hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
e2fa13878f2285c16f951786c847243a44a886a9
909
py
Python
examples/waterbodies_c3.conflux.py
GeoscienceAustralia/dea-conflux
1af77dda18190943e1368fef8deb4426662bb4a8
[ "Apache-2.0" ]
1
2021-10-06T08:52:51.000Z
2021-10-06T08:52:51.000Z
examples/waterbodies_c3.conflux.py
GeoscienceAustralia/dea-conflux
1af77dda18190943e1368fef8deb4426662bb4a8
[ "Apache-2.0" ]
14
2021-08-18T05:38:05.000Z
2022-01-14T03:04:11.000Z
examples/waterbodies_c3.conflux.py
GeoscienceAustralia/dea-conflux
1af77dda18190943e1368fef8deb4426662bb4a8
[ "Apache-2.0" ]
1
2021-11-05T02:40:45.000Z
2021-11-05T02:40:45.000Z
import xarray as xr product_name = "waterbodies_c3" version = "0.0.1" resampling = "nearest" output_crs = "EPSG:3577" resolution = (-30, 30) input_products = { "ga_ls_wo_3": ["water"], } def transform(inputs: xr.Dataset) -> xr.Dataset: # ignore sea, terrain/low solar angle # by disabling those flags wofl = inputs.water & 0b11110011 # then check for wet, dry is_wet = wofl == 128 is_ok = is_wet | (wofl == 0) masked_wet = is_wet.where(is_ok) return xr.Dataset({"water": masked_wet}) def summarise(inputs: xr.Dataset) -> xr.Dataset: pc_missing = inputs.water.isnull().mean() px_wet = pc_wet = float("nan") if pc_missing <= 0.1: px_wet = inputs.water.sum() pc_wet = px_wet / inputs.water.size return xr.Dataset( { "px_wet": px_wet, "pc_wet": pc_wet, "pc_missing": pc_missing, } )
23.921053
48
0.606161
699828e9f1b4310d462a6e7b666335547b95224b
7,028
py
Python
maistra/vendor/com_googlesource_chromium_v8/wee8/build/fuchsia/run_package.py
maistra-bot/proxy
05a551df62d90e96c24afc649f2755983d020b5b
[ "Apache-2.0" ]
null
null
null
maistra/vendor/com_googlesource_chromium_v8/wee8/build/fuchsia/run_package.py
maistra-bot/proxy
05a551df62d90e96c24afc649f2755983d020b5b
[ "Apache-2.0" ]
null
null
null
maistra/vendor/com_googlesource_chromium_v8/wee8/build/fuchsia/run_package.py
maistra-bot/proxy
05a551df62d90e96c24afc649f2755983d020b5b
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Contains a helper function for deploying and executing a packaged executable on a Target.""" from __future__ import print_function import common import hashlib import logging import multiprocessing import os import re import select import subprocess import sys import time import threading import uuid from symbolizer import SymbolizerFilter FAR = common.GetHostToolPathFromPlatform('far') # Amount of time to wait for the termination of the system log output thread. _JOIN_TIMEOUT_SECS = 5 def _AttachKernelLogReader(target): """Attaches a kernel log reader as a long-running SSH task.""" logging.info('Attaching kernel logger.') return target.RunCommandPiped(['dlog', '-f'], stdin=open(os.devnull, 'r'), stdout=subprocess.PIPE) class MergedInputStream(object): """Merges a number of input streams into a UNIX pipe on a dedicated thread. Terminates when the file descriptor of the primary stream (the first in the sequence) is closed.""" def __init__(self, streams): assert len(streams) > 0 self._streams = streams self._output_stream = None self._thread = None def Start(self): """Returns a pipe to the merged output stream.""" read_pipe, write_pipe = os.pipe() # Disable buffering for the stream to make sure there is no delay in logs. self._output_stream = os.fdopen(write_pipe, 'w', 0) self._thread = threading.Thread(target=self._Run) self._thread.start(); return os.fdopen(read_pipe, 'r') def _Run(self): streams_by_fd = {} primary_fd = self._streams[0].fileno() for s in self._streams: streams_by_fd[s.fileno()] = s # Set when the primary FD is closed. Input from other FDs will continue to # be processed until select() runs dry. flush = False # The lifetime of the MergedInputStream is bound to the lifetime of # |primary_fd|. while primary_fd: # When not flushing: block until data is read or an exception occurs. rlist, _, xlist = select.select(streams_by_fd, [], streams_by_fd) if len(rlist) == 0 and flush: break for fileno in xlist: del streams_by_fd[fileno] if fileno == primary_fd: primary_fd = None for fileno in rlist: line = streams_by_fd[fileno].readline() if line: self._output_stream.write(line + '\n') else: del streams_by_fd[fileno] if fileno == primary_fd: primary_fd = None # Flush the streams by executing nonblocking reads from the input file # descriptors until no more data is available, or all the streams are # closed. while streams_by_fd: rlist, _, _ = select.select(streams_by_fd, [], [], 0) if not rlist: break for fileno in rlist: line = streams_by_fd[fileno].readline() if line: self._output_stream.write(line + '\n') else: del streams_by_fd[fileno] def _GetComponentUri(package_name): return 'fuchsia-pkg://fuchsia.com/%s#meta/%s.cmx' % (package_name, package_name) class RunPackageArgs: """RunPackage() configuration arguments structure. symbolizer_config: A newline delimited list of source files contained in the package. Omitting this parameter will disable symbolization. system_logging: If set, connects a system log reader to the target. """ def __init__(self): self.symbolizer_config = None self.system_logging = False @staticmethod def FromCommonArgs(args): run_package_args = RunPackageArgs() run_package_args.system_logging = args.include_system_logs return run_package_args def _DrainStreamToStdout(stream, quit_event): """Outputs the contents of |stream| until |quit_event| is set.""" while not quit_event.is_set(): rlist, _, _ = select.select([ stream ], [], [], 0.1) if rlist: line = rlist[0].readline() if not line: return print(line.rstrip()) def RunPackage(output_dir, target, package_paths, package_name, package_args, args): """Installs the Fuchsia package at |package_path| on the target, executes it with |package_args|, and symbolizes its output. output_dir: The path containing the build output files. target: The deployment Target object that will run the package. package_paths: The paths to the .far packages to be installed. package_name: The name of the primary package to run. package_args: The arguments which will be passed to the Fuchsia process. args: Structure of arguments to configure how the package will be run. Returns the exit code of the remote package process.""" system_logger = ( _AttachKernelLogReader(target) if args.system_logging else None) try: if system_logger: # Spin up a thread to asynchronously dump the system log to stdout # for easier diagnoses of early, pre-execution failures. log_output_quit_event = multiprocessing.Event() log_output_thread = threading.Thread( target=lambda: _DrainStreamToStdout(system_logger.stdout, log_output_quit_event)) log_output_thread.daemon = True log_output_thread.start() target.InstallPackage(package_paths) if system_logger: log_output_quit_event.set() log_output_thread.join(timeout=_JOIN_TIMEOUT_SECS) logging.info('Running application.') command = ['run', _GetComponentUri(package_name)] + package_args process = target.RunCommandPiped(command, stdin=open(os.devnull, 'r'), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) if system_logger: output_stream = MergedInputStream([process.stdout, system_logger.stdout]).Start() else: output_stream = process.stdout # Run the log data through the symbolizer process. build_ids_paths = map( lambda package_path: os.path.join( os.path.dirname(package_path), 'ids.txt'), package_paths) output_stream = SymbolizerFilter(output_stream, build_ids_paths) for next_line in output_stream: print(next_line.rstrip()) process.wait() if process.returncode == 0: logging.info('Process exited normally with status code 0.') else: # The test runner returns an error status code if *any* tests fail, # so we should proceed anyway. logging.warning('Process exited with status code %d.' % process.returncode) finally: if system_logger: logging.info('Terminating kernel log reader.') log_output_quit_event.set() log_output_thread.join() system_logger.kill() return process.returncode
31.945455
78
0.672738
22b237acfb21079ac5f0465760805d7eb002ad18
1,741
py
Python
src/scout_apm/core/samplers/__init__.py
xiamx/scout_apm_python
d03dab45f65cf7d1030e11fabf6da4cf6e72ee59
[ "MIT" ]
null
null
null
src/scout_apm/core/samplers/__init__.py
xiamx/scout_apm_python
d03dab45f65cf7d1030e11fabf6da4cf6e72ee59
[ "MIT" ]
null
null
null
src/scout_apm/core/samplers/__init__.py
xiamx/scout_apm_python
d03dab45f65cf7d1030e11fabf6da4cf6e72ee59
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function, unicode_literals import logging import threading from datetime import datetime from os import getpid from time import sleep from scout_apm.core.commands import ApplicationEvent from scout_apm.core.context import AgentContext from scout_apm.core.samplers.cpu import Cpu from scout_apm.core.samplers.memory import Memory logger = logging.getLogger(__name__) class Samplers(object): _thread_lock = threading.Semaphore() @classmethod def ensure_running(cls): if cls._thread_lock.acquire(False): th = threading.Thread(target=Samplers.run_samplers) th.daemon = True th.start() cls._thread_lock.release() @classmethod def run_samplers(cls): logger.debug("Starting Samplers. Acquiring samplers lock.") try: if cls._thread_lock.acquire(True): logger.debug("Acquired samplers lock.") instances = [Cpu(), Memory()] while True: for instance in instances: event = ApplicationEvent() event.event_value = instance.run() event.event_type = ( instance.metric_type() + "/" + instance.metric_name() ) event.timestamp = datetime.utcnow() event.source = "Pid: " + str(getpid()) if event.event_value is not None: AgentContext.socket().send(event) sleep(60) finally: logger.debug("Shutting down samplers thread.") cls._thread_lock.release()
33.480769
82
0.587593
69ea5233d9af8fbd6c35252774d182446c5ae15f
414
py
Python
pyglet-hg/tests/image/PIL_LA_LOAD.py
sangh/LaserShow
abc95e465e3455dc220cc602dd58358c84666f29
[ "BSD-3-Clause" ]
21
2015-11-03T03:15:36.000Z
2021-03-15T22:00:47.000Z
tests/image/PIL_LA_LOAD.py
seeminglee/pyglet64
3dd167b5b0d3ad132a157e404586e53c2bb21736
[ "BSD-3-Clause" ]
3
2017-09-14T14:08:28.000Z
2019-05-20T04:38:15.000Z
tests/image/PIL_LA_LOAD.py
seeminglee/pyglet64
3dd167b5b0d3ad132a157e404586e53c2bb21736
[ "BSD-3-Clause" ]
23
2017-04-15T19:23:08.000Z
2020-09-08T11:55:29.000Z
#!/usr/bin/env python '''Test LA load using PIL. You should see the la.png image on a checkboard background. ''' __docformat__ = 'restructuredtext' __version__ = '$Id$' import unittest import base_load from pyglet.image.codecs.pil import * class TEST_PNG_LA(base_load.TestLoad): texture_file = 'la.png' decoder = PILImageDecoder() if __name__ == '__main__': unittest.main()
19.714286
64
0.68599
efc667024dfeea28f82970fb499e2eb28a6bc2a6
822
py
Python
venv/Scripts/rst2latex.py
unicloud-uos/uos-sdk-python
d5761d44af87cf79205046708acfb1882a74e133
[ "MIT" ]
null
null
null
venv/Scripts/rst2latex.py
unicloud-uos/uos-sdk-python
d5761d44af87cf79205046708acfb1882a74e133
[ "MIT" ]
null
null
null
venv/Scripts/rst2latex.py
unicloud-uos/uos-sdk-python
d5761d44af87cf79205046708acfb1882a74e133
[ "MIT" ]
null
null
null
#!E:\workspace\python-sdk\venv\Scripts\python.exe # $Id: rst2latex.py 5905 2009-04-16 12:04:49Z milde $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing LaTeX. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline description = ('Generates LaTeX documents from standalone reStructuredText ' 'sources. ' 'Reads from <source> (default is stdin) and writes to ' '<destination> (default is stdout). See ' '<http://docutils.sourceforge.net/docs/user/latex.html> for ' 'the full reference.') publish_cmdline(writer_name='latex', description=description)
30.444444
76
0.675182
ca8e0bdbafd219e0f630f08077577fd5241844ba
2,024
py
Python
config/settings/test.py
abought/locuszoom-hosted
5cb635b18287d15610df0da6c85b477a3eaaaabb
[ "MIT" ]
null
null
null
config/settings/test.py
abought/locuszoom-hosted
5cb635b18287d15610df0da6c85b477a3eaaaabb
[ "MIT" ]
null
null
null
config/settings/test.py
abought/locuszoom-hosted
5cb635b18287d15610df0da6c85b477a3eaaaabb
[ "MIT" ]
null
null
null
""" With these settings, tests run faster. """ from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = False # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env("DJANGO_SECRET_KEY", default="ph39zwvHUWA8J9iC4KtNed1hYuX6gTciHCUvSUjbFXaA0Cg8pdASyCPLAjUdirQY") # https://docs.djangoproject.com/en/dev/ref/settings/#test-runner TEST_RUNNER = "django.test.runner.DiscoverRunner" # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "" } } # PASSWORDS # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#password-hashers PASSWORD_HASHERS = ["django.contrib.auth.hashers.MD5PasswordHasher"] # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]["OPTIONS"]["debug"] = DEBUG # noqa F405 TEMPLATES[0]["OPTIONS"]["loaders"] = [ # noqa F405 ( "django.template.loaders.cached.Loader", [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], ) ] # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = "django.core.mail.backends.locmem.EmailBackend" # https://docs.djangoproject.com/en/dev/ref/settings/#email-host EMAIL_HOST = "localhost" # https://docs.djangoproject.com/en/dev/ref/settings/#email-port EMAIL_PORT = 1025 # Your stuff... # ------------------------------------------------------------------------------
36.142857
113
0.546443
7b193da5a3ff5b8333d612bb49c4db100ec85adb
16,450
py
Python
pyglet/media/synthesis.py
mneyapo/pyglet
20442eecfa121c74f838cb975562b7a86eb48e35
[ "BSD-3-Clause" ]
null
null
null
pyglet/media/synthesis.py
mneyapo/pyglet
20442eecfa121c74f838cb975562b7a86eb48e35
[ "BSD-3-Clause" ]
null
null
null
pyglet/media/synthesis.py
mneyapo/pyglet
20442eecfa121c74f838cb975562b7a86eb48e35
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2019 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- from .codecs.base import Source, AudioFormat, AudioData import os import math import ctypes class Envelope: """Base class for SynthesisSource amplitude envelopes.""" def get_generator(self, sample_rate, duration): raise NotImplementedError class FlatEnvelope(Envelope): """A flat envelope, providing basic amplitude setting. :Parameters: `amplitude` : float The amplitude (volume) of the wave, from 0.0 to 1.0. Values outside of this range will be clamped. """ def __init__(self, amplitude=0.5): self.amplitude = max(min(1.0, amplitude), 0) def get_generator(self, sample_rate, duration): amplitude = self.amplitude while True: yield amplitude class LinearDecayEnvelope(Envelope): """A linearly decaying envelope. This envelope linearly decays the amplitude from the peak value to 0, over the length of the waveform. :Parameters: `peak` : float The Initial peak value of the envelope, from 0.0 to 1.0. Values outside of this range will be clamped. """ def __init__(self, peak=1.0): self.peak = max(min(1.0, peak), 0) def get_generator(self, sample_rate, duration): peak = self.peak total_bytes = int(sample_rate * duration) for i in range(total_bytes): yield (total_bytes - i) / total_bytes * peak class ADSREnvelope(Envelope): """A four part Attack, Decay, Suspend, Release envelope. This is a four part ADSR envelope. The attack, decay, and release parameters should be provided in seconds. For example, a value of 0.1 would be 100ms. The sustain_amplitude parameter affects the sustain volume. This defaults to a value of 0.5, but can be provided on a scale from 0.0 to 1.0. :Parameters: `attack` : float The attack time, in seconds. `decay` : float The decay time, in seconds. `release` : float The release time, in seconds. `sustain_amplitude` : float The sustain amplitude (volume), from 0.0 to 1.0. """ def __init__(self, attack, decay, release, sustain_amplitude=0.5): self.attack = attack self.decay = decay self.release = release self.sustain_amplitude = max(min(1.0, sustain_amplitude), 0) def get_generator(self, sample_rate, duration): sustain_amplitude = self.sustain_amplitude total_bytes = int(sample_rate * duration) attack_bytes = int(sample_rate * self.attack) decay_bytes = int(sample_rate * self.decay) release_bytes = int(sample_rate * self.release) sustain_bytes = total_bytes - attack_bytes - decay_bytes - release_bytes decay_step = (1 - sustain_amplitude) / decay_bytes release_step = sustain_amplitude / release_bytes for i in range(1, attack_bytes + 1): yield i / attack_bytes for i in range(1, decay_bytes + 1): yield 1 - (i * decay_step) for i in range(1, sustain_bytes + 1): yield sustain_amplitude for i in range(1, release_bytes + 1): yield sustain_amplitude - (i * release_step) class TremoloEnvelope(Envelope): """A tremolo envelope, for modulation amplitude. A tremolo envelope that modulates the amplitude of the waveform with a sinusoidal pattern. The depth and rate of modulation can be specified. Depth is calculated as a percentage of the maximum amplitude. For example: a depth of 0.2 and amplitude of 0.5 will fluctuate the amplitude between 0.4 an 0.5. :Parameters: `depth` : float The amount of fluctuation, from 0.0 to 1.0. `rate` : float The fluctuation frequency, in seconds. `amplitude` : float The peak amplitude (volume), from 0.0 to 1.0. """ def __init__(self, depth, rate, amplitude=0.5): self.depth = max(min(1.0, depth), 0) self.rate = rate self.amplitude = max(min(1.0, amplitude), 0) def get_generator(self, sample_rate, duration): total_bytes = int(sample_rate * duration) period = total_bytes / duration max_amplitude = self.amplitude min_amplitude = max(0.0, (1.0 - self.depth) * self.amplitude) step = (math.pi * 2) / period / self.rate for i in range(total_bytes): value = math.sin(step * i) yield value * (max_amplitude - min_amplitude) + min_amplitude class SynthesisSource(Source): """Base class for synthesized waveforms. :Parameters: `duration` : float The length, in seconds, of audio that you wish to generate. `sample_rate` : int Audio samples per second. (CD quality is 44100). `sample_size` : int The bit precision. Must be either 8 or 16. """ def __init__(self, duration, sample_rate=44800, sample_size=16, envelope=None): self._duration = float(duration) self.audio_format = AudioFormat( channels=1, sample_size=sample_size, sample_rate=sample_rate) self._offset = 0 self._sample_rate = sample_rate self._sample_size = sample_size self._bytes_per_sample = sample_size >> 3 self._bytes_per_second = self._bytes_per_sample * sample_rate self._max_offset = int(self._bytes_per_second * self._duration) self.envelope = envelope or FlatEnvelope(amplitude=1.0) self._envelope_generator = self.envelope.get_generator(sample_rate, duration) if self._bytes_per_sample == 2: self._max_offset &= 0xfffffffe def get_audio_data(self, num_bytes, compensation_time=0.0): """Return `num_bytes` bytes of audio data.""" num_bytes = min(num_bytes, self._max_offset - self._offset) if num_bytes <= 0: return None timestamp = float(self._offset) / self._bytes_per_second duration = float(num_bytes) / self._bytes_per_second data = self._generate_data(num_bytes) self._offset += num_bytes return AudioData(data, num_bytes, timestamp, duration, []) def _generate_data(self, num_bytes): """Generate `num_bytes` bytes of data. Return data as ctypes array or string. """ raise NotImplementedError('abstract') def seek(self, timestamp): self._offset = int(timestamp * self._bytes_per_second) # Bound within duration self._offset = min(max(self._offset, 0), self._max_offset) # Align to sample if self._bytes_per_sample == 2: self._offset &= 0xfffffffe self._envelope_generator = self.envelope.get_generator(self._sample_rate, self._duration) class Silence(SynthesisSource): """A silent waveform.""" def _generate_data(self, num_bytes): if self._bytes_per_sample == 1: return b'\127' * num_bytes else: return b'\0' * num_bytes class WhiteNoise(SynthesisSource): """A white noise, random waveform.""" def _generate_data(self, num_bytes): return os.urandom(num_bytes) class Sine(SynthesisSource): """A sinusoid (sine) waveform. :Parameters: `duration` : float The length, in seconds, of audio that you wish to generate. `frequency` : int The frequency, in Hz of the waveform you wish to produce. `sample_rate` : int Audio samples per second. (CD quality is 44100). `sample_size` : int The bit precision. Must be either 8 or 16. """ def __init__(self, duration, frequency=440, **kwargs): super(Sine, self).__init__(duration, **kwargs) self.frequency = frequency def _generate_data(self, num_bytes): if self._bytes_per_sample == 1: samples = num_bytes bias = 127 amplitude = 127 data = (ctypes.c_ubyte * samples)() else: samples = num_bytes >> 1 bias = 0 amplitude = 32767 data = (ctypes.c_short * samples)() step = self.frequency * (math.pi * 2) / self.audio_format.sample_rate envelope = self._envelope_generator for i in range(samples): data[i] = int(math.sin(step * i) * amplitude * next(envelope) + bias) return data class Triangle(SynthesisSource): """A triangle waveform. :Parameters: `duration` : float The length, in seconds, of audio that you wish to generate. `frequency` : int The frequency, in Hz of the waveform you wish to produce. `sample_rate` : int Audio samples per second. (CD quality is 44100). `sample_size` : int The bit precision. Must be either 8 or 16. """ def __init__(self, duration, frequency=440, **kwargs): super(Triangle, self).__init__(duration, **kwargs) self.frequency = frequency def _generate_data(self, num_bytes): if self._bytes_per_sample == 1: samples = num_bytes value = 127 maximum = 255 minimum = 0 data = (ctypes.c_ubyte * samples)() else: samples = num_bytes >> 1 value = 0 maximum = 32767 minimum = -32768 data = (ctypes.c_short * samples)() step = (maximum - minimum) * 2 * self.frequency / self.audio_format.sample_rate envelope = self._envelope_generator for i in range(samples): value += step if value > maximum: value = maximum - (value - maximum) step = -step if value < minimum: value = minimum - (value - minimum) step = -step data[i] = int(value * next(envelope)) return data class Sawtooth(SynthesisSource): """A sawtooth waveform. :Parameters: `duration` : float The length, in seconds, of audio that you wish to generate. `frequency` : int The frequency, in Hz of the waveform you wish to produce. `sample_rate` : int Audio samples per second. (CD quality is 44100). `sample_size` : int The bit precision. Must be either 8 or 16. """ def __init__(self, duration, frequency=440, **kwargs): super(Sawtooth, self).__init__(duration, **kwargs) self.frequency = frequency def _generate_data(self, num_bytes): if self._bytes_per_sample == 1: samples = num_bytes value = 127 maximum = 255 minimum = 0 data = (ctypes.c_ubyte * samples)() else: samples = num_bytes >> 1 value = 0 maximum = 32767 minimum = -32768 data = (ctypes.c_short * samples)() step = (maximum - minimum) * self.frequency / self._sample_rate envelope = self._envelope_generator for i in range(samples): value += step if value > maximum: value = minimum + (value % maximum) data[i] = int(value * next(envelope)) return data class Square(SynthesisSource): """A square (pulse) waveform. :Parameters: `duration` : float The length, in seconds, of audio that you wish to generate. `frequency` : int The frequency, in Hz of the waveform you wish to produce. `sample_rate` : int Audio samples per second. (CD quality is 44100). `sample_size` : int The bit precision. Must be either 8 or 16. """ def __init__(self, duration, frequency=440, **kwargs): super(Square, self).__init__(duration, **kwargs) self.frequency = frequency def _generate_data(self, num_bytes): if self._bytes_per_sample == 1: samples = num_bytes bias = 127 amplitude = 127 data = (ctypes.c_ubyte * samples)() else: samples = num_bytes >> 1 bias = 0 amplitude = 32767 data = (ctypes.c_short * samples)() half_period = self.audio_format.sample_rate / self.frequency / 2 envelope = self._envelope_generator value = 1 count = 0 for i in range(samples): if count >= half_period: value = -value count %= half_period count += 1 data[i] = int(value * amplitude * next(envelope) + bias) return data class FM(SynthesisSource): """A simple FM waveform. This is a simplistic frequency modulated waveform, based on the concepts by John Chowning. Basic sine waves are used for both frequency carrier and modulator inputs, of which the frequencies can be provided. The modulation index, or amplitude, can also be adjusted. :Parameters: `duration` : float The length, in seconds, of audio that you wish to generate. `carrier` : int The carrier frequency, in Hz. `modulator` : int The modulator frequency, in Hz. `mod_index` : int The modulation index. `sample_rate` : int Audio samples per second. (CD quality is 44100). `sample_size` : int The bit precision. Must be either 8 or 16. """ def __init__(self, duration, carrier=440, modulator=440, mod_index=1, **kwargs): super(FM, self).__init__(duration, **kwargs) self.carrier = carrier self.modulator = modulator self.mod_index = mod_index def _generate_data(self, num_bytes): if self._bytes_per_sample == 1: samples = num_bytes bias = 127 amplitude = 127 data = (ctypes.c_ubyte * samples)() else: samples = num_bytes >> 1 bias = 0 amplitude = 32767 data = (ctypes.c_short * samples)() car_step = 2 * math.pi * self.carrier mod_step = 2 * math.pi * self.modulator mod_index = self.mod_index sample_rate = self._sample_rate envelope = self._envelope_generator sin = math.sin # FM equation: sin((2 * pi * carrier) + sin(2 * pi * modulator)) for i in range(samples): increment = i / sample_rate data[i] = int(sin(car_step * increment + mod_index * sin(mod_step * increment)) * amplitude * next(envelope) + bias) return data
35.074627
97
0.610699
f7b311c49c9a1decb15829888dbe3ec6570a6847
1,308
py
Python
code/model/metrics.py
chenyangjun45/Mutimode-language-generation
e8fa0379768e2a1cb7dca70eceeac334b605a4e8
[ "MIT" ]
5
2020-10-22T01:25:47.000Z
2020-12-21T10:38:46.000Z
code/model/metrics.py
woyaonidsh/Mutimode
42cbcddb472f0f162ff546ee1107ee26b5c5e47e
[ "MIT" ]
1
2021-04-15T02:35:48.000Z
2021-04-15T13:17:48.000Z
code/model/metrics.py
woyaonidsh/Mutimode
42cbcddb472f0f162ff546ee1107ee26b5c5e47e
[ "MIT" ]
1
2021-04-14T12:13:58.000Z
2021-04-14T12:13:58.000Z
import jieba # 使用jieba进行分词 def Rouge_1(model, reference): # terms_reference为参考摘要,terms_model为候选摘要 ***one-gram*** 一元模型 terms_reference = jieba.cut(reference) # 默认精准模式 terms_model = jieba.cut(model) grams_reference = list(terms_reference) grams_model = list(terms_model) temp = 0 ngram_all = len(grams_reference) for x in grams_reference: if x in grams_model: temp = temp + 1 rouge_1 = temp / ngram_all return rouge_1 def Rouge_2(model, reference): # terms_reference为参考摘要,terms_model为候选摘要 ***Bi-gram*** 2元模型 terms_reference = jieba.cut(reference) terms_model = jieba.cut(model) grams_reference = list(terms_reference) grams_model = list(terms_model) gram_2_model = [] gram_2_reference = [] temp = 0 ngram_all = len(grams_reference) - 1 for x in range(len(grams_model) - 1): gram_2_model.append(grams_model[x] + grams_model[x + 1]) for x in range(len(grams_reference) - 1): gram_2_reference.append(grams_reference[x] + grams_reference[x + 1]) for x in gram_2_model: if x in gram_2_reference: temp = temp + 1 rouge_2 = temp / ngram_all return rouge_2 def Rouge(model, reference): return Rouge_1(model, reference), Rouge_2(model, reference) # Rouge("我的世界是光明的","光明给我的世界以力量")
31.902439
93
0.688838
41ed1751ffd3b34c6f87ffb56a0afe1528568c44
1,383
py
Python
tests/test_timeseries.py
ndejong/vaping
995b424990544ea426cbef07baa3896e8cbfb87b
[ "Apache-2.0" ]
null
null
null
tests/test_timeseries.py
ndejong/vaping
995b424990544ea426cbef07baa3896e8cbfb87b
[ "Apache-2.0" ]
null
null
null
tests/test_timeseries.py
ndejong/vaping
995b424990544ea426cbef07baa3896e8cbfb87b
[ "Apache-2.0" ]
null
null
null
import pytest import time import vaping.plugins from vaping import plugin config = { "type" : "test_tsdb", "filename" : "{a}-{b}-{field}", "field" : "test" } @plugin.register("test_tsdb") class TSDBTestPlugin(vaping.plugins.TimeSeriesDB): """ Test plugin from the TimeSeriesDB abstraction """ def __init__(self, config, ctx): super(TSDBTestPlugin, self).__init__(config, ctx) self.updated = {} def create(self, filename): self.created = True def update(self, filename, time, value): self.updated[filename] = (time, value) def test_filename_format(): """ test filename formatting from data """ inst = plugin.get_instance(config, None) assert inst.format_filename({}, {"a":"first", "b":"second"}) == "first-second-test" def test_update_and_create(): """ test that update() and create() are called accordingly during emit() """ inst = plugin.get_instance(config, None) t = time.time() inst.emit({ "type" : "test", "source" : "test_update_and_create", "ts" : t, "data" : [ { "test" : 123, "a" : "row", "b" : "1" }, { "test" : 456, "a" : "row", "b" : "2" } ] }) assert inst.created == True assert inst.updated["row-1-test"] == (t, 123) assert inst.updated["row-2-test"] == (t, 456)
24.263158
87
0.574837
130487809f0a7d08d54949133fbdd8d156a43a67
1,577
py
Python
ccfx/scripts/utility.py
PerEr/ccfinderx-core
749dd1fc114290821dbc35e71fa331a1f7999466
[ "MIT" ]
33
2016-03-20T07:35:27.000Z
2022-01-19T08:48:02.000Z
ccfx/scripts/utility.py
PerEr/ccfinderx-core
749dd1fc114290821dbc35e71fa331a1f7999466
[ "MIT" ]
5
2016-03-14T07:50:15.000Z
2022-03-31T09:43:24.000Z
ccfx/scripts/utility.py
PerEr/ccfinderx-core
749dd1fc114290821dbc35e71fa331a1f7999466
[ "MIT" ]
17
2015-01-12T15:51:11.000Z
2022-02-20T01:22:42.000Z
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright: This module has been placed in the public domain. import sys class ProgressReporter(object): def __init__(self, totalAmount): if totalAmount == 0: self.silence = True return self.silence = False self.totalAmount = totalAmount self.currentValue = 0 self.resolution = 80 self.outp = sys.stderr def proceed(self, currentValue): if self.silence: return if currentValue > self.currentValue: lastTick = self.currentValue * self.resolution // self.totalAmount curTick = currentValue * self.resolution // self.totalAmount for i in range(lastTick, curTick): if i % (self.resolution/5) == 0: self.outp.write("%d%%" % (100 * i // self.resolution)) if i % 2 == 0: s = '.' else: s = '\b:' self.outp.write(s) self.outp.flush() self.currentValue = currentValue def done(self): if self.silence: return if self.totalAmount == 0: return self.proceed(self.totalAmount) curTick = self.currentValue * self.resolution // self.totalAmount if curTick % (self.resolution/5) == 0: self.outp.write("%d%%" % (100 * curTick // self.resolution)) self.outp.write("\n") self.outp.flush() def abort(self): if self.silence: return if self.totalAmount == 0: return self.outp.write("\n") self.outp.flush() def escapeCommandline(args): r = list() for a in args[:]: if ' ' in a: r.append('"%s"' % a) else: r.append(a) return r
25.435484
70
0.609385
eca17477bcb9123fe0a8b7f9126d8ae943edaa34
8,481
py
Python
facemesh_tracker.py
nralbrecht/facemesh-tracker
57faf6f3e1fc0d8393d3a9a0739c15b4804f194e
[ "MIT" ]
null
null
null
facemesh_tracker.py
nralbrecht/facemesh-tracker
57faf6f3e1fc0d8393d3a9a0739c15b4804f194e
[ "MIT" ]
null
null
null
facemesh_tracker.py
nralbrecht/facemesh-tracker
57faf6f3e1fc0d8393d3a9a0739c15b4804f194e
[ "MIT" ]
null
null
null
import cv2 import numpy as np import mediapipe as mp from scipy.spatial.transform import Rotation mp_face_mesh = mp.solutions.face_mesh class FaceMeshTracker: def __init__(self, server, preview=None): self.server = server self.preview = preview self.capture = cv2.VideoCapture(0) self.face_mesh = mp_face_mesh.FaceMesh( max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5, min_tracking_confidence=0.5) def __enter__(self): return self def __exit__(self, type, value, traceback): if self.capture: self.capture.release() if self.face_mesh: self.face_mesh.close() def start(self): while self.capture.isOpened(): success, image = self.capture.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use "break" instead of "continue". continue # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = self.face_mesh.process(image) if results.multi_face_landmarks: selected_face = results.multi_face_landmarks[0] face_features, orientation, rotation = self.process_face(selected_face) pivot = self.get_face_pivot(face_features) self.server.send_update(pivot, rotation) if self.preview and self.preview.show_image(image, selected_face, face_features, orientation, rotation, pivot): break else: if self.preview and self.preview.show_image(image): break def process_face(self, face_landmarks): face_features = self.extract_features(face_landmarks) orientation = self.extract_orientation(face_features) rotation = self.euler_angles_from_orientation(orientation) return face_features, orientation, rotation def extract_features(self, face_landmarks): return { "forehead": self.average_landmark([ face_landmarks.landmark[67], face_landmarks.landmark[69], face_landmarks.landmark[66], face_landmarks.landmark[109], face_landmarks.landmark[108], face_landmarks.landmark[107], face_landmarks.landmark[10], face_landmarks.landmark[151], face_landmarks.landmark[9], face_landmarks.landmark[338], face_landmarks.landmark[337], face_landmarks.landmark[336], face_landmarks.landmark[297], face_landmarks.landmark[299], face_landmarks.landmark[296] ]), "nose": self.average_landmark([ face_landmarks.landmark[220], face_landmarks.landmark[237], face_landmarks.landmark[51], face_landmarks.landmark[45], face_landmarks.landmark[44], face_landmarks.landmark[5], face_landmarks.landmark[4], face_landmarks.landmark[1], face_landmarks.landmark[281], face_landmarks.landmark[275], face_landmarks.landmark[274], face_landmarks.landmark[440], face_landmarks.landmark[457] ]), "right_cheek": self.average_landmark([ face_landmarks.landmark[127], face_landmarks.landmark[234], face_landmarks.landmark[93], face_landmarks.landmark[132], face_landmarks.landmark[34], face_landmarks.landmark[227], face_landmarks.landmark[137], face_landmarks.landmark[177], face_landmarks.landmark[215], face_landmarks.landmark[116], face_landmarks.landmark[123], face_landmarks.landmark[147], face_landmarks.landmark[213], face_landmarks.landmark[50], face_landmarks.landmark[18], ]), "left_cheek": self.average_landmark([ face_landmarks.landmark[280], face_landmarks.landmark[411], face_landmarks.landmark[345], face_landmarks.landmark[352], face_landmarks.landmark[376], face_landmarks.landmark[433], face_landmarks.landmark[264], face_landmarks.landmark[447], face_landmarks.landmark[366], face_landmarks.landmark[401], face_landmarks.landmark[435], face_landmarks.landmark[356], face_landmarks.landmark[454], face_landmarks.landmark[323], face_landmarks.landmark[361] ]), "chin": self.average_landmark([ face_landmarks.landmark[194], face_landmarks.landmark[32], face_landmarks.landmark[140], face_landmarks.landmark[176], face_landmarks.landmark[201], face_landmarks.landmark[208], face_landmarks.landmark[171], face_landmarks.landmark[148], face_landmarks.landmark[200], face_landmarks.landmark[199], face_landmarks.landmark[175], face_landmarks.landmark[152], face_landmarks.landmark[421], face_landmarks.landmark[428], face_landmarks.landmark[396], face_landmarks.landmark[377], face_landmarks.landmark[418], face_landmarks.landmark[262], face_landmarks.landmark[369], face_landmarks.landmark[400], ]) } def extract_orientation(self, features): vertical_plane = self.plane_from_points(features["forehead"], features["nose"], features["chin"]) horizontal_plane = self.plane_from_points(features["left_cheek"], features["nose"], features["right_cheek"]) forward = self.get_plane_plane_intersection(vertical_plane, horizontal_plane)[0] up = self.normalize(np.cross((features["right_cheek"] - features["nose"]), (features["left_cheek"] - features["nose"]))) right = self.normalize(np.cross((features["chin"] - features["nose"]), (features["forehead"] - features["nose"]))) return (forward, up, right) def euler_angles_from_orientation(self, orientation): forward, up, right = orientation return Rotation.from_matrix(np.array([ right, up, forward ])).as_euler("yxz", degrees=True) def average_landmark(self, landmarks): average_point = np.zeros(3) for point in landmarks: average_point[0] += point.x average_point[1] += point.y average_point[2] += point.z return average_point / len(landmarks) def plane_from_points(self, p1, p2, p3): # https://kitchingroup.cheme.cmu.edu/blog/2015/01/18/Equation-of-a-plane-through-three-points/ # These two vectors are in the plane v1 = p3 - p1 v2 = p2 - p1 # the cross product is a vector normal to the plane cp = np.cross(v1, v2) a, b, c = cp # This evaluates a * x3 + b * y3 + c * z3 which equals d d = np.dot(cp, p3) # print("The equation is {0}x + {1}y + {2}z + {3} = 0".format(a, b, c, -d)) return np.array([a, b, c, -d]) def get_plane_plane_intersection(self, A, B): # https://gist.github.com/marmakoide/79f361dd613f2076ece544070ddae6ab U = self.normalize(np.cross(A[:-1], B[:-1])) Ao = np.array((A[:-1], B[:-1], U)) Bo = np.array((-A[-1], -B[-1], 0.)) return U, np.linalg.solve(Ao, Bo) def normalize(self, vector): return vector / np.linalg.norm(vector) def get_face_pivot(self, features): return np.array([ (features["nose"][0] - 0.5) * -50, (features["nose"][1] - 0.5) * -50, (features["nose"][2] + 0.035) * 500 ])
36.089362
128
0.569626
5728a37fc33467968ca68de316d963f31f66da03
7,841
py
Python
python/paddle/dataset/flowers.py
ysh329/Paddle
50ad9046c9a440564d104eaa354eb9df83a35678
[ "Apache-2.0" ]
1
2018-09-06T06:12:20.000Z
2018-09-06T06:12:20.000Z
python/paddle/dataset/flowers.py
ysh329/Paddle
50ad9046c9a440564d104eaa354eb9df83a35678
[ "Apache-2.0" ]
null
null
null
python/paddle/dataset/flowers.py
ysh329/Paddle
50ad9046c9a440564d104eaa354eb9df83a35678
[ "Apache-2.0" ]
1
2022-03-26T11:44:12.000Z
2022-03-26T11:44:12.000Z
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module will download dataset from http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html and parse train/test set intopaddle reader creators. This set contains images of flowers belonging to 102 different categories. The images were acquired by searching the web and taking pictures. There are a minimum of 40 images for each category. The database was used in: Nilsback, M-E. and Zisserman, A. Automated flower classification over a large number of classes.Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (2008) http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}. """ from __future__ import print_function import itertools import functools from .common import download import tarfile import scipy.io as scio from paddle.dataset.image import * from paddle.reader import * from paddle import compat as cpt import os import numpy as np from multiprocessing import cpu_count import six from six.moves import cPickle as pickle __all__ = ['train', 'test', 'valid'] DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz' LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat' SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat' DATA_MD5 = '52808999861908f626f3c1f4e79d11fa' LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d' SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c' # In official 'readme', tstid is the flag of test data # and trnid is the flag of train data. But test data is more than train data. # So we exchange the train data and test data. TRAIN_FLAG = 'tstid' TEST_FLAG = 'trnid' VALID_FLAG = 'valid' def default_mapper(is_train, sample): ''' map image bytes data to type needed by model input layer ''' img, label = sample img = load_image_bytes(img) img = simple_transform( img, 256, 224, is_train, mean=[103.94, 116.78, 123.68]) return img.flatten().astype('float32'), label train_mapper = functools.partial(default_mapper, True) test_mapper = functools.partial(default_mapper, False) def reader_creator(data_file, label_file, setid_file, dataset_name, mapper, buffered_size=1024, use_xmap=True, cycle=False): ''' 1. read images from tar file and merge images into batch files in 102flowers.tgz_batch/ 2. get a reader to read sample from batch file :param data_file: downloaded data file :type data_file: string :param label_file: downloaded label file :type label_file: string :param setid_file: downloaded setid file containing information about how to split dataset :type setid_file: string :param dataset_name: data set name (tstid|trnid|valid) :type dataset_name: string :param mapper: a function to map image bytes data to type needed by model input layer :type mapper: callable :param buffered_size: the size of buffer used to process images :type buffered_size: int :param cycle: whether to cycle through the dataset :type cycle: bool :return: data reader :rtype: callable ''' labels = scio.loadmat(label_file)['labels'][0] indexes = scio.loadmat(setid_file)[dataset_name][0] img2label = {} for i in indexes: img = "jpg/image_%05d.jpg" % i img2label[img] = labels[i - 1] file_list = batch_images_from_tar(data_file, dataset_name, img2label) def reader(): while True: for file in open(file_list): file = file.strip() batch = None with open(file, 'rb') as f: if six.PY2: batch = pickle.load(f) else: batch = pickle.load(f, encoding='bytes') if six.PY3: batch = cpt.to_text(batch) data = batch['data'] labels = batch['label'] for sample, label in six.moves.zip(data, batch['label']): yield sample, int(label) - 1 if not cycle: break if use_xmap: cpu_num = int(os.environ.get('CPU_NUM', cpu_count())) return xmap_readers(mapper, reader, cpu_num, buffered_size) else: return map_readers(mapper, reader) def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False): ''' Create flowers training set reader. It returns a reader, each sample in the reader is image pixels in [0, 1] and label in [1, 102] translated from original color image by steps: 1. resize to 256*256 2. random crop to 224*224 3. flatten :param mapper: a function to map sample. :type mapper: callable :param buffered_size: the size of buffer used to process images :type buffered_size: int :param cycle: whether to cycle through the dataset :type cycle: bool :return: train data reader :rtype: callable ''' return reader_creator( download(DATA_URL, 'flowers', DATA_MD5), download(LABEL_URL, 'flowers', LABEL_MD5), download(SETID_URL, 'flowers', SETID_MD5), TRAIN_FLAG, mapper, buffered_size, use_xmap, cycle=cycle) def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False): ''' Create flowers test set reader. It returns a reader, each sample in the reader is image pixels in [0, 1] and label in [1, 102] translated from original color image by steps: 1. resize to 256*256 2. random crop to 224*224 3. flatten :param mapper: a function to map sample. :type mapper: callable :param buffered_size: the size of buffer used to process images :type buffered_size: int :param cycle: whether to cycle through the dataset :type cycle: bool :return: test data reader :rtype: callable ''' return reader_creator( download(DATA_URL, 'flowers', DATA_MD5), download(LABEL_URL, 'flowers', LABEL_MD5), download(SETID_URL, 'flowers', SETID_MD5), TEST_FLAG, mapper, buffered_size, use_xmap, cycle=cycle) def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True): ''' Create flowers validation set reader. It returns a reader, each sample in the reader is image pixels in [0, 1] and label in [1, 102] translated from original color image by steps: 1. resize to 256*256 2. random crop to 224*224 3. flatten :param mapper: a function to map sample. :type mapper: callable :param buffered_size: the size of buffer used to process images :type buffered_size: int :return: test data reader :rtype: callable ''' return reader_creator( download(DATA_URL, 'flowers', DATA_MD5), download(LABEL_URL, 'flowers', LABEL_MD5), download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper, buffered_size, use_xmap) def fetch(): download(DATA_URL, 'flowers', DATA_MD5) download(LABEL_URL, 'flowers', LABEL_MD5) download(SETID_URL, 'flowers', SETID_MD5)
34.240175
79
0.668282
76cdd5b467696ffdd8e68a6faec27c1082360c77
216
py
Python
Curso_em_Video_Exercicios/ex003.py
Cohuzer/Exercicios-do-Curso-em-Video
879cbb53c54ba226e12d9972bc28eadcd521fc10
[ "MIT" ]
null
null
null
Curso_em_Video_Exercicios/ex003.py
Cohuzer/Exercicios-do-Curso-em-Video
879cbb53c54ba226e12d9972bc28eadcd521fc10
[ "MIT" ]
null
null
null
Curso_em_Video_Exercicios/ex003.py
Cohuzer/Exercicios-do-Curso-em-Video
879cbb53c54ba226e12d9972bc28eadcd521fc10
[ "MIT" ]
null
null
null
#Some dois números informados pelo usuário #Entrada a = float(input('Me diga um número: ')) b = float(input('Me diga outro número: ')) #Processamento c = a + b #Saida print('A soma de {} e {} é {}'.format(a,b,c))
18
45
0.648148
40bd20f3104dbe53f49ee56f6338741699b5c969
4,024
py
Python
src/rest_api.py
dprslt/aurora
3b70c036f01d9b69ae49559c404da79594530041
[ "Apache-2.0" ]
null
null
null
src/rest_api.py
dprslt/aurora
3b70c036f01d9b69ae49559c404da79594530041
[ "Apache-2.0" ]
17
2021-05-08T06:52:03.000Z
2021-10-30T16:49:48.000Z
src/rest_api.py
dprslt/aurora
3b70c036f01d9b69ae49559c404da79594530041
[ "Apache-2.0" ]
null
null
null
import logging import config from flask import Flask, request, abort, Response from multiprocessing import Process from strategies.colors.FixedColor import FixedColor from strategies.light.Breath import Breath from strategies.light.SimpleColor import SimpleColor from strategies.light.TimedWrapper import TimedWrapper from strategies.light.TurnedOff import TurnedOff from werkzeug.serving import make_server import threading from strategies.screen.DisplayScrollingMessage import DisplayScrollingMessage from strategies.screen.QuickTime import QuickTime from strategies.screen.RealClockTime import RealClockTime def get_color_from_query(args): r = int(request.args.get('r', None)) g = int(request.args.get('g', None)) b = int(request.args.get('b', None)) return FixedColor([r, g, b]) class ServerThread(threading.Thread): def __init__(self, app): threading.Thread.__init__(self) self.server = make_server('0.0.0.0', 5000, app) self.ctx = app.app_context() self.ctx.push() def run(self): logging.info('Starting web server') self.server.serve_forever() def shutdown(self): logging.info('Stopping web server') self.server.shutdown() def start_rest_server(light, disp): app = Flask(__name__) @app.route("/ping") def ping(): return 'pong' @app.route("/light/<mode>", methods=['POST']) def switch_light_mode(mode): if(mode == 'on'): config.scheduler.set_light_thread( SimpleColor(light, FixedColor([255, 172, 68]))) if(mode == 'off'): config.scheduler.set_light_thread(TurnedOff(light)) return 'OK' @app.route("/light/color", methods=['POST']) def display_light_color(): color_strategy = None try: color_strategy = get_color_from_query(request.args) except: abort(Response('r, g and b query params are mandatory and must be valid numbers given : r:' + str(r)+', g:'+str(g)+', b:'+str(b), 400)) color_thread = SimpleColor(light, color_strategy) requestedTime = int(request.args.get('time', -1)) if(requestedTime > 0): wrapped_thread = TimedWrapper(color_thread, requestedTime) config.scheduler.temporary_set_light_thread(wrapped_thread) else: config.scheduler.set_light_thread(color_thread) return 'OK' @app.route("/light/breath", methods=['POST']) def display_light_breath(): config.scheduler.set_light_thread(Breath( light, hue=0.08, sat=0.9, value_target=0.99, value_from=0.1, duration=[2.5, 2.5], pauses=[0.05, 0.8], frequency=40 )) return 'OK' @app.route("/display/text/<text>", methods=['POST']) def display_custom_text(text): color = None duration = len(text) / 3 + 1 try: color = get_color_from_query(request.args) finally: if(color): config.scheduler.temporary_switch_screen_thread( DisplayScrollingMessage( disp, text, duration, screen_color_strategy=color) ) else: config.scheduler.temporary_switch_screen_thread( DisplayScrollingMessage( disp, text, duration) ) return 'OK' @app.route("/display/date", methods=['POST']) def display_date(): config.scheduler.set_screen_thread(RealClockTime(disp)) return 'OK' @app.route("/display/date/quick", methods=['POST']) def display_quick_date(): config.scheduler.set_screen_thread(QuickTime(disp)) return 'OK' server = ServerThread(app) server.start() return server # server_thread = Process(target=app.run, kwargs=dict(host='0.0.0.0')) # server_thread.start() # return server_thread
31.4375
105
0.621769
44dff2c0782ca83e6e49723abc5c295d39aacf94
664
py
Python
backend/task_profile/api/v1/serializers.py
crowdbotics-apps/privet-albom-28579
31de761497946b3932b11bae5d6b6216120f6634
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/task_profile/api/v1/serializers.py
crowdbotics-apps/privet-albom-28579
31de761497946b3932b11bae5d6b6216120f6634
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/task_profile/api/v1/serializers.py
crowdbotics-apps/privet-albom-28579
31de761497946b3932b11bae5d6b6216120f6634
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from rest_framework import serializers from task_profile.models import TaskerProfile, CustomerProfile, Notification, InviteCode class NotificationSerializer(serializers.ModelSerializer): class Meta: model = Notification fields = "__all__" class InviteCodeSerializer(serializers.ModelSerializer): class Meta: model = InviteCode fields = "__all__" class CustomerProfileSerializer(serializers.ModelSerializer): class Meta: model = CustomerProfile fields = "__all__" class TaskerProfileSerializer(serializers.ModelSerializer): class Meta: model = TaskerProfile fields = "__all__"
24.592593
88
0.730422
006cd144093c73acdd634da996be33ee5e33e518
4,690
py
Python
Glove/3/train.py
amurto/nlp-scripts
f1158221a87838589ccff4eaa4db5349e6ec1c8d
[ "MIT" ]
1
2020-06-15T05:46:42.000Z
2020-06-15T05:46:42.000Z
Glove/3/train.py
amurto/nlp-scripts
f1158221a87838589ccff4eaa4db5349e6ec1c8d
[ "MIT" ]
null
null
null
Glove/3/train.py
amurto/nlp-scripts
f1158221a87838589ccff4eaa4db5349e6ec1c8d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """insult_train.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/11OTc2Q2mXQ1a3O0vljL4FhhZhqJqQzT_ """ from google.colab import drive drive.mount('/content/drive') from numpy import array from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers.core import Activation, Dropout, Dense from keras.layers import Flatten, LSTM from keras.layers import GlobalMaxPooling1D from keras.models import Model from keras.layers.embeddings import Embedding from sklearn.model_selection import train_test_split from keras.preprocessing.text import Tokenizer from keras.layers import Input from keras.layers.merge import Concatenate import pandas as pd import numpy as np import re import matplotlib.pyplot as plt toxic_comments = pd.read_csv("/content/drive/My Drive/work/Keyword_Suggestion/Training/Datasets/hatekeyword.csv") toxic_comments.head() filter = toxic_comments["comment_text"] != "" toxic_comments = toxic_comments[filter] toxic_comments = toxic_comments.dropna() toxic_comments_labels = toxic_comments[["toxic", "severe_toxic", "obscene","insult"]] toxic_comments_labels.head() fig_size = plt.rcParams["figure.figsize"] fig_size[0] = 10 fig_size[1] = 8 plt.rcParams["figure.figsize"] = fig_size toxic_comments_labels.sum(axis=0).plot.bar() def preprocess_text(sen): # Remove punctuations and numbers sentence = re.sub('[^a-zA-Z]', ' ', sen) # Single character removal sentence = re.sub(r"\s+[a-zA-Z]\s+", ' ', sentence) # Removing multiple spaces sentence = re.sub(r'\s+', ' ', sentence) return sentence X = [] sentences = list(toxic_comments["comment_text"]) for sen in sentences: X.append(preprocess_text(sen)) y = toxic_comments_labels.values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42) tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(X_train) X_train = tokenizer.texts_to_sequences(X_train) X_test = tokenizer.texts_to_sequences(X_test) vocab_size = len(tokenizer.word_index) + 1 maxlen = 200 X_train = pad_sequences(X_train, padding='post', maxlen=maxlen) X_test = pad_sequences(X_test, padding='post', maxlen=maxlen) from numpy import array from numpy import asarray from numpy import zeros embeddings_dictionary = dict() glove_file = open('/content/drive/My Drive/work/Emotion Detection/glove.6B.100d.txt', encoding="utf8") for line in glove_file: records = line.split() word = records[0] vector_dimensions = asarray(records[1:], dtype='float32') embeddings_dictionary[word] = vector_dimensions glove_file.close() embedding_matrix = zeros((vocab_size, 100)) for word, index in tokenizer.word_index.items(): embedding_vector = embeddings_dictionary.get(word) if embedding_vector is not None: embedding_matrix[index] = embedding_vector deep_inputs = Input(shape=(maxlen,)) embedding_layer = Embedding(vocab_size, 100, weights=[embedding_matrix], trainable=False)(deep_inputs) LSTM_Layer_1 = LSTM(128)(embedding_layer) dense_layer_1 = Dense(4, activation='sigmoid')(LSTM_Layer_1) model = Model(inputs=deep_inputs, outputs=dense_layer_1) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) print(model.summary()) from keras.utils import plot_model plot_model(model, to_file='model_plot4a.png', show_shapes=True, show_layer_names=True) history = model.fit(X_train, y_train, batch_size=128, epochs=5, verbose=1, validation_split=0.2) score = model.evaluate(X_test, y_test, verbose=1) print("Test Score:", score[0]) print("Test Accuracy:", score[1]) import matplotlib.pyplot as plt plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train','test'], loc='upper left') plt.show() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train','test'], loc='upper left') plt.show() predictions = model.predict(X_test, verbose=1) print(X_test) from keras.models import load_model model.save('insult_model.h5') import pickle # saving with open('insult_tokenizer.pickle', 'wb') as handle: pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL) # loading with open('insult_tokenizer.pickle', 'rb') as handle: tokenizer = pickle.load(handle) model1 = load_model('insult_model.h5') score = model1.evaluate(X_test, y_test, verbose=1) print("Test Score:", score[0]) print("Test Accuracy:", score[1])
27.916667
113
0.761407
46c622d556a1ea49b49f91759e9d2e80d1d7d876
487
py
Python
plans/test_helpmecarry_pypnpnaoqi.py
LCAS/spqrel_tools
9dc27364811393082b86a9be5dcc654239317515
[ "MIT" ]
9
2017-07-29T06:17:19.000Z
2020-12-07T08:22:57.000Z
plans/test_helpmecarry_pypnpnaoqi.py
LCAS/spqrel_tools
9dc27364811393082b86a9be5dcc654239317515
[ "MIT" ]
48
2017-06-01T09:29:18.000Z
2020-09-16T19:50:12.000Z
plans/test_helpmecarry_pypnpnaoqi.py
LCAS/spqrel_tools
9dc27364811393082b86a9be5dcc654239317515
[ "MIT" ]
11
2017-06-01T08:13:02.000Z
2020-11-11T20:25:36.000Z
import os import sys try: from pnp_cmd_naoqi import * except: print "Please set PNP_HOME environment variable to PetriNetPlans folder." sys.exit(1) p = PNPCmd() p.begin() c = 0 #test arsenable AND stopfolloging p.exec_action('asrenable','') # follow the recorded person to the car p.exec_action('updatefollowpersoncoord', 'stopfollowing', interrupt='personlost') p.exec_action('asrenable','off') #next thing to test #p.exec_action('dialogue','lookforhelp') p.end()
15.21875
81
0.731006
4d28c7c32344f59859f115e76a37320fbbb6359e
5,679
py
Python
cogbot/cogs/abc/base_cog.py
Arcensoth/cogbot
ef9d935ae8c8fbe00fb9370c75e0e6d9189141d0
[ "MIT" ]
8
2016-12-26T14:10:38.000Z
2021-01-02T03:50:05.000Z
cogbot/cogs/abc/base_cog.py
Arcensoth/cogbot
ef9d935ae8c8fbe00fb9370c75e0e6d9189141d0
[ "MIT" ]
28
2016-12-12T04:06:53.000Z
2020-04-23T06:18:55.000Z
cogbot/cogs/abc/base_cog.py
Arcensoth/cogbot
ef9d935ae8c8fbe00fb9370c75e0e6d9189141d0
[ "MIT" ]
9
2017-06-03T00:33:57.000Z
2020-10-29T18:16:02.000Z
import logging from abc import ABC, abstractmethod from typing import Dict, Generic, Type, TypeVar, Union from discord import Member, Message, Reaction, Server from cogbot.cog_bot import CogBot from cogbot.cogs.abc.base_cog_server_state import BaseCogServerState from cogbot.types import ServerId ResolvedOptions = Dict RawOptions = Union[ResolvedOptions, str] S = TypeVar("S", bound=BaseCogServerState) class BaseCog(ABC, Generic[S]): def __init__(self, ext: str, bot: CogBot): self.ext: str = ext self.bot: CogBot = bot self.options = self.bot.state.get_extension_state(ext) self.server_state_by_id: Dict[ServerId, S] = {} self.log = logging.getLogger(self.ext) def get_server_state(self, server: Server) -> S: return self.server_state_by_id.get(server.id) def set_server_state(self, server: Server, state: S): if server.id in self.server_state_by_id: raise KeyError(f"State for server {server} already exists") self.server_state_by_id[server.id] = state async def create_server_state(self, server: Server, options: ResolvedOptions) -> S: server_id = server.id state = self.server_state_class(self.ext, self.bot, server_id, options) await state.base_setup() return state async def resolve_options( self, server: Server, options: RawOptions ) -> ResolvedOptions: # if options is a string, use external options if isinstance(options, str): options_address = options self.log.info( f"Loading state data for server {server} extension {self.ext} from: {options_address}" ) resolved_options = await self.bot.load_json(options_address) self.log.info( f"Successfully loaded state data for server {server} extension {self.ext}" ) # otherwise, we must be using inline options elif isinstance(options, dict): resolved_options = options else: raise ValueError(f"Invalid server options: not a dict or str") return resolved_options async def setup_state(self, server: Server, options: RawOptions): try: resolved_options = await self.resolve_options(server, options) state = await self.create_server_state(server, resolved_options) self.set_server_state(server, state) except: self.log.exception( f"Failed to setup state for server {server} extension {self.ext}" ) async def init_states(self): raw_servers = self.options.get("servers", {}) for server_key, options in raw_servers.items(): server_key: str options: RawOptions server = self.bot.get_server_from_key(server_key) if not server: self.log.error(f"Skipping unknown server: {server_key}") continue await self.setup_state(server, options) async def clear_states(self): for state in self.server_state_by_id.values(): state: S await state.base_teardown() self.server_state_by_id.clear() async def reload(self): await self.clear_states() await self.init_states() async def on_ready(self): # reload server states await self.reload() async def on_reaction_add(self, reaction: Reaction, reactor: Member): # make sure this isn't a DM if isinstance(reactor, Member): state = self.get_server_state(reaction.message.server) # ignore bot's reactions if state and reactor != self.bot.user: await state.on_reaction(reaction, reactor) async def on_message(self, message: Message): # make sure this isn't a DM if message.server: state = self.get_server_state(message.server) # ignore bot's messages if state and message.author != self.bot.user: await state.on_message(message) async def on_message_delete(self, message: Message): # make sure this isn't a DM if message.server: state = self.get_server_state(message.server) # ignore bot's messages if state and message.author != self.bot.user: await state.on_message_delete(message) async def on_message_edit(self, before: Message, after: Message): # make sure this isn't a DM if after.server: state = self.get_server_state(after.server) # ignore bot's messages if state and after.author != self.bot.user: await state.on_message_edit(before, after) async def on_member_join(self, member: Member): state = self.get_server_state(member.server) if state: await state.on_member_join(member) async def on_member_remove(self, member: Member): state = self.get_server_state(member.server) if state: await state.on_member_remove(member) async def on_member_ban(self, member: Member): state = self.get_server_state(member.server) if state: await state.on_member_ban(member) async def on_member_unban(self, server: Server, member: Member): state = self.get_server_state(server) if state: await state.on_member_unban(server, member) @property @abstractmethod def server_state_class(self) -> Type[S]: """ Return the class itself responsible for creating the server state object. """ # TODO Can this be determined automatically? #enhance
37.361842
102
0.640782
225da5bf3869ee208b3ad3cc45163eec501688cc
3,762
py
Python
uno_product_checker.py
gebn/uno-product-checker
63a467f01d06365ea63595163697a61f3f269cfb
[ "MIT" ]
null
null
null
uno_product_checker.py
gebn/uno-product-checker
63a467f01d06365ea63595163697a61f3f269cfb
[ "MIT" ]
7
2017-08-30T09:47:59.000Z
2018-02-12T20:30:34.000Z
uno_product_checker.py
gebn/uno-product-checker
63a467f01d06365ea63595163697a61f3f269cfb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from typing import Dict import logging import os import json import requests import boto3 _VERSION = '1.2.0' _ENDPOINT = 'https://my.uno.net.uk/modules/addons/unobroadband' \ '/broadbandavailability.php' _PHONE_NUMBER = os.environ['PHONE_NUMBER'] _PRODUCT_TYPE = os.environ['PRODUCT_TYPE'] _EXPECTED_PRODUCTS = {int(pid) for pid in os.environ['EXPECTED_PRODUCTS'].split(',')} _NOTIFICATION_TOPIC_ARN = os.environ['NOTIFICATION_TOPIC_ARN'] _NOTIFICATION_TOPIC_REGION = _NOTIFICATION_TOPIC_ARN.split(':')[3] _PUSHOVER_APP_TOKEN = os.environ['PUSHOVER_APP_TOKEN'] logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) def find_available_products(type_: str, phone_number: str) -> Dict[int, str]: """ Ask Uno for a list of packages available on a line. :param type_: The type of product to query for, e.g. Phone & Broadband is 'phone_broadband'. :param phone_number: The line phone number, with no spaces or country code. :return: A dictionary of product names, keyed by product ID. :raises requests.exceptions.RequestException: If the request failed, or Uno indicated a client-side error. """ logger.debug(f'Querying for {type_} products for {phone_number}...') response = requests.post( _ENDPOINT, headers={ 'User-Agent': f'uno-product-checker/{_VERSION}' }, data={ 'phone_number': phone_number, 'type': type_ }) response.raise_for_status() logger.info(f'Request time: {response.elapsed.total_seconds()}s') json_ = response.json() products = {product['id']: product['name'] for _, content in json_.items() for _, product in content['products'].items()} return products def main() -> int: """ Executes the high-level logic of the checker. :return: 0 on success, 1 on failure. """ logger.debug(f'Expected products: {_EXPECTED_PRODUCTS}') try: available_products = find_available_products(_PRODUCT_TYPE, _PHONE_NUMBER) logger.debug(f'Available products: {available_products}') if available_products.keys() != _EXPECTED_PRODUCTS: logger.info('Available product list has changed') message = { 'app': _PUSHOVER_APP_TOKEN, 'title': 'New services available!', 'body': '\n'.join(f' - {name}' for _, name in available_products.items()) } sns_client = boto3.client('sns', region_name=_NOTIFICATION_TOPIC_REGION) response = sns_client.publish( TopicArn=_NOTIFICATION_TOPIC_ARN, Message=json.dumps(message, ensure_ascii=False)) logger.info(f"Published message {response['MessageId']} to " + _NOTIFICATION_TOPIC_ARN) else: logger.info('No change to available product list') return 0 except requests.exceptions.RequestException: logger.exception(f'Failed to retrieve products for {_PHONE_NUMBER}') return 1 # noinspection PyUnusedLocal def lambda_handler(event, context) -> int: """ AWS Lambda entry point. :param event: The event that triggered this execution. :param context: Current runtime information: http://docs.aws.amazon.com /lambda/latest/dg/python-context-object.html. :return: The script exit code. """ logger.info(f'Event: {event}') return main()
35.490566
79
0.608985
ff4a4690755ffc659a620cf08a60726570766de9
819
py
Python
tests/core/test_valid.py
hohe/siliconcompiler
497f272c87c8f247dcd29db76c8d6ed0c0939e50
[ "Apache-2.0" ]
1
2022-03-10T03:56:49.000Z
2022-03-10T03:56:49.000Z
tests/core/test_valid.py
hohe/siliconcompiler
497f272c87c8f247dcd29db76c8d6ed0c0939e50
[ "Apache-2.0" ]
null
null
null
tests/core/test_valid.py
hohe/siliconcompiler
497f272c87c8f247dcd29db76c8d6ed0c0939e50
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Silicon Compiler Authors. All Rights Reserved. import siliconcompiler import re def test_valid(): chip = siliconcompiler.Chip() chip.load_target("freepdk45_demo") #basic valid = chip.valid('design') assert valid #nest valid = chip.valid('asic','minlayer') assert valid #dynamic valid valid = chip.valid('pdk','grid', '10M', 'metal1', 'name') assert valid #valid b/c of default (valid for set) valid = chip.valid('pdk','grid', 'M10', 'metal1', 'name', default_valid=True) assert valid #dynamic with default fields valid = chip.valid('pdk','grid', 'default', 'default', 'name') assert valid #not working valid = chip.valid('blah') assert not valid ######################### if __name__ == "__main__": test_valid()
25.59375
81
0.626374
74a523d16e2cee1cab37c04eafdbc4c2bd2aef9d
1,223
py
Python
backend/app/core/config.py
furyhawk/textsum
5bea375fe3888095911abe3c4dda018e52c5c535
[ "MIT" ]
2
2021-10-01T06:28:43.000Z
2021-11-19T05:40:57.000Z
backend/app/core/config.py
furyhawk/text_summarization
8d63574ec93a4535f2fed7915c034461c1903475
[ "MIT" ]
null
null
null
backend/app/core/config.py
furyhawk/text_summarization
8d63574ec93a4535f2fed7915c034461c1903475
[ "MIT" ]
null
null
null
from pydantic import BaseSettings, BaseModel from typing import List from functools import lru_cache class Settings(BaseSettings): PROJECT_NAME: str = "textsum" MODELS: List[str] = ['Headline', 'Transformer', 'TFIDF', 'T5', 'Finetuned'] MIN_LENGTH: int = 15 MAX_LENGTH: int = 150 HEADLINE_MIN_LENGTH = 7 HEADLINE_MAX_LENGTH = 20 class Config: env_prefix = "" class LogConfig(BaseModel): """Logging configuration to be set for the server""" LOGGER_NAME: str = "app" LOG_FORMAT: str = "%(levelprefix)s | %(asctime)s | %(message)s" LOG_LEVEL: str = "INFO" # Logging config version = 1 disable_existing_loggers = False formatters = { "default": { "()": "uvicorn.logging.DefaultFormatter", "fmt": LOG_FORMAT, "datefmt": "%Y-%m-%d %H:%M:%S", }, } handlers = { "default": { "formatter": "default", "class": "logging.StreamHandler", "stream": "ext://sys.stderr", }, } loggers = { LOGGER_NAME: {"handlers": ["default"], "level": LOG_LEVEL}, } @lru_cache() def get_settings(): return Settings()
23.980392
67
0.566639
3f49a7af81b0de05d996f67113e185b655e98d3a
664
py
Python
src/generic_info_provider.py
Tknika/iombian-status-display
98e0cbab234de0c88fc279a1621d4c7a39a6e103
[ "Apache-2.0" ]
null
null
null
src/generic_info_provider.py
Tknika/iombian-status-display
98e0cbab234de0c88fc279a1621d4c7a39a6e103
[ "Apache-2.0" ]
null
null
null
src/generic_info_provider.py
Tknika/iombian-status-display
98e0cbab234de0c88fc279a1621d4c7a39a6e103
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import logging from abc import ABC, abstractmethod logger = logging.getLogger(__name__) class GenericInfoProvider(ABC): def __init__(self): self.has_changed = False def __setattr__(self, name, value): if name == "has_changed": super().__setattr__(name, value) else: if getattr(self, name, None) != value: self.has_changed = True super().__setattr__(name, value) @abstractmethod def update(self): changed = self.has_changed self.has_changed = False return changed @abstractmethod def to_list(self): pass
22.133333
50
0.612952
122605386fc62b5e8949ce38a707ec35f4590848
219
py
Python
tests/__init__.py
TigerDX/dj-stripe
2fd4897abaedf2d9faa3dd5af86402dae3ab86a3
[ "BSD-3-Clause" ]
null
null
null
tests/__init__.py
TigerDX/dj-stripe
2fd4897abaedf2d9faa3dd5af86402dae3ab86a3
[ "BSD-3-Clause" ]
null
null
null
tests/__init__.py
TigerDX/dj-stripe
2fd4897abaedf2d9faa3dd5af86402dae3ab86a3
[ "BSD-3-Clause" ]
1
2021-08-30T10:51:49.000Z
2021-08-30T10:51:49.000Z
from stripe import api_key from stripe.resource import convert_to_stripe_object def convert_to_fake_stripe_object(response): return convert_to_stripe_object(resp=response, api_key=api_key, account="test_account")
31.285714
91
0.849315
8f2cefe597d992f54a5f7332979fa041763d6ccc
252
py
Python
manage.py
sdzharkov/Trip-Split
e485a17383737b53eec1878650eea60567ae78a9
[ "MIT" ]
3
2017-03-05T03:24:18.000Z
2017-04-22T11:25:07.000Z
manage.py
sdzharkov/Trip-Split
e485a17383737b53eec1878650eea60567ae78a9
[ "MIT" ]
null
null
null
manage.py
sdzharkov/Trip-Split
e485a17383737b53eec1878650eea60567ae78a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tripSlice.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
22.909091
73
0.77381
583342465ceaa7f1239189e258d50209af5bfe92
775
py
Python
form_designer/utils.py
sergey-romanov/django-form-designer
cddfb5c87759f57c68208509327078bd690295b9
[ "BSD-3-Clause" ]
null
null
null
form_designer/utils.py
sergey-romanov/django-form-designer
cddfb5c87759f57c68208509327078bd690295b9
[ "BSD-3-Clause" ]
null
null
null
form_designer/utils.py
sergey-romanov/django-form-designer
cddfb5c87759f57c68208509327078bd690295b9
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.core.exceptions import ImproperlyConfigured from django.utils.importlib import import_module def get_class(import_path): try: dot = import_path.rindex('.') except ValueError: raise ImproperlyConfigured("%s isn't a Python path." % import_path) module, classname = import_path[:dot], import_path[dot + 1:] try: mod = import_module(module) except ImportError, e: raise ImproperlyConfigured('Error importing module %s: "%s"' % (module, e)) try: return getattr(mod, classname) except AttributeError: raise ImproperlyConfigured('Module "%s" does not define a "%s" ' 'class.' % (module, classname))
36.904762
75
0.610323
7347cd40a916c2fe03044512669cebe0998f430f
3,768
py
Python
doc/integrations/pytorch/parlai/crowdsourcing/utils/worlds.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2020-09-27T05:00:06.000Z
2020-09-27T05:00:06.000Z
doc/integrations/pytorch/parlai/crowdsourcing/utils/worlds.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2021-08-04T11:17:39.000Z
2021-08-04T11:17:39.000Z
doc/integrations/pytorch/parlai/crowdsourcing/utils/worlds.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2021-05-03T13:27:14.000Z
2021-05-03T13:27:14.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from parlai.core.worlds import World class CrowdDataWorld(World): def prep_save_data(self, workers): """ This prepares data to be saved for later review, including chats from individual worker perspectives. """ custom_data = self.get_custom_task_data() save_data = {'custom_data': custom_data, 'worker_data': {}} return save_data def get_custom_task_data(self): """ This function should take the contents of whatever was collected during this task that should be saved and return it in some format, preferrably a dict containing acts. If you need some extraordinary data storage that this doesn't cover, you can extend the ParlAIChatBlueprint and write your own ParlAIChatAgentState that defines the behavior you want. """ # return { # 'acts': [self.important_turn1, self.important_turn2] # 'context': self.some_context_data_of_importance # } pass class CrowdOnboardWorld(CrowdDataWorld): """ Generic world for onboarding a Turker and collecting information from them. """ def __init__(self, opt, agent): """ Init should set up resources for running the onboarding world. """ self.agent = agent self.episodeDone = False def parley(self): """ A parley should represent one turn of your onboarding task. """ self.episodeDone = True def episode_done(self): return self.episodeDone def shutdown(self): """ Clear up resources needed for this world. """ pass class CrowdTaskWorld(CrowdDataWorld): """ Generic world for Crowd tasks. """ def __init__(self, opt, agent): """ Init should set up resources for running the task world. """ self.agent = agent self.episodeDone = False def parley(self): """ A parley should represent one turn of your task. """ self.episodeDone = True def episode_done(self): """ A ParlAI-Mephisto task ends and allows workers to be marked complete when the world is finished. """ return self.episodeDone def shutdown(self): """ Should be used to free the world's resources and shut down the agents. """ self.agent.shutdown() def review_work(self): """ Programmatically approve/reject this work. Doing this now (if possible) means that you don't need to do the work of reviewing later on. For example: .. code-block:: python mephisto_agent = self.agent.mephisto_agent if self.response == '0': mephisto_agent.reject_work( 'You rated our model's response as a 0/10 but we ' 'know we\'re better than that' ) else: if self.response == '10': mephisto_agent.pay_bonus(1, 'Thanks for a great rating!') mephisto_agent.approve_work() """ # mephisto_agent = self.agent.mephisto_agent # mephisto_agent.approve_work() # mephisto_agent.reject_work() # mephisto_agent.pay_bonus(1000) # Pay $1000 as bonus # mephisto_agent.block_worker() # Block this worker from future work pass
31.4
89
0.586783
f18ef2a950ba73b423d3005a5b48ab7f6018859a
4,835
py
Python
src/communication/azext_communication/vendored_sdks/communication/aio/operations/_operations.py
saisankargochhayat/azure-cli-extensions
f89443a766961f984977a2cf1b682973fcb61edd
[ "MIT" ]
null
null
null
src/communication/azext_communication/vendored_sdks/communication/aio/operations/_operations.py
saisankargochhayat/azure-cli-extensions
f89443a766961f984977a2cf1b682973fcb61edd
[ "MIT" ]
null
null
null
src/communication/azext_communication/vendored_sdks/communication/aio/operations/_operations.py
saisankargochhayat/azure-cli-extensions
f89443a766961f984977a2cf1b682973fcb61edd
[ "MIT" ]
1
2022-02-14T21:43:29.000Z
2022-02-14T21:43:29.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class Operations: """Operations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~communication_service_management_client.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs ) -> AsyncIterable["models.OperationListResult"]: """List Operations. Lists all of the available REST API operations of the Microsoft.Communication provider. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either OperationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~communication_service_management_client.models.OperationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.OperationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-08-20" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('OperationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/providers/Microsoft.Communication/operations'} # type: ignore
44.357798
133
0.664529
650ce5c176d1cacd803ff7a9ee340149a5bab7dc
2,605
py
Python
utils/manager.py
TheGoofBall64/Kurisu
a7a7162b36da97ec8404acb2fd39380f84f270df
[ "Apache-2.0" ]
null
null
null
utils/manager.py
TheGoofBall64/Kurisu
a7a7162b36da97ec8404acb2fd39380f84f270df
[ "Apache-2.0" ]
null
null
null
utils/manager.py
TheGoofBall64/Kurisu
a7a7162b36da97ec8404acb2fd39380f84f270df
[ "Apache-2.0" ]
null
null
null
from typing import Optional, List from utils.models import FilteredWord, ApprovedInvite import re class WordFilterManager: def __init__(self): self.kinds = ('piracy tool', 'piracy video', 'piracy tool alert', 'drama', 'unbanning tool', 'piracy site') self.filter = {} self.word_exp = {} async def load(self): for kind in self.kinds: self.filter[kind] = [] for entry in await self.fetch_by_kind(kind=kind): self.filter[kind].append(entry.word) self.word_exp[entry.word] = re.compile(r"[ *_\-~]*".join(list(entry.word))) print("Loaded word filter") async def add(self, word: str, kind: str) -> FilteredWord: entry = await FilteredWord.create(word=word, kind=kind) await self.load() return entry @staticmethod async def fetch_by_kind(kind: str) -> List[FilteredWord]: return await FilteredWord.query.where(FilteredWord.kind == kind).gino.all() @staticmethod async def fetch_word(word: str) -> Optional[FilteredWord]: return await FilteredWord.get(word) async def delete(self, word: str) -> Optional[FilteredWord]: entry = await self.fetch_word(word) if entry: await entry.delete() self.filter[entry.kind].remove(entry.word) del self.word_exp[entry.word] return entry class InviteFilterManager: def __init__(self): self.invites = [] async def load(self): self.invites.clear() self.invites = await self.fetch_all() async def add(self, code: str, alias: str, uses: int) -> ApprovedInvite: entry = await ApprovedInvite.create(code=code, uses=uses, alias=alias) self.invites.append(entry) return entry @staticmethod async def fetch_all() -> List[ApprovedInvite]: return await ApprovedInvite.query.gino.all() @staticmethod async def fetch_invite_by_alias(alias) -> Optional[ApprovedInvite]: return await ApprovedInvite.query.where(ApprovedInvite.alias == alias).gino.first() @staticmethod async def fetch_invite_by_code(code) -> Optional[ApprovedInvite]: return await ApprovedInvite.get(code) async def set_uses(self, code: str, uses: int): invite = await ApprovedInvite.get(code) await invite.update(uses=uses).apply() await self.load() async def delete(self, code: str): entry = await self.fetch_invite_by_code(code) if entry: await entry.delete() await self.load() return entry
32.974684
115
0.639923
001330d73f75c6c9bdba1de408cecd3d53786a56
4,066
py
Python
rbackup/struct/hierarchy.py
etorres4/rbackup
b4f7478a4b71ad4b444f83ab5aeae1ed22315370
[ "MIT" ]
null
null
null
rbackup/struct/hierarchy.py
etorres4/rbackup
b4f7478a4b71ad4b444f83ab5aeae1ed22315370
[ "MIT" ]
null
null
null
rbackup/struct/hierarchy.py
etorres4/rbackup
b4f7478a4b71ad4b444f83ab5aeae1ed22315370
[ "MIT" ]
null
null
null
""" .. moduleauthor:: Eric Torres .. module:: rbackup.struct.hierarchy :synopsis: Related functionality for creating the backup hierarchy. """ import json import logging import os import shutil from pathlib import Path # ========== Logging Setup =========== syslog = logging.getLogger(__name__) # ========== Constants ========== DIRMODE = 0o755 FILEMODE = 0o644 METADATA_READ = "r" METADATA_WRITE = "w" # ========== Classes ========== class Hierarchy(os.PathLike): """A general class for organizing a hierarchy of data. **Implementation Details** * Data for all ``Hierarchy`` objects and subclassed objects use ``JSON`` for serialization * ``Hierarchy`` objects create their directories upon instantiation * Reading metadata without the proper permissions may result in a ``PermissionError`` """ def __init__(self, dest): """Default constructor for the ``Hierarchy`` class. :param dest: the root directory of the backup hierarchy :type dest: str or path-like object :raises PermissionError: if process does not have permission to write at dest """ self._path = Path(dest) self._metadata_path = self._path / ".metadata" self._name = self._path.name self.path.mkdir(DIRMODE, parents=True, exist_ok=True) def __eq__(self, other): return self._path == other.path def __fspath__(self): return str(self._path) def __hash__(self): # We want to use this Hierarchy's path because it never changes return hash(self._path) def __ne__(self, other): return self._path != other.path def __repr__(self): """Return a string representation of this Hierarchy.""" return f"{self.__class__.__name__}('{self._path}')" def __str__(self): """Return a string representation of this Hierarchy.""" return str(self._path) def _gen_metadata(self): """Generate metadata for this repository. After this method is called, the data necessary for this hierarchy has been created. """ raise NotImplementedError("This method must be called in a child class.") @property def path(self): """ :return: the base directory of this hierarchy :rtype: path-like object """ return self._path @property def name(self): """ :return: the name of this hierarchy. :rtype: str """ return self._name @property def metadata_path(self): """ :return: the path of this hierarchy's metadata file. :rtype: path-like object """ return self._metadata_path def cleanup(self): """Clean up this Hierarchy's data from the filesystem.""" syslog.info("Performing cleanup on %s", self._path) # We don't want to risk symlink attacks # noinspection PyUnresolvedReferences if not shutil.rmtree.avoids_symlink_attacks: syslog.warning( "shutil cannot avoid symlink attacks on this platform. Ignoring." ) return shutil.rmtree(self) def read_metadata(self): """Read this repository's metadata from its file and then return it. :rtype: type that the data is serialized as """ syslog.debug("Reading metadata from %s", self.metadata_path) with self.metadata_path.open(mode=METADATA_READ) as mfile: return json.load(mfile) def write_metadata(self, attr): """Write this repository's metadata to its metadata file. .. note:: This write operation is atomic from the perspective of the caller :param attr: class data to write to file :type attr: any type """ syslog.debug("Writing metadata to %s", self.metadata_path) tmpfile = self.metadata_path.with_suffix(".tmp") with tmpfile.open(mode=METADATA_WRITE) as mfile: json.dump(attr, mfile) tmpfile.rename(self.metadata_path)
28.633803
94
0.627644
c64a07c30e7f0d5a25ffbf3d10ed98031996762a
1,064
py
Python
accounts/views.py
Arifa96/farmerhand
11af1d1ae42192df7344622bbcbcfcec625a886c
[ "MIT" ]
null
null
null
accounts/views.py
Arifa96/farmerhand
11af1d1ae42192df7344622bbcbcfcec625a886c
[ "MIT" ]
null
null
null
accounts/views.py
Arifa96/farmerhand
11af1d1ae42192df7344622bbcbcfcec625a886c
[ "MIT" ]
null
null
null
from django.contrib.auth import ( authenticate, get_user_model, login, logout, ) from django.shortcuts import render from .forms import UserLoginForm, UserRegisterForm # Create your views here. def login_view(request): title = "Login" print(request.user.is_authenticated) form = UserLoginForm(request.POST or None) if form.is_valid(): username = form.cleaned_data.get("username") pasword = form.cleaned_data.get('password') user = authenticate(username= username,password =pasword) login(request,user) print(request.user.is_authenticated) return render(request, "form.html", {"form":form, "title": title}) def register_view(request): title = "Register" form = UserRegisterForm(request.POST or None) context = { "form": form, "title": title } return render(request, "form.html", context) def logout_view(request): logout(request) return render(request, "form.html", {}) def view_post(request): return render(request,"post.html")
23.644444
70
0.672932
73719ac48368d239ddf078ecd7ab9dbb58fb21d4
1,442
py
Python
mars/optimization/physical/tests/test_cupy.py
ConanoutlooklvTBS/mars
7030566fd9e9fc02b6b4064ef7bd86f6c24a2f60
[ "Apache-2.0" ]
2,413
2018-12-06T09:37:11.000Z
2022-03-30T15:47:39.000Z
mars/optimization/physical/tests/test_cupy.py
ConanoutlooklvTBS/mars
7030566fd9e9fc02b6b4064ef7bd86f6c24a2f60
[ "Apache-2.0" ]
1,335
2018-12-07T03:06:18.000Z
2022-03-31T11:45:57.000Z
mars/optimization/physical/tests/test_cupy.py
ConanoutlooklvTBS/mars
7030566fd9e9fc02b6b4064ef7bd86f6c24a2f60
[ "Apache-2.0" ]
329
2018-12-07T03:12:41.000Z
2022-03-29T21:49:57.000Z
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .... import tensor as mt from ....core import enter_mode, TileableGraph, \ TileableGraphBuilder, ChunkGraphBuilder from ..cupy import CupyRuntimeOptimizer @enter_mode(build=True) def test_cupy(): t1 = mt.ones((100, 50), chunk_size=50, gpu=True) t2 = mt.ones(50, chunk_size=50, gpu=True) t = (t1 - t2) / mt.sqrt(t2 * (1 - t2) * len(t2)) graph = TileableGraph([t.data]) next(TileableGraphBuilder(graph).build()) context = dict() chunk_graph_builder = ChunkGraphBuilder(graph, fuse_enabled=False, tile_context=context) chunk_graph = next(chunk_graph_builder.build()) CupyRuntimeOptimizer(chunk_graph).optimize() assert any(n.op.__class__.__name__ == 'TensorCpFuseChunk' for n in chunk_graph)
37.947368
74
0.680999
3aa4a34e921942b8dac987b3c95974499f6c74a7
8,530
py
Python
pgmpy/tests/test_estimators/test_HillClimbSearch.py
yzh211/pgmpy
f3abe04abb75db9f51f333ecf9429a8700477b55
[ "MIT" ]
1
2022-03-28T13:52:31.000Z
2022-03-28T13:52:31.000Z
pgmpy/tests/test_estimators/test_HillClimbSearch.py
yzh211/pgmpy
f3abe04abb75db9f51f333ecf9429a8700477b55
[ "MIT" ]
null
null
null
pgmpy/tests/test_estimators/test_HillClimbSearch.py
yzh211/pgmpy
f3abe04abb75db9f51f333ecf9429a8700477b55
[ "MIT" ]
null
null
null
import unittest import pandas as pd import numpy as np from pgmpy.estimators import HillClimbSearch, K2Score from pgmpy.models import BayesianModel class TestHillClimbEstimator(unittest.TestCase): def setUp(self): self.rand_data = pd.DataFrame( np.random.randint(0, 5, size=(int(1e4), 2)), columns=list("AB") ) self.rand_data["C"] = self.rand_data["B"] self.est_rand = HillClimbSearch(self.rand_data) self.score_rand = K2Score(self.rand_data).local_score self.model1 = BayesianModel() self.model1.add_nodes_from(["A", "B", "C"]) self.model1_possible_edges = set( [(u, v) for u in self.model1.nodes() for v in self.model1.nodes()] ) self.model2 = self.model1.copy() self.model2.add_edge("A", "B") self.model2_possible_edges = set( [(u, v) for u in self.model2.nodes() for v in self.model2.nodes()] ) # link to dataset: "https://www.kaggle.com/c/titanic/download/train.csv" self.titanic_data = pd.read_csv( "pgmpy/tests/test_estimators/testdata/titanic_train.csv" ) self.titanic_data1 = self.titanic_data[ ["Survived", "Sex", "Pclass", "Age", "Embarked"] ] self.est_titanic1 = HillClimbSearch(self.titanic_data1) self.score_titanic1 = K2Score(self.titanic_data1).local_score self.titanic_data2 = self.titanic_data[["Survived", "Sex", "Pclass"]] self.est_titanic2 = HillClimbSearch(self.titanic_data2) self.score_titanic2 = K2Score(self.titanic_data2).local_score def test_legal_operations(self): model2_legal_ops = list( self.est_rand._legal_operations( model=self.model2, score=self.score_rand, tabu_list=set(), max_indegree=float("inf"), black_list=set(), white_list=self.model2_possible_edges, fixed_edges=set(), ) ) model2_legal_ops_ref = [ (("+", ("C", "A")), -28.15602208305154), (("+", ("A", "C")), -28.155467430966382), (("+", ("C", "B")), 7636.947544933631), (("+", ("B", "C")), 7937.805375579936), (("-", ("A", "B")), 28.155467430966382), (("flip", ("A", "B")), -0.0005546520851567038), ] self.assertSetEqual( set([op for op, score in model2_legal_ops]), set([op for op, score in model2_legal_ops_ref]), ) def test_legal_operations_blacklist_whitelist(self): model2_legal_ops_bl = list( self.est_rand._legal_operations( model=self.model2, score=self.score_rand, tabu_list=set(), max_indegree=float("inf"), black_list=set([("A", "B"), ("A", "C"), ("C", "A"), ("C", "B")]), white_list=self.model2_possible_edges, fixed_edges=set(), ) ) model2_legal_ops_bl_ref = [ ("+", ("B", "C")), ("-", ("A", "B")), ("flip", ("A", "B")), ] self.assertSetEqual( set([op for op, score in model2_legal_ops_bl]), set(model2_legal_ops_bl_ref) ) model2_legal_ops_wl = list( self.est_rand._legal_operations( model=self.model2, score=self.score_rand, tabu_list=set(), max_indegree=float("inf"), black_list=set(), white_list=set([("A", "B"), ("A", "C"), ("C", "A"), ("A", "B")]), fixed_edges=set(), ) ) model2_legal_ops_wl_ref = [ ("+", ("A", "C")), ("+", ("C", "A")), ("-", ("A", "B")), ] self.assertSetEqual( set([op for op, score in model2_legal_ops_wl]), set(model2_legal_ops_wl_ref) ) def test_legal_operations_titanic(self): start_model = BayesianModel( [("Survived", "Sex"), ("Pclass", "Age"), ("Pclass", "Embarked")] ) all_possible_edges = set( [(u, v) for u in start_model.nodes() for v in start_model.nodes()] ) legal_ops = self.est_titanic1._legal_operations( model=start_model, score=self.score_titanic1, tabu_list=[], max_indegree=float("inf"), black_list=set(), white_list=all_possible_edges, fixed_edges=set(), ) self.assertEqual(len(list(legal_ops)), 20) tabu_list = [ ("-", ("Survived", "Sex")), ("-", ("Survived", "Pclass")), ("flip", ("Age", "Pclass")), ] legal_ops_tabu = self.est_titanic1._legal_operations( model=start_model, score=self.score_titanic1, tabu_list=tabu_list, max_indegree=float("inf"), black_list=set(), white_list=all_possible_edges, fixed_edges=set(), ) self.assertEqual(len(list(legal_ops_tabu)), 18) legal_ops_indegree = self.est_titanic1._legal_operations( model=start_model, score=self.score_titanic1, tabu_list=[], max_indegree=1, black_list=set(), white_list=all_possible_edges, fixed_edges=set(), ) self.assertEqual(len(list(legal_ops_indegree)), 11) legal_ops_both = self.est_titanic1._legal_operations( model=start_model, score=self.score_titanic1, tabu_list=tabu_list, max_indegree=1, black_list=set(), white_list=all_possible_edges, fixed_edges=set(), ) legal_ops_both_ref = { ("+", ("Embarked", "Survived")): 10.050632580087495, ("+", ("Survived", "Pclass")): 41.8886804654893, ("+", ("Age", "Survived")): -23.635716036430722, ("+", ("Pclass", "Survived")): 41.81314459373152, ("+", ("Sex", "Pclass")): 4.772261678791324, ("-", ("Pclass", "Age")): 11.546515590730905, ("-", ("Pclass", "Embarked")): -32.17148283253266, ("flip", ("Pclass", "Embarked")): 3.3563814191275583, ("flip", ("Survived", "Sex")): 0.0397370279797542, } self.assertSetEqual( set([op for op, score in legal_ops_both]), set(legal_ops_both_ref) ) for op, score in legal_ops_both: self.assertAlmostEqual(score, legal_ops_both_ref[op]) def test_estimate_rand(self): est1 = self.est_rand.estimate() self.assertSetEqual(set(est1.nodes()), set(["A", "B", "C"])) self.assertTrue( list(est1.edges()) == [("B", "C")] or list(est1.edges()) == [("C", "B")] ) est2 = self.est_rand.estimate(start_dag=BayesianModel([("A", "B"), ("A", "C")])) self.assertTrue( list(est2.edges()) == [("B", "C")] or list(est2.edges()) == [("C", "B")] ) est3 = self.est_rand.estimate(fixed_edges=[("B", "C")]) self.assertTrue([("B", "C")] == list(est3.edges())) def test_estimate_titanic(self): self.assertSetEqual( set(self.est_titanic2.estimate().edges()), set([("Survived", "Pclass"), ("Sex", "Pclass"), ("Sex", "Survived")]), ) self.assertTrue( ("Pclass", "Survived") in self.est_titanic2.estimate(fixed_edges=[("Pclass", "Survived")]).edges() ) def test_no_legal_operation(self): data = pd.DataFrame( [ [1, 0, 0, 1, 0, 0, 1, 1, 0], [1, 0, 1, 0, 0, 1, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 1, 1], [1, 1, 0, 1, 0, 1, 1, 0, 0], [0, 0, 1, 0, 0, 1, 1, 0, 0], ], columns=list("ABCDEFGHI"), ) est = HillClimbSearch(data) best_model = est.estimate( fixed_edges=[("A", "B"), ("B", "C")], white_list=[("F", "C")] ) self.assertEqual( set(best_model.edges()), set([("A", "B"), ("B", "C"), ("F", "C")]) ) def tearDown(self): del self.rand_data del self.est_rand del self.model1 del self.titanic_data del self.titanic_data1 del self.titanic_data2 del self.est_titanic1 del self.est_titanic2
35.991561
88
0.515358
200f74abbd7b0543284b6b6ef2903efed8f310f9
346
py
Python
backend/server.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
backend/server.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
backend/server.py
chan-w/vaccine-text-signup
f926aa76724ffd5fe1d473fd6cdb70ed50ee982d
[ "MIT" ]
null
null
null
from flask import Flask, request, Response, jsonify, redirect, render_template # flask_cors import CORS app = Flask(__name__) # CORS(app) @app.route("/", methods=['GET', 'POST']) def landing(): return render_template("index.html") if __name__ == '__main__': app.run( host='0.0.0.0', port=4000, debug=True )
21.625
78
0.632948
7d74c51327549286c18e4969e54c91e434205178
9,771
py
Python
deepcpg/data/utils.py
cangermueller/deepcpg2
7f58da5423121168edabb27202c234df0f0e460d
[ "MIT" ]
151
2016-05-30T07:05:11.000Z
2022-02-28T08:23:55.000Z
deepcpg/data/utils.py
cangermueller/deepcpg2
7f58da5423121168edabb27202c234df0f0e460d
[ "MIT" ]
41
2016-08-02T17:18:00.000Z
2021-05-31T10:15:18.000Z
deepcpg/data/utils.py
cangermueller/deepcpg2
7f58da5423121168edabb27202c234df0f0e460d
[ "MIT" ]
70
2016-05-31T14:25:14.000Z
2021-08-30T02:28:33.000Z
"""General purpose IO functions.""" from __future__ import division from __future__ import print_function import gzip import threading import re import h5py as h5 import numpy as np import pandas as pd import six from six.moves import range from . import hdf # Constant for missing labels. CPG_NAN = -1 # Constant for separating output names, e.g. 'cpg/cell'. OUTPUT_SEP = '/' class threadsafe_iter: """Takes an iterator/generator and makes it thread-safe by serializing call to the `next` method of given iterator/generator. """ def __init__(self, it): self.it = it self.lock = threading.Lock() def __iter__(self): return self def __next__(self): with self.lock: return next(self.it) def next(self): return self.__next__() def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe.""" def g(*a, **kw): return threadsafe_iter(f(*a, **kw)) return g def add_to_dict(src, dst): """Add `dict `src` to `dict` `dst` Adds values in `dict` `src` to `dict` `dst` with same keys but values are lists of added values. lists of values in `dst` can be stacked with :func:`stack_dict`. Used for example in `dpcg_eval.py` to stack dicts from different batches. Example ------- src = dict() src['a'] = 1 src['b'] = {'b1': 10} dst = dict() add_to_dict(src, dst) add_to_dict(src, dst) -> dst['a'] = [1, 1] -> dst['b'] = {'b1': [10, 10]} """ for key, value in six.iteritems(src): if isinstance(value, dict): if key not in dst: dst[key] = dict() add_to_dict(value, dst[key]) else: if key not in dst: dst[key] = [] dst[key].append(value) def stack_dict(data): """Stacks lists of numpy arrays in `dict` `data`.""" sdata = dict() for key, value in six.iteritems(data): if isinstance(value, dict): sdata[key] = stack_dict(value) else: fun = np.vstack if value[0].ndim > 1 else np.hstack sdata[key] = fun(value) return sdata def get_nb_sample(data_files, nb_max=None, batch_size=None): """Count number of samples in all `data_files`. Parameters ---------- data_files: list `list` with file name of DeepCpG data files. nb_max: int If defined, stop counting if that number is reached. batch_size: int If defined, return the largest multiple of `batch_size` that is smaller or equal than the actual number of samples. Returns ------- int Number of samples in `data_files`. """ nb_sample = 0 for data_file in data_files: data_file = h5.File(data_file, 'r') nb_sample += len(data_file['pos']) data_file.close() if nb_max and nb_sample > nb_max: nb_sample = nb_max break if batch_size: nb_sample = (nb_sample // batch_size) * batch_size return nb_sample def get_dna_wlen(data_file, max_len=None): """Return length of DNA sequence windows stored in `data_file`.""" data_file = h5.File(data_file, 'r') wlen = data_file['/inputs/dna'].shape[1] if max_len: wlen = min(max_len, wlen) return wlen def get_cpg_wlen(data_file, max_len=None): """Return number of CpG neighbors stored in `data_file`.""" data_file = h5.File(data_file, 'r') group = data_file['/inputs/cpg'] wlen = group['%s/dist' % list(group.keys())[0]].shape[1] if max_len: wlen = min(max_len, wlen) return wlen def get_output_names(data_file, *args, **kwargs): """Return name of outputs stored in `data_file`.""" return hdf.ls(data_file, 'outputs', recursive=True, groups=False, *args, **kwargs) def get_replicate_names(data_file, *args, **kwargs): """Return name of replicates stored in `data_file`.""" return hdf.ls(data_file, 'inputs/cpg', recursive=False, groups=True, must_exist=False, *args, **kwargs) def get_anno_names(data_file, *args, **kwargs): """Return name of annotations stored in `data_file`.""" return hdf.ls(data_file, 'inputs/annos', recursive=False, *args, **kwargs) def is_bedgraph(filename): """Test if `filename` is a bedGraph file. bedGraph files are assumed to start with 'track type=bedGraph' """ if isinstance(filename, str): with open(filename) as f: line = f.readline() else: pos = filename.tell() line = filename.readline() if isinstance(line, bytes): line = line.decode() filename.seek(pos) return re.match(r'track\s+type=bedGraph', line) is not None def format_chromo(chromo): """Format chromosome name. Makes name upper case, e.g. 'mt' -> 'MT' and removes 'chr', e.g. 'chr1' -> '1'. """ return chromo.str.upper().str.replace('^CHR', '') def sample_from_chromo(frame, nb_sample): """Randomly sample `nb_sample` samples from each chromosome. Samples `nb_sample` records from :class:`pandas.DataFrame` which must contain a column with name 'chromo'. """ def sample_frame(frame): if len(frame) <= nb_sample: return frame idx = np.random.choice(len(frame), nb_sample, replace=False) return frame.iloc[idx] frame = frame.groupby('chromo', as_index=False).apply(sample_frame) frame.index = range(len(frame)) return frame def is_binary(values): """Check if values in array `values` are binary, i.e. zero or one.""" return ~np.any((values > 0) & (values < 1)) def read_cpg_profile(filename, chromos=None, nb_sample=None, round=False, sort=True, nb_sample_chromo=None): """Read CpG profile from TSV or bedGraph file. Reads CpG profile from either tab delimited file with columns `chromo`, `pos`, `value`. `value` or bedGraph file. `value` columns contains methylation states, which can be binary or continuous. Parameters ---------- filenamne: str Path of file. chromos: list List of formatted chromosomes to be read, e.g. ['1', 'X']. nb_sample: int Maximum number of sample in total. round: bool If `True`, round methylation states in column 'value' to zero or one. sort: bool If `True`, sort by rows by chromosome and position. nb_sample_chromo: int Maximum number of sample per chromosome. Returns ------- :class:`pandas.DataFrame` :class:`pandas.DataFrame` with columns `chromo`, `pos`, `value`. """ if is_bedgraph(filename): usecols = [0, 1, 3] skiprows = 1 else: usecols = [0, 1, 2] skiprows = 0 dtype = {usecols[0]: np.str, usecols[1]: np.int32, usecols[2]: np.float32} nrows = None if chromos is None and nb_sample_chromo is None: nrows = nb_sample d = pd.read_table(filename, header=None, comment='#', nrows=nrows, usecols=usecols, dtype=dtype, skiprows=skiprows) d.columns = ['chromo', 'pos', 'value'] if np.any((d['value'] < 0) | (d['value'] > 1)): raise ValueError('Methylation values must be between 0 and 1!') d['chromo'] = format_chromo(d['chromo']) if chromos is not None: if not isinstance(chromos, list): chromos = [str(chromos)] d = d.loc[d.chromo.isin(chromos)] if len(d) == 0: raise ValueError('No data available for selected chromosomes!') if nb_sample_chromo is not None: d = sample_from_chromo(d, nb_sample_chromo) if nb_sample is not None: d = d.iloc[:nb_sample] if sort: d.sort_values(['chromo', 'pos'], inplace=True) if round: d['value'] = np.round(d.value) if is_binary(d['value']): d['value'] = d['value'].astype(np.int8) return d class GzipFile(object): """Wrapper to read and write gzip-compressed files. If `filename` ends with `gz`, opens file with gzip package, otherwise builtin `open` function. Parameters ---------- filename: str Path of file mode: str File access mode *args: list Unnamed arguments passed to open function. **kwargs: dict Named arguments passed to open function. """ def __init__(self, filename, mode='r', *args, **kwargs): self.is_gzip = filename.endswith('.gz') if self.is_gzip: self.fh = gzip.open(filename, mode, *args, **kwargs) else: self.fh = open(filename, mode, *args, **kwargs) def __iter__(self): return self.fh.__iter__() def __next__(self): return self.fh.__next__() def read(self, *args, **kwargs): return self.fh.read(*args, **kwargs) def readline(self, *args, **kwargs): return self.fh.readline(*args, **kwargs) def readlines(self, *args, **kwargs): return self.fh.readlines(*args, **kwargs) def write(self, data): if self.is_gzip and isinstance(data, str): data = data.encode() self.fh.write(data) def writelines(self, *args, **kwargs): self.fh.writelines(*args, **kwargs) def tell(self, *args, **kwargs): return self.fh.tell(*args, **kwargs) def seek(self, *args, **kwargs): self.fh.seek(*args, **kwargs) def closed(self): return self.fh.closed() def close(self): self.fh.close() def __iter__(self): self.fh.__iter__() def iter(self): self.fh.iter()
28.570175
80
0.599427
c72f7873635f865befc7c662bcf1cb51e4e35887
1,273
py
Python
LanguageIdentification/AccuracyOnSyntheticCiphers/Scripts/aggResults.py
abramhindle/dorabella-experiments
2b7fce05964c184f048db75f6ead80bf81a15d97
[ "CC0-1.0" ]
null
null
null
LanguageIdentification/AccuracyOnSyntheticCiphers/Scripts/aggResults.py
abramhindle/dorabella-experiments
2b7fce05964c184f048db75f6ead80bf81a15d97
[ "CC0-1.0" ]
1
2021-03-08T22:07:52.000Z
2021-03-08T22:07:52.000Z
LanguageIdentification/AccuracyOnSyntheticCiphers/Scripts/aggResults.py
abramhindle/dorabella-experiments
2b7fce05964c184f048db75f6ead80bf81a15d97
[ "CC0-1.0" ]
1
2021-05-14T16:02:28.000Z
2021-05-14T16:02:28.000Z
uni2K = open("../Results/uni2KResults.txt").read().replace("\n", " ").split() uni87 = open("../Results/uni87Results.txt").read().replace("\n", " ").split() trial2K = open("../Results/trial2KResults.txt").read().replace("\n", " ").split() trialNS2K = open("../Results/trialNS2KResults.txt").read().replace("\n", " ").split() trial87 = open("../Results/trial87Results.txt").read().replace("\n", " ").split() trialNS87 = open("../Results/trialNS87Results.txt").read().replace("\n", " ").split() print("Method", "Length", "Spaces", "MRR", "AvgR", sep="\t", end="\n---------------------------------------\n") def aggResults(method, length, spaces, data): MRR = [] AvgRank = [] Total = [] for c, x in enumerate(data): x = float(x) if c%3 == 0: MRR.append(x) elif c%3 == 1: AvgRank.append(x) elif c%3 == 2: Total.append(x) print(method, length, spaces, round(sum(MRR)/sum(Total), 2), round(sum(AvgRank)/sum(Total), 2), sep="\t") aggResults("UNIGRAM", "2000", "No", uni2K) aggResults("UNIGRAM", "87", "No", uni87) aggResults("TRIAL", "2000", "Yes", trial2K) aggResults("TRIAL", "2000", "No", trialNS2K) aggResults("TRIAL", "87", "Yes", trial87) aggResults("TRIAL", "87", "No", trialNS87)
39.78125
111
0.567164
44d3fe45b80f6a5691dd02b30e0cb97b2a8a0aef
2,231
py
Python
dependencies/logger.py
4-FLOSS-Free-Libre-Open-Source-Software/dns_warmer
1caa74db77b377746973cc94a539928a462ad057
[ "MIT" ]
null
null
null
dependencies/logger.py
4-FLOSS-Free-Libre-Open-Source-Software/dns_warmer
1caa74db77b377746973cc94a539928a462ad057
[ "MIT" ]
null
null
null
dependencies/logger.py
4-FLOSS-Free-Libre-Open-Source-Software/dns_warmer
1caa74db77b377746973cc94a539928a462ad057
[ "MIT" ]
null
null
null
#!/usr/bin/python import sys import time # define BLACK "\033[30m" /* Black */ # define RED "\033[31m" /* Red */ # define GREEN "\033[32m" /* Green */ # define YELLOW "\033[33m" /* Yellow */ # define BLUE "\033[34m" /* Blue */ # define MAGENTA "\033[35m" /* Magenta */ # define CYAN "\033[36m" /* Cyan */ # define WHITE "\033[37m" /* White */ # define BOLDBLACK "\033[1m\033[30m" /* Bold Black */ # define BOLDRED "\033[1m\033[31m" /* Bold Red */ # define BOLDGREEN "\033[1m\033[32m" /* Bold Green */ # define BOLDYELLOW "\033[1m\033[33m" /* Bold Yellow */ # define BOLDBLUE "\033[1m\033[34m" /* Bold Blue */ # define BOLDMAGENTA "\033[1m\033[35m" /* Bold Magenta */ # define BOLDCYAN "\033[1m\033[36m" /* Bold Cyan */ # define BOLDWHITE "\033[1m\033[37m" /* Bold White */ class bcolors: HEADER = '\033[1m\033[37m' OKBLUE = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' def disable(self): self.HEADER = '' self.OKBLUE = '' self.OKGREEN = '' self.WARNING = '' self.FAIL = '' self.ENDC = '' def dump(msg, msg_type): try: msg = str(msg) except: pass try: msg = msg.decode("utf8", errors="ignore") except: pass dts = time.strftime("%B %d, %Y - %H:%M") dts_colored = "%s[ %s ]: %s" %(bcolors.HEADER, dts, bcolors.ENDC) try: if msg_type == "critical": print(dts_colored + bcolors.FAIL + msg + bcolors.ENDC) if msg_type == "warning": print(dts_colored + bcolors.WARNING + msg + bcolors.ENDC) if msg_type == "error": print(dts_colored + bcolors.FAIL + msg + bcolors.ENDC) if msg_type == "info": print(dts_colored + bcolors.OKBLUE + msg + bcolors.ENDC) if msg_type == "good": print(dts_colored + bcolors.OKGREEN + msg + bcolors.ENDC) if msg_type == "debug": print(dts_colored + bcolors.HEADER + msg + bcolors.ENDC) except: try: print(sys.exc_info()) except: pass
28.602564
69
0.524429
1ce4fb43805e982d07bc4a5c87c51875b7584b08
1,715
py
Python
activations.py
srinathos/swa
147a7e8aa780952a2ac680919661b71740b96833
[ "BSD-2-Clause" ]
null
null
null
activations.py
srinathos/swa
147a7e8aa780952a2ac680919661b71740b96833
[ "BSD-2-Clause" ]
null
null
null
activations.py
srinathos/swa
147a7e8aa780952a2ac680919661b71740b96833
[ "BSD-2-Clause" ]
null
null
null
import torch import torch.nn.functional as F def chabanne_2(x): # x = x/2 return 0.1992 + 0.5002 * x + 0.1997 * x ** 2 def chabanne_3(x): return 0.1995 + 0.5002 * x + 0.1994 * x ** 2 - 0.0164 * x ** 3 def chabanne_4(x): return 0.1500 + 0.5012 * x + 0.2981 * x ** 2 - 0.0004 * x ** 3 - 0.0388 * x ** 4 def chabanne_5(x): return 0.1488 + 0.4993 * x + 0.3007 * x ** 2 + 0.0003 * x ** 3 - 0.0168 * x ** 5 def chabanne_6(x): return 0.1249 + 0.5000 * x + 0.3729 * x ** 2 - 0.0410 * x ** 4 + 0.0016 * x ** 6 def d3_v1_pol(x): return 0.7 * x ** 3 + 0.8 * x ** 2 + 0.2 * x def d3_v2_pol(x): return -0.4 * x ** 3 + 0.5 * x ** 2 + 0.9 * x def softplus_integral(x): return -0.0005 * x ** 4 + 0.0000 * x ** 3 + 0.0815 * x ** 2 + 0.5000 * x + 0 softplus = torch.nn.Softplus() def custom_softplus(x): return x - softplus(x) def hesam_sigmoid_integral(x): return -(x * (225234375 * x ** 3 + 443 * x ** 2 - 843750000000000 * x - 937500000000000000)) / 1875000000000000000 def bounded_step_activation(x): return torch.abs(x) * 0.5 def rectified_polynomial(x): # Rectifying all negative values first x = x.clamp(min=0) return d3_v2_pol(x) def swish(x, beta=1): return x * F.sigmoid(beta * x) def periodic_cos(x): return torch.cos(x) - x def periodic_cos_mod(x): return torch.cos(0.2 * x) - (0.2 * x) def softplus_polynomial(x): return -8.043291176102489*10**-14*x**9 -5.409176004846577*10**-11*x**8 +1.464006789445581*10**-10*x**7 +1.2094736421337893*10**-7*x**6 -8.68650047151514*10**-8*x**5 -9.849521136327391*10**-5*x**4 +1.8543655255840298*10**-5*x**3 +0.045459999581864446*x**2 +0.4989722694638288*x +1.1980867140213445
23.819444
300
0.596501
7268a4c4c39f2f13c69b11e2318ea4020359a96d
322
py
Python
Algorithm_python/Question4.py
AtahanKocc/Algorithm_Challenge
ea6eea8a5860e4424ac29c3485c058a372e43921
[ "MIT" ]
null
null
null
Algorithm_python/Question4.py
AtahanKocc/Algorithm_Challenge
ea6eea8a5860e4424ac29c3485c058a372e43921
[ "MIT" ]
null
null
null
Algorithm_python/Question4.py
AtahanKocc/Algorithm_Challenge
ea6eea8a5860e4424ac29c3485c058a372e43921
[ "MIT" ]
null
null
null
#!/bin/python3 import math import os import random import re import sys # # Complete the 'staircase' function below. # # The function accepts INTEGER n as parameter. # def staircase(n): for i in range(1,n+1): print(f'{"#"*i:>{n}}') if __name__ == '__main__': n = int(input().strip()) staircase(n)
14
46
0.63354
78003c9ca8fd019c5847388a004fb9848b1914e4
4,322
py
Python
conans/test/unittests/model/version_test.py
ssaavedra/conan
e15dc7902fbbeaf469798a3b9948ead1ecfc8e3c
[ "MIT" ]
6,205
2015-12-01T13:40:05.000Z
2022-03-31T07:30:25.000Z
conans/test/unittests/model/version_test.py
ssaavedra/conan
e15dc7902fbbeaf469798a3b9948ead1ecfc8e3c
[ "MIT" ]
8,747
2015-12-01T16:28:48.000Z
2022-03-31T23:34:53.000Z
conans/test/unittests/model/version_test.py
ssaavedra/conan
e15dc7902fbbeaf469798a3b9948ead1ecfc8e3c
[ "MIT" ]
961
2015-12-01T16:56:43.000Z
2022-03-31T13:50:52.000Z
import unittest from conans.model.version import Version class VersionTest(unittest.TestCase): def test_simple(self): v1 = Version("1.2.3") self.assertTrue(v1 == "1.2.3") self.assertTrue(v1 > "1.1") self.assertTrue(v1 > None) self.assertTrue(v1 < "1.11") self.assertTrue(v1 > "1.2") self.assertTrue(v1 > "1.2.2.2") self.assertTrue(v1 < "1.2.3.2") self.assertEqual(v1.major(), "1.Y.Z") # 1.X.Y self.assertEqual(v1.minor(), "1.2.Z") # 1.2.Y self.assertEqual(v1.patch(), "1.2.3") self.assertEqual(v1.pre(), "1.2.3") self.assertEqual(v1.build, "") self.assertTrue(v1.compatible("1.X")) self.assertTrue(v1.compatible("1.2.Y")) self.assertFalse(v1.compatible("0.X")) self.assertFalse(v1.compatible("1.2.2")) v2 = v1.minor() self.assertTrue(v2.compatible("1.X")) self.assertTrue(v2.compatible("1.2.3.4")) self.assertFalse(v2.compatible("1.3.3.4")) self.assertTrue(v2.major().compatible("1.3.3.4")) v1 = Version("1.2.rc1") self.assertTrue(v1 < "1.2.0") self.assertFalse(v1 < "1.1.9") self.assertTrue(Version("1.2.1-dev") < Version("1.2.1")) self.assertTrue(Version("1.2.1-dev") < Version("1.2.2")) self.assertTrue(Version("1.2.1-dev") < Version("1.3")) self.assertTrue(Version("1.2.1-dev") < Version("1.3-alpha")) self.assertTrue(Version("1.2.1-dev") > Version("1.2.0")) self.assertTrue(Version("1.2.1-dev") > Version("1.2")) self.assertTrue(Version("1.2.1-dev") > Version("1.2.alpha")) self.assertTrue(Version("1.2.1-dev") > Version("1.2-alpha")) self.assertFalse(Version("4") < Version("4.0.0")) self.assertFalse(Version("4") > Version("4.0.0")) self.assertFalse(Version("4") != Version("4.0.0")) self.assertTrue(Version("4") == Version("4.0.0")) self.assertTrue(Version("4") <= Version("4.0.0")) self.assertTrue(Version("4") >= Version("4.0.0")) self.assertTrue(Version("4.0") == Version("4.0.0")) self.assertTrue(Version("4.0.0") == Version("4.0.0")) self.assertTrue(Version("4.0.1") != "4") self.assertFalse(Version("4.0.0.1") == "4") self.assertTrue(Version("4.0.0.1") >= "4") def test_build_metadata_is_not_equal(self): # https://github.com/conan-io/conan/issues/5900 self.assertNotEqual(Version("4.0.0+abc"), Version("4.0.0+xyz")) # Shouldn't be an "official" order for build metadata, but as they cannot be equal # the order is alphabetic self.assertTrue(Version("4.0.0+abc") > Version("4.0.0+xyz")) self.assertTrue(Version("4.0.0+xyz") < Version("4.0.0+abc")) def test_text(self): v1 = Version("master+build2") self.assertEqual(v1.major(), "master") self.assertEqual(v1.minor(), "master") self.assertEqual(v1.patch(), "master") self.assertEqual(v1.pre(), "master") self.assertEqual(v1.build, "build2") self.assertEqual(v1.stable(), "master") def test_patch(self): v1 = Version("1.2.3-alpha1+build2") self.assertEqual(v1.major(), "1.Y.Z") self.assertEqual(v1.minor(), "1.2.Z") self.assertEqual(v1.patch(), "1.2.3") self.assertEqual(v1.pre(), "1.2.3-alpha1") self.assertEqual(v1.build, "build2") self.assertEqual(v1.stable(), "1.Y.Z") v1 = Version("1.2.3+build2") self.assertEqual(v1.major(), "1.Y.Z") self.assertEqual(v1.minor(), "1.2.Z") self.assertEqual(v1.patch(), "1.2.3") self.assertEqual(v1.pre(), "1.2.3") self.assertEqual(v1.build, "build2") self.assertEqual(v1.stable(), "1.Y.Z") v1 = Version("0.2.3-alpha1+build2") self.assertEqual(v1.major(), "0.Y.Z") self.assertEqual(v1.minor(), "0.2.Z") self.assertEqual(v1.patch(), "0.2.3") self.assertEqual(v1.pre(), "0.2.3-alpha1") self.assertEqual(v1.build, "build2") self.assertEqual(v1.stable(), "0.2.3-alpha1+build2") def test_build(self): v1 = Version("0.2.3-alpha1+build2") self.assertEqual(v1.build, "build2") v2 = Version("0.2.3+b178") self.assertEqual(v2.build, "b178")
41.161905
90
0.573577
3390a99b624e5f8f142bdcb3f89684cf296326b0
6,360
py
Python
Machine Learning Scientist with Python Track/16. Introduction to Deep Learning with Keras/ch3_exercises.py
MuhammadAlBarham/datacamp
65c180163b1ad235c79d85d4926e586a15a5f78f
[ "MIT" ]
7
2020-09-14T00:26:19.000Z
2022-02-08T20:53:52.000Z
Machine Learning Scientist with Python Track/16. Introduction to Deep Learning with Keras/ch3_exercises.py
MuhammadAlBarham/datacamp
65c180163b1ad235c79d85d4926e586a15a5f78f
[ "MIT" ]
null
null
null
Machine Learning Scientist with Python Track/16. Introduction to Deep Learning with Keras/ch3_exercises.py
MuhammadAlBarham/datacamp
65c180163b1ad235c79d85d4926e586a15a5f78f
[ "MIT" ]
8
2021-01-12T15:23:20.000Z
2022-03-17T12:06:00.000Z
# Exercise_1 # Instantiate a Sequential model model = Sequential() # Input and hidden layer with input_shape, 16 neurons, and relu model.add(Dense(16, input_shape = (64,), activation = 'relu')) # Output layer with 10 neurons (one per digit) and softmax model.add(Dense(10, activation = 'softmax')) # Compile your model model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) # Test if your model works and can process input data print(model.predict(X_train)) -------------------------------------------------- # Exercise_2 #1 # Train your model for 60 epochs, using X_test and y_test as validation data history = model.fit(X_test, y_test, epochs=60, validation_data=(X_test, y_test), verbose=0) # Extract from the history object loss and val_loss to plot the learning curve plot_loss(history.history['loss'], history.history['val_loss']) #2 selected_option = 2 -------------------------------------------------- # Exercise_3 for size in training_sizes: # Get a fraction of training data (we only care about the training data) X_train_frac, y_train_frac = X_train[:size], y_train[:size] # Reset the model to the initial weights and train it on the new data fraction model.set_weights(initial_weights) model.fit(X_train_frac, y_train_frac, epochs = 50, callbacks = [early_stop]) # Evaluate and store the train fraction and the complete test set results train_accs.append(model.evaluate(X_train_frac, y_train_frac)[1]) test_accs.append(model.evaluate(X_test, y_test)[1]) # Plot train vs test accuracies plot_results(train_accs, test_accs) -------------------------------------------------- # Exercise_4 # Activation functions to try activations = ['relu', 'leaky_relu', 'sigmoid', 'tanh'] # Loop over the activation functions activation_results = {} for act in activations: # Get a new model with the current activation model = get_model(act) # Fit the model history = model.fit(X_train, y_train, validation_data =(X_test, y_test), epochs =20, verbose =0) activation_results[act] = history -------------------------------------------------- # Exercise_5 # Create a dataframe from val_loss_per_function val_loss= pd.DataFrame(val_loss_per_function) # Call plot on the dataframe val_loss.plot() plt.show() # Create a dataframe from val_acc_per_function val_acc = pd.DataFrame(val_acc_per_function) # Call plot on the dataframe val_acc.plot() plt.show() -------------------------------------------------- # Exercise_6 #1 # Get a fresh new model with get_model model = get_model() # Train your model for 5 epochs with a batch size of 1 model.fit(X_train, y_train, epochs=5, batch_size = 1) print("\n The accuracy when using a batch of size 1 is: ", model.evaluate(X_test, y_test)[1]) #2 model = get_model() # Fit your model for 5 epochs with a batch of size the training set model.fit(X_train, y_train, epochs=5, batch_size= 700) print("\n The accuracy when using the whole training set as a batch was: ", model.evaluate(X_test, y_test)[1]) -------------------------------------------------- # Exercise_7 # Import batch normalization from keras layers from keras.layers import BatchNormalization # Build your deep network batchnorm_model = Sequential() batchnorm_model.add(Dense(50, input_shape=(64,), activation='relu', kernel_initializer='normal')) batchnorm_model.add(BatchNormalization()) batchnorm_model.add(Dense(50, activation='relu', kernel_initializer='normal')) batchnorm_model.add(BatchNormalization()) batchnorm_model.add(Dense(50, activation='relu', kernel_initializer='normal')) batchnorm_model.add(BatchNormalization()) batchnorm_model.add(Dense(10, activation='softmax', kernel_initializer='normal')) # Compile your model with sgd batchnorm_model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=['accuracy']) -------------------------------------------------- # Exercise_8 # Train your standard model, storing its history history1 = standard_model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=10, verbose=0) # Train the batch normalized model you recently built, store its history history2 = batchnorm_model.fit(X_train, y_train, validation_data=(X_test,y_test), epochs=10, verbose=0) # Call compare_acc_histories passing in both model histories compare_histories_acc(history1, history2) -------------------------------------------------- # Exercise_9 # Creates a model given an activation and learning rate def create_model(learning_rate=0.01, activation='relu'): # Create an Adam optimizer with the given learning rate opt = Adam(lr=activation) # Create your binary classification model model = Sequential() model.add(Dense(128, input_shape=(30,), activation=activation)) model.add(Dense(256, activation=activation)) model.add(Dense(1, activation='sigmoid')) # Compile your model with your optimizer, loss, and metrics model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) return model -------------------------------------------------- # Exercise_10 # Import KerasClassifier from keras wrappers from keras.wrappers.scikit_learn import KerasClassifier # Create a KerasClassifier model = KerasClassifier(build_fn = create_model) # Define the parameters to try out params = {'activation': ['relu', 'tanh'], 'batch_size': [32, 128, 256], 'epochs': [50, 100, 200], 'learning_rate': [0.1, 0.01, 0.001]} # Create a randomize search cv object passing in the parameters to try random_search = RandomizedSearchCV(model, param_distributions = params, cv = KFold(3)) # Running random_search.fit(X,y) would start the search,but it takes too long! show_results() -------------------------------------------------- # Exercise_11 # Import KerasClassifier from keras wrappers from keras.wrappers.scikit_learn import KerasClassifier # Create a KerasClassifier model = KerasClassifier(build_fn = create_model, epochs = 50, batch_size = 128, verbose = 0) # Calculate the accuracy score for each fold kfolds = cross_val_score(model, X, y, cv = 3) # Print the mean accuracy print('The mean accuracy was:', kfolds.mean()) # Print the accuracy standard deviation print('With a standard deviation of:', kfolds.std()) --------------------------------------------------
33.650794
103
0.685377
ad715dd013baef48a2715b0c59dbdec0d6395574
4,029
py
Python
cards/views.py
acdh-oeaw/official-depictions
d562c1bef88834ea2cae35ed119b2538573249a3
[ "MIT" ]
null
null
null
cards/views.py
acdh-oeaw/official-depictions
d562c1bef88834ea2cae35ed119b2538573249a3
[ "MIT" ]
12
2020-02-11T21:32:03.000Z
2022-03-24T08:13:04.000Z
cards/views.py
acdh-oeaw/official-depictions
d562c1bef88834ea2cae35ed119b2538573249a3
[ "MIT" ]
null
null
null
import django_tables2 as tables from django.conf import settings from django_tables2.config import RequestConfig from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator from django.urls import reverse, reverse_lazy from django.views.generic import TemplateView from django.views.generic.detail import DetailView from django.views.generic.edit import DeleteView from browsing.browsing_utils import GenericListView, BaseCreateView, BaseUpdateView from vocabs.models import SkosConceptScheme, SkosConcept from . filters import * from . forms import * from . tables import * from . models import Card class CardCollectionListView(GenericListView): model = CardCollection filter_class = CardCollectionListFilter formhelper_class = CardCollectionFilterFormHelper table_class = CardCollectionTable init_columns = [ 'abbreviation', 'name', ] class CardCollectionDetailView(DetailView): model = CardCollection template_name = 'cards/cardcollection_detail.html' class CardCollectionCreate(BaseCreateView): model = CardCollection form_class = CardCollectionForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(CardCollectionCreate, self).dispatch(*args, **kwargs) class CardCollectionUpdate(BaseUpdateView): model = CardCollection form_class = CardCollectionForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(CardCollectionUpdate, self).dispatch(*args, **kwargs) class CardCollectionDelete(DeleteView): model = CardCollection template_name = 'webpage/confirm_delete.html' success_url = reverse_lazy('cards:card_browse') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(CardCollectionDelete, self).dispatch(*args, **kwargs) class CardListView(GenericListView): model = Card filter_class = CardListFilter formhelper_class = CardFilterFormHelper table_class = CardTable init_columns = [ 'legacy_id', 'card_collection', 'number', 'thumbnail', 'text_front', 'text_back', 'signature', ] def get_queryset(self, **kwargs): user = self.request.user qs = super(CardListView, self).get_queryset() if user.is_authenticated: pass else: qs = qs.exclude(public=False) self.filter = self.filter_class(self.request.GET, queryset=qs) self.filter.form.helper = self.formhelper_class() return self.filter.qs class CardDetailView(DetailView): model = Card template_name = 'cards/card_detail.html' def get_context_data(self, **kwargs): instance = self.object context = super(CardDetailView, self).get_context_data(**kwargs) context['front'] = getattr(instance, 'img_front', None) context['back'] = getattr(instance, 'img_back', None) context['openseadragon_js'] = getattr(settings, "APIS_OSD_JS", None) context['openseadragon_img'] = getattr(settings, "APIS_OSD_IMG_PREFIX", None) context['iiif_server'] = getattr(settings, "APIS_IIIF_SERVER", None) return context class CardCreate(BaseCreateView): model = Card form_class = CardForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(CardCreate, self).dispatch(*args, **kwargs) class CardUpdate(BaseUpdateView): model = Card form_class = CardForm @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(CardUpdate, self).dispatch(*args, **kwargs) class CardDelete(DeleteView): model = Card template_name = 'webpage/confirm_delete.html' success_url = reverse_lazy('cards:card_browse') @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super(CardDelete, self).dispatch(*args, **kwargs)
29.625
85
0.712584
752cc5e4590e72fa1f1b6f1983f52ad7c7d2ec74
848
py
Python
stack/0503_next_greater_element_2.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
stack/0503_next_greater_element_2.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
stack/0503_next_greater_element_2.py
MartinMa28/Algorithms_review
3f2297038c00f5a560941360ca702e6868530f34
[ "MIT" ]
null
null
null
class Solution: def nextGreaterElements(self, nums: list) -> list: if not nums: return [] monotonic_stack = [(nums[0], 0)] nums = nums + nums next_greater = {} for i, num in enumerate(nums[1:], 1): while monotonic_stack: if num > monotonic_stack[-1][0]: val, idx = monotonic_stack.pop() next_greater[(val, idx)] = num else: break if i < len(nums) // 2: monotonic_stack.append((num, i)) res = [-1] * (len(nums) // 2) for i, n in enumerate(nums[:len(nums) // 2]): if (n, i) in next_greater: res[i] = next_greater[(n, i)] return res
30.285714
54
0.415094
fa507e43700dfc0078958bec68c623b0aebfea2b
13,662
py
Python
src/eatery_db/campus_eatery.py
cuappdev/eatery-backend
564dbdfe790e844e41a3d2e0ed993c07cc68f2ac
[ "MIT" ]
3
2016-02-28T15:45:18.000Z
2016-02-29T21:13:54.000Z
src/eatery_db/campus_eatery.py
cuappdev/eatery-backend
564dbdfe790e844e41a3d2e0ed993c07cc68f2ac
[ "MIT" ]
90
2016-02-23T23:57:50.000Z
2021-09-20T04:23:23.000Z
src/eatery_db/campus_eatery.py
cuappdev/eatery-backend
564dbdfe790e844e41a3d2e0ed993c07cc68f2ac
[ "MIT" ]
4
2016-02-23T04:41:58.000Z
2020-12-15T22:03:15.000Z
from datetime import datetime, timedelta import requests from .common_eatery import format_time, get_image_url, parse_coordinates, string_to_date_range from ..constants import ( NUM_DAYS_STORED_IN_DB, PAY_METHODS, STATIC_MENUS_URL, STATIC_ATTRIBUTES_URL, TRILLIUM_SLUG, WEEKDAYS, get_today, ) from ..database import CampusEatery, CampusEateryHour, MenuCategory, MenuItem def parse_campus_eateries(data_json): """Parses a Cornell Dining json dictionary. Returns a list of CampusEatery objects containing on campus dining options. Args: data_json (dict): a valid dictionary from the Cornell Dining json """ campus_eateries = [] attributes_json = requests.get(STATIC_ATTRIBUTES_URL).json() for eatery in data_json["data"]["eateries"]: brbs, cash, cornell_card, credit, mobile, swipes = parse_payments(eatery["payMethods"]) phone = eatery.get("contactPhone", "N/A") phone = phone if phone else "N/A" latitude, longitude = parse_coordinates(eatery) eatery_attributes = attributes_json.get(eatery.get("slug", ""), {}) eatery_exceptions = ";;".join(eatery_attributes.get("exceptions", [])) reserve_url = eatery_attributes.get("reserve_url") is_get = eatery_attributes.get("is_get", False) new_eatery = CampusEatery( about=eatery.get("about", ""), campus_area_desc=parse_campus_area(eatery), eatery_type=parse_eatery_type(eatery), image_url=get_image_url(eatery.get("slug", "")), latitude=latitude, location=eatery.get("location", ""), longitude=longitude, name=eatery.get("name", ""), name_short=eatery.get("nameshort", ""), payment_method_brbs=brbs, payment_method_cash=cash, payment_method_cornell_card=cornell_card, payment_method_credit=credit, payment_method_mobile=mobile, payment_method_swipes=swipes, phone=phone, slug=eatery.get("slug", ""), exceptions=eatery_exceptions, reserve_url=reserve_url, is_get=is_get, ) campus_eateries.append(new_eatery) return campus_eateries def parse_campus_hours(data_json, eatery_model): """Parses a Cornell Dining json dictionary. Returns 1) a list of tuples of CampusEateryHour objects for a corresponding CampusEatery object and their unparsed menu 2) an array of the items an eatery serves. Args: data_json (dict): a valid dictionary from the Cornell Dining json eatery_model (CampusEatery): the CampusEatery object to which to link the hours. """ eatery_hours_and_menus = [] dining_items = [] for eatery in data_json["data"]["eateries"]: eatery_slug = eatery.get("slug", "") if eatery_model.slug == eatery_slug: dining_items = get_trillium_menu() if eatery_slug == TRILLIUM_SLUG else parse_dining_items(eatery) hours_list = eatery["operatingHours"] for hours in hours_list: new_date = hours.get("date", "") hours_events = hours["events"] if hours_events: for event in hours_events: start, end = format_time(event.get("start", ""), event.get("end", ""), new_date) eatery_hour = CampusEateryHour( eatery_id=eatery_model.id, date=new_date, event_description=event.get("descr", ""), event_summary=event.get("calSummary", ""), end_time=end, start_time=start, ) eatery_hours_and_menus.append((eatery_hour, event.get("menu", []))) else: eatery_hour = CampusEateryHour( eatery_id=eatery_model.id, date=new_date, event_description=None, event_summary=None, end_time=None, start_time=None, ) eatery_hours_and_menus.append((eatery_hour, [])) return eatery_hours_and_menus, dining_items def parse_menu_categories(menu_json, hour_model, eatery_id): """Parses the menu portion of the Cornell Dining json dictionary. Returns a tuple of a MenuCategory object linked to the provided CampusHours object and the unparsed items of that MenuCategory. Args: menu_json (dict): a valid dictionary from the Cornell Dining json hours_model (CampusHours): the CampusHours object to which to link the menu. """ if not hour_model: return [(MenuCategory(event_id=None, eatery_id=eatery_id, category=""), menu_json)] categories_and_items = [] for menu in menu_json: if menu.get("category"): new_category = MenuCategory(event_id=hour_model.id, eatery_id=eatery_id, category=menu.get("category")) categories_and_items.append((new_category, menu.get("items", []))) elif menu.get("item"): return [(MenuCategory(event_id=hour_model.id, eatery_id=eatery_id, category=""), menu_json)] return categories_and_items def parse_menu_items(items_json, category_model): """ Parses the items portion of the Cornell Dining json dictionary. Returns a list of MenuItems corresponding to a MenuCategory object. Args: items_json (dict): a valid dictionary from the Cornell Dining json category_model (MenuCategory): the MenuCategory object to which to link the menu. """ items = [] for item in items_json: new_item = MenuItem( category_id=category_model.id, healthy=item.get("healthy", False), item=item.get("item", "") ) items.append(new_item) return items def parse_static_eateries(static_json): """Parses a static dining json dictionary. Similar to the parse_eatery function except for static source. Args: static_json (dict): A valid dictionary in the format of the dynamic Cornell Dining json for static eateries """ static_eateries = [] attributes_json = requests.get(STATIC_ATTRIBUTES_URL).json() for eatery in static_json["eateries"]: brbs, cash, cornell_card, credit, mobile, swipes = parse_payments(eatery["payMethods"]) latitude, longitude = parse_coordinates(eatery) eatery_attributes = attributes_json.get(eatery.get("slug", ""), {}) eatery_exceptions = ";;".join(eatery_attributes.get("exceptions", [])) new_eatery = CampusEatery( about=eatery.get("about", ""), campus_area_desc=parse_campus_area(eatery), eatery_type=parse_eatery_type(eatery), image_url=get_image_url(eatery.get("slug", "")), latitude=latitude, location=eatery.get("location", ""), longitude=longitude, name=eatery.get("name", ""), name_short=eatery.get("nameshort", ""), payment_method_brbs=brbs, payment_method_cash=cash, payment_method_cornell_card=cornell_card, payment_method_credit=credit, payment_method_mobile=mobile, payment_method_swipes=swipes, phone=eatery.get("contactPhone", "N/A"), slug=eatery.get("slug", ""), exceptions=eatery_exceptions, reserve_url=eatery_attributes.get("reserve_url"), is_get=eatery_attributes.get("is_get", False), ) static_eateries.append(new_eatery) return static_eateries def parse_static_op_hours(data_json, eatery_model): """Parses a Cornell Dining json dictionary. Returns a list of tuples of CampusEateryHour objects for a corresponding CampusEatery object and their unparsed menu. Args: data_json (dict): a valid dictionary from the Cornell Dining json eatery_model (CampusEatery): the CampusEatery object to which to link the hours. """ today = get_today() for eatery in data_json["eateries"]: if eatery_model.slug == eatery.get("slug", ""): weekdays = {} hours_list = eatery.get("operatingHours", []) dining_items = eatery.get("diningItems") dates_closed = eatery.get("datesClosed", []) for hours in hours_list: if "-" in hours["weekday"]: start, end = hours["weekday"].split("-") start_index = WEEKDAYS[start] end_index = WEEKDAYS[end] days = [] idx = start_index while idx != end_index: days.append(idx) idx = (idx + 1) % 7 days.append(end_index) else: days = [WEEKDAYS[hours["weekday"]]] for weekday in days: if weekday not in weekdays: weekdays[weekday] = hours["events"] new_operating_hours = [] for i in range(NUM_DAYS_STORED_IN_DB): new_date = today + timedelta(days=i) for dates in dates_closed: # check if dates_closed contains new_date if "-" in dates: # indicates this string is a date range of form "mm/dd/yy-mm/dd/yy" start_date, end_date = string_to_date_range(dates) if start_date <= new_date <= end_date: break else: # date string is a singular date closed_date = datetime.strptime(dates, "%m/%d/%y").date() if new_date == closed_date: break else: # new_date is not present in dates_closed, we can add this date to the db new_events = weekdays.get(new_date.weekday(), []) for event in new_events: start, end = format_time(event.get("start", ""), event.get("end", ""), new_date.isoformat()) new_operating_hours.append( ( CampusEateryHour( eatery_id=eatery_model.id, date=new_date.isoformat(), event_description=event.get("descr", ""), event_summary=event.get("calSummary", ""), end_time=end, start_time=start, ), dining_items, ) ) if not new_events: new_operating_hours.append( (CampusEateryHour(eatery_id=eatery_model.id, date=new_date.isoformat()), dining_items) ) return new_operating_hours return [] def parse_campus_area(eatery): """Parses the common name location of an eatery. Returns a string containing a description of an eatery Args: eatery (dict): A valid json dictionary from Cornell Dining that contains eatery information """ if "campusArea" in eatery: description_short = eatery["campusArea"]["descrshort"] return description_short def parse_eatery_type(eatery): """Parses the classification of an eatery. Returns the type of an eatery (dining hall, cafe, etc). Args: eatery (dict): A valid json dictionary from Cornell Dining that contains eatery information """ try: return eatery["eateryTypes"][0]["descr"] except Exception: return "Unknown" def parse_payments(methods): """Returns a tuple containing Booleans corresponding to the payment methods are available at an eatery. Follows the format of <brbs>, <cash>, <credit>, <cornell>, <mobile>, <swipes> Args: methods (json): a valid json segment for payments from Cornell Dining """ brbs = any(pay["descrshort"] == PAY_METHODS["brbs"] for pay in methods) cash = any(pay["descrshort"] == PAY_METHODS["credit"] for pay in methods) cornell_card = any(pay["descrshort"] == PAY_METHODS["c-card"] for pay in methods) credit = any(pay["descrshort"] == PAY_METHODS["credit"] for pay in methods) mobile = any(pay["descrshort"] == PAY_METHODS["mobile"] for pay in methods) swipes = any(pay["descrshort"] == PAY_METHODS["swipes"] for pay in methods) return brbs, cash, cornell_card, credit, mobile, swipes def parse_dining_items(eatery): """Parses the dining items of an eatery. Returns an array of the items an eatery serves and a flag for healthy options. Exclusive to non-dining hall eateries. Args: eatery (dict): A valid json dictionary from Cornell Dining that contains eatery information """ dining_items = [] for item in eatery["diningItems"]: dining_items.append({"healthy": item.get("healthy", False), "item": item.get("item", "")}) return dining_items def get_trillium_menu(): """Gets the Trillium menu. Returns the Trillium dining items (using parse_dining_items) from the static json source for menus. """ static_json = requests.get(STATIC_MENUS_URL).json() return parse_dining_items(static_json["Trillium"][0])
39.830904
118
0.597716
9f2d28da65fa12e00c89f9d7e0791df302ab8a5e
11,801
py
Python
fairseq/modules/dynamic_convolution.py
yyeboah/fairseq
80e79a03c2b2fdf9889c19c8f4129d379d130e10
[ "MIT" ]
33
2021-08-11T12:52:53.000Z
2022-03-08T03:03:21.000Z
fairseq/modules/dynamic_convolution.py
MANGA-UOFA/DSLP
a9d3ee154f3bc73b9dfc191ed537ee90b3896956
[ "MIT" ]
10
2021-11-14T12:28:48.000Z
2022-02-28T14:13:40.000Z
fairseq/modules/dynamic_convolution.py
MANGA-UOFA/DSLP
a9d3ee154f3bc73b9dfc191ed537ee90b3896956
[ "MIT" ]
5
2021-11-10T08:55:33.000Z
2022-03-14T14:57:48.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from fairseq import utils from fairseq.incremental_decoding_utils import with_incremental_state from fairseq.modules.fairseq_dropout import FairseqDropout from .unfold import unfold1d def DynamicConv( input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, renorm_padding=False, bias=False, conv_bias=False, query_size=None, in_proj=False, ): if torch.cuda.is_available(): try: from fairseq.modules.dynamicconv_layer import DynamicconvLayer return DynamicconvLayer( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, renorm_padding=renorm_padding, bias=bias, conv_bias=conv_bias, query_size=query_size, ) except ImportError as e: print(e) return DynamicConv1dTBC( input_size, kernel_size=kernel_size, padding_l=padding_l, num_heads=num_heads, weight_dropout=weight_dropout, weight_softmax=weight_softmax, renorm_padding=renorm_padding, bias=bias, conv_bias=conv_bias, query_size=query_size, ) def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m @with_incremental_state class DynamicConv1dTBC(nn.Module): """Dynamic lightweight convolution taking T x B x C inputs Args: input_size: # of channels of the input kernel_size: convolution channels padding_l: padding to the left when using "same" padding num_heads: number of heads used. The weight is of shape (num_heads, 1, kernel_size) weight_dropout: the drop rate of the DropConnect to drop the weight weight_softmax: normalize the weight with softmax before the convolution renorm_padding: re-normalize the filters to ignore the padded part (only the non-padding parts sum up to 1) bias: use bias conv_bias: bias of the convolution query_size: specified when feeding a different input as the query in_proj: project the input and generate the filter together Shape: Input: TxBxC, i.e. (timesteps, batch_size, input_size) Output: TxBxC, i.e. (timesteps, batch_size, input_size) Attributes: weight: the learnable weights of the module of shape `(num_heads, 1, kernel_size)` bias: the learnable bias of the module of shape `(input_size)` """ def __init__( self, input_size, kernel_size=1, padding_l=None, num_heads=1, weight_dropout=0.0, weight_softmax=False, renorm_padding=False, bias=False, conv_bias=False, query_size=None, in_proj=False, ): super().__init__() self.input_size = input_size self.query_size = input_size if query_size is None else query_size self.kernel_size = kernel_size self.padding_l = padding_l self.num_heads = num_heads self.weight_dropout_module = FairseqDropout( weight_dropout, module_name=self.__class__.__name__ ) self.weight_softmax = weight_softmax self.renorm_padding = renorm_padding if in_proj: self.weight_linear = Linear( self.input_size, self.input_size + num_heads * kernel_size * 1 ) else: self.weight_linear = Linear( self.query_size, num_heads * kernel_size * 1, bias=bias ) if conv_bias: self.conv_bias = nn.Parameter(torch.Tensor(input_size)) else: self.conv_bias = None self.reset_parameters() @property def in_proj(self): return ( self.weight_linear.out_features == self.input_size + self.num_heads * self.kernel_size ) def reset_parameters(self): self.weight_linear.reset_parameters() if self.conv_bias is not None: nn.init.constant_(self.conv_bias, 0.0) def forward(self, x, incremental_state=None, query=None, unfold=None): """Assuming the input, x, of the shape T x B x C and producing an output in the shape T x B x C args: x: Input of shape T x B x C, i.e. (timesteps, batch_size, input_size) incremental_state: A dict to keep the state unfold: unfold the input or not. If not, we use the matrix trick instead query: use the specified query to predict the conv filters """ unfold = ( x.size(0) > 512 if unfold is None else unfold ) # use unfold mode as default for long sequence to save memory unfold = unfold or (incremental_state is not None) assert query is None or not self.in_proj if query is None: query = x if unfold: output = self._forward_unfolded(x, incremental_state, query) else: output = self._forward_expanded(x, incremental_state, query) if self.conv_bias is not None: output = output + self.conv_bias.view(1, 1, -1) return output def _forward_unfolded(self, x, incremental_state, query): """The conventional implementation of convolutions. Unfolding the input by having a window shifting to the right.""" T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size if self.in_proj: proj = self.weight_linear(x) x = proj.narrow(2, 0, self.input_size).contiguous() weight = ( proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1) ) else: weight = self.weight_linear(query).view(T * B * H, -1) # renorm_padding is only implemented in _forward_expanded assert not self.renorm_padding or incremental_state is not None if incremental_state is not None: input_buffer = self._get_input_buffer(incremental_state) if input_buffer is None: input_buffer = x.new() x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3) if self.kernel_size > 1: self._set_input_buffer( incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :] ) x_unfold = x_unfold.view(T * B * H, R, -1) else: padding_l = self.padding_l if K > T and padding_l == K - 1: weight = weight.narrow(1, K - T, T) K, padding_l = T, T - 1 # unfold the input: T x B x C --> T' x B x C x K x_unfold = unfold1d(x, K, padding_l, 0) x_unfold = x_unfold.view(T * B * H, R, K) if self.weight_softmax and not self.renorm_padding: weight = F.softmax(weight, dim=1) weight = weight.narrow(1, 0, K) if incremental_state is not None: weight = weight[:, -x_unfold.size(2) :] K = weight.size(1) if self.weight_softmax and self.renorm_padding: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1 output = output.view(T, B, C) return output def _forward_expanded(self, x, incremental_stat, query): """Turn the convolution filters into band matrices and do matrix multiplication. This is faster when the sequence is short, but less memory efficient. This is not used in the decoder during inference. """ T, B, C = x.size() K, H = self.kernel_size, self.num_heads R = C // H assert R * H == C == self.input_size if self.in_proj: proj = self.weight_linear(x) x = proj.narrow(2, 0, self.input_size).contiguous() weight = ( proj.narrow(2, self.input_size, H * K).contiguous().view(T * B * H, -1) ) else: weight = self.weight_linear(query).view(T * B * H, -1) if not self.renorm_padding: if self.weight_softmax: weight = F.softmax(weight, dim=1) weight = self.weight_dropout_module(weight, inplace=False) weight = weight.narrow(1, 0, K).contiguous() weight = weight.view(T, B * H, K).transpose(0, 1) x = x.view(T, B * H, R).transpose(0, 1) if self.weight_softmax and self.renorm_padding: # turn the convolution filters into band matrices weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf")) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, self.padding_l, T) # normalize the weight over valid positions like self-attention weight_expanded = F.softmax(weight_expanded, dim=2) weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False) else: P = self.padding_l # For efficieny, we cut the kernel size and reduce the padding when the kernel is larger than the length if K > T and P == K - 1: weight = weight.narrow(2, K - T, T) K, P = T, T - 1 # turn the convolution filters into band matrices weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False) weight_expanded.as_strided( (B * H, T, K), (T * (T + K - 1), T + K, 1) ).copy_(weight) weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T output = torch.bmm(weight_expanded, x) output = output.transpose(0, 1).contiguous().view(T, B, C) return output def reorder_incremental_state(self, incremental_state, new_order): input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: input_buffer = input_buffer.index_select(1, new_order) self._set_input_buffer(incremental_state, input_buffer) def _get_input_buffer(self, incremental_state): return utils.get_incremental_state(self, incremental_state, "input_buffer") def _set_input_buffer(self, incremental_state, new_buffer): return utils.set_incremental_state( self, incremental_state, "input_buffer", new_buffer ) def extra_repr(self): s = "{}, kernel_size={}, padding_l={}, num_heads={}, weight_softmax={}, conv_bias={}, renorm_padding={}, in_proj={}".format( self.input_size, self.kernel_size, self.padding_l, self.num_heads, self.weight_softmax, self.conv_bias is not None, self.renorm_padding, self.in_proj, ) if self.query_size != self.input_size: s += ", query_size={}".format(self.query_size) if self.weight_dropout_module.p > 0.0: s += ", weight_dropout={}".format(self.weight_dropout_module.p) return s
37.945338
132
0.603932
f311bb451eea86c734dbfd96a08b9a1a2241f4a8
696
py
Python
rllib/tests/test_local.py
firebolt55439/ray
215300b070628c06f0106906fc6c03bd70ebf140
[ "Apache-2.0" ]
21,382
2016-09-26T23:12:52.000Z
2022-03-31T21:47:45.000Z
rllib/tests/test_local.py
firebolt55439/ray
215300b070628c06f0106906fc6c03bd70ebf140
[ "Apache-2.0" ]
19,689
2016-09-17T08:21:25.000Z
2022-03-31T23:59:30.000Z
rllib/tests/test_local.py
firebolt55439/ray
215300b070628c06f0106906fc6c03bd70ebf140
[ "Apache-2.0" ]
4,114
2016-09-23T18:54:01.000Z
2022-03-31T15:07:32.000Z
import unittest import ray from ray.rllib.agents.pg import PGTrainer, DEFAULT_CONFIG from ray.rllib.utils.test_utils import framework_iterator class LocalModeTest(unittest.TestCase): def setUp(self) -> None: ray.init(local_mode=True) def tearDown(self) -> None: ray.shutdown() def test_local(self): cf = DEFAULT_CONFIG.copy() cf["model"]["fcnet_hiddens"] = [10] cf["num_workers"] = 2 for _ in framework_iterator(cf): agent = PGTrainer(cf, "CartPole-v0") print(agent.train()) agent.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))
23.2
57
0.62931
abd2259bf0f44412b06e8a6ee33ea7b016d14414
15,562
py
Python
grumers/apps/data/migrations/0011_auto__del_jellyfishincident__add_dailyreport.py
socib/grumers
ef0b5f8441cf7b3d5a03da715263003d9f550f2f
[ "MIT" ]
1
2018-04-27T04:26:38.000Z
2018-04-27T04:26:38.000Z
grumers/apps/data/migrations/0011_auto__del_jellyfishincident__add_dailyreport.py
socib/grumers
ef0b5f8441cf7b3d5a03da715263003d9f550f2f
[ "MIT" ]
null
null
null
grumers/apps/data/migrations/0011_auto__del_jellyfishincident__add_dailyreport.py
socib/grumers
ef0b5f8441cf7b3d5a03da715263003d9f550f2f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting model 'JellyfishIncident' db.delete_table(u'data_jellyfishincident') # Adding model 'DailyReport' db.create_table(u'data_dailyreport', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('date_observed', self.gf('django.db.models.fields.DateField')()), ('observation_station', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['data.ObservationStation'], on_delete=models.PROTECT)), ('source', self.gf('django.db.models.fields.CharField')(default='W', max_length=2)), ('sting_incidents', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('total_incidents', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('created_on', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('created_by', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='created-incident', null=True, to=orm['auth.User'])), ('updated_on', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('updated_by', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='updated-incident', null=True, to=orm['auth.User'])), )) db.send_create_signal(u'data', ['DailyReport']) def backwards(self, orm): # Adding model 'JellyfishIncident' db.create_table(u'data_jellyfishincident', ( ('updated_by', self.gf('django.db.models.fields.related.ForeignKey')(related_name='updated-incident', null=True, to=orm['auth.User'], blank=True)), ('date_observed', self.gf('django.db.models.fields.DateField')()), ('created_on', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('total_incidents', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('sting_incidents', self.gf('django.db.models.fields.IntegerField')(default=0, blank=True)), ('observation_station', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['data.ObservationStation'], on_delete=models.PROTECT)), ('created_by', self.gf('django.db.models.fields.related.ForeignKey')(related_name='created-incident', null=True, to=orm['auth.User'], blank=True)), ('source', self.gf('django.db.models.fields.CharField')(default='W', max_length=2)), ('updated_on', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal(u'data', ['JellyfishIncident']) # Deleting model 'DailyReport' db.delete_table(u'data_dailyreport') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'data.dailyreport': { 'Meta': {'ordering': "['-date_observed']", 'object_name': 'DailyReport'}, 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created-incident'", 'null': 'True', 'to': u"orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_observed': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'observation_station': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['data.ObservationStation']", 'on_delete': 'models.PROTECT'}), 'source': ('django.db.models.fields.CharField', [], {'default': "'W'", 'max_length': '2'}), 'sting_incidents': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'total_incidents': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'updated-incident'", 'null': 'True', 'to': u"orm['auth.User']"}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'data.flagchange': { 'Meta': {'ordering': "['-date']", 'object_name': 'FlagChange'}, 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created-flag'", 'null': 'True', 'to': u"orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date': ('django.db.models.fields.DateTimeField', [], {}), 'flag_status': ('django.db.models.fields.CharField', [], {'default': "'N'", 'max_length': '1'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'jellyfish_flag': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'observation_station': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['data.ObservationStation']", 'on_delete': 'models.PROTECT'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'updated-flag'", 'null': 'True', 'to': u"orm['auth.User']"}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'data.jellyfishobservation': { 'Meta': {'ordering': "['-date_observed']", 'object_name': 'JellyfishObservation'}, 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created-observation'", 'null': 'True', 'to': u"orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_observed': ('django.db.models.fields.DateTimeField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'jellyfish_specie': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['data.JellyfishSpecie']", 'null': 'True', 'on_delete': 'models.PROTECT', 'blank': 'True'}), 'observation_station': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['data.ObservationStation']", 'on_delete': 'models.PROTECT'}), 'picture': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'quantity': ('django.db.models.fields.IntegerField', [], {'blank': 'True'}), 'remarks': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'source': ('django.db.models.fields.CharField', [], {'default': "'W'", 'max_length': '2'}), 'sting_incidents': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'total_incidents': ('django.db.models.fields.IntegerField', [], {'default': '0', 'blank': 'True'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'updated-observation'", 'null': 'True', 'to': u"orm['auth.User']"}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'data.jellyfishspecie': { 'Meta': {'ordering': "['order', 'name']", 'object_name': 'JellyfishSpecie'}, 'common_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created-specie'", 'null': 'True', 'to': u"orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'disabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'picture': ('django.db.models.fields.files.ImageField', [], {'default': "'jellyfish_species/no-img.jpg'", 'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'updated-specie'", 'null': 'True', 'to': u"orm['auth.User']"}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'data.observationroute': { 'Meta': {'ordering': "['name']", 'object_name': 'ObservationRoute'}, 'code': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '10', 'null': 'True', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created-route'", 'null': 'True', 'to': u"orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'disabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': u"orm['auth.Group']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'island': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'municipality': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'route_type': ('django.db.models.fields.CharField', [], {'default': "'C'", 'max_length': '1'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'updated-route'", 'null': 'True', 'to': u"orm['auth.User']"}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'use_incident_form': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'data.observationstation': { 'Meta': {'ordering': "['observation_route', 'order']", 'object_name': 'ObservationStation'}, 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'created-station'", 'null': 'True', 'to': u"orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'disabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'observation_route': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['data.ObservationRoute']", 'on_delete': 'models.PROTECT'}), 'order': ('django.db.models.fields.IntegerField', [], {}), 'position': ('django.contrib.gis.db.models.fields.PointField', [], {}), 'station_type': ('django.db.models.fields.CharField', [], {'default': "'S'", 'max_length': '1'}), 'updated_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'updated-station'", 'null': 'True', 'to': u"orm['auth.User']"}), 'updated_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) } } complete_apps = ['data']
87.920904
195
0.588099
563e93c653fe74c3db14f903385a8216c8c79c03
3,956
py
Python
scripts/replay_action_log.py
prstolpe/rrc_simulation
b430fe4e575641cdd64945cf57d0dd67a0eea17a
[ "BSD-3-Clause" ]
null
null
null
scripts/replay_action_log.py
prstolpe/rrc_simulation
b430fe4e575641cdd64945cf57d0dd67a0eea17a
[ "BSD-3-Clause" ]
null
null
null
scripts/replay_action_log.py
prstolpe/rrc_simulation
b430fe4e575641cdd64945cf57d0dd67a0eea17a
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 """Replay actions for a given logfile and verify final object pose. The log file is a JSON file as produced by `rrc_simulation.TriFingerPlatform.store_action_log()` which contains the initial state, a list of all applied actions and the final state of the object. The simulation is initialised according to the given initial pose and the actions are applied one by one. In the end, it is verified if the final object pose in the simulation matches the one in the log file. The accumulated reward is computed based on the given goal pose and printed in the end. Both initial and goal pose are given as JSON strings with keys "position" and "orientation" (as quaternion). Example: {"position": [-0.03, 0.07, 0.05], "orientation": [0.0, 0.0, 0.68, -0.73]} """ import argparse import json import sys import numpy as np from rrc_simulation import trifinger_platform from rrc_simulation.tasks import move_cube def main(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument( "--logfile", "-l", required=True, type=str, help="Path to the log file.", ) parser.add_argument( "--difficulty", "-d", required=True, type=int, help="The difficulty level of the goal (for reward computation).", ) parser.add_argument( "--initial-pose", "-i", required=True, type=str, metavar="JSON", help="Initial pose of the cube as JSON string.", ) parser.add_argument( "--goal-pose", "-g", required=True, type=str, metavar="JSON", help="Goal pose of the cube as JSON string.", ) args = parser.parse_args() with open(args.logfile, "r") as fh: log = json.load(fh) initial_object_pose = move_cube.Pose.from_json(args.initial_pose) goal_pose = move_cube.Pose.from_json(args.goal_pose) platform = trifinger_platform.TriFingerPlatform( visualization=False, initial_object_pose=initial_object_pose ) # verify that the number of logged actions matches with the episode length n_actions = len(log["actions"]) assert ( n_actions == move_cube.episode_length ), "Number of actions in log does not match with expected episode length." accumulated_reward = 0 for logged_action in log["actions"]: action = platform.Action() action.torque = np.array(logged_action["torque"]) action.position = np.array(logged_action["position"]) action.position_kp = np.array(logged_action["position_kp"]) action.position_kd = np.array(logged_action["position_kd"]) t = platform.append_desired_action(action) cube_pose = platform.get_object_pose(t) reward = -move_cube.evaluate_state( goal_pose, cube_pose, args.difficulty ) accumulated_reward += reward assert logged_action["t"] == t cube_pose = platform.get_object_pose(t) final_pose = log["final_object_pose"] print("Accumulated Reward:", accumulated_reward) # verify that actual and logged final object pose match try: np.testing.assert_array_almost_equal( cube_pose.position, final_pose["position"], decimal=3, err_msg=("Recorded object position does not match with the one" " achieved by the replay") ) np.testing.assert_array_almost_equal( cube_pose.orientation, final_pose["orientation"], decimal=3, err_msg=("Recorded object orientation does not match with the one" " achieved by the replay") ) except AssertionError as e: print("Failed.", file=sys.stderr) print(e, file=sys.stderr) sys.exit(1) print("Passed.") if __name__ == "__main__": main()
30.90625
79
0.654954
8766dd1de40c51558de4fecf6601b58c14db2d55
4,859
py
Python
51job/demo.py
kryane/Python-111
281c3b1200b168c820fd5c17d34ec6af5057ef9a
[ "Apache-2.0" ]
19
2022-02-07T14:43:48.000Z
2022-03-22T08:06:53.000Z
51job/demo.py
huangtc/Python-111
c817762130b73e0af2c1e783605b477d688f6262
[ "Apache-2.0" ]
null
null
null
51job/demo.py
huangtc/Python-111
c817762130b73e0af2c1e783605b477d688f6262
[ "Apache-2.0" ]
11
2022-02-07T13:43:20.000Z
2022-03-22T08:06:49.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : Helaoshi # @Time : 2021/12/28 14:12 # @File : demo.py # @Project : pythonProject import pandas as pd import requests list1 = [] for page in range(1, 51): url = f'https://search.51job.com/list/000000,000000,0000,00,9,99,python,2,{page}.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=' headers = { 'Accept': 'application/json, text/javascript, */*; q=0.01', # 'Cookie': '_uab_collina=164067192622033876462843; partner=www_google_com; privacy=1640671920; guid=d3523518dddd8bd7b7965d190ad4301c; acw_tc=2f624a3916406719228003438e3915a063d89bb6e38d817975862124347206; acw_sc__v2=61caaab452c017764723825d655ac1416798b7de; nsearch=jobarea%3D%26%7C%26ord_field%3D%26%7C%26recentSearch0%3D%26%7C%26recentSearch1%3D%26%7C%26recentSearch2%3D%26%7C%26recentSearch3%3D%26%7C%26recentSearch4%3D%26%7C%26collapse_expansion%3D; search=jobarea%7E%60000000%7C%21ord_field%7E%600%7C%21recentSearch0%7E%60000000%A1%FB%A1%FA000000%A1%FB%A1%FA0000%A1%FB%A1%FA00%A1%FB%A1%FA99%A1%FB%A1%FA%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA9%A1%FB%A1%FA99%A1%FB%A1%FA%A1%FB%A1%FA0%A1%FB%A1%FApython%A1%FB%A1%FA2%A1%FB%A1%FA1%7C%21; ssxmod_itna=7q+xBDRD0APQq0dD=eYOYkGkYGCiDcApxgAPrD05xYeGzDAxn40iDtxodOAD6ef0GIWGWGSw+axTRRDAW4piCpqe/GDB3DEx06fiQDxii9DCeDIDWeDiDG4GmB4GtDpxG=Djjtz1M6xYPDEjKDaxDbDin8pxGCDeKD0xwFDQKDu69DdjK+82Y1W3vqYbDxLxG1F40HGAf4Lxgf6fGzYt8ERBG4DB4XeADxMF85ee73px0kYq0O9ryzCrgUU2y1xSwWYYxeZGi7ocqdGBW5tG2eeG0DwyxbF0=l3DDWVF29eYD===; ssxmod_itna2=7q+xBDRD0APQq0dD=eYOYkGkYGCiDcApxgAgDnKS4xDsGGeDLYOmYNQBAYcfYqApO8lPCIh+4pgEY+k2CWnivpl3bB5RjtmhDrXseiYqEbN1XnbOFcu7XICk8QAaT/kyuXKsF5qqFS4P8OQ5iG3o9EpO9OomIrQim2h7FWIsSAY5GmouF33Ndkj2e6LpKi6r1ltCWwLyKq9dwqAHEc9QhwYpW3qFc3YbT4b+/rE1udeFrDn2e+RpmA5zxr4ODxawcALEvrERGQ8HvWKmH30W=6n20b=L6IDiKsjE6ILEXXCyoXjldM182UDftgCm22pcrL0cN8YwC2YZxeoO658f1O=oZXLEi44ex4QhEeeIUiRPhZwTzt01UXWi5U53jvjERInpxPUzeUFKIB0u92uO95dxogpvnmv5=LmRKzUnT65v9Rl7YdpPWDG2KG4bDr8nDQiHSDGn3Hk2I353MGc00+/he0FgYGKA4F9nwI2kxe5IkgQDDFqD+EDxD===', 'Cookie': '_uab_collina=164067192622033876462843; partner=www_google_com; privacy=1640671920; guid=d3523518dddd8bd7b7965d190ad4301c; acw_tc=2f624a3916406719228003438e3915a063d89bb6e38d817975862124347206; nsearch=jobarea%3D%26%7C%26ord_field%3D%26%7C%26recentSearch0%3D%26%7C%26recentSearch1%3D%26%7C%26recentSearch2%3D%26%7C%26recentSearch3%3D%26%7C%26recentSearch4%3D%26%7C%26collapse_expansion%3D; search=jobarea%7E%60000000%7C%21ord_field%7E%600%7C%21recentSearch0%7E%60000000%A1%FB%A1%FA000000%A1%FB%A1%FA0000%A1%FB%A1%FA00%A1%FB%A1%FA99%A1%FB%A1%FA%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA99%A1%FB%A1%FA9%A1%FB%A1%FA99%A1%FB%A1%FA%A1%FB%A1%FA0%A1%FB%A1%FApython%A1%FB%A1%FA2%A1%FB%A1%FA1%7C%21; acw_sc__v2=61caad0d39b8445f11c56e6f1470714f76b6e4f4; acw_sc__v2=61caad0d39b8445f11c56e6f1470714f76b6e4f4; ssxmod_itna=iqGxyDRiiQ94cjDz=IdG=pkSUYAPGCmGUYxBqb4iNDnD8x7YDvmz5D0hibxghDvhTVDQqEi3bxmif5BzmSbYpr5Oi4GLDmKDyY+i4toD48KGwD0eG+DD4DWDmeHDnxAQDjxGP9R6sy=Dbxi3jxiaDGeDe2IODY5DhxDC6APDwx0Cj1h4jpAF=FHpurW+djDkD7ypDlcqLbDkrRfLejH+m8SderDDUnL5d0LEhjGGv7KDXhQDv1H1l2apl/FsBoYNqC44qY2tYYKTMDhTNe4rOi24YChThGmB15V4DDP0li+DD===; ssxmod_itna2=iqGxyDRiiQ94cjDz=IdG=pkSUYAPGCmGUD8ueD5m5D/zWDFxoCktm6POz5L1o9G7/DbYFfs2DnRtmM7zWHQwKUn40QT581vrN7cU7idh=xqeO9drMPdnOfo=SQ9PKxoiApy1XxUO=QQi3wzdLgKjLAe8t0SrXjeRf+7kIAAnv1QTYhbdA3rdEjALrGzBbz+g3HACRO4WNGKYmjFAhmlDYebxopD8cj723scS=+wTEq5bNAQ87p=/Wmpt3p7j8f=KA65Qg7tPhL8gB7SzvL4rAaOIb2ZKOPcUtaMpR2YyP+=ASuToeah2B0eM/91eT5eAFRvEKRZnmx9HqKKyK44ii4kegl0ZAWXWWZn4YuYpm54QGrD2e5b335KLIUYimURPcyF9ubWGuFDbQ42U+aSggUoWAw/m4WlwFKeilFb=8i6ER/4TM27Soib8CU8plKNHbAA8W93b4kxK38QxDKde=7xV0YN7D42xB0=6Z5IbUpTeM0DhDDLxD2YGDD==', 'Host': 'search.51job.com', 'Referer': 'https://search.51job.com/list/000000,000000,0000,00,9,99,python,2,15.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare=', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36' } try: response = requests.get(url, headers=headers).json() engine_jds = response['engine_jds'] for i in engine_jds: items = {} items['创建时间'] = i['issuedate'] items['地址'] = i['workarea_text'] items['岗位'] = i['job_name'] items['学历'] = i['attribute_text'][2] items['工作经验'] = i['attribute_text'][1] items['薪资水平'] = i['providesalary_text'] list1.append(items) print(items) except Exception as e: print(e) df = pd.DataFrame(list1) df.to_csv('51_job.csv')
107.977778
1,669
0.793167
43e2fcd8532bd26154abb2c8be43988739f12e92
14,574
py
Python
pyjokes/jokes_it.py
r0d0dendr0n/pyjokes
382065cba91007302be7fd04c5c35a9957e173b2
[ "BSD-3-Clause" ]
293
2015-08-04T13:59:27.000Z
2022-03-12T12:43:33.000Z
pyjokes/jokes_it.py
r0d0dendr0n/pyjokes
382065cba91007302be7fd04c5c35a9957e173b2
[ "BSD-3-Clause" ]
88
2015-07-26T13:08:16.000Z
2022-02-10T07:51:28.000Z
pyjokes/jokes_it.py
r0d0dendr0n/pyjokes
382065cba91007302be7fd04c5c35a9957e173b2
[ "BSD-3-Clause" ]
103
2015-08-06T17:27:29.000Z
2022-02-28T19:50:29.000Z
# -*- coding: utf-8 -*- """ Jokes from stackoverflow - provided under CC BY-SA 3.0 http://stackoverflow.com/questions/234075/what-is-your-best-programmer-joke?page=4&tab=votes#tab-top """ neutral = [ "Trionfalmente, Beth ha rimosso Python 2.7 dal server nel 2020.'Finalmente!' ha detto con gioia, solo per vedere l'annuncio di Python 4.4.", "Una query SQL entra in un bar, cammina verso a due table e chiede: 'Posso unirvi?'.", "Quando il tuo martello e` C ++, tutto inizia a sembrare un pollice.", "Se metti un milione di scimmie su un milione di tastiere, uno di loro alla fine scrivera` un programma Java, il resto scrivera` Perl.", "Per comprendere la ricorsione devi prima capire la ricorsione.", "Gli amici non permettono agli amici di usare Python 2.7.", "Ho suggerito di tenere un 'Python Object Oriented Programming Seminar', ma l'acronimo era impopolare.", "'toc, toc'. 'Chi e` la`?' ... pausa molto lunga ... Java.", "Quanti programmatori ci vogliono per cambiare una lampadina? Nessuno, e` un problema hardware.", "Qual e` il modo orientato agli oggetti per diventare ricchi? Ereditarieta`.", "Quanti programmatori ci vogliono per cambiare una lampadina? Nessuno, possono rendere l'oscurita` uno standard.", "I vecchi programmatori C non muoiono, sono solo gettati nel void.", "Gli sviluppatori di software amano risolvere i problemi: se non ci sono problemi facilmente disponibili li creeranno.", ".NET e` stato chiamato .NET in modo che non si visualizzasse in un elenco di directory Unix.", "Hardware: la parte di un computer che puoi calciare.", "Un programmatore e` stato trovato morto nella doccia, accanto al corpo c'era uno shampoo con le istruzioni:Insapona, risciacqua ripeti.", "Ottimista: il bicchiere e` mezzo pieno Pessimista: il bicchiere e` mezzo vuoto Programmatore: il bicchiere e` il doppio del necessario.", "In C abbiamo dovuto codificare i nostri bug. In C ++ possiamo ereditarli.", "Come mai non c'e` una gara Perl offuscato? Perche` tutti vincerebbero.", "Se riproduci un CD di Windows all'indietro, ascolterai il canto satanico ... peggio ancora, se lo riproduci in avanti, installa Windows.", "Quanti programmatori ci vogliono per uccidere uno scarafaggio? Due: uno tiene, l'altro installa Windows su di esso.", "Come si chiama un programmatore finlandese? Nerdic.", "Cosa ha detto il codice Java al codice C? : Non hai classe.", "Perche` Microsoft ha chiamato il proprio motore di ricerca BING? Because It's Not Google.", "I venditori di software e i venditori di auto usate si differenziano perche` questi ultimi sanno quando mentono.", "Bambino: 'papa', perche` il sole sorge ad est e tramonta ad ovest?' Papa': 'figlio, sta funzionando, non toccarlo'.", "Quanti programmatori Prolog ci vogliono per cambiare una lampadina? Falso.", "I veri programmatori possono scrivere codice assembly in qualsiasi lingua.", "Cameriere: 'le piacerebbe un caffe` o un te`?' Programmatore: 'Si'.", "Un programmatore entra in un foo ...", "Qual e` il secondo nome di Benoit B. Mandelbrot? Benoit B. Mandelbrot.", "Perche` sorridi sempre? Questa e` solo la mia ... espressione regolare.", "Domanda stupida ASCII, ottiene uno stupido ANSI.", "Un programmatore aveva un problema: penso` tra se stesso: 'lo risolvo con i threads!', ora ha due problemi.", "Java: scrivi una volta e scappa.", "Ti direi una battuta su UDP, ma non lo capiresti mai.", "Un ingegnere di QA entra in un bar, si imbatte in un bar, striscia in un bar, balla in un bar, punta i piedi in un bar...", "Ho avuto un problema quindi ho pensato di utilizzare Java. Ora ho una ProblemFactory.", "L'ingegnere del QA entra in un bar, ordina una birra, ordina 0 birre, 99999 birre, una lucertola, -1 birre, uno sfdeljknesv.", "Un responsabile di prodotto entra in un bar, chiede un drink, il barista dice NO, ma prendera` in considerazione l'aggiunta successiva.", "Come si genera una stringa casuale? Metti uno studente di Informatica del primo anno davanti a Vim e gli chiedi di salvare ed uscire.", "Uso Vim da molto tempo ormai, principalmente perche` non riesco a capire come uscire.", "Come fai a sapere se una persona e` un utente Vim? Non ti preoccupare, te lo diranno.", "un cameriere urla: 'sta soffocando! Qualcuno e` un dottore?' Programmatore: 'sono un utente Vim'.", "3 Database Admins sono entrati in un bar NoSQL e poco dopo sono usciti perche` non sono riusciti a trovare un table.", "Come spiegare il film Inception a un programmatore? Quando esegui una VM dentro una VM dentro un' altra VM tutto procede molto lentamente.", "Come si chiama un pappagallo che dice 'Squawk! Pezzi di nove! Pezzi di nove!' Un errore a pappagallo.", "Ci sono solo due problemi difficili in Informatica: invalidazione della cache, denominazione delle cose e errori di off-by-one.", "Ci sono 10 tipi di persone: quelli che comprendono il binario e quelli che non lo sanno.", "Ci sono 2 tipi di persone: quelli che possono estrapolare dati da insiemi incompleti ...", "Esistono II tipi di persone: quelli che comprendono i numeri romani e quelli che non li conoscono.", "Ci sono 10 tipi di persone: quelli che comprendono l'esadecimale e altri 15.", "Ci sono 10 tipi di persone: quelli che capiscono il trinario, quelli che non lo fanno e quelli che non ne hanno mai sentito parlare.", "Come chiami otto hobbit? Un hob byte.", "La cosa migliore di un booleano e` che anche se ti sbagli, sei solo fuori di un bit.", "Un buon programmatore e` qualcuno che guarda sempre in entrambe le direzioni prima di attraversare una strada a senso unico.", "Esistono due modi per scrivere programmi privi di errori: solo il terzo funziona.", "I controlli di qualita` consistono nel 55% di acqua, 30% di sangue e 15% di ticket in Jira.", "Quanti QA servono per cambiare una lampadina? Hanno notato che la stanza era buia,: non risolvono i problemi, li trovano.", "Un programmatore si schianta contro un'auto , l'uomo chiede 'cosa e` successo', l'altro risponde'Non so. Facciamo il backup e riprova'.", "Scrivere PHP e` come fare pipi` in piscina, tutti lo hanno fatto, ma non hanno bisogno di renderlo pubblico.", "Numero di giorni da quando ho riscontrato un errore di indice di array: -1.", "gli appuntamenti veloci sono inutili, 5 minuti non sono sufficienti per spiegare correttamente i benefici della filosofia Unix.", "Microsoft ha ogni quindici giorni una 'settimana produttiva' dove usa Google invece di Bing.", "Trovare un buon sviluppatore PHP e` come cercare un ago in un pagliaio o e` un hackstack in un ago?.", "Unix e` user friendly, e` solo molto particolare nella scelta di chi siano i suoi amici.", "Un programmatore COBOL guadagna milioni con la riparazione Y2K e decide di congelarsi criogenicamente. L'anno e` 9999.", "Il linguaggio C combina tutta la potenza del linguaggio assembly con tutta la facilita` d'uso del linguaggio assembly.", "Un esperto SEO entra in un bar, pub, pub irlandese, taverna, barista, birra, liquore, vino, alcolici, liquori ...", "Che cosa significa Emacs? Utilizzato esclusivamente dagli scienziati informatici di mezza eta`.", "Che cosa hanno in comune le battute di PyJokes con Adobe Flash? Si aggiornano sempre, ma non migliorano.", "Quanti demosceners sono necessari per cambiare una lampadina? Meta`. Con uno intero non ci sono sfide.", ] """ Jokes from The Internet Chuck Norris DB (ICNDB) (http://www.icndb.com/) - provided under CC BY-SA 3.0 http://api.icndb.com/jokes/ """ chuck = [ "Tutti gli array che Chuck Norris dichiara sono di dimensioni infinite, perche` Chuck Norris non conosce limiti.", "Chuck Norris non ha la latenza del disco perche` il disco rigido sa sbrigarsi, altrimenti sono guai.", "Chuck Norris scrive codice che si ottimizza da solo.", "Chuck Norris non puo` testare l'uguaglianza perche` non ha eguali.", "Chuck Norris non ha bisogno di garbage collection perche` non chiama .Dispose (), chiama .DropKick ().", "Il primo programma di Chuck Norris e` stato kill -9.", "Chuck Norris ha scoppiato la bolla delle dot com.", "Tutti i browser supportano le definizioni esadecimali #chuck e #norris per i colori nero e blu.", "MySpace non e` proprio il tuo spazio, e` di Chuck (te lo lascia solo usare).", "Chuck Norris puo` scrivere funzioni infinitamente ricorsive e farle tornare.", "Chuck Norris puo` risolvere le Torri di Hanoi in una mossa.", "L'unico modello di design che Chuck Norris conosce e` il God Object Pattern.", "Chuck Norris ha terminato World of Warcraft.", "I project manager non chiedono mai a Chuck Norris le stime.", "Chuck Norris non usa gli standard web in quanto il web si conformera` a lui.", "'Funziona sulla mia macchina' e` sempre vero per Chuck Norris.", "Chuck Norris non fa i grafici di Burn Down, fa i grafici di Smack Down.", "Chuck Norris puo` cancellare il cestino.", "La barba di Chuck Norris puo` scrivere 140 parole al minuto.", "Chuck Norris puo` testare tutte le applicazioni con un'unica affermazione, 'funziona'.", "La tastiera di Chuck Norris non ha un tasto Ctrl perche` niente controlla Chuck Norris.", "Chuck Norris puo` far traboccare il tuo stack solo guardandolo.", "Per Chuck Norris, tutto contiene una vulnerabilita`.", "Chuck Norris non usa sudo, la shell sa solo che e` lui e fa quello che gli viene detto.", "Chuck Norris non ha bisogno di un debugger, si limita a fissare il codice finche` non confessa.", "Chuck Norris puo` accedere a metodi privati.", "Chuck Norris puo` istanziare una classe astratta.", "L'oggetto classe eredita da Chuck Norris.", "Chuck Norris conosce l'ultima cifra del Pi greco.", "La connessione di Chuck Norris e` piu' veloce in up che in down perche` i dati sono incentivati a correre via da lui.", "Nessuna affermazione puo` prendere la ChuckNorrisException.", "Chuck Norris puo` scrivere applicazioni multi-thread con un singolo thread.", "Chuck Norris non ha bisogno di usare AJAX perche` le pagine hanno troppa paura di postback comunque.", "Chuck Norris non usa la riflessione, la riflessione chiede educatamente il suo aiuto.", "Non c'e` alcun tasto Esc sulla tastiera di Chuck Norris, perche` nessuno sfugge a Chuck Norris.", "Chuck Norris puo` eseguire la ricerca binaria di dati non ordinati.", "Chuck Norris non ha bisogno di tentativi di cattura, le eccezioni sono troppo spaventate da sollevarsi.", "Chuck Norris e` uscito da un ciclo infinito.", "Se Chuck Norris scrive codice con bug, gli errori si risolvono da soli.", "L'hosting di Chuck Norris e` garantito al 101% di uptime.", "La tastiera di Chuck Norris ha il tasto Any.", "Chuck Norris puo` accedere al database dall'interfaccia utente.", "I programmi di Chuck Norris non escono mai, sono terminati.", "I programmi di Chuck Norris occupano il 150% della CPU, anche quando non sono in esecuzione.", "Chuck Norris puo` generare thread che si completano prima di essere avviati.", "I programmi di Chuck Norris non accettano input.", "Chuck Norris puo` installare iTunes senza installare Quicktime.", "Chuck Norris non ha bisogno di un sistema operativo.", "Il modello di rete OSI di Chuck Norris ha un solo livello: fisico.", "Chuck Norris puo` compilare errori di sintassi.", "Chuck Norris non ha bisogno di digitare cast. Il Chuck-Norris Compiler (CNC) vede attraverso le cose, fino in fondo sempre.", "Chuck Norris comprime i suoi file con un calcio rotante sul disco rigido.", "Con Chuck Norris P = NP. Non c'e` alcun nondeterminismo con le decisioni di Chuck Norris.", "Chuck Norris puo` recuperare qualsiasi cosa da / dev / null.", "Nessuno ha mai programmato in coppia con Chuck Norris ed e`vissuto per raccontare la storia.", "Nessuno ha mai parlato durante la revisione del codice di Chuck Norris ed e` vissuto per raccontare la storia.", "Chuck Norris non usa una GUI, preferisce la linea di comando.", "Chuck Norris non usa Oracle, lui e` l'Oracle.", "Chuck Norris puo` dereferenziare NULL.", "Una differenza tra il tuo codice e quello di Chuck Norris e` infinita.", "Il plugin Chuck Norris Eclipse e` diventato un contatto alieno.", "Chuck Norris e` l'ultimo mutex, tutti i thread lo temono.", "Non preoccuparti dei test, i test case di Chuck Norris coprono anche il tuo codice.", "Le dichiarazioni del registro di Chuck Norris sono sempre al livello FATAL.", "Chuck Norris ha completato World of Warcraft.", "Quando Chuck Norris rompe la build, non e` possibile risolverla, perche` non c'e` una sola riga di codice.", "Chuck Norris scrive con un dito, lo punta alla tastiera e la tastiera fa il resto.", "I programmi di Chuck Norris possono superare il test di Turing fissando l'interrogatore.", "Se provi kill -9 con i programmi di Chuck Norris, si ritorce contro.", "Chuck Norris esegue loop infiniti in meno di 4 secondi.", "Chuck Norris puo` sovrascrivere una variabile bloccata.", "Chuck Norris conosce il valore di NULL.", "Chuck Norris puo` installare un sistema operativo a 64 bit su macchine a 32 bit.", "Chuck Norris puo` scrivere su un flusso di output.", "Chuck Norris puo` leggere da un flusso di input.", "Chuck Norris non ha mai scritto il suo programma in codice macchina. Le macchine hanno imparato a interpretare il codice di Chuck Norris.", "I test unitari di Chuck Norris non girano, muoiono.", "Chuck Norris causa la schermata blu della morte.", "Chuck Norris puo` fare una classe che e` sia astratta che finale.", "Chuck Norris potrebbe usare qualsiasi cosa in java.util.* per ucciderti, inclusi i javadoc.", "Il codice gira piu` velocemente quando Chuck Norris lo guarda.", "Chuck Norris non usa REST, lui aspetta.", "Su Facebook a tutti piace Chuck Norris, che lo scelgano o no.", "Non puoi seguire Chuck Norris su Twitter, perche` lui ti segue.", "La calcolatrice di Chuck Norris ha solo 3 tasti: 0, 1 e NAND.", "Chuck Norris utilizza solo variabili globali. Non ha nulla da nascondere.", "Chuck Norris scrive direttamente in binario. Quindi scrive il codice sorgente come documentazione per altri programmatori.", ] jokes_it = { 'neutral': neutral, 'chuck': chuck, 'all': neutral + chuck, }
79.639344
145
0.727734
7b191347b98ae4c00435b6eecae4ff90355437ef
1,412
py
Python
dlk/python/dlk/core/model.py
progrunner17/blueoil
5cbe8b2ceebaaa7a6582a377031ae92855bed0aa
[ "Apache-2.0" ]
1
2019-10-09T04:41:02.000Z
2019-10-09T04:41:02.000Z
dlk/python/dlk/core/model.py
progrunner17/blueoil
5cbe8b2ceebaaa7a6582a377031ae92855bed0aa
[ "Apache-2.0" ]
1
2019-02-07T12:20:52.000Z
2019-02-08T07:22:48.000Z
dlk/python/dlk/core/model.py
progrunner17/blueoil
5cbe8b2ceebaaa7a6582a377031ae92855bed0aa
[ "Apache-2.0" ]
2
2019-02-08T10:03:34.000Z
2019-03-20T06:25:55.000Z
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Model module. It contains model info, which includes graph inside.""" from core.graph import Graph class Model(object): """Class that represents a model.""" def __init__(self) -> None: """Init the model. Currently, just generates a blank graph inside.""" self.__graph: Graph = Graph() @property def graph(self) -> Graph: """Return the graph in this model.""" return self.__graph @graph.setter def graph(self, val: Graph) -> None: del self.__graph self.__graph = val def is_valid_graph(self) -> bool: """Return if the graph is a valid one. This is just for testing.""" return self.__graph.check_nodes()
35.3
79
0.646601
92ed16359e6dcfb6bab57762fca98b145efab0dc
3,380
py
Python
configs/_base_/models/faster_rcnn_r50_fpn.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
295
2020-07-16T13:03:29.000Z
2022-03-29T05:20:12.000Z
configs/_base_/models/faster_rcnn_r50_fpn.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
136
2021-07-11T11:26:54.000Z
2022-03-31T02:45:34.000Z
configs/_base_/models/faster_rcnn_r50_fpn.py
deepakksingh/mmdetection
b0d845f1fecf8064db30ef6b456b6ef5f36fa40f
[ "Apache-2.0" ]
84
2021-05-29T06:58:14.000Z
2022-03-31T07:44:10.000Z
model = dict( type='FasterRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) )
30.727273
77
0.532544
1282c8a66d1b7100c97d18f6e669ff3b928a2477
1,253
py
Python
nextstrain/cli/command/update.py
mlarrousse/cli
808314eb1ac74231e4500945b0802b235985bf88
[ "MIT" ]
22
2019-11-06T01:47:30.000Z
2022-03-29T15:39:27.000Z
nextstrain/cli/command/update.py
mlarrousse/cli
808314eb1ac74231e4500945b0802b235985bf88
[ "MIT" ]
141
2018-06-29T23:45:45.000Z
2022-03-31T21:02:03.000Z
nextstrain/cli/command/update.py
mlarrousse/cli
808314eb1ac74231e4500945b0802b235985bf88
[ "MIT" ]
18
2018-07-24T16:33:52.000Z
2021-02-16T20:12:11.000Z
""" Updates your local copy of the default container image. This may take several minutes as the layers of the image are downloaded. """ from functools import partial from ..util import colored, check_for_new_version from ..runner import all_runners def register_parser(subparser): parser = subparser.add_parser("update", help = "Update your local image copy") return parser def run(opts): # Check our own version for updates newer_version = check_for_new_version() success = partial(colored, "green") failure = partial(colored, "red") notice = partial(colored, "yellow") statuses = [ runner.update() for runner in all_runners ] # Print overall status all_good = False not in statuses if all_good: print() print(success("Your images are up to date!")) if newer_version: print() print(notice("…but consider upgrading nextstrain-cli too, as noted above.")) else: print() print(failure("Updating images failed")) if newer_version: print() print(notice("Maybe upgrading nextstrain-cli, as noted above, will help?")) # Return a 1 or 0 exit code return int(not all_good)
26.104167
88
0.652035
ccb213fd91b33d2719b671ee32ae3816418d68a5
473
py
Python
yatube/posts/admin.py
ATIMSRU/yatube_project
8d7818c312a2ec311778b1e25b24bbe4715d55ec
[ "MIT" ]
null
null
null
yatube/posts/admin.py
ATIMSRU/yatube_project
8d7818c312a2ec311778b1e25b24bbe4715d55ec
[ "MIT" ]
null
null
null
yatube/posts/admin.py
ATIMSRU/yatube_project
8d7818c312a2ec311778b1e25b24bbe4715d55ec
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Group, Post # Register your models here. class PostAdmin(admin.ModelAdmin): list_display = ('pk', 'text', 'pub_date', 'author', 'group') list_editable = ('group',) search_fields = ('text',) list_filter = ('pub_date',) # Это свойство сработает для всех колонок: где пусто — там будет эта строка empty_value_display = '-пусто-' admin.site.register(Post, PostAdmin) admin.site.register(Group)
31.533333
80
0.697674
8230c6bf63d64026443f6ad65e1c991017c3119e
1,724
py
Python
disc_tool/social_graph.py
tomasff/disc
e10ab5d36920254ef1ae50cd3f53f65edd1f8ea4
[ "MIT" ]
1
2022-03-28T11:20:10.000Z
2022-03-28T11:20:10.000Z
disc_tool/social_graph.py
tomasff/disc
e10ab5d36920254ef1ae50cd3f53f65edd1f8ea4
[ "MIT" ]
null
null
null
disc_tool/social_graph.py
tomasff/disc
e10ab5d36920254ef1ae50cd3f53f65edd1f8ea4
[ "MIT" ]
null
null
null
from enum import Enum, unique, auto from datetime import datetime import networkx as nx @unique class InteractionType(Enum): MESSAGE_REACTION = auto() MESSAGE_REPLY = auto() MESSAGE_MENTION = auto() class Interaction: def __init__(self, user1, user2, recorded_at, type): self.user1 = user1 self.user2 = user2 self.type = type self.recorded_at = recorded_at def weight(self, t_now, half_life): return 0.5 ** ((t_now - self.recorded_at).total_seconds() / half_life) class SocialInteractionGraph: def __init__(self, name, weights, half_life=172800): self.name = name self.t_now = datetime.now() self.weights = weights self.half_life = half_life self.graph = nx.Graph( name=self.name, half_life=self.half_life, ) def _calc_edge_weight(self, interaction): return self.weights[interaction.type.name] * interaction.weight( self.t_now, self.half_life ) def add_interaction(self, interaction): user1, user2 = interaction.user1, interaction.user2 weight = self._calc_edge_weight(interaction) if weight == 0: return self.graph.add_node(user1) self.graph.add_node(user2) if not self.graph.has_edge(user1, user2): self.graph.add_edge(user1, user2, weight=0) self.graph[user1][user2]["weight"] += self._calc_edge_weight(interaction) @property def edges(self): return self.graph.number_of_edges() @property def nodes(self): return self.graph.number_of_nodes() def save(self): nx.write_gexf(self.graph, f"{self.name}.gexf")
24.985507
81
0.636311
2d1f4287b53d4d9575a419729927d56fc44c0f01
5,801
py
Python
MPU6050_cal.py
bunny1985/mpu6050_DMP_python
cb2ffaa55514ee63792ec9738e0c4be064b4c344
[ "MIT" ]
6
2021-05-18T19:44:48.000Z
2022-03-03T06:47:01.000Z
MPU6050_cal.py
bunny1985/mpu6050_DMP_python
cb2ffaa55514ee63792ec9738e0c4be064b4c344
[ "MIT" ]
null
null
null
MPU6050_cal.py
bunny1985/mpu6050_DMP_python
cb2ffaa55514ee63792ec9738e0c4be064b4c344
[ "MIT" ]
1
2021-09-03T14:06:06.000Z
2021-09-03T14:06:06.000Z
from MPU6050RPI import MPU6050 from SimplePID import SimplePID import struct def to_short(somebytes): return struct.unpack('>h', somebytes)[0] def avg_from_array(a_array): sum = 0.0 for index in range(0, len(a_array)): if isinstance(a_array[index], (bytes, bytearray)): a_array[index] = to_short(a_array[index]) sum += a_array[index] return sum / len(a_array) i2c_bus = 1 device_address = 0x68 # The offsets are different for each device and should be changed # accordingly using a calibration procedure x_accel_offset = 0 y_accel_offset = 0 z_accel_offset = 0 x_gyro_offset = 0 y_gyro_offset = 0 z_gyro_offset = 0 enable_debug_output = True mpu = MPU6050(i2c_bus, device_address, x_accel_offset, y_accel_offset, z_accel_offset, x_gyro_offset, y_gyro_offset, z_gyro_offset, enable_debug_output) kp = 0.03125 ki = 0.25 kd = 0 pidax = SimplePID(0, -150, 15000, kp, ki, kd, 100, True) piday = SimplePID(0, -150, 15000, kp, ki, kd, 100, True) pidaz = SimplePID(0, -150, 15000, kp, ki, kd, 100, True) pidgx = SimplePID(0, -150, 15000, kp, ki, kd, 100, True) pidgy = SimplePID(0, -150, 15000, kp, ki, kd, 100, True) pidgz = SimplePID(0, -15000, 15000, kp, ki, kd, 100, True) accel_reading = mpu.get_acceleration() x_accel_reading = accel_reading[0] y_accel_reading = accel_reading[1] z_accel_reading = accel_reading[2] x_accel_avg = [0] * 100 y_accel_avg = [0] * 100 z_accel_avg = [0] * 100 x_accel_offset_avg = [0] * 100 y_accel_offset_avg = [0] * 100 z_accel_offset_avg = [0] * 100 axindex = 0 ayindex = 0 azindex = 0 gyro_reading = mpu.get_rotation() x_gyro_reading = gyro_reading[0] y_gyro_reading = gyro_reading[1] z_gyro_reading = gyro_reading[2] x_gyro_avg = [0] * 100 y_gyro_avg = [0] * 100 z_gyro_avg = [0] * 100 x_gyro_offset_avg = [0] * 100 y_gyro_offset_avg = [0] * 100 z_gyro_offset_avg = [0] * 100 gxindex = 0 gyindex = 0 gzindex = 0 try: while True: accel_reading = mpu.get_acceleration() x_accel_reading = accel_reading[0] y_accel_reading = accel_reading[1] z_accel_reading = accel_reading[2] gyro_reading = mpu.get_rotation() x_gyro_reading = gyro_reading[0] y_gyro_reading = gyro_reading[1] z_gyro_reading = gyro_reading[2] if pidax.check_time(): x_accel_offset = pidax.get_output_value(to_short(x_accel_reading)) mpu.set_x_accel_offset(int(x_accel_offset)) x_accel_avg[axindex] = x_accel_reading x_accel_offset_avg[axindex] = x_accel_offset axindex += 1 if axindex == len(x_accel_avg): axindex = 0 print('x_avg_read: ' + str(avg_from_array(x_accel_avg)) + ' x_avg_offset: ' + str(avg_from_array(x_accel_offset_avg))) print('y_avg_read: ' + str(avg_from_array(y_accel_avg)) + ' y_avg_offset: ' + str(avg_from_array(y_accel_offset_avg))) print('z_avg_read: ' + str(avg_from_array(z_accel_avg)) + ' z_avg_offset: ' + str(avg_from_array(z_accel_offset_avg))) if piday.check_time(): y_accel_offset = piday.get_output_value(to_short(y_accel_reading)) mpu.set_y_accel_offset(int(y_accel_offset)) y_accel_avg[ayindex] = y_accel_reading y_accel_offset_avg[ayindex] = y_accel_offset ayindex += 1 if ayindex == len(y_accel_avg): ayindex = 0 if pidaz.check_time(): z_accel_offset = pidaz.get_output_value(to_short(z_accel_reading)) mpu.set_z_accel_offset(int(z_accel_offset)) z_accel_avg[azindex] = z_accel_reading z_accel_offset_avg[azindex] = z_accel_offset azindex += 1 if azindex == len(z_accel_avg): azindex = 0 # Gyro calibration if pidgx.check_time(): x_gyro_offset = pidgx.get_output_value(to_short(x_gyro_reading)) mpu.set_x_gyro_offset(int(x_gyro_offset)) x_gyro_avg[gxindex] = x_gyro_reading x_gyro_offset_avg[gxindex] = x_gyro_offset gxindex += 1 if gxindex == len(x_gyro_avg): gxindex = 0 print('x_avg_read_gyro: ' + str(avg_from_array(x_gyro_avg)) + ' x_avg_offset: ' + str(avg_from_array(x_gyro_offset_avg))) print('y_avg_read_gyro: ' + str(avg_from_array(y_gyro_avg)) + ' y_avg_offset: ' + str(avg_from_array(y_gyro_offset_avg))) print('z_avg_read_gyro: ' + str(avg_from_array(z_gyro_avg)) + ' z_avg_offset: ' + str(avg_from_array(z_gyro_offset_avg))) if pidgy.check_time(): y_gyro_offset = pidgy.get_output_value(to_short(y_gyro_reading)) mpu.set_y_gyro_offset(int(y_gyro_offset)) y_gyro_avg[gyindex] = y_gyro_reading y_gyro_offset_avg[gyindex] = y_gyro_offset gyindex += 1 if gyindex == len(y_gyro_avg): gyindex = 0 if pidgz.check_time(): z_gyro_offset = pidgz.get_output_value(to_short(z_gyro_reading)) mpu.set_z_gyro_offset(int(z_gyro_offset)) z_gyro_avg[gzindex] = z_gyro_reading z_gyro_offset_avg[gzindex] = z_gyro_offset gzindex += 1 if gzindex == len(z_gyro_avg): gzindex = 0 except KeyboardInterrupt: pass
29.596939
78
0.604034
e18770a344360f6b0100c6876d2b35412cf5b112
4,432
py
Python
n_dist_keying/n_distance_voter.py
JKamlah/ocromore
f9d302eff234478c98e03740adf6bbeeafe7db8d
[ "Apache-2.0" ]
16
2018-04-20T11:11:18.000Z
2020-01-14T11:11:59.000Z
n_dist_keying/n_distance_voter.py
JKamlah/ocromore
f9d302eff234478c98e03740adf6bbeeafe7db8d
[ "Apache-2.0" ]
2
2019-09-16T06:22:02.000Z
2020-08-27T23:11:49.000Z
n_dist_keying/n_distance_voter.py
JKamlah/ocromore
f9d302eff234478c98e03740adf6bbeeafe7db8d
[ "Apache-2.0" ]
4
2019-07-18T18:01:05.000Z
2020-07-10T18:44:09.000Z
from n_dist_keying.distance_storage import DistanceStorage from n_dist_keying.text_comparator import TextComparator import numpy as np class NDistanceVoter(object): def __init__(self, texts): self.d_storage = DistanceStorage() self._texts = texts def set_texts(self, new_texts): self._texts = new_texts def get_texts(self): return self._texts def reset(self): self.d_storage = DistanceStorage() self._texts = [] def compare_texts(self, take_longest_on_empty_lines=False, vote_without_spaces=False): """ Compares an array of texts and gives the n_distance vote :param texts: :return: """ texts_loc = self.get_texts() if vote_without_spaces: for text_index, text in enumerate(texts_loc): texts_loc[text_index] = text.replace(" ","") if take_longest_on_empty_lines is True: texts = self.get_texts() textlens = [] number_empty = 0 for text in texts: if text is False or text is True: text = "" # todo verify this correct j4t 20.02 textlens.append(len(text)) if text.strip(" ") == "": number_empty += 1 too_less_text = (len(texts)-number_empty) <= 2 if too_less_text: # if too less strings to compare, just take the longest string as result selected_index = np.argmax(textlens) return selected_index # do a text-wise comparison, which calculates a distance between all texts in this set for text_index, text in enumerate(texts_loc): self.compare_with_other_texts(text_index, text) # calculate the distance from each item in set to all others for text_index, text in enumerate(texts_loc): self.d_storage.calculate_accumulated_distance(text_index) # get the index of the item in set, which has the shortest distance to all others self.d_storage.calculate_shortest_distance_index() shortest_dist_index = self.d_storage.get_shortest_distance_index() return shortest_dist_index def compare_with_other_texts(self, text_index, text): for text_index_cmp, text_cmp in enumerate(self.get_texts()): # if line has the same index, continue if text_index is text_index_cmp: continue existing_distance = self.d_storage.fetch_value(text_index, text_index_cmp) # if line was already compared, continue if existing_distance is not None: continue distance = self.get_distance(text, text_cmp) self.d_storage.store_value(text_index, text_index_cmp, distance) def get_distance(self, text1, text2): # todo add more possibilities for distance measurement, i.e confidences, edit distance, context weighting MODE_DIFFLIB = 'difflib' #best bet MODE_NORMED_LEVENSHTEIN = 'normed_levenshtein' # longest alignment normed levenshtein distance MODE_SORENSEN = 'sorensen' MODE_JACCARD = 'jaccard' MODE_HAMMING = 'hamming' MODE_MYERS = 'myers' # use myers special difflib sequence matcher mode = MODE_DIFFLIB # set your mode here # return a fixed negative value if one of the strings is not defined if text1 is False and text2 is False or text1 is None and text2 is None: return 0 # One is false and one is not false if (text1 is False or text2 is False) or (text1 is None or text2 is None): return 1 dist = 1 if mode == MODE_DIFFLIB: dist = TextComparator.compare_ocr_strings_difflib_seqmatch(text1, text2) elif mode == MODE_NORMED_LEVENSHTEIN: dist = TextComparator.compare_ocr_strings_levensthein_normed(text1, text2) elif mode == MODE_HAMMING: dist = TextComparator.compare_ocr_strings_hamming(text1, text2) elif mode == MODE_SORENSEN: dist = TextComparator.compare_ocr_strings_sorensen(text1, text2) elif mode == MODE_JACCARD: dist = TextComparator.compare_ocr_strings_jaccard(text1, text2) elif mode == MODE_MYERS: dist = TextComparator.compare_ocr_strings_myers(text1, text2) return dist
36.327869
113
0.644179
1faf03dc44027fd6373e1cca66669a053cb042d1
47,964
py
Python
research/object_detection/utils/config_util.py
sudharsan02358/project
6d309477eb445b76ddc0b832439d9cd41dd41a27
[ "Apache-2.0" ]
2
2021-04-02T12:21:35.000Z
2021-12-14T07:29:38.000Z
research/object_detection/utils/config_util.py
sudharsan02358/project
6d309477eb445b76ddc0b832439d9cd41dd41a27
[ "Apache-2.0" ]
null
null
null
research/object_detection/utils/config_util.py
sudharsan02358/project
6d309477eb445b76ddc0b832439d9cd41dd41a27
[ "Apache-2.0" ]
1
2021-12-04T19:35:04.000Z
2021-12-04T19:35:04.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for reading and updating configuration files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf import text_format import tensorflow.compat.v1 as tf from tensorflow.python.lib.io import file_io from object_detection.protos import eval_pb2 from object_detection.protos import graph_rewriter_pb2 from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import pipeline_pb2 from object_detection.protos import train_pb2 def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") meta_architecture_config = getattr(model_config, meta_architecture) if hasattr(meta_architecture_config, "image_resizer"): return getattr(meta_architecture_config, "image_resizer") else: raise ValueError("{} has no image_reszier_config".format( meta_architecture)) def get_spatial_image_size(image_resizer_config): """Returns expected spatial size of the output image from a given config. Args: image_resizer_config: An image_resizer_pb2.ImageResizer. Returns: A list of two integers of the form [height, width]. `height` and `width` are set -1 if they cannot be determined during graph construction. Raises: ValueError: If the model type is not recognized. """ if image_resizer_config.HasField("fixed_shape_resizer"): return [ image_resizer_config.fixed_shape_resizer.height, image_resizer_config.fixed_shape_resizer.width ] if image_resizer_config.HasField("keep_aspect_ratio_resizer"): if image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension: return [image_resizer_config.keep_aspect_ratio_resizer.max_dimension] * 2 else: return [-1, -1] if image_resizer_config.HasField( "identity_resizer") or image_resizer_config.HasField( "conditional_shape_resizer"): return [-1, -1] raise ValueError("Unknown image resizer type.") def get_max_num_context_features(model_config): """Returns maximum number of context features from a given config. Args: model_config: A model config file. Returns: An integer specifying the max number of context features if the model config contains context_config, None otherwise """ meta_architecture = model_config.WhichOneof("model") meta_architecture_config = getattr(model_config, meta_architecture) if hasattr(meta_architecture_config, "context_config"): return meta_architecture_config.context_config.max_num_context_features def get_context_feature_length(model_config): """Returns context feature length from a given config. Args: model_config: A model config file. Returns: An integer specifying the fixed length of each feature in context_features. """ meta_architecture = model_config.WhichOneof("model") meta_architecture_config = getattr(model_config, meta_architecture) if hasattr(meta_architecture_config, "context_config"): return meta_architecture_config.context_config.context_feature_length def get_configs_from_pipeline_file(pipeline_config_path, config_override=None): """Reads config from a file containing pipeline_pb2.TrainEvalPipelineConfig. Args: pipeline_config_path: Path to pipeline_pb2.TrainEvalPipelineConfig text proto. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override pipeline_config_path. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_config`. Value are the corresponding config objects. """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(pipeline_config_path, "r") as f: proto_str = f.read() text_format.Merge(proto_str, pipeline_config) if config_override: text_format.Merge(config_override, pipeline_config) return create_configs_from_pipeline_proto(pipeline_config) def clear_fine_tune_checkpoint(pipeline_config_path, new_pipeline_config_path): """Clears fine_tune_checkpoint and writes a new pipeline config file.""" configs = get_configs_from_pipeline_file(pipeline_config_path) configs["train_config"].fine_tune_checkpoint = "" configs["train_config"].load_all_detection_checkpoint_vars = False pipeline_proto = create_pipeline_proto_from_configs(configs) with tf.gfile.Open(new_pipeline_config_path, "wb") as f: f.write(text_format.MessageToString(pipeline_proto)) def update_fine_tune_checkpoint_type(train_config): """Set `fine_tune_checkpoint_type` using `from_detection_checkpoint`. `train_config.from_detection_checkpoint` field is deprecated. For backward compatibility, this function sets `train_config.fine_tune_checkpoint_type` based on `train_config.from_detection_checkpoint`. Args: train_config: train_pb2.TrainConfig proto object. """ if not train_config.fine_tune_checkpoint_type: if train_config.from_detection_checkpoint: train_config.fine_tune_checkpoint_type = "detection" else: train_config.fine_tune_checkpoint_type = "classification" def create_configs_from_pipeline_proto(pipeline_config): """Creates a configs dictionary from pipeline_pb2.TrainEvalPipelineConfig. Args: pipeline_config: pipeline_pb2.TrainEvalPipelineConfig proto object. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_configs`. Value are the corresponding config objects or list of config objects (only for eval_input_configs). """ configs = {} configs["model"] = pipeline_config.model configs["train_config"] = pipeline_config.train_config configs["train_input_config"] = pipeline_config.train_input_reader configs["eval_config"] = pipeline_config.eval_config configs["eval_input_configs"] = pipeline_config.eval_input_reader # Keeps eval_input_config only for backwards compatibility. All clients should # read eval_input_configs instead. if configs["eval_input_configs"]: configs["eval_input_config"] = configs["eval_input_configs"][0] if pipeline_config.HasField("graph_rewriter"): configs["graph_rewriter_config"] = pipeline_config.graph_rewriter return configs def get_graph_rewriter_config_from_file(graph_rewriter_config_file): """Parses config for graph rewriter. Args: graph_rewriter_config_file: file path to the graph rewriter config. Returns: graph_rewriter_pb2.GraphRewriter proto """ graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() with tf.gfile.GFile(graph_rewriter_config_file, "r") as f: text_format.Merge(f.read(), graph_rewriter_config) return graph_rewriter_config def create_pipeline_proto_from_configs(configs): """Creates a pipeline_pb2.TrainEvalPipelineConfig from configs dictionary. This function performs the inverse operation of create_configs_from_pipeline_proto(). Args: configs: Dictionary of configs. See get_configs_from_pipeline_file(). Returns: A fully populated pipeline_pb2.TrainEvalPipelineConfig. """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.CopyFrom(configs["model"]) pipeline_config.train_config.CopyFrom(configs["train_config"]) pipeline_config.train_input_reader.CopyFrom(configs["train_input_config"]) pipeline_config.eval_config.CopyFrom(configs["eval_config"]) pipeline_config.eval_input_reader.extend(configs["eval_input_configs"]) if "graph_rewriter_config" in configs: pipeline_config.graph_rewriter.CopyFrom(configs["graph_rewriter_config"]) return pipeline_config def save_pipeline_config(pipeline_config, directory): """Saves a pipeline config text file to disk. Args: pipeline_config: A pipeline_pb2.TrainEvalPipelineConfig. directory: The model directory into which the pipeline config file will be saved. """ if not file_io.file_exists(directory): file_io.recursive_create_dir(directory) pipeline_config_path = os.path.join(directory, "pipeline.config") config_text = text_format.MessageToString(pipeline_config) with tf.gfile.Open(pipeline_config_path, "wb") as f: tf.logging.info("Writing pipeline config file to %s", pipeline_config_path) f.write(config_text) def get_configs_from_multiple_files(model_config_path="", train_config_path="", train_input_config_path="", eval_config_path="", eval_input_config_path="", graph_rewriter_config_path=""): """Reads training configuration from multiple config files. Args: model_config_path: Path to model_pb2.DetectionModel. train_config_path: Path to train_pb2.TrainConfig. train_input_config_path: Path to input_reader_pb2.InputReader. eval_config_path: Path to eval_pb2.EvalConfig. eval_input_config_path: Path to input_reader_pb2.InputReader. graph_rewriter_config_path: Path to graph_rewriter_pb2.GraphRewriter. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_config`. Key/Values are returned only for valid (non-empty) strings. """ configs = {} if model_config_path: model_config = model_pb2.DetectionModel() with tf.gfile.GFile(model_config_path, "r") as f: text_format.Merge(f.read(), model_config) configs["model"] = model_config if train_config_path: train_config = train_pb2.TrainConfig() with tf.gfile.GFile(train_config_path, "r") as f: text_format.Merge(f.read(), train_config) configs["train_config"] = train_config if train_input_config_path: train_input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(train_input_config_path, "r") as f: text_format.Merge(f.read(), train_input_config) configs["train_input_config"] = train_input_config if eval_config_path: eval_config = eval_pb2.EvalConfig() with tf.gfile.GFile(eval_config_path, "r") as f: text_format.Merge(f.read(), eval_config) configs["eval_config"] = eval_config if eval_input_config_path: eval_input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(eval_input_config_path, "r") as f: text_format.Merge(f.read(), eval_input_config) configs["eval_input_configs"] = [eval_input_config] if graph_rewriter_config_path: configs["graph_rewriter_config"] = get_graph_rewriter_config_from_file( graph_rewriter_config_path) return configs def get_number_of_classes(model_config): """Returns the number of classes for a detection model. Args: model_config: A model_pb2.DetectionModel. Returns: Number of classes. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") meta_architecture_config = getattr(model_config, meta_architecture) if hasattr(meta_architecture_config, "num_classes"): return meta_architecture_config.num_classes else: raise ValueError("{} does not have num_classes.".format(meta_architecture)) def get_optimizer_type(train_config): """Returns the optimizer type for training. Args: train_config: A train_pb2.TrainConfig. Returns: The type of the optimizer """ return train_config.optimizer.WhichOneof("optimizer") def get_learning_rate_type(optimizer_config): """Returns the learning rate type for training. Args: optimizer_config: An optimizer_pb2.Optimizer. Returns: The type of the learning rate. """ return optimizer_config.learning_rate.WhichOneof("learning_rate") def _is_generic_key(key): """Determines whether the key starts with a generic config dictionary key.""" for prefix in [ "graph_rewriter_config", "model", "train_input_config", "train_config", "eval_config"]: if key.startswith(prefix + "."): return True return False def _check_and_convert_legacy_input_config_key(key): """Checks key and converts legacy input config update to specific update. Args: key: string indicates the target of update operation. Returns: is_valid_input_config_key: A boolean indicating whether the input key is to update input config(s). key_name: 'eval_input_configs' or 'train_input_config' string if is_valid_input_config_key is true. None if is_valid_input_config_key is false. input_name: always returns None since legacy input config key never specifies the target input config. Keeping this output only to match the output form defined for input config update. field_name: the field name in input config. `key` itself if is_valid_input_config_key is false. """ key_name = None input_name = None field_name = key is_valid_input_config_key = True if field_name == "train_shuffle": key_name = "train_input_config" field_name = "shuffle" elif field_name == "eval_shuffle": key_name = "eval_input_configs" field_name = "shuffle" elif field_name == "train_input_path": key_name = "train_input_config" field_name = "input_path" elif field_name == "eval_input_path": key_name = "eval_input_configs" field_name = "input_path" elif field_name == "append_train_input_path": key_name = "train_input_config" field_name = "input_path" elif field_name == "append_eval_input_path": key_name = "eval_input_configs" field_name = "input_path" else: is_valid_input_config_key = False return is_valid_input_config_key, key_name, input_name, field_name def check_and_parse_input_config_key(configs, key): """Checks key and returns specific fields if key is valid input config update. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). key: string indicates the target of update operation. Returns: is_valid_input_config_key: A boolean indicate whether the input key is to update input config(s). key_name: 'eval_input_configs' or 'train_input_config' string if is_valid_input_config_key is true. None if is_valid_input_config_key is false. input_name: the name of the input config to be updated. None if is_valid_input_config_key is false. field_name: the field name in input config. `key` itself if is_valid_input_config_key is false. Raises: ValueError: when the input key format doesn't match any known formats. ValueError: if key_name doesn't match 'eval_input_configs' or 'train_input_config'. ValueError: if input_name doesn't match any name in train or eval input configs. ValueError: if field_name doesn't match any supported fields. """ key_name = None input_name = None field_name = None fields = key.split(":") if len(fields) == 1: field_name = key return _check_and_convert_legacy_input_config_key(key) elif len(fields) == 3: key_name = fields[0] input_name = fields[1] field_name = fields[2] else: raise ValueError("Invalid key format when overriding configs.") # Checks if key_name is valid for specific update. if key_name not in ["eval_input_configs", "train_input_config"]: raise ValueError("Invalid key_name when overriding input config.") # Checks if input_name is valid for specific update. For train input config it # should match configs[key_name].name, for eval input configs it should match # the name field of one of the eval_input_configs. if isinstance(configs[key_name], input_reader_pb2.InputReader): is_valid_input_name = configs[key_name].name == input_name else: is_valid_input_name = input_name in [ eval_input_config.name for eval_input_config in configs[key_name] ] if not is_valid_input_name: raise ValueError("Invalid input_name when overriding input config.") # Checks if field_name is valid for specific update. if field_name not in [ "input_path", "label_map_path", "shuffle", "mask_type", "sample_1_of_n_examples" ]: raise ValueError("Invalid field_name when overriding input config.") return True, key_name, input_name, field_name def merge_external_params_with_configs(configs, hparams=None, kwargs_dict=None): """Updates `configs` dictionary based on supplied parameters. This utility is for modifying specific fields in the object detection configs. Say that one would like to experiment with different learning rates, momentum values, or batch sizes. Rather than creating a new config text file for each experiment, one can use a single base config file, and update particular values. There are two types of field overrides: 1. Strategy-based overrides, which update multiple relevant configuration options. For example, updating `learning_rate` will update both the warmup and final learning rates. In this case key can be one of the following formats: 1. legacy update: single string that indicates the attribute to be updated. E.g. 'label_map_path', 'eval_input_path', 'shuffle'. Note that when updating fields (e.g. eval_input_path, eval_shuffle) in eval_input_configs, the override will only be applied when eval_input_configs has exactly 1 element. 2. specific update: colon separated string that indicates which field in which input_config to update. It should have 3 fields: - key_name: Name of the input config we should update, either 'train_input_config' or 'eval_input_configs' - input_name: a 'name' that can be used to identify elements, especially when configs[key_name] is a repeated field. - field_name: name of the field that you want to override. For example, given configs dict as below: configs = { 'model': {...} 'train_config': {...} 'train_input_config': {...} 'eval_config': {...} 'eval_input_configs': [{ name:"eval_coco", ...}, { name:"eval_voc", ... }] } Assume we want to update the input_path of the eval_input_config whose name is 'eval_coco'. The `key` would then be: 'eval_input_configs:eval_coco:input_path' 2. Generic key/value, which update a specific parameter based on namespaced configuration keys. For example, `model.ssd.loss.hard_example_miner.max_negatives_per_positive` will update the hard example miner configuration for an SSD model config. Generic overrides are automatically detected based on the namespaced keys. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). hparams: A `HParams`. kwargs_dict: Extra keyword arguments that are treated the same way as attribute/value pairs in `hparams`. Note that hyperparameters with the same names will override keyword arguments. Returns: `configs` dictionary. Raises: ValueError: when the key string doesn't match any of its allowed formats. """ if kwargs_dict is None: kwargs_dict = {} if hparams: kwargs_dict.update(hparams.values()) for key, value in kwargs_dict.items(): tf.logging.info("Maybe overwriting %s: %s", key, value) # pylint: disable=g-explicit-bool-comparison if value == "" or value is None: continue # pylint: enable=g-explicit-bool-comparison elif _maybe_update_config_with_key_value(configs, key, value): continue elif _is_generic_key(key): _update_generic(configs, key, value) else: tf.logging.info("Ignoring config override key: %s", key) return configs def _maybe_update_config_with_key_value(configs, key, value): """Checks key type and updates `configs` with the key value pair accordingly. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). key: String indicates the field(s) to be updated. value: Value used to override existing field value. Returns: A boolean value that indicates whether the override succeeds. Raises: ValueError: when the key string doesn't match any of the formats above. """ is_valid_input_config_key, key_name, input_name, field_name = ( check_and_parse_input_config_key(configs, key)) if is_valid_input_config_key: update_input_reader_config( configs, key_name=key_name, input_name=input_name, field_name=field_name, value=value) elif field_name == "learning_rate": _update_initial_learning_rate(configs, value) elif field_name == "batch_size": _update_batch_size(configs, value) elif field_name == "momentum_optimizer_value": _update_momentum_optimizer_value(configs, value) elif field_name == "classification_localization_weight_ratio": # Localization weight is fixed to 1.0. _update_classification_localization_weight_ratio(configs, value) elif field_name == "focal_loss_gamma": _update_focal_loss_gamma(configs, value) elif field_name == "focal_loss_alpha": _update_focal_loss_alpha(configs, value) elif field_name == "train_steps": _update_train_steps(configs, value) elif field_name == "label_map_path": _update_label_map_path(configs, value) elif field_name == "mask_type": _update_mask_type(configs, value) elif field_name == "sample_1_of_n_eval_examples": _update_all_eval_input_configs(configs, "sample_1_of_n_examples", value) elif field_name == "eval_num_epochs": _update_all_eval_input_configs(configs, "num_epochs", value) elif field_name == "eval_with_moving_averages": _update_use_moving_averages(configs, value) elif field_name == "retain_original_images_in_eval": _update_retain_original_images(configs["eval_config"], value) elif field_name == "use_bfloat16": _update_use_bfloat16(configs, value) elif field_name == "retain_original_image_additional_channels_in_eval": _update_retain_original_image_additional_channels(configs["eval_config"], value) elif field_name == "num_classes": _update_num_classes(configs["model"], value) elif field_name == "sample_from_datasets_weights": _update_sample_from_datasets_weights(configs["train_input_config"], value) elif field_name == "peak_max_pool_kernel_size": _update_peak_max_pool_kernel_size(configs["model"], value) elif field_name == "candidate_search_scale": _update_candidate_search_scale(configs["model"], value) elif field_name == "candidate_ranking_mode": _update_candidate_ranking_mode(configs["model"], value) elif field_name == "score_distance_offset": _update_score_distance_offset(configs["model"], value) elif field_name == "box_scale": _update_box_scale(configs["model"], value) elif field_name == "keypoint_candidate_score_threshold": _update_keypoint_candidate_score_threshold(configs["model"], value) elif field_name == "rescore_instances": _update_rescore_instances(configs["model"], value) else: return False return True def _update_tf_record_input_path(input_config, input_path): """Updates input configuration to reflect a new input path. The input_config object is updated in place, and hence not returned. Args: input_config: A input_reader_pb2.InputReader. input_path: A path to data or list of paths. Raises: TypeError: if input reader type is not `tf_record_input_reader`. """ input_reader_type = input_config.WhichOneof("input_reader") if input_reader_type == "tf_record_input_reader": input_config.tf_record_input_reader.ClearField("input_path") if isinstance(input_path, list): input_config.tf_record_input_reader.input_path.extend(input_path) else: input_config.tf_record_input_reader.input_path.append(input_path) else: raise TypeError("Input reader type must be `tf_record_input_reader`.") def update_input_reader_config(configs, key_name=None, input_name=None, field_name=None, value=None, path_updater=_update_tf_record_input_path): """Updates specified input reader config field. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). key_name: Name of the input config we should update, either 'train_input_config' or 'eval_input_configs' input_name: String name used to identify input config to update with. Should be either None or value of the 'name' field in one of the input reader configs. field_name: Field name in input_reader_pb2.InputReader. value: Value used to override existing field value. path_updater: helper function used to update the input path. Only used when field_name is "input_path". Raises: ValueError: when input field_name is None. ValueError: when input_name is None and number of eval_input_readers does not equal to 1. """ if isinstance(configs[key_name], input_reader_pb2.InputReader): # Updates singular input_config object. target_input_config = configs[key_name] if field_name == "input_path": path_updater(input_config=target_input_config, input_path=value) else: setattr(target_input_config, field_name, value) elif input_name is None and len(configs[key_name]) == 1: # Updates first (and the only) object of input_config list. target_input_config = configs[key_name][0] if field_name == "input_path": path_updater(input_config=target_input_config, input_path=value) else: setattr(target_input_config, field_name, value) elif input_name is not None and len(configs[key_name]): # Updates input_config whose name matches input_name. update_count = 0 for input_config in configs[key_name]: if input_config.name == input_name: setattr(input_config, field_name, value) update_count = update_count + 1 if not update_count: raise ValueError( "Input name {} not found when overriding.".format(input_name)) elif update_count > 1: raise ValueError("Duplicate input name found when overriding.") else: key_name = "None" if key_name is None else key_name input_name = "None" if input_name is None else input_name field_name = "None" if field_name is None else field_name raise ValueError("Unknown input config overriding: " "key_name:{}, input_name:{}, field_name:{}.".format( key_name, input_name, field_name)) def _update_initial_learning_rate(configs, learning_rate): """Updates `configs` to reflect the new initial learning rate. This function updates the initial learning rate. For learning rate schedules, all other defined learning rates in the pipeline config are scaled to maintain their same ratio with the initial learning rate. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). learning_rate: Initial learning rate for optimizer. Raises: TypeError: if optimizer type is not supported, or if learning rate type is not supported. """ optimizer_type = get_optimizer_type(configs["train_config"]) if optimizer_type == "rms_prop_optimizer": optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer elif optimizer_type == "momentum_optimizer": optimizer_config = configs["train_config"].optimizer.momentum_optimizer elif optimizer_type == "adam_optimizer": optimizer_config = configs["train_config"].optimizer.adam_optimizer else: raise TypeError("Optimizer %s is not supported." % optimizer_type) learning_rate_type = get_learning_rate_type(optimizer_config) if learning_rate_type == "constant_learning_rate": constant_lr = optimizer_config.learning_rate.constant_learning_rate constant_lr.learning_rate = learning_rate elif learning_rate_type == "exponential_decay_learning_rate": exponential_lr = ( optimizer_config.learning_rate.exponential_decay_learning_rate) exponential_lr.initial_learning_rate = learning_rate elif learning_rate_type == "manual_step_learning_rate": manual_lr = optimizer_config.learning_rate.manual_step_learning_rate original_learning_rate = manual_lr.initial_learning_rate learning_rate_scaling = float(learning_rate) / original_learning_rate manual_lr.initial_learning_rate = learning_rate for schedule in manual_lr.schedule: schedule.learning_rate *= learning_rate_scaling elif learning_rate_type == "cosine_decay_learning_rate": cosine_lr = optimizer_config.learning_rate.cosine_decay_learning_rate learning_rate_base = cosine_lr.learning_rate_base warmup_learning_rate = cosine_lr.warmup_learning_rate warmup_scale_factor = warmup_learning_rate / learning_rate_base cosine_lr.learning_rate_base = learning_rate cosine_lr.warmup_learning_rate = warmup_scale_factor * learning_rate else: raise TypeError("Learning rate %s is not supported." % learning_rate_type) def _update_batch_size(configs, batch_size): """Updates `configs` to reflect the new training batch size. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). batch_size: Batch size to use for training (Ideally a power of 2). Inputs are rounded, and capped to be 1 or greater. """ configs["train_config"].batch_size = max(1, int(round(batch_size))) def _validate_message_has_field(message, field): if not message.HasField(field): raise ValueError("Expecting message to have field %s" % field) def _update_generic(configs, key, value): """Update a pipeline configuration parameter based on a generic key/value. Args: configs: Dictionary of pipeline configuration protos. key: A string key, dot-delimited to represent the argument key. e.g. "model.ssd.train_config.batch_size" value: A value to set the argument to. The type of the value must match the type for the protocol buffer. Note that setting the wrong type will result in a TypeError. e.g. 42 Raises: ValueError if the message key does not match the existing proto fields. TypeError the value type doesn't match the protobuf field type. """ fields = key.split(".") first_field = fields.pop(0) last_field = fields.pop() message = configs[first_field] for field in fields: _validate_message_has_field(message, field) message = getattr(message, field) _validate_message_has_field(message, last_field) setattr(message, last_field, value) def _update_momentum_optimizer_value(configs, momentum): """Updates `configs` to reflect the new momentum value. Momentum is only supported for RMSPropOptimizer and MomentumOptimizer. For any other optimizer, no changes take place. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). momentum: New momentum value. Values are clipped at 0.0 and 1.0. Raises: TypeError: If the optimizer type is not `rms_prop_optimizer` or `momentum_optimizer`. """ optimizer_type = get_optimizer_type(configs["train_config"]) if optimizer_type == "rms_prop_optimizer": optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer elif optimizer_type == "momentum_optimizer": optimizer_config = configs["train_config"].optimizer.momentum_optimizer else: raise TypeError("Optimizer type must be one of `rms_prop_optimizer` or " "`momentum_optimizer`.") optimizer_config.momentum_optimizer_value = min(max(0.0, momentum), 1.0) def _update_classification_localization_weight_ratio(configs, ratio): """Updates the classification/localization weight loss ratio. Detection models usually define a loss weight for both classification and objectness. This function updates the weights such that the ratio between classification weight to localization weight is the ratio provided. Arbitrarily, localization weight is set to 1.0. Note that in the case of Faster R-CNN, this same ratio is applied to the first stage objectness loss weight relative to localization loss weight. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). ratio: Desired ratio of classification (and/or objectness) loss weight to localization loss weight. """ meta_architecture = configs["model"].WhichOneof("model") if meta_architecture == "faster_rcnn": model = configs["model"].faster_rcnn model.first_stage_localization_loss_weight = 1.0 model.first_stage_objectness_loss_weight = ratio model.second_stage_localization_loss_weight = 1.0 model.second_stage_classification_loss_weight = ratio if meta_architecture == "ssd": model = configs["model"].ssd model.loss.localization_weight = 1.0 model.loss.classification_weight = ratio def _get_classification_loss(model_config): """Returns the classification loss for a model.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": model = model_config.faster_rcnn classification_loss = model.second_stage_classification_loss elif meta_architecture == "ssd": model = model_config.ssd classification_loss = model.loss.classification_loss else: raise TypeError("Did not recognize the model architecture.") return classification_loss def _update_focal_loss_gamma(configs, gamma): """Updates the gamma value for a sigmoid focal loss. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). gamma: Exponent term in focal loss. Raises: TypeError: If the classification loss is not `weighted_sigmoid_focal`. """ classification_loss = _get_classification_loss(configs["model"]) classification_loss_type = classification_loss.WhichOneof( "classification_loss") if classification_loss_type != "weighted_sigmoid_focal": raise TypeError("Classification loss must be `weighted_sigmoid_focal`.") classification_loss.weighted_sigmoid_focal.gamma = gamma def _update_focal_loss_alpha(configs, alpha): """Updates the alpha value for a sigmoid focal loss. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). alpha: Class weight multiplier for sigmoid loss. Raises: TypeError: If the classification loss is not `weighted_sigmoid_focal`. """ classification_loss = _get_classification_loss(configs["model"]) classification_loss_type = classification_loss.WhichOneof( "classification_loss") if classification_loss_type != "weighted_sigmoid_focal": raise TypeError("Classification loss must be `weighted_sigmoid_focal`.") classification_loss.weighted_sigmoid_focal.alpha = alpha def _update_train_steps(configs, train_steps): """Updates `configs` to reflect new number of training steps.""" configs["train_config"].num_steps = int(train_steps) def _update_all_eval_input_configs(configs, field, value): """Updates the content of `field` with `value` for all eval input configs.""" for eval_input_config in configs["eval_input_configs"]: setattr(eval_input_config, field, value) def _update_label_map_path(configs, label_map_path): """Updates the label map path for both train and eval input readers. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). label_map_path: New path to `StringIntLabelMap` pbtxt file. """ configs["train_input_config"].label_map_path = label_map_path _update_all_eval_input_configs(configs, "label_map_path", label_map_path) def _update_mask_type(configs, mask_type): """Updates the mask type for both train and eval input readers. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). mask_type: A string name representing a value of input_reader_pb2.InstanceMaskType """ configs["train_input_config"].mask_type = mask_type _update_all_eval_input_configs(configs, "mask_type", mask_type) def _update_use_moving_averages(configs, use_moving_averages): """Updates the eval config option to use or not use moving averages. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). use_moving_averages: Boolean indicating whether moving average variables should be loaded during evaluation. """ configs["eval_config"].use_moving_averages = use_moving_averages def _update_retain_original_images(eval_config, retain_original_images): """Updates eval config with option to retain original images. The eval_config object is updated in place, and hence not returned. Args: eval_config: A eval_pb2.EvalConfig. retain_original_images: Boolean indicating whether to retain original images in eval mode. """ eval_config.retain_original_images = retain_original_images def _update_use_bfloat16(configs, use_bfloat16): """Updates `configs` to reflect the new setup on whether to use bfloat16. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). use_bfloat16: A bool, indicating whether to use bfloat16 for training. """ configs["train_config"].use_bfloat16 = use_bfloat16 def _update_retain_original_image_additional_channels( eval_config, retain_original_image_additional_channels): """Updates eval config to retain original image additional channels or not. The eval_config object is updated in place, and hence not returned. Args: eval_config: A eval_pb2.EvalConfig. retain_original_image_additional_channels: Boolean indicating whether to retain original image additional channels in eval mode. """ eval_config.retain_original_image_additional_channels = ( retain_original_image_additional_channels) def remove_unecessary_ema(variables_to_restore, no_ema_collection=None): """Remap and Remove EMA variable that are not created during training. ExponentialMovingAverage.variables_to_restore() returns a map of EMA names to tf variables to restore. E.g.: { conv/batchnorm/gamma/ExponentialMovingAverage: conv/batchnorm/gamma, conv_4/conv2d_params/ExponentialMovingAverage: conv_4/conv2d_params, global_step: global_step } This function takes care of the extra ExponentialMovingAverage variables that get created during eval but aren't available in the checkpoint, by remapping the key to the shallow copy of the variable itself, and remove the entry of its EMA from the variables to restore. An example resulting dictionary would look like: { conv/batchnorm/gamma: conv/batchnorm/gamma, conv_4/conv2d_params: conv_4/conv2d_params, global_step: global_step } Args: variables_to_restore: A dictionary created by ExponentialMovingAverage. variables_to_restore(). no_ema_collection: A list of namescope substrings to match the variables to eliminate EMA. Returns: A variables_to_restore dictionary excluding the collection of unwanted EMA mapping. """ if no_ema_collection is None: return variables_to_restore for key in variables_to_restore: if "ExponentialMovingAverage" in key: for name in no_ema_collection: if name in key: variables_to_restore[key.replace("/ExponentialMovingAverage", "")] = variables_to_restore[key] del variables_to_restore[key] return variables_to_restore def _update_num_classes(model_config, num_classes): meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": model_config.faster_rcnn.num_classes = num_classes if meta_architecture == "ssd": model_config.ssd.num_classes = num_classes def _update_sample_from_datasets_weights(input_reader_config, weights): """Updated sample_from_datasets_weights with overrides.""" if len(weights) != len(input_reader_config.sample_from_datasets_weights): raise ValueError( "sample_from_datasets_weights override has a different number of values" " ({}) than the configured dataset weights ({})." .format( len(input_reader_config.sample_from_datasets_weights), len(weights))) del input_reader_config.sample_from_datasets_weights[:] input_reader_config.sample_from_datasets_weights.extend(weights) def _update_peak_max_pool_kernel_size(model_config, kernel_size): """Updates the max pool kernel size (NMS) for keypoints in CenterNet.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.peak_max_pool_kernel_size = kernel_size else: tf.logging.warning("Ignoring config override key for " "peak_max_pool_kernel_size since there are multiple " "keypoint estimation tasks") def _update_candidate_search_scale(model_config, search_scale): """Updates the keypoint candidate search scale in CenterNet.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.candidate_search_scale = search_scale else: tf.logging.warning("Ignoring config override key for " "candidate_search_scale since there are multiple " "keypoint estimation tasks") def _update_candidate_ranking_mode(model_config, mode): """Updates how keypoints are snapped to candidates in CenterNet.""" if mode not in ("min_distance", "score_distance_ratio"): raise ValueError("Attempting to set the keypoint candidate ranking mode " "to {}, but the only options are 'min_distance' and " "'score_distance_ratio'.".format(mode)) meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.candidate_ranking_mode = mode else: tf.logging.warning("Ignoring config override key for " "candidate_ranking_mode since there are multiple " "keypoint estimation tasks") def _update_score_distance_offset(model_config, offset): """Updates the keypoint candidate selection metric. See CenterNet proto.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.score_distance_offset = offset else: tf.logging.warning("Ignoring config override key for " "score_distance_offset since there are multiple " "keypoint estimation tasks") def _update_box_scale(model_config, box_scale): """Updates the keypoint candidate search region. See CenterNet proto.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.box_scale = box_scale else: tf.logging.warning("Ignoring config override key for box_scale since " "there are multiple keypoint estimation tasks") def _update_keypoint_candidate_score_threshold(model_config, threshold): """Updates the keypoint candidate score threshold. See CenterNet proto.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.keypoint_candidate_score_threshold = threshold else: tf.logging.warning("Ignoring config override key for " "keypoint_candidate_score_threshold since there are " "multiple keypoint estimation tasks") def _update_rescore_instances(model_config, should_rescore): """Updates whether boxes should be rescored based on keypoint confidences.""" if isinstance(should_rescore, str): should_rescore = True if should_rescore == "True" else False meta_architecture = model_config.WhichOneof("model") if meta_architecture == "center_net": if len(model_config.center_net.keypoint_estimation_task) == 1: kpt_estimation_task = model_config.center_net.keypoint_estimation_task[0] kpt_estimation_task.rescore_instances = should_rescore else: tf.logging.warning("Ignoring config override key for " "rescore_instances since there are multiple keypoint " "estimation tasks")
39.903494
80
0.748541
355543aa3fb8cac417d062551c3a3dc9b6182c76
3,151
py
Python
students/K33402/Beresnev_Andrey/lab2/Hotels/Hotels/settings.py
agentofknowledge/ITMO_ICT_WebDevelopment_2020-2021
7d5eab0d68af378083f21473cbbd5e5def6aa60a
[ "MIT" ]
4
2020-09-03T15:41:42.000Z
2021-12-24T15:28:20.000Z
students/K33402/Beresnev_Andrey/lab2/Hotels/Hotels/settings.py
agentofknowledge/ITMO_ICT_WebDevelopment_2020-2021
7d5eab0d68af378083f21473cbbd5e5def6aa60a
[ "MIT" ]
48
2020-09-13T20:22:42.000Z
2021-04-30T11:13:30.000Z
students/K33402/Beresnev_Andrey/lab2/Hotels/Hotels/settings.py
agentofknowledge/ITMO_ICT_WebDevelopment_2020-2021
7d5eab0d68af378083f21473cbbd5e5def6aa60a
[ "MIT" ]
69
2020-09-06T10:32:37.000Z
2021-11-28T18:13:17.000Z
""" Django settings for Hotels project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'l%7#mxzms=z5doaru!1#n9zf(siqa+i52skx0cl_z7w!lwnop1' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'MyApp' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Hotels.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Hotels.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_USER_MODEL = 'MyApp.Client' AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
25.617886
91
0.698826
8990b10749eb08d19bc3e8dc990e34611495b5e1
249
py
Python
atcoder/abc062/a.py
Ashindustry007/competitive-programming
2eabd3975c029d235abb7854569593d334acae2f
[ "WTFPL" ]
506
2018-08-22T10:30:38.000Z
2022-03-31T10:01:49.000Z
atcoder/abc062/a.py
Ashindustry007/competitive-programming
2eabd3975c029d235abb7854569593d334acae2f
[ "WTFPL" ]
13
2019-08-07T18:31:18.000Z
2020-12-15T21:54:41.000Z
atcoder/abc062/a.py
Ashindustry007/competitive-programming
2eabd3975c029d235abb7854569593d334acae2f
[ "WTFPL" ]
234
2018-08-06T17:11:41.000Z
2022-03-26T10:56:42.000Z
#!/usr/bin/env python3 # https://abc062.contest.atcoder.jp/tasks/abc062_a x, y = map(int, input().split()) s = [4, 6, 9, 11] if x in s and y in s: print('Yes') elif x in s or y in s: print('No') elif x == 2 or y == 2: print('No') else: print('Yes')
27.666667
50
0.606426
e72e7a23cff9901315046bfb52f2e631f6ffff5e
1,964
py
Python
knover/tasks/__init__.py
Vonderland/Knover
73815ed6f91a301674001a8d29f3a0356e627ea6
[ "Apache-2.0" ]
1
2020-07-06T07:21:01.000Z
2020-07-06T07:21:01.000Z
knover/tasks/__init__.py
Vonderland/Knover
73815ed6f91a301674001a8d29f3a0356e627ea6
[ "Apache-2.0" ]
1
2020-07-04T04:58:47.000Z
2020-07-04T04:58:47.000Z
knover/tasks/__init__.py
Vonderland/Knover
73815ed6f91a301674001a8d29f3a0356e627ea6
[ "Apache-2.0" ]
1
2020-07-04T04:38:19.000Z
2020-07-04T04:38:19.000Z
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define task.""" from knover.core.task import Task from knover.utils import parse_args TASK_REGISTRY = {} __all__ = [ "TASK_REGISTRY", "register_task", "create_task", "add_cmdline_args" ] def register_task(name): """Register a new task class.""" def __wrapped__(cls): if name in TASK_REGISTRY: raise ValueError(f"Cannot register duplicate task ({name})") if not issubclass(cls, Task): raise ValueError(f"Task ({name}: {cls.__name__}) must extend Task") TASK_REGISTRY[name] = cls return cls return __wrapped__ def create_task(args) -> Task: """Create a task.""" return TASK_REGISTRY[args.task](args) def add_cmdline_args(parser): """Add cmdline argument of Task.""" group = parser.add_argument_group("Task") group.add_argument("--task", type=str, required=True, help="The task type.") args = parse_args(parser, allow_unknown=True) if args.task not in TASK_REGISTRY: raise ValueError(f"Unknown task type: {args.task}") TASK_REGISTRY[args.task].add_cmdline_args(parser) return group import knover.tasks.classification import knover.tasks.dense_embedding import knover.tasks.dialog_generation import knover.tasks.knowledge_augmented_generation import knover.tasks.next_sentence_prediction
29.757576
79
0.710285
b91eb028b394a5b6b3cadc9b8045844afe8c7082
1,397
py
Python
kiez/io/temp_file_handling.py
cthoyt/kiez
25f9f103ed51d4084e10f7ac532bb24183fe3894
[ "BSD-3-Clause" ]
null
null
null
kiez/io/temp_file_handling.py
cthoyt/kiez
25f9f103ed51d4084e10f7ac532bb24183fe3894
[ "BSD-3-Clause" ]
null
null
null
kiez/io/temp_file_handling.py
cthoyt/kiez
25f9f103ed51d4084e10f7ac532bb24183fe3894
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # SPDX-License-Identifier: BSD-3-Clause # Author: Roman Feldbauer import logging from tempfile import NamedTemporaryFile, mkstemp __all__ = ["create_tempfile_preferably_in_dir"] def create_tempfile_preferably_in_dir( suffix: str = None, prefix: str = None, directory: str = None, persistent: bool = False, ): """Create a temporary file with precedence for directory if possible, in TMP otherwise. For example, this is useful to try to save into /dev/shm. Parameters --------- suffix: str suffix of tempfile prefix: str prefix of tempfile directory: str directory where tempfile should preferably be created persistent: bool If True create a persistent file Returns ------- path string path of tempfile """ temp_file = mkstemp if persistent else NamedTemporaryFile try: handle = temp_file(suffix=suffix, prefix=prefix, dir=directory) warn = False except FileNotFoundError: handle = temp_file(suffix=suffix, prefix=prefix, dir=None) warn = True # Extract the path (as string) try: path = handle.name except AttributeError: _, path = handle if warn: logging.warning( f"Could not create temp file in {directory}. Instead, the path is {path}." ) return path
25.4
91
0.645669
5ff42d896dc54ed117f9d976667e723816959ee4
3,354
py
Python
pychron/extraction_line/stop_watch.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
31
2016-03-07T02:38:17.000Z
2022-02-14T18:23:43.000Z
pychron/extraction_line/stop_watch.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
1,626
2015-01-07T04:52:35.000Z
2022-03-25T19:15:59.000Z
pychron/extraction_line/stop_watch.py
UIllinoisHALPychron/pychron
f21b79f4592a9fb9dc9a4cb2e4e943a3885ededc
[ "Apache-2.0" ]
26
2015-05-23T00:10:06.000Z
2022-03-07T16:51:57.000Z
# =============================================================================== # Copyright 2013 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import import time from pyface.timer.timer import Timer from traits.api import HasTraits, Button, Int, Bool, Property from traitsui.api import ( Handler, View, Item, UItem, VGroup, HGroup, spring, Spring, ButtonEditor, ) from pychron.core.ui.lcd_editor import LCDEditor try: from AppKit import NSSpeechSynthesizer SPEECHSYNTH = NSSpeechSynthesizer.alloc().initWithVoice_( "com.apple.speech.synthesis.voice.Vicki" ) SPEECHSYNTH.setRate_(275) except ImportError: SPEECHSYNTH = None class StopWatchHandler(Handler): def closed(self, info, isok): info.object.destroy() class StopWatch(HasTraits): start_stop_button = Button reset_button = Button("Reset") current_time = Int call_interval = Int(5) _alive = Bool start_stop_label = Property(depends_on="_alive") _base_time = 0 _timer = None def destroy(self): if self._timer: self._timer.Stop() def _iter(self): elapsed = int(round(time.time() - self._start_time)) self.current_time = self._base_time + elapsed if self.call_interval and not self.current_time % self.call_interval: if SPEECHSYNTH: SPEECHSYNTH.startSpeakingString_(str(self.current_time)) def _reset_button_fired(self): self.current_time = 0 self._base_time = 0 def _start_stop_button_fired(self): if self._alive: self._timer.Stop() self._base_time = self.current_time else: self._start_time = time.time() t = Timer(1000, self._iter) self._timer = t self._alive = not self._alive def traits_view(self): v = View( VGroup( UItem("current_time", editor=LCDEditor()), HGroup( UItem( "start_stop_button", editor=ButtonEditor(label_value="start_stop_label"), ), UItem("reset_button", enabled_when="not _alive"), spring, Item("call_interval"), ), ), handler=StopWatchHandler, title="StopWatch", ) return v def _get_start_stop_label(self): return "Stop" if self._alive else "Start" if __name__ == "__main__": s = StopWatch() s.configure_traits() # ============= EOF =============================================
27.95
81
0.576923
7513c6f14503a52e177f87a88b8df1b56efd057c
7,067
py
Python
src/pyspd/loader.py
michalbachowski/pyspd
fe5bdb37d9b46ef11ac5739ba768d9455286abca
[ "MIT" ]
null
null
null
src/pyspd/loader.py
michalbachowski/pyspd
fe5bdb37d9b46ef11ac5739ba768d9455286abca
[ "MIT" ]
null
null
null
src/pyspd/loader.py
michalbachowski/pyspd
fe5bdb37d9b46ef11ac5739ba768d9455286abca
[ "MIT" ]
null
null
null
import importlib from logging import getLogger import os import sys logger = getLogger(__name__) class LoaderInterface(object): """Interface for any loader class""" def load(self, names): """ Locates and loads plugin modules using built in strategy Arguments: :param names: names (paths, module names) to be loaded :type names: Iterable[str] """ raise NotImplementedError() class LoaderAggregate(LoaderInterface): """Plugin loader that aggregates other plugin loaders""" def __init__(self, loaders): """Object initialization Arguments: :param loaders: loaders to be aggregated :type loaders: Iterable[LoaderInterface] """ self._loaders = list(loaders) def load(self, names): """ Loads plugins using given loaders Arguments: :param names: names (paths, module names) to be loaded :type names: Iterable[str] """ for loader in self._loaders: loader.load(names) class LoaderFile(LoaderInterface): """Loads plugins in given file or directory. Loads module from given file or directory""" def __init__(self): """ Object initialization """ self._module_name_cache = [] def load(self, names): """ Loads a set of plugins at the given path. Arguments: :param names: file paths to load plugin from :type names: Iterable[str] """ for path in names: filename = os.path.basename(path) dirname = os.path.dirname(path) self._load_module_from_file(dirname, filename) def _load_module_from_file(self, path, filename): """Loads module from given file and path Arguments: :param path: path where file is placed :type path: string :param filename: name of file to load :type filename: string """ logger.debug("loading module from file; path=[%s]; filename=[%s]", path, filename) (path, name) = self._prepare_module_name(path, filename) if not self._valid_module_information(path, name): return self._import_module(path, name) def _prepare_module_name(self, plugin_dir, item): """ Prepares name of module to load Arguments: :param plugin_dir: directory where module is placed :type plugin_dir: string :param item: name of module file (might be file of directory) :type item: string :returns: string -- name of module to load """ if item == '__pycache__': return (None, None) if item.startswith('__init__.py'): return (os.path.dirname(plugin_dir), os.path.basename(plugin_dir)) if item.endswith(".py"): return (plugin_dir, item[:-3]) if item.endswith(".pyc"): return (None, None) if os.path.isdir(os.path.join(plugin_dir, item)): return (plugin_dir, item) return (None, None) def _valid_module_information(self, path, name): """Checks if given module name is valid Arguments: :param name: module name :type name: string :returns: bool -- information whether module name is valid """ if name is None: return False tmpname = os.path.join(path, name) if tmpname in self._module_name_cache: return False self._module_name_cache.append(tmpname) return True def _import_module(self, path, name): """ Imports module given as path to directory and module name Arguments: :param path: path to import module from :type path: string :param name: name of module :type name: string :returns: object -- loaded module """ if path not in sys.path: sys.path.insert(0, path) logger.debug('loading module; module=%s; sys.path=%s', name, ' '.join(sys.path)) importlib.import_module(name) class LoaderDir(LoaderFile): """Loads plugins in given directory. By default any module (file or directory) inside this directory will be treated as potential plugin""" def load(self, names): """ Loads a set of plugins at the given path. Arguments: :param names: path to directories to load plugins from :type names: Iterable[str] """ for path in names: logger.debug("Loading directory; dir=[%s]", path) self._find_plugins_in_path(path) def _find_plugins_in_path(self, path): """Looks for plugins in given path Arguments: :param path: path to search for plugins in :type path: string """ plugin_dir = os.path.realpath(path) for filename in os.listdir(plugin_dir): self._load_module_from_file(plugin_dir, filename) class LoaderRecursiveDir(LoaderFile): """Loads plugins in given directory recursively. By default any files inside this directory will be treated as potential plugin""" def load(self, names): """ Loads a set of plugins at the given path. Arguments: :param names: path to directories to load plugins from :type names: Iterable[str] """ logger.debug('loading plugins from paths: %s', ' '.join(names)) for path in names: self._find_plugins_in_path(path) def _find_plugins_in_path(self, path): """Looks for plugins in given path Arguments: :param path: path to search for plugins in :type path: string """ plugin_dir = os.path.realpath(path) for filename in os.listdir(plugin_dir): self._handle_path(plugin_dir, filename) def _handle_path(self, plugin_dir, filename): tmp_dir = os.path.join(plugin_dir, filename) if os.path.isdir(tmp_dir): logger.debug('filename is dir, searching recursively; name=%s', filename) self._find_plugins_in_path(tmp_dir) return logger.debug('filename is file, loading; name=%s', filename) self._load_module_from_file(plugin_dir, filename) class LoaderModule(LoaderInterface): """Loads plugins given as pure python module name (foo.bar.baz). Loader expects that PYTHONPATH is set correctly """ def load(self, names): """ Loads plugins from given modules Arguments: :param names: names of modules to be loaded :type names: Iterable[str] """ for module in names: importlib.import_module(module)
30.330472
78
0.582991
25e726f2c31d9843eed6bb79fd87e4c01d3760ef
40,525
py
Python
src/_pytest/assertion/rewrite.py
rosemichaele/pytest
1c0ab3c2a32f7932378a1c37106d082784cb4700
[ "MIT" ]
2
2020-08-30T13:12:52.000Z
2020-09-03T05:38:28.000Z
src/_pytest/assertion/rewrite.py
rosemichaele/pytest
1c0ab3c2a32f7932378a1c37106d082784cb4700
[ "MIT" ]
9
2020-08-11T15:19:55.000Z
2022-03-12T00:11:12.000Z
src/_pytest/assertion/rewrite.py
rosemichaele/pytest
1c0ab3c2a32f7932378a1c37106d082784cb4700
[ "MIT" ]
3
2020-12-03T13:39:33.000Z
2021-04-13T02:58:04.000Z
"""Rewrite assertion AST to produce nice error messages""" import ast import errno import functools import importlib.abc import importlib.machinery import importlib.util import io import itertools import marshal import os import struct import sys import tokenize import types from typing import Dict from typing import List from typing import Optional from typing import Set from typing import Tuple from _pytest._io.saferepr import saferepr from _pytest._version import version from _pytest.assertion import util from _pytest.assertion.util import ( # noqa: F401 format_explanation as _format_explanation, ) from _pytest.compat import fspath from _pytest.pathlib import fnmatch_ex from _pytest.pathlib import Path from _pytest.pathlib import PurePath # pytest caches rewritten pycs in pycache dirs PYTEST_TAG = "{}-pytest-{}".format(sys.implementation.cache_tag, version) PYC_EXT = ".py" + (__debug__ and "c" or "o") PYC_TAIL = "." + PYTEST_TAG + PYC_EXT class AssertionRewritingHook(importlib.abc.MetaPathFinder): """PEP302/PEP451 import hook which rewrites asserts.""" def __init__(self, config): self.config = config try: self.fnpats = config.getini("python_files") except ValueError: self.fnpats = ["test_*.py", "*_test.py"] self.session = None self._rewritten_names = set() # type: Set[str] self._must_rewrite = set() # type: Set[str] # flag to guard against trying to rewrite a pyc file while we are already writing another pyc file, # which might result in infinite recursion (#3506) self._writing_pyc = False self._basenames_to_check_rewrite = {"conftest"} self._marked_for_rewrite_cache = {} # type: Dict[str, bool] self._session_paths_checked = False def set_session(self, session): self.session = session self._session_paths_checked = False # Indirection so we can mock calls to find_spec originated from the hook during testing _find_spec = importlib.machinery.PathFinder.find_spec def find_spec(self, name, path=None, target=None): if self._writing_pyc: return None state = self.config._assertstate if self._early_rewrite_bailout(name, state): return None state.trace("find_module called for: %s" % name) spec = self._find_spec(name, path) if ( # the import machinery could not find a file to import spec is None # this is a namespace package (without `__init__.py`) # there's nothing to rewrite there # python3.5 - python3.6: `namespace` # python3.7+: `None` or spec.origin == "namespace" or spec.origin is None # we can only rewrite source files or not isinstance(spec.loader, importlib.machinery.SourceFileLoader) # if the file doesn't exist, we can't rewrite it or not os.path.exists(spec.origin) ): return None else: fn = spec.origin if not self._should_rewrite(name, fn, state): return None return importlib.util.spec_from_file_location( name, fn, loader=self, submodule_search_locations=spec.submodule_search_locations, ) def create_module(self, spec): return None # default behaviour is fine def exec_module(self, module): fn = Path(module.__spec__.origin) state = self.config._assertstate self._rewritten_names.add(module.__name__) # The requested module looks like a test file, so rewrite it. This is # the most magical part of the process: load the source, rewrite the # asserts, and load the rewritten source. We also cache the rewritten # module code in a special pyc. We must be aware of the possibility of # concurrent pytest processes rewriting and loading pycs. To avoid # tricky race conditions, we maintain the following invariant: The # cached pyc is always a complete, valid pyc. Operations on it must be # atomic. POSIX's atomic rename comes in handy. write = not sys.dont_write_bytecode cache_dir = get_cache_dir(fn) if write: ok = try_makedirs(cache_dir) if not ok: write = False state.trace("read only directory: {}".format(cache_dir)) cache_name = fn.name[:-3] + PYC_TAIL pyc = cache_dir / cache_name # Notice that even if we're in a read-only directory, I'm going # to check for a cached pyc. This may not be optimal... co = _read_pyc(fn, pyc, state.trace) if co is None: state.trace("rewriting {!r}".format(fn)) source_stat, co = _rewrite_test(fn, self.config) if write: self._writing_pyc = True try: _write_pyc(state, co, source_stat, pyc) finally: self._writing_pyc = False else: state.trace("found cached rewritten pyc for {}".format(fn)) exec(co, module.__dict__) def _early_rewrite_bailout(self, name, state): """This is a fast way to get out of rewriting modules. Profiling has shown that the call to PathFinder.find_spec (inside of the find_spec from this class) is a major slowdown, so, this method tries to filter what we're sure won't be rewritten before getting to it. """ if self.session is not None and not self._session_paths_checked: self._session_paths_checked = True for path in self.session._initialpaths: # Make something as c:/projects/my_project/path.py -> # ['c:', 'projects', 'my_project', 'path.py'] parts = str(path).split(os.path.sep) # add 'path' to basenames to be checked. self._basenames_to_check_rewrite.add(os.path.splitext(parts[-1])[0]) # Note: conftest already by default in _basenames_to_check_rewrite. parts = name.split(".") if parts[-1] in self._basenames_to_check_rewrite: return False # For matching the name it must be as if it was a filename. path = PurePath(os.path.sep.join(parts) + ".py") for pat in self.fnpats: # if the pattern contains subdirectories ("tests/**.py" for example) we can't bail out based # on the name alone because we need to match against the full path if os.path.dirname(pat): return False if fnmatch_ex(pat, path): return False if self._is_marked_for_rewrite(name, state): return False state.trace("early skip of rewriting module: {}".format(name)) return True def _should_rewrite(self, name, fn, state): # always rewrite conftest files if os.path.basename(fn) == "conftest.py": state.trace("rewriting conftest file: {!r}".format(fn)) return True if self.session is not None: if self.session.isinitpath(fn): state.trace( "matched test file (was specified on cmdline): {!r}".format(fn) ) return True # modules not passed explicitly on the command line are only # rewritten if they match the naming convention for test files fn_path = PurePath(fn) for pat in self.fnpats: if fnmatch_ex(pat, fn_path): state.trace("matched test file {!r}".format(fn)) return True return self._is_marked_for_rewrite(name, state) def _is_marked_for_rewrite(self, name: str, state): try: return self._marked_for_rewrite_cache[name] except KeyError: for marked in self._must_rewrite: if name == marked or name.startswith(marked + "."): state.trace( "matched marked file {!r} (from {!r})".format(name, marked) ) self._marked_for_rewrite_cache[name] = True return True self._marked_for_rewrite_cache[name] = False return False def mark_rewrite(self, *names: str) -> None: """Mark import names as needing to be rewritten. The named module or package as well as any nested modules will be rewritten on import. """ already_imported = ( set(names).intersection(sys.modules).difference(self._rewritten_names) ) for name in already_imported: mod = sys.modules[name] if not AssertionRewriter.is_rewrite_disabled( mod.__doc__ or "" ) and not isinstance(mod.__loader__, type(self)): self._warn_already_imported(name) self._must_rewrite.update(names) self._marked_for_rewrite_cache.clear() def _warn_already_imported(self, name): from _pytest.warning_types import PytestAssertRewriteWarning from _pytest.warnings import _issue_warning_captured _issue_warning_captured( PytestAssertRewriteWarning( "Module already imported so cannot be rewritten: %s" % name ), self.config.hook, stacklevel=5, ) def get_data(self, pathname): """Optional PEP302 get_data API.""" with open(pathname, "rb") as f: return f.read() def _write_pyc_fp(fp, source_stat, co): # Technically, we don't have to have the same pyc format as # (C)Python, since these "pycs" should never be seen by builtin # import. However, there's little reason deviate. fp.write(importlib.util.MAGIC_NUMBER) # as of now, bytecode header expects 32-bit numbers for size and mtime (#4903) mtime = int(source_stat.st_mtime) & 0xFFFFFFFF size = source_stat.st_size & 0xFFFFFFFF # "<LL" stands for 2 unsigned longs, little-ending fp.write(struct.pack("<LL", mtime, size)) fp.write(marshal.dumps(co)) if sys.platform == "win32": from atomicwrites import atomic_write def _write_pyc(state, co, source_stat, pyc): try: with atomic_write(fspath(pyc), mode="wb", overwrite=True) as fp: _write_pyc_fp(fp, source_stat, co) except EnvironmentError as e: state.trace("error writing pyc file at {}: errno={}".format(pyc, e.errno)) # we ignore any failure to write the cache file # there are many reasons, permission-denied, pycache dir being a # file etc. return False return True else: def _write_pyc(state, co, source_stat, pyc): proc_pyc = "{}.{}".format(pyc, os.getpid()) try: fp = open(proc_pyc, "wb") except EnvironmentError as e: state.trace( "error writing pyc file at {}: errno={}".format(proc_pyc, e.errno) ) return False try: _write_pyc_fp(fp, source_stat, co) os.rename(proc_pyc, fspath(pyc)) except BaseException as e: state.trace("error writing pyc file at {}: errno={}".format(pyc, e.errno)) # we ignore any failure to write the cache file # there are many reasons, permission-denied, pycache dir being a # file etc. return False finally: fp.close() return True def _rewrite_test(fn, config): """read and rewrite *fn* and return the code object.""" fn = fspath(fn) stat = os.stat(fn) with open(fn, "rb") as f: source = f.read() tree = ast.parse(source, filename=fn) rewrite_asserts(tree, source, fn, config) co = compile(tree, fn, "exec", dont_inherit=True) return stat, co def _read_pyc(source, pyc, trace=lambda x: None): """Possibly read a pytest pyc containing rewritten code. Return rewritten code if successful or None if not. """ try: fp = open(fspath(pyc), "rb") except IOError: return None with fp: try: stat_result = os.stat(fspath(source)) mtime = int(stat_result.st_mtime) size = stat_result.st_size data = fp.read(12) except EnvironmentError as e: trace("_read_pyc({}): EnvironmentError {}".format(source, e)) return None # Check for invalid or out of date pyc file. if ( len(data) != 12 or data[:4] != importlib.util.MAGIC_NUMBER or struct.unpack("<LL", data[4:]) != (mtime & 0xFFFFFFFF, size & 0xFFFFFFFF) ): trace("_read_pyc(%s): invalid or out of date pyc" % source) return None try: co = marshal.load(fp) except Exception as e: trace("_read_pyc({}): marshal.load error {}".format(source, e)) return None if not isinstance(co, types.CodeType): trace("_read_pyc(%s): not a code object" % source) return None return co def rewrite_asserts(mod, source, module_path=None, config=None): """Rewrite the assert statements in mod.""" AssertionRewriter(module_path, config, source).run(mod) def _saferepr(obj): """Get a safe repr of an object for assertion error messages. The assertion formatting (util.format_explanation()) requires newlines to be escaped since they are a special character for it. Normally assertion.util.format_explanation() does this but for a custom repr it is possible to contain one of the special escape sequences, especially '\n{' and '\n}' are likely to be present in JSON reprs. """ return saferepr(obj).replace("\n", "\\n") def _format_assertmsg(obj): """Format the custom assertion message given. For strings this simply replaces newlines with '\n~' so that util.format_explanation() will preserve them instead of escaping newlines. For other objects saferepr() is used first. """ # reprlib appears to have a bug which means that if a string # contains a newline it gets escaped, however if an object has a # .__repr__() which contains newlines it does not get escaped. # However in either case we want to preserve the newline. replaces = [("\n", "\n~"), ("%", "%%")] if not isinstance(obj, str): obj = saferepr(obj) replaces.append(("\\n", "\n~")) for r1, r2 in replaces: obj = obj.replace(r1, r2) return obj def _should_repr_global_name(obj): if callable(obj): return False try: return not hasattr(obj, "__name__") except Exception: return True def _format_boolop(explanations, is_or): explanation = "(" + (is_or and " or " or " and ").join(explanations) + ")" if isinstance(explanation, str): return explanation.replace("%", "%%") else: return explanation.replace(b"%", b"%%") def _call_reprcompare(ops, results, expls, each_obj): # type: (Tuple[str, ...], Tuple[bool, ...], Tuple[str, ...], Tuple[object, ...]) -> str for i, res, expl in zip(range(len(ops)), results, expls): try: done = not res except Exception: done = True if done: break if util._reprcompare is not None: custom = util._reprcompare(ops[i], each_obj[i], each_obj[i + 1]) if custom is not None: return custom return expl def _call_assertion_pass(lineno, orig, expl): # type: (int, str, str) -> None if util._assertion_pass is not None: util._assertion_pass(lineno, orig, expl) def _check_if_assertion_pass_impl(): # type: () -> bool """Checks if any plugins implement the pytest_assertion_pass hook in order not to generate explanation unecessarily (might be expensive)""" return True if util._assertion_pass else False UNARY_MAP = {ast.Not: "not %s", ast.Invert: "~%s", ast.USub: "-%s", ast.UAdd: "+%s"} BINOP_MAP = { ast.BitOr: "|", ast.BitXor: "^", ast.BitAnd: "&", ast.LShift: "<<", ast.RShift: ">>", ast.Add: "+", ast.Sub: "-", ast.Mult: "*", ast.Div: "/", ast.FloorDiv: "//", ast.Mod: "%%", # escaped for string formatting ast.Eq: "==", ast.NotEq: "!=", ast.Lt: "<", ast.LtE: "<=", ast.Gt: ">", ast.GtE: ">=", ast.Pow: "**", ast.Is: "is", ast.IsNot: "is not", ast.In: "in", ast.NotIn: "not in", ast.MatMult: "@", } def set_location(node, lineno, col_offset): """Set node location information recursively.""" def _fix(node, lineno, col_offset): if "lineno" in node._attributes: node.lineno = lineno if "col_offset" in node._attributes: node.col_offset = col_offset for child in ast.iter_child_nodes(node): _fix(child, lineno, col_offset) _fix(node, lineno, col_offset) return node def _get_assertion_exprs(src: bytes) -> Dict[int, str]: """Returns a mapping from {lineno: "assertion test expression"}""" ret = {} # type: Dict[int, str] depth = 0 lines = [] # type: List[str] assert_lineno = None # type: Optional[int] seen_lines = set() # type: Set[int] def _write_and_reset() -> None: nonlocal depth, lines, assert_lineno, seen_lines assert assert_lineno is not None ret[assert_lineno] = "".join(lines).rstrip().rstrip("\\") depth = 0 lines = [] assert_lineno = None seen_lines = set() tokens = tokenize.tokenize(io.BytesIO(src).readline) for tp, source, (lineno, offset), _, line in tokens: if tp == tokenize.NAME and source == "assert": assert_lineno = lineno elif assert_lineno is not None: # keep track of depth for the assert-message `,` lookup if tp == tokenize.OP and source in "([{": depth += 1 elif tp == tokenize.OP and source in ")]}": depth -= 1 if not lines: lines.append(line[offset:]) seen_lines.add(lineno) # a non-nested comma separates the expression from the message elif depth == 0 and tp == tokenize.OP and source == ",": # one line assert with message if lineno in seen_lines and len(lines) == 1: offset_in_trimmed = offset + len(lines[-1]) - len(line) lines[-1] = lines[-1][:offset_in_trimmed] # multi-line assert with message elif lineno in seen_lines: lines[-1] = lines[-1][:offset] # multi line assert with escapd newline before message else: lines.append(line[:offset]) _write_and_reset() elif tp in {tokenize.NEWLINE, tokenize.ENDMARKER}: _write_and_reset() elif lines and lineno not in seen_lines: lines.append(line) seen_lines.add(lineno) return ret class AssertionRewriter(ast.NodeVisitor): """Assertion rewriting implementation. The main entrypoint is to call .run() with an ast.Module instance, this will then find all the assert statements and rewrite them to provide intermediate values and a detailed assertion error. See http://pybites.blogspot.be/2011/07/behind-scenes-of-pytests-new-assertion.html for an overview of how this works. The entry point here is .run() which will iterate over all the statements in an ast.Module and for each ast.Assert statement it finds call .visit() with it. Then .visit_Assert() takes over and is responsible for creating new ast statements to replace the original assert statement: it rewrites the test of an assertion to provide intermediate values and replace it with an if statement which raises an assertion error with a detailed explanation in case the expression is false and calls pytest_assertion_pass hook if expression is true. For this .visit_Assert() uses the visitor pattern to visit all the AST nodes of the ast.Assert.test field, each visit call returning an AST node and the corresponding explanation string. During this state is kept in several instance attributes: :statements: All the AST statements which will replace the assert statement. :variables: This is populated by .variable() with each variable used by the statements so that they can all be set to None at the end of the statements. :variable_counter: Counter to create new unique variables needed by statements. Variables are created using .variable() and have the form of "@py_assert0". :expl_stmts: The AST statements which will be executed to get data from the assertion. This is the code which will construct the detailed assertion message that is used in the AssertionError or for the pytest_assertion_pass hook. :explanation_specifiers: A dict filled by .explanation_param() with %-formatting placeholders and their corresponding expressions to use in the building of an assertion message. This is used by .pop_format_context() to build a message. :stack: A stack of the explanation_specifiers dicts maintained by .push_format_context() and .pop_format_context() which allows to build another %-formatted string while already building one. This state is reset on every new assert statement visited and used by the other visitors. """ def __init__(self, module_path, config, source): super().__init__() self.module_path = module_path self.config = config if config is not None: self.enable_assertion_pass_hook = config.getini( "enable_assertion_pass_hook" ) else: self.enable_assertion_pass_hook = False self.source = source @functools.lru_cache(maxsize=1) def _assert_expr_to_lineno(self): return _get_assertion_exprs(self.source) def run(self, mod: ast.Module) -> None: """Find all assert statements in *mod* and rewrite them.""" if not mod.body: # Nothing to do. return # Insert some special imports at the top of the module but after any # docstrings and __future__ imports. aliases = [ ast.alias("builtins", "@py_builtins"), ast.alias("_pytest.assertion.rewrite", "@pytest_ar"), ] doc = getattr(mod, "docstring", None) expect_docstring = doc is None if doc is not None and self.is_rewrite_disabled(doc): return pos = 0 lineno = 1 for item in mod.body: if ( expect_docstring and isinstance(item, ast.Expr) and isinstance(item.value, ast.Str) ): doc = item.value.s if self.is_rewrite_disabled(doc): return expect_docstring = False elif ( not isinstance(item, ast.ImportFrom) or item.level > 0 or item.module != "__future__" ): lineno = item.lineno break pos += 1 else: lineno = item.lineno imports = [ ast.Import([alias], lineno=lineno, col_offset=0) for alias in aliases ] mod.body[pos:pos] = imports # Collect asserts. nodes = [mod] # type: List[ast.AST] while nodes: node = nodes.pop() for name, field in ast.iter_fields(node): if isinstance(field, list): new = [] # type: List for i, child in enumerate(field): if isinstance(child, ast.Assert): # Transform assert. new.extend(self.visit(child)) else: new.append(child) if isinstance(child, ast.AST): nodes.append(child) setattr(node, name, new) elif ( isinstance(field, ast.AST) # Don't recurse into expressions as they can't contain # asserts. and not isinstance(field, ast.expr) ): nodes.append(field) @staticmethod def is_rewrite_disabled(docstring): return "PYTEST_DONT_REWRITE" in docstring def variable(self): """Get a new variable.""" # Use a character invalid in python identifiers to avoid clashing. name = "@py_assert" + str(next(self.variable_counter)) self.variables.append(name) return name def assign(self, expr): """Give *expr* a name.""" name = self.variable() self.statements.append(ast.Assign([ast.Name(name, ast.Store())], expr)) return ast.Name(name, ast.Load()) def display(self, expr): """Call saferepr on the expression.""" return self.helper("_saferepr", expr) def helper(self, name, *args): """Call a helper in this module.""" py_name = ast.Name("@pytest_ar", ast.Load()) attr = ast.Attribute(py_name, name, ast.Load()) return ast.Call(attr, list(args), []) def builtin(self, name): """Return the builtin called *name*.""" builtin_name = ast.Name("@py_builtins", ast.Load()) return ast.Attribute(builtin_name, name, ast.Load()) def explanation_param(self, expr): """Return a new named %-formatting placeholder for expr. This creates a %-formatting placeholder for expr in the current formatting context, e.g. ``%(py0)s``. The placeholder and expr are placed in the current format context so that it can be used on the next call to .pop_format_context(). """ specifier = "py" + str(next(self.variable_counter)) self.explanation_specifiers[specifier] = expr return "%(" + specifier + ")s" def push_format_context(self): """Create a new formatting context. The format context is used for when an explanation wants to have a variable value formatted in the assertion message. In this case the value required can be added using .explanation_param(). Finally .pop_format_context() is used to format a string of %-formatted values as added by .explanation_param(). """ self.explanation_specifiers = {} # type: Dict[str, ast.expr] self.stack.append(self.explanation_specifiers) def pop_format_context(self, expl_expr): """Format the %-formatted string with current format context. The expl_expr should be an ast.Str instance constructed from the %-placeholders created by .explanation_param(). This will add the required code to format said string to .expl_stmts and return the ast.Name instance of the formatted string. """ current = self.stack.pop() if self.stack: self.explanation_specifiers = self.stack[-1] keys = [ast.Str(key) for key in current.keys()] format_dict = ast.Dict(keys, list(current.values())) form = ast.BinOp(expl_expr, ast.Mod(), format_dict) name = "@py_format" + str(next(self.variable_counter)) if self.enable_assertion_pass_hook: self.format_variables.append(name) self.expl_stmts.append(ast.Assign([ast.Name(name, ast.Store())], form)) return ast.Name(name, ast.Load()) def generic_visit(self, node): """Handle expressions we don't have custom code for.""" assert isinstance(node, ast.expr) res = self.assign(node) return res, self.explanation_param(self.display(res)) def visit_Assert(self, assert_): """Return the AST statements to replace the ast.Assert instance. This rewrites the test of an assertion to provide intermediate values and replace it with an if statement which raises an assertion error with a detailed explanation in case the expression is false. """ if isinstance(assert_.test, ast.Tuple) and len(assert_.test.elts) >= 1: from _pytest.warning_types import PytestAssertRewriteWarning import warnings warnings.warn_explicit( PytestAssertRewriteWarning( "assertion is always true, perhaps remove parentheses?" ), category=None, filename=fspath(self.module_path), lineno=assert_.lineno, ) self.statements = [] # type: List[ast.stmt] self.variables = [] # type: List[str] self.variable_counter = itertools.count() if self.enable_assertion_pass_hook: self.format_variables = [] # type: List[str] self.stack = [] # type: List[Dict[str, ast.expr]] self.expl_stmts = [] # type: List[ast.stmt] self.push_format_context() # Rewrite assert into a bunch of statements. top_condition, explanation = self.visit(assert_.test) negation = ast.UnaryOp(ast.Not(), top_condition) if self.enable_assertion_pass_hook: # Experimental pytest_assertion_pass hook msg = self.pop_format_context(ast.Str(explanation)) # Failed if assert_.msg: assertmsg = self.helper("_format_assertmsg", assert_.msg) gluestr = "\n>assert " else: assertmsg = ast.Str("") gluestr = "assert " err_explanation = ast.BinOp(ast.Str(gluestr), ast.Add(), msg) err_msg = ast.BinOp(assertmsg, ast.Add(), err_explanation) err_name = ast.Name("AssertionError", ast.Load()) fmt = self.helper("_format_explanation", err_msg) exc = ast.Call(err_name, [fmt], []) raise_ = ast.Raise(exc, None) statements_fail = [] statements_fail.extend(self.expl_stmts) statements_fail.append(raise_) # Passed fmt_pass = self.helper("_format_explanation", msg) orig = self._assert_expr_to_lineno()[assert_.lineno] hook_call_pass = ast.Expr( self.helper( "_call_assertion_pass", ast.Num(assert_.lineno), ast.Str(orig), fmt_pass, ) ) # If any hooks implement assert_pass hook hook_impl_test = ast.If( self.helper("_check_if_assertion_pass_impl"), self.expl_stmts + [hook_call_pass], [], ) statements_pass = [hook_impl_test] # Test for assertion condition main_test = ast.If(negation, statements_fail, statements_pass) self.statements.append(main_test) if self.format_variables: variables = [ ast.Name(name, ast.Store()) for name in self.format_variables ] clear_format = ast.Assign(variables, ast.NameConstant(None)) self.statements.append(clear_format) else: # Original assertion rewriting # Create failure message. body = self.expl_stmts self.statements.append(ast.If(negation, body, [])) if assert_.msg: assertmsg = self.helper("_format_assertmsg", assert_.msg) explanation = "\n>assert " + explanation else: assertmsg = ast.Str("") explanation = "assert " + explanation template = ast.BinOp(assertmsg, ast.Add(), ast.Str(explanation)) msg = self.pop_format_context(template) fmt = self.helper("_format_explanation", msg) err_name = ast.Name("AssertionError", ast.Load()) exc = ast.Call(err_name, [fmt], []) raise_ = ast.Raise(exc, None) body.append(raise_) # Clear temporary variables by setting them to None. if self.variables: variables = [ast.Name(name, ast.Store()) for name in self.variables] clear = ast.Assign(variables, ast.NameConstant(None)) self.statements.append(clear) # Fix line numbers. for stmt in self.statements: set_location(stmt, assert_.lineno, assert_.col_offset) return self.statements def visit_Name(self, name): # Display the repr of the name if it's a local variable or # _should_repr_global_name() thinks it's acceptable. locs = ast.Call(self.builtin("locals"), [], []) inlocs = ast.Compare(ast.Str(name.id), [ast.In()], [locs]) dorepr = self.helper("_should_repr_global_name", name) test = ast.BoolOp(ast.Or(), [inlocs, dorepr]) expr = ast.IfExp(test, self.display(name), ast.Str(name.id)) return name, self.explanation_param(expr) def visit_BoolOp(self, boolop): res_var = self.variable() expl_list = self.assign(ast.List([], ast.Load())) app = ast.Attribute(expl_list, "append", ast.Load()) is_or = int(isinstance(boolop.op, ast.Or)) body = save = self.statements fail_save = self.expl_stmts levels = len(boolop.values) - 1 self.push_format_context() # Process each operand, short-circuiting if needed. for i, v in enumerate(boolop.values): if i: fail_inner = [] # type: List[ast.stmt] # cond is set in a prior loop iteration below self.expl_stmts.append(ast.If(cond, fail_inner, [])) # noqa self.expl_stmts = fail_inner self.push_format_context() res, expl = self.visit(v) body.append(ast.Assign([ast.Name(res_var, ast.Store())], res)) expl_format = self.pop_format_context(ast.Str(expl)) call = ast.Call(app, [expl_format], []) self.expl_stmts.append(ast.Expr(call)) if i < levels: cond = res # type: ast.expr if is_or: cond = ast.UnaryOp(ast.Not(), cond) inner = [] # type: List[ast.stmt] self.statements.append(ast.If(cond, inner, [])) self.statements = body = inner self.statements = save self.expl_stmts = fail_save expl_template = self.helper("_format_boolop", expl_list, ast.Num(is_or)) expl = self.pop_format_context(expl_template) return ast.Name(res_var, ast.Load()), self.explanation_param(expl) def visit_UnaryOp(self, unary): pattern = UNARY_MAP[unary.op.__class__] operand_res, operand_expl = self.visit(unary.operand) res = self.assign(ast.UnaryOp(unary.op, operand_res)) return res, pattern % (operand_expl,) def visit_BinOp(self, binop): symbol = BINOP_MAP[binop.op.__class__] left_expr, left_expl = self.visit(binop.left) right_expr, right_expl = self.visit(binop.right) explanation = "({} {} {})".format(left_expl, symbol, right_expl) res = self.assign(ast.BinOp(left_expr, binop.op, right_expr)) return res, explanation def visit_Call(self, call): """ visit `ast.Call` nodes """ new_func, func_expl = self.visit(call.func) arg_expls = [] new_args = [] new_kwargs = [] for arg in call.args: res, expl = self.visit(arg) arg_expls.append(expl) new_args.append(res) for keyword in call.keywords: res, expl = self.visit(keyword.value) new_kwargs.append(ast.keyword(keyword.arg, res)) if keyword.arg: arg_expls.append(keyword.arg + "=" + expl) else: # **args have `arg` keywords with an .arg of None arg_expls.append("**" + expl) expl = "{}({})".format(func_expl, ", ".join(arg_expls)) new_call = ast.Call(new_func, new_args, new_kwargs) res = self.assign(new_call) res_expl = self.explanation_param(self.display(res)) outer_expl = "{}\n{{{} = {}\n}}".format(res_expl, res_expl, expl) return res, outer_expl def visit_Starred(self, starred): # From Python 3.5, a Starred node can appear in a function call res, expl = self.visit(starred.value) new_starred = ast.Starred(res, starred.ctx) return new_starred, "*" + expl def visit_Attribute(self, attr): if not isinstance(attr.ctx, ast.Load): return self.generic_visit(attr) value, value_expl = self.visit(attr.value) res = self.assign(ast.Attribute(value, attr.attr, ast.Load())) res_expl = self.explanation_param(self.display(res)) pat = "%s\n{%s = %s.%s\n}" expl = pat % (res_expl, res_expl, value_expl, attr.attr) return res, expl def visit_Compare(self, comp: ast.Compare): self.push_format_context() left_res, left_expl = self.visit(comp.left) if isinstance(comp.left, (ast.Compare, ast.BoolOp)): left_expl = "({})".format(left_expl) res_variables = [self.variable() for i in range(len(comp.ops))] load_names = [ast.Name(v, ast.Load()) for v in res_variables] store_names = [ast.Name(v, ast.Store()) for v in res_variables] it = zip(range(len(comp.ops)), comp.ops, comp.comparators) expls = [] syms = [] results = [left_res] for i, op, next_operand in it: next_res, next_expl = self.visit(next_operand) if isinstance(next_operand, (ast.Compare, ast.BoolOp)): next_expl = "({})".format(next_expl) results.append(next_res) sym = BINOP_MAP[op.__class__] syms.append(ast.Str(sym)) expl = "{} {} {}".format(left_expl, sym, next_expl) expls.append(ast.Str(expl)) res_expr = ast.Compare(left_res, [op], [next_res]) self.statements.append(ast.Assign([store_names[i]], res_expr)) left_res, left_expl = next_res, next_expl # Use pytest.assertion.util._reprcompare if that's available. expl_call = self.helper( "_call_reprcompare", ast.Tuple(syms, ast.Load()), ast.Tuple(load_names, ast.Load()), ast.Tuple(expls, ast.Load()), ast.Tuple(results, ast.Load()), ) if len(comp.ops) > 1: res = ast.BoolOp(ast.And(), load_names) # type: ast.expr else: res = load_names[0] return res, self.explanation_param(self.pop_format_context(expl_call)) def try_makedirs(cache_dir) -> bool: """Attempts to create the given directory and sub-directories exist, returns True if successful or it already exists""" try: os.makedirs(fspath(cache_dir), exist_ok=True) except (FileNotFoundError, NotADirectoryError, FileExistsError): # One of the path components was not a directory: # - we're in a zip file # - it is a file return False except PermissionError: return False except OSError as e: # as of now, EROFS doesn't have an equivalent OSError-subclass if e.errno == errno.EROFS: return False raise return True def get_cache_dir(file_path: Path) -> Path: """Returns the cache directory to write .pyc files for the given .py file path""" # Type ignored until added in next mypy release. if sys.version_info >= (3, 8) and sys.pycache_prefix: # type: ignore # given: # prefix = '/tmp/pycs' # path = '/home/user/proj/test_app.py' # we want: # '/tmp/pycs/home/user/proj' return Path(sys.pycache_prefix) / Path(*file_path.parts[1:-1]) # type: ignore else: # classic pycache directory return file_path.parent / "__pycache__"
38.33964
107
0.59921
944efdc61f41d65e230a9d586a4aa4a5d14f451a
5,719
py
Python
src/thumbor_video_engine/engines/video.py
fdintino/thumbor-video-engine
c4ed8bd191e17d9b0b606468fb22fa77de36cc05
[ "MIT" ]
null
null
null
src/thumbor_video_engine/engines/video.py
fdintino/thumbor-video-engine
c4ed8bd191e17d9b0b606468fb22fa77de36cc05
[ "MIT" ]
null
null
null
src/thumbor_video_engine/engines/video.py
fdintino/thumbor-video-engine
c4ed8bd191e17d9b0b606468fb22fa77de36cc05
[ "MIT" ]
null
null
null
from thumbor.engines import BaseEngine from thumbor.utils import logger from thumbor_video_engine.utils import ( named_tmp_file, is_mp4, is_qt, is_animated, is_animated_gif) def patch_baseengine_get_mimetype(): """ Monkey-patch BaseEngine.get_mimetype() to recognize all mp4 files as video/mp4 """ orig_get_mimetype = BaseEngine.get_mimetype def get_mimetype(cls, buffer): mimetype = orig_get_mimetype(buffer) if mimetype is not None: return mimetype elif is_qt(buffer): return 'video/quicktime' elif is_mp4(buffer): return 'video/mp4' BaseEngine.get_mimetype = classmethod(get_mimetype) patch_baseengine_get_mimetype() class Engine(object): """An engine that dispatches video files to ffmpeg, and others to PIL""" def __init__(self, context): self.engine = None self.context = context self.ffmpeg_handle_animated_gif = context.config.FFMPEG_HANDLE_ANIMATED_GIF self.ffmpeg_handle_animated_webp = True self.use_gif_engine = context.config.FFMPEG_USE_GIFSICLE_ENGINE @property def image_engine(self): self.context.modules.importer.import_item('IMAGE_ENGINE', 'Engine') return self.context.modules.importer.image_engine(self.context) @property def ffmpeg_engine(self): if not hasattr(self.context.modules, 'ffmpeg_engine'): # Instantiate the video engine class from the config (default is # thumbor_video_engine.engines.ffmpeg) self.context.modules.importer.import_item('FFMPEG_ENGINE', 'Engine') self.context.modules.ffmpeg_engine = ( self.context.modules.importer.ffmpeg_engine(self.context)) return self.context.modules.ffmpeg_engine def get_engine(self, buffer, extension): mime = BaseEngine.get_mimetype(buffer) is_gif = extension == '.gif' is_webp = extension == '.webp' accepts_video = getattr(self.context.request, "accepts_video", False) accepts_webp = self.context.request.accepts_webp if is_webp and self.ffmpeg_handle_animated_webp and is_animated(buffer): return self.ffmpeg_engine elif is_gif and self.ffmpeg_handle_animated_gif and is_animated_gif(buffer): if self.context.config.FFMPEG_GIF_AUTO_H265: self.context.request.should_vary = True if accepts_video: logger.debug("FFMPEG_GIF_AUTO_H265 setting format to h264") self.context.request.format = 'h265' elif self.context.config.FFMPEG_GIF_AUTO_H264: self.context.request.should_vary = True if accepts_video: logger.debug("FFMPEG_GIF_AUTO_H264 setting format to h264") self.context.request.format = 'h264' elif self.context.config.FFMPEG_GIF_AUTO_WEBP: self.context.request.should_vary = True if accepts_webp: logger.debug("FFMPEG_GIF_AUTO_WEBP setting format to webp") self.context.request.format = 'webp' return self.ffmpeg_engine elif is_gif and self.use_gif_engine: return self.context.modules.gif_engine elif mime.startswith('video/'): return self.ffmpeg_engine else: return self.image_engine def load(self, buffer, extension): self.engine = self.get_engine(buffer, extension) if self.context.request.format and not self.context.request.filters: # RequestParameters.filters is an empty list when none are in the url, # and ImagingHandler._write_results_to_client assumes that if # context.request.format is set then it came from the format filter. # Since we set the format in the engine this causes a TypeError, # so we need to ensure that it is a string here. self.context.request.filters = "" logger.debug("Set engine to %s (extension %s)" % ( type(self.engine).__module__, extension)) still_frame_pos = getattr(self.context.request, 'still_position', None) # Are we requesting a still frame? if self.engine is self.ffmpeg_engine and still_frame_pos: with named_tmp_file(data=buffer, suffix=extension) as src_file: buffer = self.ffmpeg_engine.run_ffmpeg( src_file, 'png', ['-ss', still_frame_pos, '-frames:v', '1']) self.engine = self.image_engine extension = '.png' if not self.context.request.format: self.context.request.format = 'jpg' # Change the default extension if we're transcoding video if self.engine is self.ffmpeg_engine and extension == ".jpg": extension = ".mp4" self.extension = extension self.engine.load(buffer, extension) def is_multiple(self): return False def cleanup(self): pass def __getattr__(self, attr): if not self.__dict__.get('engine'): raise AttributeError("'Engine' object has no attribute '%s'" % attr) return getattr(self.engine, attr) def __setattr__(self, attr, value): if attr in ('engine', 'ffmpeg_handle_animated_gif', 'use_gif_engine'): self.__dict__[attr] = value elif attr in ('context', 'extension'): self.__dict__[attr] = value if self.engine: setattr(self.engine, attr, value) elif self.engine: setattr(self.engine, attr, value) else: self.__dict__[attr] = value
41.143885
84
0.641021
6c9e43b2ee4138b7b8de9f5c4abcc571ffda0712
455
py
Python
packages/python/plotly/plotly/validators/layout/modebar/_remove.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/layout/modebar/_remove.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
packages/python/plotly/plotly/validators/layout/modebar/_remove.py
mastermind88/plotly.py
efa70710df1af22958e1be080e105130042f1839
[ "MIT" ]
null
null
null
import _plotly_utils.basevalidators class RemoveValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="remove", parent_name="layout.modebar", **kwargs): super(RemoveValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=kwargs.pop("array_ok", True), edit_type=kwargs.pop("edit_type", "modebar"), **kwargs, )
35
85
0.663736
7d0e5a1c920820f334fa7c421fc9f97eeef3866d
2,310
py
Python
test/functional/mempool_spend_coinbase.py
XbitCC/xbitcoin
2c71b1adc311680e8f3aa977b42029b1a26164f1
[ "MIT" ]
2
2021-10-16T06:16:02.000Z
2022-03-26T21:48:38.000Z
test/functional/mempool_spend_coinbase.py
XbitCC/xbitcoin
2c71b1adc311680e8f3aa977b42029b1a26164f1
[ "MIT" ]
null
null
null
test/functional/mempool_spend_coinbase.py
XbitCC/xbitcoin
2c71b1adc311680e8f3aa977b42029b1a26164f1
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The XBit Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test spending coinbase transactions. The coinbase transaction in block N can appear in block N+100... so is valid in the mempool when the best block height is N+99. This test makes sure coinbase spends that will be mature in the next block are accepted into the memory pool, but less mature coinbase spends are NOT. """ from test_framework.test_framework import XBitTestFramework from test_framework.blocktools import create_raw_transaction from test_framework.util import assert_equal, assert_raises_rpc_error class MempoolSpendCoinbaseTest(XBitTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): chain_height = self.nodes[0].getblockcount() assert_equal(chain_height, 200) node0_address = self.nodes[0].getnewaddress() # Coinbase at height chain_height-100+1 ok in mempool, should # get mined. Coinbase at height chain_height-100+2 is # is too immature to spend. b = [self.nodes[0].getblockhash(n) for n in range(101, 103)] coinbase_txids = [self.nodes[0].getblock(h)['tx'][0] for h in b] spends_raw = [create_raw_transaction(self.nodes[0], txid, node0_address, amount=49.99) for txid in coinbase_txids] spend_101_id = self.nodes[0].sendrawtransaction(spends_raw[0]) # coinbase at height 102 should be too immature to spend assert_raises_rpc_error(-26,"bad-txns-premature-spend-of-coinbase", self.nodes[0].sendrawtransaction, spends_raw[1]) # mempool should have just spend_101: assert_equal(self.nodes[0].getrawmempool(), [ spend_101_id ]) # mine a block, spend_101 should get confirmed self.nodes[0].generate(1) assert_equal(set(self.nodes[0].getrawmempool()), set()) # ... and now height 102 can be spent: spend_102_id = self.nodes[0].sendrawtransaction(spends_raw[1]) assert_equal(self.nodes[0].getrawmempool(), [ spend_102_id ]) if __name__ == '__main__': MempoolSpendCoinbaseTest().main()
40.526316
124
0.719048
9ba5b56c164f3d7509641b5248c689e7fb53ad48
8,629
py
Python
grr/server/grr_response_server/gui/api_auth_manager_test.py
billstackpole/grr
203a0a99990a2d4004aed84a5cd822cbda2b418c
[ "Apache-2.0" ]
1
2019-03-28T07:09:41.000Z
2019-03-28T07:09:41.000Z
grr/server/grr_response_server/gui/api_auth_manager_test.py
gingogo/grr
203a0a99990a2d4004aed84a5cd822cbda2b418c
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/gui/api_auth_manager_test.py
gingogo/grr
203a0a99990a2d4004aed84a5cd822cbda2b418c
[ "Apache-2.0" ]
1
2018-08-30T14:50:24.000Z
2018-08-30T14:50:24.000Z
#!/usr/bin/env python """Tests for the SimpleAPIAuthManager.""" import __builtin__ import mock from grr_response_core.lib import flags from grr_response_core.lib.rdfvalues import structs as rdf_structs from grr_response_proto import tests_pb2 from grr_response_server.authorization import groups from grr_response_server.gui import api_auth_manager from grr_response_server.gui import api_call_router from grr.test_lib import test_lib class DummyAuthManagerTestApiRouter(api_call_router.ApiCallRouter): pass class DummyAuthManagerTestApiRouter2(api_call_router.ApiCallRouter): pass class DummyAuthManagerTestApiRouter3(api_call_router.ApiCallRouter): pass class DefaultDummyAuthManagerTestApiRouter(api_call_router.ApiCallRouter): pass class DummyAuthManagerTestConfigurableApiRouterParams( rdf_structs.RDFProtoStruct): protobuf = tests_pb2.DummyAuthManagerTestConfigurableApiRouterParams class DummyAuthManagerTestConfigurableApiRouter(api_call_router.ApiCallRouter): params_type = DummyAuthManagerTestConfigurableApiRouterParams def __init__(self, params=None): super(DummyAuthManagerTestConfigurableApiRouter, self).__init__( params=params) self.params = params class DummyGroupAccessManager(groups.GroupAccessManager): def __init__(self): self.authorized_groups = {} self.positive_matches = {"u1": ["g1", "g3"]} def AuthorizeGroup(self, group, subject): self.authorized_groups.setdefault(subject, []).append(group) def MemberOfAuthorizedGroup(self, username, subject): try: group_names = self.positive_matches[username] except KeyError: return False for group_name in group_names: if group_name in self.authorized_groups[subject]: return True return False class APIAuthorizationManagerTest(test_lib.GRRBaseTest): def setUp(self): super(APIAuthorizationManagerTest, self).setUp() # API ACLs are off by default, we need to set this to something so the tests # exercise the functionality. Each test will supply its own ACL data. We # also have to set up a default API router that will be used when none of # the rules matches. self.config_overrider = test_lib.ConfigOverrider({ "API.RouterACLConfigFile": "dummy", "API.DefaultRouter": DefaultDummyAuthManagerTestApiRouter.__name__, "ACL.group_access_manager_class": DummyGroupAccessManager.__name__ }) self.config_overrider.Start() def tearDown(self): super(APIAuthorizationManagerTest, self).tearDown() self.config_overrider.Stop() def testMatchesIfOneOfUsersIsMatching(self): acls = """ router: "DummyAuthManagerTestApiRouter" users: - "u1" - "u2" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter) router = auth_mgr.GetRouterForUser("u2") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter) def testReturnsDefaultOnNoMatchByUser(self): acls = """ router: "DummyAuthManagerTestApiRouter" users: - "u1" - "u2" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u4") self.assertEqual(router.__class__, DefaultDummyAuthManagerTestApiRouter) def testMatchesFirstRouterIfMultipleRoutersMatchByUser(self): acls = """ router: "DummyAuthManagerTestApiRouter" users: - "u1" - "u3" --- router: "DummyAuthManagerTestApiRouter2" users: - "u1" - "u2" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter) def testReturnsFirstRouterWhenMatchingByUser(self): acls = """ router: "DummyAuthManagerTestApiRouter" users: - "u1" - "u3" --- router: "DummyAuthManagerTestApiRouter2" users: - "u1" - "u2" --- router: "DummyAuthManagerTestApiRouter3" users: - "u2" - "u4" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u2") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter2) router = auth_mgr.GetRouterForUser("u4") self.assertTrue(router.__class__, DummyAuthManagerTestApiRouter3) def testMatchingByGroupWorks(self): acls = """ router: "DummyAuthManagerTestApiRouter2" groups: - "g1" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter2) def testMatchingByUserHasPriorityOverMatchingByGroup(self): acls = """ router: "DummyAuthManagerTestApiRouter" users: - "u1" --- router: "DummyAuthManagerTestApiRouter2" groups: - "g1" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter) def testReturnsFirstRouterWhenMultipleMatchByGroup(self): acls = """ router: "DummyAuthManagerTestApiRouter" groups: - "g3" --- router: "DummyAuthManagerTestApiRouter2" groups: - "g1" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter) def testReturnsFirstMatchingRouterWhenItMatchesByGroupAndOtherByUser(self): acls = """ router: "DummyAuthManagerTestApiRouter" groups: - "g3" --- router: "DummyAuthManagerTestApiRouter2" users: - "u1" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DummyAuthManagerTestApiRouter) def testReturnsDefaultRouterWhenNothingMatchesByGroup(self): acls = """ router: "DummyAuthManagerTestApiRouter" groups: - "g5" --- router: "DummyAuthManagerTestApiRouter2" groups: - "g6" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DefaultDummyAuthManagerTestApiRouter) def testDefaultRouterIsReturnedIfNoConfigFileDefined(self): """The default router is returned if no API.RouterACLConfigFile defined.""" with test_lib.ConfigOverrider({"API.RouterACLConfigFile": ""}): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.__class__, DefaultDummyAuthManagerTestApiRouter) def testRaisesWhenNonConfigurableRouterInitializedWithParams(self): acls = """ router: "DummyAuthManagerTestApiRouter" router_params: foo: "Oh no!" bar: 42 users: - "u1" """ with self.assertRaises( api_auth_manager.ApiCallRouterDoesNotExpectParameters): with mock.patch.object( __builtin__, "open", mock.mock_open(read_data=acls)): api_auth_manager.APIAuthorizationManager() def testConfigurableRouterIsInitializedWithoutParameters(self): acls = """ router: "DummyAuthManagerTestConfigurableApiRouter" users: - "u1" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.params.foo, "") self.assertEqual(router.params.bar, 0) def testConfigurableRouterIsInitializedWithParameters(self): acls = """ router: "DummyAuthManagerTestConfigurableApiRouter" router_params: foo: "Oh no!" bar: 42 users: - "u1" """ with mock.patch.object(__builtin__, "open", mock.mock_open(read_data=acls)): auth_mgr = api_auth_manager.APIAuthorizationManager() router = auth_mgr.GetRouterForUser("u1") self.assertEqual(router.params.foo, "Oh no!") self.assertEqual(router.params.bar, 42) def main(argv): # Run the full test suite test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
28.291803
80
0.758025
6d02f9056bde80577ea7eb5e2f256a1849939736
71
py
Python
erds_server/erds_server/local_settings.py
sbsimo/gpm-accumul
e5f3d0f6b5dc079d22be0422eb924d1cf87216b7
[ "MIT" ]
null
null
null
erds_server/erds_server/local_settings.py
sbsimo/gpm-accumul
e5f3d0f6b5dc079d22be0422eb924d1cf87216b7
[ "MIT" ]
5
2018-09-25T08:32:30.000Z
2019-10-01T06:51:33.000Z
erds_server/erds_server/local_settings.py
sbsimo/gpm-accumul
e5f3d0f6b5dc079d22be0422eb924d1cf87216b7
[ "MIT" ]
2
2018-01-30T16:14:27.000Z
2020-07-29T07:06:58.000Z
from erds_server.settings import * # add here all the local settings
14.2
34
0.774648
aa2c881b2dc3a9cc2fd4bc82c52456e8ae7f9e9e
71,193
py
Python
src/twisted/internet/defer.py
seanicus64/twisted
c0f1394c7bfb04d97c725a353a1f678fa6a1c602
[ "MIT", "Unlicense" ]
32
2019-11-14T07:49:33.000Z
2022-02-16T00:49:22.000Z
src/twisted/internet/defer.py
seanicus64/twisted
c0f1394c7bfb04d97c725a353a1f678fa6a1c602
[ "MIT", "Unlicense" ]
9
2019-09-06T18:21:59.000Z
2022-01-13T03:04:11.000Z
src/twisted/internet/defer.py
seanicus64/twisted
c0f1394c7bfb04d97c725a353a1f678fa6a1c602
[ "MIT", "Unlicense" ]
16
2019-06-25T13:26:43.000Z
2022-03-07T07:29:12.000Z
# -*- test-case-name: twisted.test.test_defer -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Support for results that aren't immediately available. Maintainer: Glyph Lefkowitz @var _NO_RESULT: The result used to represent the fact that there is no result. B{Never ever ever use this as an actual result for a Deferred}. You have been warned. @var _CONTINUE: A marker left in L{Deferred.callback}s to indicate a Deferred chain. Always accompanied by a Deferred instance in the args tuple pointing at the Deferred which is chained to the Deferred which has this marker. """ from __future__ import division, absolute_import, print_function import attr import traceback import types import warnings from sys import exc_info, version_info from functools import wraps from incremental import Version # Twisted imports from twisted.python.compat import cmp, comparable from twisted.python import lockfile, failure from twisted.logger import Logger from twisted.python.deprecate import warnAboutFunction, deprecated from twisted.python._oldstyle import _oldStyle log = Logger() class AlreadyCalledError(Exception): pass class CancelledError(Exception): """ This error is raised by default when a L{Deferred} is cancelled. """ class TimeoutError(Exception): """ This error is raised by default when a L{Deferred} times out. """ def logError(err): """ Log and return failure. This method can be used as an errback that passes the failure on to the next errback unmodified. Note that if this is the last errback, and the deferred gets garbage collected after being this errback has been called, the clean up code logs it again. """ log.failure(None, err) return err def succeed(result): """ Return a L{Deferred} that has already had C{.callback(result)} called. This is useful when you're writing synchronous code to an asynchronous interface: i.e., some code is calling you expecting a L{Deferred} result, but you don't actually need to do anything asynchronous. Just return C{defer.succeed(theResult)}. See L{fail} for a version of this function that uses a failing L{Deferred} rather than a successful one. @param result: The result to give to the Deferred's 'callback' method. @rtype: L{Deferred} """ d = Deferred() d.callback(result) return d def fail(result=None): """ Return a L{Deferred} that has already had C{.errback(result)} called. See L{succeed}'s docstring for rationale. @param result: The same argument that L{Deferred.errback} takes. @raise NoCurrentExceptionError: If C{result} is L{None} but there is no current exception state. @rtype: L{Deferred} """ d = Deferred() d.errback(result) return d def execute(callable, *args, **kw): """ Create a L{Deferred} from a callable and arguments. Call the given function with the given arguments. Return a L{Deferred} which has been fired with its callback as the result of that invocation or its C{errback} with a L{Failure} for the exception thrown. """ try: result = callable(*args, **kw) except: return fail() else: return succeed(result) def maybeDeferred(f, *args, **kw): """ Invoke a function that may or may not return a L{Deferred}. Call the given function with the given arguments. If the returned object is a L{Deferred}, return it. If the returned object is a L{Failure}, wrap it with L{fail} and return it. Otherwise, wrap it in L{succeed} and return it. If an exception is raised, convert it to a L{Failure}, wrap it in L{fail}, and then return it. @type f: Any callable @param f: The callable to invoke @param args: The arguments to pass to C{f} @param kw: The keyword arguments to pass to C{f} @rtype: L{Deferred} @return: The result of the function call, wrapped in a L{Deferred} if necessary. """ try: result = f(*args, **kw) except: return fail(failure.Failure(captureVars=Deferred.debug)) if isinstance(result, Deferred): return result elif isinstance(result, failure.Failure): return fail(result) else: return succeed(result) @deprecated(Version('Twisted', 17, 1, 0), replacement='twisted.internet.defer.Deferred.addTimeout') def timeout(deferred): deferred.errback(failure.Failure(TimeoutError("Callback timed out"))) def passthru(arg): return arg def setDebugging(on): """ Enable or disable L{Deferred} debugging. When debugging is on, the call stacks from creation and invocation are recorded, and added to any L{AlreadyCalledError}s we raise. """ Deferred.debug=bool(on) def getDebugging(): """ Determine whether L{Deferred} debugging is enabled. """ return Deferred.debug # See module docstring. _NO_RESULT = object() _CONTINUE = object() @_oldStyle class Deferred: """ This is a callback which will be put off until later. Why do we want this? Well, in cases where a function in a threaded program would block until it gets a result, for Twisted it should not block. Instead, it should return a L{Deferred}. This can be implemented for protocols that run over the network by writing an asynchronous protocol for L{twisted.internet}. For methods that come from outside packages that are not under our control, we use threads (see for example L{twisted.enterprise.adbapi}). For more information about Deferreds, see doc/core/howto/defer.html or U{http://twistedmatrix.com/documents/current/core/howto/defer.html} When creating a Deferred, you may provide a canceller function, which will be called by d.cancel() to let you do any clean-up necessary if the user decides not to wait for the deferred to complete. @ivar called: A flag which is C{False} until either C{callback} or C{errback} is called and afterwards always C{True}. @type called: L{bool} @ivar paused: A counter of how many unmatched C{pause} calls have been made on this instance. @type paused: L{int} @ivar _suppressAlreadyCalled: A flag used by the cancellation mechanism which is C{True} if the Deferred has no canceller and has been cancelled, C{False} otherwise. If C{True}, it can be expected that C{callback} or C{errback} will eventually be called and the result should be silently discarded. @type _suppressAlreadyCalled: L{bool} @ivar _runningCallbacks: A flag which is C{True} while this instance is executing its callback chain, used to stop recursive execution of L{_runCallbacks} @type _runningCallbacks: L{bool} @ivar _chainedTo: If this L{Deferred} is waiting for the result of another L{Deferred}, this is a reference to the other Deferred. Otherwise, L{None}. """ called = False paused = False _debugInfo = None _suppressAlreadyCalled = False # Are we currently running a user-installed callback? Meant to prevent # recursive running of callbacks when a reentrant call to add a callback is # used. _runningCallbacks = False # Keep this class attribute for now, for compatibility with code that # sets it directly. debug = False _chainedTo = None def __init__(self, canceller=None): """ Initialize a L{Deferred}. @param canceller: a callable used to stop the pending operation scheduled by this L{Deferred} when L{Deferred.cancel} is invoked. The canceller will be passed the deferred whose cancelation is requested (i.e., self). If a canceller is not given, or does not invoke its argument's C{callback} or C{errback} method, L{Deferred.cancel} will invoke L{Deferred.errback} with a L{CancelledError}. Note that if a canceller is not given, C{callback} or C{errback} may still be invoked exactly once, even though defer.py will have already invoked C{errback}, as described above. This allows clients of code which returns a L{Deferred} to cancel it without requiring the L{Deferred} instantiator to provide any specific implementation support for cancellation. New in 10.1. @type canceller: a 1-argument callable which takes a L{Deferred}. The return result is ignored. """ self.callbacks = [] self._canceller = canceller if self.debug: self._debugInfo = DebugInfo() self._debugInfo.creator = traceback.format_stack()[:-1] def addCallbacks(self, callback, errback=None, callbackArgs=None, callbackKeywords=None, errbackArgs=None, errbackKeywords=None): """ Add a pair of callbacks (success and error) to this L{Deferred}. These will be executed when the 'master' callback is run. @return: C{self}. @rtype: a L{Deferred} """ assert callable(callback) assert errback is None or callable(errback) cbs = ((callback, callbackArgs, callbackKeywords), (errback or (passthru), errbackArgs, errbackKeywords)) self.callbacks.append(cbs) if self.called: self._runCallbacks() return self def addCallback(self, callback, *args, **kw): """ Convenience method for adding just a callback. See L{addCallbacks}. """ return self.addCallbacks(callback, callbackArgs=args, callbackKeywords=kw) def addErrback(self, errback, *args, **kw): """ Convenience method for adding just an errback. See L{addCallbacks}. """ return self.addCallbacks(passthru, errback, errbackArgs=args, errbackKeywords=kw) def addBoth(self, callback, *args, **kw): """ Convenience method for adding a single callable as both a callback and an errback. See L{addCallbacks}. """ return self.addCallbacks(callback, callback, callbackArgs=args, errbackArgs=args, callbackKeywords=kw, errbackKeywords=kw) def addTimeout(self, timeout, clock, onTimeoutCancel=None): """ Time out this L{Deferred} by scheduling it to be cancelled after C{timeout} seconds. The timeout encompasses all the callbacks and errbacks added to this L{defer.Deferred} before the call to L{addTimeout}, and none added after the call. If this L{Deferred} gets timed out, it errbacks with a L{TimeoutError}, unless a cancelable function was passed to its initialization or unless a different C{onTimeoutCancel} callable is provided. @param timeout: number of seconds to wait before timing out this L{Deferred} @type timeout: L{int} @param clock: The object which will be used to schedule the timeout. @type clock: L{twisted.internet.interfaces.IReactorTime} @param onTimeoutCancel: A callable which is called immediately after this L{Deferred} times out, and not if this L{Deferred} is otherwise cancelled before the timeout. It takes an arbitrary value, which is the value of this L{Deferred} at that exact point in time (probably a L{CancelledError} L{Failure}), and the C{timeout}. The default callable (if none is provided) will translate a L{CancelledError} L{Failure} into a L{TimeoutError}. @type onTimeoutCancel: L{callable} @return: C{self}. @rtype: a L{Deferred} @since: 16.5 """ timedOut = [False] def timeItOut(): timedOut[0] = True self.cancel() delayedCall = clock.callLater(timeout, timeItOut) def convertCancelled(value): # if C{deferred} was timed out, call the translation function, # if provdied, otherwise just use L{cancelledToTimedOutError} if timedOut[0]: toCall = onTimeoutCancel or _cancelledToTimedOutError return toCall(value, timeout) return value self.addBoth(convertCancelled) def cancelTimeout(result): # stop the pending call to cancel the deferred if it's been fired if delayedCall.active(): delayedCall.cancel() return result self.addBoth(cancelTimeout) return self def chainDeferred(self, d): """ Chain another L{Deferred} to this L{Deferred}. This method adds callbacks to this L{Deferred} to call C{d}'s callback or errback, as appropriate. It is merely a shorthand way of performing the following:: self.addCallbacks(d.callback, d.errback) When you chain a deferred d2 to another deferred d1 with d1.chainDeferred(d2), you are making d2 participate in the callback chain of d1. Thus any event that fires d1 will also fire d2. However, the converse is B{not} true; if d2 is fired d1 will not be affected. Note that unlike the case where chaining is caused by a L{Deferred} being returned from a callback, it is possible to cause the call stack size limit to be exceeded by chaining many L{Deferred}s together with C{chainDeferred}. @return: C{self}. @rtype: a L{Deferred} """ d._chainedTo = self return self.addCallbacks(d.callback, d.errback) def callback(self, result): """ Run all success callbacks that have been added to this L{Deferred}. Each callback will have its result passed as the first argument to the next; this way, the callbacks act as a 'processing chain'. If the success-callback returns a L{Failure} or raises an L{Exception}, processing will continue on the *error* callback chain. If a callback (or errback) returns another L{Deferred}, this L{Deferred} will be chained to it (and further callbacks will not run until that L{Deferred} has a result). An instance of L{Deferred} may only have either L{callback} or L{errback} called on it, and only once. @param result: The object which will be passed to the first callback added to this L{Deferred} (via L{addCallback}). @raise AlreadyCalledError: If L{callback} or L{errback} has already been called on this L{Deferred}. """ assert not isinstance(result, Deferred) self._startRunCallbacks(result) def errback(self, fail=None): """ Run all error callbacks that have been added to this L{Deferred}. Each callback will have its result passed as the first argument to the next; this way, the callbacks act as a 'processing chain'. Also, if the error-callback returns a non-Failure or doesn't raise an L{Exception}, processing will continue on the *success*-callback chain. If the argument that's passed to me is not a L{failure.Failure} instance, it will be embedded in one. If no argument is passed, a L{failure.Failure} instance will be created based on the current traceback stack. Passing a string as `fail' is deprecated, and will be punished with a warning message. An instance of L{Deferred} may only have either L{callback} or L{errback} called on it, and only once. @param fail: The L{Failure} object which will be passed to the first errback added to this L{Deferred} (via L{addErrback}). Alternatively, a L{Exception} instance from which a L{Failure} will be constructed (with no traceback) or L{None} to create a L{Failure} instance from the current exception state (with a traceback). @raise AlreadyCalledError: If L{callback} or L{errback} has already been called on this L{Deferred}. @raise NoCurrentExceptionError: If C{fail} is L{None} but there is no current exception state. """ if fail is None: fail = failure.Failure(captureVars=self.debug) elif not isinstance(fail, failure.Failure): fail = failure.Failure(fail) self._startRunCallbacks(fail) def pause(self): """ Stop processing on a L{Deferred} until L{unpause}() is called. """ self.paused = self.paused + 1 def unpause(self): """ Process all callbacks made since L{pause}() was called. """ self.paused = self.paused - 1 if self.paused: return if self.called: self._runCallbacks() def cancel(self): """ Cancel this L{Deferred}. If the L{Deferred} has not yet had its C{errback} or C{callback} method invoked, call the canceller function provided to the constructor. If that function does not invoke C{callback} or C{errback}, or if no canceller function was provided, errback with L{CancelledError}. If this L{Deferred} is waiting on another L{Deferred}, forward the cancellation to the other L{Deferred}. """ if not self.called: canceller = self._canceller if canceller: canceller(self) else: # Arrange to eat the callback that will eventually be fired # since there was no real canceller. self._suppressAlreadyCalled = True if not self.called: # There was no canceller, or the canceller didn't call # callback or errback. self.errback(failure.Failure(CancelledError())) elif isinstance(self.result, Deferred): # Waiting for another deferred -- cancel it instead. self.result.cancel() def _startRunCallbacks(self, result): if self.called: if self._suppressAlreadyCalled: self._suppressAlreadyCalled = False return if self.debug: if self._debugInfo is None: self._debugInfo = DebugInfo() extra = "\n" + self._debugInfo._getDebugTracebacks() raise AlreadyCalledError(extra) raise AlreadyCalledError if self.debug: if self._debugInfo is None: self._debugInfo = DebugInfo() self._debugInfo.invoker = traceback.format_stack()[:-2] self.called = True self.result = result self._runCallbacks() def _continuation(self): """ Build a tuple of callback and errback with L{_CONTINUE}. """ return ((_CONTINUE, (self,), None), (_CONTINUE, (self,), None)) def _runCallbacks(self): """ Run the chain of callbacks once a result is available. This consists of a simple loop over all of the callbacks, calling each with the current result and making the current result equal to the return value (or raised exception) of that call. If L{_runningCallbacks} is true, this loop won't run at all, since it is already running above us on the call stack. If C{self.paused} is true, the loop also won't run, because that's what it means to be paused. The loop will terminate before processing all of the callbacks if a L{Deferred} without a result is encountered. If a L{Deferred} I{with} a result is encountered, that result is taken and the loop proceeds. @note: The implementation is complicated slightly by the fact that chaining (associating two L{Deferred}s with each other such that one will wait for the result of the other, as happens when a Deferred is returned from a callback on another L{Deferred}) is supported iteratively rather than recursively, to avoid running out of stack frames when processing long chains. """ if self._runningCallbacks: # Don't recursively run callbacks return # Keep track of all the Deferreds encountered while propagating results # up a chain. The way a Deferred gets onto this stack is by having # added its _continuation() to the callbacks list of a second Deferred # and then that second Deferred being fired. ie, if ever had _chainedTo # set to something other than None, you might end up on this stack. chain = [self] while chain: current = chain[-1] if current.paused: # This Deferred isn't going to produce a result at all. All the # Deferreds up the chain waiting on it will just have to... # wait. return finished = True current._chainedTo = None while current.callbacks: item = current.callbacks.pop(0) callback, args, kw = item[ isinstance(current.result, failure.Failure)] args = args or () kw = kw or {} # Avoid recursion if we can. if callback is _CONTINUE: # Give the waiting Deferred our current result and then # forget about that result ourselves. chainee = args[0] chainee.result = current.result current.result = None # Making sure to update _debugInfo if current._debugInfo is not None: current._debugInfo.failResult = None chainee.paused -= 1 chain.append(chainee) # Delay cleaning this Deferred and popping it from the chain # until after we've dealt with chainee. finished = False break try: current._runningCallbacks = True try: current.result = callback(current.result, *args, **kw) if current.result is current: warnAboutFunction( callback, "Callback returned the Deferred " "it was attached to; this breaks the " "callback chain and will raise an " "exception in the future.") finally: current._runningCallbacks = False except: # Including full frame information in the Failure is quite # expensive, so we avoid it unless self.debug is set. current.result = failure.Failure(captureVars=self.debug) else: if isinstance(current.result, Deferred): # The result is another Deferred. If it has a result, # we can take it and keep going. resultResult = getattr(current.result, 'result', _NO_RESULT) if resultResult is _NO_RESULT or isinstance(resultResult, Deferred) or current.result.paused: # Nope, it didn't. Pause and chain. current.pause() current._chainedTo = current.result # Note: current.result has no result, so it's not # running its callbacks right now. Therefore we can # append to the callbacks list directly instead of # using addCallbacks. current.result.callbacks.append(current._continuation()) break else: # Yep, it did. Steal it. current.result.result = None # Make sure _debugInfo's failure state is updated. if current.result._debugInfo is not None: current.result._debugInfo.failResult = None current.result = resultResult if finished: # As much of the callback chain - perhaps all of it - as can be # processed right now has been. The current Deferred is waiting on # another Deferred or for more callbacks. Before finishing with it, # make sure its _debugInfo is in the proper state. if isinstance(current.result, failure.Failure): # Stash the Failure in the _debugInfo for unhandled error # reporting. current.result.cleanFailure() if current._debugInfo is None: current._debugInfo = DebugInfo() current._debugInfo.failResult = current.result else: # Clear out any Failure in the _debugInfo, since the result # is no longer a Failure. if current._debugInfo is not None: current._debugInfo.failResult = None # This Deferred is done, pop it from the chain and move back up # to the Deferred which supplied us with our result. chain.pop() def __str__(self): """ Return a string representation of this C{Deferred}. """ cname = self.__class__.__name__ result = getattr(self, 'result', _NO_RESULT) myID = id(self) if self._chainedTo is not None: result = ' waiting on Deferred at 0x%x' % (id(self._chainedTo),) elif result is _NO_RESULT: result = '' else: result = ' current result: %r' % (result,) return "<%s at 0x%x%s>" % (cname, myID, result) __repr__ = __str__ def __iter__(self): return self @failure._extraneous def send(self, value=None): if self.paused: # If we're paused, we have no result to give return self result = getattr(self, 'result', _NO_RESULT) if result is _NO_RESULT: return self if isinstance(result, failure.Failure): # Clear the failure on debugInfo so it doesn't raise "unhandled # exception" self._debugInfo.failResult = None result.value.__failure__ = result raise result.value else: raise StopIteration(result) # For PEP-492 support (async/await) __await__ = __iter__ __next__ = send def asFuture(self, loop): """ Adapt a L{Deferred} into a L{asyncio.Future} which is bound to C{loop}. @note: converting a L{Deferred} to an L{asyncio.Future} consumes both its result and its errors, so this method implicitly converts C{self} into a L{Deferred} firing with L{None}, regardless of what its result previously would have been. @since: Twisted 17.5.0 @param loop: The asyncio event loop to bind the L{asyncio.Future} to. @type loop: L{asyncio.AbstractEventLoop} or similar @param deferred: The Deferred to adapt. @type deferred: L{Deferred} @return: A Future which will fire when the Deferred fires. @rtype: L{asyncio.Future} """ try: createFuture = loop.create_future except AttributeError: from asyncio import Future def createFuture(): return Future(loop=loop) future = createFuture() def checkCancel(futureAgain): if futureAgain.cancelled(): self.cancel() def maybeFail(failure): if not future.cancelled(): future.set_exception(failure.value) def maybeSucceed(result): if not future.cancelled(): future.set_result(result) self.addCallbacks(maybeSucceed, maybeFail) future.add_done_callback(checkCancel) return future @classmethod def fromFuture(cls, future): """ Adapt an L{asyncio.Future} to a L{Deferred}. @note: This creates a L{Deferred} from a L{asyncio.Future}, I{not} from a C{coroutine}; in other words, you will need to call L{asyncio.ensure_future}, L{asyncio.loop.create_task} or create an L{asyncio.Task} yourself to get from a C{coroutine} to a L{asyncio.Future} if what you have is an awaitable coroutine and not a L{asyncio.Future}. (The length of this list of techniques is exactly why we have left it to the caller!) @since: Twisted 17.5.0 @param future: The Future to adapt. @type future: L{asyncio.Future} @return: A Deferred which will fire when the Future fires. @rtype: L{Deferred} """ def adapt(result): try: extracted = result.result() except: extracted = failure.Failure() adapt.actual.callback(extracted) futureCancel = object() def cancel(reself): future.cancel() reself.callback(futureCancel) self = cls(cancel) adapt.actual = self def uncancel(result): if result is futureCancel: adapt.actual = Deferred() return adapt.actual return result self.addCallback(uncancel) future.add_done_callback(adapt) return self def _cancelledToTimedOutError(value, timeout): """ A default translation function that translates L{Failure}s that are L{CancelledError}s to L{TimeoutError}s. @param value: Anything @type value: Anything @param timeout: The timeout @type timeout: L{int} @rtype: C{value} @raise: L{TimeoutError} @since: 16.5 """ if isinstance(value, failure.Failure): value.trap(CancelledError) raise TimeoutError(timeout, "Deferred") return value def ensureDeferred(coro): """ Schedule the execution of a coroutine that awaits/yields from L{Deferred}s, wrapping it in a L{Deferred} that will fire on success/failure of the coroutine. If a Deferred is passed to this function, it will be returned directly (mimicing C{asyncio}'s C{ensure_future} function). Coroutine functions return a coroutine object, similar to how generators work. This function turns that coroutine into a Deferred, meaning that it can be used in regular Twisted code. For example:: import treq from twisted.internet.defer import ensureDeferred from twisted.internet.task import react async def crawl(pages): results = {} for page in pages: results[page] = await treq.content(await treq.get(page)) return results def main(reactor): pages = [ "http://localhost:8080" ] d = ensureDeferred(crawl(pages)) d.addCallback(print) return d react(main) @param coro: The coroutine object to schedule, or a L{Deferred}. @type coro: A Python 3.5+ C{async def} C{coroutine}, a Python 3.4+ C{yield from} using L{types.GeneratorType}, or a L{Deferred}. @rtype: L{Deferred} """ from types import GeneratorType if version_info >= (3, 4, 0): from asyncio import iscoroutine if iscoroutine(coro) or isinstance(coro, GeneratorType): return _cancellableInlineCallbacks(coro) if not isinstance(coro, Deferred): raise ValueError("%r is not a coroutine or a Deferred" % (coro,)) # Must be a Deferred return coro @_oldStyle class DebugInfo: """ Deferred debug helper. """ failResult = None def _getDebugTracebacks(self): info = '' if hasattr(self, "creator"): info += " C: Deferred was created:\n C:" info += "".join(self.creator).rstrip().replace("\n", "\n C:") info += "\n" if hasattr(self, "invoker"): info += " I: First Invoker was:\n I:" info += "".join(self.invoker).rstrip().replace("\n", "\n I:") info += "\n" return info def __del__(self): """ Print tracebacks and die. If the *last* (and I do mean *last*) callback leaves me in an error state, print a traceback (if said errback is a L{Failure}). """ if self.failResult is not None: # Note: this is two separate messages for compatibility with # earlier tests; arguably it should be a single error message. log.critical("Unhandled error in Deferred:", isError=True) debugInfo = self._getDebugTracebacks() if debugInfo: format = "(debug: {debugInfo})" else: format = None log.failure(format, self.failResult, debugInfo=debugInfo) @comparable class FirstError(Exception): """ First error to occur in a L{DeferredList} if C{fireOnOneErrback} is set. @ivar subFailure: The L{Failure} that occurred. @type subFailure: L{Failure} @ivar index: The index of the L{Deferred} in the L{DeferredList} where it happened. @type index: L{int} """ def __init__(self, failure, index): Exception.__init__(self, failure, index) self.subFailure = failure self.index = index def __repr__(self): """ The I{repr} of L{FirstError} instances includes the repr of the wrapped failure's exception and the index of the L{FirstError}. """ return 'FirstError[#%d, %r]' % (self.index, self.subFailure.value) def __str__(self): """ The I{str} of L{FirstError} instances includes the I{str} of the entire wrapped failure (including its traceback and exception) and the index of the L{FirstError}. """ return 'FirstError[#%d, %s]' % (self.index, self.subFailure) def __cmp__(self, other): """ Comparison between L{FirstError} and other L{FirstError} instances is defined as the comparison of the index and sub-failure of each instance. L{FirstError} instances don't compare equal to anything that isn't a L{FirstError} instance. @since: 8.2 """ if isinstance(other, FirstError): return cmp( (self.index, self.subFailure), (other.index, other.subFailure)) return -1 class DeferredList(Deferred): """ L{DeferredList} is a tool for collecting the results of several Deferreds. This tracks a list of L{Deferred}s for their results, and makes a single callback when they have all completed. By default, the ultimate result is a list of (success, result) tuples, 'success' being a boolean. L{DeferredList} exposes the same API that L{Deferred} does, so callbacks and errbacks can be added to it in the same way. L{DeferredList} is implemented by adding callbacks and errbacks to each L{Deferred} in the list passed to it. This means callbacks and errbacks added to the Deferreds before they are passed to L{DeferredList} will change the result that L{DeferredList} sees (i.e., L{DeferredList} is not special). Callbacks and errbacks can also be added to the Deferreds after they are passed to L{DeferredList} and L{DeferredList} may change the result that they see. See the documentation for the C{__init__} arguments for more information. @ivar _deferredList: The L{list} of L{Deferred}s to track. """ fireOnOneCallback = False fireOnOneErrback = False def __init__(self, deferredList, fireOnOneCallback=False, fireOnOneErrback=False, consumeErrors=False): """ Initialize a DeferredList. @param deferredList: The list of deferreds to track. @type deferredList: L{list} of L{Deferred}s @param fireOnOneCallback: (keyword param) a flag indicating that this L{DeferredList} will fire when the first L{Deferred} in C{deferredList} fires with a non-failure result without waiting for any of the other Deferreds. When this flag is set, the DeferredList will fire with a two-tuple: the first element is the result of the Deferred which fired; the second element is the index in C{deferredList} of that Deferred. @type fireOnOneCallback: L{bool} @param fireOnOneErrback: (keyword param) a flag indicating that this L{DeferredList} will fire when the first L{Deferred} in C{deferredList} fires with a failure result without waiting for any of the other Deferreds. When this flag is set, if a Deferred in the list errbacks, the DeferredList will errback with a L{FirstError} failure wrapping the failure of that Deferred. @type fireOnOneErrback: L{bool} @param consumeErrors: (keyword param) a flag indicating that failures in any of the included L{Deferred}s should not be propagated to errbacks added to the individual L{Deferred}s after this L{DeferredList} is constructed. After constructing the L{DeferredList}, any errors in the individual L{Deferred}s will be converted to a callback result of L{None}. This is useful to prevent spurious 'Unhandled error in Deferred' messages from being logged. This does not prevent C{fireOnOneErrback} from working. @type consumeErrors: L{bool} """ self._deferredList = list(deferredList) self.resultList = [None] * len(self._deferredList) Deferred.__init__(self) if len(self._deferredList) == 0 and not fireOnOneCallback: self.callback(self.resultList) # These flags need to be set *before* attaching callbacks to the # deferreds, because the callbacks use these flags, and will run # synchronously if any of the deferreds are already fired. self.fireOnOneCallback = fireOnOneCallback self.fireOnOneErrback = fireOnOneErrback self.consumeErrors = consumeErrors self.finishedCount = 0 index = 0 for deferred in self._deferredList: deferred.addCallbacks(self._cbDeferred, self._cbDeferred, callbackArgs=(index,SUCCESS), errbackArgs=(index,FAILURE)) index = index + 1 def _cbDeferred(self, result, index, succeeded): """ (internal) Callback for when one of my deferreds fires. """ self.resultList[index] = (succeeded, result) self.finishedCount += 1 if not self.called: if succeeded == SUCCESS and self.fireOnOneCallback: self.callback((result, index)) elif succeeded == FAILURE and self.fireOnOneErrback: self.errback(failure.Failure(FirstError(result, index))) elif self.finishedCount == len(self.resultList): self.callback(self.resultList) if succeeded == FAILURE and self.consumeErrors: result = None return result def cancel(self): """ Cancel this L{DeferredList}. If the L{DeferredList} hasn't fired yet, cancel every L{Deferred} in the list. If the L{DeferredList} has fired, including the case where the C{fireOnOneCallback}/C{fireOnOneErrback} flag is set and the L{DeferredList} fires because one L{Deferred} in the list fires with a non-failure/failure result, do nothing in the C{cancel} method. """ if not self.called: for deferred in self._deferredList: try: deferred.cancel() except: log.failure( "Exception raised from user supplied canceller" ) def _parseDListResult(l, fireOnOneErrback=False): if __debug__: for success, value in l: assert success return [x[1] for x in l] def gatherResults(deferredList, consumeErrors=False): """ Returns, via a L{Deferred}, a list with the results of the given L{Deferred}s - in effect, a "join" of multiple deferred operations. The returned L{Deferred} will fire when I{all} of the provided L{Deferred}s have fired, or when any one of them has failed. This method can be cancelled by calling the C{cancel} method of the L{Deferred}, all the L{Deferred}s in the list will be cancelled. This differs from L{DeferredList} in that you don't need to parse the result for success/failure. @type deferredList: L{list} of L{Deferred}s @param consumeErrors: (keyword param) a flag, defaulting to False, indicating that failures in any of the given L{Deferred}s should not be propagated to errbacks added to the individual L{Deferred}s after this L{gatherResults} invocation. Any such errors in the individual L{Deferred}s will be converted to a callback result of L{None}. This is useful to prevent spurious 'Unhandled error in Deferred' messages from being logged. This parameter is available since 11.1.0. @type consumeErrors: L{bool} """ d = DeferredList(deferredList, fireOnOneErrback=True, consumeErrors=consumeErrors) d.addCallback(_parseDListResult) return d # Constants for use with DeferredList SUCCESS = True FAILURE = False ## deferredGenerator @_oldStyle class waitForDeferred: """ See L{deferredGenerator}. """ def __init__(self, d): warnings.warn( "twisted.internet.defer.waitForDeferred was deprecated in " "Twisted 15.0.0; please use twisted.internet.defer.inlineCallbacks " "instead", DeprecationWarning, stacklevel=2) if not isinstance(d, Deferred): raise TypeError("You must give waitForDeferred a Deferred. You gave it %r." % (d,)) self.d = d def getResult(self): if isinstance(self.result, failure.Failure): self.result.raiseException() return self.result def _deferGenerator(g, deferred): """ See L{deferredGenerator}. """ result = None # This function is complicated by the need to prevent unbounded recursion # arising from repeatedly yielding immediately ready deferreds. This while # loop and the waiting variable solve that by manually unfolding the # recursion. waiting = [True, # defgen is waiting for result? None] # result while 1: try: result = next(g) except StopIteration: deferred.callback(result) return deferred except: deferred.errback() return deferred # Deferred.callback(Deferred) raises an error; we catch this case # early here and give a nicer error message to the user in case # they yield a Deferred. if isinstance(result, Deferred): return fail(TypeError("Yield waitForDeferred(d), not d!")) if isinstance(result, waitForDeferred): # a waitForDeferred was yielded, get the result. # Pass result in so it don't get changed going around the loop # This isn't a problem for waiting, as it's only reused if # gotResult has already been executed. def gotResult(r, result=result): result.result = r if waiting[0]: waiting[0] = False waiting[1] = r else: _deferGenerator(g, deferred) result.d.addBoth(gotResult) if waiting[0]: # Haven't called back yet, set flag so that we get reinvoked # and return from the loop waiting[0] = False return deferred # Reset waiting to initial values for next loop waiting[0] = True waiting[1] = None result = None @deprecated(Version('Twisted', 15, 0, 0), "twisted.internet.defer.inlineCallbacks") def deferredGenerator(f): """ L{deferredGenerator} and L{waitForDeferred} help you write L{Deferred}-using code that looks like a regular sequential function. Consider the use of L{inlineCallbacks} instead, which can accomplish the same thing in a more concise manner. There are two important functions involved: L{waitForDeferred}, and L{deferredGenerator}. They are used together, like this:: @deferredGenerator def thingummy(): thing = waitForDeferred(makeSomeRequestResultingInDeferred()) yield thing thing = thing.getResult() print(thing) #the result! hoorj! L{waitForDeferred} returns something that you should immediately yield; when your generator is resumed, calling C{thing.getResult()} will either give you the result of the L{Deferred} if it was a success, or raise an exception if it was a failure. Calling C{getResult} is B{absolutely mandatory}. If you do not call it, I{your program will not work}. L{deferredGenerator} takes one of these waitForDeferred-using generator functions and converts it into a function that returns a L{Deferred}. The result of the L{Deferred} will be the last value that your generator yielded unless the last value is a L{waitForDeferred} instance, in which case the result will be L{None}. If the function raises an unhandled exception, the L{Deferred} will errback instead. Remember that C{return result} won't work; use C{yield result; return} in place of that. Note that not yielding anything from your generator will make the L{Deferred} result in L{None}. Yielding a L{Deferred} from your generator is also an error condition; always yield C{waitForDeferred(d)} instead. The L{Deferred} returned from your deferred generator may also errback if your generator raised an exception. For example:: @deferredGenerator def thingummy(): thing = waitForDeferred(makeSomeRequestResultingInDeferred()) yield thing thing = thing.getResult() if thing == 'I love Twisted': # will become the result of the Deferred yield 'TWISTED IS GREAT!' return else: # will trigger an errback raise Exception('DESTROY ALL LIFE') Put succinctly, these functions connect deferred-using code with this 'fake blocking' style in both directions: L{waitForDeferred} converts from a L{Deferred} to the 'blocking' style, and L{deferredGenerator} converts from the 'blocking' style to a L{Deferred}. """ @wraps(f) def unwindGenerator(*args, **kwargs): return _deferGenerator(f(*args, **kwargs), Deferred()) return unwindGenerator ## inlineCallbacks class _DefGen_Return(BaseException): def __init__(self, value): self.value = value def returnValue(val): """ Return val from a L{inlineCallbacks} generator. Note: this is currently implemented by raising an exception derived from L{BaseException}. You might want to change any 'except:' clauses to an 'except Exception:' clause so as not to catch this exception. Also: while this function currently will work when called from within arbitrary functions called from within the generator, do not rely upon this behavior. """ raise _DefGen_Return(val) @attr.s class _CancellationStatus(object): """ Cancellation status of an L{inlineCallbacks} invocation. @ivar waitingOn: the L{Deferred} being waited upon (which L{_inlineCallbacks} must fill out before returning) @ivar deferred: the L{Deferred} to callback or errback when the generator invocation has finished. """ deferred = attr.ib() waitingOn = attr.ib(default=None) @failure._extraneous def _inlineCallbacks(result, g, status): """ Carry out the work of L{inlineCallbacks}. Iterate the generator produced by an C{@}L{inlineCallbacks}-decorated function, C{g}, C{send()}ing it the results of each value C{yield}ed by that generator, until a L{Deferred} is yielded, at which point a callback is added to that L{Deferred} to call this function again. @param result: The last result seen by this generator. Note that this is never a L{Deferred} - by the time this function is invoked, the L{Deferred} has been called back and this will be a particular result at a point in its callback chain. @param g: a generator object returned by calling a function or method decorated with C{@}L{inlineCallbacks} @param status: a L{_CancellationStatus} tracking the current status of C{g} """ # This function is complicated by the need to prevent unbounded recursion # arising from repeatedly yielding immediately ready deferreds. This while # loop and the waiting variable solve that by manually unfolding the # recursion. waiting = [True, # waiting for result? None] # result while 1: try: # Send the last result back as the result of the yield expression. isFailure = isinstance(result, failure.Failure) if isFailure: result = result.throwExceptionIntoGenerator(g) else: result = g.send(result) except StopIteration as e: # fell off the end, or "return" statement status.deferred.callback(getattr(e, "value", None)) return except _DefGen_Return as e: # returnValue() was called; time to give a result to the original # Deferred. First though, let's try to identify the potentially # confusing situation which results when returnValue() is # accidentally invoked from a different function, one that wasn't # decorated with @inlineCallbacks. # The traceback starts in this frame (the one for # _inlineCallbacks); the next one down should be the application # code. appCodeTrace = exc_info()[2].tb_next if isFailure: # If we invoked this generator frame by throwing an exception # into it, then throwExceptionIntoGenerator will consume an # additional stack frame itself, so we need to skip that too. appCodeTrace = appCodeTrace.tb_next # Now that we've identified the frame being exited by the # exception, let's figure out if returnValue was called from it # directly. returnValue itself consumes a stack frame, so the # application code will have a tb_next, but it will *not* have a # second tb_next. if appCodeTrace.tb_next.tb_next: # If returnValue was invoked non-local to the frame which it is # exiting, identify the frame that ultimately invoked # returnValue so that we can warn the user, as this behavior is # confusing. ultimateTrace = appCodeTrace while ultimateTrace.tb_next.tb_next: ultimateTrace = ultimateTrace.tb_next filename = ultimateTrace.tb_frame.f_code.co_filename lineno = ultimateTrace.tb_lineno warnings.warn_explicit( "returnValue() in %r causing %r to exit: " "returnValue should only be invoked by functions decorated " "with inlineCallbacks" % ( ultimateTrace.tb_frame.f_code.co_name, appCodeTrace.tb_frame.f_code.co_name), DeprecationWarning, filename, lineno) status.deferred.callback(e.value) return except: status.deferred.errback() return if isinstance(result, Deferred): # a deferred was yielded, get the result. def gotResult(r): if waiting[0]: waiting[0] = False waiting[1] = r else: # We are not waiting for deferred result any more _inlineCallbacks(r, g, status) result.addBoth(gotResult) if waiting[0]: # Haven't called back yet, set flag so that we get reinvoked # and return from the loop waiting[0] = False status.waitingOn = result return result = waiting[1] # Reset waiting to initial values for next loop. gotResult uses # waiting, but this isn't a problem because gotResult is only # executed once, and if it hasn't been executed yet, the return # branch above would have been taken. waiting[0] = True waiting[1] = None def _cancellableInlineCallbacks(g): """ Make an C{@}L{inlineCallbacks} cancellable. @param g: a generator object returned by calling a function or method decorated with C{@}L{inlineCallbacks} @return: L{Deferred} for the C{@}L{inlineCallbacks} that is cancellable. """ def cancel(it): it.callbacks, tmp = [], it.callbacks it.addErrback(handleCancel) it.callbacks.extend(tmp) it.errback(_InternalInlineCallbacksCancelledError()) deferred = Deferred(cancel) status = _CancellationStatus(deferred) def handleCancel(result): """ Propagate the cancellation of an C{@}L{inlineCallbacks} to the L{Deferred} it is waiting on. @param result: An L{_InternalInlineCallbacksCancelledError} from C{cancel()}. @return: A new L{Deferred} that the C{@}L{inlineCallback} generator can callback or errback through. """ result.trap(_InternalInlineCallbacksCancelledError) status.deferred = Deferred(cancel) # We would only end up here if the inlineCallback is waiting on # another Deferred. It needs to be cancelled. awaited = status.waitingOn awaited.cancel() return status.deferred _inlineCallbacks(None, g, status) return deferred class _InternalInlineCallbacksCancelledError(Exception): """ A unique exception used only in L{_cancellableInlineCallbacks} to verify that an L{inlineCallbacks} is being cancelled as expected. """ def inlineCallbacks(f): """ L{inlineCallbacks} helps you write L{Deferred}-using code that looks like a regular sequential function. For example:: @inlineCallbacks def thingummy(): thing = yield makeSomeRequestResultingInDeferred() print(thing) # the result! hoorj! When you call anything that results in a L{Deferred}, you can simply yield it; your generator will automatically be resumed when the Deferred's result is available. The generator will be sent the result of the L{Deferred} with the 'send' method on generators, or if the result was a failure, 'throw'. Things that are not L{Deferred}s may also be yielded, and your generator will be resumed with the same object sent back. This means C{yield} performs an operation roughly equivalent to L{maybeDeferred}. Your inlineCallbacks-enabled generator will return a L{Deferred} object, which will result in the return value of the generator (or will fail with a failure object if your generator raises an unhandled exception). Note that you can't use C{return result} to return a value; use C{returnValue(result)} instead. Falling off the end of the generator, or simply using C{return} will cause the L{Deferred} to have a result of L{None}. Be aware that L{returnValue} will not accept a L{Deferred} as a parameter. If you believe the thing you'd like to return could be a L{Deferred}, do this:: result = yield result returnValue(result) The L{Deferred} returned from your deferred generator may errback if your generator raised an exception:: @inlineCallbacks def thingummy(): thing = yield makeSomeRequestResultingInDeferred() if thing == 'I love Twisted': # will become the result of the Deferred returnValue('TWISTED IS GREAT!') else: # will trigger an errback raise Exception('DESTROY ALL LIFE') It is possible to use the C{return} statement instead of L{returnValue}:: @inlineCallbacks def loadData(url): response = yield makeRequest(url) return json.loads(response) You can cancel the L{Deferred} returned from your L{inlineCallbacks} generator before it is fired by your generator completing (either by reaching its end, a C{return} statement, or by calling L{returnValue}). A C{CancelledError} will be raised from the C{yielde}ed L{Deferred} that has been cancelled if that C{Deferred} does not otherwise suppress it. """ @wraps(f) def unwindGenerator(*args, **kwargs): try: gen = f(*args, **kwargs) except _DefGen_Return: raise TypeError( "inlineCallbacks requires %r to produce a generator; instead" "caught returnValue being used in a non-generator" % (f,)) if not isinstance(gen, types.GeneratorType): raise TypeError( "inlineCallbacks requires %r to produce a generator; " "instead got %r" % (f, gen)) return _cancellableInlineCallbacks(gen) return unwindGenerator ## DeferredLock/DeferredQueue class _ConcurrencyPrimitive(object): def __init__(self): self.waiting = [] def _releaseAndReturn(self, r): self.release() return r def run(*args, **kwargs): """ Acquire, run, release. This function takes a callable as its first argument and any number of other positional and keyword arguments. When the lock or semaphore is acquired, the callable will be invoked with those arguments. The callable may return a L{Deferred}; if it does, the lock or semaphore won't be released until that L{Deferred} fires. @return: L{Deferred} of function result. """ if len(args) < 2: if not args: raise TypeError("run() takes at least 2 arguments, none given.") raise TypeError("%s.run() takes at least 2 arguments, 1 given" % ( args[0].__class__.__name__,)) self, f = args[:2] args = args[2:] def execute(ignoredResult): d = maybeDeferred(f, *args, **kwargs) d.addBoth(self._releaseAndReturn) return d d = self.acquire() d.addCallback(execute) return d class DeferredLock(_ConcurrencyPrimitive): """ A lock for event driven systems. @ivar locked: C{True} when this Lock has been acquired, false at all other times. Do not change this value, but it is useful to examine for the equivalent of a "non-blocking" acquisition. """ locked = False def _cancelAcquire(self, d): """ Remove a deferred d from our waiting list, as the deferred has been canceled. Note: We do not need to wrap this in a try/except to catch d not being in self.waiting because this canceller will not be called if d has fired. release() pops a deferred out of self.waiting and calls it, so the canceller will no longer be called. @param d: The deferred that has been canceled. """ self.waiting.remove(d) def acquire(self): """ Attempt to acquire the lock. Returns a L{Deferred} that fires on lock acquisition with the L{DeferredLock} as the value. If the lock is locked, then the Deferred is placed at the end of a waiting list. @return: a L{Deferred} which fires on lock acquisition. @rtype: a L{Deferred} """ d = Deferred(canceller=self._cancelAcquire) if self.locked: self.waiting.append(d) else: self.locked = True d.callback(self) return d def release(self): """ Release the lock. If there is a waiting list, then the first L{Deferred} in that waiting list will be called back. Should be called by whomever did the L{acquire}() when the shared resource is free. """ assert self.locked, "Tried to release an unlocked lock" self.locked = False if self.waiting: # someone is waiting to acquire lock self.locked = True d = self.waiting.pop(0) d.callback(self) class DeferredSemaphore(_ConcurrencyPrimitive): """ A semaphore for event driven systems. If you are looking into this as a means of limiting parallelism, you might find L{twisted.internet.task.Cooperator} more useful. @ivar limit: At most this many users may acquire this semaphore at once. @type limit: L{int} @ivar tokens: The difference between C{limit} and the number of users which have currently acquired this semaphore. @type tokens: L{int} """ def __init__(self, tokens): """ @param tokens: initial value of L{tokens} and L{limit} @type tokens: L{int} """ _ConcurrencyPrimitive.__init__(self) if tokens < 1: raise ValueError("DeferredSemaphore requires tokens >= 1") self.tokens = tokens self.limit = tokens def _cancelAcquire(self, d): """ Remove a deferred d from our waiting list, as the deferred has been canceled. Note: We do not need to wrap this in a try/except to catch d not being in self.waiting because this canceller will not be called if d has fired. release() pops a deferred out of self.waiting and calls it, so the canceller will no longer be called. @param d: The deferred that has been canceled. """ self.waiting.remove(d) def acquire(self): """ Attempt to acquire the token. @return: a L{Deferred} which fires on token acquisition. """ assert self.tokens >= 0, "Internal inconsistency?? tokens should never be negative" d = Deferred(canceller=self._cancelAcquire) if not self.tokens: self.waiting.append(d) else: self.tokens = self.tokens - 1 d.callback(self) return d def release(self): """ Release the token. Should be called by whoever did the L{acquire}() when the shared resource is free. """ assert self.tokens < self.limit, "Someone released me too many times: too many tokens!" self.tokens = self.tokens + 1 if self.waiting: # someone is waiting to acquire token self.tokens = self.tokens - 1 d = self.waiting.pop(0) d.callback(self) class QueueOverflow(Exception): pass class QueueUnderflow(Exception): pass class DeferredQueue(object): """ An event driven queue. Objects may be added as usual to this queue. When an attempt is made to retrieve an object when the queue is empty, a L{Deferred} is returned which will fire when an object becomes available. @ivar size: The maximum number of objects to allow into the queue at a time. When an attempt to add a new object would exceed this limit, L{QueueOverflow} is raised synchronously. L{None} for no limit. @ivar backlog: The maximum number of L{Deferred} gets to allow at one time. When an attempt is made to get an object which would exceed this limit, L{QueueUnderflow} is raised synchronously. L{None} for no limit. """ def __init__(self, size=None, backlog=None): self.waiting = [] self.pending = [] self.size = size self.backlog = backlog def _cancelGet(self, d): """ Remove a deferred d from our waiting list, as the deferred has been canceled. Note: We do not need to wrap this in a try/except to catch d not being in self.waiting because this canceller will not be called if d has fired. put() pops a deferred out of self.waiting and calls it, so the canceller will no longer be called. @param d: The deferred that has been canceled. """ self.waiting.remove(d) def put(self, obj): """ Add an object to this queue. @raise QueueOverflow: Too many objects are in this queue. """ if self.waiting: self.waiting.pop(0).callback(obj) elif self.size is None or len(self.pending) < self.size: self.pending.append(obj) else: raise QueueOverflow() def get(self): """ Attempt to retrieve and remove an object from the queue. @return: a L{Deferred} which fires with the next object available in the queue. @raise QueueUnderflow: Too many (more than C{backlog}) L{Deferred}s are already waiting for an object from this queue. """ if self.pending: return succeed(self.pending.pop(0)) elif self.backlog is None or len(self.waiting) < self.backlog: d = Deferred(canceller=self._cancelGet) self.waiting.append(d) return d else: raise QueueUnderflow() class AlreadyTryingToLockError(Exception): """ Raised when L{DeferredFilesystemLock.deferUntilLocked} is called twice on a single L{DeferredFilesystemLock}. """ class DeferredFilesystemLock(lockfile.FilesystemLock): """ A L{FilesystemLock} that allows for a L{Deferred} to be fired when the lock is acquired. @ivar _scheduler: The object in charge of scheduling retries. In this implementation this is parameterized for testing. @ivar _interval: The retry interval for an L{IReactorTime} based scheduler. @ivar _tryLockCall: A L{DelayedCall} based on C{_interval} that will manage the next retry for acquiring the lock. @ivar _timeoutCall: A L{DelayedCall} based on C{deferUntilLocked}'s timeout argument. This is in charge of timing out our attempt to acquire the lock. """ _interval = 1 _tryLockCall = None _timeoutCall = None def __init__(self, name, scheduler=None): """ @param name: The name of the lock to acquire @param scheduler: An object which provides L{IReactorTime} """ lockfile.FilesystemLock.__init__(self, name) if scheduler is None: from twisted.internet import reactor scheduler = reactor self._scheduler = scheduler def deferUntilLocked(self, timeout=None): """ Wait until we acquire this lock. This method is not safe for concurrent use. @type timeout: L{float} or L{int} @param timeout: the number of seconds after which to time out if the lock has not been acquired. @return: a L{Deferred} which will callback when the lock is acquired, or errback with a L{TimeoutError} after timing out or an L{AlreadyTryingToLockError} if the L{deferUntilLocked} has already been called and not successfully locked the file. """ if self._tryLockCall is not None: return fail( AlreadyTryingToLockError( "deferUntilLocked isn't safe for concurrent use.")) def _cancelLock(reason): """ Cancel a L{DeferredFilesystemLock.deferUntilLocked} call. @type reason: L{failure.Failure} @param reason: The reason why the call is cancelled. """ self._tryLockCall.cancel() self._tryLockCall = None if self._timeoutCall is not None and self._timeoutCall.active(): self._timeoutCall.cancel() self._timeoutCall = None if self.lock(): d.callback(None) else: d.errback(reason) d = Deferred(lambda deferred: _cancelLock(CancelledError())) def _tryLock(): if self.lock(): if self._timeoutCall is not None: self._timeoutCall.cancel() self._timeoutCall = None self._tryLockCall = None d.callback(None) else: if timeout is not None and self._timeoutCall is None: reason = failure.Failure(TimeoutError( "Timed out acquiring lock: %s after %fs" % ( self.name, timeout))) self._timeoutCall = self._scheduler.callLater( timeout, _cancelLock, reason) self._tryLockCall = self._scheduler.callLater( self._interval, _tryLock) _tryLock() return d __all__ = ["Deferred", "DeferredList", "succeed", "fail", "FAILURE", "SUCCESS", "AlreadyCalledError", "TimeoutError", "gatherResults", "maybeDeferred", "ensureDeferred", "waitForDeferred", "deferredGenerator", "inlineCallbacks", "returnValue", "DeferredLock", "DeferredSemaphore", "DeferredQueue", "DeferredFilesystemLock", "AlreadyTryingToLockError", "CancelledError", ]
35.49003
117
0.618488
9ff323afb0b779aa0a34f553d23945e6bd503f51
2,668
py
Python
superbench/cli/_commands.py
asathiya007/superbenchmark
0583862d2dde37a9aaf16f71be3a23710effef99
[ "MIT" ]
1
2021-07-06T01:41:15.000Z
2021-07-06T01:41:15.000Z
superbench/cli/_commands.py
asathiya007/superbenchmark
0583862d2dde37a9aaf16f71be3a23710effef99
[ "MIT" ]
3
2021-09-20T22:37:13.000Z
2022-02-19T07:45:15.000Z
superbench/cli/_commands.py
Nort85/superbenchmark
702fb1eb3713b2a8c8d9070f7819bba7bab39be4
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """SuperBench CLI commands.""" from knack.arguments import ArgumentsContext from knack.commands import CLICommandsLoader, CommandGroup class SuperBenchCommandsLoader(CLICommandsLoader): """SuperBench CLI commands loader.""" def load_command_table(self, args): """Load commands into the command table. Args: args (list): List of arguments from the command line. Returns: collections.OrderedDict: Load commands into the command table. """ with CommandGroup(self, '', 'superbench.cli._handler#{}') as g: g.command('version', 'version_command_handler') g.command('deploy', 'deploy_command_handler') g.command('exec', 'exec_command_handler') g.command('run', 'run_command_handler') return super().load_command_table(args) def load_arguments(self, command): """Load arguments for commands. Args: command: The command to load arguments for. """ with ArgumentsContext(self, '') as ac: ac.argument('docker_image', options_list=('--docker-image', '-i'), type=str, help='Docker image URI.') ac.argument('docker_username', type=str, help='Docker registry username if authentication is needed.') ac.argument('docker_password', type=str, help='Docker registry password if authentication is needed.') ac.argument( 'host_file', options_list=('--host-file', '-f'), type=str, help='Path to Ansible inventory host file.' ) ac.argument('host_list', options_list=('--host-list', '-l'), type=str, help='Comma separated host list.') ac.argument('host_username', type=str, help='Host username if needed.') ac.argument('host_password', type=str, help='Host password or key passphase if needed.') ac.argument( 'output_dir', type=str, help='Path to output directory, outputs/{datetime} will be used if not specified.' ) ac.argument('private_key', type=str, help='Path to private key if needed.') ac.argument( 'config_file', options_list=('--config-file', '-c'), type=str, help='Path to SuperBench config file.' ) ac.argument( 'config_override', options_list=('--config-override', '-C'), type=str, nargs='+', help='Extra arguments to override config_file.' ) super().load_arguments(command)
43.737705
118
0.602324
8364f6c8a95cf49dddd678773cb99e794bc3703e
5,551
py
Python
groupdocs_parser_cloud/models/rectangle.py
groupdocs-parser-cloud/groupdocs-parser-cloud-python
e306362857cb78b17a5dc73a3bf707cbc6876ca3
[ "MIT" ]
1
2021-12-20T20:27:12.000Z
2021-12-20T20:27:12.000Z
groupdocs_parser_cloud/models/rectangle.py
groupdocs-parser-cloud/groupdocs-parser-cloud-python
e306362857cb78b17a5dc73a3bf707cbc6876ca3
[ "MIT" ]
null
null
null
groupdocs_parser_cloud/models/rectangle.py
groupdocs-parser-cloud/groupdocs-parser-cloud-python
e306362857cb78b17a5dc73a3bf707cbc6876ca3
[ "MIT" ]
1
2021-09-05T17:46:05.000Z
2021-09-05T17:46:05.000Z
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose Pty Ltd" file="Rectangle.py"> # Copyright (c) 2003-2019 Aspose Pty Ltd # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six class Rectangle(object): """ Rectangular area on the page. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'position': 'Point', 'size': 'Size', 'coordinates': 'Coordinates' } attribute_map = { 'position': 'Position', 'size': 'Size', 'coordinates': 'Coordinates' } def __init__(self, position=None, size=None, coordinates=None, **kwargs): # noqa: E501 """Initializes new instance of Rectangle""" # noqa: E501 self._position = None self._size = None self._coordinates = None if position is not None: self.position = position if size is not None: self.size = size if coordinates is not None: self.coordinates = coordinates @property def position(self): """ Gets the position. # noqa: E501 Gets the coordinates of the upper-left corner of the rectangular area. # noqa: E501 :return: The position. # noqa: E501 :rtype: Point """ return self._position @position.setter def position(self, position): """ Sets the position. Gets the coordinates of the upper-left corner of the rectangular area. # noqa: E501 :param position: The position. # noqa: E501 :type: Point """ self._position = position @property def size(self): """ Gets the size. # noqa: E501 Gets or sets the size of the rectangle. # noqa: E501 :return: The size. # noqa: E501 :rtype: Size """ return self._size @size.setter def size(self, size): """ Sets the size. Gets or sets the size of the rectangle. # noqa: E501 :param size: The size. # noqa: E501 :type: Size """ self._size = size @property def coordinates(self): """ Gets the coordinates. # noqa: E501 Gets or sets the coordinates. # noqa: E501 :return: The coordinates. # noqa: E501 :rtype: Coordinates """ return self._coordinates @coordinates.setter def coordinates(self, coordinates): """ Sets the coordinates. Gets or sets the coordinates. # noqa: E501 :param coordinates: The coordinates. # noqa: E501 :type: Coordinates """ self._coordinates = coordinates def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Rectangle): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.005405
92
0.567645
21491f53c69a99e2931bc07dc1fe385427e6bfe1
6,985
py
Python
tracformatter/trac/wiki/interwiki.py
kbower/tracwikiconv
6db4c856c8ab64beac666226519ae2e8d513c428
[ "BSD-3-Clause" ]
1
2017-02-09T15:55:16.000Z
2017-02-09T15:55:16.000Z
tracformatter/trac/wiki/interwiki.py
kbower/tracwikiconv
6db4c856c8ab64beac666226519ae2e8d513c428
[ "BSD-3-Clause" ]
null
null
null
tracformatter/trac/wiki/interwiki.py
kbower/tracwikiconv
6db4c856c8ab64beac666226519ae2e8d513c428
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2005-2009 Edgewall Software # Copyright (C) 2005-2006 Christian Boos <cboos@edgewall.org> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://trac.edgewall.org/log/. # # Author: Christian Boos <cboos@edgewall.org> import re from genshi.builder import tag from trac.cache import cached from trac.config import ConfigSection from trac.core import * from trac.util.translation import _, N_ from trac.wiki.api import IWikiChangeListener, IWikiMacroProvider from trac.wiki.parser import WikiParser from trac.wiki.formatter import split_url_into_path_query_fragment class InterWikiMap(Component): """InterWiki map manager.""" implements(IWikiChangeListener, IWikiMacroProvider) interwiki_section = ConfigSection('interwiki', """Every option in the `[interwiki]` section defines one InterWiki prefix. The option name defines the prefix. The option value defines the URL, optionally followed by a description separated from the URL by whitespace. Parametric URLs are supported as well. '''Example:''' {{{ [interwiki] MeatBall = http://www.usemod.com/cgi-bin/mb.pl? PEP = http://www.python.org/peps/pep-$1.html Python Enhancement Proposal $1 tsvn = tsvn: Interact with TortoiseSvn }}} """) _page_name = 'InterMapTxt' _interwiki_re = re.compile(r"(%s)[ \t]+([^ \t]+)(?:[ \t]+#(.*))?" % WikiParser.LINK_SCHEME, re.UNICODE) _argspec_re = re.compile(r"\$\d") # The component itself behaves as a read-only map def __contains__(self, ns): return ns.upper() in self.interwiki_map def __getitem__(self, ns): return self.interwiki_map[ns.upper()] def keys(self): return self.interwiki_map.keys() # Expansion of positional arguments ($1, $2, ...) in URL and title def _expand(self, txt, args): """Replace "$1" by the first args, "$2" by the second, etc.""" def setarg(match): num = int(match.group()[1:]) return args[num - 1] if 0 < num <= len(args) else '' return re.sub(InterWikiMap._argspec_re, setarg, txt) def _expand_or_append(self, txt, args): """Like expand, but also append first arg if there's no "$".""" if not args: return txt expanded = self._expand(txt, args) return txt + args[0] if expanded == txt else expanded def url(self, ns, target): """Return `(url, title)` for the given InterWiki `ns`. Expand the colon-separated `target` arguments. """ ns, url, title = self[ns] maxargnum = max([0] + [int(a[1:]) for a in re.findall(InterWikiMap._argspec_re, url)]) target, query, fragment = split_url_into_path_query_fragment(target) if maxargnum > 0: args = target.split(':', (maxargnum - 1)) else: args = [target] url = self._expand_or_append(url, args) ntarget, nquery, nfragment = split_url_into_path_query_fragment(url) if query and nquery: nquery = '%s&%s' % (nquery, query[1:]) else: nquery = nquery or query nfragment = fragment or nfragment # user provided takes precedence expanded_url = ntarget + nquery + nfragment expanded_title = self._expand(title, args) if expanded_title == title: expanded_title = _("%(target)s in %(name)s", target=target, name=title) return expanded_url, expanded_title # IWikiChangeListener methods def wiki_page_added(self, page): if page.name == InterWikiMap._page_name: del self.interwiki_map def wiki_page_changed(self, page, version, t, comment, author, ipnr): if page.name == InterWikiMap._page_name: del self.interwiki_map def wiki_page_deleted(self, page): if page.name == InterWikiMap._page_name: del self.interwiki_map def wiki_page_version_deleted(self, page): if page.name == InterWikiMap._page_name: del self.interwiki_map @cached def interwiki_map(self, db): """Map from upper-cased namespaces to (namespace, prefix, title) values. """ from trac.wiki.model import WikiPage map = {} content = WikiPage(self.env, InterWikiMap._page_name, db=db).text in_map = False for line in content.split('\n'): if in_map: if line.startswith('----'): in_map = False else: m = re.match(InterWikiMap._interwiki_re, line) if m: prefix, url, title = m.groups() url = url.strip() title = title.strip() if title else prefix map[prefix.upper()] = (prefix, url, title) elif line.startswith('----'): in_map = True for prefix, value in self.interwiki_section.options(): value = value.split(None, 1) if value: url = value[0].strip() title = value[1].strip() if len(value) > 1 else prefix map[prefix.upper()] = (prefix, url, title) return map # IWikiMacroProvider methods def get_macros(self): yield 'InterWiki' def get_macro_description(self, name): return 'messages', \ N_("Provide a description list for the known InterWiki " "prefixes.") def expand_macro(self, formatter, name, content): interwikis = [] for k in sorted(self.keys()): prefix, url, title = self[k] interwikis.append({ 'prefix': prefix, 'url': url, 'title': title, 'rc_url': self._expand_or_append(url, ['RecentChanges']), 'description': url if title == prefix else title}) return tag.table(tag.tr(tag.th(tag.em("Prefix")), tag.th(tag.em("Site"))), [tag.tr(tag.td(tag.a(w['prefix'], href=w['rc_url'])), tag.td(tag.a(w['description'], href=w['url']))) for w in interwikis ], class_="wiki interwiki")
38.379121
84
0.56879
49a4896a9a68ff446b6343d1474c9634ee0b9ba4
8,838
py
Python
python/swagger_client/models/customer_payload.py
alextselegidis/easyappointments-sdk
8ba969dc1221ea614b70d4d52313f20fc85df1e1
[ "CC-BY-3.0" ]
null
null
null
python/swagger_client/models/customer_payload.py
alextselegidis/easyappointments-sdk
8ba969dc1221ea614b70d4d52313f20fc85df1e1
[ "CC-BY-3.0" ]
null
null
null
python/swagger_client/models/customer_payload.py
alextselegidis/easyappointments-sdk
8ba969dc1221ea614b70d4d52313f20fc85df1e1
[ "CC-BY-3.0" ]
null
null
null
# coding: utf-8 """ Easy!Appointments API These are the OpenAPI specs that describe the REST API of Easy!Appointments. # noqa: E501 OpenAPI spec version: 1.0.0 Contact: info@easyappointments.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CustomerPayload(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'first_name': 'str', 'last_name': 'str', 'email': 'str', 'phone': 'str', 'address': 'str', 'city': 'str', 'zip': 'str', 'timezone': 'str', 'language': 'str', 'notes': 'str' } attribute_map = { 'first_name': 'firstName', 'last_name': 'lastName', 'email': 'email', 'phone': 'phone', 'address': 'address', 'city': 'city', 'zip': 'zip', 'timezone': 'timezone', 'language': 'language', 'notes': 'notes' } def __init__(self, first_name=None, last_name=None, email=None, phone=None, address=None, city=None, zip=None, timezone=None, language=None, notes=None): # noqa: E501 """CustomerPayload - a model defined in Swagger""" # noqa: E501 self._first_name = None self._last_name = None self._email = None self._phone = None self._address = None self._city = None self._zip = None self._timezone = None self._language = None self._notes = None self.discriminator = None if first_name is not None: self.first_name = first_name if last_name is not None: self.last_name = last_name if email is not None: self.email = email if phone is not None: self.phone = phone if address is not None: self.address = address if city is not None: self.city = city if zip is not None: self.zip = zip if timezone is not None: self.timezone = timezone if language is not None: self.language = language if notes is not None: self.notes = notes @property def first_name(self): """Gets the first_name of this CustomerPayload. # noqa: E501 :return: The first_name of this CustomerPayload. # noqa: E501 :rtype: str """ return self._first_name @first_name.setter def first_name(self, first_name): """Sets the first_name of this CustomerPayload. :param first_name: The first_name of this CustomerPayload. # noqa: E501 :type: str """ self._first_name = first_name @property def last_name(self): """Gets the last_name of this CustomerPayload. # noqa: E501 :return: The last_name of this CustomerPayload. # noqa: E501 :rtype: str """ return self._last_name @last_name.setter def last_name(self, last_name): """Sets the last_name of this CustomerPayload. :param last_name: The last_name of this CustomerPayload. # noqa: E501 :type: str """ self._last_name = last_name @property def email(self): """Gets the email of this CustomerPayload. # noqa: E501 :return: The email of this CustomerPayload. # noqa: E501 :rtype: str """ return self._email @email.setter def email(self, email): """Sets the email of this CustomerPayload. :param email: The email of this CustomerPayload. # noqa: E501 :type: str """ self._email = email @property def phone(self): """Gets the phone of this CustomerPayload. # noqa: E501 :return: The phone of this CustomerPayload. # noqa: E501 :rtype: str """ return self._phone @phone.setter def phone(self, phone): """Sets the phone of this CustomerPayload. :param phone: The phone of this CustomerPayload. # noqa: E501 :type: str """ self._phone = phone @property def address(self): """Gets the address of this CustomerPayload. # noqa: E501 :return: The address of this CustomerPayload. # noqa: E501 :rtype: str """ return self._address @address.setter def address(self, address): """Sets the address of this CustomerPayload. :param address: The address of this CustomerPayload. # noqa: E501 :type: str """ self._address = address @property def city(self): """Gets the city of this CustomerPayload. # noqa: E501 :return: The city of this CustomerPayload. # noqa: E501 :rtype: str """ return self._city @city.setter def city(self, city): """Sets the city of this CustomerPayload. :param city: The city of this CustomerPayload. # noqa: E501 :type: str """ self._city = city @property def zip(self): """Gets the zip of this CustomerPayload. # noqa: E501 :return: The zip of this CustomerPayload. # noqa: E501 :rtype: str """ return self._zip @zip.setter def zip(self, zip): """Sets the zip of this CustomerPayload. :param zip: The zip of this CustomerPayload. # noqa: E501 :type: str """ self._zip = zip @property def timezone(self): """Gets the timezone of this CustomerPayload. # noqa: E501 :return: The timezone of this CustomerPayload. # noqa: E501 :rtype: str """ return self._timezone @timezone.setter def timezone(self, timezone): """Sets the timezone of this CustomerPayload. :param timezone: The timezone of this CustomerPayload. # noqa: E501 :type: str """ self._timezone = timezone @property def language(self): """Gets the language of this CustomerPayload. # noqa: E501 :return: The language of this CustomerPayload. # noqa: E501 :rtype: str """ return self._language @language.setter def language(self, language): """Sets the language of this CustomerPayload. :param language: The language of this CustomerPayload. # noqa: E501 :type: str """ self._language = language @property def notes(self): """Gets the notes of this CustomerPayload. # noqa: E501 :return: The notes of this CustomerPayload. # noqa: E501 :rtype: str """ return self._notes @notes.setter def notes(self, notes): """Sets the notes of this CustomerPayload. :param notes: The notes of this CustomerPayload. # noqa: E501 :type: str """ self._notes = notes def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(CustomerPayload, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CustomerPayload): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.617391
171
0.559742
8245747b892971c64a79edbb4542d4b21ccfe855
22,775
py
Python
training/training_loop.py
igg002/stylegan2-ada-pytorch
f9e58945e599ce09d3a21bb2c49dd5fdab2d5f54
[ "BSD-Source-Code" ]
null
null
null
training/training_loop.py
igg002/stylegan2-ada-pytorch
f9e58945e599ce09d3a21bb2c49dd5fdab2d5f54
[ "BSD-Source-Code" ]
null
null
null
training/training_loop.py
igg002/stylegan2-ada-pytorch
f9e58945e599ce09d3a21bb2c49dd5fdab2d5f54
[ "BSD-Source-Code" ]
null
null
null
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. import os import time import copy import json import pickle import psutil import PIL.Image import numpy as np import torch import dnnlib from torch_utils import misc from torch_utils import training_stats from torch_utils.ops import conv2d_gradfix from torch_utils.ops import grid_sample_gradfix import legacy from metrics import metric_main #---------------------------------------------------------------------------- def setup_snapshot_image_grid(training_set, random_seed=0): rnd = np.random.RandomState(random_seed) gw = np.clip(7680 // training_set.image_shape[2], 7, 32) gh = np.clip(4320 // training_set.image_shape[1], 4, 32) # No labels => show random subset of training samples. if not training_set.has_labels: all_indices = list(range(len(training_set))) rnd.shuffle(all_indices) grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)] else: # Group training samples by label. label_groups = dict() # label => [idx, ...] for idx in range(len(training_set)): label = tuple(training_set.get_details(idx).raw_label.flat[::-1]) if label not in label_groups: label_groups[label] = [] label_groups[label].append(idx) # Reorder. label_order = sorted(label_groups.keys()) for label in label_order: rnd.shuffle(label_groups[label]) # Organize into grid. grid_indices = [] for y in range(gh): label = label_order[y % len(label_order)] indices = label_groups[label] grid_indices += [indices[x % len(indices)] for x in range(gw)] label_groups[label] = [indices[(i + gw) % len(indices)] for i in range(len(indices))] # Load data. images, labels = zip(*[training_set[i] for i in grid_indices]) return (gw, gh), np.stack(images), np.stack(labels) #---------------------------------------------------------------------------- def save_image_grid(img, fname, drange, grid_size, is_real=False, is_16_bit=False): # Option 1) Convert fake images using min-max normalization (original) # lo, hi = drange # max_val = 65535 if is_16_bit else 255 # img = np.asarray(img, dtype=np.float32) # img = (img - lo) * (max_val / (hi - lo)) # img = np.rint(img).clip(0, max_val) # img = img.astype(np.uint16 if is_16_bit else np.uint8) # Option 2) Convert fake images (expected range [-1, 1]) in the same way # it is converted for generating samples if not is_real: max_val = 65535 if is_16_bit else 255 half_max = 32767.5 if is_16_bit else 127.5 img = (img * half_max + half_max).clip(0, max_val) img = img.astype(np.uint16 if is_16_bit else np.uint8) gw, gh = grid_size _N, C, H, W = img.shape img = img.reshape(gh, gw, C, H, W) img = img.transpose(0, 3, 1, 4, 2) img = img.reshape(gh * H, gw * W, C) assert C in [1, 3] if C == 1: mode = 'I;16' if is_16_bit else 'L' PIL.Image.fromarray(img[:, :, 0], mode).save(fname) if C == 3: PIL.Image.fromarray(img, 'RGB').save(fname) #---------------------------------------------------------------------------- def training_loop( run_dir = '.', # Output directory. training_set_kwargs = {}, # Options for training set. data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader. G_kwargs = {}, # Options for generator network. D_kwargs = {}, # Options for discriminator network. G_opt_kwargs = {}, # Options for generator optimizer. D_opt_kwargs = {}, # Options for discriminator optimizer. augment_kwargs = None, # Options for augmentation pipeline. None = disable. loss_kwargs = {}, # Options for loss function. metrics = [], # Metrics to evaluate during training. random_seed = 0, # Global random seed. num_gpus = 1, # Number of GPUs participating in the training. rank = 0, # Rank of the current process in [0, num_gpus[. batch_size = 4, # Total batch size for one training iteration. Can be larger than batch_gpu * num_gpus. batch_gpu = 4, # Number of samples processed at a time by one GPU. ema_kimg = 10, # Half-life of the exponential moving average (EMA) of generator weights. ema_rampup = None, # EMA ramp-up coefficient. G_reg_interval = 4, # How often to perform regularization for G? None = disable lazy regularization. D_reg_interval = 16, # How often to perform regularization for D? None = disable lazy regularization. augment_p = 0, # Initial value of augmentation probability. ada_target = None, # ADA target value. None = fixed p. ada_interval = 4, # How often to perform ADA adjustment? ada_kimg = 500, # ADA adjustment speed, measured in how many kimg it takes for p to increase/decrease by one unit. nimg = 0, # current image count total_kimg = 25000, # Total length of the training, measured in thousands of real images. kimg_per_tick = 4, # Progress snapshot interval. image_snapshot_ticks = 50, # How often to save image snapshots? None = disable. network_snapshot_ticks = 50, # How often to save network snapshots? None = disable. resume_pkl = None, # Network pickle to resume training from. cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark? allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32? abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks. progress_fn = None, # Callback function for updating training progress. Called for all ranks. ): # Initialize. start_time = time.time() device = torch.device('cuda', rank) np.random.seed(random_seed * num_gpus + rank) torch.manual_seed(random_seed * num_gpus + rank) torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed. torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions conv2d_gradfix.enabled = True # Improves training speed. grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe. # Load training set. if rank == 0: print('Loading training set...') training_set = dnnlib.util.construct_class_by_name(**training_set_kwargs) # subclass of training.dataset.Dataset training_set_sampler = misc.InfiniteSampler(dataset=training_set, rank=rank, num_replicas=num_gpus, seed=random_seed) training_set_iterator = iter(torch.utils.data.DataLoader(dataset=training_set, sampler=training_set_sampler, batch_size=batch_size//num_gpus, **data_loader_kwargs)) if rank == 0: print() print('Num images: ', len(training_set)) print('Image shape:', training_set.image_shape) print('Label shape:', training_set.label_shape) print() # Construct networks. if rank == 0: print('Constructing networks...') common_kwargs = dict(c_dim=training_set.label_dim, img_resolution=training_set.resolution, img_channels=training_set.num_channels) G = dnnlib.util.construct_class_by_name(**G_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module D = dnnlib.util.construct_class_by_name(**D_kwargs, **common_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module G_ema = copy.deepcopy(G).eval() G.update_epochs( float(100 * nimg / (total_kimg * 1000)) ) # 100 total top k "epochs" in total_kimg print('starting G epochs: ',G.epochs) # Resume from existing pickle. if (resume_pkl is not None) and (rank == 0): print(f'Resuming from "{resume_pkl}"') with dnnlib.util.open_url(resume_pkl) as f: resume_data = legacy.load_network_pkl(f) for name, module in [('G', G), ('D', D), ('G_ema', G_ema)]: misc.copy_params_and_buffers(resume_data[name], module, require_all=False) # Print network summary tables. if rank == 0: z = torch.empty([batch_gpu, G.z_dim], device=device) c = torch.empty([batch_gpu, G.c_dim], device=device) img = misc.print_module_summary(G, [z, c]) misc.print_module_summary(D, [img, c]) # Setup augmentation. if rank == 0: print('Setting up augmentation...') augment_pipe = None ada_stats = None if (augment_kwargs is not None) and (augment_p > 0 or ada_target is not None): augment_pipe = dnnlib.util.construct_class_by_name(**augment_kwargs).train().requires_grad_(False).to(device) # subclass of torch.nn.Module augment_pipe.p.copy_(torch.as_tensor(augment_p)) if ada_target is not None: ada_stats = training_stats.Collector(regex='Loss/signs/real') # Distribute across GPUs. if rank == 0: print(f'Distributing across {num_gpus} GPUs...') ddp_modules = dict() for name, module in [('G', G),('G_mapping', G.mapping), ('G_synthesis', G.synthesis), ('D', D), (None, G_ema), ('augment_pipe', augment_pipe)]: if (num_gpus > 1) and (module is not None) and len(list(module.parameters())) != 0: module.requires_grad_(True) module = torch.nn.parallel.DistributedDataParallel(module, device_ids=[device], broadcast_buffers=False) module.requires_grad_(False) if name is not None: ddp_modules[name] = module # Setup training phases. if rank == 0: print('Setting up training phases...') loss = dnnlib.util.construct_class_by_name(device=device, **ddp_modules, **loss_kwargs) # subclass of training.loss.Loss phases = [] for name, module, opt_kwargs, reg_interval in [('G', G, G_opt_kwargs, G_reg_interval), ('D', D, D_opt_kwargs, D_reg_interval)]: if reg_interval is None: opt = dnnlib.util.construct_class_by_name(params=module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer phases += [dnnlib.EasyDict(name=name+'both', module=module, opt=opt, interval=1)] else: # Lazy regularization. mb_ratio = reg_interval / (reg_interval + 1) opt_kwargs = dnnlib.EasyDict(opt_kwargs) opt_kwargs.lr = opt_kwargs.lr * mb_ratio opt_kwargs.betas = [beta ** mb_ratio for beta in opt_kwargs.betas] opt = dnnlib.util.construct_class_by_name(module.parameters(), **opt_kwargs) # subclass of torch.optim.Optimizer phases += [dnnlib.EasyDict(name=name+'main', module=module, opt=opt, interval=1)] phases += [dnnlib.EasyDict(name=name+'reg', module=module, opt=opt, interval=reg_interval)] for phase in phases: phase.start_event = None phase.end_event = None if rank == 0: phase.start_event = torch.cuda.Event(enable_timing=True) phase.end_event = torch.cuda.Event(enable_timing=True) # Export sample images. grid_size = None grid_z = None grid_c = None is_16_bit = training_set_kwargs.is_16_bit if rank == 0: print('Exporting sample images...') grid_size, images, labels = setup_snapshot_image_grid(training_set=training_set) max_val = 65535 if is_16_bit else 255 save_image_grid(images, os.path.join(run_dir, 'reals.png'), drange=[0,max_val], grid_size=grid_size, is_real=True, is_16_bit=is_16_bit) grid_z = torch.randn([labels.shape[0], G.z_dim], device=device).split(batch_gpu) grid_c = torch.from_numpy(labels).to(device).split(batch_gpu) images = torch.cat([G_ema(z=z, c=c, noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy() save_image_grid(images, os.path.join(run_dir, 'fakes_init.png'), drange=[-1,1], grid_size=grid_size, is_16_bit=is_16_bit) # Initialize logs. if rank == 0: print('Initializing logs...') stats_collector = training_stats.Collector(regex='.*') stats_metrics = dict() stats_jsonl = None stats_tfevents = None if rank == 0: stats_jsonl = open(os.path.join(run_dir, 'stats.jsonl'), 'wt') try: import torch.utils.tensorboard as tensorboard stats_tfevents = tensorboard.SummaryWriter(run_dir) except ImportError as err: print('Skipping tfevents export:', err) # Train. if rank == 0: print(f'Training for {total_kimg} kimg...') print() cur_nimg = nimg cur_tick = 0 tick_start_nimg = cur_nimg tick_start_time = time.time() maintenance_time = tick_start_time - start_time batch_idx = 0 if progress_fn is not None: progress_fn(0, total_kimg) while True: # Fetch training data. with torch.autograd.profiler.record_function('data_fetch'): phase_real_img, phase_real_c = next(training_set_iterator) half_max = 32767.5 if is_16_bit else 127.5 phase_real_img = (phase_real_img.to(device).to(torch.float32) / half_max - 1).split(batch_gpu) phase_real_c = phase_real_c.to(device).split(batch_gpu) all_gen_z = torch.randn([len(phases) * batch_size, G.z_dim], device=device) all_gen_z = [phase_gen_z.split(batch_gpu) for phase_gen_z in all_gen_z.split(batch_size)] all_gen_c = [training_set.get_label(np.random.randint(len(training_set))) for _ in range(len(phases) * batch_size)] all_gen_c = torch.from_numpy(np.stack(all_gen_c)).pin_memory().to(device) all_gen_c = [phase_gen_c.split(batch_gpu) for phase_gen_c in all_gen_c.split(batch_size)] # Execute training phases. for phase, phase_gen_z, phase_gen_c in zip(phases, all_gen_z, all_gen_c): if batch_idx % phase.interval != 0: continue G.update_epochs( float(100 * nimg / (total_kimg * 1000)) ) # 100 total top k "epochs" in total_kimg # Initialize gradient accumulation. if phase.start_event is not None: phase.start_event.record(torch.cuda.current_stream(device)) phase.opt.zero_grad(set_to_none=True) phase.module.requires_grad_(True) # Accumulate gradients over multiple rounds. for round_idx, (real_img, real_c, gen_z, gen_c) in enumerate(zip(phase_real_img, phase_real_c, phase_gen_z, phase_gen_c)): sync = (round_idx == batch_size // (batch_gpu * num_gpus) - 1) gain = phase.interval loss.accumulate_gradients(phase=phase.name, real_img=real_img, real_c=real_c, gen_z=gen_z, gen_c=gen_c, sync=sync, gain=gain) # Update weights. phase.module.requires_grad_(False) with torch.autograd.profiler.record_function(phase.name + '_opt'): for param in phase.module.parameters(): if param.grad is not None: misc.nan_to_num(param.grad, nan=0, posinf=1e5, neginf=-1e5, out=param.grad) phase.opt.step() if phase.end_event is not None: phase.end_event.record(torch.cuda.current_stream(device)) # Update G_ema. with torch.autograd.profiler.record_function('Gema'): ema_nimg = ema_kimg * 1000 if ema_rampup is not None: ema_nimg = min(ema_nimg, cur_nimg * ema_rampup) ema_beta = 0.5 ** (batch_size / max(ema_nimg, 1e-8)) for p_ema, p in zip(G_ema.parameters(), G.parameters()): p_ema.copy_(p.lerp(p_ema, ema_beta)) for b_ema, b in zip(G_ema.buffers(), G.buffers()): b_ema.copy_(b) # Update state. cur_nimg += batch_size batch_idx += 1 # Execute ADA heuristic. if (ada_stats is not None) and (batch_idx % ada_interval == 0): ada_stats.update() adjust = np.sign(ada_stats['Loss/signs/real'] - ada_target) * (batch_size * ada_interval) / (ada_kimg * 1000) augment_pipe.p.copy_((augment_pipe.p + adjust).max(misc.constant(0, device=device))) # Perform maintenance tasks once per tick. done = (cur_nimg >= total_kimg * 1000) if (not done) and (cur_tick != 0) and (cur_nimg < tick_start_nimg + kimg_per_tick * 1000): continue # Print status line, accumulating the same information in stats_collector. tick_end_time = time.time() fields = [] fields += [f"tick {training_stats.report0('Progress/tick', cur_tick):<5d}"] fields += [f"kimg {training_stats.report0('Progress/kimg', cur_nimg / 1e3):<8.1f}"] fields += [f"time {dnnlib.util.format_time(training_stats.report0('Timing/total_sec', tick_end_time - start_time)):<12s}"] fields += [f"sec/tick {training_stats.report0('Timing/sec_per_tick', tick_end_time - tick_start_time):<7.1f}"] fields += [f"sec/kimg {training_stats.report0('Timing/sec_per_kimg', (tick_end_time - tick_start_time) / (cur_nimg - tick_start_nimg) * 1e3):<7.2f}"] fields += [f"maintenance {training_stats.report0('Timing/maintenance_sec', maintenance_time):<6.1f}"] fields += [f"cpumem {training_stats.report0('Resources/cpu_mem_gb', psutil.Process(os.getpid()).memory_info().rss / 2**30):<6.2f}"] fields += [f"gpumem {training_stats.report0('Resources/peak_gpu_mem_gb', torch.cuda.max_memory_allocated(device) / 2**30):<6.2f}"] torch.cuda.reset_peak_memory_stats() fields += [f"augment {training_stats.report0('Progress/augment', float(augment_pipe.p.cpu()) if augment_pipe is not None else 0):.3f}"] training_stats.report0('Timing/total_hours', (tick_end_time - start_time) / (60 * 60)) training_stats.report0('Timing/total_days', (tick_end_time - start_time) / (24 * 60 * 60)) if rank == 0: print(' '.join(fields)) # Check for abort. if (not done) and (abort_fn is not None) and abort_fn(): done = True if rank == 0: print() print('Aborting...') # Save image snapshot. if (rank == 0) and (image_snapshot_ticks is not None) and (done or cur_tick % image_snapshot_ticks == 0): images = torch.cat([G_ema(z=z, c=c, noise_mode='const').cpu() for z, c in zip(grid_z, grid_c)]).numpy() save_image_grid(images, os.path.join(run_dir, f'fakes{cur_nimg//1000:06d}.png'), drange=[-1,1], grid_size=grid_size, is_16_bit=is_16_bit) # Save network snapshot. snapshot_pkl = None snapshot_data = None if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0): snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs)) for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe)]: if module is not None: if num_gpus > 1: misc.check_ddp_consistency(module, ignore_regex=r'.*\.w_avg') module = copy.deepcopy(module).eval().requires_grad_(False).cpu() snapshot_data[name] = module del module # conserve memory snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl') if rank == 0: with open(snapshot_pkl, 'wb') as f: pickle.dump(snapshot_data, f) # Evaluate metrics. if (snapshot_data is not None) and (len(metrics) > 0): if rank == 0: print('Evaluating metrics...') for metric in metrics: result_dict = metric_main.calc_metric(metric=metric, G=snapshot_data['G_ema'], dataset_kwargs=training_set_kwargs, num_gpus=num_gpus, rank=rank, device=device) if rank == 0: metric_main.report_metric(result_dict, run_dir=run_dir, snapshot_pkl=snapshot_pkl) stats_metrics.update(result_dict.results) del snapshot_data # conserve memory # Collect statistics. for phase in phases: value = [] if (phase.start_event is not None) and (phase.end_event is not None): phase.end_event.synchronize() value = phase.start_event.elapsed_time(phase.end_event) training_stats.report0('Timing/' + phase.name, value) stats_collector.update() stats_dict = stats_collector.as_dict() # Update logs. timestamp = time.time() if stats_jsonl is not None: fields = dict(stats_dict, timestamp=timestamp) stats_jsonl.write(json.dumps(fields) + '\n') stats_jsonl.flush() if stats_tfevents is not None: global_step = int(cur_nimg / 1e3) walltime = timestamp - start_time for name, value in stats_dict.items(): stats_tfevents.add_scalar(name, value.mean, global_step=global_step, walltime=walltime) for name, value in stats_metrics.items(): stats_tfevents.add_scalar(f'Metrics/{name}', value, global_step=global_step, walltime=walltime) stats_tfevents.flush() if progress_fn is not None: progress_fn(cur_nimg // 1000, total_kimg) # Update state. cur_tick += 1 tick_start_nimg = cur_nimg tick_start_time = time.time() maintenance_time = tick_start_time - tick_end_time if done: break # Done. if rank == 0: print() print('Exiting...') #----------------------------------------------------------------------------
51.410835
168
0.624632
2c6f0943734bd4b24e17e4002f4794c03c29a425
16,608
py
Python
gradelib.py
luisxmetalx/xv6-SO2
e1eb50626029a4af1e9f034a467119f4dc7f1d0b
[ "MIT-0" ]
null
null
null
gradelib.py
luisxmetalx/xv6-SO2
e1eb50626029a4af1e9f034a467119f4dc7f1d0b
[ "MIT-0" ]
null
null
null
gradelib.py
luisxmetalx/xv6-SO2
e1eb50626029a4af1e9f034a467119f4dc7f1d0b
[ "MIT-0" ]
null
null
null
from __future__ import print_function import sys, os, re, time, socket, select, subprocess, errno, shutil from subprocess import check_call, Popen from optparse import OptionParser __all__ = [] ################################################################## # Test structure # __all__ += ["test", "end_part", "run_tests", "get_current_test"] TESTS = [] TOTAL = POSSIBLE = 0 PART_TOTAL = PART_POSSIBLE = 0 CURRENT_TEST = None def test(points, title=None, parent=None): """Decorator for declaring test functions. If title is None, the title of the test will be derived from the function name by stripping the leading "test_" and replacing underscores with spaces.""" def register_test(fn, title=title): if not title: assert fn.__name__.startswith("test_") title = fn.__name__[5:].replace("_", " ") if parent: title = " " + title def run_test(): global TOTAL, POSSIBLE, CURRENT_TEST # Handle test dependencies if run_test.complete: return run_test.complete = True if parent: parent() # Run the test fail = None start = time.time() CURRENT_TEST = run_test sys.stdout.write("%s: " % title) sys.stdout.flush() try: fn() except AssertionError as e: fail = str(e) # Display and handle test result POSSIBLE += points if points: print("%s" % \ (color("red", "FAIL") if fail else color("green", "OK")), end=' ') if time.time() - start > 0.1: print("(%.1fs)" % (time.time() - start), end=' ') print() if fail: print(" %s" % fail.replace("\n", "\n ")) else: TOTAL += points for callback in run_test.on_finish: callback(fail) CURRENT_TEST = None # Record test metadata on the test wrapper function run_test.__name__ = fn.__name__ run_test.title = title run_test.complete = False run_test.on_finish = [] TESTS.append(run_test) return run_test return register_test def end_part(name): def show_part(): global PART_TOTAL, PART_POSSIBLE print("Part %s score: %d/%d" % \ (name, TOTAL - PART_TOTAL, POSSIBLE - PART_POSSIBLE)) print() PART_TOTAL, PART_POSSIBLE = TOTAL, POSSIBLE show_part.title = "" TESTS.append(show_part) def run_tests(): """Set up for testing and run the registered test functions.""" # Handle command line global options parser = OptionParser(usage="usage: %prog [-v] [filters...]") parser.add_option("-v", "--verbose", action="store_true", help="print commands") parser.add_option("--color", choices=["never", "always", "auto"], default="auto", help="never, always, or auto") (options, args) = parser.parse_args() # Start with a full build to catch build errors make() # Clean the file system if there is one reset_fs() # Run tests limit = list(map(str.lower, args)) try: for test in TESTS: if not limit or any(l in test.title.lower() for l in limit): test() if not limit: print("Score: %d/%d" % (TOTAL, POSSIBLE)) except KeyboardInterrupt: pass if TOTAL < POSSIBLE: sys.exit(1) def get_current_test(): if not CURRENT_TEST: raise RuntimeError("No test is running") return CURRENT_TEST ################################################################## # Assertions # __all__ += ["assert_equal", "assert_lines_match"] def assert_equal(got, expect, msg=""): if got == expect: return if msg: msg += "\n" raise AssertionError("%sgot:\n %s\nexpected:\n %s" % (msg, str(got).replace("\n", "\n "), str(expect).replace("\n", "\n "))) def assert_lines_match(text, *regexps, **kw): """Assert that all of regexps match some line in text. If a 'no' keyword argument is given, it must be a list of regexps that must *not* match any line in text.""" def assert_lines_match_kw(no=[]): return no no = assert_lines_match_kw(**kw) # Check text against regexps lines = text.splitlines() good = set() bad = set() for i, line in enumerate(lines): if any(re.match(r, line) for r in regexps): good.add(i) regexps = [r for r in regexps if not re.match(r, line)] if any(re.match(r, line) for r in no): bad.add(i) if not regexps and not bad: return # We failed; construct an informative failure message show = set() for lineno in good.union(bad): for offset in range(-2, 3): show.add(lineno + offset) if regexps: show.update(n for n in range(len(lines) - 5, len(lines))) msg = [] last = -1 for lineno in sorted(show): if 0 <= lineno < len(lines): if lineno != last + 1: msg.append("...") last = lineno msg.append("%s %s" % (color("red", "BAD ") if lineno in bad else color("green", "GOOD") if lineno in good else " ", lines[lineno])) if last != len(lines) - 1: msg.append("...") if bad: msg.append("unexpected lines in output") for r in regexps: msg.append(color("red", "MISSING") + " '%s'" % r) raise AssertionError("\n".join(msg)) ################################################################## # Utilities # __all__ += ["make", "maybe_unlink", "reset_fs", "color"] MAKE_TIMESTAMP = 0 def pre_make(): """Delay prior to running make to ensure file mtimes change.""" while int(time.time()) == MAKE_TIMESTAMP: time.sleep(0.1) def post_make(): """Record the time after make completes so that the next run of make can be delayed if needed.""" global MAKE_TIMESTAMP MAKE_TIMESTAMP = int(time.time()) def make(*target): pre_make() if Popen(("make",) + target).wait(): sys.exit(1) post_make() def show_command(cmd): from pipes import quote print("\n$", " ".join(map(quote, cmd))) def maybe_unlink(*paths): for path in paths: try: os.unlink(path) except EnvironmentError as e: if e.errno != errno.ENOENT: raise COLORS = {"default": "\033[0m", "red": "\033[31m", "green": "\033[32m"} def color(name, text): if options.color == "always" or (options.color == "auto" and os.isatty(1)): return COLORS[name] + text + COLORS["default"] return text def reset_fs(): if os.path.exists("obj/fs/clean-fs.img"): shutil.copyfile("obj/fs/clean-fs.img", "obj/fs/fs.img") ################################################################## # Controllers # __all__ += ["QEMU", "GDBClient"] class QEMU(object): _GDBPORT = None def __init__(self, *make_args): # Check that QEMU is not currently running try: GDBClient(self.get_gdb_port(), timeout=0).close() except socket.error: pass else: print("""\ GDB stub found on port %d. QEMU appears to already be running. Please exit it if possible or use 'killall qemu' or 'killall qemu.real'.""" % self.get_gdb_port(), file=sys.stderr) sys.exit(1) if options.verbose: show_command(("make",) + make_args) cmd = ("make", "-s", "--no-print-directory") + make_args self.proc = Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE) self.output = "" self.on_output = [] @staticmethod def get_gdb_port(): if QEMU._GDBPORT is None: p = Popen(["make", "-s", "--no-print-directory", "print-gdbport"], stdout=subprocess.PIPE) (out, _) = p.communicate() if p.returncode: raise RuntimeError( "Failed to get gdbport: make exited with %d" % p.returncode) QEMU._GDBPORT = int(out) return QEMU._GDBPORT def fileno(self): if self.proc: return self.proc.stdout.fileno() def handle_read(self): buf = os.read(self.proc.stdout.fileno(), 4096).decode("utf-8") self.output += buf for callback in self.on_output: callback(buf) if buf == "": self.wait() return def wait(self): if self.proc: self.proc.wait() self.proc = None class GDBClient(object): def __init__(self, port, timeout=15): start = time.time() while True: self.sock = socket.socket() try: self.sock.settimeout(1) self.sock.connect(("localhost", port)) break except socket.error: if time.time() >= start + timeout: raise self.__buf = "" def fileno(self): if self.sock: return self.sock.fileno() def handle_read(self): try: data = self.sock.recv(4096).decode("utf-8") except socket.error: data = "" if data == "": self.sock.close() self.sock = None return self.__buf += data while True: m = re.search(r"\$([^#]*)#[0-9a-zA-Z]{2}", self.__buf) if not m: break pkt = m.group(1) self.__buf = self.__buf[m.end():] if pkt.startswith("T05"): # Breakpoint raise TerminateTest def __send(self, cmd): packet = "$%s#%02x" % (cmd, sum(map(ord, cmd)) % 256) self.sock.sendall(packet.encode("utf-8")) def __send_break(self): self.sock.sendall(b"\x03") def close(self): if self.sock: self.sock.close() def cont(self): self.__send("c") def breakpoint(self, addr): self.__send("Z1,%x,1" % addr) def kill(self): self.__send_break() self.__send("k") ################################################################## # QEMU test runner # __all__ += ["TerminateTest", "Runner"] class TerminateTest(Exception): pass class Runner(): def __init__(self, *default_monitors): self.__default_monitors = default_monitors def run_qemu(self, *monitors, **kw): """Run a QEMU-based test. monitors should functions that will be called with this Runner instance once QEMU and GDB are started. Typically, they should register callbacks that throw TerminateTest when stop events occur. The target_base argument gives the make target to run. The make_args argument should be a list of additional arguments to pass to make. The timeout argument bounds how long to run before returning.""" def run_qemu_kw(target_base="qemu", make_args=[], timeout=30): return target_base, make_args, timeout target_base, make_args, timeout = run_qemu_kw(**kw) # Start QEMU pre_make() self.qemu = QEMU(target_base + "-nox-gdb", *make_args) self.gdb = None try: # Wait for QEMU to start or make to fail. This will set # self.gdb if QEMU starts. self.qemu.on_output = [self.__monitor_start] self.__react([self.qemu], timeout=30) self.qemu.on_output = [] if self.gdb is None: print("Failed to connect to QEMU; output:") print(self.qemu.output) sys.exit(1) post_make() # QEMU and GDB are up self.reactors = [self.qemu, self.gdb] # Start monitoring for m in self.__default_monitors + monitors: m(self) # Run and react self.gdb.cont() self.__react(self.reactors, timeout) finally: # Shutdown QEMU try: if self.gdb is None: sys.exit(1) self.gdb.kill() self.__react(self.reactors, 5) self.gdb.close() self.qemu.wait() except: print("""\ Failed to shutdown QEMU. You might need to 'killall qemu' or 'killall qemu.real'. """) raise def __monitor_start(self, output): if "\n" in output: try: self.gdb = GDBClient(self.qemu.get_gdb_port(), timeout=2) raise TerminateTest except socket.error: pass if output == "": raise TerminateTest def __react(self, reactors, timeout): deadline = time.time() + timeout try: while True: timeleft = deadline - time.time() if timeleft < 0: sys.stdout.write("Timeout! ") sys.stdout.flush() return rset = [r for r in reactors if r.fileno() is not None] if not rset: return rset, _, _ = select.select(rset, [], [], timeleft) for reactor in rset: reactor.handle_read() except TerminateTest: pass def user_test(self, binary, *monitors, **kw): """Run a user test using the specified binary. Monitors and keyword arguments are as for run_qemu. This runs on a disk snapshot unless the keyword argument 'snapshot' is False.""" maybe_unlink("obj/kern/init.o", "obj/kern/kernel") if kw.pop("snapshot", True): kw.setdefault("make_args", []).append("QEMUEXTRA+=-snapshot") self.run_qemu(target_base="run-%s" % binary, *monitors, **kw) def match(self, *args, **kwargs): """Shortcut to call assert_lines_match on the most recent QEMU output.""" assert_lines_match(self.qemu.output, *args, **kwargs) ################################################################## # Monitors # __all__ += ["save", "stop_breakpoint", "call_on_line", "stop_on_line"] def save(path): """Return a monitor that writes QEMU's output to path. If the test fails, copy the output to path.test-name.""" def setup_save(runner): f.seek(0) f.truncate() runner.qemu.on_output.append(f.write) get_current_test().on_finish.append(save_on_finish) def save_on_finish(fail): f.flush() save_path = path + "." + get_current_test().__name__[5:] if fail: shutil.copyfile(path, save_path) print(" QEMU output saved to %s" % save_path) elif os.path.exists(save_path): os.unlink(save_path) print(" (Old %s failure log removed)" % save_path) f = open(path, "w") return setup_save def stop_breakpoint(addr): """Returns a monitor that stops when addr is reached. addr may be a number or the name of a symbol.""" def setup_breakpoint(runner): if isinstance(addr, str): addrs = [int(sym[:8], 16) for sym in open("obj/kern/kernel.sym") if sym[11:].strip() == addr] assert len(addrs), "Symbol %s not found" % addr runner.gdb.breakpoint(addrs[0]) else: runner.gdb.breakpoint(addr) return setup_breakpoint def call_on_line(regexp, callback): """Returns a monitor that calls 'callback' when QEMU prints a line matching 'regexp'.""" def setup_call_on_line(runner): buf = [""] def handle_output(output, buf=buf): buf[0] += output while "\n" in buf[0]: line, buf[0] = buf[0].split("\n", 1) if re.match(regexp, line): callback(line) runner.qemu.on_output.append(handle_output) return setup_call_on_line def stop_on_line(regexp): """Returns a monitor that stops when QEMU prints a line matching 'regexp'.""" def stop(line): raise TerminateTest return call_on_line(regexp, stop)
30.642066
86
0.533538
66fdf78239c06e875544d8e349810088540f2390
707
py
Python
pincer/objects/message/reaction.py
Arthurdw/Pincer
eebb8e8f4e7173ba37b8d3049c1d7de793776ed5
[ "MIT" ]
118
2021-08-30T15:00:47.000Z
2022-03-31T11:06:16.000Z
pincer/objects/message/reaction.py
Arthurdw/Pincer
eebb8e8f4e7173ba37b8d3049c1d7de793776ed5
[ "MIT" ]
343
2021-08-30T12:25:57.000Z
2022-03-31T07:02:11.000Z
pincer/objects/message/reaction.py
Arthurdw/Pincer
eebb8e8f4e7173ba37b8d3049c1d7de793776ed5
[ "MIT" ]
62
2021-08-31T22:30:20.000Z
2022-03-25T18:29:11.000Z
# Copyright Pincer 2021-Present # Full MIT License can be found in `LICENSE` at the project root. from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING from ...utils.api_object import APIObject if TYPE_CHECKING: from .emoji import Emoji @dataclass(repr=False) class Reaction(APIObject): """Represents a Discord Reaction object Attributes ---------- count: :class:`int` Times this emoji has been used to react me: :class:`bool` Whether the current user reacted using this emoji emoji: :class:`~pincer.objects.message.emoji.Emoji` Emoji information """ count: int me: bool emoji: Emoji
22.806452
65
0.698727
a7d397d584ec06c416600fe3ae9ee495b87d62a7
407
py
Python
my_meal_planner/recipes/migrations/0008_auto_20210125_1519.py
andydandy21/cookbook
75066d990eacd7317387050c99fcc17962f535e6
[ "MIT" ]
null
null
null
my_meal_planner/recipes/migrations/0008_auto_20210125_1519.py
andydandy21/cookbook
75066d990eacd7317387050c99fcc17962f535e6
[ "MIT" ]
null
null
null
my_meal_planner/recipes/migrations/0008_auto_20210125_1519.py
andydandy21/cookbook
75066d990eacd7317387050c99fcc17962f535e6
[ "MIT" ]
null
null
null
# Generated by Django 3.1.5 on 2021-01-25 21:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('recipes', '0007_recipe_instructions'), ] operations = [ migrations.AlterField( model_name='recipe', name='instructions', field=models.TextField(default='', max_length=1000), ), ]
21.421053
64
0.60688
df4c7088327c4f142f18b2f7d723c839c73e7a2f
1,958
py
Python
calendar_api.py
adidiac/events-from-gmail-to-calendar
9ea4e05b3695c6ba4742bd23864a121a4d61afa7
[ "MIT" ]
null
null
null
calendar_api.py
adidiac/events-from-gmail-to-calendar
9ea4e05b3695c6ba4742bd23864a121a4d61afa7
[ "MIT" ]
null
null
null
calendar_api.py
adidiac/events-from-gmail-to-calendar
9ea4e05b3695c6ba4742bd23864a121a4d61afa7
[ "MIT" ]
null
null
null
from __future__ import print_function import datetime import pickle import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import json import os # If modifying these scopes, delete the file token.pickle. SCOPES = ['https://www.googleapis.com/auth/calendar'] def read_data(): if os.stat("events.txt").st_size != 0: with open('events.txt') as json_file: data = json.load(json_file) return data return 0 def main(data): """Shows basic usage of the Google Calendar API. Prints the start and name of the next 10 events on the user's calendar. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token_calendar.pickle'): with open('token_calendar.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials_calendar.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token_calendar.pickle', 'wb') as token: pickle.dump(creds, token) service = build('calendar', 'v3', credentials=creds) if data!=0: for i in data: event = i event = service.events().insert(calendarId='primary', body=event).execute() print('Event created: %s' % (event.get('htmlLink'))) if __name__ == '__main__': data=read_data() main(data)
36.943396
88
0.6476
109379d4cd8c428aa6ed6d84b9930ee32de2781b
1,293
py
Python
climate_util.py
System-Exit/IoT-Climate
feffd57cb87286ee9006e662144ab2483f5bd79b
[ "MIT" ]
null
null
null
climate_util.py
System-Exit/IoT-Climate
feffd57cb87286ee9006e662144ab2483f5bd79b
[ "MIT" ]
null
null
null
climate_util.py
System-Exit/IoT-Climate
feffd57cb87286ee9006e662144ab2483f5bd79b
[ "MIT" ]
null
null
null
import urllib import os import sense_hat # Class containing utility methods for multiple other classes class ClimateUtil: # Returns true if able to connect to google, otherwise false @staticmethod def checkConnection(): # Attempt connection try: host = urllib.request.urlopen("https://www.google.com") # Since connection was successful, return True return True except: # Since connection failed, return False return False # Get calibrated temperature # Reference: Week 4 Sensehat calibration example @staticmethod def getCalibratedTemp(sense): # Start up pressure sensor as to avoid values of 0 sense.get_temperature_from_pressure() # Get temperature from humidity and pressure htemp = sense.get_temperature_from_humidity() ptemp = sense.get_temperature_from_pressure() # Get CPU temperature res = os.popen("vcgencmd measure_temp").readline() temp_cpu = float(res.replace("temp=", "").replace("'C\n", "")) # Calculate calibrated temperature temp = (htemp + ptemp) / 2 temp_calibrated = temp - ((temp_cpu - temp) / 1.5) # Return calibrated temperature return temp_calibrated
34.945946
70
0.653519
a4638c40dba3e6b23433af012afb49e569ce8070
699
py
Python
checkov/common/util/banner.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
4,013
2019-12-09T13:16:54.000Z
2022-03-31T14:31:01.000Z
checkov/common/util/banner.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
1,258
2019-12-17T09:55:51.000Z
2022-03-31T19:17:17.000Z
checkov/common/util/banner.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
638
2019-12-19T08:57:38.000Z
2022-03-30T21:38:37.000Z
from termcolor import colored from checkov.version import version from checkov.common.version_manager import check_for_update banner = r""" _ _ ___| |__ ___ ___| | _______ __ / __| '_ \ / _ \/ __| |/ / _ \ \ / / | (__| | | | __/ (__| < (_) \ V / \___|_| |_|\___|\___|_|\_\___/ \_/ By bridgecrew.io | version: {} """.format(version) new_version = check_for_update("checkov", version) if new_version: banner = "\n" + banner + "\nUpdate available " + colored(version,"grey") + " -> " + colored(new_version, "green") + "\nRun " + colored( "pip3 install -U checkov", "magenta") + " to update \n"
36.789474
139
0.537911
5456daa8cdc537fcf6d3637aa68228e259743d5b
670
py
Python
Anime API/app_helper.py
vaiiiloz/AIP391_nhom3
180d1e55825e44674dc2273b4ee8a8a643d158e4
[ "MIT" ]
null
null
null
Anime API/app_helper.py
vaiiiloz/AIP391_nhom3
180d1e55825e44674dc2273b4ee8a8a643d158e4
[ "MIT" ]
null
null
null
Anime API/app_helper.py
vaiiiloz/AIP391_nhom3
180d1e55825e44674dc2273b4ee8a8a643d158e4
[ "MIT" ]
null
null
null
from Pipeline import Pipe import os import pandas as pd pipe = Pipe() outputPath = r".\templates" df = pd.read_csv('Anime_df.csv') def get_image(image_path, img_name): #try: image, top1, top5 = pipe.process(image_path) #except: # print('Mother Fucker') image.save(os.path.join(outputPath, img_name)) info = '' for name in top1: index = df['Name'][df['Name'] == name].index[0] orgin = df['Orgin'][index] gender = df['Gender'][index] isMain = df['IsMain'][index] info += 'Name:{}, From anime:{}, Sex:{}, isMain:{};\\n\\n'.format(name, orgin, gender, isMain) info = info[:-4] os.remove(image_path) image.close() del image return info, img_name
23.103448
96
0.658209
3746518731c439af7944e88c40332d184d1f7107
736
py
Python
test_project/pandas_practice6.py
BillyLiou/python_test_project
e266e2eb627e268a390f1ffc6717979ac44254ad
[ "MIT" ]
null
null
null
test_project/pandas_practice6.py
BillyLiou/python_test_project
e266e2eb627e268a390f1ffc6717979ac44254ad
[ "MIT" ]
null
null
null
test_project/pandas_practice6.py
BillyLiou/python_test_project
e266e2eb627e268a390f1ffc6717979ac44254ad
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- ''' @File : pandas_practice6.py @Time : 2021/02/14 23:54:44 @Author : Billy Liu @Version : 1.0 @Contact : billy@test.mail @Desc : None ''' import pandas as pd import numpy as np car_name = ['BMW','TOYOTA','MERCEDEZ'] res_list = [] for i in range(10): temp_list = [ car_name[np.random.randint(low=0,high=3)], np.random.randint(low=1,high=1001) ] res_list.append(temp_list) # 以下方法為將一個品牌作為group把後面的amount加總 df = pd.DataFrame(res_list,columns=['name','amount']) df_sum = df.groupby(['name']).sum() print(df_sum) print('====================') df_count = df.groupby(['name'],as_index=False)['name'].agg({'Count':'count'}) print(df_count)
22.30303
77
0.619565
157d4ba0c30990866462895456cb7b086323d9c8
1,326
py
Python
L2.23NovQ1.py
aetooc/PF-Lab-Tasks
17899595e948624370b754103be28eb93f236a14
[ "MIT" ]
null
null
null
L2.23NovQ1.py
aetooc/PF-Lab-Tasks
17899595e948624370b754103be28eb93f236a14
[ "MIT" ]
null
null
null
L2.23NovQ1.py
aetooc/PF-Lab-Tasks
17899595e948624370b754103be28eb93f236a14
[ "MIT" ]
null
null
null
a=[1,3,5] # first list a b=[2,4,6] # second list b c=[] # new list c print("a =",a) print("b =",b) #part (1) for i in a: c.append(i) # Appending elements of a in c for j in b: c.append(j) # Appending elements of b in c print('Step:1 c=',c)# New combined list c print(' ') # For spacing between lines #part (2) num = 0 for k in c: num += k # Sum of elements of c avg = num /6 # For Average of elements of c print('Step:2',"Average of c list's elements:",avg)# Average of elements of c print(' ') # For spacing between lines #part (3) c.insert(3,42) # Inserting 42 as a 4th element in c print('Step:3',c) print(' ') # For spacing between lines #part(4) c.append(7) # Appending 7 in c c.append(8) # Appending 8 in c c.append(9) # Appending 9 in c print('Step:4',c) print(' ') # For spacing between lines #part (5) print('Step:5','First two elements of c') counter=0 for i in c: # Using For loop counter += 1 if counter > 2: break else: print(i) #part(6) print('Step:6 Last element of b =',b[-1]) # Printing the last element of b print(' ') # For spacing between lines #part(7) counter= 0 for i in a: # Using For loop counter+=1 # Using this to find length of a print('Step:7 Length of `a` is =',counter)
25.5
77
0.597285
5c3eeaf8a54594a31e42d4d52080639b767bfc84
6,450
py
Python
sdk/python/pulumi_azure_nextgen/authorization/v20180301/get_policy_set_definition_at_management_group.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/authorization/v20180301/get_policy_set_definition_at_management_group.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/authorization/v20180301/get_policy_set_definition_at_management_group.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetPolicySetDefinitionAtManagementGroupResult', 'AwaitableGetPolicySetDefinitionAtManagementGroupResult', 'get_policy_set_definition_at_management_group', ] @pulumi.output_type class GetPolicySetDefinitionAtManagementGroupResult: """ The policy set definition. """ def __init__(__self__, description=None, display_name=None, id=None, metadata=None, name=None, parameters=None, policy_definitions=None, policy_type=None, type=None): if description and not isinstance(description, str): raise TypeError("Expected argument 'description' to be a str") pulumi.set(__self__, "description", description) if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") pulumi.set(__self__, "display_name", display_name) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if metadata and not isinstance(metadata, dict): raise TypeError("Expected argument 'metadata' to be a dict") pulumi.set(__self__, "metadata", metadata) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if parameters and not isinstance(parameters, dict): raise TypeError("Expected argument 'parameters' to be a dict") pulumi.set(__self__, "parameters", parameters) if policy_definitions and not isinstance(policy_definitions, list): raise TypeError("Expected argument 'policy_definitions' to be a list") pulumi.set(__self__, "policy_definitions", policy_definitions) if policy_type and not isinstance(policy_type, str): raise TypeError("Expected argument 'policy_type' to be a str") pulumi.set(__self__, "policy_type", policy_type) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def description(self) -> Optional[str]: """ The policy set definition description. """ return pulumi.get(self, "description") @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[str]: """ The display name of the policy set definition. """ return pulumi.get(self, "display_name") @property @pulumi.getter def id(self) -> str: """ The ID of the policy set definition. """ return pulumi.get(self, "id") @property @pulumi.getter def metadata(self) -> Optional[Any]: """ The policy set definition metadata. """ return pulumi.get(self, "metadata") @property @pulumi.getter def name(self) -> str: """ The name of the policy set definition. """ return pulumi.get(self, "name") @property @pulumi.getter def parameters(self) -> Optional[Any]: """ The policy set definition parameters that can be used in policy definition references. """ return pulumi.get(self, "parameters") @property @pulumi.getter(name="policyDefinitions") def policy_definitions(self) -> Sequence['outputs.PolicyDefinitionReferenceResponse']: """ An array of policy definition references. """ return pulumi.get(self, "policy_definitions") @property @pulumi.getter(name="policyType") def policy_type(self) -> Optional[str]: """ The type of policy definition. Possible values are NotSpecified, BuiltIn, and Custom. """ return pulumi.get(self, "policy_type") @property @pulumi.getter def type(self) -> str: """ The type of the resource (Microsoft.Authorization/policySetDefinitions). """ return pulumi.get(self, "type") class AwaitableGetPolicySetDefinitionAtManagementGroupResult(GetPolicySetDefinitionAtManagementGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetPolicySetDefinitionAtManagementGroupResult( description=self.description, display_name=self.display_name, id=self.id, metadata=self.metadata, name=self.name, parameters=self.parameters, policy_definitions=self.policy_definitions, policy_type=self.policy_type, type=self.type) def get_policy_set_definition_at_management_group(management_group_id: Optional[str] = None, policy_set_definition_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetPolicySetDefinitionAtManagementGroupResult: """ The policy set definition. :param str management_group_id: The ID of the management group. :param str policy_set_definition_name: The name of the policy set definition to get. """ __args__ = dict() __args__['managementGroupId'] = management_group_id __args__['policySetDefinitionName'] = policy_set_definition_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:authorization/v20180301:getPolicySetDefinitionAtManagementGroup', __args__, opts=opts, typ=GetPolicySetDefinitionAtManagementGroupResult).value return AwaitableGetPolicySetDefinitionAtManagementGroupResult( description=__ret__.description, display_name=__ret__.display_name, id=__ret__.id, metadata=__ret__.metadata, name=__ret__.name, parameters=__ret__.parameters, policy_definitions=__ret__.policy_definitions, policy_type=__ret__.policy_type, type=__ret__.type)
37.719298
194
0.662326
369dd8901703ca342588a76afd8b6db4c3cab414
6,045
py
Python
xos/services/mcordservice/models.py
xmaruto/mcord
3678a3d10c3703c2b73f396c293faebf0c82a4f4
[ "Apache-2.0" ]
null
null
null
xos/services/mcordservice/models.py
xmaruto/mcord
3678a3d10c3703c2b73f396c293faebf0c82a4f4
[ "Apache-2.0" ]
null
null
null
xos/services/mcordservice/models.py
xmaruto/mcord
3678a3d10c3703c2b73f396c293faebf0c82a4f4
[ "Apache-2.0" ]
null
null
null
from django.db import models from core.models import Service, PlCoreBase, Slice, Instance, Tenant, TenantWithContainer, Node, Image, User, Flavor, Subscriber from core.models.plcorebase import StrippedCharField import os from django.db import models, transaction from django.forms.models import model_to_dict from django.db.models import Q from operator import itemgetter, attrgetter, methodcaller import traceback from xos.exceptions import * from core.models import SlicePrivilege, SitePrivilege from sets import Set MCORD_KIND = "mcordservice" # The class to represent the service. Most of the service logic is given for us # in the Service class but, we have some configuration that is specific for # this example. class MCORDService(Service): KIND = MCORD_KIND class Meta: # When the proxy field is set to True the model is represented as # it's superclass in the database, but we can still change the python # behavior. In this case HelloWorldServiceComplete is a Service in the # database. proxy = True # The name used to find this service, all directories are named this app_label = "mcordservice" verbose_name = "MCORD Service" # This is the class to represent the tenant. Most of the logic is given to use # in TenantWithContainer, however there is some configuration and logic that # we need to define for this example. class MCORDServiceComponent(TenantWithContainer): class Meta: # Same as a above, HelloWorldTenantComplete is represented as a # TenantWithContainer, but we change the python behavior. proxy = True verbose_name = "MCORD Service Component" # The kind of the service is used on forms to differentiate this service # from the other services. KIND = MCORD_KIND # Ansible requires that the sync_attributes field contain nat_ip and nat_mac # these will be used to determine where to SSH to for ansible. # Getters must be defined for every attribute specified here. sync_attributes = ("private_ip", "private_mac", "mcord_ip", "mcord_mac", "nat_ip", "nat_mac",) # default_attributes is used cleanly indicate what the default values for # the fields are. default_attributes = {'display_message': 'Hello MCORD!'} def __init__(self, *args, **kwargs): mcord_services = MCORDService.get_service_objects().all() # When the tenant is created the default service in the form is set # to be the first created HelloWorldServiceComplete if mcord_services: self._meta.get_field( "provider_service").default = mcord_services[0].id super(MCORDServiceComponent, self).__init__(*args, **kwargs) def can_update(self, user): #Allow creation of this model instances for non-admin users also return True def save(self, *args, **kwargs): if not self.creator: if not getattr(self, "caller", None): # caller must be set when creating a monitoring channel since it creates a slice raise XOSProgrammingError("ServiceComponents's self.caller was not set") self.creator = self.caller if not self.creator: raise XOSProgrammingError("ServiceComponents's self.creator was not set") super(MCORDServiceComponent, self).save(*args, **kwargs) # This call needs to happen so that an instance is created for this # tenant is created in the slice. One instance is created per tenant. model_policy_mcord_servicecomponent(self.pk) def delete(self, *args, **kwargs): # Delete the instance that was created for this tenant self.cleanup_container() super(MCORDServiceComponent, self).delete(*args, **kwargs) # Getter for the message that will appear on the webpage # By default it is "Hello World!" @property def display_message(self): return self.get_attribute( "display_message", self.default_attributes['display_message']) # Setter for the message that will appear on the webpage @display_message.setter def display_message(self, value): self.set_attribute("display_message", value) @property def addresses(self): if (not self.id) or (not self.instance): return {} addresses = {} for ns in self.instance.ports.all(): if "private" in ns.network.name.lower(): addresses["private"] = (ns.ip, ns.mac) elif "nat" in ns.network.name.lower(): addresses["nat"] = (ns.ip, ns.mac) elif "mcord_service_internal_net" in ns.network.labels.lower(): addresses["mcordservice"] = (ns.ip, ns.mac) return addresses # This getter is necessary because nat_ip is a sync_attribute @property def nat_ip(self): return self.addresses.get("nat", (None, None))[0] # This getter is necessary because nat_mac is a sync_attribute @property def nat_mac(self): return self.addresses.get("nat", (None, None))[1] @property def private_ip(self): return self.addresses.get("nat", (None, None))[0] @property def private_mac(self): return self.addresses.get("nat", (None, None))[1] @property def mcord_ip(self): return self.addresses.get("nat", (None, None))[0] @property def mcord_mac(self): return self.addresses.get("nat", (None, None))[1] def model_policy_mcord_servicecomponent(pk): # This section of code is atomic to prevent race conditions with transaction.atomic(): # We find all of the tenants that are waiting to update component = MCORDServiceComponent.objects.select_for_update().filter(pk=pk) if not component: return # Since this code is atomic it is safe to always use the first tenant component = component[0] component.manage_container()
38.503185
128
0.673118
797591db6cd308daf69fc4773ed6b13c47e165b0
28,432
py
Python
opentamp/core/util_classes/openrave_body.py
Algorithmic-Alignment-Lab/openTAMP
f0642028d551d0436b3a3dbc3bfb2f23a00adc14
[ "MIT" ]
4
2022-02-13T15:52:18.000Z
2022-03-26T17:33:13.000Z
opentamp/core/util_classes/openrave_body.py
Algorithmic-Alignment-Lab/openTAMP
f0642028d551d0436b3a3dbc3bfb2f23a00adc14
[ "MIT" ]
1
2022-02-13T22:48:09.000Z
2022-02-13T22:48:09.000Z
opentamp/core/util_classes/openrave_body.py
Algorithmic-Alignment-Lab/openTAMP
f0642028d551d0436b3a3dbc3bfb2f23a00adc14
[ "MIT" ]
null
null
null
import numpy as np from math import cos, sin, atan2 import pybullet as P import opentamp.core.util_classes.common_constants as const import opentamp.core.util_classes.transform_utils as T from opentamp.core.util_classes.robots import Robot, PR2, Baxter, Washer, NAMO from opentamp.core.util_classes.items import Item, Box, Can, BlueCan, RedCan, Circle, \ BlueCircle, RedCircle, GreenCircle, Obstacle, \ Wall, Table, Basket, XMLItem, Door WALL_THICKNESS = 1 CLOSET_POINTS = [[-6.0,-8.0],[-6.0,4.0],[1.9,4.0],[1.9,8.0],[5.0,8.0],[5.0,4.0],[13.0,4.0],[13.0,-8.0],[-6.0,-8.0]] CLOSET_POINTS = [[-7.0,-9.0],[-7.0,4.0],[1.9,4.0],[1.9,8.0],[5.0,8.0],[5.0,4.0],[14.0,4.0],[14.0,-9.0],[-7.0,-9.0]] CLOSET_POINTS = [[-7.0,-10.0],[-7.0,4.0],[1.9,4.0],[1.9,8.0],[5.0,8.0],[5.0,4.0],[14.0,4.0],[14.0,-10.0],[-7.0,-10.0]] CLOSET_POINTS = [[-7.0,-12.0],[-7.0,4.0],[1.9,4.0],[1.9,8.0],[5.0,8.0],[5.0,4.0],[14.0,4.0],[14.0,-12.0],[-7.0,-12.0]] CLOSET_POINTS = [[-7.0,-10.0],[-7.0,4.0],[1.5,4.0],[1.5,8.0],[5.5,8.0],[5.5,4.0],[14.0,4.0],[14.0,-10.0],[-7.0,-10.0]] #CLOSET_POINTS = [[-7.0,-10.0],[-7.0,4.0],[1.5,4.0],[5.5,4.0],[14.0,4.0],[14.0,-10.0],[-7.0,-10.0]] class OpenRAVEBody(object): def __init__(self, env, name, geom): self.name = name self._env = env self._geom = geom if isinstance(geom, Robot): self._add_robot(geom) elif isinstance(geom, XMLItem): self._add_xml_item(geom) elif isinstance(geom, Item): self._add_item(geom) else: raise ValueError(f"Geometry not supported for {geom} for OpenRAVEBody") # self.set_transparency(0.5) def delete(self): P.removeCollisionShape(self.body_id) def isrobot(self): return isinstance(self._geom, Robot) def set_transparency(self, transparency): visual_infos = P.getVisualShapeData(self.body_id) for info in visual_infos: link_index = info[1] link_rgba = info[7] P.changeVisualShape(self.body_id, link_index, rgbaColor=list(link_rgba[:3])+[transparency]) def _add_robot(self, geom): if not geom.is_initialized(): geom.setup(None) self.env_body = geom.id self.body_id = geom.id def _add_xml_item(self, geom): if not geom.is_initialized(): geom.setup(None) self.env_body = geom.id self.body_id = geom.id def _add_item(self, geom): try: fun_name = "self._add_{}".format(geom._type) eval(fun_name)(geom) except Exception as e: print('Could not add', geom._type, e) raise e #self._add_obj(geom) def _add_circle(self, geom): color = [1,0,0] if hasattr(geom, "color") and geom.color == 'blue': color = [0, 0, 1] elif hasattr(geom, "color") and geom.color == 'green': color = [0, 1, 0] elif hasattr(geom, "color") and geom.color == 'red': color = [1, 0, 0] self.col_body_id = P.createCollisionShape(shapeType=P.GEOM_CYLINDER, radius=geom.radius, height=2) self.body_id = P.createMultiBody(1, self.col_body_id) def _add_can(self, geom): color = [1,0,0] if hasattr(geom, "color") and geom.color == 'blue': color = [0, 0, 1] elif hasattr(geom, "color") and geom.color == 'green': color = [0, 1, 0] elif hasattr(geom, "color") and geom.color == 'red': color = [1, 0, 0] self.col_body_id = P.createCollisionShape(shapeType=P.GEOM_CYLINDER, radius=geom.radius, height=geom.height) self.body_id = P.createMultiBody(1, self.col_body_id) #def _add_obstacle(self, geom): # obstacles = np.matrix('-0.576036866359447, 0.918128654970760, 1;\ # -0.806451612903226,-1.07017543859649, 1;\ # 1.01843317972350,-0.988304093567252, 1;\ # 0.640552995391705,0.906432748538011, 1;\ # -0.576036866359447, 0.918128654970760, -1;\ # -0.806451612903226,-1.07017543859649, -1;\ # 1.01843317972350,-0.988304093567252, -1;\ # 0.640552995391705,0.906432748538011, -1') # body = RaveCreateKinBody(self._env, '') # vertices = np.array(obstacles) # indices = np.array([[0, 1, 2], [2, 3, 0], [4, 5, 6], [6, 7, 4], [0, 4, 5], # [0, 1, 5], [1, 2, 5], [5, 6, 2], [2, 3, 6], [6, 7, 3], # [0, 3, 7], [0, 4, 7]]) # body.InitFromTrimesh(trimesh=TriMesh(vertices, indices), draw=True) # body.SetName(self.name) # for link in body.GetLinks(): # for geom in link.GetGeometries(): # geom.SetDiffuseColor((.9, .9, .9)) # self.env_body = body # self._env.AddKinBody(body) def _add_box(self, geom): self.col_body_id = P.createCollisionShape(shapeType=P.GEOM_BOX, halfExtents=geom.dim) self.body_id = P.createMultiBody(1, self.col_body_id) def _add_sphere(self, geom): self.col_body_id = P.createCollisionShape(shapeType=P.GEOM_SPHERE, radius=geom.radius) self.body_id = P.createMultiBody(1, self.col_body_id) def _add_door(self, geom): self.body_id, self.col_body_id = OpenRAVEBody.create_door(self._env, geom.length) def _add_wall(self, geom): self.body_id = OpenRAVEBody.create_wall(self._env, geom.wall_type) #def _add_obj(self, geom): # self.env_body = self._env.ReadKinBodyXMLFile(geom.shape) # self.env_body.SetName(self.name) # self._env.Add(self.env_body) #def _add_table(self, geom): # self.env_body = OpenRAVEBody.create_table(self._env, geom) # self.env_body.SetName(self.name) # self._env.Add(self.env_body) #def _add_basket(self, geom): # self.env_body = self._env.ReadKinBodyXMLFile(geom.shape) # self.env_body.SetName(self.name) # self._env.Add(self.env_body) def set_pose(self, base_pose, rotation = [0, 0, 0]): trans = None if np.any(np.isnan(base_pose)) or np.any(np.isnan(rotation)): return if hasattr(self._geom, 'jnt_names') and 'pose' in self._geom.jnt_names: dof_map = {'pose': base_pose} return self.set_dof(dof_map) if isinstance(self._geom, Baxter): pos = np.r_[base_pose[:2], 0] quat = T.euler_to_quaternion([0, 0, base_pose[2]], order='xyzw') elif len(base_pose) == 2: base_pose = np.array(base_pose).flatten() pos = np.concatenate([base_pose, [0]]).flatten() if len(rotation) == 1: rotation = [0., 0., rotation[0]] # quat = [0, 0, 0, 1] quat = T.euler_to_quaternion(rotation, order='xyzw') else: pos = base_pose quat = T.euler_to_quaternion(rotation, order='xyzw') P.resetBasePositionAndOrientation(self.body_id, pos, quat) def set_dof(self, dof_value_map, debug=False): """ dof_value_map: A dict that maps robot attribute name to a list of corresponding values """ # make sure only sets dof for robot # assert isinstance(self._geom, Robot) #if not isinstance(self._geom, Robot): return if not hasattr(self._geom, 'dof_map'): return for key in dof_value_map: if key not in self._geom.dof_map: if debug: print('Cannot set dof for', key) continue if type(self._geom.dof_map[key]) is int: P.resetJointState(self.body_id, self._geom.dof_map[key], dof_value_map[key]) else: for i, jnt_ind in enumerate(self._geom.dof_map[key]): if type(dof_value_map[key]) is int: val = dof_value_map[key] else: ind = min(i, len(dof_value_map[key])-1) val = dof_value_map[key][ind] P.resetJointState(self.body_id, jnt_ind, val) def _set_active_dof_inds(self, inds = None): """ Set active dof index to the one we are interested This function is implemented to simplify jacobian calculation in the CollisionPredicate inds: Optional list of index specifying dof index we are interested in """ pass #@staticmethod #def create_cylinder(env, body_name, t, dims, color=[0, 1, 1]): # infocylinder = OpenRAVEBody.create_body_info(GeometryType.Cylinder, dims, color) # if type(env) != Environment: # print("Environment object is not valid") # cylinder = RaveCreateKinBody(env, '') # cylinder.InitFromGeometries([infocylinder]) # cylinder.SetName(body_name) # cylinder.SetTransform(t) # return cylinder #@staticmethod #def create_box(env, name, transform, dims, color=[0,0,1]): # infobox = OpenRAVEBody.create_body_info(KinBody.Link.GeomType.Box, dims, color, 0, True) # box = RaveCreateKinBody(env,'') # box.InitFromGeometries([infobox]) # box.SetName(name) # box.SetTransform(transform) # return box #@staticmethod #def create_sphere(env, name, transform, dims, color=[0,0,1]): # infobox = OpenRAVEBody.create_body_info(GeometryType.Sphere, dims, color) # sphere = RaveCreateKinBody(env,'') # sphere.InitFromGeometries([infobox]) # sphere.SetName(name) # sphere.SetTransform(transform) # return sphere #@staticmethod #def create_body_info(body_type, dims, color, transparency = 0.8, visible = True): # infobox = KinBody.Link.GeometryInfo() # infobox._type = body_type # infobox._vGeomData = dims # infobox._bVisible = True # infobox._fTransparency = transparency # infobox._vDiffuseColor = color # return infobox @staticmethod def create_door(env, door_len): from opentamp.core.util_classes.namo_grip_predicates import HANDLE_OFFSET door_color = [0.5, 0.2, 0.1] box_infos = [] cols = [P.createCollisionShape(shapeType=P.GEOM_CYLINDER, radius=0.05, height=0.1), P.createCollisionShape(shapeType=P.GEOM_BOX, halfExtents=[door_len/2.-0.1, 0.1, 0.4]), P.createCollisionShape(shapeType=P.GEOM_CYLINDER, radius=0.3, height=0.4),] link_pos = [(0, 0, 0), (door_len/2., 0., 0.), (door_len/2., -HANDLE_OFFSET, 0.)] door = P.createMultiBody(basePosition=[0,0,0], linkMasses=[1 for _ in cols], linkCollisionShapeIndices=[ind for ind in cols], linkVisualShapeIndices=[-1 for _ in cols], linkPositions=[pos for pos in link_pos], linkOrientations=[[0,0,0,1] for _ in cols], linkInertialFramePositions=[[0,0,0] for _ in cols], linkInertialFrameOrientations=[[0,0,0,1] for _ in cols], linkParentIndices=[0, 1, 2], linkJointTypes=[P.JOINT_REVOLUTE]+[P.JOINT_FIXED for _ in cols[1:]], linkJointAxis=[[0,0,1] for _ in cols] ) return door, cols @staticmethod def create_wall(env, wall_type): wall_color = [0.5, 0.2, 0.1] box_infos = [] if wall_type == 'closet': # wall_endpoints = [[-6.0,-8.0],[-6.0,4.0],[1.9,4.0],[1.9,8.0],[5.0,8.0],[5.0,4.0],[13.0,4.0],[13.0,-8.0],[-6.0,-8.0]] wall_endpoints = CLOSET_POINTS elif wall_type == 'three_room': wall_endpoints = [[-6.0,-8.0],[-6.0,4.0],[-1.5,4.0], [-1.5,2.0],[-1.5,4.0],[6.0,4.0], [6.0,2.0],[6.0,4.0],[13.0,4.0], [13.0,-8.0],[6.0,-8.0],[6.0,-1.5], [6.0,-8.0],[-1.5,-8.0],[-1.5,-1.5], [-1.5,-8.0], [-6.0,-8.0]] else: raise NotImplemented for i, (start, end) in enumerate(zip(wall_endpoints[0:-1], wall_endpoints[1:])): dim_x, dim_y = 0, 0 thickness = WALL_THICKNESS if start[0] == end[0]: ind_same, ind_diff = 0, 1 length = abs(start[ind_diff] - end[ind_diff]) dim_x, dim_y = thickness, length/2 + thickness elif start[1] == end[1]: ind_same, ind_diff = 1, 0 length = abs(start[ind_diff] - end[ind_diff]) dim_x, dim_y = length/2 + thickness, thickness else: raise NotImplemented('Can only create axis-aligned walls') transform = np.eye(4) transform[ind_same, 3] = start[ind_same] if start[ind_diff] < end[ind_diff]: transform[ind_diff, 3] = start[ind_diff] + length/2 else: transform[ind_diff, 3] = end[ind_diff] + length/2 dims = [dim_x, dim_y, 1] box_infos.append((dims, transform[:3,3])) cols = [P.createCollisionShape(shapeType=P.GEOM_BOX, halfExtents=h) for h, t in box_infos] wall = P.createMultiBody(basePosition=[0,0,0], linkMasses=[1 for _ in cols], linkCollisionShapeIndices=[ind for ind in cols], linkVisualShapeIndices=[-1 for _ in cols], linkPositions=[t[:3] for _, t in box_infos], linkOrientations=[[0,0,0,1] for _, t in box_infos], linkInertialFramePositions=[[0,0,0] for _ in cols], linkInertialFrameOrientations=[[0,0,0,1] for _, t in box_infos], linkParentIndices=[0 for _ in cols], linkJointTypes=[P.JOINT_FIXED for _ in cols], linkJointAxis=[[0,0,1] for _ in cols] ) return wall @staticmethod def get_wall_dims(wall_type='closet'): if wall_type == 'closet': wall_endpoints = CLOSET_POINTS elif wall_type == 'three_room': wall_endpoints = [[-6.0,-8.0],[-6.0,4.0],[-1.5,4.0], [-1.5,2.0],[-1.5,4.0],[6.0,4.0], [6.0,2.0],[6.0,4.0],[13.0,4.0], [13.0,-8.0],[6.0,-8.0],[6.0,-1.5], [6.0,-8.0],[-1.5,-8.0],[-1.5,-1.5], [-1.5,-8.0], [-6.0,-8.0]] else: raise NotImplemented dims = [] for i, (start, end) in enumerate(zip(wall_endpoints[0:-1], wall_endpoints[1:])): dim_x, dim_y = 0, 0 thickness = WALL_THICKNESS if start[0] == end[0]: ind_same, ind_diff = 0, 1 length = abs(start[ind_diff] - end[ind_diff]) dim_x, dim_y = thickness, length/2 + thickness elif start[1] == end[1]: ind_same, ind_diff = 1, 0 length = abs(start[ind_diff] - end[ind_diff]) dim_x, dim_y = length/2 + thickness, thickness else: raise NotImplemented('Can only create axis-aligned walls') transform = np.eye(4) transform[ind_same, 3] = start[ind_same] if start[ind_diff] < end[ind_diff]: transform[ind_diff, 3] = start[ind_diff] + length/2 else: transform[ind_diff, 3] = end[ind_diff] + length/2 dims.append(([dim_x, dim_y, 1], transform)) return dims #@staticmethod #def create_basket_col(env): # long_info1 = OpenRAVEBody.create_body_info(KinBody.Link.GeomType.Box, [.3,.15,.015], [0, 0.75, 1]) # long_info2 = OpenRAVEBody.create_body_info(KinBody.Link.GeomType.Box, [.3,.15,.015], [0, 0.75, 1]) # short_info1 = OpenRAVEBody.create_body_info(KinBody.Link.GeomType.Box, [.015,.15,.2], [0, 0.75, 1]) # short_info2 = OpenRAVEBody.create_body_info(KinBody.Link.GeomType.Box, [.015,.15,.2], [0, 0.75, 1]) # bottom_info = OpenRAVEBody.create_body_info(KinBody.Link.GeomType.Box, [.3,.015,.2], [0, 0.75, 1]) # long_info1._t = OpenRAVEBody.transform_from_obj_pose([0,-0.118,0.208],[0,0,0.055]) # long_info2._t = OpenRAVEBody.transform_from_obj_pose([0,-0.118,-0.208],[0,0,-0.055]) # short_info1._t = OpenRAVEBody.transform_from_obj_pose([0.309,-0.118,0],[-0.055,0,0]) # short_info2._t = OpenRAVEBody.transform_from_obj_pose([-0.309,-0.118,0],[0.055,0,0]) # bottom_info._t = OpenRAVEBody.transform_from_obj_pose([0,-0.25,0],[0,0,0]) # basket = RaveCreateRobot(env, '') # basket.InitFromGeometries([long_info1, long_info2, short_info1, short_info2, bottom_info]) # return basket #@staticmethod #def create_table(env, geom): # thickness = geom.thickness # leg_height = geom.leg_height # back = geom.back # dim1, dim2 = geom.table_dim # legdim1, legdim2 = geom.leg_dim # table_color = [0.5, 0.2, 0.1] # component_type = KinBody.Link.GeomType.Box # tabletop = OpenRAVEBody.create_body_info(component_type, [dim1/2, dim2/2, thickness/2], table_color) # leg1 = OpenRAVEBody.create_body_info(component_type, [legdim1/2, legdim2/2, leg_height/2], table_color) # leg1._t[0, 3] = dim1/2 - legdim1/2 # leg1._t[1, 3] = dim2/2 - legdim2/2 # leg1._t[2, 3] = -leg_height/2 - thickness/2 # leg2 = OpenRAVEBody.create_body_info(component_type, [legdim1/2, legdim2/2, leg_height/2], table_color) # leg2._t[0, 3] = dim1/2 - legdim1/2 # leg2._t[1, 3] = -dim2/2 + legdim2/2 # leg2._t[2, 3] = -leg_height/2 - thickness/2 # leg3 = OpenRAVEBody.create_body_info(component_type, [legdim1/2, legdim2/2, leg_height/2], table_color) # leg3._t[0, 3] = -dim1/2 + legdim1/2 # leg3._t[1, 3] = dim2/2 - legdim2/2 # leg3._t[2, 3] = -leg_height/2 - thickness/2 # leg4 = OpenRAVEBody.create_body_info(component_type, [legdim1/2, legdim2/2, leg_height/2], table_color) # leg4._t[0, 3] = -dim1/2 + legdim1/2 # leg4._t[1, 3] = -dim2/2 + legdim2/2 # leg4._t[2, 3] = -leg_height/2 - thickness/2 # if back: # back_plate = OpenRAVEBody.create_body_info(component_type, [legdim1/10, dim2/2, leg_height-thickness/2], table_color) # back_plate._t[0, 3] = dim1/2 - legdim1/10 # back_plate._t[1, 3] = 0 # back_plate._t[2, 3] = -leg_height/2 - thickness/4 # table = RaveCreateRobot(env, '') # if not back: # table.InitFromGeometries([tabletop, leg1, leg2, leg3, leg4]) # else: # table.InitFromGeometries([tabletop, leg1, leg2, leg3, leg4, back_plate]) # return table @staticmethod def base_pose_2D_to_mat(pose): # x, y = pose assert len(pose) == 2 x = pose[0] y = pose[1] pos = [x, y, 0] rot = 0 matrix = T.pose2mat((pos, [1, 0, 0, 0])) return matrix @staticmethod def base_pose_3D_to_mat(pose): # x, y, z = pose assert len(pose) == 3 x = pose[0] y = pose[1] z = pose[2] pos = [x, y, z] rot = 0 matrix = T.pose2mat((pos, [0, 0, 0, 1])) return matrix @staticmethod def mat_to_base_pose_2D(mat): return T.mat2pose(mat)[0][:2] @staticmethod def base_pose_to_mat(pose): # x, y, rot = pose assert len(pose) == 3 x = pose[0] y = pose[1] rot = pose[2] pos = [x, y, 0] quat = T.euler_to_quaternion([0, 0, rot], order='xyzw') matrix = T.pose2mat((pos, quat)) return matrix # @staticmethod # def angle_pose_to_mat(pose): # assert len(pose) == 1 # if USE_OPENRAVE: # q = quatFromAxisAngle((0, 0, pose)).tolist() # matrix = matrixFromPose(q + pos) # else: # quat = T.euler_to_quaternion([0, 0, pose], order='xyzw') # matrix = T.pose2mat((pos, quat)) # return matrix @staticmethod def mat_to_base_pose(mat): pose = poseFromMatrix(mat) x = pose[4] y = pose[5] rot = axisAngleFromRotationMatrix(mat)[2] return np.array([x,y,rot]) @staticmethod def obj_pose_from_transform(transform): trans = transform[:3,3] rot_matrix = transform[:3,:3] yaw, pitch, roll = OpenRAVEBody._ypr_from_rot_matrix(rot_matrix) return np.array((trans[0], trans[1], trans[2], yaw, pitch, roll)) @staticmethod def transform_from_obj_pose(pose, rotation = np.array([0,0,0])): x, y, z = pose if len(rotation) == 4: rotation = T.quaternion_to_euler(rotation, order='xyzw') rotation = [rotation[2], rotation[1], rotation[0]] Rz, Ry, Rx = OpenRAVEBody._axis_rot_matrices(pose, rotation) rot_mat = np.dot(Rz, np.dot(Ry, Rx)) matrix = np.eye(4) matrix[:3,:3] = rot_mat matrix[:3,3] = [x,y,z] return matrix @staticmethod def _axis_rot_matrices(pose, rotation): x, y, z = pose alpha, beta, gamma = rotation Rz_2d = np.array([[cos(alpha), -sin(alpha)], [sin(alpha), cos(alpha)]]) Ry_2d = np.array([[cos(beta), sin(beta)], [-sin(beta), cos(beta)]]) Rx_2d = np.array([[cos(gamma), -sin(gamma)], [sin(gamma), cos(gamma)]]) I = np.eye(3) Rz = I.copy() Rz[:2,:2] = Rz_2d Ry = I.copy() Ry[[[0],[2]],[0,2]] = Ry_2d Rx = I.copy() Rx[1:3,1:3] = Rx_2d return Rz, Ry, Rx @staticmethod def _ypr_from_rot_matrix(r): # alpha yaw = atan2(r[1,0], r[0,0]) # beta pitch = atan2(-r[2,0],np.sqrt(r[2,1]**2+r[2,2]**2)) # gamma roll = atan2(r[2,1], r[2,2]) return (yaw, pitch, roll) @staticmethod def quat_from_v1_to_v2(v1, v2): v1, v2 = np.array(v1), np.array(v2) xyz = np.cross(v1, v2) len1 = np.sum(v1**2) len2 = np.sum(v2**2) w = np.sqrt(len1 * len2) + np.dot(v1, v2) quat = np.concatenate([xyz, [w]]) if np.all(np.abs(quat) < 1e-5): v1 = v1 / np.linalg.norm(v1) mid_axis = [1, 0, 0] if np.abs(np.dot([1,0,0], v1)) < 1-1e-3 else [0, 1, 0] quat1 = OpenRAVEBody.quat_from_v1_to_v2(v1, mid_axis) quat2 = OpenRAVEBody.quat_from_v1_to_v2(mid_axis, v2) mat1 = T.quat2mat(quat1) mat2 = T.quat2mat(quat2) quat = T.mat2quat(mat1.dot(mat2)) quat /= np.linalg.norm(quat) return quat #@staticmethod #def get_ik_transform(pos, rot, right_arm = True): # trans = OpenRAVEBody.transform_from_obj_pose(pos, rot) # # Openravepy flip the rotation axis by 90 degree, thus we need to change it back # if right_arm: # quat = T.euler_to_quaternion([0, np.pi/2, 0], order='xyzw') # else: # quat = T.euler_to_quaternion([0, -np.pi/2, 0], order='xyzw') # rot_mat = T.pose2mat([[0, 0, 0], quat]) # trans_mat = trans[:3, :3].dot(rot_mat[:3, :3]) # trans[:3, :3] = trans_mat # return trans def get_link_pose(self, link_id, euler=True): info = P.getLinkState(self.body_id, link_id) pos, orn = info[0], info[1] if euler: orn = T.quaternion_to_euler(orn, order='xyzw') return pos, orn def current_pose(self, euler=True): pos, orn = P.getBasePositionAndOrientation(self.body_id) if euler: orn = T.quaternion_to_euler(orn, order='xyzw') return pos, orn def set_from_param(self, param, t): if param.is_symbol(): t = 0 pos = param.pose[:,t] if not param.is_symbol() else param.value[:,0] if 'Robot' in param.get_type(True) or 'RobotPose' in param.get_type(True): dof_map = {} geom = param.openrave_body._geom for arm in geom.arms: dof_map[arm] = getattr(param, arm)[:,t] for gripper in geom.grippers: dof_map[gripper] = getattr(param, gripper)[:,t] self.set_dof(dof_map) if hasattr(param, 'rotation'): self.set_pose(pos, param.rotation[:,t]) else: self.set_pose(pos) else: self.set_pose(pos, param.rotation[:,t]) def get_ik_from_pose(self, pos, rot, manip_name, use6d=True, multiple=0, maxIter=1024, bnds=None): quat = rot if (rot is None or len(rot) == 4) else T.euler_to_quaternion(rot, order='xyzw') pos = np.array(pos).tolist() quat = np.array(quat).tolist() if bnds is None: lb, ub = self._geom.get_arm_bnds() else: true_lb, true_ub = self._geom.get_arm_bnds() lb, ub = bnds if len(lb) < len(true_lb): lb = np.r_[lb, -10*np.ones(len(true_lb) - len(lb))] if len(ub) < len(true_ub): ub = np.r_[ub, 10*np.ones(len(true_ub) - len(ub))] lb = np.maximum(lb, true_lb).tolist() ub = np.minimum(ub, true_ub).tolist() ranges = (np.array(ub) - np.array(lb)).tolist() jnt_ids = sorted(self._geom.get_free_inds()) jnts = P.getJointStates(self.body_id, jnt_ids) rest_poses = [j[0] for j in jnts] cur_jnts = rest_poses manip_id = self._geom.get_ee_link(manip_name) damp = (0.1 * np.ones(len(jnt_ids))).tolist() joint_pos = P.calculateInverseKinematics(self.body_id, manip_id, pos, quat, lowerLimits=lb, upperLimits=ub, jointRanges=ranges, restPoses=rest_poses, jointDamping=damp, maxNumIterations=maxIter) inds = list(self._geom.get_free_inds(manip_name)) joint_pos = np.array(joint_pos)[inds].tolist() lb, ub = self._geom.get_joint_limits(manip_name) joint_pos = np.maximum(np.minimum(joint_pos, ub), lb) if not multiple: return joint_pos poses = [joint_pos] for _ in range(multiple): rest_poses = (np.array(cur_jnts) + 5 * (np.random.uniform(size=len(lb)) - 0.5) * ranges).tolist() joint_pos = P.calculateInverseKinematics(self.body_id, manip_id, pos, quat, lb, ub, ranges, rest_poses, maxNumIterations=maxIter) joint_pos = np.array(joint_pos)[inds].tolist() poses.append(joint_pos) return poses def fwd_kinematics(self, manip_name, dof_map=None, mat_result=False): if dof_map is not None: self.set_dof(dof_map) ee_link = self._geom.get_ee_link(manip_name) link_state = P.getLinkState(self.body_id, ee_link) pos = link_state[0] quat = link_state[1] if mat_result: return OpenRAVEBody.transform_from_obj_pose(pos, quat) return {'pos': pos, 'quat': quat} def param_fwd_kinematics(self, param, manip_names, t, mat_result=False): if not isinstance(self._geom, Robot): return attrs = list(param._attr_types.keys()) attr_vals = {attr: getattr(param, attr)[:, t] for attr in attrs if attr in self._geom.dof_map} param.openrave_body.set_dof(attr_vals) result = {} for manip_name in manip_names: result[manip_name] = self.fwd_kinematics(manip_name, mat_result=mat_result) return result
42.183976
130
0.547869
56442e8f850fd9c7f136e29c63d3d6d34743e306
16,963
py
Python
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/fCoEFabricLogoLsAcc_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
20
2019-05-07T01:59:14.000Z
2022-02-11T05:24:47.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/fCoEFabricLogoLsAcc_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
60
2019-04-03T18:59:35.000Z
2022-02-22T12:05:05.000Z
ixnetwork_restpy/testplatform/sessions/ixnetwork/traffic/trafficitem/configelement/stack/fCoEFabricLogoLsAcc_template.py
OpenIxia/ixnetwork_restpy
f628db450573a104f327cf3c737ca25586e067ae
[ "MIT" ]
13
2019-05-20T10:48:31.000Z
2021-10-06T07:45:44.000Z
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class FCoEFabricLogoLsAcc(Base): __slots__ = () _SDM_NAME = 'fCoEFabricLogoLsAcc' _SDM_ATT_MAP = { 'FcoeHeaderVersion': 'fCoEFabricLogoLsAcc.header.fcoeHeader.version-1', 'FcoeHeaderReserved': 'fCoEFabricLogoLsAcc.header.fcoeHeader.reserved-2', 'FcoeHeaderESOF': 'fCoEFabricLogoLsAcc.header.fcoeHeader.eSOF-3', 'ExtendedLinkServicesExtendedLinkServiceInfo': 'fCoEFabricLogoLsAcc.header.fcHeader.RCtl.extendedLinkServices.extendedLinkServiceInfo-4', 'FcHeaderDId': 'fCoEFabricLogoLsAcc.header.fcHeader.DId-5', 'FcHeaderCsCtlPriority': 'fCoEFabricLogoLsAcc.header.fcHeader.CsCtlPriority-6', 'FcHeaderSId': 'fCoEFabricLogoLsAcc.header.fcHeader.SId-7', 'FcHeaderType': 'fCoEFabricLogoLsAcc.header.fcHeader.Type-8', 'FCtlExchangeContext': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.exchangeContext-9', 'FCtlSequenceContext': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.sequenceContext-10', 'FCtlFirstSequence': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.firstSequence-11', 'FCtlLastSequence': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.lastSequence-12', 'FCtlEndSequence': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.endSequence-13', 'FCtlEndConnection': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.endConnection-14', 'FCtlCsCtlPriority': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.csCtlPriority-15', 'FCtlSequenceInitiative': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.sequenceInitiative-16', 'FCtlFcXidReassigned': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.fcXidReassigned-17', 'FCtlFcInvalidateXid': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.fcInvalidateXid-18', 'FCtlAckForm': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.ackForm-19', 'FCtlFcDataCompression': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.fcDataCompression-20', 'FCtlFcDataEncryption': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.fcDataEncryption-21', 'FCtlRetransmittedSequence': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.retransmittedSequence-22', 'FCtlUnidirectionalTransmit': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.unidirectionalTransmit-23', 'FCtlContinueSeqCondition': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.continueSeqCondition-24', 'FCtlAbortSeqCondition': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.abortSeqCondition-25', 'FCtlRelativeOffsetPresent': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.relativeOffsetPresent-26', 'FCtlExchangeReassembly': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.exchangeReassembly-27', 'FCtlFillBytes': 'fCoEFabricLogoLsAcc.header.fcHeader.FCtl.fCtl.fillBytes-28', 'FcHeaderSeqId': 'fCoEFabricLogoLsAcc.header.fcHeader.SeqId-29', 'FcHeaderDfCtl': 'fCoEFabricLogoLsAcc.header.fcHeader.DfCtl-30', 'FcHeaderSeqCnt': 'fCoEFabricLogoLsAcc.header.fcHeader.SeqCnt-31', 'FcHeaderOxId': 'fCoEFabricLogoLsAcc.header.fcHeader.OxId-32', 'FcHeaderRxId': 'fCoEFabricLogoLsAcc.header.fcHeader.RxId-33', 'FcHeaderParameter': 'fCoEFabricLogoLsAcc.header.fcHeader.Parameter-34', 'FcElsCommandCodeFcElsCommandCodeLsAcc': 'fCoEFabricLogoLsAcc.header.FcEls.FcElsAcceptReject.FcElsCommandCode.FcElsCommandCodeLsAcc-35', 'FcElsAcceptRejectFcElsAcceptRejectReserved': 'fCoEFabricLogoLsAcc.header.FcEls.FcElsAcceptReject.FcElsAcceptRejectReserved-36', } def __init__(self, parent, list_op=False): super(FCoEFabricLogoLsAcc, self).__init__(parent, list_op) @property def FcoeHeaderVersion(self): """ Display Name: Version Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcoeHeaderVersion'])) @property def FcoeHeaderReserved(self): """ Display Name: Reserved Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcoeHeaderReserved'])) @property def FcoeHeaderESOF(self): """ Display Name: E-SOF Default Value: 54 Value Format: decimal Available enum values: SOFf - Fabric, 40, SOFi4 - Initiate Class 4, 41, SOFi2 - Initiate Class 2, 45, SOFi3 - Initiate Class 3, 46, SOFn4 - Normal Class 4, 49, SOFn2 - Normal Class 2, 53, SOFn3 - Normal Class 3, 54, SOFc4 - Connect Class 4, 57, SOFn1 - Normal Class 1 or 6, 250 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcoeHeaderESOF'])) @property def ExtendedLinkServicesExtendedLinkServiceInfo(self): """ Display Name: Information Default Value: 35 Value Format: decimal Available enum values: Solicited Data, 33, Request, 34, Reply, 35 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ExtendedLinkServicesExtendedLinkServiceInfo'])) @property def FcHeaderDId(self): """ Display Name: D_ID Default Value: 0x000001 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderDId'])) @property def FcHeaderCsCtlPriority(self): """ Display Name: CS_CTL/Priority Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderCsCtlPriority'])) @property def FcHeaderSId(self): """ Display Name: S_ID Default Value: 0xFFFFFE Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderSId'])) @property def FcHeaderType(self): """ Display Name: Type Default Value: 0x01 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderType'])) @property def FCtlExchangeContext(self): """ Display Name: Exchange Context Default Value: 0 Value Format: decimal Available enum values: Originator, 0, Receipient, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlExchangeContext'])) @property def FCtlSequenceContext(self): """ Display Name: Sequence Context Default Value: 0 Value Format: decimal Available enum values: Initiator, 0, Receipient, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlSequenceContext'])) @property def FCtlFirstSequence(self): """ Display Name: First Sequence Default Value: 0 Value Format: decimal Available enum values: Other, 0, First, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlFirstSequence'])) @property def FCtlLastSequence(self): """ Display Name: Last Sequence Default Value: 0 Value Format: decimal Available enum values: Other, 0, Last, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlLastSequence'])) @property def FCtlEndSequence(self): """ Display Name: End Sequence Default Value: 0 Value Format: decimal Available enum values: Other, 0, Last, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlEndSequence'])) @property def FCtlEndConnection(self): """ Display Name: End Connection Default Value: 0 Value Format: decimal Available enum values: Alive, 0, Pending, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlEndConnection'])) @property def FCtlCsCtlPriority(self): """ Display Name: CS_CTL/Priority Enable Default Value: 0 Value Format: decimal Available enum values: CS_CTL, 0, Priority, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlCsCtlPriority'])) @property def FCtlSequenceInitiative(self): """ Display Name: Sequence Initiative Default Value: 0 Value Format: decimal Available enum values: Hold, 0, Transfer, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlSequenceInitiative'])) @property def FCtlFcXidReassigned(self): """ Display Name: FC XID Reassigned Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlFcXidReassigned'])) @property def FCtlFcInvalidateXid(self): """ Display Name: FC Invalidate XID Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlFcInvalidateXid'])) @property def FCtlAckForm(self): """ Display Name: ACK_Form Default Value: 0 Value Format: decimal Available enum values: No assistance provided, 0, ACK_1 Required, 1, reserved, 2, Ack_0 Required, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlAckForm'])) @property def FCtlFcDataCompression(self): """ Display Name: FC Data Compression Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlFcDataCompression'])) @property def FCtlFcDataEncryption(self): """ Display Name: FC Data Encryption Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlFcDataEncryption'])) @property def FCtlRetransmittedSequence(self): """ Display Name: Retransmitted Sequence Default Value: 0 Value Format: decimal Available enum values: Original, 0, Retransmission, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlRetransmittedSequence'])) @property def FCtlUnidirectionalTransmit(self): """ Display Name: Unidirectional Transmit Default Value: 0 Value Format: decimal Available enum values: Bi-directional, 0, Unidirectional, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlUnidirectionalTransmit'])) @property def FCtlContinueSeqCondition(self): """ Display Name: Continue Sequence Condition Default Value: 0 Value Format: decimal Available enum values: No information, 0, Sequence to follow-immediately, 1, Squence to follow-soon, 2, Sequence to follow-delayed, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlContinueSeqCondition'])) @property def FCtlAbortSeqCondition(self): """ Display Name: Abort Sequence Condition Default Value: 0 Value Format: decimal Available enum values: 0x00, 0, 0x01, 1, 0x10, 2, 0x11, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlAbortSeqCondition'])) @property def FCtlRelativeOffsetPresent(self): """ Display Name: Relative offset present Default Value: 0 Value Format: decimal Available enum values: Parameter field defined, 0, Relative offset, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlRelativeOffsetPresent'])) @property def FCtlExchangeReassembly(self): """ Display Name: Exchange Reassembly Default Value: 0 Value Format: decimal Available enum values: off, 0, on, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlExchangeReassembly'])) @property def FCtlFillBytes(self): """ Display Name: Fill Bytes Default Value: 0 Value Format: decimal Available enum values: 0 bytes of fill, 0, 1 bytes of fill, 1, 2 bytes of fill, 2, 3 bytes of fill, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCtlFillBytes'])) @property def FcHeaderSeqId(self): """ Display Name: SEQ_ID Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderSeqId'])) @property def FcHeaderDfCtl(self): """ Display Name: DF_CTL Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderDfCtl'])) @property def FcHeaderSeqCnt(self): """ Display Name: SEQ_CNT Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderSeqCnt'])) @property def FcHeaderOxId(self): """ Display Name: OX_ID Default Value: 0x0000 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderOxId'])) @property def FcHeaderRxId(self): """ Display Name: RX_ID Default Value: 0xFFFF Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderRxId'])) @property def FcHeaderParameter(self): """ Display Name: Parameter Default Value: 0x00000000 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderParameter'])) @property def FcElsCommandCodeFcElsCommandCodeLsAcc(self): """ Display Name: LS_ACC Default Value: 0x02 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcElsCommandCodeFcElsCommandCodeLsAcc'])) @property def FcElsAcceptRejectFcElsAcceptRejectReserved(self): """ Display Name: Reserved Default Value: 0x000000 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcElsAcceptRejectFcElsAcceptRejectReserved'])) def add(self): return self._create(self._map_locals(self._SDM_ATT_MAP, locals()))
39.085253
285
0.677887
08b6673fc0e86d906909d187766d0771c077bb6e
4,834
py
Python
docs/conf.py
nmdickson/ssptools
52a186fff7d7080d8339897a30742f20566b8a1f
[ "MIT" ]
1
2020-10-12T14:56:03.000Z
2020-10-12T14:56:03.000Z
docs/conf.py
nmdickson/ssptools
52a186fff7d7080d8339897a30742f20566b8a1f
[ "MIT" ]
4
2019-05-02T09:36:11.000Z
2021-01-14T20:13:11.000Z
docs/conf.py
nmdickson/ssptools
52a186fff7d7080d8339897a30742f20566b8a1f
[ "MIT" ]
2
2020-10-17T20:34:27.000Z
2021-01-27T03:15:48.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ssptools documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import ssptools # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'SSPTools' copyright = u"2018, Eduardo Balbinot" author = u"Eduardo Balbinot" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = ssptools.__version__ # The full version, including alpha/beta/rc tags. release = ssptools.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'ssptoolsdoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'ssptools.tex', u'SSPTools Documentation', u'Eduardo Balbinot', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'ssptools', u'SSPTools Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'ssptools', u'SSPTools Documentation', author, 'ssptools', 'One line description of project.', 'Miscellaneous'), ]
29.47561
77
0.684733
49a654c42ea81ba303e43c537cde6e6d8568f199
29,683
py
Python
watertap/core/tests/test_zero_order_unit.py
bknueven/proteuslib
1d00f48b3bc4b868c45f44c38acf8203a910931a
[ "BSD-3-Clause-LBNL" ]
null
null
null
watertap/core/tests/test_zero_order_unit.py
bknueven/proteuslib
1d00f48b3bc4b868c45f44c38acf8203a910931a
[ "BSD-3-Clause-LBNL" ]
null
null
null
watertap/core/tests/test_zero_order_unit.py
bknueven/proteuslib
1d00f48b3bc4b868c45f44c38acf8203a910931a
[ "BSD-3-Clause-LBNL" ]
null
null
null
############################################################################### # WaterTAP Copyright (c) 2021, The Regents of the University of California, # through Lawrence Berkeley National Laboratory, Oak Ridge National # Laboratory, National Renewable Energy Laboratory, and National Energy # Technology Laboratory (subject to receipt of any required approvals from # the U.S. Dept. of Energy). All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license # information, respectively. These files are also available online at the URL # "https://github.com/watertap-org/watertap/" # ############################################################################### """ Tests for general zero-order proeprty package """ import pytest from idaes.core import declare_process_block_class, FlowsheetBlock from idaes.core.util.model_statistics import degrees_of_freedom from idaes.core.util.testing import initialization_tester from idaes.core.util import get_solver import idaes.core.util.scaling as iscale from idaes.core.util.exceptions import ConfigurationError from pyomo.environ import (Block, ConcreteModel, Constraint, SolverStatus, TerminationCondition, value, Var) from pyomo.network import Port from pyomo.util.check_units import assert_units_consistent from watertap.core.zero_order_unit import SITOBaseData from watertap.core.zero_order_properties import \ WaterParameterBlock, WaterStateBlock solver = get_solver() class TestSITOConfigurationErrors: @pytest.fixture def model(self): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.params = WaterParameterBlock( default={"solute_list": ["A", "B", "C"]}) m.fs.params.del_component(m.fs.params.phase_list) m.fs.params.del_component(m.fs.params.solvent_set) m.fs.params.del_component(m.fs.params.solute_set) m.fs.params.del_component(m.fs.params.component_list) return m @declare_process_block_class("DerivedSITO0") class DerivedSITOData0(SITOBaseData): def build(self): self._has_deltaP_outlet = True self._has_deltaP_waste = True super().build() @pytest.mark.unit def test_phase_list(self, model): model.fs.params.phase_list = ["foo"] with pytest.raises(ConfigurationError, match="fs.unit configured with invalid property " "package. Zero-order models only support property " "packages with a single phase named 'Liq'."): model.fs.unit = DerivedSITO0( default={"property_package": model.fs.params}) @pytest.mark.unit def test_no_solvent_set(self, model): model.fs.params.phase_list = ["Liq"] with pytest.raises(ConfigurationError, match="fs.unit configured with invalid property " "package. Zero-order models only support property " "packages which include 'H2O' as the only Solvent." ): model.fs.unit = DerivedSITO0( default={"property_package": model.fs.params}) @pytest.mark.unit def test_invalid_solvent_set(self, model): model.fs.params.phase_list = ["Liq"] model.fs.params.solvent_set = ["foo"] with pytest.raises(ConfigurationError, match="fs.unit configured with invalid property " "package. Zero-order models only support property " "packages which include 'H2O' as the only Solvent." ): model.fs.unit = DerivedSITO0( default={"property_package": model.fs.params}) @pytest.mark.unit def test_no_solute_set(self, model): model.fs.params.phase_list = ["Liq"] model.fs.params.solvent_set = ["H2O"] with pytest.raises(ConfigurationError, match="fs.unit configured with invalid property " "package. Zero-order models require property " "packages to declare all dissolved species as " "Solutes."): model.fs.unit = DerivedSITO0( default={"property_package": model.fs.params}) @pytest.mark.unit def test_non_solvent_or_solute(self, model): model.fs.params.phase_list = ["Liq"] model.fs.params.solvent_set = ["H2O"] model.fs.params.solute_set = ["A", "B", "C"] model.fs.params.component_list = ["H2O", "A", "B", "C", "foo"] with pytest.raises(ConfigurationError, match="fs.unit configured with invalid property " "package. Zero-order models only support `H2O` as " "a solvent and all other species as Solutes."): model.fs.unit = DerivedSITO0( default={"property_package": model.fs.params}) @pytest.mark.unit def test_no_has_deltaP_outlet(): @declare_process_block_class("DerivedSITO1") class DerivedSITOData1(SITOBaseData): def build(self): self._has_deltaP_waste = True super().build() m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.water_props = WaterParameterBlock( default={"solute_list": ["A", "B", "C"]}) with pytest.raises(NotImplementedError, match="fs.unit derived class has not been implemented " "_has_deltaP_outlet."): m.fs.unit = DerivedSITO1( default={"property_package": m.fs.water_props}) @pytest.mark.unit def test_no_has_deltaP_waste(): @declare_process_block_class("DerivedSITO2") class DerivedSITOData2(SITOBaseData): def build(self): self._has_deltaP_outlet = True super().build() m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.water_props = WaterParameterBlock( default={"solute_list": ["A", "B", "C"]}) with pytest.raises(NotImplementedError, match="fs.unit derived class has not been implemented " "_has_deltaP_waste."): m.fs.unit = DerivedSITO2( default={"property_package": m.fs.water_props}) class TestPressureChange: @declare_process_block_class("DerivedSITO3") class DerivedSITOData3(SITOBaseData): def build(self): self._has_deltaP_outlet = True self._has_deltaP_waste = True super().build() @pytest.fixture(scope="module") def model(self): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.water_props = WaterParameterBlock( default={"solute_list": ["A", "B", "C"]}) m.fs.unit = DerivedSITO3( default={"property_package": m.fs.water_props}) m.fs.unit.inlet.flow_vol.fix(42) m.fs.unit.inlet.conc_mass_comp[0, "A"].fix(10) m.fs.unit.inlet.conc_mass_comp[0, "B"].fix(20) m.fs.unit.inlet.conc_mass_comp[0, "C"].fix(30) m.fs.unit.inlet.temperature.fix(303.15) m.fs.unit.inlet.pressure.fix(1.5e5) m.fs.unit.recovery_vol.fix(0.8) m.fs.unit.removal_mass_solute[0, "A"].fix(0.1) m.fs.unit.removal_mass_solute[0, "B"].fix(0.2) m.fs.unit.removal_mass_solute[0, "C"].fix(0.3) m.fs.unit.deltaP_outlet.fix(1000) m.fs.unit.deltaP_waste.fix(2000) return m @pytest.mark.unit def test_build(self, model): assert isinstance(model.fs.unit.properties_in, WaterStateBlock) assert isinstance(model.fs.unit.properties_out, WaterStateBlock) assert isinstance(model.fs.unit.properties_waste, WaterStateBlock) assert isinstance(model.fs.unit.inlet, Port) assert isinstance(model.fs.unit.outlet, Port) assert isinstance(model.fs.unit.waste, Port) assert isinstance(model.fs.unit.recovery_vol, Var) assert len(model.fs.unit.recovery_vol) == 1 assert isinstance(model.fs.unit.removal_mass_solute, Var) assert len(model.fs.unit.removal_mass_solute) == 3 assert isinstance(model.fs.unit.deltaP_outlet, Var) assert len(model.fs.unit.deltaP_outlet) == 1 assert isinstance(model.fs.unit.deltaP_waste, Var) assert len(model.fs.unit.deltaP_waste) == 1 assert isinstance(model.fs.unit.water_recovery_equation, Constraint) assert len(model.fs.unit.water_recovery_equation) == 1 assert isinstance(model.fs.unit.flow_balance, Constraint) assert len(model.fs.unit.flow_balance) == 1 assert isinstance(model.fs.unit.solute_removal_equation, Constraint) assert len(model.fs.unit.solute_removal_equation) == 3 assert isinstance(model.fs.unit.solute_outlet_equation, Constraint) assert len(model.fs.unit.solute_outlet_equation) == 3 assert isinstance(model.fs.unit.outlet_pressure_constraint, Constraint) assert len(model.fs.unit.outlet_pressure_constraint) == 1 assert isinstance(model.fs.unit.waste_pressure_constraint, Constraint) assert len(model.fs.unit.waste_pressure_constraint) == 1 assert isinstance(model.fs.unit.outlet_temperature_equality, Constraint) assert len(model.fs.unit.outlet_temperature_equality) == 1 assert isinstance(model.fs.unit.waste_temperature_equality, Constraint) assert len(model.fs.unit.waste_temperature_equality) == 1 @pytest.mark.unit def test_degrees_of_freedom(self, model): assert degrees_of_freedom(model) == 0 @pytest.mark.component def test_unit_consistency(self, model): assert_units_consistent(model) @pytest.mark.component def test_scaling(self, model): iscale.calculate_scaling_factors(model) assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.water_recovery_equation[0]) == 1e3 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.flow_balance[0]) == 1e3 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "A"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "B"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "C"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "A"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "B"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "C"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_pressure_constraint[0]) == 1e-5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.waste_pressure_constraint[0]) == 1e-5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_temperature_equality[0]) == 1e-2 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_temperature_equality[0]) == 1e-2 @pytest.mark.component def test_initialization(self, model): initialization_tester(model) @pytest.mark.component def test_solve(self, model): results = solver.solve(model) # Check for optimal solution assert results.solver.termination_condition == \ TerminationCondition.optimal assert results.solver.status == SolverStatus.ok @pytest.mark.component def test_solution(self, model): assert (pytest.approx(33.6, rel=1e-5) == value(model.fs.unit.outlet.flow_vol[0])) assert (pytest.approx(8.4, rel=1e-5) == value(model.fs.unit.waste.flow_vol[0])) assert (pytest.approx(11.25, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "A"])) assert (pytest.approx(5, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "A"])) assert (pytest.approx(20, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "B"])) assert (pytest.approx(20, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "B"])) assert (pytest.approx(26.25, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "C"])) assert (pytest.approx(45, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "C"])) assert (pytest.approx(151000, rel=1e-5) == value(model.fs.unit.outlet.pressure[0])) assert (pytest.approx(152000, rel=1e-5) == value(model.fs.unit.waste.pressure[0])) assert (pytest.approx(303.15, rel=1e-5) == value(model.fs.unit.outlet.temperature[0])) assert (pytest.approx(303.15, rel=1e-5) == value(model.fs.unit.waste.temperature[0])) @pytest.mark.component def test_conservation(self, model): assert abs(value(model.fs.unit.inlet.flow_vol[0] - model.fs.unit.outlet.flow_vol[0] - model.fs.unit.waste.flow_vol[0])) <= 1e-6 for j in model.fs.water_props.solute_set: assert (abs(value(model.fs.unit.inlet.flow_vol[0] * model.fs.unit.inlet.conc_mass_comp[0, j] - model.fs.unit.outlet.flow_vol[0] * model.fs.unit.outlet.conc_mass_comp[0, j] - model.fs.unit.waste.flow_vol[0] * model.fs.unit.waste.conc_mass_comp[0, j])) <= 1e-6) class TestNoPressureChangeOutlet: @declare_process_block_class("DerivedSITO4") class DerivedSITOData4(SITOBaseData): def build(self): self._has_deltaP_outlet = False self._has_deltaP_waste = True super().build() @pytest.fixture(scope="module") def model(self): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.water_props = WaterParameterBlock( default={"solute_list": ["A", "B", "C"]}) m.fs.unit = DerivedSITO4( default={"property_package": m.fs.water_props}) m.fs.unit.inlet.flow_vol.fix(42) m.fs.unit.inlet.conc_mass_comp[0, "A"].fix(10) m.fs.unit.inlet.conc_mass_comp[0, "B"].fix(20) m.fs.unit.inlet.conc_mass_comp[0, "C"].fix(30) m.fs.unit.inlet.temperature.fix(303.15) m.fs.unit.inlet.pressure.fix(1.5e5) m.fs.unit.recovery_vol.fix(0.8) m.fs.unit.removal_mass_solute[0, "A"].fix(0.1) m.fs.unit.removal_mass_solute[0, "B"].fix(0.2) m.fs.unit.removal_mass_solute[0, "C"].fix(0.3) m.fs.unit.deltaP_waste.fix(2000) return m @pytest.mark.unit def test_build(self, model): assert isinstance(model.fs.unit.properties_in, WaterStateBlock) assert isinstance(model.fs.unit.properties_out, WaterStateBlock) assert isinstance(model.fs.unit.properties_waste, WaterStateBlock) assert isinstance(model.fs.unit.inlet, Port) assert isinstance(model.fs.unit.outlet, Port) assert isinstance(model.fs.unit.waste, Port) assert isinstance(model.fs.unit.recovery_vol, Var) assert len(model.fs.unit.recovery_vol) == 1 assert isinstance(model.fs.unit.removal_mass_solute, Var) assert len(model.fs.unit.removal_mass_solute) == 3 assert not hasattr(model.fs.unit, "deltaP_outlet") assert isinstance(model.fs.unit.deltaP_waste, Var) assert len(model.fs.unit.deltaP_waste) == 1 assert isinstance(model.fs.unit.water_recovery_equation, Constraint) assert len(model.fs.unit.water_recovery_equation) == 1 assert isinstance(model.fs.unit.flow_balance, Constraint) assert len(model.fs.unit.flow_balance) == 1 assert isinstance(model.fs.unit.solute_removal_equation, Constraint) assert len(model.fs.unit.solute_removal_equation) == 3 assert isinstance(model.fs.unit.solute_outlet_equation, Constraint) assert len(model.fs.unit.solute_outlet_equation) == 3 assert isinstance(model.fs.unit.outlet_pressure_constraint, Constraint) assert len(model.fs.unit.outlet_pressure_constraint) == 1 assert isinstance(model.fs.unit.waste_pressure_constraint, Constraint) assert len(model.fs.unit.waste_pressure_constraint) == 1 assert isinstance(model.fs.unit.outlet_temperature_equality, Constraint) assert len(model.fs.unit.outlet_temperature_equality) == 1 assert isinstance(model.fs.unit.waste_temperature_equality, Constraint) assert len(model.fs.unit.waste_temperature_equality) == 1 @pytest.mark.unit def test_degrees_of_freedom(self, model): assert degrees_of_freedom(model) == 0 @pytest.mark.component def test_unit_consistency(self, model): assert_units_consistent(model) @pytest.mark.component def test_scaling(self, model): iscale.calculate_scaling_factors(model) assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.water_recovery_equation[0]) == 1e3 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.flow_balance[0]) == 1e3 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "A"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "B"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "C"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "A"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "B"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "C"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_pressure_constraint[0]) == 1e-5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.waste_pressure_constraint[0]) == 1e-5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_temperature_equality[0]) == 1e-2 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_temperature_equality[0]) == 1e-2 @pytest.mark.component def test_initialization(self, model): initialization_tester(model) @pytest.mark.component def test_solve(self, model): results = solver.solve(model) # Check for optimal solution assert results.solver.termination_condition == \ TerminationCondition.optimal assert results.solver.status == SolverStatus.ok @pytest.mark.component def test_solution(self, model): assert (pytest.approx(33.6, rel=1e-5) == value(model.fs.unit.outlet.flow_vol[0])) assert (pytest.approx(8.4, rel=1e-5) == value(model.fs.unit.waste.flow_vol[0])) assert (pytest.approx(11.25, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "A"])) assert (pytest.approx(5, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "A"])) assert (pytest.approx(20, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "B"])) assert (pytest.approx(20, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "B"])) assert (pytest.approx(26.25, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "C"])) assert (pytest.approx(45, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "C"])) assert (pytest.approx(150000, rel=1e-5) == value(model.fs.unit.outlet.pressure[0])) assert (pytest.approx(152000, rel=1e-5) == value(model.fs.unit.waste.pressure[0])) assert (pytest.approx(303.15, rel=1e-5) == value(model.fs.unit.outlet.temperature[0])) assert (pytest.approx(303.15, rel=1e-5) == value(model.fs.unit.waste.temperature[0])) @pytest.mark.component def test_conservation(self, model): assert abs(value(model.fs.unit.inlet.flow_vol[0] - model.fs.unit.outlet.flow_vol[0] - model.fs.unit.waste.flow_vol[0])) <= 1e-6 for j in model.fs.water_props.solute_set: assert (abs(value(model.fs.unit.inlet.flow_vol[0] * model.fs.unit.inlet.conc_mass_comp[0, j] - model.fs.unit.outlet.flow_vol[0] * model.fs.unit.outlet.conc_mass_comp[0, j] - model.fs.unit.waste.flow_vol[0] * model.fs.unit.waste.conc_mass_comp[0, j])) <= 1e-6) class TestNoPressureChangeWaste: @declare_process_block_class("DerivedSITO5") class DerivedSITOData5(SITOBaseData): def build(self): self._has_deltaP_outlet = True self._has_deltaP_waste = False super().build() @pytest.fixture(scope="module") def model(self): m = ConcreteModel() m.fs = FlowsheetBlock(default={"dynamic": False}) m.fs.water_props = WaterParameterBlock( default={"solute_list": ["A", "B", "C"]}) m.fs.unit = DerivedSITO5( default={"property_package": m.fs.water_props}) m.fs.unit.inlet.flow_vol.fix(42) m.fs.unit.inlet.conc_mass_comp[0, "A"].fix(10) m.fs.unit.inlet.conc_mass_comp[0, "B"].fix(20) m.fs.unit.inlet.conc_mass_comp[0, "C"].fix(30) m.fs.unit.inlet.temperature.fix(303.15) m.fs.unit.inlet.pressure.fix(1.5e5) m.fs.unit.recovery_vol.fix(0.8) m.fs.unit.removal_mass_solute[0, "A"].fix(0.1) m.fs.unit.removal_mass_solute[0, "B"].fix(0.2) m.fs.unit.removal_mass_solute[0, "C"].fix(0.3) m.fs.unit.deltaP_outlet.fix(1000) return m @pytest.mark.unit def test_build(self, model): assert isinstance(model.fs.unit.properties_in, WaterStateBlock) assert isinstance(model.fs.unit.properties_out, WaterStateBlock) assert isinstance(model.fs.unit.properties_waste, WaterStateBlock) assert isinstance(model.fs.unit.inlet, Port) assert isinstance(model.fs.unit.outlet, Port) assert isinstance(model.fs.unit.waste, Port) assert isinstance(model.fs.unit.recovery_vol, Var) assert len(model.fs.unit.recovery_vol) == 1 assert isinstance(model.fs.unit.removal_mass_solute, Var) assert len(model.fs.unit.removal_mass_solute) == 3 assert not hasattr(model.fs.unit, "deltaP_waste") assert isinstance(model.fs.unit.deltaP_outlet, Var) assert len(model.fs.unit.deltaP_outlet) == 1 assert isinstance(model.fs.unit.water_recovery_equation, Constraint) assert len(model.fs.unit.water_recovery_equation) == 1 assert isinstance(model.fs.unit.flow_balance, Constraint) assert len(model.fs.unit.flow_balance) == 1 assert isinstance(model.fs.unit.solute_removal_equation, Constraint) assert len(model.fs.unit.solute_removal_equation) == 3 assert isinstance(model.fs.unit.solute_outlet_equation, Constraint) assert len(model.fs.unit.solute_outlet_equation) == 3 assert isinstance(model.fs.unit.outlet_pressure_constraint, Constraint) assert len(model.fs.unit.outlet_pressure_constraint) == 1 assert isinstance(model.fs.unit.waste_pressure_constraint, Constraint) assert len(model.fs.unit.waste_pressure_constraint) == 1 assert isinstance(model.fs.unit.outlet_temperature_equality, Constraint) assert len(model.fs.unit.outlet_temperature_equality) == 1 assert isinstance(model.fs.unit.waste_temperature_equality, Constraint) assert len(model.fs.unit.waste_temperature_equality) == 1 @pytest.mark.unit def test_degrees_of_freedom(self, model): assert degrees_of_freedom(model) == 0 @pytest.mark.component def test_unit_consistency(self, model): assert_units_consistent(model) @pytest.mark.component def test_scaling(self, model): iscale.calculate_scaling_factors(model) assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.water_recovery_equation[0]) == 1e3 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.flow_balance[0]) == 1e3 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "A"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "B"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_removal_equation[0, "C"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "A"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "B"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.solute_outlet_equation[0, "C"]) == 1e5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_pressure_constraint[0]) == 1e-5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.waste_pressure_constraint[0]) == 1e-5 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_temperature_equality[0]) == 1e-2 assert iscale.get_constraint_transform_applied_scaling_factor( model.fs.unit.outlet_temperature_equality[0]) == 1e-2 @pytest.mark.component def test_initialization(self, model): initialization_tester(model) @pytest.mark.component def test_solve(self, model): results = solver.solve(model) # Check for optimal solution assert results.solver.termination_condition == \ TerminationCondition.optimal assert results.solver.status == SolverStatus.ok @pytest.mark.component def test_solution(self, model): assert (pytest.approx(33.6, rel=1e-5) == value(model.fs.unit.outlet.flow_vol[0])) assert (pytest.approx(8.4, rel=1e-5) == value(model.fs.unit.waste.flow_vol[0])) assert (pytest.approx(11.25, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "A"])) assert (pytest.approx(5, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "A"])) assert (pytest.approx(20, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "B"])) assert (pytest.approx(20, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "B"])) assert (pytest.approx(26.25, rel=1e-5) == value(model.fs.unit.outlet.conc_mass_comp[0, "C"])) assert (pytest.approx(45, rel=1e-5) == value(model.fs.unit.waste.conc_mass_comp[0, "C"])) assert (pytest.approx(151000, rel=1e-5) == value(model.fs.unit.outlet.pressure[0])) assert (pytest.approx(150000, rel=1e-5) == value(model.fs.unit.waste.pressure[0])) assert (pytest.approx(303.15, rel=1e-5) == value(model.fs.unit.outlet.temperature[0])) assert (pytest.approx(303.15, rel=1e-5) == value(model.fs.unit.waste.temperature[0])) @pytest.mark.component def test_conservation(self, model): assert abs(value(model.fs.unit.inlet.flow_vol[0] - model.fs.unit.outlet.flow_vol[0] - model.fs.unit.waste.flow_vol[0])) <= 1e-6 for j in model.fs.water_props.solute_set: assert (abs(value(model.fs.unit.inlet.flow_vol[0] * model.fs.unit.inlet.conc_mass_comp[0, j] - model.fs.unit.outlet.flow_vol[0] * model.fs.unit.outlet.conc_mass_comp[0, j] - model.fs.unit.waste.flow_vol[0] * model.fs.unit.waste.conc_mass_comp[0, j])) <= 1e-6)
43.780236
81
0.636829
5d8c9b96009027deccb29833d6ca63a0dd076d83
42,939
py
Python
newspaper/extractors.py
gavishpoddar/newspaper
bcbae0026c7459e4353ec0878be041f239918730
[ "Apache-2.0", "MIT" ]
null
null
null
newspaper/extractors.py
gavishpoddar/newspaper
bcbae0026c7459e4353ec0878be041f239918730
[ "Apache-2.0", "MIT" ]
null
null
null
newspaper/extractors.py
gavishpoddar/newspaper
bcbae0026c7459e4353ec0878be041f239918730
[ "Apache-2.0", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Newspaper uses much of python-goose's extraction code. View their license: https://github.com/codelucas/newspaper/blob/master/GOOSE-LICENSE.txt Keep all html page extraction code within this file. Abstract any lxml or soup parsing code in the parsers.py file! """ __title__ = 'newspaper' __author__ = 'Lucas Ou-Yang' __license__ = 'MIT' __copyright__ = 'Copyright 2014, Lucas Ou-Yang' import copy import logging import re import re from collections import defaultdict from dateutil.parser import parse as date_parser from tldextract import tldextract from urllib.parse import urljoin, urlparse, urlunparse from dateparser.search import search_first_date from . import urls from .utils import StringReplacement, StringSplitter log = logging.getLogger(__name__) MOTLEY_REPLACEMENT = StringReplacement("&#65533;", "") ESCAPED_FRAGMENT_REPLACEMENT = StringReplacement( "#!", "?_escaped_fragment_=") TITLE_REPLACEMENTS = StringReplacement("&raquo;", "»") PIPE_SPLITTER = StringSplitter("\\|") DASH_SPLITTER = StringSplitter(" - ") UNDERSCORE_SPLITTER = StringSplitter("_") SLASH_SPLITTER = StringSplitter("/") ARROWS_SPLITTER = StringSplitter(" » ") COLON_SPLITTER = StringSplitter(":") SPACE_SPLITTER = StringSplitter(' ') NO_STRINGS = set() A_REL_TAG_SELECTOR = "a[rel=tag]" A_HREF_TAG_SELECTOR = ("a[href*='/tag/'], a[href*='/tags/'], " "a[href*='/topic/'], a[href*='?keyword=']") RE_LANG = r'^[A-Za-z]{2}$' good_paths = ['story', 'article', 'feature', 'featured', 'slides', 'slideshow', 'gallery', 'news', 'video', 'media', 'v', 'radio', 'press'] bad_chunks = ['careers', 'contact', 'about', 'faq', 'terms', 'privacy', 'advert', 'preferences', 'feedback', 'info', 'browse', 'howto', 'account', 'subscribe', 'donate', 'shop', 'admin'] bad_domains = ['amazon', 'doubleclick', 'twitter'] class ContentExtractor(object): def __init__(self, config): self.config = config self.parser = self.config.get_parser() self.language = config.language self.stopwords_class = config.stopwords_class def update_language(self, meta_lang): """Required to be called before the extraction process in some cases because the stopwords_class has to set incase the lang is not latin based """ if meta_lang: self.language = meta_lang self.stopwords_class = \ self.config.get_stopwords_class(meta_lang) def get_authors(self, doc): """Fetch the authors of the article, return as a list Only works for english articles """ _digits = re.compile('\d') def contains_digits(d): return bool(_digits.search(d)) def uniqify_list(lst): """Remove duplicates from provided list but maintain original order. Derived from http://www.peterbe.com/plog/uniqifiers-benchmark """ seen = {} result = [] for item in lst: if item.lower() in seen: continue seen[item.lower()] = 1 result.append(item.title()) return result def parse_byline(search_str): """ Takes a candidate line of html or text and extracts out the name(s) in list form: >>> parse_byline('<div>By: <strong>Lucas Ou-Yang</strong>,<strong>Alex Smith</strong></div>') ['Lucas Ou-Yang', 'Alex Smith'] """ # Remove HTML boilerplate search_str = re.sub('<[^<]+?>', '', search_str) # Remove original By statement search_str = re.sub('[bB][yY][\:\s]|[fF]rom[\:\s]', '', search_str) search_str = search_str.strip() # Chunk the line by non alphanumeric tokens (few name exceptions) # >>> re.split("[^\w\'\-\.]", "Tyler G. Jones, Lucas Ou, Dean O'Brian and Ronald") # ['Tyler', 'G.', 'Jones', '', 'Lucas', 'Ou', '', 'Dean', "O'Brian", 'and', 'Ronald'] name_tokens = re.split("[^\w\'\-\.]", search_str) name_tokens = [s.strip() for s in name_tokens] _authors = [] # List of first, last name tokens curname = [] delimiters = ['and', ',', ''] for token in name_tokens: if token in delimiters: if len(curname) > 0: _authors.append(' '.join(curname)) curname = [] elif not contains_digits(token): curname.append(token) # One last check at end valid_name = (len(curname) >= 2) if valid_name: _authors.append(' '.join(curname)) return _authors # Try 1: Search popular author tags for authors ATTRS = ['name', 'rel', 'itemprop', 'class', 'id'] VALS = ['auth-nm lnk', 'mobile-auth-nm lnk', 'auth-nm no-lnk', 'mobile-auth-nm no-lnk', 'author', 'byline', 'dc.creator', 'publisher flt'] matches = [] authors = [] for attr in ATTRS: for val in VALS: # found = doc.xpath('//*[@%s="%s"]' % (attr, val)) found = self.parser.getElementsByTag(doc, attr=attr, value=val) matches.extend(found) for match in matches: content = '' if match.tag == 'meta': mm = match.xpath('@content') if len(mm) > 0: content = mm[0] else: content = match.text_content() or '' if len(content) > 0: authors.extend(parse_byline(content)) return uniqify_list(authors) # TODO Method 2: Search raw html for a by-line # match = re.search('By[\: ].*\\n|From[\: ].*\\n', html) # try: # # Don't let zone be too long # line = match.group(0)[:100] # authors = parse_byline(line) # except: # return [] # Failed to find anything # return authors def get_publishing_date(self, url, doc): """3 strategies for publishing date extraction. The strategies are descending in accuracy and the next strategy is only attempted if a preferred one fails. 1. Pubdate from URL 2. Pubdate from metadata 3. Raw regex searches in the HTML + added heuristics """ def parse_date_str(date_str): if date_str: try: return date_parser(date_str) except (ValueError, OverflowError, AttributeError, TypeError): # near all parse failures are due to URL dates without a day # specifier, e.g. /2014/04/ return None date_match = re.search(urls.STRICT_DATE_REGEX, url) if date_match: date_str = date_match.group(0) datetime_obj = parse_date_str(date_str) if datetime_obj: return datetime_obj PUBLISH_DATE_TAGS = [ {'attribute': 'property', 'value': 'rnews:datePublished', 'content': 'content'}, {'attribute': 'property', 'value': 'article:published_time', 'content': 'content'}, {'attribute': 'name', 'value': 'OriginalPublicationDate', 'content': 'content'}, {'attribute': 'itemprop', 'value': 'datePublished', 'content': 'content'}, {'attribute': 'property', 'value': 'og:published_time', 'content': 'content'}, {'attribute': 'property', 'value': 'og:regDate', 'content': 'content'}, {'attribute': 'name', 'value': 'article_date_original', 'content': 'content'}, {'attribute': 'name', 'value': 'publication_date', 'content': 'content'}, {'attribute': 'name', 'value': 'sailthru.date', 'content': 'content'}, {'attribute': 'name', 'value': 'PublishDate', 'content': 'content'}, {'attribute': 'pubdate', 'value': 'pubdate', 'content': 'datetime'}, {'attribute': 'name', 'value': 'publish-date', 'content': 'content'}, {'attribute': 'name', 'value': 'created-date', 'content': 'content'}, {'attribute': 'name', 'value': 'modified-date', 'content': 'content'}, {'attribute': 'name', 'value': 'publish_date', 'content': 'content'}, ] for known_meta_tag in PUBLISH_DATE_TAGS: meta_tags = self.parser.getElementsByTag( doc, attr=known_meta_tag['attribute'], value=known_meta_tag['value']) if meta_tags: date_str = self.parser.getAttribute( meta_tags[0], known_meta_tag['content']) datetime_obj = parse_date_str(date_str) if datetime_obj: return datetime_obj # SPECIAL CASES # EconomicTimes India title_element = self.parser.getElementsByTag(doc, tag='time') if title_element and len(title_element) > 0: title_text = self.parser.getText(title_element[0]) sfd = search_first_date(title_text) if sfd: sfd = sfd[-1] return sfd return None def get_title(self, doc): """Fetch the article title and analyze it Assumptions: - title tag is the most reliable (inherited from Goose) - h1, if properly detected, is the best (visible to users) - og:title and h1 can help improve the title extraction - python == is too strict, often we need to compare filtered versions, i.e. lowercase and ignoring special chars Explicit rules: 1. title == h1, no need to split 2. h1 similar to og:title, use h1 3. title contains h1, title contains og:title, len(h1) > len(og:title), use h1 4. title starts with og:title, use og:title 5. use title, after splitting """ title = '' title_element = self.parser.getElementsByTag(doc, tag='title') # no title found if title_element is None or len(title_element) == 0: return title # title elem found title_text = self.parser.getText(title_element[0]) used_delimeter = False # title from h1 # - extract the longest text from all h1 elements # - too short texts (fewer than 2 words) are discarded # - clean double spaces title_text_h1 = '' title_element_h1_list = self.parser.getElementsByTag(doc, tag='h1') or [] title_text_h1_list = [self.parser.getText(tag) for tag in title_element_h1_list] if title_text_h1_list: # sort by len and set the longest title_text_h1_list.sort(key=len, reverse=True) title_text_h1 = title_text_h1_list[0] # discard too short texts if len(title_text_h1.split(' ')) <= 2: title_text_h1 = '' # clean double spaces title_text_h1 = ' '.join([x for x in title_text_h1.split() if x]) # title from og:title title_text_fb = ( self.get_meta_content(doc, 'meta[property="og:title"]') or self.get_meta_content(doc, 'meta[name="og:title"]') or '') # create filtered versions of title_text, title_text_h1, title_text_fb # for finer comparison filter_regex = re.compile(r'[^\u4e00-\u9fa5a-zA-Z0-9\ ]') filter_title_text = filter_regex.sub('', title_text).lower() filter_title_text_h1 = filter_regex.sub('', title_text_h1).lower() filter_title_text_fb = filter_regex.sub('', title_text_fb).lower() # check for better alternatives for title_text and possibly skip splitting if title_text_h1 == title_text: used_delimeter = True elif filter_title_text_h1 and filter_title_text_h1 == filter_title_text_fb: title_text = title_text_h1 used_delimeter = True elif filter_title_text_h1 and filter_title_text_h1 in filter_title_text \ and filter_title_text_fb and filter_title_text_fb in filter_title_text \ and len(title_text_h1) > len(title_text_fb): title_text = title_text_h1 used_delimeter = True elif filter_title_text_fb and filter_title_text_fb != filter_title_text \ and filter_title_text.startswith(filter_title_text_fb): title_text = title_text_fb used_delimeter = True # split title with | if not used_delimeter and '|' in title_text: title_text = self.split_title(title_text, PIPE_SPLITTER, title_text_h1) used_delimeter = True # split title with - if not used_delimeter and '-' in title_text: title_text = self.split_title(title_text, DASH_SPLITTER, title_text_h1) used_delimeter = True # split title with _ if not used_delimeter and '_' in title_text: title_text = self.split_title(title_text, UNDERSCORE_SPLITTER, title_text_h1) used_delimeter = True # split title with / if not used_delimeter and '/' in title_text: title_text = self.split_title(title_text, SLASH_SPLITTER, title_text_h1) used_delimeter = True # split title with » if not used_delimeter and ' » ' in title_text: title_text = self.split_title(title_text, ARROWS_SPLITTER, title_text_h1) used_delimeter = True title = MOTLEY_REPLACEMENT.replaceAll(title_text) # in some cases the final title is quite similar to title_text_h1 # (either it differs for case, for special chars, or it's truncated) # in these cases, we prefer the title_text_h1 filter_title = filter_regex.sub('', title).lower() if filter_title_text_h1 == filter_title: title = title_text_h1 return title def split_title(self, title, splitter, hint=None): """Split the title to best part possible """ large_text_length = 0 large_text_index = 0 title_pieces = splitter.split(title) if hint: filter_regex = re.compile(r'[^a-zA-Z0-9\ ]') hint = filter_regex.sub('', hint).lower() # find the largest title piece for i, title_piece in enumerate(title_pieces): current = title_piece.strip() if hint and hint in filter_regex.sub('', current).lower(): large_text_index = i break if len(current) > large_text_length: large_text_length = len(current) large_text_index = i # replace content title = title_pieces[large_text_index] return TITLE_REPLACEMENTS.replaceAll(title).strip() def get_feed_urls(self, source_url, categories): """Takes a source url and a list of category objects and returns a list of feed urls """ total_feed_urls = [] for category in categories: kwargs = {'attr': 'type', 'value': 'application\/rss\+xml'} feed_elements = self.parser.getElementsByTag( category.doc, **kwargs) feed_urls = [e.get('href') for e in feed_elements if e.get('href')] total_feed_urls.extend(feed_urls) total_feed_urls = total_feed_urls[:50] total_feed_urls = [urls.prepare_url(f, source_url) for f in total_feed_urls] total_feed_urls = list(set(total_feed_urls)) return total_feed_urls def get_favicon(self, doc): """Extract the favicon from a website http://en.wikipedia.org/wiki/Favicon <link rel="shortcut icon" type="image/png" href="favicon.png" /> <link rel="icon" type="image/png" href="favicon.png" /> """ kwargs = {'tag': 'link', 'attr': 'rel', 'value': 'icon'} meta = self.parser.getElementsByTag(doc, **kwargs) if meta: favicon = self.parser.getAttribute(meta[0], 'href') return favicon return '' def get_meta_lang(self, doc): """Extract content language from meta """ # we have a lang attribute in html attr = self.parser.getAttribute(doc, attr='lang') if attr is None: # look up for a Content-Language in meta items = [ {'tag': 'meta', 'attr': 'http-equiv', 'value': 'content-language'}, {'tag': 'meta', 'attr': 'name', 'value': 'lang'} ] for item in items: meta = self.parser.getElementsByTag(doc, **item) if meta: attr = self.parser.getAttribute( meta[0], attr='content') break if attr: value = attr[:2] if re.search(RE_LANG, value): return value.lower() return None def get_meta_content(self, doc, metaname): """Extract a given meta content form document. Example metaNames: "meta[name=description]" "meta[name=keywords]" "meta[property=og:type]" """ meta = self.parser.css_select(doc, metaname) content = None if meta is not None and len(meta) > 0: content = self.parser.getAttribute(meta[0], 'content') if content: return content.strip() return '' def get_meta_img_url(self, article_url, doc): """Returns the 'top img' as specified by the website """ top_meta_image, try_one, try_two, try_three, try_four = [None] * 5 try_one = self.get_meta_content(doc, 'meta[property="og:image"]') if not try_one: link_img_src_kwargs = \ {'tag': 'link', 'attr': 'rel', 'value': 'img_src|image_src'} elems = self.parser.getElementsByTag(doc, use_regex=True, **link_img_src_kwargs) try_two = elems[0].get('href') if elems else None if not try_two: try_three = self.get_meta_content(doc, 'meta[name="og:image"]') if not try_three: link_icon_kwargs = {'tag': 'link', 'attr': 'rel', 'value': 'icon'} elems = self.parser.getElementsByTag(doc, **link_icon_kwargs) try_four = elems[0].get('href') if elems else None top_meta_image = try_one or try_two or try_three or try_four if top_meta_image: return urljoin(article_url, top_meta_image) return '' def get_meta_type(self, doc): """Returns meta type of article, open graph protocol """ return self.get_meta_content(doc, 'meta[property="og:type"]') def get_meta_site_name(self, doc): """Returns site name of article, open graph protocol """ return self.get_meta_content(doc, 'meta[property="og:site_name"]') def get_meta_description(self, doc): """If the article has meta description set in the source, use that """ return self.get_meta_content(doc, "meta[name=description]") def get_meta_keywords(self, doc): """If the article has meta keywords set in the source, use that """ return self.get_meta_content(doc, "meta[name=keywords]") def get_meta_data(self, doc): data = defaultdict(dict) properties = self.parser.css_select(doc, 'meta') for prop in properties: key = prop.attrib.get('property') or prop.attrib.get('name') value = prop.attrib.get('content') or prop.attrib.get('value') if not key or not value: continue key, value = key.strip(), value.strip() if value.isdigit(): value = int(value) if ':' not in key: data[key] = value continue key = key.split(':') key_head = key.pop(0) ref = data[key_head] if isinstance(ref, str) or isinstance(ref, int): data[key_head] = {key_head: ref} ref = data[key_head] for idx, part in enumerate(key): if idx == len(key) - 1: ref[part] = value break if not ref.get(part): ref[part] = dict() elif isinstance(ref.get(part), str) or isinstance(ref.get(part), int): # Not clear what to do in this scenario, # it's not always a URL, but an ID of some sort ref[part] = {'identifier': ref[part]} ref = ref[part] return data def get_canonical_link(self, article_url, doc): """ Return the article's canonical URL Gets the first available value of: 1. The rel=canonical tag 2. The og:url tag """ links = self.parser.getElementsByTag(doc, tag='link', attr='rel', value='canonical') canonical = self.parser.getAttribute(links[0], 'href') if links else '' og_url = self.get_meta_content(doc, 'meta[property="og:url"]') meta_url = canonical or og_url or '' if meta_url: meta_url = meta_url.strip() parsed_meta_url = urlparse(meta_url) if not parsed_meta_url.hostname: # MIGHT not have a hostname in meta_url # parsed_url.path might be 'example.com/article.html' where # clearly example.com is the hostname parsed_article_url = urlparse(article_url) strip_hostname_in_meta_path = re. \ match(".*{}(?=/)/(.*)". format(parsed_article_url.hostname), parsed_meta_url.path) try: true_path = strip_hostname_in_meta_path.group(1) except AttributeError: true_path = parsed_meta_url.path # true_path may contain querystrings and fragments meta_url = urlunparse((parsed_article_url.scheme, parsed_article_url.hostname, true_path, '', '', '')) return meta_url def get_img_urls(self, article_url, doc): """Return all of the images on an html page, lxml root """ img_kwargs = {'tag': 'img'} img_tags = self.parser.getElementsByTag(doc, **img_kwargs) urls = [img_tag.get('src') for img_tag in img_tags if img_tag.get('src')] img_links = set([urljoin(article_url, url) for url in urls]) return img_links def get_first_img_url(self, article_url, top_node): """Retrieves the first image in the 'top_node' The top node is essentially the HTML markdown where the main article lies and the first image in that area is probably signifigcant. """ node_images = self.get_img_urls(article_url, top_node) node_images = list(node_images) if node_images: return urljoin(article_url, node_images[0]) return '' def _get_urls(self, doc, titles): """Return a list of urls or a list of (url, title_text) tuples if specified. """ if doc is None: return [] a_kwargs = {'tag': 'a'} a_tags = self.parser.getElementsByTag(doc, **a_kwargs) # TODO: this should be refactored! We should have a separate # method which siphones the titles our of a list of <a> tags. if titles: return [(a.get('href'), a.text) for a in a_tags if a.get('href')] return [a.get('href') for a in a_tags if a.get('href')] def get_urls(self, doc_or_html, titles=False, regex=False): """`doc_or_html`s html page or doc and returns list of urls, the regex flag indicates we don't parse via lxml and just search the html. """ if doc_or_html is None: log.critical('Must extract urls from either html, text or doc!') return [] # If we are extracting from raw text if regex: doc_or_html = re.sub('<[^<]+?>', ' ', str(doc_or_html)) doc_or_html = re.findall( 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|' '(?:%[0-9a-fA-F][0-9a-fA-F]))+', doc_or_html) doc_or_html = [i.strip() for i in doc_or_html] return doc_or_html or [] # If the doc_or_html is html, parse it into a root if isinstance(doc_or_html, str): doc = self.parser.fromstring(doc_or_html) else: doc = doc_or_html return self._get_urls(doc, titles) def get_category_urls(self, source_url, doc): """Inputs source lxml root and source url, extracts domain and finds all of the top level urls, we are assuming that these are the category urls. cnn.com --> [cnn.com/latest, world.cnn.com, cnn.com/asia] """ page_urls = self.get_urls(doc) valid_categories = [] for p_url in page_urls: scheme = urls.get_scheme(p_url, allow_fragments=False) domain = urls.get_domain(p_url, allow_fragments=False) path = urls.get_path(p_url, allow_fragments=False) if not domain and not path: if self.config.verbose: print('elim category url %s for no domain and path' % p_url) continue if path and path.startswith('#'): if self.config.verbose: print('elim category url %s path starts with #' % p_url) continue if scheme and (scheme != 'http' and scheme != 'https'): if self.config.verbose: print(('elim category url %s for bad scheme, ' 'not http nor https' % p_url)) continue if domain: child_tld = tldextract.extract(p_url) domain_tld = tldextract.extract(source_url) child_subdomain_parts = child_tld.subdomain.split('.') subdomain_contains = False for part in child_subdomain_parts: if part == domain_tld.domain: if self.config.verbose: print(('subdomain contains at %s and %s' % (str(part), str(domain_tld.domain)))) subdomain_contains = True break # Ex. microsoft.com is definitely not related to # espn.com, but espn.go.com is probably related to espn.com if not subdomain_contains and \ (child_tld.domain != domain_tld.domain): if self.config.verbose: print(('elim category url %s for domain ' 'mismatch' % p_url)) continue elif child_tld.subdomain in ['m', 'i']: if self.config.verbose: print(('elim category url %s for mobile ' 'subdomain' % p_url)) continue else: valid_categories.append(scheme + '://' + domain) # TODO account for case where category is in form # http://subdomain.domain.tld/category/ <-- still legal! else: # we want a path with just one subdir # cnn.com/world and cnn.com/world/ are both valid_categories path_chunks = [x for x in path.split('/') if len(x) > 0] if 'index.html' in path_chunks: path_chunks.remove('index.html') if len(path_chunks) == 1 and len(path_chunks[0]) < 14: valid_categories.append(domain + path) else: if self.config.verbose: print(('elim category url %s for >1 path chunks ' 'or size path chunks' % p_url)) stopwords = [ 'about', 'help', 'privacy', 'legal', 'feedback', 'sitemap', 'profile', 'account', 'mobile', 'sitemap', 'facebook', 'myspace', 'twitter', 'linkedin', 'bebo', 'friendster', 'stumbleupon', 'youtube', 'vimeo', 'store', 'mail', 'preferences', 'maps', 'password', 'imgur', 'flickr', 'search', 'subscription', 'itunes', 'siteindex', 'events', 'stop', 'jobs', 'careers', 'newsletter', 'subscribe', 'academy', 'shopping', 'purchase', 'site-map', 'shop', 'donate', 'newsletter', 'product', 'advert', 'info', 'tickets', 'coupons', 'forum', 'board', 'archive', 'browse', 'howto', 'how to', 'faq', 'terms', 'charts', 'services', 'contact', 'plus', 'admin', 'login', 'signup', 'register', 'developer', 'proxy'] _valid_categories = [] # TODO Stop spamming urlparse and tldextract calls... for p_url in valid_categories: path = urls.get_path(p_url) subdomain = tldextract.extract(p_url).subdomain conjunction = path + ' ' + subdomain bad = False for badword in stopwords: if badword.lower() in conjunction.lower(): if self.config.verbose: print(('elim category url %s for subdomain ' 'contain stopword!' % p_url)) bad = True break if not bad: _valid_categories.append(p_url) _valid_categories.append('/') # add the root for i, p_url in enumerate(_valid_categories): if p_url.startswith('://'): p_url = 'http' + p_url _valid_categories[i] = p_url elif p_url.startswith('//'): p_url = 'http:' + p_url _valid_categories[i] = p_url if p_url.endswith('/'): p_url = p_url[:-1] _valid_categories[i] = p_url _valid_categories = list(set(_valid_categories)) category_urls = [urls.prepare_url(p_url, source_url) for p_url in _valid_categories] category_urls = [c for c in category_urls if c is not None] return category_urls def extract_tags(self, doc): if len(list(doc)) == 0: return NO_STRINGS elements = self.parser.css_select( doc, A_REL_TAG_SELECTOR) if not elements: elements = self.parser.css_select( doc, A_HREF_TAG_SELECTOR) if not elements: return NO_STRINGS tags = [] for el in elements: tag = self.parser.getText(el) if tag: tags.append(tag) return set(tags) def calculate_best_node(self, doc): top_node = None nodes_to_check = self.nodes_to_check(doc) starting_boost = float(1.0) cnt = 0 i = 0 parent_nodes = [] nodes_with_text = [] for node in nodes_to_check: text_node = self.parser.getText(node) word_stats = self.stopwords_class(language=self.language). \ get_stopword_count(text_node) high_link_density = self.is_highlink_density(node) if word_stats.get_stopword_count() > 2 and not high_link_density: nodes_with_text.append(node) nodes_number = len(nodes_with_text) negative_scoring = 0 bottom_negativescore_nodes = float(nodes_number) * 0.25 for node in nodes_with_text: boost_score = float(0) # boost if self.is_boostable(node): if cnt >= 0: boost_score = float((1.0 / starting_boost) * 50) starting_boost += 1 # nodes_number if nodes_number > 15: if (nodes_number - i) <= bottom_negativescore_nodes: booster = float( bottom_negativescore_nodes - (nodes_number - i)) boost_score = float(-pow(booster, float(2))) negscore = abs(boost_score) + negative_scoring if negscore > 40: boost_score = float(5) text_node = self.parser.getText(node) word_stats = self.stopwords_class(language=self.language). \ get_stopword_count(text_node) upscore = int(word_stats.get_stopword_count() + boost_score) parent_node = self.parser.getParent(node) self.update_score(parent_node, upscore) self.update_node_count(parent_node, 1) if parent_node not in parent_nodes: parent_nodes.append(parent_node) # Parent of parent node parent_parent_node = self.parser.getParent(parent_node) if parent_parent_node is not None: self.update_node_count(parent_parent_node, 1) self.update_score(parent_parent_node, upscore / 2) if parent_parent_node not in parent_nodes: parent_nodes.append(parent_parent_node) cnt += 1 i += 1 top_node_score = 0 for e in parent_nodes: score = self.get_score(e) if score > top_node_score: top_node = e top_node_score = score if top_node is None: top_node = e return top_node def is_boostable(self, node): """A lot of times the first paragraph might be the caption under an image so we'll want to make sure if we're going to boost a parent node that it should be connected to other paragraphs, at least for the first n paragraphs so we'll want to make sure that the next sibling is a paragraph and has at least some substantial weight to it. """ para = "p" steps_away = 0 minimum_stopword_count = 5 max_stepsaway_from_node = 3 nodes = self.walk_siblings(node) for current_node in nodes: # <p> current_node_tag = self.parser.getTag(current_node) if current_node_tag == para: if steps_away >= max_stepsaway_from_node: return False paragraph_text = self.parser.getText(current_node) word_stats = self.stopwords_class(language=self.language). \ get_stopword_count(paragraph_text) if word_stats.get_stopword_count() > minimum_stopword_count: return True steps_away += 1 return False def walk_siblings(self, node): return self.parser.previousSiblings(node) def add_siblings(self, top_node): baseline_score_siblings_para = self.get_siblings_score(top_node) results = self.walk_siblings(top_node) for current_node in results: ps = self.get_siblings_content( current_node, baseline_score_siblings_para) for p in ps: top_node.insert(0, p) return top_node def get_siblings_content( self, current_sibling, baseline_score_siblings_para): """Adds any siblings that may have a decent score to this node """ if current_sibling.tag == 'p' and \ len(self.parser.getText(current_sibling)) > 0: e0 = current_sibling if e0.tail: e0 = copy.deepcopy(e0) e0.tail = '' return [e0] else: potential_paragraphs = self.parser.getElementsByTag( current_sibling, tag='p') if potential_paragraphs is None: return None else: ps = [] for first_paragraph in potential_paragraphs: text = self.parser.getText(first_paragraph) if len(text) > 0: word_stats = self.stopwords_class( language=self.language). \ get_stopword_count(text) paragraph_score = word_stats.get_stopword_count() sibling_baseline_score = float(.30) high_link_density = self.is_highlink_density( first_paragraph) score = float(baseline_score_siblings_para * sibling_baseline_score) if score < paragraph_score and not high_link_density: p = self.parser.createElement( tag='p', text=text, tail=None) ps.append(p) return ps def get_siblings_score(self, top_node): """We could have long articles that have tons of paragraphs so if we tried to calculate the base score against the total text score of those paragraphs it would be unfair. So we need to normalize the score based on the average scoring of the paragraphs within the top node. For example if our total score of 10 paragraphs was 1000 but each had an average value of 100 then 100 should be our base. """ base = 100000 paragraphs_number = 0 paragraphs_score = 0 nodes_to_check = self.parser.getElementsByTag(top_node, tag='p') for node in nodes_to_check: text_node = self.parser.getText(node) word_stats = self.stopwords_class(language=self.language). \ get_stopword_count(text_node) high_link_density = self.is_highlink_density(node) if word_stats.get_stopword_count() > 2 and not high_link_density: paragraphs_number += 1 paragraphs_score += word_stats.get_stopword_count() if paragraphs_number > 0: base = paragraphs_score / paragraphs_number return base def update_score(self, node, add_to_score): """Adds a score to the gravityScore Attribute we put on divs we'll get the current score then add the score we're passing in to the current. """ current_score = 0 score_string = self.parser.getAttribute(node, 'gravityScore') if score_string: current_score = float(score_string) new_score = current_score + add_to_score self.parser.setAttribute(node, "gravityScore", str(new_score)) def update_node_count(self, node, add_to_count): """Stores how many decent nodes are under a parent node """ current_score = 0 count_string = self.parser.getAttribute(node, 'gravityNodes') if count_string: current_score = int(count_string) new_score = current_score + add_to_count self.parser.setAttribute(node, "gravityNodes", str(new_score)) def is_highlink_density(self, e): """Checks the density of links within a node, if there is a high link to text ratio, then the text is less likely to be relevant """ links = self.parser.getElementsByTag(e, tag='a') if not links: return False text = self.parser.getText(e) words = [word for word in text.split() if word.isalnum()] if not words: return True words_number = float(len(words)) sb = [] for link in links: sb.append(self.parser.getText(link)) link_text = ''.join(sb) link_words = link_text.split() num_link_words = float(len(link_words)) num_links = float(len(links)) link_divisor = float(num_link_words / words_number) score = float(link_divisor * num_links) if score >= 1.0: return True return False # return True if score > 1.0 else False def get_score(self, node): """Returns the gravityScore as an integer from this node """ return self.get_node_gravity_score(node) or 0 def get_node_gravity_score(self, node): gravity_score = self.parser.getAttribute(node, 'gravityScore') if not gravity_score: return None return float(gravity_score) def nodes_to_check(self, doc): """Returns a list of nodes we want to search on like paragraphs and tables """ nodes_to_check = [] for tag in ['p', 'pre', 'td']: items = self.parser.getElementsByTag(doc, tag=tag) nodes_to_check += items return nodes_to_check def is_table_and_no_para_exist(self, e): sub_paragraphs = self.parser.getElementsByTag(e, tag='p') for p in sub_paragraphs: txt = self.parser.getText(p) if len(txt) < 25: self.parser.remove(p) sub_paragraphs_2 = self.parser.getElementsByTag(e, tag='p') if len(sub_paragraphs_2) == 0 and e.tag != "td": return True return False def is_nodescore_threshold_met(self, node, e): top_node_score = self.get_score(node) current_node_score = self.get_score(e) threshold = float(top_node_score * .08) if (current_node_score < threshold) and e.tag != 'td': return False return True def post_cleanup(self, top_node): """Remove any divs that looks like non-content, clusters of links, or paras with no gusto; add adjacent nodes which look contenty """ node = self.add_siblings(top_node) for e in self.parser.getChildren(node): e_tag = self.parser.getTag(e) if e_tag != 'p': if self.is_highlink_density(e): self.parser.remove(e) return node
39.869081
146
0.55679
6326a5b45fe6e572b10044e452b0c359367b0a10
66,994
py
Python
tensorflow/python/eager/function_test.py
Dectinc/tensorflow
36922f9b27a0c51987966945890766aa4954a1ab
[ "Apache-2.0" ]
null
null
null
tensorflow/python/eager/function_test.py
Dectinc/tensorflow
36922f9b27a0c51987966945890766aa4954a1ab
[ "Apache-2.0" ]
null
null
null
tensorflow/python/eager/function_test.py
Dectinc/tensorflow
36922f9b27a0c51987966945890766aa4954a1ab
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools from multiprocessing.pool import ThreadPool import sys import weakref import numpy from tensorflow.core.protobuf import config_pb2 from tensorflow.python import keras from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import function as tf_function from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import training as keras_training from tensorflow.python.layers import convolutional from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import adam from tensorflow.python.training import momentum from tensorflow.python.training import training_ops from tensorflow.python.util import compat from tensorflow.python.util import nest class MiniModel(keras_training.Model): """Minimal model for mnist. Useful for testing and debugging on slow TPU simulators. """ def __init__(self): super(MiniModel, self).__init__(name='') self.fc = keras.layers.Dense(1, name='fc', kernel_initializer='ones', bias_initializer='ones') def call(self, inputs, training=True): return self.fc(inputs) class DefunnedMiniModel(MiniModel): @function.defun def call(self, inputs, training=True): return super(DefunnedMiniModel, self).call(inputs, training=training) @test_util.with_c_shapes class FunctionTest(test.TestCase): def testBasic(self): matmul = function.defun(math_ops.matmul) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq = matmul(t, t, transpose_a=True) sq2 = matmul(sq, t, transpose_a=True) self.assertAllEqual(sq.numpy().reshape(-1), [10, 14, 14, 20]) self.assertAllEqual(sq2.numpy().reshape(-1), [52, 76, 74, 108]) def testBasicGraphMode(self): matmul = function.defun(math_ops.matmul) @function.defun def sq(a): return matmul(a, a) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) out = sq(t) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testNestedInputsGraphMode(self): matmul = function.defun(math_ops.matmul) pair = collections.namedtuple('pair', ['a', 'b']) @function.defun def a_times_b(inputs): return matmul(inputs.a['a'], inputs.b['b']) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) out = a_times_b(pair({'a': t}, {'b': t})) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testGraphModeWithGradients(self): v = resource_variable_ops.ResourceVariable(1.0, name='v') @function.defun def step(): def inner(): return v * v return backprop.implicit_grad(inner)()[0][0] self.assertAllEqual(step(), 2.0) def testGraphGradientVariable(self): with ops.Graph().as_default(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def f(): return 2.0 * v node = f() grads, = gradients_impl.gradients(node, v) v.initializer.run() self.assertAllEqual(grads.eval(), 2.0) self.assertEqual(grads.shape, v.shape) def testGraphEagerIsolation(self): @function.defun def f(): self.v = resource_variable_ops.ResourceVariable(1.0) return self.v.read_value() self.assertAllEqual(f(), 1.0) with ops.Graph().as_default(): self.assertEqual(f().shape, ()) def testBasicGraphFunction(self): matmul = function.defun(math_ops.matmul) @function.defun def sq(a): return matmul(a, a) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq_op = sq.get_concrete_function(t) self.assertEqual(sq_op.output_shapes, tensor_shape.TensorShape([2, 2])) out = sq_op(t) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testExecutingStatelessDefunConcurrently(self): @function.defun def stateless(x): return math_ops.multiply(2.0, x) pool = ThreadPool() inputs = [constant_op.constant(1.0 * x) for x in range(100)] outputs = [float(out) for out in pool.map(stateless, inputs)] expected = [float(2.0 * x) for x in inputs] self.assertSequenceEqual(outputs, expected) def testExecutingManyStatelessDefunsConcurrently(self): @function.defun def stateless(x): del x return math_ops.multiply(2.0, 2.0) pool = ThreadPool() # `pool.map` below instantiates 100 functions, one for each object. outputs = [ float(out) for out in pool.map(stateless, [object() for _ in range(100)]) ] expected = [4.0] * 100 self.assertSequenceEqual(outputs, expected) def testExecutingStatefulDefunConcurrently(self): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def stateful(x): v.assign(x) pool = ThreadPool() inputs = [constant_op.constant(0.0)] * 100 pool.map(stateful, inputs) self.assertEqual(float(v.read_value()), 0.0) def testExecutingManyStatefulDefunsConcurrently(self): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def stateful(x): del x return v.assign(0.0) pool = ThreadPool() # `pool.map` below instantiates 100 functions, one for each object. pool.map(stateful, [object() for _ in range(100)]) self.assertEqual(float(v.read_value()), 0.0) def disabled_testRandomSeed(self): @function.defun def f(): return random_ops.random_normal(()) random_seed.set_random_seed(1) x = f() self.assertNotEqual(x, f()) random_seed.set_random_seed(1) self.assertAllEqual(f(), x) def testSymGradGatherNd(self): with ops.Graph().as_default(), self.cached_session() as sess: @function.defun def f(x): return array_ops.gather_nd(x, [[0]]) c = constant_op.constant([[2.]]) f_c = f(c) g, = gradients_impl.gradients(f_c, c) self.assertAllEqual(sess.run(g), [[1.0]]) def testNestedInputsGraphFunction(self): matmul = function.defun(math_ops.matmul) pair = collections.namedtuple('pair', ['a', 'b']) @function.defun def a_times_b(inputs): return matmul(inputs.a['a'], inputs.b['b']) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) inputs = pair({'a': t}, {'b': t}) sq_op = a_times_b.get_concrete_function(inputs) self.assertEqual(sq_op.output_shapes, tensor_shape.TensorShape([2, 2])) out = sq_op(inputs) self.assertAllEqual(out, math_ops.matmul(t, t).numpy()) def testNestedOutputGraphFunction(self): matmul = function.defun(math_ops.matmul) @function.defun def sq(a): return (matmul(a, a), {'b': constant_op.constant(1.0)}) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq_op = sq.get_concrete_function(t) self.assertEqual(sq_op.output_shapes, (tensor_shape.TensorShape([2, 2]), {'b': tensor_shape.TensorShape([])})) self.assertEqual(sq_op.output_dtypes, (dtypes.float32, {'b': dtypes.float32})) (a, b) = sq_op(t) self.assertAllEqual(a, math_ops.matmul(t, t).numpy()) self.assertAllEqual(b['b'].numpy(), 1.0) def testGraphFunctionWithGradients(self): v = resource_variable_ops.ResourceVariable(1.0, name='v') @function.defun def step(): def inner(): return v * v return backprop.implicit_grad(inner)()[0][0] step_op = step.get_concrete_function() self.assertEqual(step_op.output_dtypes, dtypes.float32) self.assertEqual(step_op.output_shapes, tensor_shape.TensorShape([])) self.assertAllEqual(step_op(), 2.0) def testGraphFunctionNoneOutput(self): @function.defun def fn(unused_a, unused_b): return None x = constant_op.constant(1) fn_op = fn.get_concrete_function(x, x) self.assertEqual(fn_op.output_dtypes, None) self.assertEqual(fn_op.output_shapes, None) self.assertAllEqual(fn_op(x, x), None) @test_util.run_in_graph_and_eager_modes() def testDefunCondGradient(self): @function.defun def f(x): return control_flow_ops.cond(x > 0.5, lambda: 2 * x, lambda: 3 * x) with backprop.GradientTape() as t: x = constant_op.constant(1.0) t.watch(x) y = f(x) self.assertAllEqual(self.evaluate(t.gradient(y, x)), 2.0) @test_util.run_in_graph_and_eager_modes() def testGraphLoopGradient(self): @function.defun def f(x): return control_flow_ops.while_loop(lambda _, i: i < 2, lambda x, i: (2*x, i + 1), [x, 0])[0] with backprop.GradientTape() as t: x = constant_op.constant(1.0) t.watch(x) y = f(x) self.assertAllEqual(self.evaluate(t.gradient(y, x)), 4.0) def testDefunNumpyArraysConvertedToTensors(self): def f(x): self.assertIsInstance(x, ops.Tensor) return x x = random_ops.random_uniform([2, 2]).numpy() defined = function.defun(f) defined(x) self.assertEqual(len(defined._function_cache), 1) x = random_ops.random_uniform([2, 2]).numpy() defined(x) # A NumPy array with different values but the same shape and dtype # shouldn't trigger another function definition. self.assertEqual(len(defined._function_cache), 1) # Test that the numpy array is properly an argument to the graph function. self.assertEqual(1., defined(numpy.ones([])).numpy()) self.assertEqual(0., defined(numpy.zeros([])).numpy()) self.assertEqual(1., defined(array_ops.ones([])).numpy()) self.assertEqual(0., defined(array_ops.zeros([])).numpy()) def testDefunCapturedInt32(self): x = constant_op.constant(1, dtype=dtypes.int32) @function.defun def add_int32s(): return x + x self.assertEqual(2, int(add_int32s())) def testDefunReadVariable(self): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def f(): return v.read_value() self.assertEqual(1.0, float(f())) def testDefunAssignAddVariable(self): v = resource_variable_ops.ResourceVariable(1.0) x = constant_op.constant(2.0) @function.defun def test_assign_add(): v.assign_add(x) return v.read_value() self.assertEqual(3.0, float(test_assign_add())) @test_util.run_in_graph_and_eager_modes def testTensorInitializationInFunctionRaisesError(self): error_msg = ('Tensor-typed variable initializers must either be ' 'wrapped in an init_scope or callable.*') @function.defun def tensor_init(): with self.assertRaisesRegexp(ValueError, error_msg): resource_variable_ops.ResourceVariable(constant_op.constant(2.0)) tensor_init() @test_util.run_in_graph_and_eager_modes def testCallableTensorInitializationInFunction(self): @function.defun def tensor_init(): self.v = resource_variable_ops.ResourceVariable( lambda: constant_op.constant(2.0)) return self.v.read_value() value = tensor_init() if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertEqual(self.evaluate(value), 2.0) @test_util.run_in_graph_and_eager_modes def testInitScopeTensorInitializationInFunction(self): @function.defun def tensor_init(): with ops.init_scope(): const = constant_op.constant(2.0) self.v = resource_variable_ops.ResourceVariable(const) return self.v.read_value() value = tensor_init() if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertEqual(self.evaluate(value), 2.0) def testDefunShapeInferenceWithCapturedResourceVariable(self): v = resource_variable_ops.ResourceVariable([[1, 2], [3, 4]]) def f(): x = constant_op.constant([[1, 2], [3, 4]]) out = math_ops.matmul(v, x) self.assertEqual(out.get_shape(), tensor_shape.TensorShape([2, 2])) compiled = function.defun(f) compiled() def testVariableInLoopInFunction(self): @function.defun def test_function(): def loop_test(_): return False def loop_body(_): return variable_scope.get_variable('a', shape=()) return control_flow_ops.while_loop(loop_test, loop_body, [0.0]) self.assertEqual(test_function().shape, []) def testDefunShapeInferenceWithCapturedResourceVariableInGraphMode(self): with context.graph_mode(): v = resource_variable_ops.ResourceVariable([[1, 2], [3, 4]]) def f(): x = constant_op.constant([[1, 2], [3, 4]]) out = math_ops.matmul(v, x) self.assertEqual(out.get_shape(), tensor_shape.TensorShape([2, 2])) compiled = function.defun(f) compiled() def testDefunShapeInferenceWithCapturedVariableInGraphMode(self): with context.graph_mode(): v = variables.Variable([[1, 2], [3, 4]]) def f(): x = constant_op.constant([[1, 2], [3, 4]]) out = math_ops.matmul(v, x) self.assertEqual(out.get_shape(), tensor_shape.TensorShape([2, 2])) # Check that shape inference works while creating the defun compiled = function.defun(f) compiled() @test_util.run_in_graph_and_eager_modes def testDefunForcesResourceVariables(self): def variable_creator(): self.v = variables.Variable(0.0) return self.v.read_value() self.v = None defined = function.defun(variable_creator) defined() # Create the variable. self.assertIsInstance( self.v, resource_variable_ops.ResourceVariable) def testDefunDifferentiable(self): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def f(): return v * v self.assertAllEqual(backprop.implicit_grad(f)()[0][0], 2.0) def testDefunCanBeDifferentiatedTwice(self): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def f(): return v * v self.assertAllEqual(backprop.implicit_grad(f)()[0][0], 2.0) # Ensure that v is watched again. self.assertAllEqual(backprop.implicit_grad(f)()[0][0], 2.0) def testGraphModeCaptureVariable(self): with context.graph_mode(), self.cached_session() as sess: class HasAVar(object): def __init__(self): self.v = resource_variable_ops.ResourceVariable(1.0) def call(self): return self.v * 2 o = HasAVar() variables.global_variables_initializer().run() call = function.defun(o.call) op = call() self.assertAllEqual(sess.run(op), 2.0) def testSymbolicGradientVariableZerosLike(self): with ops.Graph().as_default(): v = resource_variable_ops.ResourceVariable(1.0) @function.defun def f(x, v): v.read_value() return x * x x = constant_op.constant(1.0) l = f(x, v) _, dv = gradients_impl.gradients(l, [x, v]) with self.cached_session(): v.initializer.run() self.assertAllEqual(dv.eval(), 0.0) def testGraphModeManyFunctions(self): with context.graph_mode(), self.cached_session(): @function.defun def f(x): return x * x @function.defun def g(x): return f(x) + 1 self.assertAllEqual(g(constant_op.constant(2.0)).eval(), 5.0) def testDict(self): @function.defun def f(x): return {'name': x + 1} self.assertAllEqual(f(constant_op.constant(1.0))['name'], 2.0) def testTensorConversionWithDefun(self): @function.defun def f(x): return math_ops.add(x, constant_op.constant(3)) self.assertAllEqual(5, f(constant_op.constant(2))) def testTensorConversionCall(self): @function.defun def f(x): return math_ops.add(x, constant_op.constant(3)) @function.defun def g(x): return f(f(x)) self.assertAllEqual(8, g(constant_op.constant(2))) def testDefunCallBackprop(self): @function.defun def f(x): return math_ops.add(x, x) @function.defun def g(x): return backprop.gradients_function(f, [0])(x)[0] self.assertAllEqual(2, g(constant_op.constant(2.))) def testGraphModeEagerGradError(self): with context.graph_mode(): def f(): x = variable_scope.get_variable( 'v', initializer=constant_op.constant(1.0)) return x * constant_op.constant(2.0) with self.assertRaisesRegexp(ValueError, 'No trainable variables were accessed'): backprop.implicit_val_and_grad(f)() def testDefunCallBackpropUsingSameObjectForMultipleArguments(self): @function.defun def g(x): return backprop.gradients_function(math_ops.multiply, [0, 1])(x, x) def np_g(x): return [d.numpy() for d in g(x)] x = constant_op.constant(1.) self.assertAllEqual([1., 1.], np_g(x)) self.assertAllEqual([1., 1.], np_g(1.)) def testCallShape(self): @function.defun def f(x): return x + 1 @function.defun def g(x): x = f(x) self.assertEqual(x.shape.as_list(), []) return None g(constant_op.constant(1.0)) def testNestedDefunWithNoOutputAndTapedInput(self): three = resource_variable_ops.ResourceVariable(3.0, name='v') @function.defun def f(x): # This function intentionally takes a taped variable as input, # but does not return any values math_ops.add(x, three) @function.defun def g(x): y = math_ops.add(x, three) f(y) g(three) def testGradientTensorConversionWithDefun(self): three = resource_variable_ops.ResourceVariable(3.0, name='v') @function.defun def f(x): return math_ops.add(x, three) def g(x): return f(x) g = backprop.implicit_grad(g)(constant_op.constant(1.0))[0][0] self.assertAllEqual(g, 1.0) def testGradient(self): matmul = function.defun(math_ops.matmul) def sq(x): return matmul(x, x, transpose_a=True) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) grad_t, = backprop.gradients_function(sq, [0])(t) self.assertAllEqual(grad_t, [[6, 6], [14, 14]]) def testGradientInFunction(self): @function.defun def f(x): return backprop.gradients_function(lambda y: y * y, [0])(x)[0] self.assertAllEqual(f(constant_op.constant(1.0)), 2.0) def testGatherResourceWithDefun(self): with ops.device('cpu:0'): v = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) def sum_gather(): return math_ops.reduce_sum(array_ops.gather(v, [1, 2])) defined = function.defun(sum_gather) self.assertAllEqual(sum_gather(), defined()) def testGradientOfGatherWithDefun(self): v = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) def sum_gather(): return math_ops.reduce_sum(array_ops.gather(v, [1, 2])) grad_fn = backprop.implicit_grad(sum_gather) gradient = grad_fn() defun_grad_fn = backprop.implicit_grad(function.defun(sum_gather)) defun_gradient = defun_grad_fn() self.assertEqual(len(gradient), len(defun_gradient)) gradient = gradient[0][0] defun_gradient = defun_gradient[0][0] self.assertAllEqual(gradient.values, defun_gradient.values) self.assertAllEqual(gradient.indices, defun_gradient.indices) self.assertAllEqual(gradient.dense_shape, defun_gradient.dense_shape) def testReturningIndexedSlicesWithDefun(self): def validate(indexed_slice): @function.defun def f(): return indexed_slice output = f() self.assertTrue(isinstance(output, ops.IndexedSlices)) self.assertAllEqual(indexed_slice.values, output.values) self.assertAllEqual(indexed_slice.indices, output.indices) self.assertAllEqual(indexed_slice.dense_shape, output.dense_shape) self.assertEqual( f.get_concrete_function().output_shapes, indexed_slice.values.shape) arg = ops.IndexedSlices( values=constant_op.constant([1, 2]), indices=constant_op.constant([0, 1]), dense_shape=constant_op.constant([2])) validate(arg) arg = ops.IndexedSlices( values=constant_op.constant([1, 2]), indices=constant_op.constant([0, 1]), dense_shape=None) validate(arg) def testIndexedSliceAsArgumentWithDefun(self): @function.defun def f(indexed_slice): return indexed_slice def validate(arg): output = f(arg) self.assertTrue(isinstance(output, ops.IndexedSlices)) self.assertAllEqual(arg.values, output.values) self.assertAllEqual(arg.indices, output.indices) self.assertAllEqual(arg.dense_shape, output.dense_shape) indexed_slice = ops.IndexedSlices( values=constant_op.constant([1]), indices=constant_op.constant([0]), dense_shape=constant_op.constant([1])) validate(indexed_slice) # Test that `f` works even when `dense_shape` is None. indexed_slice = ops.IndexedSlices( values=constant_op.constant([1]), indices=constant_op.constant([0]), dense_shape=None) validate(indexed_slice) def testFunctionOnDevice(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') x = constant_op.constant([1.]).gpu() f = function.defun(math_ops.add) y = f(x, x).cpu() self.assertAllEqual(y, [2.]) @test_util.run_in_graph_and_eager_modes def testFunctionWithResourcesOnDifferentDevices(self): if not context.context().num_gpus(): self.skipTest('No GPUs found.') with ops.device('/cpu:0'): v_cpu = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) with ops.device('/gpu:0'): v_gpu = resource_variable_ops.ResourceVariable([0.0, 1.0, 2.0]) def sum_gather(): cpu_result = math_ops.reduce_sum(array_ops.gather(v_cpu, [1, 2])) gpu_result = math_ops.reduce_sum(array_ops.gather(v_gpu, [1, 2])) return cpu_result, gpu_result defined = function.defun(sum_gather) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) expected = self.evaluate(sum_gather()) self.assertAllEqual(expected, self.evaluate(defined())) @test_util.run_in_graph_and_eager_modes def testOpInFunctionWithConflictingResourceInputs(self): if not context.context().num_gpus(): self.skipTest('No GPUs found.') with ops.device('/cpu:0'): v_cpu = resource_variable_ops.ResourceVariable( [0.0, 1.0, 2.0], name='cpu') v_also_cpu = resource_variable_ops.ResourceVariable( [0.0, 1.0, 2.0], name='also_cpu') with ops.device('/gpu:0'): v_gpu = resource_variable_ops.ResourceVariable( [0.0, 1.0, 2.0], name='gpu') @function.defun def resource_apply_adam(): training_ops.resource_apply_adam( v_cpu.handle, v_gpu.handle, v_also_cpu.handle, 1.0, # beta1_power 1.0, # beta2_power 1.0, # learning_rate 1.0, # beta1 1.0, # beta2 1.0, # epsilon, [1.0, 1.0, 1.0], # grad False) # use_locking return None with self.assertRaisesRegexp( errors.InvalidArgumentError, 'Could not colocate node with its ' 'resource and reference inputs.*'): if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.evaluate(resource_apply_adam()) def testFunctionHandlesInputsOnDifferentDevices(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') # The Reshape op requires the shape tensor to be placed in host memory. reshape = function.defun(array_ops.reshape) value = constant_op.constant([1., 2.]).gpu() shape = constant_op.constant([2, 1]) reshaped = reshape(value, shape).cpu() self.assertAllEqual(reshaped, [[1], [2]]) def testFunctionHandlesInputsPlacedOnTheWrongDeviceGracefully(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') # The Reshape op requires the shape tensor to be placed in host memory. reshape = function.defun(array_ops.reshape) value = constant_op.constant([1., 2.]) shape = constant_op.constant([2, 1]).gpu() reshape(value, shape) # No error is raised def testDifferentiableFunctionNoneOutputs(self): @function.defun def my_function(x): return x, None def wrapper(x): return my_function(x)[0] g = backprop.gradients_function(wrapper, [0])(constant_op.constant(0.0)) self.assertAllEqual(g[0], 1.) @function.defun def foo(a): return None, a * a x = constant_op.constant(5.0) with backprop.GradientTape() as tp: tp.watch(x) none, r = foo(x) g = tp.gradient(r, x) self.assertIs(none, None) self.assertAllEqual(r, 25.0) self.assertAllEqual(g, 2 * 5.0) def testNestedDifferentiableFunction(self): @function.defun def inner_fn(a, b): return a * math_ops.add(a, b) @function.defun def outer_fn(x): return inner_fn(x, 1.0) x = constant_op.constant(5.0) with backprop.GradientTape() as tp: tp.watch(x) result = outer_fn(x) grad = tp.gradient(result, x) self.assertAllEqual(grad, 2 * 5.0 + 1.0) def testNestedDifferentiableFunctionNoneOutputs(self): @function.defun def foo(a, b): return None, a * math_ops.add(a, b), None, 2*a @function.defun def bar(x): return foo(x, 1.0) x = constant_op.constant(5.0) with backprop.GradientTape(persistent=True) as tp: tp.watch(x) none1, r1, none2, r2 = bar(x) g1 = tp.gradient(r1, x) g2 = tp.gradient(r2, x) self.assertAllEqual(r1, 30.0) self.assertAllEqual(r2, 10.0) self.assertIs(none1, None) self.assertIs(none2, None) self.assertAllEqual(g1, 2 * 5.0 + 1.0) self.assertAllEqual(g2, 2.0) def testNoneOutput(self): @function.defun def my_function(_): return None self.assertAllEqual(my_function(1), None) def testNestedFunctions(self): # TensorFlow function (which is what would be used in TensorFlow graph # construction). @tf_function.Defun(dtypes.int32, dtypes.int32) def add(a, b): return math_ops.add(a, b) @function.defun def add_one(x): return add(x, 1) self.assertAllEqual(3, add_one(constant_op.constant(2))) def testVariableCaptureInNestedFunctions(self): v = resource_variable_ops.ResourceVariable(1, dtype=dtypes.int32) @function.defun def inner_read(): return v.read_value() @function.defun def outer(): return inner_read() self.assertEqual(1, int(outer())) def testReturnCapturedEagerTensor(self): t = constant_op.constant(1) @function.defun def read(): return t self.assertEqual(1, int(read())) def testReturnCapturedGraphTensor(self): with context.graph_mode(), self.cached_session(): t = constant_op.constant(1) @function.defun def read(): return t self.assertEqual(1, int(self.evaluate(read()))) def testSequenceInputs(self): clip_by_global_norm = function.defun(clip_ops.clip_by_global_norm) t_list = [constant_op.constant(1.0), constant_op.constant(2.0)] clipped_list, global_norm = clip_by_global_norm(t_list, constant_op.constant(.2)) for t in clipped_list: self.assertTrue(isinstance(t, ops.Tensor)) self.assertTrue(isinstance(global_norm, ops.Tensor)) def testNestedSequenceInputs(self): def my_op(inputs): a, b, c = inputs e, f = b g, h = e return [a + a, [tuple([f + f, g + g]), h + h], c + c], a + f + g + h + c my_eager_op = function.defun(my_op) ret = my_eager_op([ constant_op.constant(1), [(constant_op.constant(2), constant_op.constant(3)), constant_op.constant(4)], constant_op.constant(5) ]) self.assertEqual(len(ret), 2) self.assertAllEqual(ret[0][0], 2) self.assertAllEqual(ret[0][1][0][0], 8) self.assertAllEqual(ret[0][1][0][1], 4) self.assertTrue(isinstance(ret[0][1][0], tuple)) self.assertAllEqual(ret[0][1][1], 6) self.assertAllEqual(ret[0][2], 10) self.assertAllEqual(ret[1], 15) def testVariableNamesRespectNameScopesWithDefun(self): @function.defun def create_variable(): with ops.name_scope('foo'): v = resource_variable_ops.ResourceVariable(0.0, name='bar') self.assertEqual(v.name, 'foo/bar:0') create_variable() def testVariableNamesRespectNameScopesWithDefunInGraph(self): with context.graph_mode(): @function.defun def create_variable(): with ops.name_scope('foo'): v = resource_variable_ops.ResourceVariable([1.0, 2.0], name='bar') self.assertEqual(v.name, 'foo/bar:0') with ops.get_default_graph().as_default(): create_variable() @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testLayerInDefun(self): conv = convolutional.Conv2D( filters=1, kernel_size=2, kernel_initializer=init_ops.ones_initializer(), bias_initializer=init_ops.zeros_initializer()) @function.defun def model(x): return conv(x) x = array_ops.ones([1, 2, 2, 1]) y = model(x) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertAllEqual([[[[4.0]]]], self.evaluate(y)) # Remove reference cycles in model test_util.dismantle_polymorphic_function(model) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testDefunKerasModelCall(self): model = MiniModel() model.call = function.defun(model.call) x = array_ops.ones([1, 2]) y = model(x) if not context.executing_eagerly(): self.evaluate(variables.global_variables_initializer()) self.assertAllEqual([[3.0]], self.evaluate(y)) # Remove reference cycles in defun. test_util.dismantle_polymorphic_function(model.call) # Break the reference cycle between the MiniModel and the defun: # MiniModel --(through its `call` method)--> PolymorphicFunction # PolymorphicFunction --(instancemethod on MiniModel)--> MiniModel del model.call # Note: The ConfigProto below unfortunately only configures graph # construction. Eager's configuration is controlled in `__main__`. @test_util.run_in_graph_and_eager_modes( config=config_pb2.ConfigProto(device_count={'CPU': 4})) def testDeviceAnnotationsRespected(self): def multi_device_fn(): with ops.device('/cpu:0'): s0 = iterator_ops.Iterator.from_structure( (dtypes.float32,)).string_handle() with ops.device('/cpu:1'): s1 = iterator_ops.Iterator.from_structure( (dtypes.float32,)).string_handle() with ops.device('/cpu:2'): s2 = iterator_ops.Iterator.from_structure( (dtypes.float32,)).string_handle() s3 = iterator_ops.Iterator.from_structure( (dtypes.float32,)).string_handle() return s0, s1, s2, s3 defined = function.defun(multi_device_fn) outputs = self.evaluate(defined()) self.assertEqual(len(defined._function_cache), 1) self.assertIn(compat.as_bytes('CPU:0'), outputs[0]) self.assertIn(compat.as_bytes('CPU:1'), outputs[1]) self.assertIn(compat.as_bytes('CPU:2'), outputs[2]) with ops.device('/cpu:3'): outputs = self.evaluate(defined()) self.assertEqual(len(defined._function_cache), 2) self.assertIn(compat.as_bytes('CPU:0'), outputs[0]) self.assertIn(compat.as_bytes('CPU:1'), outputs[1]) self.assertIn(compat.as_bytes('CPU:2'), outputs[2]) self.assertIn(compat.as_bytes('CPU:3'), outputs[3]) # This should retrieve the call-site-device agnostic function defined() self.assertEqual(len(defined._function_cache), 2) # And this should retrieve the function created for '/cpu:3' with ops.device('/cpu:3'): defined() self.assertEqual(len(defined._function_cache), 2) @test_util.run_in_graph_and_eager_modes( config=config_pb2.ConfigProto(device_count={'CPU': 2})) def testCallingGraphFunctionOnIncompatibleDeviceRaisesError(self): def func(): return constant_op.constant(0) defined = function.defun(func) with ops.device('cpu:0'): cpu_graph_function = defined.get_concrete_function() with ops.device('cpu:0'): self.assertEqual( self.evaluate(cpu_graph_function()), self.evaluate(func())) with self.assertRaisesRegexp( ValueError, 'The current device stack does not match the device stack under ' 'which the TensorFlow function \'.*func.*\' was created.\n' 'Current device stack: .*\n.*func.* device stack.*'): with ops.device('cpu:1'): cpu_graph_function() with self.assertRaisesRegexp( ValueError, 'The current device stack does not match the device stack under ' 'which the TensorFlow function \'.*func.*\' was created.\n' 'Current device stack: .*\n.*func.* device stack.*'): with ops.device(None): cpu_graph_function() default_graph_function = defined.get_concrete_function() self.assertEqual( self.evaluate(default_graph_function()), self.evaluate(func())) with self.assertRaisesRegexp( ValueError, 'The current device stack does not match the device stack under ' 'which the TensorFlow function \'.*func.*\' was created.\n' 'Current device stack: .*\n.*func.* device stack.*'): with ops.device('cpu:1'): default_graph_function() @test_util.run_in_graph_and_eager_modes def testColocateWithRespected(self): # TODO(b/113291792): Use multiple CPUs instead of a GPU. if not context.context().num_gpus(): self.skipTest('No GPUs found.') with ops.device('cpu:0'): x = constant_op.constant(1.0) with ops.device('gpu:0'): y = constant_op.constant(1.0) @function.defun def foo(): return iterator_ops.Iterator.from_structure( (dtypes.float32,)).string_handle() with ops.colocate_with(x): self.assertIn(compat.as_bytes('CPU:0'), self.evaluate(foo())) with ops.colocate_with(y): self.assertIn(compat.as_bytes('GPU:0'), self.evaluate(foo())) def testVariablesAreTracked(self): v = resource_variable_ops.ResourceVariable(1.0) def foo(x): return v * x defined = function.defun(foo) x = constant_op.constant([1.0]) self.assertEqual(1., self.evaluate(defined(x))) v.assign(2.) x = constant_op.constant([1.0, 2.0]) self.assertAllEqual([2., 4.], self.evaluate(defined(x))) def testPythonFunctionWithDefaultArgs(self): def func(foo, bar=1, baz=2): del foo del bar del baz return defined = function.defun(func) defined(0, baz=20) def cache_keys(): """Sanitizes cache keys of non-input metadata.""" return tuple(key[:3] for key in defined._function_cache) # `True` corresponds to the fact that we're executing eagerly self.assertIn((0, 1, 20), cache_keys()) defined(1) # bar=1, baz=2 self.assertIn((1, 1, 2), cache_keys()) # This matches the previous call. defined(foo=1) self.assertEqual(len(defined._function_cache), 2) defined(1, 2, 3) self.assertIn((1, 2, 3), cache_keys()) # This matches the previous call. defined(1, bar=2, baz=3) self.assertEqual(len(defined._function_cache), 3) # This matches the previous call. defined(1, baz=3, bar=2) self.assertEqual(len(defined._function_cache), 3) def testFunctoolsPartialUnwrappedCorrectly(self): def full_function(a, b, c=3): return a, b, c partial = functools.partial(full_function, 1, c=3) a, b, c = partial(2) defined = function.defun(partial) func_a, func_b, func_c = defined(2) self.assertEqual(func_a.numpy(), a) self.assertEqual(func_b.numpy(), b) self.assertEqual(func_c.numpy(), c) def testInputSignatureWithCompatibleInputs(self): def foo(a): self.assertEqual(a.shape, (2,)) return a signature = [tensor_spec.TensorSpec(shape=(2,), dtype=dtypes.float32)] defined = function.defun(foo, input_signature=signature) a = array_ops.ones([2]) out = defined(a) self.assertEqual(len(defined._function_cache), 1) self.assertAllEqual(out, a) def bar(a): self.assertEqual(a._shape_tuple(), (2, None)) return a signature = [tensor_spec.TensorSpec((2, None), dtypes.float32)] defined = function.defun(bar, input_signature=signature) a = array_ops.ones([2, 1]) out = defined(a) self.assertEqual(len(defined._function_cache), 1) self.assertAllEqual(out, a) # Changing the second dimension shouldn't create a new function. b = array_ops.ones([2, 3]) out = defined(b) self.assertEqual(len(defined._function_cache), 1) self.assertAllEqual(out, b) def testNestedInputSignatures(self): def foo(a, b): self.assertEqual(a[0]._shape_tuple(), (2, None)) self.assertEqual(a[1]._shape_tuple(), (2, None)) self.assertEqual(b._shape_tuple(), (1,)) return [a, b] signature = [[tensor_spec.TensorSpec((2, None), dtypes.float32)] * 2, tensor_spec.TensorSpec((1,), dtypes.float32)] defined = function.defun(foo, input_signature=signature) a = array_ops.ones([2, 1]) b = array_ops.ones([1]) out = defined([a, a], b) self.assertEqual(len(defined._function_cache), 1) nest.assert_same_structure(out, [[a, a], b]) self.assertAllEqual(out[0][0], a) self.assertAllEqual(out[0][1], a) self.assertAllEqual(out[1], b) # Changing the unspecified dimensions shouldn't create a new function. a = array_ops.ones([2, 3]) b = array_ops.ones([2, 5]) c = array_ops.ones([1]) out = defined([a, b], c) self.assertEqual(len(defined._function_cache), 1) nest.assert_same_structure(out, [[a, b], c]) self.assertAllEqual(out[0][0], a) self.assertAllEqual(out[0][1], b) self.assertAllEqual(out[1], c) def bar(a): self.assertEqual(a['a']._shape_tuple(), (2, None)) self.assertEqual(a['b']._shape_tuple(), (2, None)) self.assertEqual(a['c']._shape_tuple(), (1,)) return a signature = [{ 'a': tensor_spec.TensorSpec((2, None), dtypes.float32), 'b': tensor_spec.TensorSpec((2, None), dtypes.float32), 'c': tensor_spec.TensorSpec((1,), dtypes.float32) }] a = array_ops.ones([2, 3]) b = array_ops.ones([1]) inputs = {'a': a, 'b': a, 'c': b} defined = function.defun(bar, input_signature=signature) out = defined(inputs) nest.assert_same_structure(out, inputs) self.assertAllEqual(out['a'], inputs['a']) self.assertAllEqual(out['b'], inputs['b']) self.assertAllEqual(out['c'], inputs['c']) def testInputSignatureMustBeSequenceOfTensorSpecs(self): def foo(a, b): del a del b # Signatures must consist exclusively of `TensorSpec` objects. signature = [(2, 3), tensor_spec.TensorSpec([2, 3], dtypes.float32)] with self.assertRaisesRegexp(TypeError, 'Invalid input_signature.*'): function.defun(foo, input_signature=signature) # Signatures must be either lists or tuples on their outermost levels. signature = {'t1': tensor_spec.TensorSpec([], dtypes.float32)} with self.assertRaisesRegexp(TypeError, 'input_signature must be either a ' 'tuple or a list.*'): function.defun(foo, input_signature=signature) def testInputsIncompatibleWithSignatureRaisesError(self): def foo(a): return a signature = [tensor_spec.TensorSpec(shape=(2,), dtype=dtypes.float32)] defined = function.defun(foo, input_signature=signature) # Invalid shapes. with self.assertRaisesRegexp(ValueError, 'Python inputs incompatible.*'): defined(array_ops.ones([3])) with self.assertRaisesRegexp(ValueError, 'Python inputs incompatible.*'): defined(array_ops.ones([2, 1])) # Wrong number of arguments. with self.assertRaisesRegexp(ValueError, 'Structure of Python function inputs.*'): defined(array_ops.ones([2]), array_ops.ones([2])) with self.assertRaisesRegexp(ValueError, 'Structure of Python function inputs.*'): defined() def testInputSignatureForFunctionWithNonTensorInputsNotAllowed(self): def foo(a, training=True): if training: return a else: return -1.0 * a signature = [tensor_spec.TensorSpec([], dtypes.float32)] * 2 defined = function.defun(foo, input_signature=signature) a = constant_op.constant(1.0) with self.assertRaisesRegexp( ValueError, 'When input_signature is provided, ' 'all inputs to the Python function must be Tensors.'): defined(a, training=True) def testInputSignatureWithKeywordPositionalArgs(self): @function.defun(input_signature=[ tensor_spec.TensorSpec([], dtypes.float32), tensor_spec.TensorSpec([], dtypes.int64) ]) def foo(flt, integer): return flt, integer flt = constant_op.constant(1.0) integer = constant_op.constant(2, dtypes.int64) out1, out2 = foo(flt, integer) self.assertEqual(len(foo._function_cache), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) out1, out2 = foo(flt=flt, integer=integer) self.assertEqual(len(foo._function_cache), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) out1, out2 = foo(integer=integer, flt=flt) self.assertEqual(len(foo._function_cache), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) out1, out2 = foo(flt, integer=integer) self.assertEqual(len(foo._function_cache), 1) self.assertEqual(out1.numpy(), 1.0) self.assertEqual(out2.numpy(), 2) def testInputSignatureWithKeywordArgsFails(self): def foo(a, **kwargs): del a del kwargs with self.assertRaisesRegexp( ValueError, 'Cannot define a TensorFlow function from a Python ' 'function with keyword arguments when input_signature.*'): function.defun( foo, input_signature=[ tensor_spec.TensorSpec([], dtypes.float32), tensor_spec.TensorSpec([], dtypes.int64) ]) def testTensorKeywordArguments(self): def foo(a, b): del a return b defined = function.defun(foo) a = constant_op.constant(2.0) b = constant_op.constant([1.0, 2.0]) one = defined(a, b) self.assertEqual(len(defined._function_cache), 1) two = defined(a=a, b=b) self.assertEqual(len(defined._function_cache), 1) three = defined(b=b, a=a) self.assertEqual(len(defined._function_cache), 1) four = defined(a, b=b) self.assertEqual(len(defined._function_cache), 1) # The next call corresponds to a new input signature, hence # we expect another function to be defined. five = defined(b, a) self.assertEqual(len(defined._function_cache), 2) six = defined(a=b, b=a) self.assertEqual(len(defined._function_cache), 2) seven = defined(b=a, a=b) self.assertEqual(len(defined._function_cache), 2) self.assertAllEqual(one, [1.0, 2.0]) self.assertAllEqual(two, [1.0, 2.0]) self.assertAllEqual(three, [1.0, 2.0]) self.assertAllEqual(four, [1.0, 2.0]) self.assertAllEqual(five, 2.0) self.assertAllEqual(six, 2.0) self.assertAllEqual(seven, 2.0) def testGradientWithKeywordArguments(self): matmul = function.defun(math_ops.matmul) def sq(x): return matmul(a=x, b=x, transpose_a=True) t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) grad_t, = backprop.gradients_function(sq, [0])(t) self.assertAllEqual(grad_t, [[6, 6], [14, 14]]) with backprop.GradientTape(persistent=True) as tape: tape.watch(t) one = matmul(t, b=t, transpose_a=True) two = matmul(b=t, a=t, transpose_a=True) three = matmul(a=t, b=t, transpose_a=True) for output in [one, two, three]: self.assertAllEqual(tape.gradient(output, t), [[6, 6], [14, 14]]) def testGradientInFunctionWithKeywordArguments(self): @function.defun def f(x): return backprop.gradients_function(lambda y: y * y, [0])(x)[0] self.assertAllEqual(f(x=constant_op.constant(1.0)), 2.0) def testDefuningInstanceMethod(self): integer = constant_op.constant(2, dtypes.int64) class Foo(object): def one(self, tensor): return tensor @function.defun def two(self, tensor, other=integer): return self.one(tensor), other foo = Foo() t = constant_op.constant(1.0) one, two = foo.two(t) self.assertEqual(one.numpy(), 1.0) self.assertEqual(two.numpy(), 2) def testDefuningInstanceMethodWithDefaultArgument(self): integer = constant_op.constant(2, dtypes.int64) class Foo(object): @function.defun def func(self, other=integer): return other foo = Foo() self.assertEqual(foo.func().numpy(), int(integer)) def testPythonCallWithSideEffects(self): state = [] @function.defun def side_effecting_function(): state.append(0) side_effecting_function() self.assertAllEqual(state, [0]) # The second invocation should call the graph function, which shouldn't # trigger the list append. side_effecting_function() self.assertAllEqual(state, [0]) # Whereas calling the python function directly should create a side-effect. side_effecting_function.python_function() self.assertAllEqual(state, [0, 0]) def testFunctionWithExtraAttributes(self): @function.defun_with_attributes(attributes={'experimental_1': 'value1', 'experimental_2': 2}) def matmul(x, y): return math_ops.matmul(x, y) def add(x, y): return math_ops.add(x, y) defun_add = function.defun_with_attributes( add, attributes={'experimental_3': True, 'experimental_4': 1.0}) with context.graph_mode(), self.test_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) sq = matmul(t, t) double = defun_add(t, t) self.assertAllEqual(sq.eval().reshape(-1), [7, 10, 15, 22]) self.assertAllEqual(double.eval().reshape(-1), [2, 4, 6, 8]) graph = ops.get_default_graph() # pylint: disable=protected-access self.assertEqual(len(graph._functions), 2) functions = list(graph._functions.values()) self.assertRegexpMatches( functions[0].definition.signature.name, '.*matmul.*') attrs = functions[0].definition.attr self.assertEqual(len(attrs), 2) self.assertEqual(attrs['experimental_1'].s, b'value1') self.assertEqual(attrs['experimental_2'].i, 2) self.assertRegexpMatches( functions[1].definition.signature.name, '.*add.*') attrs = functions[1].definition.attr self.assertEqual(len(attrs), 2) self.assertEqual(attrs['experimental_3'].b, True) self.assertEqual(attrs['experimental_4'].f, 1.0) # pylint: enable=protected-access def testFunctionWithInvalidAttribute(self): @function.defun_with_attributes(attributes={'attr1': 'value1'}) def matmul(x, y): return math_ops.matmul(x, y) with self.assertRaisesRegexp(ValueError, '.*Attribute name is not whitelisted.*'): with context.graph_mode(), self.test_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) matmul(t, t) @function.defun_with_attributes(attributes={'experimental_1': ['value1']}) def add(x, y): return math_ops.add(x, y) with self.assertRaisesRegexp(ValueError, '.*Unsupported attribute type.*'): with context.graph_mode(), self.test_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) add(t, t) def testRegisterFunction(self): @function.defun def add(x, y): return math_ops.add(x, y) def matmul(x, y): return math_ops.matmul(x, y) defun_matmul = function.defun(matmul) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) function.register(defun_matmul, t, t) function.register(add, t, t) graph = ops.get_default_graph() # pylint: disable=protected-access self.assertEqual(len(graph._functions), 2) functions = list(graph._functions.values()) pre_register_matmul_func_name = functions[0].definition.signature.name self.assertRegexpMatches(pre_register_matmul_func_name, '.*matmul.*') pre_register_add_func_name = functions[1].definition.signature.name self.assertRegexpMatches(pre_register_add_func_name, '.*add.*') sq = defun_matmul(t, t) double = add(t, t) self.assertAllEqual(sq.eval().reshape(-1), [7, 10, 15, 22]) self.assertAllEqual(double.eval().reshape(-1), [2, 4, 6, 8]) # Make sure the pre registered function is used, and no other function # is added. self.assertEqual(len(graph._functions), 2) functions = list(graph._functions.values()) called_func_name = functions[0].definition.signature.name self.assertEqual(pre_register_matmul_func_name, called_func_name) called_func_name = functions[1].definition.signature.name self.assertEqual(pre_register_add_func_name, called_func_name) def testRegisterFunctionWithInputSignature(self): def matmul(x, y): return math_ops.matmul(x, y) defun_matmul = function.defun( matmul, input_signature=[ tensor_spec.TensorSpec(shape=(2, 2), dtype=dtypes.float32), tensor_spec.TensorSpec(shape=(2, 2), dtype=dtypes.float32) ]) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) function.register(defun_matmul, t, t) graph = ops.get_default_graph() # pylint: disable=protected-access self.assertEqual(len(graph._functions), 1) # Test input param shape mismatch t2 = constant_op.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) with self.assertRaisesRegexp( ValueError, 'Python inputs incompatible with input_signature'): function.register(defun_matmul, t2, t2) def testRegisterFunctionWithCache(self): def matmul(x, y): return math_ops.matmul(x, y) defun_matmul = function.defun(matmul) with context.graph_mode(), self.cached_session(): with ops.get_default_graph().as_default(): t = constant_op.constant([[1.0, 2.0], [3.0, 4.0]]) t2 = constant_op.constant([[2.0, 3.0], [4.0, 5.0]]) function.register(defun_matmul, t, t) function.register(defun_matmul, t2, t2) graph = ops.get_default_graph() # Only one function is registered since the input param are in same type # pylint: disable=protected-access self.assertEqual(len(graph._functions), 1) def testCallingFunctionWithDifferentVariables(self): @function.defun def foo(v): v.assign_add(1.0) return v.read_value() v = resource_variable_ops.ResourceVariable(0.0) graph_function = foo.get_concrete_function(v) self.assertEqual(len(graph_function.inputs), 1) self.assertEqual(len(graph_function.captured_inputs), 0) self.assertEqual(float(graph_function(v)), 1.0) self.assertEqual(float(graph_function(v)), 2.0) w = resource_variable_ops.ResourceVariable(0.0) @function.defun def bar(v): del v return constant_op.constant(1.0) graph_function = bar.get_concrete_function(v) self.assertEqual(float(graph_function(v)), 1.0) self.assertEqual(float(graph_function(w)), 1.0) def testCallingFunctionWithNonTensorsFails(self): @function.defun def foo(x): return x graph_function = foo.get_concrete_function(constant_op.constant(1.0)) with self.assertRaisesRegexp(ValueError, 'All inputs to `Function`s must ' 'be Tensors;.*'): graph_function('Not a Tensor.') @test_util.with_c_shapes class AutomaticControlDependenciesTest(test.TestCase): def testBasic(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() with function.AutomaticControlDependencies() as c: v.assign(v + 1) v.assign(2 * v) val = v.read_value() val = c.mark_as_return(val) self.assertAllEqual(val.eval(), 4.0) def testCondMustRun(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() p = array_ops.placeholder(dtype=dtypes.bool) with function.AutomaticControlDependencies() as c: def true_fn(): v.assign(v + 1) return 0.0 def false_fn(): v.assign(v + 4) return 1.0 control_flow_ops.cond(p, true_fn, false_fn) val = v.read_value() val = c.mark_as_return(val) self.assertAllEqual(val.eval(feed_dict={p: False}), 5.0) self.assertAllEqual(val.eval(feed_dict={p: True}), 6.0) def testCondMustRunSeparateRead(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() p = array_ops.placeholder(dtype=dtypes.bool) with function.AutomaticControlDependencies() as c: def true_fn(): v.assign(v + 1) return 0.0 def false_fn(): v.assign(v + 4) return 1.0 control_flow_ops.cond(p, true_fn, false_fn) one = constant_op.constant(1.0) one = c.mark_as_return(one) one.eval(feed_dict={p: False}) self.assertAllEqual(v.read_value().eval(), 5.0) one.eval(feed_dict={p: True}) self.assertAllEqual(v.read_value().eval(), 6.0) def testCondNested(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() p = array_ops.placeholder(dtype=dtypes.bool) q = array_ops.placeholder(dtype=dtypes.bool) with function.AutomaticControlDependencies() as c: def true_fn(): v.assign(v + 1, name='true') return 1.0 def false_fn(): def inner_true_fn(): v.assign(v * 2, name='false_true') return 2.0 def inner_false_fn(): v.assign(v * 3, name='false_false') return 3.0 control_flow_ops.cond(q, inner_true_fn, inner_false_fn) return 1.0 control_flow_ops.cond(p, true_fn, false_fn) with ops.name_scope('final'): val = v.read_value() val = c.mark_as_return(val) self.assertAllEqual(val.eval(feed_dict={p: False, q: False}), 3.0) self.assertAllEqual(val.eval(feed_dict={p: False, q: True}), 6.0) self.assertAllEqual(val.eval(feed_dict={p: True, q: True}), 7.0) self.assertAllEqual(val.eval(feed_dict={p: True, q: False}), 8.0) def testCondOneBranch(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() p = array_ops.placeholder(dtype=dtypes.bool) with function.AutomaticControlDependencies() as c: def true_fn(): return 0.0 def false_fn(): v.assign(v + 4) return 1.0 control_flow_ops.cond(p, true_fn, false_fn) val = v.read_value() val = c.mark_as_return(val) self.assertAllEqual(val.eval(feed_dict={p: False}), 5.0) self.assertAllEqual(val.eval(feed_dict={p: True}), 5.0) def testCondOneBranchUpdateBefore(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() p = array_ops.placeholder(dtype=dtypes.bool) with function.AutomaticControlDependencies() as c: v.assign(v * 2) def true_fn(): return 0.0 def false_fn(): v.assign(v + 4) return 1.0 control_flow_ops.cond(p, true_fn, false_fn) val = v.read_value() val = c.mark_as_return(val) self.assertAllEqual(val.eval(feed_dict={p: False}), 6.0) self.assertAllEqual(val.eval(feed_dict={p: True}), 12.0) def testCondOneBranchUpdateAfter(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() p = array_ops.placeholder(dtype=dtypes.bool) with function.AutomaticControlDependencies() as c: def true_fn(): return 0.0 def false_fn(): v.assign(v + 4) return 1.0 control_flow_ops.cond(p, true_fn, false_fn) v.assign(v * 2) val = v.read_value() val = c.mark_as_return(val) self.assertAllEqual(val.eval(feed_dict={p: False}), 10.0) self.assertAllEqual(val.eval(feed_dict={p: True}), 20.0) def testDefunWhileLoopWithCapturedLoopVars(self): n = 3 x = constant_op.constant(list(range(n))) @function.defun def loop(): c = lambda i, x: i < n b = lambda i, x: (i + 1, x + 1) i, out = control_flow_ops.while_loop(c, b, (0, x)) return i, out i, out = loop() self.assertEqual(int(i), 3) self.assertAllEqual(out, [3, 4, 5]) def testDecorator(self): with context.graph_mode(), self.cached_session(): v = resource_variable_ops.ResourceVariable(1.0) variables.global_variables_initializer().run() @function.automatic_control_dependencies def f(): v.assign(v + 1) v.assign(2 * v) return v.read_value() self.assertAllEqual(f().eval(), 4.0) def testOptimizerInDefun(self): def loss(v): return v**2 optimizer = momentum.MomentumOptimizer(learning_rate=1.0, momentum=1.0) @function.defun def train(): self.v = resource_variable_ops.ResourceVariable(1.0) grad = backprop.implicit_grad(loss)(self.v) optimizer.apply_gradients(grad) return self.v.read_value() value = train() self.assertEqual(value.numpy(), -1.0) def testReturningNonTensorRaisesError(self): optimizer = momentum.MomentumOptimizer(learning_rate=1.0, momentum=1.0) optimizer.apply_gradients = function.defun(optimizer.apply_gradients) v = resource_variable_ops.ResourceVariable(1.0) grad = backprop.implicit_grad(lambda v: v**2)(v) with self.assertRaisesRegexp(TypeError, '.*must return zero or more Tensors.*'): # TODO(akshayka): We might want to allow defun-ing Python functions # that return operations (and just execute the op instead of running it). optimizer.apply_gradients(grad) # TODO(b/111663004): This should work when the outer context is graph # building. def testOptimizerNonSlotVarsInDefunNoError(self): def loss(v): return v**2 optimizer = adam.AdamOptimizer(learning_rate=1.0) @function.defun def train(): self.v = resource_variable_ops.ResourceVariable(1.0) grad = backprop.implicit_grad(loss)(self.v) optimizer.apply_gradients(grad) return self.v.read_value() train() def testOptimizerInDefunWithCapturedVariable(self): v = resource_variable_ops.ResourceVariable(1.0) def loss(): return v**2 optimizer = momentum.MomentumOptimizer(learning_rate=1.0, momentum=1.0) @function.defun def train(): grad = backprop.implicit_grad(loss)() optimizer.apply_gradients(grad) train() self.assertEqual(v.numpy(), -1.0) def testFunctionModifiesInputList(self): # Tests on `list` methods that do in place modification, except `list.sort` # since it cannot even be "defunned" in the first place def get_list(): return [constant_op.constant(0.), constant_op.constant(1.)] expected_msg = ( 'Function to be traced should not modify structure of input ' 'arguments. Check if your function has list and dictionary ' 'operations that alter input arguments, ' 'such as `list.pop`, `list.append`') with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def append(l): l.append(constant_op.constant(0.)) append(get_list()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def extend(l): l.extend([constant_op.constant(0.)]) extend(get_list()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def insert(l): l.insert(0, constant_op.constant(0.)) insert(get_list()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def pop(l): l.pop() pop(get_list()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def reverse(l): l.reverse() reverse(get_list()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def remove(l): l.remove(l[0]) remove(get_list()) # `list.clear` is a method that is in Py3 but not Py2 if sys.version.startswith('3'): with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def clear(l): l.clear() clear(get_list()) # One last test for keyword arguments with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def kwdappend(**kwargs): l = kwargs['l'] l.append(constant_op.constant(0.)) kwdappend(l=get_list()) def testFunctionModifiesInputDict(self): def get_dict(): return {'t1': constant_op.constant(0.), 't2': constant_op.constant(1.)} expected_msg = ( 'Function to be traced should not modify structure of input ' 'arguments. Check if your function has list and dictionary ' 'operations that alter input arguments, ' 'such as `list.pop`, `list.append`') with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def clear(m): m.clear() clear(get_dict()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def pop(m): m.pop('t1') pop(get_dict()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def popitem(m): m.popitem() popitem(get_dict()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def update(m): m.update({'t1': constant_op.constant(3.)}) update(get_dict()) with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def setdefault(m): m.setdefault('t3', constant_op.constant(3.)) setdefault(get_dict()) def testFunctionModifiesInputNest(self): # Test on functions that modify structure of nested input arguments expected_msg = ( 'Function to be traced should not modify structure of input ' 'arguments. Check if your function has list and dictionary ' 'operations that alter input arguments, ' 'such as `list.pop`, `list.append`') with self.assertRaisesRegexp(ValueError, expected_msg): @function.defun def modify(n): n[0]['t1'].append(constant_op.constant(1.)) nested_input = [{ 't1': [constant_op.constant(0.), constant_op.constant(1.)], }, constant_op.constant(2.)] modify(nested_input) with self.assertRaisesRegexp(ValueError, expected_msg): # The flat list doesn't change whereas the true structure changes @function.defun def modify_same_flat(n): n[0].append(n[1].pop(0)) nested_input = [[constant_op.constant(0.)], [constant_op.constant(1.), constant_op.constant(2.)]] modify_same_flat(nested_input) def testDecoratedMethodVariableCleanup(self): m = DefunnedMiniModel() m(array_ops.ones([1, 2])) weak_variables = weakref.WeakSet(m.variables) self.assertEqual(2, len(weak_variables)) del m self.assertEqual([], list(weak_variables)) if __name__ == '__main__': ops.enable_eager_execution( config=config_pb2.ConfigProto(device_count={'CPU': 4})) test.main()
31.087703
80
0.65876
bbac000a8c624bef379e5a6e38da02f5d1ac4f68
4,033
py
Python
src/awkward/_v2/behaviors/mixins.py
scikit-hep/awkward-1.0
a440328f8097d22c2ba053fd117fed543829afc0
[ "BSD-3-Clause" ]
519
2019-10-17T12:36:22.000Z
2022-03-26T23:28:19.000Z
src/awkward/_v2/behaviors/mixins.py
scikit-hep/awkward-1.0
a440328f8097d22c2ba053fd117fed543829afc0
[ "BSD-3-Clause" ]
924
2019-11-03T21:05:01.000Z
2022-03-31T22:44:30.000Z
src/awkward/_v2/behaviors/mixins.py
scikit-hep/awkward-1.0
a440328f8097d22c2ba053fd117fed543829afc0
[ "BSD-3-Clause" ]
56
2019-12-17T15:49:22.000Z
2022-03-09T20:34:06.000Z
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE # from __future__ import absolute_import # import sys # import awkward as ak # def mixin_class(registry, name=None): # """ # Args: # registry (dict): The destination behavior mapping registry. Typically, # this would be the global registry #ak.behavior, but one may wish # to register methods in an alternative way. # name (str): The name to assign to the behaviour class. # This decorator can be used to register a behavior mixin class. # Any inherited behaviors will automatically be made available to the decorated # class. # See the "Mixin decorators" section of #ak.behavior for further details. # """ # def register(cls): # cls_name = cls.__name__ # if name is None: # behavior_name = cls_name # else: # behavior_name = name # record = type( # cls_name + "Record", # (cls, ak.highlevel.Record), # {"__module__": cls.__module__}, # ) # setattr(sys.modules[cls.__module__], cls_name + "Record", record) # registry[behavior_name] = record # array = type( # cls_name + "Array", # (cls, ak.highlevel.Array), # {"__module__": cls.__module__}, # ) # setattr(sys.modules[cls.__module__], cls_name + "Array", array) # registry["*", behavior_name] = array # for basecls in cls.mro(): # for method in basecls.__dict__.values(): # if hasattr(method, "_awkward_mixin"): # ufunc, rhs, transpose = method._awkward_mixin # if rhs is None: # registry.setdefault((ufunc, behavior_name), method) # continue # for rhs_name in list(rhs) + [behavior_name]: # registry.setdefault((ufunc, behavior_name, rhs_name), method) # if transpose is not None and rhs_name != behavior_name: # registry.setdefault( # (ufunc, rhs_name, behavior_name), transpose # ) # if basecls.__name__ in rhs: # rhs.add(behavior_name) # return cls # return register # def mixin_class_method(ufunc, rhs=None, transpose=True): # """ # Args: # ufunc (numpy.ufunc): A universal function (or NEP18 callable) that is # hooked in Awkward Array, i.e. it can be the first argument of a behavior. # rhs (Set[type] or None): Set of right-hand side argument types, optional # if wrapping a unary function. The left-hand side is expected to # always be `self` of the parent class. # transpose (bool): If true, automatically create a transpose signature # (only makes sense for binary ufuncs). # This decorator can be used to register a mixin class method. # Using this decorator ensures that derived classes that are declared with the # #ak.mixin_class decorator will also have the behaviors that this class has. # """ # def register(method): # if not isinstance(rhs, (set, type(None))): # raise ValueError( # "expected a set of right-hand-side argument types" # + ak._util.exception_suffix(__file__) # ) # if transpose and rhs is not None: # def transposed(left, right): # return method(right, left) # # make a copy of rhs, we will edit it later # method._awkward_mixin = (ufunc, set(rhs), transposed) # else: # method._awkward_mixin = (ufunc, rhs, None) # return method # return register # __all__ = [ # x for x in list(globals()) if not x.startswith("_") and x not in ("sys", "ak") # ] # def __dir__(): # return __all__
36.333333
87
0.567072
cdefdbe0d3cc9323336cdfd5f16c74444b5ecd5c
657
py
Python
apps/base/migrations/0007_auto_20180525_0906.py
KolevDarko/lifehq
88d92f5fe76f2fb6511f2a892e096d95a69985d8
[ "MIT" ]
null
null
null
apps/base/migrations/0007_auto_20180525_0906.py
KolevDarko/lifehq
88d92f5fe76f2fb6511f2a892e096d95a69985d8
[ "MIT" ]
null
null
null
apps/base/migrations/0007_auto_20180525_0906.py
KolevDarko/lifehq
88d92f5fe76f2fb6511f2a892e096d95a69985d8
[ "MIT" ]
null
null
null
# Generated by Django 2.0 on 2018-05-25 09:06 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('base', '0006_auto_20180521_0534'), ] operations = [ migrations.AddField( model_name='projecttodolist', name='archived', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='projectpage', name='project', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pages', to='base.Project'), ), ]
26.28
122
0.621005
9c0ebfc4be47cf915649db649edf264bfa5105d1
2,342
py
Python
trinity/sync/beam/constants.py
teotoplak/trinity
6c67b5debfb94f74d0162c70f92ae3d13918b174
[ "MIT" ]
null
null
null
trinity/sync/beam/constants.py
teotoplak/trinity
6c67b5debfb94f74d0162c70f92ae3d13918b174
[ "MIT" ]
2
2019-04-30T06:22:12.000Z
2019-06-14T04:27:18.000Z
trinity/sync/beam/constants.py
teotoplak/trinity
6c67b5debfb94f74d0162c70f92ae3d13918b174
[ "MIT" ]
null
null
null
from eth.constants import MAX_UNCLE_DEPTH # Peers are typically expected to have predicted nodes available, # so it's reasonable to ask for all-predictive nodes from a peer. # Urgent node requests usually come in pretty fast, so # even at a small value (like 1ms), this timeout is rarely triggered. DELAY_BEFORE_NON_URGENT_REQUEST = 0.05 # How much large should our buffer be? This is a multiplier on how many # nodes we can request at once from a single peer. REQUEST_BUFFER_MULTIPLIER = 16 # How many different processes are running previews? They will split the # block imports equally. A higher number means a slower startup, but more # previews are possible at a time (given that you have enough CPU cores). # The sensitivity of this number is relatively unexplored. NUM_PREVIEW_SHARDS = 4 # How many speculative executions should we run concurrently? This is # a global number, not per process or thread. It is necessary to # constrain the I/O, which can become the global bottleneck. MAX_CONCURRENT_SPECULATIVE_EXECUTIONS = 40 MAX_SPECULATIVE_EXECUTIONS_PER_PROCESS = MAX_CONCURRENT_SPECULATIVE_EXECUTIONS // NUM_PREVIEW_SHARDS # If a peer does something not ideal, give it a little time to breath, # and maybe to try out another peeer. Then reinsert it relatively soon. # Measured in seconds. NON_IDEAL_RESPONSE_PENALTY = 0.5 # How many seconds should we leave the backfill peer idle, in between # backfill requests? This is called "tests" because we are importantly # checking how fast a peer is. GAP_BETWEEN_TESTS = 0.25 # One reason to leave this as non-zero is: if we are regularly switching # the "queen peer" then we want to improve the chances that the new queen # (formerly backfill) is idle and ready to serve urgent nodes. # Another reason to leave this as non-zero: we don't want to overload the # database with reads/writes, but there are probably better ways to acheive # that goal. # One reason to make it relatively short, is that we want to find out quickly # when a new peer has excellent service stats. It might take several requests # to establish it (partially because we measure using an exponential average). # We need MAX_UNCLE_DEPTH + 1 headers to check during uncle validation # We need to request one more header, to set the starting tip FULL_BLOCKS_NEEDED_TO_START_BEAM = MAX_UNCLE_DEPTH + 2
49.829787
100
0.787361
633427e3c348e2ff6317b93bbfadfb3e3610dcfb
1,982
py
Python
thirdparty/antlr3-antlr-3.5/runtime/Python3/tests/t004lexer.py
mail2nsrajesh/congress
a724dfb59c43a5e88e2b03e714a5f962d6976762
[ "Apache-2.0" ]
50
2015-04-21T14:12:01.000Z
2020-06-01T06:23:13.000Z
thirdparty/antlr3-antlr-3.5/runtime/Python3/tests/t004lexer.py
mail2nsrajesh/congress
a724dfb59c43a5e88e2b03e714a5f962d6976762
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
thirdparty/antlr3-antlr-3.5/runtime/Python3/tests/t004lexer.py
mail2nsrajesh/congress
a724dfb59c43a5e88e2b03e714a5f962d6976762
[ "Apache-2.0" ]
25
2015-05-22T04:02:33.000Z
2020-01-14T12:15:12.000Z
import antlr3 import testbase import unittest class t004lexer(testbase.ANTLRTest): def setUp(self): self.compileGrammar() def lexerClass(self, base): class TLexer(base): def emitErrorMessage(self, msg): # report errors to /dev/null pass def reportError(self, re): # no error recovery yet, just crash! raise re return TLexer def testValid(self): stream = antlr3.StringStream('ffofoofooo') lexer = self.getLexer(stream) token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.FOO) self.assertEqual(token.start, 0) self.assertEqual(token.stop, 0) self.assertEqual(token.text, 'f') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.FOO) self.assertEqual(token.start, 1) self.assertEqual(token.stop, 2) self.assertEqual(token.text, 'fo') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.FOO) self.assertEqual(token.start, 3) self.assertEqual(token.stop, 5) self.assertEqual(token.text, 'foo') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.FOO) self.assertEqual(token.start, 6) self.assertEqual(token.stop, 9) self.assertEqual(token.text, 'fooo') token = lexer.nextToken() self.assertEqual(token.type, self.lexerModule.EOF) def testMalformedInput(self): stream = antlr3.StringStream('2') lexer = self.getLexer(stream) try: token = lexer.nextToken() self.fail() except antlr3.MismatchedTokenException as exc: self.assertEqual(exc.expecting, 'f') self.assertEqual(exc.unexpectedType, '2') if __name__ == '__main__': unittest.main()
27.915493
58
0.593845
37777aa1193466023cc5720027a0bbfbc4b83d56
1,699
py
Python
torch_geometric/utils/sbm.py
Mirwaisse/pytorch_geometric
0b0022e7c1dce9864184d2d666984cd35dff47e0
[ "MIT" ]
1
2019-10-16T09:14:19.000Z
2019-10-16T09:14:19.000Z
torch_geometric/utils/sbm.py
cuiqiang1990/pytorch_geometric
a7143b8d9ace60cf2ec1bd14ecc20ff7c3141151
[ "MIT" ]
null
null
null
torch_geometric/utils/sbm.py
cuiqiang1990/pytorch_geometric
a7143b8d9ace60cf2ec1bd14ecc20ff7c3141151
[ "MIT" ]
1
2020-09-21T22:01:18.000Z
2020-09-21T22:01:18.000Z
import torch from torch_geometric.utils import to_undirected def stochastic_blockmodel_graph(block_sizes, edge_probs, directed=False): r"""Returns the :obj:`edge_index` of a stochastic blockmodel graph. Args: block_sizes ([int] or LongTensor): The sizes of blocks. edge_probs ([[float]] or FloatTensor): The density of edges going from each block to each other block. Must be symmetric if the graph is undirected. directed (bool, optional): If set to :obj:`True`, will return a directed graph. (default: :obj:`False`) """ size, prob = block_sizes, edge_probs if not torch.is_tensor(size): size = torch.tensor(size, dtype=torch.long) if not torch.is_tensor(prob): prob = torch.tensor(prob, dtype=torch.float) assert size.dim() == 1 assert prob.dim() == 2 and prob.size(0) == prob.size(1) assert size.size(0) == prob.size(0) if not directed: assert torch.allclose(prob, prob.t()) node_idx = torch.cat([size.new_full((b, ), i) for i, b in enumerate(size)]) num_nodes = node_idx.size(0) if directed: idx = torch.arange((num_nodes - 1) * num_nodes) idx = idx.view(num_nodes - 1, num_nodes) idx = idx + torch.arange(1, num_nodes).view(-1, 1) idx = idx.view(-1) row, col = idx / num_nodes, idx % num_nodes else: row, col = torch.combinations(torch.arange(num_nodes)).t() mask = torch.bernoulli(prob[node_idx[row], node_idx[col]]).to(torch.uint8) edge_index = torch.stack([row[mask], col[mask]], dim=0) if not directed: edge_index = to_undirected(edge_index, num_nodes) return edge_index
34.673469
79
0.642731
b4198e9291b70f208145e6ab4ba2e5c8a0e06a3c
10,990
py
Python
tensorpack_medical/models/conv3d.py
Jdorri/rl-medical
750b1f10413daa9cd8e346332bd844212e76ddd8
[ "Apache-2.0" ]
96
2019-10-16T19:20:21.000Z
2022-03-22T02:35:01.000Z
tensorpack_medical/models/conv3d.py
Helogn/rl-medical
c9d4006262ab16dc04980215778a740343ea5dcd
[ "Apache-2.0" ]
78
2020-01-19T10:47:31.000Z
2020-05-13T11:13:05.000Z
tensorpack_medical/models/conv3d.py
Helogn/rl-medical
c9d4006262ab16dc04980215778a740343ea5dcd
[ "Apache-2.0" ]
42
2019-10-12T07:48:23.000Z
2021-12-01T22:37:41.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: conv3d.py # Author: Amir Alansary <amiralansary@gmail.com> import tensorflow as tf from tensorpack import layer_register, VariableHolder from tensorpack.tfutils.common import get_tf_version_tuple from .tflayer import rename_get_variable, convert_to_tflayer_args from tensorpack_medical.utils.argtools import shape3d, shape5d, get_data_format3d @layer_register(log_shape=True) @convert_to_tflayer_args( args_names=['filters', 'kernel_size'], name_mapping={ 'out_channel': 'filters', 'kernel_shape': 'kernel_size', 'stride': 'strides', }) def Conv3D( inputs, filters, kernel_size, strides=(1, 1, 1), padding='same', data_format='channels_last', dilation_rate=(1, 1, 1), activation=None, use_bias=True, kernel_initializer=tf.contrib.layers.variance_scaling_initializer(2.0), bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, split=1): """ A wrapper around `tf.layers.Conv3D`. Some differences to maintain backward-compatibility: 1. Default kernel initializer is variance_scaling_initializer(2.0). 2. Default padding is 'same'. 3. Support 'split' argument to do group conv. Variable Names: * ``W``: weights * ``b``: bias """ if split == 1: with rename_get_variable({'kernel': 'W', 'bias': 'b'}): layer = tf.layers.Conv3D( filters, kernel_size, strides=strides, padding=padding, data_format='channels_last', dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer) ret = layer.apply(inputs, scope=tf.get_variable_scope()) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=layer.kernel) if use_bias: ret.variables.b = layer.bias else: # group conv implementation data_format = get_data_format3d(data_format, tfmode=False) in_shape = inputs.get_shape().as_list() channel_axis = 4 if data_format == 'NDHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Conv3D] Input cannot have unknown channel!" assert in_channel % split == 0 assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \ "Not supported by group conv now!" out_channel = filters assert out_channel % split == 0 assert dilation_rate == (1, 1, 1) or get_tf_version_tuple() >= (1, 5), 'TF>=1.5 required for group dilated conv' kernel_shape = shape3d(kernel_size) filter_shape = kernel_shape + [in_channel / split, out_channel] stride = shape5d(strides, data_format=data_format) kwargs = dict(data_format=data_format) if get_tf_version_tuple() >= (1, 5): kwargs['dilations'] = shape4d(dilation_rate, data_format=data_format) W = tf.get_variable( 'W', filter_shape, initializer=kernel_initializer) if use_bias: b = tf.get_variable('b', [out_channel], initializer=bias_initializer) inputs = tf.split(inputs, split, channel_axis) # tf.split(value,num_or_size_splits,axis=0, num=None,name='split') kernels = tf.split(W, split, 4) outputs = [tf.nn.conv3d(i, k, stride, padding.upper(), **kwargs) for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) if activation is None: activation = tf.identity ret = activation(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b = b return ret # @layer_register(log_shape=True) # def Conv3D(x, out_channel, kernel_shape, # padding='SAME', stride=1, # W_init=None, b_init=None, # nl=tf.identity, split=1, use_bias=True, # data_format='NDHWC'): # """ # 3D convolution on 5D inputs. # Args: # x (tf.Tensor): a 5D tensor. # Must have known number of channels, but can have other unknown dimensions. # out_channel (int): number of output channel. # kernel_shape: (d, h, w) tuple or a int. # stride: (d, h, w) tuple or a int. # padding (str): 'valid' or 'same'. Case insensitive. # split (int): Split channels as used in Alexnet. Defaults to 1 (no split). # W_init: initializer for W. Defaults to `variance_scaling_initializer`. # b_init: initializer for b. Defaults to zero. # nl: a nonlinearity function. # use_bias (bool): whether to use bias. # data_format: An optional string from: "NDHWC", "NCDHW". # Defaults to "NDHWC". The data format of the input and output data. # With the default format "NDHWC", the data is stored in the order # of: [batch, in_depth, in_height, in_width, in_channels]. # Alternatively, the format could be "NCDHW", the data storage order # is: [batch, in_channels, in_depth, in_height, in_width]. # Returns: # tf.Tensor named ``output`` with attribute `variables`. # Variable Names: # * ``W``: weights # * ``b``: bias # """ # in_shape = x.get_shape().as_list() # channel_axis = 4 if data_format == 'NDHWC' else 1 # in_channel = in_shape[channel_axis] # assert in_channel is not None, "[Conv3D] Input cannot have unknown channel!" # assert in_channel % split == 0 # assert out_channel % split == 0 # kernel_shape = shape3d(kernel_shape) # padding = padding.upper() # filter_shape = kernel_shape + [in_channel / split, out_channel] # stride = shape5d(stride, data_format=data_format) # if W_init is None: # W_init = tf.contrib.layers.variance_scaling_initializer() # if b_init is None: # b_init = tf.constant_initializer() # W = tf.get_variable('W', filter_shape, initializer=W_init) # if use_bias: # b = tf.get_variable('b', [out_channel], initializer=b_init) # if split == 1: # conv = tf.nn.conv3d(x, W, stride, padding, data_format=data_format) # else: # inputs = tf.split(x, split, channel_axis) # kernels = tf.split(W, split, 3) # todo: this should be 3 or 4? # outputs = [tf.nn.conv3d(i, k, stride, padding, data_format=data_format) # for i, k in zip(inputs, kernels)] # conv = tf.concat(outputs, channel_axis) # # todo: check data format in bias_add # ret = nl(tf.nn.bias_add(conv, b, data_format='NHWC') if use_bias else conv, name='output') # ret.variables = VariableHolder(W=W) # if use_bias: # ret.variables.b = b # return ret @layer_register(log_shape=True) def Deconv3D(x, out_shape, kernel_shape, stride, padding='SAME', W_init=None, b_init=None, nl=tf.identity, use_bias=True, data_format='NDHWC'): """ 3D deconvolution on 5D inputs. Args: x (tf.Tensor): a tensor of shape NDHWC. Must have known number of channels, but can have other unknown dimensions. out_shape: (d, h, w, channel) tuple, or just a integer channel, then (d, h, w) will be calculated by input_shape * stride kernel_shape: (d, h, w) tuple or a int. stride: (h, w) tuple or a int. padding (str): 'valid' or 'same'. Case insensitive. W_init: initializer for W. Defaults to `variance_scaling_initializer`. b_init: initializer for b. Defaults to zero. nl: a nonlinearity function. use_bias (bool): whether to use bias. Returns: tf.Tensor: a NDHWC tensor named ``output`` with attribute `variables`. Variable Names: * ``W``: weights * ``b``: bias """ in_shape = x.get_shape().as_list() channel_axis = 4 if data_format == 'NDHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Deconv3D] Input cannot have unknown channel!" kernel_shape = shape3d(kernel_shape) stride3d = shape3d(stride) stride5d = shape5d(stride, data_format=data_format) padding = padding.upper() in_shape_dyn = tf.shape(x) if isinstance(out_shape, int): out_channel = out_shape if data_format == 'NDHWC': shp3_0 = StaticDynamicAxis(in_shape[1], in_shape_dyn[1]).apply(lambda x: stride3d[0] * x) shp3_1 = StaticDynamicAxis(in_shape[2], in_shape_dyn[2]).apply(lambda x: stride3d[1] * x) shp3_2 = StaticDynamicAxis(in_shape[3], in_shape_dyn[3]).apply(lambda x: stride3d[2] * x) shp3_dyn = [shp3_0.dynamic, shp3_1.dynamic, shp3_2.dynamic, out_channel] shp3_static = [shp3_0.static, shp3_1.static, shp3_2.static, out_channel] else: shp3_0 = StaticDynamicAxis(in_shape[2], in_shape_dyn[2]).apply(lambda x: stride3d[0] * x) shp3_1 = StaticDynamicAxis(in_shape[3], in_shape_dyn[3]).apply(lambda x: stride3d[1] * x) shp3_2 = StaticDynamicAxis(in_shape[4], in_shape_dyn[4]).apply(lambda x: stride3d[2] * x) shp3_dyn = [out_channel, shp3_0.dynamic, shp3_1.dynamic, shp3_2.dynamic] shp3_static = [out_channel, shp3_0.static, shp3_1.static, shp3_2.static] else: for k in out_shape: if not isinstance(k, int): raise ValueError("[Deconv3D] out_shape {} is invalid!".format(k)) out_channel = out_shape[channel_axis - 1] # out_shape doesn't have batch shp3_static = shp3_dyn = out_shape filter_shape = kernel_shape + [out_channel, in_channel] if W_init is None: W_init = tf.contrib.layers.variance_scaling_initializer() # xavier_initializer_conv2d() if b_init is None: b_init = tf.constant_initializer() W = tf.get_variable('W', filter_shape, initializer=W_init) if use_bias: b = tf.get_variable('b', [out_channel], initializer=b_init) out_shape_dyn = tf.stack([tf.shape(x)[0]] + shp3_dyn) conv = tf.nn.conv3d_transpose( x, W, out_shape_dyn, stride5d, padding=padding, data_format=data_format) conv.set_shape(tf.TensorShape([None] + shp3_static)) ret = nl(tf.nn.bias_add(conv, b, data_format='NDHWC') if use_bias else conv, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b = b return ret
40.109489
120
0.631483
8757ecd60cee87ee7869a3cd07a99cd0b2d9bca6
272
py
Python
src/homework/homework10/score_entry.py
acc-cosc-1336/cosc-1336-spring-2018-EricScotty
80c0249a583dc178cfc7bb95b851d7f3240dc3e9
[ "MIT" ]
null
null
null
src/homework/homework10/score_entry.py
acc-cosc-1336/cosc-1336-spring-2018-EricScotty
80c0249a583dc178cfc7bb95b851d7f3240dc3e9
[ "MIT" ]
null
null
null
src/homework/homework10/score_entry.py
acc-cosc-1336/cosc-1336-spring-2018-EricScotty
80c0249a583dc178cfc7bb95b851d7f3240dc3e9
[ "MIT" ]
null
null
null
class ScoreEntry: def __init__(self, score_entry_id, die1_value, die2_value): #create public class attributes for each parameter self.score_entry_id = score_entry_id self.die1_value = die1_value self.die2_value = die2_value
27.2
64
0.6875
bbc9459f8ee072c794d5910c8b84ab0858127f37
3,395
py
Python
lib/services/clouddb/ncloud_clouddb/model/common_code.py
NaverCloudPlatform/ncloud-sdk-python
5976dfabd205c615fcf57ac2f0ab67313ee6953c
[ "MIT" ]
12
2018-11-20T04:30:49.000Z
2021-11-09T12:34:26.000Z
lib/services/clouddb/ncloud_clouddb/model/common_code.py
NaverCloudPlatform/ncloud-sdk-python
5976dfabd205c615fcf57ac2f0ab67313ee6953c
[ "MIT" ]
1
2019-01-24T15:56:15.000Z
2019-05-31T07:56:55.000Z
lib/services/clouddb/ncloud_clouddb/model/common_code.py
NaverCloudPlatform/ncloud-sdk-python
5976dfabd205c615fcf57ac2f0ab67313ee6953c
[ "MIT" ]
6
2018-06-29T03:45:50.000Z
2022-03-18T01:51:45.000Z
# coding: utf-8 """ clouddb Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class CommonCode(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'code': 'str', 'code_name': 'str' } attribute_map = { 'code': 'code', 'code_name': 'codeName' } def __init__(self, code=None, code_name=None): # noqa: E501 """CommonCode - a model defined in Swagger""" # noqa: E501 self._code = None self._code_name = None self.discriminator = None if code is not None: self.code = code if code_name is not None: self.code_name = code_name @property def code(self): """Gets the code of this CommonCode. # noqa: E501 :return: The code of this CommonCode. # noqa: E501 :rtype: str """ return self._code @code.setter def code(self, code): """Sets the code of this CommonCode. :param code: The code of this CommonCode. # noqa: E501 :type: str """ self._code = code @property def code_name(self): """Gets the code_name of this CommonCode. # noqa: E501 :return: The code_name of this CommonCode. # noqa: E501 :rtype: str """ return self._code_name @code_name.setter def code_name(self, code_name): """Sets the code_name of this CommonCode. :param code_name: The code_name of this CommonCode. # noqa: E501 :type: str """ self._code_name = code_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CommonCode): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
24.963235
80
0.541973