank1d(data, use_missing=False): n = data.count() rk = np.empty(data.size, dtype=float) idx = data.argsort() rk[idx[:n]] = np.arange(1,n+1) # if use_missing: rk[idx[n:]] = (n+1)/2. else: rk[idx[n:]] = 0 # repeats = find_repeats(data.copy()) for r in repeats[0]: condition = (data==r).filled(False) rk[condition] = rk[condition].mean() return rk # data = ma.array(data, copy=False) if axis is None: if data.ndim > 1: return _rank1d(data.ravel(), use_missing).reshape(data.shape) else: return _rank1d(data, use_missing) else: return ma.apply_along_axis(_rank1d,axis,data,use_missing).view(ndarray) #####-------------------------------------------------------------------------- #---- --- Central tendency --- #####-------------------------------------------------------------------------- def gmean(a, axis=0): a, axis = _chk_asarray(a, axis) log_a = ma.log(a) return ma.exp(log_a.mean(axis=axis)) gmean.__doc__ = stats.gmean.__doc__ def hmean(a, axis=0): a, axis = _chk_asarray(a, axis) if isinstance(a, MaskedArray): size = a.count(axis) else: size = a.shape[axis] return size / (1.0/a).sum(axis) hmean.__doc__ = stats.hmean.__doc__ def mode(a, axis=0): def _mode1D(a): (rep,cnt) = find_repeats(a) if not cnt.ndim: return (0, 0) elif cnt.size: return (rep[cnt.argmax()], cnt.max()) return (a[0], 1) # if axis is None: output = _mode1D(ma.ravel(a)) output = (ma.array(output[0]), ma.array(output[1])) else: output = ma.apply_along_axis(_mode1D, axis, a) newshape = list(a.shape) newshape[axis] = 1 slices = [slice(None)] * output.ndim slices[axis] = 0 modes = output[tuple(slices)].reshape(newshape) slices[axis] = 1 counts = output[tuple(slices)].reshape(newshape) output = (modes, counts) return output mode.__doc__ = stats.mode.__doc__ #####-------------------------------------------------------------------------- #---- --- Probabilities --- #####-------------------------------------------------------------------------- def betai(a, b, x): x = np.asanyarray(x) x = ma.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) betai.__doc__ = stats.betai.__doc__ #####-------------------------------------------------------------------------- #---- --- Correlation --- #####-------------------------------------------------------------------------- def msign(x): """Returns the sign of x, or 0 if x is masked.""" return ma.filled(np.sign(x), 0) def pearsonr(x,y): """Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : 1D array y : 1D array the same length as x Returns ------- (Pearson's correlation coefficient, 2-tailed p-value) References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) # Get the common mask and the total nb of unmasked elements m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() df = n-2 if df < 0: return (masked, masked) # (mx, my) = (x.mean(), y.mean()) (xm, ym) = (x-mx, y-my) # r_num = n*(ma.add.reduce(xm*ym)) r_den = n*ma.sqrt(ma.dot(xm,xm)*ma.dot(ym,ym)) r = (r_num / r_den) # Presumably, if r > 1, then it is only some small artifact of floating # point arithmetic. r = min(r, 1.0) r = max(r, -1.0) df = n-2 # t = ma.sqrt(df/((1.0-r)*(1.0+r))) * r if t is masked: prob = 0. else: prob = betai(0.5*df,0.5,df/(df+t*t)) return (r,prob) def spearmanr(x, y, use_ties=True): """Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the linear relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. Missing values are discarded pair-wise: if a value is missing in x, the corresponding value in y is masked. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : 1D array y : 1D array the same length as x The lengths of both arrays must be > 2. use_ties : {True, False}, optional Whether the correction for ties should be computed. Returns ------- (Spearman correlation coefficient, 2-tailed p-value) References ---------- [CRCProbStat2000] section 14.7 """ (x, y, n) = _chk_size(x, y) (x, y) = (x.ravel(), y.ravel()) # m = ma.mask_or(ma.getmask(x), ma.getmask(y)) n -= m.sum() if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) df = n-2 if df < 0: raise ValueError("The input must have at least 3 entries!") # Gets the ranks and rank differences rankx = rankdata(x) ranky = rankdata(y) dsq = np.add.reduce((rankx-ranky)**2) # Tie correction if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum(v*k*(k**2-1) for (k,v) in iteritems(xties))/12. corr_y = np.sum(v*k*(k**2-1) for (k,v) in iteritems(yties))/12. else: corr_x = corr_y = 0 denom = n*(n**2 - 1)/6. if corr_x != 0 or corr_y != 0: rho = denom - dsq - corr_x - corr_y rho /= ma.sqrt((denom-2*corr_x)*(denom-2*corr_y)) else: rho = 1. - dsq/denom # t = ma.sqrt(ma.divide(df,(rho+1.0)*(1.0-rho))) * rho if t is masked: prob = 0. else: prob = betai(0.5*df,0.5,df/(df+t*t)) return rho, prob def kendalltau(x, y, use_ties=True, use_missing=False): """Computes Kendall's rank correlation tau on two variables *x* and *y*. Parameters ---------- xdata : sequence First data list (for example, time). ydata : sequence Second data list. use_ties : {True, False}, optional Whether ties correction should be performed. use_missing : {False, True}, optional Whether missing data should be allocated a rank of 0 (False) or the average rank (True) Returns ------- tau : float Kendall tau prob : float Approximate 2-side p-value. """ (x, y, n) = _chk_size(x, y) (x, y) = (x.flatten(), y.flatten()) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: x = ma.array(x, mask=m, copy=True) y = ma.array(y, mask=m, copy=True) n -= m.sum() # if n < 2: return (np.nan, np.nan) # rx = ma.masked_equal(rankdata(x, use_missing=use_missing), 0) ry = ma.masked_equal(rankdata(y, use_missing=use_missing), 0) idx = rx.argsort() (rx, ry) = (rx[idx], ry[idx]) C = np.sum([((ry[i+1:]>ry[i]) * (rx[i+1:]>rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) D = np.sum([((ry[i+1:]<ry[i])*(rx[i+1:]>rx[i])).filled(0).sum() for i in range(len(ry)-1)], dtype=float) if use_ties: xties = count_tied_groups(x) yties = count_tied_groups(y) corr_x = np.sum([v*k*(k-1) for (k,v) in iteritems(xties)], dtype=float) corr_y = np.sum([v*k*(k-1) for (k,v) in iteritems(yties)], dtype=float) denom = ma.sqrt((n*(n-1)-corr_x)/2. * (n*(n-1)-corr_y)/2.) else: denom = n*(n-1)/2. tau = (C-D) / denom # var_s = n*(n-1)*(2*n+5) if use_ties: var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(xties)) var_s -= np.sum(v*k*(k-1)*(2*k+5)*1. for (k,v) in iteritems(yties)) v1 = np.sum([v*k*(k-1) for (k, v) in iteritems(xties)], dtype=float) *\ np.sum([v*k*(k-1) for (k, v) in iteritems(yties)], dtype=float) v1 /= 2.*n*(n-1) if n > 2: v2 = np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(xties)], dtype=float) * \ np.sum([v*k*(k-1)*(k-2) for (k,v) in iteritems(yties)], dtype=float) v2 /= 9.*n*(n-1)*(n-2) else: v2 = 0 else: v1 = v2 = 0 var_s /= 18. var_s += (v1 + v2) z = (C-D)/np.sqrt(var_s) prob = special.erfc(abs(z)/np.sqrt(2)) return (tau, prob) def kendalltau_seasonal(x): """Computes a multivariate extension Kendall's rank correlation tau, designed for seasonal data. Parameters ---------- x: 2D array Array of seasonal data, with seasons in columns. """ x = ma.array(x, subok=True, copy=False, ndmin=2) (n,m) = x.shape n_p = x.count(0) # S_szn = np.sum(msign(x[i:]-x[i]).sum(0) for i in range(n)) S_tot = S_szn.sum() # n_tot = x.count() ties = count_tied_groups(x.compressed()) corr_ties = np.sum(v*k*(k-1) for (k,v) in iteritems(ties)) denom_tot = ma.sqrt(1.*n_tot*(n_tot-1)*(n_tot*(n_tot-1)-corr_ties))/2. # R = rankdata(x, axis=0, use_missing=True) K = ma.empty((m,m), dtype=int) covmat = ma.empty((m,m), dtype=float) # cov_jj = ma.empty(m, dtype=float) denom_szn = ma.empty(m, dtype=float) for j in range(m): ties_j = count_tied_groups(x[:,j].compressed()) corr_j = np.sum(v*k*(k-1) for (k,v) in iteritems(ties_j)) cmb = n_p[j]*(n_p[j]-1) for k in range(j,m,1): K[j,k] = np.sum(msign((x[i:,j]-x[i,j])*(x[i:,k]-x[i,k])).sum() for i in range(n)) covmat[j,k] = (K[j,k] +4*(R[:,j]*R[:,k]).sum() - \ n*(n_p[j]+1)*(n_p[k]+1))/3. K[k,j] = K[j,k] covmat[k,j] = covmat[j,k] # cov_jj[j] = (nn_p*(2*n_p[j]+5)) # cov_jj[j] -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in ties_j.iteritems()) # cov_jj[j] /= 18. denom_szn[j] = ma.sqrt(cmb*(cmb-corr_j)) / 2. var_szn = covmat.diagonal() # z_szn = msign(S_szn) * (abs(S_szn)-1) / ma.sqrt(var_szn) z_tot_ind = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(var_szn.sum()) z_tot_dep = msign(S_tot) * (abs(S_tot)-1) / ma.sqrt(covmat.sum()) # prob_szn = special.erfc(abs(z_szn)/np.sqrt(2)) prob_tot_ind = special.erfc(abs(z_tot_ind)/np.sqrt(2)) prob_tot_dep = special.erfc(abs(z_tot_dep)/np.sqrt(2)) # chi2_tot = (z_szn*z_szn).sum() chi2_trd = m * z_szn.mean()**2 output = {'seasonal tau': S_szn/denom_szn, 'global tau': S_tot/denom_tot, 'global tau (alt)': S_tot/denom_szn.sum(), 'seasonal p-value': prob_szn, 'global p-value (indep)': prob_tot_ind, 'global p-value (dep)': prob_tot_dep, 'chi2 total': chi2_tot, 'chi2 trend': chi2_trd, } return output def pointbiserialr(x, y): x = ma.fix_invalid(x, copy=True).astype(bool) y = ma.fix_invalid(y, copy=True).astype(float) # Get rid of the missing data .......... m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: unmask = np.logical_not(m) x = x[unmask] y = y[unmask] # n = len(x) # phat is the fraction of x values that are True phat = x.sum() / float(n) y0 = y[~x] # y-values where x is False y1 = y[x] # y-values where x is True y0m = y0.mean() y1m = y1.mean() # rpb = (y1m - y0m)*np.sqrt(phat * (1-phat)) / y.std() # df = n-2 t = rpb*ma.sqrt(df/(1.0-rpb**2)) prob = betai(0.5*df, 0.5, df/(df+t*t)) return rpb, prob if stats.pointbiserialr.__doc__: pointbiserialr.__doc__ = stats.pointbiserialr.__doc__ + genmissingvaldoc def linregress(*args): if len(args) == 1: # more than 1D array? args = ma.array(args[0], copy=True) if len(args) == 2: x = args[0] y = args[1] else: x = args[:,0] y = args[:,1] else: x = ma.array(args[0]).flatten() y = ma.array(args[1]).flatten() m = ma.mask_or(ma.getmask(x), ma.getmask(y)) if m is not nomask: x = ma.array(x,mask=m) y = ma.array(y,mask=m) n = len(x) (xmean, ymean) = (x.mean(), y.mean()) (xm, ym) = (x-xmean, y-ymean) (Sxx, Syy) = (ma.add.reduce(xm*xm), ma.add.reduce(ym*ym)) Sxy = ma.add.reduce(xm*ym) r_den = ma.sqrt(Sxx*Syy) if r_den == 0.0: r = 0.0 else: r = Sxy / r_den if (r > 1.0): r = 1.0 # from numerical error #z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY)) df = n-2 t = r * ma.sqrt(df/(1.0-r*r)) prob = betai(0.5*df,0.5,df/(df+t*t)) slope = Sxy / Sxx intercept = ymean - slope*xmean sterrest = ma.sqrt(1.-r*r) * y.std() return slope, intercept, r, prob, sterrest if stats.linregress.__doc__: linregress.__doc__ = stats.linregress.__doc__ + genmissingvaldoc def theilslopes(y, x=None, alpha=0.05): """Computes the Theil slope over the dataset (x,y), as the median of all slopes between paired values. Parameters ---------- y : sequence Dependent variable. x : {None, sequence}, optional Independent variable. If None, use arange(len(y)) instead. alpha : float Confidence degree. Returns ------- medslope : float Theil slope medintercept : float Intercept of the Theil line, as median(y)-medslope*median(x) lo_slope : float Lower bound of the confidence interval on medslope up_slope : float Upper bound of the confidence interval on medslope """ y = ma.asarray(y).flatten() y[-1] = masked n = len(y) if x is None: x = ma.arange(len(y), dtype=float) else: x = ma.asarray(x).flatten() if len(x) != n: raise ValueError("Incompatible lengths ! (%s<>%s)" % (n,len(x))) m = ma.mask_or(ma.getmask(x), ma.getmask(y)) y._mask = x._mask = m ny = y.count() # slopes = ma.hstack([(y[i+1:]-y[i])/(x[i+1:]-x[i]) for i in range(n-1)]) slopes.sort() medslope = ma.median(slopes) medinter = ma.median(y) - medslope*ma.median(x) # if alpha > 0.5: alpha = 1.-alpha z = stats.distributions.norm.ppf(alpha/2.) # (xties, yties) = (count_tied_groups(x), count_tied_groups(y)) nt = ny*(ny-1)/2. sigsq = (ny*(ny-1)*(2*ny+5)/18.) sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(xties)) sigsq -= np.sum(v*k*(k-1)*(2*k+5) for (k,v) in iteritems(yties)) sigma = np.sqrt(sigsq) Ru = min(np.round((nt - z*sigma)/2. + 1), len(slopes)-1) Rl = max(np.round((nt + z*sigma)/2.), 0) delta = slopes[[Rl,Ru]] return medslope, medinter, delta[0], delta[1] def sen_seasonal_slopes(x): x = ma.array(x, subok=True, copy=False, ndmin=2) (n,_) = x.shape # Get list of slopes per season szn_slopes = ma.vstack([(x[i+1:]-x[i])/np.arange(1,n-i)[:,None] for i in range(n)]) szn_medslopes = ma.median(szn_slopes, axis=0) medslope = ma.median(szn_slopes, axis=None) return szn_medslopes, medslope #####-------------------------------------------------------------------------- #---- --- Inferential statistics --- #####-------------------------------------------------------------------------- def ttest_onesamp(a, popmean): a = ma.asarray(a) x = a.mean(axis=None) v = a.var(axis=None,ddof=1) n = a.count(axis=None) df = n-1 svar = ((n-1)*v) / float(df) t = (x-popmean)/ma.sqrt(svar*(1.0/n)) prob = betai(0.5*df,0.5,df/(df+t*t)) return t,prob ttest_onesamp.__doc__ = stats.ttest_1samp.__doc__ ttest_1samp = ttest_onesamp def ttest_ind(a, b, axis=0): a, b, axis = _chk2_asarray(a, b, axis) (x1, x2) = (a.mean(axis), b.mean(axis)) (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1)) (n1, n2) = (a.count(axis), b.count(axis)) df = n1+n2-2 svar = ((n1-1)*v1+(n2-1)*v2) / float(df) svar == 0 t = (x1-x2)/ma.sqrt(svar*(1.0/n1 + 1.0/n2)) # N-D COMPUTATION HERE!!!!!! t = ma.filled(t, 1) # replace NaN t-values with 1.0 probs = betai(0.5*df,0.5,float(df)/(df+t*t)).reshape(t.shape) return t, probs.squeeze() ttest_ind.__doc__ = stats.ttest_ind.__doc__ def ttest_rel(a,b,axis=None): a, b, axis = _chk2_asarray(a, b, axis) if len(a)!=len(b): raise ValueError('unequal length arrays') (x1, x2) = (a.mean(axis), b.mean(axis)) (v1, v2) = (a.var(axis=axis, ddof=1), b.var(axis=axis, ddof=1)) n = a.count(axis) df = (n-1.0) d = (a-b).astype('d') denom = ma.sqrt((n*ma.add.reduce(d*d,axis) - ma.add.reduce(d,axis)**2) /df) #zerodivproblem = denom == 0 t = ma.add.reduce(d, axis) / denom t = ma.filled(t, 1) probs = betai(0.5*df,0.5,df/(df+t*t)).reshape(t.shape).squeeze() return t, probs ttest_rel.__doc__ = stats.ttest_rel.__doc__ def chisquare(f_obs, f_exp=None): f_obs = ma.asarray(f_obs) if f_exp is None: f_exp = ma.array([f_obs.mean(axis=0)] * len(f_obs)) f_exp = f_exp.astype(float) chisq = ma.add.reduce((f_obs-f_exp)**2 / f_exp) return chisq, stats.chisqprob(chisq, f_obs.count(0)-1) chisquare.__doc__ = stats.chisquare.__doc__ def mannwhitneyu(x,y, use_continuity=True): """Computes the Mann-Whitney on samples x and y. Missing values in x and/or y are discarded. Parameters ---------- x : sequence y : sequence use_continuity : {True, False}, optional Whether a continuity correction (1/2.) should be taken into account. Returns ------- u : float The Mann-Whitney statistics prob : float Approximate p-value assuming a normal distribution. """ x = ma.asarray(x).compressed().view(ndarray) y = ma.asarray(y).compressed().view(ndarray) ranks = rankdata(np.concatenate([x,y])) (nx, ny) = (len(x), len(y)) nt = nx + ny U = ranks[:nx].sum() - nx*(nx+1)/2. U = max(U, nx*ny - U) u = nx*ny - U # mu = (nx*ny)/2. sigsq = (nt**3 - nt)/12. ties = count_tied_groups(ranks) sigsq -= np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/12. sigsq *= nx*ny/float(nt*(nt-1)) # if use_continuity: z = (U - 1/2. - mu) / ma.sqrt(sigsq) else: z = (U - mu) / ma.sqrt(sigsq) prob = special.erfc(abs(z)/np.sqrt(2)) return (u, prob) def kruskalwallis(*args): output = argstoarray(*args) ranks = ma.masked_equal(rankdata(output, use_missing=False), 0) sumrk = ranks.sum(-1) ngrp = ranks.count(-1) ntot = ranks.count() # ssbg = (sumrk**2/ranks.count(-1)).sum() - ranks.sum()**2/ntotal # H = ssbg / (ntotal*(ntotal+1)/12.) H = 12./(ntot*(ntot+1)) * (sumrk**2/ngrp).sum() - 3*(ntot+1) # Tie correction ties = count_tied_groups(ranks) T = 1. - np.sum(v*(k**3-k) for (k,v) in iteritems(ties))/float(ntot**3-ntot) if T == 0: raise ValueError('All numbers are identical in kruskal') H /= T # df = len(output) - 1 prob = stats.chisqprob(H,df) return (H, prob) kruskal = kruskalwallis kruskalwallis.__doc__ = stats.kruskal.__doc__ _kolmog2 = special.kolmogorov def _kolmog1(x,n): if x <= 0: return 0 if x >= 1: return 1 j = np.arange(np.floor(n*(1-x))+1) return 1 - x * np.sum(np.exp(np.log(misc.comb(n,j)) + (n-j) * np.log(1-x-j/float(n)) + (j-1) * np.log(x+j/float(n)))) def ks_twosamp(data1, data2, alternative="two-sided"): """Computes the Kolmogorov-Smirnov test on two samples. Missing values are discarded. Parameters ---------- data1 : sequence First data set data2 : sequence Second data set alternative : {'two-sided', 'less', 'greater'}, optional Indicates the alternative hypothesis. Returns ------- d : float Value of the Kolmogorov Smirnov test p : float Corresponding p-value. """ (data1, data2) = (ma.asarray(data1), ma.asarray(data2)) (n1, n2) = (data1.count(), data2.count()) n = (n1*n2/float(n1+n2)) mix = ma.concatenate((data1.compressed(), data2.compressed())) mixsort = mix.argsort(kind='mergesort') csum = np.where(mixsort<n1, 1./n1, -1./n2).cumsum() # Check for ties if len(np.unique(mix)) < (n1+n2): csum = csum[np.r_[np.diff(mix[mixsort]).nonzero()[0],-1]] # alternative = str(alternative).lower()[0] if alternative == 't': d = ma.abs(csum).max() prob = _kolmog2(np.sqrt(n)*d) elif alternative == 'l': d = -csum.min() prob = np.exp(-2*n*d**2) elif alternative == 'g': d = csum.max() prob = np.exp(-2*n*d**2) else: raise ValueError("Invalid value for the alternative hypothesis: "\ "should be in 'two-sided', 'less' or 'greater'") return (d, prob) ks_2samp = ks_twosamp def ks_twosamp_old(data1, data2): """ Computes the Kolmogorov-Smirnov statistic on 2 samples. Returns ------- KS D-value, p-value """ (data1, data2) = [ma.asarray(d).compressed() for d in (data1,data2)] return stats.ks_2samp(data1,data2) #####-------------------------------------------------------------------------- #---- --- Trimming --- #####-------------------------------------------------------------------------- def threshold(a, threshmin=None, threshmax=None, newval=0): """Clip array to a given value. Similar to numpy.clip(), except that values less than threshmin or greater than threshmax are replaced by newval, instead of by threshmin and threshmax respectively. Parameters ---------- a : ndarray Input data threshmin : {None, float}, optional Lower threshold. If None, set to the minimum value. threshmax : {None, float}, optional Upper threshold. If None, set to the maximum value. newval : {0, float}, optional Value outside the thresholds. Returns ------- a, with values less (greater) than threshmin (threshmax) replaced with newval. """ a = ma.array(a, copy=True) mask = np.zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin).filled(False) if threshmax is not None: mask |= (a > threshmax).filled(False) a[mask] = newval return a def trima(a, limits=None, inclusive=(True,True)): """Trims an array by masking the data outside some given limits. Returns a masked version of the input array. Parameters ---------- a : sequence Input array. limits : {None, tuple}, optional Tuple of (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit will be masked. A limit is None indicates an open interval. inclusive : {(True,True) tuple}, optional Tuple of (lower flag, upper flag), indicating whether values exactly equal to the lower (upper) limit are allowed. """ a = ma.asarray(a) a.unshare_mask() if limits is None: return a (lower_lim, upper_lim) = limits (lower_in, upper_in) = inclusive condition = False if lower_lim is not None: if lower_in: condition |= (a < lower_lim) else: condition |= (a <= lower_lim) if upper_lim is not None: if upper_in: condition |= (a > upper_lim) else: condition |= (a >= upper_lim) a[condition.filled(True)] = masked return a def trimr(a, limits=None, inclusive=(True, True), axis=None): """Trims an array by masking some proportion of the data on each end. Returns a masked version of the input array. Parameters ---------- a : sequence Input array. limits : {None, tuple}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open interval. inclusive : {(True,True) tuple}, optional Tuple of flags indicating whether the number of data being masked on the left (right) end should be truncated (True) or rounded (False) to integers. axis : {None,int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. """ def _trimr1D(a, low_limit, up_limit, low_inclusive, up_inclusive): n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n- np.round(n*up_limit) a[idx[upidx:]] = masked return a # a = ma.asarray(a) a.unshare_mask() if limits is None: return a # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) # (loinc, upinc) = inclusive # if axis is None: shp = a.shape return _trimr1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp) else: return ma.apply_along_axis(_trimr1D, axis, a, lolim,uplim,loinc,upinc) trimdoc = """ Parameters ---------- a : sequence Input array limits : {None, tuple}, optional If relative == False, tuple (lower limit, upper limit) in absolute values. Values of the input array lower (greater) than the lower (upper) limit are masked. If relative == True, tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed inclusive : {(True, True) tuple}, optional If relative==False, tuple indicating whether values exactly equal to the absolute limits are allowed. If relative==True, tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). relative : {False, True}, optional Whether to consider the limits as absolute values (False) or proportions to cut (True). axis : {None, integer}, optional Axis along which to trim. """ def trim(a, limits=None, inclusive=(True,True), relative=False, axis=None): """Trims an array by masking the data outside some given limits. Returns a masked version of the input array. %s Examples -------- >>>z = [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10] >>>trim(z,(3,8)) [--,--, 3, 4, 5, 6, 7, 8,--,--] >>>trim(z,(0.1,0.2),relative=True) [--, 2, 3, 4, 5, 6, 7, 8,--,--] """ if relative: return trimr(a, limits=limits, inclusive=inclusive, axis=axis) else: return trima(a, limits=limits, inclusive=inclusive) if trim.__doc__: trim.__doc__ = trim.__doc__ % trimdoc def trimboth(data, proportiontocut=0.2, inclusive=(True,True), axis=None): """Trims the data by masking the int(proportiontocut*n) smallest and int(proportiontocut*n) largest values of data along the given axis, where n is the number of unmasked values before trimming. Parameters ---------- data : ndarray Data to trim. proportiontocut : {0.2, float}, optional Percentage of trimming (as a float between 0 and 1). If n is the number of unmasked values before trimming, the number of values after trimming is: (1-2*proportiontocut)*n. inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : {None, integer}, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ return trimr(data, limits=(proportiontocut,proportiontocut), inclusive=inclusive, axis=axis) #.............................................................................. def trimtail(data, proportiontocut=0.2, tail='left', inclusive=(True,True), axis=None): """Trims the data by masking int(trim*n) values from ONE tail of the data along the given axis, where n is the number of unmasked values. Parameters ---------- data : {ndarray} Data to trim. proportiontocut : {0.2, float}, optional Percentage of trimming. If n is the number of unmasked values before trimming, the number of values after trimming is (1-proportiontocut)*n. tail : {'left','right'}, optional If left (right), the ``proportiontocut`` lowest (greatest) values will be masked. inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : {None, integer}, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ tail = str(tail).lower()[0] if tail == 'l': limits = (proportiontocut,None) elif tail == 'r': limits = (None, proportiontocut) else: raise TypeError("The tail argument should be in ('left','right')") return trimr(data, limits=limits, axis=axis, inclusive=inclusive) trim1 = trimtail def trimmed_mean(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None): """Returns the trimmed mean of the data along the given axis. %s """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: return trimr(a,limits=limits,inclusive=inclusive,axis=axis).mean(axis=axis) else: return trima(a,limits=limits,inclusive=inclusive).mean(axis=axis) def trimmed_var(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed variance of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits, inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.var(axis=axis, ddof=ddof) def trimmed_std(a, limits=(0.1,0.1), inclusive=(1,1), relative=True, axis=None, ddof=0): """Returns the trimmed standard deviation of the data along the given axis. %s ddof : {0,integer}, optional Means Delta Degrees of Freedom. The denominator used during computations is (n-ddof). DDOF=0 corresponds to a biased estimate, DDOF=1 to an un- biased estimate of the variance. """ % trimdoc if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) if relative: out = trimr(a,limits=limits,inclusive=inclusive,axis=axis) else: out = trima(a,limits=limits,inclusive=inclusive) return out.std(axis=axis,ddof=ddof) def trimmed_stde(a, limits=(0.1,0.1), inclusive=(1,1), axis=None): """Returns the standard error of the trimmed mean of the data along the given axis. Parameters ---------- a : sequence Input array limits : {(0.1,0.1), tuple of float}, optional tuple (lower percentage, upper percentage) to cut on each side of the array, with respect to the number of unmasked data. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) In each case, the value of one limit can be set to None to indicate an open interval. If limits is None, no trimming is performed inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). axis : {None, integer}, optional Axis along which to trim. """ #........................ def _trimmed_stde_1D(a, low_limit, up_limit, low_inclusive, up_inclusive): "Returns the standard error of the trimmed mean for a 1D input data." n = a.count() idx = a.argsort() if low_limit: if low_inclusive: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = masked if up_limit is not None: if up_inclusive: upidx = n - int(n*up_limit) else: upidx = n- np.round(n*up_limit) a[idx[upidx:]] = masked nsize = a.count() a[idx[:lowidx]] = a[idx[lowidx]] a[idx[upidx:]] = a[idx[upidx-1]] winstd = a.std(ddof=1) return winstd / ((1-low_limit-up_limit)*np.sqrt(len(a))) #........................ a = ma.array(a, copy=True, subok=True) a.unshare_mask() if limits is None: return a.std(axis=axis,ddof=1)/ma.sqrt(a.count(axis)) if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) # (loinc, upinc) = inclusive if (axis is None): shp = a.shape return _trimmed_stde_1D(a.ravel(),lolim,uplim,loinc,upinc) else: if a.ndim > 2: raise ValueError("Array 'a' must be at most two dimensional, but got a.ndim = %d" % a.ndim) return ma.apply_along_axis(_trimmed_stde_1D, axis, a, lolim,uplim,loinc,upinc) def tmean(a, limits=None, inclusive=(True,True)): return trima(a, limits=limits, inclusive=inclusive).mean() tmean.__doc__ = stats.tmean.__doc__ def tvar(a, limits=None, inclusive=(True,True)): return trima(a, limits=limits, inclusive=inclusive).var() tvar.__doc__ = stats.tvar.__doc__ def tmin(a, lowerlimit=None, axis=0, inclusive=True): a, axis = _chk_asarray(a, axis) am = trima(a, (lowerlimit, None), (inclusive, False)) return ma.minimum.reduce(am, axis) tmin.__doc__ = stats.tmin.__doc__ def tmax(a, upperlimit, axis=0, inclusive=True): a, axis = _chk_asarray(a, axis) am = trima(a, (None, upperlimit), (False, inclusive)) return ma.maximum.reduce(am, axis) tmax.__doc__ = stats.tmax.__doc__ def tsem(a, limits=None, inclusive=(True,True)): a = ma.asarray(a).ravel() if limits is None: n = float(a.count()) return a.std()/ma.sqrt(n) am = trima(a.ravel(), limits, inclusive) sd = np.sqrt(am.var()) return sd / am.count() tsem.__doc__ = stats.tsem.__doc__ def winsorize(a, limits=None, inclusive=(True,True), inplace=False, axis=None): """Returns a Winsorized version of the input array. The (limits[0])th lowest values are set to the (limits[0])th percentile, and the (limits[1])th highest values are set to the (limits[1])th percentile. Masked values are skipped. Parameters ---------- a : sequence Input array. limits : {None, tuple of float}, optional Tuple of the percentages to cut on each side of the array, with respect to the number of unmasked data, as floats between 0. and 1. Noting n the number of unmasked data before trimming, the (n*limits[0])th smallest data and the (n*limits[1])th largest data are masked, and the total number of unmasked data after trimming is n*(1.-sum(limits)) The value of one limit can be set to None to indicate an open interval. inclusive : {(True, True) tuple}, optional Tuple indicating whether the number of data being masked on each side should be rounded (True) or truncated (False). inplace : {False, True}, optional Whether to winsorize in place (True) or to use a copy (False) axis : {None, int}, optional Axis along which to trim. If None, the whole array is trimmed, but its shape is maintained. """ def _winsorize1D(a, low_limit, up_limit, low_include, up_include): n = a.count() idx = a.argsort() if low_limit: if low_include: lowidx = int(low_limit*n) else: lowidx = np.round(low_limit*n) a[idx[:lowidx]] = a[idx[lowidx]] if up_limit is not None: if up_include: upidx = n - int(n*up_limit) else: upidx = n- np.round(n*up_limit) a[idx[upidx:]] = a[idx[upidx-1]] return a # We gonna modify a: better make a copy a = ma.array(a, copy=np.logical_not(inplace)) # if limits is None: return a if (not isinstance(limits,tuple)) and isinstance(limits,float): limits = (limits, limits) # Check the limits (lolim, uplim) = limits errmsg = "The proportion to cut from the %s should be between 0. and 1." if lolim is not None: if lolim > 1. or lolim < 0: raise ValueError(errmsg % 'beginning' + "(got %s)" % lolim) if uplim is not None: if uplim > 1. or uplim < 0: raise ValueError(errmsg % 'end' + "(got %s)" % uplim) # (loinc, upinc) = inclusive # if axis is None: shp = a.shape return _winsorize1D(a.ravel(),lolim,uplim,loinc,upinc).reshape(shp) else: return ma.apply_along_axis(_winsorize1D, axis,a,lolim,uplim,loinc,upinc) #####-------------------------------------------------------------------------- #---- --- Moments --- #####-------------------------------------------------------------------------- def moment(a, moment=1, axis=0): a, axis = _chk_asarray(a, axis) if moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: mn = ma.expand_dims(a.mean(axis=axis), axis) s = ma.power((a-mn), moment) return s.mean(axis=axis) moment.__doc__ = stats.moment.__doc__ def variation(a, axis=0): a, axis = _chk_asarray(a, axis) return a.std(axis)/a.mean(axis) variation.__doc__ = stats.variation.__doc__ def skew(a, axis=0, bias=True): a, axis = _chk_asarray(a,axis) n = a.count(axis) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m3 / m2**1.5) finally: np.seterr(**olderr) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5 np.place(vals, can_correct, nval) return vals skew.__doc__ = stats.skew.__doc__ def kurtosis(a, axis=0, fisher=True, bias=True): a, axis = _chk_asarray(a, axis) m2 = moment(a,2,axis) m4 = moment(a,4,axis) olderr = np.seterr(all='ignore') try: vals = ma.where(m2 == 0, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: n = a.count(axis) can_correct = (n > 3) & (m2 is not ma.masked and m2 > 0) if can_correct.any(): n = np.extract(can_correct, n) m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0) np.place(vals, can_correct, nval+3.0) if fisher: return vals - 3 else: return vals kurtosis.__doc__ = stats.kurtosis.__doc__ def describe(a, axis=0): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array axis : int or None Returns ------- n : int (size of the data (discarding missing values) mm : (int, int) min, max arithmetic mean : float unbiased variance : float biased skewness : float biased kurtosis : float Examples -------- >>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1]) >>> describe(ma) (array(3), (0, 2), 1.0, 1.0, masked_array(data = 0.0, mask = False, fill_value = 1e+20) , -1.5) """ a, axis = _chk_asarray(a, axis) n = a.count(axis) mm = (ma.minimum.reduce(a), ma.maximum.reduce(a)) m = a.mean(axis) v = a.var(axis) sk = skew(a, axis) kurt = kurtosis(a, axis) return n, mm, m, v, sk, kurt #............................................................................. def stde_median(data, axis=None): """Returns the McKean-Schrader estimate of the standard error of the sample median along the given axis. masked values are discarded. Parameters ---------- data : ndarray Data to trim. axis : {None,int}, optional Axis along which to perform the trimming. If None, the input array is first flattened. """ def _stdemed_1D(data): data = np.sort(data.compressed()) n = len(data) z = 2.5758293035489004 k = int(np.round((n+1)/2. - z * np.sqrt(n/4.),0)) return ((data[n-k] - data[k-1])/(2.*z)) # data = ma.array(data, copy=False, subok=True) if (axis is None): return _stdemed_1D(data) else: if data.ndim > 2: raise ValueError("Array 'data' must be at most two dimensional, but got data.ndim = %d" % data.ndim) return ma.apply_along_axis(_stdemed_1D, axis, data) #####-------------------------------------------------------------------------- #---- --- Normality Tests --- #####-------------------------------------------------------------------------- def skewtest(a, axis=0): """ Tests whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. Parameters ---------- a : array_like The input array. axis : int or None, optional The axis along which to perform the skew test. Default is 0. If `axis` is None, the array is first flattened. Returns ------- z-score : float The computed z-score for this test. p-value : float a 2-sided p-value for the hypothesis test Notes ----- The sample size must be at least 8. """ a, axis = _chk_asarray(a, axis) if axis is None: a = a.ravel() axis = 0 b2 = skew(a,axis) n = a.count(axis) if np.min(n) < 8: warnings.warn( "skewtest only valid for n>=8 ... continuing anyway, n=%i" % np.min(n)) y = b2 * ma.sqrt(((n+1)*(n+3)) / (6.0*(n-2)) ) beta2 = ( 3.0*(n*n+27*n-70)*(n+1)*(n+3) ) / ( (n-2.0)*(n+5)*(n+7)*(n+9) ) W2 = -1 + ma.sqrt(2*(beta2-1)) delta = 1/ma.sqrt(0.5*ma.log(W2)) alpha = ma.sqrt(2.0/(W2-1)) y = ma.where(y==0, 1, y) Z = delta*ma.log(y/alpha + ma.sqrt((y/alpha)**2+1)) return Z, (1.0 - stats.zprob(Z))*2 skewtest.__doc__ = stats.skewtest.__doc__ def kurtosistest(a, axis=0): """ Tests whether a dataset has normal kurtosis. This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``. Parameters ---------- a : array_like Array of the sample data. axis : int or None, optional The axis to operate along, or None to work on the whole array. The default is 0 (the first axis). Returns ------- z-score : float The computed z-score for this test. p-value : float The 2-sided p-value for the hypothesis test Notes ----- Valid only for n>20. The Z-score is set to 0 for bad entries. """ a, axis = _chk_asarray(a, axis) n = a.count(axis=axis).astype(float) if np.min(n) < 20: warnings.warn( "kurtosistest only valid for n>=20 ... continuing anyway, n=%i" % np.min(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) /(n+1) varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5)) x = (b2-E)/ma.sqrt(varb2) sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5))/ (n*(n-2)*(n-3))) A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2./(9.0*A) denom = 1 + x*ma.sqrt(2/(A-4.0)) denom[denom < 0] = masked term2 = ma.power((1-2.0/A)/denom,1/3.0) Z = ( term1 - term2 ) / np.sqrt(2/(9.0*A)) return Z, (1.0-stats.zprob(Z))*2 kurtosistest.__doc__ = stats.kurtosistest.__doc__ def normaltest(a, axis=0): a, axis = _chk_asarray(a, axis) s,_ = skewtest(a,axis) k,_ = kurtosistest(a,axis) k2 = s*s + k*k return k2, stats.chisqprob(k2,2) normaltest.__doc__ = stats.normaltest.__doc__ # Martinez-Iglewicz test # K-S test #####-------------------------------------------------------------------------- #---- --- Percentiles --- #####-------------------------------------------------------------------------- def mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()): """ Computes empirical quantiles for a data array. Samples quantile are defined by ``Q(p) = (1-g).x[i] +g.x[i+1]``, where ``x[j]`` is the j-th order statistic, ``i = (floor(n*p+m))``, ``m=alpha+p*(1-alpha-beta)`` and ``g = n*p + m - i``. Typical values of (alpha,beta) are: - (0,1) : *p(k) = k/n* : linear interpolation of cdf (R, type 4) - (.5,.5) : *p(k) = (k+1/2.)/n* : piecewise linear function (R, type 5) - (0,0) : *p(k) = k/(n+1)* : (R type 6) - (1,1) : *p(k) = (k-1)/(n-1)*. In this case, p(k) = mode[F(x[k])]. That's R default (R type 7) - (1/3,1/3): *p(k) = (k-1/3)/(n+1/3)*. Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8) - (3/8,3/8): *p(k) = (k-3/8)/(n+1/4)*. Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM Parameters ---------- a : array_like Input data, as a sequence or array of dimension at most 2. prob : array_like, optional List of quantiles to compute. alpha : float, optional Plotting positions parameter, default is 0.4. beta : float, optional Plotting positions parameter, default is 0.4. axis : int, optional Axis along which to perform the trimming. If None (default), the input array is first flattened. limit : tuple Tuple of (lower, upper) values. Values of `a` outside this open interval are ignored. Returns ------- mquantiles : MaskedArray An array containing the calculated quantiles. Examples -------- >>> from scipy.stats.mstats import mquantiles >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) >>> mquantiles(a) array([ 19.2, 40. , 42.8]) Using a 2D array, specifying axis and limit. >>> data = np.array([[ 6., 7., 1.], [ 47., 15., 2.], [ 49., 36., 3.], [ 15., 39., 4.], [ 42., 40., -999.], [ 41., 41., -999.], [ 7., -999., -999.], [ 39., -999., -999.], [ 43., -999., -999.], [ 40., -999., -999.], [ 36., -999., -999.]]) >>> mquantiles(data, axis=0, limit=(0, 50)) array([[ 19.2 , 14.6 , 1.45], [ 40. , 37.5 , 2.5 ], [ 42.8 , 40.05, 3.55]]) >>> data[:, 2] = -999. >>> mquantiles(data, axis=0, limit=(0, 50)) masked_array(data = [[19.2 14.6 --] [40.0 37.5 --] [42.8 40.05 --]], mask = [[False False True] [False False True] [False False True]], fill_value = 1e+20) """ def _quantiles1D(data,m,p): x = np.sort(data.compressed()) n = len(x) if n == 0: return ma.array(np.empty(len(p), dtype=float), mask=True) elif n == 1: return ma.array(np.resize(x, p.shape), mask=nomask) aleph = (n*p + m) k = np.floor(aleph.clip(1, n-1)).astype(int) gamma = (aleph-k).clip(0,1) return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()] # Initialization & checks --------- data = ma.array(a, copy=False) if data.ndim > 2: raise TypeError("Array should be 2D at most !") # if limit: condition = (limit[0]<data) & (data<limit[1]) data[~condition.filled(True)] = masked # p = np.array(prob, copy=False, ndmin=1) m = alphap + p*(1.-alphap-betap) # Computes quantiles along axis (or globally) if (axis is None): return _quantiles1D(data, m, p) return ma.apply_along_axis(_quantiles1D, axis, data, m, p) def scoreatpercentile(data, per, limit=(), alphap=.4, betap=.4): """Calculate the score at the given 'per' percentile of the sequence a. For example, the score at per=50 is the median. This function is a shortcut to mquantile """ if (per < 0) or (per > 100.): raise ValueError("The percentile should be between 0. and 100. !"\ " (got %s)" % per) return mquantiles(data, prob=[per/100.], alphap=alphap, betap=betap, limit=limit, axis=0).squeeze() def plotting_positions(data, alpha=0.4, beta=0.4): """ Returns plotting positions (or empirical percentile points) for the data. Plotting positions are defined as ``(i-alpha)/(n+1-alpha-beta)``, where: - i is the rank order statistics - n is the number of unmasked values along the given axis - alpha and beta are two parameters. Typical values for alpha and beta are: - (0,1) : ``p(k) = k/n``, linear interpolation of cdf (R, type 4) - (.5,.5) : ``p(k) = (k-1/2.)/n``, piecewise linear function (R, type 5) - (0,0) : ``p(k) = k/(n+1)``, Weibull (R type 6) - (1,1) : ``p(k) = (k-1)/(n-1)``, in this case, ``p(k) = mode[F(x[k])]``. That's R default (R type 7) - (1/3,1/3): ``p(k) = (k-1/3)/(n+1/3)``, then ``p(k) ~ median[F(x[k])]``. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8) - (3/8,3/8): ``p(k) = (k-3/8)/(n+1/4)``, Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9) - (.4,.4) : approximately quantile unbiased (Cunnane) - (.35,.35): APL, used with PWM - (.3175, .3175): used in scipy.stats.probplot Parameters ---------- data : array_like Input data, as a sequence or array of dimension at most 2. alpha : float, optional Plotting positions parameter. Default is 0.4. beta : float, optional Plotting positions parameter. Default is 0.4. Returns ------- positions : MaskedArray The calculated plotting positions. """ data = ma.array(data, copy=False).reshape(1,-1) n = data.count() plpos = np.empty(data.size, dtype=float) plpos[n:] = 0 plpos[data.argsort()[:n]] = (np.arange(1, n+1) - alpha) / \ (n + 1.0 - alpha - beta) return ma.array(plpos, mask=data._mask) meppf = plotting_positions #####-------------------------------------------------------------------------- #---- --- Variability --- #####-------------------------------------------------------------------------- def obrientransform(*args): """ Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of a factor. If an F_oneway() run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112. Returns: transformed data for use in an ANOVA """ data = argstoarray(*args).T v = data.var(axis=0,ddof=1) m = data.mean(0) n = data.count(0).astype(float) # result = ((N-1.5)*N*(a-m)**2 - 0.5*v*(n-1))/((n-1)*(n-2)) data -= m data **= 2 data *= (n-1.5)*n data -= 0.5*v*(n-1) data /= (n-1.)*(n-2.) if not ma.allclose(v,data.mean(0)): raise ValueError("Lack of convergence in obrientransform.") return data def signaltonoise(data, axis=0): """Calculates the signal-to-noise ratio, as the ratio of the mean over standard deviation along the given axis. Parameters ---------- data : sequence Input data axis : {0, int}, optional Axis along which to compute. If None, the computation is performed on a flat version of the array. """ data = ma.array(data, copy=False) m = data.mean(axis) sd = data.std(axis, ddof=0) return m/sd def sem(a, axis=0): a, axis = _chk_asarray(a, axis) n = a.count(axis=axis) s = a.std(axis=axis,ddof=0) / ma.sqrt(n-1) return s sem.__doc__ = stats.sem.__doc__ zmap = stats.zmap zscore = stats.zscore #####-------------------------------------------------------------------------- #---- --- ANOVA --- #####-------------------------------------------------------------------------- def f_oneway(*args): """ Performs a 1-way ANOVA, returning an F-value and probability given any number of groups. From Heiman, pp.394-7. Usage: f_oneway (*args) where *args is 2 or more arrays, one per treatment group Returns: f-value, probability """ # Construct a single array of arguments: each row is a group data = argstoarray(*args) ngroups = len(data) ntot = data.count() sstot = (data**2).sum() - (data.sum())**2/float(ntot) ssbg = (data.count(-1) * (data.mean(-1)-data.mean())**2).sum() sswg = sstot-ssbg dfbg = ngroups-1 dfwg = ntot - ngroups msb = ssbg/float(dfbg) msw = sswg/float(dfwg) f = msb/msw prob = stats.fprob(dfbg,dfwg,f) return f, prob def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell & Delaney p.657. """ ER = ma.array(ER, copy=False, ndmin=2) EF = ma.array(EF, copy=False, ndmin=2) if ma.getmask(ER).any() or ma.getmask(EF).any(): raise NotImplementedError("Not implemented when the inputs "\ "have missing data") lmbda = np.linalg.det(EF) / np.linalg.det(ER) q = ma.sqrt( ((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 -5) ) q = ma.filled(q, 1) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en def friedmanchisquare(*args): """Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value. Each input is considered a given group. Ideally, the number of treatments among each group should be equal. If this is not the case, only the first n treatments are taken into account, where n is the number of treatments of the smallest group. If a group has some missing values, the corresponding treatments are masked in the other groups. The test statistic is corrected for ties. Masked values in one group are propagated to the other groups. Returns: chi-square statistic, associated p-value """ data = argstoarray(*args).astype(float) k = len(data) if k < 3: raise ValueError("Less than 3 groups (%i): " % k +\ "the Friedman test is NOT appropriate.") ranked = ma.masked_values(rankdata(data, axis=0), 0) if ranked._mask is not nomask: ranked = ma.mask_cols(ranked) ranked = ranked.compressed().reshape(k,-1).view(ndarray) else: ranked = ranked._data (k,n) = ranked.shape # Ties correction repeats = np.array([find_repeats(_) for _ in ranked.T], dtype=object) ties = repeats[repeats.nonzero()].reshape(-1,2)[:,-1].astype(int) tie_correction = 1 - (ties**3-ties).sum()/float(n*(k**3-k)) # ssbg = np.sum((ranked.sum(-1) - n*(k+1)/2.)**2) chisq = ssbg * 12./(n*k*(k+1)) * 1./tie_correction return chisq, stats.chisqprob(chisq,k-1) #-############################################################################-#
33.684604
112
0.561453
49a5e3e2d7a0a96cd0f7e83f6b9f527d074d4280
2,832
py
Python
starlette/middleware/base.py
synodriver/starlette
9ef1b91c9c043197da6c3f38aa153fd874b95527
[ "BSD-3-Clause" ]
null
null
null
starlette/middleware/base.py
synodriver/starlette
9ef1b91c9c043197da6c3f38aa153fd874b95527
[ "BSD-3-Clause" ]
17
2022-01-01T21:22:33.000Z
2022-03-07T10:33:37.000Z
starlette/middleware/base.py
sthagen/encode-starlette
ba31df75daac7cc3b5fcfea89939372768a166cb
[ "BSD-3-Clause" ]
null
null
null
import typing import anyio from starlette.requests import Request from starlette.responses import Response, StreamingResponse from starlette.types import ASGIApp, Receive, Scope, Send RequestResponseEndpoint = typing.Callable[[Request], typing.Awaitable[Response]] DispatchFunction = typing.Callable[ [Request, RequestResponseEndpoint], typing.Awaitable[Response] ] class BaseHTTPMiddleware: def __init__( self, app: ASGIApp, dispatch: typing.Optional[DispatchFunction] = None ) -> None: self.app = app self.dispatch_func = self.dispatch if dispatch is None else dispatch async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: if scope["type"] != "http": await self.app(scope, receive, send) return async def call_next(request: Request) -> Response: app_exc: typing.Optional[Exception] = None send_stream, recv_stream = anyio.create_memory_object_stream() async def coro() -> None: nonlocal app_exc async with send_stream: try: await self.app(scope, request.receive, send_stream.send) except Exception as exc: app_exc = exc task_group.start_soon(coro) try: message = await recv_stream.receive() except anyio.EndOfStream: if app_exc is not None: raise app_exc raise RuntimeError("No response returned.") assert message["type"] == "http.response.start" async def body_stream() -> typing.AsyncGenerator[bytes, None]: async with recv_stream: async for message in recv_stream: assert message["type"] == "http.response.body" body = message.get("body", b"") if body: yield body if not message.get("more_body", False): break if app_exc is not None: raise app_exc response = StreamingResponse( status_code=message["status"], content=body_stream() ) response.raw_headers = message["headers"] return response async with anyio.create_task_group() as task_group: request = Request(scope, receive=receive) response = await self.dispatch_func(request, call_next) await response(scope, receive, send) task_group.cancel_scope.cancel() async def dispatch( self, request: Request, call_next: RequestResponseEndpoint ) -> Response: raise NotImplementedError() # pragma: no cover
35.4
81
0.578743
6b790cc5011039ba1747da8d5a6837915483b716
13,551
py
Python
fairseq/optim/fp16_optimizer.py
Yuran-Zhao/bert-nmt
e5095860e59b305bdcf1264ad117e67d3d97e705
[ "BSD-3-Clause" ]
null
null
null
fairseq/optim/fp16_optimizer.py
Yuran-Zhao/bert-nmt
e5095860e59b305bdcf1264ad117e67d3d97e705
[ "BSD-3-Clause" ]
null
null
null
fairseq/optim/fp16_optimizer.py
Yuran-Zhao/bert-nmt
e5095860e59b305bdcf1264ad117e67d3d97e705
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch from fairseq import optim, utils class DynamicLossScaler(object): def __init__( self, init_scale=2.**15, scale_factor=2., scale_window=2000, tolerance=0.05, threshold=None, ): self.loss_scale = init_scale self.scale_factor = scale_factor self.scale_window = scale_window self.tolerance = tolerance self.threshold = threshold self._iter = 0 self._last_overflow_iter = -1 self._last_rescale_iter = -1 self._overflows_since_rescale = 0 def update_scale(self, overflow): iter_since_rescale = self._iter - self._last_rescale_iter if overflow: self._last_overflow_iter = self._iter self._overflows_since_rescale += 1 pct_overflow = self._overflows_since_rescale / float( iter_since_rescale) if pct_overflow >= self.tolerance: self._decrease_loss_scale() self._last_rescale_iter = self._iter self._overflows_since_rescale = 0 elif (self._iter - self._last_overflow_iter) % self.scale_window == 0: self.loss_scale *= self.scale_factor self._last_rescale_iter = self._iter self._iter += 1 def _decrease_loss_scale(self): self.loss_scale /= self.scale_factor if self.threshold is not None: self.loss_scale = max(self.loss_scale, self.threshold) @staticmethod def has_overflow(grad_norm): # detect inf and nan if grad_norm == float('inf') or grad_norm != grad_norm: return True return False class FP16Optimizer(optim.FairseqOptimizer): """ Wrap an *optimizer* to support FP16 (mixed precision) training. """ def __init__(self, args, params, fp32_optimizer, fp32_params): super().__init__(args, params) self.fp32_optimizer = fp32_optimizer self.fp32_params = fp32_params if getattr(args, 'fp16_scale_window', None) is None: if len(args.update_freq) > 1: raise ValueError( '--fp16-scale-window must be given explicitly when using a ' 'custom --update-freq schedule') scale_window = 2**14 / args.distributed_world_size / args.update_freq[ 0] else: scale_window = args.fp16_scale_window self.scaler = DynamicLossScaler( init_scale=args.fp16_init_scale, scale_window=scale_window, tolerance=args.fp16_scale_tolerance, threshold=args.threshold_loss_scale, ) @classmethod def build_optimizer(cls, args, params): """ Args: args (argparse.Namespace): fairseq args params (iterable): iterable of parameters to optimize """ # create FP32 copy of parameters and grads total_param_size = sum(p.data.numel() for p in params) fp32_params = params[0].new(0).float().new(total_param_size) offset = 0 for p in params: numel = p.data.numel() fp32_params[offset:offset + numel].copy_(p.data.view(-1)) offset += numel fp32_params = torch.nn.Parameter(fp32_params) fp32_params.grad = fp32_params.data.new(total_param_size) fp32_optimizer = optim.build_optimizer(args, [fp32_params]) return cls(args, params, fp32_optimizer, fp32_params) @property def optimizer(self): return self.fp32_optimizer.optimizer @property def optimizer_config(self): return self.fp32_optimizer.optimizer_config def get_lr(self): return self.fp32_optimizer.get_lr() def set_lr(self, lr): self.fp32_optimizer.set_lr(lr) def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.fp32_optimizer.state_dict() state_dict['loss_scale'] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if 'loss_scale' in state_dict: self.scaler.loss_scale = state_dict['loss_scale'] self.fp32_optimizer.load_state_dict(state_dict, optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ loss = loss * self.scaler.loss_scale loss.backward() self._needs_sync = True def _sync_fp16_grads_to_fp32(self, multiply_grads=1.): if self._needs_sync: # copy FP16 grads to FP32 offset = 0 for p in self.params: if not p.requires_grad: continue grad_data = p.grad.data if p.grad is not None else p.data.new_zeros( p.data.shape) numel = grad_data.numel() self.fp32_params.grad.data[offset:offset + numel].copy_( grad_data.view(-1)) offset += numel # correct for dynamic loss scaler self.fp32_params.grad.data.mul_(multiply_grads / self.scaler.loss_scale) self._needs_sync = False def multiply_grads(self, c): """Multiplies grads by a constant ``c``.""" if self._needs_sync: self._sync_fp16_grads_to_fp32(c) else: self.fp32_params.grad.data.mul_(c) def clip_grad_norm(self, max_norm): """Clips gradient norm and updates dynamic loss scaler.""" self._sync_fp16_grads_to_fp32() grad_norm = utils.clip_grad_norm_(self.fp32_params.grad.data, max_norm) # detect overflow and adjust loss scale overflow = DynamicLossScaler.has_overflow(grad_norm) self.scaler.update_scale(overflow) if overflow: if self.scaler.loss_scale <= self.args.min_loss_scale: # Use FloatingPointError as an uncommon error that parent # functions can safely catch to stop training. raise FloatingPointError(( 'Minimum loss scale reached ({}). Your loss is probably exploding. ' 'Try lowering the learning rate, using gradient clipping or ' 'increasing the batch size.').format( self.args.min_loss_scale)) raise OverflowError('setting loss scale to: ' + str(self.scaler.loss_scale)) return grad_norm def step(self, closure=None): """Performs a single optimization step.""" self._sync_fp16_grads_to_fp32() self.fp32_optimizer.step(closure) # copy FP32 params back into FP16 model offset = 0 for p in self.params: if not p.requires_grad: continue numel = p.data.numel() p.data.copy_(self.fp32_params.data[offset:offset + numel].view_as( p.data)) offset += numel def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.params: p.grad = None self._needs_sync = False class MemoryEfficientFP16Optimizer(optim.FairseqOptimizer): """ Wrap an *optimizer* to support FP16 (mixed precision) training. Compared to :class:`fairseq.optim.FP16Optimizer`, this version does not maintain an FP32 copy of the model. We instead expect the optimizer to convert the gradients to FP32 internally and sync the results back to the FP16 model params. This significantly reduces memory usage but slightly increases the time spent in the optimizer. Since this wrapper depends on specific functionality in the wrapped optimizer (i.e., on-the-fly conversion of grads to FP32), only certain optimizers can be wrapped. This is determined by the *supports_memory_efficient_fp16* property. """ def __init__(self, args, params, optimizer): if not optimizer.supports_memory_efficient_fp16: raise ValueError('Unsupported optimizer: {}'.format( optimizer.__class__.__name__)) super().__init__(args, params) self.wrapped_optimizer = optimizer if getattr(args, 'fp16_scale_window', None) is None: if len(args.update_freq) > 1: raise ValueError( '--fp16-scale-window must be given explicitly when using a ' 'custom --update-freq schedule') scale_window = 2**14 / args.distributed_world_size / args.update_freq[ 0] else: scale_window = args.fp16_scale_window self.scaler = DynamicLossScaler( init_scale=args.fp16_init_scale, scale_window=scale_window, tolerance=args.fp16_scale_tolerance, threshold=args.threshold_loss_scale, ) @classmethod def build_optimizer(cls, args, params): """ Args: args (argparse.Namespace): fairseq args params (iterable): iterable of parameters to optimize """ fp16_optimizer = optim.build_optimizer(args, params) return cls(args, params, fp16_optimizer) @property def optimizer(self): return self.wrapped_optimizer.optimizer @property def optimizer_config(self): return self.wrapped_optimizer.optimizer_config def get_lr(self): return self.wrapped_optimizer.get_lr() def set_lr(self, lr): self.wrapped_optimizer.set_lr(lr) def state_dict(self): """Return the optimizer's state dict.""" state_dict = self.wrapped_optimizer.state_dict() state_dict['loss_scale'] = self.scaler.loss_scale return state_dict def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ if 'loss_scale' in state_dict: self.scaler.loss_scale = state_dict['loss_scale'] self.wrapped_optimizer.load_state_dict(state_dict, optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves. Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this function additionally dynamically scales the loss to avoid gradient underflow. """ loss = loss * self.scaler.loss_scale loss.backward() self._grads_are_scaled = True def _unscale_grads(self, multiply_grads=1.): if self._grads_are_scaled: self._grads_are_scaled = False # correct for dynamic loss scaler self.wrapped_optimizer.multiply_grads(multiply_grads / self.scaler.loss_scale) else: assert multiply_grads == 1. def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" if self._grads_are_scaled: self._unscale_grads(c) else: self.wrapped_optimizer.multiply_grads(c) def clip_grad_norm(self, max_norm): """Clips gradient norm and updates dynamic loss scaler.""" self._unscale_grads() grad_norm = self.wrapped_optimizer.clip_grad_norm(max_norm) # detect overflow and adjust loss scale overflow = DynamicLossScaler.has_overflow(grad_norm) self.scaler.update_scale(overflow) if overflow: if self.scaler.loss_scale <= self.args.min_loss_scale: # Use FloatingPointError as an uncommon error that parent # functions can safely catch to stop training. raise FloatingPointError(( 'Minimum loss scale reached ({}). Your loss is probably exploding. ' 'Try lowering the learning rate, using gradient clipping or ' 'increasing the batch size.').format( self.args.min_loss_scale)) raise OverflowError('setting loss scale to: ' + str(self.scaler.loss_scale)) return grad_norm def step(self, closure=None): """Performs a single optimization step.""" self._unscale_grads() self.wrapped_optimizer.step(closure) def zero_grad(self): """Clears the gradients of all optimized parameters.""" self.wrapped_optimizer.zero_grad() self._grads_are_scaled = False
37.433702
88
0.625268
8364b8cd9cf9b59b7a88c9ba3187704d94f0460f
5,931
py
Python
simple_sqlite/test/sqliteTest.py
Svinokur/simple_sqlite
190d6dca5853c637208a7cd9dfe14e5bd0e2a4f1
[ "MIT" ]
2
2021-04-27T15:04:07.000Z
2021-10-19T07:59:22.000Z
simple_sqlite/test/sqliteTest.py
Svinokur/simple_sqlite
190d6dca5853c637208a7cd9dfe14e5bd0e2a4f1
[ "MIT" ]
null
null
null
simple_sqlite/test/sqliteTest.py
Svinokur/simple_sqlite
190d6dca5853c637208a7cd9dfe14e5bd0e2a4f1
[ "MIT" ]
null
null
null
#Standart library imports import unittest import sys import os.path import time import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) #Local imports from _setting import setting from simple_sqlite import SimpleSqlite class testSqlite(unittest.TestCase): """Class for unit-testing Sqllite class Attributes: sqllite (dict[str]) : Initialize class of Sqllite startTime (float) : Time of starting unit-tests """ @classmethod def setUpClass(cls): cls.setting = setting dbFile : str = setting['Sqllite']['TestDatabase'] cls.sqllite = SimpleSqlite(dbfile = dbFile) @classmethod def tearDownClass(cls): del cls.sqllite def setUp(self): self.start_time : float = time.time() #@unittest.skip('Temporary not needed') def tearDown(self): end_time = time.time() - self.start_time print("%.3f" % end_time) #@unittest.skip('Temporary not needed') def test01_create_database(self): self.sqllite.create_database() #@unittest.skip('Temporary not needed') def test02_open_database(self): self.sqllite.connect_to_db() #@unittest.skip('Temporary not needed') def test03_create_table_test(self): self.sqllite.connect_to_db() tablename = self.setting["Sqllite"]["TableTest"] strSql = self.setting["Sqllite"]["SqlTableTest"].format(tablename) tableName, namesFields, typeFields = self.sqllite.create_table(tablename=tablename, strSql=strSql) self.assertNotEqual(tableName, '') self.assertNotEqual(namesFields, '') self.assertNotEqual(typeFields, '') self.assertEqual(tableName, self.setting["Sqllite"]["TableTest"]) self.assertEqual(len(namesFields), 3) self.assertEqual(namesFields[0], "lesson_number") self.assertEqual(namesFields[1], "lesson_name") self.assertEqual(namesFields[2], "lesson_info") self.assertEqual(len(typeFields), 3) self.assertEqual(typeFields[0], "text") self.assertEqual(typeFields[1], "text") self.assertEqual(typeFields[2], "text") #@unittest.skip('Temporary not needed') def test04_insert_table_test(self): self.sqllite.connect_to_db() tablename = self.setting["Sqllite"]["TableTest"] data = [{ 'lesson_number' : '1', 'lesson_name' : 'English Lesson', 'lesson_info' : 'There will be no lesson', }] self.sqllite.insert_table(tablename, data) #@unittest.skip('Temporary not needed') def test05_select_table_test(self): self.sqllite.connect_to_db() tablename = self.setting["Sqllite"]["TableTest"] datas = self.sqllite.select_table(tablename) self.assertGreater(len(datas), 0, len(datas)) for data in datas: self.assertEqual(data[0], '1') self.assertEqual(data[1], 'English Lesson') self.assertEqual(data[2], 'There will be no lesson') #@unittest.skip('Temporary not needed') def test06_check_sql_script_table_test(self): self.sqllite.connect_to_db() sql_script = self.setting["Sqllite"]["SqlScriptSelectFirstLesson"] rows = self.sqllite.select_sql_script(sql_script=sql_script) self.assertGreater(len(rows), 0, len(rows)) for data in rows: self.assertEqual(data[0], '1') self.assertEqual(data[1], 'English Lesson') self.assertEqual(data[2], 'There will be no lesson') #@unittest.skip('Temporary not needed') def test07_check_sql_script_execution_table_test(self): self.sqllite.connect_to_db() sql_script = self.setting["Sqllite"]["SqlScriptChangeLessonName"] self.sqllite.execute_sql_script(sql_script=sql_script) tablename = self.setting["Sqllite"]["TableTest"] datas = self.sqllite.select_table(tablename) self.assertGreater(len(datas), 0, len(datas)) for data in datas: self.assertEqual(data[0], '1') self.assertEqual(data[1], 'Spanish lesson') self.assertEqual(data[2], 'There will be no lesson') #@unittest.skip('Temporary not needed') def test08_create_view_test(self): self.sqllite.connect_to_db() viewname = self.setting["Sqllite"]["ViewTest"] str_sql = self.setting["Sqllite"]["SqlViewTest"].format(viewname) tableName, namesFields, typeFields = self.sqllite.create_view(viewname, str_sql) self.assertEqual(tableName, viewname) self.assertEqual(len(namesFields), 3) self.assertEqual(namesFields[0], "lesson_number") self.assertEqual(namesFields[1], "lesson_name") self.assertEqual(namesFields[2], "lesson_info") self.assertEqual(len(typeFields), 3) self.assertEqual(typeFields[0], "text") self.assertEqual(typeFields[1], "text") self.assertEqual(typeFields[2], "text") #@unittest.skip def test10_open_view_test(self): self.sqllite.connect_to_db() viewname = self.setting["Sqllite"]["ViewTest"] rows = self.sqllite.open_view(viewname=viewname) for data in rows: self.assertEqual(data[0], '1') self.assertEqual(data[1], 'Spanish lesson') self.assertEqual(data[2], 'There will be no lesson') #@unittest.skip('Temporary not needed') def test11_replace_database(self): full_name_database_src = self.setting["Sqllite"]["TestDatabase"] full_name_database_dst = self.setting["Sqllite"]["TestDatabaseUpd"] self.sqllite.replace_database(full_name_database_src=full_name_database_src, full_name_database_dst=full_name_database_dst) if __name__ == '__main__': unittest.main(verbosity=2, failfast=True, exit=False)
35.728916
131
0.653515
4fa533e6d750a1f23d6401d475fa90599de01b29
2,359
py
Python
tests/__init__.py
JustinHedge/hydra
108af1aec8ef86d752f46ec4c5542ee64fd80412
[ "MIT" ]
1
2020-09-25T07:12:14.000Z
2020-09-25T07:12:14.000Z
tests/__init__.py
JustinHedge/hydra
108af1aec8ef86d752f46ec4c5542ee64fd80412
[ "MIT" ]
6
2021-06-28T20:39:10.000Z
2022-02-27T10:27:28.000Z
tests/__init__.py
JustinHedge/hydra
108af1aec8ef86d752f46ec4c5542ee64fd80412
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from dataclasses import dataclass from typing import Any, List, Tuple from omegaconf import MISSING from hydra.types import TargetConf def verify_hydra_pytest_plugin_not_installed() -> None: try: # This check can be removed in 1.1 import hydra_pytest_plugin # type: ignore except ImportError: hydra_pytest_plugin = None if hydra_pytest_plugin is not None: raise ValueError("hydra-pytest-plugin is no longer required, please uninstall") verify_hydra_pytest_plugin_not_installed() def module_function(x: int) -> int: return x @dataclass class AClass: a: Any b: Any c: Any d: Any = "default_value" @staticmethod def static_method(z: int) -> int: return z @dataclass class UntypedPassthroughConf: _target_: str = "tests.UntypedPassthroughClass" a: Any = MISSING @dataclass class UntypedPassthroughClass: a: Any # Type not legal in a config class IllegalType: def __eq__(self, other: Any) -> Any: return isinstance(other, IllegalType) @dataclass class AnotherClass: x: int class ASubclass(AnotherClass): @classmethod def class_method(cls, y: int) -> Any: return cls(y + 1) @staticmethod def static_method(z: int) -> int: return z class Parameters: def __init__(self, params: List[float]): self.params = params @dataclass class Adam: params: Parameters lr: float = 0.001 betas: Tuple[float, ...] = (0.9, 0.999) eps: float = 1e-08 weight_decay: int = 0 amsgrad: bool = False @dataclass class NestingClass: a: ASubclass = ASubclass(10) nesting = NestingClass() class ClassWithMissingModule: def __init__(self) -> None: import some_missing_module # type: ignore # noqa: F401 self.x = 1 @dataclass class AdamConf(TargetConf): _target_: str = "tests.Adam" lr: float = 0.001 betas: Tuple[float, ...] = (0.9, 0.999) eps: float = 1e-08 weight_decay: int = 0 amsgrad: bool = False @dataclass class BadAdamConf(TargetConf): # Missing str annotation _target_ = "tests.Adam" @dataclass class User: name: str = MISSING age: int = MISSING @dataclass class UserGroup: name: str = MISSING users: List[User] = MISSING
18.286822
87
0.667656
5dd107f67fbceeefbbdaef86a75a7fa69b6c5a57
818
py
Python
spinoffs/oryx/oryx/util/__init__.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
3,670
2018-02-14T03:29:40.000Z
2022-03-30T01:19:52.000Z
spinoffs/oryx/oryx/util/__init__.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
1,395
2018-02-24T02:28:49.000Z
2022-03-31T16:12:06.000Z
spinoffs/oryx/oryx/util/__init__.py
brianwa84/probability
6f8e78d859ac41170be5147c8c7bde54cc5aa83e
[ "Apache-2.0" ]
1,135
2018-02-14T01:51:10.000Z
2022-03-28T02:24:11.000Z
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Lint as: python3 """Contains Oryx utility functions.""" from oryx.util.summary import get_summaries from oryx.util.summary import summary
43.052632
78
0.698044
24dfe42281ee7b25af0e63d3684c4901f0371181
878
py
Python
Task2C.py
cued-ia-computing/flood-jw2190-lk476
e58ac7a99e9c98fec610c568c4e36969f1fc3a39
[ "MIT" ]
null
null
null
Task2C.py
cued-ia-computing/flood-jw2190-lk476
e58ac7a99e9c98fec610c568c4e36969f1fc3a39
[ "MIT" ]
null
null
null
Task2C.py
cued-ia-computing/flood-jw2190-lk476
e58ac7a99e9c98fec610c568c4e36969f1fc3a39
[ "MIT" ]
null
null
null
from floodsystem.flood import stations_highest_rel_level from floodsystem.stationdata import build_station_list, update_water_levels from floodsystem.station import consistent_typical_range_stations, remove_latest_level_nonetype def run(): """Requirements for Task2C""" #build list of stations stations = build_station_list() #update water levels update_water_levels(stations) #clean station data stations = consistent_typical_range_stations(stations) stations = remove_latest_level_nonetype(stations) #get the 10 stations with the highest relative water level highest_rel_stations = stations_highest_rel_level(stations, N=10) for station in highest_rel_stations: print(f'{station.name} {station.relative_water_level()}') if __name__ == "__main__": print("*** Task 2C: CUED Part 1A Flood Warning System ***") run()
38.173913
95
0.769932