hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
2c78b7efdd194e516ae812f551f6e716de7980d0
2,462
py
Python
utils/exact_shapley.py
marcoancona/DASP
cbd82b36443199f11fa04ecb0322fa68f5505b2c
[ "MIT" ]
47
2019-04-29T19:14:10.000Z
2022-02-28T13:37:21.000Z
utils/exact_shapley.py
marcoancona/DASP
cbd82b36443199f11fa04ecb0322fa68f5505b2c
[ "MIT" ]
5
2019-06-05T13:41:12.000Z
2022-03-08T05:31:02.000Z
utils/exact_shapley.py
marcoancona/DASP
cbd82b36443199f11fa04ecb0322fa68f5505b2c
[ "MIT" ]
13
2019-06-07T12:07:18.000Z
2021-12-20T02:02:20.000Z
import numpy as np from itertools import chain, combinations import scipy.special fact = scipy.special.factorial def f_max(inputs): return np.max(inputs) def f_linear_relu(x, w, b): y = np.sum(x*w, -1) + b return np.maximum(0, y) def powerset(iterable): """ powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3) """ xs = list(iterable) # note we return an iterator rather than a list return chain.from_iterable(combinations(xs, n) for n in range(len(xs) + 1)) def vec_bin_array(arr, m): """ Arguments: arr: Numpy array of positive integers m: Number of bits of each integer to retain Returns a copy of arr with every element replaced with a bit vector. Bits encoded as int8's. """ to_str_func = np.vectorize(lambda x: np.binary_repr(x).zfill(m)) strs = to_str_func(arr) ret = np.zeros(list(arr.shape) + [m], dtype=np.int8) for bit_ix in range(0, m): fetch_bit_func = np.vectorize(lambda x: x[bit_ix] == '1') ret[...,bit_ix] = fetch_bit_func(strs).astype("int8") return ret def compute_shapley(inputs, f, baseline=None): if baseline is None: baseline = np.zeros_like(inputs) results = np.zeros(inputs.shape) n = inputs.shape[0] assert inputs.shape == (n,), inputs.shape # Create powerset binary mask with shape (2**n, n) # Note: we first exclude column with index index, then we add it mask = vec_bin_array(np.arange(2 ** (n-1)), n-1) assert mask.shape == (2**(n-1), n-1) # assert mask.shape == (2**(n-1), n-1), 'Mask shape does not match' coeff = (fact(mask.sum(1)) * fact(n - mask.sum(1) - 1)) / fact(n) for index in range(n): # Copy mask and set the current player active mask_wo_index = np.insert(mask, index, np.zeros(2 ** (n-1)), axis=1) mask_wi_index = np.insert(mask, index, np.ones(2 ** (n-1)), axis=1) # print(mask_wo_index.shape) assert mask_wo_index.shape == (2 ** (n - 1), n), 'Mask shape does not match' assert np.max(mask_wo_index) == 1, np.max(mask_wo_index) assert np.min(mask_wo_index) == 0, np.min(mask_wo_index) run_wo_i = f(inputs * mask_wo_index + baseline * (1-mask_wo_index)) # run all masks at once run_wi_i = f(inputs * mask_wi_index + baseline * (1-mask_wi_index)) # run all masks at once r = (run_wi_i - run_wo_i) * coeff results[index] = r.sum() return results
34.194444
100
0.623071
d5466d0d6ae28f217e320e69a50f86d00f66d62a
20,515
py
Python
adafruit_progressbar/__init__.py
lesamouraipourpre/Adafruit_CircuitPython_ProgressBar
17f1290869db1cd8beb03e7640635eb4d9483734
[ "Unlicense", "MIT-0", "MIT" ]
5
2020-04-14T20:50:30.000Z
2021-10-19T18:49:46.000Z
adafruit_progressbar/__init__.py
lesamouraipourpre/Adafruit_CircuitPython_ProgressBar
17f1290869db1cd8beb03e7640635eb4d9483734
[ "Unlicense", "MIT-0", "MIT" ]
25
2020-07-17T03:05:56.000Z
2022-01-06T16:00:51.000Z
adafruit_progressbar/__init__.py
lesamouraipourpre/Adafruit_CircuitPython_ProgressBar
17f1290869db1cd8beb03e7640635eb4d9483734
[ "Unlicense", "MIT-0", "MIT" ]
10
2020-01-07T20:14:56.000Z
2021-11-14T20:34:43.000Z
# SPDX-FileCopyrightText: 2020 Brent Rubell for Adafruit Industries # # SPDX-License-Identifier: MIT """ `adafruit_progressbar` ================================================================================ Dynamic progress bar widget for CircuitPython displays * Author(s): Brent Rubell and Hugo Dahl Implementation Notes -------------------- **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases """ # imports try: from typing import Tuple, Union, List except ImportError: pass # No harm if the module isn't located import displayio class ProgressBarBase(displayio.TileGrid): """The base class for dynamic progress bar widgets. :param position: The coordinates (x, y) of the top left corner :type position: Tuple[int, int] :param size: The size (width, height) of the progress bar :type size: Tuple[int, int] :param bar_color: The color of the bar representing the value. This can be a hexadecimal value for color (0x224466). Default: 0x00FF00 (Solid green) :type bar_color: int :param border_color: The color of the border around the progress bar. This can be a hexadecimal value for color (0x4488BB). Default: 0xFFFFFF (White) :type border_color: int :param fill_color: The colour of the bar representing the remainder of the value. i.e. if the current value is 42%, the 42 value is represented by the bar_color parameter. The remainder, 58%, will be displayed in this color. This can also be a hexadecimal value for color (0xEE7755). Default: 0x000000 (Black) :type fill_color: int :param margin_size: Specify whether a margin between the border of the widget and the bar representing the value should be visible or not. Default: True :type margin_size: bool :param value_range: Specify the range of allowed values for which the progress should be displayed. When setting the "value" property, this range is the one against which its progression will be determined. Default: (0.0, 1.0) :type value_range: Tuple[int, int] or Tuple[float, float] """ # pylint: disable=too-many-arguments, too-many-instance-attributes def __init__( self, position: Tuple[int, int], size: Tuple[int, int], value: Union[int, float] = 0, bar_color=0x00FF00, border_color=0xFFFFFF, fill_color=0x000000, border_thickness: int = 1, margin_size: int = 1, value_range: Union[Tuple[int, int], Tuple[float, float]] = (0, 100), ) -> None: if value_range[0] >= value_range[1]: raise ValueError("The minimum value must be less than the maximum value") if size[0] <= 0 or size[1] <= 0: raise ValueError("The width and the height must be greater than zero") if not value_range[0] <= value <= value_range[1]: raise ValueError( "The starting value must be within the range of minimum to maximum" ) _edge_size = 2 * margin_size + 2 * border_thickness if _edge_size >= size[0]: raise ValueError( "The size of the borders and margins combined must be " "less than the width of the widget" ) if _edge_size >= size[1]: raise ValueError( "The size of the borders and margins combined must be " "less than the height of the widget" ) self._progress = 0.0 self._widget_size = size self._position = position self._bitmap = displayio.Bitmap(size[0], size[1], 3) self._palette = displayio.Palette(3) self._border_thickness = border_thickness self._margin_size = margin_size self._range = value_range self._progress = 0.0 self._old_value = self.minimum self._value = self.minimum self.fill = fill_color self.bar_color = bar_color self.border_color = border_color # Setup value and old_value to handle the change to the new # initial value later. self._value = self.minimum self._old_value = self.minimum super().__init__( self._bitmap, pixel_shader=self._palette, x=self._position[0], y=self._position[1], ) self._draw_outline() self.value = value # _bitmap: displayio.Bitmap # The bitmap used for the bar/value # _position: (int, int) # The (x,y) coordinates of the top-left corner # _widget_size: (int, int) # The dimensions of the progress bar # _palette: displayio.Palette(3) # The palette to be used # _progress: float # The value to represent, between 0.0 and 100.0 # _border_thickness: int # The thickness of the border around the control, in pixels # _margin_size: bool # Whether we should display a margin between # the border and the value/bar # # The minimum and maximum values we can represent # _range: (int, int) or (float, float) # Color palette index to property mapping: # 0: Bar fill color # 1: Border color # 2: Background fill color @property def widget_size(self) -> int: """The size at the outer edge of the control, returned as a tuple (width, height) :rtype: int """ return self._widget_size @property def widget_width(self) -> Tuple[int, int]: """The total width of the widget, in pixels. Includes the border and margin. :rtype: Tuple[int, int] """ return self.widget_size[0] @property def border_thickness(self) -> int: """Gets the currently configured thickness of the border (in pixels) :rtype: int """ return self._border_thickness @property def widget_height(self) -> int: """The total height of the widget, in pixels. Includes the border and margin. :rtype: int """ return self.widget_size[1] @property def border_color(self) -> int: """Returns the currently configured value for the color of the outline (border) of the widget. :rtype: int """ return self._border_color @border_color.setter def border_color(self, color: Union[int, Tuple[int, int, int]]) -> None: """Sets the color of the border of the widget. Set it to 'None' if a border should still be part of the widget but not displayed. :param color: The color to be used for the border :type int/None/Tuple[int, int, int]: :rtype: None """ if not (isinstance(color, int) or color is None): raise TypeError("A color must be represented by a integer value") self._border_color = color if color is None: self._palette[1] = 0x00 self._palette.make_transparent(1) else: self._palette[1] = color self._palette.make_opaque(1) @property def fill(self) -> int: """The fill of the progress bar. Can be a hex value for a color or ``None`` for transparent. :rtype: int """ return self._fill_color @fill.setter def fill(self, color: Union[int, Tuple[int, int, int]]) -> None: """Sets the fill of the progress bar. Can be a hex value for a color or ``None`` for transparent. :param color: The color to use for the widget's background :type color: int/None/Tuple[int, int, int] """ self._fill_color = color if color is None: self._palette[0] = 0x00 self._palette.make_transparent(0) else: self._palette[0] = color self._palette.make_opaque(0) @property def bar_color(self) -> int: """The color of the bar's fill :rtype: int/None """ return self._bar_color @bar_color.setter def bar_color(self, color: Union[int, Tuple[int, int, int]]) -> None: """Sets the color of the bar :param color: The color to use for the bar :type color: int/None/Tuple[int, int, int] :rtype: None """ self._bar_color = color if color is None: self._palette[2] = 0x00 self._palette.make_transparent(2) else: self._palette[2] = color self._palette.make_opaque(2) @property def value(self) -> Union[int, float]: """ The current value of the control, used to determine its progress/ratio :rtype: int/float """ return self._value @value.setter def value(self, value: Union[int, float]) -> None: """Sets the current value of the progress within the min-max range :param value: The new value for the progress status :type value: int/float :rtype: None """ if not isinstance(value, (int, float)): raise TypeError("The value to set must be either an integer or a float") if not self.minimum <= value <= self.maximum: raise ValueError( f"The value must be between minimum ({self.minimum}) and maximum ({self.maximum})" ) # Save off the previous value, so we can pass it in the # call to "Render" self._old_value = self._value self._value = value # Convert value to float since we may be dealing with # integer types, and we can't work with integer division # to get a ratio (position) of "value" within range. self._set_progress(self.get_value_ratio(value)) @property def progress(self) -> float: """Gets the current displayed value of the widget. :return: The current progress ratio :rtype: float """ return self._progress @progress.setter def progress(self, value: float) -> None: """Sets the current displayed value of the widget. This will update the `value` property to an approximation based on the allowed range. The calculation used to determine the approximate value is `((self.minimum + (self.maximum - self.minimum)) * progress)`. For the most accurate representation of a given value, it is recommended to set the property "value" to the desired value. Example: If the range for the widget is 0-10, setting a progress value of "35" will result in `value` being "3.5", since 3.5 is the 35% value of the range between 0 and 10. The value determined from this method makes no assumptions or checks based on the type of the "value" field. :param value: The new value which should be displayed by the progress bar. Must be between 0.0-100.0 :type value: float :rtype: None """ if not isinstance(value, (float, int)): raise TypeError("'progress' must be an int or a float") if not 0.0 <= value <= 100.0: raise ValueError("'progress' must be between 0 and 100") self.value = (self.minimum + (self.maximum - self.minimum)) * (value * 0.01) # Bit of a hack to be able to work around the shim "ProgressBar" class # to be able to handle values as it used to. def _set_progress(self, value: float) -> None: """Sets the value for the underlying variable _progress, then calls self.render() with the appropriate values. :param value: The value to which self.progress should be set :type value: float :rtype: None """ self._progress = round(value, 4) self._render(self._old_value, self._value, value) @property def range(self) -> Tuple[Union[int, float], Union[int, float]]: """The range which can be handled as a Tuple(min,max) :rtype: Tuple(int/float, int/float) """ return self._range @property def minimum(self) -> Union[int, float]: """The minimum (lowest) value which can be displayed :rtype: int/float """ return self.range[0] @property def maximum(self) -> Union[int, float]: """The maximum (highest) value which can be displayed :rtype: int/float """ return self.range[1] def _draw_outline(self) -> None: """Draws the outline (border) of the progressbar, with a thickness value from self.border_thickness. :rtype None: """ stroke = self.border_thickness # draw outline rectangle for _w in range(self.widget_width): for line in range(stroke): self._bitmap[_w, line] = 1 self._bitmap[_w, self.widget_height - 1 - line] = 1 for _h in range(self.widget_height): for line in range(stroke): self._bitmap[line, _h] = 1 self._bitmap[self.widget_width - 1 - line, _h] = 1 def fill_width(self) -> int: """Returns the amount of horizontal space within the widget which can be used for value display. This is typically the width of the widget as defined, minus any visually reserved space. :rtype: int """ return self.widget_width - self._get_fill_border_size() def fill_height(self) -> int: """Returns the amount of vertical space within the widget which can be used for value display. This is typically the width of the widget as defined, minus any visually reserved space. :rtype: int """ return self.widget_height - self._get_fill_border_size() def _get_fill_border_size(self) -> int: """Determines any visual space reserved for the widget based on the defined border thickness, and whether a margin should be placed between the border and the bar. The value is calculated as (2 x border_thickness) minus (2 x margin_size). The value for margin_size is either 0 (zero) or 1 (one) depending on the value of margin_size when the widget was created. :rtype: int """ return (2 * self.border_thickness) + (2 * self.margin_size) @property def margin_size(self) -> int: """Returns the size of the margin on a single side of the display :return int: """ return self._margin_size @margin_size.setter def margin_size(self, value: int) -> None: """Sets the new size of the margin to be used between the border (if displayed) and the value bar. :param value: The new size of the margin between the border and value bar on all sides of the widget. :type value: int :rtype: None """ if not isinstance(value, int): raise TypeError("The margin size must be an integer") margin_spacing = (2 * value) + (2 * self._border_thickness) if margin_spacing >= self.widget_width: raise ValueError( "The size of the borders and margins combined can total the same or more" "than the widget's width." ) if margin_spacing >= self.widget_height: raise ValueError( "The size of the borders and margins combined can total the same or more" "than the widget's height." ) self._margin_size = value self._set_progress(self._progress) # For a render pass def get_value_ratio(self, value: Union[int, float]) -> float: """Gets the ratio (percentage) of a given value within the range of self.minimum and self.maximum. :param value: The value for which the ration should be calculated :type value: int/float :return: The ratio of value:range :rtype: float """ if self.maximum == self.minimum: return 0.0 return (float(value) - self.minimum) / (self.maximum - self.minimum) @classmethod def _get_value_sizes(cls, _old_ratio: float, _new_ratio: float) -> Tuple[int, int]: return 0, 0 @classmethod def _get_max_fill_size(cls) -> int: return 0 def _get_ratios( self, _old_value: Union[int, float], _new_value: Union[int, float] ) -> Tuple[float, float]: return self.get_value_ratio(_old_value), self.get_value_ratio(_new_value) def _adjust_size_for_range_limits( self, _new_value_size: int, _new_value: Union[int, float] ) -> int: # If we have *ANY* value other than "zero" (minimum), we should # have at least one element showing if _new_value_size == 0 and _new_value > self.minimum: _new_value_size = 1 # Conversely, if we have *ANY* value other than 100% (maximum), # we should NOT show a full bar. if _new_value_size == self._get_max_fill_size() and _new_value < self.maximum: _new_value_size -= 1 return _new_value_size def _get_sizes_min_max(self) -> Tuple[int, int]: return 0, min(self.fill_width(), self.fill_height()) @classmethod def _invert_fill_direction(cls) -> bool: return False def _get_horizontal_fill( self, _start: int, _end: int, _incr: int ) -> Tuple[int, int, int]: return 0, self.fill_width(), 1 # Subclass must return values def _get_vertical_fill( self, _start: int, _end: int, _incr: int ) -> Tuple[int, int, int]: return 0, self.fill_height(), 1 # Subclass must return values # pylint: disable=too-many-locals def _render( self, _old_value: Union[int, float], _new_value: Union[int, float], _progress_value: float, ) -> None: """ Does the work of actually creating the graphical representation of the value (percentage, aka "progress") to be displayed. :param _old_value: The previously displayed value :type _old_value: int/float :param _new_value: The new value to display :type _new_value: int/float :param _progress_value: The value to display, as a percentage, represented by a float from 0.0 to 1.0 (0% to 100%) :type _progress_value: float :rtype: None """ _prev_ratio, _new_ratio = self._get_ratios(_old_value, _new_value) _old_value_size, _new_value_size = self._get_value_sizes( _prev_ratio, _new_ratio ) # Adjusts for edge cases, such as 0-width non-zero value, or 100% width # non-maximum values _new_value_size = self._adjust_size_for_range_limits( _new_value_size, _new_value ) # Default values for increasing value _color = 2 _incr = 1 _start = max(_old_value_size, 0) _end = max(_new_value_size, 0) if _old_value_size >= _new_value_size: # Override defaults to be decreasing _color = 0 # Clear _incr = -1 # Iterate range downward _start = max(_old_value_size, 0) - 1 _end = max(_new_value_size, 0) - 1 # If we're setting to minimum, make sure we're clearing by # starting one "bar" further if _new_value == self.minimum: _start += 1 _render_offset = self.margin_size + self.border_thickness vert_start, vert_end, vert_incr = self._get_vertical_fill(_start, _end, _incr) horiz_start, horiz_end, horiz_incr = self._get_horizontal_fill( _start, _end, _incr ) vert_start += _render_offset vert_end += _render_offset horiz_start += _render_offset horiz_end += _render_offset for vertical_position in range(vert_start, vert_end, vert_incr): for horizontal_position in range(horiz_start, horiz_end, horiz_incr): self._bitmap[horizontal_position, vertical_position] = _color
34.248748
98
0.601852
1f4d2ac36f75b79a5ff4f6b2051e73a0fa2de684
721
py
Python
main.py
MCAR43/PyAudit
e0bea458648deb29df0ef3bdad210a1cc6de8f71
[ "Beerware" ]
null
null
null
main.py
MCAR43/PyAudit
e0bea458648deb29df0ef3bdad210a1cc6de8f71
[ "Beerware" ]
null
null
null
main.py
MCAR43/PyAudit
e0bea458648deb29df0ef3bdad210a1cc6de8f71
[ "Beerware" ]
null
null
null
#!/usr/bin/python3 import argparse import sys from app.parser.device import Device def parseInputArgs(argv): parser = argparse.ArgumentParser(description="Python Cisco CIS Auditor") parser.add_argument('config', help='Path to the config file') parser.add_argument('benchmark', help='Path to the benchmark JSON you wish to execute') args = parser.parse_args() return args def exec(inputArgs): config_file = "" parsed_args = parseInputArgs(inputArgs) if parsed_args.config: deviceParser = Device(parsed_args.config, parsed_args.benchmark) deviceParser.performAudit() deviceParser.output() def main(): exec(sys.argv[1:]) if __name__ == "__main__": main()
26.703704
91
0.710125
7e78045b706a75c8c1f558dceea88a6091775dad
454
py
Python
pydis_site/apps/home/migrations/0002_auto_now_on_repository_metadata.py
Robin5605/site
81aa42aa748cb228d7a09e6cf6b211484b654496
[ "MIT" ]
700
2018-11-17T15:56:51.000Z
2022-03-30T22:53:17.000Z
pydis_site/apps/home/migrations/0002_auto_now_on_repository_metadata.py
foxy4096/site
63b464b57ea0824570879f24baaaca6fd80393ee
[ "MIT" ]
542
2018-11-17T13:39:42.000Z
2022-03-31T11:24:00.000Z
pydis_site/apps/home/migrations/0002_auto_now_on_repository_metadata.py
foxy4096/site
63b464b57ea0824570879f24baaaca6fd80393ee
[ "MIT" ]
178
2018-11-21T09:06:56.000Z
2022-03-31T07:43:28.000Z
# Generated by Django 3.0.11 on 2020-12-21 22:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0001_initial'), ] operations = [ migrations.AlterField( model_name='repositorymetadata', name='last_updated', field=models.DateTimeField(auto_now=True, help_text='The date and time this data was last fetched.'), ), ]
23.894737
113
0.627753
f064cbd4dbb855d6f69c4a471c771d48487ec55b
2,171
py
Python
desktop/libs/libopenid/src/libopenid/views.py
kokosing/hue
2307f5379a35aae9be871e836432e6f45138b3d9
[ "Apache-2.0" ]
3
2018-01-29T14:16:02.000Z
2019-02-05T21:33:05.000Z
desktop/libs/libopenid/src/libopenid/views.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
4
2021-03-11T04:02:00.000Z
2022-03-27T08:31:56.000Z
desktop/libs/libopenid/src/libopenid/views.py
zks888/hue
93a8c370713e70b216c428caa2f75185ef809deb
[ "Apache-2.0" ]
2
2019-12-05T17:24:36.000Z
2021-11-22T21:21:32.000Z
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from django_openid_auth.views import login_begin as django_login_begin, login_complete from desktop.lib.django_util import render from django.core import urlresolvers from django.conf import settings from django.shortcuts import render_to_response from django.template import RequestContext import libopenid.conf from libopenid.backend import OpenIDBackend from libopenid.forms import OpenIDLoginFormExt __all__ = ['login_begin', 'login_complete'] def login_begin(request): redirect_to = request.GET.get('next', '/') is_first_login_ever = OpenIDBackend.is_first_login_ever() request.session.set_test_cookie() openid_url = getattr(settings, 'OPENID_SSO_SERVER_URL', None) identity_url_prefix = getattr(settings, 'OPENID_IDENTITY_URL_PREFIX', None) #Case of centralized server endpoint Get request if openid_url is not None: if request.method == 'GET': return render_to_response('openid-login.html', { 'action': urlresolvers.reverse('openid-login'), 'next': redirect_to, 'first_login_ever': is_first_login_ever, 'hide_field': True }, context_instance=RequestContext(request)) return django_login_begin(request, template_name='openid-login.html', form_class = OpenIDLoginFormExt) setattr(login_begin, 'login_notrequired', True) setattr(login_complete, 'login_notrequired', True)
36.183333
104
0.771994
d468f29a5dbe27fc6f84b9ad1831d10ade9eb944
2,196
py
Python
aliyun-python-sdk-mts/aliyunsdkmts/request/v20140618/ReportTerrorismJobResultRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
1
2019-12-23T12:36:43.000Z
2019-12-23T12:36:43.000Z
aliyun-python-sdk-mts/aliyunsdkmts/request/v20140618/ReportTerrorismJobResultRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
null
null
null
aliyun-python-sdk-mts/aliyunsdkmts/request/v20140618/ReportTerrorismJobResultRequest.py
liumihust/aliyun-openapi-python-sdk
c7b5dd4befae4b9c59181654289f9272531207ef
[ "Apache-2.0" ]
1
2021-02-23T11:27:54.000Z
2021-02-23T11:27:54.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class ReportTerrorismJobResultRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Mts', '2014-06-18', 'ReportTerrorismJobResult','mts') def get_JobId(self): return self.get_query_params().get('JobId') def set_JobId(self,JobId): self.add_query_param('JobId',JobId) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_Label(self): return self.get_query_params().get('Label') def set_Label(self,Label): self.add_query_param('Label',Label) def get_Detail(self): return self.get_query_params().get('Detail') def set_Detail(self,Detail): self.add_query_param('Detail',Detail) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId)
33.272727
83
0.764117
9c1bcd16332cae19eee426f22272016e10031410
48,851
py
Python
made.py
var-skip/var-skip
0b19994466cd2a690ed8bfeefd78dbf36ea85410
[ "Apache-2.0" ]
5
2020-07-15T13:37:23.000Z
2021-05-03T07:25:12.000Z
made.py
var-skip/var-skip
0b19994466cd2a690ed8bfeefd78dbf36ea85410
[ "Apache-2.0" ]
null
null
null
made.py
var-skip/var-skip
0b19994466cd2a690ed8bfeefd78dbf36ea85410
[ "Apache-2.0" ]
3
2020-07-15T18:22:43.000Z
2021-03-18T14:30:08.000Z
import time import numpy as np import random import torch import torch.nn as nn import torch.nn.functional as F # try: # from typing_extensions import Final # except: # # If you don't have `typing_extensions` installed, you can use a # # polyfill from `torch.jit`. # from torch.jit import Final # from typing import Optional # This is a generic wrapper for any driver function you want to time def time_this(f): def timed_wrapper(*args, **kw): start_time = time.time() result = f(*args, **kw) end_time = time.time() # Time taken = end_time - start_time print('| func:%r took: %2.4f seconds |' % \ (f.__name__, end_time - start_time)) # print('| func:%r args:[%r, %r] took: %2.4f seconds |' % \ # (f.__name__, args, kw, end_time - start_time)) return result return timed_wrapper class MaskedLinear(nn.Linear): """ same as Linear except has a configurable mask on the weights """ # masked_weight: Optional[torch.Tensor] def __init__(self, in_features, out_features, bias=True, condition_on_ordering=False): super().__init__(in_features, out_features, bias) self.register_buffer('mask', torch.ones(out_features, in_features)) self.condition_ordering_linear = None if condition_on_ordering: self.condition_ordering_linear = nn.Linear(in_features, out_features, bias=False) self.masked_weight = None def set_mask(self, mask): """Accepts a mask of shape [in_features, out_features].""" self.mask.data.copy_(torch.from_numpy(mask.astype(np.uint8).T)) def set_cached_mask(self, mask): self.mask.data.copy_(mask) def get_cached_mask(self): return self.mask.clone().detach() def forward(self, input): if self.masked_weight is None: mw = self.mask * self.weight out = F.linear(input, mw, self.bias) # NOTE: this tied-weight variant has much higher error. # if self.condition_ordering_linear is None: # return out # return out + F.linear(torch.ones_like(input), mw) else: # ~17% speedup for Prog Sampling. out = F.linear(input, self.masked_weight, self.bias) if self.condition_ordering_linear is None: return out return out + F.linear(torch.ones_like(input), self.mask * self.condition_ordering_linear.weight) class MaskedResidualBlock(nn.Module): def __init__(self, in_features, out_features, activation, condition_on_ordering=False): assert in_features == out_features, [in_features, out_features] super().__init__() self.layers = nn.ModuleList() self.layers.append( MaskedLinear(in_features, out_features, bias=True, condition_on_ordering=condition_on_ordering)) self.layers.append( MaskedLinear(in_features, out_features, bias=True, condition_on_ordering=condition_on_ordering)) self.activation = activation def set_mask(self, mask): self.layers[0].set_mask(mask) self.layers[1].set_mask(mask) def set_cached_mask(self, mask): # They have the same mask. self.layers[0].mask.copy_(mask) self.layers[1].mask.copy_(mask) def get_cached_mask(self): return self.layers[0].mask.clone().detach() def forward(self, input): out = input out = self.activation(out) out = self.layers[0](out) out = self.activation(out) out = self.layers[1](out) return input + out # class MADE(torch.jit.ScriptModule): class MADE(nn.Module): def __init__( self, nin, hidden_sizes, nout, num_masks=1, natural_ordering=True, input_bins=None, activation=nn.ReLU, do_direct_io_connections=False, input_encoding=None, direct_io_bias=True, # True for backward-compat of checkpoints output_encoding="one_hot", embed_size=32, input_no_emb_if_leq=True, embs_tied=False, residual_connections=False, dropout_p=0, fixed_dropout_p=False, factor_table=None, seed=11123, fixed_ordering=None, per_row_dropout_p=False, prefix_dropout=False, disable_learnable_unk=False, ): """MADE. Args: nin: integer; number of inputs hidden sizes: a list of integers; number of units in hidden layers nout: integer; number of outputs, which usually collectively parameterize some kind of 1D distribution. note: if nout is e.g. 2x larger than nin (perhaps the mean and std), then the first nin will be all the means and the second nin will be stds. i.e. output dimensions depend on the same input dimensions in "chunks" and should be carefully decoded downstream appropriately. the output of running the tests for this file makes this a bit more clear with examples. num_masks: can be used to train ensemble over orderings/connections natural_ordering: force natural ordering of dimensions, don't use random permutations input_bins: classes each input var can take on, e.g., [5, 2] means input x1 has values in {0, ..., 4} and x2 in {0, 1}. """ super().__init__() self.nin = nin if num_masks > 1: # Double the weights, so need to reduce the size to be fair. hidden_sizes = [int(h // 2**0.5) for h in hidden_sizes] print("Auto reducing MO hidden sizes to", hidden_sizes, num_masks) # None: feed inputs as-is, no encoding applied. Each column thus # occupies 1 slot in the input layer. For testing only. assert input_encoding in [ None, "one_hot", "two_level", "binary", "binary_100p", "embed" ] self.input_encoding = input_encoding assert output_encoding in ["one_hot", "bits", "embed"] self.embed_size = self.emb_dim = embed_size self.output_encoding = output_encoding self.activation = activation self.nout = nout self.per_row_dropout_p = per_row_dropout_p self.prefix_dropout = prefix_dropout print("per row dropout", self.per_row_dropout_p) print("prefix dropout", self.prefix_dropout) self.hidden_sizes = hidden_sizes self.input_bins = input_bins self.input_no_emb_if_leq = input_no_emb_if_leq self.do_direct_io_connections = do_direct_io_connections self.embs_tied = embs_tied self.dropout_p = dropout_p if self.prefix_dropout or self.per_row_dropout_p: assert self.dropout_p self.fixed_dropout_p = fixed_dropout_p self.factor_table = factor_table self.residual_connections = residual_connections self.disable_learnable_unk = disable_learnable_unk self.num_masks = num_masks if nout > nin: # nout must be integer multiple of nin; or we're given more info. assert nout % nin == 0 or input_bins is not None self.fixed_ordering = fixed_ordering if fixed_ordering is not None: assert num_masks == 1 print('** Fixed ordering {} supplied, ignoring natural_ordering'. format(fixed_ordering)) assert self.input_bins is not None encoded_bins = list( map(self._get_output_encoded_dist_size, self.input_bins)) self.input_bins_encoded = list( map(self._get_input_encoded_dist_size, self.input_bins)) self.input_bins_encoded_cumsum = np.cumsum(self.input_bins_encoded) hs = [nin] + hidden_sizes + [sum(encoded_bins)] # print('hs={}, nin={}, hiddens={}, encoded_bins={}'.format( # hs, nin, hidden_sizes, encoded_bins)) print('encoded_bins (output)', encoded_bins) print('encoded_bins (input)', self.input_bins_encoded) # define a simple MLP neural net self.net = [] for h0, h1 in zip(hs, hs[1:]): if residual_connections: if h0 == h1: self.net.extend([ MaskedResidualBlock( h0, h1, activation=activation(inplace=False), condition_on_ordering=self.num_masks > 1) ]) else: self.net.extend([ MaskedLinear(h0, h1, condition_on_ordering=self.num_masks > 1), ]) else: self.net.extend([ MaskedLinear(h0, h1, condition_on_ordering=self.num_masks > 1), activation(inplace=True), ]) if not residual_connections: self.net.pop() # pop the last ReLU for the output layer self.net = nn.Sequential(*self.net) if self.input_encoding is not None: # Input layer should be changed. assert self.input_bins is not None input_size = 0 for i, dist_size in enumerate(self.input_bins): input_size += self._get_input_encoded_dist_size(dist_size) new_layer0 = MaskedLinear(input_size, self.net[0].out_features, condition_on_ordering=self.num_masks > 1) self.net[0] = new_layer0 if self.input_encoding == "embed": self.embedding_networks = nn.ModuleList() if not self.embs_tied: self.embedding_networks_out = nn.ModuleList() for i, dist_size in enumerate(self.input_bins): if dist_size <= self.embed_size and self.input_no_emb_if_leq: embed = embed2 = None else: embed = nn.Embedding(dist_size, self.embed_size) embed2 = nn.Embedding(dist_size, self.embed_size) self.embedding_networks.append(embed) self.embedding_networks_out.append(embed2) else: for i, dist_size in enumerate(self.input_bins): if dist_size <= self.embed_size and self.input_no_emb_if_leq: embed = None else: embed = nn.Embedding(dist_size, self.embed_size) self.embedding_networks.append(embed) # Learnable [MASK] representation. if self.dropout_p: self.unk_embeddings = nn.ParameterList() print('Disable learnable?', disable_learnable_unk) for i, dist_size in enumerate(self.input_bins): self.unk_embeddings.append( nn.Parameter(torch.zeros(1, self.input_bins_encoded[i]), requires_grad=not disable_learnable_unk)) # seeds for orders/connectivities of the model ensemble self.natural_ordering = natural_ordering self.num_masks = num_masks self.seed = seed if seed is not None else 11123 # for cycling through num_masks orderings print('self.seed', self.seed) self.direct_io_layer = None self.logit_indices = np.cumsum(encoded_bins) self.m = {} self.cached_masks = {} self.update_masks() # builds the initial self.m connectivity # note, we could also precompute the masks and cache them, but this # could get memory expensive for large number of masks. # Logit indices for the columns. self.orderings = [self.m[-1]] # Optimization: cache some values needed in EncodeInput(). self.bin_as_onehot_shifts = None def _build_or_update_direct_io(self): assert self.nout > self.nin and self.input_bins is not None direct_nin = self.net[0].in_features direct_nout = self.net[-1].out_features if self.direct_io_layer is None: self.direct_io_layer = MaskedLinear( direct_nin, direct_nout, condition_on_ordering=self.num_masks > 1) mask = np.zeros((direct_nout, direct_nin), dtype=np.uint8) print('in _build_or_update_direct_io(), self.m[-1]', self.m[-1]) # Inverse: ord_idx -> natural idx. inv_ordering = [None] * self.nin for natural_idx in range(self.nin): inv_ordering[self.m[-1][natural_idx]] = natural_idx for ord_i in range(self.nin): nat_i = inv_ordering[ord_i] # x_(nat_i) in the input occupies range [inp_l, inp_r). inp_l = 0 if nat_i == 0 else self.input_bins_encoded_cumsum[nat_i - 1] inp_r = self.input_bins_encoded_cumsum[nat_i] assert inp_l < inp_r for ord_j in range(ord_i + 1, self.nin): nat_j = inv_ordering[ord_j] # Output x_(nat_j) should connect to input x_(nat_i); it # occupies range [out_l, out_r) in the output. out_l = 0 if nat_j == 0 else self.logit_indices[nat_j - 1] out_r = self.logit_indices[nat_j] assert out_l < out_r # print('setting mask[{}:{}, {}:{}]'.format( # out_l, out_r, inp_l, inp_r)) mask[out_l:out_r, inp_l:inp_r] = 1 # print('do_direct_io_connections mask', mask) # print('mask', mask) mask = mask.T self.direct_io_layer.set_mask(mask) def _get_input_encoded_dist_size(self, dist_size): if self.input_encoding == "two_level": dist_size += 1 + dist_size // 10 elif self.input_encoding == "embed": if self.input_no_emb_if_leq: dist_size = min(dist_size, self.embed_size) else: dist_size = self.embed_size elif self.input_encoding == "one_hot": pass # if dist_size <= 2: # dist_size = 1 # don't one-hot encode binary vals elif self.input_encoding == "binary": dist_size = max(1, int(np.ceil(np.log2(dist_size)))) elif self.input_encoding == "binary_100p": if dist_size > 100: dist_size = max(1, int(np.ceil(np.log2(dist_size)))) elif self.input_encoding is None: return 1 else: assert False, self.input_encoding return dist_size def _get_output_encoded_dist_size(self, dist_size): if self.output_encoding == "two_level": dist_size += 1 + dist_size // 10 elif self.output_encoding == "embed": if self.input_no_emb_if_leq: dist_size = min(dist_size, self.embed_size) else: dist_size = self.embed_size elif self.output_encoding == "one_hot": pass # if dist_size <= 2: # dist_size = 1 # don't one-hot encode binary vals elif self.output_encoding == "binary": dist_size = max(1, int(np.ceil(np.log2(dist_size)))) elif self.output_encoding == "binary_100p": if dist_size > 100: dist_size = max(1, int(np.ceil(np.log2(dist_size)))) return dist_size def update_masks(self, invoke_order=None): """Update m() for all layers and change masks correspondingly. No-op if "self.num_masks" is 1. """ if self.m and self.num_masks == 1: # FIXME # assert np.array_equal(invoke_order, # self.m[-1]), 'invoke={} curr={}'.format( # invoke_order, self.m[-1]) return # only a single seed, skip for efficiency L = len(self.hidden_sizes) layers = [ l for l in self.net if isinstance(l, MaskedLinear) or isinstance(l, MaskedResidualBlock) ] ### Precedence of several params determining ordering: # # invoke_order # orderings # fixed_ordering # natural_ordering # # from high precedence to low. # For multi-order models, we associate RNG seeds with orderings as # follows: # orderings = [ o0, o1, o2, ... ] # seeds = [ 0, 1, 2, ... ] # This must be consistent across training & inference. if invoke_order is not None: # Inference path. found = False for i in range(len(self.orderings)): if np.array_equal(self.orderings[i], invoke_order): found = True break if not found: print("WARNING: eval on order not trained on", invoke_order) assert found, 'specified={}, avail={}'.format( invoke_order, self.orderings) # print('found, order i=', i) if self.seed == (i + 1) % self.num_masks and np.array_equal( self.m[-1], invoke_order): # During querying, after a multi-order model is configured to # take a specific ordering, it can be used to do multiple # forward passes per query. return self.seed = i rng = np.random.RandomState(self.seed) self.m[-1] = np.asarray(invoke_order) # print('looking up seed in cached masks:', self.seed) if self.seed in self.cached_masks: masks, direct_io_mask = self.cached_masks[self.seed] assert len(layers) == len(masks), (len(layers), len(masks)) for l, m in zip(layers, masks): l.set_cached_mask(m) if self.do_direct_io_connections: assert direct_io_mask is not None self.direct_io_layer.set_cached_mask(direct_io_mask) self.seed = (self.seed + 1) % self.num_masks # print('found, updated seed to', self.seed) return # Early return curr_seed = self.seed self.seed = (self.seed + 1) % self.num_masks elif hasattr(self, 'orderings'): # Training path: cycle through the special orderings. rng = np.random.RandomState(self.seed) assert 0 <= self.seed and self.seed < len(self.orderings) self.m[-1] = self.orderings[self.seed] if self.seed in self.cached_masks: masks, direct_io_mask = self.cached_masks[self.seed] assert len(layers) == len(masks), (len(layers), len(masks)) for l, m in zip(layers, masks): l.set_cached_mask(m) if self.do_direct_io_connections: assert direct_io_mask is not None self.direct_io_layer.set_cached_mask(direct_io_mask) # print('using cached masks for seed', self.seed) self.seed = (self.seed + 1) % self.num_masks return # Early return print('constructing masks with seed', self.seed, 'self.m[-1]', self.m[-1]) curr_seed = self.seed self.seed = (self.seed + 1) % self.num_masks else: # Train-time initial construction: either single-order, or # .orderings has not been assigned yet. rng = np.random.RandomState(self.seed) self.seed = (self.seed + 1) % self.num_masks self.m[-1] = np.arange( self.nin) if self.natural_ordering else rng.permutation( self.nin) if self.fixed_ordering is not None: self.m[-1] = np.asarray(self.fixed_ordering) if self.nin > 1: for l in range(L): if self.residual_connections: # sequential assignment for ResMade: https://arxiv.org/pdf/1904.05626.pdf # FIXME: this seems incorrect since it's [1, ncols). self.m[l] = np.array([ (k - 1) % (self.nin - 1) # [(k - 1) % (self.nin - 1) + 1 for k in range(self.hidden_sizes[l]) ]) else: # Samples from [0, ncols - 1). self.m[l] = rng.randint(self.m[l - 1].min(), self.nin - 1, size=self.hidden_sizes[l]) else: # This should result in first layer's masks == 0. # So output units are disconnected to any inputs. for l in range(L): self.m[l] = np.asarray([-1] * self.hidden_sizes[l]) # print('ordering', self.m[-1]) # print('self.m', self.m) # construct the mask matrices masks = [self.m[l - 1][:, None] <= self.m[l][None, :] for l in range(L)] masks.append(self.m[L - 1][:, None] < self.m[-1][None, :]) if self.nout > self.nin: # Last layer's mask needs to be changed. if self.input_bins is None: k = int(self.nout / self.nin) # replicate the mask across the other outputs # so [x1, x2, ..., xn], ..., [x1, x2, ..., xn]. masks[-1] = np.concatenate([masks[-1]] * k, axis=1) else: # [x1, ..., x1], ..., [xn, ..., xn] where the i-th list has # input_bins[i - 1] many elements (multiplicity, # of classes). mask = np.asarray([]) for k in range(masks[-1].shape[0]): tmp_mask = [] for idx, x in enumerate(zip(masks[-1][k], self.input_bins)): mval, nbins = x[0], self._get_output_encoded_dist_size( x[1]) tmp_mask.extend([mval] * nbins) tmp_mask = np.asarray(tmp_mask) if k == 0: mask = tmp_mask else: mask = np.vstack([mask, tmp_mask]) masks[-1] = mask if self.input_encoding is not None: # Input layer's mask should be changed. assert self.input_bins is not None # [nin, hidden]. mask0 = masks[0] new_mask0 = [] for i, dist_size in enumerate(self.input_bins): dist_size = self._get_input_encoded_dist_size(dist_size) # [dist size, hidden] new_mask0.append( np.concatenate([mask0[i].reshape(1, -1)] * dist_size, axis=0)) # [sum(dist size), hidden] new_mask0 = np.vstack(new_mask0) masks[0] = new_mask0 assert len(layers) == len(masks), (len(layers), len(masks)) for l, m in zip(layers, masks): l.set_mask(m) dio_mask = None if self.do_direct_io_connections: self._build_or_update_direct_io() dio_mask = self.direct_io_layer.get_cached_mask() # Cache. if hasattr(self, 'orderings'): print('caching masks for seed', curr_seed) masks = [l.get_cached_mask() for l in layers] print('signatures:', [m.sum() for m in masks] + [dio_mask.sum() if dio_mask is not None else 0]) assert curr_seed not in self.cached_masks self.cached_masks[curr_seed] = (masks, dio_mask) def name(self): n = 'made' if self.residual_connections: n += '-resmade' n += '-hidden' + '_'.join(str(h) for h in self.hidden_sizes) n += '-emb' + str(self.embed_size) if self.num_masks > 1: n += '-{}masks'.format(self.num_masks) if not self.natural_ordering: n += '-nonNatural' n += ('-no' if not self.do_direct_io_connections else '-') + 'directIo' n += '-{}In{}Out'.format(self.input_encoding, self.output_encoding) n += '-embsTied' if self.embs_tied else '-embsNotTied' if self.input_no_emb_if_leq: n += '-inputNoEmbIfLeq' if self.dropout_p: n += '-dropout' if self.disable_learnable_unk: n += '-nolearnableUnk' else: n += '-learnableUnk' if self.fixed_dropout_p: n += '-fixedDropout{:.2f}'.format(self.dropout_p) return n def get_unk(self, i): if self.disable_learnable_unk: return torch.zeros_like(self.unk_embeddings[i].detach()) else: return self.unk_embeddings[i] # @torch.jit.script def Embed(self, data, natural_col=None, out=None): if data is None: if out is None: return self.get_unk(natural_col) out.copy_(self.get_unk(natural_col)) return out bs = data.size()[0] y_embed = [] data = data.long() if natural_col is not None: # Fast path only for inference. One col. coli_dom_size = self.input_bins[natural_col] # Embed? if coli_dom_size > self.embed_size or not self.input_no_emb_if_leq: res = self.embedding_networks[natural_col](data.view(-1,)) if out is not None: out.copy_(res) return out return res else: if out is None: out = torch.zeros(bs, coli_dom_size, device=data.device) out.scatter_(1, data, 1) return out else: if self.per_row_dropout_p == 1 or self.per_row_dropout_p is True: row_dropout_probs = torch.rand(bs, device=data.device) elif self.per_row_dropout_p == 2: # Also per row masking, but makes more sense (draw num masked # tokens first). In [0, 1). row_dropout_probs = torch.randint( 0, self.nin, (bs,), device=data.device).float() / self.nin row_dropout_lim = torch.rand(bs, device=data.device) * len( self.input_bins) for i, coli_dom_size in enumerate(self.input_bins): # Wildcard column? use -1 as special token. # Inference pass only (see estimators.py). not_skip = data[:, i] >= 0 data_col = torch.clamp(data[:, i], 0) # Embed? if coli_dom_size > self.embed_size or not self.input_no_emb_if_leq: # assert not self.dropout_p, "not implemented" col_i_embs = self.embedding_networks[i](data_col) if not self.dropout_p: y_embed.append(col_i_embs) else: dropped_repr = self.get_unk(i) # During training, non-dropped 1's are scaled by # 1/(1-p), so we clamp back to 1. def dropout_p(): if self.fixed_dropout_p: return self.dropout_p return 1. - np.random.randint( 1, self.nin + 1) * 1. / self.nin batch_mask = torch.clamp( torch.dropout( torch.ones(bs, 1, device=data.device), p=dropout_p(), # np.random.randint(5, 12) * 1. / self.nin, train=self.training), 0, 1) if self.training and self.per_row_dropout_p: # 1 means original repr, 0 means use masked repr. batch_mask = ( torch.rand(bs, device=data.device) >= row_dropout_probs).float().unsqueeze(1) elif self.training and self.prefix_dropout: batch_mask = (i * torch.ones(bs, device=data.device) > row_dropout_lim).float().unsqueeze(1) elif not self.training: batch_mask = not_skip.float().unsqueeze(1) y_embed.append(batch_mask * col_i_embs + (1. - batch_mask) * dropped_repr) else: y_onehot = torch.zeros(bs, coli_dom_size, device=data.device) y_onehot.scatter_(1, data_col.view(-1, 1), 1) if self.dropout_p: dropped_repr = self.get_unk(i) if self.factor_table and self.factor_table.columns[ i].factor_id: pass # use prev col's batch mask else: # During training, non-dropped 1's are scaled by # 1/(1-p), so we clamp back to 1. def dropout_p(): if self.fixed_dropout_p: return self.dropout_p return 1. - np.random.randint( 1, self.nin + 1) * 1. / self.nin batch_mask = torch.clamp( torch.dropout( torch.ones(bs, 1, device=data.device), # p=self.dropout_p, p=dropout_p(), # np.random.randint(5, 12) * 1. / self.nin, train=self.training), 0, 1) if self.training and self.per_row_dropout_p: # 1 means original repr, 0 means use masked repr. batch_mask = ( torch.rand(bs, device=data.device) >= row_dropout_probs).float().unsqueeze(1) elif self.training and self.prefix_dropout: batch_mask = ( i * torch.ones(bs, device=data.device) > row_dropout_lim).float().unsqueeze(1) elif not self.training: batch_mask = not_skip.float().unsqueeze(1) y_embed.append(batch_mask * y_onehot + (1. - batch_mask) * dropped_repr) else: y_embed.append(y_onehot) return torch.cat(y_embed, 1) def ToOneHot(self, data): assert not self.dropout_p, "not implemented" bs = data.size()[0] y_onehots = [] data = data.long() for i, coli_dom_size in enumerate(self.input_bins): if coli_dom_size <= 2: y_onehots.append(data[:, i].view(-1, 1).float()) else: y_onehot = torch.zeros(bs, coli_dom_size, device=data.device) y_onehot.scatter_(1, data[:, i].view(-1, 1), 1) y_onehots.append(y_onehot) # [bs, sum(dist size)] return torch.cat(y_onehots, 1) def ToBinaryAsOneHot(self, data, threshold=0, natural_col=None, out=None): if data is None: if out is None: return self.get_unk(natural_col) out.copy_(self.get_unk(natural_col)) return out bs = data.size()[0] data = data.long() # print('data.device', data.device) if self.bin_as_onehot_shifts is None: # This caching gives very sizable gains. self.bin_as_onehot_shifts = [None] * self.nin const_one = torch.ones([], dtype=torch.long, device=data.device) for i, coli_dom_size in enumerate(self.input_bins): # Max with 1 to guard against cols with 1 distinct val. one_hot_dims = max(1, int(np.ceil(np.log2(coli_dom_size)))) self.bin_as_onehot_shifts[i] = const_one << torch.arange( one_hot_dims, device=data.device) # print('data.device', data.device, 'const_one', const_one.device, # 'bin_as_onehot_shifts', self.bin_as_onehot_shifts[0].device) if natural_col is None: # Train path. assert out is None y_onehots = [None] * self.nin if self.per_row_dropout_p == 1 or self.per_row_dropout_p is True: row_dropout_probs = torch.rand(bs, device=data.device) elif self.per_row_dropout_p == 2: # Also per row masking, but makes more sense (draw num masked # tokens first). In [0, 1). row_dropout_probs = torch.randint( 0, self.nin, (bs,), device=data.device).float() / self.nin row_dropout_lim = torch.rand(bs, device=data.device) * len( self.input_bins) for i, coli_dom_size in enumerate(self.input_bins): if coli_dom_size > threshold: # Bit shift in PyTorch + GPU is 27% faster than np. # data_np = data[:, i].view(-1, 1) data_np = data.narrow(1, i, 1) # print(data_np.device, self.bin_as_onehot_shifts[i].device) binaries = (data_np & self.bin_as_onehot_shifts[i]) > 0 y_onehots[i] = binaries if self.dropout_p: dropped_repr = self.get_unk(i) # During training, non-dropped 1's are scaled by # 1/(1-p), so we clamp back to 1. def dropout_p(): if self.fixed_dropout_p: return self.dropout_p return 1. - np.random.randint( 1, self.nin + 1) * 1. / self.nin batch_mask = torch.clamp( torch.dropout( torch.ones(bs, 1, device=data.device), # p=self.dropout_p, p=dropout_p(), # np.random.randint(5, 12) * 1. / self.nin, train=self.training), 0, 1) #.to(torch.int8, non_blocking=True, copy=False) if self.training and self.per_row_dropout_p: batch_mask = ( torch.rand(bs, device=data.device) >= row_dropout_probs).float().unsqueeze(1) elif self.training and self.prefix_dropout: batch_mask = (i * torch.ones(bs, device=data.device) > row_dropout_lim).float().unsqueeze(1) binaries = binaries.to(torch.float32, non_blocking=True, copy=False) # print(batch_mask.dtype, binaries.dtype, dropped_repr.dtype) # assert False y_onehots[i] = batch_mask * binaries + ( 1. - batch_mask) * dropped_repr else: # encode as plain one-hot y_onehot = torch.zeros(bs, coli_dom_size, device=data.device) y_onehot.scatter_(1, data[:, i].view(-1, 1), 1) y_onehots[i] = y_onehot # [bs, sum(log2(dist size))] res = torch.cat(y_onehots, 1) return res.to(torch.float32, non_blocking=True, copy=False) else: # Inference path. natural_idx = natural_col coli_dom_size = self.input_bins[natural_idx] # skip = data is None #data[0, 0] < 0 # if skip: # if out is None: # return self.unk_embeddings[natural_idx] # out.copy_(self.unk_embeddings[natural_idx]) # return out if coli_dom_size > threshold: # Bit shift in PyTorch + GPU is 27% faster than np. # data_np = data[:, i].view(-1, 1) data_np = data #.narrow(1, 0, 1) # print(data_np.device, self.bin_as_onehot_shifts[i].device) if out is None: res = (data_np & self.bin_as_onehot_shifts[natural_idx]) > 0 return res.to(torch.float32, non_blocking=True, copy=False) else: out.copy_( (data_np & self.bin_as_onehot_shifts[natural_idx]) > 0) return out else: assert False, 'inference' # encode as plain one-hot if out is None: y_onehot = torch.zeros(bs, coli_dom_size, device=data.device) y_onehot.scatter_( 1, data, #data[:, i].view(-1, 1), 1) res = y_onehot return res.to(torch.float32, non_blocking=True, copy=False) out.scatter_(1, data, 1) return out def ToTwoLevel(self, data): bs = data.size()[0] y_onehots = [] data = data.long() for i, coli_dom_size in enumerate(self.input_bins): y_onehot = torch.zeros(bs, coli_dom_size, device=data.device) y_onehot.scatter_(1, data[:, i].view(-1, 1), 1) y_onehot = torch.dropout(y_onehot, p=0.3, train=self.training) # add on one-hot encoding at coarser second-level # e.g., for domain of 35, the 2nd level will have domain size of 4 second_level_dom_size = 1 + coli_dom_size // 10 y2_onehot = torch.zeros(bs, second_level_dom_size, device=data.device) y2_onehot.scatter_(1, data[:, i].view(-1, 1) // 10, 1) y_onehots.append(y_onehot) y_onehots.append(y2_onehot) # [bs, sum(dist size) + sum(2nd_level)] return torch.cat(y_onehots, 1) # @time_this def EncodeInput(self, data, natural_col=None, out=None): """"Warning: this could take up a significant portion of a forward pass. Args: natural_col: if specified, 'data' has shape [N, 1] corresponding to col-'natural-col'. Otherwise 'data' corresponds to all cols. out: if specified, assign results into this Tensor storage. """ if self.input_encoding == "binary": # TODO: try out=out see if it helps dmv11 return self.ToBinaryAsOneHot(data, natural_col=natural_col, out=out) elif self.input_encoding == "embed": return self.Embed(data, natural_col=natural_col, out=out) elif self.input_encoding is None: return data elif self.input_encoding == "one_hot": return self.ToOneHot(data) elif self.input_encoding == "two_level": return self.ToTwoLevel(data) elif self.input_encoding == "binary_100p": return self.ToBinaryAsOneHot(data, threshold=100) else: assert False, self.input_encoding # @torch.jit.script_method # @torch.jit.ignore def forward(self, x, skip_prefix=[]): """Calculates unnormalized logits. If self.input_bins is not specified, the output units are ordered as: [x1, x2, ..., xn], ..., [x1, x2, ..., xn]. So they can be reshaped as thus and passed to a cross entropy loss: out.view(-1, model.nout // model.nin, model.nin) Otherwise, they are ordered as: [x1, ..., x1], ..., [xn, ..., xn] And they can't be reshaped directly. Args: x: [bs, ncols]. """ if skip_prefix: assert len(skip_prefix) == x.shape[0], (len(skip_prefix), x.shape) for i, n in enumerate(skip_prefix): x[i][:n] = -1 x = self.EncodeInput(x) if self.direct_io_layer is not None: residual = self.direct_io_layer(x) return self.net(x) + residual return self.net(x) # @time_this # @torch.jit.export def forward_with_encoded_input(self, x): if self.direct_io_layer is not None: residual = self.direct_io_layer(x) return self.net(x) + residual return self.net(x) # FIXME: be careful about this.... if we add this inference on old MADE ckpts seems broken def do_forward(self, x, ordering): """Performs forward pass, invoking a specified ordering.""" self.update_masks(invoke_order=ordering) if self.direct_io_layer is not None: residual = self.direct_io_layer(x) return self.net(x) + residual return self.net(x) def logits_for_col(self, idx, logits): """Returns the logits (vector) corresponding to log p(x_i | x_(<i)). Args: idx: int, in natural (table) ordering. logits: [batch size, hidden] where hidden can either be sum(dom sizes), or emb_dims. Returns: logits_for_col: [batch size, domain size for column idx]. """ assert self.input_bins is not None if idx == 0: # print('slicing out', self.logit_indices[0]) logits_for_var = logits[:, :self.logit_indices[0]] else: # print('slicing out', self.logit_indices[idx - 1], 'and', self.logit_indices[idx]) logits_for_var = logits[:, self.logit_indices[idx - 1]:self. logit_indices[idx]] if self.output_encoding != 'embed': return logits_for_var if self.embs_tied: embed = self.embedding_networks[idx] else: # some ckpts do not tie weights.... embed = self.embedding_networks_out[idx] if embed is None: # Can be None for small domain size columns. return logits_for_var # Otherwise, dot with embedding matrix to get the true logits. # [bs, emb] * [emb, dom size for idx] return torch.matmul( logits_for_var, # embed.weight.t().to(torch.float32) embed.weight.t()) # * torch.rsqrt(torch.tensor(self.embed_size, dtype=torch.float)) def HasMaterializedOutput(self, natural_idx): return self.input_bins[natural_idx] < 1e6 def nll(self, logits, data): """Calculates -log p(data), given logits (the conditionals). Args: logits: [batch size, hidden] where hidden can either be sum(dom sizes), or emb_dims. data: [batch size, nin]. Returns: nll: [batch size]. """ if data.dtype != torch.long: data = data.long() nll = torch.zeros(logits.size()[0], device=logits.device) for i in range(self.nin): if self.HasMaterializedOutput(i): logits_i = self.logits_for_col(i, logits) nll += F.cross_entropy(logits_i, data[:, i], reduction='none') else: # assert False # Discretized MoL. mixture_params_i = self.logits_for_col return nll def sample(self, num=1, device=None): assert self.natural_ordering with torch.no_grad(): sampled = torch.zeros((num, self.nin), device=device) if self.nout > self.nin: if self.input_bins is None: assert num == 1, 'implement me' # Softmax on discrete classes. for i in range(self.nin): logits = self.forward(sampled) l = logits[0].view(self.nout // self.nin, self.nin) l = torch.softmax(l[:, i], 0) sampled[0, i] = torch.multinomial(l, 1) else: indices = np.cumsum(self.input_bins) for i in range(self.nin): logits = self.forward(sampled) if i > 0: scores_for_i = logits[:, indices[i - 1]:indices[i]] else: scores_for_i = logits[:, :indices[0]] s = torch.multinomial(torch.softmax(scores_for_i, -1), 1) sampled[:, i] = s.view(-1,) else: assert num == 1, 'implement me' # Binary variables. for i in range(self.nin): logits = self.forward(sampled) p = torch.sigmoid(logits[0, i]) # Turn on the pixel with probability p. sampled[0, i] = 1 if np.random.rand() < p else 0 return sampled if __name__ == '__main__': # Checks for the autoregressive property. rng = np.random.RandomState(14) # (nin, hiddens, nout, input_bins, direct_io) configs_with_input_bins = [ # (4, [32, 512], 122 * 4, [122] * 4, False), (2, [10], 2 + 5, [2, 5], False), (2, [10, 30], 2 + 5, [2, 5], False), (3, [6], 2 + 2 + 2, [2, 2, 2], False), (3, [4, 4], 2 + 1 + 2, [2, 1, 2], False), (4, [16, 8, 16], 2 + 3 + 1 + 2, [2, 3, 1, 2], False), (2, [10], 2 + 5, [2, 5], True), (2, [10, 30], 2 + 5, [2, 5], True), (3, [6], 2 + 2 + 2, [2, 2, 2], True), (3, [4, 4], 2 + 1 + 2, [2, 1, 2], True), (4, [16, 8, 16], 2 + 3 + 1 + 2, [2, 3, 1, 2], True), ] for nin, hiddens, nout, input_bins, direct_io in configs_with_input_bins: print(nin, hiddens, nout, input_bins, direct_io, '...', end='') model = MADE(nin, hiddens, nout, input_bins=input_bins, natural_ordering=True, do_direct_io_connections=direct_io) model.eval() print(model) for k in range(nout): inp = torch.tensor(rng.rand(1, nin).astype(np.float32), requires_grad=True) loss = model(inp) l = loss[0, k] l.backward() depends = (inp.grad[0].numpy() != 0).astype( np.uint8) # is there a gradient on the input for this k depends_ix = np.where(depends)[0].astype(np.int32) #indexes where var_idx = np.argmax(k < np.cumsum(input_bins)) prev_idxs = np.arange(var_idx).astype(np.int32) # Asserts that k depends only on < var_idx. print('depends', depends_ix, 'prev_idxs', prev_idxs) assert len(torch.nonzero(inp.grad[0, var_idx:])) == 0 print('ok')
41.646206
98
0.513234
b02b8a84c5c9c793a224678fd7450679afcf7aff
55,132
py
Python
scipy/stats/tests/test_hypotests.py
khavernathy/scipy
f09a01721a3859240a8b69f42df8a45508da86d7
[ "BSD-3-Clause" ]
null
null
null
scipy/stats/tests/test_hypotests.py
khavernathy/scipy
f09a01721a3859240a8b69f42df8a45508da86d7
[ "BSD-3-Clause" ]
2
2015-01-06T19:51:42.000Z
2015-12-04T21:54:44.000Z
scipy/stats/tests/test_hypotests.py
khavernathy/scipy
f09a01721a3859240a8b69f42df8a45508da86d7
[ "BSD-3-Clause" ]
1
2021-12-12T12:01:36.000Z
2021-12-12T12:01:36.000Z
from __future__ import division, print_function, absolute_import from itertools import product import numpy as np import pytest from numpy.testing import (assert_, assert_equal, assert_allclose, assert_almost_equal) # avoid new uses from pytest import raises as assert_raises import scipy.stats as stats from scipy.stats import distributions from scipy.stats._hypotests import (epps_singleton_2samp, cramervonmises, _cdf_cvm, cramervonmises_2samp, _pval_cvm_2samp_exact, barnard_exact, boschloo_exact) from scipy.stats._mannwhitneyu import mannwhitneyu, _mwu_state from .common_tests import check_named_results class TestEppsSingleton: def test_statistic_1(self): # first example in Goerg & Kaiser, also in original paper of # Epps & Singleton. Note: values do not match exactly, the # value of the interquartile range varies depending on how # quantiles are computed x = np.array([-0.35, 2.55, 1.73, 0.73, 0.35, 2.69, 0.46, -0.94, -0.37, 12.07]) y = np.array([-1.15, -0.15, 2.48, 3.25, 3.71, 4.29, 5.00, 7.74, 8.38, 8.60]) w, p = epps_singleton_2samp(x, y) assert_almost_equal(w, 15.14, decimal=1) assert_almost_equal(p, 0.00442, decimal=3) def test_statistic_2(self): # second example in Goerg & Kaiser, again not a perfect match x = np.array((0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 10, 10, 10, 10)) y = np.array((10, 4, 0, 5, 10, 10, 0, 5, 6, 7, 10, 3, 1, 7, 0, 8, 1, 5, 8, 10)) w, p = epps_singleton_2samp(x, y) assert_allclose(w, 8.900, atol=0.001) assert_almost_equal(p, 0.06364, decimal=3) def test_epps_singleton_array_like(self): np.random.seed(1234) x, y = np.arange(30), np.arange(28) w1, p1 = epps_singleton_2samp(list(x), list(y)) w2, p2 = epps_singleton_2samp(tuple(x), tuple(y)) w3, p3 = epps_singleton_2samp(x, y) assert_(w1 == w2 == w3) assert_(p1 == p2 == p3) def test_epps_singleton_size(self): # raise error if less than 5 elements x, y = (1, 2, 3, 4), np.arange(10) assert_raises(ValueError, epps_singleton_2samp, x, y) def test_epps_singleton_nonfinite(self): # raise error if there are non-finite values x, y = (1, 2, 3, 4, 5, np.inf), np.arange(10) assert_raises(ValueError, epps_singleton_2samp, x, y) x, y = np.arange(10), (1, 2, 3, 4, 5, np.nan) assert_raises(ValueError, epps_singleton_2samp, x, y) def test_epps_singleton_1d_input(self): x = np.arange(100).reshape(-1, 1) assert_raises(ValueError, epps_singleton_2samp, x, x) def test_names(self): x, y = np.arange(20), np.arange(30) res = epps_singleton_2samp(x, y) attributes = ('statistic', 'pvalue') check_named_results(res, attributes) class TestCvm: # the expected values of the cdfs are taken from Table 1 in # Csorgo / Faraway: The Exact and Asymptotic Distribution of # Cramér-von Mises Statistics, 1996. def test_cdf_4(self): assert_allclose( _cdf_cvm([0.02983, 0.04111, 0.12331, 0.94251], 4), [0.01, 0.05, 0.5, 0.999], atol=1e-4) def test_cdf_10(self): assert_allclose( _cdf_cvm([0.02657, 0.03830, 0.12068, 0.56643], 10), [0.01, 0.05, 0.5, 0.975], atol=1e-4) def test_cdf_1000(self): assert_allclose( _cdf_cvm([0.02481, 0.03658, 0.11889, 1.16120], 1000), [0.01, 0.05, 0.5, 0.999], atol=1e-4) def test_cdf_inf(self): assert_allclose( _cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204]), [0.01, 0.05, 0.5, 0.999], atol=1e-4) def test_cdf_support(self): # cdf has support on [1/(12*n), n/3] assert_equal(_cdf_cvm([1/(12*533), 533/3], 533), [0, 1]) assert_equal(_cdf_cvm([1/(12*(27 + 1)), (27 + 1)/3], 27), [0, 1]) def test_cdf_large_n(self): # test that asymptotic cdf and cdf for large samples are close assert_allclose( _cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204, 100], 10000), _cdf_cvm([0.02480, 0.03656, 0.11888, 1.16204, 100]), atol=1e-4) def test_large_x(self): # for large values of x and n, the series used to compute the cdf # converges slowly. # this leads to bug in R package goftest and MAPLE code that is # the basis of the implemenation in scipy # note: cdf = 1 for x >= 1000/3 and n = 1000 assert_(0.99999 < _cdf_cvm(333.3, 1000) < 1.0) assert_(0.99999 < _cdf_cvm(333.3) < 1.0) def test_low_p(self): # _cdf_cvm can return values larger than 1. In that case, we just # return a p-value of zero. n = 12 res = cramervonmises(np.ones(n)*0.8, 'norm') assert_(_cdf_cvm(res.statistic, n) > 1.0) assert_equal(res.pvalue, 0) def test_invalid_input(self): x = np.arange(10).reshape((2, 5)) assert_raises(ValueError, cramervonmises, x, "norm") assert_raises(ValueError, cramervonmises, [1.5], "norm") assert_raises(ValueError, cramervonmises, (), "norm") def test_values_R(self): # compared against R package goftest, version 1.1.1 # goftest::cvm.test(c(-1.7, 2, 0, 1.3, 4, 0.1, 0.6), "pnorm") res = cramervonmises([-1.7, 2, 0, 1.3, 4, 0.1, 0.6], "norm") assert_allclose(res.statistic, 0.288156, atol=1e-6) assert_allclose(res.pvalue, 0.1453465, atol=1e-6) # goftest::cvm.test(c(-1.7, 2, 0, 1.3, 4, 0.1, 0.6), # "pnorm", mean = 3, sd = 1.5) res = cramervonmises([-1.7, 2, 0, 1.3, 4, 0.1, 0.6], "norm", (3, 1.5)) assert_allclose(res.statistic, 0.9426685, atol=1e-6) assert_allclose(res.pvalue, 0.002026417, atol=1e-6) # goftest::cvm.test(c(1, 2, 5, 1.4, 0.14, 11, 13, 0.9, 7.5), "pexp") res = cramervonmises([1, 2, 5, 1.4, 0.14, 11, 13, 0.9, 7.5], "expon") assert_allclose(res.statistic, 0.8421854, atol=1e-6) assert_allclose(res.pvalue, 0.004433406, atol=1e-6) def test_callable_cdf(self): x, args = np.arange(5), (1.4, 0.7) r1 = cramervonmises(x, distributions.expon.cdf) r2 = cramervonmises(x, "expon") assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue)) r1 = cramervonmises(x, distributions.beta.cdf, args) r2 = cramervonmises(x, "beta", args) assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue)) class TestMannWhitneyU: # All magic numbers are from R wilcox.test unless otherwise specied # https://rdrr.io/r/stats/wilcox.test.html # --- Test Input Validation --- def test_input_validation(self): x = np.array([1, 2]) # generic, valid inputs y = np.array([3, 4]) with assert_raises(ValueError, match="`x` and `y` must be of nonzero"): mannwhitneyu([], y) with assert_raises(ValueError, match="`x` and `y` must be of nonzero"): mannwhitneyu(x, []) with assert_raises(ValueError, match="`x` and `y` must not contain"): mannwhitneyu([np.nan, 2], y) with assert_raises(ValueError, match="`use_continuity` must be one"): mannwhitneyu(x, y, use_continuity='ekki') with assert_raises(ValueError, match="`alternative` must be one of"): mannwhitneyu(x, y, alternative='ekki') with assert_raises(ValueError, match="`axis` must be an integer"): mannwhitneyu(x, y, axis=1.5) with assert_raises(ValueError, match="`method` must be one of"): mannwhitneyu(x, y, method='ekki') def test_auto(self): # Test that default method ('auto') chooses intended method np.random.seed(1) n = 8 # threshold to switch from exact to asymptotic # both inputs are smaller than threshold; should use exact x = np.random.rand(n-1) y = np.random.rand(n-1) auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue == exact.pvalue assert auto.pvalue != asymptotic.pvalue # one input is smaller than threshold; should use exact x = np.random.rand(n-1) y = np.random.rand(n+1) auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue == exact.pvalue assert auto.pvalue != asymptotic.pvalue # other input is smaller than threshold; should use exact auto = mannwhitneyu(y, x) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue == exact.pvalue assert auto.pvalue != asymptotic.pvalue # both inputs are larger than threshold; should use asymptotic x = np.random.rand(n+1) y = np.random.rand(n+1) auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue != exact.pvalue assert auto.pvalue == asymptotic.pvalue # both inputs are smaller than threshold, but there is a tie # should use asymptotic x = np.random.rand(n-1) y = np.random.rand(n-1) y[3] = x[3] auto = mannwhitneyu(x, y) asymptotic = mannwhitneyu(x, y, method='asymptotic') exact = mannwhitneyu(x, y, method='exact') assert auto.pvalue != exact.pvalue assert auto.pvalue == asymptotic.pvalue # --- Test Basic Functionality --- x = [210.052110, 110.190630, 307.918612] y = [436.08811482466416, 416.37397329768191, 179.96975939463582, 197.8118754228619, 34.038757281225756, 138.54220550921517, 128.7769351470246, 265.92721427951852, 275.6617533155341, 592.34083395416258, 448.73177590617018, 300.61495185038905, 187.97508449019588] # This test was written for mann_whitney_u in gh-4933. # Originally, the p-values for alternatives were swapped; # this has been corrected and the tests have been refactored for # compactness, but otherwise the tests are unchanged. # R code for comparison, e.g.: # options(digits = 16) # x = c(210.052110, 110.190630, 307.918612) # y = c(436.08811482466416, 416.37397329768191, 179.96975939463582, # 197.8118754228619, 34.038757281225756, 138.54220550921517, # 128.7769351470246, 265.92721427951852, 275.6617533155341, # 592.34083395416258, 448.73177590617018, 300.61495185038905, # 187.97508449019588) # wilcox.test(x, y, alternative="g", exact=TRUE) cases_basic = [[{"alternative": 'two-sided', "method": "asymptotic"}, (16, 0.6865041817876)], [{"alternative": 'less', "method": "asymptotic"}, (16, 0.3432520908938)], [{"alternative": 'greater', "method": "asymptotic"}, (16, 0.7047591913255)], [{"alternative": 'two-sided', "method": "exact"}, (16, 0.7035714285714)], [{"alternative": 'less', "method": "exact"}, (16, 0.3517857142857)], [{"alternative": 'greater', "method": "exact"}, (16, 0.6946428571429)]] @pytest.mark.parametrize(("kwds", "expected"), cases_basic) def test_basic(self, kwds, expected): res = mannwhitneyu(self.x, self.y, **kwds) assert_allclose(res, expected) cases_continuity = [[{"alternative": 'two-sided', "use_continuity": True}, (23, 0.6865041817876)], [{"alternative": 'less', "use_continuity": True}, (23, 0.7047591913255)], [{"alternative": 'greater', "use_continuity": True}, (23, 0.3432520908938)], [{"alternative": 'two-sided', "use_continuity": False}, (23, 0.6377328900502)], [{"alternative": 'less', "use_continuity": False}, (23, 0.6811335549749)], [{"alternative": 'greater', "use_continuity": False}, (23, 0.3188664450251)]] @pytest.mark.parametrize(("kwds", "expected"), cases_continuity) def test_continuity(self, kwds, expected): # When x and y are interchanged, less and greater p-values should # swap (compare to above). This wouldn't happen if the continuity # correction were applied in the wrong direction. Note that less and # greater p-values do not sum to 1 when continuity correction is on, # which is what we'd expect. Also check that results match R when # continuity correction is turned off. # Note that method='asymptotic' -> exact=FALSE # and use_continuity=False -> correct=FALSE, e.g.: # wilcox.test(x, y, alternative="t", exact=FALSE, correct=FALSE) res = mannwhitneyu(self.y, self.x, method='asymptotic', **kwds) assert_allclose(res, expected) def test_tie_correct(self): # Test tie correction against R's wilcox.test # options(digits = 16) # x = c(1, 2, 3, 4) # y = c(1, 2, 3, 4, 5) # wilcox.test(x, y, exact=FALSE) x = [1, 2, 3, 4] y0 = np.array([1, 2, 3, 4, 5]) dy = np.array([0, 1, 0, 1, 0])*0.01 dy2 = np.array([0, 0, 1, 0, 0])*0.01 y = [y0-0.01, y0-dy, y0-dy2, y0, y0+dy2, y0+dy, y0+0.01] res = mannwhitneyu(x, y, axis=-1, method="asymptotic") U_expected = [10, 9, 8.5, 8, 7.5, 7, 6] p_expected = [1, 0.9017048037317, 0.804080657472, 0.7086240584439, 0.6197963884941, 0.5368784563079, 0.3912672792826] assert_equal(res.statistic, U_expected) assert_allclose(res.pvalue, p_expected) # --- Test Exact Distribution of U --- # These are tabulated values of the CDF of the exact distribution of # the test statistic from pg 52 of reference [1] (Mann-Whitney Original) pn3 = {1: [0.25, 0.5, 0.75], 2: [0.1, 0.2, 0.4, 0.6], 3: [0.05, .1, 0.2, 0.35, 0.5, 0.65]} pn4 = {1: [0.2, 0.4, 0.6], 2: [0.067, 0.133, 0.267, 0.4, 0.6], 3: [0.028, 0.057, 0.114, 0.2, .314, 0.429, 0.571], 4: [0.014, 0.029, 0.057, 0.1, 0.171, 0.243, 0.343, 0.443, 0.557]} pm5 = {1: [0.167, 0.333, 0.5, 0.667], 2: [0.047, 0.095, 0.19, 0.286, 0.429, 0.571], 3: [0.018, 0.036, 0.071, 0.125, 0.196, 0.286, 0.393, 0.5, 0.607], 4: [0.008, 0.016, 0.032, 0.056, 0.095, 0.143, 0.206, 0.278, 0.365, 0.452, 0.548], 5: [0.004, 0.008, 0.016, 0.028, 0.048, 0.075, 0.111, 0.155, 0.21, 0.274, 0.345, .421, 0.5, 0.579]} pm6 = {1: [0.143, 0.286, 0.428, 0.571], 2: [0.036, 0.071, 0.143, 0.214, 0.321, 0.429, 0.571], 3: [0.012, 0.024, 0.048, 0.083, 0.131, 0.19, 0.274, 0.357, 0.452, 0.548], 4: [0.005, 0.01, 0.019, 0.033, 0.057, 0.086, 0.129, 0.176, 0.238, 0.305, 0.381, 0.457, 0.543], # the last element # of the previous list, 0.543, has been modified from 0.545; # I assume it was a typo 5: [0.002, 0.004, 0.009, 0.015, 0.026, 0.041, 0.063, 0.089, 0.123, 0.165, 0.214, 0.268, 0.331, 0.396, 0.465, 0.535], 6: [0.001, 0.002, 0.004, 0.008, 0.013, 0.021, 0.032, 0.047, 0.066, 0.09, 0.12, 0.155, 0.197, 0.242, 0.294, 0.350, 0.409, 0.469, 0.531]} def test_exact_distribution(self): # I considered parametrize. I decided against it. p_tables = {3: self.pn3, 4: self.pn4, 5: self.pm5, 6: self.pm6} for n, table in p_tables.items(): for m, p in table.items(): # check p-value against table u = np.arange(0, len(p)) assert_allclose(_mwu_state.cdf(k=u, m=m, n=n), p, atol=1e-3) # check identity CDF + SF - PMF = 1 # ( In this implementation, SF(U) includes PMF(U) ) u2 = np.arange(0, m*n+1) assert_allclose(_mwu_state.cdf(k=u2, m=m, n=n) + _mwu_state.sf(k=u2, m=m, n=n) - _mwu_state.pmf(k=u2, m=m, n=n), 1) # check symmetry about mean of U, i.e. pmf(U) = pmf(m*n-U) pmf = _mwu_state.pmf(k=u2, m=m, n=n) assert_allclose(pmf, pmf[::-1]) # check symmetry w.r.t. interchange of m, n pmf2 = _mwu_state.pmf(k=u2, m=n, n=m) assert_allclose(pmf, pmf2) def test_asymptotic_behavior(self): np.random.seed(0) # for small samples, the asymptotic test is not very accurate x = np.random.rand(5) y = np.random.rand(5) res1 = mannwhitneyu(x, y, method="exact") res2 = mannwhitneyu(x, y, method="asymptotic") assert res1.statistic == res2.statistic assert np.abs(res1.pvalue - res2.pvalue) > 1e-2 # for large samples, they agree reasonably well x = np.random.rand(40) y = np.random.rand(40) res1 = mannwhitneyu(x, y, method="exact") res2 = mannwhitneyu(x, y, method="asymptotic") assert res1.statistic == res2.statistic assert np.abs(res1.pvalue - res2.pvalue) < 1e-3 # --- Test Corner Cases --- def test_exact_U_equals_mean(self): # Test U == m*n/2 with exact method # Without special treatment, two-sided p-value > 1 because both # one-sided p-values are > 0.5 res_l = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="less", method="exact") res_g = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="greater", method="exact") assert_equal(res_l.pvalue, res_g.pvalue) assert res_l.pvalue > 0.5 res = mannwhitneyu([1, 2, 3], [1.5, 2.5], alternative="two-sided", method="exact") assert_equal(res, (3, 1)) # U == m*n/2 for asymptotic case tested in test_gh_2118 # The reason it's tricky for the asymptotic test has to do with # continuity correction. cases_scalar = [[{"alternative": 'two-sided', "method": "asymptotic"}, (0, 1)], [{"alternative": 'less', "method": "asymptotic"}, (0, 0.5)], [{"alternative": 'greater', "method": "asymptotic"}, (0, 0.977249868052)], [{"alternative": 'two-sided', "method": "exact"}, (0, 1)], [{"alternative": 'less', "method": "exact"}, (0, 0.5)], [{"alternative": 'greater', "method": "exact"}, (0, 1)]] @pytest.mark.parametrize(("kwds", "result"), cases_scalar) def test_scalar_data(self, kwds, result): # just making sure scalars work assert_allclose(mannwhitneyu(1, 2, **kwds), result) def test_equal_scalar_data(self): # when two scalars are equal, there is an -0.5/0 in the asymptotic # approximation. R gives pvalue=1.0 for alternatives 'less' and # 'greater' but NA for 'two-sided'. I don't see why, so I don't # see a need for a special case to match that behavior. assert_equal(mannwhitneyu(1, 1, method="exact"), (0.5, 1)) assert_equal(mannwhitneyu(1, 1, method="asymptotic"), (0.5, 1)) # without continuity correction, this becomes 0/0, which really # is undefined assert_equal(mannwhitneyu(1, 1, method="asymptotic", use_continuity=False), (0.5, np.nan)) # --- Test Enhancements / Bug Reports --- @pytest.mark.parametrize("method", ["asymptotic", "exact"]) def test_gh_12837_11113(self, method): # Test that behavior for broadcastable nd arrays is appropriate: # output shape is correct and all values are equal to when the test # is performed on one pair of samples at a time. # Tests that gh-12837 and gh-11113 (requests for n-d input) # are resolved np.random.seed(0) # arrays are broadcastable except for axis = -3 axis = -3 m, n = 7, 10 # sample sizes x = np.random.rand(m, 3, 8) y = np.random.rand(6, n, 1, 8) + 0.1 res = mannwhitneyu(x, y, method=method, axis=axis) shape = (6, 3, 8) # appropriate shape of outputs, given inputs assert(res.pvalue.shape == shape) assert(res.statistic.shape == shape) # move axis of test to end for simplicity x, y = np.moveaxis(x, axis, -1), np.moveaxis(y, axis, -1) x = x[None, ...] # give x a zeroth dimension assert(x.ndim == y.ndim) x = np.broadcast_to(x, shape + (m,)) y = np.broadcast_to(y, shape + (n,)) assert(x.shape[:-1] == shape) assert(y.shape[:-1] == shape) # loop over pairs of samples statistics = np.zeros(shape) pvalues = np.zeros(shape) for indices in product(*[range(i) for i in shape]): xi = x[indices] yi = y[indices] temp = mannwhitneyu(xi, yi, method=method) statistics[indices] = temp.statistic pvalues[indices] = temp.pvalue np.testing.assert_equal(res.pvalue, pvalues) np.testing.assert_equal(res.statistic, statistics) def test_gh_11355(self): # Test for correct behavior with NaN/Inf in input x = [1, 2, 3, 4] y = [3, 6, 7, 8, 9, 3, 2, 1, 4, 4, 5] res1 = mannwhitneyu(x, y) # Inf is not a problem. This is a rank test, and it's the largest value y[4] = np.inf res2 = mannwhitneyu(x, y) assert_equal(res1.statistic, res2.statistic) assert_equal(res1.pvalue, res2.pvalue) # NaNs should raise an error. No nan_policy for now. y[4] = np.nan with assert_raises(ValueError, match="`x` and `y` must not contain"): mannwhitneyu(x, y) cases_11355 = [([1, 2, 3, 4], [3, 6, 7, 8, np.inf, 3, 2, 1, 4, 4, 5], 10, 0.1297704873477), ([1, 2, 3, 4], [3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5], 8.5, 0.08735617507695), ([1, 2, np.inf, 4], [3, 6, 7, 8, np.inf, 3, 2, 1, 4, 4, 5], 17.5, 0.5988856695752), ([1, 2, np.inf, 4], [3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5], 16, 0.4687165824462), ([1, np.inf, np.inf, 4], [3, 6, 7, 8, np.inf, np.inf, 2, 1, 4, 4, 5], 24.5, 0.7912517950119)] @pytest.mark.parametrize(("x", "y", "statistic", "pvalue"), cases_11355) def test_gh_11355b(self, x, y, statistic, pvalue): # Test for correct behavior with NaN/Inf in input res = mannwhitneyu(x, y, method='asymptotic') assert_allclose(res.statistic, statistic, atol=1e-12) assert_allclose(res.pvalue, pvalue, atol=1e-12) cases_9184 = [[True, "less", "asymptotic", 0.900775348204], [True, "greater", "asymptotic", 0.1223118025635], [True, "two-sided", "asymptotic", 0.244623605127], [False, "less", "asymptotic", 0.8896643190401], [False, "greater", "asymptotic", 0.1103356809599], [False, "two-sided", "asymptotic", 0.2206713619198], [True, "less", "exact", 0.8967698967699], [True, "greater", "exact", 0.1272061272061], [True, "two-sided", "exact", 0.2544122544123]] @pytest.mark.parametrize(("use_continuity", "alternative", "method", "pvalue_exp"), cases_9184) def test_gh_9184(self, use_continuity, alternative, method, pvalue_exp): # gh-9184 might be considered a doc-only bug. Please see the # documentation to confirm that mannwhitneyu correctly notes # that the output statistic is that of the first sample (x). In any # case, check the case provided there against output from R. # R code: # options(digits=16) # x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) # y <- c(1.15, 0.88, 0.90, 0.74, 1.21) # wilcox.test(x, y, alternative = "less", exact = FALSE) # wilcox.test(x, y, alternative = "greater", exact = FALSE) # wilcox.test(x, y, alternative = "two.sided", exact = FALSE) # wilcox.test(x, y, alternative = "less", exact = FALSE, # correct=FALSE) # wilcox.test(x, y, alternative = "greater", exact = FALSE, # correct=FALSE) # wilcox.test(x, y, alternative = "two.sided", exact = FALSE, # correct=FALSE) # wilcox.test(x, y, alternative = "less", exact = TRUE) # wilcox.test(x, y, alternative = "greater", exact = TRUE) # wilcox.test(x, y, alternative = "two.sided", exact = TRUE) statistic_exp = 35 x = (0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46) y = (1.15, 0.88, 0.90, 0.74, 1.21) res = mannwhitneyu(x, y, use_continuity=use_continuity, alternative=alternative, method=method) assert_equal(res.statistic, statistic_exp) assert_allclose(res.pvalue, pvalue_exp) def test_gh_6897(self): # Test for correct behavior with empty input with assert_raises(ValueError, match="`x` and `y` must be of nonzero"): mannwhitneyu([], []) def test_gh_4067(self): # Test for correct behavior with all NaN input a = np.array([np.nan, np.nan, np.nan, np.nan, np.nan]) b = np.array([np.nan, np.nan, np.nan, np.nan, np.nan]) with assert_raises(ValueError, match="`x` and `y` must not contain"): mannwhitneyu(a, b) # All cases checked against R wilcox.test, e.g. # options(digits=16) # x = c(1, 2, 3) # y = c(1.5, 2.5) # wilcox.test(x, y, exact=FALSE, alternative='less') cases_2118 = [[[1, 2, 3], [1.5, 2.5], "greater", (3, 0.6135850036578)], [[1, 2, 3], [1.5, 2.5], "less", (3, 0.6135850036578)], [[1, 2, 3], [1.5, 2.5], "two-sided", (3, 1.0)], [[1, 2, 3], [2], "greater", (1.5, 0.681324055883)], [[1, 2, 3], [2], "less", (1.5, 0.681324055883)], [[1, 2, 3], [2], "two-sided", (1.5, 1)], [[1, 2], [1, 2], "greater", (2, 0.667497228949)], [[1, 2], [1, 2], "less", (2, 0.667497228949)], [[1, 2], [1, 2], "two-sided", (2, 1)]] @pytest.mark.parametrize(["x", "y", "alternative", "expected"], cases_2118) def test_gh_2118(self, x, y, alternative, expected): # test cases in which U == m*n/2 when method is asymptotic # applying continuity correction could result in p-value > 1 res = mannwhitneyu(x, y, use_continuity=True, alternative=alternative, method="asymptotic") assert_allclose(res, expected, rtol=1e-12) class TestSomersD: def test_like_kendalltau(self): # All tests correspond with one in test_stats.py `test_kendalltau` # case without ties, con-dis equal zero x = [5, 2, 1, 3, 6, 4, 7, 8] y = [5, 2, 6, 3, 1, 8, 7, 4] # Cross-check with result from SAS FREQ: expected = (0.000000000000000, 1.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # case without ties, con-dis equal zero x = [0, 5, 2, 1, 3, 6, 4, 7, 8] y = [5, 2, 0, 6, 3, 1, 8, 7, 4] # Cross-check with result from SAS FREQ: expected = (0.000000000000000, 1.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # case without ties, con-dis close to zero x = [5, 2, 1, 3, 6, 4, 7] y = [5, 2, 6, 3, 1, 7, 4] # Cross-check with result from SAS FREQ: expected = (-0.142857142857140, 0.630326953157670) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # simple case without ties x = np.arange(10) y = np.arange(10) # Cross-check with result from SAS FREQ: # SAS p value is not provided. expected = (1.000000000000000, 0) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # swap a couple values and a couple more x = np.arange(10) y = np.array([0, 2, 1, 3, 4, 6, 5, 7, 8, 9]) # Cross-check with result from SAS FREQ: expected = (0.911111111111110, 0.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # same in opposite direction x = np.arange(10) y = np.arange(10)[::-1] # Cross-check with result from SAS FREQ: # SAS p value is not provided. expected = (-1.000000000000000, 0) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # swap a couple values and a couple more x = np.arange(10) y = np.array([9, 7, 8, 6, 5, 3, 4, 2, 1, 0]) # Cross-check with result from SAS FREQ: expected = (-0.9111111111111111, 0.000000000000000) res = stats.somersd(x, y) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # with some ties x1 = [12, 2, 1, 12, 2] x2 = [1, 4, 7, 1, 0] # Cross-check with result from SAS FREQ: expected = (-0.500000000000000, 0.304901788178780) res = stats.somersd(x1, x2) assert_allclose(res.statistic, expected[0], atol=1e-15) assert_allclose(res.pvalue, expected[1], atol=1e-15) # with only ties in one or both inputs # SAS will not produce an output for these: # NOTE: No statistics are computed for x * y because x has fewer # than 2 nonmissing levels. # WARNING: No OUTPUT data set is produced for this table because a # row or column variable has fewer than 2 nonmissing levels and no # statistics are computed. res = stats.somersd([2, 2, 2], [2, 2, 2]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) res = stats.somersd([2, 0, 2], [2, 2, 2]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) res = stats.somersd([2, 2, 2], [2, 0, 2]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) res = stats.somersd([0], [0]) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) # empty arrays provided as input res = stats.somersd([], []) assert_allclose(res.statistic, np.nan) assert_allclose(res.pvalue, np.nan) # test unequal length inputs x = np.arange(10.) y = np.arange(20.) assert_raises(ValueError, stats.somersd, x, y) def test_asymmetry(self): # test that somersd is asymmetric w.r.t. input order and that # convention is as described: first input is row variable & independent # data is from Wikipedia: # https://en.wikipedia.org/wiki/Somers%27_D # but currently that example contradicts itself - it says X is # independent yet take D_XY x = [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3] y = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] # Cross-check with result from SAS FREQ: d_cr = 0.272727272727270 d_rc = 0.342857142857140 p = 0.092891940883700 # same p-value for either direction res = stats.somersd(x, y) assert_allclose(res.statistic, d_cr, atol=1e-15) assert_allclose(res.pvalue, p, atol=1e-4) assert_equal(res.table.shape, (3, 2)) res = stats.somersd(y, x) assert_allclose(res.statistic, d_rc, atol=1e-15) assert_allclose(res.pvalue, p, atol=1e-15) assert_equal(res.table.shape, (2, 3)) def test_somers_original(self): # test against Somers' original paper [1] # Table 5A # Somers' convention was column IV table = np.array([[8, 2], [6, 5], [3, 4], [1, 3], [2, 3]]) # Our convention (and that of SAS FREQ) is row IV table = table.T dyx = 129/340 assert_allclose(stats.somersd(table).statistic, dyx) # table 7A - d_yx = 1 table = np.array([[25, 0], [85, 0], [0, 30]]) dxy, dyx = 3300/5425, 3300/3300 assert_allclose(stats.somersd(table).statistic, dxy) assert_allclose(stats.somersd(table.T).statistic, dyx) # table 7B - d_yx < 0 table = np.array([[25, 0], [0, 30], [85, 0]]) dyx = -1800/3300 assert_allclose(stats.somersd(table.T).statistic, dyx) def test_contingency_table_with_zero_rows_cols(self): # test that zero rows/cols in contingency table don't affect result N = 100 shape = 4, 6 size = np.prod(shape) np.random.seed(0) s = stats.multinomial.rvs(N, p=np.ones(size)/size).reshape(shape) res = stats.somersd(s) s2 = np.insert(s, 2, np.zeros(shape[1]), axis=0) res2 = stats.somersd(s2) s3 = np.insert(s, 2, np.zeros(shape[0]), axis=1) res3 = stats.somersd(s3) s4 = np.insert(s2, 2, np.zeros(shape[0]+1), axis=1) res4 = stats.somersd(s4) # Cross-check with result from SAS FREQ: assert_allclose(res.statistic, -0.116981132075470, atol=1e-15) assert_allclose(res.statistic, res2.statistic) assert_allclose(res.statistic, res3.statistic) assert_allclose(res.statistic, res4.statistic) assert_allclose(res.pvalue, 0.156376448188150, atol=1e-15) assert_allclose(res.pvalue, res2.pvalue) assert_allclose(res.pvalue, res3.pvalue) assert_allclose(res.pvalue, res4.pvalue) def test_invalid_contingency_tables(self): N = 100 shape = 4, 6 size = np.prod(shape) np.random.seed(0) # start with a valid contingency table s = stats.multinomial.rvs(N, p=np.ones(size)/size).reshape(shape) s5 = s - 2 message = "All elements of the contingency table must be non-negative" with assert_raises(ValueError, match=message): stats.somersd(s5) s6 = s + 0.01 message = "All elements of the contingency table must be integer" with assert_raises(ValueError, match=message): stats.somersd(s6) message = ("At least two elements of the contingency " "table must be nonzero.") with assert_raises(ValueError, match=message): stats.somersd([[]]) with assert_raises(ValueError, match=message): stats.somersd([[1]]) s7 = np.zeros((3, 3)) with assert_raises(ValueError, match=message): stats.somersd(s7) s7[0, 1] = 1 with assert_raises(ValueError, match=message): stats.somersd(s7) def test_only_ranks_matter(self): # only ranks of input data should matter x = [1, 2, 3] x2 = [-1, 2.1, np.inf] y = [3, 2, 1] y2 = [0, -0.5, -np.inf] res = stats.somersd(x, y) res2 = stats.somersd(x2, y2) assert_equal(res.statistic, res2.statistic) assert_equal(res.pvalue, res2.pvalue) def test_contingency_table_return(self): # check that contingency table is returned x = np.arange(10) y = np.arange(10) res = stats.somersd(x, y) assert_equal(res.table, np.eye(10)) def test_somersd_alternative(self): # Test alternative parameter, asymptotic method (due to tie) # Based on scipy.stats.test_stats.TestCorrSpearman2::test_alternative x1 = [1, 2, 3, 4, 5] x2 = [5, 6, 7, 8, 7] # strong positive correlation expected = stats.somersd(x1, x2, alternative="two-sided") assert expected.statistic > 0 # rank correlation > 0 -> large "less" p-value res = stats.somersd(x1, x2, alternative="less") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, 1 - (expected.pvalue / 2)) # rank correlation > 0 -> small "greater" p-value res = stats.somersd(x1, x2, alternative="greater") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue / 2) # reverse the direction of rank correlation x2.reverse() # strong negative correlation expected = stats.somersd(x1, x2, alternative="two-sided") assert expected.statistic < 0 # rank correlation < 0 -> large "greater" p-value res = stats.somersd(x1, x2, alternative="greater") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, 1 - (expected.pvalue / 2)) # rank correlation < 0 -> small "less" p-value res = stats.somersd(x1, x2, alternative="less") assert_equal(res.statistic, expected.statistic) assert_allclose(res.pvalue, expected.pvalue / 2) with pytest.raises(ValueError, match="alternative must be 'less'..."): stats.somersd(x1, x2, alternative="ekki-ekki") @pytest.mark.parametrize("positive_correlation", (False, True)) def test_somersd_perfect_correlation(self, positive_correlation): # Before the addition of `alternative`, perfect correlation was # treated as a special case. Now it is treated like any other case, but # make sure there are no divide by zero warnings or associated errors x1 = np.arange(10) x2 = x1 if positive_correlation else np.flip(x1) expected_statistic = 1 if positive_correlation else -1 # perfect correlation -> small "two-sided" p-value (0) res = stats.somersd(x1, x2, alternative="two-sided") assert res.statistic == expected_statistic assert res.pvalue == 0 # rank correlation > 0 -> large "less" p-value (1) res = stats.somersd(x1, x2, alternative="less") assert res.statistic == expected_statistic assert res.pvalue == (1 if positive_correlation else 0) # rank correlation > 0 -> small "greater" p-value (0) res = stats.somersd(x1, x2, alternative="greater") assert res.statistic == expected_statistic assert res.pvalue == (0 if positive_correlation else 1) class TestBarnardExact: """Some tests to show that barnard_exact() works correctly.""" @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (3.555406779643, 0.000362832367)), ([[100, 2], [1000, 5]], (-1.776382925679, 0.135126970878)), ([[2, 7], [8, 2]], (-2.518474945157, 0.019210815430)), ([[5, 1], [10, 10]], (1.449486150679, 0.156277546306)), ([[5, 15], [20, 20]], (-1.851640199545, 0.066363501421)), ([[5, 16], [20, 25]], (-1.609639949352, 0.116984852192)), ([[10, 5], [10, 1]], (-1.449486150679, 0.177536588915)), ([[5, 0], [1, 4]], (2.581988897472, 0.013671875000)), ([[0, 1], [3, 2]], (-1.095445115010, 0.509667991877)), ([[0, 2], [6, 4]], (-1.549193338483, 0.197019618792)), ([[2, 7], [8, 2]], (-2.518474945157, 0.019210815430)), ], ) def test_precise(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-6 : ```R library(Barnard) options(digits=10) barnard.test(43, 40, 10, 39, dp=1e-6, pooled=TRUE) ``` """ res = barnard_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected) @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (3.920362887717, 0.000289470662)), ([[100, 2], [1000, 5]], (-1.139432816087, 0.950272080594)), ([[2, 7], [8, 2]], (-3.079373904042, 0.020172119141)), ([[5, 1], [10, 10]], (1.622375939458, 0.150599922226)), ([[5, 15], [20, 20]], (-1.974771239528, 0.063038448651)), ([[5, 16], [20, 25]], (-1.722122973346, 0.133329494287)), ([[10, 5], [10, 1]], (-1.765469659009, 0.250566655215)), ([[5, 0], [1, 4]], (5.477225575052, 0.007812500000)), ([[0, 1], [3, 2]], (-1.224744871392, 0.509667991877)), ([[0, 2], [6, 4]], (-1.732050807569, 0.197019618792)), ([[2, 7], [8, 2]], (-3.079373904042, 0.020172119141)), ], ) def test_pooled_param(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-6 : ```R library(Barnard) options(digits=10) barnard.test(43, 40, 10, 39, dp=1e-6, pooled=FALSE) ``` """ res = barnard_exact(input_sample, pooled=False) statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected) def test_raises(self): # test we raise an error for wrong input number of nuisances. error_msg = ( "Number of points `n` must be strictly positive, found 0" ) with assert_raises(ValueError, match=error_msg): barnard_exact([[1, 2], [3, 4]], n=0) # test we raise an error for wrong shape of input. error_msg = "The input `table` must be of shape \\(2, 2\\)." with assert_raises(ValueError, match=error_msg): barnard_exact(np.arange(6).reshape(2, 3)) # Test all values must be positives error_msg = "All values in `table` must be nonnegative." with assert_raises(ValueError, match=error_msg): barnard_exact([[-1, 2], [3, 4]]) # Test value error on wrong alternative param error_msg = ( "`alternative` should be one of {'two-sided', 'less', 'greater'}," " found .*" ) with assert_raises(ValueError, match=error_msg): barnard_exact([[1, 2], [3, 4]], "not-correct") @pytest.mark.parametrize( "input_sample,expected", [ ([[0, 0], [4, 3]], (1.0, 0)), ], ) def test_edge_cases(self, input_sample, expected): res = barnard_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_equal(pvalue, expected[0]) assert_equal(statistic, expected[1]) @pytest.mark.parametrize( "input_sample,expected", [ ([[0, 5], [0, 10]], (1.0, np.nan)), ([[5, 0], [10, 0]], (1.0, np.nan)), ], ) def test_row_or_col_zero(self, input_sample, expected): res = barnard_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_equal(pvalue, expected[0]) assert_equal(statistic, expected[1]) @pytest.mark.parametrize( "input_sample,expected", [ ([[2, 7], [8, 2]], (-2.518474945157, 0.009886140845)), ([[7, 200], [300, 8]], (-21.320036698460, 0.0)), ([[21, 28], [1957, 6]], (-30.489638143953, 0.0)), ], ) @pytest.mark.parametrize("alternative", ["greater", "less"]) def test_less_greater(self, input_sample, expected, alternative): """ "The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-6 : ```R library(Barnard) options(digits=10) a = barnard.test(2, 7, 8, 2, dp=1e-6, pooled=TRUE) a$p.value[1] ``` In this test, we are using the "one-sided" return value `a$p.value[1]` to test our pvalue. """ expected_stat, less_pvalue_expect = expected if alternative == "greater": input_sample = np.array(input_sample)[:, ::-1] expected_stat = -expected_stat res = barnard_exact(input_sample, alternative=alternative) statistic, pvalue = res.statistic, res.pvalue assert_allclose( [statistic, pvalue], [expected_stat, less_pvalue_expect], atol=1e-7 ) class TestBoschlooExact: """Some tests to show that boschloo_exact() works correctly.""" ATOL = 1e-7 @pytest.mark.parametrize( "input_sample,expected", [ ([[2, 7], [8, 2]], (0.01852173, 0.009886142)), ([[5, 1], [10, 10]], (0.9782609, 0.9450994)), ([[5, 16], [20, 25]], (0.08913823, 0.05827348)), ([[10, 5], [10, 1]], (0.1652174, 0.08565611)), ([[5, 0], [1, 4]], (1, 1)), ([[0, 1], [3, 2]], (0.5, 0.34375)), ([[2, 7], [8, 2]], (0.01852173, 0.009886142)), ([[7, 12], [8, 3]], (0.06406797, 0.03410916)), ([[10, 24], [25, 37]], (0.2009359, 0.1512882)), ], ) def test_less(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-8 : ```R library(Exact) options(digits=10) data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE) a = exact.test(data, method="Boschloo", alternative="less", tsmethod="central", np.interval=TRUE, beta=1e-8) ``` """ res = boschloo_exact(input_sample, alternative="less") statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected, atol=self.ATOL) @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (0.0002875544, 0.0001615562)), ([[2, 7], [8, 2]], (0.9990149, 0.9918327)), ([[5, 1], [10, 10]], (0.1652174, 0.09008534)), ([[5, 15], [20, 20]], (0.9849087, 0.9706997)), ([[5, 16], [20, 25]], (0.972349, 0.9524124)), ([[5, 0], [1, 4]], (0.02380952, 0.006865367)), ([[0, 1], [3, 2]], (1, 1)), ([[0, 2], [6, 4]], (1, 1)), ([[2, 7], [8, 2]], (0.9990149, 0.9918327)), ([[7, 12], [8, 3]], (0.9895302, 0.9771215)), ([[10, 24], [25, 37]], (0.9012936, 0.8633275)), ], ) def test_greater(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-8 : ```R library(Exact) options(digits=10) data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE) a = exact.test(data, method="Boschloo", alternative="greater", tsmethod="central", np.interval=TRUE, beta=1e-8) ``` """ res = boschloo_exact(input_sample, alternative="greater") statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected, atol=self.ATOL) @pytest.mark.parametrize( "input_sample,expected", [ ([[43, 40], [10, 39]], (0.0002875544, 0.0003231115)), ([[2, 7], [8, 2]], (0.01852173, 0.01977228)), ([[5, 1], [10, 10]], (0.1652174, 0.1801707)), ([[5, 16], [20, 25]], (0.08913823, 0.116547)), ([[5, 0], [1, 4]], (0.02380952, 0.01373073)), ([[0, 1], [3, 2]], (0.5, 0.6875)), ([[2, 7], [8, 2]], (0.01852173, 0.01977228)), ([[7, 12], [8, 3]], (0.06406797, 0.06821831)), ], ) def test_two_sided(self, input_sample, expected): """The expected values have been generated by R, using a resolution for the nuisance parameter of 1e-8 : ```R library(Exact) options(digits=10) data <- matrix(c(43, 10, 40, 39), 2, 2, byrow=TRUE) a = exact.test(data, method="Boschloo", alternative="two.sided", tsmethod="central", np.interval=TRUE, beta=1e-8) ``` """ res = boschloo_exact(input_sample, alternative="two-sided", n=64) # Need n = 64 for python 32-bit statistic, pvalue = res.statistic, res.pvalue assert_allclose([statistic, pvalue], expected, atol=self.ATOL) def test_raises(self): # test we raise an error for wrong input number of nuisances. error_msg = ( "Number of points `n` must be strictly positive, found 0" ) with assert_raises(ValueError, match=error_msg): boschloo_exact([[1, 2], [3, 4]], n=0) # test we raise an error for wrong shape of input. error_msg = "The input `table` must be of shape \\(2, 2\\)." with assert_raises(ValueError, match=error_msg): boschloo_exact(np.arange(6).reshape(2, 3)) # Test all values must be positives error_msg = "All values in `table` must be nonnegative." with assert_raises(ValueError, match=error_msg): boschloo_exact([[-1, 2], [3, 4]]) # Test value error on wrong alternative param error_msg = ( r"`alternative` should be one of \('two-sided', 'less', " r"'greater'\), found .*" ) with assert_raises(ValueError, match=error_msg): boschloo_exact([[1, 2], [3, 4]], "not-correct") @pytest.mark.parametrize( "input_sample,expected", [ ([[0, 5], [0, 10]], (np.nan, np.nan)), ([[5, 0], [10, 0]], (np.nan, np.nan)), ], ) def test_row_or_col_zero(self, input_sample, expected): res = boschloo_exact(input_sample) statistic, pvalue = res.statistic, res.pvalue assert_equal(pvalue, expected[0]) assert_equal(statistic, expected[1]) class TestCvm_2samp: def test_invalid_input(self): x = np.arange(10).reshape((2, 5)) y = np.arange(5) msg = 'The samples must be one-dimensional' with pytest.raises(ValueError, match=msg): cramervonmises_2samp(x, y) with pytest.raises(ValueError, match=msg): cramervonmises_2samp(y, x) msg = 'x and y must contain at least two observations.' with pytest.raises(ValueError, match=msg): cramervonmises_2samp([], y) with pytest.raises(ValueError, match=msg): cramervonmises_2samp(y, [1]) msg = 'method must be either auto, exact or asymptotic' with pytest.raises(ValueError, match=msg): cramervonmises_2samp(y, y, 'xyz') def test_list_input(self): x = [2, 3, 4, 7, 6] y = [0.2, 0.7, 12, 18] r1 = cramervonmises_2samp(x, y) r2 = cramervonmises_2samp(np.array(x), np.array(y)) assert_equal((r1.statistic, r1.pvalue), (r2.statistic, r2.pvalue)) def test_example_conover(self): # Example 2 in Section 6.2 of W.J. Conover: Practical Nonparametric # Statistics, 1971. x = [7.6, 8.4, 8.6, 8.7, 9.3, 9.9, 10.1, 10.6, 11.2] y = [5.2, 5.7, 5.9, 6.5, 6.8, 8.2, 9.1, 9.8, 10.8, 11.3, 11.5, 12.3, 12.5, 13.4, 14.6] r = cramervonmises_2samp(x, y) assert_allclose(r.statistic, 0.262, atol=1e-3) assert_allclose(r.pvalue, 0.18, atol=1e-2) @pytest.mark.parametrize('statistic, m, n, pval', [(710, 5, 6, 48./462), (1897, 7, 7, 117./1716), (576, 4, 6, 2./210), (1764, 6, 7, 2./1716)]) def test_exact_pvalue(self, statistic, m, n, pval): # the exact values are taken from Anderson: On the distribution of the # two-sample Cramer-von-Mises criterion, 1962. # The values are taken from Table 2, 3, 4 and 5 assert_equal(_pval_cvm_2samp_exact(statistic, m, n), pval) def test_large_sample(self): # for large samples, the statistic U gets very large # do a sanity check that p-value is not 0, 1 or nan np.random.seed(4367) x = distributions.norm.rvs(size=1000000) y = distributions.norm.rvs(size=900000) r = cramervonmises_2samp(x, y) assert_(0 < r.pvalue < 1) r = cramervonmises_2samp(x, y+0.1) assert_(0 < r.pvalue < 1) def test_exact_vs_asymptotic(self): np.random.seed(0) x = np.random.rand(7) y = np.random.rand(8) r1 = cramervonmises_2samp(x, y, method='exact') r2 = cramervonmises_2samp(x, y, method='asymptotic') assert_equal(r1.statistic, r2.statistic) assert_allclose(r1.pvalue, r2.pvalue, atol=1e-2) def test_method_auto(self): x = np.arange(10) y = [0.5, 4.7, 13.1] r1 = cramervonmises_2samp(x, y, method='exact') r2 = cramervonmises_2samp(x, y, method='auto') assert_equal(r1.pvalue, r2.pvalue) # switch to asymptotic if one sample has more than 10 observations x = np.arange(11) r1 = cramervonmises_2samp(x, y, method='asymptotic') r2 = cramervonmises_2samp(x, y, method='auto') assert_equal(r1.pvalue, r2.pvalue) def test_same_input(self): # make sure trivial edge case can be handled # note that _cdf_cvm_inf(0) = nan. implementation avoids nan by # returning pvalue=1 for very small values of the statistic x = np.arange(15) res = cramervonmises_2samp(x, x) assert_equal((res.statistic, res.pvalue), (0.0, 1.0)) # check exact p-value res = cramervonmises_2samp(x[:4], x[:4]) assert_equal((res.statistic, res.pvalue), (0.0, 1.0))
42.540123
79
0.563085
004d6dbb27ae1d41434587989afce92811f1f943
798
py
Python
PHASEfilter/lib/constants/version.py
ibigen/PHASEfilter
669729f408b9c23d5db2ba72e74195b2228669da
[ "MIT" ]
null
null
null
PHASEfilter/lib/constants/version.py
ibigen/PHASEfilter
669729f408b9c23d5db2ba72e74195b2228669da
[ "MIT" ]
null
null
null
PHASEfilter/lib/constants/version.py
ibigen/PHASEfilter
669729f408b9c23d5db2ba72e74195b2228669da
[ "MIT" ]
null
null
null
"""Version of PHASEfilter""" # MAJOR.MINOR.MAINTENANCE numbering scheme, where the project author increments: # MAJOR version when they make incompatible API changes, # MINOR version when they add functionality in a backwards-compatible manner, and # MAINTENANCE version when they make backwards-compatible bug fixes. # 1.2.0.dev1 # Development release # 1.2.0a1 # Alpha Release # 1.2.0b1 # Beta Release # 1.2.0rc1 # Release Candidate # 1.2.0 # Final Release # 1.2.0.post1 # Post Release # 15.10 # Date based release # 23 # Serial release VERSION_package = "0.3.7" ### For pypi VERSION_make_alignement = "0.3.3" ### version of this script VERSION_phase_filter = "0.3.4" VERSION_reference_statistics = "0.3.3" VERSION_synchronize_genomes = "0.3.5"
36.272727
81
0.701754
b5a0305d06bc565cb667f83904986bca004f1a25
1,962
py
Python
tenth/tenth/apps/gathering/migrations/0001_initial.py
TanDeemo/Tenth
52f721d4433edfa336e989e6eeedd288d4e38674
[ "MIT" ]
null
null
null
tenth/tenth/apps/gathering/migrations/0001_initial.py
TanDeemo/Tenth
52f721d4433edfa336e989e6eeedd288d4e38674
[ "MIT" ]
null
null
null
tenth/tenth/apps/gathering/migrations/0001_initial.py
TanDeemo/Tenth
52f721d4433edfa336e989e6eeedd288d4e38674
[ "MIT" ]
null
null
null
# Generated by Django 2.2.5 on 2020-08-10 21:30 import ckeditor_uploader.fields from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Gathering', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default=None, max_length=100, null=True, verbose_name='活动名称')), ('summary', models.TextField(default=None, null=True, verbose_name='活动简介')), ('detail', ckeditor_uploader.fields.RichTextUploadingField(default='', verbose_name='详细介绍')), ('address', models.CharField(default=None, max_length=100, null=True, verbose_name='举办地点')), ('sponsor', models.CharField(default=None, max_length=100, null=True, verbose_name='主办方')), ('image', models.ImageField(default=None, null=True, upload_to='', verbose_name='活动图片')), ('city', models.CharField(default=None, max_length=100, null=True, verbose_name='举办城市')), ('state', models.SmallIntegerField(choices=[(0, '不可见'), (1, '可见')], default=1, verbose_name='是否可见')), ('starttime', models.DateTimeField(null=True, verbose_name='开始时间')), ('endtime', models.DateTimeField(null=True, verbose_name='截止日期')), ('endrolltime', models.DateTimeField(null=True, verbose_name='报名截止日期')), ('users', models.ManyToManyField(related_name='gathers', to=settings.AUTH_USER_MODEL, verbose_name='参加者')), ], options={ 'verbose_name': '活动', 'verbose_name_plural': '活动', 'db_table': 'tb_gathering', }, ), ]
47.853659
123
0.611621
baadc73f57104c95c040ccdf6307a241c9a0cd0c
1,158
py
Python
python/__init__.py
HavoK-at/gr-shared_memory
e5ba535e5346c9806f052bed9038868da1bb8875
[ "MIT" ]
null
null
null
python/__init__.py
HavoK-at/gr-shared_memory
e5ba535e5346c9806f052bed9038868da1bb8875
[ "MIT" ]
null
null
null
python/__init__.py
HavoK-at/gr-shared_memory
e5ba535e5346c9806f052bed9038868da1bb8875
[ "MIT" ]
null
null
null
# # Copyright 2008,2009 Free Software Foundation, Inc. # # This application is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # This application is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # The presence of this file turns this directory into a Python package ''' This is the GNU Radio SHARED_MEMORY module. Place your Python package description here (python/__init__.py). ''' # import swig generated symbols into the shared_memory namespace try: # this might fail if the module is python-only from shared_memory_swig import * except ImportError: pass # import any pure python here #
33.085714
74
0.771157
739edbfdbcf4b4710f65751e1c7135cb51281432
17,156
py
Python
keras/legacy_tf_layers/normalization.py
shantanusharma/keras
662f6c5bb82b54d90ec8e863ac7a44c3b8c1b938
[ "Apache-2.0" ]
3
2021-03-15T05:32:36.000Z
2021-12-14T07:29:53.000Z
keras/legacy_tf_layers/normalization.py
bluemap19/keras
662f6c5bb82b54d90ec8e863ac7a44c3b8c1b938
[ "Apache-2.0" ]
1
2021-03-01T13:50:34.000Z
2021-03-01T13:50:34.000Z
keras/legacy_tf_layers/normalization.py
bluemap19/keras
662f6c5bb82b54d90ec8e863ac7a44c3b8c1b938
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Contains the normalization layer classes and their functional aliases. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf import warnings from keras.layers import normalization as keras_normalization from keras.legacy_tf_layers import base from tensorflow.python.util.tf_export import tf_export @tf_export(v1=['layers.BatchNormalization']) class BatchNormalization(keras_normalization.BatchNormalization, base.Layer): """Batch Normalization layer from (Ioffe et al., 2015). Keras APIs handle BatchNormalization updates to the moving_mean and moving_variance as part of their `fit()` and `evaluate()` loops. However, if a custom training loop is used with an instance of `Model`, these updates need to be explicitly included. Here's a simple example of how it can be done: ```python # model is an instance of Model that contains BatchNormalization layer. update_ops = model.get_updates_for(None) + model.get_updates_for(features) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops]) ``` Args: axis: An `int` or list of `int`, the axis or axes that should be normalized, typically the features axis/axes. For instance, after a `Conv2D` layer with `data_format="channels_first"`, set `axis=1`. If a list of axes is provided, each axis in `axis` will be normalized simultaneously. Default is `-1` which uses the last axis. Note: when using multi-axis batch norm, the `beta`, `gamma`, `moving_mean`, and `moving_variance` variables are the same rank as the input Tensor, with dimension size 1 in all reduced (non-axis) dimensions). momentum: Momentum for the moving average. epsilon: Small float added to variance to avoid dividing by zero. center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer. beta_initializer: Initializer for the beta weight. gamma_initializer: Initializer for the gamma weight. moving_mean_initializer: Initializer for the moving mean. moving_variance_initializer: Initializer for the moving variance. beta_regularizer: Optional regularizer for the beta weight. gamma_regularizer: Optional regularizer for the gamma weight. beta_constraint: An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. gamma_constraint: An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`. renorm: Whether to use Batch Renormalization (Ioffe, 2017). This adds extra variables during training. The inference is the same for either value of this parameter. renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively. renorm_momentum: Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference. fused: if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). virtual_batch_size: An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution. adjustment: A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified. name: A string, the name of the layer. References: Batch Normalization - Accelerating Deep Network Training by Reducing Internal Covariate Shift: [Ioffe et al., 2015](http://proceedings.mlr.press/v37/ioffe15.html) ([pdf](http://proceedings.mlr.press/v37/ioffe15.pdf)) Batch Renormalization - Towards Reducing Minibatch Dependence in Batch-Normalized Models: [Ioffe, 2017](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models) ([pdf](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models.pdf)) """ def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, beta_initializer=tf.compat.v1.zeros_initializer(), gamma_initializer=tf.compat.v1.ones_initializer(), moving_mean_initializer=tf.compat.v1.zeros_initializer(), moving_variance_initializer=tf.compat.v1.ones_initializer(), beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, renorm=False, renorm_clipping=None, renorm_momentum=0.99, fused=None, trainable=True, virtual_batch_size=None, adjustment=None, name=None, **kwargs): super(BatchNormalization, self).__init__( axis=axis, momentum=momentum, epsilon=epsilon, center=center, scale=scale, beta_initializer=beta_initializer, gamma_initializer=gamma_initializer, moving_mean_initializer=moving_mean_initializer, moving_variance_initializer=moving_variance_initializer, beta_regularizer=beta_regularizer, gamma_regularizer=gamma_regularizer, beta_constraint=beta_constraint, gamma_constraint=gamma_constraint, renorm=renorm, renorm_clipping=renorm_clipping, renorm_momentum=renorm_momentum, fused=fused, trainable=trainable, virtual_batch_size=virtual_batch_size, adjustment=adjustment, name=name, **kwargs) def call(self, inputs, training=False): return super(BatchNormalization, self).call(inputs, training=training) @tf_export(v1=['layers.batch_normalization']) def batch_normalization(inputs, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, beta_initializer=tf.compat.v1.zeros_initializer(), gamma_initializer=tf.compat.v1.ones_initializer(), moving_mean_initializer=tf.compat.v1.zeros_initializer(), moving_variance_initializer=tf.compat.v1.ones_initializer(), beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, training=False, trainable=True, name=None, reuse=None, renorm=False, renorm_clipping=None, renorm_momentum=0.99, fused=None, virtual_batch_size=None, adjustment=None): """Functional interface for the batch normalization layer from_config(Ioffe et al., 2015). Note: when training, the moving_mean and moving_variance need to be updated. By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they need to be executed alongside the `train_op`. Also, be sure to add any batch_normalization ops before getting the update_ops collection. Otherwise, update_ops will be empty, and training/inference will not work properly. For example: ```python x_norm = tf.compat.v1.layers.batch_normalization(x, training=training) # ... update_ops = tf.compat.v1.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = optimizer.minimize(loss) train_op = tf.group([train_op, update_ops]) ``` Args: inputs: Tensor input. axis: An `int`, the axis that should be normalized (typically the features axis). For instance, after a `Convolution2D` layer with `data_format="channels_first"`, set `axis=1` in `BatchNormalization`. momentum: Momentum for the moving average. epsilon: Small float added to variance to avoid dividing by zero. center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling can be done by the next layer. beta_initializer: Initializer for the beta weight. gamma_initializer: Initializer for the gamma weight. moving_mean_initializer: Initializer for the moving mean. moving_variance_initializer: Initializer for the moving variance. beta_regularizer: Optional regularizer for the beta weight. gamma_regularizer: Optional regularizer for the gamma weight. beta_constraint: An optional projection function to be applied to the `beta` weight after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. gamma_constraint: An optional projection function to be applied to the `gamma` weight after being updated by an `Optimizer`. training: Either a Python boolean, or a TensorFlow boolean scalar tensor (e.g. a placeholder). Whether to return the output in training mode (normalized with statistics of the current batch) or in inference mode (normalized with moving statistics). **NOTE**: make sure to set this parameter correctly, or else your training/inference will not work properly. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). name: String, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. renorm: Whether to use Batch Renormalization (Ioffe, 2017). This adds extra variables during training. The inference is the same for either value of this parameter. renorm_clipping: A dictionary that may map keys 'rmax', 'rmin', 'dmax' to scalar `Tensors` used to clip the renorm correction. The correction `(r, d)` is used as `corrected_value = normalized_value * r + d`, with `r` clipped to [rmin, rmax], and `d` to [-dmax, dmax]. Missing rmax, rmin, dmax are set to inf, 0, inf, respectively. renorm_momentum: Momentum used to update the moving means and standard deviations with renorm. Unlike `momentum`, this affects training and should be neither too small (which would add noise) nor too large (which would give stale estimates). Note that `momentum` is still applied to get the means and variances for inference. fused: if `None` or `True`, use a faster, fused implementation if possible. If `False`, use the system recommended implementation. virtual_batch_size: An `int`. By default, `virtual_batch_size` is `None`, which means batch normalization is performed across the whole batch. When `virtual_batch_size` is not `None`, instead perform "Ghost Batch Normalization", which creates virtual sub-batches which are each normalized separately (with shared gamma, beta, and moving statistics). Must divide the actual batch size during execution. adjustment: A function taking the `Tensor` containing the (dynamic) shape of the input tensor and returning a pair (scale, bias) to apply to the normalized values (before gamma and beta), only during training. For example, if axis==-1, `adjustment = lambda shape: ( tf.random.uniform(shape[-1:], 0.93, 1.07), tf.random.uniform(shape[-1:], -0.1, 0.1))` will scale the normalized value by up to 7% up or down, then shift the result by up to 0.1 (with independent scaling and bias for each feature but shared across all examples), and finally apply gamma and/or beta. If `None`, no adjustment is applied. Cannot be specified if virtual_batch_size is specified. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. References: Batch Normalization - Accelerating Deep Network Training by Reducing Internal Covariate Shift: [Ioffe et al., 2015](http://proceedings.mlr.press/v37/ioffe15.html) ([pdf](http://proceedings.mlr.press/v37/ioffe15.pdf)) Batch Renormalization - Towards Reducing Minibatch Dependence in Batch-Normalized Models: [Ioffe, 2017](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models) ([pdf](http://papers.nips.cc/paper/6790-batch-renormalization-towards-reducing-minibatch-dependence-in-batch-normalized-models.pdf)) """ warnings.warn( '`tf.layers.batch_normalization` is deprecated and ' 'will be removed in a future version. ' 'Please use `tf.keras.layers.BatchNormalization` instead. ' 'In particular, `tf.control_dependencies(tf.GraphKeys.UPDATE_OPS)` ' 'should not be used (consult the `tf.keras.layers.BatchNormalization` ' 'documentation).') layer = BatchNormalization( axis=axis, momentum=momentum, epsilon=epsilon, center=center, scale=scale, beta_initializer=beta_initializer, gamma_initializer=gamma_initializer, moving_mean_initializer=moving_mean_initializer, moving_variance_initializer=moving_variance_initializer, beta_regularizer=beta_regularizer, gamma_regularizer=gamma_regularizer, beta_constraint=beta_constraint, gamma_constraint=gamma_constraint, renorm=renorm, renorm_clipping=renorm_clipping, renorm_momentum=renorm_momentum, fused=fused, trainable=trainable, virtual_batch_size=virtual_batch_size, adjustment=adjustment, name=name, _reuse=reuse, _scope=name) return layer.apply(inputs, training=training) # Aliases BatchNorm = BatchNormalization batch_norm = batch_normalization
49.583815
138
0.688855
3c4e6e7785af14bf6431137a8efb29e654b65cbf
1,403
py
Python
show_weather.py
AMARTYA2020/Weather_Forecast
019c073c9801fe30c07f2e012e8f8d0e3fca2812
[ "MIT" ]
2
2021-02-03T10:39:18.000Z
2021-02-18T12:56:06.000Z
show_weather.py
AMARTYA2020/Weather_Forecast
019c073c9801fe30c07f2e012e8f8d0e3fca2812
[ "MIT" ]
null
null
null
show_weather.py
AMARTYA2020/Weather_Forecast
019c073c9801fe30c07f2e012e8f8d0e3fca2812
[ "MIT" ]
1
2021-02-07T07:20:36.000Z
2021-02-07T07:20:36.000Z
import requests import json from datetime import datetime api_key = 'cbb6b8a7a93022bfe48120a12e239d34' city_name = input('\nEnter the city name : ').strip() # api.openweathermap.org/data/2.5/weather?q={city name}&appid={API key} complete_api_link = 'https://api.openweathermap.org/data/2.5/weather?q=' + city_name + '&appid=' + api_key api_link = requests.get(complete_api_link) api_data = api_link.json() if api_data['cod'] == '404': print(api_data['message'].capitalize()) a = input() else: weather_desc = api_data['weather'][0]['description'] temp_city = float(api_data['main']['temp']) - 273.15 humid = api_data['main']['humidity'] wind_spd = api_data['wind']['speed'] city_name = api_data['name'] city_id = api_data['id'] date_time = datetime.now().strftime("%d-%b-%Y | %I:%M:%S %p") print('\n------------------------------------------------------------------------------------') print('Weather stats for -> {} | City-id : {} | [{}]'.format(city_name, city_id, date_time)) print('------------------------------------------------------------------------------------\n') print('Current Temperature : {:.2f} deg Celcius'.format(temp_city)) print('Weather Discription : {}'.format(weather_desc)) print('Wind Speed : {} kmph'.format(wind_spd)) print('Humidity : {} %\n'.format(humid)) b = input()
40.085714
106
0.560941
438c0a61a62db2cc6815863a317abed4409c2025
589
py
Python
core/poc/struts2/make.py
YLingChuan/Wrath-Hemera
a5143f136107bd9f49e265b1e351585e07a02ad4
[ "MIT" ]
1
2021-03-26T13:54:48.000Z
2021-03-26T13:54:48.000Z
core/poc/struts2/make.py
YLingChuan/Wrath-Hemera
a5143f136107bd9f49e265b1e351585e07a02ad4
[ "MIT" ]
null
null
null
core/poc/struts2/make.py
YLingChuan/Wrath-Hemera
a5143f136107bd9f49e265b1e351585e07a02ad4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import os import json #PATH path = os.getcwd() syscache = (path+'/cache') struts2 = (path+'/core/poc/struts2') os.system("cp %s/standard %s/final_execute"%(struts2,struts2)) target = open(syscache + '/url.log','r') target = target.read() print("[+] Target:",target) port = input("[+] Please input port:") print("[+] Port:",port) os.system("sed -i 's/<url>/%s/g' %s/final_execute"%(target,struts2)) os.system("sed -i 's/<port>/%s/g' %s/final_execute"%(port,struts2)) os.system("sh %s/final_execute"%(struts2)) os.system("rm -rf %s/final_execute"%(struts2))
21.814815
68
0.646859
b29babe06c294b866763164ce25e9ce707157525
3,123
py
Python
model/cpn/ablation_study/pcontext.cpn.R101_v1c/config.py
akinoriosamura/TorchSeg-mirror
34033fe85fc24015bcef7a92aad39d2a25a001a5
[ "MIT" ]
null
null
null
model/cpn/ablation_study/pcontext.cpn.R101_v1c/config.py
akinoriosamura/TorchSeg-mirror
34033fe85fc24015bcef7a92aad39d2a25a001a5
[ "MIT" ]
1
2021-06-08T20:36:43.000Z
2021-06-08T20:36:43.000Z
model/cpn/ablation_study/pcontext.cpn.R101_v1c/config.py
akinoriosamura/TorchSeg-mirror
34033fe85fc24015bcef7a92aad39d2a25a001a5
[ "MIT" ]
null
null
null
# encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import sys import time import numpy as np from easydict import EasyDict as edict import argparse import torch.utils.model_zoo as model_zoo C = edict() config = C cfg = C C.seed = 304 """please config ROOT_dir and user when u first using""" C.repo_name = 'TorchSeg' C.abs_dir = osp.realpath(".") C.this_dir = C.abs_dir.split(osp.sep)[-1] C.root_dir = C.abs_dir[:C.abs_dir.index(C.repo_name) + len(C.repo_name)] C.log_dir = osp.abspath(osp.join(C.root_dir, 'log', C.this_dir)) C.log_dir_link = osp.join(C.abs_dir, 'log') C.snapshot_dir = osp.abspath(osp.join(C.log_dir, "snapshot")) exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) C.log_file = C.log_dir + '/log_' + exp_time + '.log' C.link_log_file = C.log_file + '/log_last.log' C.val_log_file = C.log_dir + '/val_' + exp_time + '.log' C.link_val_log_file = C.log_dir + '/val_last.log' """Data Dir and Weight Dir""" C.img_root_folder = "/unsullied/sharefs/yuchangqian/Storage/Datasets/PASCAL-Context/" C.gt_root_folder = "/unsullied/sharefs/yuchangqian/Storage/Datasets/PASCAL-Context/" C.train_source = "/unsullied/sharefs/yuchangqian/Storage/Datasets/PASCAL-Context/config/train.txt" C.eval_source = "/unsullied/sharefs/yuchangqian/Storage/Datasets/PASCAL-Context/config/val.txt" # C.test_source = "/unsullied/sharefs/yuchangqian/Storage/Datasets/VOC2012_AUG/config/voc12_test.txt" C.is_test = False """Path Config""" def add_path(path): if path not in sys.path: sys.path.insert(0, path) add_path(osp.join(C.root_dir, 'furnace')) from utils.pyt_utils import model_urls """Image Config""" C.num_classes = 59 C.background = -1 C.image_mean = np.array([0.485, 0.456, 0.406]) # 0.485, 0.456, 0.406 C.image_std = np.array([0.229, 0.224, 0.225]) C.target_size = 512 C.image_height = 512 C.image_width = 512 C.num_train_imgs = 4998 C.num_eval_imgs = 5105 """ Settings for network, this would be different for each kind of model""" C.fix_bias = True C.fix_bn = False C.sync_bn = True C.bn_eps = 1e-5 C.bn_momentum = 0.1 C.loss_weight = None C.pretrained_model = "/unsullied/sharefs/yuchangqian/Storage/model_zoo/pytorch_model/resnet101_v1c.pth" """Train Config""" C.lr = 1e-2 C.lr_power = 0.9 C.momentum = 0.9 C.weight_decay = 1e-4 C.batch_size = 16 # 4 * C.num_gpu C.nepochs = 80 C.niters_per_epoch = int(np.ceil(C.num_train_imgs // C.batch_size)) C.num_workers = 16 C.train_scale_array = [0.5, 0.75, 1, 1.5, 1.75, 2] """Eval Config""" C.eval_iter = 30 C.eval_stride_rate = 2 / 3 C.eval_scale_array = [0.75, 1, 1.5, 1.75] C.eval_flip = True C.eval_base_size = 512 C.eval_crop_size = 512 """Display Config""" C.snapshot_iter = 1 C.record_info_iter = 20 C.display_iter = 50 def open_tensorboard(): pass if __name__ == '__main__': print(config.epoch_num) parser = argparse.ArgumentParser() parser.add_argument( '-tb', '--tensorboard', default=False, action='store_true') args = parser.parse_args() if args.tensorboard: open_tensorboard()
27.156522
103
0.722062
547661a734a80d0bba2de12eb0e0e682f930e6e0
1,083
py
Python
Awwards/urls.py
collinsbett29/Awwards
85fca973fccd5a84a4c8da6feaab8dd4452c1103
[ "MIT" ]
null
null
null
Awwards/urls.py
collinsbett29/Awwards
85fca973fccd5a84a4c8da6feaab8dd4452c1103
[ "MIT" ]
7
2020-02-12T03:20:53.000Z
2022-03-12T00:06:11.000Z
Awwards/urls.py
collinsbett29/Awwards
85fca973fccd5a84a4c8da6feaab8dd4452c1103
[ "MIT" ]
null
null
null
"""awards URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from django.contrib.auth import views from rest_framework.authtoken.views import obtain_auth_token urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('sites.urls')), url(r'^accounts/', include('registration.backends.simple.urls')), url(r'^logout/$', views.logout, {"next_page": '/'}), url(r'^api-token-auth/', obtain_auth_token) ]
41.653846
79
0.704524
4ce13aa9008e7d7b813e16b649e29852f0072ac5
387
py
Python
allauth/urls.py
Cairnica/django-allauth
43ddfc81f7fd06fc6502d425bf78833d5dbf49d0
[ "MIT" ]
null
null
null
allauth/urls.py
Cairnica/django-allauth
43ddfc81f7fd06fc6502d425bf78833d5dbf49d0
[ "MIT" ]
null
null
null
allauth/urls.py
Cairnica/django-allauth
43ddfc81f7fd06fc6502d425bf78833d5dbf49d0
[ "MIT" ]
null
null
null
from django.conf.urls import include, url from allauth.socialaccount import providers from . import app_settings urlpatterns = [url(r'^', include('allauth.account.urls'))] if app_settings.SOCIALACCOUNT_ENABLED: urlpatterns += [url(r'^social/', include('allauth.socialaccount.urls'))] for provider in providers.registry.get_list(): urlpatterns += provider.get_urlpatterns()
25.8
76
0.75969
7145bfc83e25ff66cad105596a25c6d0786a48d3
9,908
py
Python
test/mitmproxy/addons/test_view.py
johnsoft/mitmproxy
d133b8baeeefa04fa6bdf43c39be822def013a6b
[ "MIT" ]
null
null
null
test/mitmproxy/addons/test_view.py
johnsoft/mitmproxy
d133b8baeeefa04fa6bdf43c39be822def013a6b
[ "MIT" ]
null
null
null
test/mitmproxy/addons/test_view.py
johnsoft/mitmproxy
d133b8baeeefa04fa6bdf43c39be822def013a6b
[ "MIT" ]
1
2020-11-07T08:54:29.000Z
2020-11-07T08:54:29.000Z
import pytest from mitmproxy.test import tflow from mitmproxy.addons import view from mitmproxy import flowfilter from mitmproxy import options from mitmproxy.test import taddons def tft(*, method="get", start=0): f = tflow.tflow() f.request.method = method f.request.timestamp_start = start return f class Options(options.Options): def __init__( self, *, filter=None, console_order=None, console_order_reversed=False, console_focus_follow=False, **kwargs ): self.filter = filter self.console_order = console_order self.console_order_reversed = console_order_reversed self.console_focus_follow = console_focus_follow super().__init__(**kwargs) def test_order_refresh(): v = view.View() sargs = [] def save(*args, **kwargs): sargs.extend([args, kwargs]) v.sig_view_refresh.connect(save) tf = tflow.tflow(resp=True) with taddons.context(options=Options()) as tctx: tctx.configure(v, console_order="time") v.add(tf) tf.request.timestamp_start = 1 assert not sargs v.update(tf) assert sargs def test_order_generators(): v = view.View() tf = tflow.tflow(resp=True) rs = view.OrderRequestStart(v) assert rs.generate(tf) == 0 rm = view.OrderRequestMethod(v) assert rm.generate(tf) == tf.request.method ru = view.OrderRequestURL(v) assert ru.generate(tf) == tf.request.url sz = view.OrderKeySize(v) assert sz.generate(tf) == len(tf.request.raw_content) + len(tf.response.raw_content) def test_simple(): v = view.View() f = tft(start=1) assert v.store_count() == 0 v.request(f) assert list(v) == [f] assert v.get_by_id(f.id) assert not v.get_by_id("nonexistent") # These all just call update v.error(f) v.response(f) v.intercept(f) v.resume(f) v.kill(f) assert list(v) == [f] v.request(f) assert list(v) == [f] assert len(v._store) == 1 assert v.store_count() == 1 f2 = tft(start=3) v.request(f2) assert list(v) == [f, f2] v.request(f2) assert list(v) == [f, f2] assert len(v._store) == 2 assert v.inbounds(0) assert not v.inbounds(-1) assert not v.inbounds(100) f3 = tft(start=2) v.request(f3) assert list(v) == [f, f3, f2] v.request(f3) assert list(v) == [f, f3, f2] assert len(v._store) == 3 f.marked = not f.marked f2.marked = not f2.marked v.clear_not_marked() assert list(v) == [f, f2] assert len(v) == 2 assert len(v._store) == 2 v.clear() assert len(v) == 0 assert len(v._store) == 0 def test_filter(): v = view.View() f = flowfilter.parse("~m get") v.request(tft(method="get")) v.request(tft(method="put")) v.request(tft(method="get")) v.request(tft(method="put")) assert(len(v)) == 4 v.set_filter(f) assert [i.request.method for i in v] == ["GET", "GET"] assert len(v._store) == 4 v.set_filter(None) assert len(v) == 4 v.toggle_marked() assert len(v) == 0 v.toggle_marked() assert len(v) == 4 v[1].marked = True v.toggle_marked() assert len(v) == 1 assert v[0].marked v.toggle_marked() assert len(v) == 4 def test_order(): v = view.View() with taddons.context(options=Options()) as tctx: v.request(tft(method="get", start=1)) v.request(tft(method="put", start=2)) v.request(tft(method="get", start=3)) v.request(tft(method="put", start=4)) assert [i.request.timestamp_start for i in v] == [1, 2, 3, 4] tctx.configure(v, console_order="method") assert [i.request.method for i in v] == ["GET", "GET", "PUT", "PUT"] v.set_reversed(True) assert [i.request.method for i in v] == ["PUT", "PUT", "GET", "GET"] tctx.configure(v, console_order="time") assert [i.request.timestamp_start for i in v] == [4, 3, 2, 1] v.set_reversed(False) assert [i.request.timestamp_start for i in v] == [1, 2, 3, 4] def test_reversed(): v = view.View() v.request(tft(start=1)) v.request(tft(start=2)) v.request(tft(start=3)) v.set_reversed(True) assert v[0].request.timestamp_start == 3 assert v[-1].request.timestamp_start == 1 assert v[2].request.timestamp_start == 1 with pytest.raises(IndexError): v[5] with pytest.raises(IndexError): v[-5] assert v._bisect(v[0]) == 1 assert v._bisect(v[2]) == 3 def test_update(): v = view.View() flt = flowfilter.parse("~m get") v.set_filter(flt) f = tft(method="get") v.request(f) assert f in v f.request.method = "put" v.update(f) assert f not in v f.request.method = "get" v.update(f) assert f in v v.update(f) assert f in v class Record: def __init__(self): self.calls = [] def __bool__(self): return bool(self.calls) def __repr__(self): return repr(self.calls) def __call__(self, *args, **kwargs): self.calls.append((args, kwargs)) def test_signals(): v = view.View() rec_add = Record() rec_update = Record() rec_remove = Record() rec_refresh = Record() def clearrec(): rec_add.calls = [] rec_update.calls = [] rec_remove.calls = [] rec_refresh.calls = [] v.sig_view_add.connect(rec_add) v.sig_view_update.connect(rec_update) v.sig_view_remove.connect(rec_remove) v.sig_view_refresh.connect(rec_refresh) assert not any([rec_add, rec_update, rec_remove, rec_refresh]) # Simple add v.add(tft()) assert rec_add assert not any([rec_update, rec_remove, rec_refresh]) # Filter change triggers refresh clearrec() v.set_filter(flowfilter.parse("~m put")) assert rec_refresh assert not any([rec_update, rec_add, rec_remove]) v.set_filter(flowfilter.parse("~m get")) # An update that results in a flow being added to the view clearrec() v[0].request.method = "PUT" v.update(v[0]) assert rec_remove assert not any([rec_update, rec_refresh, rec_add]) # An update that does not affect the view just sends update v.set_filter(flowfilter.parse("~m put")) clearrec() v.update(v[0]) assert rec_update assert not any([rec_remove, rec_refresh, rec_add]) # An update for a flow in state but not view does not do anything f = v[0] v.set_filter(flowfilter.parse("~m get")) assert not len(v) clearrec() v.update(f) assert not any([rec_add, rec_update, rec_remove, rec_refresh]) def test_focus_follow(): v = view.View() with taddons.context(options=Options()) as tctx: tctx.configure(v, console_focus_follow=True, filter="~m get") v.add(tft(start=5)) assert v.focus.index == 0 v.add(tft(start=4)) assert v.focus.index == 0 assert v.focus.flow.request.timestamp_start == 4 v.add(tft(start=7)) assert v.focus.index == 2 assert v.focus.flow.request.timestamp_start == 7 mod = tft(method="put", start=6) v.add(mod) assert v.focus.index == 2 assert v.focus.flow.request.timestamp_start == 7 mod.request.method = "GET" v.update(mod) assert v.focus.index == 2 assert v.focus.flow.request.timestamp_start == 6 def test_focus(): # Special case - initialising with a view that already contains data v = view.View() v.add(tft()) f = view.Focus(v) assert f.index is 0 assert f.flow is v[0] # Start empty v = view.View() f = view.Focus(v) assert f.index is None assert f.flow is None v.add(tft(start=1)) assert f.index == 0 assert f.flow is v[0] # Try to set to something not in view with pytest.raises(ValueError): f.__setattr__("flow", tft()) with pytest.raises(ValueError): f.__setattr__("index", 99) v.add(tft(start=0)) assert f.index == 1 assert f.flow is v[1] v.add(tft(start=2)) assert f.index == 1 assert f.flow is v[1] f.index = 0 assert f.index == 0 f.index = 1 v.remove(v[1]) assert f.index == 1 assert f.flow is v[1] v.remove(v[1]) assert f.index == 0 assert f.flow is v[0] v.remove(v[0]) assert f.index is None assert f.flow is None v.add(tft(method="get", start=0)) v.add(tft(method="get", start=1)) v.add(tft(method="put", start=2)) v.add(tft(method="get", start=3)) f.flow = v[2] assert f.flow.request.method == "PUT" filt = flowfilter.parse("~m get") v.set_filter(filt) assert f.index == 2 filt = flowfilter.parse("~m oink") v.set_filter(filt) assert f.index is None def test_settings(): v = view.View() f = tft() with pytest.raises(KeyError): v.settings[f] v.add(f) v.settings[f]["foo"] = "bar" assert v.settings[f]["foo"] == "bar" assert len(list(v.settings)) == 1 v.remove(f) with pytest.raises(KeyError): v.settings[f] assert not v.settings.keys() v.add(f) v.settings[f]["foo"] = "bar" assert v.settings.keys() v.clear() assert not v.settings.keys() def test_configure(): v = view.View() with taddons.context(options=Options()) as tctx: tctx.configure(v, filter="~q") with pytest.raises("invalid interception filter"): tctx.configure(v, filter="~~") tctx.configure(v, console_order="method") with pytest.raises("unknown flow order"): tctx.configure(v, console_order="no") tctx.configure(v, console_order_reversed=True) tctx.configure(v, console_order=None) tctx.configure(v, console_focus_follow=True) assert v.focus_follow
24.048544
88
0.603654
ccb44eda2f35164bdd20d1768a948c928fbd40eb
20,268
py
Python
tools/mo/openvino/tools/mo/back/preprocessing.py
artkuli/openvino
eb2fb5bf7df36ae55e3251816999b801ce053335
[ "Apache-2.0" ]
1,127
2018-10-15T14:36:58.000Z
2020-04-20T09:29:44.000Z
tools/mo/openvino/tools/mo/back/preprocessing.py
artkuli/openvino
eb2fb5bf7df36ae55e3251816999b801ce053335
[ "Apache-2.0" ]
439
2018-10-20T04:40:35.000Z
2020-04-19T05:56:25.000Z
tools/mo/openvino/tools/mo/back/preprocessing.py
tuxedcat/openvino
5939cb1b363ebb56b73c2ad95d8899961a084677
[ "Apache-2.0" ]
414
2018-10-17T05:53:46.000Z
2020-04-16T17:29:53.000Z
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import argparse import logging as log from openvino.tools.mo.utils.error import Error from openvino.tools.mo.utils.utils import refer_to_faq_msg import numpy as np from openvino.preprocess import PrePostProcessor # pylint: disable=no-name-in-module,import-error # pylint: disable=no-name-in-module,import-error from openvino.runtime import Model, Layout, PartialShape, layout_helpers def update_mean_scale_to_dict(input_nodes: list, mean_scale_val, scale): """ Internal function. Updates mean/scale values from array to dictionary :param: input_nodes Inputs of model :param: mean_scale_val Parsed 'mean_scale_val' object from command line arguments :param: scale Global scale factor for all inputs from --scale command line arguments """ if not isinstance(mean_scale_val, dict): if len(mean_scale_val) != len(input_nodes): raise Error('Numbers of inputs and mean/scale values do not match. ' + refer_to_faq_msg(61)) data = np.copy(mean_scale_val) mean_scale_val = {} for idx, node in enumerate(input_nodes): names_list = list(node.get_tensor().get_names()) if not names_list: continue node_name = names_list[0] mean_scale_val.update( { node_name: { 'mean': data[idx][0], 'scale': data[idx][1] } } ) if scale: for node in input_nodes: names_list = list(node.get_tensor().get_names()) if not names_list: continue node_name = names_list[0] old_val = mean_scale_val[node_name] if node_name in mean_scale_val else None mean_scale_val.update( { node_name: { 'mean': old_val['mean'] if old_val and 'mean' in old_val else None, 'scale': scale } } ) return mean_scale_val def check_keys_valid(ov_function: Model, dict_to_validate: dict, search_outputs: bool): """ Internal function: checks if keys from cmd line arguments correspond to ov_function's inputs/outputs Throws if some key is not found Throws if some different keys point to the same actual input/output """ nodes_used = {} nodes = ov_function.inputs if search_outputs: nodes += ov_function.outputs # We need to replace all node names from dict to tensor names rename_dict = {} # Find names for replacing for name in dict_to_validate.keys(): for ov_node in nodes: if name in ov_node.get_tensor().get_names(): break elif name == ov_node.get_node().get_friendly_name(): assert len(ov_node.get_tensor().get_names()) > 0, 'Node must have at least one tensor name' new_name = list(ov_node.get_tensor().get_names())[0] rename_dict[name] = new_name break # Replace found node names with tensor names for name, new_name in rename_dict.items(): assert name in dict_to_validate, 'Key {} is not in initial dict'.format(name) assert new_name not in dict_to_validate, 'Key {} is already in initial dict'.format(new_name) dict_to_validate[new_name] = dict_to_validate[name] del dict_to_validate[name] # validate the dict for name in dict_to_validate.keys(): node_found = False for ov_node in nodes: if name in ov_node.get_tensor().get_names(): if ov_node in nodes_used: raise Error('Key for {} and {} point to same model input/output.' .format(name, nodes_used[ov_node])) nodes_used[ov_node] = name node_found = True break if not node_found: if not search_outputs: raise Error('Input with name {} wasn\'t found! {}'.format(name, refer_to_faq_msg(83))) else: raise Error('Input/Output with name {} wasn\'t found! {}'.format(name, refer_to_faq_msg(83))) def update_layout_is_input_flag(ov_function: Model, layout_values: dict): """ Internal function: updates layout_values with flag whether each layout belongs to input or to output """ for name, layout_value in layout_values.items(): layout_value['is_input'] = False for ov_input in ov_function.inputs: if name in ov_input.get_tensor().get_names(): layout_value['is_input'] = True break return layout_values def find_channels_dimension(shape: PartialShape, num_channels: int, name: str, layout_values): """ Internal function. Finds dimension index matching with expected channels number Raises error if there is no candidates or number of candidates is > 1 :param: shape Parameter's partial shape :param: num_channels Number of channels to find in shape :param: name Parameter's name, used for Error-handling purposes :param: layout_values Existing source/target layout items specified by user :return: updated layout items with guessed layouts """ if shape.rank.is_dynamic: raise Error('Can\'t determine channels dimension for dynamic shape for parameter {}.' .format(name)) dim_idx_found = -1 for dim_idx in range(shape.rank.get_length()): dim = shape.get_dimension(dim_idx) if dim.is_static and dim.get_length() == num_channels: if dim_idx_found >= 0: raise Error('Can\'t determine channels dimension for {}. ' 'Input shape is {}, needed channels {}. ' 'Conflicting dimensions: {} and {}. Please specify layout manually.' .format(name, shape, num_channels, dim_idx_found, dim_idx)) dim_idx_found = dim_idx if dim_idx_found < 0: raise Error('Can\'t determine channels dimension for {}. ' 'Input shape is {}, needed channels {}' .format(name, shape, num_channels)) # Restrict guessed channels index to particular position depending on tensor shape(3d, 4d, 5d) if shape.rank.get_length() == 3: # CHW or HWC, possible channels index is 0 or 2 if dim_idx_found != 0 and dim_idx_found != 2: raise Error('Can\'t determine channels dimension for 3D input {} (CHW or HWC) with shape {}. ' 'Please specify layout containing \'C\' channels manually.'.format(name, shape)) elif shape.rank.get_length() == 4: # NCHW or NHWC, possible channels index is 1 or 3 if dim_idx_found != 1 and dim_idx_found != 3: raise Error('Can\'t determine channels dimension for 4D input {} (NCHW or NHWC) with shape {}. ' 'Please specify layout containing \'C\' channels manually.'.format(name, shape)) elif shape.rank.get_length() == 5: # NCDHW or NDHWC, possible channels index is 1 or 4 if dim_idx_found != 1 and dim_idx_found != 4: raise Error('Can\'t determine channels dimension for 5D input {} (NCDHW or NDHWC) with shape {}. ' 'Please specify layout containing \'C\' channels manually.'.format(name, shape)) else: raise Error('Can\'t determine channels dimension for {}D input {} with shape {}.' 'Please specify layout containing \'C\' channels manually.' .format(shape.rank.get_length(), name, shape)) layout_str = "?" * shape.rank.get_length() layout_str = layout_str[:dim_idx_found] + 'C' + layout_str[dim_idx_found+1:] layout_values[name] = { 'source_layout': layout_str, 'target_layout': None, 'source_guessed': True, 'is_input': True } return layout_values def guess_source_layouts_by_mean_scale(ov_function: Model, layout_values, mean_scale_values: dict): """ Internal function. Try to guess source layout for input by its shape and/or framework :param: ov_function Original model :param: layout_values Existing source/target layout items specified by user :param: mean_scale_values Dictionary with mean/scale values defined for each argument :return: updated layout items with guessed layouts """ for ms_name, mean_scale in mean_scale_values.items(): num_channels_mean = len(mean_scale['mean']) if mean_scale['mean'] is not None else 0 num_channels_scale = len(mean_scale['scale']) if hasattr(mean_scale['scale'], '__len__') else 0 if num_channels_mean > 1 and \ num_channels_scale > 1 and \ num_channels_mean is not num_channels_scale: raise Error('Mean/Scale values for {} have different sizes: {} {}' .format(ms_name, num_channels_mean, num_channels_scale)) need_guess_channels = num_channels_mean > 1 or num_channels_scale > 1 if not need_guess_channels: # Mean/scale is complex and needs 'channels' specified in layout continue num_channels = num_channels_mean if num_channels_mean > 1 else num_channels_scale for i in range(0, len(ov_function.inputs)): ov_input = ov_function.input(i) if not ov_function.get_parameters()[i].layout.empty: continue if ms_name not in ov_input.get_tensor().get_names(): continue layout_item = None for name in ov_input.get_tensor().get_names(): if name in layout_values: layout_item = layout_values[name] break if layout_item is not None: # User specified some layout, skip guessing continue # Guess layout is applicable only when number of channels is '3' if num_channels != 3: raise Error('Can\'t determine channels dimension for {}. ' 'When number of mean/scale values is {} (not 3), ' 'please specify layout for input manually'.format(ms_name, num_channels)) layout_values = find_channels_dimension(shape=ov_input.get_partial_shape(), num_channels=num_channels, name=ms_name, layout_values=layout_values) return layout_values def check_suitable_for_reverse(layout: Layout, ov_input): """ Internal function. Checks if input with layout is suitable for reversing channels :param: layout Existing source/target layout items specified by user :param: ov_input Model's input :return: True if reverse channels can be applied to input """ if not layout_helpers.has_channels(layout): return False if ov_input.get_partial_shape().rank.is_dynamic: return False c_idx = layout_helpers.channels_idx(layout) rank = ov_input.get_partial_shape().rank.get_length() if c_idx < 0: c_idx += rank if c_idx >= rank: raise Error('Layout {} for input {} is inconsistent with shape {}'.format( layout, ov_input.get_tensor().get_any_name(), ov_input.get_partial_shape())) c_num = ov_input.get_partial_shape()[c_idx] return c_num.is_dynamic or c_num.get_length() == 3 def guess_source_layouts_for_reverse_channels(ov_function: Model, layout_values): """ Internal function. Try to guess source layout for input by finding dimension with size=3 (RGB/BGR) Additionally checks existing layouts and detects suitable inputs for reversing of input channels :param: ov_function Original model :param: layout_values Existing source/target layout items specified by user :return: array with suitable parameters for reversing of input channels """ all_params = [] suitable_params = [] for i in range(0, len(ov_function.inputs)): ov_input = ov_function.input(i) param_info = [ov_input.get_tensor().get_any_name(), ov_input.get_partial_shape()] all_params.append(param_info) if not ov_function.get_parameters()[i].layout.empty: if check_suitable_for_reverse(ov_function.get_parameters()[i].layout, ov_input): suitable_params.append(param_info) continue layout_item = None first_name = ov_input.get_tensor().get_any_name() for name in ov_input.get_tensor().get_names(): if name in layout_values: layout_item = layout_values[name] break if layout_item is not None: # RIC transformation is applied before changing layout so only source_layout # should be checked (even is target_layout is also provided) if layout_item.get('source_layout'): if check_suitable_for_reverse(Layout(layout_item['source_layout']), ov_input): suitable_params.append(param_info) continue try: layout_values = find_channels_dimension(shape=ov_input.get_partial_shape(), num_channels=3, name=first_name, layout_values=layout_values) except Error as e: log.debug('Reverse input channels guess did not succeed {}'.format(e)) else: layout = layout_values[first_name].get('source_layout') if layout and check_suitable_for_reverse(Layout(layout), ov_input): suitable_params.append(param_info) if not len(suitable_params): raise Error('Network has {} inputs overall, but none of them are suitable for input channels reversing.\n' 'Suitable for input channel reversing inputs are 4-dimensional with 3 channels (in case of dynamic ' 'dimensions C channel must be provided in a layout for this input)\nAll inputs: {}'.format( len(all_params), all_params)) elif len(suitable_params) < len(all_params): log.error('Network has {} inputs overall, but only {} of them are suitable for input channels reversing.\n' 'Suitable for input channel reversing inputs are 4-dimensional with 3 channels (in case of dynamic ' 'dimensions C channel must be provided in a layout for this input)\nAll inputs: {}\n' 'Suitable inputs {}'.format(len(all_params), len(suitable_params), all_params, suitable_params), extra={'is_warning': True}) return suitable_params def apply_preprocessing(ov_function: Model, argv: argparse.Namespace): """ Applies pre-processing of model inputs by adding appropriate operations On return, 'ov_function' object will be updated Expected 'argv.mean_scale_values' formats examples: a) Dict: {'inputName': {'mean': [1., 2., 3.], 'scale': [2., 4., 8.]}} b) List: list(np.array([(np.array([1., 2., 3.]), np.array([2., 4., 6.])), (np.array([7., 8., 9.]), np.array([5., 6., 7.]))) Expected 'argv.layout_values' format examples: a) Specific layouts for inputs and outputs { 'input1': { 'source_layout': 'nchw', 'target_layout': 'nhwc' }, 'output2': { 'source_layout': 'nhwc' } } b) Layout for single input: {'': {'source_layout': 'nchw'}} :param: ov_function OV function for applying mean/scale pre-processing :param: argv Parsed command line arguments """ prep = PrePostProcessor(ov_function) if 'mean_scale_values' in argv and argv.mean_scale_values: mean_scale_values = argv.mean_scale_values else: mean_scale_values = {} mean_scale_values = update_mean_scale_to_dict(input_nodes=ov_function.inputs, mean_scale_val=mean_scale_values, scale=argv.scale) # On return, mean_scale_values is a dictionary with input names as key and mean/scale pair as value # {'inputName': {'mean': [1., 2., 3.], 'scale': [2.]}} layout_values = {} if 'layout_values' in argv and argv.layout_values: layout_values = argv.layout_values if '' in layout_values: if len(ov_function.inputs) > 1: input_names = [list(ov_input.get_tensor().get_names())[0] for ov_input in ov_function.inputs] raise Error('Layout without name can be specified for models with only one input, ' 'but provided model has {} inputs: \'{}\'. ' 'Please specify explicitly input/output name for --layout option' .format(len(input_names), input_names)) layout_values = { list(ov_function.input().get_tensor().get_names())[0]: { 'source_layout': layout_values[''].get('source_layout'), 'target_layout': layout_values[''].get('target_layout') } } check_keys_valid(ov_function=ov_function, dict_to_validate=mean_scale_values, search_outputs=False) check_keys_valid(ov_function=ov_function, dict_to_validate=layout_values, search_outputs=True) layout_values = update_layout_is_input_flag(ov_function, layout_values) layout_values = guess_source_layouts_by_mean_scale(ov_function, layout_values, mean_scale_values) need_reverse = 'reverse_input_channels' in argv and argv.reverse_input_channels suitable_params_ric = [] if need_reverse: suitable_params_ric = guess_source_layouts_for_reverse_channels(ov_function=ov_function, layout_values=layout_values) for node_name, layout_value in layout_values.items(): if layout_value.get('source_layout'): if layout_value.get('is_input'): prep.input(node_name).model().set_layout(Layout(layout_value['source_layout'])) else: prep.output(node_name).model().set_layout(Layout(layout_value['source_layout'])) if layout_value.get('target_layout'): if layout_value.get('is_input'): prep.input(node_name).tensor().set_layout(Layout(layout_value['target_layout'])) else: prep.output(node_name).tensor().set_layout(Layout(layout_value['target_layout'])) # Apply reverse_input_channels if need_reverse: for name, _ in suitable_params_ric: prep.input(name).preprocess().reverse_channels() log.debug('reverse_input_channels pre-processing applied to {}'.format(name)) for node_name, node_mean_scale_values in mean_scale_values.items(): # Apply mean first, then scale if node_mean_scale_values['mean'] is not None: prep.input(node_name).preprocess().mean(node_mean_scale_values['mean']) if node_mean_scale_values['scale'] is not None: prep.input(node_name).preprocess().scale(node_mean_scale_values['scale']) log.debug('Mean/Scale pre-processing applied to {}'.format(node_name)) # Apply pre-processing builder to a function ov_function = prep.build() # Remove guessed layout values from ov_function (these values shall not be serialized to IR for node_name, layout_value in layout_values.items(): if layout_value.get('source_guessed') and \ not layout_value.get('target_layout'): # search for parameter object for idx, ov_input in enumerate(ov_function.inputs): if node_name in ov_input.get_tensor().get_names(): log.debug('Clearing guessed layout {} for {}' .format(layout_value['source_layout'], node_name)) ov_function.get_parameters()[idx].layout = Layout()
47.35514
120
0.626159
89059ef1c38bff2a4967f0b2e3ab7080ea74bf89
5,393
py
Python
openGaussBase/testcase/CONNECTORS/PYTHON/PYOG/Opengauss_Function_Connect_Python_Case0055.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/CONNECTORS/PYTHON/PYOG/Opengauss_Function_Connect_Python_Case0055.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
openGaussBase/testcase/CONNECTORS/PYTHON/PYOG/Opengauss_Function_Connect_Python_Case0055.py
opengauss-mirror/Yat
aef107a8304b94e5d99b4f1f36eb46755eb8919e
[ "MulanPSL-1.0" ]
null
null
null
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : python驱动pyog Case Name : openGauss模式连接数据库,定义数据类型 Description : 1.配置pg_hba入口 2.连接数据库 3.定义数据类型 3.1定义数据类型type_py_55 3.2建表插入数据,使用type_py_55类型 3.3重命名数据类型 3.4给数据类型增加一个新的属性 3.5使用数据类型 3.6删除type_py_55_new类型、表 4.断开连接 5.关闭pg_hba入口 Expect : 1.执行成功 2.连接成功,db.state返回'idle' 3.执行成功 3.1回显CREATE TYPE 3.2回显DROP TABLE.*CREATE TABLE.*INSERT 0 1 3.3回显ALTER TYPE 3.4回显ALTER TYPE 3.5回显INSERT 0 1 3.6回显DROP TABLE.*DROP TYPE 4.执行成功,db.state返回'closed' 5.执行成功 History : """ import os import unittest import py_opengauss from yat.test import Node from yat.test import macro from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger class ConnPython55(unittest.TestCase): def setUp(self): self.pri_user = Node('PrimaryDbUser') self.constant = Constant() self.LOG = Logger() self.type_name = 'type_py_55' self.t_name = 't_py_55' text = '----Opengauss_Function_Connect_Python_Case0055 start----' self.LOG.info(text) def test_conn(self): text = '----step1: 配置pg_hba入口 expect: 成功----' self.LOG.info(text) host_cmd = "ifconfig -a|grep inet6 -a2|" \ "grep broadcast|awk '{print $2}'" self.host = os.popen(host_cmd).readlines()[0].strip() self.assertIsNotNone(self.host) guc_cmd = f'source {macro.DB_ENV_PATH}; ' \ f'gs_guc reload -D {macro.DB_INSTANCE_PATH} ' \ f'-h "host {self.pri_user.db_name} {self.pri_user.db_user} ' \ f'{self.host}/32 sha256"' self.LOG.info(guc_cmd) guc_res = self.pri_user.sh(guc_cmd).result() self.LOG.info(guc_res) self.assertIn(self.constant.GSGUC_SUCCESS_MSG, guc_res, '执行失败:' + text) text = '----step2: 连接数据库 expect: 成功----' self.LOG.info(text) conn_info = f'opengauss://{self.pri_user.db_user}:' \ f'{self.pri_user.db_password}@{self.pri_user.db_host}:' \ f'{self.pri_user.db_port}/{self.pri_user.db_name}' self.LOG.info(conn_info) self.db = py_opengauss.open(conn_info) self.assertEqual('idle', self.db.state, '执行失败:' + text) text = '----step3: 定义数据类型 expect: 成功----' self.LOG.info(text) text = '----step3.1: 定义数据类型 expect: 成功----' self.LOG.info(text) cmd = f"create type {self.type_name} as (f1 int, f2 text);" self.LOG.info(cmd) sql_res = self.db.prepare(cmd).first() self.LOG.info(sql_res) self.assertEqual(sql_res, self.constant.CREATE_TYPE_SUCCESS_MSG, '执行失败:' + text) text = '----step3.2: 建表插入,使用person类型 expect: 成功----' self.LOG.info(text) cmd = f'''drop table if exists {self.t_name}; create table {self.t_name} (id int, properties {self.type_name}); insert into {self.t_name} values (1, (1, 'test_1'));''' self.LOG.info(cmd) sql_res = self.db.execute(cmd) self.LOG.info(sql_res) self.assertIsNone(sql_res, '执行失败:' + text) text = '----step3.3: 重命名数据类型 expect: 成功----' self.LOG.info(text) cmd = f"alter type {self.type_name} rename to {self.type_name}_new;" self.LOG.info(cmd) sql_res = self.db.prepare(cmd).first() self.LOG.info(sql_res) self.assertEqual(sql_res, self.constant.ALTER_TYPE_SUCCESS_MSG, '执行失败:' + text) text = '----step3.4: 给数据类型增加一个新的属性 expect: 成功----' self.LOG.info(text) cmd = f"alter type {self.type_name}_new add attribute f3 int;" self.LOG.info(cmd) sql_res = self.db.prepare(cmd).first() self.LOG.info(sql_res) self.assertEqual(sql_res, self.constant.ALTER_TYPE_SUCCESS_MSG, '执行失败:' + text) text = '----step3.5: 使用数据类型 expect: 成功----' self.LOG.info(text) cmd = f"insert into {self.t_name} values (2, (2, 'test_2', 2));" self.LOG.info(cmd) sql_res = self.db.prepare(cmd).first() self.LOG.info(sql_res) self.assertEqual(sql_res, 1, '执行失败:' + text) def tearDown(self): text = '----run teardown----' self.LOG.info(text) text = '----step3.6: 删除类型转换,转换函数 expect: 成功----' self.LOG.info(text) cmd = f'''drop table t_py_55 cascade; drop type type_py_55_new cascade;''' self.LOG.info(cmd) sql_res = self.db.execute(cmd) text = '----step4: 断开连接 expect: 成功----' self.LOG.info(text) self.db.close() self.assertIsNone(sql_res, '执行失败:' + text) self.assertEqual('closed', self.db.state, '执行失败:' + text) text = '----Opengauss_Function_Connect_Python_Case0055 end----' self.LOG.info(text)
34.132911
84
0.603004
bed1d43919380ca58e5d6cdd88033fee919124e0
2,035
py
Python
day9.py
mmertama/advent-of-code-2021
21475bb7ab8f59b3173cf1e9440e07df63b70a3e
[ "MIT" ]
null
null
null
day9.py
mmertama/advent-of-code-2021
21475bb7ab8f59b3173cf1e9440e07df63b70a3e
[ "MIT" ]
null
null
null
day9.py
mmertama/advent-of-code-2021
21475bb7ab8f59b3173cf1e9440e07df63b70a3e
[ "MIT" ]
null
null
null
example = '''2199943210 3987894921 9856789892 8767896789 9899965678''' def get_height_map(data): height_map = [] width = len(data[0]) height = len(data) for ln in data: height_map.append([int(x) for x in list(ln.rstrip())]) min_list = [] for y in range(height): for x in range(width): current = height_map[y][x] m_count = 0 if y == 0 or height_map[y - 1][x] > current: m_count += 1 if x == 0 or height_map[y][x - 1] > current: m_count += 1 if y >= height - 1 or height_map[y + 1][x] > current: m_count += 1 if x >= width - 1 or height_map[y][x + 1] > current: m_count += 1 if m_count == 4: min_list.append((x, y)) return height_map, min_list, width, height def risk_level_sum(data): height_map, min_list, _, _ = get_height_map(data) risk_level = 0 for m in min_list: risk_level += height_map[m[1]][m[0]] + 1 print("Risk level:", risk_level) def get_basins(x, y, height_map, width, height): current = height_map[y][x] height_map[y][x] = current + 10 basins = [(x, y)] if x > 0 and height_map[y][x - 1] < 9: basins.extend(get_basins(x - 1, y, height_map, width, height)) if y > 0 and height_map[y - 1][x] < 9: basins.extend(get_basins(x, y - 1, height_map, width, height)) if x < width - 1 and height_map[y][x + 1] < 9: basins.extend(get_basins(x + 1, y, height_map, width, height)) if y < height - 1 and height_map[y + 1][x] < 9: basins.extend(get_basins(x, y + 1, height_map, width, height)) return basins def basin_top_mul(data): height_map, min_list, width, height = get_height_map(data) basins = [] for m in min_list: basins.append(get_basins(m[0], m[1], height_map, width, height)) basins.sort(key=len, reverse=True) top = len(basins[0]) * len(basins[1]) * len(basins[2]) print("Top 3", top)
30.833333
72
0.566585
ac00bedee79c8a25d1e0387f0b144429d59cd980
1,944
py
Python
backend/notebook-preprocess/slice.py
WatVis/EDAssistant
a4be2849a65abcf2f81f9c01a2172ec67aa38853
[ "BSD-3-Clause" ]
null
null
null
backend/notebook-preprocess/slice.py
WatVis/EDAssistant
a4be2849a65abcf2f81f9c01a2172ec67aa38853
[ "BSD-3-Clause" ]
null
null
null
backend/notebook-preprocess/slice.py
WatVis/EDAssistant
a4be2849a65abcf2f81f9c01a2172ec67aa38853
[ "BSD-3-Clause" ]
null
null
null
import subprocess import os from os.path import join import shutil from tqdm import tqdm, trange import sys import multiprocessing.dummy as mp notebooks_path = "../notebooks-full" slice_output_path = "../notebooks-locset" parse_output_path = "../notebooks-noMD" devnull = open(os.devnull, 'w') def sliceNotebooks(in_path, out_path, dir_name): ''' slice notebooks into pieces based on data flow ''' subprocess.run(["node", "./sliceNotebooks.js", in_path, out_path, dir_name], stdout=devnull, stderr=devnull) def parseNotebooks(in_path, out_path, dir_name): ''' # produce flatten notebook ''' subprocess.run(["node", "./parseNotebooks.js", in_path, out_path, dir_name], stdout=devnull, stderr=devnull) def mkdirIfNotExists(path): if not os.path.exists(path): os.mkdir(path) def parse_dir(idx): dir_name = dirnames[idx] print("##########################") print("parsing competition {}".format(dir_name)) _, _, filenames = next(os.walk(join(dirpath, dir_name))) mkdirIfNotExists(join(slice_output_path, dir_name)) mkdirIfNotExists(join(parse_output_path, dir_name)) for idx in tqdm(range(len(filenames)), file=sys.stdout): fname = filenames[idx] f = fname.split('.') if f[1] == 'csv': shutil.copyfile(join(dirpath, dir_name, fname), join(slice_output_path, dir_name, fname)) elif f[1] == 'ipynb': sliceNotebooks(join(dirpath, dir_name, fname), join(slice_output_path, dir_name), f[0]) parseNotebooks(join(dirpath, dir_name, fname), join(parse_output_path, dir_name), f[0]) else: raise RuntimeError("unknown extension {}".format(f[1])) if __name__=="__main__": process_num = 6 mkdirIfNotExists(slice_output_path) mkdirIfNotExists(parse_output_path) dirpath, dirnames, _ = next(os.walk(notebooks_path)) p=mp.Pool(process_num) p.map(parse_dir,trange(0,len(dirnames))) p.close() p.join()
33.517241
111
0.686214
981262a6d2c6c2363c3226857f4ec633346996fb
352
py
Python
dark/__init__.py
UdoGi/dark-matter
3d49e89fa5e81f83144119f6216c5774176d203b
[ "MIT" ]
null
null
null
dark/__init__.py
UdoGi/dark-matter
3d49e89fa5e81f83144119f6216c5774176d203b
[ "MIT" ]
null
null
null
dark/__init__.py
UdoGi/dark-matter
3d49e89fa5e81f83144119f6216c5774176d203b
[ "MIT" ]
null
null
null
import sys if sys.version_info < (2, 7): raise Exception('The dark matter code needs Python 2.7 or later.') # Note that the version string must have the following format, otherwise it # will not be found by the version() function in ../setup.py # # Remember to update ../CHANGELOG.md describing what's new in each version. __version__ = '3.1.83'
32
75
0.727273
43e41f446733e5ff112391fe55950a0487249b62
1,971
py
Python
pdf_reader/app.py
fhightower/pdf-reader
caa6c562b823d67368d7188ddd5ccd7d584bd01c
[ "MIT" ]
null
null
null
pdf_reader/app.py
fhightower/pdf-reader
caa6c562b823d67368d7188ddd5ccd7d584bd01c
[ "MIT" ]
null
null
null
pdf_reader/app.py
fhightower/pdf-reader
caa6c562b823d67368d7188ddd5ccd7d584bd01c
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ standard """ import sys """ third-party """ """ custom """ from tcex import TcExLocal """ Copy this python script to your app base directory to use the tcex_local module. Example Usage: Install all the required libraries defined in setup.py. These will be the same packages with the same version that will get *packaged* with the app. ./app.py --lib Package the app for installation on the ThreatConnect platform. Optionally you can pass the *--collection* flag that will bundle multiple apps into one "App Collection". The script will also move the app package to another folder using the *--zip_out* flag. ./app.py --package ./app.py --package --collection ./app.py --package --collection --zip_out /opt/threatconnect/app/bundled/ Validate the application's install.json file. The validate command is automatically executed when packaging an app. A configuration file name can be passed to the script using the *--config* argument. By default the script will check the *install.json* file. ./app.py --validate ./app.py --validate --install_json myapp1.install.json Run the script locally. The tcex_local module will use the tc.json file to generate the CLI args required by the script. Typically an app would ship with a tc.json.template file that provides example CLI args for the app to be run locally. The config file supports multiple configuration for different test/use cases with the default case being named "default". Use the *--test* arg to pass a selected test. ./app.py --run ./app.py --run --profile Test1 ./app.py --run --config tcex.json --group MyGroup """ print('Python Version: {}.{}.{}'.format( sys.version_info.major, sys.version_info.minor, sys.version_info.micro)) tcex_local = TcExLocal() args = tcex_local.args if args.lib: tcex_local.gen_lib() elif args.package: tcex_local.package() elif args.run: tcex_local.run() elif args.validate: tcex_local.validate(args.install_json)
32.85
96
0.747336
469455752a4f2c33b87be5eeb4333bb67b4c750d
41,244
py
Python
tabs_extra.py
maheshwaghmare/TabsExtra
093ca19db5fb7129f23c5b98b8f87e941cda39e6
[ "MIT" ]
null
null
null
tabs_extra.py
maheshwaghmare/TabsExtra
093ca19db5fb7129f23c5b98b8f87e941cda39e6
[ "MIT" ]
null
null
null
tabs_extra.py
maheshwaghmare/TabsExtra
093ca19db5fb7129f23c5b98b8f87e941cda39e6
[ "MIT" ]
null
null
null
""" TabsExtra. Copyright (c) 2014 - 2016 Isaac Muse <isaacmuse@gmail.com> License: MIT """ import sublime_plugin import sublime import time import sys from TabsExtra import tab_menu import os import functools from operator import itemgetter import sublime_api from urllib.parse import urljoin from urllib.request import pathname2url SETTINGS = "tabs_extra.sublime-settings" LEFT = 0 RIGHT = 1 LAST = 2 LAST_ACTIVE = None OVERRIDE_CONFIRM = '''TabsExtra will overwrite the entire "Tab Context.sublime-menu" file in "Packages/Default" with a new one. ST3 keeps an unmodified copy in the archive. You do this at your own risk. If something goes wrong, you may need to manually fix the menu. Are you sure you want to continue? ''' # noqa RESTORE_CONFIRM = '''In ST3 TabsExtra will simply delete the override "Tab Context.sublime-menu" from "Packages/Default" to allow the archived menu to take effect. You do this at your own risk. If something goes wrong, you may need to manually fix the menu. Are you sure you want to continue? ''' # noqa ############################### # Helpers ############################### def log(msg, status=False): """Log message.""" string = str(msg) print("TabsExtra: %s" % string) if status: sublime.status_message(string) def debug(s): """Debug message.""" if sublime.load_settings(SETTINGS).get("debug", False): log(s) def sublime_format_path(pth): """Format path for sublime.""" import re m = re.match(r"^([A-Za-z]{1}):(?:/|\\)(.*)", pth) if sublime.platform() == "windows" and m is not None: pth = m.group(1) + "/" + m.group(2) return pth.replace("\\", "/") def is_persistent(): """Check if sticky tabs should be persistent.""" return sublime.load_settings(SETTINGS).get("persistent_sticky", False) def sort_on_load_save(): """Sort on save.""" return sublime.load_settings(SETTINGS).get("sort_on_load_save", False) def view_spawn_pos(): """Where do new views get spawned.""" return sublime.load_settings(SETTINGS).get("spawn_view", "none") def get_fallback_direction(): """Get the focused tab fallback direction.""" mode = LEFT value = sublime.load_settings(SETTINGS).get("fallback_focus", "left") if value == "last_active": mode = LAST elif value == "right": mode = RIGHT return mode def timestamp_view(window, sheet): """Timestamp view.""" global LAST_ACTIVE view = window.active_view() if view is None: return # Detect if this focus is due to the last active tab being moved if ( LAST_ACTIVE is not None and not LAST_ACTIVE.settings().get("tabs_extra_is_closed", False) and LAST_ACTIVE.window() is None ): # Flag last active tab as being moved window = view.window() active_group, active_index = window.get_sheet_index(sheet) LAST_ACTIVE.settings().set("tabs_extra_moving", [window.id(), active_group]) # Skip if moving a tab LAST_ACTIVE = None allow = False else: allow = True if allow: window = view.window() active_group, active_index = window.get_sheet_index(sheet) # Add time stamp of last activation view.settings().set('tabs_extra_last_activated', time.time()) # Track the tabs last postion to help with focusing after a tab is moved view.settings().set('tabs_extra_last_activated_sheet_index', active_index) LAST_ACTIVE = view debug("activated - %s" % view.file_name()) else: debug("skipping - %s" % view.file_name()) def get_group_view(window, group, index): """Get the view at the given index in the given group.""" sheets = window.sheets_in_group(int(group)) sheet = sheets[index] if -1 < index < len(sheets) else None view = sheet.view() if sheet is not None else None return view class Focus(object): """View focus handler.""" win = None obj = None @classmethod def cancel(cls): """Cancel focus.""" cls.win = None cls.obj = None @classmethod def defer(cls, win, obj): """Defer focus.""" if cls.win is None and cls.obj is None: cls.win = win cls.obj = obj sublime.set_timeout(cls.on_focus, 100) else: cls.win = win cls.obj = obj @classmethod def on_focus(cls): """On focus event.""" cls._focus() @classmethod def focus(cls, win, obj): """Set the win and obj before calling focus.""" cls.win = win cls.obj = obj cls._focus() @classmethod def _focus(cls): """Perform view focus.""" try: if cls.win is not None and cls.obj is not None: if isinstance(cls.obj, sublime.View): cls.win.focus_view(cls.obj) timestamp_view(cls.win, cls.obj) elif isinstance(cls.obj, sublime.Sheet): cls.win.focus_sheet(cls.obj) timestamp_view(cls.win, cls.obj) except Exception: pass cls.cancel() ############################### # Sticky Tabs ############################### class TabsExtraClearAllStickyCommand(sublime_plugin.WindowCommand): """Clear all sticy tabs.""" def run(self, group=-1, force=False): """Clear all tab sticky states of current active group.""" if group == -1: group = self.window.active_group() if group >= 0: persistent = is_persistent() views = self.window.views_in_group(int(group)) if not persistent or force: for v in views: v.settings().erase("tabs_extra_sticky") def is_visible(self, group=-1, force=False): """Show command if any tabs in active group are sticky.""" if group == -1: group = self.window.active_group() marked = False views = self.window.views_in_group(int(group)) for v in views: if v.settings().get("tabs_extra_sticky", False): marked = True break return marked class TabsExtraToggleStickyCommand(sublime_plugin.WindowCommand): """Toggle sticky state for tab.""" def run(self, group=-1, index=-1): """Toggle a tabs sticky state.""" if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: if not view.settings().get("tabs_extra_sticky", False): view.settings().set("tabs_extra_sticky", True) else: view.settings().erase("tabs_extra_sticky") def is_checked(self, group=-1, index=-1): """Show in menu whether the tab is sticky.""" checked = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: checked = view.settings().get("tabs_extra_sticky", False) return checked class TabsExtraSetStickyCommand(sublime_plugin.TextCommand): """Set sticky value for the tab.""" def run(self, edit, value): """Set the sticky command to the specific value.""" if self.is_enabled(value): self.view.settings().set("tabs_extra_sticky", bool(value)) def is_enabled(self, value): """Check if sticky value is already set to desired value.""" enabled = False if self.view is not None: current_value = self.view.settings().get("tabs_extra_sticky", False) if current_value != value: enabled = True return enabled ############################### # Close ############################### class TabsExtraCloseMenuCommand(sublime_plugin.WindowCommand): """Close tabs via a quick panel menu.""" close_types = [ ("Close", "single"), ("Close Other Tabs", "other"), ("Close Tabs to Right", "right"), ("Close Tabs to Left", "left"), ("Close All Tabs", "all") ] def run(self, mode="normal", close_type=None): """Run command.""" self.mode = mode self.group = -1 self.index = -1 sheet = self.window.active_sheet() if sheet is not None: self.group, self.index = self.window.get_sheet_index(sheet) if self.group != -1 and self.index != -1: value = None if close_type is not None: index = 0 for ct in self.close_types: if ct[1] == close_type: value = index index += 1 if value is None: self.window.show_quick_panel( [x[0] for x in self.close_types], self.check_selection ) else: self.check_selection(value) def check_selection(self, value): """Check the user's selection.""" if value != -1: close_unsaved = True unsaved_prompt = True if self.mode == "skip_unsaved": close_unsaved = False if self.mode == "dismiss_unsaved": unsaved_prompt = False close_type = self.close_types[value][1] self.window.run_command( "tabs_extra_close", { "group": int(self.group), "index": int(self.index), "close_type": close_type, "unsaved_prompt": unsaved_prompt, "close_unsaved": close_unsaved } ) def is_enabled(self, mode="normal"): """Check if command is enabled.""" group = -1 index = -1 sheet = self.window.active_sheet() if sheet is not None: group, index = self.window.get_sheet_index(sheet) return group != -1 and index != -1 and mode in ["normal", "skip_unsaved", "dismiss_unsaved"] class TabsExtraCloseAllCommand(sublime_plugin.WindowCommand): """Close all tabs in the whole window.""" def run(self): """Close all tabs in window; not just the tabs in the active group.""" for group in range(0, self.window.num_groups()): sheet = self.window.active_sheet_in_group(group) if sheet is not None: index = self.window.get_sheet_index(sheet)[1] self.window.run_command("tabs_extra_close", {"close_type": "all", "group": group, "index": index}) class TabsExtraCloseCommand(sublime_plugin.WindowCommand): """Close tab command.""" def init(self, close_type, group, index): """ Determine which views will be targeted by close command. Also determine which tab states need to be cleaned up. """ self.persistent = is_persistent() self.sheets = self.window.sheets_in_group(int(group)) assert(close_type in ["single", "left", "right", "other", "all"]) # Setup active index and group active_sheet = self.window.active_sheet() active_index = None self.active_index = index self.active_group = None if active_sheet is not None: active_group, active_index = self.window.get_sheet_index(active_sheet) if group != active_group: active_index = None if active_index is not None: self.active_index = active_index # Compile a list of existing tabs with their timestamps self.last_activated = [] if get_fallback_direction() == LAST: for s in self.sheets: v = s.view() if v is not None: last_activated = v.settings().get("tabs_extra_last_activated", None) if last_activated is not None: self.last_activated.append((last_activated, s)) else: self.last_activated.append((0, s)) # Determine targeted sheets to close and sheets to cleanup if close_type == "single": self.targets = [self.sheets[index]] self.cleanup = bool(len(self.sheets[:index] + self.sheets[index + 1:])) elif close_type == "left": self.targets = self.sheets[:index] self.cleanup = bool(len(self.sheets[index:])) elif close_type == "right": self.targets = self.sheets[index + 1:] self.cleanup = bool(len(self.sheets[:index + 1])) elif close_type == "other": self.targets = self.sheets[:index] + self.sheets[index + 1:] self.cleanup = True elif close_type == "all": self.targets = self.sheets[:] self.cleanup = False def select_left(self, fallback=True): """Select tab to the left if the current active tab was closed.""" selected = False for x in reversed(range(0, self.active_index)): if self.window.get_sheet_index(self.sheets[x])[1] != -1: Focus.defer(self.window, self.sheets[x]) selected = True break if fallback and not selected: # Fallback to other direction selected = self.select_left(False) return selected def select_right(self, fallback=True): """Select tab to the right if the current active tab was closed.""" selected = False for x in range(self.active_index + 1, len(self.sheets)): if self.window.get_sheet_index(self.sheets[x])[1] != -1: Focus.defer(self.window, self.sheets[x]) selected = True break if fallback and not selected: # Fallback to other direction selected = self.select_right(False) return selected def select_last(self, fallback=True): """Select last activated tab if available.""" selected = False self.last_activated = sorted(self.last_activated, key=lambda x: x[0]) if len(self.last_activated): # Get most recent activated tab for s in reversed(self.last_activated): if self.window.get_sheet_index(s[1])[1] != -1: Focus.defer(self.window, s[1]) selected = True break if fallback and not selected: # Fallback left selected = self.select_left(False) if fallback and not selected: # Fallback right selected = self.select_right(False) return selected def select_view(self): """Select active tab, if available, or fallback to the left or right.""" selected = False if self.active_index is not None: fallback_mode = get_fallback_direction() if self.window.get_sheet_index(self.sheets[self.active_index])[1] != -1: self.window.focus_sheet(self.sheets[self.active_index]) selected = True elif fallback_mode == LAST: selected = self.select_last() elif fallback_mode == RIGHT: selected = self.select_right() else: selected = self.select_left() return selected def can_close(self, is_sticky, is_single): """Prompt user in certain scenarios if okay to close.""" is_okay = True if is_sticky: if is_single: is_okay = sublime.ok_cancel_dialog( "This is a sticky tab, are you sure you want to close?" ) else: is_okay = False return is_okay def run( self, group=-1, index=-1, close_type="single", unsaved_prompt=True, close_unsaved=True ): """Close the specified tabs and cleanup sticky states.""" TabsExtraListener.extra_command_call = True if group >= 0 and index >= 0: self.init(close_type, group, index) if ( len(self.targets) and not unsaved_prompt and not all(not target.view().is_dirty() for target in self.targets) and not sublime.ok_cancel_dialog( "Are you sure you want to dismiss all targeted unsaved buffers?" ) ): return for s in self.targets: v = s.view() if v is not None: if self.can_close(v.settings().get("tabs_extra_sticky", False), close_type == "single"): if not self.persistent: v.settings().erase("tabs_extra_sticky") self.window.focus_view(v) if not v.is_dirty() or close_unsaved: if not unsaved_prompt: v.set_scratch(True) sublime_api.window_close_file(self.window.id(), v.id()) elif not self.persistent: v.settings().erase("tabs_extra_sticky") else: self.window.focus_sheet(s) self.window.run_command('close_file') if not self.persistent and self.cleanup: self.window.run_command("tabs_extra_clear_all_sticky", {"group": group}) self.select_view() TabsExtraListener.extra_command_call = False ############################### # Listener ############################### class TabsExtraListener(sublime_plugin.EventListener): """Listener command to handle tab focus, closing, moving events.""" extra_command_call = False def on_window_command(self, window, command_name, args): """Intercept and override specific close tab commands.""" extra_command_call = TabsExtraListener.extra_command_call cmd = None if args is None: view = window.active_view() if view is None: return cmd # Mark all actual file closes done from TabsExtra # This helps us know when file close was called outside of TabsExtra commands if extra_command_call and command_name == "close_file": view.settings().set("tabs_extra_closing", True) return cmd command_name = "tabs_extra_close" group, index = window.get_view_index(view) args = {"group": group, "index": index} if command_name in ["close_by_index", "close"]: command_name = "tabs_extra_close" args["close_type"] = "single" cmd = (command_name, args) elif command_name == "close_all": command_name = "tabs_extra_close_all" args = {} cmd = (command_name, args) elif command_name == "close_others_by_index": command_name = "tabs_extra_close" args["close_type"] = "other" cmd = (command_name, args) elif command_name == "close_to_right_by_index": command_name = "tabs_extra_close" args["close_type"] = "right" cmd = (command_name, args) return cmd def on_load(self, view): """Handle load focus or spawining.""" Focus.cancel() if sort_on_load_save(): if not self.on_sort(view): view.settings().set('tabsextra_to_sort', True) else: self.on_spawn(view) def on_spawn(self, view): """When a new view is spawned, postion the view per user's preference.""" window = view.window() if window and window.get_view_index(view)[1] != -1: loaded = view.settings().get("tabs_extra_spawned", False) if not loaded: sheet = window.active_sheet() spawn = view_spawn_pos() if spawn != "none": sheets = window.sheets() group, index = window.get_sheet_index(sheet) last_group = None last_index = None if LAST_ACTIVE is not None: for s in sheets: v = s.view() if v is not None and LAST_ACTIVE.id() == v.id(): last_group, last_index = window.get_sheet_index(s) break active_in_range = ( last_group is not None and last_index is not None and last_group == group ) if spawn == "right": group, index = window.get_sheet_index(sheets[-1]) window.set_sheet_index(sheet, group, index) elif spawn == "left": group, index = window.get_sheet_index(sheets[0]) window.set_sheet_index(sheet, group, index) elif spawn == "active_right" and active_in_range: window.set_sheet_index(sheet, group, last_index + 1) elif spawn == "active_left" and active_in_range: window.set_sheet_index(sheet, group, last_index) view.settings().set("tabs_extra_spawned", True) def on_post_save(self, view): """On save sorting.""" if sort_on_load_save(): self.on_sort(view) def on_sort(self, view): """Sort views.""" sorted_views = False window = view.window() if window and window.get_view_index(view)[1] != -1: cmd = sublime.load_settings(SETTINGS).get("sort_on_load_save_command", {}) module = str(cmd.get("module", "")) reverse = bool(cmd.get("reverse", False)) if module != "": window.run_command( "tabs_extra_sort", {"sort_by": module, "reverse": reverse} ) sorted_views = True return sorted_views def on_pre_close(self, view): """ If a view is closing without being marked, we know it was done outside of TabsExtra. Attach view and window info so we can focus the right view after close. """ Focus.cancel() view.settings().set("tabs_extra_is_closed", True) if not view.settings().get("tabs_extra_closing", False): TabsExtraListener.extra_command_call = True window = view.window() if window is not None: view.settings().set("tabs_extra_view_info", view.window().get_view_index(view)) view.settings().set("tabs_extra_window_info", view.window().id()) def on_close(self, view): """ Handle focusing the correct view in window group. Close command was initiated outside of TabsExtra, so a focus is required. """ view_info = view.settings().get("tabs_extra_view_info", None) window_info = view.settings().get("tabs_extra_window_info", None) if view_info is not None and window_info is not None: window = None for w in sublime.windows(): if w.id() == window_info: window = w break if window is not None: self.select_tab(window, int(view_info[0]), view_info[1]) TabsExtraListener.extra_command_call = False def on_activated(self, view): """ Timestamp each view when activated. Detect if on_move event should be executed. """ if not TabsExtraListener.extra_command_call: window = view.window() if window is None: return s = window.active_sheet() timestamp_view(window, s) # Detect if tab was moved to a new group # Run on_move event if it has. moving = view.settings().get("tabs_extra_moving", None) if moving is not None: win_id, group_id = moving window = view.window() if window is None: return active_group = window.get_view_index(view)[0] if window.id() != win_id or int(group_id) != int(active_group): view.settings().erase("tabs_extra_moving") last_index = view.settings().get('tabs_extra_last_activated_sheet_index', -1) self.on_move(view, win_id, int(group_id), last_index) elif sort_on_load_save() and view.settings().get('tabsextra_to_sort'): view.settings().erase('tabsextra_to_sort') self.on_sort(view) def on_move(self, view, win_id, group_id, last_index): """Select the fallback tab in the group it was moved from.""" for w in sublime.windows(): if w.id() == win_id: self.select_tab(w, group_id, last_index) break def select_tab(self, window, group_id, last_index): """Select the desired fallback tab.""" selected = False sheets = window.sheets_in_group(group_id) fallback_mode = get_fallback_direction() if len(sheets) == 0: return if last_index >= 0: if fallback_mode == LAST: selected = self.select_last(sheets, window, last_index) elif fallback_mode == RIGHT: selected = self.select_right(sheets, window, last_index) else: selected = self.select_left(sheets, window, last_index) return selected def select_last(self, sheets, window, closed_index, fallback=True): """Ensure focus of last active view.""" selected = False last_activated = [] for s in sheets: v = s.view() if v is not None: last = v.settings().get("tabs_extra_last_activated", None) if last is not None: last_activated.append((last, s)) else: last_activated.append((0, s)) last_activated = sorted(last_activated, key=lambda x: x[0]) if len(last_activated): Focus.defer(window, last_activated[-1][1]) selected = True if not selected and fallback: selected = self.select_left(sheets, window, closed_index, False) if not selected and fallback: selected = self.select_right(sheets, window, closed_index, False) return selected def select_right(self, sheets, window, closed_index, fallback=True): """Ensure focus of view to the right of closed view.""" selected = False if len(sheets) > closed_index: Focus.defer(window, sheets[closed_index]) selected = True if not selected and fallback: selected = self.select_left(sheets, window, closed_index, False) return selected def select_left(self, sheets, window, closed_index, fallback=True): """Ensure focus of view to the left of closed view.""" selected = False if len(sheets) >= closed_index: Focus.defer(window, sheets[closed_index - 1]) selected = True if not selected and fallback: selected = self.select_right(sheets, window, closed_index, False) return selected ############################### # Wrappers ############################### class TabsExtraViewWrapperCommand(sublime_plugin.WindowCommand): """Wrapper for for executing certain commands from the tab context menu.""" def run(self, command, group=-1, index=-1, args=None): """Wrap command in order to ensure view gets focused first.""" if args is None: args = {} if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: self.window.focus_view(view) self.window.run_command(command, args) ############################### # File Management Commands ############################### class TabsExtraDeleteCommand(sublime_plugin.WindowCommand): """Delete the file.""" def run(self, group=-1, index=-1): """Delete the tab's file.""" if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: file_name = view.file_name() if file_name is not None and os.path.exists(file_name): if sublime.ok_cancel_dialog("Delete %s?" % file_name, "Delete"): if not view.close(): return import Default.send2trash as send2trash send2trash.send2trash(file_name) def is_visible(self, group=-1, index=-1): """Check if command should be visible.""" enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None and view.file_name() is not None and os.path.exists(view.file_name()): enabled = True return enabled class TabsExtraDuplicateCommand(sublime_plugin.WindowCommand): """Duplicate tab.""" def run(self, group=-1, index=-1): """Rename the given tab.""" if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: file_name = view.file_name() if file_name is not None and os.path.exists(file_name): v = self.window.show_input_panel( "Duplicate:", file_name, lambda x: self.on_done(file_name, x), None, None ) file_path_len = len(file_name) file_name_len = len(os.path.basename(file_name)) v.sel().clear() v.sel().add( sublime.Region( file_path_len - file_name_len, file_path_len ) ) def on_done(self, old, new): """Handle the tab duplication when the user is done with the input panel.""" new_path = os.path.dirname(new) if os.path.exists(new_path) and os.path.isdir(new_path): if not os.path.exists(new) or sublime.ok_cancel_dialog("Overwrite %s?" % new, "Replace"): try: with open(old, 'rb') as f: text = f.read() with open(new, 'wb') as f: f.write(text) self.window.open_file(new) except Exception: sublime.status_message("Unable to duplicate") def is_visible(self, group=-1, index=-1): """Check if the command is visible.""" enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None and view.file_name() is not None and os.path.exists(view.file_name()): enabled = True return enabled class TabsExtraRenameCommand(sublime_plugin.WindowCommand): """Rename the tab's file.""" def run(self, group=-1, index=-1): """Rename the given tab.""" if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: file_name = view.file_name() if file_name is not None and os.path.exists(file_name): branch, leaf = os.path.split(file_name) v = self.window.show_input_panel( "New Name:", leaf, functools.partial(self.on_done, file_name, branch), None, None ) name = os.path.splitext(leaf)[0] v.sel().clear() v.sel().add(sublime.Region(0, len(name))) def on_done(self, old, branch, leaf): """Handle the renaming when user is done with the input panel.""" new = os.path.join(branch, leaf) try: os.rename(old, new) v = self.window.find_open_file(old) if v: v.retarget(new) except Exception: sublime.status_message("Unable to rename") def is_visible(self, group=-1, index=-1): """Check if the command is visible.""" enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None and view.file_name() is not None and os.path.exists(view.file_name()): enabled = True return enabled class TabsExtraMoveCommand(sublime_plugin.WindowCommand): """Move the tab's file.""" def run(self, group=-1, index=-1): """Move the file in the given tab.""" if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: file_name = view.file_name() if file_name is not None and os.path.exists(file_name): v = self.window.show_input_panel( "New Location:", file_name, functools.partial(self.on_done, file_name), None, None ) file_path_len = len(file_name) file_name_len = len(os.path.basename(file_name)) v.sel().clear() v.sel().add( sublime.Region( file_path_len - file_name_len, file_path_len ) ) def on_done(self, old, new): """Handle the moving when user is done with the input panel.""" try: directory = os.path.dirname(new) if not os.path.exists(directory): os.makedirs(directory) os.rename(old, new) v = self.window.find_open_file(old) if v: v.retarget(new) except Exception: sublime.status_message("Unable to move") def is_visible(self, group=-1, index=-1): """Check if the command is visible.""" enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None and view.file_name() is not None and os.path.exists(view.file_name()): enabled = True return enabled class TabsExtraRevertCommand(TabsExtraViewWrapperCommand): """Revert changes in file.""" def is_visible(self, command, group=-1, index=-1, args=None): """Determine if command should be visible in menu.""" if args is None: args = {} enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None and view.file_name() is not None: enabled = view.is_dirty() return enabled class TabsExtraFileCommand(TabsExtraViewWrapperCommand): """Wrapper for file commands.""" def is_enabled(self, command, group=-1, index=-1, args=None): """Determine if command should be enabled.""" if args is None: args = {} enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: enabled = view.file_name() is not None return enabled class TabsExtraFilePathCommand(sublime_plugin.WindowCommand): """Get file paths.""" def run(self, group=-1, index=-1, path_type='path'): """Run the command.""" if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: self.window.focus_view(view) view.run_command('copy_path') pth = sublime.get_clipboard() if path_type == 'name': pth = os.path.basename(pth) elif path_type == 'path_uri': pth = urljoin('file:', pathname2url(pth)) sublime.set_clipboard(pth) def is_enabled(self, group=-1, index=-1, path_type='path'): """Determine if command should be enabled.""" enabled = False if group >= 0 and index >= 0: view = get_group_view(self.window, group, index) if view is not None: enabled = view.file_name() is not None return enabled ############################### # Sort ############################### class TabsExtraSortMenuCommand(sublime_plugin.WindowCommand): """Sort tabs.""" def run(self): """Using "sort_layout" setting, construct a quick panel sort menu.""" sort_layout = sublime.load_settings(SETTINGS).get("sort_layout", []) if len(sort_layout): self.sort_commands = [] sort_menu = [] for sort_entry in sort_layout: caption = str(sort_entry.get("caption", "")) module = str(sort_entry.get("module", "")) reverse = bool(sort_entry.get("reverse", False)) if module != "": self.sort_commands.append((module, reverse)) sort_menu.append(caption) if len(sort_menu): self.window.show_quick_panel(sort_menu, self.check_selection) def check_selection(self, value): """Launch the selected sort command.""" if value != -1: command = self.sort_commands[value] self.window.run_command("tabs_extra_sort", {"sort_by": command[0], "reverse": command[1]}) class TabsExtraSortCommand(sublime_plugin.WindowCommand): """Sort tabs.""" def run(self, group=-1, sort_by=None, reverse=False): """Sort Tabs.""" if sort_by is not None: if group == -1: group = self.window.active_group() self.group = group self.reverse = reverse views = self.window.views_in_group(int(group)) if len(views): sort_module = self.get_sort_module(sort_by) if sort_module is not None: view_data = [] sort_module.run(views, view_data) self.sort(view_data) self.window.focus_view(self.window.active_view()) def sort(self, view_data): """Sort the views.""" indexes = tuple([x for x in range(0, len(view_data[0]) - 1)]) sorted_views = sorted(view_data, key=itemgetter(*indexes)) if self.reverse: sorted_views = sorted_views[::-1] if sorted_views != view_data: for index in range(0, len(sorted_views)): self.window.set_view_index(sorted_views[index][-1], self.group, index) def get_sort_module(self, module_name): """Import the sort_by module.""" import imp path_name = os.path.join("Packages", os.path.normpath(module_name.replace('.', '/'))) path_name += ".py" module = imp.new_module(module_name) sys.modules[module_name] = module exec( compile( sublime.load_resource(sublime_format_path(path_name)), module_name, 'exec' ), sys.modules[module_name].__dict__ ) return module ############################### # Menu Installation ############################### class TabsExtraInstallOverrideMenuCommand(sublime_plugin.ApplicationCommand): """Install TabsExtra menu overriding the default tab context menu.""" def run(self): """Install/upgrade the override tab menu.""" msg = OVERRIDE_CONFIRM if sublime.ok_cancel_dialog(msg): tab_menu.upgrade_override_menu() class TabsExtraUninstallOverrideMenuCommand(sublime_plugin.ApplicationCommand): """Uninstall the TabsExtra override menu.""" def run(self): """Uninstall the override tab menu.""" msg = RESTORE_CONFIRM if sublime.ok_cancel_dialog(msg): tab_menu.uninstall_override_menu() class TabsExtraInstallMenuCommand(sublime_plugin.ApplicationCommand): """Install the TabsExtra menu by appending it to the existing tab context menu.""" def run(self): """Install/upgrade the standard tab menu.""" tab_menu.upgrade_default_menu() ############################### # Plugin Loading ############################### def plugin_loaded(): """Handle plugin setup.""" win = sublime.active_window() if win is not None: sheet = win.active_sheet() if sheet is not None: timestamp_view(win, sheet)
34.542714
173
0.55482
bc533b486121cd78fe8d1cc13522902c417063ad
1,155
py
Python
Code/odooerp/odoo-8.0/openerp/addons/payment_buckaroo/controllers/main.py
zhupangithub/WEBERP
714512082ec5c6db07cbf6af0238ceefe2d2c1a5
[ "MIT" ]
null
null
null
Code/odooerp/odoo-8.0/openerp/addons/payment_buckaroo/controllers/main.py
zhupangithub/WEBERP
714512082ec5c6db07cbf6af0238ceefe2d2c1a5
[ "MIT" ]
null
null
null
Code/odooerp/odoo-8.0/openerp/addons/payment_buckaroo/controllers/main.py
zhupangithub/WEBERP
714512082ec5c6db07cbf6af0238ceefe2d2c1a5
[ "MIT" ]
3
2020-10-08T14:42:10.000Z
2022-01-28T14:12:29.000Z
# -*- coding: utf-8 -*- try: import simplejson as json except ImportError: import json import logging import pprint import werkzeug from openerp import http, SUPERUSER_ID from openerp.http import request _logger = logging.getLogger(__name__) class BuckarooController(http.Controller): _return_url = '/payment/buckaroo/return' _cancel_url = '/payment/buckaroo/cancel' _exception_url = '/payment/buckaroo/error' _reject_url = '/payment/buckaroo/reject' @http.route([ '/payment/buckaroo/return', '/payment/buckaroo/cancel', '/payment/buckaroo/error', '/payment/buckaroo/reject', ], type='http', auth='none') def buckaroo_return(self, **post): """ Buckaroo.""" _logger.info('Buckaroo: entering form_feedback with post data %s', pprint.pformat(post)) # debug request.registry['payment.transaction'].form_feedback(request.cr, SUPERUSER_ID, post, 'buckaroo', context=request.context) post = dict((key.upper(), value) for key, value in post.items()) return_url = post.get('ADD_RETURNDATA') or '/' return werkzeug.utils.redirect(return_url)
32.083333
130
0.683983
a4e28a70b2e59b0ac3cf7186f9a66620fd87e72a
12,685
py
Python
tape/__main__.py
cthoyt/TAPE
70d9364f6d67fd8b5574eed729af48d4f0694019
[ "MIT" ]
2
2020-12-06T15:41:03.000Z
2021-06-18T10:25:23.000Z
tape/__main__.py
cthoyt/TAPE
70d9364f6d67fd8b5574eed729af48d4f0694019
[ "MIT" ]
null
null
null
tape/__main__.py
cthoyt/TAPE
70d9364f6d67fd8b5574eed729af48d4f0694019
[ "MIT" ]
null
null
null
from typing import List, Union, Sequence, Tuple, Optional from glob import glob from collections import defaultdict import atexit import os import shutil import pickle as pkl import tensorflow as tf from tape.tasks import TaskBuilder, Task, AbstractLanguageModelingTask from tape.models import ModelBuilder from tape.experiments import ProteinExperiment, training_params import rinokeras as rk import re from datetime import datetime from sacred import Experiment, Ingredient from sacred.observers import FileStorageObserver import numpy as np from table_logger import TableLogger gpu = Ingredient('gpu') proteins = Experiment('Unsupervised Protein', ingredients=[gpu, training_params] + ModelBuilder.hparams + TaskBuilder.params) folder_name = datetime.now().strftime("%Y-%m-%d--%H-%M-%S") logdir = os.environ.get('PROTEIN_LOGDIR', 'results') if not os.path.isdir('results'): os.mkdir('results') proteins.observers.append(FileStorageObserver.create(os.path.join('results', folder_name))) def filter_text(text): pattern = re.compile(r"Epoch\s+\d+:") text = '\n'.join(filter(lambda line: not pattern.match(line), text.split('\n'))) return text proteins.captured_out_filter = filter_text @gpu.config def gpu_config(): """Configure the gpu""" device = 0 # noqa: F841 allow_growth = False # noqa: F841 @proteins.config def config(): tasks = [] # noqa: F841 model = '' # noqa: F841 num_epochs = 100 # noqa: F841 load_from = None # noqa: F841 load_task_from = None # noqa: F841 patience = 10 # noqa: F841 freeze_embedding_weights = False # noqa: F841 data_folder = './data' # noqa: F841 max_sequence_length = 10000 # noqa: F841 add_cls_token = False # noqa: F841 debug = False # noqa: F841 save_outputs = False # noqa: F841 steps_per_epoch = 10000 # noqa: F841 datafile = '' # noqa: F841 assert len(tasks) > 0 assert model != '' @gpu.capture def setup_tensorflow(device: Union[str, int, Sequence[int], Sequence[str]], allow_growth: bool): """Setup tensorflow session according to gpu configuration. Args: device (Union[str, int, Sequence[int], Sequence[str]]): GPU or list of GPUs to run on allow_growth (bool): Whether to capture all memory on gpu or grow as necessary Returns: sess (tf.Session): Tensorflow Session object as the default session """ if isinstance(device, int): device = str(device) elif isinstance(device, list): device = ', '.join([str(d) for d in device]) elif not isinstance(device, str): raise ValueError("Unrecognized device type. Expected int, str, or list. " "Received {}.".format(type(device))) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = device os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # disable tensorflow info logging tf.logging.set_verbosity(tf.logging.WARN) from tensorflow.python.platform import tf_logging try: # tensorflow == 1.13 tf_logging.get_logger().propagate = False except AttributeError: # tensorflow <= 1.12 tf_logging._get_logger().propagate = False gpu_options = tf.GPUOptions(allow_growth=allow_growth) conf = tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options) sess = tf.get_default_session() if sess is None: sess = tf.Session(config=conf) sess.__enter__() # type: ignore np.set_printoptions(suppress=True) return sess @proteins.capture def get_data(task_list: List[Task], boundaries: Tuple[List[int], List[int]], data_folder: str, max_sequence_length: int, add_cls_token: bool) -> \ Tuple[tf.data.Dataset, tf.data.Dataset]: datasets = [task.get_data(boundaries, data_folder, max_sequence_length, add_cls_token) for task in task_list] train, valid = list(zip(*datasets)) if len(train) > 1: train = tf.data.Dataset.zip(train) valid = tf.data.Dataset.zip(valid) else: train = train[0] valid = valid[0] return train, valid class MetricEvaluator: def __init__(self, key_metric: str, maximize_or_minimize: Optional[str] = None): self._key_metric = key_metric if maximize_or_minimize is None: maximize_or_minimize = 'max' if 'acc' in key_metric.lower() else 'min' assert maximize_or_minimize in ['maximize', 'minimize', 'max', 'min'] self._best_value = float('inf') if maximize_or_minimize in ['minimize', 'min'] else float('-inf') self._maximize_or_minimize = max if maximize_or_minimize in ['max', 'maximize'] else min self._n_epochs_no_improvement = 0 self._epoch = 0 def _maybe_initialize_logger(self, metrics): if not hasattr(self, '_logger'): columns = ["Epoch"] self._names = [name for name in metrics] columns += ["T {}".format(name) for name in metrics] columns += ["V {}".format(name) for name in metrics] columns += ["Best {}".format(self._key_metric)] columns += ["Time"] self._logger = TableLogger( columns=columns, float_format='{:.3f}'.format, default_colwidth=10) def _is_better(self, test_metrics): return self._maximize_or_minimize( self._best_value, test_metrics[self._key_metric]) != self._best_value def check_and_log_metric(self, train_metrics, test_metrics): self._maybe_initialize_logger(train_metrics) if self._is_better(test_metrics): self._best_value = self._maximize_or_minimize( self._best_value, test_metrics[self._key_metric]) self._n_epochs_no_improvement = 0 else: self._n_epochs_no_improvement += 1 to_log = [self._epoch] to_log += [train_metrics[name] for name in self._names] to_log += [test_metrics[name] for name in self._names] to_log += [self._best_value] to_log += [str(round(train_metrics.runtime + test_metrics.runtime)) + 's'] self._logger(*tuple(to_log)) self._epoch += 1 @property def was_improvement(self) -> bool: return self._n_epochs_no_improvement == 0 @property def n_epochs_no_improvement(self) -> int: return self._n_epochs_no_improvement @proteins.capture def rename_directory(outdir: str, model, tasks): if isinstance(tasks, str): tasks = [tasks] savedir, basedir = outdir.rsplit('/', 1) new_outdir = os.path.join(savedir, '_'.join(tasks + [model, basedir])) os.rename(outdir, new_outdir) @proteins.capture def cleanup_folders(outdir: str, model, tasks, debug): if debug or not glob(os.path.join(outdir, '*.h5')): shutil.rmtree(outdir) else: rename_directory(outdir, model, tasks) def consolidate_data(outfile, include_hidden: bool = False): with open(outfile, 'rb') as f: outputs = pkl.load(f) data = defaultdict(list) # type: ignore for output in outputs: output = output[0] length = output['protein_length'] for key, protein_batch in output.items(): for protein_length, protein_data in zip(length, protein_batch): if np.isscalar(protein_data): data[key].append(protein_data) elif protein_data.ndim == 1 and protein_data.dtype in [np.float32, np.float64]: data[key].append(protein_data) else: data[key].append(protein_data[:protein_length]) data = dict(data) if not include_hidden: del data['encoder_output'] with open(outfile, 'wb') as f: pkl.dump(data, f) @proteins.command def eval(_run, _config, tasks: Union[str, List[str]], model: str): assert _config['load_task_from'] is not None outdir = _run.observers[0].basedir atexit.register(cleanup_folders, outdir, debug=True) sess = setup_tensorflow() if isinstance(tasks, str): tasks = [tasks] embedding_model = ModelBuilder.build_model(model) task_list = TaskBuilder.build_tasks(tasks) task_model = TaskBuilder.build_task_model( embedding_model, task_list, _config['freeze_embedding_weights']) experiment = ProteinExperiment( task_model, task_list) if not _config['datafile']: _, valid_data = get_data(task_list, embedding_model.get_optimal_batch_sizes()) else: datafile = _config['datafile'] if ',' not in _config['datafile'] else _config['datafile'].split(',') valid_data = task_list[0].get_test_data(embedding_model.boundaries, datafile) test_graph = rk.train.TestGraph.from_experiment(experiment, valid_data) sess.run(tf.global_variables_initializer()) print('Model Parameters: {}'.format(embedding_model.count_params())) print('Loading task weights from {}'.format(_config['load_task_from'])) rk.utils.load_distributed( experiment.distribution_strategy, task_model, _config['load_task_from']) task_dir = os.path.dirname(_config['load_task_from']) outfile = os.path.join(task_dir, 'outputs.pkl') print('Saving outputs to {}'.format(outfile)) test_metrics = test_graph.run_epoch(save_outputs=outfile) print(test_metrics.get_average()) consolidate_data(outfile, include_hidden=True) @proteins.automain def main(_run, _config, tasks: Union[str, List[str]], model: str): outdir = _run.observers[0].basedir atexit.register(cleanup_folders, outdir) sess = setup_tensorflow() if isinstance(tasks, str): tasks = [tasks] embedding_model = ModelBuilder.build_model(model) task_list = TaskBuilder.build_tasks(tasks) task_model = TaskBuilder.build_task_model( embedding_model, task_list, _config['freeze_embedding_weights']) experiment = ProteinExperiment(task_model, task_list) bounds, batch_sizes = embedding_model.get_optimal_batch_sizes() batch_sizes = np.asarray(batch_sizes / len(tasks), np.int32) batch_sizes[batch_sizes <= 0] = 1 train_data, valid_data = get_data(task_list, (bounds, batch_sizes)) if _config['steps_per_epoch'] != -1: train_data = train_data.repeat() train_graph = rk.train.TrainGraph.from_experiment(experiment, train_data) test_graph = rk.train.TestGraph.from_experiment(experiment, valid_data) sess.run(tf.global_variables_initializer()) print('Model Parameters: {}'.format(embedding_model.count_params())) if _config['load_from'] is not None: print('Loading weights from {}'.format(_config['load_from'])) rk.utils.load_distributed( experiment.distribution_strategy, embedding_model, _config['load_from']) if _config['load_task_from'] is not None: print('Loading task weights from {}'.format(_config['load_task_from'])) rk.utils.load_distributed( experiment.distribution_strategy, task_model, _config['load_task_from']) evaluator = MetricEvaluator(task_list[0].key_metric) train_graph.initialize() for epoch in range(_config['num_epochs']): train_metrics = train_graph.run_for_n_steps(_config['steps_per_epoch'], epoch_num=epoch) outfile = os.path.join(outdir, 'outputs.pkl') if _config['save_outputs'] else None test_metrics = test_graph.run_epoch(epoch_num=epoch, save_outputs=outfile) if all(isinstance(task, AbstractLanguageModelingTask) for task in tasks): with experiment.distribution_strategy.scope(): embedding_model.save_weights('{}/epoch_{}.h5'.format(outdir, epoch), overwrite=True) evaluator.check_and_log_metric(train_metrics, test_metrics) for name, value in train_metrics.items(): _run.log_scalar('train.{}'.format(name), value) for name, value in test_metrics.items(): _run.log_scalar('valid.{}'.format(name), value) _run.log_scalar('runtime', round(train_metrics.runtime + test_metrics.runtime)) if evaluator.was_improvement: with experiment.distribution_strategy.scope(): embedding_model.save_weights('{}/best_weights.h5'.format(outdir, overwrite=True)) task_model.save_weights('{}/task_weights.h5'.format(outdir, overwrite=True)) else: if evaluator.n_epochs_no_improvement >= _config['patience']: print("Early stopping because no improvement in validation loss " "for {} epochs\n".format(_config['patience'])) break
36.139601
113
0.671502
b20be4c7aded3df7419797a9c56f9b7e0993e946
8,321
py
Python
docs/conflib/release_mapping.py
trevor-vaughan/simp-doc
6c544cab47dc69fc5965a867ec22cb4a7101f007
[ "Apache-2.0" ]
1
2015-10-29T19:10:46.000Z
2015-10-29T19:10:46.000Z
docs/conflib/release_mapping.py
jeannegreulich/simp-doc
838d36e72739ad3fb0511e0978e1590c4e1c8865
[ "Apache-2.0" ]
null
null
null
docs/conflib/release_mapping.py
jeannegreulich/simp-doc
838d36e72739ad3fb0511e0978e1590c4e1c8865
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import base64 import copy import glob import json import os import re import sys import time import urllib2 from textwrap import dedent import yaml sys.path.append(os.path.abspath(os.path.dirname(os.path.dirname(__file__)))) from conflib.constants import * def github_api_get(url): token = os.environ.get('GITHUB_API_KEY') request = urllib2.Request(url) request.add_header('User-Agent', 'Mozilla/55.0') if token is not None: request.add_header('Authorization','token %s' % token) return urllib2.urlopen(request) def get_version_map(simp_branch, local_simp_core_path, simp_github_api_base, default_simp_branch, on_rtd): """ Fetch the version map either from local disk or GitHub """ ver_map = {} ver_mapper_name = 'release_mappings.yaml' if not on_rtd: # SIMP 6 and later os_ver_mappers = glob.glob( os.path.join(local_simp_core_path, 'build', 'distributions', '*', '*', '*', ver_mapper_name) ) # SIMP 4/5 if not os_ver_mappers: os_ver_mappers = glob.glob( os.path.join(local_simp_core_path, 'build', ver_mapper_name) ) if os_ver_mappers: for os_ver_mapper in os_ver_mappers: with open(os_ver_mapper, 'r') as f: __update_ver_map(ver_map, yaml.load(f.read())) if on_rtd or not ver_map: github_api_base = simp_github_api_base + '/simp-core/git/trees/' if simp_branch: branch_to_query = simp_branch else: branch_to_query = default_simp_branch github_api_target = github_api_base + branch_to_query github_opts = '?recursive=1' # only try retrieving each API URL from github once, because API calls # are rate limited try: # Grab the distribution tree distro_json = json.load(github_api_get(github_api_target + github_opts)) release_mapping_targets = [x for x in distro_json['tree'] if ( x['path'] and re.search(r'release_mappings.yaml$', x['path']) )] for release_mapping_target in release_mapping_targets: url = SIMP_GITHUB_RAW_BASE + '/simp-core/' + branch_to_query + '/' + release_mapping_target['path'] print("NOTICE: Downloading Version Mapper: " + url, file=sys.stderr) for i in range(0, MAX_SIMP_URL_GET_ATTEMPTS): try: release_yaml_string = urllib2.urlopen(url).read() release_yaml = yaml.load(release_yaml_string) if isinstance(release_yaml, basestring): # This is ugly... # A string is returned when the release mapping file # is actually a link. So, need to pull down the # content of the link, instead. parts = release_yaml.split('/') partial_url = '/'.join(filter(lambda a: a != '..', parts)) for target in release_mapping_targets: if partial_url in target['path']: url = SIMP_GITHUB_RAW_BASE + '/simp-core/' + branch_to_query + \ '/' + target['path'] release_yaml_string = github_api_get(url).read() release_yaml = yaml.load(release_yaml_string) break __update_ver_map(ver_map, release_yaml) except urllib2.URLError as url_obj: print('Error downloading ' + url, file=sys.stderr) r = re.compile("^Status:") print('Error status: ' + filter(r.match,url_obj.info().headers)[0]) time.sleep(1) continue break except urllib2.URLError as url_obj: print('Error downloading ' + github_api_target + github_opts, file=sys.stderr) r = re.compile("^Status:") print('Error status: ' + filter(r.match,url_obj.info().headers)[0]) return ver_map def version_map_to_rst(full_version, version_family, ver_map): """ Return a version of the version map that is suitable for printing. """ none_found_msg = '* No SIMP Mapping Data Found for "' + full_version + '"' # Easy cop out if not ver_map: return none_found_msg simp_release_list = __generate_version_list(full_version, version_family) # Build the Release mapping table for insertion into the docs release_mapping_list = [] ver_map_releases = ver_map.keys() simp_release = full_version if not simp_release in ver_map_releases: for ver in simp_release_list: if ver in ver_map_releases: simp_release = ver print("Warning: version mapper falling back to " + simp_release, file=sys.stderr) else: simp_release = None if simp_release: release_mapping_list.append('* **SIMP ' + simp_release + '**') for os_key in sorted(ver_map[simp_release].keys()): release_mapping_list.append("\n * **" + os_key + '**') for i, iso in enumerate(ver_map[simp_release][os_key]['isos']): release_mapping_list.append("\n * **ISO #" + str(i+1) + ":** " + iso['name']) release_mapping_list.append(" * **Checksum:** " + iso['checksum']) if not release_mapping_list: release_mapping_list.append(none_found_msg) # Trailing newline release_mapping_list.append('') return "\n".join(release_mapping_list) def known_os_compatibility_rst(simp_version_dict, local_simp_core_path=LOCAL_SIMP_CORE_PATH, simp_github_api_base=SIMP_GITHUB_API_BASE, default_simp_branch=DEFAULT_SIMP_BRANCH, on_rtd=ON_RTD): """ Output the fully formatted OS Compatibility RST """ ver_map = get_version_map(simp_version_dict['simp_branch'], local_simp_core_path, simp_github_api_base, default_simp_branch, on_rtd) os_compat_rst = """ Known OS Compatibility ---------------------- {0} """.format(version_map_to_rst(simp_version_dict['full_version'], simp_version_dict['version_family'], ver_map)) return dedent(os_compat_rst) ### Private Methods def __update_ver_map(ver_map, data): """ This bunch of nonsense is to translate the release_mappings.yaml into something that can be output to the Compatibility list in a sane manner """ simp_versions = sorted(data['simp_releases'].keys(), reverse=True) for simp_version in simp_versions: for flavor in data['simp_releases'][simp_version]['flavors'].keys(): isos = data['simp_releases'][simp_version]['flavors'][flavor]['isos'] os_key = flavor + ' ' + data['simp_releases'][simp_version]['flavors'][flavor]['os_version'] if not (isos and os_key): continue if not ver_map: ver_map[simp_version] = {os_key: {'isos': isos}} else: if ver_map.get(simp_version): if not ver_map[simp_version].get(os_key): ver_map[simp_version][os_key] = {'isos': []} else: ver_map[simp_version] = {os_key: {'isos': []}} for iso in isos: if iso not in ver_map[simp_version][os_key]['isos']: ver_map[simp_version][os_key]['isos'].append(iso) def __generate_version_list(full_version, version_family): """ Put together an ordered list that will provide a quick match for the provided version """ # From SIMP 6 on, full_version and version_family is sufficient. # For earlier version, custom (odd) version families are needed. version_list = [ full_version ] version_list.extend(version_family) if full_version.startswith('5'): version_list.extend(['5.1.X']) # 5.1.X for a 5.2.2 or later elif full_version.startswith('4'): version_list.extend(['4.2.X']) # 4.2.X for a 4.3.2 or later return version_list
37.481982
115
0.602331
677ebdaf24196214002686c2ceb286a637f3817d
1,625
py
Python
meiduo_mall/meiduo_mall/apps/verifications/views.py
amour-lee/MeiDuoProject
72bae3886d5db79f63725d3aa1a6b4bad294572e
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/verifications/views.py
amour-lee/MeiDuoProject
72bae3886d5db79f63725d3aa1a6b4bad294572e
[ "MIT" ]
null
null
null
meiduo_mall/meiduo_mall/apps/verifications/views.py
amour-lee/MeiDuoProject
72bae3886d5db79f63725d3aa1a6b4bad294572e
[ "MIT" ]
null
null
null
from django.shortcuts import render from rest_framework.views import APIView import random, logging from django_redis import get_redis_connection from . import constants from meiduo_mall.libs.yuntongxun.sms import CCP from rest_framework.response import Response from rest_framework import status from celery_tasks.sms.tasks import send_sms_code # Create your views here. logger = logging.getLogger('django') class SMSCodeView(APIView): """发送短信验证码""" def get(self, request, mobile): """ GET /sms_codes/(?P<mobile>1[3-9]\d{9})/ """ # 创建连接到redis的对象 redis_conn = get_redis_connection('verify_codes') # 先判断用户在60s内是否重复发送短信 send_flag = redis_conn.get('send_flag_%s' % mobile) if send_flag: # 如果send_flag有值,说明60s内重复发送短信 return Response({'message': '频繁发送短信'}, status=status.HTTP_400_BAD_REQUEST) # 生成短信验证码 sms_code = '%06d' % random.randint(0, 999999) logger.info(sms_code) # redis管道 将多个redis指令放在一个管道里面,统一执行,减少redis数据库访问的频率,提升性能 pl = redis_conn.pipeline() # 保存短信验证码码到redis pl.setex('sms_%s' % mobile, constants.SMS_CODE_REDIS_EXPIRES, sms_code) # 在redis中添加一个发送短信的标记(值) pl.setex('send_flag_%s' % mobile, constants.SEND_SMS_CODE_INTERVAL, 1) # 执行管道 pl.execute() # 使用容联云通讯发送短信验证码 # CCP().send_template_sms(mobile, [sms_code, constants.SMS_CODE_REDIS_EXPIRES // 60], 1) #使用异步任务发送短信验证码,调用delay(),触发celery异步任务 # send_sms_code.delay(mobile, sms_code) # 响应结果 return Response({'message': 'OK'})
28.508772
96
0.669538
b75f75b8c124c11ff7e017cbe5bc91fe84dfbd44
12,256
py
Python
build/lib/GML/AUTO_FEATURE_ENGINEERING/autofeatlight.py
mehrankamal/GML
ee36ba502293236bf90bf6056c76f106c8dad00c
[ "MIT" ]
89
2020-02-29T15:23:34.000Z
2020-11-26T07:46:09.000Z
build/lib/GML/AUTO_FEATURE_ENGINEERING/autofeatlight.py
mehrankamal/GML
ee36ba502293236bf90bf6056c76f106c8dad00c
[ "MIT" ]
8
2020-11-30T16:56:01.000Z
2021-05-13T09:29:18.000Z
build/lib/GML/AUTO_FEATURE_ENGINEERING/autofeatlight.py
mehrankamal/GML
ee36ba502293236bf90bf6056c76f106c8dad00c
[ "MIT" ]
23
2020-11-30T14:06:54.000Z
2021-06-25T09:28:05.000Z
import sys import numpy as np import pandas as pd from collections import defaultdict from sklearn.base import BaseEstimator from sklearn.utils.validation import check_array, check_is_fitted from sklearn.preprocessing import StandardScaler, PowerTransformer def _check_features(df, corrthr=0.995, verbose=0): """ Identify features with zeros variance or a correlation of (almost) 1 to other features, i.e., useless features. Inputs: - df: pd.DataFrame with all features - corrthr: threshold for correlations: if a feature has a higher pearson correlation to another feature it's considered as redundant and ignored (float; default: 0.995) - verbose: verbosity level (int; default: 0) Returns: - list of column names representing 'ok' features (numeric, non-zero variance, not redundant) """ # make sure all data is numeric df = df.select_dtypes(include=np.number) useless_cols = set() # 1. identify features with zero variance for c, v in df.var().items(): if pd.isna(v) or v <= sys.float_info.epsilon: useless_cols.add(c) # 2. identify redundant features (that have a correlation of ~1 with other features) correlated_cols = defaultdict(set) corrmat = df.corr().abs() np.fill_diagonal(corrmat.values, 0) for c, v in corrmat.unstack().sort_values(ascending=False).items(): if v < corrthr: break if (c[0] != c[1]) and (c[0] not in useless_cols): correlated_cols[c[0]].add(c[1]) # keep the columns that eliminate the most correlated columns for c in sorted(correlated_cols, key=lambda x: len(correlated_cols[x]), reverse=True): # the first variable that is correlated with others adds its correlated variables to the set of useless cols # since we check if a variable is in useless_cols, the correlated variables can't add the original variable if c not in useless_cols: useless_cols.update(correlated_cols[c]) # return list of columns that should be kept if verbose: print("[AutoFeatLight] %i columns identified as useless:" % len(useless_cols)) print(sorted(useless_cols)) return [c for c in df.columns if c not in useless_cols] def _compute_additional_features(X, feature_names=None, compute_ratio=True, compute_product=True, verbose=0): """ Compute additional non-linear features from the original features (ratio or product of two features). Inputs: - X: np.array with data (n_datapoints x n_features) - feature_names: optional list of column names to identify the features in X - compute_ratio: bool (default: True), whether to compute ratios of features - compute_product: bool (default: True), whether to compute products of features - verbose: verbosity level (int; default: 0) Returns: - np.array (n_datapoints x n_additional_features) with newly computed features - list with n_additional_features names describing the newly computed features """ # check how many new features we will compute d = X.shape[1] n = 0 if compute_ratio: n += d*d - d if compute_product: n += (d*d - d)//2 if not n: print("ERROR: call _compute_additional_features with compute_ratio and/or compute_product set to True") return None, [] if not feature_names: feature_names = ["x%i" % i for i in range(1, d+1)] # compute new features if verbose: print("[AutoFeatLight] computing %i additional features from %i original features" % (n, d)) new_features = [] X_new = np.zeros((X.shape[0], n)) new_i = 0 if compute_ratio: for i in range(d): # compute 1/x1 with np.errstate(divide='ignore'): x = 1/X[:, i] # instead of dividing by 0 for some data points we just set the new feature to 0 there x[np.invert(np.isfinite(x))] = 0. for j in range(d): if i != j: # multiply with x2 to get x2/x1 X_new[:, new_i] = x * X[:, j] new_features.append("%s / %s" % (feature_names[j], feature_names[i])) new_i += 1 if compute_product: for i in range(d): for j in range(i+1, d): X_new[:, new_i] = X[:, i] * X[:, j] new_features.append("%s * %s" % (feature_names[i], feature_names[j])) new_i += 1 assert new_i == n, "Internal Error in _compute_additional_features: new_i: %r, n: %r" % (new_i, n) return X_new, new_features class AutoFeatLight(BaseEstimator): def __init__( self, compute_ratio=True, compute_product=True, scale=False, power_transform=False, corrthr=0.995, corrthr_init=0.99999, verbose=0, ): """ Basic Feature Engineering: - remove useless features (zero variance or redundant) - compute additional non-linear features (ratios and product of original features, i.e. x1/x2 and x1*x2) - make all features more normally distributed (using the yeo-johnson power transform) Inputs: - compute_ratio: bool (default: True), whether to compute ratios of features - compute_product: bool (default: True), whether to compute products of features - scale: bool (default: False), rudimentary scaling of the data (only relevant if not computing the power_transform anyways) - power_transform: bool (default: False), whether to use a power transform (yeo-johnson) to make all features more normally distributed - corrthr: threshold for correlations: if a feature has a higher pearson correlation to another feature it's considered as redundant and ignored (float; default: 0.995) - corrthr_init: correlation threshold for initial features (before the feat eng step) (float; default: 0.99999) - verbose: verbosity level (int; default: 0) Attributes (after calling fit/fit_transform): - features_: feature names of transformed features - original_columns_: original columns of X when calling fit - return_df_: whether fit was called with a dataframe in which case a df will be returned as well, otherwise a numpy array - good_cols_org_: list of good features from the original inputs - scaler_: if scale: fitted standard scaler - power_transformer_: if power_transform: fitted power transform """ self.compute_ratio = compute_ratio self.compute_product = compute_product self.scale = scale self.power_transform = power_transform self.corrthr_init = corrthr_init self.corrthr = corrthr self.verbose = verbose def fit(self, X): """ WARNING: call fit_transform instead! Inputs: - X: pandas dataframe or numpy array with original features (n_datapoints x n_features) """ if self.verbose: print("[AutoFeatLight] Warning: This just calls fit_transform() but does not return the transformed dataframe.") print("[AutoFeatLight] It is much more efficient to call fit_transform() instead of fit() and transform()!") _ = self.fit_transform(X) # noqa return self def transform(self, X): """ Inputs: - X: pandas dataframe or numpy array with original features (n_datapoints x n_features) Returns: - new_X: new pandas dataframe or numpy array with additional/transformed features """ check_is_fitted(self, ["good_cols_org_"]) if not self.good_cols_org_: if self.verbose > 0: print("[AutoFeatLight] WARNING: No good features found; returning data unchanged.") return X if isinstance(X, pd.DataFrame): # make sure all data is numeric or we'll get an error when checking X X = X.select_dtypes(include=np.number) df_index = X.index else: df_index = None # check input cols = list(X.columns) if isinstance(X, pd.DataFrame) else ["x%i" % i for i in range(1, X.shape[1]+1)] X = check_array(X, force_all_finite="allow-nan") if not cols == self.original_columns_: raise ValueError("[AutoFeatLight] Not the same features as when calling fit.") # sort out useless original columns df = pd.DataFrame(X, columns=cols, index=df_index)[self.good_cols_org_] if self.compute_ratio or self.compute_product: # compute additional useful features X_new, new_features = _compute_additional_features(df.to_numpy(), self.good_cols_org_, self.compute_ratio, self.compute_product, self.verbose) df = pd.concat([df, pd.DataFrame(X_new, columns=new_features)], axis=1) df = df[self.features_] # scale/transform if self.scale or self.power_transform: X_new = self.scaler_.transform(df.to_numpy()) if self.power_transform: X_new = self.power_transformer_.transform(X_new) df = pd.DataFrame(X_new, columns=df.columns, index=df.index) # return either dataframe or array return df if self.return_df_ else df.to_numpy() def fit_transform(self, X): """ Inputs: - X: pandas dataframe or numpy array with original features (n_datapoints x n_features) Returns: - new_X: new pandas dataframe or numpy array with additional/transformed features """ self.return_df_ = isinstance(X, pd.DataFrame) if isinstance(X, pd.DataFrame): # make sure all data is numeric or we'll get an error when checking X X = X.select_dtypes(include=np.number) df_index = X.index else: df_index = None # store column names as they'll be lost in the other check self.original_columns_ = list(X.columns) if isinstance(X, pd.DataFrame) else ["x%i" % i for i in range(1, X.shape[1]+1)] # check input X = check_array(X, force_all_finite="allow-nan") # transform X into a dataframe (again) df = pd.DataFrame(X, columns=self.original_columns_, index=df_index) # see which of the original features are not completely useless self.good_cols_org_ = _check_features(df, self.corrthr_init, self.verbose) if not self.good_cols_org_: if self.verbose > 0: print("[AutoFeatLight] WARNING: No good features found; returning original features.") return df if self.return_df_ else X # compute additional features df = df[self.good_cols_org_] if self.compute_ratio or self.compute_product: X_new, new_features = _compute_additional_features(df.to_numpy(), self.good_cols_org_, self.compute_ratio, self.compute_product, self.verbose) # add new features to original dataframe df = pd.concat([df, pd.DataFrame(X_new, columns=new_features, index=df_index)], axis=1) # check again which of the features we should keep self.features_ = _check_features(df, self.corrthr, self.verbose) df = df[self.features_] else: self.features_ = self.good_cols_org_ if self.scale or self.power_transform: # scale data to avoid errors due to large numbers self.scaler_ = StandardScaler(with_mean=False) X_new = self.scaler_.fit_transform(df.to_numpy()) if self.power_transform: self.power_transformer_ = PowerTransformer(method='yeo-johnson', standardize=True) X_new = self.power_transformer_.fit_transform(X_new) df = pd.DataFrame(X_new, columns=df.columns, index=df.index) if self.verbose > 0: print("[AutoFeatLight] New data shape: %i x %i" % df.shape) # return either dataframe or array return df if self.return_df_ else df.to_numpy()
48.634921
154
0.639768
07e1fe0898e12966e20a3fd0b17889b7c7238d61
10,614
py
Python
devol/devol.py
eladmintzer/devol
73a0839b7164dde26a5e1f6c2eb692f7061947a5
[ "MIT" ]
null
null
null
devol/devol.py
eladmintzer/devol
73a0839b7164dde26a5e1f6c2eb692f7061947a5
[ "MIT" ]
null
null
null
devol/devol.py
eladmintzer/devol
73a0839b7164dde26a5e1f6c2eb692f7061947a5
[ "MIT" ]
null
null
null
""" Run a genetic algorithm to find an appropriate architecture for some image classification task with Keras+TF. To use, define a `GenomeHandler` defined in genomehandler.py. Then pass it, with training data, to a DEvol instance to run the genetic algorithm. See the readme for more detailed instructions. """ from __future__ import print_function import random as rand import csv import operator import gc import os from datetime import datetime from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.models import load_model import tensorflow.keras.backend as K from sklearn.metrics import log_loss import numpy as np if K.backend() == 'tensorflow': import tensorflow as tf __all__ = ['DEvol'] METRIC_OPS = [operator.__lt__, operator.__gt__] METRIC_OBJECTIVES = [min, max] class DEvol: """ Object which carries out genetic search and returns top performing model upon completion. """ def __init__(self, genome_handler, data_path=""): """ Initialize a DEvol object which carries out the training and evaluation of a genetic search. Args: genome_handler (GenomeHandler): the genome handler object defining the restrictions for the architecture search space data_path (str): the file which the genome encodings and metric data will be stored in """ self.genome_handler = genome_handler self.datafile = data_path or (datetime.now().ctime() + 'test_devol.csv') self._bssf = -1 if os.path.isfile(data_path) and os.stat(data_path).st_size > 1: raise ValueError(('Non-empty file %s already exists. Please change' 'file path to prevent overwritten genome data.' % data_path)) print("Genome encoding and metric data stored at", self.datafile, "\n") with open(self.datafile, 'w') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) metric_cols = ["Val Loss", "Val Accuracy"] genome = genome_handler.genome_representation() + metric_cols writer.writerow(genome) def set_objective(self, metric): """ Set the metric for optimization. Can also be done by passing to `run`. Args: metric (str): either 'acc' to maximize classification accuracy, or else 'loss' to minimize the loss function """ if metric == 'acc': metric = 'accuracy' if metric not in ['loss', 'accuracy']: raise ValueError(('Invalid metric name {} provided - should be' '"accuracy" or "loss"').format(metric)) self._metric = metric self._objective = "max" if self._metric == "accuracy" else "min" self._metric_index = 1 if self._metric == 'loss' else -1 self._metric_op = METRIC_OPS[self._objective == 'max'] self._metric_objective = METRIC_OBJECTIVES[self._objective == 'max'] def run(self, dataset, num_generations, pop_size, epochs, fitness=None, metric='accuracy'): """ Run genetic search on dataset given number of generations and population size Args: dataset : tuple or list of numpy arrays in form ((train_data, train_labels), (validation_data, validation_labels)) num_generations (int): number of generations to search pop_size (int): initial population size epochs (int): epochs for each model eval, passed to keras model.fit fitness (None, optional): scoring function to be applied to population scores, will be called on a numpy array which is a min/max scaled version of evaluated model metrics, so It should accept a real number including 0. If left as default just the min/max scaled values will be used. metric (str, optional): must be "accuracy" or "loss" , defines what to optimize during search Returns: keras model: best model found with weights """ self.set_objective(metric) # If no validation data is given set it to None if len(dataset) == 2: (self.x_train, self.y_train), (self.x_test, self.y_test) = dataset self.x_val = None self.y_val = None else: (self.x_train, self.y_train), (self.x_test, self.y_test), (self.x_val, self.y_val) = dataset # generate and evaluate initial population members = self._generate_random_population(pop_size) pop = self._evaluate_population(members, epochs, fitness, 0, num_generations) # evolve for gen in range(1, num_generations): members = self._reproduce(pop, gen) pop = self._evaluate_population(members, epochs, fitness, gen, num_generations) return load_model('best-model.h5') def _reproduce(self, pop, gen): members = [] # 95% of population from crossover for _ in range(int(len(pop) * 0.95)): members.append(self._crossover(pop.select(), pop.select())) # best models survive automatically members += pop.get_best(len(pop) - int(len(pop) * 0.95)) # randomly mutate for imem, mem in enumerate(members): members[imem] = self._mutate(mem, gen) return members def _evaluate(self, genome, epochs): model = self.genome_handler.decode(genome) loss, accuracy = None, None fit_params = { 'x': self.x_train, 'y': self.y_train, 'validation_split': 0.1, 'epochs': epochs, 'verbose': 1, 'callbacks': [ EarlyStopping(monitor='val_loss', patience=1, verbose=1) ] } if self.x_val is not None: fit_params['validation_data'] = (self.x_val, self.y_val) try: model.fit(**fit_params) loss, accuracy = model.evaluate(self.x_test, self.y_test, verbose=0) except Exception as e: loss, accuracy = self._handle_broken_model(model, e) self._record_stats(model, genome, loss, accuracy) return model, loss, accuracy def _record_stats(self, model, genome, loss, accuracy): with open(self.datafile, 'a') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) row = list(genome) + [loss, accuracy] writer.writerow(row) met = loss if self._metric == 'loss' else accuracy if (self._bssf is -1 or self._metric_op(met, self._bssf) and accuracy is not 0): try: os.remove('best-model.h5') except OSError: pass self._bssf = met model.save('best-model.h5') def _handle_broken_model(self, model, error): del model n = self.genome_handler.n_classes loss = log_loss(np.concatenate(([1], np.zeros(n - 1))), np.ones(n) / n) accuracy = 1 / n gc.collect() if K.backend() == 'tensorflow': K.clear_session() tf.compat.v1.reset_default_graph() print('An error occurred and the model could not train:') print(error) print(('Model assigned poor score. Please ensure that your model' 'constraints live within your computational resources.')) return loss, accuracy def _evaluate_population(self, members, epochs, fitness, igen, ngen): fit = [] for imem, mem in enumerate(members): self._print_evaluation(imem, len(members), igen, ngen) res = self._evaluate(mem, epochs) v = res[self._metric_index] del res fit.append(v) fit = np.array(fit) self._print_result(fit, igen) return _Population(members, fit, fitness, obj=self._objective) def _print_evaluation(self, imod, nmod, igen, ngen): fstr = '\nmodel {0}/{1} - generation {2}/{3}:\n' print(fstr.format(imod + 1, nmod, igen + 1, ngen)) def _generate_random_population(self, size): return [self.genome_handler.generate() for _ in range(size)] def _print_result(self, fitness, generation): result_str = ('Generation {3}:\t\tbest {4}: {0:0.4f}\t\taverage:' '{1:0.4f}\t\tstd: {2:0.4f}') print(result_str.format(self._metric_objective(fitness), np.mean(fitness), np.std(fitness), generation + 1, self._metric)) def _crossover(self, genome1, genome2): cross_ind = rand.randint(0, len(genome1)) child = genome1[:cross_ind] + genome2[cross_ind:] return child def _mutate(self, genome, generation): # increase mutations as program continues num_mutations = max(3, generation // 4) return self.genome_handler.mutate(genome, num_mutations) class _Population(object): def __len__(self): return len(self.members) def __init__(self, members, fitnesses, score, obj='max'): self.members = members scores = fitnesses - fitnesses.min() if scores.max() > 0: scores /= scores.max() if obj == 'min': scores = 1 - scores if score: self.scores = score(scores) else: self.scores = scores self.s_fit = sum(self.scores) def get_best(self, n): combined = [(self.members[i], self.scores[i]) for i in range(len(self.members))] sorted(combined, key=(lambda x: x[1]), reverse=True) return [x[0] for x in combined[:n]] def select(self): dart = rand.uniform(0, self.s_fit) sum_fits = 0 for i in range(len(self.members)): sum_fits += self.scores[i] if sum_fits >= dart: return self.members[i]
36.982578
104
0.573394
84122b70d7f0be23507a51695beb753d765a37a3
1,389
py
Python
scripts/pa_delete_scheduled_task.py
pythonanywhere/helper-scripts
a1f4b5c060b15515c71fa8cbfb65bb3409c8416a
[ "MIT" ]
27
2017-09-13T20:44:03.000Z
2022-01-13T19:09:07.000Z
scripts/pa_delete_scheduled_task.py
pythonanywhere/helper-scripts
a1f4b5c060b15515c71fa8cbfb65bb3409c8416a
[ "MIT" ]
30
2017-01-18T16:55:52.000Z
2022-02-14T16:15:15.000Z
scripts/pa_delete_scheduled_task.py
pythonanywhere/helper-scripts
a1f4b5c060b15515c71fa8cbfb65bb3409c8416a
[ "MIT" ]
9
2017-09-26T19:01:53.000Z
2021-11-08T01:18:05.000Z
#!/usr/bin/python3.6 """Delete scheduled task(s) by id or nuke'em all. Usage: pa_delete_scheduled_task.py id <num>... pa_delete_scheduled_task.py nuke [--force] Options: -h, --help Prints this message -f, --force Turns off user confirmation before deleting tasks Note: Task id <num> may be acquired with `pa_get_scheduled_tasks_list.py` script.""" from docopt import docopt from pythonanywhere.scripts_commons import ScriptSchema, get_logger, get_task_from_id from pythonanywhere.task import TaskList def _delete_all(force): if not force: if input("This will irrevocably delete all your tasks, proceed? [y/N] ").lower() != "y": return None for task in TaskList().tasks: task.delete_schedule() def _delete_by_id(id_numbers): for task_id in id_numbers: task = get_task_from_id(task_id, no_exit=True) task.delete_schedule() def main(*, id_numbers, nuke, force): get_logger(set_info=True) if nuke: _delete_all(force) else: _delete_by_id(id_numbers) if __name__ == "__main__": schema = ScriptSchema( {"id": bool, "<num>": ScriptSchema.id_multi, "nuke": bool, "--force": ScriptSchema.boolean} ) arguments = schema.validate_user_input(docopt(__doc__), conversions={"num": "id_numbers"}) arguments.pop("id") main(**arguments)
26.207547
99
0.672426
5cd1adeed5715dd4d64af11661cdb36222e86ad6
3,492
py
Python
maths/fibonacci.py
MOHAK7488/Python-3-Master
36dbc5a62d7bfb12ddec27efb22dd7853e408fd0
[ "MIT" ]
null
null
null
maths/fibonacci.py
MOHAK7488/Python-3-Master
36dbc5a62d7bfb12ddec27efb22dd7853e408fd0
[ "MIT" ]
null
null
null
maths/fibonacci.py
MOHAK7488/Python-3-Master
36dbc5a62d7bfb12ddec27efb22dd7853e408fd0
[ "MIT" ]
null
null
null
# fibonacci.py """ 1. Calculates the iterative fibonacci sequence 2. Calculates the fibonacci sequence with a formula an = [ Phin - (phi)n ]/Sqrt[5] reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts. <http://www.math.hmc.edu/funfacts> """ import math import functools import time from decimal import getcontext, Decimal getcontext().prec = 100 def timer_decorator(func): @functools.wraps(func) def timer_wrapper(*args, **kwargs): start = time.time() func(*args, **kwargs) end = time.time() if int(end - start) > 0: print(f"Run time for {func.__name__}: {(end - start):0.2f}s") else: print(f"Run time for {func.__name__}: {(end - start)*1000:0.2f}ms") return func(*args, **kwargs) return timer_wrapper # define Python user-defined exceptions class Error(Exception): """Base class for other exceptions""" class ValueTooLargeError(Error): """Raised when the input value is too large""" class ValueTooSmallError(Error): """Raised when the input value is not greater than one""" class ValueLessThanZero(Error): """Raised when the input value is less than zero""" def _check_number_input(n, min_thresh, max_thresh=None): """ :param n: single integer :type n: int :param min_thresh: min threshold, single integer :type min_thresh: int :param max_thresh: max threshold, single integer :type max_thresh: int :return: boolean """ try: if n >= min_thresh and max_thresh is None: return True elif min_thresh <= n <= max_thresh: return True elif n < 0: raise ValueLessThanZero elif n < min_thresh: raise ValueTooSmallError elif n > max_thresh: raise ValueTooLargeError except ValueLessThanZero: print("Incorrect Input: number must not be less than 0") except ValueTooSmallError: print( f"Incorrect Input: input number must be > {min_thresh} for the recursive " "calculation" ) except ValueTooLargeError: print( f"Incorrect Input: input number must be < {max_thresh} for the recursive " "calculation" ) return False @timer_decorator def fib_iterative(n): """ :param n: calculate Fibonacci to the nth integer :type n:int :return: Fibonacci sequence as a list """ n = int(n) if _check_number_input(n, 2): seq_out = [0, 1] a, b = 0, 1 for _ in range(n - len(seq_out)): a, b = b, a + b seq_out.append(b) return seq_out @timer_decorator def fib_formula(n): """ :param n: calculate Fibonacci to the nth integer :type n:int :return: Fibonacci sequence as a list """ seq_out = [0, 1] n = int(n) if _check_number_input(n, 2, 1000000): sqrt = Decimal(math.sqrt(5)) phi_1 = Decimal(1 + sqrt) / Decimal(2) phi_2 = Decimal(1 - sqrt) / Decimal(2) for i in range(2, n): temp_out = ((phi_1 ** Decimal(i)) - (phi_2 ** Decimal(i))) * ( Decimal(sqrt) ** Decimal(-1) ) seq_out.append(int(temp_out)) return seq_out if __name__ == "__main__": num = 20 # print(f'{fib_recursive(num)}\n') # print(f'{fib_iterative(num)}\n') # print(f'{fib_formula(num)}\n') fib_iterative(num) fib_formula(num)
26.656489
86
0.601661
359ab6b5f0900d51b8199e6d2b001486d0d8df07
228
py
Python
mundo1/D14.py
KayanOkagawa/Cursoemvideo-Python3-Exercicios
10c8386102cc0928f8f090070eb3218deb3d60fe
[ "MIT" ]
null
null
null
mundo1/D14.py
KayanOkagawa/Cursoemvideo-Python3-Exercicios
10c8386102cc0928f8f090070eb3218deb3d60fe
[ "MIT" ]
null
null
null
mundo1/D14.py
KayanOkagawa/Cursoemvideo-Python3-Exercicios
10c8386102cc0928f8f090070eb3218deb3d60fe
[ "MIT" ]
null
null
null
#-*-coding:utf8;-*- #qpy:console print(5 * '-', 'CONVERSOR DE TEMPERATURA', 5 * '-') print('\n') c = float(input('Digite o valor em Graus Celsius: ')) f = 1.8 * c + 32 print('O valor de {}°C em Farenheit é {}°F.'.format(c, f))
25.333333
58
0.583333
17dc4b1d3e427440624f9dab678917134223f897
3,925
py
Python
ProtoToLua/protoToPb.py
Githaojiejie/proto2cs
b1e4308101d92bdf3269e4442a3e453905a336a7
[ "MIT" ]
null
null
null
ProtoToLua/protoToPb.py
Githaojiejie/proto2cs
b1e4308101d92bdf3269e4442a3e453905a336a7
[ "MIT" ]
null
null
null
ProtoToLua/protoToPb.py
Githaojiejie/proto2cs
b1e4308101d92bdf3269e4442a3e453905a336a7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- #!/usr/bin/python3 import configparser import os import os.path import pprint import re class MsgInfo(object): def __init__(self,msgid,msgname,comment): self.msgid = msgid self.msgname = msgname self.comment = comment msgid = "" msgname = "" comment = "" class WrapFile: fs = None def __init__(self,real_file): self.fs = real_file def writelines(self,s): self.fs.write(s + "\n") def flush(self): self.fs.flush() def close(self): self.fs.close() def base_proto_to_pb(proto_path,dstdir): os.chdir(proto_path) pbfileList = [] for filename in os.listdir(proto_path): curfile = proto_path + filename if os.path.isfile(curfile): houzhui = curfile[curfile.rfind('.'):] if houzhui == '.proto': file = filename[:filename.rfind('.')] destname = dstdir + file + '.pb' srcname = file + '.proto' print(srcname) pbfileList.append(file + '.pb') cmd = "protoc --descriptor_set_out " + destname + " " + srcname os.system(cmd) return pbfileList def ParsePbfile(fileList): print("START GEN PbFilesDefine") config=configparser.ConfigParser() config.read("Config.ini") luaPath = config.get("PATH","lua") configFolderPath = luaPath + "Config\\" fileDefine = configFolderPath + "PbFilesDefine.lua" fs = WrapFile(open(fileDefine,"w+")) fs.writelines("--Generated By ParsePbfile Do not Edit"); fs.writelines("local config = {"); for name in fileList: fs.writelines("\t\"%s\","%(name)); fs.writelines("}"); fs.writelines("return config"); fs.flush(); fs.close(); def proto_to_pb(): begin_path = os.getcwd() config=configparser.ConfigParser() config.read("Config.ini") proto_path = config.get("PATH","protocol") dstdir = config.get("PATH","lua") dstdir = dstdir + "Proto\\" if not os.path.isabs(proto_path): proto_path = begin_path + "\\" + proto_path if not os.path.isabs(dstdir): dstdir = begin_path + "\\" + dstdir pbfileList =base_proto_to_pb(proto_path,dstdir) os.chdir(begin_path) ParsePbfile(pbfileList) def ParseCommandProto(): config=configparser.ConfigParser() config.read("Config.ini") proto_path = config.get("PATH","protocol") proto_path = proto_path + "Command.proto" msgInfoList = [] protofile = open(proto_path,'r',encoding='UTF-8') for line in protofile.readlines(): line = line.strip().rstrip(); print(line) msgName = re.search("[a-zA-Z]+_[a-zA-Z]+",line) if not msgName: continue msgId = re.search("[0-9]+",line) splitstr = re.split(";[\s]*//",line); comment = "" if len(splitstr) > 1 : comment = splitstr[1] msgInfoList.append(MsgInfo(msgId.group(0),msgName.group(0),comment)) #print(comment,msgId.group(0)) #print(msgId.group(0),"=",msgName.group(0)); return msgInfoList def ParseMsgIDMap(fs,msgidList): fs.writelines("--Generated By msgid-gen-lua Do not Edit"); fs.writelines("local config = {"); for _msgDef in msgidList: splitMsgname = _msgDef.msgname.split('_') fs.writelines("\t[%s] = \"%s\",--%s"% (_msgDef.msgid, "ProtoCmd."+splitMsgname[0], _msgDef.comment)); fs.writelines("}"); fs.writelines("return config"); fs.flush(); fs.close(); def ParseMsgIDDefine(fs,msgidList): fs.writelines("--Generated By msgid-gen-lua Do not Edit"); fs.writelines("local config = {"); for _msgDef in msgidList: fs.writelines("\t%s = %s, --%s"%( _msgDef.msgname, _msgDef.msgid,_msgDef.comment)); fs.writelines("}"); fs.writelines("return config"); fs.flush(); fs.close(); def GenMsgID(): config=configparser.ConfigParser() config.read("Config.ini") luaPath = config.get("PATH","lua") msgFolderPath = luaPath + "Config\\" MsgIDDefine = msgFolderPath + "MsgIDDefine.lua" MsgIDMap = msgFolderPath + "MsgIDMap.lua" msgList = ParseCommandProto() print("START GEN MsgIDDefine") wf = WrapFile(open(MsgIDDefine,"w+")) ParseMsgIDDefine(wf,msgList) wf = WrapFile(open(MsgIDMap,"w+")) ParseMsgIDMap(wf,msgList) proto_to_pb() GenMsgID()
25.160256
103
0.684076
bf83ed903938c3db7f26d148d3f788648faff435
863
py
Python
scripts/api/workflow_import.py
mjakubczak/galaxy
77c1d328d45c98881d5b310d3461d2b116363daf
[ "CC-BY-3.0" ]
1
2019-11-03T11:45:43.000Z
2019-11-03T11:45:43.000Z
scripts/api/workflow_import.py
vazovn/galaxy
8b538f17feb17eba11b3025a2dfb3ba35414a78e
[ "CC-BY-3.0" ]
null
null
null
scripts/api/workflow_import.py
vazovn/galaxy
8b538f17feb17eba11b3025a2dfb3ba35414a78e
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python """ Import workflows from the command line. Example calls: python workflow_import.py <api_key> <galaxy_url> '/path/to/workflow/file [--add_to_menu]' """ from __future__ import print_function import os import sys from common import submit def main(): api_key = sys.argv[1] api_base_url = sys.argv[2] api_url = "%s/api/workflows" % api_base_url try: data = {} data['installed_repository_file'] = sys.argv[3] if len(sys.argv) > 4 and sys.argv[4] == "--add_to_menu": data['add_to_menu'] = True except IndexError: print('usage: %s key galaxy_url workflow_file' % os.path.basename(sys.argv[0])) sys.exit(1) # print display( api_key, api_base_url + "/api/workflows" ) submit( api_key, api_url, data, return_formatted=False ) if __name__ == '__main__': main()
26.96875
89
0.65701
78b7f0c95ae8faa2079023c004a01a2eaa630f38
819
py
Python
102_user_display_and_settings_module/main/migrations/0016_auto_20200313_0942.py
Ampel2Go/community
08759509287efef08218a4eb6e6e2b029b862b4a
[ "Apache-2.0" ]
2
2020-08-08T15:38:08.000Z
2020-11-18T13:13:45.000Z
102_user_display_and_settings_module/main/migrations/0016_auto_20200313_0942.py
Ampel2Go/community
08759509287efef08218a4eb6e6e2b029b862b4a
[ "Apache-2.0" ]
1
2021-09-22T19:46:49.000Z
2021-09-22T19:46:49.000Z
102_user_display_and_settings_module/main/migrations/0016_auto_20200313_0942.py
Ampel2Go/community
08759509287efef08218a4eb6e6e2b029b862b4a
[ "Apache-2.0" ]
1
2022-02-16T09:52:31.000Z
2022-02-16T09:52:31.000Z
# Generated by Django 2.1.1 on 2020-03-13 09:42 import datetime from django.db import migrations, models import tinymce.models class Migration(migrations.Migration): dependencies = [ ('main', '0015_auto_20200312_1835'), ] operations = [ migrations.AlterField( model_name='wikiarticle', name='body', field=tinymce.models.HTMLField(default='body'), ), migrations.AlterField( model_name='wikiarticle', name='date', field=models.DateField(default=datetime.datetime(2020, 3, 13, 9, 42, 34, 808015)), ), migrations.AlterField( model_name='wikiarticle', name='title_short', field=models.CharField(default='title_short', max_length=27), ), ]
26.419355
94
0.593407
c9bcbfa19233933b87205af30bbf3926099311e6
181
py
Python
code_challenges/sum_matrix/sum_matrix.py
eugenemonnier/data-structures-and-algorithms
90177c2543e5a3e40a0bffe76ad2aeafba7574a6
[ "MIT" ]
null
null
null
code_challenges/sum_matrix/sum_matrix.py
eugenemonnier/data-structures-and-algorithms
90177c2543e5a3e40a0bffe76ad2aeafba7574a6
[ "MIT" ]
null
null
null
code_challenges/sum_matrix/sum_matrix.py
eugenemonnier/data-structures-and-algorithms
90177c2543e5a3e40a0bffe76ad2aeafba7574a6
[ "MIT" ]
null
null
null
def sum_matrix(matrix): result = list() for idx, arr in enumerate(matrix): result.append(0) for val in arr: result[idx] += val return result
22.625
38
0.569061
a3982ab3e4bfef371c60899a2226f1f145df19a1
35,279
py
Python
python/paddle/fluid/tests/unittests/test_initializer.py
zhenlin-work/Paddle
ed7a21dea0ddcffb6f7f33ce21c5c368f5c7866b
[ "Apache-2.0" ]
2
2018-12-27T07:13:55.000Z
2021-06-16T09:30:09.000Z
python/paddle/fluid/tests/unittests/test_initializer.py
zhenlin-work/Paddle
ed7a21dea0ddcffb6f7f33ce21c5c368f5c7866b
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/tests/unittests/test_initializer.py
zhenlin-work/Paddle
ed7a21dea0ddcffb6f7f33ce21c5c368f5c7866b
[ "Apache-2.0" ]
1
2020-11-25T10:41:52.000Z
2020-11-25T10:41:52.000Z
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import math import unittest import paddle import paddle.fluid as fluid import paddle.fluid.framework as framework import paddle.fluid.initializer as initializer from paddle.fluid.core import VarDesc DELTA = 0.00001 def check_cast_op(op): return op.type == 'cast' and \ op.attr('in_dtype') == VarDesc.VarType.FP32 and \ op.attr('out_dtype') in [VarDesc.VarType.FP16, VarDesc.VarType.BF16] def output_hist(out): hist, _ = np.histogram(out, range=(-1, 1)) hist = hist.astype("float32") hist /= float(out.size) prob = 0.1 * np.ones((10)) return hist, prob class TestConstantInitializer(unittest.TestCase): def test_calculate_gain(self): self.assertEqual(paddle.nn.initializer.calculate_gain('sigmoid'), 1) self.assertEqual(paddle.nn.initializer.calculate_gain('linear'), 1) self.assertEqual(paddle.nn.initializer.calculate_gain('conv2d'), 1) self.assertEqual(paddle.nn.initializer.calculate_gain('tanh'), 5.0 / 3) self.assertEqual( paddle.nn.initializer.calculate_gain('relu'), math.sqrt(2.0)) self.assertEqual( paddle.nn.initializer.calculate_gain('leaky_relu', 1), 1) self.assertEqual(paddle.nn.initializer.calculate_gain('selu'), 3.0 / 4) def test_constant_initializer_default_value(self, dtype="float32"): """Test the constant initializer with default value """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.ConstantInitializer()) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA) return block def test_constant_initializer(self, dtype="float32"): """Test constant initializer with supplied value """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.ConstantInitializer(2.3)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'fill_constant') self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA) return block def test_constant_initializer_fp16(self): """Test constant initializer with float16 """ block = self.test_constant_initializer_default_value("float16") self.assertTrue(check_cast_op(block.ops[1])) block = self.test_constant_initializer("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_constant_initializer_bf16(self): """Test constant initializer with bfloat16 No cast operator has been added here """ self.test_constant_initializer_default_value("uint16") self.test_constant_initializer("uint16") class TestUniformInitializer(unittest.TestCase): def test_uniform_initializer_default_value(self, dtype="float32"): """Test the uniform initializer with default value """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer()) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) return block def test_uniform_initializer_random_seed(self): """Test the uniform initializer with manually setting seed """ program = framework.Program() program.random_seed = 123 block = program.global_block() for _ in range(2): block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param1", initializer=initializer.UniformInitializer()) block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param2", initializer=initializer.UniformInitializer(seed=456)) init_op = block.ops[1] self.assertEqual(init_op.attr("seed"), 456) init_op1 = block.ops[0] self.assertEqual(init_op1.attr("seed"), 123) def test_uniform_initializer(self, dtype="float32"): """Test uniform initializer with supplied attributes """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer(-4.2, 3.1, 123)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA) self.assertEqual(init_op.attr('seed'), 123) return block def test_uniform_initializer_two_op(self, dtype="float32"): """Test uniform initializer with supplied attributes """ program = framework.Program() block = program.global_block() for i in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.UniformInitializer(-4.2, float(i), 123)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op0 = block.ops[0] self.assertEqual(init_op0.type, 'uniform_random') self.assertAlmostEqual(init_op0.attr('min'), -4.2, delta=DELTA) self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA) self.assertEqual(init_op0.attr('seed'), 123) return block def test_uniform_initializer_fp16(self): """Test uniform initializer with float16 """ block = self.test_uniform_initializer_default_value("float16") self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer(dtype="float16") self.assertTrue(check_cast_op(block.ops[1])) block = self.test_uniform_initializer_two_op("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_uniform_initializer_bf16(self): """Test uniform initializer with bfloat16 No cast operator has been added here """ block = self.test_uniform_initializer_default_value("uint16") block = self.test_uniform_initializer(dtype="uint16") block = self.test_uniform_initializer_two_op("uint16") class TestNormalInitializer(unittest.TestCase): def test_normal_initializer_default_value(self): """Test the normal initializer with default value """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.NormalInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_initializer(self, dtype="float32"): """Test normal initializer with supplied attributes """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.NormalInitializer(2.3, 1.9, 123)) num_ops = 2 if dtype in ["float16", "uint16"] else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA) self.assertEqual(init_op.attr('seed'), 123) return block def test_normal_initializer_fp16(self): """Test normal initializer with float16 """ block = self.test_normal_initializer("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_normal_initializer_bf16(self): """Test normal initializer with bfloat16 """ block = self.test_normal_initializer("uint16") self.assertTrue(check_cast_op(block.ops[1])) class TestXavierInitializer(unittest.TestCase): def test_uniform_xavier_initializer(self): """Test Xavier initializer with uniform distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1])) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_uniform_xavier_initializer_conv(self): """Test Xavier initializer with uniform distribution on for convolutions. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.XavierInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') receptive_field_size = float(15 * 20) limit = np.sqrt(6.0 / ( (param.shape[0] + param.shape[1]) * receptive_field_size)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_xavier_initializer(self): """Test Xavier initializer with normal distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') std = np.sqrt(2.0 / (param.shape[0] + param.shape[1])) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_xavier_initializer_conv(self): """Test Xavier initializer with normal distribution on for convolutions. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.XavierInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') receptive_field_size = float(15 * 20) std = np.sqrt(2.0 / ( (param.shape[0] + param.shape[1]) * receptive_field_size)) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_xavier_initializer_supplied_arguments(self, dtype="float32", uniform=True): """Test the Xavier initializer with supplied arguments """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.XavierInitializer( uniform=uniform, fan_in=12, fan_out=23, seed=134)) num_ops = 2 if (dtype == "float16" or (dtype == "uint16" and not uniform)) else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] if uniform: self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / (12 + 23)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) else: self.assertEqual(init_op.type, 'gaussian_random') self.assertEqual(init_op.attr('seed'), 134) return block def test_xavier_initializer_fp16(self): """Test the Xavier initializer with float16 """ block = self.test_xavier_initializer_supplied_arguments("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_xavier_initializer_bf16(self): """Test the Xavier initializer with bfloat16 """ block_uniform = self.test_xavier_initializer_supplied_arguments( "uint16") self.assertEqual(len(block_uniform.ops), 1) block_gaussian = self.test_xavier_initializer_supplied_arguments( "uint16", False) self.assertTrue(check_cast_op(block_gaussian.ops[1])) class TestMSRAInitializer(unittest.TestCase): def test_uniform_msra_initializer(self): """Test MSRA initializer with uniform distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.MSRAInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / param.shape[0]) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_uniform_msra_initializer_conv(self): """Test MSRA initializer with uniform distribution on for convolutions. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.MSRAInitializer()) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') receptive_field_size = float(15 * 20) limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size)) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_msra_initializer(self): """Test MSRA initializer with normal distribution on for matrix multiply. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="param", initializer=initializer.MSRAInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') std = np.sqrt(2.0 / param.shape[0]) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_normal_msra_initializer_conv(self): """Test MSRA initializer with normal distribution on for convolutions. """ program = framework.Program() block = program.global_block() for _ in range(2): param = block.create_parameter( dtype="float32", shape=[5, 10, 15, 20], lod_level=0, name="param", initializer=initializer.MSRAInitializer(uniform=False)) self.assertEqual(len(block.ops), 1) init_op = block.ops[0] self.assertEqual(init_op.type, 'gaussian_random') receptive_field_size = float(15 * 20) std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size)) self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) def test_msra_initializer_supplied_arguments(self, dtype="float32"): """Test the MSRA initializer with supplied arguments """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[5, 10], lod_level=0, name="param", initializer=initializer.MSRAInitializer( fan_in=12, seed=134)) num_ops = 2 if dtype == "float16" else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'uniform_random') limit = np.sqrt(6.0 / 12) self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA) self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA) self.assertEqual(init_op.attr('seed'), 134) return block def test_msra_initializer_fp16(self): """Test the MSRA initializer with float16 """ block = self.test_msra_initializer_supplied_arguments("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_msra_initializer_bf16(self): """Test the MSRA initializer with bfloat16 """ block = self.test_msra_initializer_supplied_arguments("uint16") class TestBilinearInitializer(unittest.TestCase): def test_bilinear_initializer(self, dtype="float32"): """Test the bilinear initializer with supplied arguments """ program = framework.Program() block = program.global_block() for _ in range(2): block.create_parameter( dtype=dtype, shape=[8, 1, 3, 3], lod_level=0, name="param", initializer=initializer.BilinearInitializer()) num_ops = 2 if dtype in ["float16", "uint16", "float64"] else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'assign_value') return block def test_bilinear_initializer_fp64(self): self.test_bilinear_initializer(dtype='float64') def test_bilinear_initializer_fp16(self): """Test the bilinear initializer with supplied arguments """ block = self.test_bilinear_initializer("float16") self.assertTrue(check_cast_op(block.ops[1])) def test_bilinear_initializer_bf16(self): """Test the bilinear initializer with supplied arguments """ block = self.test_bilinear_initializer("uint16") self.assertTrue(check_cast_op(block.ops[1])) def test_type_error(self): self.assertRaises(TypeError, self.test_bilinear_initializer, 'int32') class TestNumpyArrayInitializer(unittest.TestCase): def test_numpy_array_initializer(self, dtype="float32"): """Test the numpy array initializer with supplied arguments """ import numpy program = framework.Program() block = program.global_block() np_array = numpy.random.random((10000)).astype(dtype) for _ in range(2): block.create_parameter( dtype=np_array.dtype, shape=np_array.shape, lod_level=0, name="param", initializer=initializer.NumpyArrayInitializer(np_array)) num_ops = 2 if dtype in ["float16", "uint16"] else 1 self.assertEqual(len(block.ops), num_ops) init_op = block.ops[0] self.assertEqual(init_op.type, 'assign_value') assert (init_op.attr('fp32_values') == np_array).all() return block def test_numpy_array_initializer_fp16(self): """Test the numpy array initializer with float16 """ block = self.test_numpy_array_initializer("float16") self.assertTrue(block.ops[1]) def test_numpy_array_initializer_bf16(self): """Test the numpy array initializer with bfloat16 """ block = self.test_numpy_array_initializer("uint16") self.assertTrue(block.ops[1]) class TestSetGlobalInitializer(unittest.TestCase): def test_set_global_weight_initilizer(self): """Test Set Global Param initilizer with UniformInitializer """ main_prog = framework.Program() startup_prog = framework.Program() fluid.set_global_initializer(initializer.Uniform(low=-0.5, high=0.5)) with fluid.program_guard(main_prog, startup_prog): x = fluid.data(name="x", shape=[1, 3, 32, 32]) # default initilizer of param in layers.conv2d is NormalInitializer conv = fluid.layers.conv2d(x, 5, 3) block = startup_prog.global_block() self.assertEqual(len(block.ops), 2) # init weight is the first op, and bias is the second bias_init_op = block.ops[1] self.assertEqual(bias_init_op.type, 'fill_constant') self.assertAlmostEqual(bias_init_op.attr('value'), 0.0, delta=DELTA) param_init_op = block.ops[0] self.assertEqual(param_init_op.type, 'uniform_random') self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA) self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA) self.assertEqual(param_init_op.attr('seed'), 0) fluid.set_global_initializer(None) def test_set_global_bias_initilizer(self): """Test Set Global Bias initilizer with NormalInitializer """ main_prog = framework.Program() startup_prog = framework.Program() fluid.set_global_initializer( initializer.Uniform( low=-0.5, high=0.5), bias_init=initializer.Normal( loc=0.0, scale=2.0)) with fluid.program_guard(main_prog, startup_prog): x = fluid.data(name="x", shape=[1, 3, 32, 32]) # default initilizer of bias in layers.conv2d is ConstantInitializer conv = fluid.layers.conv2d(x, 5, 3) block = startup_prog.global_block() self.assertEqual(len(block.ops), 2) # init weight is the first op, and bias is the second bias_init_op = block.ops[1] self.assertEqual(bias_init_op.type, 'gaussian_random') self.assertAlmostEqual(bias_init_op.attr('mean'), 0.0, delta=DELTA) self.assertAlmostEqual(bias_init_op.attr('std'), 2.0, delta=DELTA) self.assertEqual(bias_init_op.attr('seed'), 0) param_init_op = block.ops[0] self.assertEqual(param_init_op.type, 'uniform_random') self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA) self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA) self.assertEqual(param_init_op.attr('seed'), 0) fluid.set_global_initializer(None) class TestUniformInitializerDygraph(unittest.TestCase): def test_uniform_initializer(self, dtype="float32"): """ In dygraph mode, we can use initializer directly to initialize a tensor. """ paddle.disable_static() tensor = paddle.zeros([1024, 1024, 16]) tensor.stop_gradient = False self.assertTrue(np.allclose(np.zeros((1024, 1024, 16)), tensor.numpy())) uniform_ = paddle.nn.initializer.Uniform() uniform_(tensor) self.assertEqual(tensor.stop_gradient, False) # stop_gradient is not changed hist, prob = output_hist(tensor.numpy()) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=1e-3), "hist: " + str(hist)) paddle.enable_static() class TesetconsistencyOfDynamicAndStaticGraph(unittest.TestCase): def test_order(self): paddle.set_device('cpu') SEED = 123 weight_attr = paddle.framework.ParamAttr( name="linear_weight", learning_rate=1.0, trainable=False, regularizer=None, initializer=paddle.nn.initializer.TruncatedNormal( mean=0.0, std=2.0)) bias_attr = paddle.framework.ParamAttr( name="linear_bias", learning_rate=1.0, trainable=False, regularizer=None, initializer=paddle.nn.initializer.TruncatedNormal( mean=0.0, std=2.0)) def run_dynamic_graph(): paddle.disable_static() paddle.seed(SEED) linear = paddle.nn.Linear( 1, 1, weight_attr=weight_attr, bias_attr=bias_attr) return linear.weight.numpy(), linear.bias.numpy() paddle.enable_static() def run_static_graph(): paddle.enable_static() exe = paddle.static.Executor(paddle.CPUPlace()) paddle.seed(SEED) linear = paddle.nn.Linear( 1, 1, weight_attr=weight_attr, bias_attr=bias_attr) res = exe.run(paddle.static.default_startup_program(), fetch_list=['linear_weight', 'linear_bias']) return res[0], res[1] dynamic_res = run_dynamic_graph() static_res = run_static_graph() self.assertTrue(np.array_equal(dynamic_res[0], static_res[0])) self.assertTrue(np.array_equal(dynamic_res[1], static_res[1])) # 2-D Parameter with shape: [10, 15] class TestOrthogonalInitializer1(unittest.TestCase): """ case 1 """ def config(self): self.weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.Orthogonal(gain=3.0)) self.dtype = "float64" self.in_features = 10 self.out_features = 15 self.num_ops = 9 def check_result(self, a, b): self.assertTrue(np.array_equal(a, b)) self.assertTrue(np.allclose(np.matmul(a, a.T), 9 * np.eye(10))) def test_orthogonal(self): self.config() paddle.set_default_dtype(self.dtype) paddle.disable_static() paddle.seed(2021) linear = paddle.nn.Linear( self.in_features, self.out_features, weight_attr=self.weight_attr) res_dygraph = linear.weight.numpy() paddle.enable_static() paddle.seed(2021) start_prog = paddle.static.Program() main_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): linear = paddle.nn.Linear( self.in_features, self.out_features, weight_attr=self.weight_attr) block = start_prog.global_block() self.assertEqual(len(block.ops), self.num_ops) self.assertEqual(block.ops[0].type, 'gaussian_random') self.assertEqual(block.ops[1].type, 'qr') self.assertEqual(block.ops[2].type, 'diag_v2') self.assertEqual(block.ops[3].type, 'sign') self.assertEqual(block.ops[4].type, 'elementwise_mul') self.assertEqual(block.ops[-3].type, 'reshape2') self.assertEqual(block.ops[-2].type, 'scale') exe = paddle.static.Executor() res_static = exe.run(start_prog, fetch_list=[linear.weight])[0] self.check_result(res_dygraph, res_static) # 2-D Parameter with shape: [15, 10] class TestOrthogonalInitializer2(TestOrthogonalInitializer1): """ case 2 """ def config(self): self.weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.Orthogonal(gain=2.0)) self.dtype = "float64" self.in_features = 15 self.out_features = 10 self.num_ops = 8 def check_result(self, a, b): self.assertTrue(np.array_equal(a, b)) self.assertTrue(np.allclose(np.matmul(a.T, a), 4 * np.eye(10))) # 2-D Parameter with shape: [10, 10] class TestOrthogonalInitializer3(TestOrthogonalInitializer1): """ case 3 """ def config(self): self.weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.Orthogonal()) self.dtype = "float32" self.in_features = 10 self.out_features = 10 self.num_ops = 8 def check_result(self, a, b): self.assertTrue(np.array_equal(a, b)) self.assertTrue(np.allclose(np.matmul(a.T, a), np.eye(10), atol=1.e-6)) self.assertTrue(np.allclose(np.matmul(a, a.T), np.eye(10), atol=1.e-6)) def test_error(self): self.config() with self.assertRaises(AssertionError): paddle.nn.Linear(10, 10, bias_attr=self.weight_attr) # 4-D Parameter with shape: [6, 4, 3, 3] class TestOrthogonalInitializer4(unittest.TestCase): """ case 4 """ def config(self): self.weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.Orthogonal(gain=3.0)) self.dtype = "float64" self.in_features = 4 self.out_features = 6 self.kernel_size = (3, 3) def check_result(self, a, b): self.assertTrue(np.array_equal(a, b)) a = a.reshape(6, -1) self.assertTrue(np.allclose(np.matmul(a, a.T), 9 * np.eye(6))) def test_orthogonal(self): self.config() paddle.set_default_dtype(self.dtype) paddle.disable_static() paddle.seed(2021) conv2d = paddle.nn.Conv2D( self.in_features, self.out_features, self.kernel_size, weight_attr=self.weight_attr) res_dygraph = conv2d.weight.numpy() paddle.enable_static() paddle.seed(2021) start_prog = paddle.static.Program() main_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): conv2d = paddle.nn.Conv2D( self.in_features, self.out_features, self.kernel_size, weight_attr=self.weight_attr) exe = paddle.static.Executor() res_static = exe.run(paddle.static.default_startup_program(), fetch_list=[conv2d.weight])[0] self.check_result(res_dygraph, res_static) # 4-D Parameter with shape: [50, 4, 3, 3] class TestOrthogonalInitializer5(TestOrthogonalInitializer4): """ case 5 """ def config(self): self.weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.Orthogonal(gain=2.0)) self.dtype = "float64" self.in_features = 4 self.out_features = 50 self.kernel_size = (3, 3) def check_result(self, a, b): self.assertTrue(np.array_equal(a, b)) a = a.reshape(50, -1) self.assertTrue(np.allclose(np.matmul(a.T, a), 4 * np.eye(36))) # 4-D Parameter with shape: [36, 4, 3, 3] class TestOrthogonalInitializer6(TestOrthogonalInitializer4): """ case 6 """ def config(self): self.weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.Orthogonal()) self.dtype = "float32" self.in_features = 4 self.out_features = 36 self.kernel_size = (3, 3) def check_result(self, a, b): self.assertTrue(np.array_equal(a, b)) a = a.reshape(36, -1) self.assertTrue(np.allclose(np.matmul(a.T, a), np.eye(36), atol=1.e-6)) self.assertTrue(np.allclose(np.matmul(a, a.T), np.eye(36), atol=1.e-6)) if __name__ == '__main__': unittest.main()
38.346739
80
0.61127
9d9f4df75bf2f5cddcf3bbc817874f1b95adcbc8
541
py
Python
test/strings_test.py
jonDuke/lambdata-jduke
712495aca7870398b24388c9e1388bfedf48dad2
[ "MIT" ]
null
null
null
test/strings_test.py
jonDuke/lambdata-jduke
712495aca7870398b24388c9e1388bfedf48dad2
[ "MIT" ]
2
2021-04-01T08:17:59.000Z
2021-04-01T08:20:37.000Z
test/strings_test.py
jonDuke/lambdata-jduke
712495aca7870398b24388c9e1388bfedf48dad2
[ "MIT" ]
null
null
null
# test/strings_test.py import unittest class TestStringMethods(unittest.TestCase): def test_upper(self): self.assertEqual('foo'.upper(), 'FOO') def test_isupper(self): self.assertTrue('FOO'.isupper()) self.assertFalse('Foo'.isupper()) def test_split(self): s = 'hello world' self.assertEqual(s.split(), ['hello', 'world']) # check that s.split fails when the separator is not a string with self.assertRaises(TypeError): s.split(2) if __name__ == '__main__': unittest.main()
24.590909
67
0.654344
70fbdb36b833e3541d2accae10a51866e2b06818
11,927
py
Python
mx_platform_python/model/managed_member_create_request.py
mxenabled/mx-platform-python
060dae7ddb02fdcf41fa7f7aebfa4b8a0273afac
[ "MIT" ]
null
null
null
mx_platform_python/model/managed_member_create_request.py
mxenabled/mx-platform-python
060dae7ddb02fdcf41fa7f7aebfa4b8a0273afac
[ "MIT" ]
14
2021-11-30T21:56:19.000Z
2022-02-07T18:47:10.000Z
mx_platform_python/model/managed_member_create_request.py
mxenabled/mx-platform-python
060dae7ddb02fdcf41fa7f7aebfa4b8a0273afac
[ "MIT" ]
1
2022-01-12T14:59:39.000Z
2022-01-12T14:59:39.000Z
""" MX Platform API The MX Platform API is a powerful, fully-featured API designed to make aggregating and enhancing financial data easy and reliable. It can seamlessly connect your app or website to tens of thousands of financial institutions. # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from mx_platform_python.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from mx_platform_python.exceptions import ApiAttributeError class ManagedMemberCreateRequest(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'institution_code': (str,), # noqa: E501 'id': (str,), # noqa: E501 'metadata': (str,), # noqa: E501 'name': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'institution_code': 'institution_code', # noqa: E501 'id': 'id', # noqa: E501 'metadata': 'metadata', # noqa: E501 'name': 'name', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, institution_code, *args, **kwargs): # noqa: E501 """ManagedMemberCreateRequest - a model defined in OpenAPI Args: institution_code (str): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) id (str): [optional] # noqa: E501 metadata (str): [optional] # noqa: E501 name (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.institution_code = institution_code for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, institution_code, *args, **kwargs): # noqa: E501 """ManagedMemberCreateRequest - a model defined in OpenAPI Args: institution_code (str): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) id (str): [optional] # noqa: E501 metadata (str): [optional] # noqa: E501 name (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.institution_code = institution_code for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
43.529197
242
0.571141
d61c5b8492e3a80c086fc065f27ff7b7071e5197
350
py
Python
kale/tests/test_settings.py
ORIGINALLIFE/ndkale
759a7132afdfcabd2de658a7701673a928992827
[ "BSD-2-Clause" ]
null
null
null
kale/tests/test_settings.py
ORIGINALLIFE/ndkale
759a7132afdfcabd2de658a7701673a928992827
[ "BSD-2-Clause" ]
null
null
null
kale/tests/test_settings.py
ORIGINALLIFE/ndkale
759a7132afdfcabd2de658a7701673a928992827
[ "BSD-2-Clause" ]
null
null
null
"""Module for kale settings for unit tests.""" from __future__ import absolute_import import os QUEUE_CONFIG = os.path.join(os.path.split(os.path.abspath(__file__))[0], 'test_queue_config.yaml') QUEUE_CLASS = 'kale.test_utils.TestQueueClass' QUEUE_SELECTOR = 'kale.test_utils.TestQueueSelector' AWS_REGION = 'us-east-1'
31.818182
72
0.722857
97ee0ea0efebb0f559521ce0ebd840b502490bf8
60
py
Python
src/__init__.py
lelis-research/PyGames-synthesis
0c597243c04ce511d8ae5cfd52b1c043267b4503
[ "MIT" ]
1
2021-06-03T15:54:16.000Z
2021-06-03T15:54:16.000Z
src/__init__.py
olivier-vadiaval/catcher-synthesis
0c597243c04ce511d8ae5cfd52b1c043267b4503
[ "MIT" ]
3
2021-07-26T19:58:31.000Z
2021-07-27T17:35:51.000Z
src/__init__.py
olivier-vadiaval/catcher-synthesis
0c597243c04ce511d8ae5cfd52b1c043267b4503
[ "MIT" ]
null
null
null
import os os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = 'hide'
20
49
0.783333
a6bb222e64d076b8c269fc80649f936054a5c617
2,600
py
Python
controllers/device/image/images.py
gbf-labs/rh-api
317a812164ad8943ab638c06f61723cb928bfd12
[ "Apache-2.0" ]
null
null
null
controllers/device/image/images.py
gbf-labs/rh-api
317a812164ad8943ab638c06f61723cb928bfd12
[ "Apache-2.0" ]
6
2020-03-30T23:11:27.000Z
2022-03-12T00:21:45.000Z
controllers/device/image/images.py
gbf-labs/rh-api
317a812164ad8943ab638c06f61723cb928bfd12
[ "Apache-2.0" ]
null
null
null
# pylint: disable=too-many-locals, ungrouped-imports """Device Images""" from flask import request from library.common import Common from library.postgresql_queries import PostgreSQL from library.couch_queries import Queries from library.aws_s3 import AwsS3 class DeviceImages(Common): """Class for DeviceImages""" # INITIALIZE def __init__(self): """The Constructor for DeviceImages class""" self.postgres = PostgreSQL() self.couch_query = Queries() self.aws3 = AwsS3() super(DeviceImages, self).__init__() def get_images(self): """ This API is for Getting All Vessel Device Images --- tags: - Devices produces: - application/json parameters: - name: token in: header description: Token required: true type: string - name: userid in: header description: User ID required: true type: string - name: vessel_id in: query description: Vessel ID required: true type: string responses: 500: description: Error 200: description: Device Images """ data = {} # GET DATA token = request.headers.get('token') userid = request.headers.get('userid') vessel_id = request.args.get('vessel_id') # CHECK TOKEN token_validation = self.validate_token(token, userid) if not token_validation: data['alert'] = "Invalid Token" data['status'] = 'Failed' # RETURN ALERT return self.return_data(data) device_images = self.get_device_images(vessel_id) for d_image in device_images: d_image['image_url'] = self.aws3.get_device_image(d_image['vessel_id'], d_image['device_id']) data['device_images'] = device_images data['status'] = 'ok' return self.return_data(data) def get_device_images(self, vessel_id): """Get Device Images""" assert vessel_id, "Vessel ID is required." sql_str = "SELECT * FROM device_image" sql_str += " WHERE vessel_id = '{0}'".format(vessel_id) sql_str += " AND status = 'active'" device_images = self.postgres.query_fetch_all(sql_str) return device_images
29.545455
84
0.546538
2526c2e772d96790f1c1962b49fefff9cab567f6
415
py
Python
manage.py
michael760odhiambo/News-Highlight
2c7585e49d342bd85d8acd9a1f056ba4bffdaace
[ "MIT" ]
null
null
null
manage.py
michael760odhiambo/News-Highlight
2c7585e49d342bd85d8acd9a1f056ba4bffdaace
[ "MIT" ]
null
null
null
manage.py
michael760odhiambo/News-Highlight
2c7585e49d342bd85d8acd9a1f056ba4bffdaace
[ "MIT" ]
null
null
null
from app import create_app from flask_script import Manager,Server # Creating app instance app = create_app('development') manager = Manager(app) manager.add_command('server',Server) @manager.command def test(): """Run the unit tests.""" import unittest tests = unittest.TestLoader().discover('tests') unittest.TextTestRunner(verbosity=2).run(tests) if __name__ == '__main__': manager.run()
21.842105
51
0.727711
5300fd5cec7ab1ea6cb3a461d584970f8cc58bed
7,605
py
Python
modules/Registry/lv1_os_win_reg_os_info.py
naaya17/carpe
fa2e3cfebe20f8839c985e5b9b78b538800172a1
[ "Apache-2.0" ]
null
null
null
modules/Registry/lv1_os_win_reg_os_info.py
naaya17/carpe
fa2e3cfebe20f8839c985e5b9b78b538800172a1
[ "Apache-2.0" ]
null
null
null
modules/Registry/lv1_os_win_reg_os_info.py
naaya17/carpe
fa2e3cfebe20f8839c985e5b9b78b538800172a1
[ "Apache-2.0" ]
null
null
null
from datetime import datetime, timedelta import binascii import modules.Registry.convert_util as cu class OS_Information: par_id = '' case_id = '' evd_id = '' operating_system = '' release_id = '' version_number = '' install_time = '' product_key = '' owner = '' display_computer_name = '' computer_name = '' dhcp_dns_server = '' operating_system_version = '' build_number = '' product_id = '' last_service_pack = '' organization = '' last_shutdown_time = '' system_root = '' path = '' last_access_time_flag = '' timezone_utc = '' display_timezone_name = '' backup_flag = '' source_location = [] def OSINFO(reg_software, reg_system): os_list = [] os_count = 0 os_key_list = [] try: os_key_list.append(reg_software.find_key(r"Microsoft\Windows NT\CurrentVersion")) os_key_list.append(reg_system.find_key(r"ControlSet001\Control\ComputerName\ComputerName")) os_key_list.append(reg_system.find_key(r"ControlSet001\Control\FileSystem")) os_key_list.append(reg_system.find_key(r"ControlSet001\Control\TimeZoneInformation")) os_key_list.append(reg_system.find_key(r"ControlSet001\Services\Tcpip\Parameters")) os_key_list.append(reg_system.find_key(r"ControlSet001\Control\Windows")) os_information = OS_Information() os_list.append(os_information) os_list[os_count].source_location = [] os_list[os_count].source_location.append('SOFTWARE-Microsoft/Windows NT/CurrentVersion') os_list[os_count].source_location.append('SYSTEM-ControlSet001/Control/ComputerName/ComputerName') os_list[os_count].source_location.append('SYSTEM-ControlSet001/Control/FileSystem') os_list[os_count].source_location.append('SYSTEM-ControlSet001/Control/TimeZoneInformation') os_list[os_count].source_location.append('SYSTEM-ControlSet001/Services/Tcpip/Parameters') os_list[os_count].source_location.append('SYSTEM-ControlSet001/Control/Windows') for os_key in os_key_list: for os_value in os_key.values(): if os_value.name() == 'ProductName': os_list[os_count].operating_system = os_value.data().replace('\x00', '') if os_value.data()[:-1] == 'Windows 10 Pro': os_list[os_count].product_key = 'W269N-WFGWX-YVC9B-4J6C9-T83GX' elif os_value.data()[:-1] == 'Windows 10 Pro N': os_list[os_count].product_key = 'MH37W-N47XK-V7XM9-C7227-GCQG9' elif os_value.data()[:-1] == 'Windows 10 Pro for Workstations': os_list[os_count].product_key = 'NRG8B-VKK3Q-CXVCJ-9G2XF-6Q84J' elif os_value.data()[:-1] == 'Windows 10 Pro for Workstations N': os_list[os_count].product_key = '9FNHH-K3HBT-3W4TD-6383H-6XYWF' elif os_value.data()[:-1] == 'Windows 10 Pro Education': os_list[os_count].product_key = '6TP4R-GNPTD-KYYHQ-7B7DP-J447Y' elif os_value.data()[:-1] == 'Windows 10 Pro Education N': os_list[os_count].product_key = 'YVWGF-BXNMC-HTQYQ-CPQ99-66QFC' elif os_value.data()[:-1] == 'Windows 10 Education': os_list[os_count].product_key = 'NW6C2-QMPVW-D7KKK-3GKT6-VCFB2' elif os_value.data()[:-1] == 'Windows 10 Education KN': os_list[os_count].product_key = '2WH4N-8QGBV-H22JP-CT43Q-MDWWJ' elif os_value.data()[:-1] == 'Windows 10 Enterprise': os_list[os_count].product_key = 'NPPR9-FWDCX-D2C8J-H872K-2YT43' elif os_value.data()[:-1] == 'Windows 10 Enterprise KN': os_list[os_count].product_key = 'DPH2V-TTNVB-4X9Q3-TJR4H-KHJW4' elif os_value.data()[:-1] == 'Windows 10 Enterprise G': os_list[os_count].product_key = 'YYVX9-NTFWV-6MDM3-9PT4T-4M68B' elif os_value.data()[:-1] == 'Windows 10 Enterprise G N': os_list[os_count].product_key = '44RPN-FTY23-9VTTB-MP9BX-T84FV' elif os_value.name() == 'ReleaseId': os_list[os_count].release_id = os_value.data().replace('\x00', '') elif os_value.name() == 'CSDVersion': os_list[os_count].last_service_pack = os_value.data() elif os_value.name() == 'SystemRoot': os_list[os_count].system_root = os_value.data().replace('\x00', '') elif os_value.name() == 'PathName': os_list[os_count].path = os_value.data().replace('\x00', '') elif os_value.name() == 'EditionID': os_list[os_count].operating_system_version = os_value.data().replace('\x00', '') elif os_value.name() == 'RegisteredOrganization': os_list[os_count].organization = os_value.data().replace('\x00', '') elif os_value.name() == 'ReleaseId': os_list[os_count].release_id = os_value.data() elif os_value.name() == 'CurrentVersion': os_list[os_count].version_number = os_value.data().replace('\x00', '') elif os_value.name() == 'CurrentBuildNumber': os_list[os_count].build_number = os_value.data().replace('\x00', '') elif os_value.name() == 'ProductId': os_list[os_count].product_id = os_value.data().replace('\x00', '') elif os_value.name() == 'RegisteredOwner': os_list[os_count].owner = os_value.data().replace('\x00', '') elif os_value.name() == 'InstallDate': os_list[os_count].install_time = cu.from_unix_timestamp(os_value.data()) elif os_value.name() == 'ComputerName': os_list[os_count].computer_name = os_value.data().replace('\x00', '') elif os_value.name() == 'NtfsDisableLastAccessUpdate': # 0: True, 1: False os_list[os_count].last_access_time_flag = os_value.data() elif os_value.name() == 'TimeZoneKeyName': os_list[os_count].display_timezone_name = os_value.data().replace('\x00', '') for j in reg_software.find_key(r"Microsoft\Windows NT\CurrentVersion\Time Zones").subkeys(): if j.name() == os_list[os_count].display_timezone_name: for k in j.values(): if k.name() == 'Display': os_list[os_count].timezone_utc = k.data().replace('\x00', '') elif os_value.name() == 'HostName': os_list[os_count].display_computer_name = os_value.data().replace('\x00', '') elif os_value.name() == 'Hostname': os_list[os_count].display_computer_name = os_value.data().replace('\x00', '') elif os_value.name() == 'DhcpNameServer': os_list[os_count].dhcp_dns_server = os_value.data().replace('\x00', '') elif os_value.name() == 'ShutdownTime': os_list[os_count].last_shutdown_time = (datetime(1601, 1, 1) + timedelta(microseconds=int(binascii.b2a_hex(os_value.data()[::-1]), 16) / 10)).isoformat()+'Z' except: print('-----OS Information Error') return os_list
58.053435
177
0.583958
1af805e157506f68f564dac2549f6d6692a2575c
250
py
Python
giico/drilling_water_well_service/doctype/mud_data/mud_data.py
thispl/giico
14c5631639ab56a586a7962be9871d722c20e205
[ "MIT" ]
null
null
null
giico/drilling_water_well_service/doctype/mud_data/mud_data.py
thispl/giico
14c5631639ab56a586a7962be9871d722c20e205
[ "MIT" ]
null
null
null
giico/drilling_water_well_service/doctype/mud_data/mud_data.py
thispl/giico
14c5631639ab56a586a7962be9871d722c20e205
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2019, VHRS and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class MudData(Document): pass
22.727273
49
0.768
36fd5342117d9d0ef0a6129a480b19cc2904d5fe
281
py
Python
pendium/plugins/rest.py
LuRsT/Pendium
f71b3db987853df919c14f0be4238df00852a9a7
[ "Apache-2.0" ]
5
2015-05-07T21:26:06.000Z
2016-07-27T11:41:49.000Z
pendium/plugins/rest.py
LuRsT/Pendium
f71b3db987853df919c14f0be4238df00852a9a7
[ "Apache-2.0" ]
9
2017-12-21T20:22:16.000Z
2019-07-24T13:04:35.000Z
pendium/plugins/rest.py
LuRsT/Pendium
f71b3db987853df919c14f0be4238df00852a9a7
[ "Apache-2.0" ]
null
null
null
from docutils.core import publish_string from flask import Markup from pendium.plugins import IRenderPlugin class Rest(IRenderPlugin): name = "Rest" def render(self, content): content = publish_string(content, writer_name="html") return Markup(content)
21.615385
61
0.733096
ee6c5bdfbe47a670ff04b7be922fcf91c434bbb0
19,156
py
Python
python/ray/data/grouped_dataset.py
Sertingolix/ray
4850ddc00f5cb3ac9f10095b69f37bf2ae6c8fdd
[ "Apache-2.0" ]
1
2022-01-10T07:39:50.000Z
2022-01-10T07:39:50.000Z
python/ray/data/grouped_dataset.py
Sertingolix/ray
4850ddc00f5cb3ac9f10095b69f37bf2ae6c8fdd
[ "Apache-2.0" ]
227
2021-10-01T08:00:01.000Z
2021-12-28T16:47:26.000Z
python/ray/data/grouped_dataset.py
bladesaber/ray
107001d8b8bea0672d5e987341bd6bfcc4a1420e
[ "Apache-2.0" ]
null
null
null
from typing import Union, Callable, Generic, Tuple, List, Optional import numpy as np import ray from ray.util.annotations import PublicAPI from ray.data.dataset import Dataset from ray.data.impl import sort from ray.data.aggregate import AggregateFn, Count, Sum, Max, Min, \ Mean, Std, AggregateOnT from ray.data.block import BlockExecStats from ray.data.impl.block_list import BlockList from ray.data.impl.remote_fn import cached_remote_fn from ray.data.impl.progress_bar import ProgressBar from ray.data.block import Block, BlockAccessor, BlockMetadata, \ T, U, KeyType GroupKeyBaseT = Union[Callable[[T], KeyType], str] GroupKeyT = Optional[Union[GroupKeyBaseT, List[GroupKeyBaseT]]] AggregateOnTs = Union[AggregateOnT, List[AggregateOnT]] @PublicAPI(stability="beta") class GroupedDataset(Generic[T]): """Represents a grouped dataset created by calling ``Dataset.groupby()``. The actual groupby is deferred until an aggregation is applied. """ def __init__(self, dataset: Dataset[T], key: GroupKeyT): """Construct a dataset grouped by key (internal API). The constructor is not part of the GroupedDataset API. Use the ``Dataset.groupby()`` method to construct one. """ self._dataset = dataset if isinstance(key, list): if len(key) > 1: # TODO(jjyao) Support multi-key groupby. raise NotImplementedError( "Multi-key groupby is not supported yet") else: self._key = key[0] else: self._key = key def aggregate(self, *aggs: AggregateFn) -> Dataset[U]: """Implements an accumulator-based aggregation. This is a blocking operation. Examples: >>> grouped_ds.aggregate(AggregateFn( ... init=lambda k: [], ... accumulate=lambda a, r: a + [r], ... merge=lambda a1, a2: a1 + a2, ... finalize=lambda a: a ... )) Args: aggs: Aggregations to do. Returns: If the input dataset is simple dataset then the output is a simple dataset of ``(k, v_1, ..., v_n)`` tuples where ``k`` is the groupby key and ``v_i`` is the result of the ith given aggregation. If the input dataset is an Arrow dataset then the output is an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ stats = self._dataset._stats.child_builder("aggregate") stage_info = {} if len(aggs) == 0: raise ValueError("Aggregate requires at least one aggregation") # Handle empty dataset. if self._dataset.num_blocks() == 0: return self._dataset blocks = self._dataset._blocks.get_blocks() num_mappers = len(blocks) num_reducers = num_mappers if self._key is None: num_reducers = 1 boundaries = [] else: boundaries = sort.sample_boundaries( blocks, [(self._key, "ascending")] if isinstance(self._key, str) else self._key, num_reducers) partition_and_combine_block = cached_remote_fn( _partition_and_combine_block).options(num_returns=num_reducers + 1) aggregate_combined_blocks = cached_remote_fn( _aggregate_combined_blocks, num_returns=2) map_results = np.empty((num_mappers, num_reducers), dtype=object) map_meta = [] for i, block in enumerate(blocks): results = partition_and_combine_block.remote( block, boundaries, self._key, aggs) map_results[i, :] = results[:-1] map_meta.append(results[-1]) map_bar = ProgressBar("GroupBy Map", len(map_results)) map_bar.block_until_complete(map_meta) stage_info["map"] = ray.get(map_meta) map_bar.close() blocks = [] metadata = [] for j in range(num_reducers): block, meta = aggregate_combined_blocks.remote( num_reducers, self._key, aggs, *map_results[:, j].tolist()) blocks.append(block) metadata.append(meta) reduce_bar = ProgressBar("GroupBy Reduce", len(blocks)) reduce_bar.block_until_complete(blocks) reduce_bar.close() metadata = ray.get(metadata) stage_info["reduce"] = metadata return Dataset( BlockList(blocks, metadata), self._dataset._epoch, stats.build_multistage(stage_info)) def _aggregate_on(self, agg_cls: type, on: Optional[AggregateOnTs], *args, **kwargs): """Helper for aggregating on a particular subset of the dataset. This validates the `on` argument, and converts a list of column names or lambdas to a multi-aggregation. A null `on` results in a multi-aggregation on all columns for an Arrow Dataset, and a single aggregation on the entire row for a simple Dataset. """ aggs = self._dataset._build_multicolumn_aggs( agg_cls, on, *args, skip_cols=self._key, **kwargs) return self.aggregate(*aggs) def count(self) -> Dataset[U]: """Compute count aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).count() >>> ray.data.from_items([ ... {"A": x % 3, "B": x} for x in range(100)]).groupby( ... "A").count() Returns: A simple dataset of ``(k, v)`` pairs or an Arrow dataset of ``[k, v]`` columns where ``k`` is the groupby key and ``v`` is the number of rows with that key. If groupby key is ``None`` then the key part of return is omitted. """ return self.aggregate(Count()) def sum(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped sum aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).sum() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .sum(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").sum() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .sum(["B", "C"]) Args: on: The data subset on which to compute the sum. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a sum of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise sum of all columns. Returns: The sum result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, sum)`` tuples where ``k`` is the groupby key and ``sum`` is sum of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, sum_1, ..., sum_n)`` tuples where ``k`` is the groupby key and ``sum_i`` is sum of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise sum column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Sum, on) def min(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped min aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).min() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .min(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").min() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .min(["B", "C"]) Args: on: The data subset on which to compute the min. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a min of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise min of all columns. Returns: The min result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, min)`` tuples where ``k`` is the groupby key and min is min of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, min_1, ..., min_n)`` tuples where ``k`` is the groupby key and ``min_i`` is min of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise min column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Min, on) def max(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped max aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).max() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .max(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").max() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .max(["B", "C"]) Args: on: The data subset on which to compute the max. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a max of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise max of all columns. Returns: The max result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, max)`` tuples where ``k`` is the groupby key and ``max`` is max of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, max_1, ..., max_n)`` tuples where ``k`` is the groupby key and ``max_i`` is max of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise max column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Max, on) def mean(self, on: Optional[AggregateOnTs] = None) -> Dataset[U]: """Compute grouped mean aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).mean() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .mean(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").mean() >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .mean(["B", "C"]) Args: on: The data subset on which to compute the mean. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a mean of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise mean of all columns. Returns: The mean result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, mean)`` tuples where ``k`` is the groupby key and ``mean`` is mean of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, mean_1, ..., mean_n)`` tuples where ``k`` is the groupby key and ``mean_i`` is mean of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise mean column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Mean, on) def std(self, on: Optional[AggregateOnTs] = None, ddof: int = 1) -> Dataset[U]: """Compute grouped standard deviation aggregation. This is a blocking operation. Examples: >>> ray.data.range(100).groupby(lambda x: x % 3).std() >>> ray.data.from_items([ ... (i % 3, i, i**2) ... for i in range(100)]) \ ... .groupby(lambda x: x[0] % 3) \ ... .std(lambda x: x[2]) >>> ray.data.range_arrow(100).groupby("value").std(ddof=0) >>> ray.data.from_items([ ... {"A": i % 3, "B": i, "C": i**2} ... for i in range(100)]) \ ... .groupby("A") \ ... .std(["B", "C"]) NOTE: This uses Welford's online method for an accumulator-style computation of the standard deviation. This method was chosen due to it's numerical stability, and it being computable in a single pass. This may give different (but more accurate) results than NumPy, Pandas, and sklearn, which use a less numerically stable two-pass algorithm. See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm Args: on: The data subset on which to compute the std. - For a simple dataset: it can be a callable or a list thereof, and the default is to take a std of all rows. - For an Arrow dataset: it can be a column name or a list thereof, and the default is to do a column-wise std of all columns. ddof: Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. Returns: The standard deviation result. For a simple dataset, the output is: - ``on=None``: a simple dataset of ``(k, std)`` tuples where ``k`` is the groupby key and ``std`` is std of all rows in that group. - ``on=[callable_1, ..., callable_n]``: a simple dataset of ``(k, std_1, ..., std_n)`` tuples where ``k`` is the groupby key and ``std_i`` is std of the outputs of the ith callable called on each row in that group. For an Arrow dataset, the output is: - ``on=None``: an Arrow dataset containing a groupby key column, ``"k"``, and a column-wise std column for each original column in the dataset. - ``on=["col_1", ..., "col_n"]``: an Arrow dataset of ``n + 1`` columns where the first column is the groupby key and the second through ``n + 1`` columns are the results of the aggregations. If groupby key is ``None`` then the key part of return is omitted. """ return self._aggregate_on(Std, on, ddof=ddof) def _partition_and_combine_block( block: Block[T], boundaries: List[KeyType], key: GroupKeyT, aggs: Tuple[AggregateFn]) -> List[Union[Block, BlockMetadata]]: """Partition the block and combine rows with the same key.""" stats = BlockExecStats.builder() if key is None: partitions = [block] else: partitions = BlockAccessor.for_block(block).sort_and_partition( boundaries, [(key, "ascending")] if isinstance(key, str) else key, descending=False) parts = [BlockAccessor.for_block(p).combine(key, aggs) for p in partitions] meta = BlockAccessor.for_block(block).get_metadata( input_files=None, exec_stats=stats.build()) return parts + [meta] def _aggregate_combined_blocks( num_reducers: int, key: GroupKeyT, aggs: Tuple[AggregateFn], *blocks: Tuple[Block, ...]) -> Tuple[Block[U], BlockMetadata]: """Aggregate sorted and partially combined blocks.""" return BlockAccessor.for_block(blocks[0]).aggregate_combined_blocks( list(blocks), key, aggs)
41.643478
100
0.551107
71e556fa4139675d98d27bf9ea3b1e86e9a1dd14
271
py
Python
odoo-13.0/addons/l10n_de_skr03/migrations/9.0.2.0/pre-set_tags_and_taxes_updatable.py
VaibhavBhujade/Blockchain-ERP-interoperability
b5190a037fb6615386f7cbad024d51b0abd4ba03
[ "MIT" ]
null
null
null
odoo-13.0/addons/l10n_de_skr03/migrations/9.0.2.0/pre-set_tags_and_taxes_updatable.py
VaibhavBhujade/Blockchain-ERP-interoperability
b5190a037fb6615386f7cbad024d51b0abd4ba03
[ "MIT" ]
null
null
null
odoo-13.0/addons/l10n_de_skr03/migrations/9.0.2.0/pre-set_tags_and_taxes_updatable.py
VaibhavBhujade/Blockchain-ERP-interoperability
b5190a037fb6615386f7cbad024d51b0abd4ba03
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import odoo def migrate(cr, version): registry = odoo.registry(cr.dbname) from odoo.addons.account.models.chart_template import migrate_set_tags_and_taxes_updatable migrate_set_tags_and_taxes_updatable(cr, registry, 'l10n_de_skr03')
30.111111
94
0.771218
d9ae0355547a5275d21a8cc83d3d4546010688ae
7,478
py
Python
scripts/priorities.py
MorganHamm/gs541-phylogeography
ebb0916685894de0ee1ce7a78b32337defbeee8b
[ "MIT" ]
null
null
null
scripts/priorities.py
MorganHamm/gs541-phylogeography
ebb0916685894de0ee1ce7a78b32337defbeee8b
[ "MIT" ]
null
null
null
scripts/priorities.py
MorganHamm/gs541-phylogeography
ebb0916685894de0ee1ce7a78b32337defbeee8b
[ "MIT" ]
null
null
null
""" Mask initial bases from alignment FASTA """ import argparse from random import shuffle from collections import defaultdict import Bio import numpy as np from Bio.SeqIO.FastaIO import SimpleFastaParser from Bio.Seq import Seq from Bio import AlignIO, SeqIO from scipy import sparse def compactify_sequences(sparse_matrix, sequence_names): sequence_groups = defaultdict(list) for s, snps in zip(sequence_names, sparse_matrix): ind = snps.nonzero() vals = np.array(snps[ind]) if len(ind[1]): sequence_groups[tuple(zip(ind[1], vals[0]))].append(s) else: sequence_groups[tuple()].append(s) return sequence_groups INITIALISATION_LENGTH = 1000000 def sequence_to_int_array(s, fill_value=110): seq = np.frombuffer(str(s).lower().encode('utf-8'), dtype=np.int8).copy() seq[(seq!=97) & (seq!=99) & (seq!=103) & (seq!=116)] = fill_value return seq # Function adapted from https://github.com/gtonkinhill/pairsnp-python def calculate_snp_matrix(fastafile, consensus=None, zipped=False, fill_value=110): # This function generate a sparse matrix where differences to the consensus are coded as integers. row = np.empty(INITIALISATION_LENGTH) col = np.empty(INITIALISATION_LENGTH, dtype=np.int64) val = np.empty(INITIALISATION_LENGTH, dtype=np.int8) r = 0 n_snps = 0 nseqs = 0 seq_names = [] filled_positions = [] current_length = INITIALISATION_LENGTH if zipped: fh = gzip.open(fastafile, 'rt') else: fh = open(fastafile, 'rt') with fh as fasta: for h,s in SimpleFastaParser(fasta): if consensus is None: align_length = len(s) # Take consensus as first sequence consensus = sequence_to_int_array(s, fill_value=fill_value) else: align_length = len(consensus) nseqs +=1 seq_names.append(h) if(len(s)!=align_length): raise ValueError('Fasta file appears to have sequences of different lengths!') s = sequence_to_int_array(s, fill_value=fill_value) snps = (consensus!=s) & (s!=fill_value) right = n_snps + np.sum(snps) filled_positions.append(np.where(s==fill_value)[0]) if right >= (current_length/2): current_length = current_length + INITIALISATION_LENGTH row.resize(current_length) col.resize(current_length) val.resize(current_length) row[n_snps:right] = r col[n_snps:right] = np.flatnonzero(snps) val[n_snps:right] = s[snps] r += 1 n_snps = right fh.close() if nseqs==0: raise ValueError('No sequences found!') row = row[0:right] col = col[0:right] val = val[0:right] sparse_snps = sparse.csc_matrix((val, (row, col)), shape=(nseqs, align_length)) return {'snps': sparse_snps, 'consensus': consensus, 'names': seq_names, 'filled_positions': filled_positions} # Function adapted from https://github.com/gtonkinhill/pairsnp-python def calculate_distance_matrix(sparse_matrix_A, sparse_matrix_B, consensus): n_seqs_A = sparse_matrix_A.shape[0] n_seqs_B = sparse_matrix_B.shape[0] d = (1*(sparse_matrix_A==97)) * (sparse_matrix_B.transpose()==97) d = d + (1*(sparse_matrix_A==99) * (sparse_matrix_B.transpose()==99)) d = d + (1*(sparse_matrix_A==103) * (sparse_matrix_B.transpose()==103)) d = d + (1*(sparse_matrix_A==116) * (sparse_matrix_B.transpose()==116)) d = d.todense() n_comp = (1*(sparse_matrix_A==110) * ((sparse_matrix_B==110).transpose())).todense() d = d + n_comp temp_total = np.zeros((n_seqs_A, n_seqs_B)) temp_total[:] = (1*(sparse_matrix_A>0)).sum(1) temp_total += (1*(sparse_matrix_B>0)).sum(1).transpose() total_differences_shared = (1*(sparse_matrix_A>0)) * (sparse_matrix_B.transpose()>0) n_total = np.zeros((n_seqs_A, n_seqs_B)) n_sum = (1*(sparse_matrix_A==110)).sum(1) n_total[:] = n_sum n_total += (1*(sparse_matrix_B==110)).sum(1).transpose() diff_n = n_total - 2*n_comp d = temp_total - total_differences_shared.todense() - d - diff_n return d if __name__ == '__main__': parser = argparse.ArgumentParser( description="generate priorities files based on genetic proximity to focal sample", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--alignment", type=str, required=True, help="FASTA file of alignment") parser.add_argument("--reference", type = str, required=True, help="reference sequence") parser.add_argument("--metadata", type = str, required=True, help="metadata") parser.add_argument("--focal-alignment", type = str, required=True, help="focal smaple of sequences") parser.add_argument("--output", type=str, required=True, help="FASTA file of output alignment") args = parser.parse_args() # load entire alignment and the alignment of focal sequences (upper case -- probably not necessary) ref = sequence_to_int_array(SeqIO.read(args.reference, 'genbank').seq) context_seqs_dict = calculate_snp_matrix(args.alignment, consensus=ref) focal_seqs_dict = calculate_snp_matrix(args.focal_alignment, consensus = ref) alignment_length = len(ref) print("Done reading the alignments.") # calculate number of masked sites in either set mask_count_focal = np.array([len(x) for x in focal_seqs_dict['filled_positions']]) mask_count_context = {s: len(x) for s,x in zip(context_seqs_dict['names'], context_seqs_dict['filled_positions'])} # for each context sequence, calculate minimal distance to focal set, weigh with number of N/- to pick best sequence d = np.array(calculate_distance_matrix(context_seqs_dict['snps'], focal_seqs_dict['snps'], consensus = context_seqs_dict['consensus'])) closest_match = np.argmin(d+mask_count_focal/alignment_length, axis=1) print("Done finding closest matches.") minimal_distance_to_focal_set = {} for context_index, focal_index in enumerate(closest_match): minimal_distance_to_focal_set[context_seqs_dict['names'][context_index]] = (d[context_index, focal_index], focal_seqs_dict["names"][focal_index]) # for each focal sequence with close matches (using the index), we list all close contexts close_matches = defaultdict(list) for seq in minimal_distance_to_focal_set: close_matches[minimal_distance_to_focal_set[seq][1]].append(seq) for f in close_matches: shuffle(close_matches[f]) close_matches[f].sort(key=lambda x: minimal_distance_to_focal_set[x][0] + mask_count_context[x]/alignment_length) # export priorities with open(args.output, 'w') as fh: for i, seqid in enumerate(context_seqs_dict['names']): # use distance as negative priority # penalize masked (N or -) -- 333 masked sites==one mutations # penalize if many sequences are close to the same focal one by using the index of the shuffled list of neighbours # currently each position in this lists reduced priority by 0.2, i.e. 5 other sequences == one mutation position = close_matches[minimal_distance_to_focal_set[seqid][1]].index(seqid) priority = -minimal_distance_to_focal_set[seqid][0] - 0.1*position fh.write(f"{seqid}\t{priority:1.2f}\n")
41.776536
153
0.678122
97e50a9c9c2ba7973295383dbb11375950fdc74c
1,240
py
Python
chapter3/Readercoin_/test/functional/p2p-mempool.py
MyawBug/Blockchain-By-Example
2d0495a130d1a9f91b7fb99359cbb8e9f7b9763d
[ "MIT" ]
51
2018-12-14T09:09:20.000Z
2022-03-28T03:25:45.000Z
chapter3/Readercoin_/test/functional/p2p-mempool.py
MyawBug/Blockchain-By-Example
2d0495a130d1a9f91b7fb99359cbb8e9f7b9763d
[ "MIT" ]
4
2019-08-02T18:23:17.000Z
2022-02-12T04:33:25.000Z
chapter3/Readercoin_/test/functional/p2p-mempool.py
xiaqingdoc/---
b15448739983b0787ffc963811294bcf44487303
[ "MIT" ]
42
2018-12-14T09:09:24.000Z
2022-03-31T01:49:35.000Z
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Readercoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test p2p mempool message. Test that nodes are disconnected if they send mempool messages when bloom filters are not enabled. """ from test_framework.mininode import * from test_framework.test_framework import ReadercoinTestFramework from test_framework.util import * class P2PMempoolTests(ReadercoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-peerbloomfilters=0"]] def run_test(self): #connect a mininode aTestNode = NodeConnCB() node = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], aTestNode) aTestNode.add_connection(node) NetworkThread().start() aTestNode.wait_for_verack() #request mempool aTestNode.send_message(msg_mempool()) aTestNode.wait_for_disconnect() #mininode must be disconnected at this point assert_equal(len(self.nodes[0].getpeerinfo()), 0) if __name__ == '__main__': P2PMempoolTests().main()
32.631579
75
0.708871
cffeb7e915a06a513e96e1ed60beabf6b79b6518
8,899
py
Python
tensorflow/python/tpu/training_loop.py
Sonata-Wang/tensorflow
8bbef0cd77879d05ed69bf30e76087847a8ca4a2
[ "Apache-2.0" ]
36
2016-12-17T15:25:25.000Z
2022-01-29T21:50:53.000Z
tensorflow/python/tpu/training_loop.py
shekharpalit/tensorflow
6aa83398ab03bfae822f36772757097bcb98b6ed
[ "Apache-2.0" ]
30
2016-10-04T15:38:08.000Z
2020-07-16T12:09:33.000Z
tensorflow/python/tpu/training_loop.py
shekharpalit/tensorflow
6aa83398ab03bfae822f36772757097bcb98b6ed
[ "Apache-2.0" ]
36
2017-07-27T21:12:40.000Z
2022-02-03T16:45:56.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Library for constructing a training loop, suitable for TPUs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.tpu import tensor_tracer from tensorflow.python.tpu import tpu_function from tensorflow.python.tpu import xla def while_loop(condition, body, inputs=None, infeed_queue=None, name=None): """Builds a training loop for TPUs. The set of loop-carried tensors corresponds to `inputs`. Both `condition` and `body` take the current value of the loop-carried tensors. 'body' additionally takes a tuple of infeed from infeed_queue if infeed_queue is not None. `condition` must return a single boolean value that determines whether iteration continues. `body` must return an updated list of values for the loop-carried tensors. Args: condition: a Python function that builds the loop condition. body: a Python function that builds the loop body. inputs: a list of initial values passed into the training loop, or None (equivalent to an empty list). infeed_queue: if not None, the infeed queue from which to append a tuple of arguments as inputs to condition. name: (Deprecated) Does nothing. Returns: The final values of the loop-carried tensors. Raises: TypeError: if body or condition has the wrong signature. """ del name # Converts inputs to Tensors. inputs = [] if inputs is None else [ops.convert_to_tensor(x) for x in inputs] input_types = [x.dtype for x in inputs] input_arity = len(inputs) body_arg_error = xla.check_function_argument_count( body, input_arity, infeed_queue) if body_arg_error is not None: if infeed_queue is None: raise TypeError( "Supplied loop body function cannot be called with the specified " "inputs. You specified %d inputs: %s, but the loop body needs %s" % ( input_arity, str([i.name for i in inputs]), body_arg_error)) else: raise TypeError( "Supplied loop body function cannot be called with the specified " "inputs. You specified %d inputs: %s and %d additional inputs from " "infeed, but the computation needs %s" % (input_arity, str( [i.name for i in inputs]), infeed_queue.number_of_tuple_elements, body_arg_error)) condition_arg_error = xla.check_function_argument_count( condition, input_arity, None) if condition_arg_error is not None: if infeed_queue is None: raise TypeError( "Supplied loop condition function cannot be called with the " "specified inputs. You specified %d inputs: %s, but the loop " "condition needs %s" % (input_arity, str([i.name for i in inputs]), condition_arg_error)) else: raise TypeError( "Supplied loop condition function cannot be called with the " "specified inputs. You specified %d inputs: %s, but the loop " "condition needs %s. Note that infeed is not passed to the loop " "condition." % (input_arity, str([i.name for i in inputs]), condition_arg_error)) def condition_wrapper(*inputs): # Discards the dummy output added for arity-0 loops. if input_arity == 0: inputs = [] return condition(*inputs) def body_wrapper(*inputs): """Wrapper around `body` that handles infeed queues and control deps.""" inputs = list(inputs) # Discards the dummy output added for arity-0 loops. if input_arity == 0: inputs = [] # Runs `body` with the dequeue_ops appended. if infeed_queue: number_of_shards = tpu_function.get_tpu_context().number_of_shards if number_of_shards is None: raise ValueError("Can't build training loop with infeed when there is " "no tpu_shard_context. Are you building a loop or " "graph directly rather than from inside tpu.rewrite, " "tpu.batch_parallel, tpu.shard, or tpu.replicate?") infeed_queue.set_number_of_shards(number_of_shards) dequeue_ops = [d for d in infeed_queue.generate_dequeue_op()] else: dequeue_ops = [] outputs = body(*(inputs + dequeue_ops)) # If the computation only returned one value, make it a tuple. if not isinstance(outputs, (list, tuple)): outputs = (outputs,) outputs = [ o if isinstance(o, ops.Operation) else ops.convert_to_tensor(o) for o in outputs ] # Separates the returned Operations and Tensors. output_operations = [o for o in outputs if isinstance(o, ops.Operation)] output_tensors = [o for o in outputs if not isinstance(o, ops.Operation)] if outputs != output_tensors + output_operations: raise ValueError( "TPU training loop body must return zero or more Tensor values " "followed by zero or more Operations.") output_types = [op.dtype for op in output_tensors] if input_types != output_types: raise TypeError( "Mismatch between input types and output types for training loop " "body: {} vs {}".format(input_types, output_types)) # Add the dequeue operations to output_operations to ensure they are run # by the loop, even if the programmer's loop body does not use them. output_operations += dequeue_ops # Add a dummy output, if needed. if not output_tensors: output_tensors = array_ops.constant(0) if output_operations: # TODO(phawkins): in principle this is too restrictive since it serializes # the training loop steps. In practice it does not matter since this loop # will be compiled by XLA. output_tensors = control_flow_ops.tuple(output_tensors, control_inputs=output_operations) if tensor_tracer.TensorTracer.is_enabled(): num_replicas = tpu_function.get_tpu_context().number_of_shards if num_replicas is None: num_replicas = 1 tt = tensor_tracer.TensorTracer() output_tensors = tt.trace_tpu(ops.get_default_graph(), output_tensors, None, num_replicas) return output_tensors # If the body has arity 0, add a dummy loop-carried value to which we can add # control dependencies from any side-effecting operations. if input_arity == 0: inputs = [array_ops.constant(0)] return control_flow_ops.while_loop( condition_wrapper, body_wrapper, inputs, name="", parallel_iterations=1) def repeat(n, body, inputs=None, infeed_queue=None, name=None): """Builds a training loop that executes a fixed number of iterations. The set of loop-carried tensors correspond to `inputs`. `body` must be a function that takes and returns the values of the loop-carried tensors. Args: n: the number of loop iterations body: a Python function that builds the loop body. inputs: a list of initial values passed into the training loop or None (equivalent to an empty list). infeed_queue: if not None, the infeed queue from which to append a tuple of arguments as inputs to condition. name: (Deprecated) Does nothing. Returns: The final values of the loop-carried tensors. Raises: ValueError: if there is a type error. """ def _convert_to_list(xs): if not isinstance(xs, (list, tuple)): return [xs] else: return list(xs) def cond(i, *args): del args return i < n def body_wrapper(i, *args): return [i + 1] + _convert_to_list(body(*args)) inputs = [0] if inputs is None else [0] + _convert_to_list(inputs) outputs = while_loop( cond, body_wrapper, inputs=inputs, infeed_queue=infeed_queue, name=name) outputs = _convert_to_list(outputs) if len(outputs) == 1: # Returns the Op rather than an empty list. return outputs[0].op else: return outputs[1:]
39.90583
80
0.674907
3a0e71ef4b879969e8624f5cd31f98b0ec96dbb2
2,738
py
Python
Weinstein2019/create_lidar_annotations.py
weecology/NeonTreeEvaluation_analysis
a426a1a6a621b67f11dc4e6cc46eb9df9d0fc677
[ "MIT" ]
1
2020-05-18T07:14:31.000Z
2020-05-18T07:14:31.000Z
Weinstein2019/create_lidar_annotations.py
weecology/NeonTreeEvaluation_analysis
a426a1a6a621b67f11dc4e6cc46eb9df9d0fc677
[ "MIT" ]
4
2019-11-12T02:48:19.000Z
2020-02-07T18:01:25.000Z
Weinstein2019/create_lidar_annotations.py
weecology/NeonTreeEvaluation_analysis
a426a1a6a621b67f11dc4e6cc46eb9df9d0fc677
[ "MIT" ]
null
null
null
import glob import os import Lidar import laspy def write_label(point_cloud, path): #Create laspy object inFile = laspy.file.File("/Users/Ben/Desktop/test.laz", header=point_cloud.data.header, mode="w") for dim in point_cloud.data.points: setattr(inFile, dim, point_cloud.data.points[dim]) #Create second laspy object outFile1 = laspy.file.File(path, mode = "w",header = inFile.header) outFile1.define_new_dimension( name="label", data_type=5, description = "Integer Tree Label" ) # copy fields for dimension in inFile.point_format: dat = inFile.reader.get_dimension(dimension.name) outFile1.writer.set_dimension(dimension.name, dat) outFile1.label = point_cloud.data.points.user_data outFile1.close() #Training tiles def annotate_tile(laz_path, path_to_rgb, xml_path): annotations= Lidar.load_xml(xml_path, path_to_rgb, res=0.1) point_cloud = Lidar.load_lidar(laz_path) #Create boxes boxes = Lidar.create_boxes(annotations) #Drape RGB bounding boxes over the point cloud point_cloud = Lidar.drape_boxes(boxes, point_cloud) #Write Laz with label info write_label(point_cloud, laz_path) #annotate_tile(laz_path="../SJER/training/NEON_D17_SJER_DP1_258000_4106000_classified_point_cloud_colorized.laz", #path_to_rgb="../SJER/training/", #xml_path= "../SJER/annotations/2018_SJER_3_258000_4106000_image.xml") def annotate_eval_plots(site): path_to_rgb = "../" + site +"/plots/" path_to_laz = path_to_rgb path_to_annotations = "../" + site +"/annotations/" #For each .laz file in directory. laz_files = glob.glob(path_to_laz+"*.laz") for laz in laz_files: print(laz) #Load laz point_cloud = Lidar.load_lidar(laz) #Find annotations basename = os.path.basename(laz) basename = os.path.splitext(basename)[0] xml_path = os.path.join(path_to_annotations,basename + ".xml") if (os.path.exists(xml_path)): #Load annotations and get utm bounds from tif image annotations= Lidar.load_xml(xml_path, path_to_rgb, res=0.1) else: print("{} does not exist, skipping image".format(xml_path)) continue #Create boxes boxes = Lidar.create_boxes(annotations) #Drape RGB bounding boxes over the point cloud point_cloud = Lidar.drape_boxes(boxes, point_cloud) #Write Laz write_label(point_cloud, laz) sites = ["SJER","NIWO","TEAK","MLBS"] for site in sites: annotate_eval_plots(site)
31.837209
113
0.647553
386162ee7010ffd52d9babc2ec2d5bbd3c8c757b
2,454
py
Python
language/google/cloud/language/sentence.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
1
2021-07-06T23:38:06.000Z
2021-07-06T23:38:06.000Z
language/google/cloud/language/sentence.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
language/google/cloud/language/sentence.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
1
2022-03-24T01:37:10.000Z
2022-03-24T01:37:10.000Z
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Representation of Sentence objects.""" from google.cloud.language.sentiment import Sentiment class Sentence(object): """A Google Cloud Natural Language API sentence object. .. _Sentence message: https://cloud.google.com/natural-language/reference\ /rest/v1/documents/annotateText#Sentence See `Sentence message`_. :type content: str :param content: The text that the sentence is composed of. :type begin: int :param begin: The beginning offset of the sentence in the original document according to the encoding type specified in the API request. :type sentiment: :class:`~google.cloud.language.sentiment.Sentiment` :param sentiment: (Optional) For calls to :meth:`~google.cloud.language.document.Document.annotate_text` where ``include_sentiment`` is set to true, this field will contain the sentiment for the sentence. """ def __init__(self, content, begin, sentiment=None): self.content = content self.begin = begin self.sentiment = sentiment @classmethod def from_api_repr(cls, payload): """Convert a sentence from the JSON API into a :class:`Sentence`. :param payload: dict :type payload: The value from the backend. :rtype: :class:`Sentence` :returns: The sentence parsed from the API representation. """ text_span = payload['text'] # The sentence may or may not have a sentiment; only attempt the # typecast if one is present. sentiment = None if payload.get('sentiment') is not None: sentiment = Sentiment.from_api_repr(payload['sentiment']) # Return a Sentence object. return cls(text_span['content'], text_span['beginOffset'], sentiment=sentiment)
35.565217
78
0.674002
c78498056fc6a846a4817c5c1e1c243b8256d8ed
1,456
py
Python
lhotse/bin/modes/recipes/ksponspeech.py
goodatlas/lhotse
c3e2f0012629776a70ec95a1fb8973e73903973a
[ "Apache-2.0" ]
null
null
null
lhotse/bin/modes/recipes/ksponspeech.py
goodatlas/lhotse
c3e2f0012629776a70ec95a1fb8973e73903973a
[ "Apache-2.0" ]
null
null
null
lhotse/bin/modes/recipes/ksponspeech.py
goodatlas/lhotse
c3e2f0012629776a70ec95a1fb8973e73903973a
[ "Apache-2.0" ]
1
2022-03-29T01:15:32.000Z
2022-03-29T01:15:32.000Z
import click from lhotse.bin.modes import download, prepare from lhotse.recipes.ksponspeech import prepare_ksponspeech from lhotse.utils import Pathlike __all__ = ['ksponspeech'] @prepare.command(context_settings=dict(show_default=True)) @click.argument('corpus_dir', type=click.Path(exists=True, dir_okay=True)) @click.argument('output_dir', type=click.Path()) @click.option('-m', '--morpheme-analysis-model_path', type=click.Path(), default="") @click.option('-j', '--num-jobs', type=int, default=1, help='How many threads to use (can give good speed-ups with slow disks).') @click.option('-w', '--word-boundary-symbol', type=str, default="", help='word boundary symbol if it is defined in n-gram ARPA') def ksponspeech( corpus_dir: Pathlike, output_dir: Pathlike, morpheme_analysis_model_path: Pathlike, word_boundary_symbol: str, num_jobs: int ): """KsponSpeech AIHub data preparation.""" prepare_ksponspeech(corpus_dir, morpheme_analysis_model_path=morpheme_analysis_model_path, word_boundary_symbol=word_boundary_symbol, output_dir=output_dir, num_jobs=num_jobs) # @download.command(context_settings=dict(show_default=True)) # @click.argument('target_dir', type=click.Path()) # def zeroth( # target_dir: Pathlike, # ): # """Zeroth data download""" # download_zerothspeech(target_dir)
37.333333
88
0.690934
bbf2c1de8181547c0a03b7f01ec6ca2d3d9c2fa8
3,767
py
Python
analises/xavierUtils.py
gabinete-compartilhado-acredito/100-dias-congresso
ab2138fa2975818a6ea04c0d67dba174e09849b2
[ "MIT" ]
1
2021-01-25T19:14:42.000Z
2021-01-25T19:14:42.000Z
analises/xavierUtils.py
gabinete-compartilhado-acredito/100-dias-congresso
ab2138fa2975818a6ea04c0d67dba174e09849b2
[ "MIT" ]
null
null
null
analises/xavierUtils.py
gabinete-compartilhado-acredito/100-dias-congresso
ab2138fa2975818a6ea04c0d67dba174e09849b2
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as pl ### Auxiliary functions ### def Bold(text): """ Takes a string and returns it bold. """ return '\033[1m'+text+'\033[0m' def unique(series): """ Takes a pandas series as input and print all unique values, separated by a blue bar. """ u = series.unique() try: print Bold(str(len(u)))+': '+'\033[1;34m | \033[0m'.join(sorted(u.astype(str))) except: print Bold(str(len(u)))+': '+'\033[1;34m | \033[0m'.join(sorted(u)) def columns(df): """ Print the number of columns and their names, separated by a blue bar. """ unique(df.columns) def mapUnique(df): """ Takes a pandas dataframe and prints the unique values of all columns and their numbers. If the number of unique values is greater than maxItems, only print out a sample. """ for c in df.columns.values: maxItems = 20 u = df[c].unique() n = len(u) isStr = isinstance(u[0],basestring) print '' print Bold(c+': ')+str(n)+' unique values.' if n<=maxItems: if isStr: print ', '.join(np.sort(u)) else: print ', '.join(np.sort(u).astype('unicode')) else: if isStr: print Bold('(sample) ')+', '.join(np.sort(np.random.choice(u,size=maxItems,replace=False))) else: print Bold('(sample) ')+', '.join(np.sort(np.random.choice(u,size=maxItems,replace=False)).astype('unicode')) def checkMissing(df): """ Takes a pandas dataframe and prints out the columns that have missing values. """ colNames = df.columns.values print Bold('Colunas com valores faltantes:') Ntotal = len(df) Nmiss = np.array([float(len(df.loc[df[c].isnull()])) for c in colNames]) df2 = pd.DataFrame(np.transpose([colNames,[df[c].isnull().any() for c in colNames], Nmiss, np.round(Nmiss/Ntotal*100,2)]), columns=['coluna','missing','N','%']) print df2.loc[df2['missing']==True][['coluna','N','%']] def freq(series, value): """ Takes a pandas series and a value and returns the fraction of the series that presents a certain value. """ Ntotal = len(series) Nsel = float(len(series.loc[series==value])) return Nsel/Ntotal ### TEM BUG!! CORRIGIR! >> o split pode dar errado se o path tiver ../ def saveFigWdate(name): """ Takes a string (a filename with extension) and save the current plot to it, but adding the current date to the filename. """ part = name.split('.') t = dt.datetime.now().strftime('%Y-%m-%d') filename = part[0]+'_'+t+'.'+part[1] pl.savefig(filename, bbox_inches='tight') def cov2corr(cov): """ Takes a covariance matrix and returns the correlation matrix. """ assert(len(cov) == len(np.transpose(cov))), 'Cov. matrix must be a square matrix.' corr = [ [cov[i][j]/np.sqrt(cov[i][i]*cov[j][j]) for i in range(0,len(cov))] for j in range(0,len(cov))] return np.array(corr) def one2oneQ(df, col1, col2): """ Check if there is a one-to-one correspondence between two columns in a dataframe. """ n2in1 = df.groupby(col1)[col2].nunique() n1in2 = df.groupby(col2)[col1].nunique() if len(n2in1)==np.sum(n2in1) and len(n1in2)==np.sum(n1in2): return True else: return False def one2oneViolations(df, colIndex, colMultiples): """ Returns the unique values in colMultiples for a fixed value in colIndex (only for when the number of unique values is >1). """ return df.groupby(colIndex)[colMultiples].unique().loc[df.groupby(colIndex)[colMultiples].nunique()>1]
32.196581
129
0.607114
513b3e597f56c6aeff909b585cb763b31d856c20
45,132
py
Python
QA_api.py
alsmeirelles/QuickAnnotator
ffca5df537ca031543f1a311b0923619611554a5
[ "BSD-3-Clause-Clear" ]
null
null
null
QA_api.py
alsmeirelles/QuickAnnotator
ffca5df537ca031543f1a311b0923619611554a5
[ "BSD-3-Clause-Clear" ]
null
null
null
QA_api.py
alsmeirelles/QuickAnnotator
ffca5df537ca031543f1a311b0923619611554a5
[ "BSD-3-Clause-Clear" ]
null
null
null
import base64 import glob import os, re, sys, ast, shutil from datetime import datetime import logging import multiprocessing import PIL.Image import cv2 import numpy as np from skimage.measure import label from flask import Blueprint, send_from_directory, jsonify from flask import current_app, url_for, request, make_response import sqlalchemy import json from QA_config import config, get_database_uri from QA_db import Image, Project, Roi, db, Job, get_latest_modelid from QA_pool import pool_get_image, pool_run_script, update_completed_job_status from QA_utils import get_file_tail,tile_for_patch,get_initial_train,get_img_metadata,run_al api = Blueprint("api", __name__) jobs_logger = logging.getLogger('jobs') # This will get the last few lines from the log file @api.route("/api/logs/<file_stem>", methods=["GET"]) def get_latest_log(file_stem): log_lines = 100 # <-- TODO: pull from config log_path = file_stem + '.log' return get_file_tail(log_path, log_lines), 200 @api.route("/api/<project_name>/embed/<image_name>", methods=["GET"]) def get_embed(project_name, image_name): upload_folder = f"./projects/{project_name}/patches/" return send_from_directory(upload_folder, image_name) @api.route("/api/<project_name>/generate_train", methods=["GET"]) def generate_train(project_name): upload_folder = f"./projects/{project_name}/patches/" cache_folder = f"./projects/{project_name}/cache/" proj = db.session.query(Project).filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 current_app.logger.info(f'Generate initial training set for project {project_name}:') iset = get_initial_train(cache_folder) save_roi = False processes = config.getint("pooling","npoolthread", fallback=2) #Initial training set selected, start iteration 0 proj.iteration = 0 rt = multiprocess_insert_patch(iset,proj,project_name,save_roi,processes) return jsonify(success=True), 200 #return send_from_directory(upload_folder) #Multiprocess patch insertion def multiprocess_insert_patch(iset,proj,project_name,save_roi,processes): """iset: image set""" with multiprocessing.Pool(processes=processes) as pool: results = [pool.apply_async(insert_patch_into_DB,(proj,project_name,i,save_roi)) for i in iset[0]] if not iset[1] is None: for v in iset[1]: results.append(pool.apply_async(insert_patch_into_DB,(proj,project_name,v,save_roi)) ) rt = [r.get() for r in results] return rt #Insert patches selected by other means other than user manual upload def insert_patch_into_DB(proj,project_name,img,save_roi): #Make tile for patch tilename = None pdest = "" filename = os.path.basename(img.getPath()) tile,x,y,ps = tile_for_patch(f"./projects/{project_name}/{filename}") newImage = None if tile is None: current_app.logger.info(f'Project = {str(proj.id)}: No WSI directory available') dest = f"./projects/{project_name}/{filename}" # Check if the file name has been used before if os.path.isfile(dest): return jsonify(error="file already exists"), 400 shutil.copy(img.getPath(),dest) # if it's not a png image filebase, fileext = os.path.splitext(filename) dim = img.getImgDim() else: pdest = f"./projects/{project_name}/patches/{filename}" tilename = os.path.basename(tile) # if it's not a png image filebase, fileext = os.path.splitext(tilename) dest = f"./projects/{project_name}/{tilename}" if os.path.isfile(dest): print(f"Tile with multiple patches ({tilename})") newImage = db.session.query(Image).filter_by(projId=proj.id, name=tilename).first() if os.path.isfile(pdest): return jsonify(error="Tile already exists") #shutil.copy(img.getPath(),pdest) # Get image dimension dim = (config.getint("common","tilesize", fallback=2000),)*2 #Patches are ROIs from the tile save_roi = True current_app.logger.info(f'Destination = {dest}') # Save the new image information to database, if it's a new tile if newImage is None: newImage = Image(name=f"{filebase}.png", path=dest,projId=proj.id,patch_size=ps, width=dim[0], height=dim[1], date=datetime.now()) db.session.add(newImage) db.session.commit() if save_roi: roi_base_name = f'{filename.replace(".png", "_")}{x}_{y}_roi.png' roi_name = f'projects/{project_name}/roi/{roi_base_name}' nobjects = db.session.query(Roi).filter_by(imageId=newImage.id).count() newRoi = Roi(name=roi_base_name, path=roi_name, alpath=img.getPath(), testingROI = 0, imageId=newImage.id, width=ps, height=ps, x=x, y=y, acq=proj.iteration, nobjects = nobjects, date=datetime.now()) db.session.add(newRoi) db.session.commit() mask_folder = f"projects/{project_name}/mask/" mask_name = f"{filebase}.png".replace(".png", "_mask.png") mask = PIL.Image.new('RGB', dim) mask.save(mask_folder + mask_name, "PNG") return jsonify(success=True, image=newImage.as_dict()), 201 @api.route("/api/<project_name>/start_al", methods=["GET"]) def start_al(project_name): proj_folder = f"./projects/{project_name}/" proj = db.session.query(Project).filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 current_app.logger.info(f'Starting active learning system {project_name}:') training_rois = db.session.query(Roi.id, Roi.imageId, Roi.name, Roi.path, Roi.alpath, Roi.testingROI,Roi.height, Roi.width, Roi.x, Roi.y, Roi.acq, Roi.anclass) \ .filter(Image.projId == proj.id) \ .filter(Roi.imageId == Image.id) \ .group_by(Roi.id).all() selected = run_al(proj_folder,training_rois,config,proj.iteration) if selected is None: return jsonify(error="No pool available"),400 else: proj.iteration += 1 processes = config.getint("pooling","npoolthread", fallback=2) current_app.logger.info('Adding selected images to {}: {}'.format(project_name,len(selected))) rt = multiprocess_insert_patch(selected,proj,project_name,False,processes) current_app.logger.info(f'New patches ready to annotation. Sart iteration {proj.iteration}.') return jsonify(success=True), 200 @api.route("/api/<project_name>/train_autoencoder", methods=["GET"]) def train_autoencoder(project_name): proj = db.session.query(Project).filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 current_app.logger.info(f'Training autoencoder for project {project_name}:') # get the config options: current_app.logger.info(f'Getting config options:') num_images = config.getint('train_ae', 'numimages', fallback=-1) batch_size = config.getint('train_ae', 'batchsize', fallback=32) patch_size = config.getint('train_ae', 'patchsize', fallback=256) num_workers = config.getint('train_ae', 'numworkers', fallback=0) num_epochs = config.getint('train_ae', 'numepochs', fallback=1000) num_epochs_earlystop = config.getint('train_ae', 'num_epochs_earlystop', fallback=-1) num_min_epochs = config.getint('train_ae', 'num_min_epochs', fallback=300) current_app.logger.info(f'Images = {num_images}, epochs = {num_epochs}, batch size = {batch_size}') # get the command: full_command = [sys.executable, "train_ae.py", f"-n{num_epochs}", f"-p{patch_size}", f"-s{num_epochs_earlystop}", f"-l{num_min_epochs}", f"-m{num_images}", f"-b{batch_size}", f"-r{num_workers}", f"-o./projects/{project_name}/models/0", f"./projects/{project_name}/patches/*.png"] current_app.logger.info(full_command) # run it asynchronously: command_name = "train_autoencoder" # Set proj.train_ae_time = null since the model 0 is being retrained, the time should be unavailable proj.train_ae_time = None db.session.commit() return pool_run_script(project_name, command_name, full_command, callback=train_autoencoder_callback) # This callback updates the train_ae_time value in the database to # be the amount of time it took for the autoencoder to run: def train_autoencoder_callback(result): # update the job status in the database: update_completed_job_status(result) # if it was successful, mark the training time in the database: retval, jobid = result if retval == 0: jobs_logger.info('Marking training ae time in database:') engine = sqlalchemy.create_engine(get_database_uri()) projid = engine.connect().execute(f"select projId from job where id = :jobid", jobid=jobid).first()[0] engine.connect().execute( f"update project set train_ae_time = datetime(), iteration = CASE WHEN iteration<0 then 0 else iteration end where id = :projid", projid=projid) engine.dispose() # Fill the training/test files with the available images: def populate_training_files(project_name, train_file_path, test_file_path): # open those text files for writing: testfp = open(test_file_path, "w") trainfp = open(train_file_path, "w") # loop through the images in the database: for img in Project.query.filter_by(name=project_name).first().images: # TODO can improve this current_app.logger.info(f'Checking rois for img: {img.name}') for roi in img.rois: current_app.logger.info(f'Roi path = {roi.path}') # check if this image roi exists: if not os.path.isfile(roi.path): current_app.logger.warn(f'No roi image found at {roi.path}') continue # append this roi to the appropriate txt file: current_app.logger.info(f'Testing ROI = {str(roi.testingROI)}') if roi.testingROI: testfp.write(f"{roi.name}\n") elif roi.testingROI == 0: trainfp.write(f"{roi.name}\n") # close the files: testfp.close() trainfp.close() @api.route("/api/<project_name>/retrain_dl", methods=["GET"]) def retrain_dl(project_name): proj = Project.query.filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 current_app.logger.info(f'About to train a new transfer model for {project_name}') frommodelid = request.args.get('frommodelid', default=0, type=int) if(frommodelid == -1): frommodelid = get_latest_modelid(project_name) if frommodelid > proj.iteration or not os.path.exists(f"./projects/{project_name}/models/{frommodelid}/best_model.pth"): return jsonify( error=f"Deep learning model {frommodelid} doesn't exist"), 400 if proj.train_ae_time is None and frommodelid == 0: error_message = f'The base model 0 of project {project_name} was overwritten when Retrain Model 0 started.\n ' \ f'Please wait until the Retrain Model 0 finishes. ' current_app.logger.warn(error_message) return jsonify(error=error_message), 400 # todo: make sure there's actually a model in that subdirectory since errors still create the dir before the model is ready new_modelid = get_latest_modelid(project_name) + 1 output_model_path = f"./projects/{project_name}/models/{new_modelid}/" current_app.logger.info(f'New model path = {output_model_path}') # store the list of test and training images in text files: test_file_path = f"projects/{project_name}/test_imgs.txt" train_file_path = f"projects/{project_name}/train_imgs.txt" current_app.logger.info('Populating project files:') populate_training_files(project_name, train_file_path, test_file_path) # check if enough data exists: empty_training = not os.path.exists(test_file_path) or os.stat( test_file_path).st_size == 0 empty_testing = not os.path.exists(test_file_path) or os.stat( test_file_path).st_size == 0 if empty_training or empty_testing: # TODO can improve this by simply counting ROIs in the db error_message = f'Not enough training/test images for project {project_name}. You need at least 1 of each.' current_app.logger.warn(error_message) return jsonify(error=error_message), 400 # get config properties: num_epochs = config.getint('train_tl', 'numepochs', fallback=1000) num_epochs_earlystop = config.getint('train_tl', 'num_epochs_earlystop', fallback=-1) num_min_epochs = config.getint('train_tl', 'num_min_epochs', fallback=300) batch_size = config.getint('train_tl', 'batchsize', fallback=32) patch_size = config.getint('train_tl', 'patchsize', fallback=256) num_workers = config.getint('train_tl', 'numworkers', fallback=0) edge_weight = config.getfloat('train_tl', 'edgeweight', fallback=2) pclass_weight = config.getfloat('train_tl', 'pclass_weight', fallback=.5) fillbatch = config.getboolean('train_tl', 'fillbatch', fallback=False) # query P/N pixel count from database for ppixel_train npixel_train ppixel_test npixel_test if pclass_weight == -1: proj_ppixel = db.session.query(db.func.sum(Image.ppixel)).filter_by( projId=proj.id).scalar() proj_npixel = db.session.query(db.func.sum(Image.npixel)).filter_by( projId=proj.id).scalar() total = proj_npixel + proj_ppixel pclass_weight = 1 - proj_ppixel / total # get the command to retrain the model: full_command = [sys.executable, "train_model.py", f"-p{patch_size}", f"-e{edge_weight}", f"-n{num_epochs}", f"-s{num_epochs_earlystop}", f"-l{num_min_epochs}", f"-b{batch_size}", f"-o{output_model_path}", f"-w{pclass_weight}", f"-r{num_workers}", f"-m./projects/{project_name}/models/{frommodelid}/best_model.pth", f"./projects/{project_name}"] if(fillbatch): full_command.append("--fillbatch") current_app.logger.info(f'Training command = {full_command}') # run the script asynchronously: command_name = "retrain_dl" return pool_run_script(project_name, command_name, full_command, callback=retrain_dl_callback) def retrain_dl_callback(result): # update the job status in the database: update_completed_job_status(result) jobid = result[1] engine = sqlalchemy.create_engine(get_database_uri()) dbretval = engine.connect().execute(f"select procout from jobid_{jobid} where procout like 'RETVAL:%'").first() if dbretval is None: # no retval, indicating superpixel didn't get to the end, leave everything as is engine.dispose() return retvaldict = json.loads(dbretval[0].replace("RETVAL: ", "")) projname = retvaldict["project_name"] iteration = retvaldict["iteration"] engine.connect().execute(f"update project set iteration = :iteration where name = :projname", projname=projname, iteration=iteration) engine.dispose() @api.route("/api/<project_name>/make_patches", methods=["GET"]) def make_patches(project_name): # pull this project from the database: current_app.logger.info(f'Getting project info from database for project {project_name}.') project = db.session.query(Project).filter_by(name=project_name).first() if project is None: current_app.logger.warn(f'Unable to find {project_name} in database. Returning HTML response code 400.') return jsonify(error=f"Project {project_name} does not exist"), 400 target_files = [] current_app.logger.info('Looping through images.') for img in project.images: current_app.logger.info(f'Checking database if patches have been computed for image "{img.name}".') needs_calculating = False if img.make_patches_time: current_app.logger.info('Database claims that the patches have been computed. Checking filesystem.') image_name_without_extension = os.path.splitext(img.name)[0] # <-- remove extension current_app.logger.info(f'Image {image_name_without_extension}') patches_pattern = f'./projects/{project_name}/patches/{image_name_without_extension}*.png' current_app.logger.info(f'Patches pattern = {patches_pattern}') number_of_patches = len(glob.glob(patches_pattern)) current_app.logger.info(f'Number of patches = {number_of_patches}') if number_of_patches == 0: current_app.logger.warn( 'The database is incorrectly reporting that patches exist. We are recomputing them since no patches exist on the filesystem for this image.') needs_calculating = True else: needs_calculating = True if needs_calculating: current_app.logger.info( f'Patches need to be computed for image at {img.path}. Adding this image to the list.') target_files.append(img.path) # img.patches_computed = True # note, this only goes through when commit is called current_app.logger.info('Marked patches_computed to be True in the database.') if not target_files: error_message = 'No pending target image files for making patches.' current_app.logger.warn(error_message) return jsonify(error=error_message), 400 current_app.logger.info('Storing image filenames for patches in text file:') with open(f"./projects/{project_name}/patches/new_imgs.txt", "w") as textfile: for fname in target_files: textfile.write(f"{fname}\n") patchsize = config.getint('make_patches', 'patchsize', fallback=256) # get the command: full_command = [sys.executable, "make_patches_for_embed.py", f"-p{patchsize}", f"-o./projects/{project_name}/patches/", f"./projects/{project_name}/patches/new_imgs.txt"] whiteBG = request.args.get("whiteBG", default="keep", type=str) if whiteBG == "remove": full_command.append("-b") current_app.logger.info(full_command) # close the db session and note that patches_computed is true: db.session.commit() # run the command asynchronously command_name = "make_patches" return pool_run_script(project_name, command_name, full_command, callback=make_patches_callback) def make_patches_callback(result): # update the job status in the database: update_completed_job_status(result) retval, jobid = result engine = sqlalchemy.create_engine(get_database_uri()) dbretval = engine.connect().execute(f"select procout from jobid_{jobid} where procout like 'RETVAL:%'").first() if dbretval is None: # no retval, indicating make_patches didn't get to the end, leave everything as is engine.dispose() return retvaldict = json.loads(dbretval[0].replace("RETVAL: ", "")) for img in retvaldict["image_list"]: engine.connect().execute(f"update image set make_patches_time = datetime() where path= :img", img=img) # if it was successful, mark the training time in the database: if retval == 0: jobs_logger.info('Marking make_patches time in database:') projid = engine.connect().execute(f"select projId from job where id = :jobid", jobid=jobid).first()[0] engine.connect().execute(f"update project set make_patches_time = datetime() where id = :projid", projid=projid) engine.dispose() @api.route("/api/<project_name>/embed", methods=["GET"]) def make_embed(project_name): proj = db.session.query(Project).filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 model0ExistOrNot = os.path.exists(f"./projects/{project_name}/models/0/best_model.pth") current_app.logger.info(f'Model 0 (autoencoder) exists = {model0ExistOrNot}') if not model0ExistOrNot: return jsonify( error="Embedding is not available unless at least a base model is trained. Please make patches and train AE"), 400 if proj.train_ae_time is None and proj.iteration == 0: error_message = f'The base model 0 of project {project_name} was overwritten when Retrain Model 0 started.\n ' \ f'Please wait until the Retrain Model 0 finishes. ' current_app.logger.warn(error_message) return jsonify(error=error_message), 400 current_app.logger.info('Checking if the embeddings are the most recent.') # get config options: batchsize = config.getint('make_embed', 'batchsize', fallback=32) patchsize = config.getint('make_embed', 'patchsize', fallback=256) numimgs = request.args.get('numimgs', default=-1, type=int) modelid = request.args.get('modelid', default=get_latest_modelid(project_name), type=int) outdir = f"./projects/{project_name}/models/{modelid}" latest_modelID = get_latest_modelid(project_name) if modelid < 0 or modelid > latest_modelID: return jsonify( error=f"Your selected Embed Model ID is {modelid}. The last model ID is {latest_modelID}. A valid Model ID ranges from 0 to {latest_modelID}."), 400 # get the command: full_command = [sys.executable, "make_embed.py", project_name, f"-o{outdir}", f"-p{patchsize}", f"-b{batchsize}", f"-m{numimgs}"] current_app.logger.info(f'Full command = {str(full_command)}') # update the embedding iteration: # current_app.logger.info('Updating the embedding iteration to the model iteration:') # proj.embed_iteration = proj.iteration db.session.commit() # run the command asynchronously: command_name = "make_embed" return pool_run_script(project_name, command_name, full_command, callback=make_embed_callback) def make_embed_callback(result): # update the job status in the database: update_completed_job_status(result) jobid = result[1] engine = sqlalchemy.create_engine(get_database_uri()) dbretval = engine.connect().execute(f"select procout from jobid_{jobid} where procout like 'RETVAL:%'").first() if dbretval is None: # no retval, indicating superpixel didn't get to the end, leave everything as is engine.dispose() return retvaldict = json.loads(dbretval[0].replace("RETVAL: ", "")) projname = retvaldict["project_name"] modelid = retvaldict["modelid"] engine.connect().execute(f"update project set embed_iteration = :modelid where name = :projname", projname=projname, modelid=modelid) engine.dispose() @api.route("/api/<project_name>/model", methods=["GET"]) def get_model(project_name): modelid = request.args.get('model', get_latest_modelid(project_name), type=int) model_path = f"./projects/{project_name}/models/{modelid}/" return send_from_directory(model_path, "best_model.pth", as_attachment=True) @api.route('/api/<project_name>/dataset/<traintype>', methods=["GET"]) def get_traintest_images(project_name, traintype): # List all training and testing patches for the current project sample_images = [] with open(f"projects/{project_name}/{traintype}_imgs.txt", "r") as file: for img_name in file: sample_images.append(img_name.strip()) current_app.logger.info(sample_images) return jsonify(sample_images=sample_images) @api.route('/api/<project_name>/dataset/<traintype>/<roiname>', methods=["DELETE"]) def remove_image_from_traintest(project_name, traintype, roiname): roi = db.session.query(Roi).filter(name=os.path.basename(roiname.strip())).first() roi.testingROI = -1 db.session.commit() return jsonify(success=True, roi=roi.as_dict()) @api.route('/api/<project_name>/dataset/<traintype>/<roiname>/<roi_class>', methods=["PUT"]) def add_roi_to_traintest(project_name, traintype, roiname, roi_class): current_app.logger.info( f'Adding new annotation image. Project = {project_name} Training type = {traintype} Name = {roiname}') roi = db.session.query(Roi).filter_by(name=os.path.basename(roiname.strip())).first() if roi is None: return jsonify(error=f"{roiname} not found in project {project_name}"), 400 current_app.logger.info('Roi found = ' + str(roi.id)) if traintype == "train": roi.testingROI = 0 if traintype == "test": roi.testingROI = 1 roi.anclass = 1 if roi_class == "positive" else 0 current_app.logger.info('Committing new image to database:') db.session.commit() return jsonify(success=True, roi=roi.as_dict()), 200 @api.route("/api/<project_name>/image/<image_name>", methods=["GET"]) def get_image(project_name, image_name): current_app.logger.info(f"Outputting file {image_name}") return send_from_directory(f"./projects/{project_name}", image_name) @api.route("/api/<project_name>/image/<image_name>/thumbnail", methods=["GET"]) def get_image_thumb(project_name, image_name): width = request.form.get('width', 250) img = cv2.imread(f"./projects/{project_name}/{image_name}") height = int(img.shape[0] * width / img.shape[1]) dim = (width, height) img = cv2.resize(img, dim) success, img_encoded = cv2.imencode('.png', img) response = make_response(img_encoded.tobytes()) response.headers['Content-Type'] = 'image/png' response.headers['Content-Disposition'] = f'inline; filename = "{image_name.replace(".png", "_thumb.png")}"' return response @api.route('/api/<project_name>/image/<image_name>', methods=["DELETE"]) # below should be done in a post-processing call def delete_image(project_name, image_name): proj = Project.query.filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 # Remove the image from database selected_image = db.session.query(Image).filter_by(projId=proj.id, name=image_name).first() # Delete all the ROI linked to the image select_Rois = db.session.query(Roi).filter_by(imageId=selected_image.id) select_Rois.delete() db.session.delete(selected_image) db.session.commit() # Remove the image file from server os.remove(selected_image.path) # Remove the corresponding mask and result files # TODO: the below can be refactored to recursively look for *all* files which match the pattern and delete them # need to be careful with recursive search. if one has 1.png and 100.png, and wants to delete all files associated # with 1.png, wildcards may pick up unrelated 100.png images mask_name = selected_image.name.replace(".png", "_mask.png") mask_path = f"./projects/{project_name}/mask/{mask_name}" if os.path.exists(mask_path): os.remove(mask_path) # --- delete prediction results for every model result_name = selected_image.name.replace(".png", "_pred.png") result_path = f"./projects/{project_name}/pred/**/{result_name}" result_fileLists = glob.glob(result_path) for filePath in result_fileLists: try: os.remove(filePath) except: print("Error while deleting file : ", filePath) # --- delete patches patches = selected_image.name.replace(".png", "") patches_path = f"./projects/{project_name}/patches" patches_fileList = glob.glob(f'{patches_path}/{patches}_*_*.png') # Iterate over the list of filepaths & remove each file. for filePath in patches_fileList: try: os.remove(filePath) except: print("Error while deleting file : ", filePath) # --- delete superpixels superpixels_name = selected_image.name.replace(".png", "_superpixels.png") superpixels_path = f"./projects/{project_name}/superpixels/{superpixels_name}" if os.path.exists(superpixels_path): os.remove(superpixels_path) superpixels_boundary_name = selected_image.name.replace(".png", "_superpixels_boundary.png") superpixels_boundary_path = f"./projects/{project_name}/superpixels_boundary/{superpixels_boundary_name}" if os.path.exists(superpixels_boundary_path): os.remove(superpixels_boundary_path) # Todo: Remove the image patches from embedding # Get the image list for the project return jsonify(success=True), 204 @api.route("/api/<project_name>/image", methods=["POST"]) def upload_image(project_name): current_app.logger.info(f'Uploading image for project {project_name} :') # ---- check project exists first! proj = Project.query.filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 current_app.logger.info(f'Project = {str(proj.id)}') file = request.files.get('file') filename = file.filename save_roi = False pdest = f"./projects/{project_name}/patches/{filename}" file.save(pdest) img = get_img_metadata(pdest) ret = insert_patch_into_DB(proj,project_name,img,save_roi) return ret @api.route("/api/<project_name>/roi/<roi_name>/mask", methods=["GET"]) def get_roimask(project_name, roi_name): mask_folder = f"projects/{project_name}/mask/" match = re.search(r"(.*)_(\d+)_(\d+)_roi.png", roi_name) mask_name = f"{match.group(1)}_mask.png" x = int(match.group(2)) y = int(match.group(3)) roi = cv2.imread(f"./projects/{project_name}/roi/{roi_name}") if roi is None: jsonify(error=f"ROI file {roi_name} does not exist"), 400 h = roi.shape[0] w = roi.shape[1] mask = cv2.imread(mask_folder + mask_name) mask = mask[y:y + h, x:x + w, :] success, mask_encoded = cv2.imencode('.png', mask) response = make_response(mask_encoded.tobytes()) response.headers['Content-Type'] = 'image/png' response.headers['Content-Disposition'] = f'inline; filename = "{roi_name.replace(".png", "_mask.png")}"' return response @api.route("/api/<project_name>/image/<image_name>/roimask", methods=["POST"]) def post_roimask(project_name, image_name): current_app.logger.info(f'Uploading roi mask for project {project_name} and image {image_name}:') proj = Project.query.filter_by(name=project_name).first() if proj is None: return jsonify(error=f"project {project_name} doesn't exist"), 400 current_app.logger.info(f'Project id = {str(proj.id)}') force = request.form.get('force', False, type=bool) selected_image = db.session.query(Image).filter_by(projId=proj.id, name=image_name).first() if selected_image is None: return jsonify(error=f"{selected_image} inside of project {project_name} doesn't exist"), 400 roimask_url = request.form.get('roimask', None) if not roimask_url: return jsonify(error="no roimask provided"), 400 roimask_data = re.search(r'data:image/png;base64,(.*)', roimask_url).group(1) roimask_decoded = base64.b64decode(roimask_data) roimask = cv2.imdecode(np.frombuffer(roimask_decoded, dtype=np.uint8), cv2.IMREAD_UNCHANGED) roimask = cv2.cvtColor(roimask, cv2.COLOR_BGR2RGB) if not np.all(np.isin(roimask, [0, 255])): return jsonify(error="Non [0,255] incorrect values are saved in the roimask mask, please check"), 400 if roimask.shape[2] > 3: return jsonify(error="Roi Mask has 4 dimensions? Possible Alpha Channel Issue?"), 400 h = roimask.shape[0] w = roimask.shape[1] x = int(request.form.get('pointx', -1)) y = int(request.form.get('pointy', -1)) if -1 == x or -1 == y: return jsonify(error="no x , y location provided"), 402 img = cv2.imread(f"./projects/{project_name}/{image_name}") if y + h > img.shape[0] or x + w > img.shape[1] or y < 0 or x < 0: return jsonify(f"ROI not within image, roi xy ({x} ,{y}) vs image size ({img.shape[0]}, {img.shape[1]})"), 400 mask_name = f"projects/{project_name}/mask/{image_name.replace('.png', '_mask.png')}" if not os.path.isfile(mask_name): mask = np.zeros(img.shape, dtype=np.uint8) else: mask = cv2.cvtColor(cv2.imread(mask_name), cv2.COLOR_BGR2RGB) roimaskold = mask[y:y + h, x:x + w, :] if not force and np.any(roimaskold != 0): current_app.logger.error('ROI exists at this position.') return jsonify(error="ROI at this position already exists, enable force to overide"), 402 mask[y:y + h, x:x + w, :] = roimask cv2.imwrite(mask_name, cv2.cvtColor(mask, cv2.COLOR_RGB2BGR)) roi_base_name = f'{image_name.replace(".png", "_")}{x}_{y}_roi.png' roi_name = f'projects/{project_name}/roi/{roi_base_name}' roi = img[y:y + h, x:x + w, :] cv2.imwrite(roi_name, roi) # --- update positive / negative stats selected_image.ppixel = np.count_nonzero(mask[:, :, 1] == 255) selected_image.npixel = np.count_nonzero(mask[:, :, 0] == 255) # -- determine number of new objects from this roi, will need for statistics later nobjects_roi = get_number_of_objects(roimask) selected_image.nobjects = get_number_of_objects(mask) # ---- parent_image = Image.query.filter_by(name=image_name, projId=proj.id).first() rois = Roi.query.filter_by(imageId=parent_image.id) newRoi = None for r in rois: if abs(r.x-x) <= 2 and abs(r.y - y) <= 2: newRoi = r else: current_app.logger.info("Found ROI ({}) with different coordinates: ({},{}) against ({},{})".format(r.id,r.x,r.y,x,y)) if newRoi: current_app.logger.info("ROI already stored. Original patch: {}".format(newRoi.alpath)) newRoi.nobjects = nobjects_roi newRoi.path = roi_name db.session.commit() else: current_app.logger.info('Storing roi to database:') newRoi = Roi(name=roi_base_name, path=roi_name, imageId=parent_image.id, width=w, height=h, x=x, y=y, nobjects = nobjects_roi, date=datetime.now()) db.session.add(newRoi) db.session.commit() return jsonify(success=True, roi=newRoi.as_dict()), 201 @api.route("/api/<project_name>/roi/<roi_name>", methods=["GET"]) def get_roi(project_name, roi_name): response = send_from_directory(f"./projects/{project_name}/roi/", roi_name) response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0, max-age=0' response.headers['Pragma'] = 'no-cache' response.headers['Expires'] = '-1' return response @api.route("/api/<project_name>/image/<image_name>/mask", methods=["GET"]) def get_mask(project_name, image_name): response = send_from_directory(f"./projects/{project_name}/mask", image_name.replace(".png", "_mask.png")) response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0, max-age=0' response.headers['Pragma'] = 'no-cache' response.headers['Expires'] = '-1' return response @api.route("/api/<project_name>/image/<image_name>/prediction", methods=["GET"]) def get_prediction(project_name, image_name): current_app.logger.info(f'Getting prediction for project {project_name} and image {image_name}') project = Project.query.filter_by(name=project_name).first() curr_image = Image.query.filter_by(projId=project.id, name=image_name).first() if curr_image is None: jsonify(error=f"Image {image_name} does not exist"), 400 modelid = request.args.get('model', get_latest_modelid(project_name), type=int) current_app.logger.info(f'Model id = {str(modelid)}') if modelid <= 0: current_app.logger.warn(f"No DL model trained for {project_name} -- {image_name} -- {modelid}") return jsonify(error="No AI model trained, so no AI results available yet."), 400 upload_folder = f"./projects/{project_name}/pred/{modelid}" fname = image_name.replace(".png", "_pred.png") full_fname = f"{upload_folder}/{fname}" current_app.logger.info('Full filename for prediction = ' + full_fname) print('Generating new prediction image:') batchsize = config.getint('get_prediction', 'batchsize', fallback=32) patchsize = config.getint('get_prediction', 'patchsize', fallback=256) # run the command: full_command = [sys.executable, "make_output_unet_cmd.py", f"-s{batchsize}", f"-p{patchsize}", f"-m./projects/{project_name}/models/{modelid}/best_model.pth", f"-o./projects/{project_name}/pred/{modelid}", f"./projects/{project_name}/{image_name}", "--force"] command_name = "generate_prediction" return pool_get_image(project_name, command_name, full_command, full_fname, imageid=curr_image.id) @api.route("/api/<project_name>/image/<image_name>/superpixels", methods=["GET"]) def get_superpixels(project_name, image_name): current_app.logger.info(f'Getting superpixel for project {project_name} and image {image_name}') latest_modelid = get_latest_modelid(project_name) force = request.args.get('force', False, type=bool) modelidreq = request.args.get('superpixel_run_id', latest_modelid, type=int) current_app.logger.info(f'Model id = {str(modelidreq)}') if modelidreq > latest_modelid: return jsonify(error=f"Requested ModelID {modelidreq} greater than available models {latest_modelid}"), 400 project = Project.query.filter_by(name=project_name).first() curr_image = Image.query.filter_by(projId=project.id, name=image_name).first() superpixel_modelid = curr_image.superpixel_modelid current_app.logger.info(f'The current superpixel_modelid of {image_name} = {str(superpixel_modelid)}') upload_folder = f"./projects/{project_name}/superpixels" spixel_fname = image_name.replace(".png", "_superpixels.png") full_fname = f"{upload_folder}/{spixel_fname}" current_app.logger.info('Full filename for superpixel = ' + full_fname) batchsize = config.getint('superpixel', 'batchsize', fallback=32) patchsize = config.getint('superpixel', 'patchsize', fallback=256) approxcellsize = config.getint('superpixel', 'approxcellsize', fallback=20) compactness = config.getfloat('superpixel', 'compactness', fallback=.01) command_to_use = config.get("superpixel", 'command_to_use', fallback="make_superpixel.py") if modelidreq < 0: # We are using simple method, since we have no dl model current_app.logger.warn( f"No DL model trained for {project_name} -- {image_name} -- {modelidreq}, will use simple method") command_to_use = "make_superpixel.py" full_command = [sys.executable, command_to_use, f"-p{patchsize}", f"-x{batchsize}", f"-c{compactness}", f"-a{approxcellsize}", f"-m./projects/{project_name}/models/{modelidreq}/best_model.pth", f"-s./projects/{project_name}/superpixels/", f"-o./projects/{project_name}/superpixels_boundary/", f"./projects/{project_name}/{image_name}", "--force"] current_app.logger.info( f'We are running {command_to_use} to generate superpixels for IMAGE {image_name} in PROJECT {project_name} ') current_app.logger.info(f'Superpixel command = {full_command}') command_name = "generate_superpixel" if modelidreq > superpixel_modelid or force: try: os.remove(full_fname) except: pass return pool_get_image(project_name, command_name, full_command, full_fname, imageid=curr_image.id, callback=get_superpixels_callback) def get_superpixels_callback(result): # update the job status in the database: update_completed_job_status(result) retval, jobid = result engine = sqlalchemy.create_engine(get_database_uri()) dbretval = engine.connect().execute(f"select procout from jobid_{jobid} where procout like 'RETVAL:%'").first() if dbretval is None: # no retval, indicating superpixel didn't get to the end, leave everything as is engine.dispose() return retvaldict = json.loads(dbretval[0].replace("RETVAL: ", "")) if "model" in retvaldict: # for DL approach modelid = retvaldict["model"].split("/")[4] else: modelid = -1 for img in retvaldict["output_file"]: engine.connect().execute( f"update image set superpixel_time = datetime(), superpixel_modelid = :modelid where path= :img", img=img, modelid=modelid) engine.dispose() @api.route("/api/<project_name>/image/<image_name>/superpixels_boundary", methods=["GET"]) def get_superpixels_boundary(project_name, image_name): upload_folder = f"./projects/{project_name}/superpixels_boundary" spixel_fname = image_name.replace(".png", "_superpixels_boundary.png") full_fname = f"{upload_folder}/{spixel_fname}" oseg_fname = f'./projects/{project_name}/superpixels/{image_name.replace(".png", "_superpixels.png")}' if not os.path.isfile(oseg_fname): return jsonify(error="need to generate superpixels image first"), 400 folder, filename = os.path.split(full_fname) response = send_from_directory(folder, filename) response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0, max-age=0' response.headers['Pragma'] = 'no-cache' response.headers['Expires'] = '-1' return response @api.route("/api/<project_name>/image/<image_name>/<direction>", methods=["GET"]) def prevnext_image(project_name, image_name, direction): project = Project.query.filter_by(name=project_name).first() curr_image = Image.query.filter_by(projId=project.id, name=image_name).first() # To do: we can not prev the "first image" and "next" the last image, need to make it periodic if (direction == "previous"): image = Image.query.filter((Image.id < curr_image.id) & (Image.projId == project.id)) \ .order_by(Image.id.desc()).first() else: image = Image.query.filter((Image.id > curr_image.id) & (Image.projId == project.id)) \ .order_by(Image.id.asc()).first() current_app.logger.info(f"{project_name} -- {image_name} --- {direction}") if image is None: errorMessage = "There is no " + direction + " image" return jsonify(error=errorMessage), 400 else: return jsonify(url=url_for('html.annotation', project_name=project_name, image_name=image.name)), 200 # ---- config work @api.route('/api/config', methods=["GET"]) def getconfig(): # Front end can now keep track of the last lines sent and request all the "new" stuff allsections = dict() for section in config.sections(): sectionitems = [] for items in config[section].items(): sectionitems.append(items) allsections[section] = sectionitems return jsonify(allsections) @api.route("/api/<project_name>/embedcsv", methods=["GET"]) def get_embed_csv(project_name): project = Project.query.filter_by(name=project_name).first() latest_modelid = get_latest_modelid(project_name) selected_modelid = request.args.get('modelid', default=latest_modelid, type=int) fname = f"./projects/{project_name}/models/{selected_modelid}/embedding.csv" if selected_modelid > latest_modelid or selected_modelid < 0: error_message = f"Your selected View Embed Model ID is {selected_modelid}. A valid Model ID ranges from 0 to {latest_modelid}." current_app.logger.error(error_message) return jsonify( error=error_message), 400 if not os.path.exists(fname): error_message = f'No embedding data available to render for Model {selected_modelid}.' current_app.logger.error(error_message) return jsonify( error=error_message), 400 folder, filename = os.path.split(fname) response = send_from_directory(folder, filename) response.headers['Cache-Control'] = 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0, max-age=0' response.headers['Pragma'] = 'no-cache' response.headers['Expires'] = '-1' return response def get_number_of_objects(img): _, nobjects = label(img[:, :, 1], return_num=True) return nobjects
42.901141
161
0.675906
d06833db2bcaa438139b385cba35e0cedf6a1911
2,140
py
Python
api/controllers.py
iasmini/planet
710fc11d992145d41c32bdff3edd917db6e21837
[ "MIT" ]
null
null
null
api/controllers.py
iasmini/planet
710fc11d992145d41c32bdff3edd917db6e21837
[ "MIT" ]
null
null
null
api/controllers.py
iasmini/planet
710fc11d992145d41c32bdff3edd917db6e21837
[ "MIT" ]
null
null
null
from sqlalchemy.exc import OperationalError from sqlalchemy.sql import text from flask import request, Blueprint, current_app from flask_restful import Resource from app.planet.models import Planet bp = Blueprint('api', __name__) class ApiResource(Resource): @bp.route('/api/planets/') def get(self): """ Returns a list of planets """ # filters climate = request.args.get('climate', None) name = request.args.get('name', None) sort = request.args.get('sort', None) page = request.args.get('page', None, type=int) if page and page < 0: message = 'Página {page} não existe. Página mínima 1.'.format(page=page) return {"status_code": 400, "response": message} filters = '' if climate: filters = "climate='" + climate + "'" if name: if filters: filters += " AND " filters += "name LIKE '%" + name + "%'" if filters: rows = Planet.query.filter(text(filters)) if sort: rows = rows.order_by(text(sort)) else: if sort: rows = Planet.query.order_by(text(sort)) else: rows = Planet.query try: rows.count() except OperationalError: return {"status_code": 400, "message": "Ainda não existem planetas cadastrados."} planets = list() # exibe somente resultados de acordo com a pagina informada na url if page: rows = rows.paginate(page, current_app.config['ITEMS_PER_PAGE'], False) for row in rows.items: planets.append(row.to_dict()) else: for row in rows: planets.append(row.to_dict()) response = dict() response['status_code'] = 200 response['response'] = dict() if page: response['response']['page'] = page response['response']['items_per_page'] = current_app.config['ITEMS_PER_PAGE'] response['response']['results'] = planets return response
28.533333
93
0.557009
34580aeba3d4dd995a0970b15174ffe440cd2eff
55
py
Python
core/model/__init__.py
rezmond/images_sort
a50630d5ee8be276452cfca0cec30d59cb8612b7
[ "MIT" ]
null
null
null
core/model/__init__.py
rezmond/images_sort
a50630d5ee8be276452cfca0cec30d59cb8612b7
[ "MIT" ]
null
null
null
core/model/__init__.py
rezmond/images_sort
a50630d5ee8be276452cfca0cec30d59cb8612b7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from .model import MoverModel
13.75
29
0.636364
ace7f6c57189a154de750e3dd6cfdbd7e204e294
611
py
Python
openpifpaf_hand/__init__.py
DuncanZauss/openpifpaf_hand
bea3529d46e859060681a4ba180a8e8cee6a3f7b
[ "MIT" ]
null
null
null
openpifpaf_hand/__init__.py
DuncanZauss/openpifpaf_hand
bea3529d46e859060681a4ba180a8e8cee6a3f7b
[ "MIT" ]
null
null
null
openpifpaf_hand/__init__.py
DuncanZauss/openpifpaf_hand
bea3529d46e859060681a4ba180a8e8cee6a3f7b
[ "MIT" ]
null
null
null
import openpifpaf from .freihand import Freihand from .rhd import RHD from .cifonly import CifOnly def register(): openpifpaf.DATAMODULES['freihand'] = Freihand openpifpaf.DATAMODULES['rhd'] = RHD openpifpaf.DECODERS.add(CifOnly) openpifpaf.CHECKPOINT_URLS['shufflenetv2k16-hand'] = 'https://github.com/DuncanZauss/' \ 'openpifpaf_assets/releases/download/v0.1.0/rhd_freihand_sk16.pkl.epoch600' openpifpaf.CHECKPOINT_URLS['shufflenetv2k16-wb-hand'] = 'https://github.com/DuncanZauss/' \ 'openpifpaf_assets/releases/download/v0.1.0/freihand_wholebody_sk16.pkl.epoch600'
38.1875
95
0.754501
d418c69c7d07f39b7c96a1e2ac08cbb0e7cf0e29
29,658
py
Python
source/lib/blueprints/byom/pipeline_definitions/templates_parameters.py
Snehitha12345/mlops-workload-orchestrator
d19d34f3ce2ed2b65abaaf0c7750b8be7cb369b3
[ "Apache-2.0" ]
10
2022-01-28T23:48:11.000Z
2022-03-31T14:38:06.000Z
source/lib/blueprints/byom/pipeline_definitions/templates_parameters.py
Snehitha12345/mlops-workload-orchestrator
d19d34f3ce2ed2b65abaaf0c7750b8be7cb369b3
[ "Apache-2.0" ]
1
2022-01-24T21:21:55.000Z
2022-01-24T21:21:55.000Z
source/lib/blueprints/byom/pipeline_definitions/templates_parameters.py
Snehitha12345/mlops-workload-orchestrator
d19d34f3ce2ed2b65abaaf0c7750b8be7cb369b3
[ "Apache-2.0" ]
6
2022-01-31T04:55:19.000Z
2022-03-10T08:37:29.000Z
# ##################################################################################################################### # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # or in the 'license' file accompanying this file. This file is distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # # ##################################################################################################################### from aws_cdk import core class ParameteresFactory: @staticmethod def create_notification_email_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "NotificationEmail", type="String", description="email for pipeline outcome notifications", allowed_pattern="^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$", constraint_description="Please enter an email address with correct format (example@example.com)", min_length=5, max_length=320, ) @staticmethod def create_git_address_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "CodeCommitRepoAddress", type="String", description="AWS CodeCommit repository clone URL to connect to the framework.", allowed_pattern=( "^(((https:\/\/|ssh:\/\/)(git\-codecommit)\.[a-zA-Z0-9_.+-]+(amazonaws\.com\/)[a-zA-Z0-9-.]" "+(\/)[a-zA-Z0-9-.]+(\/)[a-zA-Z0-9-.]+$)|^$)" ), min_length=0, max_length=320, constraint_description=( "CodeCommit address must follow the pattern: ssh or " "https://git-codecommit.REGION.amazonaws.com/version/repos/REPONAME" ), ) @staticmethod def create_existing_bucket_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ExistingS3Bucket", type="String", description="Name of existing S3 bucket to be used for ML assets. S3 Bucket must be in the same region as the deployed stack, and has versioning enabled. If not provided, a new S3 bucket will be created.", allowed_pattern="((?=^.{3,63}$)(?!^(\d+\.)+\d+$)(^(([a-z0-9]|[a-z0-9][a-z0-9\-]*[a-z0-9])\.)*([a-z0-9]|[a-z0-9][a-z0-9\-]*[a-z0-9])$)|^$)", min_length=0, max_length=63, ) @staticmethod def create_existing_ecr_repo_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ExistingECRRepo", type="String", description="Name of existing Amazon ECR repository for custom algorithms. If not provided, a new ECR repo will be created.", allowed_pattern="((?:[a-z0-9]+(?:[._-][a-z0-9]+)*/)*[a-z0-9]+(?:[._-][a-z0-9]+)*|^$)", min_length=0, max_length=63, ) @staticmethod def create_account_id_parameter(scope: core.Construct, id: str, account_type: str) -> core.CfnParameter: return core.CfnParameter( scope, id, type="String", description=f"AWS {account_type} account number where the CF template will be deployed", allowed_pattern="^\d{12}$", ) @staticmethod def create_org_id_parameter(scope: core.Construct, id: str, account_type: str) -> core.CfnParameter: return core.CfnParameter( scope, id, type="String", description=f"AWS {account_type} organizational unit id where the CF template will be deployed", allowed_pattern="^ou-[0-9a-z]{4,32}-[a-z0-9]{8,32}$", ) @staticmethod def create_blueprint_bucket_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BlueprintBucket", type="String", description="Bucket name for blueprints of different types of ML Pipelines.", min_length=3, ) @staticmethod def create_data_capture_bucket_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "DataCaptureBucket", type="String", description="Bucket name where the data captured from SageMaker endpoint will be stored.", min_length=3, ) @staticmethod def create_baseline_output_bucket_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BaselineOutputBucket", type="String", description="Bucket name where the output of the baseline job will be stored.", min_length=3, ) @staticmethod def create_batch_input_bucket_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BatchInputBucket", type="String", description="Bucket name where the data input of the bact transform is stored.", min_length=3, ) @staticmethod def create_assets_bucket_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "AssetsBucket", type="String", description="Bucket name where the model and baselines data are stored.", min_length=3, ) @staticmethod def create_ground_truth_bucket_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "GroundTruthBucket", type="String", description="Bucket name where the ground truth data will be stored.", min_length=3, ) @staticmethod def create_custom_algorithms_ecr_repo_arn_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "CustomAlgorithmsECRRepoArn", type="String", description="The arn of the Amazon ECR repository where custom algorithm image is stored (optional)", allowed_pattern="(^arn:aws:ecr:(us(-gov)?|ap|ca|cn|eu|sa)-(central|(north|south)?(east|west)?)-\\d:\\d{12}:repository/.+|^$)", constraint_description="Please enter valid ECR repo ARN", min_length=0, max_length=2048, ) @staticmethod def create_kms_key_arn_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "KmsKeyArn", type="String", description="The KMS ARN to encrypt the output of the batch transform job and instance volume (optional).", allowed_pattern="(^arn:aws:kms:(us(-gov)?|ap|ca|cn|eu|sa)-(central|(north|south)?(east|west)?)-\d:\d{12}:key/.+|^$)", constraint_description="Please enter kmsKey ARN", min_length=0, max_length=2048, ) @staticmethod def create_algorithm_image_uri_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ImageUri", type="String", description="The algorithm image uri (build-in or custom)", ) @staticmethod def create_model_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ModelName", type="String", description="An arbitrary name for the model.", min_length=1 ) @staticmethod def create_stack_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "StackName", type="String", description="The name to assign to the deployed CF stack.", min_length=1 ) @staticmethod def create_endpoint_name_parameter(scope: core.Construct, optional=False) -> core.CfnParameter: return core.CfnParameter( scope, "EndpointName", type="String", description="The name of the AWS SageMaker's endpoint", min_length=0 if optional else 1, ) @staticmethod def create_model_artifact_location_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ModelArtifactLocation", type="String", description="Path to model artifact inside assets bucket.", ) @staticmethod def create_inference_instance_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "InferenceInstance", type="String", description="Inference instance that inference requests will be running on. E.g., ml.m5.large", allowed_pattern="^[a-zA-Z0-9_.+-]+\.[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$", min_length=7, ) @staticmethod def create_batch_inference_data_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BatchInferenceData", type="String", description="S3 bucket path (including bucket name) to batch inference data file.", ) @staticmethod def create_batch_job_output_location_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BatchOutputLocation", type="String", description="S3 path (including bucket name) to store the results of the batch job.", ) @staticmethod def create_data_capture_location_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "DataCaptureLocation", type="String", description="S3 path (including bucket name) to store captured data from the Sagemaker endpoint.", min_length=3, ) @staticmethod def create_baseline_job_output_location_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BaselineJobOutputLocation", type="String", description="S3 path (including bucket name) to store the Data Baseline Job's output.", min_length=3, ) @staticmethod def create_monitoring_output_location_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "MonitoringOutputLocation", type="String", description="S3 path (including bucket name) to store the output of the Monitoring Schedule.", min_length=3, ) @staticmethod def create_schedule_expression_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ScheduleExpression", type="String", description="cron expression to run the monitoring schedule. E.g., cron(0 * ? * * *), cron(0 0 ? * * *), etc.", allowed_pattern="^cron(\\S+\\s){5}\\S+$", ) @staticmethod def create_baseline_data_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BaselineData", type="String", description="Location of the Baseline data in Assets S3 Bucket.", ) @staticmethod def create_instance_type_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "InstanceType", type="String", description="EC2 instance type that model monitoring jobs will be running on. E.g., ml.m5.large", allowed_pattern="^[a-zA-Z0-9_.+-]+\.[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$", min_length=7, ) @staticmethod def create_instance_volume_size_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "InstanceVolumeSize", type="Number", description="Instance volume size used in model monitoring jobs. E.g., 20", ) @staticmethod def create_baseline_max_runtime_seconds_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BaselineMaxRuntimeSeconds", type="String", default="", description="Optional Maximum runtime in seconds the baseline job is allowed to run. E.g., 3600", ) @staticmethod def create_monitor_max_runtime_seconds_parameter(scope: core.Construct, monitoring_type: str) -> core.CfnParameter: max_default = "1800" if monitoring_type in ["ModelQuality", "ModelBias"] else "3600" return core.CfnParameter( scope, "MonitorMaxRuntimeSeconds", type="Number", default=max_default, description=( f" Required Maximum runtime in seconds the job is allowed to run the {monitoring_type} baseline job. " + "For data quality and model explainability, this can be up to 3600 seconds for an hourly schedule. " + "For model bias and model quality hourly schedules, this can be up to 1800 seconds." ), min_value=1, max_value=86400, ) @staticmethod def create_baseline_job_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BaselineJobName", type="String", description="Unique name of the data baseline job", min_length=3, max_length=63, ) @staticmethod def create_monitoring_schedule_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "MonitoringScheduleName", type="String", description="Unique name of the monitoring schedule job", min_length=3, max_length=63, ) @staticmethod def create_template_zip_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "TemplateZipFileName", type="String", allowed_pattern="^.*\.zip$", description="The zip file's name containing the CloudFormation template and its parameters files", ) @staticmethod def create_template_file_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "TemplateFileName", type="String", allowed_pattern="^.*\.yaml$", description="CloudFormation template's file name", ) @staticmethod def create_stage_params_file_name_parameter(scope: core.Construct, id: str, stage_type: str) -> core.CfnParameter: return core.CfnParameter( scope, id, type="String", allowed_pattern="^.*\.json$", description=f"parameters json file's name for the {stage_type} stage", ) @staticmethod def create_custom_container_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "CustomImage", default="", type="String", description=( "Should point to a zip file containing dockerfile and assets for building a custom model. " "If empty it will be using containers from SageMaker Registry" ), ) @staticmethod def create_ecr_repo_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ECRRepoName", type="String", description="Name of the Amazon ECR repository. This repo will be used to store custom algorithms images.", allowed_pattern="(?:[a-z0-9]+(?:[._-][a-z0-9]+)*/)*[a-z0-9]+(?:[._-][a-z0-9]+)*", min_length=1, ) @staticmethod def create_image_tag_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ImageTag", type="String", description="Docker image tag for the custom algorithm", min_length=1 ) @staticmethod def create_delegated_admin_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "DelegatedAdminAccount", type="String", allowed_values=["Yes", "No"], default="Yes", description="Is a delegated administrator account used to deploy accross account", ) @staticmethod def create_detailed_error_message_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "AllowDetailedErrorMessage", type="String", allowed_values=["Yes", "No"], default="Yes", description="Allow including a detailed message of any server-side errors in the API call's response", ) @staticmethod def create_use_model_registry_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "UseModelRegistry", type="String", allowed_values=["Yes", "No"], default="No", description="Will Amazon SageMaker's Model Registry be used to provision models?", ) @staticmethod def create_model_registry_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "CreateModelRegistry", type="String", allowed_values=["Yes", "No"], default="No", description="Do you want the solution to create the SageMaker Model Package Group Name (i.e., Model Registry)", ) @staticmethod def create_model_package_group_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ModelPackageGroupName", type="String", description="SageMaker model package group name", min_length=0, ) @staticmethod def create_model_package_name_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ModelPackageName", allowed_pattern="(^arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model-package/.*|^$)", type="String", description="The model name (version arn) in SageMaker's model package name group", ) @staticmethod def create_instance_count_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "MonitoringJobInstanceCount", type="Number", default="1", description="Instance count used by model monitoring job. For example, 1", ) @staticmethod def create_ground_truth_s3_uri_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "MonitorGroundTruthInput", type="String", description="Amazon S3 prefix that contains the ground truth data", min_length=3, ) @staticmethod def create_problem_type_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ProblemType", type="String", allowed_values=["Regression", "BinaryClassification", "MulticlassClassification"], description="Problem type. Possible values: Regression | BinaryClassification | MulticlassClassification", ) @staticmethod def create_inference_attribute_parameter(scope: core.Construct, job_type: str) -> core.CfnParameter: return core.CfnParameter( scope, f"{job_type}InferenceAttribute", type="String", description="Index or JSONpath to locate predicted label(s)", ) @staticmethod def create_probability_attribute_parameter(scope: core.Construct, job_type: str) -> core.CfnParameter: return core.CfnParameter( scope, f"{job_type}ProbabilityAttribute", type="String", description="Index or JSONpath to locate probabilities.", ) @staticmethod def create_ground_truth_attribute_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "BaselineGroundTruthAttribute", type="String", description="Index or JSONpath to locate ground truth label.", ) @staticmethod def create_probability_threshold_attribute_parameter(scope: core.Construct) -> core.CfnParameter: return core.CfnParameter( scope, "ProbabilityThresholdAttribute", type="String", description="Threshold to convert probabilities to binaries", ) @staticmethod def create_model_predicted_label_config_parameter(scope): return core.CfnParameter( scope, "ModelPredictedLabelConfig", type="String", description=( "Dictionary provided as a json of the" " sagemaker.clarify.ModelPredictedLabelConfig attributes ({'label':...,}). " "Optional for a regression problem." ), ) @staticmethod def create_bias_config_parameter(scope): return core.CfnParameter( scope, "BiasConfig", type="String", description=( "Dictionary provided as a json using " "of the sagemaker.clarify.BiasConfig attributes ({'label_values_or_threshold':...,})." ), min_length=3, ) @staticmethod def create_shap_config_parameter(scope): return core.CfnParameter( scope, "SHAPConfig", type="String", description=( "Dictionary provided as a json " "of the sagemaker.clarify.SHAPConfig attributes " "({'baseline':...,})." ), min_length=3, ) @staticmethod def create_model_scores_parameter(scope): return core.CfnParameter( scope, "ExplainabilityModelScores", type="String", description=( "A Python int/str provided as a string (e.g., using json.dumps(5)) " "Index or JSONPath location in the model output for the predicted " "scores to be explained. This is not required if the model output is a single score." ), ) @staticmethod def create_features_attribute_parameter(scope): return core.CfnParameter( scope, "FeaturesAttribute", type="String", description="Index or JSONpath to locate features", ) class ConditionsFactory: @staticmethod def create_custom_algorithms_ecr_repo_arn_provided_condition( scope: core.Construct, custom_algorithms_ecr_repo_arn: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "CustomECRRepoProvided", expression=core.Fn.condition_not( core.Fn.condition_equals(custom_algorithms_ecr_repo_arn.value_as_string, "") ), ) @staticmethod def create_kms_key_arn_provided_condition( scope: core.Construct, kms_key_arn: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "KmsKeyProvided", expression=core.Fn.condition_not(core.Fn.condition_equals(kms_key_arn.value_as_string, "")), ) @staticmethod def create_git_address_provided_condition( scope: core.Construct, git_address: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "GitAddressProvided", expression=core.Fn.condition_not(core.Fn.condition_equals(git_address.value_as_string, "")), ) @staticmethod def create_existing_bucket_provided_condition( scope: core.Construct, existing_bucket: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "S3BucketProvided", expression=core.Fn.condition_not(core.Fn.condition_equals(existing_bucket.value_as_string, "")), ) @staticmethod def create_existing_ecr_provided_condition( scope: core.Construct, existing_ecr_repo: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "ECRProvided", expression=core.Fn.condition_not(core.Fn.condition_equals(existing_ecr_repo.value_as_string, "")), ) @staticmethod def create_new_bucket_condition(scope: core.Construct, existing_bucket: core.CfnParameter) -> core.CfnCondition: return core.CfnCondition( scope, "CreateS3Bucket", expression=core.Fn.condition_equals(existing_bucket.value_as_string, ""), ) @staticmethod def create_new_ecr_repo_condition(scope: core.Construct, existing_ecr_repo: core.CfnParameter) -> core.CfnCondition: return core.CfnCondition( scope, "CreateECRRepo", expression=core.Fn.condition_equals(existing_ecr_repo.value_as_string, ""), ) @staticmethod def create_delegated_admin_condition( scope: core.Construct, delegated_admin_parameter: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "UseDelegatedAdmin", expression=core.Fn.condition_equals(delegated_admin_parameter.value_as_string, "Yes"), ) @staticmethod def create_model_registry_condition( scope: core.Construct, create_model_registry: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "CreateModelRegistryCondition", expression=core.Fn.condition_equals(create_model_registry.value_as_string, "Yes"), ) @staticmethod def create_model_registry_provided_condition( scope: core.Construct, model_package_name: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "ModelRegistryProvided", expression=core.Fn.condition_not(core.Fn.condition_equals(model_package_name.value_as_string, "")), ) @staticmethod def create_endpoint_name_provided_condition( scope: core.Construct, endpoint_name: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "EndpointNameProvided", expression=core.Fn.condition_not(core.Fn.condition_equals(endpoint_name.value_as_string, "")), ) @staticmethod def create_problem_type_binary_classification_attribute_provided_condition( scope: core.Construct, problem_type: core.CfnParameter, attribute: core.CfnParameter, attribute_name: str ) -> core.CfnCondition: return core.CfnCondition( scope, f"ProblemTypeBinaryClassification{attribute_name}Provided", expression=core.Fn.condition_and( core.Fn.condition_equals(problem_type.value_as_string, "BinaryClassification"), core.Fn.condition_not(core.Fn.condition_equals(attribute.value_as_string, "")), ), ) @staticmethod def create_problem_type_binary_classification_condition( scope: core.Construct, problem_type: core.CfnParameter ) -> core.CfnCondition: return core.CfnCondition( scope, "ProblemTypeBinaryClassification", expression=core.Fn.condition_equals(problem_type.value_as_string, "BinaryClassification"), ) @staticmethod def create_attribute_provided_condition(scope, logical_id, attribute): return core.CfnCondition( scope, logical_id, expression=core.Fn.condition_not(core.Fn.condition_equals(attribute, "")), )
39.126649
217
0.59677
ffba28891e664b68f644fdef865a68f35d23ce4f
848
py
Python
Day-3/aocd/2.py
karthikmurakonda/advents-of-2021
2dcfc994eeccb34e26a04d38afcf1d68374a84cd
[ "MIT" ]
null
null
null
Day-3/aocd/2.py
karthikmurakonda/advents-of-2021
2dcfc994eeccb34e26a04d38afcf1d68374a84cd
[ "MIT" ]
null
null
null
Day-3/aocd/2.py
karthikmurakonda/advents-of-2021
2dcfc994eeccb34e26a04d38afcf1d68374a84cd
[ "MIT" ]
null
null
null
def recfuncO2(lines,i): zeroes = [] ones = [] if len(lines) == 1: return lines[0] for line in lines: if line[i] == '0': zeroes.append(line) else: ones.append(line) if len(zeroes) > len(ones): return recfuncO2(zeroes, i+1) else: return recfuncO2(ones, i+1) def recfuncCo2(lines,i): zeroes = [] ones = [] if len(lines) == 1: return lines[0] for line in lines: if line[i] == '0': zeroes.append(line) else: ones.append(line) if len(zeroes) > len(ones): return recfuncCo2(ones, i+1) else: return recfuncCo2(zeroes, i+1) with open('input.txt', 'r') as f: lines = [] for line in f: lines.append(line) print(recfuncO2(lines,0)) print(recfuncCo2(lines,0))
23.555556
38
0.518868
1f6b83f9ba61cfaabbd3e1ab8ab276c79a6c17c6
4,176
py
Python
pirates/effects/SmokePillar.py
ksmit799/POTCO-PS
520d38935ae8df4b452c733a82c94dddac01e275
[ "Apache-2.0" ]
8
2017-01-24T04:33:29.000Z
2020-11-01T08:36:24.000Z
pirates/effects/SmokePillar.py
ksmit799/Pirates-Online-Remake
520d38935ae8df4b452c733a82c94dddac01e275
[ "Apache-2.0" ]
1
2017-03-02T18:05:17.000Z
2017-03-14T06:47:10.000Z
pirates/effects/SmokePillar.py
ksmit799/Pirates-Online-Remake
520d38935ae8df4b452c733a82c94dddac01e275
[ "Apache-2.0" ]
11
2017-03-02T18:46:07.000Z
2020-11-01T08:36:26.000Z
# File: S (Python 2.4) from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from direct.particles import ParticleEffect from direct.particles import Particles from direct.particles import ForceGroup from EffectController import EffectController from PooledEffect import PooledEffect import random class SmokePillar(PooledEffect, EffectController): cardScale = 64.0 def __init__(self): PooledEffect.__init__(self) EffectController.__init__(self) model = loader.loadModel('models/effects/particleMaps') self.card = model.find('**/particleSmoke') self.speed = 20.0 self.radius = 7.0 self.spriteScale = 1.0 if not SmokePillar.particleDummy: SmokePillar.particleDummy = render.attachNewNode(ModelNode('SmokePillarParticleDummy')) SmokePillar.particleDummy.setDepthWrite(0) SmokePillar.particleDummy.setLightOff() self.f = ParticleEffect.ParticleEffect('SmokePillar') self.f.reparentTo(self) self.p0 = Particles.Particles('particles-1') self.p0.setFactory('ZSpinParticleFactory') self.p0.setRenderer('SpriteParticleRenderer') self.p0.setEmitter('SphereVolumeEmitter') self.f.addParticles(self.p0) f0 = ForceGroup.ForceGroup('gravity') force0 = LinearVectorForce(Vec3(0.0, 0.0, -40.0), 1.0, 1) force0.setActive(1) f0.addForce(force0) self.f.addForceGroup(f0) def createTrack(self): self.p0.setPoolSize(64) self.p0.setBirthRate(0.29999999999999999) self.p0.setLitterSize(10) self.p0.setLitterSpread(4) self.p0.setSystemLifespan(0.0) self.p0.setLocalVelocityFlag(1) self.p0.setSystemGrowsOlderFlag(0) self.p0.setFloorZ(-10.0) self.p0.factory.setLifespanBase(1.0) self.p0.factory.setLifespanSpread(0.5) self.p0.factory.setMassBase(1.0) self.p0.factory.setMassSpread(0.94999999999999996) self.p0.factory.setTerminalVelocityBase(2000.0) self.p0.factory.setTerminalVelocitySpread(0.0) self.p0.factory.setInitialAngle(0.0) self.p0.factory.setInitialAngleSpread(30.0) self.p0.factory.enableAngularVelocity(1) self.p0.factory.setAngularVelocity(5.0) self.p0.factory.setAngularVelocitySpread(1.0) self.p0.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAOUT) self.p0.renderer.setUserAlpha(0.59999999999999998) self.p0.renderer.setFromNode(self.card) self.p0.renderer.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.p0.renderer.setXScaleFlag(1) self.p0.renderer.setYScaleFlag(1) self.p0.renderer.setAnimAngleFlag(1) self.p0.renderer.setInitialXScale(0.12 * self.spriteScale * self.cardScale) self.p0.renderer.setFinalXScale(0.34999999999999998 * self.spriteScale * self.cardScale) self.p0.renderer.setInitialYScale(0.12 * self.spriteScale * self.cardScale) self.p0.renderer.setFinalYScale(0.34999999999999998 * self.spriteScale * self.cardScale) self.p0.renderer.setNonanimatedTheta(0.0) self.p0.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPNOBLEND) self.p0.renderer.setAlphaDisable(0) self.p0.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p0.emitter.setAmplitude(5.0) self.p0.emitter.setAmplitudeSpread(2.0) self.p0.emitter.setOffsetForce(Vec3(5.0, 5.0, 60.0)) self.p0.emitter.setExplicitLaunchVector(Vec3(1.0, 0.0, 0.0)) self.p0.emitter.setRadiateOrigin(Point3(0.0, 0.0, 1.0)) self.p0.emitter.setRadius(self.radius) self.track = Sequence(Func(self.p0.setBirthRate, 0.02), Func(self.p0.clearToInitial), Func(self.f.start, self, self.particleDummy), Func(self.f.reparentTo, self), Wait(0.29999999999999999), Func(self.p0.setBirthRate, 100), Wait(7.0), Func(self.cleanUpEffect)) def cleanUpEffect(self): EffectController.cleanUpEffect(self) self.checkInEffect(self) def destroy(self): EffectController.destroy(self) PooledEffect.destroy(self)
43.5
267
0.695163
8bc62bf2c490498ea1dff6a417dc9c3797b16563
148
py
Python
app/grandchallenge/policies/views.py
njmhendrix/grand-challenge.org
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
[ "Apache-2.0" ]
101
2018-04-11T14:48:04.000Z
2022-03-28T00:29:48.000Z
app/grandchallenge/policies/views.py
njmhendrix/grand-challenge.org
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
[ "Apache-2.0" ]
1,733
2018-03-21T11:56:16.000Z
2022-03-31T14:58:30.000Z
app/grandchallenge/policies/views.py
njmhendrix/grand-challenge.org
9bc36f5e26561a78bd405e8ea5e4c0f86c95f011
[ "Apache-2.0" ]
42
2018-06-08T05:49:07.000Z
2022-03-29T08:43:01.000Z
from django.views.generic import DetailView from grandchallenge.policies.models import Policy class PolicyDetail(DetailView): model = Policy
18.5
49
0.810811
620231064fec8bef87a94b6fb0bf8045722c72bc
2,420
py
Python
apps/empleabilidad/models.py
osw4l/villas-de-san-pablo
89f00dfbbfbfee5111bd9852ddfbdb8727d10ed2
[ "MIT" ]
null
null
null
apps/empleabilidad/models.py
osw4l/villas-de-san-pablo
89f00dfbbfbfee5111bd9852ddfbdb8727d10ed2
[ "MIT" ]
null
null
null
apps/empleabilidad/models.py
osw4l/villas-de-san-pablo
89f00dfbbfbfee5111bd9852ddfbdb8727d10ed2
[ "MIT" ]
null
null
null
from django.db import models from django.urls import reverse_lazy from . import constants # Create your models here. class Vacante(models.Model): cargo = models.CharField(max_length=255) salario = models.PositiveIntegerField() fecha = models.DateField() class Meta: verbose_name = 'Vacante' verbose_name_plural = 'Vacantes' def __str__(self): return '{} ${}, {}'.format(self.cargo, self.salario, self.fecha) def get_update_url(self): return reverse_lazy('empleabilidad:editar_vacante', kwargs={ 'pk': self.pk }) class VacantePersona(models.Model): persona = models.ForeignKey('personas.Persona', related_name='item_c') vacante = models.ForeignKey(Vacante) fecha_contratacion = models.DateField( blank=True, null=True ) tiempo_contrato = models.CharField( max_length=50, choices=constants.TIEMPO_CONTRATO ) salario = models.PositiveIntegerField( blank=True, null=True ) observaciones = models.CharField( max_length=255, blank=True, null=True ) class FormacionTrabajo(models.Model): fecha_creacion = models.DateField() nombre_programa = models.CharField( max_length=255 ) def __str__(self): return '{} creado en {}'.format( self.nombre_programa, self.fecha_creacion ) def get_update_url(self): return reverse_lazy('empleabilidad:editar_formacion_trabajo', kwargs={ 'pk': self.pk }) def personas(self): return FormacionTrabajoPersona.objects.filter(programa=self) class FormacionTrabajoPersona(models.Model): persona = models.ForeignKey('personas.Persona', related_name='item_d') programa = models.ForeignKey(FormacionTrabajo) fecha_inscripcion = models.DateField() tipo_formacion = models.CharField( max_length=30, choices=constants.TIPO_FORMACION ) estado = models.CharField( max_length=50, choices=constants.ESTADO_FORMACION ) fecha_proceso = models.DateField( blank=True, null=True ) observacion = models.CharField( max_length=255, blank=True, null=True )
26.304348
74
0.611157
7418ef242e1d4aaeeb30493420c6e069e91d3c69
7,615
py
Python
registration/api.py
chikko80/Insomniac
2d49a6d4e5a15eb63bddd9aace3cc872cf40b01a
[ "MIT" ]
null
null
null
registration/api.py
chikko80/Insomniac
2d49a6d4e5a15eb63bddd9aace3cc872cf40b01a
[ "MIT" ]
null
null
null
registration/api.py
chikko80/Insomniac
2d49a6d4e5a15eb63bddd9aace3cc872cf40b01a
[ "MIT" ]
null
null
null
# This file provides the way of getting a phone number and an SMS confirmation code in "registration" process. # The only two methods that should be exposed from this file are "get_phone_number" and "get_confirmation_code". # You can find them at the end of this file. Choose one of ready-to-use implementations or create your own. import json from typing import Optional from insomniac import network, HTTP_OK from insomniac.sleeper import sleeper from insomniac.utils import * CONFIRMATION_CODE_MAX_ATTEMPTS_COUNT = ( 5 # times to retry requesting of confirmation code ) SMSPVA_COUNTRY_CODE = "RU" # or "US" or "ID" or any other else SMSPVA_API_KEY = "your-api-key" # more info on the official smspva site http://smspva.com/new_theme_api.html SMS_ACTIVATE_COUNTRY_CODE = 0 # 0 is Russia, other codes are listed in the docs https://sms-activate.ru/en/api2#number SMS_ACTIVATE_API_KEY = "your-api-key" # more info on the official sms-activate.ru site https://sms-activate.ru/en/ class PhoneNumberData: response_id = None country_code = None phone_number = None def __init__(self, response_id, country_code, phone_number): self.response_id = response_id self.country_code = country_code self.phone_number = phone_number # -------- Simple implementation -------- def _get_phone_number_simple() -> Optional[PhoneNumberData]: data = PhoneNumberData(0, None, None) while data.country_code is None or data.phone_number is None: user_input = input('Enter mobile phone (format "+7 1234567890"): ') try: data.country_code, data.phone_number = user_input.split(" ") except ValueError: continue if data.country_code[0] != "+": data.country_code = None return data def _get_confirmation_code_simple(_) -> Optional[str]: return input("Enter confirmation code: ") # -------- smspva.com API -------- def _get_phone_number_smspva() -> Optional[PhoneNumberData]: url = ( f"http://smspva.com/priemnik.php?metod=get_number&service=opt16" f"&country={SMSPVA_COUNTRY_CODE}" f"&apikey={SMSPVA_API_KEY}" ) code, body, fail_reason = network.get(url, "Mozilla/5.0") if code == HTTP_OK and body is not None: json_data = json.loads(body) else: print( COLOR_FAIL + f"Cannot get phone number via smspva.com API: {code} ({fail_reason})" + COLOR_ENDC ) return None response_id = json_data["id"] country_code = json_data["CountryCode"] phone_number = json_data["number"] phone_number_data = PhoneNumberData(response_id, country_code, phone_number) return phone_number_data def _get_confirmation_code_smspva(response_id) -> Optional[str]: url = ( f"http://smspva.com/priemnik.php?metod=get_sms&service=opt16" f"&country={SMSPVA_COUNTRY_CODE}" f"&id={response_id}" f"&apikey={SMSPVA_API_KEY}" ) attempts_count = 0 while True: sleeper.random_sleep(multiplier=8.0) code, body, fail_reason = network.get(url, "Mozilla/5.0") attempts_count += 1 if code == HTTP_OK and body is not None: json_data = json.loads(body) else: print( COLOR_FAIL + f"Cannot get confirmation code via smspva.com API: {code} ({fail_reason})" + COLOR_ENDC ) return None confirmation_code = json_data["sms"] if confirmation_code is None: if attempts_count >= CONFIRMATION_CODE_MAX_ATTEMPTS_COUNT: print( "Well, looks like Instagram isn't going to send SMS to this phone number" ) return None print("Let's wait a bit more: confirmation code isn't received yet") else: break return confirmation_code # -------- sms-activate.ru API -------- def _get_phone_number_sms_activate() -> Optional[PhoneNumberData]: try: import phonenumbers except ImportError: print( COLOR_FAIL + f"Using sms-activate.ru API requires phonenumbers library." + COLOR_ENDC ) print( COLOR_FAIL + COLOR_BOLD + f"python3 -m pip install phonenumbers" + COLOR_ENDC ) return None url = ( f"https://sms-activate.ru/stubs/handler_api.php" f"?api_key={SMS_ACTIVATE_API_KEY}" f"&country={SMS_ACTIVATE_COUNTRY_CODE}" f"&action=getNumber" f"&service=ig" ) code, body, fail_reason = network.get(url, "Mozilla/5.0") if code != HTTP_OK or body is None: print( COLOR_FAIL + f"Cannot get phone number via sms-activate.ru API: {code} ({fail_reason})" + COLOR_ENDC ) return None response_regex = re.compile(r"ACCESS_NUMBER:(\d+):(\d+)") match = response_regex.match(body.decode("utf-8")) if match: response_id = match.group(1) full_phone_number = match.group(2) else: print( COLOR_FAIL + f"Cannot parse sms-activate.ru response: {str(body)})" + COLOR_ENDC ) return None phone_number_object = phonenumbers.parse(f"+{full_phone_number}", None) country_code = str(phone_number_object.country_code) phone_number = str(phone_number_object.national_number) phone_number_data = PhoneNumberData(response_id, country_code, phone_number) return phone_number_data def _get_confirmation_code_sms_activate(response_id) -> Optional[str]: url = ( f"https://sms-activate.ru/stubs/handler_api.php" f"?api_key={SMS_ACTIVATE_API_KEY}" f"&id={response_id}" f"&country={SMSPVA_COUNTRY_CODE}" f"&action=getStatus" ) attempts_count = 0 while True: sleeper.random_sleep(multiplier=8.0) code, body, fail_reason = network.get(url, "Mozilla/5.0") attempts_count += 1 if code != HTTP_OK or body is None: print( COLOR_FAIL + f"Cannot get confirmation code via sms-activate.ru API: {code} ({fail_reason})" + COLOR_ENDC ) return None response_regex = re.compile(r"STATUS_OK:(\d+)") match = response_regex.match(body.decode("utf-8")) if match: confirmation_code = match.group(1) return confirmation_code else: if attempts_count >= CONFIRMATION_CODE_MAX_ATTEMPTS_COUNT: print( "Well, looks like Instagram isn't going to send SMS to this phone number" ) return None print("Let's wait a bit more: confirmation code isn't received yet") # Choose either "simple" implementation (asks you to enter phone number and confirmation code in the terminal manually) # or implementation via smspva.com API (automatically gets confirmation code from a remote SIM card). # # You can also write your own implementation! It just has to follow these rules: 1) get_phone_number() returns # PhoneNumberData object and 2) get_confirmation_code(response_id) takes response_id argument from PhoneNumberData and # returns confirmation code (string). get_phone_number = _get_phone_number_simple # or _get_phone_number_smspva or _get_phone_number_sms_activate get_confirmation_code = _get_confirmation_code_simple # or _get_confirmation_code_smspva or _get_confirmation_code_sms_activate
36.090047
128
0.645174
115216faa348cfe3e805cf6d5a6501cdddd4f685
6,863
py
Python
tests/unit/bokeh/application/handlers/test_code_runner.py
goncaloperes/bokeh
b857d2d17d7c19779bb0a7be2601d8238fb1d5e9
[ "BSD-3-Clause" ]
1
2021-06-03T13:13:21.000Z
2021-06-03T13:13:21.000Z
tests/unit/bokeh/application/handlers/test_code_runner.py
goncaloperes/bokeh
b857d2d17d7c19779bb0a7be2601d8238fb1d5e9
[ "BSD-3-Clause" ]
1
2021-04-21T19:44:07.000Z
2021-04-21T19:44:07.000Z
tests/unit/bokeh/application/handlers/test_code_runner.py
goncaloperes/bokeh
b857d2d17d7c19779bb0a7be2601d8238fb1d5e9
[ "BSD-3-Clause" ]
null
null
null
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import os import sys from os.path import abspath, dirname from types import ModuleType # Module under test import bokeh.application.handlers.code_runner as bahc # isort:skip #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class TestCodeRunner: # Public methods ---------------------------------------------------------- def test_init(self) -> None: cr = bahc.CodeRunner("# test", "path", []) assert cr.failed is False assert cr.error is None assert cr.error_detail is None assert cr.ran is False assert cr.source == "# test" assert cr.path == "path" def test_syntax_error_init(self) -> None: cr = bahc.CodeRunner("This is a syntax error", "path", []) assert cr.failed is True assert "Invalid syntax in" in cr.error assert cr.error_detail is not None def test_package_error_init(self) -> None: with pytest.raises(ValueError): bahc.CodeRunner("This is a syntax error", "/foo/__init__.py", [], "package") def test_new_module_success(self) -> None: cr = bahc.CodeRunner("# test", "path", []) m = cr.new_module() assert isinstance(m, ModuleType) assert m.__dict__['__name__'].startswith('bokeh_app_') assert m.__dict__['__file__'] == abspath("path") assert m.__dict__['__package__'] is None def test_new_module_initpy(self) -> None: cr = bahc.CodeRunner("# test", "/foo/__init__.py", []) m = cr.new_module() assert isinstance(m, ModuleType) assert m.__dict__['__name__'].startswith('bokeh_app_') assert m.__dict__['__file__'].endswith("__init__.py") assert m.__dict__['__package__'] == m.__dict__['__name__'] def test_new_module_package(self) -> None: cr = bahc.CodeRunner("# test", "/foo/__init__.py", []) package = cr.new_module() cr = bahc.CodeRunner("# test", "path", [], package=package) m = cr.new_module() assert isinstance(m, ModuleType) assert m.__dict__['__name__'].startswith('bokeh_app_') assert m.__dict__['__file__'] == abspath("path") assert m.__dict__['__package__'] == package.__dict__["__name__"] def test_new_module_resets_run_errors(self) -> None: cr = bahc.CodeRunner("# test", "path", []) cr._failed = True m = cr.new_module() assert isinstance(m, ModuleType) assert m.__dict__['__name__'].startswith('bokeh_app_') assert m.__dict__['__file__'] == abspath("path") def test_new_module_returns_None_for_permanent_errors(self) -> None: cr = bahc.CodeRunner("This is a syntax error", "path", []) assert cr.failed is True m = cr.new_module() assert m is None def test_reset_run_errors(self) -> None: cr = bahc.CodeRunner("# test", "path", []) cr._failed = True cr._error = "error" cr._error_detail = "detail" cr.reset_run_errors() assert cr.failed is False assert cr.error is None assert cr.error_detail is None def test_reset_run_errors_leaves_permanent_errors(self) -> None: cr = bahc.CodeRunner("This is a syntax error", "path", []) cr._failed = True cr.reset_run_errors() assert cr.failed is True assert cr.error is not None assert cr.error_detail is not None def test_run_sets_ran(self) -> None: cr = bahc.CodeRunner("# test", "path", []) m = cr.new_module() assert not cr.ran cr.run(m, lambda: None) assert cr.ran def test_run_runs_post_check(self) -> None: cr = bahc.CodeRunner("# test", "path", []) m = cr.new_module() assert not cr.ran result = {} def post_check(): result['ran'] = True cr.run(m, post_check) assert cr.ran assert result == dict(ran=True) def test_run_fixups_argv(self) -> None: cr = bahc.CodeRunner("import sys; argv = list(sys.argv)", "path", ["foo", 10]) assert not cr.ran m = cr.new_module() cr.run(m, lambda: None) assert m.__dict__['argv'] == ["path", "foo", 10] def test_run_fixups_path(self) -> None: cr = bahc.CodeRunner("import sys; path = list(sys.path)", "/dir/to/path", ["foo", 10]) assert not cr.ran m = cr.new_module() cr.run(m, lambda: None) assert m.__dict__['path'][0] == dirname("/dir/to/path") assert m.__dict__['path'][1:] == sys.path def test_run_restores_cwd(self) -> None: old_cwd = os.getcwd() cr = bahc.CodeRunner("import os; os.chdir('/')", "path", ["foo", 10]) assert not cr.ran m = cr.new_module() cr.run(m, lambda: None) assert os.getcwd() == old_cwd def test_run_restores_argv(self) -> None: old_argv = list(sys.argv) cr = bahc.CodeRunner("# test", "path", ["foo", 10]) assert not cr.ran m = cr.new_module() cr.run(m, lambda: None) assert sys.argv == old_argv def test_run_restores_path(self) -> None: old_path = list(sys.path) cr = bahc.CodeRunner("# test", "path", ["foo", 10]) assert not cr.ran m = cr.new_module() cr.run(m, lambda: None) assert sys.path == old_path #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
37.298913
94
0.485502
c428193a9f89653283e7316d53985e33b0ba8b61
183
py
Python
Django_Intershala/feedback/urls.py
samir321-pixel/Django_Intershala
77aaa24a34873dab4c3302727d5f43986a99809e
[ "MIT" ]
7
2021-03-08T17:09:39.000Z
2021-12-30T09:44:44.000Z
Django_Intershala/feedback/urls.py
samir321-pixel/Django_Intershala
77aaa24a34873dab4c3302727d5f43986a99809e
[ "MIT" ]
null
null
null
Django_Intershala/feedback/urls.py
samir321-pixel/Django_Intershala
77aaa24a34873dab4c3302727d5f43986a99809e
[ "MIT" ]
2
2021-03-03T11:35:05.000Z
2021-03-22T17:00:16.000Z
from django.urls import path from .views import * urlpatterns = [ path('post_feedback/', FeedBackViewsets.as_view()), path('all_feedback/', AllFeedBackViewSets.as_view()), ]
22.875
57
0.721311
65c759b16543ecfb33b597692b79aa4500f0ab73
2,317
py
Python
app/core/config.py
chenyg0911/hxa-gloin
afd572ad653baadb93ff9cabc168e19125f402af
[ "MIT" ]
null
null
null
app/core/config.py
chenyg0911/hxa-gloin
afd572ad653baadb93ff9cabc168e19125f402af
[ "MIT" ]
null
null
null
app/core/config.py
chenyg0911/hxa-gloin
afd572ad653baadb93ff9cabc168e19125f402af
[ "MIT" ]
1
2021-11-22T02:21:04.000Z
2021-11-22T02:21:04.000Z
from starlette.config import Config import pytz timezone = pytz.timezone('Asia/Shanghai') config = Config("config") project_name: str = config('project_name', cast=str, default='fastapi') host: str = config('host', cast=str, default='0.0.0.0') port: int = config('port', cast=int, default=8000) debug: bool = config('debug', cast=bool, default=True) version: str = config('version', cast=str, default='0.0.1') allowed_hosts: str = config('allowed_hosts', cast=str, default='') secret_key: str = config('secret_key', cast=str, default='welcome1') api_key: str = config('api_key', cast=str, default='welcome1') prefix_url: str = config('prefix_url', cast=str, default='/api') # jwt algorithm: str = config('algorithm', cast=str, default='HS256') access_token_expire_minutes: int = config('access_token_expire_minutes', cast=int, default=60 * 24) jwt_token_prefix: str = config('jwt_token_prefix', cast=str, default='Bearer') # mongodb database_url: str = config('database_url', cast=str, default='mongodb://chromo:d2VsY29tZTEK@mongo:27017/chromoManager') max_connections_count: int = config('max_connections_count', cast=int, default=10) min_connections_count: int = config('min_connections_count', cast=int, default=10) database_name: str = config('database_name', cast=str, default='chromoManager') user_collection_name: str = config('user_collection_name', cast=str, default='user') case_collection_name: str = config('case_collection_name', cast=str, default='case') analysis_collection_name: str = config('analysis_collection_name', cast=str, default='analysis') count_collection_name: str = config('count_collection_name', cast=str, default='count') group_collection_name: str = config('group_collection_name', cast=str, default='group') division_collection_name: str = config('division_collection_name', cast=str, default='division') # redis redis_host: str = config('redis_host', cast=str, default='127.0.0.1') redis_port: int = config('redis_port', cast=int, default=6379) redis_password: str = config('redis_password', cast=str, default=None) # 导出路径 export_path: str = config('export_path', cast=str, default='D:\chromo-manager-export') # 扫描路径 src_path: str = config('src_path', cast=str, default='/media/msd') # 文件后缀 src_ext: str = config('src_ext', cast=str, default='MMI')
50.369565
99
0.744929
eb2f845f844e0d8354152498895be6eb1c6db1cc
69,513
py
Python
research/object_detection/core/losses_test.py
akshit-protonn/models
38c8c6fe4144c93d6aadd19981c2b90570c29eba
[ "Apache-2.0" ]
82,518
2016-02-05T12:07:23.000Z
2022-03-31T23:09:47.000Z
research/object_detection/core/losses_test.py
akshit-protonn/models
38c8c6fe4144c93d6aadd19981c2b90570c29eba
[ "Apache-2.0" ]
9,021
2016-03-08T01:02:05.000Z
2022-03-31T08:06:35.000Z
research/object_detection/core/losses_test.py
akshit-protonn/models
38c8c6fe4144c93d6aadd19981c2b90570c29eba
[ "Apache-2.0" ]
54,341
2016-02-06T17:19:55.000Z
2022-03-31T10:27:44.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for google3.research.vale.object_detection.losses.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from six.moves import zip import tensorflow.compat.v1 as tf from object_detection.core import box_list from object_detection.core import losses from object_detection.core import matcher from object_detection.utils import test_case class WeightedL2LocalizationLossTest(test_case.TestCase): def testReturnsCorrectWeightedLoss(self): batch_size = 3 num_anchors = 10 code_size = 4 def graph_fn(): prediction_tensor = tf.ones([batch_size, num_anchors, code_size]) target_tensor = tf.zeros([batch_size, num_anchors, code_size]) weights = tf.constant([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]], tf.float32) loss_op = losses.WeightedL2LocalizationLoss() loss = tf.reduce_sum(loss_op(prediction_tensor, target_tensor, weights=weights)) return loss expected_loss = (3 * 5 * 4) / 2.0 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, expected_loss) def testReturnsCorrectAnchorwiseLoss(self): batch_size = 3 num_anchors = 16 code_size = 4 def graph_fn(): prediction_tensor = tf.ones([batch_size, num_anchors, code_size]) target_tensor = tf.zeros([batch_size, num_anchors, code_size]) weights = tf.ones([batch_size, num_anchors]) loss_op = losses.WeightedL2LocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) return loss expected_loss = np.ones((batch_size, num_anchors)) * 2 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, expected_loss) def testReturnsCorrectNanLoss(self): batch_size = 3 num_anchors = 10 code_size = 4 def graph_fn(): prediction_tensor = tf.ones([batch_size, num_anchors, code_size]) target_tensor = tf.concat([ tf.zeros([batch_size, num_anchors, code_size / 2]), tf.ones([batch_size, num_anchors, code_size / 2]) * np.nan ], axis=2) weights = tf.ones([batch_size, num_anchors]) loss_op = losses.WeightedL2LocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights, ignore_nan_targets=True) loss = tf.reduce_sum(loss) return loss expected_loss = (3 * 5 * 4) / 2.0 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, expected_loss) def testReturnsCorrectWeightedLossWithLossesMask(self): batch_size = 4 num_anchors = 10 code_size = 4 def graph_fn(): prediction_tensor = tf.ones([batch_size, num_anchors, code_size]) target_tensor = tf.zeros([batch_size, num_anchors, code_size]) weights = tf.constant([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]], tf.float32) losses_mask = tf.constant([True, False, True, True], tf.bool) loss_op = losses.WeightedL2LocalizationLoss() loss = tf.reduce_sum(loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask)) return loss expected_loss = (3 * 5 * 4) / 2.0 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, expected_loss) class WeightedSmoothL1LocalizationLossTest(test_case.TestCase): def testReturnsCorrectLoss(self): batch_size = 2 num_anchors = 3 code_size = 4 def graph_fn(): prediction_tensor = tf.constant([[[2.5, 0, .4, 0], [0, 0, 0, 0], [0, 2.5, 0, .4]], [[3.5, 0, 0, 0], [0, .4, 0, .9], [0, 0, 1.5, 0]]], tf.float32) target_tensor = tf.zeros([batch_size, num_anchors, code_size]) weights = tf.constant([[2, 1, 1], [0, 3, 0]], tf.float32) loss_op = losses.WeightedSmoothL1LocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss exp_loss = 7.695 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossWithLossesMask(self): batch_size = 3 num_anchors = 3 code_size = 4 def graph_fn(): prediction_tensor = tf.constant([[[2.5, 0, .4, 0], [0, 0, 0, 0], [0, 2.5, 0, .4]], [[3.5, 0, 0, 0], [0, .4, 0, .9], [0, 0, 1.5, 0]], [[3.5, 7., 0, 0], [0, .4, 0, .9], [2.2, 2.2, 1.5, 0]]], tf.float32) target_tensor = tf.zeros([batch_size, num_anchors, code_size]) weights = tf.constant([[2, 1, 1], [0, 3, 0], [4, 3, 0]], tf.float32) losses_mask = tf.constant([True, True, False], tf.bool) loss_op = losses.WeightedSmoothL1LocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask) loss = tf.reduce_sum(loss) return loss exp_loss = 7.695 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) class WeightedIOULocalizationLossTest(test_case.TestCase): def testReturnsCorrectLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [0, 0, .5, .25]]]) target_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [50, 50, 500.5, 100.25]]]) weights = [[1.0, .5, 2.0]] loss_op = losses.WeightedIOULocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss exp_loss = 2.0 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossWithNoLabels(self): def graph_fn(): prediction_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [0, 0, .5, .25]]]) target_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [50, 50, 500.5, 100.25]]]) weights = [[1.0, .5, 2.0]] losses_mask = tf.constant([False], tf.bool) loss_op = losses.WeightedIOULocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask) loss = tf.reduce_sum(loss) return loss exp_loss = 0.0 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) class WeightedGIOULocalizationLossTest(test_case.TestCase): def testReturnsCorrectLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [0, 0, 0, 0]]]) target_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [5, 5, 10, 10]]]) weights = [[1.0, .5, 2.0]] loss_op = losses.WeightedGIOULocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss exp_loss = 3.5 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossWithNoLabels(self): def graph_fn(): prediction_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [0, 0, .5, .25]]]) target_tensor = tf.constant([[[1.5, 0, 2.4, 1], [0, 0, 1, 1], [50, 50, 500.5, 100.25]]]) weights = [[1.0, .5, 2.0]] losses_mask = tf.constant([False], tf.bool) loss_op = losses.WeightedGIOULocalizationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask) loss = tf.reduce_sum(loss) return loss exp_loss = 0.0 loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) class WeightedSigmoidClassificationLossTest(test_case.TestCase): def testReturnsCorrectLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, 0, -100], [-100, -100, 100]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) loss_op = losses.WeightedSigmoidClassificationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss exp_loss = -2 * math.log(.5) loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectAnchorWiseLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, 0, -100], [-100, -100, 100]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) loss_op = losses.WeightedSigmoidClassificationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss, axis=2) return loss exp_loss = np.matrix([[0, 0, -math.log(.5), 0], [-math.log(.5), 0, 0, 0]]) loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossWithClassIndices(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100, 100], [100, -100, -100, -100], [100, 0, -100, 100], [-100, -100, 100, -100]], [[-100, 0, 100, 100], [-100, 100, -100, 100], [100, 100, 100, 100], [0, 0, -1, 100]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0, 0], [1, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]], [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 0], [1, 0, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 0, 0]]], tf.float32) # Ignores the last class. class_indices = tf.constant([0, 1, 2], tf.int32) loss_op = losses.WeightedSigmoidClassificationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights, class_indices=class_indices) loss = tf.reduce_sum(loss, axis=2) return loss exp_loss = np.matrix([[0, 0, -math.log(.5), 0], [-math.log(.5), 0, 0, 0]]) loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossWithLossesMask(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, 0, -100], [-100, -100, 100]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -100]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]], tf.float32) losses_mask = tf.constant([True, True, False], tf.bool) loss_op = losses.WeightedSigmoidClassificationLoss() loss_per_anchor = loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask) loss = tf.reduce_sum(loss_per_anchor) return loss exp_loss = -2 * math.log(.5) loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def _logit(probability): return math.log(probability / (1. - probability)) class SigmoidFocalClassificationLossTest(test_case.TestCase): def testEasyExamplesProduceSmallLossComparedToSigmoidXEntropy(self): def graph_fn(): prediction_tensor = tf.constant([[[_logit(0.97)], [_logit(0.91)], [_logit(0.73)], [_logit(0.27)], [_logit(0.09)], [_logit(0.03)]]], tf.float32) target_tensor = tf.constant([[[1], [1], [1], [0], [0], [0]]], tf.float32) weights = tf.constant([[[1], [1], [1], [1], [1], [1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) order_of_ratio = np.power(10, np.floor(np.log10(sigmoid_loss / focal_loss))) self.assertAllClose(order_of_ratio, [[1000, 100, 10, 10, 100, 1000]]) def testHardExamplesProduceLossComparableToSigmoidXEntropy(self): def graph_fn(): prediction_tensor = tf.constant([[[_logit(0.55)], [_logit(0.52)], [_logit(0.50)], [_logit(0.48)], [_logit(0.45)]]], tf.float32) target_tensor = tf.constant([[[1], [1], [1], [0], [0]]], tf.float32) weights = tf.constant([[[1], [1], [1], [1], [1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) order_of_ratio = np.power(10, np.floor(np.log10(sigmoid_loss / focal_loss))) self.assertAllClose(order_of_ratio, [[1., 1., 1., 1., 1.]]) def testNonAnchorWiseOutputComparableToSigmoidXEntropy(self): def graph_fn(): prediction_tensor = tf.constant([[[_logit(0.55)], [_logit(0.52)], [_logit(0.50)], [_logit(0.48)], [_logit(0.45)]]], tf.float32) target_tensor = tf.constant([[[1], [1], [1], [0], [0]]], tf.float32) weights = tf.constant([[[1], [1], [1], [1], [1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights)) sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights)) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) order_of_ratio = np.power(10, np.floor(np.log10(sigmoid_loss / focal_loss))) self.assertAlmostEqual(order_of_ratio, 1.) def testIgnoreNegativeExampleLossViaAlphaMultiplier(self): def graph_fn(): prediction_tensor = tf.constant([[[_logit(0.55)], [_logit(0.52)], [_logit(0.50)], [_logit(0.48)], [_logit(0.45)]]], tf.float32) target_tensor = tf.constant([[[1], [1], [1], [0], [0]]], tf.float32) weights = tf.constant([[[1], [1], [1], [1], [1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=1.0) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) self.assertAllClose(focal_loss[0][3:], [0., 0.]) order_of_ratio = np.power(10, np.floor(np.log10(sigmoid_loss[0][:3] / focal_loss[0][:3]))) self.assertAllClose(order_of_ratio, [1., 1., 1.]) def testIgnorePositiveExampleLossViaAlphaMultiplier(self): def graph_fn(): prediction_tensor = tf.constant([[[_logit(0.55)], [_logit(0.52)], [_logit(0.50)], [_logit(0.48)], [_logit(0.45)]]], tf.float32) target_tensor = tf.constant([[[1], [1], [1], [0], [0]]], tf.float32) weights = tf.constant([[[1], [1], [1], [1], [1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=0.0) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights), axis=2) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) self.assertAllClose(focal_loss[0][:3], [0., 0., 0.]) order_of_ratio = np.power(10, np.floor(np.log10(sigmoid_loss[0][3:] / focal_loss[0][3:]))) self.assertAllClose(order_of_ratio, [1., 1.]) def testSimilarToSigmoidXEntropyWithHalfAlphaAndZeroGammaUpToAScale(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, 0, -100], [-100, -100, 100]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(alpha=0.5, gamma=0.0) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = focal_loss_op(prediction_tensor, target_tensor, weights=weights) sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) self.assertAllClose(sigmoid_loss, focal_loss * 2) def testSameAsSigmoidXEntropyWithNoAlphaAndZeroGamma(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, 0, -100], [-100, -100, 100]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(alpha=None, gamma=0.0) sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss() focal_loss = focal_loss_op(prediction_tensor, target_tensor, weights=weights) sigmoid_loss = sigmoid_loss_op(prediction_tensor, target_tensor, weights=weights) return sigmoid_loss, focal_loss sigmoid_loss, focal_loss = self.execute(graph_fn, []) self.assertAllClose(sigmoid_loss, focal_loss) def testExpectedLossWithAlphaOneAndZeroGamma(self): def graph_fn(): # All zeros correspond to 0.5 probability. prediction_tensor = tf.constant([[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(alpha=1.0, gamma=0.0) focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights)) return focal_loss focal_loss = self.execute(graph_fn, []) self.assertAllClose( (-math.log(.5) * # x-entropy per class per anchor 1.0 * # alpha 8), # positives from 8 anchors focal_loss) def testExpectedLossWithAlpha75AndZeroGamma(self): def graph_fn(): # All zeros correspond to 0.5 probability. prediction_tensor = tf.constant([[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]], tf.float32) focal_loss_op = losses.SigmoidFocalClassificationLoss(alpha=0.75, gamma=0.0) focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights)) return focal_loss focal_loss = self.execute(graph_fn, []) self.assertAllClose( (-math.log(.5) * # x-entropy per class per anchor. ((0.75 * # alpha for positives. 8) + # positives from 8 anchors. (0.25 * # alpha for negatives. 8 * 2))), # negatives from 8 anchors for two classes. focal_loss) def testExpectedLossWithLossesMask(self): def graph_fn(): # All zeros correspond to 0.5 probability. prediction_tensor = tf.constant([[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]], tf.float32) losses_mask = tf.constant([True, True, False], tf.bool) focal_loss_op = losses.SigmoidFocalClassificationLoss(alpha=0.75, gamma=0.0) focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask)) return focal_loss focal_loss = self.execute(graph_fn, []) self.assertAllClose( (-math.log(.5) * # x-entropy per class per anchor. ((0.75 * # alpha for positives. 8) + # positives from 8 anchors. (0.25 * # alpha for negatives. 8 * 2))), # negatives from 8 anchors for two classes. focal_loss) class WeightedSoftmaxClassificationLossTest(test_case.TestCase): def testReturnsCorrectLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [0.5, 0.5, 0.5], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) loss_op = losses.WeightedSoftmaxClassificationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss loss_output = self.execute(graph_fn, []) exp_loss = - 1.5 * math.log(.5) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectAnchorWiseLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [0.5, 0.5, 0.5], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) loss_op = losses.WeightedSoftmaxClassificationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) return loss loss_output = self.execute(graph_fn, []) exp_loss = np.matrix([[0, 0, - 0.5 * math.log(.5), 0], [-math.log(.5), 0, 0, 0]]) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectAnchorWiseLossWithHighLogitScaleSetting(self): """At very high logit_scale, all predictions will be ~0.33.""" def graph_fn(): # TODO(yonib): Also test logit_scale with anchorwise=False. logit_scale = 10e16 prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]], tf.float32) loss_op = losses.WeightedSoftmaxClassificationLoss( logit_scale=logit_scale) loss = loss_op(prediction_tensor, target_tensor, weights=weights) return loss uniform_distribution_loss = - math.log(.33333333333) exp_loss = np.matrix([[uniform_distribution_loss] * 4, [uniform_distribution_loss] * 4]) loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossWithLossesMask(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [0.5, 0.5, 0.5], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]]], tf.float32) losses_mask = tf.constant([True, True, False], tf.bool) loss_op = losses.WeightedSoftmaxClassificationLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights, losses_mask=losses_mask) loss = tf.reduce_sum(loss) return loss loss_output = self.execute(graph_fn, []) exp_loss = - 1.5 * math.log(.5) self.assertAllClose(loss_output, exp_loss) class WeightedSoftmaxClassificationAgainstLogitsLossTest(test_case.TestCase): def testReturnsCorrectLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, -100, -100], [-100, -100, 100]], [[-100, -100, 100], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) weights = tf.constant([[1, 1, .5, 1], [1, 1, 1, 1]], tf.float32) weights_shape = tf.shape(weights) weights_multiple = tf.concat( [tf.ones_like(weights_shape), tf.constant([3])], axis=0) weights = tf.tile(tf.expand_dims(weights, 2), weights_multiple) loss_op = losses.WeightedSoftmaxClassificationAgainstLogitsLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss loss_output = self.execute(graph_fn, []) exp_loss = - 1.5 * math.log(.5) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectAnchorWiseLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, -100, -100], [-100, -100, 100]], [[-100, -100, 100], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) weights = tf.constant([[1, 1, .5, 1], [1, 1, 1, 0]], tf.float32) weights_shape = tf.shape(weights) weights_multiple = tf.concat( [tf.ones_like(weights_shape), tf.constant([3])], axis=0) weights = tf.tile(tf.expand_dims(weights, 2), weights_multiple) loss_op = losses.WeightedSoftmaxClassificationAgainstLogitsLoss() loss = loss_op(prediction_tensor, target_tensor, weights=weights) return loss loss_output = self.execute(graph_fn, []) exp_loss = np.matrix([[0, 0, - 0.5 * math.log(.5), 0], [-math.log(.5), 0, 0, 0]]) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectAnchorWiseLossWithLogitScaleSetting(self): def graph_fn(): logit_scale = 100. prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) target_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [0, 0, -100], [-100, -100, 100]], [[-100, 0, 0], [-100, 100, -100], [-100, 100, -100], [100, -100, -100]]], tf.float32) weights = tf.constant([[1, 1, .5, 1], [1, 1, 1, 0]], tf.float32) weights_shape = tf.shape(weights) weights_multiple = tf.concat( [tf.ones_like(weights_shape), tf.constant([3])], axis=0) weights = tf.tile(tf.expand_dims(weights, 2), weights_multiple) loss_op = losses.WeightedSoftmaxClassificationAgainstLogitsLoss( logit_scale=logit_scale) loss = loss_op(prediction_tensor, target_tensor, weights=weights) return loss # find softmax of the two prediction types above softmax_pred1 = [np.exp(-1), np.exp(-1), np.exp(1)] softmax_pred1 /= sum(softmax_pred1) softmax_pred2 = [np.exp(0), np.exp(0), np.exp(-1)] softmax_pred2 /= sum(softmax_pred2) # compute the expected cross entropy for perfect matches exp_entropy1 = sum( [-x*np.log(x) for x in softmax_pred1]) exp_entropy2 = sum( [-x*np.log(x) for x in softmax_pred2]) # weighted expected losses exp_loss = np.matrix( [[exp_entropy1, exp_entropy1, exp_entropy2*.5, exp_entropy1], [exp_entropy2, exp_entropy1, exp_entropy1, 0.]]) loss_output = self.execute(graph_fn, []) self.assertAllClose(loss_output, exp_loss) class BootstrappedSigmoidClassificationLossTest(test_case.TestCase): def testReturnsCorrectLossSoftBootstrapping(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, 0], [100, -100, -100], [100, -100, -100], [-100, -100, 100]], [[-100, -100, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) alpha = tf.constant(.5, tf.float32) loss_op = losses.BootstrappedSigmoidClassificationLoss( alpha, bootstrap_type='soft') loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss loss_output = self.execute(graph_fn, []) exp_loss = -math.log(.5) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectLossHardBootstrapping(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, 0], [100, -100, -100], [100, -100, -100], [-100, -100, 100]], [[-100, -100, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) alpha = tf.constant(.5, tf.float32) loss_op = losses.BootstrappedSigmoidClassificationLoss( alpha, bootstrap_type='hard') loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss) return loss loss_output = self.execute(graph_fn, []) exp_loss = -math.log(.5) self.assertAllClose(loss_output, exp_loss) def testReturnsCorrectAnchorWiseLoss(self): def graph_fn(): prediction_tensor = tf.constant([[[-100, 100, -100], [100, -100, -100], [100, 0, -100], [-100, -100, 100]], [[-100, 0, 100], [-100, 100, -100], [100, 100, 100], [0, 0, -1]]], tf.float32) target_tensor = tf.constant([[[0, 1, 0], [1, 0, 0], [1, 0, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [1, 1, 1], [1, 0, 0]]], tf.float32) weights = tf.constant([[[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1], [1, 1, 1], [0, 0, 0]]], tf.float32) alpha = tf.constant(.5, tf.float32) loss_op = losses.BootstrappedSigmoidClassificationLoss( alpha, bootstrap_type='hard') loss = loss_op(prediction_tensor, target_tensor, weights=weights) loss = tf.reduce_sum(loss, axis=2) return loss loss_output = self.execute(graph_fn, []) exp_loss = np.matrix([[0, 0, -math.log(.5), 0], [-math.log(.5), 0, 0, 0]]) self.assertAllClose(loss_output, exp_loss) class HardExampleMinerTest(test_case.TestCase): def testHardMiningWithSingleLossType(self): def graph_fn(): location_losses = tf.constant([[100, 90, 80, 0], [0, 1, 2, 3]], tf.float32) cls_losses = tf.constant([[0, 10, 50, 110], [9, 6, 3, 0]], tf.float32) box_corners = tf.constant([[0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9]], tf.float32) decoded_boxlist_list = [] decoded_boxlist_list.append(box_list.BoxList(box_corners)) decoded_boxlist_list.append(box_list.BoxList(box_corners)) # Uses only location loss to select hard examples loss_op = losses.HardExampleMiner(num_hard_examples=1, iou_threshold=0.0, loss_type='loc', cls_loss_weight=1, loc_loss_weight=1) (loc_loss, cls_loss) = loss_op(location_losses, cls_losses, decoded_boxlist_list) return loc_loss, cls_loss loc_loss_output, cls_loss_output = self.execute(graph_fn, []) exp_loc_loss = 100 + 3 exp_cls_loss = 0 + 0 self.assertAllClose(loc_loss_output, exp_loc_loss) self.assertAllClose(cls_loss_output, exp_cls_loss) def testHardMiningWithBothLossType(self): def graph_fn(): location_losses = tf.constant([[100, 90, 80, 0], [0, 1, 2, 3]], tf.float32) cls_losses = tf.constant([[0, 10, 50, 110], [9, 6, 3, 0]], tf.float32) box_corners = tf.constant([[0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9]], tf.float32) decoded_boxlist_list = [] decoded_boxlist_list.append(box_list.BoxList(box_corners)) decoded_boxlist_list.append(box_list.BoxList(box_corners)) loss_op = losses.HardExampleMiner(num_hard_examples=1, iou_threshold=0.0, loss_type='both', cls_loss_weight=1, loc_loss_weight=1) (loc_loss, cls_loss) = loss_op(location_losses, cls_losses, decoded_boxlist_list) return loc_loss, cls_loss loc_loss_output, cls_loss_output = self.execute(graph_fn, []) exp_loc_loss = 80 + 0 exp_cls_loss = 50 + 9 self.assertAllClose(loc_loss_output, exp_loc_loss) self.assertAllClose(cls_loss_output, exp_cls_loss) def testHardMiningNMS(self): def graph_fn(): location_losses = tf.constant([[100, 90, 80, 0], [0, 1, 2, 3]], tf.float32) cls_losses = tf.constant([[0, 10, 50, 110], [9, 6, 3, 0]], tf.float32) box_corners = tf.constant([[0.1, 0.1, 0.9, 0.9], [0.9, 0.9, 0.99, 0.99], [0.1, 0.1, 0.9, 0.9], [0.1, 0.1, 0.9, 0.9]], tf.float32) decoded_boxlist_list = [] decoded_boxlist_list.append(box_list.BoxList(box_corners)) decoded_boxlist_list.append(box_list.BoxList(box_corners)) loss_op = losses.HardExampleMiner(num_hard_examples=2, iou_threshold=0.5, loss_type='cls', cls_loss_weight=1, loc_loss_weight=1) (loc_loss, cls_loss) = loss_op(location_losses, cls_losses, decoded_boxlist_list) return loc_loss, cls_loss loc_loss_output, cls_loss_output = self.execute(graph_fn, []) exp_loc_loss = 0 + 90 + 0 + 1 exp_cls_loss = 110 + 10 + 9 + 6 self.assertAllClose(loc_loss_output, exp_loc_loss) self.assertAllClose(cls_loss_output, exp_cls_loss) def testEnforceNegativesPerPositiveRatio(self): location_losses = np.array([[100, 90, 80, 0, 1, 2, 3, 10, 20, 100, 20, 3]], np.float32) cls_losses = np.array([[0, 0, 100, 0, 90, 70, 0, 60, 0, 17, 13, 0]], np.float32) box_corners = np.array([[0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.5, 0.1], [0.0, 0.0, 0.6, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.8, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 1.0, 0.1], [0.0, 0.0, 1.1, 0.1], [0.0, 0.0, 0.2, 0.1]], np.float32) match_results = np.array([2, -1, 0, -1, -1, 1, -1, -1, -1, -1, -1, 3], np.int32) max_negatives_per_positive_list = [0.0, 0.5, 1.0, 1.5, 10] exp_loc_loss_list = [80 + 2, 80 + 1 + 2, 80 + 1 + 2 + 10, 80 + 1 + 2 + 10 + 100, 80 + 1 + 2 + 10 + 100 + 20] exp_cls_loss_list = [100 + 70, 100 + 90 + 70, 100 + 90 + 70 + 60, 100 + 90 + 70 + 60 + 17, 100 + 90 + 70 + 60 + 17 + 13] # pylint: disable=cell-var-from-loop for max_negatives_per_positive, exp_loc_loss, exp_cls_loss in zip( max_negatives_per_positive_list, exp_loc_loss_list, exp_cls_loss_list): def graph_fn(): loss_op = losses.HardExampleMiner( num_hard_examples=None, iou_threshold=0.9999, loss_type='cls', cls_loss_weight=1, loc_loss_weight=1, max_negatives_per_positive=max_negatives_per_positive) match_list = [matcher.Match(tf.constant(match_results))] decoded_boxlist_list = [box_list.BoxList(tf.constant(box_corners))] (loc_loss, cls_loss) = loss_op(tf.constant(location_losses), tf.constant(cls_losses), decoded_boxlist_list, match_list) return loc_loss, cls_loss loc_loss_output, cls_loss_output = self.execute_cpu(graph_fn, []) self.assertAllClose(loc_loss_output, exp_loc_loss) self.assertAllClose(cls_loss_output, exp_cls_loss) # pylint: enable=cell-var-from-loop def testEnforceNegativesPerPositiveRatioWithMinNegativesPerImage(self): location_losses = np.array([[100, 90, 80, 0, 1, 2, 3, 10, 20, 100, 20, 3]], np.float32) cls_losses = np.array([[0, 0, 100, 0, 90, 70, 0, 60, 0, 17, 13, 0]], np.float32) box_corners = np.array([[0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.5, 0.1], [0.0, 0.0, 0.6, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.8, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 1.0, 0.1], [0.0, 0.0, 1.1, 0.1], [0.0, 0.0, 0.2, 0.1]], np.float32) match_results = np.array([-1] * 12, np.int32) min_negatives_per_image_list = [0, 1, 2, 4, 5, 6] exp_loc_loss_list = [0, 80, 80 + 1, 80 + 1 + 2 + 10, 80 + 1 + 2 + 10 + 100, 80 + 1 + 2 + 10 + 100 + 20] exp_cls_loss_list = [0, 100, 100 + 90, 100 + 90 + 70 + 60, 100 + 90 + 70 + 60 + 17, 100 + 90 + 70 + 60 + 17 + 13] # pylint: disable=cell-var-from-loop for min_negatives_per_image, exp_loc_loss, exp_cls_loss in zip( min_negatives_per_image_list, exp_loc_loss_list, exp_cls_loss_list): def graph_fn(): loss_op = losses.HardExampleMiner( num_hard_examples=None, iou_threshold=0.9999, loss_type='cls', cls_loss_weight=1, loc_loss_weight=1, max_negatives_per_positive=3, min_negatives_per_image=min_negatives_per_image) match_list = [matcher.Match(tf.constant(match_results))] decoded_boxlist_list = [box_list.BoxList(tf.constant(box_corners))] (loc_loss, cls_loss) = loss_op(location_losses, cls_losses, decoded_boxlist_list, match_list) return loc_loss, cls_loss loc_loss_output, cls_loss_output = self.execute_cpu(graph_fn, []) self.assertAllClose(loc_loss_output, exp_loc_loss) self.assertAllClose(cls_loss_output, exp_cls_loss) # pylint: enable=cell-var-from-loop LOG_2 = np.log(2) LOG_3 = np.log(3) class PenaltyReducedLogisticFocalLossTest(test_case.TestCase): """Testing loss function from Equation (1) in [1]. [1]: https://arxiv.org/abs/1904.07850 """ def setUp(self): super(PenaltyReducedLogisticFocalLossTest, self).setUp() self._prediction = np.array([ # First batch [[1 / 2, 1 / 4, 3 / 4], [3 / 4, 1 / 3, 1 / 3]], # Second Batch [[0.0, 1.0, 1 / 2], [3 / 4, 2 / 3, 1 / 3]]], np.float32) self._prediction = np.log(self._prediction/(1 - self._prediction)) self._target = np.array([ # First batch [[1.0, 0.91, 1.0], [0.36, 0.84, 1.0]], # Second Batch [[0.01, 1.0, 0.75], [0.96, 1.0, 1.0]]], np.float32) def test_returns_correct_loss(self): def graph_fn(prediction, target): weights = tf.constant([ [[1.0], [1.0]], [[1.0], [1.0]], ]) loss = losses.PenaltyReducedLogisticFocalLoss(alpha=2.0, beta=0.5) computed_value = loss._compute_loss(prediction, target, weights) return computed_value computed_value = self.execute(graph_fn, [self._prediction, self._target]) expected_value = np.array([ # First batch [[1 / 4 * LOG_2, 0.3 * 0.0625 * (2 * LOG_2 - LOG_3), 1 / 16 * (2 * LOG_2 - LOG_3)], [0.8 * 9 / 16 * 2 * LOG_2, 0.4 * 1 / 9 * (LOG_3 - LOG_2), 4 / 9 * LOG_3]], # Second Batch [[0.0, 0.0, 1 / 2 * 1 / 4 * LOG_2], [0.2 * 9 / 16 * 2 * LOG_2, 1 / 9 * (LOG_3 - LOG_2), 4 / 9 * LOG_3]]]) self.assertAllClose(computed_value, expected_value, rtol=1e-3, atol=1e-3) def test_returns_correct_loss_weighted(self): def graph_fn(prediction, target): weights = tf.constant([ [[1.0, 0.0, 1.0], [0.0, 0.0, 1.0]], [[1.0, 1.0, 1.0], [0.0, 0.0, 0.0]], ]) loss = losses.PenaltyReducedLogisticFocalLoss(alpha=2.0, beta=0.5) computed_value = loss._compute_loss(prediction, target, weights) return computed_value computed_value = self.execute(graph_fn, [self._prediction, self._target]) expected_value = np.array([ # First batch [[1 / 4 * LOG_2, 0.0, 1 / 16 * (2 * LOG_2 - LOG_3)], [0.0, 0.0, 4 / 9 * LOG_3]], # Second Batch [[0.0, 0.0, 1 / 2 * 1 / 4 * LOG_2], [0.0, 0.0, 0.0]]]) self.assertAllClose(computed_value, expected_value, rtol=1e-3, atol=1e-3) class L1LocalizationLossTest(test_case.TestCase): def test_returns_correct_loss(self): def graph_fn(): loss = losses.L1LocalizationLoss() pred = [[0.1, 0.2], [0.7, 0.5]] target = [[0.9, 1.0], [0.1, 0.4]] weights = [[1.0, 0.0], [1.0, 1.0]] return loss._compute_loss(pred, target, weights) computed_value = self.execute(graph_fn, []) self.assertAllClose(computed_value, [[0.8, 0.0], [0.6, 0.1]], rtol=1e-6) class WeightedDiceClassificationLoss(test_case.TestCase): def test_compute_weights_1(self): def graph_fn(): loss = losses.WeightedDiceClassificationLoss(squared_normalization=False) pred = np.zeros((2, 3, 4), dtype=np.float32) target = np.zeros((2, 3, 4), dtype=np.float32) pred[0, 1, 0] = _logit(0.9) pred[0, 2, 0] = _logit(0.1) pred[0, 2, 2] = _logit(0.5) pred[0, 1, 3] = _logit(0.1) pred[1, 2, 3] = _logit(0.2) pred[1, 1, 1] = _logit(0.3) pred[1, 0, 2] = _logit(0.1) target[0, 1, 0] = 1.0 target[0, 2, 2] = 1.0 target[0, 1, 3] = 1.0 target[1, 2, 3] = 1.0 target[1, 1, 1] = 0.0 target[1, 0, 2] = 0.0 weights = np.ones_like(target) return loss._compute_loss(pred, target, weights) dice_coeff = np.zeros((2, 4)) dice_coeff[0, 0] = 2 * 0.9 / 2.5 dice_coeff[0, 2] = 2 * 0.5 / 2.5 dice_coeff[0, 3] = 2 * 0.1 / 2.1 dice_coeff[1, 3] = 2 * 0.2 / 2.2 computed_value = self.execute(graph_fn, []) self.assertAllClose(computed_value, 1 - dice_coeff, rtol=1e-6) def test_compute_weights_set(self): def graph_fn(): loss = losses.WeightedDiceClassificationLoss(squared_normalization=False) pred = np.zeros((2, 3, 4), dtype=np.float32) target = np.zeros((2, 3, 4), dtype=np.float32) pred[0, 1, 0] = _logit(0.9) pred[0, 2, 0] = _logit(0.1) pred[0, 2, 2] = _logit(0.5) pred[0, 1, 3] = _logit(0.1) pred[1, 2, 3] = _logit(0.2) pred[1, 1, 1] = _logit(0.3) pred[1, 0, 2] = _logit(0.1) target[0, 1, 0] = 1.0 target[0, 2, 2] = 1.0 target[0, 1, 3] = 1.0 target[1, 2, 3] = 1.0 target[1, 1, 1] = 0.0 target[1, 0, 2] = 0.0 weights = np.ones_like(target) weights[:, :, 0] = 0.0 return loss._compute_loss(pred, target, weights) dice_coeff = np.zeros((2, 4)) dice_coeff[0, 2] = 2 * 0.5 / 2.5 dice_coeff[0, 3] = 2 * 0.1 / 2.1 dice_coeff[1, 3] = 2 * 0.2 / 2.2 computed_value = self.execute(graph_fn, []) self.assertAllClose(computed_value, 1 - dice_coeff, rtol=1e-6) def test_class_indices(self): def graph_fn(): loss = losses.WeightedDiceClassificationLoss(squared_normalization=False) pred = np.zeros((2, 3, 4), dtype=np.float32) target = np.zeros((2, 3, 4), dtype=np.float32) pred[0, 1, 0] = _logit(0.9) pred[0, 2, 0] = _logit(0.1) pred[0, 2, 2] = _logit(0.5) pred[0, 1, 3] = _logit(0.1) pred[1, 2, 3] = _logit(0.2) pred[1, 1, 1] = _logit(0.3) pred[1, 0, 2] = _logit(0.1) target[0, 1, 0] = 1.0 target[0, 2, 2] = 1.0 target[0, 1, 3] = 1.0 target[1, 2, 3] = 1.0 target[1, 1, 1] = 0.0 target[1, 0, 2] = 0.0 weights = np.ones_like(target) return loss._compute_loss(pred, target, weights, class_indices=[0]) dice_coeff = np.zeros((2, 4)) dice_coeff[0, 0] = 2 * 0.9 / 2.5 computed_value = self.execute(graph_fn, []) self.assertAllClose(computed_value, 1 - dice_coeff, rtol=1e-6) if __name__ == '__main__': tf.test.main()
44.616816
80
0.411606
fbf3ed2e3ce223cd64db89189a866251d81dd38a
9,453
py
Python
src/tools/gyp/pylib/gyp/MSVSUtil.py
zzilla/gbreakpad
02fd5a078bda4eb2fd7ee881c8d301bea2bf87fe
[ "BSD-3-Clause" ]
33
2015-11-20T23:33:50.000Z
2022-02-25T21:28:41.000Z
deps/gyp/pylib/gyp/MSVSUtil.py
free1978/mapbox-gl-native
2a50fccd24e762d0de5a53bac358e5ddfea8d213
[ "BSD-2-Clause" ]
5
2016-09-28T11:37:41.000Z
2022-02-05T11:08:44.000Z
deps/gyp/pylib/gyp/MSVSUtil.py
free1978/mapbox-gl-native
2a50fccd24e762d0de5a53bac358e5ddfea8d213
[ "BSD-2-Clause" ]
11
2020-07-04T03:03:18.000Z
2022-03-17T10:19:19.000Z
# Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Utility functions shared amongst the Windows generators.""" import copy import os _TARGET_TYPE_EXT = { 'executable': '.exe', 'loadable_module': '.dll', 'shared_library': '.dll', } def _GetLargePdbShimCcPath(): """Returns the path of the large_pdb_shim.cc file.""" this_dir = os.path.abspath(os.path.dirname(__file__)) src_dir = os.path.abspath(os.path.join(this_dir, '..', '..')) win_data_dir = os.path.join(src_dir, 'data', 'win') large_pdb_shim_cc = os.path.join(win_data_dir, 'large-pdb-shim.cc') return large_pdb_shim_cc def _DeepCopySomeKeys(in_dict, keys): """Performs a partial deep-copy on |in_dict|, only copying the keys in |keys|. Arguments: in_dict: The dictionary to copy. keys: The keys to be copied. If a key is in this list and doesn't exist in |in_dict| this is not an error. Returns: The partially deep-copied dictionary. """ d = {} for key in keys: if key not in in_dict: continue d[key] = copy.deepcopy(in_dict[key]) return d def _SuffixName(name, suffix): """Add a suffix to the end of a target. Arguments: name: name of the target (foo#target) suffix: the suffix to be added Returns: Target name with suffix added (foo_suffix#target) """ parts = name.rsplit('#', 1) parts[0] = '%s_%s' % (parts[0], suffix) return '#'.join(parts) def _ShardName(name, number): """Add a shard number to the end of a target. Arguments: name: name of the target (foo#target) number: shard number Returns: Target name with shard added (foo_1#target) """ return _SuffixName(name, str(number)) def ShardTargets(target_list, target_dicts): """Shard some targets apart to work around the linkers limits. Arguments: target_list: List of target pairs: 'base/base.gyp:base'. target_dicts: Dict of target properties keyed on target pair. Returns: Tuple of the new sharded versions of the inputs. """ # Gather the targets to shard, and how many pieces. targets_to_shard = {} for t in target_dicts: shards = int(target_dicts[t].get('msvs_shard', 0)) if shards: targets_to_shard[t] = shards # Shard target_list. new_target_list = [] for t in target_list: if t in targets_to_shard: for i in range(targets_to_shard[t]): new_target_list.append(_ShardName(t, i)) else: new_target_list.append(t) # Shard target_dict. new_target_dicts = {} for t in target_dicts: if t in targets_to_shard: for i in range(targets_to_shard[t]): name = _ShardName(t, i) new_target_dicts[name] = copy.copy(target_dicts[t]) new_target_dicts[name]['target_name'] = _ShardName( new_target_dicts[name]['target_name'], i) sources = new_target_dicts[name].get('sources', []) new_sources = [] for pos in range(i, len(sources), targets_to_shard[t]): new_sources.append(sources[pos]) new_target_dicts[name]['sources'] = new_sources else: new_target_dicts[t] = target_dicts[t] # Shard dependencies. for t in new_target_dicts: for deptype in ('dependencies', 'dependencies_original'): dependencies = copy.copy(new_target_dicts[t].get(deptype, [])) new_dependencies = [] for d in dependencies: if d in targets_to_shard: for i in range(targets_to_shard[d]): new_dependencies.append(_ShardName(d, i)) else: new_dependencies.append(d) new_target_dicts[t][deptype] = new_dependencies return (new_target_list, new_target_dicts) def _GetPdbPath(target_dict, config_name, vars): """Returns the path to the PDB file that will be generated by a given configuration. The lookup proceeds as follows: - Look for an explicit path in the VCLinkerTool configuration block. - Look for an 'msvs_large_pdb_path' variable. - Use '<(PRODUCT_DIR)/<(product_name).(exe|dll).pdb' if 'product_name' is specified. - Use '<(PRODUCT_DIR)/<(target_name).(exe|dll).pdb'. Arguments: target_dict: The target dictionary to be searched. config_name: The name of the configuration of interest. vars: A dictionary of common GYP variables with generator-specific values. Returns: The path of the corresponding PDB file. """ config = target_dict['configurations'][config_name] msvs = config.setdefault('msvs_settings', {}) linker = msvs.get('VCLinkerTool', {}) pdb_path = linker.get('ProgramDatabaseFile') if pdb_path: return pdb_path variables = target_dict.get('variables', {}) pdb_path = variables.get('msvs_large_pdb_path', None) if pdb_path: return pdb_path pdb_base = target_dict.get('product_name', target_dict['target_name']) pdb_base = '%s%s.pdb' % (pdb_base, _TARGET_TYPE_EXT[target_dict['type']]) pdb_path = vars['PRODUCT_DIR'] + '/' + pdb_base return pdb_path def InsertLargePdbShims(target_list, target_dicts, vars): """Insert a shim target that forces the linker to use 4KB pagesize PDBs. This is a workaround for targets with PDBs greater than 1GB in size, the limit for the 1KB pagesize PDBs created by the linker by default. Arguments: target_list: List of target pairs: 'base/base.gyp:base'. target_dicts: Dict of target properties keyed on target pair. vars: A dictionary of common GYP variables with generator-specific values. Returns: Tuple of the shimmed version of the inputs. """ # Determine which targets need shimming. targets_to_shim = [] for t in target_dicts: target_dict = target_dicts[t] # We only want to shim targets that have msvs_large_pdb enabled. if not int(target_dict.get('msvs_large_pdb', 0)): continue # This is intended for executable, shared_library and loadable_module # targets where every configuration is set up to produce a PDB output. # If any of these conditions is not true then the shim logic will fail # below. targets_to_shim.append(t) large_pdb_shim_cc = _GetLargePdbShimCcPath() for t in targets_to_shim: target_dict = target_dicts[t] target_name = target_dict.get('target_name') base_dict = _DeepCopySomeKeys(target_dict, ['configurations', 'default_configuration', 'toolset']) # This is the dict for copying the source file (part of the GYP tree) # to the intermediate directory of the project. This is necessary because # we can't always build a relative path to the shim source file (on Windows # GYP and the project may be on different drives), and Ninja hates absolute # paths (it ends up generating the .obj and .obj.d alongside the source # file, polluting GYPs tree). copy_suffix = 'large_pdb_copy' copy_target_name = target_name + '_' + copy_suffix full_copy_target_name = _SuffixName(t, copy_suffix) shim_cc_basename = os.path.basename(large_pdb_shim_cc) shim_cc_dir = vars['SHARED_INTERMEDIATE_DIR'] + '/' + copy_target_name shim_cc_path = shim_cc_dir + '/' + shim_cc_basename copy_dict = copy.deepcopy(base_dict) copy_dict['target_name'] = copy_target_name copy_dict['type'] = 'none' copy_dict['sources'] = [ large_pdb_shim_cc ] copy_dict['copies'] = [{ 'destination': shim_cc_dir, 'files': [ large_pdb_shim_cc ] }] # This is the dict for the PDB generating shim target. It depends on the # copy target. shim_suffix = 'large_pdb_shim' shim_target_name = target_name + '_' + shim_suffix full_shim_target_name = _SuffixName(t, shim_suffix) shim_dict = copy.deepcopy(base_dict) shim_dict['target_name'] = shim_target_name shim_dict['type'] = 'static_library' shim_dict['sources'] = [ shim_cc_path ] shim_dict['dependencies'] = [ full_copy_target_name ] # Set up the shim to output its PDB to the same location as the final linker # target. for config_name, config in shim_dict.get('configurations').iteritems(): pdb_path = _GetPdbPath(target_dict, config_name, vars) # A few keys that we don't want to propagate. for key in ['msvs_precompiled_header', 'msvs_precompiled_source', 'test']: config.pop(key, None) msvs = config.setdefault('msvs_settings', {}) # Update the compiler directives in the shim target. compiler = msvs.setdefault('VCCLCompilerTool', {}) compiler['DebugInformationFormat'] = '3' compiler['ProgramDataBaseFileName'] = pdb_path # Set the explicit PDB path in the appropriate configuration of the # original target. config = target_dict['configurations'][config_name] msvs = config.setdefault('msvs_settings', {}) linker = msvs.setdefault('VCLinkerTool', {}) linker['GenerateDebugInformation'] = 'true' linker['ProgramDatabaseFile'] = pdb_path # Add the new targets. They must go to the beginning of the list so that # the dependency generation works as expected in ninja. target_list.insert(0, full_copy_target_name) target_list.insert(0, full_shim_target_name) target_dicts[full_copy_target_name] = copy_dict target_dicts[full_shim_target_name] = shim_dict # Update the original target to depend on the shim target. target_dict.setdefault('dependencies', []).append(full_shim_target_name) return (target_list, target_dicts)
35.141264
80
0.698614
7a4b5f251565c7ea9d8fb1510a8a35adf9ad8604
2,233
py
Python
udp_handshake.py
Gavitron/pipulator
ca6e134451bc1d1f073aa965df4fa4877bf43311
[ "BSD-3-Clause" ]
4
2015-11-28T17:45:56.000Z
2020-05-09T10:48:40.000Z
udp_handshake.py
Gavitron/pipulator
ca6e134451bc1d1f073aa965df4fa4877bf43311
[ "BSD-3-Clause" ]
null
null
null
udp_handshake.py
Gavitron/pipulator
ca6e134451bc1d1f073aa965df4fa4877bf43311
[ "BSD-3-Clause" ]
null
null
null
# udp listener # # Run this in the background, and you will appear to the pipboy app as an instance of Fallout4 import socket import struct import sys import time import json # debouncer magic number min_delta=100 #return current millis def now(): return time.time()*1000000 #return millis since 'then' def dif(then): return now() - then #return true if millis since last_seen is older than minimum debounce interval def stale(last_seen): return ( dif(last_seen) > min_delta ) # set some default globals multicast_group = '224.3.29.71' listen_address = ('', 28000) ttl = struct.pack('b', 127) # Set the time-to-live for UDP messages. should be 1. # here we go # Create the socket hand_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Bind to the server address hand_sock.bind(listen_address) hand_sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl) # Tell the operating system to add the socket to the multicast group # on all interfaces. group = socket.inet_aton(multicast_group) mreq = struct.pack('4sL', group, socket.INADDR_ANY) hand_sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) # Receive/respond loop isRunning=True last_seen = {} print >>sys.stderr, '\nHANDSHAKE READY...' while isRunning: raw_data, address = hand_sock.recvfrom(1024) nodeID = ':'.join(map(str,address)) print >>sys.stderr, 'HANDSHAKE recieved %d bytes, from: %s' % (len(raw_data), nodeID) if not last_seen.get(nodeID): print >>sys.stderr, 'HANDSHAKE new tuple: %s' % nodeID last_seen[nodeID] = 0 if stale(last_seen[nodeID]): print >>sys.stderr, 'HANDSHAKE old timestamp: %d diff: %d stale: %s' % (last_seen[nodeID],dif(last_seen[nodeID]),stale(last_seen[nodeID])) udp_msg = json.loads(raw_data) if udp_msg['cmd'] == 'autodiscover': print >>sys.stderr, 'HANDSHAKE acknowledging discovery request from %s' % nodeID reply = {} reply['IsBusy'] = False reply['MachineType'] = "PC" hand_sock.sendto(json.dumps(reply), address) else: print >>sys.stderr, 'HANDSHAKE unrecognized request from %s\nHANDSHAKE content: %s' % (nodeID, udp_msg) last_seen[nodeID] = now() else: print >>sys.stderr, 'HANDSHAKE ignoring duplicate request from %s' % nodeID
29.773333
145
0.727273
96f0dab6169d9969725df9c060061c10bfc2e64b
2,156
py
Python
zthumbor/loaders/zloader.py
yakkl/yakkl
89ecf4ee8998554a0634667067e16f428e4c480c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
zthumbor/loaders/zloader.py
yakkl/yakkl
89ecf4ee8998554a0634667067e16f428e4c480c
[ "ECL-2.0", "Apache-2.0" ]
4
2020-06-06T00:51:42.000Z
2022-02-10T21:38:40.000Z
zthumbor/loaders/zloader.py
yakkl/yakkl
89ecf4ee8998554a0634667067e16f428e4c480c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# See https://yakkl.readthedocs.io/en/latest/subsystems/thumbnailing.html from __future__ import absolute_import from six.moves import urllib from tornado.concurrent import return_future from thumbor.loaders import LoaderResult, file_loader, https_loader from tc_aws.loaders import s3_loader from thumbor.context import Context from .helpers import ( separate_url_and_source_type, THUMBOR_S3_TYPE, THUMBOR_LOCAL_FILE_TYPE, THUMBOR_EXTERNAL_TYPE ) from typing import Any, Callable import base64 import logging def get_not_found_result(): # type: () -> LoaderResult result = LoaderResult() result.error = LoaderResult.ERROR_NOT_FOUND result.successful = False return result @return_future def load(context, url, callback): # type: (Context, str, Callable[..., Any]) -> None source_type, encoded_url = separate_url_and_source_type(url) actual_url = base64.urlsafe_b64decode(urllib.parse.unquote(encoded_url)) if source_type not in (THUMBOR_S3_TYPE, THUMBOR_LOCAL_FILE_TYPE, THUMBOR_EXTERNAL_TYPE): callback(get_not_found_result()) logging.warning('INVALID SOURCE TYPE: ' + source_type) return if source_type == THUMBOR_S3_TYPE: if actual_url.startswith('/user_uploads/'): # type: ignore # python 2 type differs from python 3 type actual_url = actual_url[len('/user_uploads/'):] else: raise AssertionError("Unexpected s3 file.") s3_loader.load(context, actual_url, callback) elif source_type == THUMBOR_LOCAL_FILE_TYPE: if actual_url.startswith('/user_uploads/'): # type: ignore # python 2 type differs from python 3 type actual_url = actual_url[len('/user_uploads/'):] local_file_path_prefix = 'files/' else: raise AssertionError("Unexpected local file.") patched_local_url = local_file_path_prefix + actual_url # type: ignore # python 2 type differs from python 3 type file_loader.load(context, patched_local_url, callback) elif source_type == THUMBOR_EXTERNAL_TYPE: https_loader.load(context, actual_url, callback)
39.2
122
0.719852
f1b7794396071f0e63502282f9d184a2955716c9
2,416
py
Python
002-pyopengl/PyOpenGL-Demo-3.0.1b1/PyOpenGL-Demo/proesch/nurbsCurve/nurbsCircle.py
lhl/vrdev
fc1a9af2b51d159c99c8779349ef3392a70ed9ed
[ "Apache-2.0" ]
12
2015-12-02T02:36:36.000Z
2020-09-20T17:14:24.000Z
002-pyopengl/PyOpenGL-Demo-3.0.1b1/PyOpenGL-Demo/proesch/nurbsCurve/nurbsCircle.py
lhl/vrdev
fc1a9af2b51d159c99c8779349ef3392a70ed9ed
[ "Apache-2.0" ]
null
null
null
002-pyopengl/PyOpenGL-Demo-3.0.1b1/PyOpenGL-Demo/proesch/nurbsCurve/nurbsCircle.py
lhl/vrdev
fc1a9af2b51d159c99c8779349ef3392a70ed9ed
[ "Apache-2.0" ]
8
2016-11-02T11:17:04.000Z
2021-10-21T07:42:19.000Z
#!/usr/bin/python2.4 # Plot a circle using NURBS # # Copyright (C) 2007 "Peter Roesch" <Peter.Roesch@fh-augsburg.de> # # This code is licensed under the PyOpenGL License. # Details are given in the file license.txt included in this distribution. import sys import math from time import sleep try: from OpenGL.GLUT import * from OpenGL.GL import * from OpenGL.GLU import * except: print ''' Fehler: PyOpenGL nicht intalliert !!''' sys.exit( ) animationAngle = 0.0 frameRate = 25 animationTime = 0 def animationStep( ): """Update animated parameters""" global animationAngle global frameRate animationAngle += 0.3 while animationAngle > 360: animationAngle -= 360 sleep( 1 / float( frameRate ) ) glutPostRedisplay( ) degree=3 s2=math.sqrt(2)/2.0 # Initialise circle control points. circlePoints = [\ [0.0, 1.0, 0.0, 1.0],\ [s2, s2, 0.0, s2],\ [1.0, 0.0, 0.0, 1.0],\ [s2, -s2, 0.0, s2],\ [0.0, -1.0, 0.0, 1.0],\ [-s2, -s2, 0.0, s2],\ [-1.0, 0.0, 0.0, 1.0],\ [-s2, s2, 0.0, s2],\ ] # make sure circle is closed properly circlePoints = circlePoints + [circlePoints[0], circlePoints[1]] # initialise circle knots circleKnots = [ 0.0 ] + \ [ float(i/2) for i in range( len( circlePoints ) + degree -1 )] def display( ): glClear( GL_COLOR_BUFFER_BIT ) glMatrixMode( GL_PROJECTION ) glLoadIdentity( ) xSize, ySize = glutGet( GLUT_WINDOW_WIDTH ), glutGet( GLUT_WINDOW_HEIGHT ) gluPerspective(60, float(xSize) / float(ySize), 0.1, 50) glMatrixMode( GL_MODELVIEW ) glLoadIdentity( ) glTranslatef( 0, 0, -2 ) glRotatef( animationAngle, 0, 0, 1 ) global circlePoints, circleKnots glColor3f(0, 1, 0) glBegin(GL_LINE_STRIP) for coord in circlePoints: glVertex3f(coord[0], coord[1], coord[2]); glEnd() global nurb glColor3f(1, 1, 1) gluBeginCurve( nurb ) gluNurbsCurve ( nurb, circleKnots, circlePoints, GL_MAP1_VERTEX_4 ) gluEndCurve( nurb ) glutSwapBuffers( ) nurb=None samplingTolerance=1.0 def init( ): """Glut init function.""" glClearColor ( 0, 0, 0, 0 ) global nurb nurb = gluNewNurbsRenderer() global samplingTolerance glLineWidth(2.0) gluNurbsProperty(nurb, GLU_SAMPLING_TOLERANCE, samplingTolerance) glutInit( sys.argv ) glutInitDisplayMode( GLUT_DOUBLE | GLUT_RGB ) glutInitWindowSize( 250, 250 ) glutInitWindowPosition( 100, 100 ) glutCreateWindow( sys.argv[0] ) init( ) glutDisplayFunc( display ) glutIdleFunc( animationStep ) glutMainLoop( )
24.16
75
0.701987
2b7b80ca5e3810a1867fef0c2245644acda0a538
37
py
Python
venv/lib/python3.6/encodings/cp874.py
JamesMusyoka/Blog
fdcb51cf4541bbb3b9b3e7a1c3735a0b1f45f0b5
[ "Unlicense" ]
2
2019-04-17T13:35:50.000Z
2021-12-21T00:11:36.000Z
venv/lib/python3.6/encodings/cp874.py
JamesMusyoka/Blog
fdcb51cf4541bbb3b9b3e7a1c3735a0b1f45f0b5
[ "Unlicense" ]
2
2021-03-31T19:51:24.000Z
2021-06-10T23:05:09.000Z
venv/lib/python3.6/encodings/cp874.py
JamesMusyoka/Blog
fdcb51cf4541bbb3b9b3e7a1c3735a0b1f45f0b5
[ "Unlicense" ]
2
2019-10-01T08:47:35.000Z
2020-07-11T06:32:16.000Z
/usr/lib/python3.6/encodings/cp874.py
37
37
0.810811
ce2e156e20ad5f91ebd14f6139de4bbaf7a7606a
11,289
py
Python
grr/gui/api_call_handler_utils_test.py
mikecb/grr
52fdd977729af2a09a147301c55b8b7f1eccfa67
[ "Apache-2.0" ]
2
2019-06-02T13:11:16.000Z
2019-06-25T13:30:46.000Z
grr/gui/api_call_handler_utils_test.py
mikecb/grr
52fdd977729af2a09a147301c55b8b7f1eccfa67
[ "Apache-2.0" ]
null
null
null
grr/gui/api_call_handler_utils_test.py
mikecb/grr
52fdd977729af2a09a147301c55b8b7f1eccfa67
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- mode: python; encoding: utf-8 -*- """Contains tests for api_call_handler_utils.""" import hashlib import os import tarfile import zipfile import yaml from grr.gui import api_call_handler_utils from grr.lib import aff4 from grr.lib import flags from grr.lib import test_lib from grr.lib.aff4_objects import collects from grr.lib.rdfvalues import client as rdf_client from grr.lib.rdfvalues import crypto as rdf_crypto from grr.lib.rdfvalues import paths as rdf_paths class CollectionArchiveGeneratorTest(test_lib.GRRBaseTest): """Test for CollectionArchiveGenerator.""" def setUp(self): super(CollectionArchiveGeneratorTest, self).setUp() self.client_id = rdf_client.ClientURN("aff4:/C.0000000000000000") path1 = self.client_id.Add("fs/os/foo/bar/hello1.txt") with aff4.FACTORY.Create( path1, aff4.AFF4MemoryStream, token=self.token) as fd: fd.Write("hello1") fd.Set(fd.Schema.HASH, rdf_crypto.Hash(sha256=hashlib.sha256("hello1").digest())) path2 = self.client_id.Add(u"fs/os/foo/bar/中国新闻网新闻中.txt") with aff4.FACTORY.Create( path2, aff4.AFF4MemoryStream, token=self.token) as fd: fd.Write("hello2") fd.Set(fd.Schema.HASH, rdf_crypto.Hash(sha256=hashlib.sha256("hello2").digest())) self.stat_entries = [] self.paths = [path1, path2] for path in self.paths: self.stat_entries.append( rdf_client.StatEntry(pathspec=rdf_paths.PathSpec( path="foo/bar/" + str(path).split("/")[-1], pathtype=rdf_paths.PathSpec.PathType.OS))) self.fd = None def _GenerateArchive( self, collection, archive_format=api_call_handler_utils.CollectionArchiveGenerator.ZIP, predicate=None): self.fd_path = os.path.join(self.temp_dir, "archive") archive_generator = api_call_handler_utils.CollectionArchiveGenerator( archive_format=archive_format, predicate=predicate, prefix="test_prefix", description="Test description", client_id=self.client_id) with open(self.fd_path, "wb") as out_fd: for chunk in archive_generator.Generate(collection, token=self.token): out_fd.write(chunk) self.fd = open(self.fd_path, "rb") return self.fd, self.fd_path def tearDown(self): if self.fd: self.fd.close() super(CollectionArchiveGeneratorTest, self).tearDown() def testSkipsFilesWithoutHashWhenZipArchiving(self): for path in self.paths: with aff4.FACTORY.Open(path, mode="rw", token=self.token) as fd: fd.DeleteAttribute(fd.Schema.HASH) _, fd_path = self._GenerateArchive( self.stat_entries, archive_format=api_call_handler_utils.CollectionArchiveGenerator.ZIP) with zipfile.ZipFile(fd_path) as zip_fd: names = zip_fd.namelist() # Check that nothing was written except for the MANIFEST file. self.assertEqual(len(names), 1) self.assertEqual(names[0], "test_prefix/MANIFEST") def testSkipsFilesWithoutHashWhenTarArchiving(self): for path in self.paths: with aff4.FACTORY.Open(path, mode="rw", token=self.token) as fd: fd.DeleteAttribute(fd.Schema.HASH) _, fd_path = self._GenerateArchive( self.stat_entries, archive_format=api_call_handler_utils.CollectionArchiveGenerator.TAR_GZ) with tarfile.open(fd_path) as tar_fd: infos = list(tar_fd) # Check that nothing was written except for the MANIFEST file. self.assertEqual(len(infos), 1) self.assertEqual(infos[0].name, "test_prefix/MANIFEST") def testCreatesZipContainingDeduplicatedCollectionFilesAndManifest(self): _, fd_path = self._GenerateArchive( self.stat_entries, archive_format=api_call_handler_utils.CollectionArchiveGenerator.ZIP) zip_fd = zipfile.ZipFile(fd_path) names = sorted(zip_fd.namelist()) link1_name = "test_prefix/C.0000000000000000/fs/os/foo/bar/hello1.txt" link2_name = ("test_prefix/C.0000000000000000/fs/os/foo/bar/" "中国新闻网新闻中.txt") link1_dest = ("test_prefix/hashes/91e9240f415223982edc345532630710" "e94a7f52cd5f48f5ee1afc555078f0ab") link2_dest = ("test_prefix/hashes/87298cc2f31fba73181ea2a9e6ef10dc" "e21ed95e98bdac9c4e1504ea16f486e4") manifest_name = "test_prefix/MANIFEST" self.assertEqual( names, sorted([link1_name, link2_name, link1_dest, link2_dest, manifest_name])) link_info = zip_fd.getinfo(link1_name) self.assertEqual(link_info.external_attr, (0644 | 0120000) << 16) self.assertEqual(link_info.create_system, 3) link_contents = zip_fd.read(link1_name) self.assertEqual(link_contents, "../../../../../../" + link1_dest) dest_contents = zip_fd.read(link1_dest) self.assertEqual(dest_contents, "hello1") link_info = zip_fd.getinfo(link2_name) self.assertEqual(link_info.external_attr, (0644 | 0120000) << 16) self.assertEqual(link_info.create_system, 3) link_contents = zip_fd.read(link2_name) self.assertEqual(link_contents, "../../../../../../" + link2_dest) dest_contents = zip_fd.read(link2_dest) self.assertEqual(dest_contents, "hello2") manifest = yaml.safe_load(zip_fd.read(manifest_name)) self.assertEqual(manifest, { "description": "Test description", "processed_files": 2, "archived_files": 2, "ignored_files": 0, "failed_files": 0 }) def testCreatesTarContainingDeduplicatedCollectionFilesAndReadme(self): _, fd_path = self._GenerateArchive( self.stat_entries, archive_format=api_call_handler_utils.CollectionArchiveGenerator.TAR_GZ) with tarfile.open(fd_path) as tar_fd: link1_name = "test_prefix/C.0000000000000000/fs/os/foo/bar/hello1.txt" link2_name = ("test_prefix/C.0000000000000000/fs/os/foo/bar/" "中国新闻网新闻中.txt") link1_dest = ("test_prefix/hashes/91e9240f415223982edc345532630710" "e94a7f52cd5f48f5ee1afc555078f0ab") link2_dest = ("test_prefix/hashes/87298cc2f31fba73181ea2a9e6ef10dc" "e21ed95e98bdac9c4e1504ea16f486e4") link_info = tar_fd.getmember(link1_name) self.assertEqual(link_info.linkname, "../../../../../../" + link1_dest) self.assertEqual(tar_fd.extractfile(link1_dest).read(), "hello1") link_info = tar_fd.getmember(link2_name) self.assertEqual(link_info.linkname, "../../../../../../" + link2_dest) self.assertEqual(tar_fd.extractfile(link2_dest).read(), "hello2") manifest_fd = tar_fd.extractfile("test_prefix/MANIFEST") self.assertEqual( yaml.safe_load(manifest_fd.read()), { "description": "Test description", "processed_files": 2, "archived_files": 2, "ignored_files": 0, "failed_files": 0 }) def testCorrectlyAccountsForFailedFiles(self): path2 = u"aff4:/C.0000000000000000/fs/os/foo/bar/中国新闻网新闻中.txt" with aff4.FACTORY.Create(path2, aff4.AFF4Image, token=self.token) as fd: fd.Write("hello2") # Delete a single chunk aff4.FACTORY.Delete( "aff4:/C.0000000000000000/fs/os/foo/bar/中国新闻网新闻中.txt" "/0000000000", token=self.token) _, fd_path = self._GenerateArchive( self.stat_entries, archive_format=api_call_handler_utils.CollectionArchiveGenerator.ZIP) zip_fd = zipfile.ZipFile(fd_path) names = sorted(zip_fd.namelist()) link1_name = "test_prefix/C.0000000000000000/fs/os/foo/bar/hello1.txt" link2_name = ("test_prefix/C.0000000000000000/fs/os/foo/bar/" "中国新闻网新闻中.txt") link1_dest = ("test_prefix/hashes/91e9240f415223982edc345532630710" "e94a7f52cd5f48f5ee1afc555078f0ab") manifest_name = "test_prefix/MANIFEST" # Link 2 should be present, but the contents should be missing. self.assertEqual( names, sorted([link1_name, link1_dest, link2_name, manifest_name])) link_info = zip_fd.getinfo(link1_name) self.assertEqual(link_info.external_attr, (0644 | 0120000) << 16) self.assertEqual(link_info.create_system, 3) link_contents = zip_fd.read(link1_name) self.assertEqual(link_contents, "../../../../../../" + link1_dest) dest_contents = zip_fd.read(link1_dest) self.assertEqual(dest_contents, "hello1") manifest = yaml.safe_load(zip_fd.read(manifest_name)) self.assertEqual(manifest, { "description": "Test description", "processed_files": 2, "archived_files": 1, "ignored_files": 0, "failed_files": 1, "failed_files_list": [u"aff4:/C.0000000000000000/fs/os/foo/bar/中国新闻网新闻中.txt"] }) def testIgnoresFilesNotMatchingPredicate(self): _, fd_path = self._GenerateArchive( self.stat_entries, predicate=lambda fd: fd.urn.Basename().startswith("hello"), archive_format=api_call_handler_utils.CollectionArchiveGenerator.ZIP) zip_fd = zipfile.ZipFile(fd_path) names = sorted(zip_fd.namelist()) # The archive is expected to contain 1 file contents blob, 1 link to this # blob, and a manifest. self.assertEqual(len(names), 3) manifest = yaml.safe_load(zip_fd.read("test_prefix/MANIFEST")) self.assertEqual(manifest, { "description": "Test description", "processed_files": 2, "archived_files": 1, "ignored_files": 1, "failed_files": 0, "ignored_files_list": [u"aff4:/C.0000000000000000/fs/os/foo/bar/中国新闻网新闻中.txt"] }) class FilterCollectionTest(test_lib.GRRBaseTest): """Test for FilterCollection.""" def setUp(self): super(FilterCollectionTest, self).setUp() with aff4.FACTORY.Create( "aff4:/tmp/foo/bar", collects.RDFValueCollection, token=self.token) as fd: for i in range(10): fd.Add(rdf_paths.PathSpec(path="/var/os/tmp-%d" % i, pathtype="OS")) self.fd = aff4.FACTORY.Open("aff4:/tmp/foo/bar", token=self.token) def testFiltersByOffsetAndCount(self): data = api_call_handler_utils.FilterCollection(self.fd, 2, 5, None) self.assertEqual(len(data), 5) self.assertEqual(data[0].path, "/var/os/tmp-2") self.assertEqual(data[-1].path, "/var/os/tmp-6") def testIngoresTooBigCount(self): data = api_call_handler_utils.FilterCollection(self.fd, 0, 50, None) self.assertEqual(len(data), 10) self.assertEqual(data[0].path, "/var/os/tmp-0") self.assertEqual(data[-1].path, "/var/os/tmp-9") def testRaisesOnNegativeOffset(self): with self.assertRaises(ValueError): api_call_handler_utils.FilterCollection(self.fd, -10, 0, None) def testRaisesOnNegativeCount(self): with self.assertRaises(ValueError): api_call_handler_utils.FilterCollection(self.fd, 0, -10, None) def testFiltersByFilterString(self): data = api_call_handler_utils.FilterCollection(self.fd, 0, 0, "tmp-8") self.assertEqual(len(data), 1) self.assertEqual(data[0].path, "/var/os/tmp-8") def main(argv): test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
34.522936
80
0.679422
3444df11adbec00693842a0bafb1c5259d9769a3
12,459
py
Python
tofu/_plot.py
Louwrensth/tofu
df2841d24eaf223ae07d862ffaa33fdb2fc079d3
[ "MIT" ]
1
2020-12-18T16:25:18.000Z
2020-12-18T16:25:18.000Z
tofu/_plot.py
Louwrensth/tofu
df2841d24eaf223ae07d862ffaa33fdb2fc079d3
[ "MIT" ]
1
2020-12-18T16:35:08.000Z
2020-12-18T16:35:08.000Z
tofu/_plot.py
lasofivec/tofu
dbb9f433290e3058dfd04d67fbca157761b0a105
[ "MIT" ]
null
null
null
""" Module providing a basic routine for plotting a shot overview """ # Common import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec # tofu try: from tofu.version import __version__ import tofu.utils as utils except Exception: from tofu.version import __version__ from .. import utils as utils __all__ = ['plot_shotoverview'] _fs = (12,6) __github = 'https://github.com/ToFuProject/tofu/issues' _wintit = 'tofu-%s report issues / requests at %s'%(__version__, __github) _dmargin = dict(left=0.04, right=0.99, bottom=0.07, top=0.93, wspace=0.25, hspace=0.12) _fontsize = 8 _labelpad = 0 _dcol = {'Ip':'k', 'B':'b', 'Bt':'b', 'PLH1':(1.,0.,0.),'PLH2':(1.,0.5,0.), 'PIC1':'', 'Prad':(1.,0.,1.), 'q1rhot':(0.8,0.8,0.8), 'Ax':(0.,1.,0.)} _lct = [plt.cm.tab20.colors[ii] for ii in [0,2,4,1,3,5]] _ntMax = 3 def plot_shotoverview(db, ntMax=_ntMax, indt=0, config=None, inct=[1,5], dcol=None, lct=_lct, fmt_t='06.3f', fs=None, dmargin=None, tit=None, wintit=None, fontsize=_fontsize, labelpad=_labelpad, sharet=True, sharey=True, shareRZ=True, connect=True, draw=True): kh = _plot_shotoverview(db, ntMax=ntMax, indt=0, config=config, inct=inct, dcol=dcol, lct=lct, fmt_t=fmt_t, fs=fs, dmargin=dmargin, tit=tit, wintit=wintit, fontsize=fontsize, labelpad=labelpad, sharet=sharet, sharey=sharey, shareRZ=shareRZ, connect=connect, draw=draw) return kh ###################################################### # plot new ###################################################### def _plot_shotoverview_init(ns=1, sharet=True, sharey=True, shareRZ=True, fontsize=_fontsize, fs=None, wintit=None, dmargin=None): # Fromat inputs if fs is None: fs = _fs elif type(fs) is str and fs.lower()=='a4': fs = (11.7,8.3) if wintit is None: wintit = _wintit if dmargin is None: dmargin = _dmargin # Make figure and axes fig = plt.figure(figsize=fs) if wintit is not None: fig.canvas.set_window_title(wintit) axarr = GridSpec(ns, 3, **dmargin) laxt = [None for ii in range(0,ns)] laxc = [None for ii in range(0,ns)] for ii in range(0,ns): if ii == 0: laxt[ii] = fig.add_subplot(axarr[ii,:2]) laxc[ii] = fig.add_subplot(axarr[ii,2]) sht = laxt[0] if sharet else None shy = laxt[0] if sharey else None shRZ = laxc[0] if shareRZ else None else: laxt[ii] = fig.add_subplot(axarr[ii,:2], sharex=sht, sharey=shy) laxc[ii] = fig.add_subplot(axarr[ii,2], sharex=shRZ, sharey=shRZ) if not shareRZ: ax2.set_aspect('equal', adjustable='datalim') laxc[-1].set_xlabel(r'$R$ ($m$)') laxt[-1].set_xlabel(r'$t$ ($s$)', fontsize=fontsize) # datalim or box must be chosen for shared axis depending on matplotlib # version => let matplotlib decide until support for matplotlib 2.X.X is # stopped laxc[0].set_aspect('equal')#, adjustable='box') xtxt = laxc[0].get_position().bounds[0] dx = laxc[0].get_position().bounds[2] Ytxt, DY = np.sum(laxc[0].get_position().bounds[1::2]), 0.1 axtxtt = fig.add_axes([xtxt, Ytxt, dx, DY], fc='None') # xtxt, Ytxt, dx, DY = 0.01, 0.98, 0.15, 0.02 # axtxtg = fig.add_axes([xtxt, Ytxt, dx, DY], fc='None') # Dict dax = {'t':laxt, 'cross':laxc, 'txtt':[axtxtt]} #'txtg':[axtxtg] # not useful, one group only # Formatting for kk in dax.keys(): for ii in range(0,len(dax[kk])): dax[kk][ii].tick_params(labelsize=fontsize) if 'txt' in kk: dax[kk][ii].patch.set_alpha(0.) for ss in ['left','right','bottom','top']: dax[kk][ii].spines[ss].set_visible(False) dax[kk][ii].set_xticks([]), dax[kk][ii].set_yticks([]) dax[kk][ii].set_xlim(0,1), dax[kk][ii].set_ylim(0,1) return dax def _plot_shotoverview(db, ntMax=_ntMax, indt=0, config=None, inct=[1,5], dcol=None, lct=_lct, fmt_t='06.3f', fs=None, dmargin=None, tit=None, wintit=None, fontsize=_fontsize, labelpad=_labelpad, sharet=True, sharey=True, shareRZ=True, connect=True, draw=True): ######### # Prepare ######### fldict = dict(fontsize=fontsize, labelpad=labelpad) # Preformat if dcol is None: dcol = _dcol ls = sorted(list(db.keys())) ns = len(ls) lcol = ['k','b','r','m'] # Find common time limits tlim = np.vstack([np.vstack([(np.nanmin(vv['t']), np.nanmax(vv['t'])) if 't' in vv.keys() else (-np.inf,np.inf) for vv in db[ss].values()]) for ss in ls]) tlim = (np.min(tlim),np.max(tlim)) # Find common (R,Z) lims if config=None lEq = ['Ax','X','Sep','q1'] if config is None: Anycross = False Rmin, Rmax = np.full((ns,),np.inf), np.full((ns,),-np.inf) Zmin, Zmax = np.full((ns,),np.inf), np.full((ns,),-np.inf) for ii in range(0,ns): for kk in set(db[ls[ii]].keys()).intersection(lEq): if db[ls[ii]][kk]['data2D'].ndim == 2: Rmin[ii] = min(Rmin[ii],np.nanmin(db[ls[ii]][kk]['data2D'][:,0])) Rmax[ii] = max(Rmax[ii],np.nanmax(db[ls[ii]][kk]['data2D'][:,0])) Zmin[ii] = min(Zmin[ii],np.nanmin(db[ls[ii]][kk]['data2D'][:,1])) Zmax[ii] = max(Zmax[ii],np.nanmax(db[ls[ii]][kk]['data2D'][:,1])) else: Rmin[ii] = min(Rmin[ii],np.nanmin(db[ls[ii]][kk]['data2D'][:,0,:])) Rmax[ii] = max(Rmax[ii],np.nanmax(db[ls[ii]][kk]['data2D'][:,0,:])) Zmin[ii] = min(Zmin[ii],np.nanmin(db[ls[ii]][kk]['data2D'][:,1,:])) Zmax[ii] = max(Zmax[ii],np.nanmax(db[ls[ii]][kk]['data2D'][:,1,:])) Anycross = True Rlim = (np.nanmin(Rmin),np.nanmax(Rmax)) Zlim = (np.nanmin(Zmin),np.nanmax(Zmax)) if Anycross is False: Rlim = (1,3) Zlim = (-1,-1) # time vectors and refs lt = [None for ss in ls] lidt = [0 for ss in ls] for ii in range(0,ns): for kk in set(db[ls[ii]].keys()).intersection(lEq): lt[ii] = db[ls[ii]][kk]['t'] lidt[ii] = id(db[ls[ii]][kk]['t']) break else: for kk in set(db[ls[ii]].keys()).difference(lEq): lt[ii] = db[ls[ii]][kk]['t'] lidt[ii] = id(db[ls[ii]][kk]['t']) break else: msg = "No reference time vector found for shot %s"%str(ls[ii]) warnings.warn(msg) # dlextra id for ii in range(0,ns): for kk in set(db[ls[ii]].keys()).intersection(lEq): db[ls[ii]][kk]['id'] = id(db[ls[ii]][kk]['data2D']) ############## # Plot static ############## dax = _plot_shotoverview_init(ns=ns, sharet=sharet, sharey=sharey, shareRZ=shareRZ, fontsize=fontsize, fs=fs, wintit=wintit, dmargin=dmargin) fig = dax['t'][0].figure if tit is None: tit = r"overview of shots " + ', '.join(map('{0:05.0f}'.format,ls)) fig.suptitle(tit) # Plot config and time traces for ii in range(0,ns): dd = db[ls[ii]] # config if config is not None: dax['cross'][ii] = config.plot(proj='cross', lax=dax['cross'][ii], element='P', dLeg=None, draw=False) # time traces for kk in set(dd.keys()).difference(lEq): if 'c' in dd[kk].keys(): c = dd[kk]['c'] else: c = dcol[kk] lab = dd[kk]['label'] + ' (%s)'%dd[kk]['units'] dax['t'][ii].plot(dd[kk]['t'], dd[kk]['data'], ls='-', lw=1., c=c, label=lab) kk = 'Ax' if kk in dd.keys(): if 'c' in dd[kk].keys(): c = dd[kk]['c'] else: c = dcol[kk] x = db[ls[ii]][kk]['data2D'][:,0] y = db[ls[ii]][kk]['data2D'][:,1] dax['t'][ii].plot(lt[ii], x, lw=1., ls='-', label=r'$R_{Ax}$ (m)') dax['t'][ii].plot(lt[ii], y, lw=1., ls='-', label=r'$Z_{Ax}$ (m)') dax['t'][0].axhline(0., ls='--', lw=1., c='k') dax['t'][0].legend(bbox_to_anchor=(0.,1.01,1.,0.1), loc=3, ncol=5, mode='expand', borderaxespad=0., prop={'size':fontsize}) dax['t'][0].set_xlim(tlim) if config is None: try: # DB dax['cross'][0].set_xlim(Rlim) dax['cross'][0].set_ylim(Zlim) except Exception as err: # DB print(Rlim, Zlim) print(Rmin, Rmax) print(Zmin, Zmax) raise err for ii in range(0,ns): dax['t'][ii].set_ylabel('{0:05.0f} data'.format(ls[ii]), fontsize=fontsize) dax['cross'][-1].set_ylabel(r'$Z$ ($m$)', fontsize=fontsize) ################## # Interactivity dict ################## dgroup = {'time': {'nMax':ntMax, 'key':'f1', 'defid':lidt[0], 'defax':dax['t'][0]}} # Group info (make dynamic in later versions ?) # msg = ' '.join(['%s: %s'%(v['key'],k) for k, v in dgroup.items()]) # l0 = dax['txtg'][0].text(0., 0., msg, # color='k', fontweight='bold', # fontsize=6., ha='left', va='center') # dref dref = dict([(lidt[ii], {'group':'time', 'val':lt[ii], 'inc':inct}) for ii in range(0,ns)]) # ddata ddat = {} for ii in range(0,ns): for kk in set(db[ls[ii]].keys()).intersection(lEq): ddat[db[ls[ii]][kk]['id']] = {'val':db[ls[ii]][kk]['data2D'], 'refids':[lidt[ii]]} # dax lax_fix = dax['cross'] + dax['txtt'] # + dax['txtg'] dax2 = dict([(dax['t'][ii], {'ref':{lidt[ii]:'x'}}) for ii in range(0,ns)]) dobj = {} ################## # Populating dobj # One-axes time txt for jj in range(0,ntMax): l0 = dax['txtt'][0].text((0.5+jj)/ntMax, 0., r'', color='k', fontweight='bold', fontsize=fontsize, ha='left', va='bottom') dobj[l0] = {'dupdate':{'txt':{'id':lidt[0], 'lrid':[lidt[0]], 'bstr':'{0:%s}'%fmt_t}}, 'drefid':{lidt[0]:jj}} # Time-dependent nan2 = np.array([np.nan]) for ii in range(0,ns): # time vlines for jj in range(0,ntMax): l0 = dax['t'][ii].axvline(np.nan, c=lct[jj], ls='-', lw=1.) dobj[l0] = {'dupdate':{'xdata':{'id':lidt[ii], 'lrid':[lidt[ii]]}}, 'drefid':{lidt[ii]:jj}} # Eq for kk in set(db[ls[ii]].keys()).intersection(lEq): id_ = db[ls[ii]][kk]['id'] for jj in range(0,ntMax): l0, = dax['cross'][ii].plot(nan2, nan2, ls='-', c=lct[jj], lw=1.) dobj[l0] = {'dupdate':{'data':{'id':id_, 'lrid':[lidt[ii]]}}, 'drefid':{lidt[ii]:jj}} ################## # Instanciate KeyHandler can = fig.canvas can.draw() kh = utils.KeyHandler_mpl(can=can, dgroup=dgroup, dref=dref, ddata=ddat, dobj=dobj, dax=dax2, lax_fix=lax_fix, groupinit='time', follow=True) if connect: kh.disconnect_old() kh.connect() if draw: fig.canvas.draw() return kh
35.495726
87
0.468497
901ccdc53d7f3ba0b324d8b04476ecd40287ef62
2,604
py
Python
rdr_service/alembic/versions/eff24ee0e4da_add_fphh_to_ps.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
39
2017-10-13T19:16:27.000Z
2021-09-24T16:58:21.000Z
rdr_service/alembic/versions/eff24ee0e4da_add_fphh_to_ps.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
312
2017-09-08T15:42:13.000Z
2022-03-23T18:21:40.000Z
rdr_service/alembic/versions/eff24ee0e4da_add_fphh_to_ps.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
19
2017-09-15T13:58:00.000Z
2022-02-07T18:33:20.000Z
"""add_FPHH_to_ps Revision ID: eff24ee0e4da Revises: 4fa9a3846491, 88ea1bb98358 Create Date: 2021-10-20 12:55:54.689433 """ from alembic import op import sqlalchemy as sa import rdr_service.model.utils from rdr_service.participant_enums import PhysicalMeasurementsStatus, QuestionnaireStatus, OrderStatus from rdr_service.participant_enums import WithdrawalStatus, WithdrawalReason, SuspensionStatus, QuestionnaireDefinitionStatus from rdr_service.participant_enums import EnrollmentStatus, Race, SampleStatus, OrganizationType, BiobankOrderStatus from rdr_service.participant_enums import OrderShipmentTrackingStatus, OrderShipmentStatus from rdr_service.participant_enums import MetricSetType, MetricsKey, GenderIdentity from rdr_service.model.base import add_table_history_table, drop_table_history_table from rdr_service.model.code import CodeType from rdr_service.model.site_enums import SiteStatus, EnrollingStatus, DigitalSchedulingStatus, ObsoleteStatus # revision identifiers, used by Alembic. revision = 'eff24ee0e4da' down_revision = ('4fa9a3846491', '88ea1bb98358') branch_labels = None depends_on = None def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('participant_summary', sa.Column('questionnaire_on_personal_and_family_health_history', rdr_service.model.utils.Enum(QuestionnaireStatus), nullable=True)) op.add_column('participant_summary', sa.Column('questionnaire_on_personal_and_family_health_history_authored', rdr_service.model.utils.UTCDateTime(), nullable=True)) op.add_column('participant_summary', sa.Column('questionnaire_on_personal_and_family_health_history_time', rdr_service.model.utils.UTCDateTime(), nullable=True)) # ### end Alembic commands ### def downgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('participant_summary', 'questionnaire_on_personal_and_family_health_history_time') op.drop_column('participant_summary', 'questionnaire_on_personal_and_family_health_history_authored') op.drop_column('participant_summary', 'questionnaire_on_personal_and_family_health_history') # ### end Alembic commands ### def upgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
40.061538
172
0.796851
ebde26d442251ecf0523cd3625d1e9cc88cdab2f
10,500
py
Python
ansible/roles/test/files/ptftests/py3/ip_in_ip_tunnel_test.py
congh-nvidia/sonic-mgmt
05094321ed58270ac06d1a0ef575a4ab9ea3ddd6
[ "Apache-2.0" ]
null
null
null
ansible/roles/test/files/ptftests/py3/ip_in_ip_tunnel_test.py
congh-nvidia/sonic-mgmt
05094321ed58270ac06d1a0ef575a4ab9ea3ddd6
[ "Apache-2.0" ]
null
null
null
ansible/roles/test/files/ptftests/py3/ip_in_ip_tunnel_test.py
congh-nvidia/sonic-mgmt
05094321ed58270ac06d1a0ef575a4ab9ea3ddd6
[ "Apache-2.0" ]
null
null
null
''' Description: This file contains the IPinIP test for dualtor testbed Usage: Examples of how to start this script /usr/bin/ptf --test-dir ptftests ip_in_ip_tunnel_test.IpinIPTunnelTest --platform-dir ptftests --qlen=2000 --platform remote -t hash_key_list=['src-port', 'dst-port', 'src-mac', 'dst-mac', 'src-ip'];server_ip='192.168.0.2';active_tor_ip='10.1.0.33';standby_tor_mac='d4:af:f7:4d:af:18';standby_tor_ip='10.1.0.32';ptf_portchannel_indices={u'PortChannel0001': [29], u'PortChannel0003': [33], u'PortChannel0002': [31], u'PortChannel0004': [35]} --relax --debug info --log-file /tmp/ip_in_ip_tunnel_test.2021-02-10-07:14:46.log --socket-recv-size 16384 ''' #--------------------------------------------------------------------- # Global imports #--------------------------------------------------------------------- import logging import random from ipaddress import ip_address, IPv4Address import ptf from scapy.all import IP, IPv6, Ether import ptf.packet as scapy from ptf.base_tests import BaseTest from ptf.mask import Mask from ptf.testutils import * # packet count for verifying traffic is forwarded via IPinIP tunnel PACKET_NUM = 10000 # packet count for verifying traffic is not forwarded from standby tor to server directly PACKET_NUM_FOR_NEGATIVE_CHECK = 100 DIFF = 0.25 # The valid range for balance check SRC_IP_RANGE = ['8.0.0.0', '8.255.255.255'] SRC_IPV6_RANGE = ['20D0:A800:0:00::', '20D0:FFFF:0:00::FFFF'] TIMEOUT = 1 class IpinIPTunnelTest(BaseTest): ''' @summary: Overview of functionality This script send traffic to standby ToR, and capture traffic on all portchannel interfaces to check balance. ''' def __init__(self): ''' @summary: constructor ''' BaseTest.__init__(self) self.test_params = test_params_get() self.logger = logging.getLogger("IPinIPTunnel") def setUp(self): self.server_ip = self.test_params['server_ip'] self.server_port = int(self.test_params['server_port']) self.vlan_mac = self.test_params['vlan_mac'] self.standby_tor_mac = self.test_params['standby_tor_mac'] self.active_tor_ip = self.test_params['active_tor_ip'] self.standby_tor_ip = self.test_params['standby_tor_ip'] self.ptf_portchannel_indices = self.test_params['ptf_portchannel_indices'] self.indice_to_portchannel = {} for port_channel, indices in self.ptf_portchannel_indices.items(): for indice in indices: self.indice_to_portchannel[indice] = port_channel self.hash_key_list = self.test_params['hash_key_list'] self.dataplane = ptf.dataplane_instance self.is_ipv4 = isinstance(ip_address(self.server_ip), IPv4Address) def runTest(self): """ Entrypoint of test script. """ self.send_and_verify_packets() def random_ip(self, begin, end): """ Generate a random IP from given ip range """ length = int(ip_address(end)) - int(ip_address(begin)) return str(ip_address(begin) + random.randint(0, length)) def generate_packet_to_server(self, hash_key): """ Generate a packet to server. The value of field in packet is filled with random value according to hash_key """ base_src_mac = self.dataplane.get_mac(0, 0) ip_dst = self.server_ip sport = random.randint(1, 65535) if hash_key == 'src-port' else 1234 dport = random.randint(1, 65535) if hash_key == 'dst-port' else 80 src_mac = (base_src_mac[:-5] + "%02x" % random.randint(0, 255) + ":" + "%02x" % random.randint(0, 255)) if hash_key == 'src-mac' else base_src_mac dst_mac = self.standby_tor_mac vlan_id = random.randint(1, 4094) if hash_key == 'vlan-id' else 0 if self.is_ipv4: ip_src = self.random_ip(SRC_IP_RANGE[0], SRC_IP_RANGE[1]) if hash_key == 'src-ip' else SRC_IP_RANGE[0] pkt = simple_tcp_packet( pktlen=128 if vlan_id == 0 else 132, eth_dst=dst_mac, eth_src=src_mac, dl_vlan_enable=False if vlan_id == 0 else True, vlan_vid=vlan_id, vlan_pcp=0, ip_src=ip_src, ip_dst=ip_dst, tcp_sport=sport, tcp_dport=dport, ip_ttl=64 ) return pkt else: ip_src = self.random_ip(*SRC_IPV6_RANGE) if hash_key == 'src-ip' else SRC_IPV6_RANGE[0] pkt = simple_tcpv6_packet( pktlen=128 if vlan_id == 0 else 132, eth_dst=dst_mac, eth_src=src_mac, dl_vlan_enable=False if vlan_id == 0 else True, vlan_vid=vlan_id, vlan_pcp=0, ipv6_src=ip_src, ipv6_dst=ip_dst, tcp_sport=sport, tcp_dport=dport, ipv6_hlim=64 ) return pkt def generate_expected_packet(self, inner_packet): """ Generate ip_in_ip packet for verifying. """ if self.is_ipv4: inner_packet.ttl = inner_packet.ttl - 1 exp_tunnel_pkt = simple_ipv4ip_packet( eth_dst="aa:aa:aa:aa:aa:aa", eth_src=self.standby_tor_mac, ip_src=self.standby_tor_ip, ip_dst=self.active_tor_ip, inner_frame=inner_packet[scapy.IP] ) inner_packet.ttl = 64 else: inner_packet.hlim = inner_packet.hlim - 1 exp_tunnel_pkt = simple_ipv4ip_packet( eth_dst="aa:aa:aa:aa:aa:aa", eth_src=self.standby_tor_mac, ip_src=self.standby_tor_ip, ip_dst=self.active_tor_ip, inner_frame=inner_packet[scapy.IPv6] ) inner_packet.hlim = 64 exp_tunnel_pkt[scapy.TCP] = inner_packet[scapy.TCP] exp_tunnel_pkt = Mask(exp_tunnel_pkt) exp_tunnel_pkt.set_do_not_care_scapy(scapy.Ether, "dst") exp_tunnel_pkt.set_do_not_care_scapy(scapy.Ether, "src") exp_tunnel_pkt.set_do_not_care_scapy(scapy.IP, "id") # since src and dst changed, ID would change too exp_tunnel_pkt.set_do_not_care_scapy(scapy.IP, "ttl") # ttl in outer packet is set to 255 exp_tunnel_pkt.set_do_not_care_scapy(scapy.IP, "chksum") # checksum would differ as the IP header is not the same return exp_tunnel_pkt def generate_unexpected_packet(self, inner_pkt): """ Generate a packet that shouldn't be observed. All packet should be forward via tunnel, so no packet should be observed on server port """ pkt = inner_pkt.copy() pkt[Ether].src = self.vlan_mac # TTL of packets from active tor to server is decreased by 1 if self.is_ipv4: pkt[IP].ttl -= 1 else: pkt[IPv6].hlim -= 1 unexpected_packet = Mask(pkt) # Ignore dst mac unexpected_packet.set_do_not_care_scapy(scapy.Ether, 'dst') if self.is_ipv4: # Ignore check sum unexpected_packet.set_do_not_care_scapy(scapy.IP, "chksum") #Ignore extra bytes unexpected_packet.set_ignore_extra_bytes() return unexpected_packet def check_balance(self, pkt_distribution, hash_key): portchannel_num = len(self.ptf_portchannel_indices) expect_packet_num = PACKET_NUM / portchannel_num pkt_num_lo = expect_packet_num * (1.0 - DIFF) pkt_num_hi = expect_packet_num * (1.0 + DIFF) self.logger.info("hash key = {}".format(hash_key)) self.logger.info("%-10s \t %10s \t %10s \t" % ("port(s)", "exp_cnt", "act_cnt")) balance = True for portchannel, count in pkt_distribution.items(): self.logger.info("%-10s \t %10s \t %10s \t" % (portchannel, str(expect_packet_num), str(count))) if count < pkt_num_lo or count > pkt_num_hi: balance = False if not balance: print("Check balance failed for {}".format(hash_key)) assert(balance) def send_and_verify_packets(self): """ Send packet from ptf (T1) to standby ToR, and verify """ dst_ports = self.indice_to_portchannel.keys() # Select the first ptf indice as src port src_port = dst_ports[0] # Step 1. verify no packet is received from standby_tor to server for i in range(0, PACKET_NUM_FOR_NEGATIVE_CHECK): inner_pkt = self.generate_packet_to_server('src-ip') unexpected_packet = self.generate_unexpected_packet(inner_pkt) self.dataplane.flush() send_packet(self, src_port, inner_pkt) verify_no_packet(test=self, port_id=self.server_port, pkt=unexpected_packet, timeout=TIMEOUT) # Step 2. verify packet is received from IPinIP tunnel and check balance for hash_key in self.hash_key_list: self.logger.info("Verifying traffic balance for hash key {}".format(hash_key)) pkt_distribution = {} for i in range(0, PACKET_NUM): inner_pkt = self.generate_packet_to_server(hash_key) tunnel_pkt = self.generate_expected_packet(inner_pkt) l3packet = inner_pkt.getlayer(IP) or inner_pkt.getlayer(IPv6) self.logger.info("Sending packet dst_mac = {} src_mac = {} dst_ip = {} src_ip = {} from port {}" \ .format(inner_pkt[Ether].dst, inner_pkt[Ether].src, l3packet.dst, l3packet.src, src_port)) self.dataplane.flush() send_packet(self, src_port, inner_pkt) # Verify packet is received from IPinIP tunnel idx, count = verify_packet_any_port(test=self, pkt=tunnel_pkt, ports=dst_ports, device_number=0, timeout=TIMEOUT) pkt_distribution[self.indice_to_portchannel[dst_ports[idx]]] = pkt_distribution.get(self.indice_to_portchannel[dst_ports[idx]], 0) + 1 self.check_balance(pkt_distribution, hash_key)
44.871795
563
0.603333
3175e16cfde23cf8d114dfc9b298b9e0eda20d89
3,361
py
Python
tests/test_models.py
EDS-APHP/pylivy
0714e4e74e27c1a13b74228700bb3e800e9646fe
[ "MIT" ]
null
null
null
tests/test_models.py
EDS-APHP/pylivy
0714e4e74e27c1a13b74228700bb3e800e9646fe
[ "MIT" ]
null
null
null
tests/test_models.py
EDS-APHP/pylivy
0714e4e74e27c1a13b74228700bb3e800e9646fe
[ "MIT" ]
1
2020-02-05T09:31:01.000Z
2020-02-05T09:31:01.000Z
import pytest from livy.models import ( Version, Session, SessionKind, SessionState, Statement, StatementState, Output, OutputStatus, SparkRuntimeError, ) @pytest.mark.parametrize( "earlier, later", [ ("0.1.0", "0.2.0"), ("0.1.1", "0.2.0"), ("1.9.0", "2.0.0"), ("0.1.0", "0.1.1-withsuffix"), ("0.1.0-suffix", "0.1.1"), ], ) def test_version_less_than(earlier, later): assert Version(earlier) < Version(later) @pytest.mark.parametrize( "first, second", [ ("0.1.0", "0.1.0"), ("0.1.0", "0.1.0-withsuffix"), ("0.1.0-suffix", "0.1.0"), ], ) def test_version_equals(first, second): assert Version(first) == Version(second) def test_session_from_json(): session_json = { "id": 5, "proxyUser": "user", "kind": "pyspark", "state": "idle", } expected = Session(5, "user", SessionKind.PYSPARK, SessionState.IDLE) assert Session.from_json(session_json) == expected def test_statement_from_json_no_output(): session_id = 5 statement_json = {"id": 10, "state": "running", "output": None} expected = Statement( session_id, statement_id=10, state=StatementState.RUNNING, output=None ) assert Statement.from_json(session_id, statement_json) == expected def test_statement_from_json_with_output(mocker): mocker.patch.object(Output, "from_json") session_id = 5 statement_json = {"id": 10, "state": "running", "output": "dummy output"} expected = Statement( session_id, statement_id=10, state=StatementState.RUNNING, output=Output.from_json.return_value, ) assert Statement.from_json(session_id, statement_json) == expected Output.from_json.assert_called_once_with("dummy output") def test_output_textdata_from_json(): output_json = {"status": "ok", "data": {"text/plain": "some output"}} expected = Output( OutputStatus.OK, text="some output", json=None, ename=None, evalue=None, traceback=None, ) assert Output.from_json(output_json) == expected def test_output_jsondata_from_json(): output_json = { "status": "ok", "data": {"application/json": {"some": "data"}}, } expected = Output( OutputStatus.OK, text=None, json={"some": "data"}, ename=None, evalue=None, traceback=None, ) assert Output.from_json(output_json) == expected def test_output_error_from_json(): output_json = { "status": "error", "ename": "SomeException", "evalue": "some error value", "traceback": ["traceback line 1", "traceback line 2"], } expected = Output( OutputStatus.ERROR, text=None, json=None, ename="SomeException", evalue="some error value", traceback=["traceback line 1", "traceback line 2"], ) assert Output.from_json(output_json) == expected def test_output_raise_for_status(): ok_output = Output(OutputStatus.OK, None, None, None, None, None) ok_output.raise_for_status() error_output = Output(OutputStatus.ERROR, None, None, None, None, None) with pytest.raises(SparkRuntimeError): error_output.raise_for_status()
22.557047
78
0.60726
a9f4deea3b9f9fcd25abd402392c2541e0b77a51
9,857
py
Python
excelexporters/metertrend.py
823914102/myems-api
4684aa71266a4f7ec93f7a9ebc08cbccd2e9bca3
[ "MIT" ]
null
null
null
excelexporters/metertrend.py
823914102/myems-api
4684aa71266a4f7ec93f7a9ebc08cbccd2e9bca3
[ "MIT" ]
null
null
null
excelexporters/metertrend.py
823914102/myems-api
4684aa71266a4f7ec93f7a9ebc08cbccd2e9bca3
[ "MIT" ]
null
null
null
import base64 import uuid import os from openpyxl.chart import ( PieChart, BarChart, Reference, ) from openpyxl.styles import PatternFill, Border, Side, Alignment, Font from openpyxl.drawing.image import Image from openpyxl import Workbook from openpyxl.chart.label import DataLabelList #################################################################################################################### # PROCEDURES # Step 1: Validate the report data # Step 2: Generate excel file # Step 3: Encode the excel file bytes to Base64 #################################################################################################################### def export(result, name, reporting_start_datetime_local, reporting_end_datetime_local, period_type): #################################################################################################################### # Step 1: Validate the report data #################################################################################################################### if result is None: return None #################################################################################################################### # Step 2: Generate excel file from the report data #################################################################################################################### filename = generate_excel(result, name, reporting_start_datetime_local, reporting_end_datetime_local, period_type) #################################################################################################################### # Step 3: Encode the excel file to Base64 #################################################################################################################### try: with open(filename, 'rb') as binary_file: binary_file_data = binary_file.read() except IOError as ex: pass # Base64 encode the bytes base64_encoded_data = base64.b64encode(binary_file_data) # get the Base64 encoded data using human-readable characters. base64_message = base64_encoded_data.decode('utf-8') # delete the file from server try: os.remove(filename) except NotImplementedError as ex: pass return base64_message def generate_excel(report, name, reporting_start_datetime_local, reporting_end_datetime_local, period_type): wb = Workbook() ws = wb.active # Row height ws.row_dimensions[1].height = 118 for i in range(2, 6 + 1): ws.row_dimensions[i].height = 30 ws.row_dimensions[7].height = 60 ws.row_dimensions[3].height = 50 # Col width ws.column_dimensions['A'].width = 1.5 ws.column_dimensions['B'].width = 20.0 for i in range(ord('C'), ord('C')+16): ws.column_dimensions[chr(i)].width = 15.0 # Font name_font = Font(name='Constantia', size=15, bold=True) title_font = Font(name='宋体', size=15, bold=True) data_font = Font(name='Franklin Gothic Book', size=11) table_fill = PatternFill(fill_type='solid', fgColor='1F497D') f_border = Border(left=Side(border_style='medium', color='00000000'), right=Side(border_style='medium', color='00000000'), bottom=Side(border_style='medium', color='00000000'), top=Side(border_style='medium', color='00000000') ) b_border = Border( bottom=Side(border_style='medium', color='00000000'), ) b_c_alignment = Alignment(vertical='bottom', horizontal='center', text_rotation=0, wrap_text=True, shrink_to_fit=False, indent=0) c_c_alignment = Alignment(vertical='center', horizontal='center', text_rotation=0, wrap_text=True, shrink_to_fit=False, indent=0) b_r_alignment = Alignment(vertical='bottom', horizontal='right', text_rotation=0, wrap_text=True, shrink_to_fit=False, indent=0) c_r_alignment = Alignment(vertical='bottom', horizontal='center', text_rotation=0, wrap_text=True, shrink_to_fit=False, indent=0) # Img img = Image("excelexporters/myems.png") ws.add_image(img, 'B1') # Title ws['B3'].font = name_font ws['B3'].alignment = b_r_alignment ws['B3'] = 'Name:' ws['C3'].border = b_border ws['C3'].alignment = b_c_alignment ws['C3'].font = name_font ws['C3'] = name ws['D3'].font = name_font ws['D3'].alignment = b_r_alignment ws['D3'] = 'Period:' ws['E3'].border = b_border ws['E3'].alignment = b_c_alignment ws['E3'].font = name_font ws['E3'] = period_type ws['F3'].font = name_font ws['F3'].alignment = b_r_alignment ws['F3'] = 'Date:' ws['G3'].border = b_border ws['G3'].alignment = b_c_alignment ws['G3'].font = name_font ws['G3'] = reporting_start_datetime_local + "__" + reporting_end_datetime_local ws.merge_cells("G3:H3") if "reporting_period" not in report.keys() or \ "names" not in report['reporting_period'].keys() or len(report['reporting_period']['names']) == 0: filename = str(uuid.uuid4()) + '.xlsx' wb.save(filename) return filename ################################################ # First: 趋势 # 6: title # 7: table title # 8~ table_data ################################################ has_data_flag = True reporting_period_data = report['reporting_period'] if "names" not in reporting_period_data.keys() or \ reporting_period_data['names'] is None or \ len(reporting_period_data['names']) == 0: has_data_flag = False if "timestamps" not in reporting_period_data.keys() or \ reporting_period_data['timestamps'] is None or \ len(reporting_period_data['timestamps']) == 0: has_data_flag = False if "values" not in reporting_period_data.keys() or \ reporting_period_data['values'] is None or \ len(reporting_period_data['values']) == 0: has_data_flag = False ca = reporting_period_data['names'] ca_len = len(ca) temp_max_row = 0 times = reporting_period_data['timestamps'] if has_data_flag: ws['B6'].font = title_font ws['B6'] = name + ' 趋势' ws['B7'].fill = table_fill ws['B7'].border = f_border ws['B7'].alignment = c_c_alignment ws['B7'] = '时间' time = times[0] has_data = False max_row = 0 if len(time) > 0: has_data = True max_row = 8 + len(time) print("max_row", max_row) temp_max_row = max_row if has_data: for i in range(0, len(time)): col = 'B' row = str(8 + i) # col = chr(ord('B') + i) ws[col + row].font = title_font ws[col + row].alignment = c_c_alignment ws[col + row] = time[i] ws[col + row].border = f_border for i in range(0, ca_len): # 38 title col = chr(ord('C') + i) ws[col + '7'].fill = table_fill ws[col + '7'].font = title_font ws[col + '7'].alignment = c_c_alignment ws[col + '7'] = reporting_period_data['names'][i] ws[col + '7'].border = f_border # 39 data time = times[i] time_len = len(time) for j in range(0, time_len): row = str(8 + j) # col = chr(ord('B') + i) ws[col + row].font = title_font ws[col + row].alignment = c_c_alignment ws[col + row] = round(reporting_period_data['values'][i][j], 0) ws[col + row].border = f_border # bar # 39~: bar bar = BarChart() labels = Reference(ws, min_col=2, min_row=8, max_row=max_row + 1) bar_data = Reference(ws, min_col=3 + i, min_row=7, max_row=max_row + 1) # openpyxl bug bar.add_data(bar_data, titles_from_data=True) bar.set_categories(labels) bar.height = 5.25 # cm 1.05*5 1.05cm = 30 pt bar.width = 36 # pie.title = "Pies sold by category" bar.dLbls = DataLabelList() # bar.dLbls.showCatName = True # label show bar.dLbls.showVal = True # val show bar.dLbls.showPercent = True # percent show # s1 = CharacterProperties(sz=1800) # font size *100 chart_col = chr(ord('B')) chart_cell = chart_col + str(max_row + 2 + 10*i) print("chart_cell", chart_cell) ws.add_chart(bar, chart_cell) else: pass for i in range(8, temp_max_row + 1 + 1): ws.row_dimensions[i].height = 20 filename = str(uuid.uuid4()) + '.xlsx' wb.save(filename) return filename
37.337121
120
0.474891
7b0936ae1c4daf8405dfbf470a4810ef72de2247
10,710
py
Python
bpython/test/test_manual_readline.py
niloct/bpython
c94c8f833bbccc4124f2c836d1e248166a4facfe
[ "PSF-2.0" ]
null
null
null
bpython/test/test_manual_readline.py
niloct/bpython
c94c8f833bbccc4124f2c836d1e248166a4facfe
[ "PSF-2.0" ]
null
null
null
bpython/test/test_manual_readline.py
niloct/bpython
c94c8f833bbccc4124f2c836d1e248166a4facfe
[ "PSF-2.0" ]
null
null
null
from bpython.curtsiesfrontend.manual_readline import ( left_arrow, right_arrow, beginning_of_line, forward_word, back_word, end_of_line, delete, last_word_pos, backspace, delete_from_cursor_back, delete_from_cursor_forward, delete_rest_of_word, delete_word_to_cursor, transpose_character_before_cursor, UnconfiguredEdits, delete_word_from_cursor_back, ) from bpython.test import unittest class TestManualReadline(unittest.TestCase): def setUp(self): self._line = "this is my test string" def tearDown(self): pass def test_left_arrow_at_zero(self): pos = 0 expected = (pos, self._line) result = left_arrow(pos, self._line) self.assertEqual(expected, result) def test_left_arrow_at_non_zero(self): for i in range(1, len(self._line)): expected = (i - 1, self._line) result = left_arrow(i, self._line) self.assertEqual(expected, result) def test_right_arrow_at_end(self): pos = len(self._line) expected = (pos, self._line) result = right_arrow(pos, self._line) self.assertEqual(expected, result) def test_right_arrow_at_non_end(self): for i in range(len(self._line) - 1): expected = (i + 1, self._line) result = right_arrow(i, self._line) self.assertEqual(expected, result) def test_beginning_of_line(self): expected = (0, self._line) for i in range(len(self._line)): result = beginning_of_line(i, self._line) self.assertEqual(expected, result) def test_end_of_line(self): expected = (len(self._line), self._line) for i in range(len(self._line)): result = end_of_line(i, self._line) self.assertEqual(expected, result) def test_forward_word(self): line = "going from here to_here" start_pos = 11 next_word_pos = 15 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) start_pos = 15 next_word_pos = 23 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) def test_forward_word_tabs(self): line = "going from here to_here" start_pos = 11 next_word_pos = 15 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) start_pos = 15 next_word_pos = 28 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) def test_forward_word_end(self): line = "going from here to_here" start_pos = 16 next_word_pos = 23 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) start_pos = 22 next_word_pos = 23 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) start_pos = 23 next_word_pos = 23 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) def test_forward_word_empty(self): line = "" start_pos = 0 next_word_pos = 0 expected = (next_word_pos, line) result = forward_word(start_pos, line) self.assertEqual(expected, result) def test_back_word(self): line = "going to here from_here" start_pos = 14 prev_word_pos = 9 self.assertEqual(line[start_pos], "f") self.assertEqual(line[prev_word_pos], "h") expected = (prev_word_pos, line) result = back_word(start_pos, line) self.assertEqual(expected, result) def test_last_word_pos(self): line = "a word" expected = 2 result = last_word_pos(line) self.assertEqual(expected, result) def test_last_word_pos_single_word(self): line = "word" expected = 0 result = last_word_pos(line) self.assertEqual(expected, result) def test_delete(self): line = "deletion line" pos = 3 expected = (3, "deltion line") result = delete(pos, line) self.assertEqual(expected, result) def test_delete_from_cursor_back(self): line = "everything before this will be deleted" expected = (0, "this will be deleted") result = delete_from_cursor_back(line.find("this"), line) self.assertEqual(expected, result) def test_delete_from_cursor_forward(self): line = "everything after this will be deleted" pos = line.find("this") expected = (pos, "everything after ") result = delete_from_cursor_forward(line.find("this"), line)[:-1] self.assertEqual(expected, result) self.assertEqual(delete_from_cursor_forward(0, ""), (0, "", "")) def test_delete_rest_of_word(self): self.try_stages_kill( [ "z|s;df asdf d s;a;a", "z|;df asdf d s;a;a", "z| asdf d s;a;a", "z| d s;a;a", "z| s;a;a", "z|;a;a", "z|;a", "z|", "z|", ], delete_rest_of_word, ) def test_delete_word_to_cursor(self): self.try_stages_kill( [ " a;d sdf ;a;s;d; fjksald|a", " a;d sdf ;a;s;d; |a", " a;d sdf |a", " a;d |a", " |a", "|a", "|a", ], delete_word_to_cursor, ) def test_yank_prev_killed_text(self): pass def test_yank_prev_prev_killed_text(self): pass def try_stages(self, strings, func): if not all("|" in s for s in strings): raise ValueError("Need to use '|' to specify cursor") stages = [(s.index("|"), s.replace("|", "")) for s in strings] for (initial_pos, initial), (final_pos, final) in zip( stages[:-1], stages[1:] ): self.assertEqual(func(initial_pos, initial), (final_pos, final)) def try_stages_kill(self, strings, func): if not all("|" in s for s in strings): raise ValueError("Need to use '|' to specify cursor") stages = [(s.index("|"), s.replace("|", "")) for s in strings] for (initial_pos, initial), (final_pos, final) in zip( stages[:-1], stages[1:] ): self.assertEqual( func(initial_pos, initial)[:-1], (final_pos, final) ) def test_transpose_character_before_cursor(self): self.try_stages( [ "as|df asdf", "ads|f asdf", "adfs| asdf", "adf s|asdf", "adf as|sdf", ], transpose_character_before_cursor, ) def test_transpose_empty_line(self): self.assertEqual(transpose_character_before_cursor(0, ""), (0, "")) def test_transpose_first_character(self): self.assertEqual(transpose_character_before_cursor(0, "a"), (0, "a")) self.assertEqual(transpose_character_before_cursor(0, "as"), (0, "as")) def test_transpose_end_of_line(self): self.assertEqual(transpose_character_before_cursor(1, "a"), (1, "a")) self.assertEqual(transpose_character_before_cursor(2, "as"), (2, "sa")) def test_transpose_word_before_cursor(self): pass def test_backspace(self): self.assertEqual(backspace(2, "as"), (1, "a")) self.assertEqual(backspace(3, "as "), (2, "as")) def test_delete_word_from_cursor_back(self): self.try_stages_kill( [ "asd;fljk asd;lfjas;dlkfj asdlk jasdf;ljk|", "asd;fljk asd;lfjas;dlkfj asdlk jasdf;|", "asd;fljk asd;lfjas;dlkfj asdlk |", "asd;fljk asd;lfjas;dlkfj |", "asd;fljk asd;lfjas;|", "asd;fljk asd;|", "asd;fljk |", "asd;|", "|", "|", ], delete_word_from_cursor_back, ) self.try_stages_kill( [" (( asdf |", " (( |", "|"], delete_word_from_cursor_back ) class TestEdits(unittest.TestCase): def setUp(self): self.edits = UnconfiguredEdits() def test_seq(self): def f(cursor_offset, line): return ("hi", 2) self.edits.add("a", f) self.assertIn("a", self.edits) self.assertEqual(self.edits["a"], f) self.assertEqual( self.edits.call("a", cursor_offset=3, line="hello"), ("hi", 2) ) with self.assertRaises(KeyError): self.edits["b"] with self.assertRaises(KeyError): self.edits.call("b") def test_functions_with_bad_signatures(self): def f(something): return (1, 2) with self.assertRaises(TypeError): self.edits.add("a", f) def g(cursor_offset, line, something, something_else): return (1, 2) with self.assertRaises(TypeError): self.edits.add("a", g) def test_functions_with_bad_return_values(self): def f(cursor_offset, line): return ("hi",) with self.assertRaises(ValueError): self.edits.add("a", f) def g(cursor_offset, line): return ("hi", 1, 2, 3) with self.assertRaises(ValueError): self.edits.add("b", g) def test_config(self): def f(cursor_offset, line): return ("hi", 2) def g(cursor_offset, line): return ("hey", 3) self.edits.add_config_attr("att", f) self.assertNotIn("att", self.edits) class config: att = "c" key_dispatch = {"c": "c"} configured_edits = self.edits.mapping_with_config(config, key_dispatch) self.assertTrue(configured_edits.__contains__, "c") self.assertNotIn("c", self.edits) with self.assertRaises(NotImplementedError): configured_edits.add_config_attr("att2", g) with self.assertRaises(NotImplementedError): configured_edits.add("d", g) self.assertEqual( configured_edits.call("c", cursor_offset=5, line="asfd"), ("hi", 2) ) if __name__ == "__main__": unittest.main()
31.22449
79
0.569188
f96b727d1d66289c6fa5e33d7922c2b5679883f8
858
py
Python
pcg_gazebo/parsers/sdf/length.py
TForce1/pcg_gazebo
9ff88016b7b6903236484958ca7c6ed9f8ffb346
[ "ECL-2.0", "Apache-2.0" ]
40
2020-02-04T18:16:49.000Z
2022-02-22T11:36:34.000Z
pcg_gazebo/parsers/sdf/length.py
awesomebytes/pcg_gazebo
4f335dd460ef7c771f1df78b46a92fad4a62cedc
[ "ECL-2.0", "Apache-2.0" ]
75
2020-01-23T13:40:50.000Z
2022-02-09T07:26:01.000Z
pcg_gazebo/parsers/sdf/length.py
GimpelZhang/gazebo_world_generator
eb7215499d0ddc972d804c988fadab1969579b1b
[ "ECL-2.0", "Apache-2.0" ]
18
2020-09-10T06:35:41.000Z
2022-02-20T19:08:17.000Z
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..types import XMLScalar class Length(XMLScalar): _NAME = 'length' _TYPE = 'sdf' def __init__(self): super(Length, self).__init__(min_value=0)
34.32
74
0.744755
32239ede9768337363b6e385360720160d2c5f13
7,895
py
Python
app/api/spotify.py
janaSunrise/Spotify-Twitter-Banner
a3b5fc636ef4e79f3f96cc3dd5569eaff7d8a6c0
[ "MIT" ]
20
2021-12-21T17:46:33.000Z
2022-01-22T15:23:24.000Z
app/api/spotify.py
janaSunrise/Spotify-Twitter-Banner
a3b5fc636ef4e79f3f96cc3dd5569eaff7d8a6c0
[ "MIT" ]
null
null
null
app/api/spotify.py
janaSunrise/Spotify-Twitter-Banner
a3b5fc636ef4e79f3f96cc3dd5569eaff7d8a6c0
[ "MIT" ]
null
null
null
import base64 import json import sys import time import typing as t import requests from loguru import logger from .route import Route from ..config import Config from ..utils import generate_oauth_url PYTHON_VERSION = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" class Spotify: RETRY_ATTEMPTS = 5 USER_AGENT = f"Spotify Twitter Banner ({Config.GITHUB_REPO_URL}) - Python/{PYTHON_VERSION} Requests/{requests.__version__}" def __init__(self, client_id: str, client_secret: str) -> None: self.client_id = client_id self.client_secret = client_secret self.bearer_info = None self.refresh_token = self.load_refresh_token() # Get bearer info. def get_bearer_info(self) -> t.Dict[str, t.Any]: if not self.refresh_token: raise Exception("No refresh token provided.") token = self.generate_base64_token() headers = {"Authorization": f"Basic {token}"} data = { "grant_type": "refresh_token", "refresh_token": self.refresh_token } # Get the bearer info. response = requests.post("https://accounts.spotify.com/api/token", headers=headers, data=data) # Check if the request was successful. if response.status_code != 200: raise Exception("Failed to get bearer info.") # Return the bearer info. info = response.json() if "error" in info: raise Exception(f"Failed to get bearer info: {info['error']}") return info # Function to get the refresh token from code. def get_refresh_token(self, code: str) -> t.Dict[str, t.Any]: token = self.generate_base64_token() headers = { "Authorization": f"Basic {token}" } data = { "grant_type": "authorization_code", "code": code, "redirect_uri": Config.SPOTIFY_REDIRECT_URI, } response = requests.post("https://accounts.spotify.com/api/token", headers=headers, data=data) return response.json() # Function to handle loading refresh token. def load_refresh_token(self) -> str: # Load refresh token from environment variable. if Config.SPOTIFY_REFRESH_TOKEN: return Config.SPOTIFY_REFRESH_TOKEN # If not in environmental vars, load from JSON. with open(Config.SPOTIFY_REFRESH_TOKEN_PATH, "r") as file: token = json.load(file) # Check if refresh token exists, If not do the workflow. if "refresh_token" not in token: logger.info("No refresh token found. Please follow the steps to get the refresh token.") # Generate OAuth URL. url = generate_oauth_url(self.client_id, Config.SPOTIFY_REDIRECT_URI, Config.SCOPES) print(f"Please visit the following URL to authorize the application: {url}") # Wait for user to input code. code = input("Enter the value of code from URL query parameter: ") if not code: raise Exception("No code provided.") # Get refresh token. token = self.get_refresh_token(code) # Calculate expired time expires_in = int(token["expires_in"]) expires_at = time.time() + expires_in token["expires_at"] = expires_at # Save refresh token. with open(Config.SPOTIFY_REFRESH_TOKEN_PATH, "w") as file: json.dump(token, file) # Return refresh token. return token["refresh_token"] def fetch( self, route: Route, *, headers: t.Optional[t.Dict[str, t.Any]] = None, data: t.Optional[t.Any] = None ) -> t.Optional[t.Dict[str, t.Any]]: if not headers: headers = {} # Check if Authorization exists. if "Authorization" not in headers: # Check if bearer info exists. if self.bearer_info is None: self.bearer_info = self.get_bearer_info() # Set the Authorization header. headers["Authorization"] = f"Bearer {self.bearer_info['access_token']}" headers = { "User-Agent": self.USER_AGENT, "Content-Type": "application/json", **headers } # Perform request with retries. for _ in range(self.RETRY_ATTEMPTS): response = requests.request(route.method, route.url, headers=headers, json=data) logger.debug(f"[{route.method}] ({response.status_code}) {route.url}") # Check if the request was successful. if response.status_code == 200: return response.json() # Check if the request was a 429. if response.status_code == 429: # Get Retry-After header, and wait for it to clear. retry_after = int(response.headers["Retry-After"]) # Wait for the Retry-After header to clear. logger.info(f"Ratelimited. Waiting for {retry_after} seconds.") time.sleep(retry_after) continue # Check if the request was a 401. if response.status_code == 401: logger.info("Bearer info expired. Refreshing.") self.bearer_info = self.get_bearer_info() continue # Ignore anything 5xx if response.status_code >= 500: continue # Check if the request was a 404. if response.status_code == 404: logger.warning(f"Failed to fetch: {route.url}. Route not found.") return None # Check if the request was a 403. if response.status_code == 403: logger.warning(f"Failed to fetch: {route.url}. Forbidden route.") return None # Utility methods. def generate_base64_token(self) -> str: return base64.b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode("utf-8") @staticmethod def _form_url(url: str, data: t.Dict[str, t.Any]) -> str: url += "?" + "&".join([f"{dict_key}={dict_value}" for dict_key, dict_value in data.items()]) return url # Main endpoints. def currently_playing(self) -> t.Optional[t.Dict[str, t.Any]]: """Get the currently playing song.""" route = Route("GET", "/me/player/currently-playing") return self.fetch(route) def is_playing(self) -> bool: """Check if the user is currently listening to music.""" currently_playing = self.currently_playing() if currently_playing: return currently_playing["is_playing"] return False def recently_played( self, limit: int = 20, before: t.Optional[str] = None, after: t.Optional[str] = None ) -> t.Dict[str, t.Any]: """Get recently played tracks.""" data: t.Dict[str, t.Any] = {"limit": limit} if before: data["before"] = before if after: data["after"] = after route = Route( "GET", self._form_url("/me/player/recently-played", data) ) return t.cast(dict, self.fetch(route)) def top_tracks( self, limit: int = 20, offset: int = 0, time_range: t.Optional[t.Literal["short_term", "medium_term", "long_term"]] = None ) -> t.Optional[t.Dict[str, t.Any]]: """Get top tracks of the user.""" data: t.Dict[str, t.Any] = { "limit": limit, "offset": offset } if time_range: data["time_range"] = time_range route = Route( "GET", self._form_url("/me/top/tracks", data) ) return self.fetch(route)
31.834677
127
0.581127
92c58e696e9225edce9fbbe8a03f6d80720e9823
297
py
Python
opwen_email_server/constants/sendgrid.py
tezzytezzy/opwen-cloudserver
c3ebfe93d778cd789ab3df25c4580eedc0ae9b4a
[ "Apache-2.0" ]
null
null
null
opwen_email_server/constants/sendgrid.py
tezzytezzy/opwen-cloudserver
c3ebfe93d778cd789ab3df25c4580eedc0ae9b4a
[ "Apache-2.0" ]
null
null
null
opwen_email_server/constants/sendgrid.py
tezzytezzy/opwen-cloudserver
c3ebfe93d778cd789ab3df25c4580eedc0ae9b4a
[ "Apache-2.0" ]
null
null
null
from typing_extensions import Final # noqa: F401 MAILBOX_URL = 'https://api.sendgrid.com/v3/user/webhooks/parse/settings' # type: Final # noqa: E501 # yapf: disable INBOX_URL = 'https://mailserver.lokole.ca/api/email/sendgrid/{}' # type: Final MX_RECORD = 'mx.sendgrid.net' # type: Final
37.125
118
0.717172
7230d4a4fbbe572197cb4f2e24330be5d786cbdc
1,511
py
Python
utils/data_labeler.py
Taher-Dohadwala/better-job-finder
607fec96c57a49feb8179db0bcae1f5969bcb0cd
[ "MIT" ]
null
null
null
utils/data_labeler.py
Taher-Dohadwala/better-job-finder
607fec96c57a49feb8179db0bcae1f5969bcb0cd
[ "MIT" ]
null
null
null
utils/data_labeler.py
Taher-Dohadwala/better-job-finder
607fec96c57a49feb8179db0bcae1f5969bcb0cd
[ "MIT" ]
null
null
null
""" This script is used to add labels to data for initial training """ """ Data format for binary classifier { "text": "string", "label": [ "neg", "pos" ] } """ import pandas as pd import numpy as np from curtsies.fmtfuncs import red, bold, green, on_blue, yellow, blue PATH = "../data/raw/combined_data_withlabel.csv" # helper function to reset labels def quick_reset(): df = pd.read_csv("../data/raw/combined_data.csv") df["Label"] = np.nan df.to_csv("../data/raw/combined_data_withlabel.csv") # load raw data in df = pd.read_csv(PATH) # finds place where previous labeling session ended def find_continue_point(df): t = df.index[df["Label"] == 999] # First time labeling check if not t.any(): start = 0 else: start = int(t.tolist()[0]) return start start = find_continue_point(df) print(f"Starting at {start}") jobs_to_label = df["Job Description"] current = start try: # display job and ask for label for idx,job in enumerate(jobs_to_label[start:]): current = start + idx print(yellow(f"Example number: {current}")) print(job) print(red("-"*100)) label = int(input("Label: ")) df.iloc[current,df.columns.get_loc("Label")] = label # ctrl-c will end labeling session and save progress except KeyboardInterrupt: print(blue(f"ENDING AT: {current}")) print(green("SAVING LABELING RESULTS")) df.iloc[current,df.columns.get_loc("Label")] = 999 df.to_csv(PATH)
23.609375
69
0.649239
388c58802ad81ee77d68d276b7d797e33175eeea
68
py
Python
macaroni/types.py
rudineirk/py-macaroni
7b350478754fe9484d28535ea55e641b87a12b81
[ "MIT" ]
null
null
null
macaroni/types.py
rudineirk/py-macaroni
7b350478754fe9484d28535ea55e641b87a12b81
[ "MIT" ]
null
null
null
macaroni/types.py
rudineirk/py-macaroni
7b350478754fe9484d28535ea55e641b87a12b81
[ "MIT" ]
null
null
null
class Error: def __init__(self, data): self.data = data
17
29
0.602941
09f7965bac524cf212d217592198280d0187e7e4
2,399
py
Python
docsrc/conf.py
synamedia-jenni/Jenni
44a25453d3f7dc08ca22f75b4d817dfa5c141904
[ "Apache-2.0" ]
2
2021-05-11T15:47:52.000Z
2021-06-24T21:55:04.000Z
docsrc/conf.py
synamedia-jenni/Jenni
44a25453d3f7dc08ca22f75b4d817dfa5c141904
[ "Apache-2.0" ]
2
2021-05-19T07:24:41.000Z
2021-06-24T21:54:19.000Z
docsrc/conf.py
synamedia-jenni/Jenni
44a25453d3f7dc08ca22f75b4d817dfa5c141904
[ "Apache-2.0" ]
1
2021-05-14T10:37:53.000Z
2021-05-14T10:37:53.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath(".")) sys.path.insert(0, os.path.dirname(os.path.abspath("."))) # -- Project information ----------------------------------------------------- project = "Jenni" copyright = "2021, Wouter Batelaan (Synamedia)" author = "Wouter Batelaan (Synamedia)" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", # 'sphinx.ext.coverage', "sphinx.ext.doctest", "sphinx.ext.extlinks", "sphinx.ext.ifconfig", "sphinx.ext.napoleon", "sphinx.ext.todo", "sphinx.ext.viewcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "jenni/tests"] autodoc_default_options = { # 'member-order': 'bysource', "special-members": "__init__", "undoc-members": True, "exclude-members": "__weakref__", } smartquotes = False # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # nitpicky = True
32.418919
79
0.659441
41f6bb205cb87ea9fe6745fd8e031895ea83cec3
9,252
py
Python
pandaharvester/harvesterfifo/sqlite_fifo.py
nikmagini/panda-harvester
707955e7717bc6a15e722e857668b496d9563b85
[ "Apache-2.0" ]
2
2017-04-13T10:39:53.000Z
2018-10-13T22:00:47.000Z
pandaharvester/harvesterfifo/sqlite_fifo.py
nikmagini/panda-harvester
707955e7717bc6a15e722e857668b496d9563b85
[ "Apache-2.0" ]
null
null
null
pandaharvester/harvesterfifo/sqlite_fifo.py
nikmagini/panda-harvester
707955e7717bc6a15e722e857668b496d9563b85
[ "Apache-2.0" ]
null
null
null
import os import time import re import sqlite3 try: from threading import get_ident except ImportError: from thread import get_ident from pandaharvester.harvestercore.plugin_base import PluginBase from pandaharvester.harvesterconfig import harvester_config try: memoryviewOrBuffer = buffer except NameError: memoryviewOrBuffer = memoryview class SqliteFifo(PluginBase): # template of SQL commands _create_sql = ( 'CREATE TABLE IF NOT EXISTS queue_table ' '(' ' id INTEGER PRIMARY KEY,' ' item BLOB,' ' score REAL,' ' temporary INTEGER DEFAULT 0 ' ')' ) _create_index_sql = ( 'CREATE INDEX IF NOT EXISTS score_index ON queue_table ' '(score)' ) _count_sql = 'SELECT COUNT(id) FROM queue_table WHERE temporary = 0' _iterate_sql = 'SELECT id, item, score FROM queue_table' _write_lock_sql = 'BEGIN IMMEDIATE' _exclusive_lock_sql = 'BEGIN EXCLUSIVE' _push_sql = 'INSERT INTO queue_table (item,score) VALUES (?,?)' _push_by_id_sql = 'INSERT INTO queue_table (id,item,score) VALUES (?,?,?)' _lpop_get_sql_template = ( 'SELECT {columns} FROM queue_table ' 'WHERE temporary = 0 ' 'ORDER BY score LIMIT 1' ) _rpop_get_sql_template = ( 'SELECT {columns} FROM queue_table ' 'WHERE temporary = 0 ' 'ORDER BY score DESC LIMIT 1' ) _get_by_id_sql_template = ( 'SELECT {columns} FROM queue_table ' 'WHERE id = ? ' 'AND temporary = {temp}' ) _pop_del_sql = 'DELETE FROM queue_table WHERE id = ?' _move_to_temp_sql = 'UPDATE queue_table SET temporary = 1 WHERE id = ?' _del_sql_template = 'DELETE FROM queue_table WHERE id in ({0})' _clear_delete_table_sql = 'DELETE FROM queue_table' _clear_drop_table_sql = 'DROP TABLE IF EXISTS queue_table' _clear_zero_id_sql = 'DELETE FROM sqlite_sequence WHERE name = "queue_table"' _peek_sql = ( 'SELECT id, item, score FROM queue_table ' 'WHERE temporary = 0 ' 'ORDER BY score LIMIT 1' ) _restore_sql = 'UPDATE queue_table SET temporary = 0 WHERE temporary != 0' _restore_sql_template = ( 'UPDATE queue_table SET temporary = 0 ' 'WHERE temporary != 0 AND id in ({0})' ) # constructor def __init__(self, **kwarg): PluginBase.__init__(self, **kwarg) if hasattr(self, 'database_filename'): _db_filename = self.database_filename else: _db_filename = harvester_config.fifo.database_filename _db_filename = re.sub('\$\(TITLE\)', self.titleName, _db_filename) _db_filename = re.sub('\$\(AGENT\)', self.titleName, _db_filename) self.db_path = os.path.abspath(_db_filename) self._connection_cache = {} with self._get_conn() as conn: conn.execute(self._exclusive_lock_sql) conn.execute(self._create_sql) conn.execute(self._create_index_sql) conn.commit() def __len__(self): with self._get_conn() as conn: size = next(conn.execute(self._count_sql))[0] return size def __iter__(self): with self._get_conn() as conn: for id, obj_buf, score in conn.execute(self._iterate_sql): yield bytes(obj_buf) def _get_conn(self): id = get_ident() if id not in self._connection_cache: self._connection_cache[id] = sqlite3.Connection(self.db_path, timeout=60) return self._connection_cache[id] def _pop(self, get_sql, timeout=None, protective=False): keep_polling = True wait = 0.1 max_wait = 2 tries = 0 last_attempt_timestamp = time.time() with self._get_conn() as conn: id = None while keep_polling: conn.execute(self._write_lock_sql) cursor = conn.execute(get_sql) try: id, obj_buf, score = next(cursor) keep_polling = False except StopIteration: # unlock the database conn.commit() now_timestamp = time.time() if timeout is None or (now_timestamp - last_attempt_timestamp) >= timeout: keep_polling = False continue tries += 1 time.sleep(wait) wait = min(max_wait, tries/10.0 + wait) if id is not None: if protective: conn.execute(self._move_to_temp_sql, (id,)) else: conn.execute(self._pop_del_sql, (id,)) conn.commit() return (id, bytes(obj_buf), score) return None def _peek(self, peek_sql_template, skip_item=False, id=None, temporary=False): columns = 'id, item, score' temp = 0 if skip_item: columns = 'id, score' if temporary: temp = 1 peek_sql = peek_sql_template.format(columns=columns, temp=temp) with self._get_conn() as conn: if id is not None: cursor = conn.execute(peek_sql, (id,)) else: cursor = conn.execute(peek_sql) try: if skip_item: id, score = next(cursor) return id, None, score else: id, obj_buf, score = next(cursor) return id, bytes(obj_buf), score except StopIteration: return None # number of objects in queue def size(self): return len(self) # enqueue with priority score def put(self, obj, score): retVal = False obj_buf = memoryviewOrBuffer(obj) with self._get_conn() as conn: conn.execute(self._write_lock_sql) cursor = conn.execute(self._push_sql, (obj_buf, score)) n_row = cursor.rowcount if n_row == 1: retVal = True return retVal # enqueue by id def putbyid(self, id, obj, score): retVal = False obj_buf = memoryviewOrBuffer(obj) with self._get_conn() as conn: cursor = conn.execute(self._push_by_id_sql, (id, obj_buf, score)) n_row = cursor.rowcount if n_row == 1: retVal = True return retVal # dequeue the first object def get(self, timeout=None, protective=False): sql_str = self._lpop_get_sql_template.format(columns='id, item, score') return self._pop(get_sql=sql_str, timeout=timeout, protective=protective) # dequeue the last object def getlast(self, timeout=None, protective=False): sql_str = self._rpop_get_sql_template.format(columns='id, item, score') return self._pop(get_sql=sql_str, timeout=timeout, protective=protective) # get tuple of (id, item, score) of the first object without dequeuing it def peek(self, skip_item=False): return self._peek(self._lpop_get_sql_template, skip_item=skip_item) # get tuple of (id, item, score) of the last object without dequeuing it def peeklast(self, skip_item=False): return self._peek(self._rpop_get_sql_template, skip_item=skip_item) # get tuple of (id, item, score) of object by id without dequeuing it def peekbyid(self, id, temporary=False, skip_item=False): return self._peek(self._get_by_id_sql_template, skip_item=skip_item, id=id, temporary=temporary) # drop all objects in queue and index and reset primary key auto_increment def clear(self): with self._get_conn() as conn: conn.execute(self._exclusive_lock_sql) conn.execute(self._clear_drop_table_sql) try: conn.execute(self._clear_zero_id_sql) except sqlite3.OperationalError: pass conn.commit() self.__init__() # delete objects by list of id def delete(self, ids): if isinstance(ids, (list, tuple)): placeholders_str = ','.join('?' * len(ids)) with self._get_conn() as conn: conn.execute(self._exclusive_lock_sql) cursor = conn.execute(self._del_sql_template.format(placeholders_str), ids) n_row = cursor.rowcount conn.commit() return n_row else: raise TypeError('ids should be list or tuple') # Move objects in temporary space to the queue def restore(self, ids): with self._get_conn() as conn: conn.execute(self._exclusive_lock_sql) if ids is None: conn.execute(self._restore_sql) elif isinstance(ids, (list, tuple)): placeholders_str = ','.join('?' * len(ids)) conn.execute(self._restore_sql_template.format(placeholders_str), ids) else: raise TypeError('ids should be list or tuple or None')
37.156627
104
0.585927
fee12e55ced97bf46acdfb28dfda0dfb11a83ca4
680
py
Python
custom_model_runner/datarobot_drum/drum/exceptions.py
amperie/user-models
5236c50d0f20a7bac81acc5d1936a3502de2f5f3
[ "Apache-2.0" ]
null
null
null
custom_model_runner/datarobot_drum/drum/exceptions.py
amperie/user-models
5236c50d0f20a7bac81acc5d1936a3502de2f5f3
[ "Apache-2.0" ]
9
2021-11-10T20:16:41.000Z
2022-03-12T00:59:05.000Z
custom_model_runner/datarobot_drum/drum/exceptions.py
amperie/user-models
5236c50d0f20a7bac81acc5d1936a3502de2f5f3
[ "Apache-2.0" ]
1
2021-06-17T22:05:33.000Z
2021-06-17T22:05:33.000Z
class DrumException(Exception): """Base drum exception""" pass class DrumCommonException(DrumException): """Raised in case of common errors in drum""" pass class DrumPerfTestTimeout(DrumException): """Raised when the perf-test case takes too long""" pass class DrumPerfTestOOM(DrumException): """ Raised when the container running drum during perf test is OOM """ pass class DrumPredException(DrumException): """ Raised when prediction consistency check fails""" pass class DrumSchemaValidationException(DrumException): """ Raised when the supplied schema in model_metadata does not match actual input or output data."""
20.606061
104
0.725
47cc0d9b9ce18ced2eefc84ee73e64bb2b0a855d
8,220
py
Python
picassos_palette/picassos_palette.py
Young-Picasso/AlgorithmicTrading
7a59b5980b4287394014f6630dab7aa3490e0a01
[ "MIT" ]
null
null
null
picassos_palette/picassos_palette.py
Young-Picasso/AlgorithmicTrading
7a59b5980b4287394014f6630dab7aa3490e0a01
[ "MIT" ]
null
null
null
picassos_palette/picassos_palette.py
Young-Picasso/AlgorithmicTrading
7a59b5980b4287394014f6630dab7aa3490e0a01
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @author: Wilhem Kornhauser """ class BaseBacktest: """Class for basic event based backtesting of trading strategies. Attributes ========== symbol: str financial instrument to work with start: str start date for data selection end: str end date for data selection amount: int, float initial investment amount for strategy ftc: float fixed transaction cost per trade ptc: float proportional transaction cost per trade Methods ======= get_data: retrieves and prepares data plot_data: plots the adjusted close values for the financial instrument print_balance: prints out current account cash balance print_net_wealth: prints out current account wealth (cash balance + current asset value) place_buy_order: places market buy order place_sell_order: places market sell order close_out: calculates the account net wealth at end of backtesting period. Does not close out open positions in calculation """ def __init__(self, symbol, start, end, amount, ftc=0.0, ptc=0.0, verbose=True): if type(symbol) is not str: raise ValueError('symbol must be str') if type(start) is not str: raise ValueError('start must be str') if type(end) is not str: raise ValueError('end must be str') if type(amount) is not (int or float): raise ValueError('amount must be int or float') if type(ftc) is not float: raise ValueError('ftc must be float') if type(ptc) is not float: raise ValueError('ptc must be float') self.symbol = symbol # Set financial instrument self.start = start # Set start date self.end = end # Set end date self.initial_amount = amount # Store initial amount in a psuedo-private attribute self.amount = amount # Set starting cash balance value self.ftc = ftc # Define fixed transaction costs per trade (ie 1 USD per transaction) self.ptc = ptc # Defines proportional transaction costs per trade (ie 1% of transaction per transaction) self.units = 0 # Units of the instrument (ie number of shares) in the portfolio initially self.position = 0 # Sets initial position to market neutral self.trade = 0 # Sets initial number of trades to 0 self.verbose = verbose # Set to True for full output (True by default) self.get_data() # Call get_data() method def __repr__(self): return f'BaseBacktest(symbol={self.symbol}, start={self.start}, end={self.end}, amount={self.amount}, ftc={self.ftc}, ptc={self.ptc})' def get_data(self): """ Retrieves and prepares data """ raw = pd.read_csv('http://hilpisch.com/pyalgo_eikon_eod_data.csv', index_col=0, parse_dates=True).dropna() raw = pd.DataFrame(raw[self.symbol]) raw.loc[self.start:self.end] raw.rename(columns={self.symbol: 'price'}, inplace=True) raw['return'] = np.log(raw / raw.shift(1)) self.data = raw.dropna() def plot_data(self, cols=None): """ Plots the closing prices for financial instrument """ if cols is None: cols = ['Price'] self.data['price'].plot(figsize=(10, 6), title=self.symbol) def get_date_price(self, bar): """ Returns the date and price for a bar """ date = str(self.data.index[bar])[:10] price = self.data.price.iloc[bar] return date, price def print_balance(self, bar): """ Prints out current account cash balance """ date, price = self.get_date_price(bar) print(f'{date} | current balance {self.amount:.2f}') def print_net_wealth(self, bar): """ Prints out current account total wealth (cash balance + positions) """ date, price = self.get_date_price(bar) net_wealth = self.units * price + self.amount print(f'{date} | current net wealth {net_wealth:.2f}') def place_buy_order(self, bar, units=None, amount=None): """ Simulates placing a market buy order """ date, price = self.get_date_price(bar) if units is None: units = int(amount / price) # Note that it is assumed the number of units is always None while the amount is amount of money to be spent buying units. self.amount -= (units * price) * (1 + self.ptc) + self.ftc # Note there is no liquidity checking performed. self.units+= units self.trades += 1 if self.verbose: print(f'{date} | buying {units} units at {price:.2f}') self.print_balance(bar) self.print_net_wealth(bar) def place_sell_order(self, bar, units=None, amount=None): """ Simulates placing a market sell order """ date, price = self.get_date_price(bar) if units is None: units = int(amount / price) # As with place_buy_order, note that units is None and we are selling a set amount of wealth self.amount += (units * price) * (1 - self.ptc) - self.ftc self.units -= units self.trades += 1 if self.verbose: print(f'{date} | selling {units} units at {price:.2f}') self.print_balance(bar) self.print_net_wealth(bar) def close_out(self, bar): """ Calculates accounts net wealth at end of backtest. Does this by summing value of held assets and held cash. Does not account for transaction fees required to close open positions. """ date, price = self.get_date_price(bar) self.amount += self.units * price self.units = 0 if self.verbose: print(f'{date} | inventory {self.units} units at {price:.2f}') print('=' * 55) print(f'Final balance [$] {self.amount:.2f}') performance = ((self.amount - self.initial_amount) / self.initial_amount * 100) print(f'Net Performance [%] {performance:.2f}') print(f'Trades executed [#] {self.trades:.2f}') print('=' * 55) def run_mean_reversion_strategy(self, SMA, threshold): """ Runs a backtest on a mean reversion-based strategy Parameters ========== SMA: int simple moving average in days threshold: float absolute value for deviation-based signal relative to SMA """ msg = f'\n\nRunning mean reversion strategy | ' msg += f'SMA={SMA} & threshold={threshold}' msg += f'\nfixed costs {self.ftc} | proportional costs {self.ptc}' print(msg) print('=' * 55) # Clear data from previous runs self.position = 0 self.trades = 0 self.amount = self.initial_amount self.data['SMA'] = self.data['price'].rolling(SMA).mean() for bar in range(SMA, len(self.data)): if self.position == 0: # Checks if market position is neutral if (self.data['price'].iloc[bar] < self.data['SMA'].iloc[bar] - threshold): # If market position is neutral, and this gives a buy indicator, buy. self.place_buy_order(bar, amount=self.amount) self.position = 1 # Sets market position to long elif self.position == 1: # Checks if market position is long if self.data['price'].iloc[bar] >= self.data['SMA'].iloc[bar]: # If market position is long, and this gives a sell signal, sell. self.place_sell_order(bar, units=self.units) self.position = 0 # Set market position to neutral self.close_out(bar)
41.1
163
0.576277
93c626cbd7802e1784ff464373615be2aaa36386
2,328
py
Python
tests/test_crack_main.py
nialov/ALSA
65204bb43bba03daf600de9ed4825c4602ea73af
[ "MIT" ]
null
null
null
tests/test_crack_main.py
nialov/ALSA
65204bb43bba03daf600de9ed4825c4602ea73af
[ "MIT" ]
null
null
null
tests/test_crack_main.py
nialov/ALSA
65204bb43bba03daf600de9ed4825c4602ea73af
[ "MIT" ]
null
null
null
""" Tests for crack_main.py. """ import os from pathlib import Path import geopandas as gpd import pytest from shapely.geometry import LineString, MultiLineString import tests from alsa import crack_cls, crack_main @pytest.mark.skipif( os.environ.get("CI") is not None, reason="Tensorflow crashes on Github Actions." ) def test_crack_main(tmp_path): """ Test crack_main. """ traces_path = tmp_path / "test_crack_main_traces.shp" if not tests.KL5_TEST_WEIGHTS.exists(): pytest.xfail("Skipping test_crack_main as weights are missing.") combined_nwork, orig_dims, geo_data, result_gdf = crack_main.crack_main( work_dir=tmp_path, img_path=tests.KL5_TEST_IMAGE, area_file_path=list(tests.KL5_TEST_AREA_DIR.glob("*.shp"))[0], unet_weights_path=tests.KL5_TEST_WEIGHTS, predicted_output_path=traces_path, ) assert isinstance(combined_nwork, crack_cls.CrackNetWork) assert isinstance(geo_data, gpd.GeoDataFrame) assert traces_path.exists() assert isinstance(result_gdf, gpd.GeoDataFrame) assert len(orig_dims) == 2 gdf = gpd.read_file(traces_path) assert gdf.shape[0] > 0 assert all( isinstance(geom, (LineString, MultiLineString)) for geom in gdf.geometry.values ) @pytest.mark.parametrize( "override_ridge_config_path", tests.test_resolve_ridge_config_overrides_params() ) def test_resolve_ridge_config_overrides(override_ridge_config_path, tmp_path): """ Test resolve_ridge_config_overrides. """ result = crack_main.resolve_ridge_config_overrides( override_ridge_config_path=override_ridge_config_path, work_dir=tmp_path, ) assert isinstance(result, dict) if override_ridge_config_path is None: assert len(result) == 0 else: assert len(result) > 0 def test_resolve_ridge_config_overrides_default(tmp_path: Path): """ Test resolve_ridge_config_overrides. """ override_ridge_config_path = tmp_path / tests.SAMPLE_RIDGE_CONFIG_PATH.name override_ridge_config_path.write_text(tests.SAMPLE_RIDGE_CONFIG_PATH.read_text()) result = crack_main.resolve_ridge_config_overrides( override_ridge_config_path=None, work_dir=tmp_path, ) assert isinstance(result, dict) assert len(result) > 0
29.468354
87
0.734107
3d9520231e0a2e37edf2d0b0b14f2604e5fc68cd
1,874
py
Python
aliyun-python-sdk-cloudauth/aliyunsdkcloudauth/request/v20190307/UpdateAppPackageRequest.py
leafcoder/aliyun-openapi-python-sdk
26b441ab37a5cda804de475fd5284bab699443f1
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-cloudauth/aliyunsdkcloudauth/request/v20190307/UpdateAppPackageRequest.py
leafcoder/aliyun-openapi-python-sdk
26b441ab37a5cda804de475fd5284bab699443f1
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-cloudauth/aliyunsdkcloudauth/request/v20190307/UpdateAppPackageRequest.py
leafcoder/aliyun-openapi-python-sdk
26b441ab37a5cda804de475fd5284bab699443f1
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkcloudauth.endpoint import endpoint_data class UpdateAppPackageRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cloudauth', '2019-03-07', 'UpdateAppPackage') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Debug(self): return self.get_query_params().get('Debug') def set_Debug(self,Debug): self.add_query_param('Debug',Debug) def get_Platform(self): return self.get_query_params().get('Platform') def set_Platform(self,Platform): self.add_query_param('Platform',Platform) def get_PackageUrl(self): return self.get_query_params().get('PackageUrl') def set_PackageUrl(self,PackageUrl): self.add_query_param('PackageUrl',PackageUrl) def get_Id(self): return self.get_query_params().get('Id') def set_Id(self,Id): self.add_query_param('Id',Id)
33.464286
75
0.756137
3fc8c98b5517b0e58839c92a594c29338887e804
7,460
py
Python
Python_Files/hydrolibs/data_download.py
montimaj/HydroSAR
c76022a914bd095ecae41d56a2a1dff5c1c1a970
[ "MIT" ]
1
2022-03-01T08:46:46.000Z
2022-03-01T08:46:46.000Z
Python_Files/hydrolibs/data_download.py
xyt556/HydroSAR
2142c300e4cf48065626832fdeb9c4aa472627dc
[ "MIT" ]
null
null
null
Python_Files/hydrolibs/data_download.py
xyt556/HydroSAR
2142c300e4cf48065626832fdeb9c4aa472627dc
[ "MIT" ]
null
null
null
# Author: Sayantan Majumdar # Email: smxnv@mst.edu import ee import requests import zipfile import os import xmltodict import geopandas as gpd from glob import glob from Python_Files.hydrolibs.sysops import copy_file def download_gee_data(year_list, start_month, end_month, aoi_shp_file, outdir): """ Download MOD16 and PRISM data. MOD16 has to be divided by 10 (line 38) as its original scale is 0.1 mm/8 days. :param year_list: List of years in %Y format :param start_month: Start month in %m format :param end_month: End month in %m format :param aoi_shp_file: Area of interest shapefile (must be in WGS84) :param outdir: Download directory :return: None """ ee.Initialize() mod16_collection = ee.ImageCollection("MODIS/006/MOD16A2") prism_collection = ee.ImageCollection("OREGONSTATE/PRISM/AN81m") aoi_shp = gpd.read_file(aoi_shp_file) minx, miny, maxx, maxy = aoi_shp.geometry.total_bounds gee_aoi = ee.Geometry.Rectangle([minx, miny, maxx, maxy]) for year in year_list: start_date = ee.Date.fromYMD(year, start_month, 1) if end_month == 12: end_date = ee.Date.fromYMD(year + 1, 1, 1) else: end_date = ee.Date.fromYMD(year, end_month + 1, 1) if end_month <= start_month: start_date = ee.Date.fromYMD(year - 1, start_month, 1) mod16_total = mod16_collection.select('ET').filterDate(start_date, end_date).sum().divide(10).toDouble() prism_total = prism_collection.select('ppt').filterDate(start_date, end_date).sum().toDouble() mod16_url = mod16_total.getDownloadUrl({ 'scale': 1000, 'crs': 'EPSG:4326', 'region': gee_aoi }) prism_url = prism_total.getDownloadUrl({ 'scale': 1000, 'crs': 'EPSG:4326', 'region': gee_aoi }) gee_vars = ['ET_', 'P_'] gee_links = [mod16_url, prism_url] for gee_var, gee_url in zip(gee_vars, gee_links): local_file_name = outdir + gee_var + str(year) + '.zip' print('Dowloading', local_file_name, '...') r = requests.get(gee_url, allow_redirects=True) open(local_file_name, 'wb').write(r.content) def download_ssebop_data(sse_link, year_list, start_month, end_month, outdir): """ Download SSEBop Data :param sse_link: Main SSEBop link without file name :param year_list: List of years :param start_month: Start month in %m format :param end_month: End month in %m format :param outdir: Download directory :return: None """ month_flag = False month_list = [] actual_start_year = year_list[0] if end_month <= start_month: year_list = [actual_start_year - 1] + list(year_list) month_flag = True else: month_list = range(start_month, end_month + 1) for year in year_list: print('Downloading SSEBop for', year, '...') if month_flag: month_list = list(range(start_month, 13)) if actual_start_year <= year < year_list[-1]: month_list = list(range(1, end_month + 1)) + month_list elif year == year_list[-1]: month_list = list(range(1, end_month + 1)) for month in month_list: month_str = str(month) if 1 <= month <= 9: month_str = '0' + month_str url = sse_link + 'm' + str(year) + month_str + '.zip' local_file_name = outdir + 'SSEBop_' + str(year) + month_str + '.zip' r = requests.get(url, allow_redirects=True) open(local_file_name, 'wb').write(r.content) def download_cropland_data(aoi_shp_file, output_dir, year_list=(), cdl_year=None): """ Download USDA-NASS cropland data for the specified year range. For years before 2008, CDL 2008 will be replicated. :param aoi_shp_file: Area of interest shapefile :param output_dir: Output directory :param year_list: List of years in %Y format :param cdl_year: Set CDL year for using a single year for the entire model. If set to None, all available CDL data for the years in year_list will be downloaded (Note: for years before 2008, CDL 2008 will be replicated if cdl_year is None). :return: None """ nass_proj_wkt = 'PROJCS["NAD_1983_Albers",' \ 'GEOGCS["NAD83",' \ 'DATUM["North_American_Datum_1983",' \ 'SPHEROID["GRS 1980",6378137,298.257222101,' \ 'AUTHORITY["EPSG","7019"]],' \ 'TOWGS84[0,0,0,0,0,0,0],' \ 'AUTHORITY["EPSG","6269"]],' \ 'PRIMEM["Greenwich",0,' \ 'AUTHORITY["EPSG","8901"]],' \ 'UNIT["degree",0.0174532925199433,' \ 'AUTHORITY["EPSG","9108"]],' \ 'AUTHORITY["EPSG","4269"]],' \ 'PROJECTION["Albers_Conic_Equal_Area"],' \ 'PARAMETER["standard_parallel_1",29.5],' \ 'PARAMETER["standard_parallel_2",45.5],' \ 'PARAMETER["latitude_of_center",23],' \ 'PARAMETER["longitude_of_center",-96],' \ 'PARAMETER["false_easting",0],' \ 'PARAMETER["false_northing",0],' \ 'UNIT["meters",1]]' aoi_shp = gpd.read_file(aoi_shp_file) aoi_shp = aoi_shp.to_crs(nass_proj_wkt) minx, miny, maxx, maxy = aoi_shp.geometry.total_bounds outfile = None years = [] if cdl_year: years = [y for y in year_list] year_list = [cdl_year] for year in year_list[::-1]: if year >= 2008: print('Downloading CDL data for', str(year), '...') nass_xml_url = ' https://nassgeodata.gmu.edu/axis2/services/CDLService/GetCDLFile?year=' + str(year) + \ '&bbox=' + str(minx) + ',' + str(miny) + ',' + str(maxx) + ',' + str(maxy) r = requests.get(nass_xml_url, allow_redirects=True) nass_data_url = xmltodict.parse(r.content)['ns1:GetCDLFileResponse']['returnURL'] r = requests.get(nass_data_url, allow_redirects=True) outfile = output_dir + 'CDL_{}.tif'.format(year) with open(outfile, 'wb') as cdl_out: cdl_out.write(r.content) else: new_file = output_dir + 'CDL_{}.tif'.format(year) copy_file(outfile, new_file, ext='') for year in years: if year != cdl_year: new_file = output_dir + 'CDL_{}.tif'.format(year) copy_file(outfile, new_file, ext='') def extract_data(zip_dir, out_dir, rename_extracted_files=False): """ Extract data from zip file :param zip_dir: Input zip directory :param out_dir: Output directory to write extracted files :param rename_extracted_files: Set True to rename extracted files according the original zip file name :return: None """ print('Extracting zip files...') for zip_file in glob(zip_dir + '*.zip'): with zipfile.ZipFile(zip_file, 'r') as zip_ref: if rename_extracted_files: zip_info = zip_ref.infolist()[0] zip_info.filename = zip_file[zip_file.rfind(os.sep) + 1: zip_file.rfind('.')] + '.tif' zip_ref.extract(zip_info, path=out_dir) else: zip_ref.extractall(path=out_dir)
42.628571
118
0.599732
4e18464b9e33d10d5634b6b8ba7aa550e0d9aefc
6,921
py
Python
reformer_fastai/configs.py
tyoc213-contrib/reformer_fastai
a14de3d44e6983e34d462a3b4ec355436b701f9b
[ "MIT" ]
null
null
null
reformer_fastai/configs.py
tyoc213-contrib/reformer_fastai
a14de3d44e6983e34d462a3b4ec355436b701f9b
[ "MIT" ]
null
null
null
reformer_fastai/configs.py
tyoc213-contrib/reformer_fastai
a14de3d44e6983e34d462a3b4ec355436b701f9b
[ "MIT" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/21_experiment-configs.ipynb (unless otherwise specified). __all__ = ['update_sig', 'ConfigBase', 'SyntheticConfig', 'TransformerLMConfigEnwik8', 'ReversibleLMConfigEnwik8', 'NHashesConfig', 'NLayersConfig'] # Cell from fastcore.all import * from fastai.basics import * from .core import * from .transformer import * from .reformer import * import json from inspect import signature, Parameter # Cell def _dummy(): return # Cell def update_sig(d): "Update signature of `f` from dict `d`" d = {k:Parameter(k, Parameter.KEYWORD_ONLY, default=v) for k,v in d.items()} def _f(f): sig = signature(f) sigd = dict(sig.parameters) sigd.pop('kwargs') sigd.update(d) f.__signature__ = sig.replace(parameters=sigd.values()) return f return _f # Cell class ConfigBase: "Base class for Configs" _d:dict = None _model = _dummy def __init__(self, *, verbose=False, warn=True, **kwargs): self.validate() for k,v in kwargs.items(): if k in self._d: self._d[k]=v if verbose: print(f'Setting `{k}` = {v}') elif warn: print(f'Parameter `{k}` is not accepted by {self._model.__name__}. Skipped') def validate(self): assert exists(self._d), "_d missing. You might want to provide defaults for config" assert self._model is not _dummy, "_model missing. Provide a model class" def validate_arg(self, k): assert k in self._d.keys(), f"{self._model.__name__} does not accept `{k}` argument" def __getattr__(self, k): try: res = self._d[k] except KeyError: raise AttributeError(f"{type(self).__name__} does not have attribute `{k}`") return res def __setattr__(self, k, v): self.validate_arg(k) self._d[k] = v def __getitem__(self, k): return self._d[k] def __setitem__(self, k, v): self.validate_arg(k) self._d[k] = v def __repr__(self): s = f"{self._model.__name__} config \n" + '-'*20 s += ''.join(f'\n{k:16}{v}' for k,v in self._d.items()) return s def dict(self): return self._d def save(self, fn, add_tstmp=False): os.makedirs('exp_configs', exist_ok=True) if add_tstmp: tstmp = time.strftime("_%d_%m_%Y_%H:%M", time.gmtime()) fn += tstmp with open(f'exp_configs/{fn}.json', 'w') as f: json.dump(self.dict(), f) @classmethod def from_file(cls, fn): with open(f'exp_configs/{fn}.json') as f: d = json.load(f) return cls(**d) # Cell class SyntheticConfig(ConfigBase): """ Config for Synthetic Experiment. See https://arampacha.github.io/reformer_fastai/experiment.synthetic-task.html for details """ _model = LSHLM _d = { 'vocab_sz':128, 'd_model':256, 'n_layers':1, 'n_heads':4, 'd_ff':256, 'attn_dropout':0.0, 'ff_dropout':0.0, 'emb_dropout':0.0, 'tie_weights':True, 'causal':True, 'pos_enc':'absolute', 'max_seq_len':1024, 'axial_shape':None, 'axial_emb_dims':None, 'pad_idx':None, 'prenorm':False, 'attn_bias':False, 'bucket_size':64, 'use_lsh':True, 'n_hashes':4, 'seed':123, } @update_sig(_d) def __init__(self, **kwargs): super().__init__(**kwargs) # Cell class TransformerLMConfigEnwik8(ConfigBase): """ Config for enwik8 Experiment. See https://arampacha.github.io/reformer_fastai/experiment.enwik8-baseline.html for details """ _model = TransformerLM _d = { 'vocab_sz':256, 'd_model':1024, 'n_layers':3, 'n_heads':8, 'd_ff':4096, 'attn_dropout':0.1, 'ff_dropout':0.1, 'emb_dropout':0.1, 'tie_weights':True, 'causal':True, 'pos_enc':'axial', 'max_seq_len':2048, 'axial_shape':(64,32), 'axial_emb_dims':None, 'pad_idx':None, 'prenorm':False, 'attn_bias':False, 'shared_qk':False, } @update_sig(_d) def __init__(self, **kwargs): super().__init__(**kwargs) # Cell class ReversibleLMConfigEnwik8(ConfigBase): """ Config for enwik8 Experiment. See https://arampacha.github.io/reformer_fastai/experiment.enwik8-reversible.html for details """ _model = ReversibleLM _d = { 'vocab_sz':256, 'd_model':1024, 'n_layers':3, 'n_heads':8, 'd_ff':4096, 'attn_dropout':0.1, 'ff_dropout':0.1, 'emb_dropout':0.1, 'tie_weights':True, 'causal':True, 'pos_enc':'axial', 'max_seq_len':2048, 'axial_shape':(64,32), 'axial_emb_dims':None, 'pad_idx':None, 'prenorm':False, 'attn_bias':False, 'rev_thres':0, } @update_sig(_d) def __init__(self, **kwargs): super().__init__(**kwargs) # Cell class NHashesConfig(ConfigBase): """ Config for evaluating performance as function of `n_hashes`. See https://arampacha.github.io/reformer_fastai/experiment.enwik8-n_hashes.html for details """ _model = LSHLM _d = { 'vocab_sz':256, 'd_model':1024, 'n_layers':3, 'n_heads':8, 'd_ff':4096, 'attn_dropout':0.1, 'ff_dropout':0.1, 'emb_dropout':0.1, 'tie_weights':True, 'causal':True, 'pos_enc':'axial', 'max_seq_len':4096, 'axial_shape':None, 'axial_emb_dims':None, 'pad_idx':None, 'prenorm':False, 'attn_bias':False, 'bucket_size':64, 'use_lsh':True, 'n_hashes':2, 'seed':842, } @update_sig(_d) def __init__(self, **kwargs): super().__init__(**kwargs) # Cell class NLayersConfig(ConfigBase): """ Config for evaluating performance as function of `n_layers`. See https://arampacha.github.io/reformer_fastai/experiment.enwik8-n_layers.html for details """ _model = ReformerLM _d = { 'vocab_sz':256, 'd_model':1024, 'n_layers':3, 'n_heads':8, 'd_ff':4096, 'ff_chunks':64, 'attn_dropout':0.1, 'ff_dropout':0.1, 'emb_dropout':0.1, 'tie_weights':True, 'causal':True, 'pos_enc':'axial', 'max_seq_len':2**15, 'axial_shape':None, 'axial_emb_dims':None, 'pad_idx':None, 'prenorm':False, 'attn_bias':False, 'bucket_size':64, 'use_lsh':True, 'n_hashes':8, 'rev_thres':0, 'seed':842, } @update_sig(_d) def __init__(self, **kwargs): super().__init__(**kwargs)
26.825581
114
0.566681
ac5ea71ba02662a1dfe7807b8b7abb271cd24f36
869
py
Python
src/user/models.py
mohdfayed/blog-django-ar
d966fe45dfabf9e757fe04ba406a98b2d699dbe9
[ "bzip2-1.0.6" ]
null
null
null
src/user/models.py
mohdfayed/blog-django-ar
d966fe45dfabf9e757fe04ba406a98b2d699dbe9
[ "bzip2-1.0.6" ]
9
2021-03-18T23:57:19.000Z
2022-03-12T00:16:13.000Z
src/user/models.py
mohdfayed/blog-django-ar
d966fe45dfabf9e757fe04ba406a98b2d699dbe9
[ "bzip2-1.0.6" ]
null
null
null
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from PIL import Image # PIL is Pillow library class Profile(models.Model): image = models.ImageField(default='avatar.png', upload_to='profile_pics') user = models.OneToOneField(User, on_delete=models.CASCADE) def __str__(self): return '{} profile.'.format(self.user.username) def save(self, *args, **kwargs): super().save(*args, **kwargs) img = Image.open(self.image.path) if img.width > 300 or img.height > 300: output_size = (300, 300) img.thumbnail(output_size) img.save(self.image.path) def create_profile(sender, **kwarg): if kwarg['created']: Profile.objects.create(user=kwarg['instance']) post_save.connect(create_profile, sender=User)
28.966667
77
0.675489
6a48c7735eac0a7bf3a8343830301d89450940fb
1,120
py
Python
str/isValid.py
hikair/leetcode_py
f917fd619fa25960e5d046aa512ac0d582f2084a
[ "Apache-2.0" ]
null
null
null
str/isValid.py
hikair/leetcode_py
f917fd619fa25960e5d046aa512ac0d582f2084a
[ "Apache-2.0" ]
null
null
null
str/isValid.py
hikair/leetcode_py
f917fd619fa25960e5d046aa512ac0d582f2084a
[ "Apache-2.0" ]
null
null
null
# 有效的括号 # https://leetcode-cn.com/problems/valid-parentheses/ class Solution: # 方法1 def isValid2(self, s): stack = Stack() for i in s: if stack.isEmpty() == False and ord(i) - ord(stack.peek()) in [1, 2]: stack.pop() else: stack.push(i) return stack.isEmpty() # 方法2 def isValid(self, s): stack = [] for i in s: if stack and stack[-1] + i in ['()', '[]', '{}']: stack.pop() else: stack.append(i) return len(stack) == 0 class Stack: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[-1] s = Solution() print(s.isValid('"(){}}{"')) # False print(s.isValid('((')) # False print(s.isValid('()')) # True print(s.isValid('()[]{}')) # True print(s.isValid('(]')) # False print(s.isValid('([)]')) # False print(s.isValid('{[]}')) # True
22.857143
81
0.491071
9a8576f070d9500958e0bee863d55041cb274867
3,649
py
Python
samples/client/petstore/python/petstore_api/models/array_of_number_only.py
VinayaSathyanarayana/swagger-codegen
dd1ed1231884f08804fd5726ab5beabac59d7abd
[ "Apache-2.0" ]
1
2017-10-17T09:53:15.000Z
2017-10-17T09:53:15.000Z
samples/client/petstore/python/petstore_api/models/array_of_number_only.py
VinayaSathyanarayana/swagger-codegen
dd1ed1231884f08804fd5726ab5beabac59d7abd
[ "Apache-2.0" ]
null
null
null
samples/client/petstore/python/petstore_api/models/array_of_number_only.py
VinayaSathyanarayana/swagger-codegen
dd1ed1231884f08804fd5726ab5beabac59d7abd
[ "Apache-2.0" ]
3
2018-09-03T12:58:01.000Z
2021-02-19T06:00:30.000Z
# coding: utf-8 """ Swagger Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ OpenAPI spec version: 1.0.0 Contact: apiteam@swagger.io Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pprint import pformat from six import iteritems import re class ArrayOfNumberOnly(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, array_number=None): """ ArrayOfNumberOnly - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'array_number': 'list[float]' } self.attribute_map = { 'array_number': 'ArrayNumber' } self._array_number = array_number @property def array_number(self): """ Gets the array_number of this ArrayOfNumberOnly. :return: The array_number of this ArrayOfNumberOnly. :rtype: list[float] """ return self._array_number @array_number.setter def array_number(self, array_number): """ Sets the array_number of this ArrayOfNumberOnly. :param array_number: The array_number of this ArrayOfNumberOnly. :type: list[float] """ self._array_number = array_number def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
28.732283
160
0.583722
717dd6fca421bf2f99cd398c847f6532933c834c
1,048
py
Python
src/PyAutoMaker/input.py
boa9448/PyAutoMaker
146ca57aeec999e2663c124ca5c189aabf066b7f
[ "MIT" ]
6
2022-03-15T08:51:32.000Z
2022-03-30T05:07:34.000Z
src/PyAutoMaker/input.py
boa9448/PyAutoMaker
146ca57aeec999e2663c124ca5c189aabf066b7f
[ "MIT" ]
null
null
null
src/PyAutoMaker/input.py
boa9448/PyAutoMaker
146ca57aeec999e2663c124ca5c189aabf066b7f
[ "MIT" ]
null
null
null
from typing import Union from .input_base import * from .arduino import ArduinoUtil from .class_dd import DDUtil class InputUtil: def __init__(self, backend : Union[ArduinoUtil, DDUtil], args : tuple) -> None: self.backend = backend(*args) def key(self, key_code : int, key_status : int) -> None: return self.backend.key(key_code, key_status) def key_press(self, key_code : int) -> None: return self.backend.key_press(key_code) def key_release(self, key_code : int) -> None: return self.backend.key_release(key_code) def move(self, x : int , y : int, relative : bool) -> None: return self.backend.move(x, y, relative) def btn(self, button_code : int , button_status : int) -> None: return self.backend.btn(button_code, button_status) def btn_press(self, button_code : int) -> None: self.backend.btn_press(button_code) def btn_release(self, button_code : int) -> None: self.backend.btn_release(button_code) if __name__ == "__main__": pass
30.823529
83
0.673664