hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
bf4d1f70dca0eb371cea11ced7ad5e9c8cf764c4
1,731
py
Python
app/user/serializers.py
Mwangik/recipe-app-api
115b694fc358b183bfac6c6cb2f90a5a41cf8976
[ "MIT" ]
null
null
null
app/user/serializers.py
Mwangik/recipe-app-api
115b694fc358b183bfac6c6cb2f90a5a41cf8976
[ "MIT" ]
null
null
null
app/user/serializers.py
Mwangik/recipe-app-api
115b694fc358b183bfac6c6cb2f90a5a41cf8976
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model, authenticate from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers class UserSerializer(serializers.ModelSerializer): """serializers for the users objects """ class Meta: model = get_user_model() fields = ('email', 'password', 'name') extra_kwargs = {'password': {'write_only': True, 'min_length': 5}} def create(self, validated_data): """Create a new user with encrypted password and return it""" return get_user_model().objects.create_user(**validated_data) def update(self, instance, validated_data): """Update a user, setting the password correctly and return it""" password = validated_data.pop('password', None) user = super().update(instance, validated_data) if password: user.set_password(password) user.save() return user class AuthTokenSerializer(serializers.Serializer): """serializer for the user authentication object""" email = serializers.CharField() password = serializers.CharField( style={'input_type': 'password'}, trim_whitespace=False ) def validate(self, attrs): """Validate and authenticate the user""" email = attrs.get('email') password = attrs.get('password') user = authenticate( request=self.context.get('request'), username=email, password=password ) if not user: msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authentication') attrs['user'] = user return attrs
31.472727
74
0.646447
2351eb2890d9588f40a2c5f9b7e9be7f5f958c6e
3,029
py
Python
examples/tsm/infer.py
LDOUBLEV/hapi
1b2e866edca6ff3aa4bd32c96ca5082b1cab426f
[ "Apache-2.0" ]
null
null
null
examples/tsm/infer.py
LDOUBLEV/hapi
1b2e866edca6ff3aa4bd32c96ca5082b1cab426f
[ "Apache-2.0" ]
null
null
null
examples/tsm/infer.py
LDOUBLEV/hapi
1b2e866edca6ff3aa4bd32c96ca5082b1cab426f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import os import argparse import numpy as np from paddle.incubate.hapi.model import Input, set_device from paddle.incubate.hapi.vision.transforms import Compose from check import check_gpu, check_version from modeling import tsm_resnet50 from kinetics_dataset import KineticsDataset from transforms import * from utils import print_arguments import logging logger = logging.getLogger(__name__) def main(): device = set_device(FLAGS.device) fluid.enable_dygraph(device) if FLAGS.dynamic else None transform = Compose([GroupScale(), GroupCenterCrop(), NormalizeImage()]) dataset = KineticsDataset( pickle_file=FLAGS.infer_file, label_list=FLAGS.label_list, mode='test', transform=transform) labels = dataset.label_list model = tsm_resnet50( num_classes=len(labels), pretrained=FLAGS.weights is None) inputs = [Input([None, 8, 3, 224, 224], 'float32', name='image')] model.prepare(inputs=inputs, device=FLAGS.device) if FLAGS.weights is not None: model.load(FLAGS.weights, reset_optimizer=True) imgs, label = dataset[0] pred = model.test_batch([imgs[np.newaxis, :]]) pred = labels[np.argmax(pred)] logger.info("Sample {} predict label: {}, ground truth label: {}" \ .format(FLAGS.infer_file, pred, labels[int(label)])) if __name__ == '__main__': parser = argparse.ArgumentParser("CNN training on TSM") parser.add_argument( "--data", type=str, default='dataset/kinetics', help="path to dataset root directory") parser.add_argument( "--device", type=str, default='gpu', help="device to use, gpu or cpu") parser.add_argument( "-d", "--dynamic", action='store_true', help="enable dygraph mode") parser.add_argument( "--label_list", type=str, default=None, help="path to category index label list file") parser.add_argument( "--infer_file", type=str, default=None, help="path to pickle file for inference") parser.add_argument( "-w", "--weights", default=None, type=str, help="weights path for evaluation") FLAGS = parser.parse_args() print_arguments(FLAGS) check_gpu(str.lower(FLAGS.device) == 'gpu') check_version() main()
31.226804
78
0.685375
bd4c3f8153da3cf2dec931cdfc48e890723c24b7
1,966
py
Python
app2.py
Ruslion/Predicting-loan-eligibility
abed6de78352dd2206c95b0c9d40e745a6509538
[ "MIT" ]
null
null
null
app2.py
Ruslion/Predicting-loan-eligibility
abed6de78352dd2206c95b0c9d40e745a6509538
[ "MIT" ]
null
null
null
app2.py
Ruslion/Predicting-loan-eligibility
abed6de78352dd2206c95b0c9d40e745a6509538
[ "MIT" ]
null
null
null
# import Flask and jsonify from flask import render_template, Flask, jsonify, request, make_response # import Resource, Api and reqparser from flask_restful import Resource, Api, reqparse import pandas as pd import numpy as np import pickle app = Flask(__name__) api = Api(app) with open('myfile.pickle', 'rb') as file_handle: pipeline = pickle.load(file_handle) @app.route('/') def home(): return render_template('index.html', prediction_text="") class predict(Resource): #@app.route('/predict',methods=['POST']) def post(self): # create request parser #data = request.get_json(force=True) data = request.form predict_request = [data['Gender'], data['Married'], data['Dependents'], data['Education'], data['Self_Employed'], data['ApplicantIncome'], data['CoapplicantIncome'], data['LoanAmount'], data['Loan_Amount_Term'], data['Credit_History'], data['Property_Area'] ] df_predict = pd.DataFrame([predict_request], columns= ['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History', 'Property_Area']) y_pred = pipeline.predict(df_predict) output = str(y_pred[0]) print(output) output_text='' if output =='Y': output_text = 'Congratulations! The loan has been approved.' else: output_text = 'We are sorry. You application has been rejected.' headers = {'Content-Type': 'text/html'} return make_response( render_template('index.html', prediction_text=output_text), 200, headers) # assign endpoint api.add_resource(predict, '/predict') if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
33.322034
146
0.608342
67e591b60a85134872438e2cbf7259cab05524a2
638
py
Python
layerindex/migrations/0039_comparison_sha256sum.py
ebrent8/clear-linux-dissector-web
45f1f9b5a5753ab8b14ed3c99f1c9e68bb97a47c
[ "MIT" ]
3
2019-05-12T21:11:53.000Z
2019-09-15T18:11:21.000Z
layerindex/migrations/0039_comparison_sha256sum.py
ebrent8/clear-linux-dissector-web
45f1f9b5a5753ab8b14ed3c99f1c9e68bb97a47c
[ "MIT" ]
21
2019-06-26T05:01:01.000Z
2022-03-11T23:47:21.000Z
layerindex/migrations/0039_comparison_sha256sum.py
ebrent8/clear-linux-dissector-web
45f1f9b5a5753ab8b14ed3c99f1c9e68bb97a47c
[ "MIT" ]
8
2019-06-13T08:51:12.000Z
2021-02-17T11:14:46.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2019-04-03 12:23 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('layerindex', '0038_patch_striplevel'), ] operations = [ migrations.AddField( model_name='classicrecipe', name='sha256sum', field=models.CharField(blank=True, max_length=64), ), migrations.AddField( model_name='patch', name='sha256sum', field=models.CharField(blank=True, max_length=64), ), ]
24.538462
62
0.601881
5347ba5bc15420f957d7542bb3e5dc14d513e22b
27,668
py
Python
ocs_ci/ocs/cluster.py
mykaul/ocs-ci
fcce03d1062a3565733fcf304c2caa6073181376
[ "MIT" ]
null
null
null
ocs_ci/ocs/cluster.py
mykaul/ocs-ci
fcce03d1062a3565733fcf304c2caa6073181376
[ "MIT" ]
null
null
null
ocs_ci/ocs/cluster.py
mykaul/ocs-ci
fcce03d1062a3565733fcf304c2caa6073181376
[ "MIT" ]
null
null
null
""" A module for all rook functionalities and abstractions. This module has rook related classes, support for functionalities to work with rook cluster. This works with assumptions that an OCP cluster is already functional and proper configurations are made for interaction. """ import base64 import logging import random import re import threading import yaml from time import sleep import ocs_ci.ocs.resources.pod as pod from ocs_ci.ocs.exceptions import UnexpectedBehaviour from ocs_ci.ocs.resources import ocs, storage_cluster import ocs_ci.ocs.constants as constant from ocs_ci.utility.retry import retry from ocs_ci.utility.utils import TimeoutSampler, run_cmd from ocs_ci.ocs.utils import get_pod_name_by_pattern from ocs_ci.framework import config from ocs_ci.ocs import ocp, constants, exceptions from ocs_ci.ocs.resources.pvc import get_all_pvc_objs logger = logging.getLogger(__name__) class CephCluster(object): """ Handles all cluster related operations from ceph perspective This class has depiction of ceph cluster. Contains references to pod objects which represents ceph cluster entities. Attributes: pods (list) : A list of ceph cluster related pods cluster_name (str): Name of ceph cluster namespace (str): openshift Namespace where this cluster lives """ def __init__(self): """ Cluster object initializer, this object needs to be initialized after cluster deployment. However its harmless to do anywhere. """ # cluster_name is name of cluster in rook of type CephCluster self.POD = ocp.OCP( kind='Pod', namespace=config.ENV_DATA['cluster_namespace'] ) self.CEPHCLUSTER = ocp.OCP( kind='CephCluster', namespace=config.ENV_DATA['cluster_namespace'] ) self.CEPHFS = ocp.OCP( kind='CephFilesystem', namespace=config.ENV_DATA['cluster_namespace'] ) self.DEP = ocp.OCP( kind='Deployment', namespace=config.ENV_DATA['cluster_namespace'] ) self.cluster_resource_config = self.CEPHCLUSTER.get().get('items')[0] try: self.cephfs_config = self.CEPHFS.get().get('items')[0] except IndexError as e: logging.warning(e) logging.warning("No CephFS found") self.cephfs_config = None self._cluster_name = ( self.cluster_resource_config.get('metadata').get('name') ) self._namespace = ( self.cluster_resource_config.get('metadata').get('namespace') ) # We are not invoking ocs.create() here # assuming cluster creation is done somewhere after deployment # So just load ocs with existing cluster details self.cluster = ocs.OCS(**self.cluster_resource_config) if self.cephfs_config: self.cephfs = ocs.OCS(**self.cephfs_config) else: self.cephfs = None self.mon_selector = constant.MON_APP_LABEL self.mds_selector = constant.MDS_APP_LABEL self.tool_selector = constant.TOOL_APP_LABEL self.mgr_selector = constant.MGR_APP_LABEL self.osd_selector = constant.OSD_APP_LABEL self.noobaa_selector = constant.NOOBAA_APP_LABEL self.noobaa_core_selector = constant.NOOBAA_CORE_POD_LABEL self.mons = [] self._ceph_pods = [] self.mdss = [] self.mgrs = [] self.osds = [] self.noobaas = [] self.toolbox = None self.mds_count = 0 self.mon_count = 0 self.mgr_count = 0 self.osd_count = 0 self.noobaa_count = 0 self.health_error_status = None self.health_monitor_enabled = False self.health_monitor = None self.scan_cluster() logging.info(f"Number of mons = {self.mon_count}") logging.info(f"Number of mds = {self.mds_count}") self.used_space = 0 @property def cluster_name(self): return self._cluster_name @property def namespace(self): return self._namespace @property def pods(self): return self._ceph_pods def scan_cluster(self): """ Get accurate info on current state of pods """ self._ceph_pods = pod.get_all_pods(self._namespace) # TODO: Workaround for BZ1748325: mons = pod.get_mon_pods(self.mon_selector, self.namespace) for mon in mons: if mon.ocp.get_resource_status(mon.name) == constant.STATUS_RUNNING: self.mons.append(mon) # TODO: End of workaround for BZ1748325 self.mdss = pod.get_mds_pods(self.mds_selector, self.namespace) self.mgrs = pod.get_mgr_pods(self.mgr_selector, self.namespace) self.osds = pod.get_osd_pods(self.osd_selector, self.namespace) self.noobaas = pod.get_noobaa_pods(self.noobaa_selector, self.namespace) self.toolbox = pod.get_ceph_tools_pod() # set port attrib on mon pods self.mons = list(map(self.set_port, self.mons)) self.cluster.reload() if self.cephfs: self.cephfs.reload() else: try: self.cephfs_config = self.CEPHFS.get().get('items')[0] self.cephfs = ocs.OCS(**self.cephfs_config) self.cephfs.reload() except IndexError as e: logging.warning(e) logging.warning("No CephFS found") self.mon_count = len(self.mons) self.mds_count = len(self.mdss) self.mgr_count = len(self.mgrs) self.osd_count = len(self.osds) self.noobaa_count = len(self.noobaas) @staticmethod def set_port(pod): """ Set port attribute on pod. port attribute for mon is required for secrets and this attrib is not a member for original pod class. Args: pod(Pod): Pod object without 'port' attribute Returns: pod(Pod): A modified pod object with 'port' attribute set """ container = pod.pod_data.get('spec').get('containers') port = container[0]['ports'][0]['containerPort'] # Dynamically added attribute 'port' pod.port = port logging.info(f"port={pod.port}") return pod def is_health_ok(self): """ Returns: bool: True if "HEALTH_OK" else False """ self.cluster.reload() return self.cluster.data['status']['ceph']['health'] == "HEALTH_OK" def cluster_health_check(self, timeout=None): """ Check overall cluster health. Relying on health reported by CephCluster.get() Args: timeout (int): in seconds. By default timeout value will be scaled based on number of ceph pods in the cluster. This is just a crude number. Its been observed that as the number of pods increases it takes more time for cluster's HEALTH_OK. Returns: bool: True if "HEALTH_OK" else False Raises: CephHealthException: if cluster is not healthy """ # Scale timeout only if user hasn't passed any value timeout = timeout or (10 * len(self.pods)) sample = TimeoutSampler( timeout=timeout, sleep=3, func=self.is_health_ok ) if not sample.wait_for_func_status(result=True): raise exceptions.CephHealthException("Cluster health is NOT OK") # This way of checking health of different cluster entities and # raising only CephHealthException is not elegant. # TODO: add an attribute in CephHealthException, called "reason" # which should tell because of which exact cluster entity health # is not ok ? expected_mon_count = self.mon_count expected_mds_count = self.mds_count self.scan_cluster() try: self.mon_health_check(expected_mon_count) except exceptions.MonCountException as e: logger.error(e) raise exceptions.CephHealthException("Cluster health is NOT OK") try: if not expected_mds_count: pass else: self.mds_health_check(expected_mds_count) except exceptions.MDSCountException as e: logger.error(e) raise exceptions.CephHealthException("Cluster health is NOT OK") self.noobaa_health_check() # TODO: OSD and MGR health check logger.info("Cluster HEALTH_OK") # This scan is for reconcilation on *.count # because during first scan in this function some of the # pods may not be up and would have set count to lesser number self.scan_cluster() return True def mon_change_count(self, new_count): """ Change mon count in the cluster Args: new_count(int): Absolute number of mons required """ self.cluster.reload() self.cluster.data['spec']['mon']['count'] = new_count logger.info(self.cluster.data) self.cluster.apply(**self.cluster.data) self.mon_count = new_count self.cluster_health_check() logger.info(f"Mon count changed to {new_count}") self.cluster.reload() def mon_health_check(self, count): """ Mon health check based on pod count Args: count (int): Expected number of mon pods Raises: MonCountException: if mon pod count doesn't match """ timeout = 10 * len(self.pods) logger.info(f"Expected MONs = {count}") try: assert self.POD.wait_for_resource( condition='Running', selector=self.mon_selector, resource_count=count, timeout=timeout, sleep=3, ) # TODO: Workaround for BZ1748325: actual_mons = pod.get_mon_pods() actual_running_mons = list() for mon in actual_mons: if mon.ocp.get_resource_status(mon.name) == constant.STATUS_RUNNING: actual_running_mons.append(mon) actual = len(actual_running_mons) # TODO: End of workaround for BZ1748325 assert count == actual, f"Expected {count}, Got {actual}" except exceptions.TimeoutExpiredError as e: logger.error(e) raise exceptions.MonCountException( f"Failed to achieve desired Mon count" f" {count}" ) def mds_change_count(self, new_count): """ Change mds count in the cluster Args: new_count(int): Absolute number of active mdss required """ self.cephfs.data['spec']['metadataServer']['activeCount'] = new_count self.cephfs.apply(**self.cephfs.data) logger.info(f"MDS active count changed to {new_count}") if self.cephfs.data['spec']['metadataServer']['activeStandby']: expected = new_count * 2 else: expected = new_count self.mds_count = expected self.cluster_health_check() self.cephfs.reload() def mds_health_check(self, count): """ MDS health check based on pod count Args: count (int): number of pods expected Raises: MDACountException: if pod count doesn't match """ timeout = 10 * len(self.pods) try: assert self.POD.wait_for_resource( condition='Running', selector=self.mds_selector, resource_count=count, timeout=timeout, sleep=3, ) except AssertionError as e: logger.error(e) raise exceptions.MDSCountException( f"Failed to achieve desired MDS count" f" {count}" ) def noobaa_health_check(self): """ Noobaa health check based on pods status """ timeout = 10 * len(self.pods) assert self.POD.wait_for_resource( condition='Running', selector=self.noobaa_selector, timeout=timeout, sleep=3, ), "Failed to achieve desired Noobaa Operator Status" assert self.POD.wait_for_resource( condition='Running', selector=self.noobaa_core_selector, timeout=timeout, sleep=3, ), "Failed to achieve desired Noobaa Core Status" def get_admin_key(self): """ Returns: adminkey (str): base64 encoded key """ return self.get_user_key('client.admin') def get_user_key(self, user): """ Args: user (str): ceph username ex: client.user1 Returns: key (str): base64 encoded user key """ out = self.toolbox.exec_cmd_on_pod( f"ceph auth get-key {user} --format json" ) if 'ENOENT' in out: return False key_base64 = base64.b64encode(out['key'].encode()).decode() return key_base64 def create_user(self, username, caps): """ Create a ceph user in the cluster Args: username (str): ex client.user1 caps (str): ceph caps ex: mon 'allow r' osd 'allow rw' Return: return value of get_user_key() """ cmd = f"ceph auth add {username} {caps}" # As of now ceph auth command gives output to stderr # To be handled out = self.toolbox.exec_cmd_on_pod(cmd) logging.info(type(out)) return self.get_user_key(username) def get_mons_from_cluster(self): """ Getting the list of mons from the cluster Returns: available_mon (list): Returns the mons from the cluster """ ret = self.DEP.get( resource_name='', out_yaml_format=False, selector='app=rook-ceph-mon' ) available_mon = re.findall(r'[\w-]+mon-+[\w-]', ret) return available_mon def remove_mon_from_cluster(self): """ Removing the mon pod from deployment Returns: remove_mon(bool): True if removal of mon is successful, False otherwise """ mons = self.get_mons_from_cluster() after_delete_mon_count = len(mons) - 1 random_mon = random.choice(mons) remove_mon = self.DEP.delete(resource_name=random_mon) assert self.POD.wait_for_resource( condition=constant.STATUS_RUNNING, resource_count=after_delete_mon_count, selector='app=rook-ceph-mon' ) logging.info(f"Removed the mon {random_mon} from the cluster") return remove_mon @retry(UnexpectedBehaviour, tries=20, delay=10, backoff=1) def check_ceph_pool_used_space(self, cbp_name): """ Check for the used space of a pool in cluster Returns: used_in_gb (float): Amount of used space in pool (in GBs) Raises: UnexpectedBehaviour: If used size keeps varying in Ceph status """ ct_pod = pod.get_ceph_tools_pod() rados_status = ct_pod.exec_ceph_cmd(ceph_cmd=f"rados df -p {cbp_name}") assert rados_status is not None used = rados_status['pools'][0]['size_bytes'] used_in_gb = format(used / constants.GB, '.4f') if self.used_space and self.used_space == used_in_gb: return float(self.used_space) self.used_space = used_in_gb raise UnexpectedBehaviour( f"In Rados df, Used size is varying" ) def get_ceph_health(self, detail=False): """ Exec `ceph health` cmd on tools pod and return the status of the ceph cluster. Args: detail (bool): If True the 'ceph health detail' is executed Returns: str: Output of the ceph health command. """ ceph_health_cmd = "ceph health" if detail: ceph_health_cmd = f"{ceph_health_cmd} detail" return self.toolbox.exec_cmd_on_pod( ceph_health_cmd, out_yaml_format=False, ) def get_ceph_status(self): """ Exec `ceph status` cmd on tools pod and return its output. Returns: str: Output of the ceph status command. """ return self.toolbox.exec_cmd_on_pod( "ceph status", out_yaml_format=False, ) def enable_health_monitor(self, sleep=5): """ Enable monitoring for ceph health status. Args: sleep (int): Number of seconds to sleep between health checks. """ self.monitor = HealthMonitorThread(self, sleep) self.monitor.start() def disable_health_monitor(self): self.health_monitor_enabled = False def get_ceph_cluster_iops(self): """ The function gets the IOPS from the ocs cluster Returns: Total IOPS in the cluster """ ceph_status = self.get_ceph_status() for item in ceph_status.split("\n"): if 'client' in item: iops = re.findall(r'\d+\.+\d+|\d\d*', item.strip()) iops = iops[2::1] if len(iops) == 2: iops_in_cluster = float(iops[0]) + float(iops[1]) else: iops_in_cluster = float(iops[0]) logging.info(f"IOPS in the cluster is {iops_in_cluster}") return iops_in_cluster def get_iops_percentage(self, osd_size=2): """ The function calculates the IOPS percentage of the cluster depending on number of osds in the cluster Args: osd_size (int): Size of 1 OSD in Ti Returns: IOPS percentage of the OCS cluster """ osd_count = count_cluster_osd() iops_per_osd = osd_size * constants.IOPS_FOR_1TiB_OSD iops_in_cluster = self.get_ceph_cluster_iops() osd_iops_limit = iops_per_osd * osd_count iops_percentage = (iops_in_cluster / osd_iops_limit) * 100 logging.info(f"The IOPS percentage of the cluster is {iops_percentage}%") return iops_percentage def get_cluster_throughput(self): """ Function to get the throughput of ocs cluster Returns: Throughput of the cluster in MiB/s """ ceph_status = self.get_ceph_status() for item in ceph_status.split("\n"): if 'client' in item: throughput_data = item.strip('client: ').split(",") throughput_data = throughput_data[:2:1] # Converting all B/s and KiB/s to MiB/s conversion = {'B/s': 0.000000976562, 'KiB/s': 0.000976562, 'MiB/s': 1} throughput = 0 for val in throughput_data: throughput += [ float(re.findall(r'\d+', val)[0]) * conversion[key] for key in conversion.keys() if key in val ][0] logger.info(f"The throughput is {throughput} MiB/s") return throughput def get_throughput_percentage(self): """ Function to get throughput percentage of the ocs cluster Returns: Throughput percentage of the cluster """ throughput_of_cluster = self.get_cluster_throughput() throughput_percentage = (throughput_of_cluster / constants.THROUGHPUT_LIMIT_OSD) * 100 logging.info(f"The throughput percentage of the cluster is {throughput_percentage}%") return throughput_percentage class HealthMonitorThread(threading.Thread): """ Class for monitoring ceph health status of CephCluster. If CephCluster will get to HEALTH_ERROR state it will save the ceph status to health_error_status variable in ceph_cluster object and will stop monitoring. It's up to user how to handle the error. """ def __init__(self, ceph_cluster, sleep=5): """ Constructor for ceph health status thread. Args: ceph_cluster (CephCluster): Reference to CephCluster object. sleep (int): Number of seconds to sleep between health checks. """ self.ceph_cluster = ceph_cluster self.sleep = sleep super(HealthMonitorThread, self).__init__() def run(self): self.ceph_cluster.health_monitor_enabled = True while self.ceph_cluster.health_monitor_enabled and ( not self.ceph_cluster.health_error_status ): sleep(self.sleep) health_status = self.ceph_cluster.get_ceph_health(detail=True) if "HEALTH_ERROR" in health_status: self.ceph_cluster.health_error_status = ( self.ceph_cluster.get_ceph_status() ) def validate_cluster_on_pvc(): """ Validate creation of PVCs for MON and OSD pods. Also validate that those PVCs are attached to the OCS pods Raises: AssertionError: If PVC is not mounted on one or more OCS pods """ # Get the PVCs for selected label (MON/OSD) ns = config.ENV_DATA['cluster_namespace'] ocs_pvc_obj = get_all_pvc_objs(namespace=ns) # Check all pvc's are in bound state pvc_names = [] for pvc_obj in ocs_pvc_obj: if (pvc_obj.name.startswith(constants.DEFAULT_DEVICESET_PVC_NAME) or pvc_obj.name.startswith(constants.DEFAULT_MON_PVC_NAME)): assert pvc_obj.status == constants.STATUS_BOUND, ( f"PVC {pvc_obj.name} is not Bound" ) logger.info(f"PVC {pvc_obj.name} is in Bound state") pvc_names.append(pvc_obj.name) mon_pods = get_pod_name_by_pattern('rook-ceph-mon', ns) osd_pods = get_pod_name_by_pattern('rook-ceph-osd', ns, filter='prepare') assert len(mon_pods) + len(osd_pods) == len(pvc_names), ( "Not enough PVC's available for all Ceph Pods" ) for ceph_pod in mon_pods + osd_pods: out = run_cmd(f'oc -n {ns} get pods {ceph_pod} -o yaml') out_yaml = yaml.safe_load(out) for vol in out_yaml['spec']['volumes']: if vol.get('persistentVolumeClaim'): claimName = vol.get('persistentVolumeClaim').get('claimName') logger.info(f"{ceph_pod} backed by pvc {claimName}") assert claimName in pvc_names, ( "Ceph Internal Volume not backed by PVC" ) def count_cluster_osd(): """ The function returns the number of cluster OSDs Returns: osd_count (int): number of OSD pods in current cluster """ storage_cluster_obj = storage_cluster.StorageCluster( resource_name=config.ENV_DATA['storage_cluster_name'], namespace=config.ENV_DATA['cluster_namespace'], ) storage_cluster_obj.reload_data() osd_count = ( int(storage_cluster_obj.data['spec']['storageDeviceSets'][0]['count']) * int(storage_cluster_obj.data['spec']['storageDeviceSets'][0]['replica']) ) return osd_count def validate_pdb_creation(): """ Validate creation of PDBs for MON, MDS and OSD pods. Raises: AssertionError: If required PDBs were not created. """ pdb_obj = ocp.OCP(kind='PodDisruptionBudget') item_list = pdb_obj.get().get('items') pdb_list = [item['metadata']['name'] for item in item_list] osd_count = count_cluster_osd() pdb_required = [constants.MDS_PDB, constants.MON_PDB] for num in range(osd_count): pdb_required.append(constants.OSD_PDB + str(num)) pdb_list.sort() pdb_required.sort() for required, given in zip(pdb_required, pdb_list): assert required == given, f"{required} was not created" logger.info(f"All required PDBs created: {pdb_required}") def get_osd_utilization(): """ Get osd utilization value Returns: osd_filled (dict): Dict of osd name and its used value i.e {'osd.1': 15.276289408185841, 'osd.0': 15.276289408185841, 'osd.2': 15.276289408185841} """ osd_filled = {} ceph_cmd = "ceph osd df" ct_pod = pod.get_ceph_tools_pod() output = ct_pod.exec_ceph_cmd(ceph_cmd=ceph_cmd) for osd in output.get('nodes'): osd_filled[osd['name']] = osd['utilization'] return osd_filled def validate_osd_utilization(osd_used=80): """ Validates osd utilization matches osd_used value Args: osd_used (int): osd used value Returns: bool: True if all osd values is equal or greater to osd_used. False Otherwise. """ _rc = True osd_filled = get_osd_utilization() for osd, value in osd_filled.items(): if int(value) >= osd_used: logger.info(f"{osd} used value {value}") else: _rc = False logger.warn(f"{osd} used value {value}") return _rc def get_pgs_per_osd(): """ Function to get ceph pg count per OSD Returns: osd_dict (dict): Dict of osd name and its used value i.e {'osd.0': 136, 'osd.2': 136, 'osd.1': 136} """ osd_dict = {} ceph_cmd = "ceph osd df" ct_pod = pod.get_ceph_tools_pod() output = ct_pod.exec_ceph_cmd(ceph_cmd=ceph_cmd) for osd in output.get('nodes'): osd_dict[osd['name']] = osd['pgs'] return osd_dict def get_balancer_eval(): """ Function to get ceph pg balancer eval value Returns: eval_out (float): Eval output of pg balancer """ ceph_cmd = "ceph balancer eval" ct_pod = pod.get_ceph_tools_pod() eval_out = ct_pod.exec_ceph_cmd(ceph_cmd=ceph_cmd).split(' ') return float(eval_out[3]) def get_pg_balancer_status(): """ Function to check pg_balancer active and mode is upmap Returns: bool: True if active and upmap is set else False """ # Check either PG balancer is active or not ceph_cmd = "ceph balancer status" ct_pod = pod.get_ceph_tools_pod() output = ct_pod.exec_ceph_cmd(ceph_cmd=ceph_cmd) # Check 'mode' is 'upmap', based on suggestion from Ceph QE # TODO: Revisit this if mode needs change. if output['active'] and output['mode'] == 'upmap': logging.info("PG balancer is active and mode is upmap") return True else: logging.error("PG balancer is not active") return False def validate_pg_balancer(): """ Validate either data is equally distributed to OSDs Returns: bool: True if osd data consumption difference is <= 2% else False """ # Check OSD utilization either pg balancer is active if get_pg_balancer_status(): eval = get_balancer_eval() osd_dict = get_pgs_per_osd() osd_min_pg_value = min(osd_dict.values()) osd_max_pg_value = max(osd_dict.values()) diff = osd_max_pg_value - osd_min_pg_value # TODO: Revisit this if pg difference value needs change # TODO: Revisit eval value if pg balancer mode changes from 'upmap' if diff <= 5 and eval <= 0.02: logging.info( f"Eval value is {eval} and pg distribution " f"difference is {diff} between high and low pgs per OSD" ) return True else: logging.error( f"Eval value is {eval} and pg distribution " f"difference is {diff} between high and low pgs per OSD" ) return False else: logging.info(f"pg_balancer is not active")
33.135329
99
0.612296
4ac8b85ae9895e91df48bfb342da53c9745f1964
4,483
py
Python
tests/util/test_ruamel_yaml.py
shanbs/home-assistant
818776d2b4f11e4f51992dc88bc0a6f9055833b2
[ "Apache-2.0" ]
3
2019-01-24T20:32:14.000Z
2022-03-22T14:25:48.000Z
tests/util/test_ruamel_yaml.py
shanbs/home-assistant
818776d2b4f11e4f51992dc88bc0a6f9055833b2
[ "Apache-2.0" ]
6
2021-02-08T21:02:40.000Z
2022-03-12T00:52:16.000Z
tests/util/test_ruamel_yaml.py
shanbs/home-assistant
818776d2b4f11e4f51992dc88bc0a6f9055833b2
[ "Apache-2.0" ]
3
2016-08-26T12:32:49.000Z
2020-02-26T21:01:35.000Z
"""Test Home Assistant ruamel.yaml loader.""" import os import unittest from tempfile import mkdtemp import pytest from ruamel.yaml import YAML from homeassistant.exceptions import HomeAssistantError import homeassistant.util.ruamel_yaml as util_yaml TEST_YAML_A = """\ title: My Awesome Home # Include external resources resources: - url: /local/my-custom-card.js type: js - url: /local/my-webfont.css type: css # Exclude entities from "Unused entities" view excluded_entities: - weblink.router views: # View tab title. - title: Example # Optional unique id for direct access /lovelace/${id} id: example # Optional background (overwrites the global background). background: radial-gradient(crimson, skyblue) # Each view can have a different theme applied. theme: dark-mode # The cards to show on this view. cards: # The filter card will filter entities for their state - type: entity-filter entities: - device_tracker.paulus - device_tracker.anne_there state_filter: - 'home' card: type: glance title: People that are home # The picture entity card will represent an entity with a picture - type: picture-entity image: https://www.home-assistant.io/images/default-social.png entity: light.bed_light # Specify a tab icon if you want the view tab to be an icon. - icon: mdi:home-assistant # Title of the view. Will be used as the tooltip for tab icon title: Second view cards: - id: test type: entities title: Test card # Entities card will take a list of entities and show their state. - type: entities # Title of the entities card title: Example # The entities here will be shown in the same order as specified. # Each entry is an entity ID or a map with extra options. entities: - light.kitchen - switch.ac - entity: light.living_room # Override the name to use name: LR Lights # The markdown card will render markdown text. - type: markdown title: Lovelace content: > Welcome to your **Lovelace UI**. """ TEST_YAML_B = """\ title: Home views: - title: Dashboard id: dashboard icon: mdi:home cards: - id: testid type: vertical-stack cards: - type: picture-entity entity: group.sample name: Sample image: /local/images/sample.jpg tap_action: toggle """ # Test data that can not be loaded as YAML TEST_BAD_YAML = """\ title: Home views: - title: Dashboard icon: mdi:home cards: - id: testid type: vertical-stack """ # Test unsupported YAML TEST_UNSUP_YAML = """\ title: Home views: - title: Dashboard icon: mdi:home cards: !include cards.yaml """ class TestYAML(unittest.TestCase): """Test lovelace.yaml save and load.""" def setUp(self): """Set up for tests.""" self.tmp_dir = mkdtemp() self.yaml = YAML(typ='rt') def tearDown(self): """Clean up after tests.""" for fname in os.listdir(self.tmp_dir): os.remove(os.path.join(self.tmp_dir, fname)) os.rmdir(self.tmp_dir) def _path_for(self, leaf_name): return os.path.join(self.tmp_dir, leaf_name+".yaml") def test_save_and_load(self): """Test saving and loading back.""" fname = self._path_for("test1") open(fname, "w+").close() util_yaml.save_yaml(fname, self.yaml.load(TEST_YAML_A)) data = util_yaml.load_yaml(fname, True) assert data == self.yaml.load(TEST_YAML_A) def test_overwrite_and_reload(self): """Test that we can overwrite an existing file and read back.""" fname = self._path_for("test2") open(fname, "w+").close() util_yaml.save_yaml(fname, self.yaml.load(TEST_YAML_A)) util_yaml.save_yaml(fname, self.yaml.load(TEST_YAML_B)) data = util_yaml.load_yaml(fname, True) assert data == self.yaml.load(TEST_YAML_B) def test_load_bad_data(self): """Test error from trying to load unserialisable data.""" fname = self._path_for("test3") with open(fname, "w") as fh: fh.write(TEST_BAD_YAML) with pytest.raises(HomeAssistantError): util_yaml.load_yaml(fname, True)
28.194969
74
0.627705
a6a9d7b90eb535e6e829e828cc2e02093a7a6c47
147
py
Python
conjur/util/ssl_utils/__init__.py
cyberark/cyberark-conjur-cli
2507e8769808643d89efa7e2496cfc14f505bd7e
[ "Apache-2.0" ]
null
null
null
conjur/util/ssl_utils/__init__.py
cyberark/cyberark-conjur-cli
2507e8769808643d89efa7e2496cfc14f505bd7e
[ "Apache-2.0" ]
2
2022-03-09T11:56:10.000Z
2022-03-14T14:53:15.000Z
conjur/util/ssl_utils/__init__.py
cyberark/cyberark-conjur-cli
2507e8769808643d89efa7e2496cfc14f505bd7e
[ "Apache-2.0" ]
null
null
null
""" Module holds the SSL utils of this project """ from conjur.util.ssl_utils.ssl_client import SSLClient from conjur.util.ssl_utils import errors
24.5
54
0.802721
6f40082c43300d4b684d558d100407a894e940b0
614
py
Python
scripts/auth_tool.py
shogo82148/JO_RI_bot
653008faf8356a6c6e2b44f0154f646774aff79b
[ "MIT" ]
null
null
null
scripts/auth_tool.py
shogo82148/JO_RI_bot
653008faf8356a6c6e2b44f0154f646774aff79b
[ "MIT" ]
null
null
null
scripts/auth_tool.py
shogo82148/JO_RI_bot
653008faf8356a6c6e2b44f0154f646774aff79b
[ "MIT" ]
null
null
null
#!/usr/local/bin/python # -*- coding: utf-8 -*- import tweepy if __name__ == "__main__": consumer_key = raw_input('Your Consumer Key:') consumer_secret = raw_input('Your Consumer Secret') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) # ユーザにアプリケーションの許可を求めるためのURLを表示 print 'Please access this URL: ' + auth.get_authorization_url() # PINを入力してもらう pin = raw_input('Please input verification PIN from twitter.com: ').strip() # Access Tokenの取得と表示 token = auth.get_access_token(verifier=pin) print 'Access token:' print ' Key: %s' % token.key print ' Secret: %s' % token.secret
26.695652
77
0.713355
f63913853b67339f55a10be7ee00a42a23275d99
11,827
py
Python
lisa/tests/staging/sched_android.py
Binse-Park/lisa_ARM
aa7767654c95bb2cc0a2dddecd5b82a7fcf5c746
[ "Apache-2.0" ]
null
null
null
lisa/tests/staging/sched_android.py
Binse-Park/lisa_ARM
aa7767654c95bb2cc0a2dddecd5b82a7fcf5c746
[ "Apache-2.0" ]
null
null
null
lisa/tests/staging/sched_android.py
Binse-Park/lisa_ARM
aa7767654c95bb2cc0a2dddecd5b82a7fcf5c746
[ "Apache-2.0" ]
null
null
null
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2019, Arm Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import os.path import abc from lisa.wlgen.rta import RTA, Periodic from lisa.tests.base import TestBundle, Result, ResultBundle, RTATestBundle, AggregatedResultBundle from lisa.trace import Trace, FtraceCollector, FtraceConf, requires_events from lisa.target import Target from lisa.utils import ArtifactPath from lisa.analysis.frequency import FrequencyAnalysis from lisa.analysis.tasks import TasksAnalysis class SchedTuneItemBase(RTATestBundle): """ Abstract class enabling rtapp execution in a schedtune group :param boost: The boost level to set for the cgroup :type boost: int :param prefer_idle: The prefer_idle flag to set for the cgroup :type prefer_idle: bool """ def __init__(self, res_dir, plat_info, boost, prefer_idle): super().__init__(res_dir, plat_info) self.boost = boost self.prefer_idle = prefer_idle @property def cgroup_configuration(self): return self.get_cgroup_configuration(self.plat_info, self.boost, self.prefer_idle) @classmethod def get_cgroup_configuration(cls, plat_info, boost, prefer_idle): attributes = { 'boost': boost, 'prefer_idle': int(prefer_idle) } return { 'name': 'lisa_test', 'controller': 'schedtune', 'attributes': attributes } @classmethod # Not annotated, to prevent exekall from picking it up. See # SchedTuneBase.from_target def from_target(cls, target, boost, prefer_idle, res_dir=None, ftrace_coll=None): """ .. warning:: `res_dir` is at the end of the parameter list, unlike most other `from_target` where it is the second one. """ return super().from_target(target, res_dir, boost=boost, prefer_idle=prefer_idle, ftrace_coll=ftrace_coll) @classmethod def _from_target(cls, target, res_dir, boost, prefer_idle, ftrace_coll=None): plat_info = target.plat_info rtapp_profile = cls.get_rtapp_profile(plat_info) cgroup_config = cls.get_cgroup_configuration(plat_info, boost, prefer_idle) cls._run_rtapp(target, res_dir, rtapp_profile, ftrace_coll, cgroup_config) return cls(res_dir, plat_info, boost, prefer_idle) class SchedTuneBase(TestBundle): """ Abstract class enabling the aggregation of ``SchedTuneItemBase`` :param test_bundles: a list of test bundles generated by multiple ``SchedTuneItemBase`` instances :type test_bundles: list """ def __init__(self, res_dir, plat_info, test_bundles): super().__init__(res_dir, plat_info) self.test_bundles = test_bundles @classmethod def from_target(cls, target:Target, res_dir:ArtifactPath=None, ftrace_coll:FtraceCollector=None) -> 'SchedTuneBase': """ Creates a SchedTuneBase bundle from the target. """ return super().from_target(target, res_dir, ftrace_coll=ftrace_coll) @classmethod def _from_target(cls, target, res_dir, ftrace_coll): return cls(res_dir, target.plat_info, list(cls._create_test_bundles(target, res_dir, ftrace_coll)) ) @classmethod @abc.abstractmethod def _create_test_bundles(cls, target, res_dir, ftrace_coll): """ Collects and yields a :class:`lisa.tests.base.ResultBundle` per test item. """ pass @classmethod def _create_test_bundle_item(cls, target, res_dir, ftrace_coll, item_cls, boost, prefer_idle): """ Creates and returns a TestBundle for a given item class, and a given schedtune configuration """ item_dir = ArtifactPath.join(res_dir, 'boost_{}_prefer_idle_{}'.format( boost, int(prefer_idle))) os.makedirs(item_dir) logger = cls.get_logger() logger.info('Running {} with boost={}, prefer_idle={}'.format( item_cls.__name__, boost, prefer_idle)) return item_cls.from_target(target, boost, prefer_idle, res_dir=item_dir, ftrace_coll=ftrace_coll) class SchedTuneFreqItem(SchedTuneItemBase): """ Runs a tiny RT rtapp task pinned to a big CPU at a given boost level and checks the frequency selection was performed accordingly. """ @classmethod def get_rtapp_profile(cls, plat_info): cpu = plat_info['capacity-classes'][-1][0] rtapp_profile = {} rtapp_profile['rta_stune'] = Periodic( duty_cycle_pct = 1, # very small task, no impact on freq w/o boost duration_s = 10, period_ms = 16, cpus = [cpu], # pin to big CPU, to focus on frequency selection sched_policy = 'FIFO' # RT tasks have the boost holding feature so # the frequency should be more stable, and we # shouldn't go to max freq in Android ) return rtapp_profile @requires_events(SchedTuneItemBase.trace_window.used_events, "cpu_frequency") def trace_window(self, trace): """ Set the boundaries of the trace window to ``cpu_frequency`` events before/after the task's start/end time """ rta_start, rta_stop = super().trace_window(trace) cpu = self.plat_info['capacity-classes'][-1][0] freq_df = trace.df_events('cpu_frequency') freq_df = freq_df[freq_df.cpu == cpu] # Find the frequency events before and after the task runs freq_start = freq_df[freq_df.index < rta_start].index[-1] freq_stop = freq_df[freq_df.index > rta_stop].index[0] return (freq_start, freq_stop) @FrequencyAnalysis.get_average_cpu_frequency.used_events def test_stune_frequency(self, freq_margin_pct=10) -> ResultBundle: """ Test that frequency selection followed the boost :param: freq_margin_pct: Allowed margin between estimated and measured average frequencies :type freq_margin_pct: int Compute the expected frequency given the boost level and compare to the real average frequency from the trace. Check that the difference between expected and measured frequencies is no larger than ``freq_margin_pct``. """ kernel_version = self.plat_info['kernel']['version'] if kernel_version.parts[:2] < (4, 14): self.get_logger().warning('This test requires the RT boost hold, but it may be disabled in {}'.format(kernel_version)) cpu = self.plat_info['capacity-classes'][-1][0] freqs = self.plat_info['freqs'][cpu] max_freq = max(freqs) # Estimate the target frequency, including sugov's margin, and round # into a real OPP boost = self.boost target_freq = min(max_freq, max_freq * boost / 80) target_freq = list(filter(lambda f: f >= target_freq, freqs))[0] # Get the real average frequency avg_freq = self.trace.analysis.frequency.get_average_cpu_frequency(cpu) distance = abs(target_freq - avg_freq) * 100 / target_freq res = ResultBundle.from_bool(distance < freq_margin_pct) res.add_metric("target freq", target_freq, 'kHz') res.add_metric("average freq", avg_freq, 'kHz') res.add_metric("boost", boost, '%') return res class SchedTuneFrequencyTest(SchedTuneBase): """ Runs multiple ``SchedTuneFreqItem`` tests at various boost levels ranging from 20% to 100%, then checks all succedeed. """ # Make sure exekall will always collect all events required by items ftrace_conf = SchedTuneFreqItem.ftrace_conf @classmethod def _create_test_bundles(cls, target, res_dir, ftrace_coll): for boost in range(20, 101, 20): yield cls._create_test_bundle_item(target, res_dir, ftrace_coll, SchedTuneFreqItem, boost, False) def test_stune_frequency(self, freq_margin_pct=10) -> AggregatedResultBundle: """ .. seealso:: :meth:`SchedTuneFreqItem.test_stune_frequency` """ item_res_bundles = [ item.test_stune_frequency(freq_margin_pct) for item in self.test_bundles ] return AggregatedResultBundle(item_res_bundles, 'boost') class SchedTunePlacementItem(SchedTuneItemBase): """ Runs a tiny RT-App task marked 'prefer_idle' at a given boost level and tests if it was placed on big-enough CPUs. """ @classmethod def get_rtapp_profile(cls, plat_info): rtapp_profile = {} rtapp_profile['rta_stune'] = Periodic( duty_cycle_pct = 1, duration_s = 3, period_ms = 16, ) return rtapp_profile @TasksAnalysis.df_task_total_residency.used_events def test_stune_task_placement(self, bad_cpu_margin_pct=10) -> ResultBundle: """ Test that the task placement satisfied the boost requirement Check that top-app tasks spend no more than ``bad_cpu_margin_pct`` of their time on CPUs that don't have enough capacity to serve their boost. """ assert len(self.rtapp_tasks) == 1 task = self.rtapp_tasks[0] df = self.trace.analysis.tasks.df_task_total_residency(task) # Find CPUs without enough capacity to meet the boost boost = self.boost cpu_caps = self.plat_info['cpu-capacities'] ko_cpus = list(filter(lambda x: (cpu_caps[x] / 10.24) < boost, cpu_caps)) # Count how much time was spend on wrong CPUs time_ko = 0 total_time = 0 for cpu in cpu_caps: t = df['runtime'][cpu] if cpu in ko_cpus: time_ko += t total_time += t pct_ko = time_ko * 100 / total_time res = ResultBundle.from_bool(pct_ko < bad_cpu_margin_pct) res.add_metric("time spent on inappropriate CPUs", pct_ko, '%') res.add_metric("boost", boost, '%') return res class SchedTunePlacementTest(SchedTuneBase): """ Runs multiple ``SchedTunePlacementItem`` tests with prefer_idle set and typical top-app boost levels, then checks all succedeed. """ # Make sure exekall will always collect all events required by items ftrace_conf = SchedTunePlacementItem.ftrace_conf @classmethod def _create_test_bundles(cls, target, res_dir, ftrace_coll): # Typically top-app tasks are boosted by 10%, or 50% during touchboost for boost in [10, 50]: yield cls._create_test_bundle_item(target, res_dir, ftrace_coll, SchedTunePlacementItem, boost, True) def test_stune_task_placement(self, margin_pct=10) -> AggregatedResultBundle: """ .. seealso:: :meth:`SchedTunePlacementItem.test_stune_task_placement` """ item_res_bundles = [ item.test_stune_task_placement(margin_pct) for item in self.test_bundles ] return AggregatedResultBundle(item_res_bundles, 'boost') # vim :set tabstop=4 shiftwidth=4 textwidth=80 expandtab
37.665605
130
0.660523
7b3a568bf35fe2a3e0d80d4ce97584d98f9d7b40
1,992
py
Python
pytest_splunk_env/splunk/helmut/util/basefileutils.py
splunk/pytest-splunk-env
63ce423446f54869e4530627ff7463ea3e26c38a
[ "Apache-2.0" ]
1
2021-03-18T23:35:08.000Z
2021-03-18T23:35:08.000Z
pytest_splunk_env/splunk/helmut/util/basefileutils.py
splunk/pytest-splunk-env
63ce423446f54869e4530627ff7463ea3e26c38a
[ "Apache-2.0" ]
null
null
null
pytest_splunk_env/splunk/helmut/util/basefileutils.py
splunk/pytest-splunk-env
63ce423446f54869e4530627ff7463ea3e26c38a
[ "Apache-2.0" ]
1
2022-03-27T16:55:33.000Z
2022-03-27T16:55:33.000Z
# SPDX-FileCopyrightText: 2020 Splunk Inc. # # SPDX-License-Identifier: Apache-2.0 from pytest_splunk_env.splunk.helmut.log import Logging class BaseFileUtils(Logging): def isfile(self, path): raise NotImplementedError("Function not implemented") def isdir(self, path): raise NotImplementedError("Function not implemented") def delete_file(self, file): raise NotImplementedError("Function not implemented") def get_file_contents(self, path): raise NotImplementedError("Function not implemented") def write_file_contents(self, path, contents, mode="w"): raise NotImplementedError("Function not implemented") def copy_file(self, source, target): raise NotImplementedError("Function not implemented") def move_file(self, source, target): raise NotImplementedError("Function not implemented") def copy_directory(self, source, target, ignore=None): raise NotImplementedError("Function not implemented") def compare_files(self, file1, file2): raise NotImplementedError("Function not implemented") def move_directory(self, source, target, ignore=None): raise NotImplementedError("Function not implemented") def force_remove_file(self, path): raise NotImplementedError("Function not implemented") def force_remove_directory(self, path): raise NotImplementedError("Function not implemented") def force_copy_file(self, source, target): raise NotImplementedError("Function not implemented") def force_move_file(self, source, target): raise NotImplementedError("Function not implemented") def force_move_directory(self, source, target): raise NotImplementedError("Function not implemented") def force_copy_directory(self, source, target): raise NotImplementedError("Function not implemented") def create_directory(self, path): raise NotImplementedError("Function not implemented")
33.762712
61
0.728414
cc02386383b1887637d54999fd2ccb2df646cb4d
644
py
Python
setup.py
fanzeyi/typestruct
947e458e865ecf58c4c0848a05f53e9da3d9e686
[ "MIT" ]
3
2018-09-13T06:54:49.000Z
2018-09-13T09:47:08.000Z
setup.py
fanzeyi/typestruct
947e458e865ecf58c4c0848a05f53e9da3d9e686
[ "MIT" ]
null
null
null
setup.py
fanzeyi/typestruct
947e458e865ecf58c4c0848a05f53e9da3d9e686
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="typestruct", version="0.1.1", author="Zeyi Fan", author_email="i@zr.is", description="struct serialization/deserialization with typing", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/fanzeyi/typestruct", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
26.833333
67
0.658385
374e71e4d04a6cd145d1dd571539f663a719189d
3,902
py
Python
code/python/third_party/Deadline/DeadlineConnect.py
mikeroberts3000/ml-hypersim
75b363ee52fbdbd0cc9b554c34c1aadea404183e
[ "AML" ]
10
2020-11-17T00:33:42.000Z
2022-02-16T23:31:58.000Z
code/python/third_party/Deadline/DeadlineConnect.py
mikeroberts3000/ml-hypersim
75b363ee52fbdbd0cc9b554c34c1aadea404183e
[ "AML" ]
null
null
null
code/python/third_party/Deadline/DeadlineConnect.py
mikeroberts3000/ml-hypersim
75b363ee52fbdbd0cc9b554c34c1aadea404183e
[ "AML" ]
null
null
null
import sys import subprocess import os import json import traceback from . import Jobs from . import SlavesRenderingJob from . import JobReports from . import TaskReports from . import Limits from . import Tasks from . import Pulse from . import Repository from . import MappedPaths from . import MaximumPriority from . import Pools from . import Groups from . import Plugins from . import Slaves from . import Users from . import Balancer from .ConnectionProperty import ConnectionProperty #http://docs.python.org/2/library/httplib.html class DeadlineCon: """ Object used by user to communicate with the web service. Host name of the Web Service, as well as the port number the Web Service is listening on are required for construction. Call other API functions through this object. """ def __init__(self, host, port): """ Constructs an instance of DeadlineCon. Params: host name of the Web Service (string). port number the Web Service is listening on (integer). """ #Builds the ConnectionProperty object used for sending requests. address = host+":"+str(port) self.connectionProperties = ConnectionProperty(address) #The different request groups use the ConnectionProperty object to send their requests. self.Jobs = Jobs.Jobs(self.connectionProperties) self.SlavesRenderingJob = SlavesRenderingJob.SlavesRenderingJob(self.connectionProperties) self.Tasks = Tasks.Tasks(self.connectionProperties) self.TaskReports = TaskReports.TaskReports(self.connectionProperties) self.JobReports = JobReports.JobReports(self.connectionProperties) self.LimitGroups = Limits.LimitGroups(self.connectionProperties) self.Pulse = Pulse.Pulse(self.connectionProperties) self.Repository = Repository.Repository(self.connectionProperties) self.MappedPaths = MappedPaths.MappedPaths(self.connectionProperties) self.MaximumPriority = MaximumPriority.MaximumPriority(self.connectionProperties) self.Pools = Pools.Pools(self.connectionProperties) self.Groups = Groups.Groups(self.connectionProperties) self.Plugins = Plugins.Plugins(self.connectionProperties) self.Slaves = Slaves.Slaves(self.connectionProperties) self.Users = Users.Users(self.connectionProperties) self.Balancer = Balancer.Balancer(self.connectionProperties) def EnableAuthentication(self, enable=True): """ Toggles authentication mode. If enabled, requests sent through this DeadlineCon object will attempt authentication with the current user name and password credentials. If the authentication credentials have not been set, authentication will fail. Required to be enabled if the Web Service requires authentication. Params: whether to disable or enable authentication mode (enabled by default, bool). """ self.connectionProperties.EnableAuthentication(enable) def SetAuthenticationCredentials(self, username, password, enable=True): """ Sets the authentication credentials to be used when attempting authentication. Params: the username credential (string). the password credential (string). whether to enable authentication mode or not (enabled by default, bool). """ self.connectionProperties.SetAuthentication(username, password) self.connectionProperties.EnableAuthentication(enable) def AuthenticationModeEnabled(self): """ Returns whether authentication mode is enabled for this DeadlineCon or not. If not, then authentication will fail if the Web Service requires authentication. """ return self.connectionProperties.AuthenticationEnabled()
47.012048
179
0.717837
140e9a7a95f6f4ecd0d02ea38bdcc88d9bc9c9a0
54
py
Python
fastai/version.py
zhanlliu/fastai_study
0b136a2fd40cbcea4d51a33efc7e7fee24b5bc08
[ "Apache-2.0" ]
null
null
null
fastai/version.py
zhanlliu/fastai_study
0b136a2fd40cbcea4d51a33efc7e7fee24b5bc08
[ "Apache-2.0" ]
null
null
null
fastai/version.py
zhanlliu/fastai_study
0b136a2fd40cbcea4d51a33efc7e7fee24b5bc08
[ "Apache-2.0" ]
null
null
null
__all__ = ['__version__'] __version__ = '1.0.30.dev0'
18
27
0.685185
f702829a908f8235e9093bc97a9d0edce1997f1f
379
py
Python
pokemon/permissions.py
pessman/pokemon_utils
cbe06ebe323cb38a35846274d812bdbe8d0ae8ca
[ "MIT" ]
1
2019-03-11T04:12:50.000Z
2019-03-11T04:12:50.000Z
pokemon/permissions.py
pessman/pokemon_utils
cbe06ebe323cb38a35846274d812bdbe8d0ae8ca
[ "MIT" ]
null
null
null
pokemon/permissions.py
pessman/pokemon_utils
cbe06ebe323cb38a35846274d812bdbe8d0ae8ca
[ "MIT" ]
2
2019-03-13T03:17:29.000Z
2019-04-04T20:06:50.000Z
from rest_framework.permissions import SAFE_METHODS, BasePermission class IsAdminOrReadOnly(BasePermission): """ The request is authenticated as an Admin user or is Read Only """ def has_permission(self, request, view): return bool( request.method in SAFE_METHODS or request.user and request.user.is_staff )
25.266667
67
0.662269
2ee193365add316a39099213870c2518c80ab4af
3,272
py
Python
examples/rdf_star_recursive.py
pragya16067/Sweb_Project_RDF-
92506cc78e6f5d78ae5f784f818310174635a6af
[ "BSD-3-Clause" ]
null
null
null
examples/rdf_star_recursive.py
pragya16067/Sweb_Project_RDF-
92506cc78e6f5d78ae5f784f818310174635a6af
[ "BSD-3-Clause" ]
null
null
null
examples/rdf_star_recursive.py
pragya16067/Sweb_Project_RDF-
92506cc78e6f5d78ae5f784f818310174635a6af
[ "BSD-3-Clause" ]
null
null
null
from rdflib import Graph from rdflib.namespace import RDF, Namespace from pyparsing import ParseException # For graphs with multiple rdf reification/* statements rdf_graph = """ PREFIX ex:<http://example.org/> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf:<http://xmlns.com/foaf/0.1/> PREFIX dct:<http://purl.org/dc/terms/> ex:bob foaf:name "Bob" ; foaf:knows _:s2 . _:s rdf:type rdf:Statement ; rdf:subject ex:bob ; rdf:predicate foaf:knows ; rdf:object _:s2 . _:s2 rdf:type rdf:Statement ; rdf:subject ex:alice ; rdf:predicate foaf:name ; rdf:object "Alice" . _:s dct:creator <http://example.com/crawlers#c1> ; dct:source <http://example.net/bob.html> . _:s2 dct:source <http://example.net/alice.html> . ex:welles foaf:name "John Welles" ; ex:mentioned ex:kubrick . ex:kubrick foaf:name "Stanley Kubrick" ; ex:influencedBy ex:welles . _:s1 rdf:type rdf:Statement ; rdf:subject ex:kubrick ; rdf:predicate ex:influencedBy ; rdf:object ex:welles . _:s1 dct:creator <http://example.com/names#examples> ; dct:source <http://example.net/people.html> . """ sparql_query = """ PREFIX ex:<http://example.org/> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf:<http://xmlns.com/foaf/0.1/> PREFIX dct:<http://purl.org/dc/terms/> SELECT ?x ?y ?srcX ?srcY WHERE { ?x foaf:knows ?r2 . ?r rdf:type rdf:Statement ; rdf:subject ?x ; rdf:predicate foaf:knows ; rdf:object ?r2 ; dct:source ?srcX . ?r2 rdf:type rdf:Statement ; rdf:subject ?y ; rdf:predicate foaf:name ; rdf:object ?name ; dct:source ?srcY } """ rdf_Star_graph = """ PREFIX ex:<http://example.org/> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf:<http://xmlns.com/foaf/0.1/> PREFIX dct:<http://purl.org/dc/terms/> ex:bob foaf:name "Bob" . <<ex:bob foaf:knows <<ex:alice foaf:name "Alice">>>> dct:creator <http://example.com/crawlers#c1> ; dct:source <http://example.net/bob.html> . <<ex:alice foaf:name "Alice">> dct:source <http://example.net/alice.html> . ex:welles foaf:name "John Welles" ; ex:mentioned ex:kubrick . ex:kubrick foaf:name "Stanley Kubrick" . <<ex:kubrick ex:influencedBy ex:welles>> dct:creator <http://example.com/names#examples> ; dct:source <http://example.net/people.html> . """ sparql_star_query = """ PREFIX ex:<http://example.org/> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX foaf:<http://xmlns.com/foaf/0.1/> PREFIX dct:<http://purl.org/dc/terms/> SELECT ?x ?y ?srcX ?srcY WHERE { <<ex:bob foaf:knows <<?y foaf:name ?name>>>> dct:source ?srcX . <<?y foaf:name ?name>> dct:source ?srcY .} """ def test_rdf_basic(): g = Graph() g.parse(data=rdf_graph, format="turtle") for row in g.query(sparql_query): print(row) def test_rdf_star(): g = Graph() g.parse(data=rdf_Star_graph, format="turtle") for row in g.query(sparql_query): print(row) if __name__ == '__main__': #test_rdf_basic() test_rdf_star()
27.965812
103
0.619193
d708dd0d19d0b303d001ce5350f035020caa6db8
25,603
py
Python
telegram-bot.py
0x5eba/RecommendationBot
e65916a8273f1d4c25021a1e1f13eaae431d4cb4
[ "MIT" ]
null
null
null
telegram-bot.py
0x5eba/RecommendationBot
e65916a8273f1d4c25021a1e1f13eaae431d4cb4
[ "MIT" ]
null
null
null
telegram-bot.py
0x5eba/RecommendationBot
e65916a8273f1d4c25021a1e1f13eaae431d4cb4
[ "MIT" ]
null
null
null
import logging import telegram from telegram import InlineKeyboardButton, InlineKeyboardMarkup, InlineQueryResultArticle, InputTextMessageContent from telegram.ext import Updater, CommandHandler, CallbackQueryHandler, Filters, MessageHandler, InlineQueryHandler from telegram.ext.dispatcher import run_async import numpy as np import copy, time from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.metrics.pairwise import linear_kernel, cosine_similarity from read_csv import get_titles, get_most_poular, add_rating, add_user, user_gender, get_row_title from hybrid import final_res, movies_from_last_one, list_movies_seen_user, list_movies_seen_user, predict_one_movie from similar_user import get_similar_user from movies_cinema_imdb import final_cinema_movies, get_all_cinema_movies logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) logging.getLogger("requests").setLevel(logging.WARNING) logger = logging.getLogger(__name__) telegram.constants.MAX_MESSAGE_LENGTH = 10000 telegram.constants.MAX_CAPTION_LENGTH = 1000 flag_input_start = False # title deve essere in lowercase # partial se vuole tutti i possibili risulati di quel tiolo, altrimenti resituisce un nome solo (se lo trova) def search(title, partial=True): possible_original_title = [] titles_movies = get_titles() for t in titles_movies: t_copy = copy.deepcopy(t).lower() if title in t_copy: possible_original_title.append(t) if partial: return possible_original_title if possible_original_title: # prendo quello che ha la lunghezza piu' vicina a "title" original_title = possible_original_title[0] for t in possible_original_title: if abs(len(title)-len(t)) < abs(len(title)-len(original_title)): original_title = t return original_title return None # creo l'interfaccia per tutti i possibili titoli def input_movie_user(bot, update, possible_original_title, rate=0, info=False): keyboard = [[i] for i in range(len(possible_original_title))] count = 0 if info: for title in possible_original_title: keyboard[count][0] = InlineKeyboardButton(title, callback_data="5 " + title) count += 1 elif rate == 0: for title in possible_original_title: keyboard[count][0] = InlineKeyboardButton(str(title), callback_data="3 " + str(title)) count += 1 else: for title in possible_original_title: keyboard[count][0] = InlineKeyboardButton(title, callback_data="4 " + title + " || " + str(rate)) count += 1 try: reply_markup = InlineKeyboardMarkup(keyboard) if len(possible_original_title) == 1: update.message.reply_text('Is This?', reply_markup=reply_markup) else: update.message.reply_text('Which one?', reply_markup=reply_markup) except: chat_id = update.message.chat_id bot.send_message(chat_id=chat_id, text="Invalid name \n[Too short/long, or does't exist]") bot.send_message(chat_id, 'Insert the name of the movie', reply_markup=telegram.ForceReply(force_reply=True)) flag_input_start = True @run_async def start(bot, update): movies = get_most_poular() chat_id = update.message.chat_id name = str(update['message']['chat']['username']) if len(name) < 5: bot.send_message(chat_id=chat_id, text="\t-- !ERROR! --\nYour data won't be save\nYou must have a username set on Telegram\n"\ "[How to do it](https://telegram.org/blog/usernames-and-secret-chats-v2)", parse_mode=telegram.ParseMode.MARKDOWN) return kb = [ [telegram.KeyboardButton('/rating'), telegram.KeyboardButton('/movies')], [telegram.KeyboardButton('/rate'), telegram.KeyboardButton('/search'), telegram.KeyboardButton('/list')], [telegram.KeyboardButton('/friend'), telegram.KeyboardButton('/cinema')] ] kb_markup = telegram.ReplyKeyboardMarkup(kb, resize_keyboard=True) # keyboard = [[i] for i in range(len(movies)+1)] # keyboard[0][0] = InlineKeyboardButton("Write the name manually", callback_data="2 ") keyboard = [[i] for i in range(len(movies))] count = 0 for title, img in movies: keyboard[count][0] = InlineKeyboardButton(title, callback_data="3 " + title) count += 1 reply_markup = InlineKeyboardMarkup(keyboard) if list_movies_seen_user(name, True) > 0: update.message.reply_text('Hi @' + name + "\nYou have already started the adventure ;)\n/rating to add feedback, or /movies to get your recommended movies", reply_markup=kb_markup) else: bot.send_message(chat_id=chat_id, text="Hi @" + name, reply_markup=kb_markup) msg = "Here there is a quick review of the available commands:\n\n" +\ "rate - Rate a movie { /rate Interstellar 5 }\n" +\ "search - Get info about a movie { /search Interstellar }\n" +\ "list - Get the list of movies rated by you { /list }\n" +\ "rating - Add rates to movies { /rating }\n" +\ "movies - Recommended movies { /movies }\n" +\ "friend - Find a person similar to you { /friend }\n" +\ "cinema - Recommended movies at the cinema now { /cinema }" bot.send_message(chat_id=chat_id, text=msg, reply_markup=kb_markup) update.message.reply_text("Let begin to know each other ;)\nChoose or search (see /rate) your favorite movie", reply_markup=reply_markup) # def contact(bot, update): # contact_keyboard = telegram.KeyboardButton(text="send_contact", request_contact=True) # custom_keyboard = [[contact_keyboard]] # reply_markup = telegram.ReplyKeyboardMarkup(custom_keyboard) # chat_id = update.message.chat_id # bot.send_message(chat_id=chat_id, # text="Would you mind sharing your contact with me?", # reply_markup=reply_markup) @run_async def button(bot, update): query = update.callback_query chat_id = query.message.chat_id option = str(query.data.split(' ')[0]) # # INPUT USER # if option == "2": # global flag_input_start # bot.send_message(chat_id, 'Insert the name of the movie', reply_markup=telegram.ForceReply(force_reply=True)) # flag_input_start = Truecheck_user_exist # SHOW MOVIES AND RATING if option == "3": title = ' '.join(query.data.split(' ')[1:]) user_name = str(update['callback_query']['from_user']['username']) bot.edit_message_text(text="Selected option: {0}".format(title), chat_id=chat_id, message_id=query.message.message_id) keyboard = [ [ InlineKeyboardButton("1", callback_data="4 " + title + " || 1"), InlineKeyboardButton("2", callback_data="4 " + title + " || 2"), InlineKeyboardButton("3", callback_data="4 " + title + " || 3") ], [ InlineKeyboardButton("4", callback_data="4 " + title + " || 4"), InlineKeyboardButton("5", callback_data="4 " + title + " || 5") ] ] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='Insert your personal rating for the movie', reply_markup=reply_markup) # SAVE AND ASK MOVIE AGAIN elif option == "4": option2 = ' '.join(query.data.split(' ')[1:]) user_name = str(update['callback_query']['from_user']['username']) title, rating = option2.split(' || ') bot.edit_message_text(text="{0}/5 for {1}".format(int(rating), title), chat_id=chat_id, message_id=query.message.message_id) add_rating(user_name, title, int(rating)) recommended_movies = movies_from_last_one(str(user_name)) keyboard = [[i] for i in range(len(recommended_movies))] count = 0 for title, value in recommended_movies: keyboard[count][0] = InlineKeyboardButton(str(title), callback_data="3 " + str(title)) count += 1 reply_markup = InlineKeyboardMarkup(keyboard) n_movies = list_movies_seen_user(user_name, True) if n_movies == 1: bot.send_message(chat_id=chat_id, text='Nice choice!\nNow what', reply_markup=reply_markup) elif n_movies == 2: bot.send_message(chat_id=chat_id, text='Ok then one more?', reply_markup=reply_markup) elif n_movies == 3: msg = "Good job! Now you are ready to continue your adventure without worries\n" +\ "When you think to be ready do /movies to get your recommended movies\n"+ \ 'Choose a movie to rate' bot.send_message(chat_id=chat_id, text=msg, reply_markup=reply_markup) elif n_movies == 5: msg = "Feel free to send me some feedback about the bot [link](https://goo.gl/forms/02lDSAURiQq2Cnzg1)" bot.send_message(chat_id=chat_id, text=msg, reply_markup=reply_markup, parse_mode=telegram.ParseMode.MARKDOWN) bot.send_message(chat_id=chat_id, text='Choose a movie to rate', reply_markup=reply_markup) else: bot.send_message(chat_id=chat_id, text='Choose a movie to rate', reply_markup=reply_markup) # INFO MOVIE elif option == "5": user_name = str(update['callback_query']['from_user']['username']) title = ' '.join(query.data.split(' ')[1:]) row_title = get_row_title(title) predict = None overview = None try: overview = row_title['overview'].values[0] except: overview = "" try: predict = predict_one_movie(user_name, int(row_title['id'].values[0])) except: predict = "No info" message = "*" + str(row_title['title'].values[0]).upper() + "* \n" + \ "*Year Release*: " + str(int(row_title['year'].values[0])) + "\n" + \ "*Genres*: " + ','.join([str(i) for i in row_title['genres']]) + "\n" + \ "*Runtime*: " + str(int(row_title['runtime'].values[0])) + " minutes\n" + \ "*Possible Rate*: " + str(predict) + "\n" +\ "*Overview*:\n" + str(overview) # "[How to do it](https://telegram.org/blog/usernames-and-secret-chats-v2)" keyboard = [[InlineKeyboardButton("Trailer", url="https://www.youtube.com/results?search_query=" + str(title) + " trailer")]] reply_markup = InlineKeyboardMarkup(keyboard) bot.edit_message_text(chat_id=chat_id, text=message, message_id=query.message.message_id, parse_mode=telegram.ParseMode.MARKDOWN, reply_markup=reply_markup) bot.send_photo(chat_id=chat_id, photo="https://image.tmdb.org/t/p/original/" + str(row_title['poster_path'].values[0])) # YES or NO for /friend + ask GENDER elif option == "6": answer = query.data.split(' ')[1] user_name = str(update['callback_query']['from_user']['username']) if answer == "yes": bot.edit_message_text(chat_id=chat_id, text="Welcome to this amazing feature :D\n", message_id=query.message.message_id) keyboard = [[InlineKeyboardButton("Male", callback_data="7 male"), InlineKeyboardButton("Female", callback_data="7 female")]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='Now I need to know your gender and your age\nAre you a boy or a girl?', reply_markup=reply_markup) else: bot.edit_message_text(chat_id=chat_id, text="I can't continue without your agreement :(", message_id=query.message.message_id) # GENDER + ask AGE elif option == "7": answer = query.data.split(' ')[1] user_name = str(update['callback_query']['from_user']['username']) keyboard = [ [InlineKeyboardButton("1-10", callback_data="8 " + answer + " 1"), InlineKeyboardButton("11-20", callback_data="8 " + answer + " 2"), InlineKeyboardButton("21-30", callback_data="8 " + answer + " 3")], [InlineKeyboardButton("31-40", callback_data="8 " + answer + " 4"), InlineKeyboardButton("41-50", callback_data="8 " + answer + " 5"), InlineKeyboardButton("50+", callback_data="8 " + answer + " 6")] ] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='And what about your age range?', reply_markup=reply_markup) # SAVE USER elif option == "8": user_name = str(update['callback_query']['from_user']['username']) gender = query.data.split(' ')[1] age = query.data.split(' ')[2] add_user(user_name, gender, age) bot.send_message(chat_id=chat_id, text='Nice to meet you :)') similar_user, percent_similarity = get_similar_user(user_name) if similar_user == "": bot.send_message(chat_id=chat_id, text='No user found :(') else: gender_user = user_gender(user_name) if gender_user != user_gender(similar_user): bot.send_message(chat_id=chat_id, text='WooW! Soo lucky ;)\n@' + similar_user + " with a similarity of " + percent_similarity + "%") else: bot.send_message(chat_id=chat_id, text="Here it is a person with tastes similar to yours\n@" + similar_user +\ " with a similarity of " + percent_similarity + "%") # LIST MOVIES AT CINEMA + RECOMMENDED CINEMA MOVIES elif option == "9": user_name = str(update['callback_query']['from_user']['username']) answer = query.data.split(' ')[1] if answer == "1": all_cinema_movies = get_all_cinema_movies() keyboard = [[i] for i in range(len(all_cinema_movies))] count = 0 for title, available in all_cinema_movies: if available == "": keyboard[count][0] = InlineKeyboardButton(str(title), callback_data="5 " + str(title)) else: keyboard[count][0] = InlineKeyboardButton(str(title) + " [" + str(available) + "]", callback_data="5 " + str(title)) count += 1 reply_markup = InlineKeyboardMarkup(keyboard) bot.edit_message_text(chat_id=chat_id, text='Best movies at cinema for you ;)\nClick one to have more info', reply_markup=reply_markup, message_id=query.message.message_id) else: bot.edit_message_text(chat_id=chat_id, text="Have you already searched for the nearest cinema? ;)\nPlease wait some seconds", message_id=query.message.message_id) recommended_movies = final_cinema_movies(user_name) keyboard = [[i] for i in range(len(recommended_movies))] count = 0 for title, rate in recommended_movies: keyboard[count][0] = InlineKeyboardButton(str(title), callback_data="5 " + str(title)) count += 1 reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='Here it is your recommanded movies :)\nHave fun at cinema ;)\nClick one to have more info', reply_markup=reply_markup) # @run_async # def input_user(bot, update): # global flag_input_start # chat_id = update.message.chat_id # if flag_input_start == True: # flag_input_start = False # title = str(update.message.text).lower() # user_name = str(update['message']['chat']['username']) # possible_original_title = search(title) # if possible_original_title: # input_movie_user(bot, update, possible_original_title) # else: # bot.send_message(chat_id=chat_id, text="Invalid name \n[Too short/long, or does't exist]") @run_async def rate_movie(bot, update, args): chat_id = update.message.chat_id if len(args) < 1: bot.send_message(chat_id=chat_id, text="Invalid argument: /rate name [rate]\nExample:\n\t/rate Interstellar 5") else: title, rate = '', '' if args[-1].isdigit(): if not int(args[-1]) in [1, 2, 3, 4, 5]: bot.send_message(chat_id=chat_id, text="Invalid rate \n[Must be 1,2,3,4 or 5]") return title, rate = ' '.join(args[:-1]), args[-1] else: title = ' '.join(args) possible_original_title = search(title.lower()) if len(possible_original_title): if rate: input_movie_user(bot, update, possible_original_title, rate) else: input_movie_user(bot, update, possible_original_title) else: bot.send_message(chat_id=chat_id, text="Invalid name \n[Too short/long, or does't exist]") @run_async def search_movie(bot, update, args): chat_id = update.message.chat_id if len(args) < 1: bot.send_message(chat_id=chat_id, text="Invalid argument: /search name\nExample:\n\t/search Interstellar") else: title = ' '.join(args) possible_original_title = search(title.lower()) if len(possible_original_title): input_movie_user(bot, update, possible_original_title, info=True) else: bot.send_message(chat_id=chat_id, text="Invalid name \n[Too short/long, or does't exist]") @run_async def rating_movies(bot, update): user_name = str(update['message']['chat']['username']) chat_id = update.message.chat_id recommended_movies = movies_from_last_one(user_name) if len(recommended_movies) < 1: bot.send_message(chat_id=chat_id, text='You should rate same movie befor start.\n/start to start') return keyboard = [[i] for i in range(len(recommended_movies))] count = 0 for title, value in recommended_movies: keyboard[count][0] = InlineKeyboardButton(str(title), callback_data="3 " + str(title)) count += 1 reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='Choose a movie to rate', reply_markup=reply_markup) @run_async def get_best_movie(bot, update): user_name = str(update['message']['chat']['username']) chat_id = update.message.chat_id bot.send_message(chat_id=chat_id, text="Remember to do /rating to continue the adventure!\nPlease wait some seconds for the recommendetion") recommended_movies = final_res(user_name) if len(recommended_movies) < 1: bot.send_message(chat_id=chat_id, text='You should rate same movie befor start.\n/start to start') return keyboard = [[i] for i in range(len(recommended_movies))] count = 0 for title, rate in recommended_movies: keyboard[count][0] = InlineKeyboardButton(str(title) + " -> " + str(rate)[:5], callback_data="5 " + str(title)) count += 1 reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='Here it is your recommanded movies :)\nClick one to have more info', reply_markup=reply_markup) @run_async def get_list_movies(bot, update): user_name = str(update['message']['chat']['username']) chat_id = update.message.chat_id lm = list_movies_seen_user(user_name) if len(lm) == 0: bot.send_message(chat_id=chat_id, text='You should rate same movie befor start.\n/start to start') else: bot.send_message(chat_id=chat_id, text='\n'.join(lm)) @run_async def find_friend(bot, update): user_name = str(update['message']['chat']['username']) chat_id = update.message.chat_id if list_movies_seen_user(user_name, True) < 10: bot.send_message(chat_id=chat_id, text='You have to rate at least 10 movies before get into this section\n/rating to continue') return gender_user = user_gender(user_name) if not gender_user: bot.send_message(chat_id=chat_id, text='In this section you can find a friend ( or maybe something else ;) ) to watch a movie with') keyboard = [[InlineKeyboardButton("Yes", callback_data="6 yes"), InlineKeyboardButton("No", callback_data="6 no")]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text='But first you have to agree to share your personal information with other people\nDo you agree?', reply_markup=reply_markup) else: similar_user, percent_similarity = get_similar_user(user_name) if similar_user == "": bot.send_message(chat_id=chat_id, text='No user found :(') else: if gender_user != user_gender(similar_user): bot.send_message(chat_id=chat_id, text='WooW! Soo lucky ;)\n@' + similar_user + " with a similarity of " + percent_similarity + "%") else: bot.send_message(chat_id=chat_id, text="Here it is a person with tastes similar to yours\n@" + similar_user +\ " with a similarity of " + percent_similarity + "%") @run_async def movies_cinema(bot, update): user_name = str(update['message']['chat']['username']) chat_id = update.message.chat_id lm = list_movies_seen_user(user_name) if len(lm) == 0: bot.send_message(chat_id=chat_id, text='You should rate same movie befor start.\n/start to start') else: msg = "Choose an option:\n1) Show the most popular movies at cinema now\n" +\ "2) A recommendetion of the best movies, based on your preference, to watch at cinema now!" keyboard = [[InlineKeyboardButton("1", callback_data="9 1"), InlineKeyboardButton("2", callback_data="9 2")]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(chat_id=chat_id, text=msg, reply_markup=reply_markup) # @run_async # def inline_movies(bot, update): # user_name = str(update['inline_query']['from_user']['username']) # chat_id = update.inline_query.from_user.id # query = update.inline_query.query # results = list() # if query == 'movies' or query == "Movies": # pass # if not str(user_name) in list_name_users: # bot.send_message(chat_id=chat_id, text='You should rate same movie befor start.\n/start to start') # return # recommended_movies = final_res(str(user_name)) # # return_msg = "" # # for key, value in recommended_movies: # # return_msg += str(key) + " -> " + str(value)[5:] + "\n" # keyboard = [[i] for i in range(len(recommended_movies))] # count = 0 # for key, value in recommended_movies: # keyboard[count][0] = InlineKeyboardButton(str(key) + " -> " + str(value)[:5], callback_data="3 " + key) # count += 1 # reply_markup = InlineKeyboardMarkup(keyboard) # bot.send_message(chat_id=chat_id, text='Here it is your recommanded movies :)', reply_markup=reply_markup) # results.append( # InlineQueryResultArticle( # id=chat_id, # title='Movies', # input_message_content=InputTextMessageContent('Choose a movie to rate'), # reply_markup=reply_markup # ) # ) # elif query == 'search': # return # elif query == 'rate': # return # else: # return # bot.answer_inline_query(update.inline_query.id, results) from telegram.error import (TelegramError, Unauthorized, BadRequest, TimedOut, ChatMigrated, NetworkError) def error_callback(bot, update, error): logger.warning('Update "%s" caused error "%s"', update, error) try: raise error except Unauthorized: print("Unauthorized") # remove update.message.chat_id from conversation list except BadRequest as e: print("BadRequest") print(e) # handle malformed requests - read more below! except TimedOut: print("TimedOut") # handle slow connection problems except NetworkError: print("NetworkError") # handle other connection problems except ChatMigrated as e: print("ChatMigrated") print(e) # the chat_id of a group has changed, use e.new_chat_id instead except TelegramError: print("TelegramError") # handle all other telegram related errors ud = updater.dispatcher ud.add_handler(CommandHandler('start', start)) ud.add_handler(CommandHandler('rating', rating_movies)) ud.add_handler(CommandHandler('movies', get_best_movie)) ud.add_handler(CommandHandler('list', get_list_movies)) ud.add_handler(CommandHandler('friend', find_friend)) ud.add_handler(CommandHandler('cinema', movies_cinema)) ud.add_handler(CommandHandler('rate', rate_movie, pass_args=True)) ud.add_handler(CommandHandler('search', search_movie, pass_args=True)) ud.add_handler(CallbackQueryHandler(button)) # , pattern='main' # ud.add_handler(CallbackQueryHandler(info_film)) # ud.add_handler(InlineQueryHandler(inline_movies)) # ud.add_handler(MessageHandler(Filters.text, input_user)) ud.add_error_handler(error_callback) updater.start_polling(timeout=100.0) updater.idle()
45.075704
174
0.638949
975cbc2f996fec5197090cc81bc5a29f36bbda5b
3,745
py
Python
cogwheels/helpers/tests/test_deprecation_warning_stacklevel.py
ababic/django-app-utils
7a5f423498854dbec936b06bbaf88f7106259144
[ "MIT" ]
4
2018-06-27T22:44:34.000Z
2021-02-03T16:55:54.000Z
cogwheels/helpers/tests/test_deprecation_warning_stacklevel.py
ababic/django-app-utils
7a5f423498854dbec936b06bbaf88f7106259144
[ "MIT" ]
15
2018-07-15T10:01:40.000Z
2019-10-30T08:15:14.000Z
cogwheels/helpers/tests/test_deprecation_warning_stacklevel.py
ababic/django-cogwheels
7a5f423498854dbec936b06bbaf88f7106259144
[ "MIT" ]
null
null
null
import warnings from django.test import override_settings from cogwheels.tests.base import AppSettingTestCase class TestDeprecationWarningStackLevelSetting(AppSettingTestCase): def assert_this_file_appears_as_cause_of_warning(self, warning): self.assertIn( '/cogwheels/helpers/tests/test_deprecation_warning_stacklevel.py', str(warning) ) def test_raise_all_deprecated_setting_reference_warnings(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self.appsettingshelper.get('DEPRECATED_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.get_model('REPLACED_MODEL_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.models.REPLACED_MODEL_SETTING self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.get_module('REPLACED_MODULE_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.modules.REPLACED_MODULE_SETTING self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.get_object('REPLACED_OBJECT_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.objects.REPLACED_OBJECT_SETTING self.assert_this_file_appears_as_cause_of_warning(w.pop()) @override_settings( COGWHEELS_TESTS_RENAMED_SETTING_OLD='ooolaalaa', COGWHEELS_TESTS_REPLACED_MODEL_SETTING='tests.ReplacementModel', COGWHEELS_TESTS_REPLACED_MODULE_SETTING='cogwheels.tests.modules.replacement_module', COGWHEELS_TESTS_REPLACED_OBJECT_SETTING='cogwheels.tests.classes.ReplacementClass' ) def test_raise_all_deprecated_setting_value_used_by_replacement_warnings(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self.appsettingshelper.get('RENAMED_SETTING_NEW') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.get_model('REPLACEMENT_MODEL_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.get_module('REPLACEMENT_MODULE_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.get_object('REPLACEMENT_OBJECT_SETTING') self.assert_this_file_appears_as_cause_of_warning(w.pop()) @override_settings( COGWHEELS_TESTS_RENAMED_SETTING_OLD='ooolaalaa', COGWHEELS_TESTS_REPLACED_MODEL_SETTING='tests.ReplacementModel', COGWHEELS_TESTS_REPLACED_MODULE_SETTING='cogwheels.tests.modules.replacement_module', COGWHEELS_TESTS_REPLACED_OBJECT_SETTING='cogwheels.tests.classes.ReplacementClass' ) def test_raise_all_deprecated_setting_value_used_by_replacement_warnings_via_attribute_shortcuts(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") self.appsettingshelper.RENAMED_SETTING_NEW self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.models.REPLACEMENT_MODEL_SETTING self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.modules.REPLACEMENT_MODULE_SETTING self.assert_this_file_appears_as_cause_of_warning(w.pop()) self.appsettingshelper.objects.REPLACEMENT_OBJECT_SETTING self.assert_this_file_appears_as_cause_of_warning(w.pop())
46.8125
107
0.75247
5b788877bc1f86a70651f1de28a2ccd7b959652e
2,269
py
Python
venv/Lib/site-packages/pyrogram/methods/users/get_common_chats.py
iamgeorgiy/heroku-userbot
5a92417d16f8ead949d88cb38da213fc2da5d3a4
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/pyrogram/methods/users/get_common_chats.py
iamgeorgiy/heroku-userbot
5a92417d16f8ead949d88cb38da213fc2da5d3a4
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/pyrogram/methods/users/get_common_chats.py
iamgeorgiy/heroku-userbot
5a92417d16f8ead949d88cb38da213fc2da5d3a4
[ "Apache-2.0" ]
null
null
null
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2020 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from typing import Union from pyrogram import raw from pyrogram import types from pyrogram.scaffold import Scaffold class GetCommonChats(Scaffold): async def get_common_chats(self, user_id: Union[int, str]) -> list: """Get the common chats you have with a user. Parameters: user_id (``int`` | ``str``): Unique identifier (int) or username (str) of the target chat. For your personal cloud (Saved Messages) you can simply use "me" or "self". For a contact that exists in your Telegram address book you can use his phone number (str). Returns: List of :obj:`~pyrogram.types.Chat`: On success, a list of the common chats is returned. Raises: ValueError: If the user_id doesn't belong to a user. Example: .. code-block:: python common = app.get_common_chats("haskell") print(common) """ peer = await self.resolve_peer(user_id) if isinstance(peer, raw.types.InputPeerUser): r = await self.send( raw.functions.messages.GetCommonChats( user_id=peer, max_id=0, limit=100, ) ) return types.List([types.Chat._parse_chat(self, x) for x in r.chats]) raise ValueError(f'The user_id "{user_id}" doesn\'t belong to a user')
36.015873
107
0.639489
4b66e00a3ff62ecd6675a263ada22aa5fb1aca25
1,696
py
Python
figthesis/fignoise.py
Gattocrucco/sipmfilter
74215d6c53b998808fc6c677b46030234d996bdf
[ "CC-BY-4.0", "MIT" ]
null
null
null
figthesis/fignoise.py
Gattocrucco/sipmfilter
74215d6c53b998808fc6c677b46030234d996bdf
[ "CC-BY-4.0", "MIT" ]
null
null
null
figthesis/fignoise.py
Gattocrucco/sipmfilter
74215d6c53b998808fc6c677b46030234d996bdf
[ "CC-BY-4.0", "MIT" ]
null
null
null
import numpy as np from matplotlib import pyplot as plt import figlatex import toy import num2si import textbox config = [ # label, noisefile, time [ns], timebase [ns] ('LNGS noise' , 'noises/nuvhd_lf_3x_tile57_77K_64V_6VoV_1-noise.npz', 150, [1, 8, 16, 32]), ('Proto0 noise', 'noises/merged_000886-adc_W201_Ch00.npz' , 150, [ 8, 16, 32]), ] plotkw = { 1: dict(color='#aaa'), 8: dict(color='#000'), 16: dict(color='#000', linestyle='--', marker='o', markerfacecolor='#f55'), 32: dict(color='#f55', marker='o', markerfacecolor='#fff'), } ########################### fig, axs = plt.subplots(1, 2, num='fignoise', clear=True, figsize=[9, 3.3], sharex=True, sharey=True) for ax, (label, noisefile, N, timebase) in zip(axs, config): basetb = np.gcd.reduce(timebase) noise = toy.DataCycleNoise(timebase=basetb) noise.load(noisefile) ax.set_xlabel(f'Time [ns]') n = noise.generate(1, 3 * N)[0] for tb in timebase: nr = toy.downsample(n, tb // basetb) x = (tb - 1) / 2 + tb * np.arange(len(nr)) - N kwargs = dict( label=num2si.num2si(1e9 / tb, format='%.3g') + 'Sa/s', marker='.', ) kwargs.update(plotkw[tb]) ax.plot(x, nr, **kwargs) textbox.textbox(ax, label, fontsize='medium', loc='upper left') ax.legend(loc='lower left', ncol=2, title='Sampling frequency', framealpha=0.95, fontsize='small', title_fontsize='small') ax.set_xlim(0, N) ax.set_ylim(-3, 3) ax.minorticks_on() ax.grid(True, which='major', linestyle='--') ax.grid(True, which='minor', linestyle=':') fig.tight_layout() fig.show() figlatex.save(fig)
29.241379
126
0.596698
a545a27f6826a1a4610bd47c7a45d7c5e8b4e388
31,025
py
Python
darr/tests/test_array.py
gjlbeckers-uu/dArray
e156495fd48b10085f5ddadf4890b626a78f5100
[ "BSD-3-Clause" ]
null
null
null
darr/tests/test_array.py
gjlbeckers-uu/dArray
e156495fd48b10085f5ddadf4890b626a78f5100
[ "BSD-3-Clause" ]
null
null
null
darr/tests/test_array.py
gjlbeckers-uu/dArray
e156495fd48b10085f5ddadf4890b626a78f5100
[ "BSD-3-Clause" ]
null
null
null
import os import unittest import tempfile import shutil import numpy as np from darr.array import asarray, create_array, create_datadir, Array, \ numtypesdescr, truncate_array, delete_array, AppendDataError, \ numtypedescriptiontxt from darr.utils import tempdir, tempdirfile # TODO clean up overwrite parameters, not necessary anymore class DarrTestCase(unittest.TestCase): def assertArrayIdentical(self, x, y): self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.shape, y.shape) self.assertEqual(np.sum((x-y)**2), 0) class AsArray(DarrTestCase): def setUp(self): self.tempdirname1 = tempfile.mkdtemp() self.tempdirname2 = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tempdirname1) shutil.rmtree(self.tempdirname2) def check_arrayequaltoasarray(self, ndarray): """Tests if asarray creates an array of same shape and dtype and same contents as input.""" dar = asarray(path=self.tempdirname1, array=ndarray, overwrite=True) ndarray = np.asarray(ndarray) # could be list or tuple self.assertArrayIdentical(dar[:], ndarray) self.assertEqual(dar.dtype, ndarray.dtype) self.assertEqual(dar.shape, ndarray.shape) def test_asarraynumberint(self): dar = asarray(path=self.tempdirname1, array=1, overwrite=True) self.assertEqual(dar[0], 1) def test_asarraynumberfloat(self): dar = asarray(path=self.tempdirname1, array=1.0, overwrite=True) self.assertEqual(dar[0], 1.0) def test_asarrayonedimensionalndarray(self): ndarray = np.arange(24) self.check_arrayequaltoasarray(ndarray) def test_asarraytwodimensionalndarray(self): ndarray = np.arange(24).reshape(12, 2) self.check_arrayequaltoasarray(ndarray) def test_asarraythreedimensionalndarray(self): ndarray = np.arange(24).reshape(4, 2, 3) self.check_arrayequaltoasarray(ndarray) def test_asarrayonedimensionallist(self): ndarray = [1, 2, 3, 4] self.check_arrayequaltoasarray(ndarray) def test_asarraytwodimensionallist(self): ndarray = [[1, 2, 3, 4], [1, 2, 3, 4]] self.check_arrayequaltoasarray(ndarray) def test_asarraythreedimensionallist(self): ndarray = [[[1, 2, 3, 4], [1, 2, 3, 4]], [[1, 2, 3, 4], [1, 2, 3, 4]]] self.check_arrayequaltoasarray(ndarray) def test_asarraynumericdtypes(self): dtypes = numtypesdescr.keys() for dtype in dtypes: with self.subTest(dtype=dtype): ndarray = np.arange(24, dtype=dtype) self.check_arrayequaltoasarray(ndarray) def test_asarrayfortranorder(self): ndarray = np.asarray(np.arange(24, dtype='float64'), order='F') self.check_arrayequaltoasarray(ndarray) def test_asarraycorder(self): ndarray = np.asarray(np.arange(24, dtype='float64'), order='C') self.check_arrayequaltoasarray(ndarray) def test_asarraylittleendian(self): ndarray = np.arange(24, dtype='<f4') self.check_arrayequaltoasarray(ndarray) def test_asarraybigendian(self): ndarray = np.arange(24, dtype='>f4') self.check_arrayequaltoasarray(ndarray) def test_asarrayoverwrite(self): a = np.zeros((5,), dtype='float64') _ = asarray(path=self.tempdirname1, array=a, overwrite=True) b = np.ones((4,2), dtype='uint8') dar = asarray(path=self.tempdirname1, array=b, overwrite=True) self.assertArrayIdentical(dar[:], b) def test_asarraysequencesmallchunklen(self): a = [1, 2, 3, 4, 5] dar = asarray(path=self.tempdirname1, array=a, chunklen=3, overwrite=True) self.assertArrayIdentical(np.array(a), dar[:]) def test_asarraywritingsmallerchunks(self): a = np.arange(1024, dtype='int64').reshape(2,-1) dar = asarray(path=self.tempdirname1, array=a, chunklen=4, overwrite=True) self.assertArrayIdentical(a, dar[:]) dar = asarray(path=self.tempdirname1, array=a, chunklen=5, overwrite=True) self.assertArrayIdentical(a, dar[:]) def test_asarraywritinglargerthanlenchunks(self): a = np.arange(1024, dtype='int64').reshape(2, -1) dar = asarray(path=self.tempdirname1, array=a, chunklen=4096, overwrite=True) self.assertArrayIdentical(a, dar[:]) def test_asarrayarray(self): a = np.arange(1024, dtype='int64').reshape(2, -1) dar1 = asarray(path=self.tempdirname1, array=a, overwrite=True) dar2 = asarray(path=self.tempdirname2, array=a, chunklen=5, overwrite=True) self.assertArrayIdentical(dar1[:], dar2[:]) def test_asarraywronginput(self): a = 'text' self.assertRaises(TypeError, asarray, path=self.tempdirname1, array=a, chunklen=32, overwrite=True) def test_asarraykeepattrs(self): class AttrList(list): attrs = {'a': 1, 'b': 2} a = AttrList([0, 0, 0, 0]) dar = asarray(path=self.tempdirname1, array=a, overwrite=True) self.assertEqual(dict(dar.metadata), AttrList.attrs) def test_asarraywarnsnondictattrs(self): class AttrList(list): attrs = [0] a = AttrList([0, 0, 0, 0]) self.assertWarns(UserWarning, asarray, path=self.tempdirname1, array=a, overwrite=True) def test_asarrayfromincompatipletype(self): a = {'a': 1} self.assertRaises(TypeError, asarray,path=self.tempdirname1, array=a, overwrite=True) def test_asarrayarratosamepath(self): dar = asarray(path=self.tempdirname1, array=[0,1], overwrite=True) self.assertRaises(ValueError, asarray, path=self.tempdirname1, array=dar, overwrite=True) def test_asarraysequenceofzerodimnumpyscalars(self): def a(): yield np.float32(0) yield np.float32(1) yield np.float32(2) dar = asarray(path=self.tempdirname1, array=a(), overwrite=True) self.assertArrayIdentical(dar[:], np.array([0,1,2], dtype=np.float32)) def test_asarrayremoveoldmetadata(self): dar = asarray(path=self.tempdirname1, array=[1,2], metadata={'a':1}, overwrite=True) dar = asarray(path=self.tempdirname1, array=[1, 2], overwrite=True) self.assertDictEqual(dict(dar.metadata), {}) class CreateDiskArray(DarrTestCase): def check_arrayequaltocreatearray(self, ndarray, shape, dtype=None, chunklen=None): with tempdirfile() as filename: dar = create_array(path=filename, shape=shape, dtype=dtype, chunklen=chunklen, overwrite=True) if dtype is not None: ndarray = ndarray.astype(dtype) self.assertArrayIdentical(ndarray, dar[:]) self.assertEqual(shape, dar.shape) def test_zerosfloat64default(self): shape = (12,) ndarray = np.zeros(shape, dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=shape) def test_twodimensional(self): shape = (12, 2) ndarray = np.zeros(shape, dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=shape) def test_threedimensional(self): shape = (4, 2, 3) ndarray = np.zeros(shape, dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=shape) # split out manually? def test_numericdtypes(self): dtypes = numtypesdescr.keys() for dtype in dtypes: ndarray = np.zeros(24, dtype=dtype) self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(24,), dtype=dtype) def test_emptyarray(self): ndarray = np.zeros(0, dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(0,), dtype='float64') def test_emptyarraymd(self): ndarray = np.zeros((0,3,7), dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(0, 3, 7), chunklen=1) def test_emptyarraydifferentdtype(self): ndarray = np.zeros(0, dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(0,), dtype='int64') def test_chunked(self): ndarray = np.zeros(12, dtype='float64') for chunklen in (1, 5, 6, 11, 12, 13): self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(12,), chunklen=chunklen) ndarray = np.zeros(13, dtype='float64') for chunklen in (1, 6, 7, 12, 13, 14): self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(13,), chunklen=chunklen) def test_chunkedthreedimensional(self): ndarray = np.zeros((12,3,7), dtype='float64') for chunklen in (1, 5, 6, 11, 12, 13): self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(12, 3, 7), chunklen=chunklen*21) ndarray = np.zeros((13,3,7), dtype='float64') for chunklen in (1, 6, 7, 12, 13, 14): self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(13, 3, 7), chunklen=chunklen*21) def test_toosmallchunklen(self): ndarray = np.zeros((12, 3, 7), dtype='float64') self.check_arrayequaltocreatearray(ndarray=ndarray, shape=(12, 3, 7), chunklen=1) def test_shapeisint(self): # we allow shapes to be integers with tempdirfile() as filename: dar = create_array(path=filename, shape=1, dtype='int32', overwrite=True) self.assertTupleEqual((1,), dar.shape) def test_fillandfillfuncisnotnone(self): fillfunc= lambda i: i * 2 with tempdirfile() as filename: self.assertRaises(ValueError, create_array, path=filename, shape=(1,), fill=1, fillfunc=fillfunc, dtype='int32', overwrite=True) class TestArray(DarrTestCase): def setUp(self): self.temparpath = tempfile.mkdtemp(dir=None) self.tempnonarpath = tempfile.mkdtemp(dir=None) self.tempar = create_array(path=self.temparpath, shape=(12,), dtype='int64', metadata={'a': 1}, overwrite=True) def tearDown(self): shutil.rmtree(str(self.temparpath)) shutil.rmtree(str(self.tempnonarpath)) def test_instantiatefromexistingpath(self): Array(path=self.temparpath) def test_instantiatefromnonexistingpath(self): with self.assertRaises(OSError): Array(path=self.tempnonarpath) def test_setvalues(self): self.assertArrayIdentical(self.tempar[2:4], np.array([0,0], dtype=self.tempar.dtype)) self.tempar[2:4] = 1 self.assertArrayIdentical(self.tempar[2:4], np.array([1, 1], dtype=self.tempar.dtype)) def test_datadirexistence(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) self.assertEqual(filename, dar.datadir.path) def test_str(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) self.assertEqual(str(dar),'[0 0]') def test_repr(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) # linux and windows have different numpy memmap reprs... self.assertEqual(repr(dar)[:18], 'darr array ([0, 0]') def test_setaccessmode(self): self.assertEqual(self.tempar.accessmode, 'r+') self.tempar.accessmode = 'r' self.assertEqual(self.tempar.accessmode, 'r') self.assertRaises(ValueError, setattr, self.tempar, 'accessmode', 'w') self.assertRaises(ValueError, setattr, self.tempar, 'accessmode', 'a') def test_itemsize(self): self.assertEqual(self.tempar.itemsize, 8) def test_nbytes(self): self.assertEqual(self.tempar.nbytes, 12*8) def test_mb(self): self.assertEqual(self.tempar.mb, 12*8/1e6) def test_size(self): self.assertEqual(self.tempar.size, 12) def test_copy(self): dar2 = self.tempar.copy(path=self.tempnonarpath, overwrite=True) self.assertArrayIdentical(self.tempar[:], dar2[:]) self.assertEqual(dict(self.tempar.metadata), dict(dar2.metadata)) # FIXME more tests open accessmode def test_open(self): with self.tempar.open_array() as r: self.assertIsNone(r) def test_readcodelanguages(self): self.assertIsInstance(self.tempar.readcodelanguages, tuple) self.assertIn('numpymemmap', self.tempar.readcodelanguages) class TestReadArrayDescr(DarrTestCase): def test_arrayinfomissingfile(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) dar._arraydescrpath.unlink() self.assertRaises(FileNotFoundError, Array, dar.path) def test_arrayinfonewerversionfile(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) arrayinfo = dar._arrayinfo.copy() vs = f"1{arrayinfo['darrversion']}" arrayinfo['darrversion'] = vs dar._datadir._write_jsondict(dar._arraydescrfilename, arrayinfo, overwrite=True) self.assertWarns(UserWarning, Array, dar.path) def test_arrayinfowrongshapetype(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) arrayinfo = dar._arrayinfo.copy() arrayinfo['shape'] = ['a', 3] dar._datadir._write_jsondict(dar._arraydescrfilename, arrayinfo, overwrite=True) self.assertRaises(TypeError, Array, dar.path) def test_arrayinfowrongorder(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) arrayinfo = dar._arrayinfo.copy() arrayinfo['arrayorder'] = 'D' dar._datadir._write_jsondict(dar._arraydescrfilename, arrayinfo, overwrite=True) self.assertRaises(ValueError, Array, dar.path) arrayinfo['arrayorder'] = '[D]' dar._datadir._write_jsondict(dar._arraydescrfilename, arrayinfo, overwrite=True) self.assertRaises(Exception, Array, dar.path) def test_allowfortranorder(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,4), fill=0, dtype='int64', overwrite=True) dar._datadir._update_jsondict(dar._arraydescrpath.absolute(), {'arrayorder': 'F'}) dar = Array(filename) self.assertIn("Column-major", numtypedescriptiontxt(dar)) def test_warnwritefortranarray(self): with tempdirfile() as filename1, tempdirfile() as filename2: dar = create_array(path=filename1, shape=(2, 4), fill=0, dtype='int64', overwrite=True) dar._datadir._update_jsondict(dar._arraydescrpath.absolute(), {'arrayorder': 'F'}) dar = Array(filename1) self.assertWarns(UserWarning, asarray, path=filename2, array=dar, overwrite=True) def test_unknownarrayordertype(self): with tempdir() as dirname: dar = create_array(path=dirname, shape=(2,4), fill=0, dtype='int64', overwrite=True) dar._update_arrayinfo({'arrayorder': 'X'}) self.assertRaises(ValueError, numtypedescriptiontxt, dar) self.assertRaises(ValueError, Array, dirname) class TestConsistency(DarrTestCase): def test_consistencycorrect(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) self.assertIsNone(dar._check_arrayinfoconsistency()) dar.append([0,0]) self.assertIsNone(dar._check_arrayinfoconsistency()) def test_consistencyincorrectinfoshape(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) dar._update_arrayinfo({'shape': (3,)}) self.assertRaises(ValueError, dar._check_arrayinfoconsistency) def test_consistencywronginfoitemsize(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) dar._update_arrayinfo({'numtype': 'int32'}) self.assertRaises(ValueError, dar._check_arrayinfoconsistency) def test_consistencyincorrectinfofileshape(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) dar._update_arrayinfo({'shape': (3,)}) self.assertRaises(ValueError, dar._check_arrayinfoconsistency) self.assertRaises(ValueError, Array, dar.path) def test_consistencywronginfofileitemsize(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', overwrite=True) arrayinfo = dar._arrayinfo.copy() arrayinfo['numtype'] = 'int32' dar._datadir._write_jsondict(dar._arraydescrfilename, arrayinfo, overwrite=True) self.assertRaises(ValueError, dar._check_arrayinfoconsistency) self.assertRaises(ValueError, Array, dar.path) class TestCheckArraywriteable(DarrTestCase): def test_check_arraywriteable(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', accessmode='r+', overwrite=True) self.assertIsNone(dar.check_arraywriteable()) def test_check_arraynotwriteable(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(2,), fill=0, dtype='int64', accessmode='r', overwrite=True) self.assertRaises(OSError, dar.check_arraywriteable) class IterFrames(DarrTestCase): def setUp(self): self.tempearpath = tempfile.mkdtemp() # even array self.tempoarpath = tempfile.mkdtemp() # odd array self.tempnonarpath = tempfile.mkdtemp() self.tempear = create_array(path=self.tempearpath, shape=(12,), dtype='int64', metadata={'a': 1}, overwrite=True) self.tempoar = create_array(path=self.tempoarpath, shape=(13,), dtype='int64', metadata={'a': 1}, overwrite=True) def tearDown(self): shutil.rmtree(str(self.tempearpath)) shutil.rmtree(str(self.tempoarpath)) shutil.rmtree(str(self.tempnonarpath)) def test_defaultparams_fit(self): l = [c for c in self.tempear.iterchunks(chunklen=2)] self.assertEqual(len(l), 6) self.assertArrayIdentical(np.concatenate(l), self.tempear[:]) def test_remainderfalse_fit(self): l = [c for c in self.tempear.iterchunks(chunklen=2, include_remainder=False)] self.assertEqual(len(l), 6) self.assertArrayIdentical(np.concatenate(l), self.tempear[:]) def test_defaultparams_nofit(self): l = [c for c in self.tempoar.iterchunks(chunklen=2)] self.assertEqual(len(l), 7) self.assertArrayIdentical(np.concatenate(l), self.tempoar[:]) def test_remainderfalse_nofit(self): l = [c for c in self.tempoar.iterchunks(chunklen=2, include_remainder=False)] self.assertEqual(len(l), 6) self.assertArrayIdentical(np.concatenate(l), self.tempoar[:12]) class AppendData(DarrTestCase): def setUp(self): self.temparpath = tempfile.mkdtemp() # even array def tearDown(self): shutil.rmtree(str(self.temparpath)) def test_appendnumber(self): dar = create_array(path=self.temparpath, shape=(2,), dtype='int64', overwrite=True) dar.append(1) self.assertArrayIdentical(np.array([0, 0, 1], dtype='int64'), dar[:]) def test_appendlist1d(self): dar = create_array(path=self.temparpath, shape=(2,), dtype='int64', overwrite=True) dar.append([1,2]) dar.append([3]) self.assertArrayIdentical(np.array([0, 0, 1, 2, 3], dtype='int64'), dar[:]) def test_appendlist2d(self): dar = create_array(path=self.temparpath, shape=(2, 3), dtype='int64', overwrite=True) dar.append([[1,2,3]]) dar.append([[1,2,3],[4,5,6]]) self.assertArrayIdentical(np.array([[0, 0, 0], [0, 0, 0], [1, 2, 3], [1, 2, 3], [4, 5, 6]], dtype='int64'), dar[:]) def test_appendtoempty1d(self): dar = create_array(path=self.temparpath, shape=(0,), dtype='int64', overwrite=True) dar.append([1, 2, 3]) self.assertArrayIdentical(np.array([1, 2, 3], dtype='int64'), dar[:]) def test_appendtoempty2d(self): dar = create_array(path=self.temparpath, shape=(0, 2), dtype='int64', overwrite=True) dar.append([[1,2]]) dar.append([[1,2],[3,4]]) self.assertArrayIdentical(np.array([[1, 2], [1, 2], [3, 4]], dtype='int64'), dar[:]) def test_appendempty1d(self): dar = create_array(path=self.temparpath, shape=(1,), dtype='int64', overwrite=True) dar.append([]) self.assertArrayIdentical(np.array([0], dtype='int64'), dar[:]) def test_appendempty2d(self): dar = create_array(path=self.temparpath, shape=(1, 2), dtype='int64', overwrite=True) dar.append(np.zeros((0,2), dtype='int64')) self.assertArrayIdentical(np.array([[0, 0]], dtype='int64'), dar[:]) def test_appendemptytoempty1d(self): dar = create_array(path=self.temparpath, shape=(0,), dtype='int64', overwrite=True) dar.append([]) self.assertArrayIdentical(np.array([], dtype='int64'), dar[:]) def test_appendemptytoempty2d(self): dar = create_array(path=self.temparpath, shape=(0, 2), dtype='int64', overwrite=True) dar.append(np.zeros((0, 2), dtype='int64')) self.assertArrayIdentical(np.zeros((0, 2), dtype='int64'), dar[:]) def test_appenddataerror(self): def testiter(): yield [1, 2, 3] yield [4, 5, 6] raise ValueError g = (f for f in testiter()) dar = create_array(path=self.temparpath, shape=(2,), dtype='int64', overwrite=True) self.assertRaises(AppendDataError, dar.iterappend, g) self.assertArrayIdentical(dar[:], np.array([0, 0, 1, 2, 3, 4, 5, 6], dtype='int64')) def test_appendwrongshape(self): dar = create_array(path=self.temparpath, shape=(2,3), dtype='int64', overwrite=True) ar = [[3,4]] self.assertRaises(AppendDataError, dar.append, ar) def test_appendreadonlyarray(self): dar = create_array(path=self.temparpath, shape=(2,), dtype='int64', overwrite=True, accessmode='r') ar = [3, 4] self.assertRaises(OSError, dar.append, ar) def test_iterappendnoniterable(self): dar = create_array(path=self.temparpath, shape=(2,), dtype='int64', overwrite=True) ar = 3 self.assertRaises(TypeError, dar.iterappend, ar) # def test_fdclosedduringiterappend(self): # # def seq(dar): # yield [0] # dar._valuesfd.close() # yield [0] # # dar = create_array(path=self.temparpath, shape=(2,), # dtype='int64', overwrite=True) # self.assertRaises(AppendDataError, dar.iterappend, seq(dar)) # self.assertArrayIdentical(dar, np.array([0, 0, 0], dtype='int64')) # dar._check_consistency() class TestIterFrames(DarrTestCase): def setUp(self): self.temparpath = tempfile.mkdtemp() self.tempar = create_array(path=self.temparpath, shape=(10,), dtype='int64', overwrite=True) def tearDown(self): shutil.rmtree(str(self.temparpath)) def test_iterframesstartindextoohigh(self): with self.assertRaises(ValueError): _ = [f for f in self.tempar.iterchunks(chunklen=2, startindex=12, endindex=2)] def test_iterframesendindextoohigh(self): with self.assertRaises(ValueError): _ = [f for f in self.tempar.iterchunks(chunklen=2, startindex=1, endindex=12)] class TestOpenFile(DarrTestCase): def test_openfile(self): with tempdir() as dirname: dar = create_array(path=dirname, shape=(0, 2), dtype='int64', overwrite=True, accessmode='r+') with dar._datadir.open_file('notes.txt', 'a') as f: f.write('test\n') path = dar.path / 'notes.txt' self.assertEqual(path.exists(), True) def test_openfileprotectedfiles(self): with tempdir() as dirname: dar = create_array(path=dirname, shape=(0, 2), dtype='int64', overwrite=True, accessmode='r+') for fn in dar._protectedfiles: with self.assertRaises(OSError): with dar._datadir.open_file(fn, 'a') as f: f.write('test\n') class TruncateData(DarrTestCase): def test_truncate1d(self): with tempdirfile() as filename: a = np.array([0, 1, 2, 3, 4], dtype='int64') dar = asarray(path=filename, array=a, accessmode='r+') truncate_array(dar, 2) self.assertArrayIdentical(dar[:], np.array([0,1], dtype=dar.dtype)) a = Array(filename) self.assertArrayIdentical(a[:], np.array([0, 1], dtype=a.dtype)) def test_truncatebydirname(self): with tempdirfile() as filename: a = np.array([0, 1, 2, 3, 4], dtype='int64') dar = asarray(path=filename, array=a, accessmode='r+') truncate_array(filename, 2) a = Array(filename) self.assertArrayIdentical(a[:], np.array([0, 1], dtype=a.dtype)) def test_donottruncatenondarrdir(self): with tempdirfile() as filename: bd = create_datadir(filename) bd._write_jsondict('test.json', {'a': 1}) self.assertRaises(TypeError, truncate_array, filename, 3) def test_truncateinvalidindextype(self): with tempdirfile() as filename: a = np.array([0, 1, 2, 3, 4], dtype='int64') dar = asarray(path=filename, array=a, accessmode='r+') self.assertRaises(TypeError, truncate_array, dar, 'a') def test_truncateindextoohigh(self): with tempdirfile() as filename: a = np.array([0, 1, 2, 3, 4], dtype='int64') dar = asarray(path=filename, array=a, overwrite=True, accessmode='r+') self.assertRaises(IndexError, truncate_array, dar, 10) def test_truncatetolen0(self): with tempdirfile() as filename: a = asarray(path=filename, array=[0, 1, 2, 3, 4], dtype='int64', accessmode='r+') truncate_array(a, 0) self.assertEqual(len(a), 0) ra = Array(filename) self.assertEqual(len(a), 0) class DeleteArray(DarrTestCase): def test_simpledeletearray(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(0, 2), dtype='int64') delete_array(dar) self.assertEqual(len(os.listdir(filename.parent)), 0) def test_simpledeletearraypath(self): with tempdirfile() as filename: _ = create_array(path=filename, shape=(0, 2), dtype='int64') delete_array(filename) self.assertEqual(len(os.listdir(filename.parent)), 0) def test_donotdeletenondarrfile(self): with tempdirfile() as filename: dar = create_array(path=filename, shape=(0, 2), dtype='int64') dar._datadir._write_jsondict('test.json', {'a': 1}) testpath = dar._path.joinpath('test.json') self.assertRaises(OSError, delete_array, dar) self.assertEqual(testpath.exists(), True) def test_donotdeletenondarrdir(self): with tempdirfile() as filename: bd = create_datadir(filename, overwrite=True) self.assertRaises(TypeError, delete_array, filename) bd._write_jsondict('test.json', {'a': 1}) self.assertRaises(TypeError, delete_array, filename) if __name__ == '__main__': unittest.main()
40.930079
87
0.586527
c788baa25c69287c0e6b27d2fcdbd48e1f127df8
284
py
Python
fern/items/urls.py
Eslamhathout/Fern
ddcdb7318689f41ccfc6914175e5ccac9b1fb2fa
[ "MIT" ]
null
null
null
fern/items/urls.py
Eslamhathout/Fern
ddcdb7318689f41ccfc6914175e5ccac9b1fb2fa
[ "MIT" ]
null
null
null
fern/items/urls.py
Eslamhathout/Fern
ddcdb7318689f41ccfc6914175e5ccac9b1fb2fa
[ "MIT" ]
1
2020-06-20T23:50:59.000Z
2020-06-20T23:50:59.000Z
from django.urls import path from rest_framework.urlpatterns import format_suffix_patterns from . import views urlpatterns = [ path('items/', views.ItemList.as_view()), path('items/<int:pk>', views.ItemDetail.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
23.666667
61
0.760563
31331baa0be9758fc5a43e34ec130d4c98791411
7,147
py
Python
translation/fairseq/data/iterators.py
houshengyuan/MAN
03912e80b21e0fc40c36515b6893d4244b82e6b6
[ "MIT" ]
140
2019-06-10T04:02:07.000Z
2022-03-22T11:08:27.000Z
translation/fairseq/data/iterators.py
houshengyuan/MAN
03912e80b21e0fc40c36515b6893d4244b82e6b6
[ "MIT" ]
6
2019-06-10T07:36:44.000Z
2020-05-15T03:33:39.000Z
translation/fairseq/data/iterators.py
houshengyuan/MAN
03912e80b21e0fc40c36515b6893d4244b82e6b6
[ "MIT" ]
11
2019-06-21T05:31:17.000Z
2022-01-04T02:20:46.000Z
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import itertools import math import numpy as np import torch from . import data_utils class CountingIterator(object): """Wrapper around an iterable that maintains the iteration count. Args: iterable (iterable): iterable to wrap Attributes: count (int): number of elements consumed from this iterator """ def __init__(self, iterable): self.iterable = iterable self.count = 0 self.itr = iter(self) def __len__(self): return len(self.iterable) def __iter__(self): for x in self.iterable: self.count += 1 yield x def __next__(self): return next(self.itr) def has_next(self): """Whether the iterator has been exhausted.""" return self.count < len(self) def skip(self, num_to_skip): """Fast-forward the iterator by skipping *num_to_skip* elements.""" next(itertools.islice(self.itr, num_to_skip, num_to_skip), None) return self class EpochBatchIterator(object): """A multi-epoch iterator over a :class:`torch.utils.data.Dataset`. Compared to :class:`torch.utils.data.DataLoader`, this iterator: - can be reused across multiple epochs with the :func:`next_epoch_itr` method (optionally shuffled between epochs) - can be serialized/deserialized with the :func:`state_dict` and :func:`load_state_dict` methods - supports sharding with the *num_shards* and *shard_id* arguments Args: dataset (~torch.utils.data.Dataset): dataset from which to load the data collate_fn (callable): merges a list of samples to form a mini-batch batch_sampler (~torch.utils.data.Sampler): an iterator over batches of indices seed (int, optional): seed for random number generator for reproducibility. Default: ``1`` num_shards (int, optional): shard the data iterator into N shards. Default: ``1`` shard_id (int, optional): which shard of the data iterator to return. Default: ``0`` """ def __init__(self, dataset, collate_fn, batch_sampler, seed=1, num_shards=1, shard_id=0): assert isinstance(dataset, torch.utils.data.Dataset) self.dataset = dataset self.collate_fn = collate_fn self.frozen_batches = tuple(batch_sampler) self.seed = seed self.num_shards = num_shards self.shard_id = shard_id self.epoch = 0 self._cur_epoch_itr = None self._next_epoch_itr = None def __len__(self): return len(self.frozen_batches) def next_epoch_itr(self, shuffle=True): """Return a new iterator over the dataset. Args: shuffle (bool, optional): shuffle batches before returning the iterator. Default: ``True`` """ if self._next_epoch_itr is not None: self._cur_epoch_itr = self._next_epoch_itr self._next_epoch_itr = None else: self.epoch += 1 self._cur_epoch_itr = self._get_iterator_for_epoch(self.epoch, shuffle) return self._cur_epoch_itr def end_of_epoch(self): """Returns whether the most recent epoch iterator has been exhausted""" return not self._cur_epoch_itr.has_next() @property def iterations_in_epoch(self): """The number of consumed batches in the current epoch.""" if self._cur_epoch_itr is not None: return self._cur_epoch_itr.count elif self._next_epoch_itr is not None: return self._next_epoch_itr.count return 0 def state_dict(self): """Returns a dictionary containing a whole state of the iterator.""" return { 'epoch': self.epoch, 'iterations_in_epoch': self.iterations_in_epoch, } def load_state_dict(self, state_dict): """Copies the state of the iterator from the given *state_dict*.""" self.epoch = state_dict['epoch'] itr_pos = state_dict.get('iterations_in_epoch', 0) if itr_pos > 0: # fast-forward epoch iterator itr = self._get_iterator_for_epoch(self.epoch, state_dict.get('shuffle', True)) if itr_pos < len(itr): self._next_epoch_itr = itr.skip(itr_pos) def _get_iterator_for_epoch(self, epoch, shuffle): if shuffle: # set seed based on the seed and epoch number so that we get # reproducible results when resuming from checkpoints with data_utils.numpy_seed(self.seed + epoch): batches = list(self.frozen_batches) # copy np.random.shuffle(batches) else: batches = self.frozen_batches return CountingIterator(torch.utils.data.DataLoader( self.dataset, collate_fn=self.collate_fn, batch_sampler=ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[]), )) class GroupedIterator(object): """Wrapper around an iterable that returns groups (chunks) of items. Args: iterable (iterable): iterable to wrap chunk_size (int): size of each chunk """ def __init__(self, iterable, chunk_size): self._len = int(math.ceil(len(iterable) / float(chunk_size))) self.itr = iter(iterable) self.chunk_size = chunk_size def __len__(self): return self._len def __iter__(self): return self def __next__(self): chunk = [] try: for _ in range(self.chunk_size): chunk.append(next(self.itr)) except StopIteration as e: if len(chunk) == 0: raise e return chunk class ShardedIterator(object): """A sharded wrapper around an iterable, padded to length. Args: iterable (iterable): iterable to wrap num_shards (int): number of shards to split the iterable into shard_id (int): which shard to iterator over fill_value (Any, optional): padding value when the iterable doesn't evenly divide *num_shards*. Default: ``None`` """ def __init__(self, iterable, num_shards, shard_id, fill_value=None): if shard_id < 0 or shard_id >= num_shards: raise ValueError('shard_id must be between 0 and num_shards') self._sharded_len = len(iterable) // num_shards if len(iterable) % num_shards > 0: self._sharded_len += 1 self.itr = itertools.zip_longest( range(self._sharded_len), itertools.islice(iterable, shard_id, len(iterable), num_shards), fillvalue=fill_value, ) def __len__(self): return self._sharded_len def __iter__(self): return self def __next__(self): return next(self.itr)[1]
32.935484
98
0.634392
7907c353fe7228172d12dfe2ebf9d989531d716e
583
py
Python
ecs/meetings/migrations/0010_meeting_documents_zip.py
programmierfabrik/ecs
2389a19453e21b2ea4e40b272552bcbd42b926a9
[ "Apache-2.0" ]
9
2017-02-13T18:17:13.000Z
2020-11-21T20:15:54.000Z
ecs/meetings/migrations/0010_meeting_documents_zip.py
programmierfabrik/ecs
2389a19453e21b2ea4e40b272552bcbd42b926a9
[ "Apache-2.0" ]
2
2021-05-20T14:26:47.000Z
2021-05-20T14:26:48.000Z
ecs/meetings/migrations/0010_meeting_documents_zip.py
programmierfabrik/ecs
2389a19453e21b2ea4e40b272552bcbd42b926a9
[ "Apache-2.0" ]
4
2017-04-02T18:48:59.000Z
2021-11-23T15:40:35.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('documents', '0004_uuidfield'), ('meetings', '0009_auto_20170106_1414'), ] operations = [ migrations.AddField( model_name='meeting', name='documents_zip', field=models.ForeignKey(to='documents.Document', related_name='zip_for_meeting', null=True, on_delete=django.db.models.deletion.SET_NULL), ), ]
26.5
150
0.656947
98b2ba7b0fabe7d26db09f5936abb0bbcbafcc8b
3,139
py
Python
src/plotmanx/_tests/manager_test.py
tokenchain/plotman
666e4e34eecda90aa94004ff042fefebfbf3fead
[ "Apache-2.0" ]
null
null
null
src/plotmanx/_tests/manager_test.py
tokenchain/plotman
666e4e34eecda90aa94004ff042fefebfbf3fead
[ "Apache-2.0" ]
null
null
null
src/plotmanx/_tests/manager_test.py
tokenchain/plotman
666e4e34eecda90aa94004ff042fefebfbf3fead
[ "Apache-2.0" ]
null
null
null
# TODO: migrate away from unittest patch from unittest.mock import patch import pytest from plotmanx import configuration, manager @pytest.fixture def sched_cfg(): return configuration.Scheduling( global_max_jobs=1, global_stagger_m=2, polling_time_s=2, tmpdir_stagger_phase_major=3, tmpdir_stagger_phase_minor=0, tmpdir_max_jobs=3 ) @pytest.fixture def dir_cfg(): return configuration.Directories( log="/plots/log", tmp=["/var/tmp", "/tmp"], dst=["/mnt/dst/00", "/mnt/dst/01", "/mnt/dst/03"], tmp_overrides={"/mnt/tmp/04": configuration.TmpOverrides(tmpdir_max_jobs=4)} ) def test_permit_new_job_post_milestone(sched_cfg, dir_cfg): assert manager.phases_permit_new_job( [(3, 8), (4, 1)], '/mnt/tmp/00', sched_cfg, dir_cfg) def test_permit_new_job_pre_milestone(sched_cfg, dir_cfg): assert not manager.phases_permit_new_job( [(2, 3), (4, 1)], '/mnt/tmp/00', sched_cfg, dir_cfg) def test_permit_new_job_too_many_jobs(sched_cfg, dir_cfg): assert not manager.phases_permit_new_job( [(3, 1), (3, 2), (3, 3)], '/mnt/tmp/00', sched_cfg, dir_cfg) def test_permit_new_job_too_many_jobs_zerophase(sched_cfg, dir_cfg): assert not manager.phases_permit_new_job( [(3, 0), (3, 1), (3, 3)], '/mnt/tmp/00', sched_cfg, dir_cfg) def test_permit_new_job_too_many_jobs_nonephase(sched_cfg, dir_cfg): assert manager.phases_permit_new_job( [(None, None), (3, 1), (3, 3)], '/mnt/tmp/00', sched_cfg, dir_cfg) def test_permit_new_job_override_tmp_dir(sched_cfg, dir_cfg): assert manager.phases_permit_new_job( [(3, 1), (3, 2), (3, 3)], '/mnt/tmp/04', sched_cfg, dir_cfg) assert not manager.phases_permit_new_job( [(3, 1), (3, 2), (3, 3), (3, 6)], '/mnt/tmp/04', sched_cfg, dir_cfg) @patch('plotmanx.job.Job') def job_w_tmpdir_phase(tmpdir, phase, MockJob): j = MockJob() j.progress.return_value = phase j.tmpdir = tmpdir return j @patch('plotmanx.job.Job') def job_w_dstdir_phase(dstdir, phase, MockJob): j = MockJob() j.progress.return_value = phase j.dstdir = dstdir return j def test_dstdirs_to_furthest_phase(): all_jobs = [job_w_dstdir_phase('/plots1', (1, 5)), job_w_dstdir_phase('/plots2', (1, 1)), job_w_dstdir_phase('/plots2', (3, 1)), job_w_dstdir_phase('/plots2', (2, 1)), job_w_dstdir_phase('/plots3', (4, 1))] assert (manager.dstdirs_to_furthest_phase(all_jobs) == {'/plots1': (1, 5), '/plots2': (3, 1), '/plots3': (4, 1)}) def test_dstdirs_to_youngest_phase(): all_jobs = [job_w_dstdir_phase('/plots1', (1, 5)), job_w_dstdir_phase('/plots2', (1, 1)), job_w_dstdir_phase('/plots2', (3, 1)), job_w_dstdir_phase('/plots2', (2, 1)), job_w_dstdir_phase('/plots3', (4, 1))] assert (manager.dstdirs_to_youngest_phase(all_jobs) == {'/plots1': (1, 5), '/plots2': (1, 1), '/plots3': (4, 1)})
30.475728
84
0.621854
8aa610b0cdb50c578ef100939ebdbcb07450ba72
12,282
py
Python
tests/test_util.py
EpicWink/sfini
6bb09d6a59f940947bc2739d24ed05611ebba933
[ "MIT" ]
3
2019-09-09T23:24:18.000Z
2020-03-30T02:07:37.000Z
tests/test_util.py
EpicWink/sfini
6bb09d6a59f940947bc2739d24ed05611ebba933
[ "MIT" ]
26
2019-05-26T07:51:17.000Z
2020-09-08T12:40:26.000Z
tests/test_util.py
EpicWink/sfini
6bb09d6a59f940947bc2739d24ed05611ebba933
[ "MIT" ]
1
2020-04-10T20:26:18.000Z
2020-04-10T20:26:18.000Z
"""Test ``sfini._util``.""" from sfini import _util as tscr import pytest from unittest import mock import logging as lg import boto3 class TestDefaultParameter: """Test `sfini._util.DefaultParameter``.""" @pytest.fixture def default(self): """A DefaultParameter instance.""" return tscr.DefaultParameter() def test_bool(self, default): """Conversion to boolean.""" assert not default assert bool(default) is False def test_eq(self, default): """Default paramater equality.""" other = tscr.DefaultParameter() assert default is not other assert default == other def test_str(self, default): """Default paramater stringification.""" assert str(default) == "<unspecified>" def test_repr(self, default): """Default paramater string representation.""" assert repr(default) == "DefaultParameter()" @pytest.mark.parametrize( ("level", "exp_logger_level", "exp_handler_level"), [(None, lg.WARNING, lg.NOTSET), (lg.INFO, lg.INFO, lg.INFO)]) def test_setup_logging(level, exp_logger_level, exp_handler_level): """Standard-library logging set-up configuration.""" # Setup environment root_logger = lg.getLogger() root_logger.setLevel(lg.WARNING) # Run function with mock.patch.object(root_logger, "handlers", []): tscr.setup_logging(level=level) handlers = root_logger.handlers # Check result assert root_logger.level == exp_logger_level handler, = handlers assert isinstance(handler, lg.StreamHandler) fmt = handler.formatter._fmt assert "message" in fmt assert "asctime" in fmt[:fmt.index("message")] assert "levelname" in fmt[:fmt.index("message")] assert "name" in fmt[:fmt.index("message")] assert handler.level == exp_handler_level class TestCachedProperty: """Test `sfini._util.cached_property``.""" def test(self): """Standard use.""" with mock.patch.object(tscr, "DEBUG", False): class C: def __init__(self): self.a = 42 @tscr.cached_property def b(self): return self.a * 2 # Getting c = C() assert c.b == 84 c.a = 3 assert c.b == 84 # Setting with pytest.raises(AttributeError): c.b = 4 # Deleting with pytest.raises(AttributeError): del c.b def test_debug(self): """Debug-model allowing property setting/deleting.""" with mock.patch.object(tscr, "DEBUG", True): class C: def __init__(self): self.a = 42 @tscr.cached_property def b(self): return self.a * 2 # Getting c = C() assert c.b == 84 c.a = 3 assert c.b == 84 # Setting c.b = 4 assert c.b == 4 # Deleting del c.b assert c.b == 6 class TestAssertValidName: """AWS-given name validation.""" @pytest.mark.parametrize("name", ["spam", "a.!@-_+='"]) def test_valid(self, name): """Passes for valid names.""" tscr.assert_valid_name(name) @pytest.mark.parametrize( "name", [ "Lorem ipsum dolor sit amet, consectetur adipiscing " "elit, sed do eiusmod tempor incididunt", "foo bar", "spam\nbla", "<xml />", "spam [type]", "{name}", "\"name\"", "name:spam", "#names", "eggs?", ".*", "50%", "\\spam", "foo^bar", "spam|bla", "~name", "/path/to/name", "`name`", "$name" "foo&bar", "foo,bar", "spam;bar", tscr.INVALID_NAME_CHARACTERS]) def test_invalid(self, name): """Raises for invalid names.""" with pytest.raises(ValueError) as e: tscr.assert_valid_name(name) assert name in str(e.value) def test_collect_paginated(): """Paginated AWS API endpoint request collection.""" # Build input fn_rvs = [ {"items": [1, 5, 4], "nextToken": 42}, {"items": [9, 3, 0], "nextToken": 17}, {"items": [8]}] fn = mock.Mock(side_effect=fn_rvs) kwargs = {"a": 128, "b": [{"c": None, "d": "spam"}]} # Build expectation exp = {"items": [1, 5, 4, 9, 3, 0, 8]} exp_calls = [ mock.call(**kwargs), mock.call(nextToken=42, **kwargs), mock.call(nextToken=17, **kwargs)] # Run function res = tscr.collect_paginated(fn, **kwargs) # Check result assert res == exp assert fn.call_args_list == exp_calls class TestEasyRepr: """Test ``sfini._util.easy_repr``""" def test_no_params(self): """Function has no paramaters.""" class Class: pass instance = Class() exp = "Class()" res = tscr.easy_repr(instance) assert res == exp def test_positional(self): """Called with only positional arguments.""" class Class: def __init__(self, a, b): self.a = a self.b = b instance = Class(42, "spam") exp = "Class(42, 'spam')" res = tscr.easy_repr(instance) assert res == exp def test_positional_with_optional(self): """Called with only some positional arguments.""" class Class: def __init__(self, a, b, c=None): self.a = a self.b = b self.c = c instance = Class(42, "spam") exp = "Class(42, 'spam')" res = tscr.easy_repr(instance) assert res == exp def test_positional_with_optional_provided(self): """Called with some arguments keyword.""" class Class: def __init__(self, a, b, c=None): self.a = a self.b = b self.c = c instance = Class(42, "spam", c=[1, 2]) exp = "Class(42, 'spam', c=[1, 2])" res = tscr.easy_repr(instance) assert res == exp def test_keyword_only_required(self): """Function has required keyword-only.""" class Class: def __init__(self, a, b, c=None, *, d): self.a = a self.b = b self.c = c self.d = d instance = Class(42, "spam", d="bla") exp = "Class(42, 'spam', d='bla')" res = tscr.easy_repr(instance) assert res == exp def test_keyword_only_optional(self): """Function has optional keyword-only.""" class Class: def __init__(self, a, b, c=None, *, d=None): self.a = a self.b = b self.c = c self.d = d instance = Class(42, "spam") exp = "Class(42, 'spam')" res = tscr.easy_repr(instance) assert res == exp def test_long_positional(self): """Passed long positional.""" class Class: def __init__(self, a, b, c=None): self.a = a self.b = b self.c = c instance = Class(42, "spam" * 42) exp = "Class(42, len 168)" res = tscr.easy_repr(instance) assert res == exp def test_long_keyword(self): """Passed long keyword.""" class Class: def __init__(self, a, b, c=None): self.a = a self.b = b self.c = c instance = Class(42, "spam", c=[1, 2] * 42) exp = "Class(42, 'spam', len(c)=84)" res = tscr.easy_repr(instance) assert res == exp def test_combined(self): """A combined test.""" class Class: def __init__(self, a, b, c=None, d="foo", *, e, f=None, g=""): self.a = a self.b = b self.c = c self.d = d self.e = e self.f = f self.g = g instance = Class(42, "spam", d="bar", e=3, g="1") exp = "Class(42, 'spam', d='bar', e=3, g='1')" res = tscr.easy_repr(instance) assert res == exp def test_var_positional(self): """Error when initialiser has a positional var-arg.""" class Class: def __init__(self, a, b, c=None, *args): self.a = a self.b = b self.c = c self.args = args instance = Class(42, "spam") with pytest.raises(RuntimeError): _ = tscr.easy_repr(instance) def test_var_keyword(self): """Error when initialiser has a keyword var-arg.""" class Class: def __init__(self, a, b, c=None, **kwargs): self.a = a self.b = b self.c = c self.kwargs = kwargs instance = Class(42, "spam") with pytest.raises(RuntimeError): _ = tscr.easy_repr(instance) def test_repr(self): """Usage as ``__repr__``.""" class Class: def __init__(self, a, b, c=None): self.a = a self.b = b self.c = c __repr__ = tscr.easy_repr instance = Class(42, "spam") exp = "Class(42, 'spam')" res = repr(instance) assert res == exp def test_repr_combined(self): """A combined test.""" class Class: def __init__(self, a, b, c=None, d="foo", *, e, f=None, g=""): self.a = a self.b = b self.c = c self.d = d self.e = e self.f = f self.g = g __repr__ = tscr.easy_repr instance = Class(42, "spam", d="bar", e=3, g="1") exp = "Class(42, 'spam', d='bar', e=3, g='1')" res = repr(instance) assert res == exp class TestAWSSession: """Test ``sfini._util.AWSSession``.""" @pytest.fixture def session(self): """AWS ``boto3`` session mock.""" return mock.Mock(spec=boto3.Session) @pytest.fixture def sfini_session(self, session): """An example AWSSession instance.""" return tscr.AWSSession(session=session) def test_init(self, sfini_session, session): """AWSSession instantiation.""" assert sfini_session.session is session def test_str(self, sfini_session): """AWSSession stringification.""" sfini_session.credentials = mock.Mock() sfini_session.credentials.access_key = "spamkey" sfini_session.region = "spamregion" res = str(sfini_session) assert "spamkey" in res assert "spamregion" in res def test_repr(self, sfini_session, session): """AWSSession string representation.""" exp = "AWSSession(session=%r)" % session res = repr(sfini_session) assert res == exp def test_credentials(self, sfini_session, session): """AWS IAM credentials.""" res = sfini_session.credentials assert res is session.get_credentials.return_value session.get_credentials.assert_called_once_with() def test_sfn(self, sfini_session, session): """AWS Step Functions client.""" res = sfini_session.sfn assert res is session.client.return_value session.client.assert_called_once_with("stepfunctions") def test_region(self, sfini_session, session): """AWS session API region.""" session.region_name = "spamregion" assert sfini_session.region == "spamregion" def test_account_id(self, sfini_session, session): """AWS account ID.""" client_mock = mock.Mock() session.client.return_value = client_mock client_mock.get_caller_identity.return_value = {"Account": "spamacc"} assert sfini_session.account_id == "spamacc" session.client.assert_called_once_with("sts") client_mock.get_caller_identity.assert_called_once_with()
29.242857
77
0.52638
9f8af2bc36ab026a3c45c85493fd75b1c82e65c0
2,799
py
Python
test/test_appscale_get_property.py
NeolithEra/appscale-tools
bf02462645ba08975e0e4cfcc25f3ff4e0ec1545
[ "Apache-2.0" ]
21
2015-04-22T02:46:22.000Z
2021-11-14T20:05:18.000Z
test/test_appscale_get_property.py
NeolithEra/appscale-tools
bf02462645ba08975e0e4cfcc25f3ff4e0ec1545
[ "Apache-2.0" ]
244
2015-01-02T22:43:58.000Z
2020-01-29T17:52:43.000Z
test/test_appscale_get_property.py
NeolithEra/appscale-tools
bf02462645ba08975e0e4cfcc25f3ff4e0ec1545
[ "Apache-2.0" ]
32
2015-03-12T14:49:49.000Z
2021-06-08T09:43:36.000Z
#!/usr/bin/env python # General-purpose Python library imports import json import os import sys import time import unittest # Third party libraries from flexmock import flexmock import SOAPpy # AppScale import, the library that we're testing here from appscale.tools.appscale_logger import AppScaleLogger from appscale.tools.appscale_tools import AppScaleTools from appscale.tools.local_state import LocalState from appscale.tools.parse_args import ParseArgs class TestAppScaleGetProperty(unittest.TestCase): def setUp(self): self.keyname = "boobazblargfoo" self.function = "appscale-get-property" # mock out any writing to stdout flexmock(AppScaleLogger) AppScaleLogger.should_receive('log').and_return() AppScaleLogger.should_receive('success').and_return() AppScaleLogger.should_receive('warn').and_return() # mock out all sleeping flexmock(time) time.should_receive('sleep').and_return() def test_get_property(self): # put in a mock for reading the secret file builtins = flexmock(sys.modules['__builtin__']) builtins.should_call('open') # set the fall-through secret_key_location = LocalState.get_secret_key_location(self.keyname) fake_secret = flexmock(name="fake_secret") fake_secret.should_receive('read').and_return('the secret') builtins.should_receive('open').with_args(secret_key_location, 'r') \ .and_return(fake_secret) # mock out finding the shadow node's IP address from the json file flexmock(os.path) os.path.should_call('exists') # set the fall-through os.path.should_receive('exists').with_args( LocalState.get_locations_json_location(self.keyname)).and_return(True) fake_nodes_json = flexmock(name="fake_secret") fake_nodes_json.should_receive('read').and_return(json.dumps( {"node_info": [{ 'public_ip': 'public1', 'private_ip': 'private1', 'roles': ['shadow'] }]})) builtins.should_receive('open').with_args( LocalState.get_locations_json_location(self.keyname), 'r') \ .and_return(fake_nodes_json) # mock out grabbing the userappserver ip from an appcontroller property_regex = "property-name-.*" expected = {'a':'b'} fake_appcontroller = flexmock(name='fake_appcontroller') fake_appcontroller.should_receive('get_property').with_args(property_regex, 'the secret').and_return(json.dumps(expected)) flexmock(SOAPpy) SOAPpy.should_receive('SOAPProxy').with_args('https://public1:17443') \ .and_return(fake_appcontroller) argv = [ "--keyname", self.keyname, "--property", property_regex ] options = ParseArgs(argv, self.function).args properties = AppScaleTools.get_property(options) self.assertEqual(expected, properties)
31.449438
79
0.728832
09357f8d9e666a631d42ded9fa15c4a84c45d1dc
108,636
py
Python
tests/unit/forklift/test_legacy.py
lala7573/warehouse
56938af14d0337724873f4e9024be7aa0adcda1e
[ "Apache-2.0" ]
1
2019-06-23T14:37:33.000Z
2019-06-23T14:37:33.000Z
tests/unit/forklift/test_legacy.py
Matthelonianxl/warehouse
a08fdb85c523be2c6d5fe29e0c333e1664566cc2
[ "Apache-2.0" ]
null
null
null
tests/unit/forklift/test_legacy.py
Matthelonianxl/warehouse
a08fdb85c523be2c6d5fe29e0c333e1664566cc2
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import io import re import tempfile import zipfile from cgi import FieldStorage from unittest import mock import pkg_resources import pretend import pytest import requests from pyramid.httpexceptions import HTTPBadRequest, HTTPForbidden from sqlalchemy.orm import joinedload from webob.multidict import MultiDict from wtforms.form import Form from wtforms.validators import ValidationError from warehouse.admin.flags import AdminFlag from warehouse.admin.squats import Squat from warehouse.classifiers.models import Classifier from warehouse.forklift import legacy from warehouse.packaging.interfaces import IFileStorage from warehouse.packaging.models import ( Dependency, DependencyKind, File, Filename, JournalEntry, Project, Release, Role, ) from ...common.db.accounts import EmailFactory, UserFactory from ...common.db.classifiers import ClassifierFactory from ...common.db.packaging import ( FileFactory, ProjectFactory, ReleaseFactory, RoleFactory, ) def test_exc_with_message(): exc = legacy._exc_with_message(HTTPBadRequest, "My Test Message.") assert isinstance(exc, HTTPBadRequest) assert exc.status_code == 400 assert exc.status == "400 My Test Message." class TestValidation: @pytest.mark.parametrize("version", ["1.0", "30a1", "1!1", "1.0-1"]) def test_validates_valid_pep440_version(self, version): form, field = pretend.stub(), pretend.stub(data=version) legacy._validate_pep440_version(form, field) @pytest.mark.parametrize("version", ["dog", "1.0.dev.a1", "1.0+local"]) def test_validates_invalid_pep440_version(self, version): form, field = pretend.stub(), pretend.stub(data=version) with pytest.raises(ValidationError): legacy._validate_pep440_version(form, field) @pytest.mark.parametrize( ("requirement", "expected"), [("foo", ("foo", None)), ("foo (>1.0)", ("foo", ">1.0"))], ) def test_parses_legacy_requirement_valid(self, requirement, expected): parsed = legacy._parse_legacy_requirement(requirement) assert parsed == expected @pytest.mark.parametrize("requirement", ["foo bar"]) def test_parses_legacy_requirement_invalid(self, requirement): with pytest.raises(ValueError): legacy._parse_legacy_requirement(requirement) @pytest.mark.parametrize("specifier", [">=1.0", "<=1.0-1"]) def test_validates_valid_pep440_specifier(self, specifier): legacy._validate_pep440_specifier(specifier) @pytest.mark.parametrize("specifier", ["wat?"]) def test_validates_invalid_pep440_specifier(self, specifier): with pytest.raises(ValidationError): legacy._validate_pep440_specifier(specifier) @pytest.mark.parametrize( "requirement", ["foo (>=1.0)", "foo", "_foo", "foo2", "foo.bar"] ) def test_validates_legacy_non_dist_req_valid(self, requirement): legacy._validate_legacy_non_dist_req(requirement) @pytest.mark.parametrize( "requirement", [ "foo-bar (>=1.0)", "foo-bar", "2foo (>=1.0)", "2foo", "☃ (>=1.0)", "☃", "name @ https://github.com/pypa", "foo.2bar", ], ) def test_validates_legacy_non_dist_req_invalid(self, requirement): with pytest.raises(ValidationError): legacy._validate_legacy_non_dist_req(requirement) def test_validate_legacy_non_dist_req_list(self, monkeypatch): validator = pretend.call_recorder(lambda datum: None) monkeypatch.setattr(legacy, "_validate_legacy_non_dist_req", validator) data = [pretend.stub(), pretend.stub(), pretend.stub()] form, field = pretend.stub(), pretend.stub(data=data) legacy._validate_legacy_non_dist_req_list(form, field) assert validator.calls == [pretend.call(datum) for datum in data] @pytest.mark.parametrize( "requirement", ["foo (>=1.0)", "foo", "foo2", "foo-bar", "foo_bar"] ) def test_validate_legacy_dist_req_valid(self, requirement): legacy._validate_legacy_dist_req(requirement) @pytest.mark.parametrize( "requirement", [ "☃ (>=1.0)", "☃", "foo-", "foo- (>=1.0)", "_foo", "_foo (>=1.0)", "name @ https://github.com/pypa", ], ) def test_validate_legacy_dist_req_invalid(self, requirement): with pytest.raises(ValidationError): legacy._validate_legacy_dist_req(requirement) def test_validate_legacy_dist_req_list(self, monkeypatch): validator = pretend.call_recorder(lambda datum: None) monkeypatch.setattr(legacy, "_validate_legacy_dist_req", validator) data = [pretend.stub(), pretend.stub(), pretend.stub()] form, field = pretend.stub(), pretend.stub(data=data) legacy._validate_legacy_dist_req_list(form, field) assert validator.calls == [pretend.call(datum) for datum in data] @pytest.mark.parametrize( ("requirement", "specifier"), [("C", None), ("openssl (>=1.0.0)", ">=1.0.0")] ) def test_validate_requires_external(self, monkeypatch, requirement, specifier): spec_validator = pretend.call_recorder(lambda spec: None) monkeypatch.setattr(legacy, "_validate_pep440_specifier", spec_validator) legacy._validate_requires_external(requirement) if specifier is not None: assert spec_validator.calls == [pretend.call(specifier)] else: assert spec_validator.calls == [] def test_validate_requires_external_list(self, monkeypatch): validator = pretend.call_recorder(lambda datum: None) monkeypatch.setattr(legacy, "_validate_requires_external", validator) data = [pretend.stub(), pretend.stub(), pretend.stub()] form, field = pretend.stub(), pretend.stub(data=data) legacy._validate_requires_external_list(form, field) assert validator.calls == [pretend.call(datum) for datum in data] @pytest.mark.parametrize( "project_url", ["Home, https://pypi.python.org/", ("A" * 32) + ", https://example.com/"], ) def test_validate_project_url_valid(self, project_url): legacy._validate_project_url(project_url) @pytest.mark.parametrize( "project_url", [ "Home,https://pypi.python.org/", "https://pypi.python.org/", ", https://pypi.python.org/", "Home, ", ("A" * 33) + ", https://example.com/", "Home, I am a banana", "Home, ssh://foobar", "", ], ) def test_validate_project_url_invalid(self, project_url): with pytest.raises(ValidationError): legacy._validate_project_url(project_url) @pytest.mark.parametrize( "project_urls", [["Home, https://pypi.python.org/", ("A" * 32) + ", https://example.com/"]], ) def test_all_valid_project_url_list(self, project_urls): form, field = pretend.stub(), pretend.stub(data=project_urls) legacy._validate_project_url_list(form, field) @pytest.mark.parametrize( "project_urls", [ ["Home, https://pypi.python.org/", ""], # Valid # Invalid [ ("A" * 32) + ", https://example.com/", # Valid ("A" * 33) + ", https://example.com/", # Invalid ], ], ) def test_invalid_member_project_url_list(self, project_urls): form, field = pretend.stub(), pretend.stub(data=project_urls) with pytest.raises(ValidationError): legacy._validate_project_url_list(form, field) def test_validate_project_url_list(self, monkeypatch): validator = pretend.call_recorder(lambda datum: None) monkeypatch.setattr(legacy, "_validate_project_url", validator) data = [pretend.stub(), pretend.stub(), pretend.stub()] form, field = pretend.stub(), pretend.stub(data=data) legacy._validate_project_url_list(form, field) assert validator.calls == [pretend.call(datum) for datum in data] @pytest.mark.parametrize( "data", [ (""), ("foo@bar.com"), ("foo@bar.com,"), ("foo@bar.com, biz@baz.com"), ('"C. Schultz" <cschultz@example.com>'), ('"C. Schultz" <cschultz@example.com>, snoopy@peanuts.com'), ], ) def test_validate_rfc822_email_field(self, data): form, field = pretend.stub(), pretend.stub(data=data) legacy._validate_rfc822_email_field(form, field) @pytest.mark.parametrize( "data", [ ("foo"), ("foo@"), ("@bar.com"), ("foo@bar"), ("foo AT bar DOT com"), ("foo@bar.com, foo"), ], ) def test_validate_rfc822_email_field_raises(self, data): form, field = pretend.stub(), pretend.stub(data=data) with pytest.raises(ValidationError): legacy._validate_rfc822_email_field(form, field) @pytest.mark.parametrize( "data", [ "text/plain; charset=UTF-8", "text/x-rst; charset=UTF-8", "text/markdown; charset=UTF-8; variant=CommonMark", "text/markdown; charset=UTF-8; variant=GFM", "text/markdown", ], ) def test_validate_description_content_type_valid(self, data): form, field = pretend.stub(), pretend.stub(data=data) legacy._validate_description_content_type(form, field) @pytest.mark.parametrize( "data", [ "invalid_type/plain", "text/invalid_subtype", "text/plain; charset=invalid_charset", "text/markdown; charset=UTF-8; variant=invalid_variant", ], ) def test_validate_description_content_type_invalid(self, data): form, field = pretend.stub(), pretend.stub(data=data) with pytest.raises(ValidationError): legacy._validate_description_content_type(form, field) def test_validate_no_deprecated_classifiers_valid(self, db_request): valid_classifier = ClassifierFactory(deprecated=False) validator = legacy._no_deprecated_classifiers(db_request) form = pretend.stub() field = pretend.stub(data=[valid_classifier.classifier]) validator(form, field) def test_validate_no_deprecated_classifiers_invalid(self, db_request): deprecated_classifier = ClassifierFactory(classifier="AA: BB", deprecated=True) validator = legacy._no_deprecated_classifiers(db_request) db_request.registry = pretend.stub(settings={"warehouse.domain": "host"}) db_request.route_url = pretend.call_recorder(lambda *a, **kw: "/url") form = pretend.stub() field = pretend.stub(data=[deprecated_classifier.classifier]) with pytest.raises(ValidationError): validator(form, field) def test_construct_dependencies(): types = {"requires": DependencyKind.requires, "provides": DependencyKind.provides} form = pretend.stub( requires=pretend.stub(data=["foo (>1)"]), provides=pretend.stub(data=["bar (>2)"]), ) for dep in legacy._construct_dependencies(form, types): assert isinstance(dep, Dependency) if dep.kind == DependencyKind.requires: assert dep.specifier == "foo (>1)" elif dep.kind == DependencyKind.provides: assert dep.specifier == "bar (>2)" else: pytest.fail("Unknown type of specifier") class TestListField: @pytest.mark.parametrize( ("data", "expected"), [ (["foo", "bar"], ["foo", "bar"]), ([" foo"], ["foo"]), (["f oo "], ["f oo"]), ("", []), (" ", []), ], ) def test_processes_form_data(self, data, expected): field = legacy.ListField() field = field.bind(pretend.stub(meta=pretend.stub()), "formname") field.process_formdata(data) assert field.data == expected @pytest.mark.parametrize(("value", "expected"), [("", []), ("wutang", ["wutang"])]) def test_coerce_string_into_list(self, value, expected): class MyForm(Form): test = legacy.ListField() form = MyForm(MultiDict({"test": value})) assert form.test.data == expected class TestMetadataForm: @pytest.mark.parametrize( "data", [ {"filetype": "sdist", "md5_digest": "bad"}, {"filetpye": "bdist_wheel", "pyversion": "3.4", "md5_digest": "bad"}, {"filetype": "sdist", "sha256_digest": "bad"}, {"filetpye": "bdist_wheel", "pyversion": "3.4", "sha256_digest": "bad"}, {"filetype": "sdist", "md5_digest": "bad", "sha256_digest": "bad"}, { "filetpye": "bdist_wheel", "pyversion": "3.4", "md5_digest": "bad", "sha256_digest": "bad", }, ], ) def test_full_validate_valid(self, data): form = legacy.MetadataForm(MultiDict(data)) form.full_validate() @pytest.mark.parametrize( "data", [{"filetype": "sdist", "pyversion": "3.4"}, {"filetype": "bdist_wheel"}] ) def test_full_validate_invalid(self, data): form = legacy.MetadataForm(MultiDict(data)) with pytest.raises(ValidationError): form.full_validate() def test_requires_python(self): form = legacy.MetadataForm(MultiDict({"requires_python": ">= 3.5"})) form.requires_python.validate(form) class TestFileValidation: def test_defaults_to_true(self): assert legacy._is_valid_dist_file("", "") @pytest.mark.parametrize( ("filename", "filetype"), [("test.exe", "bdist_msi"), ("test.msi", "bdist_wininst")], ) def test_bails_with_invalid_package_type(self, filename, filetype): assert not legacy._is_valid_dist_file(filename, filetype) @pytest.mark.parametrize( ("filename", "filetype"), [ ("test.exe", "bdist_wininst"), ("test.zip", "sdist"), ("test.egg", "bdist_egg"), ("test.whl", "bdist_wheel"), ], ) def test_bails_with_invalid_zipfile(self, tmpdir, filename, filetype): f = str(tmpdir.join(filename)) with open(f, "wb") as fp: fp.write(b"this isn't a valid zip file") assert not legacy._is_valid_dist_file(f, filetype) def test_wininst_unsafe_filename(self, tmpdir): f = str(tmpdir.join("test.exe")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something/bar.py", b"the test file") assert not legacy._is_valid_dist_file(f, "bdist_wininst") def test_wininst_safe_filename(self, tmpdir): f = str(tmpdir.join("test.exe")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("purelib/bar.py", b"the test file") assert legacy._is_valid_dist_file(f, "bdist_wininst") def test_msi_invalid_header(self, tmpdir): f = str(tmpdir.join("test.msi")) with open(f, "wb") as fp: fp.write(b"this isn't the correct header for an msi") assert not legacy._is_valid_dist_file(f, "bdist_msi") def test_msi_valid_header(self, tmpdir): f = str(tmpdir.join("test.msi")) with open(f, "wb") as fp: fp.write(b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1") assert legacy._is_valid_dist_file(f, "bdist_msi") def test_zip_no_pkg_info(self, tmpdir): f = str(tmpdir.join("test.zip")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something.txt", b"Just a placeholder file") assert not legacy._is_valid_dist_file(f, "sdist") def test_zip_has_pkg_info(self, tmpdir): f = str(tmpdir.join("test.zip")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something.txt", b"Just a placeholder file") zfp.writestr("PKG-INFO", b"this is the package info") assert legacy._is_valid_dist_file(f, "sdist") def test_zipfile_supported_compression(self, tmpdir): f = str(tmpdir.join("test.zip")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("PKG-INFO", b"this is the package info") zfp.writestr("1.txt", b"1", zipfile.ZIP_STORED) zfp.writestr("2.txt", b"2", zipfile.ZIP_DEFLATED) assert legacy._is_valid_dist_file(f, "") @pytest.mark.parametrize("method", [zipfile.ZIP_BZIP2, zipfile.ZIP_LZMA]) def test_zipfile_unsupported_compression(self, tmpdir, method): f = str(tmpdir.join("test.zip")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("1.txt", b"1", zipfile.ZIP_STORED) zfp.writestr("2.txt", b"2", zipfile.ZIP_DEFLATED) zfp.writestr("3.txt", b"3", method) assert not legacy._is_valid_dist_file(f, "") def test_egg_no_pkg_info(self, tmpdir): f = str(tmpdir.join("test.egg")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something.txt", b"Just a placeholder file") assert not legacy._is_valid_dist_file(f, "bdist_egg") def test_egg_has_pkg_info(self, tmpdir): f = str(tmpdir.join("test.egg")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something.txt", b"Just a placeholder file") zfp.writestr("PKG-INFO", b"this is the package info") assert legacy._is_valid_dist_file(f, "bdist_egg") def test_wheel_no_wheel_file(self, tmpdir): f = str(tmpdir.join("test.whl")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something.txt", b"Just a placeholder file") assert not legacy._is_valid_dist_file(f, "bdist_wheel") def test_wheel_has_wheel_file(self, tmpdir): f = str(tmpdir.join("test.whl")) with zipfile.ZipFile(f, "w") as zfp: zfp.writestr("something.txt", b"Just a placeholder file") zfp.writestr("WHEEL", b"this is the package info") assert legacy._is_valid_dist_file(f, "bdist_wheel") class TestIsDuplicateFile: def test_is_duplicate_true(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") file_value = file_content.getvalue() hashes = { "sha256": hashlib.sha256(file_value).hexdigest(), "md5": hashlib.md5(file_value).hexdigest(), "blake2_256": hashlib.blake2b(file_value, digest_size=256 // 8).hexdigest(), } db_request.db.add( File( release=release, filename=filename, md5_digest=hashes["md5"], sha256_digest=hashes["sha256"], blake2_256_digest=hashes["blake2_256"], path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) assert legacy._is_duplicate_file(db_request.db, filename, hashes) def test_is_duplicate_none(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) requested_file_name = "{}-{}-1.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") file_value = file_content.getvalue() hashes = { "sha256": hashlib.sha256(file_value).hexdigest(), "md5": hashlib.md5(file_value).hexdigest(), "blake2_256": hashlib.blake2b(file_value, digest_size=256 // 8).hexdigest(), } db_request.db.add( File( release=release, filename=filename, md5_digest=hashes["md5"], sha256_digest=hashes["sha256"], blake2_256_digest=hashes["blake2_256"], path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) hashes["blake2_256"] = "another blake2 digest" assert ( legacy._is_duplicate_file(db_request.db, requested_file_name, hashes) is None ) def test_is_duplicate_false_same_blake2(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) requested_file_name = "{}-{}-1.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") file_value = file_content.getvalue() hashes = { "sha256": hashlib.sha256(file_value).hexdigest(), "md5": hashlib.md5(file_value).hexdigest(), "blake2_256": hashlib.blake2b(file_value, digest_size=256 // 8).hexdigest(), } db_request.db.add( File( release=release, filename=filename, md5_digest=hashes["md5"], sha256_digest=hashes["sha256"], blake2_256_digest=hashes["blake2_256"], path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) assert ( legacy._is_duplicate_file(db_request.db, requested_file_name, hashes) is False ) def test_is_duplicate_false(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") file_value = file_content.getvalue() hashes = { "sha256": hashlib.sha256(file_value).hexdigest(), "md5": hashlib.md5(file_value).hexdigest(), "blake2_256": hashlib.blake2b(file_value, digest_size=256 // 8).hexdigest(), } wrong_hashes = {"sha256": "nah", "md5": "nope", "blake2_256": "nuh uh"} db_request.db.add( File( release=release, filename=filename, md5_digest=hashes["md5"], sha256_digest=hashes["sha256"], blake2_256_digest=hashes["blake2_256"], path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) assert legacy._is_duplicate_file(db_request.db, filename, wrong_hashes) is False class TestFileUpload: @pytest.mark.parametrize("version", ["2", "3", "-1", "0", "dog", "cat"]) def test_fails_invalid_version(self, pyramid_config, pyramid_request, version): pyramid_config.testing_securitypolicy(userid=1) pyramid_request.POST["protocol_version"] = version pyramid_request.flags = pretend.stub(enabled=lambda *a: False) pyramid_request.user = pretend.stub(primary_email=pretend.stub(verified=True)) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(pyramid_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Unknown protocol version." @pytest.mark.parametrize( ("post_data", "message"), [ # metadata_version errors. ( {}, "'' is an invalid value for Metadata-Version. " "Error: This field is required. " "See " "https://packaging.python.org/specifications/core-metadata", ), ( {"metadata_version": "-1"}, "'-1' is an invalid value for Metadata-Version. " "Error: Use a known metadata version. " "See " "https://packaging.python.org/specifications/core-metadata", ), # name errors. ( {"metadata_version": "1.2"}, "'' is an invalid value for Name. " "Error: This field is required. " "See " "https://packaging.python.org/specifications/core-metadata", ), ( {"metadata_version": "1.2", "name": "foo-"}, "'foo-' is an invalid value for Name. " "Error: Start and end with a letter or numeral containing " "only ASCII numeric and '.', '_' and '-'. " "See " "https://packaging.python.org/specifications/core-metadata", ), # version errors. ( {"metadata_version": "1.2", "name": "example"}, "'' is an invalid value for Version. " "Error: This field is required. " "See " "https://packaging.python.org/specifications/core-metadata", ), ( {"metadata_version": "1.2", "name": "example", "version": "dog"}, "'dog' is an invalid value for Version. " "Error: Start and end with a letter or numeral " "containing only ASCII numeric and '.', '_' and '-'. " "See " "https://packaging.python.org/specifications/core-metadata", ), # filetype/pyversion errors. ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "md5_digest": "bad", }, "Invalid value for filetype. Error: This field is required.", ), ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "bdist_wat", }, "Error: Python version is required for binary distribution " "uploads.", ), ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "bdist_wat", "pyversion": "1.0", "md5_digest": "bad", }, "Invalid value for filetype. Error: Use a known file type.", ), ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "pyversion": "1.0", }, "Error: Use 'source' as Python version for an sdist.", ), # digest errors. ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", }, "Error: Include at least one message digest.", ), ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "sha256_digest": "an invalid sha256 digest", }, "Invalid value for sha256_digest. " "Error: Use a valid, hex-encoded, SHA256 message digest.", ), # summary errors ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", "summary": "A" * 513, }, "'" + "A" * 513 + "' is an invalid value for Summary. " "Error: Field cannot be longer than 512 characters. " "See " "https://packaging.python.org/specifications/core-metadata", ), ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", "summary": "A\nB", }, ( "{!r} is an invalid value for Summary. ".format("A\nB") + "Error: Use a single line only. " "See " "https://packaging.python.org/specifications/core-metadata" ), ), # classifiers are a FieldStorage ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "classifiers": FieldStorage(), }, "classifiers: Should not be a tuple.", ), # keywords are a FieldStorage ( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "keywords": FieldStorage(), }, "keywords: Should not be a tuple.", ), ], ) def test_fails_invalid_post_data( self, pyramid_config, db_request, post_data, message ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user db_request.POST = MultiDict(post_data) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 {}".format(message) @pytest.mark.parametrize("name", ["requirements.txt", "rrequirements.txt"]) def test_fails_with_invalid_names(self, pyramid_config, db_request, name): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": name, "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", "content": pretend.stub( filename=f"{name}-1.0.tar.gz", file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="project-name")] assert resp.status_code == 400 assert resp.status == ( "400 The name {!r} isn't allowed. " "See /the/help/url/ " "for more information." ).format(name) @pytest.mark.parametrize( ("description_content_type", "description", "message"), [ ( "text/x-rst", ".. invalid-directive::", "400 The description failed to render for 'text/x-rst'. " "See /the/help/url/ for more information.", ), ( "", ".. invalid-directive::", "400 The description failed to render in the default format " "of reStructuredText. " "See /the/help/url/ for more information.", ), ], ) def test_fails_invalid_render( self, pyramid_config, db_request, description_content_type, description, message ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user db_request.remote_addr = "10.10.10.30" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", "content": pretend.stub( filename="example-1.0.tar.gz", file=io.BytesIO(b"A fake file."), type="application/tar", ), "description_content_type": description_content_type, "description": description, } ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [ pretend.call(_anchor="description-content-type") ] assert resp.status_code == 400 assert resp.status == message @pytest.mark.parametrize( "name", [ "xml", "XML", "pickle", "PiCKle", "main", "future", "al", "uU", "test", "encodings.utf_8_sig", "distutils.command.build_clib", "xmlrpc", "xmlrpc.server", "xml.etree", "xml.etree.ElementTree", "xml.parsers", "xml.parsers.expat", "xml.parsers.expat.errors", "encodings.idna", "encodings", "CGIHTTPServer", "cgihttpserver", ], ) def test_fails_with_stdlib_names(self, pyramid_config, db_request, name): user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user pyramid_config.testing_securitypolicy(userid=1) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": name, "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", "content": pretend.stub( filename=f"{name}-1.0.tar.gz", file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="project-name")] assert resp.status_code == 400 assert resp.status == ( ( "400 The name {!r} isn't allowed (conflict " "with Python Standard Library module name). " "See /the/help/url/ " "for more information." ) ).format(name) def test_fails_with_admin_flag_set(self, pyramid_config, db_request): admin_flag = ( db_request.db.query(AdminFlag) .filter(AdminFlag.id == "disallow-new-project-registration") .first() ) admin_flag.enabled = True pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user name = "fails-with-admin-flag" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": name, "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", "content": pretend.stub( filename=f"{name}-1.0.tar.gz", file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPForbidden) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 403 assert resp.status == ( "403 New project registration temporarily " "disabled. See " "/the/help/url/ for " "details" ) def test_upload_fails_without_file(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Upload payload does not have a file." @pytest.mark.parametrize("value", [("UNKNOWN"), ("UNKNOWN\n\n")]) def test_upload_cleans_unknown_values(self, pyramid_config, db_request, value): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": value, "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", } ) with pytest.raises(HTTPBadRequest): legacy.file_upload(db_request) assert "name" not in db_request.POST def test_upload_escapes_nul_characters(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "testing", "summary": "I want to go to the \x00", "version": "1.0", "filetype": "sdist", "md5_digest": "a fake md5 digest", } ) with pytest.raises(HTTPBadRequest): legacy.file_upload(db_request) assert "\x00" not in db_request.POST["summary"] @pytest.mark.parametrize( ("has_signature", "digests"), [ (True, {"md5_digest": "335c476dc930b959dda9ec82bd65ef19"}), ( True, { "sha256_digest": ( "4a8422abcc484a4086bdaa618c65289f749433b07eb433c51c4e3" "77143ff5fdb" ) }, ), (False, {"md5_digest": "335c476dc930b959dda9ec82bd65ef19"}), ( False, { "sha256_digest": ( "4a8422abcc484a4086bdaa618c65289f749433b07eb433c51c4e3" "77143ff5fdb" ) }, ), ( True, { "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "sha256_digest": ( "4a8422abcc484a4086bdaa618c65289f749433b07eb433c51c4e3" "77143ff5fdb" ), }, ), ( False, { "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "sha256_digest": ( "4a8422abcc484a4086bdaa618c65289f749433b07eb433c51c4e3" "77143ff5fdb" ), }, ), ], ) def test_successful_upload( self, tmpdir, monkeypatch, pyramid_config, db_request, has_signature, digests ): monkeypatch.setattr(tempfile, "tempdir", str(tmpdir)) pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) db_request.db.add(Classifier(classifier="Environment :: Other Environment")) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.user = user db_request.remote_addr = "10.10.10.40" db_request.user_agent = "warehouse-tests/6.6.6" content = FieldStorage() content.filename = filename content.file = io.BytesIO(b"A fake file.") content.type = "application/tar" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "pyversion": "source", "content": content, "description": "an example description", } ) db_request.POST.extend([("classifiers", "Environment :: Other Environment")]) db_request.POST.update(digests) if has_signature: gpg_signature = FieldStorage() gpg_signature.filename = filename + ".asc" gpg_signature.file = io.BytesIO( b"-----BEGIN PGP SIGNATURE-----\n" b" This is a Fake Signature" ) db_request.POST["gpg_signature"] = gpg_signature assert isinstance(db_request.POST["gpg_signature"], FieldStorage) @pretend.call_recorder def storage_service_store(path, file_path, *, meta): if file_path.endswith(".asc"): expected = ( b"-----BEGIN PGP SIGNATURE-----\n" b" This is a Fake Signature" ) else: expected = b"A fake file." with open(file_path, "rb") as fp: assert fp.read() == expected storage_service = pretend.stub(store=storage_service_store) db_request.find_service = pretend.call_recorder( lambda svc, name=None: storage_service ) resp = legacy.file_upload(db_request) assert resp.status_code == 200 assert db_request.find_service.calls == [pretend.call(IFileStorage)] assert len(storage_service.store.calls) == 2 if has_signature else 1 assert storage_service.store.calls[0] == pretend.call( "/".join( [ "4e", "6e", "fa4c0ee2bbad071b4f5b5ea68f1aea89fa716e7754eb13e2314d45a5916e", filename, ] ), mock.ANY, meta={ "project": project.normalized_name, "version": release.version, "package-type": "sdist", "python-version": "source", }, ) if has_signature: assert storage_service.store.calls[1] == pretend.call( "/".join( [ "4e", "6e", ( "fa4c0ee2bbad071b4f5b5ea68f1aea89fa716e7754eb13e2314d" "45a5916e" ), filename + ".asc", ] ), mock.ANY, meta={ "project": project.normalized_name, "version": release.version, "package-type": "sdist", "python-version": "source", }, ) # Ensure that a File object has been created. uploaded_file = ( db_request.db.query(File) .filter((File.release == release) & (File.filename == filename)) .one() ) assert uploaded_file.uploaded_via == "warehouse-tests/6.6.6" # Ensure that a Filename object has been created. db_request.db.query(Filename).filter(Filename.filename == filename).one() # Ensure that all of our journal entries have been created journals = ( db_request.db.query(JournalEntry) .options(joinedload("submitted_by")) .order_by("submitted_date", "id") .all() ) assert [ (j.name, j.version, j.action, j.submitted_by, j.submitted_from) for j in journals ] == [ ( release.project.name, release.version, "add source file {}".format(filename), user, "10.10.10.40", ) ] @pytest.mark.parametrize("content_type", [None, "image/foobar"]) def test_upload_fails_invlaid_content_type( self, tmpdir, monkeypatch, pyramid_config, db_request, content_type ): monkeypatch.setattr(tempfile, "tempdir", str(tmpdir)) pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) db_request.db.add(Classifier(classifier="Environment :: Other Environment")) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "pyversion": "source", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type=content_type, ), } ) db_request.POST.extend([("classifiers", "Environment :: Other Environment")]) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Invalid distribution file." def test_upload_fails_with_legacy_type(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "bdist_dumb", "pyversion": "2.7", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Unknown type of file." def test_upload_fails_with_legacy_ext(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) db_request.user = user project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.bz2".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == ( "400 Invalid file extension: Use .egg, .tar.gz, .whl or .zip " "extension. (https://www.python.org/dev/peps/pep-0527)" ) def test_upload_fails_for_second_sdist(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") FileFactory.create( release=release, packagetype="sdist", filename="{}-{}.tar.gz".format(project.name, release.version), ) RoleFactory.create(user=user, project=project) filename = "{}-{}.zip".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/zip", ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Only one sdist may be uploaded per release." @pytest.mark.parametrize("sig", [b"lol nope"]) def test_upload_fails_with_invalid_signature(self, pyramid_config, db_request, sig): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), "gpg_signature": pretend.stub( filename=filename + ".asc", file=io.BytesIO(sig) ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 PGP signature isn't ASCII armored." def test_upload_fails_with_invalid_classifier(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.POST.extend([("classifiers", "Environment :: Other Environment")]) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == ( "400 Invalid value for classifiers. " "Error: 'Environment :: Other Environment' is not a valid choice " "for this field" ) def test_upload_fails_with_deprecated_classifier(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) classifier = ClassifierFactory(classifier="AA :: BB", deprecated=True) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.POST.extend([("classifiers", classifier.classifier)]) db_request.route_url = pretend.call_recorder(lambda *a, **kw: "/url") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == ( "400 Invalid value for classifiers. " "Error: Classifier 'AA :: BB' has been deprecated, see /url " "for a list of valid classifiers." ) @pytest.mark.parametrize( "digests", [ {"md5_digest": "bad"}, { "sha256_digest": ( "badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad" "badbadb" ) }, { "md5_digest": "bad", "sha256_digest": ( "badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad" "badbadb" ), }, { "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "sha256_digest": ( "badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad" "badbadb" ), }, { "md5_digest": "bad", "sha256_digest": ( "4a8422abcc484a4086bdaa618c65289f749433b07eb433c51c4e37714" "3ff5fdb" ), }, ], ) def test_upload_fails_with_invalid_digest( self, pyramid_config, db_request, digests ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.POST.update(digests) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == ( "400 The digest supplied does not match a digest calculated " "from the uploaded file." ) def test_upload_fails_with_invalid_file(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.zip".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "0cc175b9c0f1b6a831c399e269772661", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a"), type="application/zip" ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Invalid distribution file." def test_upload_fails_with_too_large_file(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create( name="foobar", upload_limit=(60 * 1024 * 1024) # 60 MB ) release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "nope!", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a" * (project.upload_limit + 1)), type="application/tar", ), } ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="file-size-limit")] assert resp.status_code == 400 assert resp.status == ( "400 File too large. Limit for project 'foobar' is 60 MB. " "See /the/help/url/" ) def test_upload_fails_with_too_large_signature(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "0cc175b9c0f1b6a831c399e269772661", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a"), type="application/tar" ), "gpg_signature": pretend.stub( filename=filename + ".asc", file=io.BytesIO(b"a" * (legacy.MAX_FILESIZE + 1)), ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Signature too large." def test_upload_fails_with_previously_used_filename( self, pyramid_config, db_request ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": hashlib.md5(file_content.getvalue()).hexdigest(), "content": pretend.stub( filename=filename, file=file_content, type="application/tar" ), } ) db_request.db.add(Filename(filename=filename)) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="file-name-reuse")] assert resp.status_code == 400 assert resp.status == ( "400 This filename has already been used, use a " "different version. " "See /the/help/url/" ) def test_upload_noop_with_existing_filename_same_content( self, pyramid_config, db_request ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": hashlib.md5(file_content.getvalue()).hexdigest(), "content": pretend.stub( filename=filename, file=file_content, type="application/tar" ), } ) db_request.db.add( File( release=release, filename=filename, md5_digest=hashlib.md5(file_content.getvalue()).hexdigest(), sha256_digest=hashlib.sha256(file_content.getvalue()).hexdigest(), blake2_256_digest=hashlib.blake2b( file_content.getvalue(), digest_size=256 // 8 ).hexdigest(), path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) resp = legacy.file_upload(db_request) assert resp.status_code == 200 def test_upload_fails_with_existing_filename_diff_content( self, pyramid_config, db_request ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": hashlib.md5(file_content.getvalue()).hexdigest(), "content": pretend.stub( filename=filename, file=file_content, type="application/tar" ), } ) db_request.db.add( File( release=release, filename=filename, md5_digest=hashlib.md5(filename.encode("utf8")).hexdigest(), sha256_digest=hashlib.sha256(filename.encode("utf8")).hexdigest(), blake2_256_digest=hashlib.blake2b( filename.encode("utf8"), digest_size=256 // 8 ).hexdigest(), path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="file-name-reuse")] assert resp.status_code == 400 assert resp.status == "400 File already exists. See /the/help/url/" def test_upload_fails_with_diff_filename_same_blake2( self, pyramid_config, db_request ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) file_content = io.BytesIO(b"A fake file.") db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": hashlib.md5(file_content.getvalue()).hexdigest(), "content": pretend.stub( filename="{}-fake.tar.gz".format(project.name), file=file_content, type="application/tar", ), } ) db_request.db.add( File( release=release, filename=filename, md5_digest=hashlib.md5(file_content.getvalue()).hexdigest(), sha256_digest=hashlib.sha256(file_content.getvalue()).hexdigest(), blake2_256_digest=hashlib.blake2b( file_content.getvalue(), digest_size=256 // 8 ).hexdigest(), path="source/{name[0]}/{name}/{filename}".format( name=project.name, filename=filename ), ) ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="file-name-reuse")] assert resp.status_code == 400 assert resp.status == "400 File already exists. See /the/help/url/" def test_upload_fails_with_wrong_filename(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "nope-{}.tar.gz".format(release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "nope!", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a" * (legacy.MAX_FILESIZE + 1)), type="application/tar", ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == ( "400 Start filename for {!r} with {!r}.".format( project.name, pkg_resources.safe_name(project.name).lower() ) ) def test_upload_fails_with_invalid_extension(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.wat".format(project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "nope!", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a" * (legacy.MAX_FILESIZE + 1)), type="application/tar", ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == ( "400 Invalid file extension: Use .egg, .tar.gz, .whl or .zip " "extension. (https://www.python.org/dev/peps/pep-0527)" ) @pytest.mark.parametrize("character", ["/", "\\"]) def test_upload_fails_with_unsafe_filename( self, pyramid_config, db_request, character ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.wat".format(character + project.name, release.version) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "nope!", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a" * (legacy.MAX_FILESIZE + 1)), type="application/tar", ), } ) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert resp.status == "400 Cannot upload a file with '/' or '\\' in the name." def test_upload_fails_without_permission(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1, permissive=False) user1 = UserFactory.create() EmailFactory.create(user=user1) user2 = UserFactory.create() EmailFactory.create(user=user2) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user1, project=project) filename = "{}-{}.tar.wat".format(project.name, release.version) db_request.user = user2 db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "md5_digest": "nope!", "content": pretend.stub( filename=filename, file=io.BytesIO(b"a" * (legacy.MAX_FILESIZE + 1)), type="application/tar", ), } ) db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPForbidden) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="project-name")] assert resp.status_code == 403 assert resp.status == ( "403 The user '{0}' isn't allowed to upload to project '{1}'. " "See /the/help/url/ for more information." ).format(user2.username, project.name) @pytest.mark.parametrize( "plat", [ "any", "win32", "win_amd64", "win_ia64", "manylinux1_i686", "manylinux1_x86_64", "manylinux2010_i686", "manylinux2010_x86_64", "macosx_10_6_intel", "macosx_10_13_x86_64", # A real tag used by e.g. some numpy wheels ( "macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64." "macosx_10_10_intel.macosx_10_10_x86_64" ), ], ) def test_upload_succeeds_with_wheel( self, tmpdir, monkeypatch, pyramid_config, db_request, plat ): monkeypatch.setattr(tempfile, "tempdir", str(tmpdir)) pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}-cp34-none-{}.whl".format(project.name, release.version, plat) db_request.user = user db_request.remote_addr = "10.10.10.30" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "bdist_wheel", "pyversion": "cp34", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) @pretend.call_recorder def storage_service_store(path, file_path, *, meta): with open(file_path, "rb") as fp: assert fp.read() == b"A fake file." storage_service = pretend.stub(store=storage_service_store) db_request.find_service = pretend.call_recorder( lambda svc, name=None: storage_service ) monkeypatch.setattr(legacy, "_is_valid_dist_file", lambda *a, **kw: True) resp = legacy.file_upload(db_request) assert resp.status_code == 200 assert db_request.find_service.calls == [pretend.call(IFileStorage)] assert storage_service.store.calls == [ pretend.call( "/".join( [ "4e", "6e", ( "fa4c0ee2bbad071b4f5b5ea68f1aea89fa716e7754eb13e2314d4" "5a5916e" ), filename, ] ), mock.ANY, meta={ "project": project.normalized_name, "version": release.version, "package-type": "bdist_wheel", "python-version": "cp34", }, ) ] # Ensure that a File object has been created. db_request.db.query(File).filter( (File.release == release) & (File.filename == filename) ).one() # Ensure that a Filename object has been created. db_request.db.query(Filename).filter(Filename.filename == filename).one() # Ensure that all of our journal entries have been created journals = ( db_request.db.query(JournalEntry) .options(joinedload("submitted_by")) .order_by("submitted_date", "id") .all() ) assert [ (j.name, j.version, j.action, j.submitted_by, j.submitted_from) for j in journals ] == [ ( release.project.name, release.version, "add cp34 file {}".format(filename), user, "10.10.10.30", ) ] def test_upload_succeeds_with_wheel_after_sdist( self, tmpdir, monkeypatch, pyramid_config, db_request ): monkeypatch.setattr(tempfile, "tempdir", str(tmpdir)) pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") FileFactory.create( release=release, packagetype="sdist", filename="{}-{}.tar.gz".format(project.name, release.version), ) RoleFactory.create(user=user, project=project) filename = "{}-{}-cp34-none-any.whl".format(project.name, release.version) db_request.user = user db_request.remote_addr = "10.10.10.30" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "bdist_wheel", "pyversion": "cp34", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) @pretend.call_recorder def storage_service_store(path, file_path, *, meta): with open(file_path, "rb") as fp: assert fp.read() == b"A fake file." storage_service = pretend.stub(store=storage_service_store) db_request.find_service = pretend.call_recorder( lambda svc, name=None: storage_service ) monkeypatch.setattr(legacy, "_is_valid_dist_file", lambda *a, **kw: True) resp = legacy.file_upload(db_request) assert resp.status_code == 200 assert db_request.find_service.calls == [pretend.call(IFileStorage)] assert storage_service.store.calls == [ pretend.call( "/".join( [ "4e", "6e", ( "fa4c0ee2bbad071b4f5b5ea68f1aea89fa716e7754eb13e2314d4" "5a5916e" ), filename, ] ), mock.ANY, meta={ "project": project.normalized_name, "version": release.version, "package-type": "bdist_wheel", "python-version": "cp34", }, ) ] # Ensure that a File object has been created. db_request.db.query(File).filter( (File.release == release) & (File.filename == filename) ).one() # Ensure that a Filename object has been created. db_request.db.query(Filename).filter(Filename.filename == filename).one() # Ensure that all of our journal entries have been created journals = ( db_request.db.query(JournalEntry) .options(joinedload("submitted_by")) .order_by("submitted_date", "id") .all() ) assert [ (j.name, j.version, j.action, j.submitted_by, j.submitted_from) for j in journals ] == [ ( release.project.name, release.version, "add cp34 file {}".format(filename), user, "10.10.10.30", ) ] def test_upload_succeeds_with_legacy_ext( self, tmpdir, monkeypatch, pyramid_config, db_request ): monkeypatch.setattr(tempfile, "tempdir", str(tmpdir)) pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create(allow_legacy_files=True) release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.bz2".format(project.name, release.version) db_request.user = user db_request.remote_addr = "10.10.10.30" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "sdist", "pyversion": "source", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) def storage_service_store(path, file_path, *, meta): with open(file_path, "rb") as fp: assert fp.read() == b"A fake file." storage_service = pretend.stub(store=storage_service_store) db_request.find_service = lambda svc, name=None: storage_service monkeypatch.setattr(legacy, "_is_valid_dist_file", lambda *a, **kw: True) resp = legacy.file_upload(db_request) assert resp.status_code == 200 def test_upload_succeeds_with_legacy_type( self, tmpdir, monkeypatch, pyramid_config, db_request ): monkeypatch.setattr(tempfile, "tempdir", str(tmpdir)) pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create(allow_legacy_files=True) release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}.tar.gz".format(project.name, release.version) db_request.user = user db_request.remote_addr = "10.10.10.30" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "bdist_dumb", "pyversion": "3.5", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) def storage_service_store(path, file_path, *, meta): with open(file_path, "rb") as fp: assert fp.read() == b"A fake file." storage_service = pretend.stub(store=storage_service_store) db_request.find_service = lambda svc, name=None: storage_service monkeypatch.setattr(legacy, "_is_valid_dist_file", lambda *a, **kw: True) resp = legacy.file_upload(db_request) assert resp.status_code == 200 @pytest.mark.parametrize("plat", ["linux_x86_64", "linux_x86_64.win32"]) def test_upload_fails_with_unsupported_wheel_plat( self, monkeypatch, pyramid_config, db_request, plat ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() db_request.user = user EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) filename = "{}-{}-cp34-none-{}.whl".format(project.name, release.version, plat) db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": release.version, "filetype": "bdist_wheel", "pyversion": "cp34", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) monkeypatch.setattr(legacy, "_is_valid_dist_file", lambda *a, **kw: True) with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert resp.status_code == 400 assert re.match( "400 Binary wheel .* has an unsupported " "platform tag .*", resp.status ) def test_upload_updates_existing_project_name(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create(name="Package-Name") RoleFactory.create(user=user, project=project) new_project_name = "package-name" filename = "{}-{}.tar.gz".format(new_project_name, "1.1") db_request.user = user db_request.remote_addr = "10.10.10.20" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.1", "name": new_project_name, "version": "1.1", "summary": "This is my summary!", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service db_request.remote_addr = "10.10.10.10" db_request.user_agent = "warehouse-tests/6.6.6" resp = legacy.file_upload(db_request) assert resp.status_code == 200 # Ensure that a Project object name has been updated. project = ( db_request.db.query(Project).filter(Project.name == new_project_name).one() ) # Ensure that a Release object has been created. release = ( db_request.db.query(Release) .filter((Release.project == project) & (Release.version == "1.1")) .one() ) assert release.uploaded_via == "warehouse-tests/6.6.6" def test_upload_succeeds_creates_release(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() RoleFactory.create(user=user, project=project) db_request.db.add(Classifier(classifier="Environment :: Other Environment")) db_request.db.add(Classifier(classifier="Programming Language :: Python")) filename = "{}-{}.tar.gz".format(project.name, "1.0") db_request.user = user db_request.remote_addr = "10.10.10.20" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": "1.0", "summary": "This is my summary!", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) db_request.POST.extend( [ ("classifiers", "Environment :: Other Environment"), ("classifiers", "Programming Language :: Python"), ("requires_dist", "foo"), ("requires_dist", "bar (>1.0)"), ("project_urls", "Test, https://example.com/"), ("requires_external", "Cheese (>1.0)"), ("provides", "testing"), ] ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service resp = legacy.file_upload(db_request) assert resp.status_code == 200 # Ensure that a Release object has been created. release = ( db_request.db.query(Release) .filter((Release.project == project) & (Release.version == "1.0")) .one() ) assert release.summary == "This is my summary!" assert release.classifiers == [ "Environment :: Other Environment", "Programming Language :: Python", ] assert set(release.requires_dist) == {"foo", "bar (>1.0)"} assert set(release.project_urls) == {"Test, https://example.com/"} assert set(release.requires_external) == {"Cheese (>1.0)"} assert set(release.provides) == {"testing"} assert release.canonical_version == "1" assert release.uploaded_via == "warehouse-tests/6.6.6" # Ensure that a File object has been created. db_request.db.query(File).filter( (File.release == release) & (File.filename == filename) ).one() # Ensure that a Filename object has been created. db_request.db.query(Filename).filter(Filename.filename == filename).one() # Ensure that all of our journal entries have been created journals = ( db_request.db.query(JournalEntry) .options(joinedload("submitted_by")) .order_by("submitted_date", "id") .all() ) assert [ (j.name, j.version, j.action, j.submitted_by, j.submitted_from) for j in journals ] == [ (release.project.name, release.version, "new release", user, "10.10.10.20"), ( release.project.name, release.version, "add source file {}".format(filename), user, "10.10.10.20", ), ] def test_equivalent_version_one_release(self, pyramid_config, db_request): """ Test that if a release with a version like '1.0' exists, that a future upload with an equivalent version like '1.0.0' will not make a second release """ pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release = ReleaseFactory.create(project=project, version="1.0") RoleFactory.create(user=user, project=project) db_request.user = user db_request.remote_addr = "10.10.10.20" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": "1.0.0", "summary": "This is my summary!", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename="{}-{}.tar.gz".format(project.name, "1.0.0"), file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service resp = legacy.file_upload(db_request) assert resp.status_code == 200 # Ensure that a Release object has been created. releases = db_request.db.query(Release).filter(Release.project == project).all() # Asset that only one release has been created assert releases == [release] def test_equivalent_canonical_versions(self, pyramid_config, db_request): """ Test that if more than one release with equivalent canonical versions exists, we use the one that is an exact match """ pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) project = ProjectFactory.create() release_a = ReleaseFactory.create(project=project, version="1.0") release_b = ReleaseFactory.create(project=project, version="1.0.0") RoleFactory.create(user=user, project=project) db_request.user = user db_request.remote_addr = "10.10.10.20" db_request.user_agent = "warehouse-tests/6.6.6" db_request.POST = MultiDict( { "metadata_version": "1.2", "name": project.name, "version": "1.0.0", "summary": "This is my summary!", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename="{}-{}.tar.gz".format(project.name, "1.0.0"), file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service legacy.file_upload(db_request) assert len(release_a.files.all()) == 0 assert len(release_b.files.all()) == 1 def test_upload_succeeds_creates_project(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) filename = "{}-{}.tar.gz".format("example", "1.0") db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service db_request.remote_addr = "10.10.10.10" db_request.user_agent = "warehouse-tests/6.6.6" resp = legacy.file_upload(db_request) assert resp.status_code == 200 # Ensure that a Project object has been created. project = db_request.db.query(Project).filter(Project.name == "example").one() # Ensure that a Role with the user as owner has been created. role = ( db_request.db.query(Role) .filter((Role.user == user) & (Role.project == project)) .one() ) assert role.role_name == "Owner" # Ensure that a Release object has been created. release = ( db_request.db.query(Release) .filter((Release.project == project) & (Release.version == "1.0")) .one() ) assert release.uploaded_via == "warehouse-tests/6.6.6" # Ensure that a File object has been created. db_request.db.query(File).filter( (File.release == release) & (File.filename == filename) ).one() # Ensure that a Filename object has been created. db_request.db.query(Filename).filter(Filename.filename == filename).one() # Ensure that all of our journal entries have been created journals = ( db_request.db.query(JournalEntry) .options(joinedload("submitted_by")) .order_by("submitted_date", "id") .all() ) assert [ (j.name, j.version, j.action, j.submitted_by, j.submitted_from) for j in journals ] == [ ("example", None, "create", user, "10.10.10.10"), ( "example", None, "add Owner {}".format(user.username), user, "10.10.10.10", ), ("example", "1.0", "new release", user, "10.10.10.10"), ( "example", "1.0", "add source file example-1.0.tar.gz", user, "10.10.10.10", ), ] def test_upload_succeeds_creates_squats(self, pyramid_config, db_request): pyramid_config.testing_securitypolicy(userid=1) squattee = ProjectFactory(name="example") user = UserFactory.create() EmailFactory.create(user=user) filename = "{}-{}.tar.gz".format("exmaple", "1.0") db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "exmaple", "version": "1.0", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service db_request.remote_addr = "10.10.10.10" db_request.user_agent = "warehouse-tests/6.6.6" resp = legacy.file_upload(db_request) assert resp.status_code == 200 # Ensure that a Project object has been created. squatter = db_request.db.query(Project).filter(Project.name == "exmaple").one() # Ensure that a Squat object has been created. squat = db_request.db.query(Squat).one() assert squat.squattee == squattee assert squat.squatter == squatter assert squat.reviewed is False @pytest.mark.parametrize( ("emails_verified", "expected_success"), [ ([], False), ([True], True), ([False], False), ([True, True], True), ([True, False], True), ([False, False], False), ([False, True], False), ], ) def test_upload_requires_verified_email( self, pyramid_config, db_request, emails_verified, expected_success ): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() for i, verified in enumerate(emails_verified): EmailFactory.create(user=user, verified=verified, primary=i == 0) filename = "{}-{}.tar.gz".format("example", "1.0") db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service db_request.remote_addr = "10.10.10.10" db_request.user_agent = "warehouse-tests/6.6.6" if expected_success: resp = legacy.file_upload(db_request) assert resp.status_code == 200 else: db_request.help_url = pretend.call_recorder(lambda **kw: "/the/help/url/") with pytest.raises(HTTPBadRequest) as excinfo: legacy.file_upload(db_request) resp = excinfo.value assert db_request.help_url.calls == [pretend.call(_anchor="verified-email")] assert resp.status_code == 400 assert resp.status == ( ( "400 User {!r} does not have a verified primary email " "address. Please add a verified primary email before " "attempting to upload to PyPI. See /the/help/url/ for " "more information.for more information." ).format(user.username) ) def test_upload_purges_legacy(self, pyramid_config, db_request, monkeypatch): pyramid_config.testing_securitypolicy(userid=1) user = UserFactory.create() EmailFactory.create(user=user) filename = "{}-{}.tar.gz".format("example", "1.0") db_request.user = user db_request.POST = MultiDict( { "metadata_version": "1.2", "name": "example", "version": "1.0", "filetype": "sdist", "md5_digest": "335c476dc930b959dda9ec82bd65ef19", "content": pretend.stub( filename=filename, file=io.BytesIO(b"A fake file."), type="application/tar", ), } ) storage_service = pretend.stub(store=lambda path, filepath, meta: None) db_request.find_service = lambda svc, name=None: storage_service db_request.remote_addr = "10.10.10.10" db_request.user_agent = "warehouse-tests/6.6.6" resp = legacy.file_upload(db_request) assert resp.status_code == 200 def test_fails_in_read_only_mode(self, pyramid_request): pyramid_request.flags = pretend.stub(enabled=lambda *a: True) with pytest.raises(HTTPForbidden) as excinfo: legacy.file_upload(pyramid_request) resp = excinfo.value assert resp.status_code == 403 assert resp.status == ("403 Read-only mode: Uploads are temporarily disabled") def test_fails_without_user(self, pyramid_config, pyramid_request): pyramid_request.flags = pretend.stub(enabled=lambda *a: False) pyramid_config.testing_securitypolicy(userid=None) with pytest.raises(HTTPForbidden) as excinfo: legacy.file_upload(pyramid_request) resp = excinfo.value assert resp.status_code == 403 assert resp.status == ( "403 Invalid or non-existent authentication information." ) @pytest.mark.parametrize("status", [True, False]) def test_legacy_purge(monkeypatch, status): post = pretend.call_recorder(lambda *a, **kw: None) monkeypatch.setattr(requests, "post", post) legacy._legacy_purge(status, 1, 2, three=4) if status: assert post.calls == [pretend.call(1, 2, three=4)] else: assert post.calls == [] def test_submit(pyramid_request): resp = legacy.submit(pyramid_request) assert resp.status_code == 410 assert resp.status == ( "410 Project pre-registration is no longer required or supported, " "upload your files instead." ) def test_doc_upload(pyramid_request): resp = legacy.doc_upload(pyramid_request) assert resp.status_code == 410 assert resp.status == ( "410 Uploading documentation is no longer supported, we recommend " "using https://readthedocs.org/." )
35.571709
88
0.551245
de6cb412b2141ba59528962dab382c194281dd29
1,492
py
Python
mars/dataframe/datastore/tests/test_datastore.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
2
2019-03-29T04:11:10.000Z
2020-07-08T10:19:54.000Z
mars/dataframe/datastore/tests/test_datastore.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
null
null
null
mars/dataframe/datastore/tests/test_datastore.py
tomzhang/mars-1
6f1d85e37eb1b383251314cb0ba13e06288af03d
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import pandas as pd from mars.dataframe import DataFrame class Test(unittest.TestCase): def testToCSV(self): raw = pd.DataFrame(np.random.rand(10, 5)) df = DataFrame(raw, chunk_size=4) r = df.to_csv('*.csv') r = r.tiles() self.assertEqual(r.chunk_shape[1], 1) for i, c in enumerate(r.chunks): self.assertEqual(type(c.op).__name__, 'DataFrameToCSV') self.assertIs(c.inputs[0], r.inputs[0].chunks[i].data) # test one file r = df.to_csv('out.csv') r = r.tiles() self.assertEqual(r.chunk_shape[1], 1) for i, c in enumerate(r.chunks): self.assertEqual(len(c.inputs), 2) self.assertIs(c.inputs[0].inputs[0], r.inputs[0].chunks[i].data) self.assertEqual(type(c.inputs[1].op).__name__, 'DataFrameToCSVStat')
33.155556
81
0.66555
6741de9b684be3a2e568402bafa66b7dcb630b41
1,160
py
Python
tools/cellml/CellML_Edit.py
globusgenomics/galaxy
7caf74d9700057587b3e3434c64e82c5b16540f1
[ "CC-BY-3.0" ]
1
2021-02-05T13:19:58.000Z
2021-02-05T13:19:58.000Z
tools/cellml/CellML_Edit.py
globusgenomics/galaxy
7caf74d9700057587b3e3434c64e82c5b16540f1
[ "CC-BY-3.0" ]
null
null
null
tools/cellml/CellML_Edit.py
globusgenomics/galaxy
7caf74d9700057587b3e3434c64e82c5b16540f1
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python """ Runs CellML simulation. """ import sys import cgrspy.bootstrap output_file = sys.argv[1] input_file = sys.argv[2] cgrspy.bootstrap.loadGenericModule('cgrs_cellml') cellmlBootstrap = cgrspy.bootstrap.fetch('CreateCellMLBootstrap') model = cellmlBootstrap.modelLoader.loadFromURL(input_file) #Modify parameters: for i in range(3,len(sys.argv),3): c = model.allComponents.getComponent(sys.argv[i]) if c: v = c.variables.getVariable(sys.argv[i+1]) if v: if v.initialValue: if v.publicInterface != "in": v.initialValue = sys.argv[i+2] else: sys.stderr.write("Error: Variable %s in component %s has public interface of type \"in\".\n" % (sys.argv[i+1],sys.argv[i])) else: sys.stderr.write("Error: Variable %s in component %s does not have an initial value attribute.\n" % (sys.argv[i+1],sys.argv[i])) else: sys.stderr.write("Error: Could not find model variable %s in component %s\n" % (sys.argv[i+1],sys.argv[i])) else: sys.stderr.write("Error: Could not find model component %s\n" % sys.argv[i]) #Write modified model to XML f = open(output_file,'w') f.write(model.serialisedText) f.close()
30.526316
132
0.705172
6a73b289e1bd60f35737bd93340d5cdcf1608a80
2,995
py
Python
Products/CMFCore/exportimport/cookieauth.py
MatthewWilkes/Products.CMFCore
22cba1e66040053762e57ac3597409038898a65f
[ "ZPL-2.1" ]
null
null
null
Products/CMFCore/exportimport/cookieauth.py
MatthewWilkes/Products.CMFCore
22cba1e66040053762e57ac3597409038898a65f
[ "ZPL-2.1" ]
null
null
null
Products/CMFCore/exportimport/cookieauth.py
MatthewWilkes/Products.CMFCore
22cba1e66040053762e57ac3597409038898a65f
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Cookie crumbler xml adapters and setup handlers. """ from zope.component import adapts from zope.component import getSiteManager from Products.GenericSetup.interfaces import ISetupEnviron from Products.GenericSetup.utils import exportObjects from Products.GenericSetup.utils import importObjects from Products.GenericSetup.utils import PropertyManagerHelpers from Products.GenericSetup.utils import XMLAdapterBase from Products.CMFCore.interfaces import ICookieCrumbler class CookieCrumblerXMLAdapter(XMLAdapterBase, PropertyManagerHelpers): """XML im- and exporter for CookieCrumbler. """ adapts(ICookieCrumbler, ISetupEnviron) _LOGGER_ID = 'cookies' name = 'cookieauth' def _exportNode(self): """Export the object as a DOM node. """ node = self._getObjectNode('object') node.appendChild(self._extractProperties()) self._logger.info('Cookie crumbler exported.') return node def _importNode(self, node): """Import the object from the DOM node. """ if self.environ.shouldPurge(): self._purgeProperties() self._migrateProperties(node) self._initProperties(node) self._logger.info('Cookie crumbler imported.') def _migrateProperties(self, node): # BBB: for CMF 2.2 settings for child in node.childNodes: if child.nodeName != 'property': continue if child.getAttribute('name') not in ('auto_login_page', 'unauth_page', 'logout_page'): continue node.removeChild(child) child.unlink() def importCookieCrumbler(context): """Import cookie crumbler settings from an XML file. """ sm = getSiteManager(context.getSite()) tool = sm.queryUtility(ICookieCrumbler) if tool is None: logger = context.getLogger('cookies') logger.debug('Nothing to import.') return importObjects(tool, '', context) def exportCookieCrumbler(context): """Export cookie crumbler settings as an XML file. """ sm = getSiteManager(context.getSite()) tool = sm.queryUtility(ICookieCrumbler) if tool is None: logger = context.getLogger('cookies') logger.debug('Nothing to export.') return exportObjects(tool, '', context)
31.861702
78
0.64374
9cb4eb938e0953aabe16b845d327e1c8f85b7ffa
16,244
py
Python
test/functional/mempool_accept.py
wbubblerteam/bubcoin
0bb0d66397efcdacd782f64b3906d1acaed468cf
[ "MIT" ]
1
2021-08-29T13:37:38.000Z
2021-08-29T13:37:38.000Z
test/functional/mempool_accept.py
wbubblerteam/bubcoin
0bb0d66397efcdacd782f64b3906d1acaed468cf
[ "MIT" ]
null
null
null
test/functional/mempool_accept.py
wbubblerteam/bubcoin
0bb0d66397efcdacd782f64b3906d1acaed468cf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from decimal import Decimal from io import BytesIO import math from test_framework.test_framework import BubcoinTestFramework from test_framework.key import ECKey from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTransaction, CTxOut, MAX_BLOCK_BASE_SIZE, MAX_MONEY, ) from test_framework.script import ( hash160, CScript, OP_0, OP_2, OP_3, OP_CHECKMULTISIG, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, hex_str_to_bytes, ) class MempoolAcceptanceTest(BubcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex','-permitbaremultisig=0', ]] * self.num_nodes self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 assert_equal(node.getblockcount(), 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) coins = node.listunspent() self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22'])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = coins.pop() # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, maxfeerate=0) node.generate(1) self.mempool_size = 0 self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': 'txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = Decimal('0.000007') raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): Decimal('0.3') - fee}], ))['hex'] tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee}}], rawtxs=[raw_tx_0], ) self.log.info('A final transaction not in the mempool') coin = coins.pop() # Pick a random coin(base) to spend output_amount = Decimal('0.025') raw_tx_final = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout'], "sequence": 0xffffffff}], # SEQUENCE_FINAL outputs=[{node.getnewaddress(): output_amount}], locktime=node.getblockcount() + 2000, # Can be anything ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_final))) fee_expected = coin['amount'] - output_amount self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': fee_expected}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) node.sendrawtransaction(hexstring=raw_tx_final, maxfeerate=0) self.mempool_size += 1 self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size += 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True, 'vsize': tx.get_vsize(), 'fees': {'base': (2 * fee)}}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=tx.serialize().hex(), maxfeerate=0) # take original raw_tx_0 tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'txn-mempool-conflict'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with missing inputs, that never existed') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(tx.serialize().hex())['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, maxfeerate=0) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, maxfeerate=0) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True, 'vsize': tx.get_vsize(), 'fees': { 'base': Decimal('0.1') - Decimal('0.05')}}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) self.log.info('A transaction with no outputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(tx.serialize().hex())['hex']))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-empty'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A really large transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * math.ceil(MAX_BLOCK_BASE_SIZE / len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-oversize'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with negative output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-negative'}], rawtxs=[tx.serialize().hex()], ) # The following two validations prevent overflow of the output amounts (see CVE-2010-5139). self.log.info('A transaction with too large output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue = MAX_MONEY + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-vout-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with too large sum of output values') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = MAX_MONEY self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-txouttotal-toolarge'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction with duplicate inputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bad-txns-inputs-duplicate'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'coinbase'}], rawtxs=[tx.serialize().hex()], ) self.log.info('Some nonstandard transactions') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'version'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptpubkey'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) key = ECKey() key.generate() pubkey = key.get_pubkey().get_bytes() tx.vout[0].scriptPubKey = CScript([OP_2, pubkey, pubkey, pubkey, OP_3, OP_CHECKMULTISIG]) # Some bare multisig script (2-of-3) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'bare-multisig'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-not-pushonly'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([b'a' * 1648]) # Some too large scriptSig (>1650 bytes) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'scriptsig-size'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'tx-size'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'dust'}], rawtxs=[tx.serialize().hex()], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'multi-op-return'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A timelocked transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-final'}], rawtxs=[tx.serialize().hex()], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'non-BIP68-final'}], rawtxs=[tx.serialize().hex()], maxfeerate=0, ) if __name__ == '__main__': MempoolAcceptanceTest().main()
48.059172
154
0.63445
b2567887807922397d50aa73e133271d00be77e8
5,049
py
Python
avatar_field/widget.py
ZFCon/django-avatarfield
a618de63f04228db9b2ee20275789ca5fee78e1a
[ "MIT" ]
3
2021-02-20T04:51:00.000Z
2021-05-06T14:56:23.000Z
avatar_field/widget.py
bharathjinka09/django-avatarfield
c6e6e68ab4dd33fa688a9bfcb4b6312e5cfae2aa
[ "MIT" ]
null
null
null
avatar_field/widget.py
bharathjinka09/django-avatarfield
c6e6e68ab4dd33fa688a9bfcb4b6312e5cfae2aa
[ "MIT" ]
1
2021-02-20T04:51:52.000Z
2021-02-20T04:51:52.000Z
from django.forms import ModelChoiceField, Select from django.forms.models import ModelChoiceIterator, ModelChoiceIteratorValue from django.forms.fields import Field from django.forms.widgets import RadioSelect class AvatarModelChoiceIterator(ModelChoiceIterator): def __init__(self, field): self.field = field self.queryset = field.queryset # set image field to use it later to access image self.image_field = field.image_field def __iter__(self): if self.field.empty_label is not None: yield (None, "", self.field.empty_label) queryset = self.queryset # Can't use iterator() when queryset uses prefetch_related() if not queryset._prefetch_related_lookups: queryset = queryset.iterator() for obj in queryset: yield self.choice(obj) def choice(self, obj): choice = ( getattr(obj, self.image_field), ModelChoiceIteratorValue(self.field.prepare_value(obj), obj), self.field.label_from_instance(obj), ) return choice class AvatarSelect(Select): template_name = 'avatar_field/widgets/select.html' option_template_name = 'avatar_field/widgets/select_option.html' class Media: css = { 'all': [ 'avatar_field/css/bootstrap.css', 'https://cdn.jsdelivr.net/npm/bootstrap-select@1.13.14/dist/css/bootstrap-select.min.css', 'avatar_field/css/style.css', ] } js = [ 'https://code.jquery.com/jquery-3.3.1.slim.min.js', 'avatar_field/js/bootstrap.min.js', 'https://cdn.jsdelivr.net/npm/bootstrap-select@1.13.14/dist/js/bootstrap-select.min.js', ] def optgroups(self, name, value, attrs=None): """Return a list of optgroups for this widget.""" groups = [] has_selected = False for index, (option_image, option_value, option_label) in enumerate(self.choices): if option_value is None: option_value = '' subgroup = [] if isinstance(option_label, (list, tuple)): group_name = option_value subindex = 0 choices = option_label else: group_name = None subindex = None choices = [(option_image, option_value, option_label)] groups.append((group_name, subgroup, index)) for image, subvalue, sublabel in choices: selected = ( str(subvalue) in value and (not has_selected or self.allow_multiple_selected) ) has_selected |= selected subgroup.append(self.create_option( name, image, subvalue, sublabel, selected, index, subindex=subindex, attrs=attrs, )) if subindex is not None: subindex += 1 return groups def create_option(self, name, image, value, label, selected, index, subindex=None, attrs=None): index = str(index) if subindex is None else "%s_%s" % (index, subindex) if attrs is None: attrs = {} option_attrs = self.build_attrs( self.attrs, attrs) if self.option_inherits_attrs else {} if selected: option_attrs.update(self.checked_attribute) if 'id' in option_attrs: option_attrs['id'] = self.id_for_label(option_attrs['id'], index) return { 'name': name, 'image': image, 'value': value, 'label': label, 'selected': selected, 'index': index, 'attrs': option_attrs, 'type': self.input_type, 'template_name': self.option_template_name, 'wrap_label': True, } class AvatarModelChoiceField(ModelChoiceField): widget = AvatarSelect iterator = AvatarModelChoiceIterator def __init__(self, queryset, *, empty_label="---------", required=True, widget=None, label=None, initial=None, help_text='', to_field_name=None, limit_choices_to=None, blank=False, image_field, **kwargs): self.image_field = image_field # set image field to access it later # Call Field instead of ChoiceField __init__() because we don't need # ChoiceField.__init__(). Field.__init__( self, required=required, widget=widget, label=label, initial=initial, help_text=help_text, **kwargs ) if ( (required and initial is not None) or (isinstance(self.widget, RadioSelect) and not blank) ): self.empty_label = None else: self.empty_label = empty_label self.queryset = queryset self.limit_choices_to = limit_choices_to # limit the queryset later. self.to_field_name = to_field_name
36.854015
106
0.585859
4db3ed1aa0929ae05bb636d2d672e5546fb32224
2,997
py
Python
train/intermimic/Packet.py
eniac/MimicNet
c0790679f8c220c75c33ace67e2735816aac6815
[ "MIT" ]
15
2021-08-20T08:10:01.000Z
2022-03-24T21:24:50.000Z
train/intermimic/Packet.py
eniac/MimicNet
c0790679f8c220c75c33ace67e2735816aac6815
[ "MIT" ]
1
2022-03-30T09:03:39.000Z
2022-03-30T09:03:39.000Z
train/intermimic/Packet.py
eniac/MimicNet
c0790679f8c220c75c33ace67e2735816aac6815
[ "MIT" ]
3
2021-08-20T08:10:34.000Z
2021-12-02T06:15:02.000Z
#!/usr/bin/env python3 import socket import struct """ Convert an IP string to long Taken from https://stackoverflow.com/questions/9590965/convert-an-ip-string-to- a-number-and-vice-versa/22272197 """ def ip2long(ip): packed_ip = socket.inet_aton(ip) return struct.unpack("!L", packed_ip)[0] class Packet(): def __init__(self, toks): self.data = dict() self.data["time"] = float(toks[0][:-1]) self.data["src"] = toks[1] self.data["dst"] = toks[3][:-1] self.data["flags"] = toks[4] seq_range = toks[5] if ':' in seq_range: self.data["seq_begin"], tmp = seq_range.split(':') self.data["seq_end"] = tmp.split('(')[0] else: self.data["seq_begin"] = None self.data["seq_end"] = None if 'ack' in toks: ack_index = toks.index('ack') self.data["ack_num"] = toks[ack_index + 1] else: self.data["ack_num"] = None if 'win' in toks: win_index = toks.index('win') self.data["win_num"] = toks[win_index + 1] else: self.data["win_num"] = None if 'ecn' in toks: ecn_index = toks.index('ecn') if toks[ecn_index + 1] == "3": self.data["ecn"] = "1" else: self.data["ecn"] = "0" if 'agg' in toks: agg_index = toks.index('agg') self.data["agg"] = toks[agg_index + 1] if 'tor' in toks: tor_index = toks.index('tor') self.data["tor"] = toks[tor_index + 1] if 'svr' in toks: svr_index = toks.index('svr') self.data["svr"] = toks[svr_index + 1] if 'interface' in toks: interface_index = toks.index('interface') self.data["interface"] = toks[interface_index + 1] def get(self, key): return self.data[key] def set(self, key, value): self.data[key] = value def matches(self, other_packet): if self.data["src"] != other_packet.data["src"]: return False if self.data["dst"] != other_packet.data["dst"]: return False if self.data["seq_begin"] != other_packet.data["seq_begin"]: return False if self.data["flags"] != other_packet.data["flags"]: return False if self.data["seq_end"] != other_packet.data["seq_end"]: return False if self.data["ack_num"] != other_packet.data["ack_num"]: return False if self.data["win_num"] != other_packet.data["win_num"]: return False return True def __str__(self): return str(self.data["time"]) + ": " + \ self.data["src"] + "|" + self.data["dst"] + "|" + \ str(self.data["seq_begin"]) + "|" + \ str(self.data["seq_end"]) + "|" + \ str(self.data["ack_num"])
30.581633
79
0.508509
1da33e3d29da8aa12b13db870d58812cd47a361f
11,901
py
Python
src/Fig04_repo.py
takumihonda/lightning_da_ideal
8c79004487a95674de9ad2fe40bcad760e867877
[ "MIT" ]
null
null
null
src/Fig04_repo.py
takumihonda/lightning_da_ideal
8c79004487a95674de9ad2fe40bcad760e867877
[ "MIT" ]
null
null
null
src/Fig04_repo.py
takumihonda/lightning_da_ideal
8c79004487a95674de9ad2fe40bcad760e867877
[ "MIT" ]
null
null
null
import numpy as np from netCDF4 import Dataset from datetime import datetime from datetime import timedelta import os import sys import matplotlib.pyplot as plt from matplotlib import gridspec import matplotlib.colors as mcolors import matplotlib.patches as patches from tools_LT import read_evar_only quick = True #quick = False def read_vars( INFO, tlev=0, HIM8=True ): # Read variables if HIM8: fn_Him8 = os.path.join( INFO["GTOP"], INFO["EXP"], INFO["time0"].strftime('%Y%m%d%H%M%S'), INFO["TYPE"], INFO["MEM"], "Him8_" + INFO["time0"].strftime('%Y%m%d%H%M%S_') + INFO["MEM"] + ".nc") print( fn_Him8 ) nc = Dataset(fn_Him8, 'r', format='NETCDF4') tbb = nc.variables["tbb"][tlev,:,:,:] nc.close() else: tbb = np.zeros(1) fn_radar = os.path.join( INFO["GTOP"], INFO["EXP"], INFO["time0"].strftime('%Y%m%d%H%M%S'), INFO["TYPE"], INFO["MEM"], "radar_" + INFO["time0"].strftime('%Y%m%d%H%M%S_') + INFO["MEM"] + ".nc") print( fn_radar, tlev ) nc = Dataset(fn_radar, 'r', format='NETCDF4') if INFO["TYPE"] is "fcst": z = nc.variables["z"][tlev,:,:,:] vr = nc.variables["vr"][tlev,:,:,:] else: z = nc.variables["z"][:,:,:] vr = nc.variables["vr"][:,:,:] nc.close() return( tbb, z, vr ) def main( INFO, EXP1="2000m_DA_0306", EXP2="2000m_DA_0306", tlev=0, typ="anal", vname="QG" ): data_path = "../../dat4figs/Fig04" os.makedirs( data_path, exist_ok=True ) print( tlev, INFO["DT"]*tlev ) #ctime = datetime(2001, 1, 1, 1, 0) + timedelta(seconds=INFO["DT"]*tlev ) ctime = INFO["time0"] + timedelta(seconds=INFO["DT"]*tlev ) if typ is not "fcst": ctime = datetime(2001, 1, 1, 1, 0) + timedelta(seconds=INFO["DT"]*tlev ) INFO["EXP"] = EXP1 INFO["MEM"] = "mean" INFO["TYPE"] = typ if typ is not "fcst": INFO["time0"] = ctime print("CHECK", INFO["time0"] ) # tbb_exp1, z_exp1, vr_exp1 = read_vars( INFO, tlev=tlev, HIM8=False ) # evar_exp1 = read_evar_only( INFO, tlev=tlev, vname=vname ) # efp_exp1 = read_evar_only( INFO, tlev=tlev, vname="FP" ) INFO["EXP"] = EXP2 # tbb_exp2, z_exp2, vr_exp2 = read_vars( INFO, tlev=tlev, HIM8=False ) # evar_exp2 = read_evar_only( INFO, tlev=tlev, vname=vname ) # efp_exp2 = read_evar_only( INFO, tlev=tlev, vname="FP" ) ft_sec = int( INFO["DT"]*tlev ) # nature run # read variables INFO["EXP"] = EXP1 INFO["MEM"] = "mean" INFO["TYPE"] = "fcst" INFO["time0"] = datetime(2001, 1, 1, 1, 0) tlev_nat = int( ( ctime - datetime(2001, 1, 1, 1, 0) ).total_seconds() / INFO["DT"] ) print( "DEBUG", tlev_nat, ctime) # tbb_nat, z_nat, vr_nat = read_vars( INFO, tlev=tlev_nat, HIM8=False ) # evar_nat = read_evar_only( INFO, tlev=tlev_nat, vname=vname ) # efp_nat = read_evar_only( INFO, tlev=tlev_nat, vname="FP" ) # # print("evars: ", evar_nat.shape, evar_exp1.shape, evar_exp2.shape ) tit_l = [ "NODA (analysis)", "RDA (analysis)", "Nature run" ] if typ is "fcst": foot = "\n(fcst from mean)" if ft_sec == 0: foot = "\n(analysis)" tit_l = [ "NODA" + foot, "RDA" + foot, "Nature run", "NODA" + foot, "RDA" + foot, "Nature run", ] # print( z_nat.shape, z_exp1.shape, z_exp2.shape ) fig, ((ax1,ax2,ax3), (ax4,ax5,ax6) ) = plt.subplots(2, 3, figsize=(11,8.2)) fig.subplots_adjust(left=0.06, bottom=0.05, right=0.93, top=0.94, wspace=0.2, hspace=0.3) ax_l = [ax1, ax2, ax3, ax4, ax5, ax6] levs_dbz= np.array([15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65]) cmap_dbz = mcolors.ListedColormap(['cyan','dodgerblue', 'lime', 'limegreen','yellow', 'orange', 'red', 'firebrick', 'magenta', 'purple']) cmap_dbz.set_under('w', alpha=1.0) cmap_dbz.set_over('gray', alpha=1.0) cmap_rb = plt.cm.get_cmap("RdBu_r") cmap_rb.set_under('gray', alpha=1.0) cmap_rb.set_over('gray', alpha=1.0) unit_dbz = "(dBZ)" unit_crg = r'(nC m$^{-3}$)' #levs_rb_qcrg = np.array([-1, -0.8, -0.6, -0.4, -0.2, -0.1, # 0.1, 0.2, 0.4, 0.6, 0.8, 1]) levs_rb_qcrg = np.array([-0.4, -0.3, -0.2, -0.1, -0.05, -0.01, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, ]) levs_rb_qcrg = np.array([-0.6, -0.4, -0.2, -0.1, -0.05, -0.01, 0.01, 0.05, 0.1, 0.2, 0.4, 0.6]) levs_l = [ levs_dbz, levs_dbz, levs_dbz, levs_rb_qcrg, levs_rb_qcrg, levs_rb_qcrg] cmap_l = [ cmap_dbz, cmap_dbz, cmap_dbz, cmap_rb, cmap_rb, cmap_rb ] unit_l = [ unit_dbz, unit_dbz, unit_dbz, unit_crg, unit_crg, unit_crg ] pnum_l = [ "(a)", "(b)", "(c)", "(d)", "(e)", "(f)", ] tvar = vname if vname is "QCRG": levs = levs_rb_qcrg cmap = cmap_rb unit = unit_crg tvar = "Total charge density" bbox = { 'facecolor':'w', 'alpha':0.95, 'pad':1.5, 'edgecolor':'w' } xmin = 120 xmax = 280 ymin = 120 ymax = 320 ft_sec_a = int( ( ctime - INFO["time00"] ).total_seconds() ) print( "ctime",ctime, tlev, INFO["DT"]) xlabel = "X (km)" ylabel = "Y (km)" xaxis = INFO["X"][:] * 0.001 yaxis = INFO["Y"][:] * 0.001 x2d, y2d = np.meshgrid( yaxis, xaxis ) xdgrid = 20 ydgrid = 20 zlev_show = 8 zlev_show = 10 zlev_show = 16 zlev_show = 14 # comment out if typ is not "fcst": info = 't={0:.0f} min\nZ={1:} km'.format( ft_sec_a/60.0, INFO["Z"][zlev_show]/1000) else: info = 't={0:.0f} min (FT={1:.0f} min)\nZ={2:} km'.format( ft_sec_a/60.0, ft_sec/60.0, INFO["Z"][zlev_show]/1000) # if typ is not "fcst": # VAR_l = [ # z_exp1[zlev_show,:,:], # z_exp2[zlev_show,:,:], # z_nat[zlev_show,:,:], # evar_exp1[0,zlev_show,:,:], # evar_exp2[0,zlev_show,:,:], # evar_nat[0,zlev_show,:,:]] # else: # VAR_l = [ # z_exp1[zlev_show,:,:], # z_exp2[zlev_show,:,:], # z_nat[zlev_show,:,:], # evar_exp1[0,zlev_show,:,:], # evar_exp2[0,zlev_show,:,:], # evar_nat[0,zlev_show,:,:] # ] # FP_l = [ np.sum( efp_exp1[0,:,:,:], axis=0), # np.sum(efp_exp2[0,:,:,:], axis=0), # np.sum(efp_nat[0,:,:,:], axis=0) ] for idx, ax in enumerate(ax_l): fn = '{0:}/data{1:0=2}.npz'.format( data_path, idx ) print( fn ) # np.savez( fn, data=VAR_l[idx][:,:] ) data = np.load( fn )['data'] # print(idx,tit_l[idx]) # print( VAR_l[idx].shape, np.max(VAR_l[idx]), np.min(VAR_l[idx]) ) #SHADE = ax.pcolormesh(x2d, y2d, SHADE = ax.contourf(x2d, y2d, data, #VAR_l[idx][:,:], levels=levs_l[idx], #vmin=np.min(levs), #vmax=np.max(levs), cmap=cmap_l[idx], extend='both', ) if typ is "fcst" and ft_sec > 0: ssize = 10.0 idx_ = idx if idx > 2: idx_ = idx - 3 fp2d = FP_l[idx_] #fp2d[ fp2d < 1.0 ] = np.nan #fp2d = fp2d / ssize fp2d = np.where( fp2d >= 1.0, ssize, np.nan ) ax.scatter( x2d, y2d, s=fp2d, c='k', marker='s', edgecolors="w", linewidths=0.5 ) ax.set_xlim( xmin, xmax ) ax.set_ylim( ymin, ymax ) ax.xaxis.set_ticks( np.arange(xmin, xmax, xdgrid) ) ax.yaxis.set_ticks( np.arange(ymin, ymax, ydgrid) ) ax.tick_params(axis='both', which='minor', labelsize=7 ) ax.tick_params(axis='both', which='major', labelsize=7 ) ax.text(0.5, 0.95, tit_l[idx], fontsize=12, transform=ax.transAxes, horizontalalignment='center', verticalalignment='top', bbox=bbox ) ax.text(0.1, 0.95, pnum_l[idx], fontsize=10, transform=ax.transAxes, horizontalalignment='center', verticalalignment='top', bbox=bbox ) ax.set_xlabel( xlabel, fontsize=8 ) ax.set_ylabel( ylabel, fontsize=8 ) if idx == 2 or idx == 5: pos = ax.get_position() cb_h = pos.height cb_w = 0.01 ax_cb = fig.add_axes( [pos.x1+0.01, pos.y0, cb_w, cb_h] ) cb = plt.colorbar( SHADE, cax=ax_cb, orientation = 'vertical', ticks=levs_l[idx], extend='both' ) cb.ax.tick_params( labelsize=8 ) ax.text( 1.0, -0.03, unit_l[idx], fontsize=9, transform=ax.transAxes, horizontalalignment='left', verticalalignment='top', ) ax.text( 1.0, 1.1, info, fontsize=10, transform=ax.transAxes, horizontalalignment='right', verticalalignment='center', ) if idx == 1 or idx == 4: tvar_ = tvar if idx == 1: tvar_ = "Radar reflectivity" ax.text( 0.5, 1.1, tvar_, fontsize=15, transform=ax.transAxes, horizontalalignment='center', verticalalignment='center', ) # fig_tit = tvar # fig.suptitle( fig_tit, fontsize=16 ) #odir = "png/6p_DA_var" odir = "pdf/fig20210624" #ofig = '6p_{:1}_{:2}_{:3}_fta{:05}_ft{:05}_z{:0=2}_{:}.png'.format(typ, EXP1, EXP2, ft_sec_a, ft_sec, zlev_show, vname) ofig = '6p_{:1}_{:2}_{:3}_fta{:05}_ft{:05}_z{:0=2}_{:}.pdf'.format(typ, EXP1, EXP2, ft_sec_a, ft_sec, zlev_show, vname) print( ofig, odir ) if not quick: os.makedirs(odir, exist_ok=True) plt.savefig(os.path.join(odir,ofig), bbox_inches="tight", pad_inches = 0.1) plt.clf() plt.close('all') else: plt.show() ################### DX = 2000.0 DY = 2000.0 XDIM = 192 YDIM = 192 TDIM = 13 ZDIM = 40 XDIM = 176 YDIM = 176 ZDIM = 45 DZ = 500.0 DT = 300 X = np.arange( DX*0.5, DX*XDIM, DX ) Y = np.arange( DY*0.5, DY*YDIM, DY ) T = np.arange( 0, DT*TDIM, DT ) BAND = np.arange( 7, 17, 1 ) Z = np.arange(DZ*0.5, DZ*ZDIM, DZ) #EXP = "2000m_NODA_1022_FIR2km_N" #time0 = datetime( 2001, 1, 1, 1, 0, 0 ) EXP = "2000m_DA_1022_FIR2km_N" EXP = "2000m_DA_0302" EXP1 = "2000m_DA_0306" EXP1 = "2000m_NODA_0306" EXP2 = "2000m_DA_0306" EXP1 = "2000m_NODA_0601" EXP2 = "2000m_DA_0601" EXP1 = "2000m_NODA_0723" EXP2 = "2000m_DA_0723" #EXP1 = "2000m_DA_0306_R_FP_180km" time0 = datetime( 2001, 1, 1, 1, 20, 0 ) time0 = datetime( 2001, 1, 1, 1, 30, 0 ) GTOP = "/data_honda01/honda/SCALE-LETKF/scale-LT/OUTPUT" TYPE = "fcst" MEM = "mean" MEM = "0025" time00 = datetime( 2001, 1, 1, 0, 0, 0 ) INFO = {"XDIM":XDIM, "YDIM":YDIM, "NBAND":10, "TDIM":TDIM, "X":X, "Y":Y , "BAND":BAND, "T":T, "GTOP":GTOP, "ZDIM":ZDIM, "Z":Z, "DT":DT, "TYPE":TYPE, "MEM":MEM, "EXP":EXP, "time0": time0, "time00": time00 } tmax = 13 tmax = 7 tmin = 0 tmin = 0 tmax = tmin + 1 #tmin = 6 #tmax = 7 #tmax = 1 typ = "anal" typ = "fcst" vname = "QCRG" if typ is not "fcst": tmin = 1 for tlev in range( tmin, tmax ): INFO["time0"] = time0 main( INFO, EXP1=EXP1, EXP2=EXP2, tlev=tlev, typ=typ, vname=vname )
29.604478
125
0.510881
abde790973a1a14fe2d2615e10dbf677f2bfb49d
3,623
py
Python
onlinexam/urls.py
DeepakDarkiee/exam
59c832d2107b8cf9fc08fb1d78d1046ee29204f6
[ "MIT" ]
null
null
null
onlinexam/urls.py
DeepakDarkiee/exam
59c832d2107b8cf9fc08fb1d78d1046ee29204f6
[ "MIT" ]
null
null
null
onlinexam/urls.py
DeepakDarkiee/exam
59c832d2107b8cf9fc08fb1d78d1046ee29204f6
[ "MIT" ]
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.contrib.auth.views import LoginView, LogoutView from django.urls import include, path from exam import views def trigger_error(request): division_by_zero = 1 / 0 urlpatterns = [ path("sentry-debug/", trigger_error), path("admin/", admin.site.urls), path("teacher/", include("teacher.urls")), path("student/", include("student.urls")), path("tinymce/", include("tinymce.urls")), path("", views.home_view, name=""), path( "logout/", LogoutView.as_view(template_name="exam/logout.html"), name="logout" ), path("contactus", views.contactus_view), path("afterlogin", views.afterlogin_view, name="afterlogin"), path("adminclick", views.adminclick_view), path( "adminlogin", LoginView.as_view(template_name="exam/adminlogin.html"), name="adminlogin", ), path("admin-dashboard", views.admin_dashboard_view, name="admin-dashboard"), path("admin-teacher", views.admin_teacher_view, name="admin-teacher"), path( "admin-view-teacher", views.admin_view_teacher_view, name="admin-view-teacher" ), path("update-teacher/<int:pk>", views.update_teacher_view, name="update-teacher"), path("delete-teacher/<int:pk>", views.delete_teacher_view, name="delete-teacher"), path( "admin-view-pending-teacher", views.admin_view_pending_teacher_view, name="admin-view-pending-teacher", ), path( "admin-view-teacher-salary", views.admin_view_teacher_salary_view, name="admin-view-teacher-salary", ), path( "approve-teacher/<int:pk>", views.approve_teacher_view, name="approve-teacher" ), path("reject-teacher/<int:pk>", views.reject_teacher_view, name="reject-teacher"), path("admin-student", views.admin_student_view, name="admin-student"), path( "admin-view-student", views.admin_view_student_view, name="admin-view-student" ), path( "admin-view-student-marks", views.admin_view_student_marks_view, name="admin-view-student-marks", ), path( "admin-view-marks/<int:pk>", views.admin_view_marks_view, name="admin-view-marks", ), path( "admin-check-marks/<int:pk>", views.admin_check_marks_view, name="admin-check-marks", ), path("update-student/<int:pk>", views.update_student_view, name="update-student"), path("delete-student/<int:pk>", views.delete_student_view, name="delete-student"), path("admin-course", views.admin_course_view, name="admin-course"), path("admin-add-course", views.admin_add_course_view, name="admin-add-course"), path("admin-view-course", views.admin_view_course_view, name="admin-view-course"), path("delete-course/<int:pk>", views.delete_course_view, name="delete-course"), path("admin-question", views.admin_question_view, name="admin-question"), path( "admin-add-question", views.admin_add_question_view, name="admin-add-question" ), path( "admin-view-question", views.admin_view_question_view, name="admin-view-question", ), path("view-question/<int:pk>", views.view_question_view, name="view-question"), path( "delete-question/<int:pk>", views.delete_question_view, name="delete-question" ), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) # urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
38.542553
86
0.676787
96ffbecf5d5ff03a411e05619197c470e0479f66
6,531
py
Python
_deprecated/driver.py
m3d/osgar_archive_2020
556b534e59f8aa9b6c8055e2785c8ae75a1a0a0e
[ "MIT" ]
12
2017-02-16T10:22:59.000Z
2022-03-20T05:48:06.000Z
_deprecated/driver.py
m3d/osgar_archive_2020
556b534e59f8aa9b6c8055e2785c8ae75a1a0a0e
[ "MIT" ]
618
2016-08-30T04:46:12.000Z
2022-03-25T16:03:10.000Z
_deprecated/driver.py
robotika/osgar
6f4f584d5553ab62c08a1c7bb493fefdc9033173
[ "MIT" ]
11
2016-08-27T20:02:55.000Z
2022-03-07T08:53:53.000Z
#!/usr/bin/python """ Driver for John Deere usage: ./driver.py <notes> | [<metalog> [<F>]] """ import sys import math from apyros.metalog import MetaLog, disableAsserts from apyros.sourcelogger import SourceLogger from can import CAN, DummyMemoryLog, ReplayLogInputsOnly, ReplayLog from johndeere import JohnDeere, setup_faster_update, ENC_SCALE FRONT_REAR_DIST = 1.3 LEFT_WHEEL_DIST_OFFSET = 0.4 # from central axis class Driver: pass def go_straight(robot, distance, gas=None, speed=None, timeout=10.0, with_stop=True): """ Drive 'distance' meters with given speed or given gas value """ start_time = robot.time if speed is not None: assert gas is None # only one of them has to be set robot.set_desired_speed(speed) elif gas is not None: assert speed is None robot.canproxy.cmd = gas else: assert 0 # one of [gas, speed] has to be set start_dist = robot.canproxy.dist_left_raw + robot.canproxy.dist_right_raw arr = [] robot.set_desired_steering(0.0) # i.e. go straight (!) while robot.time - start_time < timeout: robot.update() arr.append(robot.canproxy.gas) dist = ENC_SCALE*(robot.canproxy.dist_left_raw + robot.canproxy.dist_right_raw - start_dist)/2.0 if abs(dist) > distance: break print("Dist OK at {}s".format(robot.time - start_time), sorted(arr)[len(arr)/2]) print(dist) if with_stop: robot.stop() robot.wait(3.0) dist = ENC_SCALE*(robot.canproxy.dist_left_raw + robot.canproxy.dist_right_raw - start_dist)/2.0 print(dist) print() # inspiration from Eduro # def turnG(self, angle, angularSpeed = None, radius = 0.0, angleThreshold = math.radians(10), # withStop=True, verbose=False ): def turn(robot, angle, radius, speed, timeout=10.0, with_stop=True): assert radius > 0, radius # accept only positive radius # angle corresponds to final heading change if speed < 0: # backup - invert steering logic angle = -angle start_time = robot.time if angle > 0: # turn left base = radius - LEFT_WHEEL_DIST_OFFSET else: base = radius + LEFT_WHEEL_DIST_OFFSET left_radius = math.sqrt(base*base + FRONT_REAR_DIST*FRONT_REAR_DIST) steering_angle = math.atan2(FRONT_REAR_DIST, base) if angle < 0: steering_angle = -steering_angle print("Steering", math.degrees(steering_angle)) robot.set_desired_steering(steering_angle) while (robot.canproxy.desired_wheel_angle_raw is not None and abs(robot.canproxy.desired_wheel_angle_raw - robot.canproxy.wheel_angle_raw) > 20): print("wait", robot.canproxy.desired_wheel_angle_raw, robot.canproxy.wheel_angle_raw, abs(robot.canproxy.desired_wheel_angle_raw - robot.canproxy.wheel_angle_raw)) robot.update() robot.set_desired_speed(speed) start_left = robot.canproxy.dist_left_raw while robot.time - start_time < timeout: robot.update() dist_left = (robot.canproxy.dist_left_raw - start_left) * ENC_SCALE if abs(dist_left) > abs(angle * left_radius): print('turned distance', dist_left) break if robot.time - start_time >= timeout: print("TURN TIMEOUT!", robot.time - start_time) if with_stop: robot.stop() robot.wait(1.0) def normalizeAnglePIPI( angle ): while angle < -math.pi: angle += 2*math.pi while angle > math.pi: angle -= 2*math.pi return angle def follow_line_gen(robot, line, stopDistance=0.0, turnScale=4.0, offsetSpeed=math.radians(20), offsetDistance=0.03): """ line ... A line to follow. stopDistance ... The robot stops when closer than this to the endpoint. [m] turnScale ... Magic parameter for the rotational speed. [scaling factor] offsetSpeed ... This extra rotational speed is added when the robot is too far from the line. [rad/s] offsetDistance ... When the robot is further than this from the line, some extra correction may be needed. [m] """ while line.distanceToFinishLine(robot.localization.pose()) > stopDistance: diff = normalizeAnglePIPI(line.angle - robot.localization.pose()[2]) x, y, a = robot.localization.pose() d = 1.3 # FRONT_REAR_DIST # print "deg %.1f" %( math.degrees(diff),), signedDistance = line.signedDistance((x+d*math.cos(a), y+d*math.sin(a))) # + self.centerOffset if math.fabs( signedDistance ) > offsetDistance: step = max(0.0, min(offsetSpeed, offsetSpeed * (abs(signedDistance)-offsetDistance)/offsetDistance )) step = step * 0.5 # hack if signedDistance < 0: diff += step else: diff -= step # turn = restrictedTurn(turnScale * diff) # speed = self.restrictedSpeed(turn) # yield speed, turn # print "dist=%0.3f, diff=%.2f" % (signedDistance, math.degrees(diff)), robot.localization.pose() yield diff def driver_self_test(driver, metalog): assert metalog is not None can_log_name = metalog.getLog('can') if metalog.replay: if metalog.areAssertsEnabled(): can = CAN(ReplayLog(can_log_name), skipInit=True) else: can = CAN(ReplayLogInputsOnly(can_log_name), skipInit=True) else: can = CAN() can.relog(can_log_name) can.resetModules(configFn=setup_faster_update) robot = JohnDeere(can=can) robot.UPDATE_TIME_FREQUENCY = 20.0 # TODO change internal and integrate setup robot.localization = None # TODO robot.canproxy.stop() robot.canproxy.set_turn_raw(0) go_straight(robot, distance=1.0, speed=0.3, with_stop=True) for i in range(3): turn(robot, math.radians(-45), radius=2.6, speed=0.5) turn(robot, math.radians(-45), radius=2.6, speed=-0.5) robot.canproxy.stop_turn() robot.wait(3.0) if __name__ == "__main__": if len(sys.argv) < 2: print(__doc__) sys.exit(2) metalog=None if 'meta_' in sys.argv[1]: metalog = MetaLog(filename=sys.argv[1]) elif len(sys.argv) > 2: metalog = MetaLog(filename=sys.argv[2]) if len(sys.argv) > 2 and sys.argv[-1] == 'F': disableAsserts() if metalog is None: metalog = MetaLog() driver_self_test(Driver(), metalog) # vim: expandtab sw=4 ts=4
34.373684
171
0.645384
836dbd812961e03caa7eade8d261dc152d96f23e
1,243
py
Python
toolbox/course-1/week-6-dynamic-programming-2/task-3-maximum-value-of-an-arithmetic-expression.py
ichko/DataStructures
550c696ef57ab42b0ff4079fb45d417a8ccb58af
[ "MIT" ]
3
2018-02-21T20:22:23.000Z
2022-02-08T04:23:07.000Z
toolbox/course-1/week-6-dynamic-programming-2/task-3-maximum-value-of-an-arithmetic-expression.py
ichko/algo-playground
550c696ef57ab42b0ff4079fb45d417a8ccb58af
[ "MIT" ]
null
null
null
toolbox/course-1/week-6-dynamic-programming-2/task-3-maximum-value-of-an-arithmetic-expression.py
ichko/algo-playground
550c696ef57ab42b0ff4079fb45d417a8ccb58af
[ "MIT" ]
null
null
null
# python3 import math def max_val_expr(numbers, operations, ops_map): min_vals = {(i, i): n for i, n in enumerate(numbers)} max_vals = {(i, i): n for i, n in enumerate(numbers)} def minMax(i, j): min_val, max_val = math.inf, -math.inf for t in range(i, j): op = ops_map[operations[t]] vals = [ op(max_vals[(i, t)], max_vals[(t + 1, j)]), op(max_vals[(i, t)], min_vals[(t + 1, j)]), op(min_vals[(i, t)], max_vals[(t + 1, j)]), op(min_vals[(i, t)], min_vals[(t + 1, j)]) ] min_val = min([min_val] + vals) max_val = max([max_val] + vals) return min_val, max_val for s in range(1, len(numbers) + 1): for i in range(0, len(numbers) - s): min_vals[(i, i + s)], max_vals[(i, i + s)] = minMax(i, i + s) return max_vals[(0, len(numbers) - 1)] if __name__ == '__main__': expression = input() numbers = [int(d) for d in expression[::2]] operations = expression[1::2] max_val = max_val_expr(numbers, operations, { '+': lambda a, b: a + b, '-': lambda a, b: a - b, '*': lambda a, b: a * b }) print(max_val)
27.021739
73
0.497184
98e69c900a9d4fe9bb718a5cf256962e4efdc62c
9,013
py
Python
ropgenerator/Load.py
sailay1996/ropgenerator
7ae5b952ad0b6cb2e37e911230168c647de5a889
[ "MIT" ]
null
null
null
ropgenerator/Load.py
sailay1996/ropgenerator
7ae5b952ad0b6cb2e37e911230168c647de5a889
[ "MIT" ]
null
null
null
ropgenerator/Load.py
sailay1996/ropgenerator
7ae5b952ad0b6cb2e37e911230168c647de5a889
[ "MIT" ]
2
2019-04-07T04:15:45.000Z
2019-08-15T14:17:53.000Z
# -*- coding:utf-8 -*- # Load module: load a binary and extract gadgets from it import sys import os import subprocess from ropgenerator.Database import build, initDB from ropgenerator.semantic.Engine import initEngine from ropgenerator.exploit.Scanner import initScanner import ropgenerator.Architecture as Arch from ropgenerator.IO import string_bold, info, string_special, banner, notify, error from magic import from_file from base64 import b16decode from random import shuffle, random, randrange, Random # Command options OPTION_ARCH = '--arch' OPTION_ARCH_SHORT = '-a' OPTION_ROPGADGET_OPTIONS = '--ropgadget-opts' OPTION_HELP = '--help' OPTION_HELP_SHORT = '-h' OPTION_ROPGADGET_OPTIONS_SHORT = '-r' # Help for the load command helpStr = banner([string_bold("'load' command"), string_special("(Load gadgets from a binary file)")]) helpStr += "\n\n\t"+string_bold("Usage")+":\tload [OPTIONS] <filename>" helpStr += "\n\n\t"+string_bold("Options")+":" helpStr += "\n\t\t"+string_special(OPTION_ARCH_SHORT)+","+string_special(OPTION_ARCH)+\ " <arch>"+"\t\tmanualy specify architecture.\n\t\t\t\t\t\tAvailable: 'X86', 'X64'" helpStr += '\n\n\t\t'+string_special(OPTION_ROPGADGET_OPTIONS_SHORT)+","+string_special(OPTION_ROPGADGET_OPTIONS)+\ " <opts>"+"\textra options for ROPgadget.\n\t\t\t\t\t\t<opts> must be a list of\n\t\t\t\t\t\toptions between ''"+\ "\n\t\t\t\t\t\te.g: \"-depth 4\"" helpStr += "\n\n\t"+string_bold("Examples")+":\n\t\tload /bin/ls\t\t(load gadgets from /bin/ls program)\n\t\tload ../test/vuln_prog\t(load gadgets from own binary)" def print_help(): print(helpStr) def getPlatformInfo(filename): """ Checks the binary type of the file Precondition: the file exists ! Effects: set the Arch.currentBinType variable Return : the architecture """ INTEL_strings = ["x86", "x86-64", "X86", "X86-64", "Intel", "80386"] ELF32_strings = ["ELF 32-bit"] ELF64_strings = ["ELF 64-bit"] PE32_strings = ["PE32 "] PE64_strings = ["PE32+"] output = from_file(os.path.realpath(filename)) if( [sub for sub in INTEL_strings if sub in output]): if( [sub for sub in ELF32_strings if sub in output]): notify("ELF 32-bits detected") Arch.currentBinType = Arch.BinaryType.X86_ELF return Arch.ArchX86 elif( [sub for sub in ELF64_strings if sub in output]): notify("ELF 64-bits detected") Arch.currentBinType = Arch.BinaryType.X64_ELF return Arch.ArchX64 elif( [sub for sub in PE32_strings if sub in output]): notify("PE 32-bits detected") Arch.currentBinType = Arch.BinaryType.X86_PE return Arch.ArchX86 elif( [sub for sub in PE64_strings if sub in output]): notify("PE 64-bits detected") Arch.currentBinType = Arch.BinaryType.X64_PE return Arch.ArchX64 else: notify("Unknown binary type") Arch.currentBinType = Arch.BinaryType.UNKNOWN return None else: return None def getGadgets(filename, extra_args=''): """ Returns a list of gadgets extracted from a file Precondition: the file exists Returns ------- list of pairs (addr, asm) if succesful None if failure """ ropgadget = "ROPgadget" notify("Executing ROPgadget as: " + ropgadget) try: cmd = [ropgadget,"--binary",filename, "--dump", "--all"] if( extra_args ): cmd += extra_args.split(" ") p = subprocess.Popen(cmd,stdout=subprocess.PIPE) except Exception as e: error("Could not execute '" +ropgadget+ " --binary " + filename + " --dump --all'" + extra_args) print("\tError message is: " + str(e)) print("\n\t(Maybe check/update your config with the 'config' command,\n\t or make sure you have the last ROPgadget version installed)") return None # Get the gadget list # Pairs (address, raw_asm) first = True count = 0 res = [] for l in p.stdout.readlines(): if("0x" in l): arr = l.split(' ') addr = arr[0] raw = b16decode(arr[-1].upper().strip()) res.append((int(addr,16), raw)) count += 1 notify("Finished : %d gadgets generated" % (count)) return res def load(args): global helpStr global loaded # Parse arguments and filename filename = None user_arch = None i = 0 seenArch = False seenRopgadget = False ropgadget_options = '' if( not args ): print(helpStr) return while i < len(args): if( args[i] in [OPTION_ARCH, OPTION_ARCH_SHORT] ): if( seenArch ): error("Option {} can be used only one time"\ .format(args[i])) return seenArch = True if( i+1 == len(args)): error("Missing argument after {}.\n\tType 'load -h' for help"\ .format(args[i])) return elif( args[i+1] == Arch.ArchX86.name ): user_arch = Arch.ArchX86 elif( args[i+1] == Arch.ArchX64.name ): user_arch = Arch.ArchX64 else: error("Unknown architecture: {}".format(args[i+1])) return i += 2 elif( args[i] in [OPTION_ROPGADGET_OPTIONS, OPTION_ROPGADGET_OPTIONS_SHORT]): if( seenRopgadget ): error("Option {} can be used only one time"\ .format(args[i])) return seenRopgadget = True ropgadget_options = '' if( i+1 == len(args)): error("Missing argument after {}.\n\tType 'load -h' for help"\ .format(args[i])) return j = i+1 # Read the argments if( args[j][0] != "'" ): error("ROPgadget options must be given between '' ") return if( args[j][-1] == "'" and len(args[j]) != 1): ropgadget_options += args[j][1:-1] else: ropgadget_options += args[j][1:] j += 1 closed_ok = False while( j < len(args)): if( args[j][0] != "'" ): if( args[j][-1] == "'"): ropgadget_options += " " + args[j][0:-1] closed_ok = True break elif( "'" in args[j] ): error("ROPgadget options: You must leave a space after the closing '") return else: ropgadget_options += " " + args[j] else: if( len(args[j]) > 1): error("ROPgadget options: You must leave a space after the closing \'") return else: closed_ok = True break j += 1 if( not closed_ok ): error("ROPgadget options: missing closing \'") return i = j+1 elif( args[i] in [OPTION_HELP, OPTION_HELP_SHORT] ): print(helpStr) return else: filename = args[i] break if( not filename ): error("Missing filename.\n\tType 'load help' for help") return # Test if the file exists if( not os.path.isfile(filename)): error("Error. Could not find file '{}'".format(filename)) return print('') info(string_bold("Extracting gadgets from file")+ " '" + filename + "'\n") # Cleaning the data structures initDB() Arch.reinit() # Get architecture and OS info arch = getPlatformInfo(filename) if(arch == user_arch == None): error("Error. Could not determine architecture") return elif( arch and user_arch and (arch != user_arch) ): error("Error. Conflicting architectures") print("\tUser supplied: " + user_arch.name) print("\tFound: " + arch.name) return elif( arch ): Arch.setArch(arch) else: Arch.setArch(user_arch) # Init the binary scanner initScanner(filename) # Extract the gadget list gadgetList = getGadgets(filename, ropgadget_options) if( not gadgetList ): return # Build the gadget database # (we mix the list so that charging bar # appears to grow steadily ) r = random() shuffle(gadgetList, lambda: r) build(gadgetList) # Init engine initEngine() loaded = True ################################### # Module wide loaded = False def loadedBinary(): global loaded return loaded
34.665385
164
0.547875
9e5a4181932a365fd56a4b38119548c9cc975369
793
py
Python
chapter_6/ex_6-1.py
akshaymoharir/PythonCrashCourse
742b9841cff61d36567e8706efc69c5f5d5435ff
[ "MIT" ]
null
null
null
chapter_6/ex_6-1.py
akshaymoharir/PythonCrashCourse
742b9841cff61d36567e8706efc69c5f5d5435ff
[ "MIT" ]
null
null
null
chapter_6/ex_6-1.py
akshaymoharir/PythonCrashCourse
742b9841cff61d36567e8706efc69c5f5d5435ff
[ "MIT" ]
null
null
null
## Python Crash Course # Exercise 6.1: Person: # Use a dictionary to store information about a person you know. # Store their first name, last name, age, and the city in which they live. # You should have keys such as first_name, last_name, age, and city. # Print each piece of information stored in your dictionary. # def exercise_6_1(): print("\n") myInfo = { 'first_name':'Akshay', 'last_name':'Moharir', 'age':29, 'city':'Novi' } print("Name:", myInfo['first_name'] + " " + myInfo['last_name']) print("Age:", myInfo['age']) print("City:", myInfo['city']) print("\n") if __name__ == '__main__': exercise_6_1()
24.030303
89
0.534678
154477a463cfa3ea8c424f4964d215b13f67f309
5,313
py
Python
allennlp/training/metrics/auc.py
alle-pawols/allennlp
7d4a67263d7a210aca22d4f2b03e8568d3c34a48
[ "Apache-2.0" ]
11,433
2017-06-27T03:08:46.000Z
2022-03-31T18:14:33.000Z
allennlp/training/metrics/auc.py
alle-pawols/allennlp
7d4a67263d7a210aca22d4f2b03e8568d3c34a48
[ "Apache-2.0" ]
4,006
2017-06-26T21:45:43.000Z
2022-03-31T02:11:10.000Z
allennlp/training/metrics/auc.py
alle-pawols/allennlp
7d4a67263d7a210aca22d4f2b03e8568d3c34a48
[ "Apache-2.0" ]
2,560
2017-06-26T21:16:53.000Z
2022-03-30T07:55:46.000Z
from typing import Optional from overrides import overrides import torch import torch.distributed as dist from sklearn import metrics from allennlp.common.util import is_distributed from allennlp.common.checks import ConfigurationError from allennlp.training.metrics.metric import Metric @Metric.register("auc") class Auc(Metric): """ The AUC Metric measures the area under the receiver-operating characteristic (ROC) curve for binary classification problems. """ def __init__(self, positive_label=1): super().__init__() self._positive_label = positive_label self._all_predictions = torch.FloatTensor() self._all_gold_labels = torch.LongTensor() def __call__( self, predictions: torch.Tensor, gold_labels: torch.Tensor, mask: Optional[torch.BoolTensor] = None, ): """ # Parameters predictions : `torch.Tensor`, required. A one-dimensional tensor of prediction scores of shape (batch_size). gold_labels : `torch.Tensor`, required. A one-dimensional label tensor of shape (batch_size), with {1, 0} entries for positive and negative class. If it's not binary, `positive_label` should be passed in the initialization. mask : `torch.BoolTensor`, optional (default = `None`). A one-dimensional label tensor of shape (batch_size). """ predictions, gold_labels, mask = self.detach_tensors(predictions, gold_labels, mask) # Sanity checks. if gold_labels.dim() != 1: raise ConfigurationError( "gold_labels must be one-dimensional, " "but found tensor of shape: {}".format(gold_labels.size()) ) if predictions.dim() != 1: raise ConfigurationError( "predictions must be one-dimensional, " "but found tensor of shape: {}".format(predictions.size()) ) unique_gold_labels = torch.unique(gold_labels) if unique_gold_labels.numel() > 2: raise ConfigurationError( "AUC can be used for binary tasks only. gold_labels has {} unique labels, " "expected at maximum 2.".format(unique_gold_labels.numel()) ) gold_labels_is_binary = set(unique_gold_labels.tolist()) <= {0, 1} if not gold_labels_is_binary and self._positive_label not in unique_gold_labels: raise ConfigurationError( "gold_labels should be binary with 0 and 1 or initialized positive_label " "{} should be present in gold_labels".format(self._positive_label) ) if mask is None: batch_size = gold_labels.shape[0] mask = torch.ones(batch_size, device=gold_labels.device).bool() self._all_predictions = self._all_predictions.to(predictions.device) self._all_gold_labels = self._all_gold_labels.to(gold_labels.device) self._all_predictions = torch.cat( [self._all_predictions, torch.masked_select(predictions, mask).float()], dim=0 ) self._all_gold_labels = torch.cat( [self._all_gold_labels, torch.masked_select(gold_labels, mask).long()], dim=0 ) if is_distributed(): world_size = dist.get_world_size() device = gold_labels.device # Check if batch lengths are equal. _all_batch_lengths = [torch.tensor(0) for i in range(world_size)] dist.all_gather( _all_batch_lengths, torch.tensor(len(self._all_predictions), device=device) ) _all_batch_lengths = [batch_length.item() for batch_length in _all_batch_lengths] if len(set(_all_batch_lengths)) > 1: # Subsequent dist.all_gather() calls currently do not handle tensors of different length. raise RuntimeError( "Distributed aggregation for AUC is currently not supported for batches of unequal length." ) _all_predictions = [ torch.zeros(self._all_predictions.shape, device=device) for i in range(world_size) ] _all_gold_labels = [ torch.zeros(self._all_gold_labels.shape, device=device, dtype=torch.long) for i in range(world_size) ] dist.all_gather(_all_predictions, self._all_predictions) dist.all_gather(_all_gold_labels, self._all_gold_labels) self._all_predictions = torch.cat(_all_predictions, dim=0) self._all_gold_labels = torch.cat(_all_gold_labels, dim=0) def get_metric(self, reset: bool = False): if self._all_gold_labels.shape[0] == 0: return 0.5 false_positive_rates, true_positive_rates, _ = metrics.roc_curve( self._all_gold_labels.cpu().numpy(), self._all_predictions.cpu().numpy(), pos_label=self._positive_label, ) auc = metrics.auc(false_positive_rates, true_positive_rates) if reset: self.reset() return auc @overrides def reset(self): self._all_predictions = torch.FloatTensor() self._all_gold_labels = torch.LongTensor()
39.066176
111
0.632035
cd9a47fe1143a0f7c88a9c102c6b6576161c1f18
257
py
Python
5-23.py
infintyol2/William
432676e0fd25b02af2d2fa49f105b98f9cc98c08
[ "MIT" ]
null
null
null
5-23.py
infintyol2/William
432676e0fd25b02af2d2fa49f105b98f9cc98c08
[ "MIT" ]
null
null
null
5-23.py
infintyol2/William
432676e0fd25b02af2d2fa49f105b98f9cc98c08
[ "MIT" ]
null
null
null
num = int(input("enter a number ")) num1 = int(input("enter a numer ")) small = 0 g = 0 if num > num1: small = num1 else: small = num for x in range(1, num+1): if (num % x == 0) and (num1 % x ==0): g = x print((g*(num/g))*(num1/g))
18.357143
41
0.51751
6b241c46c79f35e0ebc52d433d23ca7306722000
1,069
py
Python
var/spack/repos/builtin/packages/xcb-util-cursor/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
9
2018-04-18T07:51:40.000Z
2021-09-10T03:56:57.000Z
var/spack/repos/builtin/packages/xcb-util-cursor/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
907
2018-04-18T11:17:57.000Z
2022-03-31T13:20:25.000Z
var/spack/repos/builtin/packages/xcb-util-cursor/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
29
2018-11-05T16:14:23.000Z
2022-02-03T16:07:09.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class XcbUtilCursor(AutotoolsPackage): """The XCB util modules provides a number of libraries which sit on top of libxcb, the core X protocol library, and some of the extension libraries. These experimental libraries provide convenience functions and interfaces which make the raw X protocol more usable. Some of the libraries also provide client-side code which is not strictly part of the X protocol but which have traditionally been provided by Xlib.""" homepage = "https://xcb.freedesktop.org/" url = "https://xcb.freedesktop.org/dist/xcb-util-cursor-0.1.3.tar.gz" version('0.1.3', sha256='a322332716a384c94d3cbf98f2d8fe2ce63c2fe7e2b26664b6cea1d411723df8') depends_on('libxcb@1.4:') depends_on('xcb-util-renderutil') depends_on('xcb-util-image') depends_on('pkgconfig', type='build')
39.592593
95
0.745557
b12013c44a913bdefba7c7fd2ec22726a76fac2b
24,741
py
Python
grr/server/grr_response_server/artifact_registry.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/artifact_registry.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/artifact_registry.py
BA7JCM/grr
c6f3b19e73e1d76a195d3c9a63e894ace6ea2508
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Central registry for artifacts.""" import io import logging import os import threading from grr_response_core import config from grr_response_core.lib import artifact_utils from grr_response_core.lib import objectfilter from grr_response_core.lib import parsers from grr_response_core.lib import type_info from grr_response_core.lib import utils from grr_response_core.lib.rdfvalues import artifacts as rdf_artifacts from grr_response_core.lib.rdfvalues import client as rdf_client from grr_response_core.lib.util.compat import yaml from grr_response_server import data_store # Names of fields that should no longer be used but might occur in old artifact # files. DEPRECATED_ARTIFACT_FIELDS = frozenset([ "labels", ]) class ArtifactRegistrySources(object): """Represents sources of the artifact registry used for getting artifacts.""" def __init__(self): self._dirs = set() self._files = set() def AddDir(self, dirpath): """Adds a directory path as a source. Args: dirpath: a string representing a path to the directory. Returns: True if the directory is not an already existing source. """ if dirpath not in self._dirs: self._dirs.add(dirpath) return True return False def AddFile(self, filepath): """Adds a file path as a source. Args: filepath: a string representing a path to the file. Returns: True if the file is not an already existing source. """ if filepath not in self._files: self._files.add(filepath) return True return False def Clear(self): self._dirs.clear() self._files.clear() def GetDirs(self): """Returns an iterator over defined source directory paths.""" return iter(self._dirs) def GetFiles(self): """Returns an iterator over defined source file paths.""" return iter(self._files) def GetAllFiles(self): """Yields all defined source file paths. This includes file paths defined directly and those defined implicitly by defining a directory. """ for filepath in self._files: yield filepath for dirpath in self._dirs: for filepath in ArtifactRegistrySources._GetDirYamlFiles(dirpath): if filepath in self._files: continue yield filepath @staticmethod def _GetDirYamlFiles(dirpath): try: for filename in os.listdir(dirpath): if filename.endswith(".json") or filename.endswith(".yaml"): yield os.path.join(dirpath, filename) except (IOError, OSError) as error: logging.warning("problem with accessing artifact directory '%s': %s", dirpath, error) class ArtifactRegistry(object): """A global registry of artifacts.""" def __init__(self): self._artifacts = {} self._sources = ArtifactRegistrySources() self._dirty = False # Field required by the utils.Synchronized annotation. self.lock = threading.RLock() def _LoadArtifactsFromDatastore(self): """Load artifacts from the data store.""" loaded_artifacts = [] # TODO(hanuszczak): Why do we have to remove anything? If some artifact # tries to shadow system artifact shouldn't we just ignore them and perhaps # issue some warning instead? The datastore being loaded should be read-only # during upload. # A collection of artifacts that shadow system artifacts and need # to be deleted from the data store. to_delete = [] artifact_list = data_store.REL_DB.ReadAllArtifacts() for artifact_value in artifact_list: try: self.RegisterArtifact( artifact_value, source="datastore:", overwrite_if_exists=True) loaded_artifacts.append(artifact_value) except rdf_artifacts.ArtifactDefinitionError as e: # TODO(hanuszczak): String matching on exception message is rarely # a good idea. Instead this should be refectored to some exception # class and then handled separately. if "system artifact" in str(e): to_delete.append(artifact_value.name) else: raise if to_delete: DeleteArtifactsFromDatastore(to_delete, reload_artifacts=False) self._dirty = True # TODO(hanuszczak): This is connected to the previous TODO comment. Why # do we throw exception at this point? Why do we delete something and then # abort the whole upload procedure by throwing an exception? detail = "system artifacts were shadowed and had to be deleted" raise rdf_artifacts.ArtifactDefinitionError(to_delete, detail) # Once all artifacts are loaded we can validate. revalidate = True while revalidate: revalidate = False for artifact_obj in loaded_artifacts[:]: try: Validate(artifact_obj) except rdf_artifacts.ArtifactDefinitionError as e: logging.error("Artifact %s did not validate: %s", artifact_obj.name, e) artifact_obj.error_message = str(e) loaded_artifacts.remove(artifact_obj) revalidate = True # TODO(hanuszczak): This method should be a stand-alone function as it doesn't # use the `self` parameter at all. @utils.Synchronized def ArtifactsFromYaml(self, yaml_content): """Get a list of Artifacts from yaml.""" raw_list = yaml.ParseMany(yaml_content) # TODO(hanuszczak): I am very sceptical about that "doing the right thing" # below. What are the real use cases? # Try to do the right thing with json/yaml formatted as a list. if (isinstance(raw_list, list) and len(raw_list) == 1 and isinstance(raw_list[0], list)): raw_list = raw_list[0] # Convert json into artifact and validate. valid_artifacts = [] for artifact_dict in raw_list: # Old artifacts might still use deprecated fields, so we have to ignore # such. Here, we simply delete keys from the dictionary as otherwise the # RDF value constructor would raise on unknown fields. for field in DEPRECATED_ARTIFACT_FIELDS: artifact_dict.pop(field, None) # In this case we are feeding parameters directly from potentially # untrusted yaml/json to our RDFValue class. However, safe_load ensures # these are all primitive types as long as there is no other # deserialization involved, and we are passing these into protobuf # primitive types. try: artifact_value = rdf_artifacts.Artifact(**artifact_dict) valid_artifacts.append(artifact_value) except (TypeError, AttributeError, type_info.TypeValueError) as e: name = artifact_dict.get("name") raise rdf_artifacts.ArtifactDefinitionError( name, "invalid definition", cause=e) return valid_artifacts def _LoadArtifactsFromFiles(self, file_paths, overwrite_if_exists=True): """Load artifacts from file paths as json or yaml.""" loaded_files = [] loaded_artifacts = [] for file_path in file_paths: try: with io.open(file_path, mode="r", encoding="utf-8") as fh: logging.debug("Loading artifacts from %s", file_path) for artifact_val in self.ArtifactsFromYaml(fh.read()): self.RegisterArtifact( artifact_val, source="file:%s" % file_path, overwrite_if_exists=overwrite_if_exists) loaded_artifacts.append(artifact_val) logging.debug("Loaded artifact %s from %s", artifact_val.name, file_path) loaded_files.append(file_path) except (IOError, OSError) as e: logging.error("Failed to open artifact file %s. %s", file_path, e) except rdf_artifacts.ArtifactDefinitionError as e: logging.error("Invalid artifact found in file %s with error: %s", file_path, e) raise # Once all artifacts are loaded we can validate. for artifact_value in loaded_artifacts: Validate(artifact_value) @utils.Synchronized def ClearSources(self): self._sources.Clear() self._dirty = True @utils.Synchronized def AddFileSource(self, filename): self._dirty |= self._sources.AddFile(filename) @utils.Synchronized def AddDirSource(self, dirname): self._dirty |= self._sources.AddDir(dirname) @utils.Synchronized def AddDirSources(self, dirnames): for dirname in dirnames: self.AddDirSource(dirname) @utils.Synchronized def AddDefaultSources(self): for path in config.CONFIG["Artifacts.artifact_dirs"]: self.AddDirSource(path) @utils.Synchronized def RegisterArtifact(self, artifact_rdfvalue, source="datastore", overwrite_if_exists=False, overwrite_system_artifacts=False): """Registers a new artifact.""" artifact_name = artifact_rdfvalue.name if artifact_name in self._artifacts: if not overwrite_if_exists: details = "artifact already exists and `overwrite_if_exists` is unset" raise rdf_artifacts.ArtifactDefinitionError(artifact_name, details) elif not overwrite_system_artifacts: artifact_obj = self._artifacts[artifact_name] if not artifact_obj.loaded_from.startswith("datastore:"): # This artifact was not uploaded to the datastore but came from a # file, refuse to overwrite. details = "system artifact cannot be overwritten" raise rdf_artifacts.ArtifactDefinitionError(artifact_name, details) # Preserve where the artifact was loaded from to help debugging. artifact_rdfvalue.loaded_from = source # Clear any stale errors. artifact_rdfvalue.error_message = None self._artifacts[artifact_rdfvalue.name] = artifact_rdfvalue @utils.Synchronized def UnregisterArtifact(self, artifact_name): try: del self._artifacts[artifact_name] except KeyError: raise ValueError("Artifact %s unknown." % artifact_name) @utils.Synchronized def ClearRegistry(self): self._artifacts = {} self._dirty = True def _ReloadArtifacts(self): """Load artifacts from all sources.""" self._artifacts = {} self._LoadArtifactsFromFiles(self._sources.GetAllFiles()) self.ReloadDatastoreArtifacts() def _UnregisterDatastoreArtifacts(self): """Remove artifacts that came from the datastore.""" to_remove = [] for name, artifact in self._artifacts.items(): if artifact.loaded_from.startswith("datastore"): to_remove.append(name) for key in to_remove: self._artifacts.pop(key) @utils.Synchronized def ReloadDatastoreArtifacts(self): # Make sure artifacts deleted by the UI don't reappear. self._UnregisterDatastoreArtifacts() self._LoadArtifactsFromDatastore() def _CheckDirty(self, reload_datastore_artifacts=False): if self._dirty: self._dirty = False self._ReloadArtifacts() else: if reload_datastore_artifacts: self.ReloadDatastoreArtifacts() @utils.Synchronized def GetArtifacts(self, os_name=None, name_list=None, source_type=None, exclude_dependents=False, provides=None, reload_datastore_artifacts=False): """Retrieve artifact classes with optional filtering. All filters must match for the artifact to be returned. Args: os_name: string to match against supported_os name_list: list of strings to match against artifact names source_type: rdf_artifacts.ArtifactSource.SourceType to match against source_type exclude_dependents: if true only artifacts with no dependencies will be returned provides: return the artifacts that provide these dependencies reload_datastore_artifacts: If true, the data store sources are queried for new artifacts. Returns: list of artifacts matching filter criteria """ self._CheckDirty(reload_datastore_artifacts=reload_datastore_artifacts) results = {} for artifact in self._artifacts.values(): # artifact.supported_os = [] matches all OSes if os_name and artifact.supported_os and ( os_name not in artifact.supported_os): continue if name_list and artifact.name not in name_list: continue if source_type: source_types = [c.type for c in artifact.sources] if source_type not in source_types: continue if exclude_dependents and GetArtifactPathDependencies(artifact): continue if not provides: results[artifact.name] = artifact else: # This needs to remain the last test, if it matches the result is added for provide_string in artifact.provides: if provide_string in provides: results[artifact.name] = artifact break return list(results.values()) @utils.Synchronized def GetRegisteredArtifactNames(self): return [str(x) for x in self._artifacts] @utils.Synchronized def GetArtifact(self, name): """Get artifact by name. Args: name: artifact name string. Returns: artifact object. Raises: ArtifactNotRegisteredError: if artifact doesn't exist in the registry. """ self._CheckDirty() result = self._artifacts.get(name) if not result: raise rdf_artifacts.ArtifactNotRegisteredError( "Artifact %s missing from registry. You may need to sync the " "artifact repo by running make in the artifact directory." % name) return result @utils.Synchronized def GetArtifactNames(self, *args, **kwargs): return set([a.name for a in self.GetArtifacts(*args, **kwargs)]) @utils.Synchronized def SearchDependencies(self, os_name, artifact_name_list, existing_artifact_deps=None, existing_expansion_deps=None): """Return a set of artifact names needed to fulfill dependencies. Search the path dependency tree for all artifacts that can fulfill dependencies of artifact_name_list. If multiple artifacts provide a dependency, they are all included. Args: os_name: operating system string artifact_name_list: list of artifact names to find dependencies for. existing_artifact_deps: existing dependencies to add to, for recursion, e.g. set(["WindowsRegistryProfiles", "WindowsEnvironmentVariablePath"]) existing_expansion_deps: existing expansion dependencies to add to, for recursion, e.g. set(["users.userprofile", "users.homedir"]) Returns: (artifact_names, expansion_names): a tuple of sets, one with artifact names, the other expansion names """ artifact_deps = existing_artifact_deps or set() expansion_deps = existing_expansion_deps or set() artifact_objs = self.GetArtifacts( os_name=os_name, name_list=artifact_name_list) artifact_deps = artifact_deps.union([a.name for a in artifact_objs]) for artifact in artifact_objs: expansions = GetArtifactPathDependencies(artifact) if expansions: expansion_deps = expansion_deps.union(set(expansions)) # Get the names of the artifacts that provide those expansions new_artifact_names = self.GetArtifactNames( os_name=os_name, provides=expansions) missing_artifacts = new_artifact_names - artifact_deps if missing_artifacts: # Add those artifacts and any child dependencies new_artifacts, new_expansions = self.SearchDependencies( os_name, new_artifact_names, existing_artifact_deps=artifact_deps, existing_expansion_deps=expansion_deps) artifact_deps = artifact_deps.union(new_artifacts) expansion_deps = expansion_deps.union(new_expansions) return artifact_deps, expansion_deps @utils.Synchronized def DumpArtifactsToYaml(self, sort_by_os=True): """Dump a list of artifacts into a yaml string.""" artifact_list = self.GetArtifacts() if sort_by_os: # Sort so its easier to split these if necessary. yaml_list = [] for os_name in rdf_artifacts.Artifact.SUPPORTED_OS_LIST: done = {a.name: a for a in artifact_list if a.supported_os == [os_name]} # Separate into knowledge_base and non-kb for easier sorting. done_sorted = list(sorted(done.values(), key=lambda x: x.name)) yaml_list.extend(x.ToYaml() for x in done_sorted if x.provides) yaml_list.extend(x.ToYaml() for x in done_sorted if not x.provides) artifact_list = [a for a in artifact_list if a.name not in done] yaml_list.extend(x.ToYaml() for x in artifact_list) # The rest. else: yaml_list = [x.ToYaml() for x in artifact_list] return "---\n\n".join(yaml_list) REGISTRY = ArtifactRegistry() def DeleteArtifactsFromDatastore(artifact_names, reload_artifacts=True): """Deletes a list of artifacts from the data store.""" artifacts_list = REGISTRY.GetArtifacts( reload_datastore_artifacts=reload_artifacts) to_delete = set(artifact_names) deps = set() for artifact_obj in artifacts_list: if artifact_obj.name in to_delete: continue if GetArtifactDependencies(artifact_obj) & to_delete: deps.add(str(artifact_obj.name)) if deps: raise ValueError( "Artifact(s) %s depend(s) on one of the artifacts to delete." % (",".join(deps))) found_artifact_names = set() for artifact_value in artifacts_list: if artifact_value.name in to_delete: found_artifact_names.add(artifact_value.name) if len(found_artifact_names) != len(to_delete): not_found = to_delete - found_artifact_names raise ValueError("Artifact(s) to delete (%s) not found." % ",".join(not_found)) for artifact_name in to_delete: data_store.REL_DB.DeleteArtifact(str(artifact_name)) REGISTRY.UnregisterArtifact(artifact_name) def ValidateSyntax(rdf_artifact): """Validates artifact syntax. This method can be used to validate individual artifacts as they are loaded, without needing all artifacts to be loaded first, as for Validate(). Args: rdf_artifact: RDF object artifact. Raises: ArtifactSyntaxError: If artifact syntax is invalid. """ if not rdf_artifact.doc: raise rdf_artifacts.ArtifactSyntaxError(rdf_artifact, "missing doc") for supp_os in rdf_artifact.supported_os: valid_os = rdf_artifact.SUPPORTED_OS_LIST if supp_os not in valid_os: detail = "invalid `supported_os` ('%s' not in %s)" % (supp_os, valid_os) raise rdf_artifacts.ArtifactSyntaxError(rdf_artifact, detail) for condition in rdf_artifact.conditions: # FIXME(hanuszczak): It does not look like the code below can throw # `ConditionException`. Do we really need it then? try: of = objectfilter.Parser(condition).Parse() of.Compile(objectfilter.BaseFilterImplementation) except rdf_artifacts.ConditionError as e: detail = "invalid condition '%s'" % condition raise rdf_artifacts.ArtifactSyntaxError(rdf_artifact, detail, e) # Anything listed in provides must be defined in the KnowledgeBase valid_provides = rdf_client.KnowledgeBase().GetKbFieldNames() for kb_var in rdf_artifact.provides: if kb_var not in valid_provides: detail = "broken `provides` ('%s' not in %s)" % (kb_var, valid_provides) raise rdf_artifacts.ArtifactSyntaxError(rdf_artifact, detail) # Any %%blah%% path dependencies must be defined in the KnowledgeBase for dep in GetArtifactPathDependencies(rdf_artifact): if dep not in valid_provides: detail = "broken path dependencies ('%s' not in %s)" % (dep, valid_provides) raise rdf_artifacts.ArtifactSyntaxError(rdf_artifact, detail) for source in rdf_artifact.sources: try: source.Validate() except rdf_artifacts.ArtifactSourceSyntaxError as e: raise rdf_artifacts.ArtifactSyntaxError(rdf_artifact, "bad source", e) def ValidateDependencies(rdf_artifact): """Validates artifact dependencies. This method checks whether all dependencies of the artifact are present and contain no errors. This method can be called only after all other artifacts have been loaded. Args: rdf_artifact: RDF object artifact. Raises: ArtifactDependencyError: If a dependency is missing or contains errors. """ for dependency in GetArtifactDependencies(rdf_artifact): try: dependency_obj = REGISTRY.GetArtifact(dependency) except rdf_artifacts.ArtifactNotRegisteredError as e: raise rdf_artifacts.ArtifactDependencyError( rdf_artifact, "missing dependency", cause=e) message = dependency_obj.error_message if message: raise rdf_artifacts.ArtifactDependencyError( rdf_artifact, "dependency error", cause=message) def Validate(rdf_artifact): """Attempts to validate the artifact has been well defined. This checks both syntax and dependencies of the artifact. Because of that, this method can be called only after all other artifacts have been loaded. Args: rdf_artifact: RDF object artifact. Raises: ArtifactDefinitionError: If artifact is invalid. """ ValidateSyntax(rdf_artifact) ValidateDependencies(rdf_artifact) def GetArtifactDependencies(rdf_artifact, recursive=False, depth=1): """Return a set of artifact dependencies. Args: rdf_artifact: RDF object artifact. recursive: If True recurse into dependencies to find their dependencies. depth: Used for limiting recursion depth. Returns: A set of strings containing the dependent artifact names. Raises: RuntimeError: If maximum recursion depth reached. """ deps = set() for source in rdf_artifact.sources: # ARTIFACT is the legacy name for ARTIFACT_GROUP # per: https://github.com/ForensicArtifacts/artifacts/pull/143 # TODO(user): remove legacy support after migration. if source.type in (rdf_artifacts.ArtifactSource.SourceType.ARTIFACT, rdf_artifacts.ArtifactSource.SourceType.ARTIFACT_GROUP): if source.attributes.GetItem("names"): deps.update(source.attributes.GetItem("names")) if depth > 10: raise RuntimeError("Max artifact recursion depth reached.") deps_set = set(deps) if recursive: for dep in deps: artifact_obj = REGISTRY.GetArtifact(dep) new_dep = GetArtifactDependencies(artifact_obj, True, depth=depth + 1) if new_dep: deps_set.update(new_dep) return deps_set # TODO(user): Add tests for this and for all other Get* functions in this # package. def GetArtifactsDependenciesClosure(name_list, os_name=None): """For all the artifacts in the list returns them and their dependencies.""" artifacts = { a.name: a for a in REGISTRY.GetArtifacts(os_name=os_name, name_list=name_list) } dep_names = set() for art in artifacts.values(): dep_names.update(GetArtifactDependencies(art, recursive=True)) if dep_names: for dep in REGISTRY.GetArtifacts(os_name=os_name, name_list=dep_names): artifacts[dep.name] = dep return list(artifacts.values()) def GetArtifactPathDependencies(rdf_artifact): """Return a set of knowledgebase path dependencies. Args: rdf_artifact: RDF artifact object. Returns: A set of strings for the required kb objects e.g. ["users.appdata", "systemroot"] """ deps = set() for source in rdf_artifact.sources: for arg, value in source.attributes.items(): paths = [] if arg in ["path", "query"]: paths.append(value) if arg == "key_value_pairs": # This is a REGISTRY_VALUE {key:blah, value:blah} dict. paths.extend([x["key"] for x in value]) if arg in ["keys", "paths", "path_list", "content_regex_list"]: paths.extend(value) for path in paths: for match in artifact_utils.INTERPOLATED_REGEX.finditer(path): deps.add(match.group()[2:-2]) # Strip off %%. deps.update(GetArtifactParserDependencies(rdf_artifact)) return deps def GetArtifactParserDependencies(rdf_artifact): """Return the set of knowledgebase path dependencies required by the parser. Args: rdf_artifact: RDF artifact object. Returns: A set of strings for the required kb objects e.g. ["users.appdata", "systemroot"] """ factory = parsers.ArtifactParserFactory(str(rdf_artifact.name)) deps = set() for p in factory.AllParserTypes(): deps.update(p.knowledgebase_dependencies) return deps
34.846479
80
0.697506
c7d3528c0d1bf91af1c30efa7ad6ddaeccc24703
203
py
Python
Python/Kivy/Kivy Testing 2/main.py
vaibhavkrkm/Mini-Projects
13cc3c6ee551aff5af48a8e9000816fc8767580f
[ "MIT" ]
null
null
null
Python/Kivy/Kivy Testing 2/main.py
vaibhavkrkm/Mini-Projects
13cc3c6ee551aff5af48a8e9000816fc8767580f
[ "MIT" ]
null
null
null
Python/Kivy/Kivy Testing 2/main.py
vaibhavkrkm/Mini-Projects
13cc3c6ee551aff5af48a8e9000816fc8767580f
[ "MIT" ]
null
null
null
# float layout import kivy from kivy.app import App from kivy.uix.floatlayout import FloatLayout class MyApp(App): def build(self): return FloatLayout() if __name__ == '__main__': MyApp().run()
13.533333
44
0.729064
57fcdf88320482f81c108e0bd02b2d133a550005
4,814
py
Python
test/scripts/test_strands.py
fujiehuang/ecto
fea744337aa1fad1397c9a3ba5baa143993cb5eb
[ "BSD-3-Clause" ]
null
null
null
test/scripts/test_strands.py
fujiehuang/ecto
fea744337aa1fad1397c9a3ba5baa143993cb5eb
[ "BSD-3-Clause" ]
null
null
null
test/scripts/test_strands.py
fujiehuang/ecto
fea744337aa1fad1397c9a3ba5baa143993cb5eb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2011, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import ecto, sys import ecto.ecto_test as ecto_test from ecto.test import test @test #def test_strand_basic_semantics(): # s = ecto.Strand() # print "s.id =", s.id # orig_id = s.id # # c = ecto_test.DontCallMeFromTwoThreads("CRASHY", strand=s) # c2 = ecto_test.DontCallMeFromTwoThreads("CRASHY2", strand=s) # c3 = ecto_test.DontCallMeFromTwoThreads("CRASHY3", strand=s) # p = ecto.Plasm() # gen = ecto_test.Generate("GENERATE", step=1.0, start=1.0) # p.connect(gen[:] >> c[:]) # p.connect(c[:] >> c2[:]) # p.connect(c2[:] >> c3[:]) # sched = ecto.schedulers.Multithreaded(p) # sched.execute(10) @test def test_user_defined_strands(nlevels, SchedType, execfn, expect): s1 = ecto.Strand() s2 = s1 s3 = ecto.Strand() print("s1.id ==", s1.id) print("s2.id ==", s2.id) print("s3.id ==", s3.id) assert s1.id == s2.id assert s3.id != s2.id assert s3.id != s1.id plasm = ecto.Plasm() # plasm.movie_out("strands_%03d.dot") gen = ecto_test.Generate("GENERATE", step=1.0, start=1.0) noncurr = ecto_test.DontCallMeFromTwoThreads("ALPHA", strand=s1) plasm.connect(gen[:] >> noncurr[:]) for k in range(nlevels): n = ecto_test.DontCallMeFromTwoThreads("BETA_%d" % k, strand=s2) plasm.connect(noncurr[:] >> n[:]) noncurr = n printer = ecto_test.Printer("PRINTER") plasm.connect(noncurr[:] >> printer[:]) sched = SchedType(plasm) print("sched=", sched) execfn(sched) result = noncurr.outputs.out print("result=", result, "expect=", expect) assert(result == expect) # execfn(sched) # result = noncurr.outputs.out # print "result=", result @test def test_implicit_strands(nlevels, SchedType, execfn, expect): plasm = ecto.Plasm() gen = ecto_test.Generate(step=1.0, start=1.0) noncurr = ecto_test.CantCallMeFromTwoThreads() plasm.connect(gen, "out", noncurr, "in") for k in range(nlevels): next = ecto_test.CantCallMeFromTwoThreads() plasm.connect(noncurr, "out", next, "in") noncurr = next printer = ecto_test.Printer() plasm.connect(noncurr, "out", printer, "in") sched = SchedType(plasm) print("sched=", sched) execfn(sched) result = noncurr.outputs.out print("result=", result) assert(result == expect) @test def shouldfail(): plasm = ecto.Plasm() gen = ecto_test.Generate(step=1.0, start=1.0) nc1 = ecto_test.DontCallMeFromTwoThreads() plasm.connect(gen, "out", nc1, "in") nc2 = ecto_test.DontCallMeFromTwoThreads() plasm.connect(nc1, "out", nc2, "in") printer = ecto_test.Printer() plasm.connect(nc2, "out", printer, "in") sched = ecto.Scheduler(plasm) try: print("about to execute... this should throw") sched.execute(niter=4) util.fail() except RuntimeError as e: print("good, python caught error", e) sched.stop() sched.wait() #test_strand_basic_semantics() #shouldfail() #print "shouldfail passed" test_implicit_strands(4, ecto.Scheduler, lambda s: s.execute(niter=4), expect=4.0) test_user_defined_strands(4, ecto.Scheduler, lambda s: s.execute(niter=16), expect=16.0)
32.308725
88
0.680723
32e97e6384e6419f473ef60d96011dea1a2b8d8f
2,563
py
Python
evennia/server/portal/mccp.py
meistermuka/evennia
45e0785c8e3a10e99ea97c8b26648ea3b01c656a
[ "BSD-3-Clause" ]
null
null
null
evennia/server/portal/mccp.py
meistermuka/evennia
45e0785c8e3a10e99ea97c8b26648ea3b01c656a
[ "BSD-3-Clause" ]
null
null
null
evennia/server/portal/mccp.py
meistermuka/evennia
45e0785c8e3a10e99ea97c8b26648ea3b01c656a
[ "BSD-3-Clause" ]
null
null
null
""" MCCP - Mud Client Compression Protocol This implements the MCCP v2 telnet protocol as per http://tintin.sourceforge.net/mccp/. MCCP allows for the server to compress data when sending to supporting clients, reducing bandwidth by 70-90%.. The compression is done using Python's builtin zlib library. If the client doesn't support MCCP, server sends uncompressed as normal. Note: On modern hardware you are not likely to notice the effect of MCCP unless you have extremely heavy traffic or sits on a terribly slow connection. This protocol is implemented by the telnet protocol importing mccp_compress and calling it from its write methods. """ import zlib # negotiations for v1 and v2 of the protocol MCCP = chr(86) FLUSH = zlib.Z_SYNC_FLUSH def mccp_compress(protocol, data): """ Handles zlib compression, if applicable. Args: data (str): Incoming data to compress. Returns: stream (binary): Zlib-compressed data. """ if hasattr(protocol, 'zlib'): return protocol.zlib.compress(data) + protocol.zlib.flush(FLUSH) return data class Mccp(object): """ Implements the MCCP protocol. Add this to a variable on the telnet protocol to set it up. """ def __init__(self, protocol): """ initialize MCCP by storing protocol on ourselves and calling the client to see if it supports MCCP. Sets callbacks to start zlib compression in that case. Args: protocol (Protocol): The active protocol instance. """ self.protocol = protocol self.protocol.protocol_flags['MCCP'] = False # ask if client will mccp, connect callbacks to handle answer self.protocol.will(MCCP).addCallbacks(self.do_mccp, self.no_mccp) def no_mccp(self, option): """ Called if client doesn't support mccp or chooses to turn it off. Args: option (Option): Option dict (not used). """ if hasattr(self.protocol, 'zlib'): del self.protocol.zlib self.protocol.protocol_flags['MCCP'] = False self.protocol.handshake_done() def do_mccp(self, option): """ The client supports MCCP. Set things up by creating a zlib compression stream. Args: option (Option): Option dict (not used). """ self.protocol.protocol_flags['MCCP'] = True self.protocol.requestNegotiation(MCCP, '') self.protocol.zlib = zlib.compressobj(9) self.protocol.handshake_done()
28.477778
73
0.663675
495987829a3fad4072dd34a453dff579d375810d
837
py
Python
build/scripts/gen_py_reg.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
33
2016-12-15T21:47:13.000Z
2020-10-27T23:53:59.000Z
build/scripts/gen_py_reg.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
null
null
null
build/scripts/gen_py_reg.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
14
2016-12-28T17:00:33.000Z
2022-01-16T20:15:27.000Z
import sys template = ''' extern "C" void RegisterPythonModule(const char* name, void (*fn)(void)); extern "C" void {1}(); namespace { struct TRegistrar { inline TRegistrar() { RegisterPythonModule("{0}", {1}); } } REG; } ''' def mangle(name): if '.' not in name: return name return ''.join('{}{}'.format(len(s), s) for s in name.split('.')) if __name__ == '__main__': if len(sys.argv) != 3: print >>sys.stderr, 'Usage: <path/to/gen_py_reg.py> <python_module_name> <output_file>' print >>sys.stderr, 'Passed: ' + ' '.join(sys.argv) sys.exit(1) with open(sys.argv[2], 'w') as f: modname = sys.argv[1] initname = 'init' + mangle(modname) code = template.replace('{0}', modname).replace('{1}', initname) f.write(code)
25.363636
95
0.55914
76bf69a181ad6b3393ba197a4aa15d17084c4be1
9,863
py
Python
torch/fx/experimental/fx2trt/example/fx2trt_example.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
3
2020-11-06T22:02:36.000Z
2021-06-25T13:50:47.000Z
torch/fx/experimental/fx2trt/example/fx2trt_example.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
1
2021-04-22T18:37:42.000Z
2021-04-28T00:53:25.000Z
torch/fx/experimental/fx2trt/example/fx2trt_example.py
Hacky-DH/pytorch
80dc4be615854570aa39a7e36495897d8a040ecc
[ "Intel" ]
1
2021-10-05T07:05:26.000Z
2021-10-05T07:05:26.000Z
from typing import Tuple, Dict, Callable, Any import torch import torch.fx import torchvision.models as models import torch.fx.passes.splitter_base as splitter_base import torch.fx.passes.operator_support as op_support import torch.fx.passes.net_min_base as net_min_base from torch.fx.experimental.fx2trt.fx2trt import TRTInterpreter, InputTensorSpec, TRTModule # The purpose of this example is to demonstrate the overall flow of lowering a PyTorch # model to TensorRT via FX with existing FX based tooling. The general lowering flow # would be like: # # 1. Use splitter to split the model if there're ops in the model that we don't want to # lower to TensorRT for some reasons like the ops are not supported in TensorRT or # running them on other backends provides better performance. # 2. Lower the model (or part of the model if splitter is used) to TensorRT via fx2trt. # # For this example, we use ResNet18 as example model and split out the linear layer to # not run on TensorRT just to demonstrate how the splitter works. At the end of this # example we did a benchmark for a model (named `split_mod`) with all the ops running # on TensorRT execpt linear layer running on PyTorch Cuda versus a model (named `rn18`) # fully on PyTorch Cuda. def lower_mod_to_trt(mod: torch.fx.GraphModule, inputs: Tuple[torch.Tensor]): """ Helper function that given a GraphModule `mod` and its `inputs`, build a TRTModule that runs the original `mod` on TensorRT. """ interp = TRTInterpreter(mod, InputTensorSpec.from_tensors(inputs)) engine, input_names, output_names = interp.run(*inputs) return TRTModule(engine, input_names, output_names) class OpSupport(op_support.OperatorSupport): """ This class is used by splitter to determine which nodes are supported, i.e. should be split to the accelerator part (TensorRT). """ def is_node_supported( self, submodules: Dict[str, torch.nn.Module], node: torch.fx.Node ): """ Here we want linear layer to not run on TensorRT. Thus, we return False for linear layer and True for all other ops. """ target = op_support.get_node_target(submodules, node) if target == "torch.nn.modules.linear.Linear": return False return True class TensorRTMinimizer(net_min_base._MinimizerBase): """ Need to define a Minimizer class for TensorRT because it's used in Splitter. """ def __init__( self, module: torch.fx.GraphModule, sample_input: Tuple[torch.Tensor], compare_fn: Callable[[Any, Any, Any], Tuple[float, bool]], settings: net_min_base._MinimizerSettingBase = None, ): if settings is None: settings = net_min_base._MinimizerSettingBase() super().__init__(module, sample_input, compare_fn, settings) def run_a(self, mod, inputs): """ The output of this function serves as an reference. """ mod.eval() with torch.no_grad(): return mod(*inputs) def run_b(self, mod, inputs): """ Here we actually run mod on TensorRT return TensorRT result. """ mod.eval() try: mod = lower_mod_to_trt(mod, inputs) output = mod(*inputs) except RuntimeError as e: raise net_min_base.FxNetMinimizerRunFuncError( f"Encounter an error when processing \n{mod.graph}\n {e}" ) else: return output # This in the future will be a global TensorRTSplitter and we don't need to create # it per example. class TensorRTSplitter(splitter_base._SplitterBase): """ Splitter for TensorRT. """ def __init__( self, module: torch.fx.GraphModule, sample_input: Tuple[torch.Tensor], operator_support: op_support.OperatorSupport = None, settings: splitter_base._SplitterSettingBase = None ): if not operator_support: operator_support = op_support.OperatorSupport() if not settings: settings = splitter_base._SplitterSettingBase() settings.allow_non_tensor = True settings.skip_fusion = True super().__init__(module, sample_input, operator_support, settings) def _lower_model_to_backend(self, mod, inputs): """ Lower a GraphModule `mod` to TensorRT with `inputs`. """ mod = lower_mod_to_trt(mod, inputs) return mod def _find_culprit(self, mod, inputs): """ This function serves the preview functionality in Splitter. When previewing splitting result, if something wrong happens during lowering model to TensorRT or running a TensorRT model, this function will be called to find any culprit that is responsible for the error. """ # Since we don't care about accuracy here, we pass in a dummy compare function. minimizer = TensorRTMinimizer(mod, inputs, lambda a, b, c: (1, True)) minimizer.settings.traverse_method = "sequential" minimizer.settings.find_all = True culprits = minimizer.minimize() if len(culprits) == 0: reports = "Unable to find a culprit!\n" else: reports = "Found some problematic nodes:\n" for node in culprits: reports += f"{node.format_node()}\n" return reports if __name__ == "__main__": # Create ResNet18 `rn18` and inputs `x` rn18 = models.resnet18().eval().cuda() x = torch.randn(5, 3, 224, 224, device="cuda") # Trace the model with FX. traced_rn18 = torch.fx.symbolic_trace(rn18) # Create a splitter which takes in traced ResNet18. splitter = TensorRTSplitter(traced_rn18, (x,), OpSupport()) # node_support_preview() shows the details of node supporting information based # on the DummyOpSupport we created. # # In the output, we have supported node types # and unsupported node types. Nodes in the model with supported types will be # split into accelerator submodules while nodes with unsupported types will be # split into cpu submodules. splitter.node_support_preview() """ output: Supported node types in the model: torch.nn.modules.conv.Conv2d: ((torch.float32,), {}) torch.nn.modules.batchnorm.BatchNorm2d: ((torch.float32,), {}) torch.nn.modules.activation.ReLU: ((torch.float32,), {}) torch.nn.modules.pooling.MaxPool2d: ((torch.float32,), {}) _operator.add: ((torch.float32, torch.float32), {}) torch.nn.modules.pooling.AdaptiveAvgPool2d: ((torch.float32,), {}) torch.flatten: ((torch.float32,), {}) Unsupported node types in the model: torch.nn.modules.linear.Linear: ((torch.float32,), {}) """ # split_preview() shows the details of how the model looks like after split. # And for every accelerator module in the split model, it would run a check # by lowering and running the module. If any error is catched during the # checking process, it will try to find which nodes are causing the trouble # here with minimizer. # # Notice that after split, the model will have some submodules called either # `_run_on_acc_{}` or `_run_on_cpu_{}`. We have all the supported nodes in # `_run_on_acc_{}` modules and all other nodes in `_run_on_cpu_{}` modules. # # In the output, we can see it estimates the max qps based on PCIe bandwidth, # this is something we need to consider when lowering to acceleartors chips, # because the data will be flowing between cpu and accelerator which might not # matter in GPU case. splitter.split_preview() """ output: Before removing small acc subgraphs, total 2 subgraphs are created: 1 acc subgraphs and 1 cpu subgraphs. After removing small acc subgraphs, total 2 subgraphs are created: 1 acc subgraphs and 1 cpu subgraphs. _run_on_acc_0: 68 node(s) _run_on_cpu_1: 1 node(s) Processing acc submodule _run_on_acc_0 Checking inputs... Checking outputs... Total input size in bytes is 3010560, total output size in bytes is 10240, theoretical max qps (bounds by PCIe bandwidth) for this submodule is 35665.85034013606. Lowering and running succeed! Theoretical max qps (bounds by PCIe bandwidth) for this model is 35665.85034013606, bottleneck is submodule _run_on_acc_0. """ # After split we have two submodules, one is `_run_on_acc_0` and one is `_run_on_cpu_1`. # We have only one op in `_run_on_cpu_1` which is a linear layer while all other ops are # in `_run_on_acc_0`. split_mod = splitter() print(split_mod.graph) """ output: graph(): %x : torch.Tensor [#users=1] = placeholder[target=x] %_run_on_acc_0 : [#users=1] = call_module[target=_run_on_acc_0](args = (%x,), kwargs = {}) %_run_on_cpu_1 : [#users=1] = call_module[target=_run_on_cpu_1](args = (%_run_on_acc_0,), kwargs = {}) return _run_on_cpu_1 """ # We want to lower _run_on_acc_0 to TensorRT. split_mod._run_on_acc_0 = lower_mod_to_trt(split_mod._run_on_acc_0, (x,)) # type: ignore[arg-type] # Assert results are equal with the original model. rn18 = rn18.cuda() torch.testing.assert_close(split_mod(x), rn18(x)) import time NITER = 100 s = time.time() for _ in range(NITER): split_mod(x) torch.cuda.synchronize() print('trt time (ms/iter)', (time.time() - s) / NITER * 1000) """ output: trt time (ms/iter) 1.978142261505127 """ s = time.time() for _ in range(NITER): rn18(x) torch.cuda.synchronize() print('stock PyTorch time (ms/iter)', (time.time() - s) / NITER * 1000) """ output: stock PyTorch time (ms/iter) 3.8208484649658203 """
37.218868
126
0.671297
21167b6c2b3e140f98510021c7bbdc16854e9fe7
4,064
py
Python
recognize.py
alper111/affordance-learning
21b70f689a8299c6af7cd4ed763fc3133cf1681f
[ "MIT" ]
3
2020-12-15T07:10:15.000Z
2021-06-10T20:15:33.000Z
recognize.py
alper111/DeepSym
21b70f689a8299c6af7cd4ed763fc3133cf1681f
[ "MIT" ]
1
2020-06-10T09:51:44.000Z
2020-06-10T09:51:44.000Z
recognize.py
alper111/affordance-learning
21b70f689a8299c6af7cd4ed763fc3133cf1681f
[ "MIT" ]
1
2020-04-02T08:20:21.000Z
2020-04-02T08:20:21.000Z
import os import argparse import rospy import yaml import numpy as np import torch from models import EffectRegressorMLP import data import utils from simtools.rosutils import RosNode parser = argparse.ArgumentParser("Make plan.") parser.add_argument("-opts", help="option file", type=str, required=True) parser.add_argument("-goal", help="goal state", type=str, default="(H3) (S0)") parser.add_argument("-uri", help="master uri", type=str, default="http://localhost:11311") args = parser.parse_args() opts = yaml.safe_load(open(args.opts, "r")) device = torch.device(opts["device"]) node = RosNode("recognize_scene", args.uri) node.stopSimulation() rospy.sleep(1.0) node.startSimulation() rospy.sleep(1.0) model = EffectRegressorMLP(opts) model.load(opts["save"], "_best", 1) model.load(opts["save"], "_best", 2) model.encoder1.eval() model.encoder2.eval() # Homogeneous transformation matrix H = torch.load("H.pt") # GENERATE A RANDOM SCENE NUM_OBJECTS = 5 objTypes = np.random.randint(1, 6, (NUM_OBJECTS, )) objSizes = np.random.uniform(1.0, 2, (5, )).tolist() locations = np.array([ [-0.69, -0.09], [-0.9, -0.35], [-0.45, 0.175], [-0.45, -0.35], [-0.9, 0.175] ]) locations = locations[np.random.permutation(5)] locations = locations[:NUM_OBJECTS].tolist() for i in range(NUM_OBJECTS): node.generateObject(objTypes[i], objSizes[i], locations[i]+[objSizes[i]*0.05+0.7]) rospy.sleep(1.0) locations = torch.tensor(locations, dtype=torch.float) x = torch.tensor(node.getDepthImage(8), dtype=torch.float) objs, locs, _ = utils.find_objects(x, opts["size"]) transform = data.default_transform(size=opts["size"], affine=False, mean=0.279, std=0.0094) for i, o in enumerate(objs): objs[i] = transform(o)[0] objs = objs.to(device) locs = torch.cat([locs.float(), torch.ones(locs.shape[0], 1, device=locs.device)], dim=1) locs = torch.matmul(locs, H.T) locs = locs / locs[:, 2].reshape(-1, 1) _, indices = torch.cdist(locs[:, :2], locations).min(dim=1) obj_infos = [] comparisons = [] with torch.no_grad(): for i, obj in enumerate(objs): cat = model.encoder1(obj.unsqueeze(0).unsqueeze(0)) # TODO: this uses true location and size. print("Category: (%d %d), Location: (%.5f %.5f)" % (cat[0, 0], cat[0, 1], locations[indices[i], 0], locations[indices[i], 1])) info = {} info["name"] = "O{}".format(i+1) info["loc"] = (locations[indices[i], 0].item(), locations[indices[i], 1].item()) info["size"] = objSizes[indices[i]]*0.1 info["type"] = "objtype{}".format(utils.binary_to_decimal([int(cat[0, 0]), int(cat[0, 1])])) obj_infos.append(info) for j in range(len(objs)): if i != j: rel = model.encoder2(torch.stack([obj, objs[j]]).unsqueeze(0))[0, 0] if rel == -1: comparisons.append("(relation0 O%d O%d)" % (i+1, j+1)) else: comparisons.append("(relation1 O%d O%d)" % (i+1, j+1)) print(obj_infos) print(comparisons) file_loc = os.path.join(opts["save"], "problem.pddl") file_obj = os.path.join(opts["save"], "objects.txt") if os.path.exists(file_loc): os.remove(file_loc) if os.path.exists(file_obj): os.remove(file_obj) print("(define (problem dom1) (:domain stack)", file=open(file_loc, "a")) print(str(len(obj_infos)), file=open(file_obj, "a")) object_str = "\t(:objects" init_str = "\t(:init\n" for obj_i in obj_infos: print("%s %.5f %.5f %.5f" % (obj_i["name"], obj_i["loc"][0], obj_i["loc"][1], obj_i["size"]), file=open(file_obj, "a")) object_str += " " + obj_i["name"] init_str += "\t\t(pickloc " + obj_i["name"] + ") (" + obj_i["type"] + " " + obj_i["name"] + ")\n" object_str += ")" for c_i in comparisons: init_str += "\t\t" + c_i + "\n" init_str += "\t\t(H0)\n" init_str += "\t\t(S0)\n" init_str += "\t)" goal_str = "\t(:goal (and %s (not (stacked)) (not (inserted))))\n)" % args.goal print(object_str, file=open(file_loc, "a")) print(init_str, file=open(file_loc, "a")) print(goal_str, file=open(file_loc, "a"))
34.735043
134
0.634104
ee53779c161f78215c22846fdcff7510460a9125
910
py
Python
venv/lib/python3.7/site-packages/zope/contentprovider/tests.py
leanhvu86/matrix-server
6e16fc53dfebaeaf222ff5a371ccffcc65de3818
[ "Apache-2.0" ]
1
2018-11-08T15:04:13.000Z
2018-11-08T15:04:13.000Z
venv/lib/python3.7/site-packages/zope/contentprovider/tests.py
leanhvu86/matrix-server
6e16fc53dfebaeaf222ff5a371ccffcc65de3818
[ "Apache-2.0" ]
6
2016-03-24T07:50:43.000Z
2018-11-08T15:24:09.000Z
venv/lib/python3.7/site-packages/zope/contentprovider/tests.py
leanhvu86/matrix-server
6e16fc53dfebaeaf222ff5a371ccffcc65de3818
[ "Apache-2.0" ]
1
2015-04-03T08:29:58.000Z
2015-04-03T08:29:58.000Z
############################################################################## # # Copyright (c) 2004 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Content provider tests """ import unittest from zope.contentprovider.interfaces import UpdateNotCalled class TestExceptionHandling(unittest.TestCase): def test(self): try: raise UpdateNotCalled except UpdateNotCalled: pass
32.5
78
0.610989
74c2f2ed976dcb38aa087b982c6205ac77a628c1
27,174
py
Python
data_neural_fuzz_pdf_obj.py
GordonShinozaki/iust_deep_fuzz
9a244839f4028ba70cb4e18e8db8e3e9ce81e6af
[ "MIT" ]
33
2018-07-13T13:09:08.000Z
2022-03-17T14:18:12.000Z
data_neural_fuzz_pdf_obj.py
yasinbakhtiar/iust_deep_fuzz
191e7bdf31840bd7d5052885029189bb6ffb262d
[ "MIT" ]
null
null
null
data_neural_fuzz_pdf_obj.py
yasinbakhtiar/iust_deep_fuzz
191e7bdf31840bd7d5052885029189bb6ffb262d
[ "MIT" ]
10
2019-04-17T10:30:03.000Z
2022-03-18T12:10:12.000Z
""" PDF OBJ 9 - New in version 9 data fuzz -- Create test data for data fuzzing (i.e p_t = 0.50) and prefix update. -- Date: 1397-04-17 - New in version 8 -- Fuzzing back to generate_and_fuzz method. -- Perplexity and cross entropy add to metrics list. -- Use some Keras backend to reset model graph and state. -- Lets pdf_file_incremental_update_4.py call the generate_and_fuzz method. - New in version 7 -- Use for bidirectional LSTM model, model=model9 - New in version 6 -- Train with 256 LSTM search, model=model_8 -- Train on large dataset for first time! -New in version 5: -- Data generator fixed. -- Train on large dataset for first time! -New in version 4: -- Changing the data generator method for use with model.fit_generator() -New in version 3: -- Add support for training in large dataset with the help of python generators. -- Add callbacks to log most of training time events. -- File and directory now mange by code in appropriate manner for each train run. -- Add class FileFormatFuzz to do learn and fuzz process in one script. -- Note: The ability of training small dataset in memory with model.fit() method was include in version 3. """ from __future__ import print_function __version__ = '0.9.1' __author__ = 'Morteza' import sys import os import datetime import random import numpy as np from keras import backend as K from keras.models import load_model from keras.optimizers import RMSprop, Adam from keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, CSVLogger, LambdaCallback from keras.utils import plot_model import pdf_object_preprocess as preprocess from config import learning_config import deep_models def cross_entropy(y_true, y_pred): """ Compute cross_entropy loss metric :param y_true: :param y_pred: :return: """ return K.categorical_crossentropy(y_true, y_pred) def spars_cross_entropy(y_true, y_pred): return K.sparse_categorical_crossentropy(y_true, y_pred) def perplexity(y_true, y_pred): """ Compute perplexity metric :param y_true: :param y_pred: :return: """ ce = K.categorical_crossentropy(y_true, y_pred) # pp = K.pow(np.e, ce) # Or 2? # pp = K.pow(2., ce) # Or np.e pp = K.exp(ce) # print('Perplexity value in perplexity function: ', K.eval(pp)) return pp class FileFormatFuzzer(object): """ Main class for learn and fuzz process """ def __init__(self, maxlen=85, step=1, batch_size=128): """ :param maxlen: :param step: :param batch_size: """ # os.chdir('./') # learning hyper-parameters self.maxlen = maxlen self.step = step self.batch_size = batch_size self.text_all = '' self.text_training = '' self.text_validation = '' self.text_test = '' self.chars = None self.char_indices = None self.indices_char = None # self.model = None K.reset_uids() K.clear_session() self.load_dataset() def define_model(self, input_dim, output_dim): """ Build the model: a single LSTM layer # We need to deep it # now is deep :) :param input_dim: :param output_dim: :return: """ model, model_name = deep_models.model_7(input_dim, output_dim) return model, model_name def load_dataset(self): """ Load all 3 part of each dataset and building dictionary index """ if learning_config['dataset_size'] == 'small': self.text_training = preprocess.load_from_file(learning_config['small_training_set_path']) self.text_validation = preprocess.load_from_file(learning_config['small_validation_set_path']) self.text_test = preprocess.load_from_file(learning_config['small_testing_set_path']) elif learning_config['dataset_size'] == 'medium': self.text_training = preprocess.load_from_file(learning_config['medium_training_set_path']) self.text_validation = preprocess.load_from_file(learning_config['medium_validation_set_path']) self.text_test = preprocess.load_from_file(learning_config['medium_testing_set_path']) elif learning_config['dataset_size'] == 'large': self.text_training = preprocess.load_from_file(learning_config['large_training_set_path']) self.text_validation = preprocess.load_from_file(learning_config['large_validation_set_path']) self.text_test = preprocess.load_from_file(learning_config['large_testing_set_path']) self.text_all = self.text_training + self.text_validation + self.text_test print('Total corpus length:', len(self.text_all)) self.chars = sorted(list(set(self.text_all))) print('Total corpus chars:', len(self.chars)) # print(chars) # Building dictionary index print('Building dictionary index ...') self.char_indices = dict((c, i) for i, c in enumerate(self.chars)) # print(char_indices) self.indices_char = dict((i, c) for i, c in enumerate(self.chars)) # print(indices_char) def generate_samples(self, text): """Cut the text in semi-redundant sequences of maxlen characters""" sentences = [] # List of all sentence as input next_chars = [] # List of all next chars as labels for i in range(0, len(text) - self.maxlen, self.step): # arg2 why this? sentences.append(text[i: i + self.maxlen]) # print(sentences) next_chars.append(text[i + self.maxlen]) # print(next_chars) print('Number of semi sequences or samples:', len(sentences)) return sentences, next_chars def data_generator(self, sentences, next_chars): """ Batch data generator for large dataset not fit completely in memory # Index j now increase Shuffle :param sentences: :param next_chars: :return: """ j = random.randint(0, len(sentences) - (self.batch_size+1)) # print('Vectorization...') while True: # Fix generator :)) x = np.zeros((self.batch_size, self.maxlen, len(self.chars)), dtype=np.bool) y = np.zeros((self.batch_size, len(self.chars)), dtype=np.bool) # j = random.randint(0, len(sentences) - (self.batch_size + 1)) next_chars2 = next_chars[j: j + self.batch_size] ## F...:) for i, one_sample in enumerate(sentences[j: j + self.batch_size]): for t, char in enumerate(one_sample): x[i, t, self.char_indices[char]] = 1 y[i, self.char_indices[next_chars2[i]]] = 1 yield (x, y) # yield self.generate_single_batch(sentences, next_chars) j += self.batch_size if j > (len(sentences) - (self.batch_size+1)): j = random.randint(0, len(sentences) - (self.batch_size+1)) def data_generator_validation(self, sentences, next_chars): """ Batch data generator for large dataset not fit completely in memory # Index j now increase sequentially (validation don't need to shuffle) :param sentences: :param next_chars: :return: """ j = 0 # print('Vectorization...') while True: # Fix generator :)) x = np.zeros((self.batch_size, self.maxlen, len(self.chars)), dtype=np.bool) y = np.zeros((self.batch_size, len(self.chars)), dtype=np.bool) # j = random.randint(0, len(sentences) - (self.batch_size + 1)) next_chars2 = next_chars[j: j + self.batch_size] ## F...:) for i, one_sample in enumerate(sentences[j: j + self.batch_size]): for t, char in enumerate(one_sample): x[i, t, self.char_indices[char]] = 1 y[i, self.char_indices[next_chars2[i]]] = 1 yield (x, y) # yield self.generate_single_batch(sentences, next_chars) j += self.batch_size if j > (len(sentences) - (self.batch_size + 1)): j = 0 def data_generator_in_memory(self, sentences, next_chars): """All data generate for small dataset fit completely in memory""" x = np.zeros((len(sentences), self.maxlen, len(self.chars)), dtype=np.bool) y = np.zeros((len(sentences), len(self.chars)), dtype=np.bool) for i, one_sample in enumerate(sentences): for t, char in enumerate(one_sample): x[i, t, self.char_indices[char]] = 1 y[i, self.char_indices[next_chars[i]]] = 1 return x, y def train(self, epochs=1, trained_model=None, trained_model_name='trained_model_wn'): """ Create and train deep model :param epochs: Specify number of epoch for training. :param : :return: Nothing. """ # Start time of training dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S_') print('Generate training samples ...') sentences_training, next_chars_training = self.generate_samples(self.text_training) print('Generate validations samples ...') sentences_validation, next_chars_validation = self.generate_samples(self.text_validation) # print(sentences_training[0] + '\t' + next_chars_training[0]) # print(sentences_training[1] + '\t' + next_chars_training[1]) # print(sentences_training[2] + '\t' + next_chars_training[2]) # print(sentences_training[3] + '\t' + next_chars_training[3]) # print(sentences_training[4] + '\t' + next_chars_training[4]) # # input() print('Build and compile model ...') model = None model_name = None if trained_model is None: model, model_name = self.define_model((self.maxlen, len(self.chars)), len(self.chars)) else: model = trained_model model_name = trained_model_name optimizer = RMSprop(lr=0.01) # [0.001, 0.01, 0.02, 0.05, 0.1] optimizer = Adam(lr=0.001) # Reduce from 0.001 to 0.0001 for model_10 model.compile(optimizer=optimizer, loss='categorical_crossentropy', # metrics=['accuracy'] metrics=['accuracy', cross_entropy, perplexity]) print(model_name, ' summary ...') model.summary() print(model_name, ' count_params ...') print(model.count_params()) # input() print('Set #5 callback ...') # callback #1 EarlyStopping # monitor= 'val_loss' or monitor='loss'? model_early_stopping = EarlyStopping(monitor='loss', min_delta=0.01, patience=5, verbose=1, mode='auto') # callback #2 ModelCheckpoint # Create a directory for each training process to keep model checkpoint in .h5 format dir_name = './model_checkpoint/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/' if not os.path.exists(dir_name): os.makedirs(dir_name) file_name = dir_name + model_name + dt + 'epoch_{epoch:02d}_val_loss_{val_loss:.4f}.h5' model_checkpoint = ModelCheckpoint(file_name, verbose=1) # callback #3 TensorBoard dir_name = './logs_tensorboard/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/' if not os.path.exists(dir_name): os.makedirs(dir_name) model_tensorboard = TensorBoard(log_dir=dir_name, histogram_freq=0, batch_size=self.batch_size, write_graph=True, write_grads=False, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) # callback #4 CSVLogger # Create a directory and an empty csv file within to save mode csv log. dir_name = './logs_csv/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/' if not os.path.exists(dir_name): os.makedirs(dir_name) file_name = dir_name + model_name + dt + '_epochs_' + str(epochs) + '_step_' + str(self.step) + '.csv' open(file_name, mode='a', newline='').close() model_csv_logger = CSVLogger(file_name, separator=',', append=False) # callback #5 LambdaCallback dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/' if not os.path.exists(dir_name): os.makedirs(dir_name) def on_epoch_end(epoch, logs): nonlocal model nonlocal epochs nonlocal model_name nonlocal dir_name print('Sampling model and save results ... ') self.generate_and_fuzz_new_samples(model=model, model_name=model_name, epochs=epochs, current_epoch=epoch, dir_name=dir_name ) generate_and_fuzz_new_samples_callback = LambdaCallback(on_epoch_begin=None, on_epoch_end=on_epoch_end, on_batch_begin=None, on_batch_end=None, on_train_begin=None, on_train_end=None ) if learning_config['dataset_size'] == 'very_small': # very_small print('Start training on small dataset ...') x, y = self.data_generator_in_memory(sentences_training, next_chars_training) model.fit(x, y, batch_size=self.batch_size, epochs=epochs, validation_split=0.2, shuffle=True, callbacks=[model_checkpoint, model_tensorboard, model_csv_logger, generate_and_fuzz_new_samples_callback] ) else: print('Build training and validation data generators ...') training_data_generator = self.data_generator(sentences_training, next_chars_training) validation_data_generator = self.data_generator_validation(sentences_validation, next_chars_validation) # x, y = next(training_data_generator) # print(x) # print('+'*75) # print(y) # print('#'*50) # x, y = next(training_data_generator) # print(x) # print('+' * 75) # print(y) # print('#' * 50) # input() print('Start training on large dataset ...') model.fit_generator(generator=training_data_generator, # steps_per_epoch=200, steps_per_epoch=len(sentences_training) // self.batch_size, # 1000, validation_data=validation_data_generator, validation_steps=len(sentences_validation) // (self.batch_size*2), # 100, # validation_steps=10, use_multiprocessing=False, workers=1, epochs=epochs, shuffle=True, callbacks=[model_checkpoint, model_tensorboard, model_csv_logger, generate_and_fuzz_new_samples_callback] ) # end of train method # -------------------------------------------------------------------- def generate_and_fuzz_new_samples(self, model=None, model_name='model_1', epochs=1, current_epoch=1, dir_name=None): """ sampling the model and generate new object :param model: The model which is training. :param model_name: Name of model (base on hyperparameters config in deep_model.py file) e.g. [model_1, model_2, ...] :param epochs: Number of total epochs of training, e.g. 10,20,30,40,50 or 60 :param current_epoch: Number of current epoch :param dir_name: root directory for this running. :return: Nothing """ # End time of current epoch dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S') dir_name = dir_name + 'epoch_' + str(current_epoch) + dt + '/' if not os.path.exists(dir_name): os.makedirs(dir_name) # Fuzzing hyper-parameters diversities = [i*0.10 for i in range(1, 20, 2)] diversities = [0.2, 0.5, 1.0, 1.2, 1.5, 1.8] diversities = [1.0] # for sou and for mou # diversities = [1.5] generated_obj_total = 30200 # [5, 10, 100, 1000, 3000] {1000-1100 for sou and 3000-3100 for muo} generated_obj_with_same_prefix = 20 # [1, 5, 10, 20, 40] {10 for sou and 20 for mou} generated_obj_max_allowed_len = random.randint(450, 550) # Choose max allowed len for object randomly exclude_from_fuzzing_set = {'s', 't', 'r', 'e', 'a', 'm', 'e', 'n', 'd', 'o', 'b', 'j'} # set(['s', 't', 'r', 'e', 'a', 'm']) # Learn and fuzz paper hyper-parameters t_fuzz = 0.90 # For comparision with p_fuzz where p_fuzz is a random number (if p_fuzz > t_fuzz) p_t = 0.40 # 0.9 and more for format fuzzing; 0.4 and less than 0.4 for data fuzzing. Now data fuzzing. # End of fuzzing hyper-parameters testset_objects_list = preprocess.get_list_of_object(self.text_test) testset_object_gt_maxlen_list = [] for obj in testset_objects_list: if len(obj) > self.maxlen+len(' endobj'): testset_object_gt_maxlen_list.append(obj) print('len filtered test-set: ', len(testset_object_gt_maxlen_list)) generated_total = '' for diversity in diversities: generated_total = '' for q in range(round(generated_obj_total/generated_obj_with_same_prefix)): obj_index = random.randint(0, len(testset_object_gt_maxlen_list) - 1) generated_obj_counter = 0 generated_obj_len = 0 generated = '' stop_condition = False endobj_attach_manually = False # print() print('-- Diversity:', diversity) obj_prefix = str(testset_object_gt_maxlen_list[obj_index])[0: self.maxlen] generated += obj_prefix # prob_vals = '1 ' * self.maxlen # learnt_grammar = obj_prefix # print('--- Generating ts_text with seed:\n "' + obj_prefix + '"') # sys.stdout.write(generated) if generated.endswith('endobj'): generated_obj_counter += 1 if generated_obj_counter > generated_obj_with_same_prefix: stop_condition = True while not stop_condition: x_pred = np.zeros((1, self.maxlen, len(self.chars))) for t, char in enumerate(obj_prefix): x_pred[0, t, self.char_indices[char]] = 1. preds = model.predict(x_pred, verbose=0)[0] next_index, prob, preds2 = self.sample(preds, diversity) next_char = self.indices_char[next_index] next_char_for_prefix = next_char ###### Fuzzing section we don't need it yet! if next_char not in exclude_from_fuzzing_set: p_fuzz = random.random() if p_fuzz > t_fuzz and preds2[next_index] < p_t: next_index = np.argmin(preds2) print('((Fuzz!))') next_char = self.indices_char[next_index] # next_char updated. ###### End of fuzzing section obj_prefix = obj_prefix[1:] + next_char # next_char_for_prefix generated += next_char # next_char_for_prefix # generated_obj_len += 1 if generated.endswith('endobj'): generated_obj_counter += 1 generated_obj_len = 0 elif (generated.endswith('endobj') is False) and \ (generated_obj_len > generated_obj_max_allowed_len): # Attach '\nendobj\n' manually, and reset obj_prefix generated += '\nendobj\n' generated_obj_counter += 1 generated_obj_len = 0 endobj_attach_manually = True if generated_obj_counter >= generated_obj_with_same_prefix: # Fix: Change > to >= (13970315) stop_condition = True elif endobj_attach_manually: # Reset prefix: # Here we need to modify obj_prefix because we manually change the generated_obj! # Below we add this new repair: # obj_prefix = obj_prefix[len('\nendobj\n'):] + '\nendobj\n' # Instead of modify obj_prefix we can reset prefix if we found that 'endobj' dose not generate # automatically. It seems to be better option, so we do this: obj_index = random.randint(0, len(testset_object_gt_maxlen_list) - 1) obj_prefix = str(testset_object_gt_maxlen_list[obj_index])[0: self.maxlen] generated += obj_prefix endobj_attach_manually = False # sys.stdout.write(next_char) # sys.stdout.flush() # print() generated_total += generated + '\n' # save generated_result to file inside program file_name = model_name \ + '_diversity_' + repr(diversity) \ + '_epochs_' + repr(epochs) \ + '_step_' + repr(self.step) \ + '.txt' preprocess.save_to_file(dir_name + file_name, generated_total) # preprocess.save_to_file(dir_name + file_name + 'probabilities.txt', prob_vals) # preprocess.save_to_file(dir_name + file_name + 'learntgrammar.txt',learnt_grammar) print('Diversity %s save to file successfully.' % diversity) print('End of generation method.') # print('Starting new epoch ...') return generated_total # Lower temperature will cause the model to make more likely, # but also more boring and conservative predictions. def sample(self, preds, temperature=1.0): """ Helper function to sample an index from a probability array :param preds: :param temperature: :return: """ # print('raw predictions = ', preds) preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) # Sampling with numpy functions: probas = np.random.multinomial(1, preds, 1) # print() # print('sanitize predictions = ', preds) return np.argmax(probas), probas, preds def no_sample(self): pass def sample_space(self): pass def save_model_plot(self, model, epochs): """ Save the model architecture plot. :param model: :param epochs: :return: """ dt = datetime.datetime.now().strftime('_%Y%m%d_%H%M%S_') # plot the model plot_model(model, to_file='./modelpic/date_' + dt + 'epochs_' + str(epochs) + '.png', show_shapes=True, show_layer_names=True) def load_model_and_generate(self, model_name='model_7', epochs=38): dt = datetime.datetime.now().strftime('_date_%Y-%m-%d_%H-%M-%S') dir_name = './generated_results/pdfs/' + model_name + dt + 'epochs_' + str(epochs) + '/' if not os.path.exists(dir_name): os.makedirs(dir_name) model = load_model('./model_checkpoint/best_models/' 'model_7_date_2018-05-14_21-44-21_epoch_38_val_loss_0.3300.h5', compile=False) optimizer = Adam(lr=0.001) # Reduce from 0.001 to 0.0001 just for model_10 model.compile(optimizer=optimizer, loss='categorical_crossentropy', # metrics=['accuracy'] metrics=['accuracy']) seq = self.generate_and_fuzz_new_samples(model=model, model_name=model_name, epochs=epochs, current_epoch=38, dir_name=dir_name) list_of_obj = preprocess.get_list_of_object(seq=seq, is_sort=False) return list_of_obj def get_model_summary(self): print('Get model summary ...') model, model_name = self.define_model((self.maxlen, len(self.chars)), len(self.chars)) print(model_name, ' summary ...') model.summary() print(model_name, ' count_params ...') print(model.count_params()) def main(argv): """ The main function to call train() method""" epochs = 100 fff = FileFormatFuzzer(maxlen=50, step=3, batch_size=256) # trained_model_dir = './model_checkpoint/best_models/' # trained_model_file_name = 'model_7_date_2018-05-14_21-44-21_epoch_65_val_loss_0.3335.h5' # trained_model_path = trained_model_dir + trained_model_file_name # trained_model = load_model(trained_model_path, compile=False) # Train deep model from first or continue training for previous trained model. # Trained model pass as argument. # fff.train(epochs=epochs, # trained_model=trained_model, # trained_model_name='model_7-1' # ) # fff.get_model_summary() list_of_obj = fff.load_model_and_generate() print('Len list_of_obj', len(list_of_obj)) dt = datetime.datetime.now().strftime('_%Y_%m_%d__%H_%M_%S_') print('Generation complete successfully', dt) if __name__ == "__main__": main(sys.argv)
42.996835
134
0.569478
fc182fb99873e2c7e6bc8c75d8fbc02ee836a6e3
771
py
Python
tests/data.py
HumanCellAtlas/fusilllade
5634b77440bb71aa075b6ca442baccbdd436dfd7
[ "MIT" ]
7
2018-01-15T15:35:50.000Z
2021-03-11T23:08:16.000Z
tests/data.py
HumanCellAtlas/fusilllade
5634b77440bb71aa075b6ca442baccbdd436dfd7
[ "MIT" ]
339
2018-02-08T23:53:58.000Z
2021-04-30T20:46:14.000Z
tests/data.py
HumanCellAtlas/fusilllade
5634b77440bb71aa075b6ca442baccbdd436dfd7
[ "MIT" ]
1
2018-02-08T21:47:47.000Z
2018-02-08T21:47:47.000Z
TEST_NAMES_POS = [('helloworl12345', "alpha numerica characters"), ('hello@world.com', "email format"), ('hello-world=_@.,ZDc', "special characters"), ('HellOWoRLd', "different cases"), ('ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789' 'ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789', "== 128 characters"), ("1", "one character")] TEST_NAMES_NEG = [ ("&^#$Hello", "illegal characters 1"), ("! <>?world", "illegal characters 2"), ('ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789' 'ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF01234567890', "> 128 characters"), ('', "empty") ]
48.1875
108
0.636835
5d869b8f7499437ef522dbff677755928ada15c0
6,698
py
Python
bindings/python/ensmallen_graph/datasets/string/xenorhabdusnematophila.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/xenorhabdusnematophila.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/xenorhabdusnematophila.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Xenorhabdus nematophila. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:44:45.815993 The undirected graph Xenorhabdus nematophila has 4423 nodes and 270215 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.02763 and has 31 connected components, where the component with most nodes has 4350 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 96, the mean node degree is 122.19, and the node degree mode is 3. The top 5 most central nodes are 406817.XNC1_1757 (degree 1403), 406817.XNC1_4331 (degree 1245), 406817.XNC1_4165 (degree 927), 406817.XNC1_1955 (degree 924) and 406817.XNC1_1954 (degree 915). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import XenorhabdusNematophila # Then load the graph graph = XenorhabdusNematophila() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def XenorhabdusNematophila( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Xenorhabdus nematophila graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Xenorhabdus nematophila graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 20:44:45.815993 The undirected graph Xenorhabdus nematophila has 4423 nodes and 270215 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.02763 and has 31 connected components, where the component with most nodes has 4350 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 96, the mean node degree is 122.19, and the node degree mode is 3. The top 5 most central nodes are 406817.XNC1_1757 (degree 1403), 406817.XNC1_4331 (degree 1245), 406817.XNC1_4165 (degree 927), 406817.XNC1_1955 (degree 924) and 406817.XNC1_1954 (degree 915). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import XenorhabdusNematophila # Then load the graph graph = XenorhabdusNematophila() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="XenorhabdusNematophila", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
35.439153
223
0.70424
22f166b10151506e6ad9231666d8b0dab98bf591
2,963
py
Python
server/py/runurlopen.py
sreyas/Attendance-management-system
eeb57bcc942f407151b71bfab528e817c6806c74
[ "MIT" ]
null
null
null
server/py/runurlopen.py
sreyas/Attendance-management-system
eeb57bcc942f407151b71bfab528e817c6806c74
[ "MIT" ]
null
null
null
server/py/runurlopen.py
sreyas/Attendance-management-system
eeb57bcc942f407151b71bfab528e817c6806c74
[ "MIT" ]
null
null
null
import face_recognition import cv2 import urllib import sys,json,numpy as np import glob,os from pathlib import Path import numpy as np home = str(os.path.dirname(os.path.abspath(__file__))) + "/../../" file_names = glob.glob(home + "/known_people/*.jp*g") def read_in(): lines = sys.stdin.readline() return lines def authorised(name): return not "Unknown" in name def main(): home = str(os.path.dirname(os.path.abspath(__file__))) + "/../../" known_encodings_file_path = home + "/data/known_encodings_file.csv" people_file_path = home + "/data/people_file.csv" known_encodings_file = Path(known_encodings_file_path) if known_encodings_file.is_file(): known_encodings = np.genfromtxt(known_encodings_file, delimiter=',') else: known_encodings = [] people_file = Path(people_file_path) if people_file.is_file(): people = np.genfromtxt(people_file, dtype='U',delimiter=',') else: people = [] stream=urllib.urlopen('rtsp://sreyas:123asd@192.168.0.210:554/videoMain') bytes='' face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: bytes+=stream.read(1024) a = bytes.find('\xff\xd8') b = bytes.find('\xff\xd9') if a!=-1 and b!=-1: jpg = bytes[a:b+2] bytes= bytes[b+2:] frame = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),cv2.IMREAD_COLOR) small_frame = cv2.resize(frame, (0,0), fx=.25, fy=.25) if process_this_frame: face_locations = face_recognition.face_locations(small_frame) face_encodings = face_recognition.face_encodings(small_frame, face_locations) face_names=[] other = 0 name =''; for face_encoding in face_encodings: match = face_recognition.compare_faces(known_encodings, face_encoding) name = "Unknown" for i in range(len(match)): if match[i]: name = people[i] break if "Unknown" in name: other += 1 name += str(other) face_names.append(name) print(face_names) process_this_frame = not process_this_frame for (top, right, bottom, left),name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 color = (0,255,0) if not authorised(name): color = (0,0,255) cv2.rectangle(frame, (left,top), (right,bottom), color, 2) cv2.rectangle(frame, (left,bottom-35), (right, bottom), color, cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name,(left+6, bottom-6), font, 1.0, (255,255,255), 1) cv2.imshow('i',frame) if cv2.waitKey(1) ==27: exit(0) main()
37.506329
92
0.580493
1ff40cf0b7bf16f736946d5ffe94fd6cb374d85a
1,439
py
Python
Achive/rpyc_NI-SWITCH_NI-DCPower_NI-DMM.py
rscd27p/DockerTest
aee56356f7cdaded1c6ef787e6cdf8415308c8c3
[ "MIT" ]
1
2021-08-30T14:22:15.000Z
2021-08-30T14:22:15.000Z
Achive/rpyc_NI-SWITCH_NI-DCPower_NI-DMM.py
rscd27p/DockerTest
aee56356f7cdaded1c6ef787e6cdf8415308c8c3
[ "MIT" ]
null
null
null
Achive/rpyc_NI-SWITCH_NI-DCPower_NI-DMM.py
rscd27p/DockerTest
aee56356f7cdaded1c6ef787e6cdf8415308c8c3
[ "MIT" ]
null
null
null
# Import libraries import rpyc # python3 -m pip install rpyc import nidcpower # python3 -m pip install dcpower import niswitch # python3 -m pip install niswitch import nidmm # python3 -m pip install nidmm # Import rpyc thread server from rpyc.utils.server import ThreadedServer # Declare NI-SWITCH rpyc service class NI_SWTICH_service(rpyc.Service): exposed_niswitch = niswitch print("NI-SWITCH thread started...") # Declare NI-DCPower rpyc service class NI_DCPower_service(rpyc.Service): exposed_nidcpower = nidcpower print("NI-DCPower thread started...") # Declare NI-DCPower rpyc service class NI_DMM_service(rpyc.Service): exposed_nidmm = nidmm print("NI-DMM thread started...") # Declare Ports NI_SWTICH_port = 18861 NI_DCPower_port = 18862 NI_DMM_port = 18863 # Main code if __name__ == "__main__": print("Starting NI-SWITCH and NI-DCPower rpyc service") print("Press Ctrl+C to stop this service") t1 = ThreadedServer(NI_SWTICH_service, port = 18861, protocol_config = {"allow_public_attrs" : True, "allow_all_attrs" : True}) t2 = ThreadedServer(NI_DCPower_service, port = 18861, protocol_config = {"allow_public_attrs" : True, "allow_all_attrs" : True}) t3 = ThreadedServer(NI_DMM_service, port = 18861, protocol_config = {"allow_public_attrs" : True, "allow_all_attrs" : True}) t1.start() t2.start() t3.start() print("Press Ctrl+C to stop this service")
35.097561
130
0.734538
9fb0003a238037f220821726e92caf5ce3446b72
1,799
py
Python
notes/algo-ds-practice/problems/array/match_pattern.py
Anmol-Singh-Jaggi/interview-notes
65af75e2b5725894fa5e13bb5cd9ecf152a0d652
[ "MIT" ]
6
2020-07-05T05:15:19.000Z
2021-01-24T20:17:14.000Z
notes/algo-ds-practice/problems/array/match_pattern.py
Anmol-Singh-Jaggi/interview-notes
65af75e2b5725894fa5e13bb5cd9ecf152a0d652
[ "MIT" ]
null
null
null
notes/algo-ds-practice/problems/array/match_pattern.py
Anmol-Singh-Jaggi/interview-notes
65af75e2b5725894fa5e13bb5cd9ecf152a0d652
[ "MIT" ]
2
2020-09-14T06:46:37.000Z
2021-06-15T09:17:21.000Z
''' Find all strings that match specific pattern in a dictionary Given a dictionary of words, find all strings that matches the given pattern where every character in the pattern is uniquely mapped to a character in the dictionary. Examples: Input: dict = ["abb", "abc", "xyz", "xyy"]; pattern = "foo" Output: [xyy abb] Explanation: xyy and abb have same character at index 1 and 2 like the pattern Input: dict = ["abb", "abc", "xyz", "xyy"]; pat = "mno" Output: [abc xyz] Explanation: abc and xyz have all distinct characters, similar to the pattern Input: dict = ["abb", "abc", "xyz", "xyy"]; pattern = "aba" Output: [] Explanation: Pattern has same character at index 0 and 2. No word in dictionary follows the pattern. Input: dict = ["abab", "aba", "xyz", "xyx"]; pattern = "aba" Output: [aba xyx] Explanation: aba and xyx have same character at index 0 and 2 like the pattern SOLUTION 1: Encode all strings in a certain way such that finding the pattern becomes trivial. For example: abb -> 122 bcc -> 122 abca -> 1231 Now encode all the strings in the dictionary, and put them into a hashset. Then just check if the input string's encoding is present in the hashmap. SOLUTION 2: Keep 2 pointers i and j on the 2 strings being matched. Also, keep 2 dictionaries which map one string's char to another and vice-versa. Think about why we need bidirectional map and not unidirectional. Then just start iterating both strings simulatenously, and keep updating the hashmaps. While iterating, keep a check on any inconsistency. Let char1 = str1[i] and char2 = str[j]. If char1 not in dict1 and char2 not in dict2, then insert new mappings. Then if char1 in dict1, then dict1[char1] == char2 else return False Also, if char1 not in dict1, then dict2[char2] == char1 else return False. '''
29.491803
166
0.738744
bbbda27e168aae1bbb00d9e2a657de841e9fd86b
5,175
py
Python
contrib/seeds/makeseeds.py
bhok/PurePosCoin2.7
f7c4a066c860ed1ef4ceae7e992f8edeeb4b199f
[ "MIT" ]
18
2017-04-01T01:45:43.000Z
2021-11-24T03:28:36.000Z
contrib/seeds/makeseeds.py
bhok/PurePosCoin2.7
f7c4a066c860ed1ef4ceae7e992f8edeeb4b199f
[ "MIT" ]
7
2017-06-26T17:52:34.000Z
2019-03-07T16:58:24.000Z
contrib/seeds/makeseeds.py
bhok/PurePosCoin2.7
f7c4a066c860ed1ef4ceae7e992f8edeeb4b199f
[ "MIT" ]
15
2017-04-20T23:56:18.000Z
2022-02-28T07:11:29.000Z
#!/usr/bin/env python # Copyright (c) 2013-2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 500000 import re import sys import dns.resolver import collections PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile(r"^(/bitcoinplus:2.6.(0|99)/|/bitcoinplus:2.7.(0|99)/)$") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in hist.items() if len(value)==1] # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): # Sift out ips by type ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4'] ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6'] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv4 by ASN result = [] asn_count = {} for ip in ips_ipv4: if len(result) == max_total: break try: asn = int([x.to_text() for x in dns.resolver.query('.'.join(reversed(ip['ip'].split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') # TODO: filter IPv6 by ASN # Add back non-IPv4 result.extend(ips_ipv6) result.extend(ips_onion) return result def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] # Skip entries with valid address. ips = [ip for ip in ips if ip is not None] # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] # Require at least 50% 30-day uptime. ips = [ip for ip in ips if ip['uptime'] > 50] # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(ip['agent'])] # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple bitcoin ports, these are likely abusive ips = filtermultiport(ips) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print '[%s]:%i' % (ip['ip'], ip['port']) else: print '%s:%i' % (ip['ip'], ip['port']) if __name__ == '__main__': main()
32.142857
186
0.564251
a0d3031eb59b9a3112cad5ba5a75233f9a11c20f
5,569
py
Python
neo3/network/payloads/verification.py
CityOfZion/neo3-python
db4cd53041ce7a2c1d32bee18214fb31bb9f52be
[ "MIT" ]
null
null
null
neo3/network/payloads/verification.py
CityOfZion/neo3-python
db4cd53041ce7a2c1d32bee18214fb31bb9f52be
[ "MIT" ]
23
2020-05-12T15:01:12.000Z
2020-07-15T09:26:05.000Z
neo3/network/payloads/verification.py
CityOfZion/neo3-python
db4cd53041ce7a2c1d32bee18214fb31bb9f52be
[ "MIT" ]
1
2020-07-01T09:32:46.000Z
2020-07-01T09:32:46.000Z
from __future__ import annotations import hashlib from enum import IntFlag from neo3.core import serialization, utils, types, cryptography, Size as s from neo3.network import payloads from typing import List class Cosigner(serialization.ISerializable): """ A class that specifies who can pass CheckWitness() verifications in a smart contract. """ def __init__(self, account: types.UInt160 = None, scope: payloads.WitnessScope = None, allowed_contracts: List[types.UInt160] = None, allowed_groups: List[cryptography.EllipticCurve.ECPoint] = None): #: The TX sender. self.account = account if account else types.UInt160.zero() #: payloads.WitnessScope: The configured validation scope. self.scope = scope if scope else payloads.WitnessScope.GLOBAL #: List[types.UInt160]: Whitelist of contract hashes if used with #: :const:`~neo3.network.payloads.verification.WitnessScope.CUSTOM_CONTRACTS`. self.allowed_contracts = allowed_contracts if allowed_contracts else [] #: List[cryptography.EllipticCurve.ECPoint]: Whitelist of public keys if used with #: :const:`~neo3.network.payloads.verification.WitnessScope.CUSTOM_GROUPS`. self.allowed_groups = allowed_groups if allowed_groups else [] def __len__(self): contracts_size = 0 if payloads.WitnessScope.CUSTOM_CONTRACTS in self.scope: contracts_size = utils.get_var_size(self.allowed_contracts) groups_size = 0 if payloads.WitnessScope.CUSTOM_GROUPS in self.scope: groups_size = utils.get_var_size(self.allowed_groups) return s.uint160 + s.uint8 + contracts_size + groups_size def serialize(self, writer: serialization.BinaryWriter) -> None: """ Serialize the object into a binary stream. Args: writer: instance. """ writer.write_serializable(self.account) writer.write_uint8(self.scope) if payloads.WitnessScope.CUSTOM_CONTRACTS in self.scope: writer.write_serializable_list(self.allowed_contracts) if payloads.WitnessScope.CUSTOM_GROUPS in self.scope: writer.write_serializable_list(self.allowed_groups) def deserialize(self, reader: serialization.BinaryReader) -> None: """ Deserialize the object from a binary stream. Args: reader: instance. """ self.account = reader.read_serializable(types.UInt160) self.scope = payloads.WitnessScope(reader.read_uint8()) if payloads.WitnessScope.CUSTOM_CONTRACTS in self.scope: self.allowed_contracts = reader.read_serializable_list(types.UInt160) if payloads.WitnessScope.CUSTOM_GROUPS in self.scope: self.allowed_groups = reader.read_serializable_list(cryptography.EllipticCurve.ECPoint) class Witness(serialization.ISerializable): """ An executable verification script that validates a verifiable object like a transaction. """ def __init__(self, invocation_script: bytes = None, verification_script: bytes = None): #: A set of VM instructions to setup the stack for verification. self.invocation_script = invocation_script if invocation_script else b'' #: A set of VM instructions that does the actual verification. #: It is expected to set the result stack to a boolean True if validation passed. self.verification_script = verification_script if verification_script else b'' self._script_hash = None def __len__(self): return utils.get_var_size(self.invocation_script) + utils.get_var_size(self.verification_script) def serialize(self, writer: serialization.BinaryWriter) -> None: """ Serialize the object into a binary stream. Args: writer: instance. """ writer.write_var_bytes(self.invocation_script) writer.write_var_bytes(self.verification_script) def deserialize(self, reader: serialization.BinaryReader) -> None: """ Deserialize the object from a binary stream. Args: reader: instance. """ self.invocation_script = reader.read_var_bytes(max=664) self.verification_script = reader.read_var_bytes(max=360) def script_hash(self) -> types.UInt160: """ Get the script hash based on the verification script.""" intermediate_data = hashlib.sha256(self.verification_script).digest() data = hashlib.new('ripemd160', intermediate_data).digest() return types.UInt160(data=data) class WitnessScope(IntFlag): """ Determine the rules for a smart contract :func:`CheckWitness()` sys call. """ #: Allow the witness in all context. Equal to NEO 2.x's default behaviour. GLOBAL = 0x00 #: Allow the witness if the current calling script hash equals the entry script hash into the virtual machine. #: Using this prevents passing :func:`CheckWitness()` in a smart contract called via another smart contract. CALLED_BY_ENTRY = 0x01 #: Allow the witness if called from a smart contract that is whitelisted in the cosigner #: :attr:`~neo3.network.payloads.verification.Cosigner.allowed_contracts` attribute. CUSTOM_CONTRACTS = 0x10 #: Allow the witness if it any public key in the cosigner #: :attr:`~neo3.network.payloads.verification.Cosigner.allowed_groups` attribute is whitelisted in the contracts #: manifest.groups array. CUSTOM_GROUPS = 0x20
42.838462
116
0.69815
3157265ec18f19d2828baa0bec2147a8a546df7e
11,520
py
Python
experiment.py
radidd/CausalMediationAnalysis
6fe0d75ddd301b82e9e0cb0228e43ec74c0670de
[ "MIT" ]
null
null
null
experiment.py
radidd/CausalMediationAnalysis
6fe0d75ddd301b82e9e0cb0228e43ec74c0670de
[ "MIT" ]
null
null
null
experiment.py
radidd/CausalMediationAnalysis
6fe0d75ddd301b82e9e0cb0228e43ec74c0670de
[ "MIT" ]
null
null
null
import math import statistics from functools import partial import numpy as np import torch import torch.nn.functional as F from tqdm import tqdm from utils_cma import batch, convert_results_to_pd from UNITER.model.nlvr2 import UniterForNlvr2Triplet from UNITER.utils.const import IMG_DIM from apex import amp np.random.seed(1) torch.manual_seed(1) class Model(): ''' Wrapper for all model logic ''' def __init__(self, ckpt_file, model_config, opts, device='cuda', output_attentions=False, random_weights=False): super() self.device = device # Load UNITER finetuned for NLVR2 (triplet version) checkpoint = torch.load(ckpt_file) self.model = UniterForNlvr2Triplet(model_config, img_dim=IMG_DIM) self.model.init_type_embedding() self.model.load_state_dict(checkpoint, strict=False) self.model.to(self.device) self.model, _ = amp.initialize(self.model, enabled=opts.fp16, opt_level='O2') self.model.eval() # TODO: this does not work currently # if random_weights: # print('Randomizing weights') # self.model.init_weights() # Grab model configuration parameters self.num_layers = model_config.num_hidden_layers self.num_neurons = model_config.hidden_size def get_representations(self, context, position=0): # Hook for saving the representation def extract_representation_hook(module, input, output, position, representations, layer): representations[layer] = output[0][position] handles = [] representation = {} with torch.no_grad(): # construct all the hooks # word embeddings will be layer -1 handles.append(self.model.uniter.embeddings.word_embeddings.register_forward_hook( partial(extract_representation_hook, position=position, representations=representation, layer=-1))) # hidden layers; intervening on the output of the feedforward network for layer in range(self.num_layers): handles.append(self.model.uniter.encoder.layer[layer]\ .output.dropout.register_forward_hook( partial(extract_representation_hook, position=position, representations=representation, layer=layer))) logits = self.model(context, compute_loss=False) for h in handles: h.remove() return representation def get_probabilities_for_examples(self, context): """Return probabilities of single-token candidates given context""" logits = self.model(context, compute_loss = False) probs = F.softmax(logits, dim=-1) return probs.tolist() def neuron_intervention(self, context, outputs, rep, layers, neurons, position, intervention_type='replace', alpha=1.): # Hook for changing representation during forward pass def intervention_hook(module, input, output, position, neurons, intervention, intervention_type): # Get the neurons to intervene on neurons = torch.LongTensor(neurons).to(self.device) # First grab the position across batch # Then, for each element, get correct index w/ gather base = output[:, position, :].gather( 1, neurons) intervention_view = intervention.view_as(base) if intervention_type == 'replace': base = intervention_view elif intervention_type == 'diff': base += intervention_view else: raise ValueError(f"Invalid intervention_type: {intervention_type}") # Overwrite values in the output # First define mask where to overwrite scatter_mask = torch.zeros_like(output).byte() for i, v in enumerate(neurons): scatter_mask[i, position, v] = 1 # Then take values from base and scatter output.masked_scatter_(scatter_mask, base.flatten()) # Set up the context as batch batch_size = len(neurons) batch_context = {} for key, value in context.items(): try: if len(value.shape) == 2: batch_context[key] = value.repeat(batch_size,1) elif len(value.shape) == 3: batch_context[key] = value.repeat(batch_size, 1, 1) except AttributeError: continue handle_list = [] for layer in set(layers): neuron_loc = np.where(np.array(layers) == layer)[0] n_list = [] for n in neurons: unsorted_n_list = [n[i] for i in neuron_loc] n_list.append(list(np.sort(unsorted_n_list))) intervention_rep = alpha * rep[layer][n_list] if layer == -1: wte_intervention_handle = self.model.uniter.embeddings.word_embeddings.register_forward_hook( partial(intervention_hook, position=position, neurons=n_list, intervention=intervention_rep, intervention_type=intervention_type)) handle_list.append(wte_intervention_handle) else: mlp_intervention_handle = self.model.uniter.encoder.layer[layer]\ .output.dropout.register_forward_hook( partial(intervention_hook, position=position, neurons=n_list, intervention=intervention_rep, intervention_type=intervention_type)) handle_list.append(mlp_intervention_handle) new_probabilities = self.get_probabilities_for_examples( batch_context) for hndle in handle_list: hndle.remove() return new_probabilities def neuron_intervention_single_experiment(self, intervention, intervention_type, layers_to_adj=[], neurons_to_adj=[], alpha=100, bsize=500, intervention_loc='all'): """ run one full neuron intervention experiment """ with torch.no_grad(): # Compute representations of the non-negated and negated versions; position 0 corresponds to the [CLS] token orig_representations = self.get_representations( intervention[0], position=0) negated_representations = self.get_representations( intervention[1], position=0) # e.g. There aren't two dogs. if intervention_type == 'negate_direct': context = intervention[1] rep = orig_representations replace_or_diff = 'replace' # e.g. There are two dogs. elif intervention_type == 'negate_indirect': context = intervention[0] rep = negated_representations replace_or_diff = 'replace' else: raise ValueError(f"Invalid intervention_type: {intervention_type}") # Probabilities without intervention (Base case) # Candidate 1 is False; Candidate 2 is True # TODO: this can be simplified since there are only two candidates candidate1_orig_prob, candidate2_orig_prob = self.get_probabilities_for_examples( intervention[0])[0] candidate1_neg_prob, candidate2_neg_prob = self.get_probabilities_for_examples( intervention[1])[0] # Running interventions if intervention_loc == 'all': candidate1_probs = torch.zeros((self.num_layers + 1, self.num_neurons)) candidate2_probs = torch.zeros((self.num_layers + 1, self.num_neurons)) for layer in range(-1, self.num_layers): for neurons in batch(range(self.num_neurons), bsize): neurons_to_search = [[i] + neurons_to_adj for i in neurons] layers_to_search = [layer] + layers_to_adj probs = self.neuron_intervention( context=context, outputs=[0,1], rep=rep, layers=layers_to_search, neurons=neurons_to_search, position=0, intervention_type=replace_or_diff, alpha=alpha) for neuron, (p1, p2) in zip(neurons, probs): candidate1_probs[layer + 1][neuron] = p1 candidate2_probs[layer + 1][neuron] = p2 elif intervention_loc == 'layer': layers_to_search = (len(neurons_to_adj) + 1)*[layers_to_adj] candidate1_probs = torch.zeros((1, self.num_neurons)) candidate2_probs = torch.zeros((1, self.num_neurons)) for neurons in batch(range(self.num_neurons), bsize): neurons_to_search = [[i] + neurons_to_adj for i in neurons] probs = self.neuron_intervention( context=context, outputs=[0,1], rep=rep, layers=layers_to_search, neurons=neurons_to_search, position=0, intervention_type=replace_or_diff, alpha=alpha) for neuron, (p1, p2) in zip(neurons, probs): candidate1_probs[0][neuron] = p1 candidate2_probs[0][neuron] = p2 else: probs = self.neuron_intervention( context=context, outputs=[0,1], rep=rep, layers=layers_to_adj, neurons=neurons_to_adj, position=0, intervention_type=replace_or_diff, alpha=alpha) for neuron, (p1, p2) in zip(neurons_to_adj, probs): candidate1_probs = p1 candidate2_probs = p2 return (candidate1_orig_prob, candidate2_orig_prob, candidate1_neg_prob, candidate2_neg_prob, candidate1_probs, candidate2_probs)
40.56338
120
0.526476
f96eb2a13d97bc3c3ba06ae1689120e98344ef90
4,224
py
Python
LeetCode-All-Solution/Python3/LC-0206-Reverse-Linked-List.py
YuweiYin/Algorithm_YuweiYin
28648fac59c5a4e3c907978cbd1b3e662ba18fd5
[ "MIT" ]
null
null
null
LeetCode-All-Solution/Python3/LC-0206-Reverse-Linked-List.py
YuweiYin/Algorithm_YuweiYin
28648fac59c5a4e3c907978cbd1b3e662ba18fd5
[ "MIT" ]
null
null
null
LeetCode-All-Solution/Python3/LC-0206-Reverse-Linked-List.py
YuweiYin/Algorithm_YuweiYin
28648fac59c5a4e3c907978cbd1b3e662ba18fd5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- """================================================================= @Project : Algorithm_YuweiYin/LeetCode-All-Solution/Python3 @File : LC-0206-Reverse-Linked-List.py @Author : [YuweiYin](https://github.com/YuweiYin) @Date : 2022-01-10 ==================================================================""" import sys import time from typing import List, Optional """ LeetCode - 0206 - (Easy) - Reverse Linked List https://leetcode.com/problems/reverse-linked-list/ Description & Requirement: Given the head of a singly linked list, reverse the list, and return the reversed list. Example 1 Input: head = [1,2,3,4,5] Output: [5,4,3,2,1] Example 2: Input: head = [1,2] Output: [2,1] Example 3: Input: head = [] Output: [] Constraints: The number of nodes in the list is the range [0, 5000]. -5000 <= Node.val <= 5000 """ # Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next # this means (by default): end_node.next == None @staticmethod def build_singly_linked_list(val_list: List[int]): if not isinstance(val_list, list) or len(val_list) <= 0: return None head_node = ListNode(val=val_list[0]) ptr = head_node len_val = len(val_list) val_index = 1 while val_index < len_val: new_node = ListNode(val=val_list[val_index]) # create new node ptr.next = new_node # singly link ptr = new_node # move val_index += 1 return head_node @staticmethod def show_val_singly_linked_list(head_node) -> None: # exception case if (not isinstance(head_node, ListNode)) and (head_node is not None): return None # Error head_node type if not isinstance(head_node, ListNode): return None # Error n type or needn't delete ptr = head_node while ptr: print(ptr.val) ptr = ptr.next class Solution: def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]: # exception case if not isinstance(head, ListNode): return None # Error head type # main method: (two pointer, in-place reverse) return self._reverseList(head) def _reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]: return self._reverse_singly_linked_list(head) # reverse @staticmethod def _reverse_singly_linked_list(head_node: Optional[ListNode]) -> Optional[ListNode]: if (not isinstance(head_node, ListNode)) and (head_node is not None): return head_node # Error head_node type if not isinstance(head_node, ListNode) or not head_node.next: return head_node # only 0 or 1 node, needn't reverse # now the singly linked list must have >= 2 nodes ptr_pre = head_node ptr = head_node.next head_node.next = None # the former head_node is the new end_node, so its next is None while ptr.next: next_one = ptr.next # record the next position of ptr ptr.next = ptr_pre # link ptr -> ptr_pre (reverse link) ptr_pre = ptr # move ptr_pre to current ptr position ptr = next_one # move ptr to the recorded next position # now ptr.next is None, so ptr is the new head_node now ptr.next = ptr_pre # the last reverse link head_node = ptr # set new head_node return head_node def main(): # Example 1 Output: [5,4,3,2,1] head = [1, 2, 3, 4, 5] # Example 2: Output: [2,1] # head = [1, 2] # Example 3: Output: [] # head = [] head_node = ListNode.build_singly_linked_list(head) # init instance solution = Solution() # run & time start = time.process_time() ans = solution.reverseList(head_node) end = time.process_time() # show answer print('\nAnswer:') # print(ans.val) ListNode.show_val_singly_linked_list(ans) # show time consumption print('Running Time: %.5f ms' % ((end - start) * 1000)) if __name__ == "__main__": sys.exit(main())
31.522388
94
0.605587
661b79206b3ba4eef31cdffc5690efe9625228be
2,770
py
Python
tests/h/presenters/annotation_searchindex_test.py
hmstepanek/h
92e567005c474f3ce3095f9a8bf37548ca2c9621
[ "MIT" ]
null
null
null
tests/h/presenters/annotation_searchindex_test.py
hmstepanek/h
92e567005c474f3ce3095f9a8bf37548ca2c9621
[ "MIT" ]
5
2017-12-26T14:22:20.000Z
2018-04-02T02:56:38.000Z
tests/h/presenters/annotation_searchindex_test.py
SenseTW/h
dae2dfa8ab064ddb696e5657d48459114b2642d2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals import datetime import mock import pytest from h.presenters.annotation_searchindex import AnnotationSearchIndexPresenter @pytest.mark.usefixtures('DocumentSearchIndexPresenter') class TestAnnotationSearchIndexPresenter(object): def test_asdict(self, DocumentSearchIndexPresenter): annotation = mock.Mock( id='xyz123', created=datetime.datetime(2016, 2, 24, 18, 3, 25, 768), updated=datetime.datetime(2016, 2, 29, 10, 24, 5, 564), userid='acct:luke@hypothes.is', target_uri='http://example.com', target_uri_normalized='http://example.com/normalized', text='It is magical!', tags=['magic'], groupid='__world__', shared=True, target_selectors=[{'TestSelector': 'foobar'}], references=['referenced-id-1', 'referenced-id-2'], thread_ids=['thread-id-1', 'thread-id-2'], extra={'extra-1': 'foo', 'extra-2': 'bar'}) DocumentSearchIndexPresenter.return_value.asdict.return_value = {'foo': 'bar'} annotation_dict = AnnotationSearchIndexPresenter(annotation).asdict() assert annotation_dict == { 'authority': 'hypothes.is', 'id': 'xyz123', 'created': '2016-02-24T18:03:25.000768+00:00', 'updated': '2016-02-29T10:24:05.000564+00:00', 'user': 'acct:luke@hypothes.is', 'user_raw': 'acct:luke@hypothes.is', 'uri': 'http://example.com', 'text': 'It is magical!', 'tags': ['magic'], 'tags_raw': ['magic'], 'group': '__world__', 'shared': True, 'target': [{'scope': ['http://example.com/normalized'], 'source': 'http://example.com', 'selector': [{'TestSelector': 'foobar'}]}], 'document': {'foo': 'bar'}, 'references': ['referenced-id-1', 'referenced-id-2'], 'thread_ids': ['thread-id-1', 'thread-id-2'], } def test_it_copies_target_uri_normalized_to_target_scope(self): annotation = mock.Mock( userid='acct:luke@hypothes.is', target_uri_normalized='http://example.com/normalized', extra={}) annotation_dict = AnnotationSearchIndexPresenter(annotation).asdict() assert annotation_dict['target'][0]['scope'] == [ 'http://example.com/normalized'] @pytest.fixture def DocumentSearchIndexPresenter(self, patch): class_ = patch('h.presenters.annotation_searchindex.DocumentSearchIndexPresenter') class_.return_value.asdict.return_value = {} return class_
37.945205
90
0.586643
d2facb6ddb1111eeae5b72834db16459f78a44ee
4,548
py
Python
python/sparktk/frame/ops/timeseries_from_observations.py
lewisc/spark-tk
5548fc925b5c278263cbdebbd9e8c7593320c2f4
[ "ECL-2.0", "Apache-2.0" ]
34
2016-05-20T22:26:05.000Z
2022-01-21T12:55:13.000Z
python/sparktk/frame/ops/timeseries_from_observations.py
aayushidwivedi01/spark-tk-old
fcf25f86498ac416cce77de0db4cf0aa503d20ac
[ "ECL-2.0", "Apache-2.0" ]
70
2016-06-28T01:11:21.000Z
2021-03-15T21:40:01.000Z
python/sparktk/frame/ops/timeseries_from_observations.py
aayushidwivedi01/spark-tk-old
fcf25f86498ac416cce77de0db4cf0aa503d20ac
[ "ECL-2.0", "Apache-2.0" ]
34
2016-04-21T22:25:22.000Z
2020-10-06T09:23:43.000Z
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def timeseries_from_observations(self, date_time_index, timestamp_column, key_column, value_column): """ Returns a frame that has the observations formatted as a time series. :param date_time_index: List of date/time strings. DateTimeIndex to conform all series to. :param timestamp_column: The name of the column telling when the observation occurred. :param key_column: The name of the column that contains which string key the observation belongs to. :param value_column: The name of the column that contains the observed value. :return: Frame formatted as a time series (with a column for key and a column for the vector of values). Uses the specified timestamp, key, and value columns and the date/time index provided to format the observations as a time series. The time series frame will have columns for the key and a vector of the observed values that correspond to the date/time index. Examples -------- In this example, we will use a frame of observations of resting heart rate for three individuals over three days. The data is accessed from Frame object called *my_frame*: <hide> >>> from datetime import datetime >>> data = [["Edward", "2016-01-01T12:00:00Z", 62],["Stanley", "2016-01-01T12:00:00Z", 57],["Edward", "2016-01-02T12:00:00Z", 63],["Sarah", "2016-01-02T12:00:00Z", 64],["Stanley", "2016-01-02T12:00:00Z", 57],["Edward", "2016-01-03T12:00:00Z", 62],["Sarah", "2016-01-03T12:00:00Z", 64],["Stanley", "2016-01-03T12:00:00Z", 56]] >>> schema = [("name", str), ("date", datetime), ("resting_heart_rate", float)] >>> my_frame = tc.frame.create(data, schema) -etc- </hide> >>> my_frame.inspect(my_frame.count()) [#] name date resting_heart_rate ====================================================== [0] Edward 2016-01-01T12:00:00Z 62 [1] Stanley 2016-01-01T12:00:00Z 57 [2] Edward 2016-01-02T12:00:00Z 63 [3] Sarah 2016-01-02T12:00:00Z 64 [4] Stanley 2016-01-02T12:00:00Z 57 [5] Edward 2016-01-03T12:00:00Z 62 [6] Sarah 2016-01-03T12:00:00Z 64 [7] Stanley 2016-01-03T12:00:00Z 56 We then need to create an array that contains the date/time index, which will be used when creating the time series. Since our data is for three days, our date/time index will just contain those three dates: >>> datetimeindex = ["2016-01-01T12:00:00.000Z","2016-01-02T12:00:00.000Z","2016-01-03T12:00:00.000Z"] Then we can create our time series frame by specifying our date/time index along with the name of our timestamp column (in this example, it's "date"), key column (in this example, it's "name"), and value column (in this example, it's "resting_heart_rate"). >>> ts = my_frame.timeseries_from_observations(datetimeindex, "date", "name", "resting_heart_rate") <progress> Take a look at the resulting time series frame schema and contents: >>> ts.schema [(u'name', <type 'unicode'>), (u'resting_heart_rate', vector(3))] >>> ts.inspect() [#] name resting_heart_rate ================================ [0] Stanley [57.0, 57.0, 56.0] [1] Edward [62.0, 63.0, 62.0] [2] Sarah [None, 64.0, 64.0] """ if not isinstance(date_time_index, list): raise TypeError("date_time_index should be a list of date/times") scala_date_list = self._tc.jutils.convert.to_scala_date_time_list(date_time_index) from sparktk.frame.frame import Frame return Frame(self._tc, self._scala.timeSeriesFromObseravations(scala_date_list, timestamp_column, key_column, value_column))
46.886598
329
0.638083
936ccb2bbdc303b44f32c0f49b569cae86bdea8a
6,069
py
Python
js-axe-selenium/ansible/a11y/lib/python3.8/site-packages/ansible/modules/cloud/openstack/os_user_role.py
dalsontws/accessibility-axe-selenium
ca0b54d550c9763902bd22bbc48562b9b211dd42
[ "MIT" ]
17
2017-06-07T23:15:01.000Z
2021-08-30T14:32:36.000Z
js-axe-selenium/ansible/a11y/lib/python3.8/site-packages/ansible/modules/cloud/openstack/os_user_role.py
dalsontws/accessibility-axe-selenium
ca0b54d550c9763902bd22bbc48562b9b211dd42
[ "MIT" ]
9
2017-06-25T03:31:52.000Z
2021-05-17T23:43:12.000Z
env/lib/python3.9/site-packages/ansible/modules/cloud/openstack/os_user_role.py
unbounce/aws-name-asg-instances
e0379442e3ce71bf66ba9b8975b2cc57a2c7648d
[ "MIT" ]
3
2018-05-26T21:31:22.000Z
2019-09-28T17:00:45.000Z
#!/usr/bin/python # Copyright (c) 2016 IBM # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: os_user_role short_description: Associate OpenStack Identity users and roles extends_documentation_fragment: openstack author: "Monty Taylor (@emonty), David Shrewsbury (@Shrews)" version_added: "2.1" description: - Grant and revoke roles in either project or domain context for OpenStack Identity Users. options: role: description: - Name or ID for the role. required: true user: description: - Name or ID for the user. If I(user) is not specified, then I(group) is required. Both may not be specified. group: description: - Name or ID for the group. Valid only with keystone version 3. If I(group) is not specified, then I(user) is required. Both may not be specified. project: description: - Name or ID of the project to scope the role association to. If you are using keystone version 2, then this value is required. domain: description: - Name or ID of the domain to scope the role association to. Valid only with keystone version 3, and required if I(project) is not specified. state: description: - Should the roles be present or absent on the user. choices: [present, absent] default: present availability_zone: description: - Ignored. Present for backwards compatibility requirements: - "python >= 2.7" - "openstacksdk" ''' EXAMPLES = ''' # Grant an admin role on the user admin in the project project1 - os_user_role: cloud: mycloud user: admin role: admin project: project1 # Revoke the admin role from the user barney in the newyork domain - os_user_role: cloud: mycloud state: absent user: barney role: admin domain: newyork ''' RETURN = ''' # ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.openstack import openstack_full_argument_spec, openstack_module_kwargs, openstack_cloud_from_module def _system_state_change(state, assignment): if state == 'present' and not assignment: return True elif state == 'absent' and assignment: return True return False def _build_kwargs(user, group, project, domain): kwargs = {} if user: kwargs['user'] = user if group: kwargs['group'] = group if project: kwargs['project'] = project if domain: kwargs['domain'] = domain return kwargs def main(): argument_spec = openstack_full_argument_spec( role=dict(required=True), user=dict(required=False), group=dict(required=False), project=dict(required=False), domain=dict(required=False), state=dict(default='present', choices=['absent', 'present']), ) module_kwargs = openstack_module_kwargs( required_one_of=[ ['user', 'group'] ]) module = AnsibleModule(argument_spec, supports_check_mode=True, **module_kwargs) role = module.params.get('role') user = module.params.get('user') group = module.params.get('group') project = module.params.get('project') domain = module.params.get('domain') state = module.params.get('state') sdk, cloud = openstack_cloud_from_module(module) try: filters = {} r = cloud.get_role(role) if r is None: module.fail_json(msg="Role %s is not valid" % role) filters['role'] = r['id'] if domain: d = cloud.get_domain(name_or_id=domain) if d is None: module.fail_json(msg="Domain %s is not valid" % domain) filters['domain'] = d['id'] if user: if domain: u = cloud.get_user(user, domain_id=filters['domain']) else: u = cloud.get_user(user) if u is None: module.fail_json(msg="User %s is not valid" % user) filters['user'] = u['id'] if group: g = cloud.get_group(group) if g is None: module.fail_json(msg="Group %s is not valid" % group) filters['group'] = g['id'] domain_id = None if project: if domain: p = cloud.get_project(project, domain_id=filters['domain']) # OpenStack won't allow us to use both a domain and project as # filter. Once we identified the project (using the domain as # a filter criteria), we need to remove the domain itself from # the filters list. domain_id = filters.pop('domain') else: p = cloud.get_project(project) if p is None: module.fail_json(msg="Project %s is not valid" % project) filters['project'] = p['id'] assignment = cloud.list_role_assignments(filters=filters) if module.check_mode: module.exit_json(changed=_system_state_change(state, assignment)) changed = False if state == 'present': if not assignment: kwargs = _build_kwargs(user, group, project, domain_id) cloud.grant_role(role, **kwargs) changed = True elif state == 'absent': if assignment: kwargs = _build_kwargs(user, group, project, domain_id) cloud.revoke_role(role, **kwargs) changed = True module.exit_json(changed=changed) except sdk.exceptions.OpenStackCloudException as e: module.fail_json(msg=str(e)) if __name__ == '__main__': main()
30.19403
125
0.604712
bb0d899ac66b950eb544b80f8b8523fbcc6adab9
391
py
Python
Action/action_enum.py
zonghan0904/Online-Realtime-Action-Recognition-based-on-OpenPose
7d81a84a46ab3a0f6aafc4734cd24e2bbc164a97
[ "Apache-2.0" ]
null
null
null
Action/action_enum.py
zonghan0904/Online-Realtime-Action-Recognition-based-on-OpenPose
7d81a84a46ab3a0f6aafc4734cd24e2bbc164a97
[ "Apache-2.0" ]
null
null
null
Action/action_enum.py
zonghan0904/Online-Realtime-Action-Recognition-based-on-OpenPose
7d81a84a46ab3a0f6aafc4734cd24e2bbc164a97
[ "Apache-2.0" ]
null
null
null
from enum import Enum class Actions(Enum): """ Actions enum """ # framewise_recognition.h5 # squat = 0 # stand = 1 # walk = 2 # wave = 3 # framewise_recognition_under_scene.h5 # stand = 0 # walk = 1 # operate = 2 # fall_down = 3 # run = 4 # ncrl_framewise_recognition.h5 sit = 0 wave = 1 fall_down = 2 none = 3
15.038462
42
0.537084
1a0a292f9e4fd56a18019f6bb6182cea627b037f
1,890
py
Python
test/functional_requirements/fault_tolerance/REBUILD_TWICE_IN_RAID10_ARRAY.py
so931/poseidonos
2aa82f26bfbd0d0aee21cd0574779a655634f08c
[ "BSD-3-Clause" ]
1
2022-02-07T23:30:50.000Z
2022-02-07T23:30:50.000Z
test/functional_requirements/fault_tolerance/REBUILD_TWICE_IN_RAID10_ARRAY.py
so931/poseidonos
2aa82f26bfbd0d0aee21cd0574779a655634f08c
[ "BSD-3-Clause" ]
null
null
null
test/functional_requirements/fault_tolerance/REBUILD_TWICE_IN_RAID10_ARRAY.py
so931/poseidonos
2aa82f26bfbd0d0aee21cd0574779a655634f08c
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import subprocess import os import sys sys.path.append("../") sys.path.append("../../system/lib/") sys.path.append("../volume/") sys.path.append("../array/") import json_parser import pos import pos_util import cli import api import json import MOUNT_VOL_ON_RAID10_ARRAY import fio import time DETACH_TARGET_DEV1 = "unvme-ns-0" DETACH_TARGET_DEV2 = "unvme-ns-1" NEW_SPARE_DEV1 = "unvme-ns-4" NEW_SPARE_DEV2 = "unvme-ns-5" ARRAYNAME = MOUNT_VOL_ON_RAID10_ARRAY.ARRAYNAME def execute(): MOUNT_VOL_ON_RAID10_ARRAY.execute() fio_proc = fio.start_fio(0, 30) fio.wait_fio(fio_proc) api.detach_ssd_and_attach(DETACH_TARGET_DEV1) time.sleep(1) if api.check_situation(ARRAYNAME, "DEGRADED") is False: return "fail" api.detach_ssd_and_attach(DETACH_TARGET_DEV2) time.sleep(1) if api.check_situation(ARRAYNAME, "DEGRADED") is False: return "fail" cli.add_device(NEW_SPARE_DEV1, ARRAYNAME) if api.wait_situation(ARRAYNAME, "REBUILDING") == True: print ("now 1st rebuilding...") newSitu = api.wait_situation_changed(ARRAYNAME, "REBUILDING") print ("1st rebuilding done and new situ: " + newSitu) if newSitu == "DEGRADED": print ("may be 1st rebuild complete") cli.add_device(NEW_SPARE_DEV2, ARRAYNAME) if api.wait_situation(ARRAYNAME, "REBUILDING") == True: print ("now 2nd rebuilding...") if api.wait_situation(ARRAYNAME, "NORMAL") == True: print ("may be 2nd rebuild complete") return "pass" return "fail" if __name__ == "__main__": if len(sys.argv) >= 2: pos.set_addr(sys.argv[1]) api.clear_result(__file__) result = execute() ret = api.set_result_manually(cli.array_info(ARRAYNAME), result, __file__) pos.flush_and_kill_pos() exit(ret)
30.983607
78
0.670899
72227b2adb4d9549090c42c63365bf12654b8416
3,913
py
Python
ludwig/run.py
phueb/LudwigCluster
1c1f8cdb26031a9ed78232482cfa1e4fe9e36256
[ "MIT" ]
null
null
null
ludwig/run.py
phueb/LudwigCluster
1c1f8cdb26031a9ed78232482cfa1e4fe9e36256
[ "MIT" ]
1
2022-03-30T14:07:13.000Z
2022-03-30T14:07:13.000Z
ludwig/run.py
phueb/LudwigCluster
1c1f8cdb26031a9ed78232482cfa1e4fe9e36256
[ "MIT" ]
2
2020-06-15T13:06:53.000Z
2021-02-12T00:33:29.000Z
import pickle import socket import yaml import pandas as pd import importlib from pathlib import Path import sys from typing import Dict, Any import shutil # do not import ludwig here - this file is run on Ludwig workers def save_job_files(param2val: Dict[str, Any], series_list: list, runs_path: Path, ) -> None: if not series_list: print('WARNING: Job did not return any results') # job_path refers to local directory if --isolated but not --local job_path = runs_path / param2val['param_name'] / param2val['job_name'] if not job_path.exists(): job_path.mkdir(parents=True) # save series_list for series in series_list: if not isinstance(series, pd.Series): raise TypeError('Object returned by job must be a pandas.Series.') if series.name is None: raise AttributeError('Each pandas.Series returned by job must have attribute name refer to unique string.') with (job_path / '{}.csv'.format(series.name)).open('w') as f: series.to_csv(f, index=True, header=[series.name]) # cannot name the index with "header" arg print(f'Saved results to {job_path}') # save param2val param2val_path = runs_path / param2val['param_name'] / 'param2val.yaml' if not param2val_path.exists(): param2val_path.parent.mkdir(exist_ok=True) param2val['job_name'] = None with param2val_path.open('w', encoding='utf8') as f: yaml.dump(param2val, f, default_flow_style=False, allow_unicode=True) print(f'Saved param2val to {param2val_path}') # move contents of save_path to job_path (can be local or remote) save_path = Path(param2val['save_path']) src = str(save_path) dst = str(job_path) if save_path.exists(): # user may not create a directory at save path shutil.move(src, dst) # src is no longer available afterwards print(f'Moved contents of save_path to {job_path}') def run_job_on_ludwig_worker(param2val): """ run a single job on on a single worker. this function is called on a Ludwig worker. this means that the package ludwig cannot be imported here. the package ludwig works client-side, and cannot be used on the workers or the file server. """ # prepare save_path - this must be done on worker save_path = Path(param2val['save_path']) if not save_path.exists(): save_path.mkdir(parents=True) # execute job series_list = job.main(param2val) # name each returned series using 'name' attribute # save results runs_path = remote_root_path / 'runs' save_job_files(param2val, series_list, runs_path) if __name__ == '__main__': # get src_name + project_name project_name = Path(__file__).stem.replace('run_', '') src_name = project_name.lower() # define paths - do not use any paths defined in user project (they may be invalid) ludwig_data = Path('/') / 'media' / 'ludwig_data' remote_root_path = ludwig_data / project_name # allow import of modules located in remote root path sys.path.append(str(remote_root_path)) # import user's job to execute job = importlib.import_module('{}.job'.format(src_name)) # find jobs hostname = socket.gethostname() pattern = f'{hostname.lower()}_*.pkl' pickled_param2val_paths = list(remote_root_path.glob(pattern)) if not pickled_param2val_paths: print('No jobs found.') # that's okay. run.py was triggered which triggered killing of active jobs on worker else: print(f'Found {len(pickled_param2val_paths)} jobs:') for p in pickled_param2val_paths: print(p) # run all jobs for param2val_path in pickled_param2val_paths: with param2val_path.open('rb') as f: param2val = pickle.load(f) run_job_on_ludwig_worker(param2val)
36.570093
119
0.677741
511121e4661f8690ee3845332c4254173acb15a6
3,170
py
Python
math_helpers/time_systems.py
sonstarr/astralib
af99e5437add14d2e5a8528cf001c3f12a39690b
[ "MIT" ]
null
null
null
math_helpers/time_systems.py
sonstarr/astralib
af99e5437add14d2e5a8528cf001c3f12a39690b
[ "MIT" ]
null
null
null
math_helpers/time_systems.py
sonstarr/astralib
af99e5437add14d2e5a8528cf001c3f12a39690b
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 def get_JD(year=None, month=None, day=None, hour=None, min=None, sec=None, string=None, format='yyyy-mm-dd hh:mm:ss', rtn='jd'): """compute the current Julian Date based on the given time input :param year: given year between 1901 and 2099 :param month: month 1-12 :param day: days :param hour: hours :param min: minutes :param sec: seconds :param string: date string with format referencing "format" input :param format: format of string input; currently accepts: 'yyyy-mm-dd hh:mm:ss' 'dd mmm yyyy hh:mm:ss' :param rtn: optional return parameter; jd or mjd (modified julian) default=jd :return jd: Julian date :return mjd: modified julian date """ if string: if format == 'yyyy-mm-dd hh:mm:ss': year = float(string[:4]) month = float(string[5:7]) day = float(string[8:10]) hour = float(string[11:13]) min = float(string[14:16]) sec = float(string[17:19]) elif format == 'dd mmm yyyy hh:mm:ss': months = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4, 'May':5, 'Jun':6, 'Jul':7, 'Aug':8, 'Sep':9, 'Oct':10, 'Nov':11, 'Dec':12} year = float(string[7:11]) month = float(months[f'{string[3:6]}']) day = float(string[:2]) hour = float(string[12:14]) min = float(string[15:17]) sec = float(string[18:20]) # compute julian date jd = 1721013.5 + 367*year - int(7/4*(year+int((month+9)/12))) \ + int(275*month/9) + day + (60*hour + min + sec/60)/1440 if rtn == 'mjd': # compute mod julian mjd = jd - 2400000.5 return mjd else: return jd def cal_from_jd(jd, rtn=None): """convert from calendar date to julian :param jd: julian date :param rtn: optional return arg. "string" will return a string; default is a tuple of values :return: tuple of calendar date in format: (year, month, day, hour, min, sec) """ # days in a month lmonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # years T1990 = (jd-2415019.5)/365.25 year = 1900 + int(T1990) leapyrs = int((year-1900-1)*0.25) days = (jd-2415019.5)-((year-1900)*365 + leapyrs) if days < 1.: year = year - 1 leapyrs = int((year-1900-1)*0.25) days = (jd-2415019.5) - ((year-1900)*365 + leapyrs) # determine if leap year if year%4 == 0: lmonth[1] = 29 # months, days dayofyr = int(days) mo_sum = 0 count = 1 for mo in lmonth: if mo_sum + mo < dayofyr: mo_sum += mo count += 1 month = count day = dayofyr - mo_sum # hours, minutes, seconds tau = (days-dayofyr)*24 h = int(tau) minute = int((tau-h)*60) s = (tau-h-minute/60)*3600 if rtn == 'string': return f'{year}-{month}-{day} {h}:{minute}:{s}' return (year, month, day, h, minute, s) if __name__ == '__main__': pass
29.90566
75
0.53123
805369623fd166376f4eecba8d4aa178969c9d21
15,663
py
Python
learning/tests.py
skyfather/Masomo-Quiz-App
585b50514134094303d8821b2c594b5c3f4def8a
[ "MIT" ]
1
2020-07-20T17:13:40.000Z
2020-07-20T17:13:40.000Z
learning/tests.py
skyfather/Masomo-Quiz-App
585b50514134094303d8821b2c594b5c3f4def8a
[ "MIT" ]
7
2021-04-08T21:16:26.000Z
2022-03-12T00:39:13.000Z
learning/tests.py
skyfather/Masomo-Quiz-App
585b50514134094303d8821b2c594b5c3f4def8a
[ "MIT" ]
null
null
null
from django.test import TestCase,TransactionTestCase,RequestFactory from django.test import Client from django.urls import reverse from django.contrib.auth import get_user_model from django.core.paginator import Paginator,Page, PageNotAnInteger, EmptyPage from .views.quiz import QuizList,CreateQuizView,QuizDetailView,QuizUpdateView,QuizDeleteView,quiz_taking,quiz_results from .models import Quiz,Subject, Question, Answer, QuizTaker, QuizTakerResponse from users.models import CustomUser, Student # Create your tests here. def create_custom_user2(username,is_student=False,is_teacher=False,password="secure"): custom_user = CustomUser.objects.create(username=username,is_student=is_student,is_teacher=is_teacher) # custom_user.set_password(password) return custom_user # CustomUser.objects.create(username="stud1",email="std1@students.com", is_student=True) def create_custom_user(username,email="user@mail.com",is_student=False,is_teacher=False,password="secure"): return get_user_model().objects.create_user(username=username,email=email,password=password,is_student=is_student,is_teacher=is_teacher) def create_student(user): return Student.objects.create(user=user) def create_subject(name): return Subject.objects.create(name=name) def create_quiz(name,subject,owner): return Quiz.objects.create(name=name,subject=subject,owner=owner) def create_question(question,quiz): return Question.objects.create(question=question,quiz=quiz) def create_answer(answer,question,is_correct=False): return Answer.objects.create(answer=answer,question=question,is_correct=is_correct) def create_quiz_taker(quiz,student): return QuizTaker.objects.create(quiz=quiz,student=student) def create_quiz_taker_response(quiztaker,question,answer): return QuizTakerResponse.objects.create(quiztaker=quiztaker,question=question,answer=answer) class QuizTest(TestCase): @classmethod def setUpTestData(cls): cls.subject1 = create_subject(name="Science") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = create_quiz(name="First Quiz", subject=cls.subject1, owner=cls.teacher) def test_quiz(self): self.assertIsInstance(self.quiz1,Quiz) self.assertEqual(self.quiz1.subject,self.subject1) class QuestionTest(TestCase): @classmethod def setUpTestData(cls): cls.subject1 = create_subject(name="Science") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = create_quiz(name="First Quiz", subject=cls.subject1, owner=cls.teacher) cls.question1 = create_question(question="What is science",quiz=cls.quiz1) def test_question(self): self.assertIsInstance(self.question1,Question) self.assertNotEqual(self.quiz1.get_questions(),Question.objects.all()) class AnswerTest(TestCase): @classmethod def setUpTestData(cls): cls.subject1 = create_subject(name="Science") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = create_quiz(name="First Quiz", subject=cls.subject1, owner=cls.teacher) cls.quiz2 = create_quiz(name="Second Quiz", subject=cls.subject1, owner=cls.teacher) cls.question1 = create_question(question="What is science",quiz=cls.quiz1) cls.question2 = create_question(question="What is matter",quiz=cls.quiz2) cls.answer1 = create_answer(answer="An attempt to explain a phenomenon",question=cls.question1,is_correct=True) cls.answer2 = create_answer(answer="Just humanity ego in reasoning things out",question=cls.question1) cls.answer3 = create_answer(answer="It's an art",question=cls.question2,is_correct=False) def test_answer(self): self.assertIsInstance(self.answer1,Answer) self.assertIsInstance(self.answer3,Answer) def test_answer_is_correct(self): self.assertEqual(self.answer3.is_correct,False) class QuizTakerTest(TestCase): @classmethod def setUpTestData(cls): cls.subject1 = create_subject(name="Science") cls.subject2 = create_subject(name="Mathematics") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = create_quiz(name="First Quiz", subject=cls.subject1, owner=cls.teacher) cls.quiz2 = create_quiz(name="Second Quiz", subject=cls.subject1, owner=cls.teacher) cls.question1 = create_question(question="What is science",quiz=cls.quiz1) cls.question2 = create_question(question="What is matter",quiz=cls.quiz2) cls.answer1 = create_answer(answer="An attempt to explain a phenomenon",question=cls.question1,is_correct=True) cls.answer2 = create_answer(answer="Just humanity ego in reasoning things out",question=cls.question1) cls.answer3 = create_answer(answer="It's an art",question=cls.question2,is_correct=False) cls.stud_user1 = create_custom_user(username="stud1",email="std1@students.com", is_student=True) cls.stud_user2 = create_custom_user(username="stud2",email="std2@students.com", is_student=True) cls.student1 = create_student(user=cls.stud_user1) cls.student2 = create_student(user=cls.stud_user2) #Set interests for students cls.student1.interests.add(cls.subject1) cls.student2.interests.set([cls.subject1,cls.subject2]) cls.quiz_taker1 = create_quiz_taker(quiz=cls.quiz1, student=cls.student1) cls.quiz_taker2 = create_quiz_taker(quiz=cls.quiz1, student=cls.student2) def test_quiz_taker(self): self.assertEqual(self.quiz_taker1.student, self.student1) self.assertEqual(self.quiz_taker1.quiz, self.quiz1) class QuizTakerResponseTest(TestCase): @classmethod def setUpTestData(cls): cls.subject1 = create_subject(name="Science") cls.subject2 = create_subject(name="Mathematics") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = create_quiz(name="First Quiz", subject=cls.subject1, owner=cls.teacher) cls.quiz2 = create_quiz(name="Second Quiz", subject=cls.subject1, owner=cls.teacher) cls.question1 = create_question(question="What is science",quiz=cls.quiz1) cls.question2 = create_question(question="What is matter",quiz=cls.quiz2) cls.question3 = create_question(question="How does lunar eclipse occur",quiz=cls.quiz2) cls.answer1 = create_answer(answer="An attempt to explain a phenomenon",question=cls.question1,is_correct=True) cls.answer2 = create_answer(answer="Just humanity ego in reasoning things out",question=cls.question1) cls.answer3 = create_answer(answer="It's an art",question=cls.question2,is_correct=False) cls.answer4 = create_answer(answer="When the sun is overshadowed by moon",question=cls.question3,is_correct=False) cls.stud_user1 = create_custom_user(username="stud1",email="std1@students.com", is_student=True) cls.stud_user2 = create_custom_user(username="stud2",email="std2@students.com", is_student=True) cls.student1 = create_student(user=cls.stud_user1) cls.student2 = create_student(user=cls.stud_user2) #Set interests for students cls.student1.interests.add(cls.subject1) cls.student2.interests.set([cls.subject1,cls.subject2]) cls.quiz_taker1 = create_quiz_taker(quiz=cls.quiz1, student=cls.student1) cls.quiz_taker2 = create_quiz_taker(quiz=cls.quiz1, student=cls.student2) cls.stud_response1 = create_quiz_taker_response(quiztaker=cls.quiz_taker1, question=cls.question1, answer=cls.answer1) cls.stud_response2 = create_quiz_taker_response(quiztaker=cls.quiz_taker1, question=cls.question1, answer=cls.answer2) cls.stud_response3 = create_quiz_taker_response(quiztaker=cls.quiz_taker2, question=cls.question1, answer=cls.answer1) def setUp(self): self.stud_response1 = QuizTakerResponse.objects.get(quiztaker=self.quiz_taker1, question=self.question1, answer=self.answer1) self.stud_response2 = QuizTakerResponse.objects.get(quiztaker=self.quiz_taker1, question=self.question1, answer=self.answer2) self.stud_response3 = QuizTakerResponse.objects.get(quiztaker=self.quiz_taker2, question=self.question1, answer=self.answer1) def test_response_creation(self): self.assertIsInstance(self.student1, Student) self.assertIsInstance(self.quiz_taker1, QuizTaker) self.assertIsInstance(self.stud_response1,QuizTakerResponse) def test_response_answer(self): self.assertEqual(self.stud_response1.answer, self.answer1) self.assertEqual(self.stud_response1.answer.is_correct,True) self.assertEqual(self.stud_response2.answer.is_correct,False) def test_quiz_responses(self): self.assertEqual(self.quiz_taker1.get_quiz_response().count(),2) self.assertEqual(self.quiz_taker2.get_quiz_response().count(),1) def test_response_to_quiz_subject_not_in_interests(self): with self.assertRaises(Quiz.DoesNotExist): self.stud_response4 = QuizTakerResponse.objects.create(quiztaker=self.quiz_taker1, question=self.question2, answer=self.answer3) class QuizViewTest(TestCase): @classmethod def setUpTestData(cls): cls.subject1 =Subject.objects.create(name="Science") # cls.subject2 =Subject.objects.create(name="Mathematics") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = Quiz.objects.create(name="First Quiz", subject=cls.subject1, owner=cls.teacher) cls.quiz2 = Quiz.objects.create(name="Second Quiz", subject=cls.subject1, owner=cls.teacher) def test_quiz_list(self): # response = self.client.get('/quiz/') response = self.client.get(reverse('quiz_list')) #check if the response is 200 OK self.assertEqual(response.status_code,200) self.assertContains(response,text=self.quiz1.name,count=1,status_code=200) self.assertIn(self.quiz2, response.context['object_list']) self.assertEqual(len(response.context['object_list']),2) def test_quiz_create(self): self.factory = RequestFactory() request = self.factory.get(reverse('create_quiz')) request.user = create_custom_user(username="stud1",is_teacher=True) response = CreateQuizView.as_view()(request) self.assertEqual(response.status_code,200) #No reason to test this def test_quiz_details(self): response = self.client.get(reverse('quiz_detail', args=[self.quiz1.pk])) self.assertEqual(response.status_code,200) self.assertContains(response, self.quiz1.name) #test question list in the context self.assertEqual(len(response.context['question_list']),len(self.quiz1.get_questions())) class QuizTakeViewTest(TestCase): @classmethod def setUpTestData(cls): cls.user = create_custom_user(username="studentias",is_student=True, password="kriumkram") cls.user2 = create_custom_user(username="stud2",is_student=True) cls.stud1 = create_student(user=cls.user) cls.stud2 = create_student(user=cls.user2) cls.subj1 = create_subject("Science") #Add the subject to student interests cls.stud1.interests.add(cls.subj1) cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz = create_quiz(name="First Science Quiz",subject=cls.subj1,owner=cls.teacher) # cls.quiz2 = create_quiz(name="Second Science Quiz",subject=cls.subj1) cls.question1 = create_question(question="Does Mars support life?",quiz=cls.quiz) cls.answer1 = create_answer(answer="Yes",question=cls.question1) cls.answer2 = create_answer(answer="Who knows",question=cls.question1, is_correct=True) cls.answer3 = create_answer(answer="No",question=cls.question1) def setUp(self): self.factory = RequestFactory() self.quiz1 = Quiz.objects.get(id=self.quiz.id) # self.quiz2 = Quiz.objects.get(id=self.quiz2.id) self.question_list = self.quiz1.get_questions() def test_view_response(self): self.response = self.client.get(reverse('take_quiz', args=[self.quiz1.pk])) # self.assertIsInstance(self.quiz1,Quiz) # self.assertEqual(self.response.status_code,200) # Status codeshould be 302->>redirects to login redirect_url = reverse('login')+f'?next=/quiz/{self.quiz1.pk}/take/' self.assertRedirects(self.response, redirect_url) def test_post_start_quiz(self): request = self.factory.post('take_quiz',{'start_quiz':'quiz_name'}) request.user = self.user request.session = {} response = quiz_taking(request,self.quiz1.pk) #test response self.assertEqual(response.status_code,200) #test quiztaker in session self.assertEqual(request.session['quiz_taker'],self.user.username) #test quiz taken self.assertEqual(request.session['quiz_taken'],self.quiz1.name) def test_successful_post(self): create_quiz_taker(quiz=self.quiz1,student=self.stud1) request = self.factory.post('take_quiz',{'question':self.question1,'question_choice':self.answer3}) request.user = self.user request.session = {} response = quiz_taking(request,self.quiz1.pk) self.assertEqual(response.status_code,200) #test the one answering the question self.assertEqual(request.session['taker'],self.user.username) # #test the redirect of final question i.e self.question1 to the results page # self.assertEqual(response.redirect_chain, f'http://127.0.0.1:8000/quiz/{self.quiz1.pk}/result/') def test_unsuccessful_post(self): create_quiz_taker(quiz=self.quiz1,student=self.stud1) request = self.factory.post('take_quiz',{'question':self.question1,'question_choice':'Just kidding'}) request.user = self.user request.session = {} self.assertRaises(Answer.DoesNotExist, quiz_taking, request, self.quiz1.pk) class QuizResultsViewTest(TestCase): @classmethod def setUpTestData(cls): cls.user = create_custom_user(username="studentias",is_student=True, password="kriumkram") cls.stud1 = create_student(user=cls.user) cls.subj1 = create_subject("Science") cls.teacher = create_custom_user2(username="teacher_1",password="secure",is_teacher=True) cls.quiz1 = create_quiz(name="First Science Quiz",subject=cls.subj1,owner=cls.teacher) cls.question1 = create_question(question="Does Mars support life?",quiz=cls.quiz1) cls.answer1 = create_answer(answer="Yes",question=cls.question1) def setUp(self): self.stud1.interests.add(self.subj1) self.quiz_taker = create_quiz_taker(quiz=self.quiz1,student=self.stud1) self.quiz_taker_response = create_quiz_taker_response(quiztaker=self.quiz_taker,question=self.question1,answer=self.answer1) def test_final_post_results_redirect(self): # self.client.login(username=self.user.username, password='kriumkram') # self.client.force_login(self.user) self.response = self.client.get('/quiz/1/result/',follow=True) print("|||||||||||||||||||||||||||||||||||||||||||||") print(self.response) print(self.response.redirect_chain) print(self.response.request) print("|||||||||||||||||||||||||||||||||||||||||||||")
53.457338
140
0.726681
7c67de3590e90789ffdfe35ca3ff78ea03a2c4f3
73
py
Python
python/testData/formatter/comment_after.py
06needhamt/intellij-community
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
[ "Apache-2.0" ]
null
null
null
python/testData/formatter/comment_after.py
06needhamt/intellij-community
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
[ "Apache-2.0" ]
null
null
null
python/testData/formatter/comment_after.py
06needhamt/intellij-community
63d7b8030e4fdefeb4760e511e289f7e6b3a5c5b
[ "Apache-2.0" ]
null
null
null
def foo(a): if a == 5: # a is 5 print('no') foo(5)
9.125
19
0.356164
3dc1a64c6a1e771c82e850542d15e10bf91050f9
1,271
py
Python
non_abundant_terms.py
wjma98/project-euler
301ca8ede66906f0d1723c64c37feb97322c2596
[ "MIT" ]
null
null
null
non_abundant_terms.py
wjma98/project-euler
301ca8ede66906f0d1723c64c37feb97322c2596
[ "MIT" ]
null
null
null
non_abundant_terms.py
wjma98/project-euler
301ca8ede66906f0d1723c64c37feb97322c2596
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Jan 5 12:05:17 2021 @author: William """ def factors(n): results = set() for i in range(1, int(n**0.5) + 1): if n % i == 0: results.update([i,int(n/i)]) #delete last element since we dont want n in factor list divisors = sorted(list(results)) del divisors[-1] return divisors def abundant_number(n): if sum(factors(n)) > n: return True else: return False # Credit to StackOverflow post, https://stackoverflow.com/questions/11792708/generate-all-possible-combinations-from-a-int-list-under-a-limit # User Lauritz V. Thaulow # Finds all possible sums of a list below the limit def sums(lst, limit): from itertools import combinations_with_replacement p = set(x + y for x, y in combinations_with_replacement(lst, 2)) return sorted([x for x in p if x <= limit]) # 12 is smallest abundant number # 28123 is the biggest interger than can be written as sum of 2 abudant number end = 28123 all_abund_numbers = [] for i in range(1, end+1): if abundant_number(i) == True: all_abund_numbers.append(i) all_pairs = sums(all_abund_numbers, end) unique =[x for x in range(1, end+1) if x not in all_pairs] print(sum(unique))
27.630435
141
0.66247
2a0a34a3953cc9c10995f6d7fe9b95fc3c7d732a
1,560
py
Python
docs/examples/desktop_app_authorization_code.py
janLuke/spotipie
a902c6cda9a3e61bbcfd4915e5102479a68ef3cb
[ "MIT" ]
1
2021-05-02T10:32:38.000Z
2021-05-02T10:32:38.000Z
docs/examples/desktop_app_authorization_code.py
janLuke/spotipie
a902c6cda9a3e61bbcfd4915e5102479a68ef3cb
[ "MIT" ]
null
null
null
docs/examples/desktop_app_authorization_code.py
janLuke/spotipie
a902c6cda9a3e61bbcfd4915e5102479a68ef3cb
[ "MIT" ]
null
null
null
from spotipie import Credentials, AuthorizationCodeSession, Spotify from spotipie.auth import get_user_authorization from spotipie.utils import ( get_default_http_adapter, pretty ) # Load OAuth2 credentials from environment variables: # {prefix}_CLIENT_ID, {prefix}_CLIENT_SECRET, {prefix}_REDIRECT_URI, # The default prefix is SPOTIPIE. creds = Credentials.from_environment(prefix='SPOTIFY') # Create a session following the Authorization Code flow. scope = ['user-library-read'] # adapt this to your requirements session = AuthorizationCodeSession( creds.client_id, creds.client_secret, creds.redirect_uri, scope=scope ) # With ImplicitGrantSession, you don't need to pass "client_secret" # session = ImplicitGrantSession(creds.client_id, creds.redirect_uri, scope=scope) # [Optional] Mount an HTTPAdapter to implement retrying behavior and/or caching. # You can use get_default_http_adapter() for a reasonable default session.mount('https://', get_default_http_adapter()) # Authorize through the local flask app # NOTE: # - you need to install the optional dependency: ``pip install spotipie[auth-app]`` # - you need to whitelist ``http://localhost:{port}/callback`` in your Spotify App get_user_authorization(session, app_name='YourAppName', port=1234) # [ALTERNATIVE] If you installed spotipie without the optional authorization app # from spotipie.auth import prompt_for_user_authorization # prompt_for_user_authorization(session) # Wrap the session spotify = Spotify(session) # Use the client print(pretty(spotify.current_user()))
38.04878
83
0.79359
75e51f0d0fc0ddab452ce083326bab0046acae4e
271
py
Python
examples/arkham.py
lucasmsa/arkham-theme-
5f8892728bf776482412a5d9da308dc9a586a56e
[ "MIT" ]
32
2020-06-15T15:40:08.000Z
2022-01-24T01:53:17.000Z
examples/arkham.py
lucasmsa/arkham-theme-
5f8892728bf776482412a5d9da308dc9a586a56e
[ "MIT" ]
3
2020-06-22T03:42:05.000Z
2021-11-29T03:48:15.000Z
examples/arkham.py
lucasmsa/arkham-theme-
5f8892728bf776482412a5d9da308dc9a586a56e
[ "MIT" ]
2
2021-04-27T20:02:51.000Z
2021-12-11T09:33:49.000Z
class Arkham_Asylum(): def __init__(self, enemy, weapon): self.enemy = enemy self.weapon = weapon def attack(self): return f"{self.enemy} attacked using a {self.weapon}" joker = Arkham_Asylum('Joker', 'Knife') joker.attack()
24.636364
61
0.612546
94cfb69ff60e2554b9e5b2ba289c36b0b67fda39
9,778
py
Python
notebooks/pre_production_runs/run_solver_kern_opt.py
Joshuaalbert/bayes_tec
655c4ec29427c7bb0616d5752c34207714a0151c
[ "Apache-2.0" ]
null
null
null
notebooks/pre_production_runs/run_solver_kern_opt.py
Joshuaalbert/bayes_tec
655c4ec29427c7bb0616d5752c34207714a0151c
[ "Apache-2.0" ]
null
null
null
notebooks/pre_production_runs/run_solver_kern_opt.py
Joshuaalbert/bayes_tec
655c4ec29427c7bb0616d5752c34207714a0151c
[ "Apache-2.0" ]
null
null
null
from bayes_tec.solvers.phase_only_solver import PhaseOnlySolver from bayes_tec.utils.data_utils import define_equal_subsets from bayes_tec.logging import logging import numpy as np from timeit import default_timer import gpflow as gp from bayes_tec.utils.stat_utils import log_normal_solve, log_normal_solve_fwhm from gpflow.priors import LogNormal def create_kern(name): kerns = {'rbf':gp.kernels.RBF,'m12':gp.kernels.Matern12, 'm32':gp.kernels.Matern32, 'm52':gp.kernels.Matern52} s = name.split("_") k_time = kerns[s[1].lower()] k_dir = kerns[s[2].lower()] if s[0].lower() == 'sum': return _sum(k_time,k_dir) elif s[0].lower() == 'product': return _product(k_time,k_dir) def _product(kern_time_, kern_dir_): def _kern(kern_ls_lower=0.75, kern_ls_upper=1.25, kern_dir_ls=0.5, kern_time_ls=50., kern_var=1., include_time=True, include_dir=True, **priors): kern_dir = kern_dir_(2,active_dims=slice(0,2,1)) kern_time = kern_time_(1,active_dims=slice(2,3,1)) kern = kern_dir*kern_time kern_var = 1. if kern_var == 0. else kern_var kern_dir.variance.trainable = False kern_dir.lengthscales = kern_dir_ls kern_dir_ls = log_normal_solve_fwhm(kern_dir_ls*kern_ls_lower, kern_dir_ls*kern_ls_upper, D=0.1) kern_dir.lengthscales.prior = LogNormal(kern_dir_ls[0], kern_dir_ls[1]**2) kern_dir.lengthscales.trainable = True kern_time.variance = kern_var kern_var = log_normal_solve_fwhm(kern_var*kern_ls_lower, kern_var*kern_ls_upper, D=0.1) kern_time.variance.prior = LogNormal(kern_var[0], kern_var[1]**2) kern_time.variance.trainable = True kern_time.lengthscales = kern_time_ls kern_time_ls = log_normal_solve_fwhm(kern_time_ls*kern_ls_lower, kern_time_ls*kern_ls_upper, D=0.1) kern_time.lengthscales.prior = LogNormal(kern_time_ls[0], kern_time_ls[1]**2) kern_time.lengthscales.trainable = True return kern return _kern def _sum(kern_time_, kern_dir_): def _kern(kern_ls_lower=0.75, kern_ls_upper=1.25, kern_dir_ls=0.5, kern_time_ls=50., kern_var=1., include_time=True, include_dir=True, **priors): kern_dir = kern_dir_(2,active_dims=slice(0,2,1)) kern_time = kern_time_(1,active_dims=slice(2,3,1)) kern = kern_dir + kern_time kern_var = 1. if kern_var == 0. else kern_var kern_var = log_normal_solve_fwhm(kern_var*kern_ls_lower, kern_var*kern_ls_upper, D=0.1) kern_dir.variance.prior = LogNormal(kern_var[0], kern_var[1]**2) kern_dir.variance.trainable = True kern_dir.variance = np.exp(kern_var[0]) kern_dir.lengthscales = kern_dir_ls kern_dir_ls = log_normal_solve_fwhm(kern_dir_ls*kern_ls_lower, kern_dir_ls*kern_ls_upper, D=0.1) kern_dir.lengthscales.prior = LogNormal(kern_dir_ls[0], kern_dir_ls[1]**2) kern_dir.lengthscales.trainable = True kern_time.variance.prior = LogNormal(kern_var[0], kern_var[1]**2) kern_time.variance = np.exp(kern_var[0]) kern_time.variance.trainable = True kern_time.lengthscales = kern_time_ls kern_time_ls = log_normal_solve_fwhm(kern_time_ls*kern_ls_lower, kern_time_ls*kern_ls_upper, D=0.1) kern_time.lengthscales.prior = LogNormal(kern_time_ls[0], kern_time_ls[1]**2) kern_time.lengthscales.trainable = True return kern return _kern def test_new_solver(): # opt = {'initial_learning_rate': 0.0469346965745387, 'learning_rate_steps': 2.3379450095649053, 'learning_rate_decay': 2.3096977604598385, 'minibatch_size': 257, 'dof_ratio': 15.32485312998133, 'gamma_start': 1.749795137201838e-05, 'gamma_add': 0.00014740343452076625, 'gamma_mul': 1.0555893705407017, 'gamma_max': 0.1063958902418518, 'gamma_fallback': 0.15444066000616663} opt = {'initial_learning_rate': 0.030035792298837113, 'learning_rate_steps': 2.3915384159241064, 'learning_rate_decay': 2.6685242978751798, 'minibatch_size': 128, 'dof_ratio': 10., 'gamma_start': 6.876944103773131e-05, 'gamma_add': 1e-4, 'gamma_mul': 1.04, 'gamma_max': 0.14, 'gamma_fallback': 0.1, 'priors' : {'kern_time_ls': 50., 'kern_dir_ls': 0.80}} datapack = '/net/lofar1/data1/albert/git/bayes_tec/scripts/data/killms_datapack_2.hdf5' run_dir='run_dir_killms_kern_opt' output_solset = "posterior_sol_kern_opt" time_sel = slice(50,150,1) ant_sel = "RS210HBA" import itertools res = [] for s in itertools.product(['product','sum'],['rbf','m32','m52'],['rbf','m32','m52']): name = "_".join(s) logging.info("Running {}".format(name)) solver = PhaseOnlySolver(run_dir, datapack) solver._build_kernel = create_kern(name) lik = solver.solve(output_solset=output_solset, solset='sol000', jitter=1e-6, tec_scale=0.005, screen_res=30, remake_posterior_solsets=False, iterations=500,intra_op_threads=0, inter_op_threads=0, ant_sel=ant_sel, time_sel=time_sel,pol_sel=slice(0,1,1),debug=False, W_diag=True, freq_sel=slice(0,48,1), plot_level=-1, return_likelihood=True, num_likelihood_samples=100, **opt) res.append([name,-lik[0]/1e6,lik[1]/1e6]) logging.info("{} results {}".format(name,res)) with open("kern_opt_res.csv", 'a') as f: f.write("{}\n".format(str(res[-1]).replace('[','').replace(']','') )) # solver.solve(output_solset=output_solset, solset='sol000', jitter=1e-6, tec_scale=0.005, screen_res=30, remake_posterior_solsets=False, # iterations=500, intra_op_threads=0, inter_op_threads=0, ant_sel="CS*", time_sel=time_sel,pol_sel=slice(0,1,1),debug=False, # W_diag=False, freq_sel=slice(0,48,1), **opt) # W_diag = False # dof_ratio = 20. # # run_dir = "run_dir_killms_notime_{}_{}".format(int(dof_ratio),'diag' if W_diag else 'chol') # output_solset = "posterior_sol_notime_{}_{}".format(int(dof_ratio),'diag' if W_diag else 'chol') # solver = PhaseOnlySolver(run_dir, datapack) # solver.solve(output_solset=output_solset, solset='sol000', jitter=1e-6, tec_scale=0.005, screen_res=30, remake_posterior_solsets=False, # initial_learning_rate=1e-2, final_learning_rate=1e-3, iterations=2000, minibatch_size=128, dof_ratio=dof_ratio, # intra_op_threads=0, inter_op_threads=0, ant_sel=ant_sel, time_sel=time_sel,pol_sel=slice(0,1,1),debug=False, W_diag=W_diag, freq_sel=slice(0,48,1)) # ### # # RS # for i in range(18): # time_sel = slice(i*200,min(3600,(i+1)*200),1) # solver.solve(output_solset=output_solset, solset='sol000', jitter=1e-6, tec_scale=0.005, screen_res=30, remake_posterior_solsets=False, # learning_rate=1e-2,iterations=2000, minibatch_size=128, dof_ratio=20.,intra_op_threads=0, inter_op_threads=0, ant_sel="RS*", # time_sel=time_sel,pol_sel=slice(0,1,1),debug=False, W_diag=True, freq_sel=slice(0,48,1)) # # ### # # CS # for i in range(18): # time_sel = slice(i*200,min(3600,(i+1)*200),1) # solver.solve(output_solset=output_solset, solset='sol000', jitter=1e-6, tec_scale=0.005, screen_res=30, remake_posterior_solsets=False, # learning_rate=1e-2,iterations=2000, minibatch_size=128, dof_ratio=20.,intra_op_threads=0, inter_op_threads=0, ant_sel="CS*", # time_sel=time_sel,pol_sel=slice(0,1,1),debug=False, W_diag=True, freq_sel=slice(0,48,1)) # run_dir = "run_dir_killms_10_Wdiag" # datapack = '/net/lofar1/data1/albert/git/bayes_tec/scripts/data/killms_datapack_3.hdf5' # solver = PhaseOnlySolver(run_dir, datapack) # solver.solve(solset='sol000', recalculate_coords=False, jitter=1e-6, tec_scale=0.005, screen_res=30, weight_smooth_len=40, reweight_obs=False, # learning_rate=1e-2,iterations=2000, minibatch_size=128, dof_ratio=10.,intra_op_threads=0, inter_op_threads=0, ant_sel="RS*", # time_sel=slice(100,200,1),pol_sel=slice(0,1,1),debug=False, W_diag=True) # run_dir = "run_dir_killms_10_chol" # datapack = '/net/lofar1/data1/albert/git/bayes_tec/scripts/data/killms_datapack_3.hdf5' # solver = PhaseOnlySolver(run_dir, datapack) # solver.solve(solset='sol000', recalculate_coords=False, jitter=1e-6, tec_scale=0.005, screen_res=30, weight_smooth_len=40, reweight_obs=False, # learning_rate=1e-2,iterations=2000, minibatch_size=128, dof_ratio=10.,intra_op_threads=0, inter_op_threads=0, ant_sel="RS*", # time_sel=slice(100,200,1),pol_sel=slice(0,1,1),debug=False, W_diag=False) # # run_dir = "run_dir_ndppp_10_Wdiag" # datapack = '/net/lofar1/data1/albert/git/bayes_tec/scripts/data/ndppp_datapack.hdf5' # solver = PhaseOnlySolver(run_dir, datapack) # solver.solve(solset='sol000', recalculate_coords=False, jitter=1e-6, tec_scale=0.005, screen_res=30, weight_smooth_len=40, reweight_obs=False, # learning_rate=1e-2,iterations=2000, minibatch_size=128, dof_ratio=10.,intra_op_threads=0, inter_op_threads=0, ant_sel="RS*", # time_sel=slice(100,200,1),pol_sel=slice(0,1,1),debug=False, W_diag=True) # # run_dir = "run_dir_ndppp_10_chol" # datapack = '/net/lofar1/data1/albert/git/bayes_tec/scripts/data/killms_datapack.hdf5' # solver = PhaseOnlySolver(run_dir, datapack) # solver.solve(solset='sol000', recalculate_coords=False, jitter=1e-6, tec_scale=0.005, screen_res=30, weight_smooth_len=40, reweight_obs=False, # learning_rate=1e-2,iterations=2000, minibatch_size=128, dof_ratio=10.,intra_op_threads=0, inter_op_threads=0, ant_sel="RS*", # time_sel=slice(100,200,1),pol_sel=slice(0,1,1),debug=False, W_diag=False) if __name__ == '__main__': test_new_solver()
56.195402
377
0.703723
0c1ed814d7601cb720f27ab7ce9ec216496e14a5
628
py
Python
olwi/hw/system.py
molkoback/olwi
449874a1de1a9addaaefe74010d49ca0fa2f9ce3
[ "MIT" ]
null
null
null
olwi/hw/system.py
molkoback/olwi
449874a1de1a9addaaefe74010d49ca0fa2f9ce3
[ "MIT" ]
null
null
null
olwi/hw/system.py
molkoback/olwi
449874a1de1a9addaaefe74010d49ca0fa2f9ce3
[ "MIT" ]
1
2021-11-23T07:19:00.000Z
2021-11-23T07:19:00.000Z
import psutil import time def _cpu(): return psutil.getloadavg() def _uptime(): tmp = int(time.time() - psutil.boot_time()) s = tmp % 60 tmp //= 60 m = tmp % 60 tmp //= 60 h = tmp % 24 tmp //= 24 return tmp, h, m, s def _memory(): mem = psutil.virtual_memory() return { "total": round(mem.total/(1024**3), 1), "used": round(mem.used/(1024**3), 1) } def _disk(): disk = psutil.disk_usage("/") return { "total": round(disk.total/(1024**3), 1), "used": round(disk.used/(1024**3), 1) } def readSystemParam(): return { "Uptime": _uptime(), "CPU": _cpu(), "Memory": _memory(), "Disk": _disk() }
16.102564
44
0.585987
13bb01e466c735f27fe0a613acc049813ea2ed45
180
py
Python
02-19-Cuma/tryExcept.py
cihatdev/misha-staj
d0ee95d5e77a7d7a1f16611d49c87be429a25b31
[ "MIT" ]
9
2021-03-16T20:21:54.000Z
2022-01-08T09:15:10.000Z
02-19-Cuma/tryExcept.py
cihatdev/misha-staj
d0ee95d5e77a7d7a1f16611d49c87be429a25b31
[ "MIT" ]
1
2021-02-28T21:27:17.000Z
2021-02-28T21:27:17.000Z
02-19-Cuma/tryExcept.py
cihatdev/misha-staj
d0ee95d5e77a7d7a1f16611d49c87be429a25b31
[ "MIT" ]
1
2021-05-24T11:34:48.000Z
2021-05-24T11:34:48.000Z
try: answer = 10 / 0 number = int(input("Enter a number: ")) print(number) except ZeroDivisionError as err: print(err) except ValueError: print("invalid input")
22.5
43
0.655556
bb272776e6b7d9e5ad4294a1474079895d8768fc
2,861
py
Python
scripts/cloud_results.py
mcopik/serverless-benchmarks
3b57688873853a1ea74e10b02a9d89f3a4d679ac
[ "BSD-3-Clause" ]
35
2020-12-30T19:31:30.000Z
2022-03-28T11:10:00.000Z
scripts/cloud_results.py
mcopik/serverless-benchmarks
3b57688873853a1ea74e10b02a9d89f3a4d679ac
[ "BSD-3-Clause" ]
24
2021-01-04T15:37:05.000Z
2022-03-14T00:45:20.000Z
scripts/cloud_results.py
mcopik/serverless-benchmarks
3b57688873853a1ea74e10b02a9d89f3a4d679ac
[ "BSD-3-Clause" ]
10
2021-06-13T13:13:39.000Z
2021-12-20T22:05:50.000Z
#!python3 import argparse import datetime import json import os from experiments_utils import * from cache import cache sys.path.append(PROJECT_DIR) parser = argparse.ArgumentParser(description='Run cloud experiments.') parser.add_argument('experiment_json', type=str, help='Path to JSON summarizing experiment.') parser.add_argument('output_dir', type=str, help='Output dir') parser.add_argument('--cache', action='store', default='cache', type=str, help='cache directory') parser.add_argument('--end-time', action='store', default='0', type=int, help='Seconds to add to begin time for logs query. When 0 use current time.') args = parser.parse_args() experiment = json.load(open(args.experiment_json, 'r')) deployment = experiment['config']['experiments']['deployment'] language = experiment['config']['experiments']['language'] cache_client = cache(args.cache) docker_client = docker.from_env() cached_config = cache_client.get_config(deployment) experiment['config'][deployment].update(cached_config) # Create deployment client if deployment == 'aws': from cloud_frontend.aws import aws deployment_client = aws.aws(cache_client, experiment['config'], language, docker_client) elif deployment == 'azure': from cloud_frontend.azure import azure deployment_client = azure.azure(cache_client, experiment['config'], language, docker_client) else: from cloud_frontend.gcp import gcp deployment_client = gcp.gcp(cache_client, experiment['config'], language, docker_client) storage_client = deployment_client.get_storage() def recursive_visit(json_data: dict): for key, val in json_data.items(): recursive_visit(val) results = experiment['results'] function_name = experiment['experiment']['function_name'] deployment_config = experiment['config'][deployment] experiment_begin = experiment['experiment']['begin'] if args.end_time > 0: experiment_end = experiment_begin + args.end_time else: experiment_end = int(datetime.datetime.now().timestamp()) result_dir = os.path.join(args.output_dir, 'results') os.makedirs(result_dir, exist_ok=True) # get results download_bucket(storage_client, experiment['experiment']['results_bucket'], result_dir) requests = {} for result_file in os.listdir(result_dir): # file name is ${request_id}.json request_id = os.path.splitext(os.path.basename(result_file))[0] with open(os.path.join(result_dir, result_file), 'rb') as binary_json: json_data = json.loads(binary_json.read().decode('utf-8')) requests[request_id] = json_data # get cloud logs deployment_client.download_metrics(function_name, deployment_config, experiment_begin, experiment_end, requests) with open(os.path.join(args.output_dir, 'results.json'), 'w') as out_f: json.dump(requests, out_f, indent=2)
35.7625
97
0.74065
9206634b3029debb11e97fbb67d50890d57fd67a
430
py
Python
management/pycom_functions/data_formatting/format_data_raw.py
AaltoIIC/OSEMA
38740e3dcfeb72a6d87e25190e6a73f6c60b199b
[ "MIT" ]
2
2021-04-03T13:19:32.000Z
2022-01-03T00:38:55.000Z
management/pycom_functions/data_formatting/format_data_raw.py
AaltoIIC/OSEMA
38740e3dcfeb72a6d87e25190e6a73f6c60b199b
[ "MIT" ]
null
null
null
management/pycom_functions/data_formatting/format_data_raw.py
AaltoIIC/OSEMA
38740e3dcfeb72a6d87e25190e6a73f6c60b199b
[ "MIT" ]
null
null
null
def format_data(header_ts, data): data_string = "Begin:{}\n".format(convert_to_epoch(header_ts)) data_string += "Variables:{" for variable in VARIABLE_NAMES: data_string += str(variable) + ", " data_string += "time }\n" data_string += "Data:" for value_pair in data: ts_packed = ustruct.pack("<L", value_pair[1]) data_string += str(value_pair[0] + ts_packed) return data_string
35.833333
66
0.644186
6a9eee86e04553bbb971a8153bb2615a43144c4b
4,427
py
Python
model.py
ace19-dev/image-retrieval-tf
ddcf79fcb448189b74fa0cbe6d000091f7a53e8c
[ "MIT" ]
6
2019-08-27T16:12:51.000Z
2020-04-18T04:38:45.000Z
model.py
ace19-dev/image-retrieval-tf
ddcf79fcb448189b74fa0cbe6d000091f7a53e8c
[ "MIT" ]
4
2019-09-15T07:44:58.000Z
2020-04-21T06:33:55.000Z
model.py
ace19-dev/image-retrieval-tf
ddcf79fcb448189b74fa0cbe6d000091f7a53e8c
[ "MIT" ]
1
2019-12-10T14:37:38.000Z
2019-12-10T14:37:38.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import resnet_v2 slim = tf.contrib.slim batch_norm_params = { 'decay': 0.997, # batch_norm_decay 'epsilon': 1e-5, # batch_norm_epsilon 'scale': True, # batch_norm_scale 'updates_collections': tf.compat.v1.GraphKeys.UPDATE_OPS, # batch_norm_updates_collections 'is_training': True, # is_training 'fused': None, # Use fused batch norm if possible. } def basic_model(inputs, num_classes, is_training=True, is_reuse=tf.compat.v1.AUTO_REUSE, keep_prob=0.8, attention_module=None, scope='basic_model'): ''' :param inputs: N x H x W x C tensor :return: ''' with slim.arg_scope(resnet_v2.resnet_arg_scope()): net, end_points = \ resnet_v2.resnet_v2_50(inputs, num_classes=num_classes, is_training=is_training, reuse=is_reuse, attention_module=attention_module, scope='resnet_v2_50') # # Global average pooling. # net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True) # end_points['global_pool'] = net # # batch_norm_params['is_training'] = is_training # # net = slim.batch_norm(net, scope='batch_norm') # # end_points['batch_norm'] = net # net = slim.flatten(net, scope='flatten') # end_points['flatten'] = net # net = slim.fully_connected(net, 256, normalizer_fn=slim.batch_norm, # normalizer_params=batch_norm_params, scope='fc1') # end_points['fc1'] = net # # net = slim.fully_connected(net, num_classes, normalizer_fn=slim.batch_norm, # normalizer_params=batch_norm_params, activation_fn=None, scope='fc2') # end_points['fc2'] = net logits = net return logits, end_points def deep_cosine_softmax(inputs, num_classes, is_training=True, is_reuse=tf.compat.v1.AUTO_REUSE, keep_prob=0.6, attention_module=None, scope=''): def batch_norm_fn(x): return slim.batch_norm(x, scope=tf.compat.v1.get_variable_scope().name + "/bn") ''' :param inputs: N x V x H x W x C tensor :return: ''' with slim.arg_scope(resnet_v2.resnet_arg_scope()): net, _ = \ resnet_v2.resnet_v2_50(inputs, num_classes=num_classes, is_training=is_training, reuse=is_reuse, attention_module=attention_module, scope='resnet_v2_50') # ############################## # cosine-softmax # ############################## # (?,1,1,2048) feature_dim = net.get_shape().as_list()[-1] # print("feature dimensionality: ", feature_dim) net = slim.flatten(net) net = slim.dropout(net, keep_prob=keep_prob) net = slim.fully_connected( net, feature_dim, normalizer_fn=batch_norm_fn, weights_regularizer=slim.l2_regularizer(1e-8), scope="fc1", weights_initializer=tf.truncated_normal_initializer(stddev=1e-3), biases_initializer=tf.zeros_initializer()) features = net # Features in rows, normalize axis 1. features = tf.nn.l2_normalize(features, dim=1) with slim.variable_scope.variable_scope("ball", reuse=is_reuse): weights = slim.model_variable( "mean_vectors", (feature_dim, int(num_classes)), initializer=tf.truncated_normal_initializer(stddev=1e-3), regularizer=None) scale = slim.model_variable( "scale", (), tf.float32, initializer=tf.constant_initializer(0., tf.float32), regularizer=slim.l2_regularizer(1e-1)) # tf.summary.scalar("scale", scale) scale = tf.nn.softplus(scale) # Mean vectors in colums, normalize axis 0. weights_normed = tf.nn.l2_normalize(weights, dim=0) logits = scale * tf.matmul(features, weights_normed) return features, logits
35.416
102
0.574881
bd4beedb8c92897ed42a35c601c600a6d6c925d5
65,611
py
Python
andriller/windows.py
pshem/andriller
c1e2d9e05f3630a7499907190552089be18563c5
[ "MIT" ]
2
2021-11-22T03:38:06.000Z
2022-01-12T23:07:15.000Z
andriller/windows.py
pshem/andriller
c1e2d9e05f3630a7499907190552089be18563c5
[ "MIT" ]
null
null
null
andriller/windows.py
pshem/andriller
c1e2d9e05f3630a7499907190552089be18563c5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys import json import glob import struct import string import shutil import os.path import pathlib import logging import binascii import datetime import functools import itertools import contextlib import webbrowser import tkinter as tk from tkinter import ttk, font, filedialog, messagebox from . import __version__, __app_name__ from . import config from . import driller from . import statics from . import adb_conn from . import decrypts from . import decoders from . import messages from . import cracking from . import screencap from .utils import threaded, human_bytes, DrillerTools from .tooltips import createToolTip logger = logging.getLogger(__name__) @contextlib.contextmanager def disable_control(event, *args, **kwargs): try: event.widget.config(state=tk.DISABLED) yield finally: event.widget.config(state=tk.NORMAL) class TextFieldHandler(logging.Handler): def __init__(self, tk_obj, level=logging.NOTSET): super().__init__(level=level) self.tk_obj = tk_obj def emit(self, record): try: log = self.format(record) self.tk_obj.insert('end', f'{log}\n') self.tk_obj.see('end') except Exception: self.handleError(record) def log_errors(method): @functools.wraps(method) def func(self, *args, **kwargs): try: return method(self, *args, **kwargs) except Exception as e: self.logger.exception(f'{e}') return func class BaseWindow: def __init__(self, root=None, title=__app_name__, **kwargs): self.log_level = kwargs.get('log_level', logging.INFO) logger.setLevel(self.log_level) if root: self.root = tk.Toplevel(root, takefocus=True) self.root.protocol("WM_TAKE_FOCUS") self.root.transient(root) self.root.bind('<Escape>', lambda e: self.root.destroy()) else: self.root = tk.Tk() self.root.bind('<Double-Escape>', self.quit_app) self.root.protocol("WM_DELETE_WINDOW", self.quit_app) self.root.title(title) self.root.resizable(False, False) self.set_icon() self.root.grid_columnconfigure(0, weight=1) self.root.grid_rowconfigure(0, weight=1) self.NWES = (tk.N, tk.W, tk.E, tk.S) self.WE = (tk.W, tk.E) logo_ = os.path.join(config.CODEPATH, 'res', 'logo.gif') self.img_logo = tk.PhotoImage(master=root, file=logo_) self.style_ttk = ttk.Style() self.conf = config.Config() if self.conf('theme'): self.style_ttk.theme_use(self.conf('theme')) self.FontMono = self.get_monospace_font() self.FontStatus = font.Font(size='10', weight='bold') self.FontTitle = font.Font(size='12', weight='bold') self.FontInfo = font.Font(size='9', slant='italic') self.OUTPUT = tk.StringVar() self.mainframe = ttk.Frame(self.root, padding=5, relief='groove') self.mainframe.pack(side=tk.TOP, fill=tk.BOTH, expand=True) # self.mainframe.grid(row=0, column=0, sticky=self.NWES) # self.mainframe.columnconfigure(1, weight=1) # self.mainframe.rowconfigure(0, weight=1) upframe = ttk.Frame(self.mainframe, padding="5 5 5 5") upframe.grid(row=0, column=0, columnspan=3, sticky=self.NWES) ttk.Label(upframe, image=self.img_logo).pack(expand=False, side=tk.TOP) def set_icon(self): if 'win32' in sys.platform: icon_ = os.path.join(config.CODEPATH, 'res', 'icon3.ico') self.root.iconbitmap(default=icon_) elif 'linux' in sys.platform: img_ = tk.Image('photo', file=os.path.join(config.CODEPATH, 'res', 'icon3.png')) self.root.tk.call('wm', 'iconphoto', self.root._w, img_) def mainloop(self): self.root.mainloop() def quit_app(self, event=None): self.root.withdraw() self.root.destroy() @threaded def set_output(self): choose_dir = self.get_dir(path='default_path') if choose_dir and os.path.isdir(choose_dir): self.OUTPUT.set(os.path.realpath(choose_dir)) def about_msg(self): messages.about_msg() @staticmethod def get_monospace_font(): return { 'linux': font.Font(size=9, family='Monospace'), 'win32': font.Font(size=9, family='Consolas'), 'darwin': font.Font(size=11, family='Menlo') }.get(sys.platform, font.Font(size=9, family='Monospace')) def get_file(self, fname, ftype=[], fsize=0, fsizes=[], lpath='last_path'): filetypes = [("All files", "*")] options = {'initialfile': fname, 'initialdir': self.conf(lpath)} if not self.conf.is_mac: options['filetypes'] = ftype + filetypes dialog = filedialog.askopenfilename(**options) if dialog and os.path.isfile(dialog): size_ = os.path.getsize(dialog) if fsize and (size_ != fsize): raise FileHandlerError(f'The file selected is {size_} bytes, but {fsize} is expected.') if fsizes and (size_ not in fsizes): raise FileHandlerError('The file selected is of unexpected size.') path_ = os.path.split(dialog)[0] self.conf.update_conf(**{'DEFAULT': {lpath: path_}}) dialog = os.path.realpath(dialog) return dialog def get_dir(self, path='last_path'): dialog = filedialog.askdirectory(initialdir=self.conf(path)) if dialog: dialog = os.path.realpath(dialog) self.conf.update_conf(**{'DEFAULT': {'last_path': dialog}}) return dialog # Main Window ----------------------------------------------------------------- class MainWindow(BaseWindow): def __init__(self, **kwargs): super().__init__(**kwargs) self.set_title() # ADB moved to the bottom once the logger handler is configured # self.adb = adb_conn.ADBConn(logger=logger, log_level=self.log_level) self.registry = decoders.Registry() self.menubar = tk.Menu(self.root, tearoff=0) self.root['menu'] = self.menubar self.build_file_menus() self.build_decoders_menus() self.build_utils_menus() self.build_locks_menus() self.build_tools_menus() self.build_adb_menus() self.build_help_menus() self.DeviceStatus = tk.StringVar() self.StatusMsg = tk.StringVar() self.StatusMsg.set('Ready') # MIDFRAME ----------------------------------------------------------- midframe = ttk.Frame(self.mainframe, padding=(5, 5, 5, 5)) midframe.grid(row=1, column=0, columnspan=2, sticky=self.NWES) # Output folder opframe = ttk.Labelframe(midframe, text='Global Output Location (Decoders / Extraction / Parsing)', padding=(5, 0, 0, 5)) opframe.pack(fill=tk.X, expand=0, side=tk.TOP) self.output_button = ttk.Button(opframe, text="Output..", command=self.set_output) self.output_button.pack(side=tk.LEFT) createToolTip(self.output_button, 'Select the output location where data will be saved to') ttk.Label(opframe, textvariable=self.OUTPUT, padding=(5, 0))\ .pack(expand=True, fill=tk.X, side=tk.LEFT) noteframe = ttk.Notebook(midframe, padding=(1, 0)) noteframe.pack(fill=tk.X, expand=0, side=tk.TOP) # ADB extract controls extract_adb_frame = ttk.Frame(noteframe, padding=(5, 0)) noteframe.add(extract_adb_frame, text='Extraction (USB)') self.check_button = ttk.Button(extract_adb_frame, text='Check') self.check_button.bind('<Button-1>', self.check_usb) createToolTip(self.check_button, 'Check if any Android devices are connected') self.check_button.grid(row=1, column=0, sticky=tk.W) ttk.Label(extract_adb_frame, font=self.FontStatus, textvariable=self.DeviceStatus, padding=(5, 0))\ .grid(row=1, column=1, sticky=tk.W) self.extract_button = ttk.Button(extract_adb_frame, text='Extract') self.extract_button.bind('<Button-1>', self.RunUsbExtraction) self.extract_button.grid(row=2, column=0, sticky=tk.W) createToolTip(self.extract_button, 'Extract and decode data from a connected Android device') # self.open_report = tk.IntVar() # self.open_report.set(1) # self.open_report_button = ttk.Checkbutton(extract_adb_frame, text='Open REPORT.html in browser', var=self.open_report) # self.open_report_button.grid(row=3, column=0, columnspan=2, sticky=tk.W) # createToolTip(self.open_report_button, 'On successful extraction open the result in the browser') self.force_backup = tk.IntVar() self.force_backup_button = ttk.Checkbutton(extract_adb_frame, text='Use AB method (ignore root)', var=self.force_backup) self.force_backup_button.grid(row=4, column=0, columnspan=2, sticky=tk.W) createToolTip(self.force_backup_button, 'If rooted - force Android Backup extraction instead') self.extract_shared = tk.IntVar() self.extract_shared_button = ttk.Checkbutton(extract_adb_frame, text='Extract Shared Storage', var=self.extract_shared) self.extract_shared_button.grid(row=5, column=0, columnspan=2, sticky=tk.W) createToolTip(self.extract_shared_button, 'File system extraction of shared storage\n(Pictutes, Videos, Audios, other files)') # Forder extract controls extract_folder_frame = ttk.Frame(noteframe, padding=(5, 0)) noteframe.add(extract_folder_frame, text='Parse (Folder)') self.extract_folder = ttk.Button(extract_folder_frame, text='Directory..', ) self.extract_folder.grid(row=1, column=0, sticky=tk.W) self.extract_folder.bind('<Button-1>', self.RunDirExtraction) createToolTip(self.extract_folder, "Choose the '/data/data' directory to be parsed and data decoded") # TAR extract controls extract_tar_frame = ttk.Frame(noteframe, padding=(5, 0)) noteframe.add(extract_tar_frame, text='Parse (.TAR)') self.extract_tar = ttk.Button(extract_tar_frame, text='TAR File..', ) self.extract_tar.bind('<Button-1>', self.RunTarExtraction) self.extract_tar.grid(row=1, column=0, sticky=tk.W) createToolTip(self.extract_tar, "Choose the 'data.tar' backup file to be parsed and data decoded") # AB extract controls extract_backup_frame = ttk.Frame(noteframe, padding=(5, 0)) noteframe.add(extract_backup_frame, text='Parse (.AB)') self.extract_backup = ttk.Button(extract_backup_frame, text='AB File..', ) self.extract_backup.bind('<Button-1>', self.RunAbExtraction) self.extract_backup.grid(row=1, column=0, sticky=tk.W) createToolTip(self.extract_backup, "Choose the 'backup.ab' file to be parsed and data decoded") # LOG FRAME -------------------------------------------------------- textframe = ttk.Frame(self.mainframe) textframe.grid(row=2, column=0, columnspan=2, sticky=self.NWES) # Text Field + logger self.TF = tk.Text( textframe, font=self.FontMono, wrap=tk.WORD, width=65, bg='white', height=self.conf('window_size')) self.TF.bind('<Button-3>', rClicker, add='') self.TF.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) self.set_logger() # Scrolling vs = ttk.Scrollbar(textframe, orient=tk.VERTICAL) vs.pack(side=tk.RIGHT, fill=tk.Y, expand=False) vs['command'] = self.TF.yview self.TF['yscrollcommand'] = vs.set # Bottom buttons clear_field = ttk.Button(self.mainframe, text='Clear Log', command=self.clear_log) clear_field.grid(row=3, column=0, sticky=tk.W) save_log = ttk.Button(self.mainframe, text='Save Log', command=self.save_log) save_log.grid(row=3, columnspan=2, sticky=tk.E) # STATUS UPDATE -------------------------------------------------------- downframe = ttk.Frame(self.mainframe, relief='groove') downframe.grid(row=4, column=0, columnspan=2, sticky=self.NWES) self.StatusMsgLabel = ttk.Label(downframe, relief='flat', padding=(5, 1), font=self.FontStatus, textvariable=self.StatusMsg) self.StatusMsgLabel.grid(row=4, column=0, sticky=tk.W, padx=5, pady=3) self.StatusMsgLabel.configure(background='light green') # STARTUP & TIME SETTINGS logger.info(f'Started: {__app_name__} {__version__}') logger.info(f"Time settings/format: {self.conf('date_format')}") logger.info(f"Detected/PC time: {self.time_now_local}") logger.info(f"Universal time: {self.time_now_utc}") logger.info(f"Time in reports: {self.time_now_configured} <--") # \u2190 self.conf.check_latest_version(logger=self.logger) # Setup ADB # def setup_adb(self): self.adb = adb_conn.ADBConn(logger=logger, log_level=self.log_level) @property def time_now_local(self): now = datetime.datetime.now() return now.strftime(self.conf.date_format) @property def time_now_configured(self): now = datetime.datetime.now(self.conf.tzone) return now.strftime(self.conf.date_format) @property def time_now_utc(self): now = datetime.datetime.now(datetime.timezone(datetime.timedelta(hours=0))) return now.strftime(self.conf.date_format) def set_logger(self): logging.basicConfig(level=self.log_level) log_handler = TextFieldHandler(self.TF, level=self.log_level) logger.addHandler(log_handler) self.logger = logger def set_title(self): title = f'{__app_name__} - {__version__}' self.root.title(title) def clear_log(self): if messagebox.askyesno( message='Are you sure you want to clear the log?', icon='question', title='Clear log'): self.TF.delete('1.0', tk.END) def save_log(self): dialog = filedialog.asksaveasfilename( initialdir=self.conf('default_path'), initialfile='andriller.log', filetypes=[('Log files', '*.log')]) if dialog: with open(dialog, 'w', encoding='UTF-8') as W: W.write(self.TF.get('1.0', tk.END)) # Menu generators --------------------------------------------------------- def build_file_menus(self): menu_file = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_file, label='File', underline=0) menu_file.add_command(label='Save log', underline=0, command=self.save_log) menu_file.add_command(label='Clear log', underline=0, command=self.clear_log) menu_file.add_command(label='Preferences', command=self.preferences) menu_file.add_separator() menu_file.add_command(label='Exit', underline=1, command=self.root.destroy, accelerator='Esc * 2') def set_decoder(self, decoder): name_ = f'menu_{decoder.__name__}' setattr(self, name_, decoder) return getattr(self, name_) def build_decoders_menus(self): menu_dec = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_dec, label='Decoders', underline=0) for decoder in sorted(self.registry.decoders, key=lambda d: d.__name__): dec = decoder.staged() if dec.exclude_from_menus: continue action = lambda x = dec: self.decode_file(x) label = f'{dec.title} ({dec.TARGET or dec.RETARGET})..' menu_dec.add_command(label=label, command=action) def build_help_menus(self): menu_help = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_help, label='Help', underline=0) menu_help.add_command(label='Visit website') menu_help.add_separator() menu_help.add_command(label='Run Update', command=lambda: self.conf.upgrade_package(logger=self.logger)) menu_help.add_separator() menu_help.add_command(label='About', command=self.about_msg) def build_adb_menus(self): menu_adb = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_adb, label='ADB', underline=0) for mode in ['', *adb_conn.ADBConn.MODES.keys()]: label_ = f"Reboot: {mode.title() or 'Normal'}" action = lambda x = mode: self.adb.reboot(mode=x) menu_adb.add_command(label=label_, command=action) def build_utils_menus(self): menu_utils = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_utils, label='Apps Utils', underline=5) # menu_utils.add_separator() menu_utils.add_command(label="WhatsApp Crypt", command=self.whatsapp_crypt) def build_locks_menus(self): menu_locks = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_locks, label='Lockscreens', underline=0) menu_locks.add_command(label='Gesture Pattern (Legacy)', command=self.brute_pattern) menu_locks.add_separator() menu_locks.add_command(label='PIN Cracking (Generic)', command=self.brute_gen_pin) menu_locks.add_command(label='Password by Dictionary (Generic)', command=self.brute_gen_dict) menu_locks.add_command(label='Password by Brute-Force (Generic)', command=self.brute_force_gen) menu_locks.add_separator() menu_locks.add_command(label='PIN Cracking (Samsung)', command=self.brute_sam_pin) menu_locks.add_command(label='Password by Dictionary (Samsung)', command=self.brute_sam_dict) # menu_locks.add_separator() def build_tools_menus(self): menu_tools = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_tools, label='Tools', underline=0) menu_tools.add_command(label='Convert AB to TAR file..', command=self.ab_to_tar) menu_tools.add_command(label='Extract AB to folder..', command=self.ab_to_folder) menu_tools.add_separator() menu_tools.add_command(label='Screen Capture', command=self.screencap) @threaded def ab_to_tar(self): ab_file = self.get_file('', ftype=[('AB File', '*.ab')]) if ab_file: logger.info(f'Converting {ab_file}') self.StatusMsg.set('Converting to tar...') tar_ = DrillerTools.ab_to_tar(ab_file, to_tmp=False) logger.info(f'Converted to: {tar_}') self.StatusMsg.set('Finished') @threaded def ab_to_folder(self): ab_file = self.get_file('', ftype=[('AB File', '*.ab')]) if ab_file: logger.info(f'Converting {ab_file}') self.StatusMsg.set('Converting to tar...') tar_ = DrillerTools.ab_to_tar(ab_file, to_tmp=False) self.StatusMsg.set('Extracting tar members...') dst_ = pathlib.Path(f'{ab_file}_extracted/') dst_.mkdir() for _ in DrillerTools.extract_form_tar(tar_, dst_, full=True): pass logger.info(f'Extracted to: {dst_}') self.StatusMsg.set('Finished') # Other Windows ----------------------------------------------------------- def preferences(self): root = Preferences(root=self.root) root.mainloop() def whatsapp_crypt(self): root = WhatsAppCrypt(root=self.root) root.mainloop() def brute_pattern(self): root = BrutePattern(root=self.root) root.mainloop() def brute_gen_pin(self): root = BruteGenPin(root=self.root) root.mainloop() def brute_gen_dict(self): root = BruteGenDict(root=self.root) root.mainloop() def brute_sam_dict(self): root = BruteSamDict(root=self.root) root.mainloop() def brute_sam_pin(self): root = BruteSamPin(root=self.root) root.mainloop() def brute_force_gen(self): root = BruteForceGen(root=self.root) root.mainloop() def screencap(self): root = ScreenCap(root=self.root) root.mainloop() # Class functions --------------------------------------------------------- @threaded def check_usb(self, event): with disable_control(event): self.DeviceStatus.set('Please wait...') if not self.adb.adb_bin: self.DeviceStatus.set('ADB is not configured!') return self.adb('start-server') serial, status = self.adb.device() if status == 'offline': self.DeviceStatus.set('Device is OFFLINE!') elif status == 'unauthorized': self.DeviceStatus.set('Device is UNAUTHORIZED!') else: self.DeviceStatus.set(f'Serial ID: {serial}' if serial else 'Device not detected!') @threaded @log_errors def decode_file(self, decoder): choose_file = self.get_file(decoder.TARGET) if choose_file and os.path.isfile(choose_file): file_path = os.path.realpath(choose_file) logger.info(f'Decoding: {os.path.basename(file_path)}') work_dir = self.OUTPUT.get() or os.path.split(file_path)[0] dec = decoder.__class__(work_dir, file_path) html_rep = dec.report_html() report = work_dir / pathlib.Path(html_rep) webbrowser.open_new_tab(report.as_uri()) dec.report_xlsx() @threaded def RunUsbExtraction(self, event): with disable_control(event): output_dir = self.OUTPUT.get() if not output_dir: messages.select_output() elif self.DeviceStatus.get().endswith('!'): messages.device_not_detected() return elif os.path.exists(output_dir): self.StatusMsg.set('Running...') drill = driller.ChainExecution( output_dir, status_msg=self.StatusMsg, do_shared=self.extract_shared.get(), use_adb=True, logger=logger) drill.InitialAdbRead() drill.CreateWorkDir() drill.DataAcquisition( run_backup=self.force_backup.get(), shared=self.extract_shared.get(),) drill.DataExtraction() drill.DecodeShared() drill.DataDecoding() drill.GenerateHtmlReport() drill.GenerateXlsxReport() drill.CleanUp() @threaded def RunAbExtraction(self, event): with disable_control(event): output_dir = self.OUTPUT.get() if not output_dir: messages.select_output() elif os.path.exists(output_dir): ab_file = self.get_file('', ftype=[('AB File', '*.ab')]) if ab_file and os.path.isfile(ab_file): self.StatusMsg.set('Running...') drill = driller.ChainExecution( output_dir, backup=ab_file, status_msg=self.StatusMsg, logger=logger) drill.CreateWorkDir() drill.DataExtraction() drill.DataDecoding() drill.DecodeShared() drill.GenerateHtmlReport() drill.GenerateXlsxReport() drill.CleanUp() @threaded def RunTarExtraction(self, event=None): with disable_control(event): output_dir = self.OUTPUT.get() if not output_dir: messages.select_output() elif os.path.exists(output_dir): tar_file = self.get_file('', ftype=[('TAR File', '*.tar')]) if tar_file and os.path.isfile(tar_file): self.StatusMsg.set('Running...') drill = driller.ChainExecution( output_dir, tarfile=tar_file, status_msg=self.StatusMsg, logger=logger) drill.CreateWorkDir() drill.DataExtraction() drill.DataDecoding() drill.GenerateHtmlReport() drill.GenerateXlsxReport() drill.CleanUp() @threaded def RunDirExtraction(self, event=None): with disable_control(event): output_dir = self.OUTPUT.get() if not output_dir: messages.select_output() elif os.path.exists(output_dir): src_dir = self.get_dir() if src_dir: self.StatusMsg.set('Running...') drill = driller.ChainExecution( output_dir, src_dir=src_dir, status_msg=self.StatusMsg, logger=logger) drill.CreateWorkDir() drill.ExtractFromDir() drill.DataDecoding() drill.GenerateHtmlReport() drill.GenerateXlsxReport() drill.CleanUp() # WhatsApp Crypt -------------------------------------------------------------- class WhatsAppCrypt(BaseWindow): KEY_SIZE = decrypts.WhatsAppCrypt.KEY_SIZE SUFFIX = decrypts.WhatsAppCrypt.SUFFIX def __init__(self, root=None, title='WhatsApp Crypt Decryptor'): super().__init__(root=root, title=title) self.guide = statics.WHATSAPP_CRYPT self.work_dir = None self.crypts = {} self.key_file = None self.supported = self.get_supported() self._info = tk.StringVar() self._info_but = tk.StringVar() self._info_but.set('Show Info') ttk.Label(self.mainframe, text=title, font=self.FontTitle).grid(row=1, column=0, columnspan=2) tk.Button(self.mainframe, textvariable=self._info_but, relief='flat', command=self.info_toggle)\ .grid(row=1, column=2, columnspan=1, sticky=tk.E) ttk.Label(self.mainframe, textvar=self._info).grid(row=5, column=0, columnspan=3, sticky=self.WE) self.dir_label = tk.StringVar() self.dir_but = ttk.Button(self.mainframe, text='Select directory', command=self.set_dir) self.dir_but.grid(row=10, column=0, columnspan=1, sticky=tk.W) ttk.Label(self.mainframe, textvar=self.dir_label).grid(row=10, column=1, columnspan=2, sticky=tk.W) self.key_label = tk.StringVar() self.key_but = ttk.Button(self.mainframe, text="Select 'key' file", command=self.set_key) self.key_but.grid(row=11, column=0, columnspan=1, sticky=tk.W) ttk.Label(self.mainframe, textvar=self.key_label).grid(row=11, column=1, columnspan=2, sticky=tk.W) self.file_box = ttk.Treeview(self.mainframe, columns=['size', 'done'], selectmode=tk.EXTENDED) self.file_box.heading('#0', text='File Name') self.file_box.heading('size', text='Size') self.file_box.heading('done', text='Decrypted') self.file_box.column('size', width=30) self.file_box.column('done', width=20) self.file_box.tag_configure('success', background='light green') self.file_box.tag_configure('failure', background='#ff8080') self.file_box.grid(row=20, column=0, columnspan=3, sticky=self.WE) self.dec_all = ttk.Button(self.mainframe, text='Decrypt All', command=self.decrypt_all) self.dec_all.grid(row=30, column=0, sticky=tk.W) self.dec_sel = ttk.Button(self.mainframe, text='Decrypt Selected', command=self.decrypt_sel) self.dec_sel.grid(row=30, column=2, sticky=tk.E) def info_toggle(self): (self._info.set(''), self._info_but.set('Show Info')) if self._info.get() \ else (self._info.set(statics.WHATSAPP_CRYPT), self._info_but.set('Hide Info')) def controls_state(self, state): for c in [self.dir_but, self.key_but, self.dec_all, self.dec_sel]: c.configure(state=state) def set_dir(self): dialog = self.get_dir() if dialog: self.work_dir = dialog self.dir_label.set(self.work_dir) self.check_dir() self.try_key_file() def set_key(self, key=None): dialog = key or self.get_file('key', fsize=self.KEY_SIZE) if dialog: self.key_file = None self.key_label.set('') self.key_file = dialog self.key_label.set(self.key_file) def try_key_file(self): key = os.path.join(self.work_dir, 'key') if os.path.isfile(key) and os.path.getsize(key) == self.KEY_SIZE: logger.info('WhatsAppCrypt: key file was detected & automatically selected') self.set_key(key=key) def check_dir(self): self.crypts.clear() self.file_box.delete(*self.file_box.get_children()) path_ = os.path.join(self.work_dir, '*.crypt*') for f in glob.iglob(path_): done = os.path.exists(f'{os.path.splitext(f)[0]}{self.SUFFIX}') size = human_bytes(os.path.getsize(f)) item = self.file_box.insert('', tk.END, text=os.path.basename(f), values=[size, done]) self.crypts[item] = f def tree_update(self, iid, values): self.file_box.item(iid, values=values) def decrypt_all(self): self.file_box.selection_add(self.file_box.get_children()) self.decrypt_sel() def decrypt_sel(self): sel = self.file_box.selection() if not sel: messagebox.showwarning('No selection made', 'Select at least one database to decrypt.') self.run_decrypt(sel) def run_decrypt(self, sel): try: self.controls_state(tk.DISABLED) for i in sel: file_ = self.crypts[i] fname = os.path.basename(file_) file_ext = file_.split('.')[-1].lower() decrypter = self.supported.get(file_ext) if decrypter: try: wadec = decrypter(file_, self.key_file) if wadec.decrypt(): vals = self.file_box.item(i)['values'] vals[1] = True self.file_box.item(i, values=vals, tags='success') logger.info(f'WhatsAppCrypt: {fname} successfully decrypted.') except decrypts.WhatsAppCryptError as err: logger.error(f'WhatsAppCrypt: {err}') self.file_box.item(i, tags='failure') messagebox.showerror('WhatsApp decryption error', str(err)) except Exception as err: logger.error(f'WhatsAppCrypt: {fname}: {err}') self.file_box.item(i, tags='failure') finally: self.file_box.selection_set() self.controls_state(tk.NORMAL) def get_supported(self): return {kls.CRYPT: kls for kls in decrypts.WhatsAppCrypt.__subclasses__()} # Pattern Decoding Window ----------------------------------------------------- class BrutePattern(BaseWindow): CANVAS_SIZE = 210 FACTOR = 3 def __init__(self, root=None, title='Lockscreen Gesture Pattern'): super().__init__(root=root, title=title) ttk.Label(self.mainframe, font=self.FontTitle, text=f'\n{title}\n').grid(row=1, column=0, columnspan=3) self.FILE = tk.StringVar() self.HASH = tk.StringVar() self.PATTERN = tk.StringVar() browse = ttk.Button(self.mainframe, text='Browse', command=self.select_file) browse.grid(row=2, column=0, sticky=tk.E) createToolTip(browse, "Select 'gesture.key' and it will be decoded automatically.") ttk.Label(self.mainframe, textvariable=self.FILE).grid(row=2, column=1, columnspan=2, sticky=tk.W) ttk.Label(self.mainframe, text='or').grid(row=3, column=0, sticky=tk.E) hash_label = ttk.Label(self.mainframe, text='Gesture Hash: ') hash_label.grid(row=4, column=0, sticky=tk.E) createToolTip(hash_label, "Enter gesture.key hash value (40 hexadecimal characters) from:\n--> '/data/system/gesture.key'") hash_field = ttk.Entry(self.mainframe, font=self.FontMono, textvariable=self.HASH, width=45) hash_field.grid(row=4, column=1, columnspan=2, sticky=tk.W) hash_field.bind('<Button-3>', rClicker, add='') pattern_label = ttk.Label(self.mainframe, text='Pattern: ') pattern_label.grid(row=6, column=0, sticky=tk.E) createToolTip(pattern_label, 'Double click on the entry field to edit and then to Draw\nEnter as a list of integers, eg: [8,4,0,1,2]') result_field = ttk.Entry(self.mainframe, textvariable=self.PATTERN, font=self.FontTitle, width=25, state='disabled') result_field.bind('<Button-3>', rClicker, add='') result_field.bind('<Button-1>', lambda e: result_field.configure(state='normal')) result_field.bind('<B3-Motion>', lambda e: result_field.configure(state='normal')) result_field.bind('<FocusOut>', lambda e: result_field.configure(state='disabled')) result_field.grid(row=6, column=1, columnspan=2, sticky=tk.W) self.VISUAL = tk.Canvas(self.mainframe, width=self.CANVAS_SIZE, height=self.CANVAS_SIZE, borderwidth=0) self.VISUAL.grid(row=7, column=1, sticky=tk.W) self.draw_pattern(self.VISUAL, self.PATTERN.get()) decode_button = ttk.Button(self.mainframe, text='Decode', command=self.crack_pattern) decode_button.grid(row=10, column=0, sticky=tk.E) draw_button = ttk.Button(self.mainframe, text='Draw', command=lambda: self.draw_pattern(self.VISUAL, self.PATTERN.get())) draw_button.grid(row=10, column=1, columnspan=2, sticky=tk.W) ttk.Button(self.mainframe, text='Close', command=self.root.destroy).grid(row=10, column=2, sticky=tk.E) # Pattern drawing code def draw_pattern(self, widget, pattern=None): POS = [] def checkered(canvas, line_distance): for x in range(line_distance, self.CANVAS_SIZE, line_distance): canvas.create_line(x, 0, x, self.CANVAS_SIZE, fill="#999999") for y in range(line_distance, self.CANVAS_SIZE, line_distance): canvas.create_line(0, y, self.CANVAS_SIZE, y, fill="#999999") def numbered(canvas): n = 0 step = self.CANVAS_SIZE // self.FACTOR start = step // 2 stepx = start for _ in range(self.FACTOR): stepy = start while stepy < self.CANVAS_SIZE: canvas.create_oval( stepy + (self.CANVAS_SIZE // 15), stepx + (self.CANVAS_SIZE // 15), stepy - (self.CANVAS_SIZE // 15), stepx - (self.CANVAS_SIZE // 15), fill='#444444', outline='#444444') canvas.create_text( stepy, stepx, font=(self.CANVAS_SIZE // 10), text=str(n), fill='#FFFFFF') POS.append((stepy, stepx)) n += 1 stepy += step stepx += step def clean_pat(pattern): try: return json.loads(pattern) except Exception as e: logger.warning(f'{e}') return [] def draw(canvas, pattern=[]): canvas.delete(tk.ALL) self.draw_pattern(self.VISUAL, None) if pattern: combo = list(itertools.chain(*[POS[_] for _ in clean_pat(pattern)])) if combo: canvas.create_line( combo, arrow='last', arrowshape=[ self.CANVAS_SIZE // 25, self.CANVAS_SIZE // 20, self.CANVAS_SIZE // 40 ], width=(self.CANVAS_SIZE // 70), fill='#00CC00') checkered(widget, self.CANVAS_SIZE // self.FACTOR) numbered(widget) if pattern: draw(widget, pattern) def select_file(self): selection = filedialog.askopenfilename( initialdir=self.conf('last_path'), initialfile='gesture.key', filetypes=[('Key file', '*.key'), ('Any file', '*')]) if selection and os.path.isfile(selection): file_path = os.path.realpath(selection) if os.path.getsize(file_path) != 20: return # TODO: error message self.conf.update_conf(**{'DEFAULT': {'last_path': os.path.dirname(file_path)}}) with open(file_path, 'rb') as R: self.HASH.set(binascii.hexlify(R.read()).decode()) self.crack_pattern() @threaded def crack_pattern(self): # '6a062b9b3452e366407181a1bf92ea73e9ed4c48' sha = self.HASH.get().strip() if len(sha) != 40: return # TODO: error message self.VISUAL.delete(tk.ALL) self.draw_pattern(self.VISUAL, None) self.PATTERN.set('Decoding...') pat = cracking.crack_pattern(sha) if pat: pat = str(pat) self.PATTERN.set(pat) self.draw_pattern(self.VISUAL, pat) else: self.PATTERN.set(':(') # Generic PIN Cracking Window ------------------------------------------------- class LockscreenBase(BaseWindow): def __init__(self, root=None, title=None, logger=logger): self.logger = logger super().__init__(root=root, title=title) ttk.Label(self.mainframe, font=self.FontTitle, text=f'\n{title}\n').grid(row=1, column=0, columnspan=3) self.START = tk.StringVar() self.END = tk.StringVar() self.START.set('0000') self.END.set('9999') self.HASH = tk.StringVar() self.SALT = tk.IntVar() self.SALT.set('') self.RESULT = tk.StringVar() self.DICTFILE = tk.StringVar() self.DICTLAB = tk.StringVar() self.TRIED = tk.StringVar() self.RATE = tk.StringVar() self.PROG = tk.StringVar() self.STOP = tk.BooleanVar() self.stats_enabled = False self.prog_enabled = False self.menubar = tk.Menu(self.root, tearoff=0) self.root['menu'] = self.menubar menu_read = tk.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(menu=menu_read, label='Read..', underline=0) menu_read.add_command(label="Salt from 'settings.db'...", command=self.salt_settings) menu_read.add_command(label="Salt from 'locksettings.db'...", command=self.salt_locksettings) menu_read.add_command(label="Salt from 'locksettings.db-wal'...", command=self.salt_locksettings_wal) menu_read.add_command(label="Hash from 'password.key'...", command=self.password_read) # Hash - 4 hash_label = ttk.Label(self.mainframe, text='Password Hash: ') hash_label.grid(row=40, column=0, sticky=tk.E) hash_field = ttk.Entry(self.mainframe, font=self.FontMono, textvariable=self.HASH, width=40) hash_field.grid(row=40, column=1, columnspan=2, sticky=tk.W) # Salt - 5 salt_label = ttk.Label(self.mainframe, text='Salt (integer): ') salt_label.grid(row=50, column=0, sticky=tk.E) salt_field = ttk.Entry(self.mainframe, font=self.FontMono, textvariable=self.SALT, width=20) salt_field.grid(row=50, column=1, columnspan=2, sticky=tk.W) # Results - 6 ttk.Label(self.mainframe, text='Result: ').grid(row=60, column=0, sticky=tk.E) self.result_field = ttk.Label(self.mainframe, textvariable=self.RESULT, font=self.FontTitle, foreground='grey') self.result_field.grid(row=60, column=1, columnspan=2, sticky=tk.W) # Controls - 8 self.start_button = ttk.Button(self.mainframe, text='Start', command=self.start) # self.start_button.bind('<Button-1>', self.start) self.start_button.grid(row=80, column=0, sticky=tk.E) self.stop_button = ttk.Button(self.mainframe, text='Stop', command=lambda: self.STOP.set(1)) self.stop_button.config(state=tk.DISABLED) self.stop_button.grid(row=80, column=1, columnspan=2, sticky=tk.W) self.close_button = ttk.Button(self.mainframe, text='Close', command=self.root.destroy) self.close_button.grid(row=80, column=2, sticky=tk.E) def salt_settings(self, key='lockscreen.password_salt'): dialog = self.get_file( 'settings.db', ftype=[('SQLite Databases', '*.db')]) if dialog: dec = decoders.SettingsDecoder(None, dialog) salt_value = dec.DICT.get(key) if salt_value: logger.info(f'Lockscreen salt: {salt_value}') self.SALT.set(salt_value) else: messagebox.showwarning( 'Value not found', f'`{key}` not found in the file!') def salt_locksettings(self, key='lockscreen.password_salt'): dialog = self.get_file( 'locksettings.db', ftype=[('SQLite Databases', '*.db')]) if dialog: try: dec = decoders.LocksettingsDecoder(None, dialog) salt_value = dec.DICT.get(key) if salt_value: logger.info(f'Lockscreen salt: {salt_value}') self.SALT.set(salt_value) except Exception: messagebox.showwarning( 'Value not found', f'`{key}` not found in the database!\nTry parsing the `locksettings.db-wal` instead.') def salt_locksettings_wal(self): dialog = self.get_file( 'locksettings.db-wal', ftype=[('SQLite Write Ahead Logs', '*.db-wal')]) if dialog and os.path.getsize(dialog): salt_values = decoders.parse_lockscreen_wal(dialog) if len(salt_values) == 1: logger.info(f'Lockscreen salt: {salt_values[0]}') self.SALT.set(salt_values[0]) elif len(salt_values) > 1: for n, s in enumerate(salt_values, start=1): logger.info(f'Lockscreen salt_{n}: {s}') messagebox.showwarning( 'Multiple results found', 'More than one value for salt was found! Check the log window to pick a value manually.') else: messagebox.showwarning( 'Value not found', 'Salt was not found in the file!') def password_read(self): try: file_ = self.get_file('password.key', ftype=[('Password File', '*.key')], fsizes=[40, 72]) if file_: with open(file_, 'r') as R: hash_val = R.read() logger.info(f'Password hash: {hash_val}') self.HASH.set(hash_val) except FileHandlerError as err: messagebox.showwarning('Wrong file size', str(err)) except UnicodeDecodeError: messagebox.showwarning( 'Wrong file type', 'The file is binary, not suitable.') def enable_pin_range(self): self.start_label = ttk.Label(self.mainframe, text='Start from: ') createToolTip(self.start_label, "Start the PIN from (Recommended: 0000)") self.start_field = ttk.Entry(self.mainframe, textvariable=self.START, width=16) self.start_field.bind('<Button-3>', rClicker, add='') self.start_label.grid(row=20, column=0, sticky=tk.E) self.start_field.grid(row=20, column=1, columnspan=2, sticky=tk.W) self.end_label = ttk.Label(self.mainframe, text='Max value: ') createToolTip(self.end_label, "Maximum PIN value") self.end_field = ttk.Entry(self.mainframe, textvariable=self.END, width=16) self.end_field.bind('<Button-3>', rClicker, add='') self.end_label.grid(row=30, column=0, sticky=tk.E) self.end_field.grid(row=30, column=1, columnspan=2, sticky=tk.W) def enable_wordlist(self): self.word_label = ttk.Label(self.mainframe, text='Word List File: ') self.word_label.grid(row=20, column=0, sticky=tk.E) createToolTip(self.word_label, "Select a Word List file (text file containing passwords)") dict_button = ttk.Button(self.mainframe, text='Browse', command=self.select_wordlist) dict_button.grid(row=20, column=1, sticky=tk.W) dict_label = ttk.Label(self.mainframe, textvariable=self.DICTLAB, font=self.FontInfo) dict_label.grid(row=20, column=2, columnspan=1, sticky=tk.W) def select_wordlist(self): dialog = self.get_file('', lpath='dict_path') if dialog and os.path.isfile(dialog): dialog = os.path.realpath(dialog) self.DICTFILE.set(dialog) self.DICTLAB.set(os.path.split(dialog)[1]) def enable_alpha_range(self): self.MIN = tk.IntVar() self.MIN.set(4) self.MAX = tk.IntVar() self.MAX.set(6) self.LOWER = tk.IntVar() self.UPPER = tk.IntVar() self.DIGITS = tk.IntVar() self.CUSTOM = tk.IntVar() self.CUSTVALS = tk.StringVar() min_label = ttk.Label(self.mainframe, text='Length min/max: ') min_label.grid(row=20, column=0, sticky=tk.E) createToolTip(min_label, 'Select minimum and maximum password length') lframe = ttk.Frame(self.mainframe) lframe.grid(row=20, column=1, sticky=tk.W) self.min_value = tk.Spinbox(lframe, from_=1, to=16, textvariable=self.MIN, width=3, command=self.updatemin) createToolTip(self.min_value, "Minimum password length") self.min_value.pack(side=tk.LEFT) self.max_value = tk.Spinbox(lframe, from_=1, to=16, textvariable=self.MAX, width=3, command=self.updatemax) createToolTip(self.max_value, "Maximum password length") self.max_value.pack() char_label = ttk.Label(self.mainframe, text='Characters: ') char_label.grid(row=30, column=0, sticky=tk.E) createToolTip(char_label, "Choose characters combination for the password") iframe = ttk.Frame(self.mainframe) iframe.grid(row=30, column=1, sticky=tk.W) ttk.Checkbutton(iframe, text='Lowercase [a-z]', var=self.LOWER).pack(side=tk.TOP, fill=tk.BOTH, expand=True) ttk.Checkbutton(iframe, text='Uppercase [A-Z]', var=self.UPPER).pack(side=tk.TOP, fill=tk.BOTH, expand=True) ttk.Checkbutton(iframe, text='Digits [0-9]', var=self.DIGITS).pack(side=tk.TOP, fill=tk.BOTH, expand=True) ttk.Checkbutton(iframe, text='Custom:', var=self.CUSTOM).pack(side=tk.LEFT, fill=tk.BOTH, expand=True) ttk.Entry(iframe, textvariable=self.CUSTVALS, width=15).pack(fill=tk.BOTH, expand=True) def updatemin(self): if self.MIN.get() > self.MAX.get(): self.MAX.set(self.MAX.get() + 1) _max = self.MAX.get() _max = _max + 1 if _max < 16 else 16 self.min_value.config(to_=_max) def updatemax(self): if self.MIN.get() > self.MAX.get(): self.MIN.set(self.MIN.get() - 1) self.max_value.config(from_=self.MIN.get() - 1) def enable_stats(self): self.stats_enabled = True ttk.Label(self.mainframe, text='Words tried: ').grid(row=70, column=0, sticky=tk.E) ttk.Label(self.mainframe, textvariable=self.TRIED).grid(row=70, column=1, columnspan=2, sticky=tk.W) ttk.Label(self.mainframe, text='Rate (pw/sec): ').grid(row=71, column=0, sticky=tk.E) ttk.Label(self.mainframe, textvariable=self.RATE).grid(row=71, column=1, columnspan=2, sticky=tk.W) def enable_progress(self): self.prog_enabled = True ttk.Label(self.mainframe, text='Progress: ').grid(row=75, column=0, sticky=tk.E) ttk.Label(self.mainframe, textvariable=self.PROG).grid(row=75, column=1, columnspan=2, sticky=tk.W) @threaded def start(self, **kwargs): self.result_field.configure(foreground='grey') try: self.menubar.entryconfig(0, state=tk.DISABLED) self.start_button.configure(state=tk.DISABLED) self.stop_button.configure(state=tk.NORMAL) self.close_button.configure(state=tk.DISABLED) crack = cracking.PasswordCrack( self.HASH.get(), self.SALT.get(), start=self.START.get(), end=self.END.get(), update_rate=int(self.conf('update_rate')), **kwargs) result = crack.crack_password( self.RESULT, self.STOP, self.TRIED if self.stats_enabled else None, self.RATE if self.stats_enabled else None, self.PROG if self.prog_enabled else None) if result: self.result_field.configure(foreground='red') self.RESULT.set(result) logger.info(f'Lockscreen credential found: {result}') else: self.result_field.configure(foreground='black') self.RESULT.set('Stopped!' if self.STOP.get() else 'Not found!') except Exception as err: self.logger.exception('Error in password cracking.') messagebox.showwarning('Error', str(err)) finally: self.STOP.set(0) self.menubar.entryconfig(0, state=tk.NORMAL) self.start_button.configure(state=tk.NORMAL) self.stop_button.configure(state=tk.DISABLED) self.close_button.configure(state=tk.NORMAL) # --------------------------------------------------------------------------- # class BruteGenPin(LockscreenBase): def __init__(self, root=None, title='Lockscreen PIN Cracking (Generic)'): super().__init__(root=root, title=title) self.enable_pin_range() class BruteSamPin(BruteGenPin): def __init__(self, root=None, title='Lockscreen PIN Cracking (Samsung)'): super().__init__(root=root, title=title) def start(self, samsung=True): super().start(samsung=samsung) class BruteGenDict(LockscreenBase): def __init__(self, root=None, title='Lockscreen Password by Dictionary (Generic)'): super().__init__(root=root, title=title) self.enable_wordlist() self.enable_stats() def start(self): dict_file = self.DICTFILE.get() super().start(alpha=True, dict_file=dict_file) class BruteSamDict(LockscreenBase): def __init__(self, root=None, title='Lockscreen Password by Dictionary (Samsung)'): super().__init__(root=root, title=title) self.enable_wordlist() self.enable_stats() def start(self): dict_file = self.DICTFILE.get() super().start(alpha=True, samsung=True, dict_file=dict_file) class BruteForceGen(LockscreenBase): def __init__(self, root=None, title='Lockscreen Password by Brute-Force (Generic)'): super().__init__(root=root, title=title) self.enable_alpha_range() self.enable_stats() self.enable_progress() def make_range(self): selection = ''.join([k for k, v in { string.ascii_lowercase: self.LOWER.get(), string.ascii_uppercase: self.UPPER.get(), string.digits: self.DIGITS.get(), self.CUSTVALS.get(): self.CUSTOM.get(), }.items() if v]) return selection def start(self): super().start(alpha=True, alpha_range=self.make_range(), min_len=self.MIN.get(), max_len=self.MAX.get()) # --------------------------------------------------------------------------- # class ScreenCap(BaseWindow): def __init__(self, root=None, title=f'{__app_name__}: Screen Capture'): super().__init__(root=root, title=title) self.store = screencap.ScreenStore() self.REPCOUNT = tk.StringVar() self.REPCOUNT.set('Report') self.OUTPUTLAB = tk.StringVar() self.OUTPUTLAB.set('(Not saving screen shots)') self.REMEMBER = tk.IntVar() self.REMEMBER.set(0) ttk.Label(self.mainframe, font=self.FontTitle, text=f'\n{title}\n').grid(row=1, column=0, columnspan=3) # Make an empty Canvas self.snap_frame = ttk.Labelframe(self.mainframe, text='Screen View', padding=(1, 0, 1, 0)) self.snap_frame.grid(row=10, column=0, rowspan=2, sticky=(tk.N, tk.W)) self.screen_view = tk.Canvas(self.snap_frame, width=210, height=350, borderwidth=0) self.screen_view.create_rectangle(0, 0, 210, 350, fill="#FFFFFF") self.screen_view.create_line(0, 0, 210, 350, fill="#000000") self.screen_view.create_line(210, 0, 0, 350, fill="#000000") self.screen_view.grid(row=0, column=0, sticky=(tk.N, tk.W)) # Controls Frame control_frame = ttk.Frame(self.mainframe, padding=(1, 0, 1, 0)) control_frame.grid(row=10, column=1, rowspan=2, sticky=(tk.N, tk.W)) # Output Frame output_frame = ttk.Frame(control_frame) output_frame.pack(expand=True, fill=tk.X, side=tk.TOP) # OUTDIR OUTDIR = ttk.Button(output_frame, text='Output', command=self.set_directory) createToolTip(OUTDIR, 'Set destination directory where to save screen captures.') OUTDIR.pack(side=tk.LEFT) ttk.Label(output_frame, textvar=self.OUTPUTLAB, font=self.FontInfo).pack(expand=True, fill=tk.X, side=tk.TOP) # Assistance Frame assist_frame = ttk.Frame(control_frame) assist_frame.pack(side=tk.LEFT) # Save self.save_this = ttk.Button(assist_frame, text='Save this..', command=self.save) # self.save_this = ttk.Button(assist_frame, text='Save this..') self.save_this.configure(state=tk.DISABLED) createToolTip(self.save_this, 'Save current screen capture to..') self.save_this.pack(side=tk.TOP, expand=0, fill=tk.X) # Report self.report_button = ttk.Button(assist_frame, textvar=self.REPCOUNT) self.report_button.bind('<Button-1>', self.report) self.report_button.configure(state=tk.DISABLED) createToolTip(self.report_button, 'Generate a report with created screen captures.\nNote: only works when Output is provided.') self.report_button.pack(side=tk.TOP, expand=0, fill=tk.X) # Guide ttk.Button(assist_frame, text='Help', command=messages.screen_guide).pack(side=tk.TOP, expand=0, fill=tk.X) # Note self.note_text = ttk.Entry(self.mainframe, width=27) self.note_text.configure(state=tk.DISABLED) self.note_text.bind("<Return>", self.capture) createToolTip(self.note_text, 'Type a comment press ENTER to Capture and Save.') # Snap self.snap_button = ttk.Button(self.mainframe, text='Capture', command=self.capture, takefocus=True) self.snap_button.grid(row=15, column=0, columnspan=1, sticky=(tk.W,)) # Close ttk.Button(self.mainframe, text='Close', command=self.root.destroy)\ .grid(row=15, column=1, columnspan=2, sticky=(tk.N, tk.E)) self.remember_button = ttk.Checkbutton(self.mainframe, text='Remember', var=self.REMEMBER) createToolTip(self.remember_button, 'Keep last entered comment in field.') # Status status_frame = ttk.Frame(self.mainframe, padding=(5, 1), relief='groove') status_frame.grid(row=20, column=0, columnspan=3, sticky=(tk.W, tk.E)) self.status_label = ttk.Label(status_frame, text='Ready', font=self.FontStatus) self.status_label.grid(row=4, column=0, sticky=tk.W, padx=5, pady=3) def set_directory(self): _path = self.get_dir() if _path and self.store.set_output(_path): self.OUTPUTLAB.set(self.store.output if len(self.store.output) < 22 else f'..{self.store.output[-20:]}') self.REPCOUNT.set(f'Report ({self.store.count})') self.report_button.configure(state=tk.NORMAL) self.note_text.configure(state=tk.NORMAL) self.note_text.grid(row=14, column=0, columnspan=1, sticky=tk.W) self.remember_button.grid(row=15, column=0, columnspan=1, sticky=tk.E) def display(self, img_obj): if not img_obj: messagebox.showwarning('Nothing to display', 'Nothing was captured. Is a device connected?') return None self.save_this.configure(state=tk.NORMAL) self.screen_view.grid_forget() img_obj.seek(0) head = img_obj.read(24) width, height = struct.unpack('>ii', head[16:24]) factor = width // 200 fname = os.path.realpath(img_obj.name) self.currentImage = tk.PhotoImage(file=fname).subsample(factor, factor) self.PIC = ttk.Label(self.snap_frame, image=self.currentImage) self.PIC.grid(row=0, column=0, sticky=(tk.N, tk.W)) _note = self.note_text.get().rstrip() if _note: tk.Label(self.snap_frame, text=_note, font=self.FontInfo, bg='#FFFFFF').grid(row=0, column=0, sticky=(tk.S, tk.W)) if self.REMEMBER.get() == 0: self.note_text.delete(0, 'end') @threaded def capture(self): self.status_label.configure(text='Capturing...', foreground="black") self.snap_button.configure(state=tk.DISABLED) img_obj = self.store.capture(self.note_text.get().rstrip()) if img_obj is False: messagebox.showinfo('Content Protection Enabled', "It is not possible to capture this type of content.") self.snap_button.configure(text="Capture") self.snap_button.configure(state=tk.NORMAL) self.status_label.configure(text=messages.content_protect, foreground="blue") else: if self.store.output: self.REPCOUNT.set(f'Report ({self.store.count})') self.snap_button.configure(state=tk.NORMAL) self.status_label.configure(text='Ready') return self.display(img_obj) def save(self): file_location = self.store.items[-1][0] savefilename = filedialog.asksaveasfilename( initialdir=os.getenv('HOME') or os.getcwd(), initialfile=os.path.split(file_location)[1], filetypes=[('Portable Network Graphics', '*.png')]) if savefilename: shutil.copy2(file_location, savefilename) @threaded def report(self, event=None): with disable_control(event): if not self.store.count: messagebox.showinfo('No Captures', "Nothing to report yet") return report = pathlib.Path(self.store.report()) webbrowser.open_new_tab(report.as_uri()) # Preferences ----------------------------------------------------------------- class Preferences(BaseWindow): def __init__(self, root=None, title='User Preferences'): super().__init__(root=root, title=title) self.fields = { 'default_path': { 'label': 'Default OUTPUT path', 'tooltip': 'This will be the default location path where report outputs will be saved.', 'var': tk.StringVar, 'control': ttk.Entry, 'browse': True }, 'update_rate': { 'label': 'Cracking update rate', 'tooltip': 'Rate at which the UI is updated with a current value during password cracking.', 'var': tk.IntVar, 'control': tk.Spinbox, 'kwargs': {'from_': 1e4, 'to': 1e6, 'increment': 1e4} }, 'offline_mode': { 'label': 'Offline mode', 'tooltip': 'Offline mode skips latest version checking on startup.', 'var': tk.IntVar, 'control': ttk.Checkbutton, }, 'save_log': { 'label': 'Save logs', 'tooltip': 'When OUTPUT is defined, save logs automatically', 'var': tk.IntVar, 'control': ttk.Checkbutton, }, 'window_size': { 'label': 'Log window size', 'tooltip': 'Log window height in line numbers', 'var': tk.IntVar, 'control': ttk.OptionMenu, 'values': [12, 20], }, 'theme': { 'label': 'Theme', 'tooltip': 'Style appearance of the user interface', 'var': tk.StringVar, 'control': ttk.OptionMenu, 'values': self.style_ttk.theme_names(), }, 'time_zone': { 'label': 'Time zone offset', 'tooltip': 'UTC offset for reporting time and date stamps', 'var': tk.StringVar, 'control': ttk.OptionMenu, 'values': config.TIME_ZONES, }, 'date_format': { 'label': 'Date format', 'tooltip': 'Format in which the time and date are reported', 'var': tk.StringVar, 'control': ttk.Entry, }, 'custom_header': { 'label': 'Custom header', 'tooltip': 'Custom header information for HTML reports. Use HTML tags for customization.', 'var': tk.StringVar, 'control': ttk.Entry, }, 'custom_footer': { 'label': 'Custom footer', 'tooltip': 'Custom footer information for HTML reports. Use HTML tags for customization.', 'var': tk.StringVar, 'control': ttk.Entry, }, } self.objects = {} self.render_view() def set_obj(self, key, var): obj_name = f'OBJ_{key}' setattr(self, obj_name, var()) obj = getattr(self, obj_name) self.objects[key] = obj return obj def browse(self, event): with disable_control(event): key = event.widget.key value = self.get_dir(path=key) if value: self.update_obj(key, value) def render_view(self): _var = { ttk.Entry: 'textvar', tk.Spinbox: 'textvariable', ttk.Checkbutton: 'var', } for n, (key, values) in enumerate(self.fields.items(), start=1): obj = self.set_obj(key, values['var']) obj.set(self.conf(key)) Control = values['control'] args = values.get('args', []) kwargs = values.get('kwargs', {}) if _var.get(Control): kwargs.update({_var.get(Control): obj}) elif hasattr(Control, '_options'): args.extend([ obj, self.conf(key), *values.get('values', []), ]) L = ttk.Label(self.mainframe, text=f"{values['label']} : ") createToolTip(L, values['tooltip']) L.grid(row=n, column=0, sticky=tk.E) C = Control(self.mainframe, *args, **kwargs) if values.get('browse'): C.key = key C.bind('<Button-1>', self.browse) C.grid(row=n, column=1, sticky=tk.W) ttk.Button(self.mainframe, text='Save', command=self.save).grid(row=n + 1, column=0, sticky=tk.E) ttk.Button(self.mainframe, text='Cancel', command=self.quit_app).grid(row=n + 1, column=1, sticky=tk.W) # ttk.Label(self.mainframe, text='Restart Andriller for changes to take effect') def update_obj(self, key, value): obj = self.objects[key] obj.set(value) def save(self): to_update = {} for key, obj in self.objects.items(): if str(obj.get()) != self.conf(key): to_update[key] = obj.get() self.conf.update_conf(**{self.conf.NS: to_update}) self.quit_app() # Extra helpers --------------------------------------------------------------- def rClicker(e): try: def rClick_Copy(e, apnd=0): e.widget.event_generate('<Control-c>') def rClick_Cut(e): e.widget.event_generate('<Control-x>') def rClick_Paste(e): e.widget.event_generate('<Control-v>') e.widget.focus() nclst = [ (' Cut', lambda e=e: rClick_Cut(e)), (' Copy', lambda e=e: rClick_Copy(e)), (' Paste', lambda e=e: rClick_Paste(e)), ] rmenu = tk.Menu(None, tearoff=0, takefocus=0) for (txt, cmd) in nclst: rmenu.add_command(label=txt, command=cmd) rmenu.tk_popup(e.x_root + 40, e.y_root + 10, entry="0") except tk.TclError as e: logger.error(f'rClicker error: {e}') return "break" # --------------------------------------------------------------------------- # class FileHandlerError(Exception): pass
43.740667
142
0.594199
1b3dd669ba387413c8881d7450738bd57338f7cd
2,022
py
Python
src/hanko_sdk/models/authentication_finalization.py
teamhanko/hanko-python
2455861b6edc3c393dde7ed62635f96c88b1350f
[ "Apache-2.0" ]
1
2022-03-08T06:38:22.000Z
2022-03-08T06:38:22.000Z
src/hanko_sdk/models/authentication_finalization.py
teamhanko/hanko-python
2455861b6edc3c393dde7ed62635f96c88b1350f
[ "Apache-2.0" ]
null
null
null
src/hanko_sdk/models/authentication_finalization.py
teamhanko/hanko-python
2455861b6edc3c393dde7ed62635f96c88b1350f
[ "Apache-2.0" ]
null
null
null
from dataclasses import dataclass from typing import ClassVar from enforce_typing import enforce_types from .assertion import CredentialAssertionResponse, AuthenticatorAssertionResponse from .base64_entities import UrlEncodedBase64 from .base_model import BaseModel from .core import Credential from .options import CredentialType from .credential import PublicKeyCredential @dataclass class AuthenticationFinalizationRequest(CredentialAssertionResponse): """ Contains the representation of a :py:class:`PublicKeyCredential` obtained through assertion generation via the browsers' ``navigator.credentials.get()``. See also: https://www.w3.org/TR/webauthn-2/#publickeycredential """ @classmethod def from_json_serializable(cls, d: dict): if d is None: return None return AuthenticationFinalizationRequest( d.get(AuthenticationFinalizationRequest.ID_KEY, None), CredentialType.from_json_serializable(d.get(AuthenticationFinalizationRequest.TYPE_KEY, None)), UrlEncodedBase64.from_json_serializable(d.get(AuthenticationFinalizationRequest.RAW_ID_KEY, None)), d.get(AuthenticationFinalizationRequest.EXTENSIONS_KEY, None), AuthenticatorAssertionResponse.from_json_serializable(d.get(AuthenticationFinalizationRequest.ASSERTION_RESPONSE_KEY, None)) ) @dataclass class AuthenticationFinalizationResponse(BaseModel): """ Represents the response of a successful authentication. """ credential: Credential CREDENTIAL_KEY: ClassVar[str] = "credential" def to_json_serializable_internal(self) -> dict: return { AuthenticationFinalizationResponse.CREDENTIAL_KEY: self.credential } @classmethod def from_json_serializable(cls, d: dict): if d is None: return None return AuthenticationFinalizationResponse( Credential.from_json_serializable(d.get(AuthenticationFinalizationResponse.CREDENTIAL_KEY, None)) )
37.444444
161
0.757666
cfa9c02ead1642db9cf3d74e5c76ae8034f12ef1
35,563
py
Python
pkgs/tools/yasm/src/tools/python-yasm/pyxelator/ir.py
manggoguy/parsec-modified
d14edfb62795805c84a4280d67b50cca175b95af
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
pkgs/tools/yasm/src/tools/python-yasm/pyxelator/ir.py
manggoguy/parsec-modified
d14edfb62795805c84a4280d67b50cca175b95af
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
pkgs/tools/yasm/src/tools/python-yasm/pyxelator/ir.py
manggoguy/parsec-modified
d14edfb62795805c84a4280d67b50cca175b95af
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python """ ir.py - parse c declarations (c) 2002, 2003, 2004, 2005 Simon Burton <simon@arrowtheory.com> Released under GNU LGPL license. version 0.xx """ import sys #import cPickle as pickle import pickle #from lexer import Lexer from parse_core import Symbols #, Parser import node as node_module import cparse import genpyx class Node(genpyx.Node, node_module.Node): """ tree structure """ def __init__( self, *args, **kw ): node_module.Node.__init__( self, *args, **kw ) self._marked = False def get_marked( self ): return self._marked def set_marked( self, marked ): # if marked: # print "MARK", self self._marked = marked marked = property( get_marked, set_marked ) # def __getstate__( self ): # return self.__class__, tuple( [ item.__getstate__() for item in self ] ) # def __setstate__( self, state ): # cls, states = state # states = list(states) # for idx, state in enumerate(states): # items[idx] = items[idx].__setstate__( def __getstate__(self): return str(self) def __setstate__(self, state): Node.__init__(self) self[:] = eval(state) # _unique_id = 0 # def get_unique_id(cls): # Node._unique_id += 1 # return Node._unique_id # get_unique_id = classmethod(get_unique_id) def __hash__( self ): return hash( tuple([hash(type(self))]+[hash(item) for item in self]) ) def clone(self): l = [] for item in self: if isinstance(item,Node): item = item.clone() l.append(item) return self.__class__(*l, **self.__dict__) def init_from( self, other ): # class method ? # Warning: shallow init self[:] = other self.__dict__.update( other.__dict__ ) return self # def is_struct(self): # for x in self: # if isinstance(x,Node): # if x.is_struct(): # return 1 # return 0 #def explain(self): #l = [] #for x in self: #if isinstance(x,Node): #l.append(x.explain()) #else: #l.append(str(x)) #return string.join(l," ") ##(self.__class__.__name__,string.join(l) ) def psource(self): if hasattr(self,'lines'): # print "# "+string.join(self.lines,"\n# ")+"\n" print "# "+"\n# ".join(self.lines)+"\n" def cstr(self,l=None): """ Build a list of tokens; return the joined tokens string """ if l is None: l = [] for x in self: if isinstance(x,Node): x.cstr(l) else: l.insert(0,str(x)+' ') s = ''.join(l) return s def ctype(self): # anon_clone " return clone of self without identifiers " #print "%s.ctype()"%self l=[] for x in self: if isinstance(x,Node): l.append(x.ctype()) else: l.append(x) #print "%s.__class__(*%s)"%(self,l) return self.__class__(*l, **self.__dict__) # XX **self.__dict__ ? def cbasetype(self): " return ctype with all TypeAlias's replaced " # WARNING: we cache results (so do not mutate self!!) l=[] for x in self: if isinstance(x,Node): l.append(x.cbasetype()) else: l.append(x) #print "%s.__class__(*%s)"%(self,l) return self.__class__(*l, **self.__dict__) # XX **self.__dict__ ? def signature( self, tank=None ): if tank is None: tank = {} for node in self.nodes(): if not tank.has_key( type(node) ): tank[ type(node) ] = {} type(node).tank = tank[type(node)] shape = tuple( [ type(_node).__name__ for _node in node ] ) if not tank[type(node)].has_key(shape): tank[type(node)][shape] = [] tank[type(node)][shape].append( node ) return tank def psig( self, tank=None ): if tank is None: tank = {} tank = self.signature(tank) for key in tank.keys(): print key.__name__ for shape in tank[key].keys(): print " ", shape # ################################################# class Named(genpyx.Named, Node): " has a .name property " def get_name(self): if self: assert type(self[0])==str return self[0] return None def set_name(self, name): if self: self[0] = name else: self.append(name) name = property(get_name,set_name) class BasicType(genpyx.BasicType, Named): "float double void char int" pass class Qualifier(genpyx.Qualifier, Named): "register signed unsigned short long const volatile inline" pass class StorageClass(genpyx.StorageClass, Named): "extern static auto" pass class Ellipses(genpyx.Ellipses, Named): "..." pass class GCCBuiltin(genpyx.GCCBuiltin, BasicType): "things with __builtin prefix" pass class Identifier(genpyx.Identifier, Named): """ shape = +( str, +ConstExpr ) """ #def explain(self): #if len(self)==1: #return "%s"%self.name #else: #return "%s initialized to %s"%(self.name, #Node(self[1]).explain()) # will handle Initializer # def ctype(self): # return self.__class__(*self[1:]) #.clone() ? # def get_name(self): # if self: # return self[0] # def set_name(self, name): # if self: # self[0] = name # else: # self.append(name) # name = property(get_name,set_name) def cstr(self,l=None): if l is None: l=[] if len(self)>1: assert len(self)==2 l.append( '%s = %s'%(self[0],self[1]) ) elif len(self)==1: l.append( str(self[0]) ) return " ".join(l) class TypeAlias(genpyx.TypeAlias, Named): """ typedefed things, eg. size_t """ def cbasetype( self ): node = self.typedef.cbasetype().get_rest() return node class Function(genpyx.Function, Node): """ """ #def explain(self): #if len(self): #return "function (%s), returning"%\ #", ".join( map(lambda x:x.explain(),self) ) #else: #return "function returning" def cstr(self,l): #print '%s.cstr(%s)'%(self,l) _l=[] assert len(self) i=0 while isinstance(self[i],Declarator): _l.append( self[i].cstr() ) i=i+1 l.append( '(%s)'% ', '.join(_l) ) while i<len(self): self[i].cstr(l) i=i+1 return " ".join(l) def return_type(self): node = self[-1] #assert isinstance(node,DeclarationSpecifiers) return Declarator( Identifier(), node ) ret = property(return_type) def get_args(self): args = [ arg for arg in self[:-1] if not arg.is_void() ] return args args = property(get_args) def arg_types(self): return [ AbstractDeclarator().init_from( arg.ctype() ) for arg in self[:-1]] def is_varargs(self): for node in self.nodes(): if isinstance(node,Ellipses) or 'va_list' in node: # print self, 'is_varargs' return True # print self, 'is_varargs' return False # return fn.deepfind(Ellipses) or fn.deepfind('va_list') def ctype(self): return Function(*self.arg_types()+[self[-1]]) # XX self[-1].ctype class Pointer(genpyx.Pointer, Node): """ """ def get_spec(self): if type(self[0])==TypeSpecifiers: # isinstance ?? return self[0] spec = property(get_spec) #def explain(self): #return "pointer to" def cstr(self,l): assert len(self) node=self[0] l.insert(0,'*') if isinstance(node,Function): l.insert(0,'(') l.append(')') elif isinstance(node,Array): l.insert(0,'(') l.append(')') return Node.cstr(self,l) class Array(genpyx.Array, Node): """ """ #def explain(self): #s='' #if len(self): #if type(self[0])==int: #s='0 to %s '%(self[0]-1) #return "array %sof"%s def has_size(self): try: int(self.size) return True except: return False def get_size(self): if type(self[-1])==str: try: return int(self[-1]) except: return self[-1] return self[-1] # None size = property(get_size) def get_spec(self): if type(self[0])==TypeSpecifiers: # isinstance ?? return self[0] spec = property(get_spec) def to_pointer(self): node = Pointer() node.init_from( self.clone() ) node.pop() # pop the size element return node def cstr(self,l): if self.size is None: l.append('[]') else: l.append('[%s]'%self.size) return Node( *self[:-1] ).cstr( l ) class Tag(genpyx.Tag, Named): " the tag of a Struct, Union or Enum " pass class Taged(genpyx.Taged, Node): "Struct, Union or Enum " def get_tag(self): if len(self): tag = self[0] assert type(tag)==Tag # isinstance ?? else: tag = None return tag def set_tag(self,tag): if len(self): self[0] = tag else: self.append(tag) tag = property( get_tag, set_tag ) def has_members(self): return len(self)>1 # more than just a tag def get_members(self): return self[1:] members = property(get_members) # fields ? def ctype(self): if not self.tag.name: #print "# WARNING : anonymous struct " # OK i think return self.clone() # self = self.clone() # return self[:1] # just the tag return self.__class__( self.tag, **self.__dict__ ) # just the Tag # return self.__class__( *self, **self.__dict__ ) def cbasetype(self): return self.ctype() # is this enough ??? # return Node.cbasetype(self) # XX lookup my tag if i am empty ..? class Compound(genpyx.Compound, Taged): "Struct or Union" def cstr(self,_l=None): assert isinstance( self[0], Tag ) tag='' if len(self[0]): tag=' '+self[0][0] if isinstance(self,Struct): l=[ 'struct%s '%tag ] elif isinstance(self,Union): l=[ 'union%s '%tag ] if len(self)>1: l.append(' { ') for decl in self[1:]: l.append( decl.cstr()+"; " ) l.append('} ') if _l is None: _l=[] while l: _l.insert( 0, l.pop() ) # XX empty struct with no tag -> "struct" XX return "".join( _l ) def ctype(self): tp = Taged.ctype(self) for i in range(1,len(tp)): tp[i] = StructDeclarator().init_from( tp[i] ) return tp class Struct(genpyx.Struct, Compound): """ """ pass class Union(genpyx.Union, Compound): """ """ pass class Enum(genpyx.Enum, Taged): """ """ def cstr(self,_l=None): assert isinstance( self[0], Tag ) tag='' if len(self[0]): tag=' '+self[0][0] l=[ 'enum%s '%tag ] if len(self)>1: l.append(' { ') for node in self[1:]: l.append( node.cstr()+', ' ) l.append('} ') if _l is None: _l=[] while l: _l.insert( 0, l.pop() ) return ''.join( _l ) class Declarator(genpyx.Declarator, Node): """ """ def __eq__(self,other): " unordered equality " # ordering sometimes gets lost when we do a cbasetype if not isinstance(other,Node): return False a, b = self[:], other[:] a.sort() b.sort() return a == b def __hash__( self ): hs = [hash(item) for item in self] hs.sort() return hash( tuple([hash(type(self))]+hs) ) def transform(self): return def get_identifier(self): if len(self)>1: return self[0] def set_identifier(self, identifier): if len(self)>1: self[0] = identifier else: self.insert(0,identifier) identifier = property(get_identifier,set_identifier) def get_spec(self): spec = self[-1] if type(spec)==TypeSpecifiers: # isinstance ?? return spec spec = property(get_spec) def get_type_alias(self): if self.spec: if isinstance(self.spec[0], TypeAlias): return self.spec[0] type_alias = property(get_type_alias) def get_tagged(self): if self.spec: return self.spec.tagged # i am a tagged tagged = property(get_tagged) def get_compound(self): if self.spec: return self.spec.compound # i am a compound compound = property(get_compound) def get_struct(self): if self.spec: return self.spec.struct # i am a struct struct = property(get_struct) def get_union(self): if self.spec: return self.spec.union # i am a union union = property(get_union) def get_enum(self): if self.spec: return self.spec.enum # i am an enum enum = property(get_enum) def get_function(self): if len(self)>1 and type(self[1])==Function: # isinstance ?? return self[1] function = property(get_function) def get_pointer(self): if len(self)>1 and type(self[1])==Pointer: # isinstance ?? return self[1] pointer = property(get_pointer) def get_array(self): if len(self)>1 and type(self[1])==Array: # isinstance ?? return self[1] array = property(get_array) def get_name(self): if self.identifier: return self.identifier.name def set_name(self, name): assert self.identifier is not None self.identifier.name = name name = property(get_name, set_name) def get_rest(self): # XX needs a better name if len(self)>1: return self[1] return self[0] def pointer_to( self ): " return Declarator pointing to self's type " decl = Declarator(Identifier(), Pointer(self.get_rest().clone())) return decl def deref( self ): " return (clone of) Declarator that self is pointing to " node = self.ctype() # clone pointer = node.pointer or node.array assert pointer, "cannot dereference non-pointer" node[1:2] = pointer return node def is_void(self): return self.spec and BasicType('void') in self.spec def is_pointer_to_fn(self): return self.pointer and self.deref().function def is_pointer_to_char(self): # return self.ctype() == TransUnit("char *a;").transform()[0].ctype() node = self.pointer or self.array if node: spec = node.spec if spec and BasicType('char') in spec and not BasicType('unsigned') in spec: return True return False def is_callback(self): " i am a pointer to a function whose last arg is void* " if self.is_pointer_to_fn(): fn = self.deref().function if fn.args: arg = fn.args[-1] if arg.pointer and arg.deref().is_void(): return True def is_complete( self, tag_lookup ): if self.tagged and self.tagged.tag.name in tag_lookup and not tag_lookup[self.tagged.tag.name].has_members(): return False return True def is_primative( self ): "i am a char,short,int,float,double... " spec = self.cbasetype().spec return spec and spec.find(BasicType) def is_pyxnative( self ): # pyrex handles char* too # but i don't know if we should make this the default # sometimes we want to send a NULL, so ... XXX self = self.cbasetype() if self.is_void(): return False if self.is_primative(): return True if self.enum: return True # pointer = None # if self.pointer: # pointer = self.pointer # elif self.array: # pointer = self.array # if pointer and pointer.spec: # spec = pointer.spec # if BasicType("char") in spec and not Qualifier("unsigned") in spec: # # char*, const char* ## print self.deepstr() # return True return False def cstr(self,l=None): return Node.cstr(self,l).strip() def ctype(self): decl=Declarator() decl.init_from( self.clone() ) decl.identifier = Identifier() for i in range(1,len(decl)): decl[i]=decl[i].ctype() return decl def cbasetype(self): # WARNING: we cache results (so do not mutate self!!) try: # this cache improves performance by 50% return self.__cbasetype.clone() except AttributeError: pass decl = self.ctype() # gets rid of Identifier names for i, node in enumerate(decl): decl[i] = decl[i].cbasetype() # return decl.get_rest() done = False while not done: done = True nodes = decl.deepfilter( TypeSpecifiers ) for node in nodes: if node.deepfind( TypeSpecifiers ) != node: # this node has another TypeSpecifier; decl.expose_node( node ) done = False break # start again... # each TypeSpecifier needs to absorb primitive siblings (StorageClass, BasicType etc.) nodes = decl.deepfilter( TypeSpecifiers ) for node in nodes: parent = decl.get_parent(node) i = 0 while i < len(parent): assert not type(parent[i]) in (TypeAlias, Enum, Struct, Union) if type(parent[i]) in (StorageClass, BasicType, Qualifier): node.append( parent.pop(i) ) else: i = i + 1 self.__cbasetype = decl.clone() return decl def invalidate(self): # flush cache, etc. try: del self.__cbasetype except AttributeError: pass def declare_str(self,name): " return c string declaring name with same type as self " tp = self.ctype() tp.name = name return tp.cstr()+";" class Typedef(genpyx.Typedef, Declarator): def cstr(self,l=None): return 'typedef ' + Declarator.cstr(self,l) #.strip() class AbstractDeclarator(genpyx.AbstractDeclarator, Declarator): """ used in Function; may lack an identifier """ #def cstr(self,l=None): #return Node.cstr(self,l) # def ctype(self): # # _type_ ignores the name of our identifier # return Node.ctype(self) class FieldLength(genpyx.FieldLength, Node): """ """ #def explain(self): #return "" def cstr(self,l): l.append(':%s'%self[0]) class StructDeclarator(genpyx.StructDeclarator, Declarator): # also used in Union """ """ #def explain(self): #flen = self.find(FieldLength) #if flen is not None: #i = self.index(flen) #self.pop(i) #s = Declarator.explain(self) #self.insert(i,flen) #width = flen[0] #if width > 0: #return s+" bitfield %s wide"%width #else: #return s+" alignment bitfield" #else: #return Declarator.explain(self) # def ctype(self): # return self def get_field_length(self): if len(self)>1 and isinstance( self[1], FieldLength ): return self[1] field_length = property(get_field_length) class DeclarationSpecifiers(genpyx.DeclarationSpecifiers, Node): #class TypeSpecifiers(Node): """ """ def __eq__(self,other): " unordered equality " if not isinstance(other,Node): return False a, b = self[:], other[:] a.sort() b.sort() return a == b def __hash__( self ): hs = [hash(item) for item in self] hs.sort() return hash( tuple([hash(type(self))]+hs) ) # def is_struct(self): # return self.find(Struct) is not None class TypeSpecifiers(genpyx.TypeSpecifiers, DeclarationSpecifiers): """ """ def get_tagged(self): if self and isinstance(self[0],Taged): return self[0] tagged = property(get_tagged) def get_compound(self): if self and isinstance(self[0],Compound): return self[0] compound = property(get_compound) def get_struct(self): if self and isinstance(self[0],Struct): return self[0] struct = property(get_struct) def get_union(self): if self and isinstance(self[0],Union): return self[0] union = property(get_union) def get_enum(self): if self and isinstance(self[0],Enum): return self[0] enum = property(get_enum) def cbasetype(self): node = Node.cbasetype(self) # node.expose( TypeSpecifiers ) # if node.deepfind(TypeSpecifiers) != node: return node class Initializer(genpyx.Initializer, Node): """ """ pass class Declaration(genpyx.Declaration, Node): """ """ def do_spec(self): " distribute DeclarationSpecifiers over each Declarator " spec=self[0] assert isinstance(spec,DeclarationSpecifiers), spec.deepstr() self.pop(0) for declarator in self: assert isinstance(declarator,Declarator) #if isinstance(declarator,DeclarationSpecifiers #huh? ##for node in spec: ##declarator.append(node.clone()) declarator.append(spec) def transform(self): # children go first for node in self.nodes(): if isinstance(node,Declaration): node.do_spec() node.file = self.file # overkill ? self.expose(Declaration) #def explain(self): #return string.join([x.explain() for x in self],", ") #return string.join(map(lambda x:x.explain(),self),", ") class ParameterDeclaration(genpyx.ParameterDeclaration, Declaration): """ """ pass class StructDeclaration(genpyx.StructDeclaration, Declaration): """ """ pass class TransUnit(genpyx.TransUnit, Node): """ Top level node. """ def __init__( self, item ): # XX __init__ uses different signature ! XX if type(item)==str: node = cparse.TransUnit() node.parse(item) else: node = item assert isinstance( node, cparse.TransUnit ), str(node) Node.__init__(self) self[:] = [ self.convert(child) for child in node ] self.__dict__.update( node.__dict__ ) assert "name" not in node.__dict__ self.syms = {} # map identifier names to their Declarator's self.typedefs = {} # map names to Typedef's self.tag_lookup = {} # map struct, union, enum tags to Taged's # XX should call transform here XX # print self.deepstr() def __getstate__( self ): nodes = tuple( [ repr(node) for node in self ] ) typedefs = tuple( [ (key,repr(val)) for key,val in self.typedefs.items() ] ) return nodes, typedefs def __setstate__( self, state ): Node.__init__(self) nodes, typedefs = state nodes = [ eval(node) for node in nodes ] self[:] = nodes typedefs = [ (key,eval(val)) for key,val in typedefs ] self.typedefs = dict(typedefs) def convert( self, node ): # name = node.__class__.__name__ # cls = globals()[ name ] cls = cls_lookup[ type(node) ] _node = cls() for child in node: if isinstance(child, node_module.Node): child = self.convert( child ) else: assert child is None or type(child) in (str, int), type(child) _node.append( child ) _node.__dict__.update( node.__dict__ ) return _node def strip(self,files): " leave only the declarations from <files> " i=0 while i<len(self): if self[i].file in files: i=i+1 else: self.pop(i) def mark(self,cb,verbose=False): " mark our child nodes such that cb(node).. mark dependants too. prune unmarked objects. " # mark the nodes: for node in self: node.marked = cb(self, node) if verbose and node.marked: print '1:', node.cstr() # propagate dependancy: i=len(self) while i: i-=1 # we go backwards for node in self[i].nodes(): # bottom-up search if verbose and self[i].marked and not node.marked: print '2:', str(node), '<--', self[i].cstr() node.marked = self[i].marked or node.marked if type(node)==TypeAlias: if verbose and node.marked and not node.typedef.marked: print '3:', node.typedef.cstr(), '<--', node.cstr() node.typedef.marked = node.typedef.marked or node.marked if isinstance(node, Taged): if node.tag.name in self.tag_lookup: _node = self.tag_lookup[ node.tag.name ] # look-up the def'n if verbose and node.marked and not _node.marked: print '4:', _node.cstr(), '<--', self[i].cstr() # _node.marked = _node.marked or self[i].marked _node.marked = _node.marked or node.marked # else: # # this guy has no tag # print "lost tag:", self[i].cstr() # XX struct defs acquire marks from members, but XX # XX ordinary definitions do not XX # if node.marked and not self[i].marked: # # one of my descendants is marked # if verbose: # print '5:', self[i].cstr(), '<--', node.cstr() # self[i].marked = True # if verbose: # for node in self: # print '-'*79 # if node.enum: # print str(node.marked) + ': ' + node.cstr() # prune: f = open(".tmp/pruned.txt","w") f.write("// This file autogenerated by '%s' .\n"%__file__) f.write("// List of functions pruned from parse tree, for various reasons.\n\n") i=0 while i<len(self): if not self[i].marked: if verbose: print 'pop:', self[i].cstr() f.write( self[i].cstr() + "\n" ) self.pop(i) # elif self[i].compound: # # XXXX for now, rip out all struct members XXXX # self[i].compound[1:] = [] # XX encapsulation # i = i + 1 else: i = i + 1 for key, value in self.syms.items(): if not value.marked: del self.syms[key] for key, value in self.typedefs.items(): if not value.marked: del self.typedefs[key] for key, value in self.tag_lookup.items(): if not value.marked: del self.tag_lookup[key] # sys.exit(1) def assert_no_dups(self): check={} for node in self.nodes(): assert not check.has_key(id(node)) check[id(node)]=1 def transform(self, verbose=False, test_parse=False, test_types=False ): i=0 while i < len(self): if verbose: print "##"*25 declaration=self[i] if verbose: declaration.psource() if verbose: print declaration.deepstr(),'\n' assert isinstance(declaration,Declaration) if verbose: print "# expose declarators from declaration" # STAGE 1 declaration.transform() if verbose: print declaration.deepstr(),'\n' self[i:i+1] = declaration # expose declarators from declaration for j in range(len(declaration)): declarator=self[i] assert isinstance(declarator,Declarator) if verbose: print "# declarator.transform()" # STAGE 2 declarator.transform() if verbose: print declarator.deepstr(),'\n' if verbose: print "# self.visit_declarator(declarator)" # STAGE 3 self[i] = declarator = self.visit_declarator(declarator) # STAGE 4 if declarator.name: if isinstance(declarator, Typedef): if verbose: print "# typedef %s" % declarator.name self.typedefs[ declarator.name ] = declarator else: if verbose: print "# sym %s" % declarator.name self.syms[ declarator.name ] = declarator for node in declarator.nodes(): if isinstance(node,Taged) and node.tag.name: assert type(node.tag.name)==str, node.deepstr() taged = self.tag_lookup.get( node.tag.name, None ) if taged is None: if verbose: print "# tag lookup %s = %s" % (declarator.name, node.tag.name) self.tag_lookup[ node.tag.name ] = node elif not taged.has_members(): # this is (maybe) the definition of this tag if verbose: print "# definition %s = %s" % (declarator.name, node.tag.name) self.tag_lookup[ node.tag.name ] = node # Annotate the TypeAlias's for node in declarator.deepfilter( TypeAlias ): name = node[0] assert type( name ) == str node.typedef = self.typedefs[ name ] if verbose: print declarator.deepstr(),'\n' #print declarator.ctype().deepstr(),'\n' #assert declarator.clone() == declarator ################################################### # TESTS: if test_parse: # test that parse of cstr gives same answer cstr = declarator.cstr()+';\n' if verbose: print '# '+cstr.replace('\n','\n# ') #print if isinstance(declarator,Typedef): name = declarator[0][0] assert type(name)==str self.lexer.rmtypedef( name ) declaration = cparse.Declaration() self.lexer.lex( cstr ) #print self.lexer.err_string() declaration.parse( self.lexer, Symbols() ) # use new name-space #declaration.parse( Lexer( cstr ), Symbols() ) declaration = self.convert(declaration) declaration.transform() assert len(declaration)==1 decl=declaration[0] decl.transform() decl = self.visit_declarator(decl) if decl!=declarator: if verbose: print "#???????????" if verbose: print decl.deepstr(),'\n\n' #if verbose: print declaration.deepstr(),'\n\n' #assert 0 elif verbose: print '# OK\n' if test_types: node = declarator.ctype() declare_str= node.declare_str("my_name") if verbose: print "# declarator.ctype() " if verbose: print node.deepstr(),"\n" if verbose: print "#",declare_str.replace('\n','\n# '), '\n' i=i+1 return self def visit(self,node): #print 'visit(%s)'%node for _node in node: if isinstance(_node,Declarator): _node = self.visit_declarator(_node) # XX replace _node elif isinstance(_node,Node): _node = self.visit(_node) # XX replace _node return node def visit_declarator(self,decl): assert isinstance(decl,Declarator) # STAGE 3.a tp = decl.deepfind(Typedef) if tp is not None: decl.deeprm(tp) tp.init_from( decl ) # warning: shallow init decl = tp # STAGE 3.b i=len(decl) # accumulate nodes (they become the children of decl) children=[] while i: i=i-1 node=decl.pop(i) if isinstance(node,Declarator): node = self.visit_declarator(node) # replace node else: node = self.visit(node) # replace node if isinstance(node,Pointer): node+=children children=[node] elif isinstance(node,Function): node+=children children=[node] elif isinstance(node,Array): while children: node.insert(0,children.pop()) children=[node] # array size (if any) at end #elif isinstance(node,Identifier): #node+=children #children=[node] else: # accumulate children.insert(0,node) decl[:]=children return decl cstr = None ctype = None cbasetype = None # remap the global class definitions in genpyx to # point to the definitions in this module gbl = globals() for key, val in gbl.items(): if type(val)==type: if issubclass(val,Node): setattr( genpyx, key, val ) assert genpyx.Node == Node cls_lookup = { # Node : Node , cparse.BasicType : BasicType , cparse.Qualifier : Qualifier , cparse.StorageClass : StorageClass , cparse.Ellipses : Ellipses , cparse.GCCBuiltin : GCCBuiltin , cparse.Identifier : Identifier , cparse.TypeAlias : TypeAlias , cparse.Function : Function , cparse.Pointer : Pointer , cparse.Array : Array , cparse.Tag : Tag , cparse.Compound : Compound , cparse.Struct : Struct , cparse.Union : Union , cparse.Enum : Enum , cparse.Declarator : Declarator , cparse.Typedef : Typedef , cparse.AbstractDeclarator : AbstractDeclarator , cparse.FieldLength : FieldLength , cparse.StructDeclarator : StructDeclarator , cparse.DeclarationSpecifiers : TypeSpecifiers , cparse.TypeSpecifiers : TypeSpecifiers , cparse.Initializer : Initializer , cparse.Declaration : Declaration , cparse.ParameterDeclaration : ParameterDeclaration , cparse.StructDeclaration : StructDeclaration , cparse.TransUnit : TransUnit , }
30.552405
117
0.534404
0d434e05acfff2841e27613c15863c99e20abe10
659
py
Python
util/bus.py
krisgesling/mycroft-timer
e4db07688d72a398223d43225be2f1b63d7500cd
[ "Apache-2.0" ]
null
null
null
util/bus.py
krisgesling/mycroft-timer
e4db07688d72a398223d43225be2f1b63d7500cd
[ "Apache-2.0" ]
null
null
null
util/bus.py
krisgesling/mycroft-timer
e4db07688d72a398223d43225be2f1b63d7500cd
[ "Apache-2.0" ]
null
null
null
from time import sleep # TODO remove this in v20.8 when it should be available in mycroft-core def wait_for_message(bus, message_type, timeout=8): """Wait for specified Message type on the bus. Arguments: bus: an instance of the message bus to listen on message_type: the Message type to wait for timeout (int): how long to wait, defaults to 8 secs """ message_detected = False def detected_speak(message=None): nonlocal message_detected message_detected = True bus.on(message_type, detected_speak) sleep(timeout) bus.remove(message_type, detected_speak) return message_detected
29.954545
71
0.705615
d3cde04f8f1cf49f6ec0f2fd31f38e16f1f37107
6,887
py
Python
tests/plugins/trackers/kinozal/test_kinozalplugin.py
mortifactor/monitorrent
2388ec5b82af5d078fa7e37930d3b66b4a797954
[ "WTFPL" ]
465
2015-08-31T09:16:41.000Z
2022-03-12T10:33:04.000Z
tests/plugins/trackers/kinozal/test_kinozalplugin.py
mortifactor/monitorrent
2388ec5b82af5d078fa7e37930d3b66b4a797954
[ "WTFPL" ]
340
2015-07-18T17:31:54.000Z
2022-03-30T15:16:25.000Z
tests/plugins/trackers/kinozal/test_kinozalplugin.py
mortifactor/monitorrent
2388ec5b82af5d078fa7e37930d3b66b4a797954
[ "WTFPL" ]
87
2015-07-18T10:52:24.000Z
2022-03-27T09:52:35.000Z
# coding=utf-8 import pytz from datetime import datetime from mock import patch from monitorrent.plugins.trackers import LoginResult, TrackerSettings from monitorrent.plugins.trackers.kinozal import KinozalPlugin, KinozalLoginFailedException, KinozalTopic from monitorrent.plugins.trackers.kinozal import KinozalDateParser from tests import use_vcr, DbTestCase from tests.plugins.trackers import TrackerSettingsMock from tests.plugins.trackers.kinozal.kinozal_helper import KinozalHelper helper = KinozalHelper() # helper = KinozalHelper.login('realusername', 'realpassword') class MockDatetime(datetime): mock_now = None @classmethod def now(cls, tz=None): return cls.mock_now class KinozalPluginTest(DbTestCase): def setUp(self): super(KinozalPluginTest, self).setUp() self.tracker_settings = TrackerSettingsMock(10, None) self.plugin = KinozalPlugin() self.plugin.init(self.tracker_settings) self.urls_to_check = [ "http://kinozal.tv/details.php?id=1506818" ] def test_can_parse_url(self): for url in self.urls_to_check: self.assertTrue(self.plugin.can_parse_url(url)) bad_urls = [ "http://kinozal.com/details.php?id=1506818", "http://belzal.com/details.php?id=1506818", ] for url in bad_urls: self.assertFalse(self.plugin.can_parse_url(url)) @use_vcr def test_parse_url_success(self): parsed_url = self.plugin.parse_url("http://kinozal.tv/details.php?id=1506818") assert parsed_url['original_name'] == u'Война против всех / War on Everyone / 2016 / ДБ / WEB-DLRip' @use_vcr def test_login_verify_fail(self): assert not self.plugin.verify() assert self.plugin.login() == LoginResult.CredentialsNotSpecified credentials = {'username': '', 'password': ''} assert self.plugin.update_credentials(credentials) == LoginResult.CredentialsNotSpecified assert not self.plugin.verify() credentials = {'username': helper.fake_login, 'password': helper.fake_password} assert self.plugin.update_credentials(credentials) == LoginResult.IncorrentLoginPassword assert not self.plugin.verify() @helper.use_vcr def test_login_verify_success(self): credentials = {'username': helper.real_login, 'password': helper.real_password} self.assertEqual(self.plugin.update_credentials(credentials), LoginResult.Ok) self.assertTrue(self.plugin.verify()) def test_login_failed_exceptions_1(self): # noinspection PyUnresolvedReferences with patch.object(self.plugin.tracker, 'login', side_effect=KinozalLoginFailedException(1, 'Invalid login or password')): credentials = {'username': helper.real_login, 'password': helper.real_password} self.assertEqual(self.plugin.update_credentials(credentials), LoginResult.IncorrentLoginPassword) def test_login_failed_exceptions_173(self): # noinspection PyUnresolvedReferences with patch.object(self.plugin.tracker, 'login', side_effect=KinozalLoginFailedException(173, 'Invalid login or password')): credentials = {'username': helper.real_login, 'password': helper.real_password} self.assertEqual(self.plugin.update_credentials(credentials), LoginResult.Unknown) def test_login_unexpected_exceptions(self): # noinspection PyUnresolvedReferences with patch.object(self.plugin.tracker, 'login', side_effect=Exception): credentials = {'username': helper.real_login, 'password': helper.real_password} self.assertEqual(self.plugin.update_credentials(credentials), LoginResult.Unknown) def test_prepare_request(self): cookies = {'uid': helper.fake_uid, 'pass': helper.fake_pass} # noinspection PyUnresolvedReferences with patch.object(self.plugin.tracker, 'get_cookies', result=cookies): url = "http://kinozal.tv/details.php?id=1506818" request = self.plugin._prepare_request(KinozalTopic(url=url)) self.assertIsNotNone(request) self.assertEqual(request.headers['referer'], url) self.assertEqual(request.url, 'http://dl.kinozal.tv/download.php?id=1506818') @use_vcr def test_get_last_torrent_update_for_updated_yesterday_success(self): url = 'http://kinozal.tv/details.php?id=1478373' topic = KinozalTopic(id=1, url=url, last_torrent_update=datetime(2017, 1, 17, 10, 10, tzinfo=pytz.utc)) expected = KinozalDateParser.tz_moscow.localize(datetime(2017, 1, 19, 23, 27)).astimezone(pytz.utc) server_now = datetime(2017, 1, 20, 12, 0, 0, tzinfo=pytz.utc) MockDatetime.mock_now = server_now with patch('monitorrent.plugins.trackers.kinozal.datetime.datetime', MockDatetime): assert self.plugin.check_changes(topic) assert topic.last_torrent_update == expected @use_vcr def test_get_last_torrent_update_for_updated_today_success(self): url = 'http://kinozal.tv/details.php?id=1496310' topic = KinozalTopic(id=1, url=url, last_torrent_update=None) expected = KinozalDateParser.tz_moscow.localize(datetime(2017, 1, 20, 1, 30)).astimezone(pytz.utc) server_now = datetime(2017, 1, 20, 12, 0, 0, tzinfo=pytz.utc) MockDatetime.mock_now = server_now with patch('monitorrent.plugins.trackers.kinozal.datetime.datetime', MockDatetime): assert self.plugin.check_changes(topic) assert topic.last_torrent_update == expected @use_vcr def test_get_last_torrent_update_for_updated_in_particular_success(self): url = 'http://kinozal.tv/details.php?id=1508210' topic = KinozalTopic(id=1, url=url, last_torrent_update=datetime(2017, 1, 17, 10, 10, tzinfo=pytz.utc)) expected = KinozalDateParser.tz_moscow.localize(datetime(2017, 1, 18, 21, 40)).astimezone(pytz.utc) assert self.plugin.check_changes(topic) assert topic.last_torrent_update == expected @use_vcr def test_get_last_torrent_update_for_updated_in_particular_not_changed(self): url = 'http://kinozal.tv/details.php?id=1508210' expected = KinozalDateParser.tz_moscow.localize(datetime(2017, 1, 18, 21, 40)).astimezone(pytz.utc) topic = KinozalTopic(id=1, url=url, last_torrent_update=expected) assert not self.plugin.check_changes(topic) assert topic.last_torrent_update == expected @use_vcr def test_get_last_torrent_update_without_updates_success(self): url = 'http://kinozal.tv/details.php?id=1510727' topic = KinozalTopic(id=1, url=url, last_torrent_update=None) assert self.plugin.check_changes(topic) assert topic.last_torrent_update is None
45.309211
111
0.706113
0d7586a8298a739e7d2abb6b72a7b0ad6e0ddb93
1,367
py
Python
test/jpypetest/test_charSequence.py
yinhejianke/jpype
257f2b010b32bb0f18d971e0e915849642c3cf1a
[ "Apache-2.0" ]
1
2020-01-03T06:03:14.000Z
2020-01-03T06:03:14.000Z
test/jpypetest/test_charSequence.py
yinhejianke/jpype
257f2b010b32bb0f18d971e0e915849642c3cf1a
[ "Apache-2.0" ]
null
null
null
test/jpypetest/test_charSequence.py
yinhejianke/jpype
257f2b010b32bb0f18d971e0e915849642c3cf1a
[ "Apache-2.0" ]
null
null
null
# ***************************************************************************** # Copyright 2019 Karl Einar Nelson # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ***************************************************************************** import jpype import sys import logging import time import common class ConversionCharSequenceTestCase(common.JPypeTestCase): def setUp(self): common.JPypeTestCase.setUp(self) def testAutoConvert(self): Instant = jpype.JClass("java.time.Instant") now = "2019-11-12T03:20:54.710948400Z" then = Instant.parse(now) self.assertEqual(str(then), now) then = Instant.parse(jpype.JString(now)) self.assertEqual(str(then), now) then = Instant.parse(jpype.JObject(now, "java.lang.CharSequence")) self.assertEqual(str(then), now)
36.945946
79
0.623263
6a5f8ce74a376c0f86860d25ec0f5653a63d149a
3,490
py
Python
notebooks/a2/sgd.py
cicorias/scpd-xcs224n-general
783c4ed127fc06ea2cc92f05c0bb47debb73928e
[ "Apache-2.0" ]
null
null
null
notebooks/a2/sgd.py
cicorias/scpd-xcs224n-general
783c4ed127fc06ea2cc92f05c0bb47debb73928e
[ "Apache-2.0" ]
null
null
null
notebooks/a2/sgd.py
cicorias/scpd-xcs224n-general
783c4ed127fc06ea2cc92f05c0bb47debb73928e
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Save parameters every a few SGD iterations as fail-safe SAVE_PARAMS_EVERY = 5000 import pickle import glob import random import numpy as np import os.path as op def load_saved_params(): """ A helper function that loads previously saved parameters and resets iteration start. """ st = 0 for f in glob.glob("saved_params_*.npy"): iter = int(op.splitext(op.basename(f))[0].split("_")[2]) if (iter > st): st = iter if st > 0: params_file = "saved_params_%d.npy" % st state_file = "saved_state_%d.pickle" % st params = np.load(params_file) with open(state_file, "rb") as f: state = pickle.load(f) return st, params, state else: return st, None, None def save_params(iter, params): params_file = "saved_params_%d.npy" % iter np.save(params_file, params) with open("saved_state_%d.pickle" % iter, "wb") as f: pickle.dump(random.getstate(), f) def sgd(f, x0, step, iterations, postprocessing=None, useSaved=False, PRINT_EVERY=10): """ Stochastic Gradient Descent Implement the stochastic gradient descent method in this function. Arguments: f -- the function to optimize, it should take a single argument and yield two outputs, a loss and the gradient with respect to the arguments x0 -- the initial point to start SGD from step -- the step size for SGD iterations -- total iterations to run SGD for postprocessing -- postprocessing function for the parameters if necessary. In the case of word2vec we will need to normalize the word vectors to have unit length. PRINT_EVERY -- specifies how many iterations to output loss Return: x -- the parameter value after SGD finishes """ # Anneal learning rate every several iterations ANNEAL_EVERY = 20000 if useSaved: start_iter, oldx, state = load_saved_params() if start_iter > 0: x0 = oldx step *= 0.5 ** (start_iter / ANNEAL_EVERY) if state: random.setstate(state) else: start_iter = 0 x = x0 if not postprocessing: postprocessing = lambda x: x exploss = None for iter in range(start_iter + 1, iterations + 1): # You might want to print the progress every few iterations. loss = None ### YOUR CODE HERE (~2 lines) ### END YOUR CODE x = postprocessing(x) if iter % PRINT_EVERY == 0: if not exploss: exploss = loss else: exploss = .95 * exploss + .05 * loss print("iter %d: %f" % (iter, exploss)) if iter % SAVE_PARAMS_EVERY == 0 and useSaved: save_params(iter, x) if iter % ANNEAL_EVERY == 0: step *= 0.5 return x def sanity_check(): quad = lambda x: (np.sum(x ** 2), x * 2) print("Running sanity checks...") t1 = sgd(quad, 0.5, 0.01, 1000, PRINT_EVERY=100) print("test 1 result:", t1) assert abs(t1) <= 1e-6 t2 = sgd(quad, 0.0, 0.01, 1000, PRINT_EVERY=100) print("test 2 result:", t2) assert abs(t2) <= 1e-6 t3 = sgd(quad, -1.5, 0.01, 1000, PRINT_EVERY=100) print("test 3 result:", t3) assert abs(t3) <= 1e-6 print("-" * 40) print("ALL TESTS PASSED") print("-" * 40) if __name__ == "__main__": sanity_check()
26.439394
75
0.595129
40aea50e166c5ac2781c41ab41e42b8eda87d50e
1,508
py
Python
packages/pyre/framework/Dashboard.py
avalentino/pyre
7e1f0287eb7eba1c6d1ef385e5160079283ac363
[ "BSD-3-Clause" ]
25
2018-04-23T01:45:39.000Z
2021-12-10T06:01:23.000Z
packages/pyre/framework/Dashboard.py
avalentino/pyre
7e1f0287eb7eba1c6d1ef385e5160079283ac363
[ "BSD-3-Clause" ]
53
2018-05-31T04:55:00.000Z
2021-10-07T21:41:32.000Z
packages/pyre/framework/Dashboard.py
avalentino/pyre
7e1f0287eb7eba1c6d1ef385e5160079283ac363
[ "BSD-3-Clause" ]
12
2018-04-23T22:50:40.000Z
2022-02-20T17:27:23.000Z
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2021 all rights reserved # # declaration class Dashboard: """ Mix-in class that provides access to the pyre executive and its managers """ # grab the base of all pyre exceptions from .exceptions import PyreError # public data # the executive pyre_executive = None # framework parts pyre_fileserver = None pyre_nameserver = None pyre_configurator = None # infrastructure managers pyre_registrar = None # the component registrar pyre_schema = None # the database schema # information about the runtime environment pyre_host = None # the current host pyre_user = None # the current user pyre_application = None # the current application # debugging support @classmethod def dashboard(cls): """ Dump the status of the dashboard """ # show me yield "executive: {.pyre_executive}".format(cls) yield " fileserver: {.pyre_fileserver}".format(cls) yield " nameserver: {.pyre_nameserver}".format(cls) yield " configurator: {.pyre_configurator}".format(cls) yield " registrar: {.pyre_registrar}".format(cls) yield " schema: {.pyre_schema}".format(cls) yield " host: {.pyre_host}".format(cls) yield " user: {.pyre_user}".format(cls) yield " application: {.pyre_application}".format(cls) # all done return # end of file
25.559322
76
0.637931
6e84a1a991f5d28ae363947ccea1b1c89f1f97db
2,657
py
Python
hydra/_internal/grammar/functions.py
sara-nl/hydra
8fd0d23d71cf528528ca5eda26e0c1f0c1e973d7
[ "MIT" ]
5,847
2019-10-03T04:20:44.000Z
2022-03-31T17:07:46.000Z
hydra/_internal/grammar/functions.py
sara-nl/hydra
8fd0d23d71cf528528ca5eda26e0c1f0c1e973d7
[ "MIT" ]
1,393
2019-10-04T01:03:38.000Z
2022-03-31T20:29:35.000Z
hydra/_internal/grammar/functions.py
sara-nl/hydra
8fd0d23d71cf528528ca5eda26e0c1f0c1e973d7
[ "MIT" ]
505
2019-10-03T19:41:42.000Z
2022-03-31T11:40:16.000Z
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import inspect from dataclasses import dataclass, field from typing import Any, Callable, Dict, List from omegaconf._utils import type_str from hydra._internal.grammar.utils import is_type_matching from hydra.core.override_parser.types import QuotedString from hydra.errors import HydraException @dataclass class FunctionCall: name: str args: List[Any] kwargs: Dict[str, Any] @dataclass class Functions: definitions: Dict[str, inspect.Signature] = field(default_factory=dict) functions: Dict[str, Callable[..., Any]] = field(default_factory=dict) def register(self, name: str, func: Callable[..., Any]) -> None: if name in self.definitions: raise HydraException(f"Function named '{name}' is already registered") self.definitions[name] = inspect.signature(func) self.functions[name] = func def eval(self, func: FunctionCall) -> Any: if func.name not in self.definitions: raise HydraException( f"Unknown function '{func.name}'" f"\nAvailable: {','.join(sorted(self.definitions.keys()))}\n" ) sig = self.definitions[func.name] # unquote strings in args args = [] for arg in func.args: if isinstance(arg, QuotedString): arg = arg.text args.append(arg) # Unquote strings in kwargs values kwargs = {} for key, val in func.kwargs.items(): if isinstance(val, QuotedString): val = val.text kwargs[key] = val bound = sig.bind(*args, **kwargs) for idx, arg in enumerate(bound.arguments.items()): name = arg[0] value = arg[1] expected_type = sig.parameters[name].annotation if sig.parameters[name].kind == inspect.Parameter.VAR_POSITIONAL: for iidx, v in enumerate(value): if not is_type_matching(v, expected_type): raise TypeError( f"mismatch type argument {name}[{iidx}]:" f" {type_str(type(v))} is incompatible with {type_str(expected_type)}" ) else: if not is_type_matching(value, expected_type): raise TypeError( f"mismatch type argument {name}:" f" {type_str(type(value))} is incompatible with {type_str(expected_type)}" ) return self.functions[func.name](*bound.args, **bound.kwargs)
34.960526
98
0.587505
bc6a1fd5b133043c991687da49f403d764a91033
6,915
py
Python
SleepEDF/tensorflow_net/deep_cnn_baseline_1to3/equaldatagenerator_from_list_v2.py
sajjadkarimi91/MultitaskSleepNet
80c45e30467fde0f8303e5deabacd4988ab387b0
[ "MIT" ]
29
2018-10-24T09:42:50.000Z
2022-03-18T07:03:21.000Z
SleepEDF/tensorflow_net/deep_cnn_baseline_1to3/equaldatagenerator_from_list_v2.py
sajjadkarimi91/MultitaskSleepNet
80c45e30467fde0f8303e5deabacd4988ab387b0
[ "MIT" ]
3
2018-09-25T08:53:44.000Z
2020-08-16T12:37:15.000Z
SleepEDF/tensorflow_net/deep_cnn_baseline_1to3/equaldatagenerator_from_list_v2.py
sajjadkarimi91/MultitaskSleepNet
80c45e30467fde0f8303e5deabacd4988ab387b0
[ "MIT" ]
17
2018-09-25T15:12:31.000Z
2022-02-23T09:38:39.000Z
# load data from mat files and generate batch-by-batch with equal sampling for different classes # This is used when balancing data between different classes in a data batch for training import numpy as np from scipy.io import loadmat import h5py class EqualDataGenerator: def __init__(self, filelist, data_shape=np.array([29, 129]),shuffle=False): # Init params self.shuffle = shuffle self.filelist = filelist self.data_shape = data_shape self.X = np.array([]) self.y = np.array([]) self.label = np.array([]) self.boundary_index = np.array([]) self.Ncat = 5 # read from mat file self.read_mat_filelist(self.filelist) self.data_size = len(self.label) # create pointers for different classes self.nclass = self.y.shape[1] self.data_index = [] for i in range(self.nclass): ind = np.where(self.y[:,i] == 1)[0] print(len(ind)) mask = np.in1d(ind,self.boundary_index, invert=True) ind = ind[mask] print(len(ind)) self.data_index.append(ind) self.pointer = np.zeros([self.nclass,1]) if self.shuffle: self.shuffle_data() def read_mat_filelist(self,filelist): """ Scan the file list and read them one-by-one """ files = [] self.data_size = 0 with open(filelist) as f: lines = f.readlines() for l in lines: items = l.split() files.append(items[0]) self.data_size += int(items[1]) print(self.data_size) self.X = np.ndarray([self.data_size, self.data_shape[0], self.data_shape[1]]) self.y = np.ndarray([self.data_size, self.Ncat]) self.label = np.ndarray([self.data_size]) count = 0 for i in range(len(files)): X, y, label = self.read_mat_file(files[i].strip()) self.X[count : count + len(X)] = X self.y[count : count + len(X)] = y self.label[count : count + len(X)] = label self.boundary_index = np.append(self.boundary_index, [count, (count + len(X) - 1)]) count += len(X) print(count) print("Boundary indices") print(self.boundary_index) print(self.X.shape, self.y.shape, self.label.shape) def read_mat_file(self,filename): """ Read matfile HD5F file and parsing """ # Load data print(filename) data = h5py.File(filename,'r') data.keys() X = np.array(data['X']) X = np.transpose(X, (2, 1, 0)) # rearrange dimension y = np.array(data['y']) y = np.transpose(y, (1, 0)) # rearrange dimension label = np.array(data['label']) label = np.transpose(label, (1, 0)) # rearrange dimension label = np.squeeze(label) return X, y, label def shuffle_data(self): """ Random shuffle the data points indexes """ #create list of permutated index and shuffle data accoding to list for i in range(self.nclass): data_index = self.data_index[i] idx = np.random.permutation(len(data_index)) data_index = data_index[idx] self.data_index[i] = data_index def numel_per_class(self, classid): if(classid >= 0 and classid < self.nclass): return len(self.data_index[classid]) else: return 0 def reset_pointer(self): """ reset pointer to begin of the list """ for i in range(self.nclass): self.pointer[i] = 0 if self.shuffle: self.shuffle_data() def next_batch_per_class(self, batch_size, classid): """ This function gets the next n ( = batch_size) sample from a class """ class_size = self.numel_per_class(classid) if(self.pointer[classid] + batch_size <= class_size): data_index = self.data_index[classid][int(self.pointer.item(classid)):int(self.pointer.item(classid)) + batch_size] self.pointer[classid] += batch_size #update pointer else: data_index = self.data_index[classid][int(self.pointer.item(classid)): class_size] leftover = batch_size - (class_size - self.pointer.item(classid)) data_index = np.concatenate([data_index, self.data_index[classid][0 : int(leftover)]]) self.pointer[classid] = leftover #update pointer return data_index def next_batch(self, batch_size_per_class): """ This function gets the next n ( = batch_size) sample from every class """ data_index = [] for i in range(self.nclass): data_index_i = self.next_batch_per_class(batch_size_per_class, i) data_index = np.concatenate([data_index, data_index_i]) idx = np.random.permutation(len(data_index)) data_index = data_index[idx] batch_size = batch_size_per_class*self.nclass batch_x = np.ndarray([batch_size, self.data_shape[0], self.data_shape[1]]) batch_y1 = np.ndarray([batch_size, self.y.shape[1]]) batch_y2 = np.ndarray([batch_size, self.y.shape[1]]) batch_y3 = np.ndarray([batch_size, self.y.shape[1]]) batch_label1 = np.ndarray([batch_size]) batch_label2 = np.ndarray([batch_size]) batch_label3 = np.ndarray([batch_size]) for i in range(len(data_index)): batch_x[i] = self.X[int(data_index.item(i)), :, :] batch_y2[i] = self.y[int(data_index.item(i))] batch_label2[i] = self.label[int(data_index.item(i))] batch_y1[i] = self.y[int(data_index.item(i) - 1)] batch_label1[i] = self.label[int(data_index.item(i) -1)] batch_y3[i] = self.y[int(data_index.item(i) + 1)] batch_label3[i] = self.label[int(data_index.item(i) +1)] # check condition to make sure all corrections #assert np.sum(batch_y[i]) > 0.0 # Get next batch of image (path) and labels batch_x.astype(np.float32) batch_y1.astype(np.float32) batch_label1.astype(np.float32) batch_y2.astype(np.float32) batch_label2.astype(np.float32) batch_y3.astype(np.float32) batch_label3.astype(np.float32) #return array of images and labels return batch_x, batch_y1, batch_label1, batch_y2, batch_label2, batch_y3, batch_label3 def filter_with_filterbank(self, Wfb): X = np.reshape(self.X, (self.data_size*self.data_shape[0], self.data_shape[1])) X = np.dot(X, Wfb) self.X = np.reshape(X, (self.data_size, self.data_shape[0], Wfb.shape[1])) self.data_shape = self.X.shape[1:] del X
36.97861
127
0.586985
a8813799a0c0c565a262533d989f36568740e542
4,120
py
Python
workspace_tools/export/uvision5.py
OmarValdez/mbed
bd78f98496fab2f02162521d7e279d7bd0f0840e
[ "Apache-2.0" ]
null
null
null
workspace_tools/export/uvision5.py
OmarValdez/mbed
bd78f98496fab2f02162521d7e279d7bd0f0840e
[ "Apache-2.0" ]
null
null
null
workspace_tools/export/uvision5.py
OmarValdez/mbed
bd78f98496fab2f02162521d7e279d7bd0f0840e
[ "Apache-2.0" ]
null
null
null
""" mbed SDK Copyright (c) 2016 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from os.path import basename, join, dirname from project_generator_definitions.definitions import ProGenDef from workspace_tools.export.exporters import Exporter from workspace_tools.targets import TARGET_MAP, TARGET_NAMES # If you wish to add a new target, add it to project_generator_definitions, and then # define progen_target name in the target class (`` self.progen_target = 'my_target_name' ``) # There are 2 default mbed templates (predefined settings) uvision.uvproj and uvproj_microlib.uvproj.tmpl class Uvision5(Exporter): """ Exporter class for uvision5. This class uses project generator. """ # These 2 are currently for exporters backward compatiblity NAME = 'uVision5' TOOLCHAIN = 'ARM' # PROGEN_ACTIVE contains information for exporter scripts that this is using progen PROGEN_ACTIVE = True # backward compatibility with our scripts TARGETS = [] for target in TARGET_NAMES: try: if (ProGenDef('uvision5').is_supported(str(TARGET_MAP[target])) or ProGenDef('uvision5').is_supported(TARGET_MAP[target].progen['target'])): TARGETS.append(target) except AttributeError: # target is not supported yet continue def get_toolchain(self): return TARGET_MAP[self.target].default_toolchain def generate(self): """ Generates the project files """ project_data = self.progen_get_project_data() tool_specific = {} # Expand tool specific settings by uvision specific settings which are required try: if TARGET_MAP[self.target].progen['uvision5']['template']: tool_specific['uvision5'] = TARGET_MAP[self.target].progen['uvision5'] except KeyError: # use default template # by the mbed projects tool_specific['uvision5'] = { 'template': [join(dirname(__file__), 'uvision.uvproj.tmpl')], } project_data['tool_specific'] = {} project_data['tool_specific'].update(tool_specific) # get flags from toolchain and apply project_data['tool_specific']['uvision5']['misc'] = {} project_data['tool_specific']['uvision5']['misc']['asm_flags'] = list(set(self.toolchain.flags['common'] + self.toolchain.flags['asm'])) project_data['tool_specific']['uvision5']['misc']['c_flags'] = list(set(self.toolchain.flags['common'] + self.toolchain.flags['c'])) # not compatible with c99 flag set in the template project_data['tool_specific']['uvision5']['misc']['c_flags'].remove("--c99") project_data['tool_specific']['uvision5']['misc']['cxx_flags'] = list(set(self.toolchain.flags['common'] + self.toolchain.flags['ld'])) project_data['tool_specific']['uvision5']['misc']['ld_flags'] = self.toolchain.flags['ld'] i = 0 for macro in project_data['common']['macros']: # armasm does not like floating numbers in macros, timestamp to int if macro.startswith('MBED_BUILD_TIMESTAMP'): timestamp = macro[len('MBED_BUILD_TIMESTAMP='):] project_data['common']['macros'][i] = 'MBED_BUILD_TIMESTAMP=' + str(int(float(timestamp))) # armasm does not even accept MACRO=string if macro.startswith('MBED_USERNAME'): project_data['common']['macros'].pop(i) i += 1 project_data['common']['macros'].append('__ASSERT_MSG') self.progen_gen_file('uvision5', project_data)
45.777778
144
0.673301
e92bb226c43a5e3e4520c9c4ba92e52ace04d4e6
1,002
py
Python
kubernetes_asyncio/test/test_v1_local_volume_source.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/test/test_v1_local_volume_source.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
kubernetes_asyncio/test/test_v1_local_volume_source.py
aK0nshin/kubernetes_asyncio
aef9edcc1f8671a5b1bba9f4684bde890176b19c
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: v1.14.7 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import kubernetes_asyncio.client from kubernetes_asyncio.client.models.v1_local_volume_source import V1LocalVolumeSource # noqa: E501 from kubernetes_asyncio.client.rest import ApiException class TestV1LocalVolumeSource(unittest.TestCase): """V1LocalVolumeSource unit test stubs""" def setUp(self): pass def tearDown(self): pass def testV1LocalVolumeSource(self): """Test V1LocalVolumeSource""" # FIXME: construct object with mandatory attributes with example values # model = kubernetes_asyncio.client.models.v1_local_volume_source.V1LocalVolumeSource() # noqa: E501 pass if __name__ == '__main__': unittest.main()
25.05
124
0.735529
104dd58ba1eb3de188d2d739e59cc6e16d17428d
6,442
py
Python
sdk/python/pulumi_azure_native/network/v20190801/get_route_table.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20190801/get_route_table.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20190801/get_route_table.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetRouteTableResult', 'AwaitableGetRouteTableResult', 'get_route_table', ] @pulumi.output_type class GetRouteTableResult: """ Route table resource. """ def __init__(__self__, disable_bgp_route_propagation=None, etag=None, id=None, location=None, name=None, provisioning_state=None, routes=None, subnets=None, tags=None, type=None): if disable_bgp_route_propagation and not isinstance(disable_bgp_route_propagation, bool): raise TypeError("Expected argument 'disable_bgp_route_propagation' to be a bool") pulumi.set(__self__, "disable_bgp_route_propagation", disable_bgp_route_propagation) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if routes and not isinstance(routes, list): raise TypeError("Expected argument 'routes' to be a list") pulumi.set(__self__, "routes", routes) if subnets and not isinstance(subnets, list): raise TypeError("Expected argument 'subnets' to be a list") pulumi.set(__self__, "subnets", subnets) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="disableBgpRoutePropagation") def disable_bgp_route_propagation(self) -> Optional[bool]: """ Whether to disable the routes learned by BGP on that route table. True means disable. """ return pulumi.get(self, "disable_bgp_route_propagation") @property @pulumi.getter def etag(self) -> Optional[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the route table resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def routes(self) -> Optional[Sequence['outputs.RouteResponse']]: """ Collection of routes contained within a route table. """ return pulumi.get(self, "routes") @property @pulumi.getter def subnets(self) -> Sequence['outputs.SubnetResponse']: """ A collection of references to subnets. """ return pulumi.get(self, "subnets") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetRouteTableResult(GetRouteTableResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetRouteTableResult( disable_bgp_route_propagation=self.disable_bgp_route_propagation, etag=self.etag, id=self.id, location=self.location, name=self.name, provisioning_state=self.provisioning_state, routes=self.routes, subnets=self.subnets, tags=self.tags, type=self.type) def get_route_table(expand: Optional[str] = None, resource_group_name: Optional[str] = None, route_table_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetRouteTableResult: """ Route table resource. :param str expand: Expands referenced resources. :param str resource_group_name: The name of the resource group. :param str route_table_name: The name of the route table. """ __args__ = dict() __args__['expand'] = expand __args__['resourceGroupName'] = resource_group_name __args__['routeTableName'] = route_table_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:network/v20190801:getRouteTable', __args__, opts=opts, typ=GetRouteTableResult).value return AwaitableGetRouteTableResult( disable_bgp_route_propagation=__ret__.disable_bgp_route_propagation, etag=__ret__.etag, id=__ret__.id, location=__ret__.location, name=__ret__.name, provisioning_state=__ret__.provisioning_state, routes=__ret__.routes, subnets=__ret__.subnets, tags=__ret__.tags, type=__ret__.type)
34.449198
183
0.638777
b71e2c5fdccbcfa58acb8ebdc0803e4557887ab4
8,086
py
Python
scripts/kernelBinaryClassifDemo.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
2
2021-04-10T18:12:19.000Z
2021-05-11T12:07:40.000Z
scripts/kernelBinaryClassifDemo.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
1
2021-04-19T12:25:26.000Z
2021-04-19T12:25:26.000Z
scripts/kernelBinaryClassifDemo.py
always-newbie161/pyprobml
eb70c84f9618d68235ef9ba7da147c009b2e4a80
[ "MIT" ]
1
2021-01-17T08:46:00.000Z
2021-01-17T08:46:00.000Z
import numpy as np import h5py import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.kernel_approximation import RBFSampler # Relevance Vector Machine Classifier using EM algorithm by Michael E. Tipping. ### This is a python implementation of Relevance Vector Machine Classifier, it's based on github.com/ctgk/PRML/blob/master/prml/kernel/relevance_vector_classifier.py class RVC: def sigmoid(self,a): return np.tanh(a * 0.5) * 0.5 + 0.5 # Kernel matrix using rbf kernel with gamma = 0.3. def kernel_mat(self,X, Y): (x, y) = (np.tile(X, (len(Y), 1, 1)).transpose(1, 0, 2), np.tile(Y, (len(X), 1, 1))) d = np.repeat(1 / (0.3 * 0.3), X.shape[-1]) * (x - y) ** 2 return np.exp(-0.5 * np.sum(d, axis=-1)) def __init__(self, alpha=1.): self.threshold_alpha = 1e8 self.alpha = alpha self.iter_max = 100 self.relevance_vectors_ = [] # estimates for singulat matrices. def ps_inv(self, m): # assuming it is a square matrix. a = m.shape[0] i = np.eye(a, a) return np.linalg.lstsq(m, i, rcond=None)[0] ''' For the current fixed values of alpha, the most probable weights are found by maximizing w over p(w/t,alpha) using the Laplace approximation of finding an hessian. (E step) w = mean of p(w/t,alpha) cov = negative hessian of p(w/t,alpha) ''' def _map_estimate(self, X, t, w, n_iter=10): for _ in range(n_iter): y = self.sigmoid(X @ w) g = X.T @ (y - t) + self.alpha * w H = (X.T * y * (1 - y)) @ X + np.diag(self.alpha) # negated Hessian of p(w/t,alpha) w -= np.linalg.lstsq(H, g, rcond=None)[0] # works even if for singular matrices. return w, self.ps_inv(H) # inverse of H is the covariance of the gaussian approximation. ''' Fitting of input-target pairs works by iteratively finding the most probable weights(done by _map_estimate method) and optimizing the hyperparameters(alpha) until there is no siginificant change in alpha. (M step) Optimizing alpha: For the given targets and current variance(sigma^2) alpha is optimized over p(t/alpha,variance) It is done by Mackay approach(ARD). alpha(new) = gamma/mean^2 where gamma = 1 - alpha(old)*covariance. After finding the hyperparameters(alpha), the samples which have alpha less than the threshold(hence weight >> 0) are choosen as relevant vectors. Now predicted y = sign(phi(X) @ mean) ( mean contains the optimal weights) ''' def fit(self, X, y): Phi = self.kernel_mat(X, X) N = len(y) self.alpha = np.zeros(N) + self.alpha mean = np.zeros(N) for i in range(self.iter_max): param = np.copy(self.alpha) mean, cov = self._map_estimate(Phi, y, mean, 10) gamma = 1 - self.alpha * np.diag(cov) self.alpha = gamma / np.square(mean) np.clip(self.alpha, 0, 1e10, out=self.alpha) if np.allclose(param, self.alpha): break ret_alpha = self.alpha < self.threshold_alpha self.relevance_vectors_ = X[ret_alpha] self.y = y[ret_alpha] self.alpha = self.alpha[ret_alpha] Phi = self.kernel_mat(self.relevance_vectors_, self.relevance_vectors_) mean = mean[ret_alpha] self.mean, self.covariance = self._map_estimate(Phi, self.y, mean, 100) # gives probability for target to be class 0. def predict_proba(self, X): phi = self.kernel_mat(X, self.relevance_vectors_) mu_a = phi @ self.mean var_a = np.sum(phi @ self.covariance * phi, axis=1) return 1 - self.sigmoid(mu_a / np.sqrt(1 + np.pi * var_a / 8)) def predict(self, X): phi = self.kernel_mat(X, self.relevance_vectors_) return (phi @ self.mean > 0).astype(np.int) # scipy.io loadmat doesn't seem to be accept the version of this data file data = {} with h5py.File('/pyprobml/data/bishop2class.mat', 'r') as f: for name, d in f.items(): data[name] = np.array(d) X = data['X'].transpose() Y = data['Y'] y = Y.flatten() y = y - 1 # changing to {0,1} # Feature Mapping X to rbf_features to simulate non-linear logreg using linear ones. rbf_feature = RBFSampler(gamma=0.3, random_state=1) X_rbf = rbf_feature.fit_transform(X) # Using CV to find SVM regularization parameter. C = np.power(2, np.linspace(-5, 5, 10)) mean_scores = [cross_val_score(SVC(kernel='rbf', gamma=0.3, C=c), X, y, cv=5).mean() for c in C] c = C[np.argmax(mean_scores)] classifiers = { 'logregL2': LogisticRegression(C=0.2, penalty='l2', solver='saga', multi_class='ovr', max_iter=10000), 'logregL1': LogisticRegression(C=1, penalty='l1', solver='saga', multi_class='ovr', max_iter=10000), 'RVM': RVC(), 'SVM': SVC(kernel='rbf', gamma=0.3, C=c, probability=True) } h = 0.05 # step size in the mesh # Mesh to use in the boundary plotting. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) def plot_scatters(X, y): for class_value in range(2): # get row indexes for samples with this class row_ix = np.where(y == class_value) # creating scatter of these samples plt.scatter(X[row_ix, 0], X[row_ix, 1], cmap='Paired', marker='X', s=30) def plot_SVs(SV): plt.scatter(SV[:, 0], SV[:, 1], s=100, facecolor="none", edgecolor="green") for (name, clf) in classifiers.items(): if name == 'logregL2': clf.fit(X_rbf, y) Z = clf.predict_proba(rbf_feature.fit_transform(np.c_[xx.ravel(), yy.ravel()])) Z = Z[:, 0].reshape(xx.shape) plt.title(name + ", nerr= {}".format(np.sum(y != clf.predict(X_rbf)))) plt.contour(xx, yy, Z, np.linspace(0, 1, 5), colors=['black', 'w']) plot_scatters(X, y) plt.show() plt.savefig("../figures/kernelBinaryClassifDemo{}.pdf".format(name), dpi=300) elif name == 'logregL1': clf.fit(X_rbf, y) Z = clf.predict_proba(rbf_feature.fit_transform(np.c_[xx.ravel(), yy.ravel()])) Z = Z[:, 0].reshape(xx.shape) plt.title(name + ", nerr= {}".format(np.sum(y != clf.predict(X_rbf)))) plt.contour(xx, yy, Z, np.linspace(0, 1, 5), colors=['w','black', 'w']) plot_scatters(X, y) conf_scores = np.abs(clf.decision_function(X_rbf)) SV = X[(conf_scores > conf_scores.mean())] # samples having a higher confidence scores are taken as support vectors. plot_SVs(SV) plt.show() plt.savefig("../figures/kernelBinaryClassifDemo{}.pdf".format(name), dpi=300) elif name == 'RVM': clf.fit(X, y) Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title(name + ", nerr= {}".format(np.sum(y != clf.predict(X)))) plt.contour(xx, yy, Z, np.linspace(0, 1, 5), colors=['black', 'w']) plot_scatters(X, y) plot_SVs(clf.relevance_vectors_) plt.show() plt.savefig("../figures/kernelBinaryClassifDemo{}.pdf".format(name), dpi=300) elif name == 'SVM': clf.fit(X, y) Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 0] Z = Z.reshape(xx.shape) plt.title(name + ", nerr= {}".format(np.sum(y != clf.predict(X)))) plt.contour(xx, yy, Z, colors=['w', 'w', 'w', 'black']) plot_scatters(X, y) plot_SVs(clf.support_vectors_) plt.show() plt.savefig("../figures/kernelBinaryClassifDemo{}.pdf".format(name), dpi=300)
39.062802
165
0.593371
ef1cce3d6eef4dd0221050bfd6d3909a6597e76d
26,948
py
Python
Climate_v1.1.py
gschivley/co-fire
b364063fe36b733aee2a903b7d570d2ab11b9096
[ "MIT" ]
2
2015-10-28T15:49:10.000Z
2019-09-15T06:08:10.000Z
Climate_v1.1.py
gschivley/co-fire
b364063fe36b733aee2a903b7d570d2ab11b9096
[ "MIT" ]
null
null
null
Climate_v1.1.py
gschivley/co-fire
b364063fe36b733aee2a903b7d570d2ab11b9096
[ "MIT" ]
2
2016-12-06T10:16:24.000Z
2021-05-18T12:51:21.000Z
 # -*- coding: utf-8 -*- """ Created on Tue Feb 18 16:09:30 2014 @author: Greg """ import numpy as np from scipy.interpolate import interp1d from scipy.signal import fftconvolve from scipy.integrate import cumtrapz # Radiative efficiencies of each gas, calculated from AR5 & AR5 SM co2_re, ch4_re, n2o_re, sf6_re = 1.756E-15, 1.277E-13 * 1.65, 3.845E-13, 2.010E-11 # AR5 2013 IRF values a0, a1, a2, a3 = 0.2173, 0.224, 0.2824, 0.2763 tau1, tau2, tau3 = 394.4, 36.54, 4.304 def f0(t): return a0 def f1(t): return a1*np.exp(-t/tau1) def f2(t): return a2*np.exp(-t/tau2) def f3(t): return a3*np.exp(-t/tau3) def CO2_AR5(t): return f0(t) + f1(t) + f2(t) + f3(t) #Methane response fuction CH4tau = 12.4 def CH4_AR5(t): return np.exp(-t/CH4tau) #N2O response fuction N2Otau = 121 def N2O_AR5(t): return np.exp(-t/CH4tau) #SF6 response fuction SF6tau = 3200 def SF6_AR5(t): return np.exp(-t/CH4tau) #Temperature response function to radiative forcing def AR5_GTP(t): c1, c2, d1, d2 = 0.631, 0.429, 8.4, 409.5 """ The default response function for radiative forcing from AR5. Source is \ Boucher (2008). ECR is 3.9K, which is on the high side. Convolve with radiative forcing to get temperature. """ return c1/d1*np.exp(-t/d1) + c2/d2*np.exp(-t/d2) def Alt_GTP(t): c1, c2, d1, d2 = 0.43, 0.32, 2.57, 82.24 """ The response function for radiative forcing. Taken from Olivie and Peters (2013), Table 4, using the CMIP5 data. This has a slightly lower climate response value than Boucher (2008), which is used in AR5. Convolve with radiative forcing to get temperature. """ return c1/d1*np.exp(-t/d1) + c2/d2*np.exp(-t/d2) def Alt_low_GTP(t): c1, c2, d1, d2 = 0.43 / (1 + 0.29), 0.32 / (1 + 0.59), 2.57 * 1.46, 82.24 * 2.92 #c1, c2, d1, d2 = 0.48 * (1 - 0.3), 0.20 * (1 - 0.52), 7.15 * 1.35, 105.55 * 1.38 #c1, c2, d1, d2 = 0.48 * (1 - 0.3), 0.20 * (1 - 0.52), 7.15, 105.55 #c1, c2, d1, d2 = 0.631 * 0.7, 0.429 * 0.7, 8.4, 409.5 """ The response function for radiative forcing. Taken from Olivie and Peters (2013), Table 4, using the CMIP5 data. This has a lower climate response value than AR5. The uncertainty in Table 4 assumes lognormal distributions, which is why values less than the median are determined by dividing by (1 + uncertainty). Convolve with radiative forcing to get temperature. """ return c1/d1*np.exp(-t/d1) + c2/d2*np.exp(-t/d2) def Alt_high_GTP(t): c1, c2, d1, d2 = 0.43 * 1.29, 0.32 * 1.59, 2.57 / (1 + 0.46), 82.24 / (1 + 1.92) #c1, c2, d1, d2 = 0.48 * 1.3, 0.20 * 1.52, 7.15 * (1 - 0.35), 105.55 * (1 - 0.38) #c1, c2, d1, d2 = 0.48 * 1.2, 0.20 * 1.52, 7.15, 105.55 #c1, c2, d1, d2 = 0.631, 0.429 * 1.3, 8.4, 409.5 """ The response function for radiative forcing. Taken from Olivie and Peters (2013), Table 4, using the CMIP5 data. This has a higher climate response value than AR5. The uncertainty in Table 4 assumes lognormal distributions, which is why values less than the median are determined by dividing by (1 + uncertainty). Convolve with radiative forcing to get temperature. """ return c1/d1*np.exp(-t/d1) + c2/d2*np.exp(-t/d2) def CO2_rf(emission, years, tstep=0.01, kind='linear', emiss_type='sustained'): """Transforms an array of CO2 emissions into radiative forcing with user- defined time-step. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) inter_emissions = f(time) atmos = np.resize(fftconvolve(CO2_AR5(time), inter_emissions), time.size) * tstep rf = atmos * co2_re fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return rf[fil] def CO2_rate(emission, years, tstep=0.01, kind='linear', emiss_type='sustained'): """Transforms an array of CO2 emissions into radiative forcing with user- defined time-step. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) inter_emissions = f(time) atmos = np.resize(fftconvolve(CO2_AR5(time), inter_emissions), time.size) * tstep rf = atmos * co2_re dx = np.gradient(time) rate = np.gradient(rf, dx) fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return rate[fil] def CO2_crf(emission, years, tstep=0.01, kind='linear', emiss_type='sustained'): """Transforms an array of CO2 emissions into radiative forcing with user- defined time-step. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) inter_emissions = f(time) atmos = np.resize(fftconvolve(CO2_AR5(time), inter_emissions), time.size) * tstep rf = atmos * co2_re crf = cumtrapz(rf, dx = tstep, initial = 0) fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return crf[fil] def CO2_temp(emission, years, tstep=0.01, kind='linear', source='AR5', emiss_type='sustained'): """Transforms an array of CO2 emissions into temperature with user-defined time-step. Default temperature IRF is from AR5, use 'Alt_low' or 'Alt_high' for a sensitivity test. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic source: the source of parameters for the temperature IRF. default is AR5, 'Alt', 'Alt_low', and 'Alt_high' are also options. emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind, bounds_error=False) time = np.linspace(min(years), end, end/ + 1) inter_emissions = f(time) atmos = np.resize(fftconvolve(CO2_AR5(time), inter_emissions), time.size) * tstep rf = atmos * co2_re if source == 'AR5': temp = np.resize(fftconvolve(AR5_GTP(time), rf), time.size) * tstep elif source == 'Alt': temp = np.resize(fftconvolve(Alt_GTP(time), rf), time.size) * tstep elif source == 'Alt_low': temp = np.resize(fftconvolve(Alt_low_GTP(time), rf), time.size) * tstep elif source == 'Alt_high': temp = np.resize(fftconvolve(Alt_high_GTP(time), rf), time.size) * tstep fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return temp[fil] def ch42co2(t, alpha=0.51): """As methane decays some fraction is converted to CO2. This function is from Boucher (2009). By default it converts 51%. The convolution of this function with the methane emission profile gives the CO2 emission profile. t: time alpha: fraction of methane converted to CO2 """ ch4tau = 12.4 return 1/ch4tau * alpha * np.exp(-t/ch4tau) def CH4_rf(emission, years, tstep=0.01, kind='linear', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into radiative forcing with user-defined time-step. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) fch4 = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = fch4(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + co2_atmos * co2_re else: rf = ch4_atmos * ch4_re fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return rf[fil] def CH4_rf_cc(emission, years, tstep=0.01, kind='linear', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into radiative forcing with user-defined time-step, accounting for climate-carbon feedbacks. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ gamma = (44.0/12.0) * 10**12 #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) fch4 = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = fch4(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep cc_co2 = CH4_cc_tempforrf(emission, years) * gamma cc_co2_atmos = np.resize(fftconvolve(CO2_AR5(time), cc_co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + (co2_atmos +cc_co2_atmos) * co2_re else: rf = ch4_atmos * ch4_re + (cc_co2_atmos) * co2_re fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return rf[fil] def CH4_rate(emission, years, tstep=0.01, kind='linear', emiss_type='sustained'): """Transforms an array of methane emissions into radiative forcing with user-defined time-step, accounting for climate-carbon feedbacks. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ gamma = (44.0/12.0) * 10**12 #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) fch4 = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = fch4(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep cc_co2 = CH4_cc_tempforrf(emission, years) * gamma cc_co2_atmos = np.resize(fftconvolve(CO2_AR5(time), cc_co2), time.size) * tstep rf = ch4_atmos * ch4_re + (co2_atmos +cc_co2_atmos) * co2_re dx = np.gradient(time) rate = np.gradient(rf, dx) fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return rate[fil] def CH4_crf(emission, years, tstep=0.01, kind='linear', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into radiative forcing with user-defined time-step. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) fch4 = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = fch4(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + co2_atmos * co2_re else: rf = ch4_atmos * ch4_re crf = cumtrapz(rf, dx = tstep, initial = 0) fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return crf[fil] def CH4_crf_cc(emission, years, tstep=0.01, kind='linear', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into radiative forcing with user-defined time-step. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ gamma = (44.0/12.0) * 10**12 #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) fch4 = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = fch4(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep cc_co2 = CH4_cc_tempforrf(emission, years) * gamma cc_co2_atmos = np.resize(fftconvolve(CO2_AR5(time), cc_co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + (co2_atmos +cc_co2_atmos) * co2_re else: rf = ch4_atmos * ch4_re + (cc_co2_atmos) * co2_re crf = cumtrapz(rf, dx = tstep, initial = 0) fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return crf[fil] def CH4_temp(emission, years, tstep=0.01, kind='linear', source='AR5', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into temperature with user-defined time-step. Default temperature IRF is from AR5, use 'Alt_low' or 'Alt_high' for a sensitivity test. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic source: the source of parameters for the temperature IRF. default is AR5, 'Alt', 'Alt_low', and 'Alt_high' are also options. decay: a boolean variable for if methane decay to CO2 should be included emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = f(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + co2_atmos * co2_re else: rf = ch4_atmos * ch4_re if source == 'AR5': temp = np.resize(fftconvolve(AR5_GTP(time), rf), time.size) * tstep elif source == 'Alt': temp = np.resize(fftconvolve(Alt_GTP(time), rf), time.size) * tstep elif source == 'Alt_low': temp = np.resize(fftconvolve(Alt_low_GTP(time), rf), time.size) * tstep elif source == 'Alt_high': temp = np.resize(fftconvolve(Alt_high_GTP(time), rf), time.size) * tstep fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return temp[fil] def CH4_cc_tempforrf(emission, years, tstep=0.01, kind='linear', source='AR5', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into temperature with user-defined time-step. Default temperature IRF is from AR5, use 'Alt_low' or 'Alt_high' for a sensitivity test. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic source: the source of parameters for the temperature IRF. default is AR5, 'Alt', 'Alt_low', and 'Alt_high' are also options. decay: a boolean variable for if methane decay to CO2 should be included emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = f(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + co2_atmos * co2_re else: rf = ch4_atmos * ch4_re if source == 'AR5': temp = np.resize(fftconvolve(AR5_GTP(time), rf), time.size) * tstep elif source == 'Alt': temp = np.resize(fftconvolve(Alt_GTP(time), rf), time.size) * tstep elif source == 'Alt_low': temp = np.resize(fftconvolve(Alt_low_GTP(time), rf), time.size) * tstep elif source == 'Alt_high': temp = np.resize(fftconvolve(Alt_high_GTP(time), rf), time.size) * tstep fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return temp def CH4_temp_cc(emission, years, tstep=0.01, kind='linear', source='AR5', decay=True, emiss_type='sustained'): """Transforms an array of methane emissions into temperature with user-defined time-step. Default temperature IRF is from AR5, use 'Alt_low' or 'Alt_high' for a sensitivity test. Accounts for climate-carbon feedbacks. emission: an array of emissions, should be same size as years years: an array of years at which the emissions take place : time step to be used in the calculations kind: the type of interpolation to use; can be linear or cubic source: the source of parameters for the temperature IRF. default is AR5, 'Alt', 'Alt_low', and 'Alt_high' are also options. decay: a boolean variable for if methane decay to CO2 should be included emiss_type: 'sustained' or 'pulse' - if 'pulse', then the emission values are divided by . this allows a pulse of 1 kg in the first value of the array to represent a full kg of emission, and 1 kg in all values associated with the first year to also represent a full kg when 'sustained'. """ gamma = (44.0/12.0) * 10**12 #emission is a series of emission numbers, years should match up with it if min(years) > 0: years = years - min(years) if emiss_type == 'pulse': emission /= tstep end = max(years) f = interp1d(years, emission, kind=kind) time = np.linspace(years[0], end, end/ + 1) ch4_inter_emissions = f(time) ch4_atmos = np.resize(fftconvolve(CH4_AR5(time), ch4_inter_emissions), time.size) * tstep co2 = np.resize(fftconvolve(ch42co2(time), ch4_inter_emissions), time.size) * tstep co2_atmos = np.resize(fftconvolve(CO2_AR5(time), co2), time.size) * tstep cc_co2 = CH4_cc_tempforrf(emission, years) * gamma cc_co2_atmos = np.resize(fftconvolve(CO2_AR5(time), cc_co2), time.size) * tstep if decay == True: rf = ch4_atmos * ch4_re + (co2_atmos + cc_co2_atmos) * co2_re else: rf = ch4_atmos * ch4_re + cc_co2_atmos * co2_re if source == 'AR5': temp = np.resize(fftconvolve(AR5_GTP(time), rf), time.size) * tstep elif source == 'Alt': temp = np.resize(fftconvolve(Alt_GTP(time), rf), time.size) * tstep elif source == 'Alt_low': temp = np.resize(fftconvolve(Alt_low_GTP(time), rf), time.size) * tstep elif source == 'Alt_high': temp = np.resize(fftconvolve(Alt_high_GTP(time), rf), time.size) * tstep fil = np.zeros_like(time, dtype=bool) for i in time: if i == int(i): fil[i/tstep] = True return temp[fil]
41.016743
89
0.639417
dccba77e47dd5c2a8f9b631a6c099d0742c65293
7,802
py
Python
third_party/python/Lib/test/libregrtest/runtest_mp.py
appotry/cosmopolitan
af4687cc3f2331a23dc336183ab58fe001cda082
[ "ISC" ]
null
null
null
third_party/python/Lib/test/libregrtest/runtest_mp.py
appotry/cosmopolitan
af4687cc3f2331a23dc336183ab58fe001cda082
[ "ISC" ]
null
null
null
third_party/python/Lib/test/libregrtest/runtest_mp.py
appotry/cosmopolitan
af4687cc3f2331a23dc336183ab58fe001cda082
[ "ISC" ]
null
null
null
import faulthandler import json import os import queue import sys import time import traceback import types from test import support try: import _thread import threading except ImportError: print("Multiprocess option requires thread support") sys.exit(2) from test.libregrtest.runtest import ( runtest, INTERRUPTED, CHILD_ERROR, PROGRESS_MIN_TIME, format_test_result) from test.libregrtest.setup import setup_tests from test.libregrtest.utils import format_duration # Display the running tests if nothing happened last N seconds PROGRESS_UPDATE = 30.0 # seconds # If interrupted, display the wait progress every N seconds WAIT_PROGRESS = 2.0 # seconds def run_test_in_subprocess(testname, ns): """Run the given test in a subprocess with --worker-args. ns is the option Namespace parsed from command-line arguments. regrtest is invoked in a subprocess with the --worker-args argument; when the subprocess exits, its return code, stdout and stderr are returned as a 3-tuple. """ from subprocess import Popen, PIPE ns_dict = vars(ns) worker_args = (ns_dict, testname) worker_args = json.dumps(worker_args) cmd = [sys.executable, *support.args_from_interpreter_flags(), '-u', # Unbuffered stdout and stderr '-m', 'test.regrtest', '--worker-args', worker_args] if ns.pgo: cmd += ['--pgo'] # Running the child from the same working directory as regrtest's original # invocation ensures that TEMPDIR for the child is the same when # sysconfig.is_python_build() is true. See issue 15300. popen = Popen(cmd, stdout=PIPE, stderr=PIPE, universal_newlines=True, close_fds=(os.name != 'nt'), cwd=support.SAVEDCWD) with popen: stdout, stderr = popen.communicate() retcode = popen.wait() return retcode, stdout, stderr def run_tests_worker(worker_args): ns_dict, testname = json.loads(worker_args) ns = types.SimpleNamespace(**ns_dict) setup_tests(ns) try: result = runtest(ns, testname) except KeyboardInterrupt: result = INTERRUPTED, '', None except BaseException as e: traceback.print_exc() result = CHILD_ERROR, str(e) print() # Force a newline (just in case) print(json.dumps(result), flush=True) sys.exit(0) # We do not use a generator so multiple threads can call next(). class MultiprocessIterator: """A thread-safe iterator over tests for multiprocess mode.""" def __init__(self, tests): self.interrupted = False self.lock = threading.Lock() self.tests = tests def __iter__(self): return self def __next__(self): with self.lock: if self.interrupted: raise StopIteration('tests interrupted') return next(self.tests) class MultiprocessThread(threading.Thread): def __init__(self, pending, output, ns): super().__init__() self.pending = pending self.output = output self.ns = ns self.current_test = None self.start_time = None def _runtest(self): try: test = next(self.pending) except StopIteration: self.output.put((None, None, None, None)) return True try: self.start_time = time.monotonic() self.current_test = test retcode, stdout, stderr = run_test_in_subprocess(test, self.ns) finally: self.current_test = None if retcode != 0: result = (CHILD_ERROR, "Exit code %s" % retcode, None) self.output.put((test, stdout.rstrip(), stderr.rstrip(), result)) return False stdout, _, result = stdout.strip().rpartition("\n") if not result: self.output.put((None, None, None, None)) return True result = json.loads(result) assert len(result) == 3, f"Invalid result tuple: {result!r}" self.output.put((test, stdout.rstrip(), stderr.rstrip(), result)) return False def run(self): try: stop = False while not stop: stop = self._runtest() except BaseException: self.output.put((None, None, None, None)) raise def run_tests_multiprocess(regrtest): output = queue.Queue() pending = MultiprocessIterator(regrtest.tests) test_timeout = regrtest.ns.timeout use_timeout = (test_timeout is not None) workers = [MultiprocessThread(pending, output, regrtest.ns) for i in range(regrtest.ns.use_mp)] print("Run tests in parallel using %s child processes" % len(workers)) for worker in workers: worker.start() def get_running(workers): running = [] for worker in workers: current_test = worker.current_test if not current_test: continue dt = time.monotonic() - worker.start_time if dt >= PROGRESS_MIN_TIME: text = '%s (%s)' % (current_test, format_duration(dt)) running.append(text) return running finished = 0 test_index = 1 get_timeout = max(PROGRESS_UPDATE, PROGRESS_MIN_TIME) try: while finished < regrtest.ns.use_mp: if use_timeout: faulthandler.dump_traceback_later(test_timeout, exit=True) try: item = output.get(timeout=get_timeout) except queue.Empty: running = get_running(workers) if running and not regrtest.ns.pgo: print('running: %s' % ', '.join(running), flush=True) continue test, stdout, stderr, result = item if test is None: finished += 1 continue regrtest.accumulate_result(test, result) # Display progress ok, test_time, xml_data = result text = format_test_result(test, ok) if (ok not in (CHILD_ERROR, INTERRUPTED) and test_time >= PROGRESS_MIN_TIME and not regrtest.ns.pgo): text += ' (%s)' % format_duration(test_time) elif ok == CHILD_ERROR: text = '%s (%s)' % (text, test_time) running = get_running(workers) if running and not regrtest.ns.pgo: text += ' -- running: %s' % ', '.join(running) regrtest.display_progress(test_index, text) # Copy stdout and stderr from the child process if stdout: print(stdout, flush=True) if stderr and not regrtest.ns.pgo: print(stderr, file=sys.stderr, flush=True) if result[0] == INTERRUPTED: raise KeyboardInterrupt test_index += 1 except KeyboardInterrupt: regrtest.interrupted = True pending.interrupted = True print() finally: if use_timeout: faulthandler.cancel_dump_traceback_later() # If tests are interrupted, wait until tests complete wait_start = time.monotonic() while True: running = [worker.current_test for worker in workers] running = list(filter(bool, running)) if not running: break dt = time.monotonic() - wait_start line = "Waiting for %s (%s tests)" % (', '.join(running), len(running)) if dt >= WAIT_PROGRESS: line = "%s since %.0f sec" % (line, dt) print(line, flush=True) for worker in workers: worker.join(WAIT_PROGRESS)
31.333333
79
0.59536
b863adacf420596c7df16c370c5b4fbce57208ad
429
py
Python
server/src/schemas/userfile.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
server/src/schemas/userfile.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
server/src/schemas/userfile.py
Sheerabth/blob-system
808f1591247fecace4cbd121053d79205096ced3
[ "MIT" ]
null
null
null
from typing import Optional from pydantic import BaseModel from src.db.models import Permissions class UserFileBaseSchema(BaseModel): user_id: str access_type: Permissions class Config: orm_mode = True class UserFileSchema(UserFileBaseSchema): file_id: str class UserFileInfoSchema(UserFileSchema): file: Optional[object] class UserInfoFileSchema(UserFileSchema): user: Optional[object]
17.16
41
0.762238
87c40e3638021744a10188b745babc8fa206ce8d
562
py
Python
backend/src/local_settings.py
oopaze/portifolio-josepedro
6f8f84290f81ee3bef4556da690e64fbcc8f8893
[ "MIT" ]
1
2021-12-30T12:07:43.000Z
2021-12-30T12:07:43.000Z
backend/src/local_settings.py
oopaze/portifolio-josepedro-backend
6f8f84290f81ee3bef4556da690e64fbcc8f8893
[ "MIT" ]
1
2021-11-04T04:50:31.000Z
2021-11-04T04:50:31.000Z
backend/src/local_settings.py
oopaze/portifolio-josepedro
6f8f84290f81ee3bef4556da690e64fbcc8f8893
[ "MIT" ]
null
null
null
import os from pathlib import Path from dotenv import load_dotenv BASE_DIR = Path(__file__).resolve().parent.parent dotenv_path = BASE_DIR / '.env.dev' load_dotenv(dotenv_path) SITE_URL = os.getenv("SITE_URL", default='http://localhost:8000') DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': os.getenv('DB_NAME'), 'USER': os.getenv('DB_USER'), 'PASSWORD': os.getenv('DB_PASSWD'), 'HOST': os.getenv('DB_HOST', 'localhost'), 'PORT': os.getenv('DB_POST', 5432) } }
23.416667
65
0.642349
64cd8696d555e2600dc9d27d40cfcc53faef2066
5,263
py
Python
src/cfnlint/rules/parameters/Default.py
sthagen/aws-cloudformation-cfn-lint
8628b2bab208acb2ac7843d2cadf7b56252058f7
[ "MIT-0" ]
445
2018-04-19T14:43:33.000Z
2019-03-01T11:00:21.000Z
src/cfnlint/rules/parameters/Default.py
sthagen/cfn-lint
80c8211eb028b374fdf547f21a8e218248dedc89
[ "MIT-0" ]
464
2018-04-19T17:29:50.000Z
2019-03-01T14:20:19.000Z
src/cfnlint/rules/parameters/Default.py
sthagen/cfn-lint
80c8211eb028b374fdf547f21a8e218248dedc89
[ "MIT-0" ]
93
2018-04-19T14:55:35.000Z
2019-03-01T03:26:47.000Z
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ import re from cfnlint.rules import CloudFormationLintRule from cfnlint.rules import RuleMatch class Default(CloudFormationLintRule): """Check if Parameters are configured correctly""" id = 'E2015' shortdesc = 'Default value is within parameter constraints' description = 'Making sure the parameters have a default value inside AllowedValues, MinValue, MaxValue, AllowedPattern' source_url = 'https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/parameters-section-structure.html' tags = ['parameters'] def check_allowed_pattern(self, allowed_value, allowed_pattern, path): """ Check allowed value against allowed pattern """ message = 'Default should be allowed by AllowedPattern' try: if not re.match(allowed_pattern, str(allowed_value)): return([RuleMatch(path, message)]) except re.error as ex: self.logger.debug('Regex pattern "%s" isn\'t supported by Python: %s', allowed_pattern, ex) return [] def check_min_value(self, allowed_value, min_value, path): """ Check allowed value against min value """ message = 'Default should be equal to or higher than MinValue' if isinstance(allowed_value, int) and isinstance(min_value, int): if allowed_value < min_value: return([RuleMatch(path, message)]) return [] def check_max_value(self, allowed_value, max_value, path): """ Check allowed value against max value """ message = 'Default should be less than or equal to MaxValue' if isinstance(allowed_value, int) and isinstance(max_value, int): if allowed_value > max_value: return([RuleMatch(path, message)]) return [] def check_allowed_values(self, allowed_value, allowed_values, path): """ Check allowed value against allowed values """ message = 'Default should be a value within AllowedValues' if allowed_value not in allowed_values: return([RuleMatch(path, message)]) return [] def check_min_length(self, allowed_value, min_length, path): """ Check allowed value against MinLength """ message = 'Default should have a length above or equal to MinLength' value = allowed_value if isinstance(allowed_value, str) else str(allowed_value) if isinstance(min_length, int): if len(value) < min_length: return([RuleMatch(path, message)]) return [] def check_max_length(self, allowed_value, max_length, path): """ Check allowed value against MaxLength """ message = 'Default should have a length below or equal to MaxLength' value = allowed_value if isinstance(allowed_value, str) else str(allowed_value) if isinstance(max_length, int): if len(value) > max_length: return([RuleMatch(path, message)]) return [] def match(self, cfn): matches = [] for paramname, paramvalue in cfn.get_parameters_valid().items(): default_value = paramvalue.get('Default') if default_value is not None: path = ['Parameters', paramname, 'Default'] allowed_pattern = paramvalue.get('AllowedPattern') if allowed_pattern: matches.extend( self.check_allowed_pattern( default_value, allowed_pattern, path ) ) min_value = paramvalue.get('MinValue') if min_value: matches.extend( self.check_min_value( default_value, min_value, path ) ) max_value = paramvalue.get('MaxValue') if max_value is not None: matches.extend( self.check_max_value( default_value, max_value, path ) ) allowed_values = paramvalue.get('AllowedValues') if allowed_values: matches.extend( self.check_allowed_values( default_value, allowed_values, path ) ) min_length = paramvalue.get('MinLength') if min_length is not None: matches.extend( self.check_min_length( default_value, min_length, path ) ) max_length = paramvalue.get('MaxLength') if max_length is not None: matches.extend( self.check_max_length( default_value, max_length, path ) ) return matches
36.548611
124
0.551777
4944d4ae9771e03d4307d4fd90963f258c099ab8
8,044
py
Python
cacheTraceAnalysis/core/traceStat.py
Thesys-lab/cacheWorkloadAnalysisOSDI20
cfc5bbb5c8d909571546c78c247561c9db449469
[ "Apache-2.0" ]
6
2020-11-12T07:51:02.000Z
2022-03-27T20:20:01.000Z
cacheTraceAnalysis/core/traceStat.py
Thesys-lab/InMemoryCachingWorkloadAnalysis
5f6f9f7e29a164478f3fc28eb64c170bbbafdec7
[ "Apache-2.0" ]
null
null
null
cacheTraceAnalysis/core/traceStat.py
Thesys-lab/InMemoryCachingWorkloadAnalysis
5f6f9f7e29a164478f3fc28eb64c170bbbafdec7
[ "Apache-2.0" ]
1
2021-12-31T01:16:09.000Z
2021-12-31T01:16:09.000Z
# coding=utf-8 """ this module calculates the stat of the trace """ from pprint import pformat from collections import defaultdict class TraceStat: """ this class provides statistics calculation of a given trace """ def __init__(self, reader, top_N_popular=8): self.reader = reader self.top_N_popular = top_N_popular # stat data representation: # 0: not initialized, # -1: error while obtaining data self.num_of_requests = 0 self.num_of_uniq_obj = 0 self.cold_miss_ratio = 0 self.top_N_popular_obj = [] self.num_one_hit_wonders = 0 self.freq_mean = 0 self.time_span = 0 self.ttl_dict = defaultdict(int) self.top_ttl_dict = {} self.key_size_mean_weighted_by_req = 0 self.value_size_mean_weighted_by_req = 0 self.obj_size_mean_weighted_by_req = 0 self.req_size_mean_weighted_by_req = 0 self.key_size_mean_weighted_by_obj = 0 self.value_size_mean_weighted_by_obj = 0 self.obj_size_mean_weighted_by_obj = 0 self.req_size_mean_weighted_by_obj = 0 self.op_ratio = defaultdict(int) self._calculate() def _calculate(self): """ calculate all the stat using the reader :return: """ req_cnt = defaultdict(int) sum_key_size_req, sum_value_size_req, sum_obj_size_req, sum_req_size_req = 0, 0, 0, 0 sum_key_size_obj, sum_value_size_obj, sum_obj_size_obj, sum_req_size_obj = 0, 0, 0, 0 first_req = next(self.reader) n_nonzero_sz_obj = 0 for req in self.reader: if req.req_size > 0: sum_key_size_req += req.key_size * req.cnt sum_value_size_req += req.value_size * req.cnt sum_obj_size_req += req.obj_size * req.cnt sum_req_size_req += req.req_size * req.cnt if req.obj_id not in req_cnt: sum_key_size_obj += req.key_size sum_value_size_obj += req.value_size sum_obj_size_obj += req.obj_size sum_req_size_obj += req.req_size n_nonzero_sz_obj += 1 if req.op: self.op_ratio[req.op] += 1 if req.op in ("set", "add", "set", "add", "cas", "replace", "append", "prepend"): ttl = req.ttl # round up if abs(ttl//10*10 - ttl) <= 2: ttl = ttl // 10 * 10 if ttl < 3600: ttl = "{}s".format(ttl) elif 24*3600 > ttl >= 3600: ttl = "{:.1f}h".format(ttl/3600) elif ttl >= 24*3600: ttl = "{:.1f}d".format(ttl/3600/24) ttl = ttl.replace(".0", "") self.ttl_dict[ttl] += 1 req_cnt[req.obj_id] += req.cnt last_req = req self.reader.reset() self.num_of_uniq_obj = len(req_cnt) self.num_of_requests = sum(req_cnt.values()) self.cold_miss_ratio = self.num_of_uniq_obj / self.num_of_requests self.time_span = last_req.real_time - first_req.real_time if n_nonzero_sz_obj == 0: print("all requests size 0") else: self.key_size_mean_weighted_by_req = sum_key_size_req/self.num_of_requests self.value_size_mean_weighted_by_req = sum_value_size_req/self.num_of_requests self.obj_size_mean_weighted_by_req = sum_obj_size_req/self.num_of_requests self.req_size_mean_weighted_by_req = sum_req_size_req/self.num_of_requests self.key_size_mean_weighted_by_obj = sum_key_size_obj/n_nonzero_sz_obj self.value_size_mean_weighted_by_obj = sum_value_size_obj/n_nonzero_sz_obj self.obj_size_mean_weighted_by_obj = sum_obj_size_obj/n_nonzero_sz_obj self.req_size_mean_weighted_by_obj = sum_req_size_obj/n_nonzero_sz_obj for op, cnt in self.op_ratio.items(): self.op_ratio[op] = cnt/self.num_of_requests # find the top ttl used in the workload total_ttl_cnt = sum(self.ttl_dict.values()) for ttl, cnt in sorted(self.ttl_dict.items(), key=lambda x:-x[1]): self.top_ttl_dict[ttl] = cnt/total_ttl_cnt if len(self.top_ttl_dict) >= 10: break # l is a list of (obj, freq) in descending order l = sorted(req_cnt.items(), key=lambda x: x[1], reverse=True) self.top_N_popular_obj = l[:self.top_N_popular] # count one-hit-wonders for i in range(len(l)-1, -1, -1): if l[i][1] == 1: self.num_one_hit_wonders += 1 else: break self.freq_mean = self.num_of_requests / (float) (self.num_of_uniq_obj) def _gen_stat_str(self): """ gegerate a stat str """ s = "dat: {}\nnumber of requests: {}\nnumber of uniq obj/blocks: {}\n" \ "cold miss ratio: {:.4f}\ntop N popular (obj, num of requests): \n{}\n" \ "number of obj/block accessed only once: {} ({:.4f})\n" \ "weighted_by_req: obj_size_mean {:.0f}, req_size_mean {:.0f}, key_size_mean {:.0f}, value_size_mean {:.0f}\n"\ "weighted_by_obj: obj_size_mean {:.0f}, req_size_mean {:.0f}, key_size_mean {:.0f}, value_size_mean {:.0f}\n"\ "frequency mean: {:.2f}\n".format(self.reader.trace_path, self.num_of_requests, self.num_of_uniq_obj, self.cold_miss_ratio, pformat(self.top_N_popular_obj), self.num_one_hit_wonders, self.num_one_hit_wonders/self.num_of_uniq_obj, self.obj_size_mean_weighted_by_req, self.req_size_mean_weighted_by_req, self.key_size_mean_weighted_by_req, self.value_size_mean_weighted_by_req, self.obj_size_mean_weighted_by_obj, self.req_size_mean_weighted_by_obj, self.key_size_mean_weighted_by_obj, self.value_size_mean_weighted_by_obj, self.freq_mean) if self.time_span: s += "time span: {} ({:.2f} day)\n".format(self.time_span, self.time_span/3600/24) if len(self.op_ratio): op_ratio_str = "op: " + ", ".join(["{}:{:.4f}".format(op, ratio) for op, ratio in self.op_ratio.items()]) s += op_ratio_str + "\n" # s += "op ratio: {}\n".format(pformat(self.op_ratio)) if len(self.top_ttl_dict): s += "ttl: {} ttls used, ".format(len(self.ttl_dict)) + ", ".join(["{}:{:.4f}".format(ttl, ratio) for ttl, ratio in self.top_ttl_dict.items() if ratio >= 0.01]) return s def _gen_stat_json(self): raise RuntimeError("not implemented") def get_stat(self, return_format="str"): """ return stat in the format of string or tuple :param return_format: :return: """ if return_format == "str": return self._gen_stat_str() elif return_format == "tuple": return (self.num_of_requests, self.num_of_uniq_obj, self.cold_miss_ratio, self.top_N_popular_obj, self.num_one_hit_wonders, self.freq_mean, self.time_span) elif return_format == "dict": d = self.__dict__.copy() elif return_format == "json": return self._gen_json() else: raise RuntimeError("unknown return format, return string instead") return s def get_top_N(self): return self.top_N_popular_obj def __repr__(self): return self.get_stat() def __str__(self): return self.get_stat()
38.304762
172
0.570985
663ed3c36ba367852d899279a7e335bb7dad02fc
3,133
py
Python
copula/bayes_birth_only_frank.py
PetropoulakisPanagiotis/copula
d6ff9751539e948f88dd529f4f4fe8f2d86c05bd
[ "MIT" ]
8
2020-04-09T14:20:49.000Z
2021-12-24T19:17:58.000Z
copula/bayes_birth_only_frank.py
PetropoulakisPanagiotis/copula
d6ff9751539e948f88dd529f4f4fe8f2d86c05bd
[ "MIT" ]
null
null
null
copula/bayes_birth_only_frank.py
PetropoulakisPanagiotis/copula
d6ff9751539e948f88dd529f4f4fe8f2d86c05bd
[ "MIT" ]
1
2020-04-09T13:59:32.000Z
2020-04-09T13:59:32.000Z
from __future__ import division from allclayton import allclayton from allgumbel import allgumbel from allfrank import allfrank from pandas import read_excel from bayes_birth_frank import * import numpy as np def bayes_birth_only_frank(currentModel, newModel, kn, u, v, s, q, Q, zita, chain): current = np.sort(currentModel) new = np.sort(newModel) t2 = new[new != 0] min_new = np.min(t2) max_new = np.max(t2) L = len(u) l = len(current) ss = -1 R = 1/2 if not np.any(current): if(s[1] == 2 and s[2] == 2): result1 = allfrank(u[:max_new], v[:max_new]) result2 = allfrank(u[max_new:L], v[max_new:L]) R = R * 3 else: if(s[1] == 1 and s[2] == 2): result1 = allclayton(u[:max_new], v[:max_new]) result2 = allfrank(u[max_new:L], v[max_new:L]) R = R * 3/2 else: if(s[1] == 2 and s[2] == 1): result1 = allfrank(u[:max_new], v[:max_new]) result2 = allclayton(u[max_new:L], v[max_new:L]) R = R * 3/2 else: if(s[1] == 2 and s[2] == 3): result1 = allfrank(u[:max_new], v[:max_new]) result2 = allgumbel(u[max_new:L], v[max_new:L]) R = R * 3/2 else: if(s[1] == 3 and s[2] == 2): result1 = allgumbel(u[:max_new], v[:max_new]) result2 = allfrank(u[max_new:L], v[max_new:L]) R = R * 3/2 resultOld = allfrank(u, v) BFu = result1["BFu"] + result2["BFu"] - resultOld["BFu"] if BFu.imag: ss = -2 U2 = np.random.uniform(low=np.nextafter(0.0, 1.0)) if (np.log(U2) < min(0, ((zita ** (chain - 1)) * BFu) + np.log(R))) and not BFu.imag: new_model = new rejected = current QQ = Q w = 37 else: new_model = current rejected = new QQ = q w = 38 result = {"new_model": new_model, "rejected": rejected, "w": w, "QQ": QQ, "ss": ss} else: result = bayes_birth_frank(currentModel, newModel, kn, u, v, s, q, Q, zita, chain) return result # Test # if __name__ == "__main__": df = read_excel("../data/artificial_data.xlsx", sheet_name='Sheet1') u = [] v = [] for index, row in df.iterrows(): u.append([float(row['u'])]) v.append([float(row['v'])]) u = np.asarray(u, dtype=np.float32) v = np.asarray(v, dtype=np.float32) dist = 30 numbrk = 5 kn = 137 s = [2, 1, 2] q = [1, 2, 2, 3, 3, 3] Q = [ 1, 2, 3, 2, 3, 3] zita = 1 chain = 1 currentModel = np.zeros(numbrk, dtype=int) newModel = np.zeros(numbrk, dtype=int) newModel[1] = 99 newModel[2] = 137 newModel[3] = 180 newModel[4] = 250 result = bayes_birth_only_frank(currentModel, newModel, kn, u, v, s, q, Q, zita, chain) print(result)
29.009259
95
0.487392
fc90fb47e1d78ff00bce415c2679c28db7839f64
10,277
py
Python
bw2io/strategies/ecospold2.py
mfastudillo/brightway2-io
dc383ddb6003a46e78259aeb7f87b9d80965d689
[ "BSD-3-Clause" ]
null
null
null
bw2io/strategies/ecospold2.py
mfastudillo/brightway2-io
dc383ddb6003a46e78259aeb7f87b9d80965d689
[ "BSD-3-Clause" ]
null
null
null
bw2io/strategies/ecospold2.py
mfastudillo/brightway2-io
dc383ddb6003a46e78259aeb7f87b9d80965d689
[ "BSD-3-Clause" ]
null
null
null
from .migrations import migrate_exchanges, migrations from ..utils import format_for_logging, es2_activity_hash from bw2data import Database from bw2data.logs import get_io_logger, close_log from stats_arrays import ( LognormalUncertainty, UndefinedUncertainty, ) import math import warnings def link_biosphere_by_flow_uuid(db, biosphere="biosphere3"): biosphere_codes = {x["code"] for x in Database(biosphere)} for ds in db: for exc in ds.get("exchanges", []): if ( exc.get("type") == "biosphere" and exc.get("flow") and exc.get("flow") in biosphere_codes ): exc["input"] = (biosphere, exc.get("flow")) return db def remove_zero_amount_coproducts(db): """Remove coproducts with zero production amounts from ``exchanges``""" for ds in db: ds[u"exchanges"] = [ exc for exc in ds["exchanges"] if (exc["type"] != "production" or exc["amount"]) ] return db def remove_zero_amount_inputs_with_no_activity(db): """Remove technosphere exchanges with amount of zero and no uncertainty. Input exchanges with zero amounts are the result of the ecoinvent linking algorithm, and can be safely discarded.""" for ds in db: ds[u"exchanges"] = [ exc for exc in ds["exchanges"] if not ( exc["uncertainty type"] == UndefinedUncertainty.id and exc["amount"] == 0 and exc["type"] == "technosphere" ) ] return db def remove_unnamed_parameters(db): """Remove parameters which have no name. They can't be used in formulas or referenced.""" for ds in db: if "parameters" in ds: ds["parameters"] = { key: value for key, value in ds["parameters"].items() if not value.get("unnamed") } return db def es2_assign_only_product_with_amount_as_reference_product(db): """If a multioutput process has one product with a non-zero amount, assign that product as reference product. This is by default called after ``remove_zero_amount_coproducts``, which will delete the zero-amount coproducts in any case. However, we still keep the zero-amount logic in case people want to keep all coproducts.""" for ds in db: amounted = [ prod for prod in ds["exchanges"] if prod["type"] == "production" and prod["amount"] ] # OK if it overwrites existing reference product; need flow as well if len(amounted) == 1: ds[u"reference product"] = amounted[0]["name"] ds[u"flow"] = amounted[0][u"flow"] if not ds.get("unit"): ds[u"unit"] = amounted[0]["unit"] ds[u"production amount"] = amounted[0]["amount"] return db def assign_single_product_as_activity(db): for ds in db: prod_exchanges = [ exc for exc in ds.get("exchanges") if exc["type"] == "production" ] # raise ValueError if len(prod_exchanges) == 1: prod_exchanges[0]["activity"] = ds["activity"] return db def create_composite_code(db): """Create composite code from activity and flow names""" for ds in db: ds[u"code"] = es2_activity_hash(ds["activity"], ds["flow"]) return db def link_internal_technosphere_by_composite_code(db): """Link internal technosphere inputs by ``code``. Only links to process datasets actually in the database document.""" candidates = {ds["code"] for ds in db} for ds in db: for exc in ds.get("exchanges", []): if exc["type"] in { "technosphere", "production", "substitution", } and exc.get("activity"): key = es2_activity_hash(exc["activity"], exc["flow"]) if key in candidates: exc[u"input"] = (ds["database"], key) return db def delete_exchanges_missing_activity(db): """Delete exchanges that weren't linked correctly by ecoinvent. These exchanges are missing the "activityLinkId" attribute, and the flow they want to consume is not produced as the reference product of any activity. See the `known data issues <http://www.ecoinvent.org/database/ecoinvent-version-3/reports-of-changes/known-data-issues/>`__ report. """ log, logfile = get_io_logger("Ecospold2-import-error") count = 0 for ds in db: exchanges = ds.get("exchanges", []) if not exchanges: continue skip = [] for exc in exchanges: if exc.get("input"): continue if not exc.get("activity") and exc["type"] in { "technosphere", "production", "substitution", }: log.critical( u"Purging unlinked exchange:\nFilename: {}\n{}".format( ds[u"filename"], format_for_logging(exc) ) ) count += 1 skip.append(exc) ds[u"exchanges"] = [exc for exc in exchanges if exc not in skip] close_log(log) if count: print( ( u"{} exchanges couldn't be linked and were deleted. See the " u"logfile for details:\n\t{}" ).format(count, logfile) ) return db def delete_ghost_exchanges(db): """Delete technosphere which can't be linked due to ecoinvent errors. A ghost exchange is one which links to a combination of *activity* and *flow* which aren't provided in the database.""" log, logfile = get_io_logger("Ecospold2-import-error") count = 0 for ds in db: exchanges = ds.get("exchanges", []) if not exchanges: continue skip = [] for exc in exchanges: if exc.get("input") or exc.get("type") != "technosphere": continue log.critical( u"Purging unlinked exchange:\nFilename: {}\n{}".format( ds[u"filename"], format_for_logging(exc) ) ) count += 1 skip.append(exc) ds[u"exchanges"] = [exc for exc in exchanges if exc not in skip] close_log(log) if count: print( ( u"{} exchanges couldn't be linked and were deleted. See the " u"logfile for details:\n\t{}" ).format(count, logfile) ) return db def remove_uncertainty_from_negative_loss_exchanges(db): """Remove uncertainty from negative lognormal exchanges. There are 15699 of these in ecoinvent 3.3 cutoff. The basic uncertainty and pedigree matrix are applied rather blindly, and the can produce strange net production values. It makes much more sense to assume that these loss factors are static. Only applies to exchanges which decrease net production. """ for ds in db: production_names = { exc["name"] for exc in ds.get("exchanges", []) if exc["type"] == "production" } for exc in ds.get("exchanges", []): if ( exc["amount"] < 0 and exc["uncertainty type"] == LognormalUncertainty.id and exc["name"] in production_names ): exc["uncertainty type"] = UndefinedUncertainty.id exc["loc"] = exc["amount"] del exc["scale"] return db def set_lognormal_loc_value(db): """Make sure ``loc`` value is correct for lognormal uncertainty distributions""" for ds in db: for exc in ds.get("exchanges", []): if exc["uncertainty type"] == LognormalUncertainty.id: exc["loc"] = math.log(abs(exc["amount"])) return db def fix_unreasonably_high_lognormal_uncertainties(db, cutoff=2.5, replacement=0.25): """Fix unreasonably high uncertainty values. With the default cutoff value of 2.5 and a median of 1, the 95% confidence interval has a high to low ratio of 20.000.""" for ds in db: for exc in ds.get("exchanges", []): if exc["uncertainty type"] == LognormalUncertainty.id: if exc["scale"] > cutoff: exc["scale"] = replacement return db def fix_ecoinvent_flows_pre35(db): if "fix-ecoinvent-flows-pre-35" in migrations: return migrate_exchanges(db, "fix-ecoinvent-flows-pre-35") else: warnings.warn( ( "Skipping migration 'fix-ecoinvent-flows-pre-35' " "because it isn't installed" ) ) return db def drop_temporary_outdated_biosphere_flows(db): """Drop biosphere exchanges which aren't used and are outdated""" names = { "Fluorene_temp", "Fluoranthene_temp", "Dibenz(a,h)anthracene_temp", "Benzo(k)fluoranthene_temp", "Benzo(ghi)perylene_temp", "Benzo(b)fluoranthene_temp", "Benzo(a)anthracene_temp", "Acenaphthylene_temp", "Chrysene_temp", "Pyrene_temp", "Phenanthrene_temp", "Indeno(1,2,3-c,d)pyrene_temp", } for ds in db: ds["exchanges"] = [ obj for obj in ds["exchanges"] if not (obj.get("name") in names and obj.get("type") == "biosphere") ] return db def add_cpc_classification_from_single_reference_product(db): def has_cpc(exc): return ( "classifications" in exc and "CPC" in exc["classifications"] and exc["classifications"]["CPC"] ) for ds in db: assert "classifications" in ds products = [exc for exc in ds["exchanges"] if exc["type"] == "production"] if len(products) == 1 and has_cpc(products[0]): ds["classifications"].append( ("CPC", products[0]["classifications"]["CPC"][0]) ) return db def delete_none_synonyms(db): for ds in db: ds["synonyms"] = [s for s in ds["synonyms"] if s is not None] return db
33.366883
287
0.5776